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Abstract 

 
 
This thesis aims at an automatic detection of artifacts in optical satellite images such as 

aliasing, A/D conversion problems, striping, and compression noise; in fact, all blemishes 

that are unusual in an undistorted image.  

Artifact detection in Earth observation images becomes increasingly difficult when 

the resolution of the image improves. For images of low, medium or high resolution, the 

artifact signatures are sufficiently different from the useful signal, thus allowing their 

characterization as distortions; however, when the resolution improves, the artifacts have, in 

terms of signal theory, a similar signature to the interesting objects in an image. Although it 

is more difficult to detect artifacts in very high resolution images, we need analysis tools that 

work properly, without impeding the extraction of objects in an image. Furthermore, the 

detection should be as automatic as possible, given the quantity and ever-increasing volumes 

of images that make any manual detection illusory. Finally, experience shows that artifacts 

are not all predictable nor can they be modeled as expected. Thus, any artifact detection shall 

be as generic as possible, without requiring the modeling of their origin or their impact on an 

image.  

Outside the field of Earth observation, similar detection problems have arisen in 

multimedia image processing. This includes the evaluation of image quality, compression, 

watermarking, detecting attacks, image tampering, the montage of photographs, steganalysis, 

etc. In general, the techniques used to address these problems are based on direct or indirect 

measurement of intrinsic information and mutual information. Therefore, this thesis has the 

objective to translate these approaches to artifact detection in Earth observation images, 

based particularly on the theories of Shannon and Kolmogorov, including approaches for 

measuring rate-distortion and pattern-recognition based compression. The results from these 

theories are then used to detect too low or too high complexities, or redundant patterns. The 

test images being used are from the satellite instruments SPOT, MERIS, etc.  

We propose several methods for artifact detection. The first method is using the 

Rate-Distortion (RD) function obtained by compressing an image with different compression 

factors and examines how an artifact can result in a high degree of regularity or irregularity 

affecting the attainable compression rate. The second method is using the Normalized 

Compression Distance (NCD) and examines whether artifacts have similar patterns. The 

third method is using different approaches for RD such as the Kolmogorov Structure 

Function and the Complexity-to-Error Migration (CEM) for examining how artifacts can be 

observed in compression-decompression error maps. Finally, we compare our proposed 

methods with an existing method based on image quality metrics. The results show that the 

artifact detection depends on the artifact intensity and the type of surface cover contained in 

the satellite image. 
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Chapter 1 

 

Introduction 

 
 
The growing volume of data provided by different imaging instruments requires the use of 

automated tools to perform application-oriented image analysis routinely; for example, 

similarity detection, classification, object recognition, etc. All these analysis and 

interpretation steps may be affected if an image is deteriorated by artifacts. Artifacts are 

artificial structures being contained in an image product and represent a perturbation of the 

signal. The artifacts can be produced by a variety of causes. Among them are instrumental 

effects such as sensor saturation or A/D conversion problems. Further, aliasing effects may 

occur when the scene contains highly detailed structures that the imaging instrument cannot 

resolve properly. Finally, data processing may be another source of artifacts; typical 

examples are compression-decompression effects or calibration residuals.  

The presence of artifacts degrades the performance of image analysis, and it makes the 

analysis process more difficult. The presence of distortions can decrease the efficiency of 

interpretation and identification algorithms; it may interfere with the recognition of textures 

and/or the quantitative determination of features; it can also induce errors in the indexing of 

the images, etc. As intentional markings such as watermarks or image fakery have the same 

problem and affect the quality of an image, we present a comparison with other methods for 

image quality assessment published in the literature.  

 

Some typical examples of artifacts are presented in Figure 1.1. In Figure 1.1 (a), we 

can see a line with partially inconsistent pixel values; these may be due to an intermittently 

stuck bit in the A/D converter. Figure 1.1 (b) shows trailing charges that sometimes occur 

during detector read-out. In Figure 1.1 (c), the image is affected by saturation; consequently, 

no radiometric detail will be available in these areas. In Figure 1.1 (d), we can see a vertical 

column generated by an un-calibrated dead pixel of a line scan instrument; no information is 

available in this column.  

These artifacts perturb any subsequent interpretation process. The nature of these 

artifacts can be known or unknown, predictable or unpredictable; some artifacts can be 

described by models; however, the modeling process is sometimes very difficult. Therefore, 

it is necessary to implement methods being able to detect hopefully all artifacts regardless of 

the model which describes their formation. This thesis claims that an artifact is a more 
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complex or more regular region than the local environment under analysis; the artifact is 

uncommon when we compare many images, and it is regular itself.  

A classical artifact correction approach is to create specific algorithms for each 

known type of artifact using a model of the artifact characteristics. There are correction 

methods as presented, for instance, by Jung (Jung et al. 2010) for the restoration of defective 

image lines; these existing methods aim at specific artifacts; however, other artifacts may 

remain after applying a specific correction. 

 

 

       
(a)                                                       (b) 

 

       

(c)                                                    (d) 

Figure 1.1: Examples of artifacts found in SPOT images: (a) A/D conversion problems, (b) 

Trailing charges, (c) Detector saturation, (d) Uncorrected dead pixel creating a dark column. 

 

 

 Artifacts produce changes in images, these changes are visible or not; these changes 

may result in an alteration of the statistics of the image or other parameters. This situation 

can be analyzed with image analysis approaches like presence of hidden information, or the 

presence of a watermark, and/or presence of super-imposed artificial structures in images. 

What all these image analysis approaches have in common is the analysis of changes in the 

statistics and information content of the image. It is for this reason that these approaches 

mostly use mutual information as a basis for the detection of these variations. In that sense, 
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the general scheme for an imaging system with artifacts is given by Figure 1.2 where S is an 

artifact-free satellite image; A is the distortion or artifact introduced by process Pi. The 

process that introduces an artifact can occur, for instance, during image acquisition, or 

during image processing. In this scheme, the artifact detection process is located in the 

processing channel and it can use an artifact model if the model is known. If the model is 

known, one could correct the artifact. S’ is the estimated image without artifacts if the 

correction process is implemented 

 

 

 
Figure 1.2: General artifact detection scheme. S is an artifact-free image product; A is an 

artifact; P1 … Pn are the different processes that can introduce artifacts; I is the artifact 

affected image; S’ is the estimated image after artifact correction. 

 

 

 This thesis is a continuation of the work presented by Mallet (Mallet & Datcu 

2008a), (Mallet & Datcu 2008b) and Cerra (Cerra et al. 2010). We propose the use of 

compression techniques   both lossless and lossy compression techniques   as a parameter-free 

method for artifact detection aiming at aliasing, striping, saturation, etc. The goal for using 

these compression techniques is to evaluate the level of regularity or irregularity that an 

artifact may have.  

We propose different methods based on compression; they are presented in Figure 

1.3. The first method uses lossy compression to calculate the rate-distortion function. Rate-

distortion analysis allows us to evaluate how much the image data is being distorted at a 

given compression rate. We further develop and assess the method contained in (Mallet & 

Datcu 2008) based on the analysis of the compression error for lossy compression with 

variable compression rates. The error behavior of the image sectors with artifacts is different 

from the sectors that do not contain artifacts.  

A second method uses lossless compression to calculate the Normalized 

Compression Distance (NCD); the NCD is a method proposed in (Li et al. 2004) to 

determine the similarity between two files using a distance measure based on Kolmogorov 

complexity.  

As a third method we also present some approximations of the Rate-Distortion (RD) 

function using an approximation of the image complexity based on data compression. Here, 

we do not only present an analysis of the original and the compressed-decompressed image, 

but also an analysis of the residuals, i.e. the error between the original image and the 

compressed-decompressed image (Complexity-to-Error Migration). Then we obtain a multi-

dimensional analysis of the distortion performance with different compression factors. These 
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approximate the RD curve based on complexity and can be used as a metric for evaluating 

the image quality.  

Finally, the proposed methods are compared with an already existing method which 

uses image quality metrics for artifact detection based on the work described in (Avcibas et 

al. 2003) where the authors use image quality metrics for steganalysis. 

 

 

 

 
 

Figure 1.3: Artifact detection methods. 

 

 

   

In order to evaluate the various proposed methods, we use a database with synthetic 

artifacts to analyze the success rate of detection depending on the intensity of the artifact. 

We use cloud-free images without haze effects in order to avoid problems related to 

atmospheric phenomena. 

The thesis is structured as follows: Chapter 2 presents basic aspects of optical remote 

sensing and we demonstrate typical artifacts encountered in remote sensing images. Chapter 

3 shows similar problems in other application areas. In Chapter 4, we present an overview 

about information theory, entropy and complexity. Chapter 5 presents new methods for 

artifact detection based on rate-distortion analysis, artifact detection based on Normalized 

Compression Distance,                                       -  -                            

                                   artifact detection based on image quality metrics. In 

Chapter 6, we show results and quality metrics applications. Conclusions are contained in 

Chapter 7. 
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Chapter 2 

 

Basic Aspects of Optical Remote 

Sensing 

 
Formally speaking, remote sensing deals with extracting information about a remote object. 

In our case, however, remote sensing is understood as a common measurement technique for 

airborne or space-borne instruments observing the Earth (Malacara & Thompson 2001). 

Prominent examples are satellites carrying optical imaging instruments (i.e., space qualified 

cameras). A typical scenario is shown in Figure 2.1; here, the Sun illuminates the surface of 

the Earth, while a satellite equipped with a camera is taking images. The digitized image data 

will then be transmitted from the satellite via a radio link to a ground station on Earth that 

receives the image data. There, the image data will be further processed, calibrated and 

interpreted. 

 

 

 
 

Figure 2.1: Image acquisition by a remote sensing platform [EGI – Energy & Geoscience 

Institute] 

 

 

When we acquire images as shown in Figure 2.1, our source of energy is the Sun. 

The sunlight traverses the atmosphere and is reflected by the surface of the Earth. A fraction 
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of the overall sunlight will then be collected by the camera aboard the satellite. Apart from 

the sunlight finally being collected by the instrument, much sunlight will be scattered (i.e. re-

directed) and absorbed by various physical processes in the atmosphere and on ground. 

 

 

2.1   Principles of Electromagnetic Waves 
 

The reflected sunlight seen by the instrument will comprise various wavelengths as shown in 

Figure 2.2. In principle, we can observe the electromagnetic spectrum from shorter 

wavelengths (< 10
-5

 μm) to longer wavelengths (> 10
6
 μm). Common optical remote sensing 

techniques use several regions of this electromagnetic spectrum for different applications. 

 

 

 
Figure 2.2: Electromagnetic radiation, from shorter wavelengths (< 10

-5
 μm) to longer 

wavelengths (> 10
6
 μm). 

 

 

For our applications, we mainly consider the visible and infrared spectrum. The 

visible spectrum has a wavelength range from approximately 0.4 to 0.7 μm (from violet to 

red). This range is the portion of the spectrum that comprises the visual colors seen by a 

human observer. Apart from that, the ultraviolet portion of the spectrum is useful for optical 

remote sensing of the Earth’s surface because some rocks and minerals fluoresce when they 

are illuminated by ultraviolet radiation (Note that most of the ultraviolet radiation is 

absorbed by the atmosphere making the fluorescence effects of the land cover invisible to a 

space-borne instrument). Another range of the spectrum of interest is the infrared region 

from approximately 0.7 μm to 100 μm. The infrared region can be sub-divided into three 

regions with different properties: the near-infrared, the mid-infrared, and the far-infrared 

region. The near-infrared region ranges from approximately 0.7 μm to 2.5 μm; this range is 

often used to characterize vegetation. The mid-infrared region extends from approximately 

2.5 μm to 10 μm; this range is mainly used for the detection of high temperature events like 

fires or volcano eruptions (the emitted radiation is not a direct reflection of the incident 

sunlight; the emissions can also be measured on the night side of the Earth). The far-infrared 

range from approximately 10 μm to 100 μm is used for thermal radiation budget 

measurements of the Earth and is also not a direct reflection of the incident sunlight. 
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However, in remote sensing of the Earth’s surface we cannot use the full optical 

spectrum as many spectral regions are masked by atmospheric absorption.  The sunlight has 

to traverse the Earth’s atmosphere where particles and gases will affect the radiation due to 

scattering or absorption. Scattering means a redirection of the photons due to their 

interaction with particles and gaseous molecules. On the other hand, absorption is a 

phenomenon where molecules in the atmosphere absorb energy at various wavelengths. In 

Figure 2.3, we can see a plot of the atmospheric absorptions produced by water vapor and 

carbon dioxide. The water vapor and the carbon dioxide contained in the atmosphere 

produce pronounced absorption features mainly around 1.4 and 1.9 µm; these absorptions 

reduce the reflected energy almost completely, so an optical remote sensing instrument 

operated in these regions could not get much information about the surface of the Earth. 

 

 

 

 
 

Figure 2.3: Atmospheric absorptions for electromagnetic wavelengths produced by water 

vapor and carbon dioxide. 

 

 

 

2.2   Data Acquisition and Data Reception 

 

Before we deal with artifact detection in optical satellite images, we have to understand the 

basic image acquisition and processing chain of a classical satellite camera. It collects the 

electromagnetic radiation entering the instrument and a semiconductor detector (carrying a 

line or a matrix of “picture elements” = pixels) converts the electromagnetic radiation into 

electrical signals for each pixel. The electrical charges of the pixels are then read out, 

amplified and digitized into “digital units” (i.e. brightness counts). The digitized data are 

then transmitted to a ground station. Within the chain we have to be aware of a number of 

mostly instrumental effects that may affect and degrade the quality of the acquired images. 

When the effects have known causes, they can be grouped and called artifacts. 

Based on the concept illustrated in Figure 2.4 and Figure 2.5, one can then see where 

typical artifacts may be introduced into the image generation and processing chain. 
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Figure 2.4: Basic image acquisition and processing chain of a classical satellite camera; we 

can see where typical artifacts may be introduced into the image generation and processing 

chain (space segment). 
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Figure 2.5: Basic image acquisition and processing chain of a classical satellite camera; we 

can see where typical artifacts may be introduced into the image processing chain (ground 

segment). 
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For nearly each of the major components shown in Figure 2.4 and Figure 2.5, there 

exist typical risks to include artifacts (i.e., effects that cannot be modeled by simple additive 

Gaussian noise sources). Interestingly, one of the few system components that preclude 

artifacts is the data transmission link between the satellite and the ground station. Here, the 

use of modern error recognition and correction codes guarantees a near perfect data 

transmission provided that the data link is not interrupted and has a sufficient signal-to-noise 

ratio. As we have sufficient expertise about the nature and the typical characteristics of most 

of the potential artifacts we can address the problem of identifying them routinely. This will 

be demonstrated in the next two chapters. 

The keywords contained in Figure 2.4 and Figure 2.5 are explained in more detail in 

Table 2.1. For each optical/electronic component of a satellite camera system we list the 

typical artifact-prone effects, explain their causes and effects, show what type of technology 

is most affected by this kind of artifact, and assess the importance and correctability of the 

effect. 

Component Artifact 

and Effect 

Explanation Critical 

Technology 

Importance Correctability 

Sun Photon noise 

 
 

 

 
 

The solar photon flux 

fluctuates obeying an 
arrival process: 

Photon noise = square 

root of the number of 
photons. 

This effect is 

independent of the 
instrument design 

and its 

implementation 
technology. 

 

The effect yields a 

basic assessment of 
the signal-to-noise 

behavior of an 

optical system. 

Stacking of highly 

similar images may 
yield higher signal-

to-noise results (for 

low light level 
images). 

Solar 

elevation 

The solar elevation 

determines the amount 
of photons actually 

impinging on a unit 

area on ground. The 

solar elevation 

depends on the date 

and the target area 
location. 

 

This effect is 

independent of the 
instrument design 

and its 

implementation 

technology. 

The analysis of time 

series data requires 
elevation corrected 

(i.e. inter-

comparable) data. 

Simple trig formula; 

the required 
parameters may be 

taken from image 

metadata or 

computed based on 

date, time, and 

location. 

Sun-to-Earth 
distance 

The actual Sun to 
Earth distance affects 

the image brightness. 

This effect is 
independent of the 

instrument design 

and its 
implementation 

technology. 

For image time 
series data this is a 

3% effect. 

Simple one-line 
correction formula 

approximating the 

actual distance 
versus date. 

Atmosphere Absorption 

 
 

 

 
 

 

 

 

 
 

A sizeable percentage 

of the photons of a 
given wavelength will 

be absorbed. The 

actual absorption 
depends on the 

spectral region, the air 

pressure, temperature, 

and trace gases such as 

water vapor and 
aerosol content of the 

atmosphere. 

One should avoid 

heavily affected 
wavelength 

regions. 

The severity of the 

phenomenon 
depends on the 

spectral region. 

A high quality 

modeling of the 
actual absorption 

parameters is a 

demanding task and 
does not yet correct 

the effects. 

Scattering See “Absorption” Avoid imaging in 

the blue. 

Important for bad 

contrasts in the blue 
and for conversion 

to surface 

reflectances (if any). 

A high quality 

modeling of the lost 
and gained signal 

components is a 

demanding 3D task 
and may be not yet a 

remedy. 

Clouds and 
their shadows 

Clouds prevent 
imaging of the surface. 

Cloud shadow regions 

have a low signal 
level. 

Some instruments 
provide cloud 

flags within their 

higher level 
products. 

 

Clouds prevent 
surface 

classification. 

Disregard affected 
regions (this 

requires precise 

cloud annotation in 
the image product). 
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Component Artifact 

and Effect 

Explanation Critical 

Technology 

Importance Correctability 

Atmosphere Haze Haze degrades the 

image contrast and 
destroys fine details. 

Avoid imaging 

under hazy 
conditions. 

Important in image 

time series with 
different haze levels 

(this makes inter-

comparisons 
difficult). 

One can apply 

contrast 
enhancement; 

however, this may 

introduce new 
artifacts (e.g., near 

edges in images). 

 

Aerosols Aerosol effects may 

range from image 

contrast reduction to 
sandstorm imaging. 

Avoid aerosol 

imaging or 

determine aerosol 
parameters. 

 

See above See above 

Imaged 
Surface Area 

Absorption 
 

 

 
 

Reduces the surface 
brightness of some 

materials. 

This effect is 
independent of the 

instrument design 

and its 
implementation 

technology. 

 

Allows surface 
classification. 

Shall not be 
corrected for 

(needed for image 

interpretation). 

Scattering Reduces the surface 
contrast. 

See above Mostly of minor 
severity 

 

Shall not be 
corrected for. 

Bi-directional 
reflection 

[distribution] 

function 
(BDRF) 

The observed surface 
brightness depends on 

the local illumination/ 

observation geometry. 

Avoid imaging 
with sub-optimal 

geometries. 

Could become 
important for 

instruments with 

highly agile 
pointing. 

A correction would 
require a reliable 

knowledge of the 

physical parameters. 

Shadows May prevent correct 

surface classification. 

Does not depend 

on the instrument 

technology 
(besides contrast 

fidelity). 

 

Depending on scene 

details and terrain 

shape. 

Could be required 

for conversion to 

surface reflectance. 

Occlusions Some surface details 

may be not visible due 

to a slant viewing 
geometry. 

Avoid slant 

viewing in highly 

structured terrain. 

Important in special 

cases only. 

Not correctable 

Baffle Stray light The baffle shall reduce 

stray light from non-
target directions. 

There is always a 

conflict between 
the desired 

baffling 

capabilities and 
the baffle size. 

Images with stray 

light from sunlit 
snow surfaces might 

be degraded. 

A full stray light 

correction is 
difficult (needs 

modeling). 

Optics Modulation 

transfer 

function 
(MTF) 

 

Focus 
 

Aberrations 

Sharp transitions are 

smoothed by the 

transfer function of the 
optics, the actual 

resolution depends on 

the focusing, and some 
additional aberrations 

may be introduced. 

Some low pass 

filtering is often a 

design goal; after 
the launch of a 

spacecraft we 

often have 
unwanted 

mechanical mis-

alignments of 
optical systems. 

Color aberrations 

are most often 
uncritical. 

 

MTF effects in 

remote sensing are 

only critical if we 
are interested in 

extremely small 

details. 

In principle, MTF 

effects can be 

inverted but a 
correction often 

introduces new 

artifacts (e.g., 
ringing). 

Spectral 
filters 

Transmission 
curve 

 

Leakage 
 

Reflections 

Each spectral filter has 
a pass-band and shall 

block all other colors. 

Some filters show 
spectral leakages and 

cause unwanted 

multiple reflections. 

Some desired 
filter shapes are 

difficult to 

produce in space 
qualified 

technology. The 

filter aging 
characteristics and 

their reflection 

behavior has to be 
tested carefully. 

The analysis of 
multi-spectral 

images often relies 

on differences 
between spectral 

bands.  

Any color correction 
is rather difficult 

and calls for 

extensive modeling. 
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Component Artifact 

and Effect 

Explanation Critical 

Technology 

 

Importance Correctability 

Detector(s) Type and 

operations 
 

Responsivity 

 
Dark current 

 

Blemishes 
 

Thermal 

noise 
 

Blooming 

 

Transfer 

efficiency 

 
Residual 

image 

 
Ghost images 

 

Saturation 
 

Color band 

displacement 

Visible sensor artifacts 

depend on the sensor 
type, the image 

recording and the 

read-out concept (e.g., 
residual images caused 

by CMOS detectors, 

smearing caused by 
TDI recording, and 

artifacts due to read-

out with on-going 
illumination). 

The most visible 

artifacts are due to 

non-uniform pixel 

responsivity, non-

uniform dark current 
signatures, thermal 

noise, blooming of 

bright targets, 
insufficient transfer 

efficiency during 

sensor read-out, 
existence of residual 

images, or ghost 

images due to 
unwanted reflections, 

saturation of extended 

areas, or geometrical 
displacements between 

color sensors.  

 

Improvements in 

sensor technology 
have improved the 

situation 

considerably.  
Sensor butting has 

become less 

important; dead or 
hot pixels, 

blemishes and 

striping can be 
avoided by careful 

sensor selection.  

A camera design 

with reduced read-

out speed will 

reduce the noise 
level. 

Detector overflow 

calls for 
appropriate 

camera 

operations. 
 

The quantitative 

analysis of digital 
images calls for 

artifact-free sensor 

signals as they 
distort the recorded 

scene. 

A lot of experience 

is available how to 
calibrate sensors 

with respect to pixel 

and read-out 
signatures, how to 

correct single pixel 

blemishes by 
interpolation, and 

how to characterize 

thermal noise and 
residual images. 

Read-out 

electronics 

Linearity 

 

Zero level 
stability 

 

Low pass 
effects 

 

Cross-talk 
 

Multiplexing 

effects 
 

Noise effects 

 

The read-out 

electronics (and its 

amplifiers) can add 
additional artifacts to 

an image: amplifiers 

will not be perfectly 
linear in a thermally 

varying environment, 

their zero level may 
drift, and random 

noise will be 

introduced. 

The critical point 

is to design high-

speed electronics 
with low noise. 

The most important 

detail is the fidelity 

of multiple (i.e., 
parallel) read-out 

channels. Each 

channel needs 
similar thermal 

responses.  

  

Linearity, zero 

levels and low pass 

effects have to be 
verified in detail and 

can be calibrated as 

systematic effects.  
In contrast, cross-

talk and noise 

effects often cannot 
be treated as 

systematic effects 

and remain difficult 
to correct for. 

A/D 
converter 

Linearity 
 

Zero level 

 

Stuck bits 

 
Quantization 

noise 

Any technical 
imperfection during 

A/D conversion will 

generate image 

artifacts. 

The A/D 
converter has to 

fast enough, shall 

be linear, and 

shall not be prone 

to stuck bits.  
The 

transformation of 

analogue signals 
into quantized 

steps will 

introduce 
quantization noise 

that depends on 

the quantization 
step size. 

 

 
 

 

 

The A/C converter 
quality affects each 

pixel of every 

image. Therefore, a 

good design is very 

critical.  

A known non-
linearity can be 

calibrated. A good 

zero level stability 

can be reached via 

correlated double 
sampling. 

Stuck bits need 

special software 
tools and 

quantization noise 

has to be taken for 
granted. 
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Component Artifact 

and Effect 

 

Explanation Critical 

Technology 

Importance Correctability 

Data 

compression 

Compression 

losses 

On-board data 

compression prior to 
transmission to ground 

allows high volume 

imaging. However, 
high rate compression 

causes compression 

effects (e.g., so-called 
blocking effects). 

Existing data 

compression 
techniques (e.g., 

JPEG type image 

compression 
methods) have to 

be applied in a 

way not to 
degrade the image 

data too much. 

The analysis of 
the image content 

must not be 

compromised. 

This can be 

verified by 

studying the 
histograms of 

images after de-

compression. 
 

It is important to 

select a set of 
compression 

parameters that do 

not falsify the image 
content to be 

interpreted. A clever 

selection of the 
compression 

parameters 

necessitates a lot of 
test runs with typical 

examples. 

There exist some 

enhancement 
methods for the 

reduction of 

blocking effects. 
However, these 

methods create new 

problems as they 
degrade image 

details. 

On-board 

data handling 

Storage 

capacity 

Comfortable imaging 

needs sufficient 
storage capacity to 

store images prior to 

downlinking them to 
ground. Otherwise, we 

are faced with 

interrupted imaging 
(the ultimate 

“artifact”). 

 

Nowadays, 

technology for on-
board digital data 

storage is 

available.  

The data rate 

produced by an 
imaging instrument 

has to be designed in 

accordance with the 
data transmission 

capabilities of the 

satellite. 

One can try to 

optimize the parallel 
or sequential 

operations of all 

data generating 
instruments aboard a 

satellite. 

Formatting 
and error 

correction 

coding  

(none) Nowadays, powerful 
error protection coding 

is available that 

provides either perfect 
data quality or a loss 

of data. 

 

This technology 
has become an 

integral part of 

data transmission 
and is no longer 

critical. 

Error protection is a 
pre-requisite for the 

transmission of 

compressed data 
(e.g., images).  

Existing software 
packages with a 

proven record 

should be used. 

Data 

transmission 

and reception 

Antenna gain 

 

Antenna 
pointing 

 

Amplifier 
cooling 

 

Receiver 
synchronizati

on 

 

(The data analysis 

community is not 

involved in this field 
of activity.) 

(not for data 

analysts) 

(not for data 

analysts) 

(not for data 

analysts) 

Data re-

formatting 

 

Data gaps (see above) (see above) (see above) (see above) 

Data de-
compression 

Decompres-
sion noise 

Software packages 
being used for 

decompression may 

include selectable 
optimization 

parameters. 

 
 

 

 
 

 

 
 

(see above) (see above) (see above) 
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Component Artifact 

and Effect 

Explanation Critical 

Technology 

 

Importance Correctability 

Radiometric 

correction 

Calibration 

concept 
 

Detector and 

read-out 
effects 

 

Conversion to 
radiances 

 

Conversion to 
reflectances 

 

Calibration 

residuals 

Common radiometric 

calibration concepts 
contain a signal 

correction part for 

known instrumental 
effects, and routines 

for the conversion of 

(corrected) detector 
counts into physical 

units (radiances and/or 

reflectances). 
Uncorrected effects 

appear as artifacts.  

The long term 

monitoring of the 

calibration quality may 

use statistics of 
residual errors. 

The signal 

correction part 
and the 

conversion steps 

are dynamic 
processes: after an 

initial on-ground 

calibration, in-
flight calibration 

experiences lead 

to improved 
methods and 

results. Often, one 

faces new 

calibration 

problems during 

the lifetime of an 
instrument.  

 

A proper 

radiometric 
correction is a basic 

pre-requisite for 

quantitative image 
analysis and 

interpretation. 

Improperly 
calibrated images 

may lead to wrong 

conclusions. 

As a rule, known 

instrument 
characteristics that 

can be corrected 

with acceptable 
implementation 

effort will be 

contained in 
common radiometric 

correction packages. 

On the other hand, 
one can never 

expect a perfect 

radiometric 

calibration. 

Geometric 

correction 

Rectification 

approach 
 

Geo-coding 
accuracy 

 

Re-projection 
effects 

 

Terrain 
effects 

Geometric correction 

packages re-project 
radiometrically 

corrected images onto 
a (sometimes 

selectable) common 

map projection. 
(This topic is of 

secondary importance 

in this dissertation and 
we will not provide 

too many details here.) 

One can use 

rectification 
approaches 

ranging from tie-
point and 

interpolation 

techniques to 
highly accurate 

rational function 

models and 
additional support 

by existing 

DEMs. The 

selected method 

determines the 

kind of artifacts 
generated during 

the rectification. 

Important points 
to consider are the 

accuracy of 

available geo-
data, re-projection 

artifacts, and the 

handling of terrain 
effects. 

 

Geometrically 

corrected images are 
required for 

applications that 
need absolute 

locations of objects, 

or the comparison of 
locations in data of 

different 

instruments, etc. 

Some geometry 

routines allow the 
interactive selection 

of tie-points. The 
use of additional tie-

points may reduce 

local blunders. 

Higher level 

products 

Algorithmic 

stability 

Derived quantities in 

higher level products 
may be imprecise (for 

instance, vegetation 

parameters derived 

from multi-spectral 

images). 

The 

transformation of 
basic image 

products into 

derived physical 

quantities needs 

appropriate 
algorithms (that 

are not always 

available or of 
good quality). 

 

The acceptance of 

higher level 
products by the user 

community hinges 

on their correctness.  

Comparisons with 

ground truth 
measurements can 

give clues to the 

quality of the used 

algorithms but 

ground truth 
measurements are 

not always 

available.  

 

Table 2.1: List of potential artifacts 
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On the other hand, if the available image data are not affected by too serious 

artifacts, the image content can be analyzed and interpreted. Besides the recognition of 

spatial objects (such as a road or a bridge) in an image, one can     in the case of a camera 

with sufficiently many separate spectral channels     also use the shape of a spectral curve to 

identify and distinguish different materials. For example, vegetation has a high reflectance in 

the near-infrared range, in contrast to inorganic materials (e.g., rocks) that have specific 

absorption bands that we can use to detect the presence of minerals. This is illustrated in 

Figure 2.6. 

 

 

 
Figure 2.6: Typical spectral signatures; for example, vegetation has a high reflectance in the 

near-infrared range, in contrast to inorganic materials (e.g., rocks) that have specific 

absorption bands that we can use to detect the presence of minerals. 

 

 

 

The imaging scenario given above has to be discussed in conjunction with the 

resolution capabilities of a camera. The resolution of a camera can be defined as its spatial 

resolution (i.e., the capability to discriminate two adjacent point targets), its radiometric 

resolution (i.e., the capability to discriminate two similar brightness levels), its spectral 

resolution (i.e., the capability to discriminate two similar colors) and its temporal resolution 

(i.e., its capability to resolve temporal changes in image time series. These four kinds of 

resolution will be explained below in more detail. 

 

 

2.2.1   Spatial Resolution 

 

The spatial resolution of an optical instrument is basically constrained by the size of a 

detector pixel, the focal length of the camera optics, the distance from the satellite to the 

target, and the assumption that all neighboring pixels are immediately adjacent. Then these 

parameters define the nominal footprint of a detector pixel projected onto the surface of the 

Earth. This footprint size can be used to determine the capability to resolve two adjacent 

point targets. However, the footprint is defined for an ideal instrument; in practice, the 

atmosphere may blur the image, the camera optics has a defined transfer function, the 

detector and its read-out electronics may act as low pass filters, etc. As an additional 

complication, the term “spatial resolution” is often confounded with the pixel spacing used 



 

 

 

Compression Based Analysis of Image Artifacts: Application to Satellite Images 

 

Avid Román-González                                                                                                                                           28 

for the representation of an image product. The actual pixel spacing used in a digital image – 

for instance, after a geometric re-projection – may correspond to a pixel grid that differs 

considerably from a grid commensurate with the ideal spatial resolution. 

 

 

2.2.2   Radiometric Resolution 

 

The radiometric resolution of a camera is limited by the number of bits provided by the A/D 

converter that quantizes the electrical charges (i.e., the electrons) of a detector pixel (after 

read-out and amplification) into digital units. Of course, this limitation is not yet a fully valid 

criterion: We also must be sure that the lower bits of the A/D converter do not only contain 

noise but useful information. Otherwise, we would have a nominal radiometric resolution 

that does not fulfill its promises. Other points to consider are the full-well capacity of the 

detector pixels and the setting of the read-out amplification factor prior to A/D conversion. 

The amplification factor has to be selected according to the signal level, the signal dynamics, 

and the quantization capabilities of the A/D converter. 

 

 

2.2.3   Spectral Resolution 

 

The spectral resolution of a remote sensing instrument is determined by the number of 

individual spectral bands that the sensor(s) can detect and handle. Classical remote sensing 

cameras have four or more spectral bands: at least a red band, a green band, a blue band, and 

an infrared band; there are also instruments which produce multispectral images that have 

approximately 10 to 15 bands. In addition, there are also hyperspectral imagers that provide 

more than 100 spectral bands. From a technical standpoint this means that either individual 

detectors are available for each spectral band (a classical design approach with sometimes 

displaced viewing directions for each spectral band), or a detector provides on-chip color 

band discrimination (for instance, a so-called Bayer type image sensor), or – in the case of 

hyperspectral instruments – a prism generates a multi-element color spectrum for each single 

point target on ground to be recorded as a full sensor line (the “imaging spectrometer” 

concept). Within this framework, we have to consider that the technical solution adopted for 

a specific camera has to provide a reasonable signal-to-noise level: narrow spectral bands 

have a lower signal level than broader spectral bands. The lack of sufficient energy can only 

be compensated by longer exposure times; however, the ground-track motion of the satellite 

and the read-out strategy of the detectors constrains the admissible exposure times. 

 

 

2.2.4   Temporal Resolution 

 

When a satellite is orbiting the Earth on a (near-) polar orbit, also the Earth is rotating about 

its axis. While a typical satellite orbit has an orbit period of about 100 minutes, the Earth 

requires 24 hours for a full rotation. This means that after a full satellite orbit cycle, the Earth 

has rotated by more than 20 degrees and our new satellite ground track will be displaced 

form the previous one accordingly. Thus, it takes some time until the same location on the 

Earth’s surface can be imaged again. This re-visit time period (usually several days) limits 

the temporal resolution of a satellite camera. The actual temporal resolution of a camera 
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system depends on more factors, including the lateral (off-nadir) pointing capability of the 

camera to re-acquire the same location again by slant viewing, the swath width of the sensor 

and its desired overlap, and the geographical latitude of the target area: Near the equator the 

longitudinal inter-track spacing is greatest; near the poles, it is minimal, but we also have to 

take into account that cloud cover could make a number of image takes unusable and this 

could lead to a degraded temporal resolution. 

 

 

2.3   Earth Observation Image Information Content and Quality 
 

In this section, we will describe the information extraction from satellite images and the 

importance of image quality for satellite images. We will also study in more detail the 

artifacts introduced in Section 2.2 and their influence on information extraction. 

We concentrate on the information that one can extract from these images in order to 

interpret and apply this information in different fields. Here, the image quality plays an 

important role. If we want to get the highest amount of information from an image, we need 

to have a good image quality. 

This is a pre-requisite for the detection, measurement, identification and interpretation of 

different targets. Targets in remote sensing images may be any feature, object, texture, 

shape, structure, spectrum, or land cover being contained in the image. 

Data processing and analysis in remote sensing can be performed either manually or 

automatically. Currently, there are many research groups that develop automated tools to 

detect, identify, extract information and interpret targets without manual intervention by a 

human interpreter. 

 

 

2.3.1   Information Content 

 

To extract the information contained in satellite images, one has to extract different 

characteristics such as color, texture or shape. 

Color features based on spectral information can be used to extract information from 

multi-band image pixels for analysis, classification, indexing, segmentation, etc. A typical 

example is the analysis and comparison of spectral signatures. 

Another way to extract information from an image is using its texture. In general, 

texture is defined as a segment with homogeneous properties or characteristics; it represents 

a repetition of motifs that create a visually homogeneous image maintaining a spatial 

relation. There are many researches in this field to characterize the different spatial 

relationships and evaluate the amount of information that can be extracted from satellite 

images as shown in (Dowman & Peacegood 1989). For instance, Haralick et al. 1973 used 

statistical measures to discriminate the different structures in an image; the authors propose 

14 features calculated from a co-occurrence matrix corresponding to the second-order 

statistics of pixel neighborhoods. 

The extraction of shape information is based on geometric characteristics such as 

area, eccentricity, longitude axis, invariant algebraic momentum, etc.  

It is also possible to combine spectral, texture and geometric characteristics for the 

analysis of satellite images that results in extracted features. 
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Figure 2.7: Example of remote sensing image analysis [International Charter on Space and 

Major Disasters]. 

 

 

 

After a feature extraction process, a classification step is performed; for 

classification, one can use supervised or unsupervised classification. Supervised 

classification needs data for training; one needs a good selection of training data with 

relevant and appropriate samples to obtain an optimal parameterization. The parameters that 

are the result of the training step are then used for the final classification of the remaining 

data.    

In contrast, unsupervised classification does not need a training step. This type of 

classification uses clustering algorithms to determine the grouping of the data. The type of 

algorithm determines which features will be the most predominant ones for clustering   either 

color, texture or shape. In most cases, however, one has to specify the number of data 

clusters, the selected distance parameter, etc.  

Whatever classification type will be used, the final result of the analysis process is a 

mosaic either composed of pixels or image patches in which each element represents a 

category of interest. 
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2.3.2   Earth Observation Image Quality 

 

A satellite image must comply with the needs of end users, thus the required quality of the 

image depends on the type of application, which could be photo-interpretation, forest and 

deforestation monitoring, agricultural land monitoring, meteorology, water color analysis, 

monitoring of natural disasters (earthquakes, floods, etc.), defense applications, etc. 

 Generally, there are well-known criteria to evaluate the quality of a satellite image 

in three important domains: Geometric quality, radiometric quality, and quality aspects 

related to the actual resolution. 

 In the geometric domain of images, where the interesting topic is to determine the 

position of the pixels with high accuracy, the criteria to define the image quality have to 

evaluate the preservation of locations and distances, including the precise overlapping of 

color bands, and accurate heights. 

 In the radiometric domain, the important thing is the brightness level of each pixel; 

the criteria to be evaluated are the calibration accuracy, the radiometric noise, etc. 

 In the domain related to resolution, the important issues are the resolution 

capabilities, and the perception and reproduction of details; the topics which must be taken 

into account for the quality assessment are the sampling technique, the modulation transfer 

function, etc. 

 These criteria for assessing the quality of a satellite image serve to define the 

specifications of different components for an Earth observation project and to assess its 

capabilities to satisfy the user needs. 

 

 

2.3.3   Earth Observation Image Artifacts 

 

In the literature, we found no standard definition of an image artifact. Therefore, we had to 

find a definition based on our experiences. As will be shown in Section 2.3.4 in more detail,  

 

- We define artifacts as artificial structures that represent a structured perturbation of 

the signal.  

 

In most cases, these artifacts are produced by the instrument; for instance, technical 

design problems, saturation of the sensor, or on-board signal processing. Therefore, these 

artifacts induce errors during image analysis. 

In the following, we will describe typical artifacts that may occur (or have been 

simulated) in images that were taken by the SPOT 5 instrument, by IKONOS, by MERIS, 

and by the hyperspectral instrument ROSIS. Each of these instruments is prone to typical 

artifacts. Therefore, we begin with a short survey of each instrument and its critical 

components.  

SPOT 5 (launched in May 2002) represents a classical optical line scan instrument 

with 60 km swath width that has a long heritage of predecessor instruments dating back to 

SPOT 1, SPOT 2, etc. The polar and sun-synchronous orbit of SPOT 5 is characterized by its 

mean height of 822 km, its period of 101 minutes and its equator crossing time (on its 

descending branch) of 10:30 AM local time. The orbit repeat cycle of 26 days (combined 

with off-nadir imaging) allows a re-visit period of a target area within typically 2 to 3 days. 
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SPOT 5 carries two camera instruments to be considered here: HRG and HRS. (The 

SPOT 5 payload also comprises an optical vegetation monitoring instrument that is not 

considered here.) HRG represents a typical multi-color instrument with a high resolution 

panchromatic channel (2.5 or 5 m resolution) and four additional color channels with lower 

resolution (10 m or 20 m resolution). All channels are recorded by line sensors. HRS is a 

stereo pair generating instrument delivering simultaneously acquired and geometrically 

overlapping forward and backward looking strip images. The image strips acquired by CCD 

line sensors (via push-broom technology) have a panchromatic resolution of at least 10 m 

and a swath width of 120 km and can be used to generate digital elevation models.  

The A/D conversion of SPOT 5 delivers 8 bits per sample. This should allow us to 

see persistent artifacts that are not due to an excessive signal amplification and quantization. 

When we concentrate on potential artifacts of the HRG instrument, we can expect to 

see all typical features of a classical multi-spectral push-broom instrument such as residual 

detector blemishes and discrepancies between the individual color bands.  As SPOT 5 can be 

considered as a typical “workhorse instrument”, also the SPOT 5 artifacts should be very 

typical of this type of instruments. Thus, SPOT 5 images are a good choice for studying 

artifacts in satellite images.  

Another instrument is IKONOS, a very high resolution push-broom imager: 

IKONOS was the first commercial sub-meter resolution satellite to acquire panchromatic 

image strips with 0.82 meter resolution and multispectral images with 3.2 meter resolution. 

The high resolution is reached by its telescope focal length of nearly 10 m and represents the 

state of civilian technology of 1999 that developed further, of course, during the last years 

(e.g., into the Pleïades or WorldView satellite series).  

The polar and sun-synchronous orbit of IKONOS is characterized by its mean height 

of 681 km, its period of 98 minutes and its equator crossing time (on its descending branch) 

of 10:30 AM local time. This, together with the off-nadir pointing capabilities of the 

spacecraft, and an instrument swath width of 12 km allows a revisit period of a target area of 

about 3 days. The downlinked image data can be acquired by several ground stations around 

the world that can be operated independently from each other. 

IKONOS provides simultaneously recorded panchromatic and multispectral image 

strips via separate line detectors: a panchromatic CCD detector with 13,500 cross-track 

pixels (operated in TDI mode), and 4 photodiode color detectors with 3375 cross-track 

pixels. The color separation is accomplished by multi-layer spectral filters on glass. Besides 

its high geometrical resolution, IKONOS also provides a high radiometric resolution: The 

A/D converter delivers quantized data with 11 bits per sample. These data will be 

compressed via adaptive differential Pulse Code Modulation with a compression rate of 4.25.  

As a result of these demanding design parameters, one can expect typical 

geometrical and brightness artifacts due to the very stringent spatial and temporal imaging 

requirements such as contrast degradations, residual TDI mismatch, etc. A critical issue is 

the attainable image classification accuracy.  

Finally, we will also consider the MERIS instrument, an imaging spectrometer 

operating in the visible and near-infrared spectral range from 390 nm to 1040 nm. From this 

overall spectral range, one can select 15 spectral bands by ground command.  

MERIS was flown aboard the now defunct ENVISAT satellite with the following orbit 

parameters: polar sun-synchronous orbit with a mean height of 800 km, a period 101 minutes 

and an equator crossing time (on its descending branch) of 10:00 AM local time. These 

parameters yield a repeat cycle of 35 days. 
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One of the most important points for artifact detection is the wide cross-track field of 

view of the MERIS instrument covering 68.5° requiring a polarization scrambler and 

resulting in a swath width of 1150 km; technically, this wide field of view is accomplished 

by installing five identical optical modules arranged in a side-by-side configuration. As each 

module has to be calibrated individually, small residual offsets among the calibration 

parameters of a module will immediately cause visible offsets in image mosaics. 

Within each optical module, MERIS uses a separate frame detector with an imaging 

zone of 740 spatial × 520 spectral pixels. Each frame detector consists of a CCD where the 

spatial information is recorded in an image row (following a classical push-broom imaging 

concept), while the spectral content of a push-broom row is mapped along the columns of the 

CCD. This concept necessitates elaborate read-out strategies that result in spectra with a high 

signal-to-noise ratio. One can imagine that a number of potential read-out artifacts may 

jeopardize the quality of the spectra. The radiometric quality of the data is preserved by an 

A/D conversion with 12 bits per sample. This high resolution necessitates elaborate 

calibration concepts that are     of course     again prone to artifacts. Therefore, MERIS data 

are a prime target for artifacts appearing as small but sometimes annoying spatial and/or 

spectral details. 

ROSIS (Reflective Optics System Imaging Spectrometer) is a hyperspectral airborne 

instrument; it has 115 spectral bands in the range from 430 to 860 nm with 14 bits of 

radiometric resolution. Typical artifacts for this class of instruments are radiometric 

calibration errors due to insufficiently corrected atmospheric effects (e.g., water vapor 

profile residues). 

Figure 2.8 shows some examples of artifacts, in (a) and (b) we can see texture 

changes due to aliasing; (c) and (d) show the existence of horizontal lines which could be 

erroneously detected as bridges; (e) shows saturation, and (f) shows blocking effects; (g) and 

(h) contain strips of the 2
1
 bit in one band of the hyperspectral image. These artifacts may 

interfere with the recognition of a texture, target identification, land cover segmentation or 

the quantification of features. The nature of some of these artifacts is mostly known; 

however, these artifacts cannot be described by a single model; that is why we aim to detect 

these artifacts regardless of the specific formation model, i.e. we look for parameter-free 

methods. 
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                             (a)                                                  (b) 

 

       
                                         (c)                                      (d) 

 

      
                                                (e)                                             (f) 

 

      
                                                (g)                                             (h) 

 

Figure 2.8 Typical examples of artifacts: (a) and (b) Change of texture by aliasing after 

processing. (c) and (d) Horizontal lines appearing after contrast enhancement (e) Sensor 

saturation. (f) Blocking effects. (g) and (h) contain strips of the 2
1
 bit in one band of the 

hyperspectral image. 



 

 

 

Compression Based Analysis of Image Artifacts: Application to Satellite Images 

 

Avid Román-González                                                                                                                                           35 

  

 

 

 

     
       (a) A/D conversion problem (SPOT)                               (b) Trailing charges 

 

     
(c) Saturation                                                     (d) Dead column 

 

Figure 2.9: Some examples of our artifact database: (a) A/D conversion problem (SPOT) (b) 

Trailing charges. (c) Sensor saturation. (d) Dead column. 

 

 

 

In the following, we present and describe some specific actual artifacts found in 

satellite images in more detail. In Figure 2.9, we see an excerpt of our database which has 

been developed to evaluate artifact detection methods. In Figure 2.9 (a), we show an A/D 

conversion problem in a SPOT image; this defect represents an electronic signal disturbance 

and appears as a “salt and pepper” row in the image. Figure 2.9 (b) illustrates a trailing 
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charge problem: during detector read-out, a high brightness pixel creates a decaying 

brightness trail. 

In Figure 2.9 (c), we see saturation problems; saturation occurs when the sensor 

reaches its maximum full-well capacity; this leads to a loss of information because the sensor 

does not measure the true value; saturation often produces side effects in adjacent pixels 

when they also become saturated. In Figure 2.9 (d) we can see a dead column; this defect 

occurs due to an uncorrected dead pixel of a push-broom line sensor. If we use a frame type 

sensor, the presence of an uncorrected dead pixel would yield a black point in the image. 

In general, the generation of a standard product of a satellite image includes a 

correction of dead pixels, etc. (Jung et al. 2010); however, some artifacts may be remaining 

after this process. 

 

 

2.3.4   Impact of Artifacts on Image Analysis 

 

Automatic image analysis tools such as similarity detection, classification, pattern 

recognition, etc. often rely on data of sufficient quality; if they cannot take into account some 

defects like noise, blurring, etc. they are not universal. Artifacts can complicate the analysis 

of images and may decrease the efficiency of the analysis process; but we do not know 

exactly how the artifacts affect the image analysis.  In this section, we present an assessment 

of the classification variation due to artifacts being present in the satellite images. For 

making the evaluation, we select different feature extraction processes such as Gabor 

Wavelet features presented in (Manjunath & Ma 1996), quadrature mirror filters (QMF) used 

in (Campedel et al.; Simoncelli et al. 1989), and features based on co-occurrence matrix 

analysis (Presutti 2004).  

The Gabor Wavelet features contain the average energy output for each filter; this 

analysis uses the spatial and frequency components to analyze differences between textures. 

The result is a direct response from the decomposition of the original image into several 

filtered images with limited spectral information; the method is used as a simple statistical 

characteristic of gray-scale values of the filtered images using the k-means algorithm. 

In a QMF bank, a pair of parallel filters is used followed by sub-samplers; the 

resulting features are quantized and coded using an entropy encoder. Again, classes are 

assigned following the k-means algorithm. 

The co-occurrence matrix describes the frequency of a gray level that appears in a 

specific spatial relationship with another gray value within the area of a particular window. 

The co-occurrence matrix is a summary of how often pixel values occur adjacent to another 

value in a small window. The k-means method gives us classes. 
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(a) Image without artifacts                             (b) Image with artifacts 

 

   
(c)  Classification of image (a)                (d) Classification of image (b) 

 

Figure 2.10: Example of two artifact assessments with two different image classification 

results; the variations represent between 4 and 5 percent of the pixels. 

 

 

 

Figure 2.10 shows two image classification results. Figure 2.10 (a) contains a forest 

scene for image classification. Figure 2.10 (b) shows the same image as Figure 2.10 (a), but 

with some manually introduced artifacts; these artifacts are defective columns introduced 

into the red circled zone. We classified the images of Figure 2.10(a) and Figure 2.10(b); a 

five group classification was made for different forest types; we can see the differences of 
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the classification results in Figure 2.10 (c) and Figure 2.10 (d); the differences  affect 

between 4 and 5 percent of the pixels in the indicated zones.  

 

In general, the presence of artifacts in satellite images can produce discrepancies of 

classification or indexing results; the differences affect the classes (e.g., city, forest, sea, or 

agriculture); the variation can range from 3 to 10 percent and     depending on the application  

   the error can become very important. 

In Figure 2.11, we see another example of how artifacts affect the classification 

results of 8 bit satellite images. This example shows a forest image, which was classified into 

three groups using QMF features. In a second run, some synthetic artifacts were introduced 

into the image; in this case, 16 vertical strips with a width of 1 pixel and a length of 100 

pixels and selected brightness levels were added to the original image (having a mean 

brightness level of 39). We can see that for an additional brightness level of 10, there is a 

variation with respect to the classification of the original image, and if we use strips with an 

additional brightness level of 20, the variation is much greater. The percentages of 

classification differences are shown in Table 2.2 where we show the values for each class 

and for different strip intensities. 

 

 

 

Added 

Brightness 

Class 1 

Blue 

Class 2 

Cyan 

Class 3 

Yellow 

 0 46.20 % 42.98 % 10.82 % 

10 46.30 % 43.21 % 10.49 % 

20 42.60 % 46.30 % 11.10 % 

 

Table 2.2: Classification percentage for different strip intensities 

 

 

 

The classification was made for 3 classes, (class 1 coded in blue, class 2 coded in 

cyan, and class 3 coded in yellow). The introduction of striping with an intensity of 10 

produces a minor classification variation of 0.66% in total, which can be clearly seen in 

Figure 2.11. This minor variation in the classification results has to be understood in 

conjunction with the mean image brightness of 42 counts; however, when we add striping 

with an intensity of 20, this leads to a classification variation of 4% in total, which obviously 

is a big difference and can     depending on the application     dramatically affect the 

classification and indexing results. 
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FOREST 

Original image Image classification without artifacts 

  
 QMF features - 3 classes (449×449 pixels) 

Class 1 ->  46.20 %      (blue) 

Class 2 ->  42.98 %      (cyan) 

Class 3 ->  10.82 %      (yellow) 

  

 

Image with artifacts (10 counts added) Image with artifacts (20 counts added) 

  
QMF features - 3 classes  (449×449 pixels) 

Class 1 ->  46.30 %      (blue) 

Class 2 ->  43.21 %      (cyan) 

Class 3 ->  10.49 %      (yellow) 

QMF features - 3 classes  (449×449 pixels) 

Class 1 ->  42.60 %      (blue) 

Class 2 ->  46.30 %      (cyan) 

Class 3 ->  11.10 %      (yellow) 

 

 

 

Figure 2.11: Assessment of synthetic artifacts: a forest image, which was classified into 3 

classes using QMF features and the k-means algorithm. 
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Another artifact example is shown in Figure 2.12. In this case, we see an air-borne 

image product with a dead column. Here we cannot make a quantitative assessment as to the 

classification changes because we do not have the corresponding undisturbed image. 

However, we can visually observe that the presence of this column produces two strange 

laterally displaced patterns (see the red ellipse in Figure 2.12 (b)). For the classification, we 

used Gabor filter features and a patch size of 64×64 pixels. 

 

 

 

  
(a)  Satellite image with a dead column                     (b) Classification of image (a) 

 

Figure 2.12: Artifacts of an actual image (presence of a dead column). 

 

 

 

Another artifact example is shown in Figure 2.13. In this case, we applied a 

segmentation algorithm to a satellite image without apparent artifacts; after that, we 

introduced a column in the image simulating a dead pixel, and applied the segmentation 

algorithm again. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Compression Based Analysis of Image Artifacts: Application to Satellite Images 

 

Avid Román-González                                                                                                                                           41 

 

 

  
 

 

 
(a)  Satellite image without artifacts               (b) Segmentation of image (a) 

 

 
 

 

 
(c)  Satellite image with dead column artifact                (d) Segmentation of image (c) 

 

Figure 2.13: Artifact assessment for images with a column artifact; in this case, we applied a 

segmentation algorithm (EDISON software package). 

 

 

 

We can see that the presence of the artifact changes the result of the segmentation 

algorithm. The segmentation algorithm was the Mean-shift algorithm implemented in the 

EDISON software package (Comaniciu & Meer 2002). The Mean-shift algorithm is a non-

parametric feature-space analysis technique used for clustering data in computer vision and 

image processing. EDISON stands for Edge Detection and Image SegmentatiON, a system 

with algorithms described in (Comaniciu & Meer 2002). 

 

http://en.wikipedia.org/wiki/Non-parametric
http://en.wikipedia.org/wiki/Non-parametric
http://en.wikipedia.org/wiki/Feature_space
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Image_processing
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2.4   Conclusions 
 

In this chapter, we have seen a basic description of the principles of remote sensing cameras; 

in addition, we described the main components of the acquisition chain of satellite images. 

We also identified possible stages which could produce artifacts; for example, a 

sensor that does not work properly can produce strip artifacts; the instrument transfer 

function may introduce aliasing; further, blocking artifacts due to lossy image compression 

may be generated. In addition, we outlined the importance of information extraction from 

satellite images and the importance of image quality during the information extraction 

process. The image quality is affected by the presence of artifacts. We also described some 

artifacts and their influence on the information extraction from satellite images. In summary, 

- An artifact always alters the image information content 

- An artifact alters the image quality either apparently or not  

- An artifact may have a local or global impact 

- An artifact affects each image analysis process differently 

 

Therefore, our definition given in Section 2.3.3 was: “We define artifacts as artificial 

structures that represent a structured perturbation of the signal”.  

Due to the importance of a correct analysis process, it is necessary to design methods 

that reliably detect the artifacts. However, the detection of artifacts has to be seen from an 

image quality standpoint and we have to understand the causes of the artifacts.  

Therefore, the next chapter shows how to better understand image quality and its 

degradation due to different causes. To this end, we also have to include other related fields 

such as multimedia image quality, watermarking, steganalysis and image fakery. 
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Chapter 3 

 

Hidden Information Analysis: A Base 

for Artifact Detection 

 
 
When we look at artifact detection from a scientific viewpoint, we have to consider the 

problem at large and its relationships to various fields of science. First of all, we have to 

understand the nature of image artifacts based on the principles of signal processing. We also 

have to know under which theoretical and practical conditions we have to face potential 

image degradations. This does not only refer to instrumental effects in images that have been 

described from a technical perspective of optical instruments in Chapter 2; now we have to 

include the principles of prescribed pseudo-artifacts generated intentionally for 

watermarking, steganography and image fakery. This obviously refers to the field of 

information theory with all its approaches how to generate hidden information, how to 

include it to existing data sets and, on the other hand, how to detect and retrieve this hidden 

information. This includes, of course, a lot of metrics that already exist in the community. 

In order to detect artifacts and to analyze them efficiently we have to find ways how 

to describe artifacts from a mathematical perspective. To this end, we have to select 

approaches based on statistics and related models. In our case, this leads to a selection of 

techniques based on information content and mutual information. In the following, we start 

with basic metrics and technical descriptions in this chapter, while the principles of 

information content, entropy and complexity will be dealt with in Chapter 4. There we 

concentrate on entropy, complexity and rate distortion. Table 3.1 explains the relationships 

addressed in this thesis. Later, we will describe artifact detection methods (see Chapter 5) 

and analyze our results (see Chapter 6).  

First of all, however, we will present a state of the art survey how to analyze hidden 

information. For this purpose we begin with multimedia data quality as many image data 

quality publications are based on multimedia applications.   
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Basic types of image artifacts - Destructive artifacts (e.g., sensor effects) 

- Intentional pseudo-artifacts (e.g., hidden 

signal-dependent watermarking) 

Fields of occurrence - Instrumental effects 

- Data compression and image processing 

- Watermarking 

- Steganography 

- Image fakery 

Mathematical descriptions - Image statistics and related models 

- Information content approaches:  

             Entropy, complexity and rate distortion 

Table 3.1: Relationships between various scientific fields addressed in this thesis. 

 

 

3.1   Multimedia Image Quality 
 

Multimedia images are always subject to a variety of distortions and modifications during 

the process of compression, transmission, reproduction, etc. 

 It is important to measure and identify the quality and quality degradation in the data 

in order to keep the degradation under control and to have a chance to improve the quality of 

the images. 

To evaluate the quality of images, some methods use measures of comparison 

against a reference. In that sense, we have three approaches (Wang et al. 2005b): 

  

- The "full-reference” (FR) approach 

The full-reference method requires full access to the original image as a 

reference. It is based on the following philosophy: 

 

Distorted Signal = Reference Signal + Error Signal 

 

         We assume that the reference signal has a perfect quality, and we quantify the 

  error according to some quantitative metric. 

  

- The “non-reference” (NR) approach 

The non-reference approach does not require any access to the original image, 

but the quality assessment without reference is a very difficult task. Several 

researchers have done some work for the evaluation of specific distortions. 

 

- The "reduced-reference” (RR) approach 

The reduced-reference approach does not require full access to the original 

image but needs some partial information as references such as a set of extracted 

features. 

 

The related on-going research develops methods and algorithms that can 

automatically assess the quality of an image. Some years ago, (Wang et al. 2006) already 

presented a concept for quality-aware images. They use features extracted from the original 

image; the feature extraction is based on wavelet coefficients. (Sheikh & Bovik 2006b) 
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proposed how to quantify lost image information and explore a relationship between image 

information and image quality. The authors of (Rajashekar et al. 2006) investigated whether 

observers used structural cues to direct their eye fixation as they searched for simple 

embedded geometric targets at very low signal-to-noise ratios; the authors demonstrated that 

even in case of very noisy displays, observers do not search randomly, but in many cases 

they deploy their fixation to stimulus regions that resemble some aspect of the target in their 

local image features. (Sheikh et al. 2006a) show an evaluation of different recent full 

reference image quality assessment methods, where they performed a subjective evaluation. 

 

 

3.1.1   Metrics for Image Quality 

 

In the literature, we can see that many metrics have been developed within the full-reference 

approach to allow comparisons between undistorted and distorted images. Thus, we obtain a 

quantitative image quality assessment. Some quality metrics to assess images using the full-

reference approach have been evaluated in (Sheikh et al. 2006a), (Avcibas et al. 2002) and 

(Avcibas 2001). 

In the following, we will present the results of these authors and adopt their 

individual notation (see the 22 methods listed below).  

 In most cases, C presents the original (i.e. undistorted) or reference image and 

C


represents the distorted image (comprising N pixels) of which we measure its quality. 

Likewise i, j represent the position of each pixel and k corresponds to the spectral band 

where K is the total number of spectral bands. MSE is the Mean Squared Error, L is the 

maximum dynamic range, i.e., for 8 bits/pixel gray-scale images, L = 255. In contrast, in 

(Sheikh et al. 2006a) µx, σx and σxy represent the mean, the standard deviation and the cross-

correlation of an undistorted image x and a distorted image y; C1, C2 and C3 are constants. 

 

There are quality measures based on the difference of pixels such as: 

 

- The Minkowski metric is the base for different quality metrics; it is only 

necessary to select a γ value. It is widely used to determine overall error-rates 

across different sub-bands or channels (Avcibas et al. 2002) and (Avcibas 2001). 
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- Mean squared error: (MSE) minimizes the mean of the squared residual errors. It 

assumes that the noise follows a normal distribution. Thus, it is a specific form 

of the Minkowski metric. This metric is sensitive to the impact of noise; it is also 

most sensitive to distortion artifacts (Avcibas et al. 2002) and (Avcibas 2001).  
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- Mean absolute error: (MAE) minimizes the mean of the absolute value of 

residual errors assuming that the noise follows a double exponential distribution. 
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It is one of the more common metrics that is also most sensitive to distortion 

artifacts (Avcibas et al. 2002) and (Avcibas 2001). 
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- Modified infinity norm: This metric is the result of a modified Minkowsky 

metric; it is rather robust since it is based on a ranked list of pixel differences. 

This measure is most sensitive to distortion artifacts (Avcibas et al. 2002) and 

(Avcibas 2001). One produces the squared differences between the undistorted 

and the distorted image, and performs a pixel-wise sorting of the squared 

differences by magnitude. Then one selects an upper limit r (e.g., 10% of the 

total number of pixels) up to which the following formula is applied. 
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- L*a*b* perceptual error: The objective of this metric is to yield a perceptually 

uniform spacing of colors that exhibit color differences greater than the Just 

Noticeable Difference (JND) threshold. Obviously, this measure applies to color 

images only and cannot be generalized to arbitrary multispectral images. 

Therefore, it has been used only for face images and texture images, and not for 

satellite images (Avcibas et al. 2002) and (Avcibas 2001). 
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       where L, a, b represent the 1976 CIE L*a*b* (CIELab) color space. 

 

- Neighborhood error: A metric to measure image distortion on gray level 

differences per pixel and/or from local displacements of pixels. This metric 

penalizes in a graduated way spatial displacements in addition to gray level 

differences (Avcibas et al. 2002) and (Avcibas 2001). One looks at the minimum 

differences between a single pixel and a small window w around this pixel in the 

counterpart image, l and m denote the local pixel positions within w.   
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- Multiresolution error: This measure resembles image perception in the human 

visual system, by assigning larger weights to low resolution phenomena and 

smaller weights to image details. Such measures are also more realistic in 

machine vision tasks that often use local information only. This metric is capable 

of discriminating the coder type of previous image compression (JPEG and 

SPIHT) (Avcibas et al. 2002) and (Avcibas 2001). 
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(3.6) 

 

where r represents the various levels of resolution r ≥ 1, k stands for the selected 

band; g is the block average gray level. 

 

- Peak signal to noise ratio: This metric is used specially for quality measurement 

after lossy image compression. The PSNR commonly is used as an 

approximation to human perception; different researchers have shown that the 

PSNR measure is a very good indicator of subjective preference (Avcibas et al. 

2002) and (Avcibas 2001). 

 











MSE

L
M

2

107 log10 . 
 

(3.7) 

 

 

 There are also metrics based on correlation such as: 

 

- Normalized cross correlation: This metric can measure the similarity between 

two images in terms of the correlation function; hence, it is complementary to 

the difference-based measures (Avcibas et al. 2002) and (Avcibas 2001). 
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- Image fidelity: This metric quantifies the distortion of a processed color image 

relative to its original version (Avcibas et al. 2002) and (Avcibas 2001). 
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(3.9) 

 

- Czekanowski correlation: The Czekanowski coefficient (also called the 

percentage similarity) measures the similarity between different pixels and 

patches. The Czekanowski distance is a useful metric to compare vectors with 

strictly non-negative components, as in the case of images (Avcibas et al. 2002) 

and (Avcibas 2001). 
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- Mean angle similarity: This metric uses the moments of the spectral (chromatic) 

vector differences as distortion measures; this metric uses the mean of the angle 

differences and the mean of the combined angle-magnitude differences. This 

measure is most sensitive to distortion artifacts (Avcibas et al. 2002) and 

(Avcibas 2001). The computation shown below is performed over all spectral 

bands. 
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- Mean angle-magnitude similarity: This metric is an extension of the Mean angle 

similarity; this measure is most sensitive to distortion artifacts (Avcibas et al. 

2002) and (Avcibas 2001). Again, the computation is performed over all spectral 

bands. 
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In addition, there are quality measurements based on edges as: 

 

- Pratt edge measure: It is a metric introduced by Pratt; it considers both edge 

location accuracy and missing / false alarm edge elements. This measure is 

based on the knowledge of an ideal reference edge map, where the reference 

edges should have preferably a width of one pixel (Avcibas et al. 2002) and 

(Avcibas 2001). 
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where nd and nt are the number of detected and ground-truth edge points, d 

represents the distance to the closest detected edge, and a stands for a selectable 

scaling factor. 

 

- Edge stability measure: This measure is defined as the consistency of edge 

evidences across different scales in both the undistorted and distorted images. 

This metric is sensitive to JPEG compression, to Set Partitioning In Hierarchical 
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Trees (SPIHT) compression, and to blurring effects; it is also sensitive to further 

distortion artifacts (Avcibas et al. 2002) and (Avcibas 2001). 
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where Q is an edge stability map and the number of edges is given by nd. A 

property complementary to edge information could be the surface curvature 

which is a useful feature for scene analysis, feature extraction and object 

recognition. 

 

 

Some metrics based on the spectral information are: 

 

- Spectral phase error: This metric is obtained from the complex Fourier spectrum 

of images; this spectral distortion measure can be extended to multispectral 

images by considering the spectral phases and magnitudes. This metric is 

sensitive to measuring a blur effect (Avcibas et al. 2002) and (Avcibas 2001). 
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- Spectral phase-magnitude error: This measure, derived from the Spectral phase 

error, can be extended in a straightforward manner to multispectral images. This 

metric is sensitive to JPEG compression, to SPIHT compression, to blurring 

effects, and is also sensitive to further distortion artifacts. This measure is the 

best in discriminating compression distortions (Avcibas et al. 2002) and 

(Avcibas 2001). It includes a weighting factor λ that balances phase and 

magnitude effects.  
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(3.16) 

 

- Spectral magnitude error: This measure, also derived from the Spectral phase 

error, can be extended in a straightforward manner to multiple band images 

(Avcibas et al. 2002) and (Avcibas 2001). 
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- Block spectral phase error: This metric uses the localized nature of distortion 

and/or the non-stationary image field (Note that additional Minkowsky 

averaging of block spectral distortions may be more advantageous) (Avcibas et 

al. 2002) and (Avcibas 2001). 
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A context-based metric is: 

 

- Spearman rank correlation (SRC): It is used to discover the strength of a link 

between two sets of data. The block SRC measure is calculated by computing the 

rank scores of the gray levels in the given bands and their largest correlation for 

each pixel neighborhood within a selectable block u (Avcibas et al. 2002) and 

(Avcibas 2001). 
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Metrics based on the human visual system (HVS) are: 

 

- HVS absolute norm: The HVS model is an objective measure leading to a better 

correlation with subjective ratings. This metric is sensitive to JPEG compression, 

blurring effects, and is also sensitive to further distortion artifacts; this metric is 

capable of discriminating the compression coder type (JPEG versus SPIHT). 

This measure is very sensitive in discriminating distortions due to compression. 

(Avcibas et al. 2002) and (Avcibas 2001). The method includes a band pass filter 

H that models the human visual system. 
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(3.20) 

 

where Ω is a 2-D Discrete Cosine Transform (DCT), DCT
-1

 is the inverse of the 

DCT. 

 



 

 

 

Compression Based Analysis of Image Artifacts:  Application to Satellite Images 

 

Avid Román-González                                                                                                                                           51 

- HVS L2 norm: This metric is derived from the HVS absolute norm and, in order 

to obtain a closer relation with the assessment by the human visual system, both 

the undistorted and the distorted images are preprocessed via filters that simulate 

the HVS. This metric is sensitive to JPEG compression, to SPIHT compression, 

and is also sensitive to further distortion artifacts; this metric is also capable of 

discriminating the compression coder type (JPEG versus SPIHT). This measure 

is also very sensitive in discriminating distortions due to compression (Avcibas 

et al. 2002) and (Avcibas 2001). 
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Another metric is: 

 

- SSIM (Structural Similarity): This metric uses the luminance, the contrast and 

the structure to calculate the similarity between two images. SSIM considers 

image degradation as a perceived change in structural information. The idea is to 

consider the strong inter-dependencies between pixels (Sheikh et al. 2006a). The 

metric uses a selectable combination function f. 
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Each of the metrics listed above works better or worse in case of specific distortions. 

One of the best known metrics is the PSNR (peak signal to noise ratio) even if some results 

may appear to be inconsistent. For instance, if an equal amount of additive noise is added to 

different sections of an image, we obtain different image quality results based on a visual 

assessment as shown in Figure 3.1. Here, however, both images have the same PSNR = 

35.29. 
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Figure 3.1: Two images with same PSNR. The same amount of noise has been added to 

rectangular areas at the top (left) and at the bottom (right) of this image 

 

 

The visual effect of the distortions depends on the section where the artifacts have 

been placed. For this reason, we need to evaluate the artifact detection also for different land 

cover cases in satellite images. 

 

 

3.1.2   Quality-Aware Images 

 

The analysis of Quality-aware images is a reduced-reference (RR) approach proposed in 

(Wang et al. 2005b) for assessing image quality.  It is based on the extraction of features 

from an original image and embedding them as hidden information within the same image 

for a posteriori evaluation. In parallel, we transmit a key from the data source to the final 

data user. This transmission must be free of any failures. The final user then decodes the 

embedded nominal features (by means of the perfect key), extracts the actual features from 

the received image, and checks the similarity of both feature sets.  The features are expected 

to remain after the various processes that an image has to undergo during data distribution, 

such as compression, decompression, filtering, etc. The system must provide a good trade-

off between data hiding, embedding distortion, robustness, and the accuracy of image quality 

prediction (Wang et al. 2005b). The entire process can be seen in Figure 3.2. 
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Figure 3.2: Process for Quality-aware images (Wang et al. 2005b) 

 

 

 During the feature extraction process, it is necessary to obtain as much information 

as possible about the image with the limits of an embedded system, so we have to make a 

careful selection of the features to consider. These features should give a correct summary of 

the original image. The feature extraction process begins with the application of a wavelet 

transform, followed by the selection of important wavelet coefficients; then, we estimate the 

parameters of the coefficients and, finally, perform a quantization.  

The wavelet transform domain provides a framework for the identification of 

spatially and spectrally representative characteristics. To calculate the transform, the authors 

used 3 scales and 4 orientations to decompose the image into 12 sub-bands. Parameter 

extraction is performed for each sub-band; 6 of the 12 sub-bands were selected as 

characteristics (these 6 sub-bands are not adjacent to prevent overlap). Finally, these selected 

characteristics were quantized using 8 bits for a mantissa and 3 bits for the exponent. The 

final result is (8 + 8 + 8 + 3) × 6 = 162 bits for embedding them into the image. 

 It has to be noted, however, that the embedded system is limited since one cannot 

embed a big amount of information, and the embedding process should not alter too much 

the statistical characteristics of the image. To embed the features within the image, we first 

apply a wavelet transform; then we select some parameters to generate a new measurement 

based on the extracted features; finally, we apply the inverse transform. The method chosen 

for the embedding is an existing watermarking technique; it involves quantization, 

modulation and indexing of the information and allows decoding without having access to 

the reference image. Five separable scales of the wavelet transform are used to decompose 

the reference image into 16 sub-bands including horizontal, vertical and diagonal bands for 

each scale. For embedding additional bits of information into a wavelet coefficient, the 

coefficient must be modified and quantized. Wang et al. also used error protection 

techniques to improve the robustness. 
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At the receiver side, one applies the same wavelet transform and the embedded bits 

are extracted from the wavelet coefficients by a decoding process. After that, one performs 

the feature extraction process as being done on the encoder side for comparison with the 

decoded characteristics. For every difference, a fail signal is sent and finally one counts the 

fail signals, thus reporting a score of the received image quality; for this final step, the 

authors use the Kullback-Leibler distance (KLD). 

 

 

3.2   Watermarking 
 

Watermarking is a technique whose main purpose is to highlight the illegal use of a digital 

service by an unauthorized user. Specifically, this technique involves inserting a message 

(hidden or not) within a digital object, as could be images, audio, video, text, software, etc. 

This message is formed by a group of bits containing information about the author or 

copyright owner of the digital object. 

Watermarking for images has become an area of increased research activity over the 

last decades. Digital image watermarking includes three categories from the application 

point of view: robust watermarking, fragile watermarking, and semi-fragile watermarking 

(Song et al. 2010). Robust watermarking can ensure the copyright protection of images. 

Fragile watermarking is applied for the authentication of image content. Semi-fragile 

watermarking has the characteristics of both robust and fragile watermarking. 

There are several watermarking techniques that may create visible or invisible 

marks. A visible watermark is intended to be perceptible to the user and typically contains a 

visual message or company logo indicating the ownership of the image; visible watermarks 

are especially useful for covering an immediate claim of ownership. An invisible watermark 

is intended to be imperceptible but is detected and extracted by an appropriate piece of 

software when the need arises; an image containing an invisible watermark should look 

similar to the original unmarked image; it is required that the watermarked image should 

suffer no perceptible quality degradation from the original (Samuel & Penshom 2004). 

To insert a visible mark we can proceed as follows: denote the original image f, the 

mark as w, and the marked image as fw, and finally apply the following process: 

 

wffw   )1(
, 

  

where α is a constant of mark visibility. 

If we want to introduce an invisible mark, this will not be visually distinguishable, 

but it will be possible to detect or recover it using codes and algorithms designed for this 

purpose. The invisibility is ensured by the inclusion of redundant information. 

 For example, we can insert the mark in the last 2 least significant bits of the image 

according to: 

64
)

4
(4

wf
fw 

. 
 

 In Figure 3.3, we can see some examples of visible watermarking, either in the entire 

image or only in one corner. Figure 3.3 (a) shows the original image, in Figure 3.3 (b) we 

can see the watermark, Figure 33 (c) shows an example of watermarking in the complete 
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image and in Figure 3.3 (d) we can see a watermarking in some part of the image. The 

intensity of visibility may also vary depending on the objectives and applications. 

  

 

    
                 (a) Original image                                                (b) Watermark 

 

     
             (c) Watermarking example 1                             (d) Watermarking example 2 

 

Figure 3.3: Some examples of visible watermarking. Figure (a) shows the original image, in 

Figure (b) we can see the watermark, Figure (c) shows an example of watermarking in the 

complete image and in Figure (d) we can see a watermarking in some part of the image. 

 

 

In the literature, we can find many methods to put a watermark into an image; for 

example, (Liu & Ying 2012) present a technique for embedding a watermark using a wavelet 

decomposition. Another watermarking method based on wavelets is presented in (Song et al. 

2010) where the authors show a novel semi-fragile watermarking technique. In (Samuel & 

Penzhom 2004) we can find another method based on DCT coefficients. 

 

 

A general watermarking scheme is shown in Figure 3.4. 
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Figure 3.4: A general watermarking scheme that includes three important blocks: an encoder 

block, a channel block, and a decoder block. 

  

 

In this scheme, we can observe the presence of a cover signal C which is the original 

signal where to introduce the watermark w using a key k for coding. As a result of this 

process, the encoder block produces a signal S that contains the watermark; this signal 

undergoes the different distortion processes. The signal reaching the receiver called S' is not 

identical to the signal S due to the distortion processes or attacks carried out in the channel 

block. At the receiver, we have the known key k to decode and interpret the watermark and 

we can identify the copyright of the signal. We obtain the watermark w' but it may not be 

identical to the original one due to the distortion processes. 

 

 

3.2.1   Watermarking Detection 

 

Classical watermarking detection methods use the original image or the key to detect the 

ownership of an image as shown in Figure 3.4; in order to make counterfeit attacks 

infeasible, one needs a careful selection of some additional requirements or standardization 

steps for watermarking schemes.   

 

(Zeng & Liu 1999) propose a method where the watermark is detected without using 

the original image. The authors argue that if the watermark is perceptually invisible, it 

should be statistically visible; it should be detectable using some statistical techniques. In 

Figure 3.5, we can see the general building blocks of the watermarking system used in (Zeng 

& Liu 1999); the authors focus on the so-called feature-based watermarking schemes in 

which a sequence is embedded into a set of features derived from the original image. 

The watermarked image can be constructed based on the modified feature set and 

other unmodified data. On the side of the watermark detector, the test features are first 

derived from the test image, and then correlated with a signature (sequence); the correlation 

should be high but may not be perfect. The correlator output will be compared to a threshold 

to determine if the test image contains the claimed watermarks. Within Figure 3.5 we can see 

an expectation operator denoted by E, a hypothesis test H, and an optimization step Opt. 
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Figure 3.5: Block diagram of the watermarking system proposed by (Zeng & Liu 1999), 

Figure (a) shows the watermark embedding system, and Figure (b) shows the watermark 

detection system. 

 

 

 (Jha et al. 2010) present another method to improve the watermark detection; this 

method uses supra-threshold stochastic resonance. This analysis is based on wavelet 

transform coefficients. The idea is to improve the correlation between input and output. 

 

 

3.3   Hidden Information (Steganography) 
 

This subject has a relation with image quality and watermarking because in all these 

concepts, there is a change of the original image. Steganography involves information hiding 

techniques; steganography aims to embed a message within an innocuous-looking cover data 

(text, audio, image, video, etc.) so that a casual inspection of the resulting data will not 

reveal the presence of the message. In the literature, there are many publications related to 

information hiding techniques and the detection of hidden information for multimedia data. 

The detection of hidden information is known as steganalysis; the difficult task of 

steganalysis can be greatly aided by exploiting the correlation inherent in typical host or 

cover images. (Avcibas et al. 2003) present techniques for steganalysis based on the 

hypothesis that the steganographic schemes leave statistical evidence. (Moulin & O’Sullivan 

2003) show an information-theoretic analysis about hidden information. (Cachin 2004) 

proposes an information-theoretic model for steganography with a passive adversary. (Lyu & 
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Farid 2006) describe a universal approach to steganalysis for detecting the presence of a 

hidden message based on multiscale and multi-orientation image decomposition. (Sullivan et 

al. 2006) investigate the detection-theoretic performance benchmarks for steganalysis when 

the cover data are modeled as a Markov chain.  

The problem of hidden information means the following:  we have a message M that 

can be embedded into data S and gives as a result X; this X can be subjected to various 

processes and attacks. This process is shown in Figure 3.6. There exists a key K that will 

help us in the coding and embedding process within the transmitter and during decoding at 

the receiver side. After the decoding process, we will not always get the original message M 

because it could be affected by different distortions in the transmission channel. 

 An information hiding system must meet two requirements: X has to be very similar 

to S, and the hidden message M must survive different processes (compression, resizing, 

etc.). 

 

 

 
 

Figure 3.6: General scheme for hidden information. The key K will help us in the coding and 

embedding process within the transmitter and the decoding on the receiver side (Cachin 

2004). 

 

 

 If we want to insert hidden information into an image, it must be remembered that an 

image is an array of numbers where each number is a brightness code, for instance: 

 

- RGB 24 bits: 

  0..255  0..255  0..255   

 

- Gray scale 8 bits: 

        0..255 

  

A well-known technique to insert messages into an image is to use the least 

significant bit (LSB) as a carrier of information as shown in the following example: 

Original 3×3 pixels in binary notation: 

 

(11101101  00100100  10100001) 

(00001111  00101101  11101111) 

(00001111  00100111  10000111) 
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Message to insert: ‘A’ (10010111) 

New pixels 

(11101101  00100100  10100000) 

(00001111  00101100  11101111) 

(00001111  00100111  10000111) 

  

 

3.3.1   Steganalysis Using Image Quality Metrics 

 

Steganalysis is the process which analyzes an image and determines whether or not it 

contains hidden information. The method proposed in (Avcibas et al. 2003) is a steganalysis 

technique based on a comparison between an image and the result of applying a Gaussian 

filter to the same image; this comparison is made using different image quality metrics. The 

idea is to discriminate the distance metric for images that contain hidden information from 

those who do not. The Gaussian filtering was selected because it gave uniformly good results 

across all steganographic techniques (Avcibas et al. 2003). 

  

 

 
Figure 3.7: Schematic description for the steganalysis technique based on comparison 

between an image and the result of applying a Gaussian filter to the same image; this 

comparison is made using different image quality metrics. 

 

 

 In order to explain the analysis process, we first define the nomenclature. The Cover 

Signal is the image that does not contain hidden information, while the Stego Signal is the 

image that contains hidden information. Figure 3.7 outlines this method. 

The feature extraction process is performed by comparing the original image and the 

image after Gaussian filtering; this comparison is made using image quality metrics; all of 
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the results define our feature vectors. Finally, with these feature vectors for both images 

(with and without hidden information), we do training for identification. The filter was 

chosen as a Gaussian smoothing filter; the width of the Gaussian filter was set 

experimentally to σ = 0.5 with a mask size of 3×3 pixels. 

 The metrics that were used by the Avcibas team are: Mean Squared Error (M1 

Equation 3.1), Mean Absolute Error (M2 Equation 3.2), Normalized Cross-Correlation (M8 

Equation 3.8), Image Fidelity (M9 Equation 3.9), Czekanowski Distance (M10 Equation 3.10), 

Angular Correlation (M11 Equation 3.11), and Spectral Magnitude Distortion (M17 Equation 

3.17). 

 

 

3.4   Image Fakery 
 

The development of information technologies has enabled the integration of many electronic 

devices including cameras, which initially worked with rolls of film; it is now usual to share 

information taken by a digital camera, i.e., photos, copy them to a computer disk, email them 

or upload them in the preferred social network. 

There are software applications that allow us to alter photographs, often without the 

user needing to be skilled; there is software for all users. It is possible to use simple 

applications such as Microsoft Windows Paint, or more complex ones such as Adobe 

Photoshop, Corel Draw or GIMP, if you prefer a GNU solution to change the essence or 

form of photography; the changes can be for good or bad reasons. 

 

 

      
Figure 3.8: Example of image fakery where we can see a person having been removed from 

the picture; this fakery was made using a Photoshop tool (Image example courtesy of Camilo 

Reynaga). 

 

 

Sometimes the image changes cannot be detected with the naked eye, resulting in 

most cases in a complicated process since it is not easy to determine the type of alteration 

that has been realized. An image can also be altered by removing a part of it, or by   

superimposing other parts making it appear that there are less people or that the landscape is 

different. Whatever method of altering was used, the resulting image becomes different from 

the original. 
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The art of faking images has a long history and today, in the digital era, making 

some changes to the data can be very easy without leaving a trace of manipulation. Figure 

3.8 shows an example of image fakery. 

 

 

3.4.1   Image Fakery Detection 

 

Currently, there exist several research papers which have developed methods for automatic 

detection of manipulated images; these methods can be classified as pixel-based, format-

based, camera-based, and physics/geometric-based (Cozzolino et al. 2012). The pixel-based 

methods analyze the correlation between pixels in the spatial domain or in a transformed 

domain. Format-based techniques exploit usual lossy compressors which introduce specific 

and recognizable marks. Camera-based approaches take advantage of specific features of a 

camera model as image signature. Physics/geometric-based techniques study higher-level 

inconsistencies between the imaged scene/objects and the assumed forgery source; however, 

some of these methods are specific, i.e. these methods are oriented towards the detection of a 

specific manipulation case. For example: 

 

- Copy-duplicated image regions 

- Interpolation and resampling effects 

- Color inconsistencies 

- Noise inconsistencies 

- Lighting inconsistencies 

 

 The detection of lighting inconsistencies is very important and can prove the 

manipulation of images. 

There are many research papers dedicated to the detection of manipulations in an 

image, as well as research related to the detection of watermarks and steganography; but as 

mentioned above, these works have the peculiarity of being designed to identify a specific 

type of manipulation or alteration; we can mention some works like (Mahdian & Saic 2008b)  

where the authors present a method for detecting inconsistently resampled parts as noise in 

altered images; the same authors in (Mahdian & Saic 2008a) and (Mahdian & Siac 2010) 

also have other methods for detecting duplicated regions; the article of (Farid 2009) presents 

a method for detecting inconsistencies in the illumination based on the reflection of light in 

the eyes of the protagonists; in (Li et al. 2009) the authors’ idea is to extract horizontal and 

vertical edges due to JPEG artifacts; the work presented in (Popescu & Farid 2005) shows a 

method based on the observation that tampering may alter the underlying statistics; (Chen et 

al. 2008) and (Fridrich 2009) use the photo-response non uniformity (PRNU) as intrinsic 

fingerprints of an individual digital camera for tampering detection. However, each of these 

methods is based on some hypothesis which limits its applicability and, therefore, it is 

always possible to find cases where it fails (Cozzolino et al. 2012).  

Since existing methods are specific only to a typical fakery, the use of these methods 

does not ensure a correct detection of a manipulated image when we do not know the type of 

alteration. For that reason, it is necessary to implement a more general method for detecting 

altered images regardless of the type of manipulation. 
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3.5   Conclusion 
 

All these approaches to embedding information may converge towards artifact detection 

since the presence of watermarks, the presence of hidden information, or abnormalities in 

regions of the image produce changes in the original image; these changes are not visible but 

result in changes in image statistics or other parameters. 

 

 

 
Figure 3.9: General scheme for image analysis and artifact detection. S is an artifact free 

image product; A is an artifact; I is the image with artifacts introduced; A’ is the estimated 

artifact; K1 and K2 are the keys for introducing and detecting the artifacts. 

 

 

 Most of the methods within these areas use mutual information for the analysis of 

the quality and authenticity of an image. The principal reasons why we prefer mutual 

information as a comparison tool will be described in Chapter 4. In that sense, the general 

scheme is given by Figure 3.9 where for a system of image quality assessment, S is the 

reference (undistorted) image, A is the distortion and the keys K1 and K2 are known. In a 

process of watermark insertion, A would be the mark to be added and the keys K1 and K2 are 

also known for decoding and identifying the copyright. For a steganography process, A 

would be the hidden message to be sent and the keys K1 and K2 are known only to the 

transmitter and the direct receiver for decoding the message. In a steganalysis process, the 

keys K1 and K2 are unknown but, nevertheless, one could try to reach a good approximation 

for estimating the presence of hidden information or of a hidden message. Similarly, in the 

process for artifact detection, A is the artifact inserted in the image product S by a pre-

processing process using the key K1 producing image I; the keys K1 and K2 are unknown but 

in the artifact detection process there is the intention to estimate them to detect the presence 

of artifacts A’. 

 For this reason, we can combine these methods, evaluate them, and implement a 

parameter-free method for artifact detection. 
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Chapter 4 

 

Image Information, Entropy and 

Complexity 

 
As we saw in the previous chapter, the different fields of image quality, watermarking, 

hidden information, image fakery, etc. are all interrelated and each one refers to image 

information and image statistics; that is why we will provide some background description of 

information theory. In this chapter, we present the basic concepts of information theory, both 

from a probabilistic Shannon theory approach, and an algorithmic approach with 

Kolmogorov complexity. We also will try to explain the relationship between the two 

approaches and how this will help us to implement different methods for artifact detection in 

satellite images. 

First, however, we explain why we consider the principles of information theory 

formulated by Shannon as a fundamental tool that we need for artifact detection. The reason 

is that we need quantitative information when we compare data sets: a data set affected by 

artifacts needs to be distinguishable from a second version of this data set that is artifact-free, 

or even from a third version that is affected by another type of artifact. A comparison among 

data sets has to include a quantitative dimension that allows us to search for artifacts and 

their strength.  

This requirement leads us directly to information content as defined by Shannon and 

the use of entropy based on the probabilities of pixel brightness levels. Therefore, we suggest 

the use of mutual information as a primary tool when we compare data sets with and without 

artifacts. We assume that differences in the probability distributions are most likely a 

convincing clue to the existence of artifacts: even slight discrepancies that remain hidden 

during a visual inspection of images will become apparent in a numerical analysis of their 

probability distributions. This holds for rather regular artifacts as well as for irregular 

artifacts and becomes apparent when we use the information content of images for coding. 

Regular artifacts lead to advantages in coding, while irregular artifacts result in longer codes. 

This can also be seen in the entropy formulas devised by Shannon (see Section 4.1.3). 

The principles of Shannon are based on probability distributions and do not 

explicitly address the complexity of an image that tells us whether we have an ordered or an 

unordered data set. Therefore, we resort to Kolmogorov complexity that tells us about both 

options. Unordered data sets have a higher complexity, while ordered data sets result in a 

lower complexity. Both cases are closely linked to artifacts. In most cases, artifacts increase 

the complexity of images. In order to quantify image complexity we could think of 
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Kolmogorov complexity that has been discussed in depth in literature; however, in practice, 

one cannot compute the Kolmogorov complexity directly and we have to resort to 

approximating it by the compression behavior of images and to compare the compression 

distances of images (see Section 4.4).  

By using the compression behavior of images we obtain a quantitative tool to search 

for artifacts. We can either stay in Shannon’s realm by applying a rate distortion approach, 

or we move to the domain of Kolmogorov and proceed with complexity distortion. It has to 

be noted that the compression/distortion approach as described in this dissertation represents 

a new concept for artifact detection. To our knowledge, there are no previous publications 

describing such a concept.    

This chapter contains the necessary explanations how to understand distortion as a 

fundamental criterion, while practical compression-based methods for artifact detection will 

be presented in Chapter 5, being followed by comparative results contained in Chapter 6.  

 

 

4.1   Shannon Information Theory 
 

Information theory is a branch of mathematical theory, probability and statistics theory that 

allows us to study information and its storage in digital form. It was developed by Claude E. 

Shannon in (Shannon 1948) to find the fundamental limits of compression and the capacity 

bounds of data communication. 

 

 

4.1.1   Principles for Information Measurement 

 

Following probabilistic considerations, one can establish a first principle of information 

measurement. This principle establishes that a message which is more probable has less 

information than a message with lower probability. This can be expressed as follows: 

 

)()()()( kiki xpxpxIxI 
,                              

(4.1) 

 

where xi is a data element, xk is another data element, I(xi) is the amount of information 

provided by xi, p(xi) is the probability of xi, and i and k are indices. 

According to this principle, it is the probability of a message to be sent and not its 

content, which determines its informational value. The content is important only as it has a 

probability. Please note that the amount of information that a message provides varies from 

one context to another because the probability of sending a message varies from one context 

to another.  

A second principle states that if two messages X and Y are selected, the amount of 

information provided by both messages will be equal to the amount of information provided 

by X plus the amount of information provided by Y, as X has already been selected. This can 

be expressed as: 
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where X and Y are two messages, I(X;Y) is the mutual information between X and Y, xi is an 

element of the message X, yi is an element of the message Y, p(xi) is the probability of xi,    
p(yi) is the probability of yi, and p(xi, yi) is the joint probability of xi and yi. 

 

 

4.1.2   Information Content Measure 

 

If there is a message element xi with a probability of occurrence p(xi), the information 

content I(xi) can be expressed as: 

 

   ii xp
xI 1log2

.
 (4.3) 

 

Numerically, the information I is measured in bits. For a binary coding of a message 

element, the number of bits is equal to the logarithm of the number of choices made in base 

2. For example, if a message specifies one of sixteen equally possible choices, one needs 

four bits of information (2
4
 = 16). 

 

 

4.1.3   Shannon Entropy 

 

The Shannon entropy is a measure of uncertainty of a random variable X with a given 

probability distribution p(x) = P(X = x). 
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where H(X) is the entropy of X; X is a random variable,
 
I(xi) is the information content of xi, 

xi is an element of the data X, p(xi) is the probability of x and i is an index. 

 

 This definition also can express the average length in bits needed to encode X; for 

example, independent fair coin flips have an entropy of 1 bit per flip; in general, a uniform 

distribution A has an entropy H(A) = log2 v, where v is the number of possible outcomes of 

A. We consider a as a string output by A in order to facilitate comparisons with algorithmic 

complexity. For a random (uniform) distribution of a, the entropy of A increases with the 

size of its alphabet. This implies that the uncertainty of each symbol in a grows, and so does 

its information content. On the contrary, a maximally redundant source B, for example, one 

that always generates a string b composed of a long sequence of 1’s, independently from the 

number of its possible outcomes, has an entropy H(B) = 0, and every isolated symbol in b 

carries no information. 
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4.2   Kolmogorov Complexity 
 

The Kolmogorov Complexity K(x) of an object x is the minimum amount of computational 

resources needed to represent x. The Kolmogorov Complexity is defined by: 

 

  min
xq Q

K x q



, 

(4.6) 

 

where q is an element of the set Qx; Qx is the set of instantaneous codes that give x as output.  

 

 There is a dependency on the size of q due to the applied descriptive language, but 

this is of no concern as one can reduce the description difference to some constant. For 

instance, given two languages L1 and L2, and a string of symbols x, the complexity 

differences |K1(x)-K2(x)| are less than k. In order to move from a description in L1 to another 

one in L2, we need a translator program for L1, which converts L1 to L2. The translator 

program may be of any size, but its size is fixed; hence, it is a constant.  

 Within Information Theory, we can say that the Kolmogorov complexity (or 

algorithmic complexity) is the amount of information needed to recover x. It is important to 

note that K(x) is a non-calculable function. The conditional complexity K(x|y) of x given y is 

defined as the length of the shortest program with which we can obtain as output x from y. 

It is easy to see that universal compression algorithms (when being used as an approximation 

to compute Kolmogorov complexity) give an upper bound on Kolmogorov complexity. The 

compressibility is a term derived from having a small program q that describes a string x. 

Therefore, if K(x) < |x| we say that x is compressible. In fact, K(x) is the best compression 

that one can achieve for an arbitrary string x. Given a data compression algorithm, we define 

C(x) as the size of the compressed version of x and C(x|y) as the compression achieved for x 

with a given y. For example, if the compressor is based on a textual substitution method, we 

could construct a dictionary of y and use the dictionary for compressing x. 

An important thing to talk about is the complexity of complexity. If we have a 

program q which can represent x, and this program q is the shortest one of all programs that 

can represent x, then the length l of the program q is the complexity of x, thus K(x) = l(q). If 

we wish to obtain the complexity of this program q, we cannot obtain a smaller 

representation, as its length would be greater than or practically equal to the complexity of x, 

K(q) > K(x) = l(q) because if we got a shorter length, this would be the true complexity of x. 

 

 

4.3   Relationship Between Shannon Entropy and Kolmogorov 

Complexity 
 

Another aspect is to determine the relationship between Kolmogorov complexity and 

Shannon entropy. Shannon's entropy value indicates the average number of bits to describe a 

variable x, while the Kolmogorov complexity says that an object x has a complexity or 

information content equal to the minimum length of a binary program for x. 

 A relationship between Shannon entropy and Kolmogorov complexity is based on a 

theorem presented in (Gruenwald & Vitanyi 2008) which says that the sum of the expected 
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Kolmogorov complexities of all code words x which are the output of a random source X 

weighted by their probabilities p(x), is equal to the statistical Shannon entropy H(X) of X: 
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where K(p) is the complexity of the probability function p(X), K(x|p) is the complexity of x 

knowing p(X) and O(1) defines the computational order complexity. 

 

The algorithmic mutual information between two strings x and y is presented in 

(Gruenwald & Vitanyi 2008) and is given by 

 

       yxKyKxKyxIw ,:  . (4.8) 

Iw is independent of any probability distribution. 

 

The use of compressors as an approximation to the Kolmogorov complexity can help 

us to better understand the relationship between Shannon entropy and Kolmogorov 

complexity described in the text above. Actually, usual compressors use the principle of 

Shannon entropy coding to perform compression, and when we use the compression 

approximation to Kolmogorov complexity, we are using Shannon's theory implicitly linking 

it with complexity. We use compression as an approximation; when looking for a short 

program capable of representing an object x, what we do is also trying to compress the object 

x in a more compact representation. We could even use alternative compressors that are not 

based on entropy coding. 

 

 

4.4   Normalized Compression Distance 
 

An application of Kolmogorov Complexity is to estimate the shared information between 

two objects given by their Normalized Information Distance (NID) (Li et al. 2004). The NID 

is proportional to the length of the shortest program that can calculate x given y. The 

normalized information distance is calculated as follows: 
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where K(x) is the Kolmogorov complexity of x, K(y) is the Kolmogorov complexity of y, x 

and y are two data sets to be compared, and K(x,y) is the joint Kolmogorov complexity of x 

and y. The NID result is a positive value r in the range of 0 ≤ r ≤ 1, with r = 0 if the objects 

are identical, and r = 1 stands for the maximum distance between them. However, the NID is 

not computable and therefore we need a computable approximation. A well-known approach 

is the Normalized Compression Distance NCD defined by (Li et al. 2004) and by (Cilibrasi 

& Vitanyi 2005) considering K(x) as the compressed version of x, and taking it as a lower 

limit of what can be achieved with the compressor C.  

 

One can approximate K(x) with C(x) = K(x) + k, where C(x) is the length of the 

compressed version of x obtained by a lossless compressor C that is equal to the Kolmogorov 
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Complexity K(x) plus an unknown constant k. The presence of k is necessary because one 

cannot estimate how closely we approximate K(x). As an example, we take two strings b and 

p that have the same length n, where the former is the output of a random process and the 

latter represents the first n digits of π. The quantity K(p) would be smaller than K(b) because 

there is a program of length K(p) << n whose output is the number π, while a program 

outputting a random sequence of bits would have a length close to n, so K(p) << K(b). Thus, 

the Normalized Compression Distance (NCD) can be defined as shown in the following 

equation: 
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where C(x, y) represents the size of compressed file obtained by the concatenation of x and y. 

We use this equation to estimate the NID. See Chapter 7 for a description of concatenation 

options.  

 

 The NCD can be calculated easily between two strings or two files x and y, and it 

shows how different these files are. We can use the NCD for various applications with 

different classes of data as a parameter-free approach (Cerra et al. 2010; Keogh et al. 2004). 

The NCD can also be used to classify the data by unsupervised methods (Cilibrasi & Vitanyi 

2005). The NCD returns a positive result 0 ≤ NCD ≤ 1+e, with e as a representation of 

potential inefficiencies of the compression algorithms. Please note that the K(x) 

approximation via C(x) depends on the data with which to work; we know that common 

compressors are based on different hypotheses; some are more efficient than others with 

specific data.  

 

 

4.5   Rate-Distortion Theory 
 

When we want to know the number of bits needed to encode the different representations of 

a variable X allowing that there may be some loss of information, we can use Rate-Distortion 

theory. Within this context, a Rate-Distortion (RD) function gives the minimum value of 

mutual information between source and receiver under pre-defined distortion limits.  

  

(4.11) 

 

where U represents the undistorted data on the source side, V stands the distorted data on the 

receiver side, I(U;V) is the Mutual Information between U and V, D is the distortion between 

U and V measured by a quality metric, and D
*
 is the distortion limit. 

  

 In principle, the RD function shows the compression error resulting from different 

compression ratios. The RD function is a convex and decreasing function (Cover & Thomas 

1991): the more we compress, the more information we lose.  

 

In the following, we will combine the RD concept given here with complexity ideas 

of Kolmogorov given in Section 4.2.  
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4.6   Complexity-Distortion Function 
 

In Shannon’s Rate-Distortion theory, the rate is the minimum number of bits that are needed 

to encode a distorted message, so the RD function determines the minimum mutual 

information under a distortion constraint allowed. Figure 4.1 explains the process of 

encoding and decoding of a message. Here we can see a message passing through a coded 

channel to reach a receiver. The receiver decodes the message and the retrieved information 

may differ from the original data due to distortions created anywhere within the system. 

 

 

 

 

 

 

Figure 4.1: General communication diagram: encoding, transfer and decoding of a message. 

  

 

If we want to introduce complexity into this context, we could exchange the encoder 

and decoder blocks for a Universal Turing Machine (UTM); for each selectable length (that 

causes loss of information), the coding UTM will produce a shortest program (according to 

Kolmogorov's theory).  

 

 

 

 

 

 

 

 

Figure 4.2: Block diagram for complexity distortion. 

 

 

Figure 4.2 explains the new system components. The system would allow us to 

calculate a complexity-distortion function. We can see the UTM components. A practical 

implementation would need a lossless and a lossy compressor. The former is needed to 

approximate the complexity of the data, while the latter is required to generate distorted data.  

Instead, we can also use dictionaries (Reynar et al. 1999).  

  

 

4.7   Kolmogorov Structure Function 
 

As an additional alternative to the distortion functions described above, one can also use 

structure functions. In our case, we selected the Kolmogorov Structure Function (KSF) that 

defines the relationships between the data and a model based on the relationships between 

original data (following an unknown model distribution) and potential alternative 

 

Coder 
 

Decoder Channel 

          I 

 (Information) 
          I’ 

 (Retrieved 

information) 

          M 

(Message) 

 

UTM 

 

UTM Channel 

          I 

 (Information) 

          I’ 
 (Retrieved 

information) 

          q 

(variable 

Kolmogorov 

Complexity) 



 

 

 

Compression Based Analysis of Image Artifacts: Application to Satellite Images 

 

Avid Román-González                                                                                                                                           70 

representations. In (Vereshchagin & Vitanyi 2002) the authors present a definition and 

analysis of a Kolmogorov Structure Function. The relation between given data and its model 

is expressed by the KSF.  

 The original Kolmogorov structure function for given data x is defined by: 

 

     )(,:logmin 2 SKxSSh
S

x
, (4.12) 

 

where S is a set of representations for x and α is a non-negative integer value bounding the 

complexity of S. The Kolmogorov structure function hx(α) tells us about all stochastic 

properties of the data x (Vereshchagin & Vitanyi 2002); however, it does not tell us how to 

generate a set of representations. 

The Kolmogorov structure function is non-computable since it is based on the 

Kolmogorov complexity that is a non-computable function (that is the reason why we use the 

size of the compressed data as an approximation to complexity).  

The idea is to use the Kolmogorov structure function as an approximation to a rate-

distortion (RD) analysis, where we consider hx(α) being equivalent to D, while K(S) 

corresponds to R. We determine hx(α) via Eq. 4.12 by using the output of lossy compression 

with different compression parameters as different representations and we use the size of the 

compressed data as K(S) for describing the behavior of artifacts and for developing a 

parameter-free artifact detection method. 

 

 

4.8   Data Compression 
 

The objective of data compression is to reduce the volume of manageable information (e.g., 

data to be processed, transmitted, or recorded). In principle, compression means to transport 

the same information, but using a lower amount of data volume. 

The volume occupied by coded information without compression is the product of 

the number of (tightly packed) samples times the number of bits per sample. Therefore, the 

more bits are used the file size becomes bigger. However, the number of bits per sample is 

given by the data acquisition system and cannot be altered; hence, compression is used to 

transmit the same amount of information with less bits. 

Historically, simple data compression is based on a search for data redundancies and 

storage of data with the number of times to repeat. For example, if a sequence in a file reads 

"AAAAAA", instead of occupying 6 bytes, one could simply store "6A" which occupies 

only 2 bytes. In practice, however, the process is somewhat more complex, and does not find 

all repeating patterns. 

Currently, two basic types of data compression are available. One of them is lossless 

compression that is normally used to communicate or to store text or binary files without 

information losses (Raja & Saraswathi 2011); however, the attainable compression of the 

latter type is rather low. The reasons for lossless compression capabilities are redundancies 

contained in the data and coding techniques based on statistical occurrences. 

The other compression type is lossy compression, which is commonly used for 

higher-rate compression to compress image, video or audio data files for transmission or 

storage purposes and leads to information losses. 

In the following, three compression techniques are presented in more detail. 
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4.8.1   JPEG Compression 

 

JPEG is a standardized image compression method that stands for Joint Photographic 

Experts Group, the original name of the committee that wrote the standard. Currently, there 

are three JPEG versions being available:  

- The baseline JPEG standard of 1992 that has been developed for the compression of 

single images based on discrete cosine transforms; in 1993 a lossless option has been 

added. 

- A JPEG-LS published in 1999 for lossless image compression using a LOCO-I 

algorithm. 

- The JPEG 2000 version based on wavelet transforms that also supports the 

compression of image sequences. JPEG 2000 supports lossless as well as lossy data 

compression. 

 

JPEG has been designed for compressing full-color or gray-scale digital images. In 

the following, we take a more detailed look into the three JPEG versions listed above 

 

- The (lossless) JPEG-LS uses a predictive coding model called Differential Pulse 

Code Modulation (DPCM). DPCM encodes the differences between the predicted 

and actual samples instead of encoding each sample independently. The differences 

from one sample to the next are usually close to zero which, in general, leads to 

better compression.  

The prediction process of JPEG-LS combines three neighboring samples at W 

(west), N (north) and NW (north-west), in order to produce a prediction of the actual 

sample value. The three neighboring samples must be already predicted samples. 

JPEG-LS contains 8 options of linear combinations of W, N and NW that can be used 

as predictors to estimate the actual sample. After prediction, an entropy coding based 

on a Huffman code (Huffman 1952) is performed.  

 

- On the contrary, the JPEG 1992 (“baseline”) standard is a lossy image compression 

method. In a first step, a digital image is split into a sequence of blocks of 8×8 

pixels. Each block is then compressed by the following sequence of transformations: 

 

1. Integer Discrete Cosine Transformation (DCT) of the 64 pixels in each block; 

2. Quantization of the DCT coefficients thereby producing a set of 64 smaller 

integers. This step causes a loss of information but makes the data more 

compressible. 

3. Entropy coding of the quantized DCT coefficients. Baseline JPEG uses Huffman 

coding in this step, but the JPEG standard also allows arithmetic coding as a 

possible alternative. 

 

The decompression process just reverses the actions. The first step is to apply 

Huffman decoding, after that, de-quantization of the coefficients follows, and finally, 

an inverse DCT is applied to obtain a set of values. Because of the quantization step, 

the reconstructed set includes only approximated values. The coefficient in position 
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(0,0) (left upper corner of an 8×8 block) is called DC (mean value) coefficient and 

the 63 remaining values are called AC coefficients.  

Baseline JPEG uses two different static Huffman trees to encode the data. The first 

one encodes the lengths in bits (1 to 11) of the value in each DC field. The second 

tree encodes information about the sequence of AC coefficients. 

 

- Finally, JPEG2000 compression is based on wavelet transformation. The process 

flow of JPEG2000 compression is as follows: The first step, in case of color images, 

is to transform the color components from RGB to YCbCr components. After that, 

and after tiling the image into patches, the compressor applies a wavelet 

transformation to each patch. After the transformation, the next step is quantization; 

the coefficients are scalar-quantized to reduce the number of bits. In this step a loss 

of information is produced. Finally, a coding step is needed; this coding step is 

performed by a process called EBCOT (Embedded Block Coding with Optimal 

Truncation). 

The JPEG2000 compression improves compression performance over Baseline 

JPEG. The JPEG2000 compression supports very low to very high compression rates 

and its strength is the ability to handle large bit rates very effectively.  

 

 

4.8.2   GZIP Compression 

 

Gzip compression is a lossless adaptive single pass encoding based on a combination of 

LZ77 (Ziv & Lempel 1978) and Huffman coding. An input file is divided into a sequence of 

32K byte blocks, where each block is compressed using a combination of LZ77 and Huffman 

coding. The Huffman trees for each block are independent of those for previous or 

subsequent blocks; however, the LZ77 algorithm uses a reference for duplicated strings from 

one block to another block. Each block has two parts: the Huffman code trees that describe 

the representation of the compressed data part, and a compressed data part.  (The Huffman 

trees themselves are compressed using Huffman encoding.)  The compressed data consist of 

a series of elements of two types: literal bytes (strings that have not been detected as 

duplicated within the previous 32K input bytes), and pointers to duplicated strings, where a 

pointer is represented as an ordered pair (offset, length), where the offset is the backward 

distance to the previous occurrence and the length is the number of characters in the re-

occurring string. 

 

 

4.8.3   Delta Compression 

 

Differencing compression is the process of computing a compact and invertible encoding of 

a target file T with respect to a source file S. The output is called a delta file, and will be 

denoted here by ∆(T,S). Compression can be thought of as a special case of differencing in 

which the source data is empty. The general approach for differencing algorithms is to 

compress T by finding common substrings between S and T and replacing these substrings 

by a copy reference. The way the representation of such copy items is implemented 

determines the minimum length of a copy item. The delta file is then encoded as a sequence 

of elements which are either pointers to an occurrence of the same substring in S, or 

http://en.wikipedia.org/wiki/Quantization_(image_processing)
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individual characters that are not part of any common substring. To improve compression 

performance, pointers to previously occurring substrings in T are also used. Parsing of T is 

based on string matching algorithms, such as suffix trees or hashing with different time and 

space performance characteristics.  

There are several practical applications that benefit from the use of delta 

compression since the new information that is received or generated is highly similar to 

information already being present. Such applications include distribution of software 

revisions, incremental file system backups, and archive systems, where using delta 

techniques is much more efficient than using regular compression tools. For example, 

incremental backups can not only avoid storing files that have not changed since the 

previous back-up and save space by standard file compression, but can also save space by 

differential compression of a file with respect to a similar but not identical version saved in 

the previous backup. 

 

 

4.9   Redundancy 
 

As compression is also based on redundancy, we need another look at this topic. The code of 

an image represents the body of information through a set of symbols. The elimination of 

redundant code is to use a lower number of symbols to represent the information. 

 Compression techniques using Huffman or arithmetic coding perform statistical 

calculations in order to eliminate redundancy and to reduce the original volume of the data. 

Most images have similarities or correlation between their pixels. These correlations are due 

to the existence of similar structures in the images since they are not completely random. 

Thus, the value of a pixel can be used to predict its neighbors.  

 There are three types of redundancy in monochrome single images: inter-pixel, 

psychovisual and coding redundancy (Karadimitriou 1996). When we have a set of similar 

images, we could have an inter-image redundancy; in this case, the images have similar pixel 

intensities in the same areas, comparable histograms, similar edge distributions, and 

analogous distributions of features. Set-redundancy is the inter-image redundancy that exists 

in a set of similar images and refers to the common information found in more than one 

image in the given set (Karadimitriou 1996). The set-redundancy can be used to improve 

compression. A limit to compression is imposed by the image entropy; lower entropy means 

higher compressibility. 

 

 

4.10   Conclusions 
 

We described probabilistic and algorithmic information theory approaches and the 

relationship between them. We also outlined the relationship of the two approaches with data 

compression. Shannon entropy evaluates the probability of each element of a message to 

assign short codes to elements with higher probability and long codes to elements with lower 

probability; if we reduce the bits required to encode a message, we obtain compression. In 

contrast, Kolmogorov complexity looks for the shortest program that can reproduce data; 

somehow we are compressing the way to represent the data, which is why an approximation 

of Kolmogorov complexity by a compression factor is a logical approach. 
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 In the following chapters we will develop different methods for artifact detection 

based on compression techniques, since the presence of artifacts has effects on the mutual 

information between an original and its compressed-decompressed counterpart; mutual 

information is studied by information theory, and we have already seen that from 

information theory we can reach into the domain of compression techniques. 
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Chapter 5 

 

Proposed Artifact Detection Methods 

 
In this chapter we will come back to the theoretical aspects dealt with in Chapter 4 and 

revisit the basic rationale of rate-distortion:  What we know even without deeper 

involvement into the theory and practice of image data compression is that, as a rule, a 

higher compression of an image will result in greater errors after compression-

decompression. This is the basic background why one applies rate-compression as a simple 

metric for image quality assessment in systems which use data compression. In this 

dissertation we go one step further and will investigate whether rate-distortion can also be 

used as a tool for artifact detection.  

Approaches such as rate-distortion are promising tools as they can be considered as 

being parameter-free and model-independent: a parameter-free approach does not depend on 

a clever selection of additional intricate input parameters, and a model-independent approach 

does not require a specific distribution of the input data. Thus, once one uses a parameter-

free and model-independent approach, one disposes of a universal tool that can be applied 

widely.  

In our case, we make an attempt to use the behavior of image data compression as a 

clue to image properties, for instance, the identification of patterns, the regularity of image 

data, or the presence of artifacts. As shown by (Li and Vitanyi, 2008), image data 

compression can help to analyze many data characteristics such as compression distances 

(i.e. locally different compressibilities), or image complexities (i.e., different irregularities). 

We follow two alternatives to fully exploit the behavior of image compression: 

 

- We use lossless compression in order to explore redundancies and similarities in 

images. Our main tool will be the analysis of compression distances in the sense of 

“algorithmic mutual information” (i.e., the differences between independent and 

joint minimal encoding lengths of objects). This leads us to normalized compression 

distances, where the length of a code depends on the entropy of the data and remains 

constrained by the regularity of the data. When understood as a pattern recognition 

task, we can obtain hierarchical classifiers to be used for the grouping of artifacts in 

images. Further details can be found in Section 5.2.  

- First, however, we use lossy compression in order to analyze data of variable quality 

(and thus with varying errors) as detailed in Section 5.1. When we compare 

compression results obtained by varying the compression quality parameter, we 

obtain “stacks” of errors that can be understood as variations of mutual information. 



 

 

 

Compression Based Analysis of Image Artifacts: Application to Satellite Images 

 

Avid Román-González                                                                                                                                           76 

This opens the way towards classifications that separate regular from irregular data 

and help us to identify artifacts. This will be explained in Section 5.1.   

 

In addition, this chapter is considered as one of the main contributions to this 

dissertation as it describes the systematic selection of three new promising candidate 

methods for artifact detection. In the following, we describe the rationale why we selected 

these four methods based on the information theoretical background outlined in Chapter 4, 

and how these methods can be applied in practice. Therefore, we also included an 

explanatory block diagram for each method that shall provide a quick overview. 

 

- The first method shall prove how well Shannon’s basic principles expressed as rate-

distortion results can be used for artifact classification. To this end, we compress test 

images with different compression parameters and use the resulting compression 

errors as a feature vector that will undergo classification. The compression errors 

will be stored and analyzed as error maps that correspond to the selectable range of 

the compression parameter. For more details, see Section 5.1 and the block diagram 

contained in Figure 5.7.  

- The second method shall demonstrate whether Kolmogorov complexity and 

normalized compression distances (being related to it) can be used as a basic 

alternative to the first method. We selected this second method as it is “Shannon-

free” and can be used as a universal parameter-free tool. In our case, our goal is to 

discriminate images without artifacts from images that are affected by artifacts. 

Ideally, we would like to obtain a binary grouping. For more details, see Section 5.2 

and Figure 5.15. 

- Our third method shall tell us whether a new method consisting of a combination of 

rate (from the first method) and compression distance (from the second method) can 

outperform the other candidate methods. This is an exploratory approach that has to 

be carefully tested and verified based on sufficient cases and our established two-

dimensional error maps; however, it represents a systematic approach to select the 

most promising sub-components from the first and the second method. For more 

details, see Section 5.3.1.1 (“Complexity-to-Error Migration”) and Figure 5.22.  

- Finally, we use common quality metrics as a reference for artifact detection with 

known tools. This approach is well-known in the steganalysis community and uses 

comparisons between an original image and low pass filtered versions of the image. 

The image differences can be described by error maps as defined for the first method 

together with well-known standard metrics of image processing. The results allow a 

straightforward comparison with the capabilities of the first and the second method.  

For more details, see Section 5.4 and Figure 5.41. 

 

In a number of cases we had to add small experiments to help us in the 

understanding of some details of the proposed methods. This will be detailed in the next sub-

sections, while the results of all the test runs that had to be conducted and our final 

conclusions will be described in Chapter 6 and 7. 

 In the following, we will use JPEG data compression packages to verify the size 

reduction of images. The JPEG packages are the three JPEG versions described in Chapter 4. 

Data compression can be achieved either without degradation of the data content (called 

lossless or noiseless compression), or we allow some content degradation (with some 
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distortion after compression-decompression, called lossy or noisy compression). In the latter 

case, one selects a JPEG quality parameter that controls internal quantization steps, and one 

obtains a compressed data set (Pennebaker and Mitchell, 1993). One has to note, however, 

that with JPEG the resulting compression rate is only available after compression (depending 

on the image content) and cannot be set a priori. Therefore, our tests with compressed data 

start with the selection of a quality factor, and end up with the measurement of the attained 

compression rate. 

The main hypothesis that we propose to develop and apply the three methods listed 

above is that an artifact can have a high degree of irregularity, or a high degree of regularity 

compared with the local environment. From the point of view of the complexity, we can say 

that an artifact can be very complex or very simple; this is the reason why data compression 

is a useful tool to approximate and evaluate the complexity of the data. 

 

 

             
  (a) Satellite image of mixed land cover              (b) Complexity approximation 

 

             
           (a) Satellite image of a city                         (b) Complexity approximation 

 
Figure 5.1: Complexity approximation of satellite images using compression: (a) is a mixed 

land cover satellite image; (b) is the complexity approximation of the image (a); (c) is a 

satellite image of a city; (d) shows the complexity approximation of the image (c). The scale 

bars on the right show the size of the compressed file divided by the size of the original file. 
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In Figure 5.1, we can see an example of complexity approximation for optical 

satellite images. What is done is to take a satellite image and to cut it into adjacent patches of 

64×64 pixels; each patch was compressed using the JPEG-LS compressor to obtain an 

inverse compression ratio (ICR defined here as size of the compressed image patch divided 

by the size of the original image patch; we use this value, because it is more easy to have a 

normalized value within the range from 0 to 1 when we have to compare different cases) that 

represents an estimation of the complexity of each patch; as results we obtained the 

illustrations of Figure 5.1 (b) and Figure 5.1 (d).  

In this example, in Figure 5.1 (a) and its corresponding evaluation in Figure 5.1 (b), 

we can clearly see that the area of the city is more complex than the fields or than the water; 

red color is used for patches which have a higher ICR compared with the blue patches which 

have a lower ICR. 

On the other hand, in Figure 5.1 (c) we show a satellite image of a city whose 

complexity should be nearly uniform across the whole image, but the presence of red zones 

in its corresponding complexity approximation shown in Figure 5.1 (d), indicate the possible 

presence of some kind of artifact. 

The idea is to use the ICR as an approximation to complexity and use it as a tool for 

artifact detection. The artifact detection only works when we have a homogeneous image 

where the complexity approximation is nearly uniform. In this case, if we have some sub-

area being more complex than the remainder, we can say that there is a potential presence of 

artifacts. 

 

 

5.1   Rate-Distortion Based Artifact Detection 
 

In this section we will describe the first proposed method for artifact detection in optical 

satellite images; this method is based on the analysis of the Rate-Distortion (RD) function 

described in Section 4.5, basically the experimental curve obtained by using a series of 

variable compression parameters for images. The objective is to evaluate the behavior of the 

mean squared error between the original image and the compressed-decompressed image 

produced by each compression parameter. We first present a description of the principle on 

which the method is based and then some examples of obtaining experimental RD curves 

and how they vary from one image to another (without being degraded by artifacts), and we 

show the contrasting RD curves if the images were affected by an artifact. Then we describe 

the process for artifact detection using the proposed method; the analysis will take place in 

error or distortion space of the image. Then we apply this method to some examples to show 

their effectiveness in detecting artifacts. 

 

 

5.1.1   Empirical RD Properties for Images with Artifacts 

 

The Rate-Distortion function of a source with known probability distribution determines the 

minimum channel capacity required to transmit the source output as a function of the desired 

minimum average distortion, where the distortion function is a measure of agreement 

between source and system output specified by the user (Davisson 1972); for instance, one 

can use the mean squared error. In practice, the RD function is mainly used for sizing and 

designing data communication channels. 
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                      (a) Titicaca Lake                                              (b) La Paz City 

Figure 5.2: (a) Titicaca Lake is an image with an almost constant background; this image is 

less complex than image (b). (b) La Paz City is an image with a lot of details; it contains 

buildings, traffic, a public park, people, etc. 
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Figure 5.3: Measured Rate-Distortion Curve; the horizontal axis represents the inverse 

compression ratio ICR (size of compressed image file / size of original image file); the 

vertical axis represents the distortion calculated by MSE (mean squared error). Blue refers to 

Figure 5.2 (a) and green to Figure 5.2 (b); the RD values for the more complex image (b) are 

higher than the RD values for image (a). 

 

For the purpose of this thesis, the Rate-Distortion (RD) is the bound of acceptable 

distortion for a resulting ICR (from a given compression quality parameter). The RD 

function measures indirectly the visual complexity of the images, for example, plotting the 

measured RD curve where the horizontal axis represents the inverse compression ratio ICR 

(size of compressed image file / size of original image file) and the vertical axis represents 

the distortion calculated here by the mean squared error. We can make an analysis of images, 

for example, Figure 5.2 shows two images: in (a) we have a picture without too many details 

where the background appears to be constant, and the lake and the sky are constant, too; 

while in (b) we show an image that has a lot of details because it contains buildings, traffic, a 

public park, people, etc. These conditions are reflected in the measured RD curve shown in 

Figure 5.3 in which we can see that the curve of the image (b), i.e., the green line, has higher 

values than the curve of image (a) which is shown in blue.  
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If artifacts increase the complexity of an image, we can perform the same 

experiment to see the change in the measured RD curve of an undisturbed image and of the 

image with added artifacts. Figure 5.4 (a) shows an undisturbed image of the Titicaca Lake 

in Peru and Figure 5.4 (b) shows the Titicaca Lake image with some defective columns. 

Figure 5.5 illustrates the measured RD curves for each image: blue for (a) and green for (b). 

We can see that the RD values of the image with defective columns exceed the values of the 

undisturbed image; this is because the defects create an image that is more irregular. To 

calculate the RD function, we used the baseline JPEG as a lossy compressor. 

 

        
                     (a) Titicaca Lake                         (b) Titicaca Lake with defective columns 

 

Figure 5.4: (a) Titicaca Lake is an undisturbed image. (b) Is image (a) with defective 

columns artificially introduced to analyze their influence on the measured RD curve. 
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Figure 5.5: Measured Rate-Distortion curve; the horizontal axis represents the inverse 

compression ratio ICR as (size of compressed image file / size of original image file); the 

vertical axis represents the distortion calculated by MSE (mean squared error). The blue 

values represent Figure 5.4 (a), the green values refer to Figure 5.4 (b); the measured RD 

curve of the undisturbed image is lower than the measured RD curve of the image with 

defectives columns. 
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Figure 5.6: Error maps of the images shown in Figure 5.4. The error maps were 

computed for three inverse compression ratios ICR (0.013, 0.04, and 0.08). 
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In Figure 5.6, we present another small experiment related to the distortion space. 

Here we took the image of Figure 5.4 (a) and compressed it with three different quality 

factors resulting in three different ICRs (0.013, 0.04, and 0.08) using the baseline JPEG lossy 

compressor. The objective was to make a visual analysis of the error produced by the lossy 

compressor. The error maps E between the original image X and the compressed-

decompressed image Yq, are calculated as the absolute value of the differences between the 

original image X and compressed-decompressed image Y, Eq = abs (X - Yq), where q stands 

for the selected JPEG quality factor (0, 50, 75). The same process was made for the image of 

Figure 5.4 (b). Please note that all error maps have been individually stretched for better 

visualization.  

In Figure 5.6, we can see that the defective columns of Figure 5.4 (b) persist in the 

error maps for each selected quality factor. The presence of the defective columns make the 

image more complex; the mean error for each selected compression quality factor is higher 

than the mean error produced by the image shown in Figure 5.4 (a).  

 

In the following, we are going to use the characteristics explained above for the 

development of a parameter-free method for artifact detection in metric resolution satellite 

images based on the distortion space approach. 

 

 

5.1.2   Artifact Classification in Error Maps 

 

For artifact detection, we propose to use the measured RD curve obtained by compression of 

an image with different compression parameters and the evaluation of the distortion using 

the mean squared error (MSE) metrics. The idea is to examine the complexity of an artifact 

with a high degree of regularity or irregularity during image compression. The RD analysis 

for this purpose is shown as the block diagram contained in Figure 5.7.  

  

 

    

 
 

Figure 5.7: Block diagram for Rate-Distortion analysis: we take the image under test; we 

compress image patches with a varying compression parameter, then decompress the patches 

and calculate the error for each compression setting; based on the errors, we compose a 

feature vector and then apply classification methods. 

  



 

 

 

Compression Based Analysis of Image Artifacts: Application to Satellite Images 

 

Avid Román-González                                                                                                                                           83 

 The first step is to take the image under test I; then we cut the image I into n 

different patches Xi of 64×64 pixels as illustrated in Figure 5.8, with i = 1, 2, … , n.  A patch 

size of 64×64 pixels turned out to be the best compromise between a sufficient number of 

image pixels to compress and a good location accuracy defined by the patch size. 

 

 
Figure 5.8: Image cut into patches of 64×64 pixels. 

 

For each patch Xi, we compress the patch with a varying quality factor q using lossy 

compression; for this thesis, we used the baseline JPEG lossy compressor; using different 

quality factors, we obtain different compression factors. After that, we decompress the image 

and we obtain a decompressed image Yiq. The next step is to calculate the error between the 

original patch Xi and the compressed-decompressed patch Yiq; for the error calculation, we 

use the Mean Squared Error (MSE). Based on the errors for each quality factor q and for 

each patch Xi, we compose a feature vector Vi = [Fi1, Fi2, … Fiq … FiQ] where Fiq = MSE(Xi, 

Yiq). Thus, we can arrange an easily calculable rectangular matrix of feature vectors: 
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 Finally, we apply a non-supervised classification method to this matrix V; we use the 

K-MEANS classification method, which is an unsupervised algorithm; K-MEANS classifies 

data into K (a positive integer value) classes. The algorithm calculates distances of the class 

centroids to all other data and then groups the classes according to the minimum distance 

principle. For the purpose of this thesis, we take a value of K = 2 that represents one group 

for images with artifacts and a second group for images without artifacts. 

 For us, the quality factor varies between 0 and 100, so Q = 101, and for an image of 

512×512 pixels, we obtain 64 patches of 64×64 pixels, thus n = 64. 
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5.1.3   Examples 

 

An example of the application of the method is presented in Figure 5.9 where stuck A/D 

converter bits appear; in this case, it is a SPOT image containing actual artifacts. The image 

was provided by the French Space Agency (CNES).  

 Another example for applying the proposed method is shown in Figure 5.10 where 

we have a city image with aliasing. The aliasing was generated synthetically; the result of the 

aliasing detection presents the areas that contain the artifacts. 

 

 

    
                                    (a)                                                                         (b) 

Figure 5.9: Stuck bits (SPOT image © CNES). (a) Stuck bits during A/D conversion create 

these saturated pixels. The artifact generates a line pattern (corresponding to the SPOT line 

sensor). (b) Detected patches with artifacts.  

 

 

      

                (a) Image with aliasing                                          (b) Aliasing detection 

Figure 5.10: (a) Satellite image with artificial aliasing. (b) Patch-wise aliasing detection 

using RD analysis.  
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A third example for applying the proposed method is shown in Figure 5.11 where we 

have an image with trailing charge problems.  

 

      
                                    (a)                                                                          (b) 

Figure 5.11: Trailing charge detection. 

 

 

We can see that in both examples, the performance of the proposed method is rather 

good. The RD curve of an image with artifacts is different from the RD curve of an image 

without artifacts as illustrated in Figure 5.3 and Figure 5.5. The purpose of making an 

analysis by the RD function is to investigate about the error that results from different 

compression parameters; the error behaves differently for images with artifacts and images 

without artifacts; this analysis allows us to observe how an artifact is reflected in the error 

map produced by a compression-decompression comparison. 

 

 

5.2   Normalized Compression Distance Based Artifact Detection 
 

In this section we will propose another method for artifact detection in optical satellite 

images (called “second method” in the introduction to this chapter); this method is based on 

the analysis of similarity patterns between images with artifacts. This similarity is analyzed 

using the Normalized Compression Distance (NCD) function described in Section 4.4; here, 

we use a lossless compressor. The objective is to evaluate the existence of some similarity 

pattern between degraded images due to the presence of artifacts. We first present a 

description of the principle on which the method is based. Then we describe the process for 

artifact detection using the proposed method; the analysis will take place in the similarity 

space of the images. Then we apply this method to some examples to show their 

effectiveness in detecting artifacts. 
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5.2.1   Empirical Properties of NCD for Images with Artifacts 

 

The Normalized Compression Distance (NCD) is a similarity metric based on compression 

techniques as an approximation to Kolmogorov complexity. The main contribution of this 

method is the fact that we do not need a feature extraction process for classification 

applications. This makes the method a parameter-free method; thus, it can be applied to any 

type of data, i.e., text, images, audio, etc. 

To see some approximation of the relationship between complexity and 

compression, we make a small experiment. In Figure 5.12, we show two images with 

different visual complexity which is reflected in the inverse compression ratio ICR. In Figure 

5.12 (a), we have a picture of a lake without many details where the background appears to 

be constant, and the lake and the sky are nearly constant, too; while in Figure 5.12 (b) we 

show an image that has a lot of details because it contains hills, houses, trees, people, cars, 

etc. The lake image has less visual complexity, and has a higher compressibility (and thus a 

lower ICR); while the other image contains many details; it is more complex and therefore, 

cannot be compressed as much (see Figure 5.13). 

 

     
                            (a) Lake                                                           (b) Ski resort 

Figure 5.12: (a) Image with an almost constant background; this image is less complex than 

image (b). (b) Image with a lot of details; it contains hills, houses, trees, people, cars, etc. 

 

 

 
Figure 5.13: Original and compressed size of the images of Figure 5.12. The size is given in 

bytes. The compressor used was the JPEG-LS compressor. 
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In Figure 5.13, we can see that the size of the original images is 29,942,838 bytes for 

the images in Figure 5.12 (a) and Figure 5.12 (b). When we compress the images, we obtain 

a compressed size of 12,876,413 bytes for the image shown in Figure 5.12 (a) and 

18,302,615 bytes for the image shown in Figure 5.12 (b). Thus, the ICR (size of compressed 

image file / size of original image file) is 0.43 and 0.61 for the image of Figure 5.12 (a) and 

the image of Figure 5.12 (b). These results show that an image with lower visual complexity 

has a higher compressibility than an image with higher visual complexity. 

 

Since NCD is a similarity metric, we perform another small experiment. In Figure 

5.14, we present four images that correspond to four city scenes. Figure 5.14 (a) and Figure 

5.14 (d) show images with artifacts (strips). Figure 5.14 (b) and Figure 5.14 (c) present 

artifact-free images. For these four images, we calculate the NCD between all images pairs, 

i.e., NCD(a,b), NCD(a,c), NCD(a,d), NCD(b,c), NCD(b,d) and NCD(c,d). The objective of 

this experiment is to analyze the potential similarities between the images that have artifacts 

and the images that do not have artifacts. 

 

 

       
          (a) Scene 1                   (b) Scene 2                    (c) Scene 3                  (d) Scene 4 

Figure 5.14: Four different city scenes. Scene 1 and Scene 4 have artifacts (strips). 

 

 

 
Figure 5.15: Normalized Compression Distances (NCDs) between the four different scenes 

of Figure 5.14, (a) for Scene 1, (b) for Scene 2, (c) for Scene 3 and (d) for Scene 4. The two 

smallest NCD values are for the NCD between (a) and (d) and the NCD between (b) and (c). 
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In Figure 5.15, we present the NCD values between the images of Figure 5.14. We 

can see that NCD(a,b) = 0.1182, NCD(a,c) = 0.1128, NCD(a,d) = 0.1077, NCD(b,c) = 

0.1085, NCD(b,d) = 0.1261 and NCD(c,d) = 0.1222. Based on these values, we can say that 

the image of Figure 5.14 (a) is more similar to the image of Figure 5.14 (d) than to the other 

ones; the image of Figure 5.14 (b) is more similar to the image of Figure 5.14 (d). This 

analysis indicates that the images with artifacts can be rather similar among themselves; 

likewise, the images without artifacts are more similar among themselves.  

 

We are going to use these characteristics explained above to develop a parameter- 

free method for artifact detection in satellite images based on similarity using the 

Normalized Compression Distance. 

 

 

5.2.2   Artifact Classification by Similarity 

 

For artifact detection using the Normalized Compression Distance (NCD), we propose to 

analyze the potential similarity between images with artifacts. The reason for this is a 

potential similarity between artifact patterns. The first step is to take a satellite image I and to 

cut it again into n patches Xi of the same size. From these patches Xi, we calculate the 

distance matrix between them using the NCD described by Equation 4.10, thus dij = 

NCD(Xi,Xj).  
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The matrix D is a square matrix of size n×n, where n is the number of patches. For 

larger images this can lead to considerable computing effort.  

 Finally, we apply a non-supervised classification to this distance matrix D. Our 

classification method is a hierarchical classification dendrogram as shown below in Figure 

5.17. The dendrogram is a graphical representation of data that sorts them into sub-categories 

as a tree and the desired level of detail controls the classification depth. This type of 

representation allows a clear view of the relationships between data classes. To plot the 

dendrogram we use the Euclidean distance method for the evaluation of the distances 

between the data using the following MATLAB instructions: 

 

- Calculate the Euclidean distance  Distance = pdist(D) 

- Link the distances    Tree = linkage(Distance) 

- Read the labels     Labels = importdata('Labels.txt') 

- Plot the dendrogram: 

dendrogram(Tree,'colorthreshold','default',  

        'labels',Labels) 

                                                                              set(Dendrogram,'LineWidth',2)  
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We also used the K-MEANS classification method that has been described above 

with a parameter value of K = 2 that yields one group for images with artifacts and a second 

group for images without artifacts.  

 

 A block diagram of this method is presented in Figure 5.16. 

 

 

 
 

Figure 5.16: We take a satellite image and cut it into patches of 64×64 pixels. With these 

patches we calculate the distance matrix between them using NCD; finally, we apply a 

hierarchical classification method to cluster the patches into classes with and without 

artifacts. 

 

 

 We use the NCD to investigate whether patches with artifacts will have similar 

patterns and to see if we can create a single cluster for all artifact affected patches. 

 

 

 

 

 

 

 

 

 

¡Error! 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.17: Hierarchical classification of patches: we can see two clusters, a red cluster for 

patches with artifacts, and a cyan cluster for patches without artifacts. On the ordinate axis 

we see the hierarchical level assigned by the MATLAB dendrogram routine. 
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In this dendrogram representation, we can see how the patches with artifacts and the 

patches without artifacts can form two different clusters on a given hierarchical level. The 

analysis begins by determining two principal groups in the dendrogram; after that, we verify 

the patches that belong to one group and the patches that belong to the second group; with 

these results we prepare a confusion matrix to calculate the error. It is important to say that 

we do not have an automatic process to identify groups containing patches with artifacts and 

group containing patches without artifacts. Instead, it is necessary to visualize the patches of 

each group for a final decision. 

 

 

5.2.3   Examples 

 

An example of the application of the method is presented in Figure 5.18; we have again the 

image where a stuck A/D converter bit appears.  

 Another example for applying the proposed method is shown in Figure 5.19 where 

we have a city image with simulated aliasing. 

A third example for applying the proposed method is shown in Figure 5.20 where we 

have an image with trailing charge problems.  

 

 

    
                                    (a)                                                                         (b) 

 

Figure 5.18: Results of a stuck bit detection using the NCD method. 
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                (a) Image with aliasing                                          (b) Aliasing detection 

Figure 5.19: (a) Satellite image with artificial aliasing. (b) Results of patch-wise aliasing 

detection using NCD analysis.  

  

 

      
                                    (a)                                                                          (b) 

Figure 5.20: Results of trailing charge detection. 

 

 

A fourth example of the application of the NCD analysis method is to apply it to 

images with actual instrumental artifacts. We took images acquired by the ROSIS sensor; 

these data consist of hyperspectral images comprising 7946×512 pixels, 14 bits per pixel, 

and 115 spectral bands. For this experiment we work with sub-scenes of 512×512 pixels per 

spectral band. Our selected sub-scenes correspond to different land cover classes such as 

forest, or agricultural fields (see Figure 5.21) for a selected band.  

 The first thing to do is a manual analysis to determine the existence and the location 

of artifacts; for this task we take the hyperspectral image H that has a size of 7946×512×115 

pixels; we extract different single band sub-scenes SI of 512×512 pixels; each sub-scene 

SI512x512 is an image with 14 bits per pixel, SI = [b13 b12 … b0]. For each sub-scene SI we 
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make a visual analysis of each bit plane to detect potential perturbations; in effect, we 

detected strips in the two least significant bits b0 and b1 as shown in Figure 5.22. 

 

   
Figure 5.21: Examples of 512×512 sub-scenes with actual instrumental artifacts of the 

ROSIS sensor (images provided by the German Aerospace Center - DLR). 

  

 

 
 

Figure 5.22: Bit plane analysis for strip detection in a ROSIS image: we can see the strips in 

the B1 bit plane. 

 

 

 We can see strips only in the B1 bit plane of the image; this is the reason why we 

cannot see the strips via a visual inspection of the full range image; however, the strip 

artifacts may produce errors during further image interpretation. 

B0 B1 B2 

B4 B3 
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 After the manual bit plane analysis, we know the existence and location of artifacts; 

now we apply the proposed automated method to the same sub-scene SI for artifact detection 

and check whether the method can detect the strips. The results are not encouraging and are 

shown in Table 5.1. 
 

FOREST 

Kind of Artifact  NCD – JPEG-LS NCD – CompLearn/zip 

Strips   61.11% 41.67% 

 

AGRICULTURAL FIELDS 1 and 2 

Kind of Artifact  NCD – JPEG-LS NCD – CompLearn/zip 

Strips 1  48.98% 51.02% 

2  60.94% 56.25% 

 

Table 5.1: Artifact detection success rates with actual instrument data. 

 

 We have applied the method to different land cover sub-scenes such as forest and 

agricultural fields. We used both the JPEG-LS compressor as well as the CompLearn 

software package that contains a zip compressor. The results show a bad detection 

performance, we obtain only 61.11% as maximum success of detection; this result was 

obtained detecting strips in a forest scene, where we also have a considerable discrepancy in 

the performance of the two compressors. These bad results may be due to the fact that the 

strips only appear in the B1 bit plane, and due to their low intensity they are not detected in 

the full range image. 

 Given these results, we made another experiment; we took the B1 bit plane
 

containing strips. The next step is to cut the bit plane image into patches Xi of 64×64 pixels 

as shown in Figure 5.23. For each patch Xi, we convert the patch into an ASCII text string Si 

with values of zeros and ones; thus Si = [p1, p2, …, pj, …, pm] where pj is the value of each 

pixel of the binary patch Xi; as the size of each patch is 64×64 pixels, the total length of the 

resulting string m = 4096. After that, we calculate the Normalized Compression Distance 

between all strings and we build a distance matrix DS = {dij}, where dij is the NCD value of 

strings Si and Sj, dij = NCD(Si, Sj) using Equation 4.10. We obtain the distance matrix: 
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where n is the number of patches or the number of strings; if we work with a sub-scene of 

512×512 pixels, the number of 64×64 patches is n = 64. 

  

Finally, with this distance matrix DS, we perform a non-supervised hierarchical 

classification for artifact detection as described above. 
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Figure 5.23: Bit plane patches of 64×64 pixels for the calculation of the distance matrix 

between patches. 

 

 

 For making the patch-to-string conversion, we analyzed two options: horizontal 

scanning and vertical scanning. 

 For horizontal scanning, we take the i-th bit plane patch Xi formed by Xi = {pij} 

where pij is a pixel with the two possible values of zero or one; we create the i-th string Si as 

follows: 

 

Si = [p11, p12, …, p1j, … p1n, p21, p22, …, p2j, …, p2n, …, pi1, pi2, …, pij, …, pin, …, pn1, pn2, …, 

pnj, …, pnn]. 

 

 For vertical scanning, we create the text string Si as follows: 

 

Si = [p11, p21, …, pi1, … pn1, p12, p22, …, pi2, …, pn2, …, p1j, p2j, …, pij, …, pnj, …, p1n, p2n, …, 

pin, …, pnn]. 

 

 The horizontal scanning and the vertical scanning are shown in Figure 5.24. As each 

patch has 64×64 pixels and all rows or columns have to be put into a sequence, then each 

text string will comprise 4096 elements. 

 Then we have two data sets for further processing: a data set Shorizontal as the result of 

horizontal scanning, and another data set Svertical as the result of vertical scanning. For each 

data set Shorizontal and Svertical, we calculate by using a zip compressor the distance matrices 

DShorizonal and DSvertical. The success rate for artifact detection after a K-MEANS classification 

is shown in Table 5.2: 

 

  Horizontal 

Scanning  

Vertical 

Scanning  

NCD for text 

strings  

 50%  81.25%  

Table 5.2: Results for the two scanning processes. 
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Figure 5.24: Formation of the text string based on bit plane images: we analyzed two options 

for the scanning process, horizontal scanning and vertical scanning. Finally, each text string 

will comprise 4096 elements. 

 

 

 We can see that we have no clear result for the dataset with horizontal scanning; in 

this case, the proposed method could not detect the artifacts properly; but if we use vertical 

scanning, the results are somewhat better; the method is capable to detect the artifacts with 

81.25% of success.  The reason why the results for vertical scanning are better could be that 

the strips have the same vertical orientation; then the method is capable of recognizing the 

artifacts due to their orientation; in contrast, when using horizontal scanning we miss the 

artifact patterns and it is not possible to detect them. In case of horizontal striping, we would 

expect the opposite result. 

 

 

5.3   New Rate-Distortion Aspects for Artifact Detection 
 

In this section, we will describe some new aspects of the Rate-Distortion curve; these new 

aspects are based on a different way to measure the distortion and the similarity between the 

original image and the compressed-decompressed image. We will use the complexity 

approach for similarity measurements and we will also calculate the similarity between the 

three elements in the lossy compression process: the original image, the compressed-

decompressed image and the error between them. The objective is to use these three 

elements and obtain new curves for artifact detection analyzing the complexity-to-error 

migration. First, we present a short introduction to the new ideas. After that, we give a 

description of the Complexity-to-Error Migration (CEM) effects. Thirdly, we will present the 

Kolmogorov Structure Function. Then we will describe the artifact detection process using 

Horizontal scanning, row by row 

Vertical scanning, transposed column by 

transposed column 
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the new approach. Finally, we apply this methodology to some examples to show their 

effectiveness in detecting artifacts. 

In the previous sections, we presented two methods for artifact detection, one based 

on the RD curve, and a second one based on NCD. The RD curve can distinguish a complex 

image from another less complex image by its ordinate values. Here we assume that an 

artifact is something more complex or rather regular with respect to the local undisturbed 

complexity of an image. This led us to the second method proposed in Section 5.2 that is 

using Normalized Compression Distance (NCD) based on Kolmogorov Complexity.  

Now we propose a third approach where we combine the RD and the NCD methods 

in order to profit from multi-dimensional data analysis. In Section 5.3.1 we present four 

approximations of the Rate-Distortion curve using image complexity. The first three 

approximations (Section 5.3.1.1) compare  

 

- the original and the distorted image, 

- the original and the residual error image 

- the residual error and the distorted image 

 

When we combine them we can perform a 3D distortion analysis. The fourth 

approximation method (see Section 5.3.1.2) compares the original and the disturbed image 

using the Kolmogorov Structure Function. As always, our tests were conducted with 

different quality factors. 

 

 

5.3.1   Different Approaches for Rate-Distortion Function 

 

In this section, we present the four approximations addressed above. The first three 

approaches use the SNCD criterion to quantify distortion (see below), while the fourth 

method uses KSF (see below). 

 

 

5.3.1.1   Complexity-to-Error Migration 

 

We analyzed the Normalized Compression Distance (NCD) that should be an approximation 

of the Normalized Information Distance (NID) in more detail (see Section 4.4). The NID is a 

symmetric measure as the Kolmogorov Complexity K(x, y) = K(y, x). However, we observed 

experimentally that the NCD is not symmetrical, NCD(x, y) ≠ NCD(y, x). Therefore, we use a 

Symmetric Normalized Compression Distance (SNCD) defined as the arithmetic mean of 

NCD(x, y) and NCD(y, x). The SNCD is given by: 
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As an approximation to the Rate-Distortion Function, we apply the Complexity-to-

Error Migration (CEM) analysis. In order to obtain CEM curves, we need a lossy compressor 

that allows us to vary the rate by different quality factors, and a lossless compressor that 

allows us to estimate the Kolmogorov complexity when calculating the SNCD. We used two 

image compressors, the baseline JPEG lossy compressor   based on the discrete cosine 

transform DCT   and the JPEG 2000 lossy compressor, based on a wavelet transform. Both 

compressors produce different effects in the compressed images; these effects can be seen in 

the following examples. 

Taking the images of Figure 5.25, we applied both compressors. With similar ICRs 

we obtained the different results shown in Figs. 5.26 to 5.29. 

 

 

          
(a)                                                         (b) 

 

          
(c)                                                              (d) 

 

Figure 5.25: (a) Satellite image of a city, (b) satellite image of an agricultural field, (c) image 

with different land cover types, and (d) image of a horse. 
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 ICR: 0.02 ICR: 0.13 ICR: 0.24 
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 Figure 5.26 Top row: JPEG 2000 compressed-decompressed image with three compression settings. 

Second row: JPEG 2000 error map images. Third row: baseline JPEG compressed-decompressed 

image with three compression settings. Fourth row: baseline JPEG error map images. 
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The results shown in Figure 5.26 used the image of Figure 5.25 (a). 
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 Figure 5.27: Results obtained using the image of Figure 5.25 (b). 
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 Figure 5.28:  Results obtained using the image of Figure 5.25 (c). 
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 Figure 5.29: Results obtained using the image of Figure 5.25 (d). 
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The errors E between the original image and the compressed-decompressed image 

are the absolute difference values between the original image X and the compressed-

decompressed image Y, Eq = abs (X - Yq), where q is the JPEG quality / rate factor. Different 

factors lead to a variation of the error maps. This variation of the errors can be very 

important because we can see that the information content is reflected in the error maps, 

especially when an image has a well-defined structure as in the case of the horse. We can 

also see that the error differs between the baseline JPEG and the JPEG 2000 compression.  

The error maps are very important for artifact detection since we want to analyze 

how an artifact passes (or “migrates”) into the image error maps. We can see that the image 

content passes better to the error map when using the baseline JPEG option; as JPEG 2000 

provides better performance in compression, the image error map contains less information. 

Thus, our preferred choice for our application is the baseline JPEG option. 

In order to validate the error map behavior explained above, we plot the curves for 

- the CEM curve comparing (for varying compression settings) the 

original image X and the compressed-decompressed image Y 

- the CEM curve for the original image X, and the error map E  

- the CEM curve for the error map E and the compressed-decompressed 

image Y 

- a 3-dimensional view of these three curves.  

 

The abscissa of the CEM curve is the ICR, and the ordinate is the SNCD. To 

calculate the SNCD, we need a lossless compressor to approximate the Kolmogorov 

complexity; for comparison, we used the JPEG-LS compressor and a ZIP compressor (see 

Chapter 6).  

 

The CEM(X,Y) curve of the original image X and the compressed-decompressed 

image Y should be a normal Rate-Distortion curve. In the case of high compression, the 

SNCD value will be close to one, representing the greatest distance between the original 

image X and the compressed-decompressed image Y; in case of lower compression, the 

SNCD value will be closer to zero, meaning that the original image X is very similar to the 

compressed-decompressed image Y. 

 

The CEM(X,E) curve between the original image X and the error map image E 

should represent a steadily rising curve (E increases, while X always remains the same). A 

higher inverse compression ratio has a near zero error image with a big distance to the 

original (non-zero) image.  

 

The CEM(E,Y) curve between the error map E and the compressed-decompressed 

image Y could have a particular behavior as shown in Figure 5.30 due to the varying Y and E. 

At low inverse compression ratios, we have considerable compression and an error map with 

noticeable entries. When the inverse compression ratio increases, the compression errors 

become smaller until we reach a point that contains less information in the error map (see the 

red circle in Figure 5.30). When the inverse compression ratio continues to increase, the 

compressed-decompressed image Y becomes almost equal to the original image X. Hence, 

the error map E contains little information which makes the distance between E and Y larger 

again. An interesting analysis will be to look at the different slopes and the minimum shown 

in Figure 5.30. 
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Figure 5.30: CEM curve, hypothetical relationship between the error map E and the 

compressed-decompressed image Y. 

 

 

Figure 5.31 shows the different CEM curves for the image in Figure 5.25 (a). 
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(c)                                                               (d) 

Figure 5.31: CEM curves: (a) curve in three dimensions, (b) relationship between the error 

map E and the compressed-decompressed image Y, (c) relationship between the original 

image X and the error map E (d) relationship between the original image X and the 

compressed-decompressed image Y. 
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In Figure 5.31 (a), we can see the three-dimensional curve (SNCD(X,Y) vs. 

SNCD(X,E) vs. SNCD(E,Y)) which has a distinct turning point supposedly due to the 

behavior of the compressor and the image content. In (b) we can easily identify the minimum 

between the error map E and the compressed-decompressed image Y. The curves (b), (c) and 

(d) present what was predicted.  

Now we want to investigate whether the content of an image affects these curves. 

Figure 5.32 shows a small database of images that was taken in order to verify this 

dependence. The results are shown in Figure 5.33 and corroborate our assumption.   

 

 

 
Figure 5.32: Small image database containing Earth observation and media images as well as 

textures. 
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Figure 5.33: CEM curves of the images in Figure 5.32. 
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As shown in Figure 5.33, the CEM curves can discriminate between different types 

of images; in this particular case, we can distinguish three groups of curves consisting of a 

set of Earth observation images, a second group of multimedia images, and a third group for 

textures. All these curves of Figure 5.33 were calculated using the baseline JPEG and show 

different shapes. The curves marked in green correspond to more complex images, the 

curves marked in blue refer to texture images, and the final group marked in red represents 

satellite images.  

 

To analyze the behavior of the baseline JPEG lossy compressor and the JPEG 2000 

lossy compressor, we plot both CEM curves with both compressors on a single image, as 

shown in Figure 5.34 and Figure 5.35 referring to the images in Figure 5.25 (a) and (d). 
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(a)                                                          (b) 

Figure 5.34: CEM curves for the image in Figure 5.21 (a); the red curve stands for the JPEG 

2000 compressor, the blue curve stands for the baseline JPEG compressor.  
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(a)                                                          (b) 

Figure 5.35: CEM curves for the image in Figure 5.25 (d); the red curve stands for the JPEG 

2000 compressor, the blue curve stands for the baseline JPEG compressor.  
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In these curves (with the red curve corresponding to the JPEG 2000 compressor and 

the blue curve to the baseline JPEG compressor), we can see that  

 

- the JPEG 2000 compressor has a better performance in terms of 

compression, all points that represent good quality are to the left of the 

points obtained by baseline JPEG compressor.  

- the comparison between the original image X and the error map E gives 

smaller SNCD values for the baseline JPEG compressor than for the 

JPEG 2000 compressor. This means that the error map E is closer to the 

original image X, so for all compression ratios, the transfer of 

information or image content to the error map is better reflected by the 

baseline JPEG compressor; thus, this compressor is better suited to 

analyze residues during artifact detection. In contrast, the JPEG 2000 

compressor transfers less information to the error map because it has a 

better overall performance. 

 

Also, we can see the minimum in the curve when comparing the error map E with 

the compressed-decompressed image Y, although the shape of the curve is somewhat 

different from Figure 5.30. The baseline JPEG method produces a minimum level being 

lower than that of the JPEG 2000 compressor, suggesting once again that the former 

produces more image content related errors. On the other hand, the minimum point produced 

by the JPEG 2000 compressor is shifted to the left, indicating that the performance of this 

compressor is better. 

 

In order to validate the experiment and the conclusions, we repeated the experiment 

by re-calculating the Rate-Distortion values using the well-known Mean Squared Error 

(MSE) quality metric; in Figures 5.36 and 5.37 we can see the curves for the images of 

Figures 5.25 (a) and (d). 
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      (a)                                                                        (b) 

Figure 5.36: Rate-Distortion curves for the image in Figure 5.25 (a), where the red curve 

stands for the JPEG 2000 compressor, and the blue curve stands for the baseline JPEG 

compressor. 
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                                     (a)                                                                     (b) 

Figure 5.37: Rate-Distortion curves for the image in Figure 5.25 (d), where the red curve 

stands for the JPEG 2000 compressor, and the blue curve stands for the baseline JPEG 

compressor.  

 

 

 We obtain the same conclusion again: the red curve which corresponds to the JPEG 

2000 compressor is always greater than the blue curve which corresponds to the baseline 

JPEG compressor, since the performance of the JPEG 2000 compressor is better than that of 

the baseline JPEG compressor. The visual differences between both curves in Figures 5.36 

and 5.37 are smaller because the RD values are rather high.    

 

 

5.3.1.2   The Kolmogorov Structure Function 

 

The Kolmogorov Structure Function (KSF) is non-computable since the underlying 

Kolmogorov complexity is also a non-computable function; that is the reason why we use 

the compression factor as an approximation to complexity. The idea is to use the 

Kolmogorov structure function as an approximation to the rate-distortion analysis in order to 

describe the behavior of potential artifacts and to develop a parameter free artifact detection 

method. 

In this sub-section, we are going to present another experiment and its results in 

order to evaluate the behavior of the KSF for different textures, and to check whether we can 

discriminate them and whether we can use KSF for artifact detection. 

The first experiment using KSF is to apply it to texture discrimination. To evaluate 

the KSF behavior for different textures, we use the Brodatz image databases (USC-SIPI). In 

Figure 5.38, we show the textures used for this experiment, and in Figure 5.39 we present the 

results using KSF. 

We can observe in Figure 5.39 that the KSF can discriminate the different structures 

partially; for all texture groups the KSF curve has a similar shape, but their fall-off is 

different. 
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The second experiment is to apply KSF for artifact detection; here, the first step is to 

study the behavior of the KSF curves for images with or without artifacts. 

 

 

 
Figure 5.38: Textures used for the experiment represented by the letters H, P, L, and R. 
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Figure 5.39: Kolmogorov Structure Functions for the textures presented in Figure 5.38; the 

red curves refer to the texture H; the blue curves refer to the texture P, the green curves refer 

to the texture L, and the black curves refer to the texture R. 

 

 

One aspect to consider is how to generate the candidates for the necessary space S as 

indicated in Section 4.5. For this purpose, we have generated candidates by using two 

methods: candidate generation by baseline JPEG lossy compression and candidate 

generation by a genetic algorithm as in (De Rooj & Vitanyi 2011). 
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In Figure 5.40, we show the KSF curve results for different patches of a satellite 

image containing urban land cover with aliasing in some parts. In Figure 5.40(a) we use 

baseline JPEG lossy compression, and in Figure 5.40(b) we use a genetic algorithm. The red 

curves represent patches with artifacts while the blue curves represent patches without 

artifacts. 
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(a)  KSF using baseline JPEG lossy compression           (b)  KSF using a genetic algorithm 

 

Figure 5.40: Kolmogorov Structure Function: the abscissa shows the compressed size of the 

images (as an approximation to Kolmogorov Complexity) and the ordinate represents the 

structure function. The red curves stand for patches with artifacts, while the blue curves 

represent patches without artifacts. 

 

 

 

We can observe that a better discrimination can be reached when we generate the 

candidates for the space S using baseline JPEG lossy compression. In this case, the 

approximation to the Rate-distortion function is better, too. 

Considering this, we used the baseline JPEG lossy compression for candidate 

generation and the computation of the Kolmogorov Structure Function for each patch of a 

satellite image to detect potential artifacts. For this experiment we used an image with 

manually introduced aliasing. In Figure 5.41 we can see the result for aliasing detection. 
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Figure 5.41: Aliasing detection for urban land cover using KSF and candidate generation 

with baseline JPEG lossy compression. 

 

 The artifact detection presented in Figure 5.41 was made correctly; the satellite 

image is an image of urban land cover with manually introduced synthetic aliasing artifacts. 

For further details how to simulate aliasing in images, see Chapter 6. 

 

 

Another example of the application of the method based on KSF is presented in 

Figure 5.42; we have again the image where a stuck A/D converter bit appears.  

  

    
                                    (a)                                                                         (b) 

 

Figure 5.42: Results of stuck bit detection using the KSF method. 
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A third example for applying the proposed KSF method is shown in Figure 5.43 

where we have an image with trailing charge problems.  

  

 

      
                                    (a)                                                                          (b) 

Figure 5.43: Results of trailing charge detection using the KSF method. 

 

 

 

5.3.2   Artifact Detection with CEM 

 

For artifact detection, we propose to use the CEM function obtained by compression of the 

image with different compression parameters and a multidimensional analysis of the 

similarities between X, Y, and E. The CEM analysis is made as shown in the block diagram 

of Figure 5.44. We will also use the Rate-Complexity (CV – complexity variation) curve to 

make the same analysis, as shown by the block diagram in Figure 5.45.  

 

 

 
 

Figure 5.44: Block Diagram for CEM analysis: we take the image under test; we compress 

image patches with varying compression parameters, then decompress the patches and 

calculate the similarity using the SNCD for each compression parameter. Based on these 

values we compose a feature vector and then apply a classification method. 
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Figure 5.45: Block diagram for Rate-Complexity analysis: we take the image under test; we 

compress image patches with varying compression parameters, then decompress the patches 

and estimate the complexity using a lossless compressor for each compression parameter. 

Based on these values, we compose a feature vector and then apply a classification. 

  

 

 In both cases, we take the image under test I, we cut again the image I into n 

different patches Xi of 64×64 pixels. For each patch Xi, we compress it with a varying quality 

factor q using a lossy compression. After that, we decompress the patches and we obtain 

decompressed patches Yiq.  

For the method shown in Figure 5.44, the next step is to calculate the similarity 

between the original patches Xi and the compressed-decompressed patches Yiq using the 

SNCD metrics; thus, we obtain feature vector elements Fiq = SNCD(Xi, Yiq). 

In contrast, for the method shown in Figure 5.45, the corresponding step is to 

estimate the complexity of Yiq using a lossless compressor, and we obtain a  Fiq = ICR(Yiq). 

For both cases, based on the Fiq values, we compose a feature vector Vi = [Fi1, Fi2, … 

Fiq … FiQ] and we obtain the matrix: 
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 Finally, with this matrix V, we perform a non-supervised K-MEANS classification. 

Again, we take a value of K = 2. 

 

For the results shown in Figure 5.46, we used the baseline JPEG lossy compressor 

with a quality factor variation between 0 and 100 resulting in 101 different settings (Q = 

101), and the JPEG-LS compressor for lossless compressions.  

 

When we try to detect artifacts using CEM, we can see the result for A/D stuck bit 

detection in Figure 5.46. This result will be discussed in Chapter 6. 
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                                    (a)                                                                         (b) 

Figure 5.46: Results of stuck bit detection using the CEM method. 

 

 

 Another example for applying the proposed CEM method is shown in Figure 5.47 

where we have again our city image with simulated aliasing. 
 

 

      

                (a) Image with aliasing                                          (b) Aliasing detection 

Figure 5.47: (a) Satellite image with artificial aliasing. (b) Results of patch-wise aliasing 

detection using CEM analysis.  

 

 

A third example for applying the proposed CEM method is shown in Figure 5.48 

where we have the image with trailing charge problems.  
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Figure 5.48: Results of trailing charge detection using the CEM approach. 

 

 

5.4   Artifact Detection Using Image Quality Metrics 
 

In this section we will describe an existing reference method for artifact detection in optical 

satellite images that follows a steganalysis approach by (Avcibas et al. 2003); the method is 

based on the analysis of the error produced by a Gaussian filter; this error is analyzed using 

different quality metrics described in Section 3.3.1. The objective is to evaluate the behavior 

of the error between the original image and the filtered image produced by a Gaussian filter 

and analyzed with different quality metrics. We first present a description of the principle. 

Then we will make a description of the process for artifact detection; the analysis will take 

place in the error or distortion map of the image. Finally, we apply this method to some 

examples to show their effectiveness in detecting artifacts. 

 

 

5.4.1   Empirical Analysis of Quality Metrics for Images with Artifacts 

 

The Quality Metrics (QM) are the equations that allow us to compare and evaluate the 

quality of an image using a full-reference approach, meaning that we need access to the 

original or reference images. 

In order to detect the presence of artifacts in satellite images, we make a small 

experiment. In Figure 5.49, we show two images; Figure 5.49 (a) presents an airborne image 

with a dead column; Figure 5.49 (b) shows the filtered image after using a Gaussian filter; 

Figure 5.49 (c) presents the error between images (a) and (b); the error was computed as the 

absolute value of the difference between images (a) and (b), E = abs (a - b); Figure 5.49 (d) 

shows the results of the QM values based on Equations (3.1), (3.2), (3.3), (3.5), (3.6) and 

(3.7) shown in Chapter 3. 
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(a) Original image (b) Filtered image 

  

 

 

 

                 M1 = 3.1687 

                 M2  = 11.2510 

                 M3 = 0.7515 

                 M5 = 0.5023 

                 M6 = 0.9885 

                 M7 = 1342769.9387 

 

(c) Error map (d)  Selected quality metrics 

  

Figure 5.49:  Empirical example of QM for artifact detection. (a) shows the original image 

containing a dead column; (b) shows the filtered image of (a) after using a Gaussian filter; 

(c) shows the absolute error between the original and the filtered image; (d) shows the 

quality metrics results. 

 

 

Figure 5.49 (c) shows the absolute error obtained after comparing the original image 

with the filtered image; we can see that the principal variations are located along the edges of 

the structures; the QM values are listed in Figure 5.49 (d) and should characterize the error 

behavior. Therefore, the idea is to analyze the presence of artifacts in the error map produced 

by taking the difference between the original and the filtered image.  
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5.4.2   Artifact Detection by Quality Metrics 

 

The approach for artifact detection based on image quality is a method related to the work 

presented in (Avcibas et al. 2003) where the authors present a technique for steganalysis 

using well-known image quality metrics. We use this steganalysis method because the 

problem to detect some hidden information in images is very similar to artifact detection; 

hidden information changes some statistical parameters in the images and the artifacts 

produce some changes in the images, too; the quality of the image is affected by the presence 

of hidden information or the presence of artifacts; since image quality is affected, we can use 

the image quality metrics to evaluate the presence of hidden information or the presence of 

artifacts and to detect them. We change the image quality by applying a Gaussian filter, and 

we evaluate how the behavior of artifacts is affected by filtering. This method based on 

image quality metrics has a basic concept being similar to RD analysis; in both cases, we 

analyze our results in the error domain.  

The process that we propose for artifact detection is to cut the satellite image I again 

into n patches Xi of 64×64 pixels. For each patch Xi we apply a Gaussian filter and obtain a 

filtered patch Yi; after that, we compare the original patch Xi to the patch after applying a 

Gaussian filter Yi with different image quality metrics. The Gaussian filter was chosen as: 

 

  ),(, wmgKwmH   (5.3) 

 

where    g(m,w) is the 2-D Gaussian kernel and the normalizing constant is defined by: 

 

2/12
)),((  

m w
wmgK . (5.4) 

 

The width of the Gaussian filter was set to σ = 0.5 with a mask size of 3×3 pixels. 

The image quality metrics that we used for comparison are: 

  

- the Mean Absolute Error (M1) 

- Mean Squared Error (M2) 

- Czekanowski Distance (M3) 

- Image Fidelity (M5) 

- Normalized Cross-Correlation (M6) 

- Spectral Magnitude Distortion (M7) 

 

With the values resulting from the comparison, we create a feature vector 

  

Vi = [Mi1, Mi2, Mi3, Mi5, Mi6, Mi7]  

 

where  

Mi1 = M1(Xi, Yi)  Mi2 = M2(Xi, Yi) 

Mi3 = M3(Xi, Yi)  Mi5 = M5(Xi, Yi) 

Mi6 = M6(Xi, Yi)  Mi7 = M7(Xi, Yi).  
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Then, we obtain the matrix: 
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 Finally, with this matrix V, we apply a non-supervised classification method; we use 

the K-MEANS classification method and we take a value of K = 2 that represents one group 

for images with artifacts and other group for images without artifacts. 

 

Figure 5.50 depicts the block diagram for artifact detection using image quality 

metrics. The complete process was already described above. 

 

 

 
 

Figure 5.50: Artifact detection using image quality metrics. 

 

 

 

 

5.4.3   Typical Examples 

 

An illustrative example of this method is shown in Figure 5.51; in this case, we have a stuck 

bit (A/D conversion problem). 
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                                    (a)                                                                         (b) 

Figure 5.51: Results of stuck bit detection using the QM method. 

 

 

 Another example for applying this method based on quality metrics is shown in 

Figure 5.52 where we have again our city image with simulated aliasing. 
 

 

      

                (a) Image with aliasing                                   (b) Results of aliasing detection 

Figure 5.52: (a) Satellite image with artificial aliasing. (b) Results of patch-wise aliasing 

detection using QM analysis.  

 

 

A third example is shown in Figure 5.53; in this case, we have a SPOT image 

containing actual sensor artifacts. 
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Figure 5.53: Artifact detection using image quality metrics; in this case, we have a SPOT 

image containing actual sensor artifacts. 

 

 

We can conclude that the detection was made with an image with real instrumental 

artifacts; the strongest artifacts with high intensity were detected, while the weaker ones 

remained undetected. However, we can use this approach for first order artifact detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Compression Based Analysis of Image Artifacts: Application to Satellite Images 

 

Avid Román-González                                                                                                                                           120 

 

 

 

 

 

 

 

 

 



 

 

 

Compression Based Analysis of Image Artifacts: Application to Satellite Images 

 

Avid Román-González                                                                                                                                           121 

 

 

 

Chapter 6 

 

Analysis of Results and Quality 

Metrics Applications 

 
  

This chapter serves several purposes: 

 

 It shall document the results obtained during all test runs when applying the four 

selected methods of the preceding chapter. In order to have a uniform basis for 

comparisons, we provide for each set of results  

- a textual description with all test details 

- tables containing the most important quantitative performance results 

- graphical illustrations where we compare different cases and options.  

 

All this is contained in Section 6.2. 

 

 It also shall describe our testing approach where we had to 

- provide and select test images in a database (see Section 6.1) 

- select and insert typical artifacts into images 

- modify the strength of the artifacts 

- learn about the success rates of detecting an artifact 

 Finally, we need conclusions for artifact detection (see Section 6.3) and the use of 

normalized compression distance as a quality metric, especially when we analyze 

residual errors (see Section 6.4). 

 

Our rationale when organizing the test cases was: 

- We needed a small but representative database with sample images. We selected 

three typical Earth surface images (a city, forest and sea) and inserted synthetic 

artifacts into these images 

- As typical artifacts we selected striping and aliasing. These two cases cover 

artifacts occurring in instrument electronics as well as artifacts due to on-ground 

image processing  

- Each type of artifacts was applied with different strengths: at least three sub-

sampling options for aliasing, and at least three intensity levels for strips were 

applied 
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Due to the fact that some of the obtained results seem to be unclear and even 

contradictory at a first glance, we advise the reader to follow a simple guideline for each test 

description: 

 

 If a test run is based on rate-distortion analysis (our first method), the results are 

easily understandable and do not need extra explanations. Therefore, we do not 

provide additional support for these cases and we can recommend the method due to 

its simplicity and performance. 

 In contrast, if a test run uses NCD (as suggested in our second method), we 

sometimes need additional explanations. These explanations will be provided for the 

individual test runs and do not represent a formal proof. The main reason seems to 

be that the artifact patterns are too weak and a clear separation between artifact-free 

and artifact-affected images patches is not feasible.  

 Surprising results can be found with our third method, i.e. the CEM approach: in 

some cases, we obtain results being equivalent to the best results of the rate-

distortion method. On the other hand, we also have a number of more or less good 

results. The details and the suspected causes will be discussed and explained in the 

sub-sections below. 

 The method based on quality metrics is inferior to our NCD based results. The 

reason seems to be that the common quality metrics have not been designed for 

weak artifacts as they do not consider typical regularities being contained in image 

artifacts. For instance, the geometrical properties of a striping artifact cannot be 

described by global statistics and the applied spectral filters seemingly do not 

comply with the characteristics of our artifacts.  

 

 

6.1   Synthetic Database Description 
 

For the creation of the synthetic database, we introduced artificial artifacts into satellite 

images. For this purpose, we simulated aliasing artifacts and introduced strips into the 

images. The aim of the synthetic artifacts is to control the intensity of the artifacts, to control 

the influence of the artifacts on image processing, classification or indexing, and to evaluate 

how the methods can detect the artifacts as a function of their intensity. 

 For simulating aliasing in an image, we need a spatial down-sampling of the image. 

When we do the down-sampling, aliasing may occur if we violate the Nyquist criterion (or 

do not perform appropriate interpolation) and if we want to avoid it, we have to apply a low-

pass filter with sufficient strength (Pitas 2000) prior to down-sampling. For our purposes, we 

want to generate test images with sub-areas with and without aliasing artifacts. Hence, we 

take an image I comprising n×m pixels and we choose a positive integer ds for controlling 

the down-sampling; then the resulting image IA after down-sampling is: IA = I [1:ds:n, 

1:ds:m], where the notation 1:ds:n means that we take pixels from position 1 to n with a step 

size of ds. On the other hand, if we want to down-sample without aliasing, we use a low-pass 

filter prior to down-sampling; we take the image I, we apply the filtering and obtain a filtered 

image FI. Then we down-sample the image FI and obtain an image without aliasing IW = FI 

[1:ds:n, 1:ds:m]. Finally, we take the two images IA and IW. Then we insert some randomly 
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selected patches from IA into IW and obtain an image TI                       where aliasing 

occurs only in some selectable parts of the image. 

  

The process of the test image TI generation and aliasing simulation is shown in the 

scheme of Figure 6.1. 

 

 

 
 

Figure 6.1: Simulation of aliasing: first, we down-sample the image with a selectable step 

size (e.g., ds = 3, 5, 7); during down-sampling, aliasing may occur and, in order to avoid it, 

we need a low pass filter prior to down-sampling. 

  

 

 Our second simulation process is to introduce strips with varying brightness levels 

into satellite images. We know that satellite images can be affected by striping that may be 

 u   o   ff r n  r   on . For  n   n  ,   f    v  p x      y b  “    ”, “b     n ”, or “ho ”. 

In our case, we selected a case that is not too simplistic for artifact detection. We introduced 

strips by adding them to the grayscale values of the images along some randomly defined 

columns or lines. The resulting test image TI for added strips is obtained by increasing the 

grayscale value of pixels with selected brightness levels as shown in Figure 6.2, TI = I(r,s) + 

k, for selected positions (r,s). 

 

 

 
 

Figure 6.2: Artifact simulation with various intensities: strip artifacts with different gray 

levels being added.  
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Finally, we created a database with different types of synthetic artifacts with varying 

intensities and for typical Earth surface classes such as city, forest and sea, as shown in the 

following images of Figure 6.3 in order to evaluate the different methods presented in the 

previous chapter. These land cover cases were chosen because they are the most used in 

different applications. The artifacts were inserted into local sub-areas of each image. 

 

 

 
 

Figure 6.3: Satellite image database with different types of artifacts such as strips, or aliasing 

with varying intensities and for different Earth surface classes such as city, forest and sea. 

 

 

6.2   Results 
 

 

6.2.1   Comparison of RD and NCD Results 

 

After applying the methods described in Chapter       and detailed in Section 5.1 and 5.2     to 

the database we obtained the results shown in Table 6.1. The results are expressed as a 

percentage of success; this success percentage is calculated from a confusion matrix which 

classifies two groups: images with artifacts and images without artifacts. The number of 

elements which are correctly classified divided by the total number of images under analysis 

multiplied by 100 gives us the success percentage. 

 



 

 

 

Compression Based Analysis of Image Artifacts: Application to Satellite Images 

 

Avid Román-González                                                                                                                                           125 

 
SEA (mean value: 19 DN) 

Kind of Artifact  Artifact Detection Method 

NCD – baseline JPEG NCD – CompLearn/zip Rate-Distortion 

Strips k = 1  64.1 % 50 % 48.4 % 

k = 3  50 % 29.7 % 84.4 % 

k = 6  50 % 39.1 % 89.1 % 

k = 9  62.5 % 34.4 % 89.1 % 

k = 10  62.5 % 34.4 % 84.4 % 

Aliasing ds = 5  65.6 % 76.6 % 78.1 % 

ds = 9  68.8 % 79.7 % 70.3 % 

 

FOREST (mean value: 39 DN) 

Kind of Artifact  Artifact Detection Method 

NCD – baseline JPEG NCD – CompLearn/zip Rate-Distortion 

Strips k = 2  39.1 % 59.4 % 39.1 % 

k = 6  46.9 % 29.7 % 64.1 % 

k = 10  84.4 % 29.7 % 68.8 % 

k = 50  89.1 % 81.3 % 92.2 % 

Aliasing ds = 5  40.6 % 37.5 % 65.6 % 

ds = 7  54.7 % 50 % 79.7 % 

 

CITY (mean value: 64 DN) 

Kind of Artifact  Artifact Detection Method 

NCD – baseline JPEG NCD – CompLearn/zip Rate-Distortion 

Strips k = 1  53.1 % 51.9 % 67.2 % 

k = 10  79.7 % 35.9 % 76.6 % 

k = 30  90.6 % 43.8 % 87.5 % 

Aliasing ds = 3  85.9 % 76.6 % 100 % 

ds = 5  90.6 % 79.7 % 84.4 % 

ds = 7  81.3 % 76.6 % 81.3 % 

 

Table 6.1: Results for RD/NCD based artifact detection with synthetic artifacts. 

 

 

 Table 6.1 shows the results obtained by the proposed methods with the database 

described in Section 6.1. The NCD calculation was made using the two lossless compressors 

JPEG-LS and ZIP; the RD curve was calculated using the baseline JPEG lossy compressor. 

 We can observe that the critical intensity for strip detection is lowest for sea images; 

we obtain 62.5% of success using the method based on NCD and 89.1% of success using the 

method based on RD analysis for k = 9, where k is the intensity of the strips. On the other 

hand, we need k = 50 and k = 30 for an artifact detection in the forest and city Earth surface 

classes; we obtain an 89.1% success rate using NCD and 92.2% of success using RD for the 

forest surface class; and 90.6% of success using NCD and 87.5% of success using RD for the 

city surface class. 

  For aliasing detection, the best results are obtained for the city surface class where 

we get a 90.6% success rate using the NCD approach and 100% using the RD approach. For 

the sea and forest surface classes the success rate is lower; we obtain 65.6% using the NCD 

approach and 78.1% using the RD approach; 40.6% using the NCD approach and 65.6% 

using the RD approach respectively. A better detection of aliasing occurs in the city because 

the image bandwidth is wider. 
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 We can observe that the results obtained by the RD analysis approach are better than 

NCD in most cases; the RD curve can discriminate between an image with artifacts and an 

image without artifacts.  

 

 

6.2.2   Results of the Complexity-to-Error Migration Method 

 

For the CEM method described in Chapter 5, Section 5.3, the obtained results are shown in 

Tables 6.2 to 6.5. The results are expressed as their percentage of success. As this method is 

our most innovative approach, we expanded our investigations into the use of different 

compressors. For lossless compression we used both JPEG-LS and ZIP, while for lossy 

compression we used baseline JPEG and JPEG 2000. For an in-depth analysis of the best 

lossless/lossy combination we used a permutation of all cases. 

 

 

6.2.2.1   Use of Baseline JPEG and JPEG-LS 

 

We present the baseline JPEG / JPEG-LS summary results for our images in Table 6.2 

followed by three illustrations shown in Figures 6.4 to 6.6. In these summary results, we 

include the five proposed measures, namely  

 

-   the complexity variation (CV) 

-   the CEM between the original image X and the compressed-decompressed image Y 

-   the CEM between the original image X and the error map E 

-   the CEM between the error map E and the compressed-decompressed image Y and 

-   the Kolmogorov Structure Function (KSF).  

 

In Figures 6.4 to 6.6, we illustrate the relationships contained in Table 6.2 in an 

easily comprehensible format.  

We can observe that the critical intensity for strip detection is lower for the sea 

image; we obtain a success rate of 90.6% when using the CV method, 57.8% with 

CEM(X,Y), 81.3% with CEM(X,E), 81.3% with CEM(E,Y), and 65.6% of success using the 

KFS analysis method for k = 9, where k is the intensity of the strips. On the other hand, we 

need a k ≥ 50 and k ≥ 30 for a detection in the forest and city images; we obtain 54.7% of 

success using CV, 62.5% using CEM(X,Y), 65.6% using CEM(X,E), 59.4% with CEM(E,Y) 

and 92.2% of success using KSF for the forest image; we get 60.9% of success using CV, 

87.5% using CEM(X,Y), 56.3% using CEM(X,E), 71.9% with CEM(E,Y), and 89.1% of 

success using KSF for the city image.  

These data tell us that we have a wide range of success rates. When we try to 

understand the causes of these diverse success rates, we have to take into account quite a 

number of parameters. The main factors will be explained in Section 6.3. 
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SEA (mean value: 19 DN) 

Kind of Artifact  Artifact Detection Method 

CV CEM(X,Y) CEM(X,E) CEM(E,Y) KFS 

Strips k = 1  62.5 % 62.5 % 70.3 % 59.4 % 64.1 % 

k = 3  60.9 % 62.5 % 71.9 % 57.8 % 64.1 % 

k = 6  71.9 % 57.8 % 78.1 % 51.6 % 64.1 % 

k = 9  90.6 % 57.8 % 81.3 % 81.3 % 65.6 % 

k = 10  92.2 % 57.8 % 81.3 % 54.7 % 65.6 % 

Aliasing ds = 5  68.8 % 68.8 % 68.8 % 68.8 % 53.1 % 

ds = 9  71.9 % 71.9 % 70.3 % 71.9 % 53.1 % 

 

FOREST (mean value: 39 DN) 

Kind of Artifact  Artifact Detection Method 

CV CEM(X,Y) CEM(X,E) CEM(E,Y) KFS 

Strips k = 2  64 % 64.1 % 68.8 % 60.9 % 67.2 % 

k = 6  64.1 % 62.5 % 68.8 % 60.9 % 67.2 % 

k = 10  64.1 % 62.5 % 65.6 % 59.4 % 59.4 % 

k = 50  54.7 % 62.5 % 65.6 % 59.4 % 92.2 % 

Aliasing ds = 5  54.7 % 53.1  % 62.5 % 54.7 % 70.3 % 

ds = 7  51.6 % 53.1 % 53.1 % 53.1 % 76.6 % 

 

CITY (mean value: 64 DN) 

Kind of Artifact  Artifact Detection Method 

CV CEM(X,Y) CEM(X,E) CEM(E,Y) KFS 

Strips k = 1  54.7 % 53.1 % 53.1 % 54.7 % 54.7 % 

k = 10  50 % 53.1 % 56.3 % 56.3 % 51.6 % 

k = 30  60.9 % 87.5 % 56.3 % 71.9 % 89.1 % 

Aliasing ds = 3  54.7 % 60.9 % 85.9 % 50 % 92.2 % 

ds = 5  51.6 % 51.6 % 53.1 % 53.1 % 85.9 % 

ds = 7  57.8 % 57.8 % 53.1 % 54.7 % 75 % 

 

Table 6.2: Results for artifact detection using a baseline JPEG lossy compressor and a JPEG-

LS lossless compressor. 

 

 

 

SEA 

 
 

Figure 6.4: Summary results of Table 6.2 for the sea image. 
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FOREST 

 
 

Figure 6.5: Summary results of Table 6.2 for the forest image. 

 

 

 

CITY 

 
 

Figure 6.6: Summary results of Table 6.2 for the city image. 

 

  

   For aliasing detection within sea and forest images the percentage of successful 

detection is lower than for the city image; for the sea image, we obtain 68.8% of success 

using CV, 68.8% using CEM(X,Y), 68.8% using CEM(X,E), 68.8% with CEM(E,Y), and 

53.1% of success using the KSF approach; the forest image leads to 54.7% of success using 

CV, 53.1% using CEM(X,Y), 62.5% using CEM(X,E), 54.7% with CEM(E,Y), and 70.3% of 

success using the KSF approach. The best results are obtained for the city image where we 

get a success rate of 54.7% using CV, 60.9% using CEM(X,Y), 85.9% using CEM(X,E), 50% 

with CEM(E,Y), and 92.2% of success using the KSF approach. This is due to the fact that 

the city image bandwidth is wider. Again, the diversity of the results calls for more detailed 

explanations. These are to be found in Section 6.3.  
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6.2.2.2   Use of Baseline JPEG and ZIP 

 

We present the baseline JPEG / ZIP summary results for our images in Table 6.3 followed by 

three illustrations shown in Figures 6.7 to 6.9. In these summary results, we include the five 

proposed measures listed in Section 6.2.2.1. 

In Figures 6.7 to 6.9, we illustrate the relationships contained in Table 6.3 in an 

easily comprehensible format. 

 We can observe that the critical intensity for strip detection is lowest for the sea 

image; we obtain a success rate of 68.8% using the method based on CV, 51.6% with 

CEM(X,Y), 71.9% with CEM(X,E), 51.6% with CEM(E,Y), and 65.6% of success using the 

method based on KSF analysis for k = 9, where k is the intensity of the strips. On the other 

hand, we need a  k ≥ 50 and k ≥ 30 for a detection in the forest and city images; we obtain 

60.9% of success using CV, 64.1% using CEM(X,Y), 70.3% using CEM(X,E), 59.4% with 

CEM(E,Y), and 92.2% of success using KSF for the forest image, as well as 65.6% of 

success using CV, 60.9% using CEM(X,Y), 51.6% using CEM(X,E), 56.3% with CEM(E,Y), 

and 89.1% of success using KSF for the city image. 

 

 
SEA (mean value 19 DN) 

Kind of Artifact  Artifact Detection Method 

CV CEM(X,Y) CEM(X,E) CEM(E,Y) KFS 

Strips k = 1  51.6 % 51.6 % 71.9 % 51.6 % 64.1 % 

k = 3  68.8 % 51.6 % 71.9 % 51.6 % 64.1 % 

k = 6  68.8 % 51.6 % 71.9 % 51.6 % 64.1% 

k = 9  68.8 % 51.6 % 71.9 % 51.6 % 65.6 % 

k = 10  64.1 % 51.6 % 71.9 % 51.6 % 65.6 % 

Aliasing ds = 5  65.6 % 65.6 % 67.2 % 65.6 % 51.6 % 

ds = 9  71.9 % 71.9 % 71.9 % 70.3 % 62.5 % 

 

FOREST (mean value 39 DN) 

Kind of Artifact  Artifact Detection Method 

CV CEM(X,Y) CEM(X,E) CEM(E,Y) KFS 

Strips k = 2  62.5 % 79.7 % 67.2 % 60.9 % 53.1 % 

k = 6  62.5 % 64.1 % 67.2 % 59.4 % 53.1 % 

k = 10  62.5 % 64.1 % 67.2 % 59.4 % 59.4 % 

k = 50  60.9 % 64.1 % 70.3 % 59.4 % 92.2 % 

Aliasing ds = 5  54.7 % 56.3 % 56.3 % 54.7 % 70.3 % 

ds = 7  51.6 % 56.3 % 68.8 % 56.3 % 76.6 % 

 

CITY (mean value 64 DN) 

Kind of Artifact  Artifact Detection Method 

CV CEM(X,Y) CEM(X,E) CEM(E,Y) KFS 

Strips k = 1  57.8 % 56.3 % 67.2 % 53.1 % 54.7 % 

k = 10  59.4 % 56.3 % 51.6 % 51.6 % 51.6 % 

k = 30  65.6 % 60.9 % 51.6 % 56.3 % 89.1 % 

Aliasing ds = 3  54.7 % 51.6 % 60.9 % 50 % 92.2 % 

ds = 5  57.8 % 57.8 % 57.8 % 53.1 % 85.9 % 

ds = 7  59.4% 59.4 % 65.6 % 67.2 % 75 % 

 

Table 6.3: Results for artifact detection using a baseline JPEG lossy compressor and a ZIP 

lossless compressor. 
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  For aliasing detection within the sea and forest images the percentage of success 

detection is low; for the sea image, we obtain 65.6% of success using CV, 65.6% using 

CEM(X,Y), 67.2% using CEM(X,E), 65.6% with CEM(E,Y), and 51.6% of success using the 

KSF approach; for the forest image, we get 54.7% of success using CV, 56.3% using 

CEM(X,Y), 56.3% using CEM(X,E), 54.7% with CEM(E,Y), and 70.3% of success using the 

KSF approach. The best results are obtained for the city image with a wide bandwidth where 

we obtain a success rate of 54.7% by using CV, 51.6% using CEM(X,Y), 60.9% using 

CEM(X,E), 50% with CEM(E,Y), and 92.2% of success using the KSF approach. 

 

 

SEA 

 
 

Figure 6.7: Summary results of Table 6.3 for the sea image. 

 

 

 

FOREST 

 
 

Figure 6.8: Summary results of Table 6.3 for the forest image. 
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CITY 

 
 

Figure 6.9: Summary results of Table 6.3 for the city image. 

 

 

As a conclusion, we can say that the use of ZIP instead of JPEG-LS does not lead to 

better results when we combine them with the baseline JPEG lossy compressor. 

 

 

6.2.2.3   Use of JPEG 2000 and JPEG-LS 

 

Now we present the JPEG 2000 / JPEG-LS summary results for our images in Table 6.4 

followed by three illustrations shown in Figures 6.10 to 6.12. Again, we include the five 

proposed measures listed in Section 6.2.2.1. 

In Figures 6.10 to 6.12, we illustrate the relationships contained in Table 6.4 in an 

easily comprehensible format.  

We can observe that the critical intensity for strip detection is lowest for the sea 

image; we obtain a success rate of 65.63% by using the method based on CV, 65.6% with 

CEM(X,Y), 79.7% with CEM(X,E), 76.6% with CEM(E,Y), and 71.9% of success using the 

method based on KSF analysis for k = 9, where k is the intensity of the strips. On the other 

hand, we need a k ≥ 50 and k ≥ 30 for a detection within the forest and city images; we 

obtain 65.6% of success using CV, 68.8% using CEM(X,Y), 59.4% using CEM(X,E), 67.2% 

with CEM(E,Y), and 90.6% of success using KSF for the forest image; for the city image we 

get 70.3% of success using CV, 54.7% using CEM(X,Y), 62.5% using CEM(X,E), 56.3% 

with CEM(E,Y), and 76.6% of success using KSF. 

  For aliasing detection within the sea and forest images the success rate is low; for 

the sea image we obtain 67.2% of success using CV, 67.2% using CEM(X,Y), 67.2% using 

CEM(X,E), 67.2% with CEM(E,Y), and 57.8% of success using the KSF approach; the forest 

image leads to 64.1% of success using CV, 67.2% using CEM(X,Y), 68.8% using CEM(X,E), 

71.9% with CEM(E,Y), and 68.8% of success using the KSF approach. The best detection of 

aliasing occurs in the city image because its bandwidth is wider. We get a success rate of 

51.6% by using CV, 51.6% using CEM(X,Y), 93.8% using CEM(X,E), 92.2% with 

CEM(E,Y), and 85.9% of success using the KSF approach. 
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SEA (mean value 19 DN) 

Kind of Artifact  Artifact Detection Method 

CV CEM(X,Y) CEM(X,E) CEM(E,Y) KFS 

Strips k = 1  57.8 % 56.3 % 71.9 % 70.3 % 71.9 % 

k = 3  62.5 % 62.5 % 76.6 % 71.9 % 71.9 % 

k = 6  64.1 % 64.1 % 76.6 % 75 % 71.9 % 

k = 9  65.6 % 65.6 % 79.7 % 76.6 % 71.9 % 

k = 10  64.6 % 65.6 % 76.6 % 75 % 71.9 % 

Aliasing ds = 5  67.2 % 67.2 % 67.2 % 67.2 % 57.8 % 

ds = 9  71.9 % 71.9 % 70.3 % 71.9 % 53.1 % 

 

FOREST (mean value 39 DN) 

Kind of Artifact  Artifact Detection Method 

CV CEM(X,Y) CEM(X,E) CEM(E,Y) KFS 

Strips k = 2  73.4 % 68.8 % 71.9 % 68.8 % 60.9 % 

k = 6  73.4 % 68.8 % 67.2 % 67.2 % 60.9 % 

k = 10  73.4 % 68.8 % 57.8 % 67.2 % 62.5 % 

k = 50  65.6 % 68.8 % 59.4 % 67.2 % 90.6 % 

Aliasing ds = 5  64.1 % 67.2 % 68.8 % 71.9 % 68.8 % 

ds = 7  68.8 % 68.8 % 65.6 % 68.8 % 75 % 

 

CITY (mean value 64 DN) 

Kind of Artifact  Artifact Detection Method 

CV CEM(X,Y) CEM(X,E) CEM(E,Y) KFS 

Strips k = 1  53.1 % 50 % 51.6 % 51.6 % 73.4 % 

k = 10  50 % 51.6 % 54.7 % 54.7 % 75 % 

k = 30  70.3 % 54.7 % 62.5 % 56.3 % 76.6 % 

Aliasing ds = 3  51.6 % 51.6 % 93.8 % 92.2 % 85.9 % 

ds = 5  57.8 % 57.8 % 65.6 % 62.5 % 79.7 % 

ds = 7  57.8 % 57.8 % 65.6 % 60.9 % 65.6 % 

 

Table 6.4: Results for artifact detection using a JPEG 2000 lossy compressor with 

compression rates from 0.001 to 13 and a JPEG-LS lossless compressor. 

 

 

 

SEA 

 
 

Figure 6.10: Summary results of Table 6.4 for the sea image. 
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FOREST 

 
 

Figure 6.11: Summary results of Table 6.4 for the forest image. 

 

 

CITY 

 

 

Figure 6.12: Summary results of Table 6.4 for the city image. 

 

 

In summary, one can see that the combination of JPEG 2000 and JPEG-LS will lead 

to a few good results; however, the majority of results are of mid-level quality. The reason 

for this behavior can be explained as follows. On the one hand, JPEG 2000 is a very 

powerful compression method; on the other hand, it is not optimized for distinct error 

mapping (and thus artifact detection). 

 

 

6.2.2.4   Use of JPEG 2000 and ZIP 

 

Finally, we present the JPEG 2000 / ZIP summary results for our images in Table 6.5 

followed by three illustrations shown in Figures 6.13 to 6.15. Again, we include the five 

proposed measures listed in Section 6.2.2.1. 

In Figures 6.13 to 6.15, we illustrate the relationships contained in Table 6.5 in an 

easily comprehensible format.  
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 We can observe that the critical intensity for strip detection is lowest for the sea 

image; we obtain 57.8% of success using the method based on CV, 71.9% with CEM(X,Y), 

71.9% with CEM(X,E), 71.9% with CEM(E,Y), and 71.9% of success using the method 

based on KSF analysis for k = 9, where k is the intensity of the strips. On the other hand, we 

need a k ≥ 50 and k ≥ 30 for a detection in the forest and city images; for the forest image, we 

obtain 73.4% of success using CV, 73.4% using CEM(X,Y), 70.3% using CEM(X,E), 73.4% 

with CEM(E,Y), and 90.6% of success using KSF; for the city image, we get  62.5% of 

success using CV, 53.1% using CEM(X,Y), 54.7% using CEM(X,E), 51.6% with CEM(E,Y), 

and 76.6% of success using KSF. 

  For aliasing detection within the sea and forest images the success rate is low; for 

the sea image, we obtain 65.6% of success using CV, 65.6% using CEM(X,Y), 67.2% using 

CEM(X,E), 65.6% with CEM(E,Y), and 57.8% of success using the KSF approach; for the 

forest image, we get 50% of success using CV, 60.9% using CEM(X,Y), 53.1% using 

CEM(X,E), 59.4% with CEM(E,Y) and 68.8% of success using the KSF approach. The best 

detection of aliasing occurs in the city because the image bandwidth is wider. Here, we 

obtain a success rate of 50% by using CV, 93.8% using CEM(X,Y), 71.9% using CEM(X,E), 

92.2% with CEM(E,Y), and 85.9% of success using the KSF approach. 

 

 
SEA (mean value 19 DN) 

Kind of Artifact  Artifact Detection Method 

CV CEM(X,Y) CEM(X,E) CEM(E,Y) KFS 

Strips k = 1  56.3 % 71.9 % 71.9 % 71.9 % 71.9 % 

k = 3  56.3 % 71.9 % 71.9 % 71.9 % 71.9 % 

k = 6  56.3 % 71.9 % 71.9 % 71.9 % 71.9 % 

k = 9  57.8 % 71.9 % 71.9 % 71.9 % 71.9 % 

k = 10  57.8 % 71.9 % 71.9 % 71.9 % 71.9 % 

Aliasing ds = 5  65.6 % 65.6 % 67.2 % 65.6 % 57.8 % 

ds = 9  70.3 % 70.3 % 71.9 % 70.3 % 53.1 % 

 

FOREST (mean value 39 DN) 

Kind of Artifact  Artifact Detection Method 

CV CEM(X,Y) CEM(X,E) CEM(E,Y) KFS 

Strips k = 2  73.4 % 68.8 % 70.3 % 73.4 % 60.9 % 

k = 6  73.4 % 70.3 % 70.3 % 73.4 % 60.9 % 

k = 10  73.4 % 68.8 % 70.3 % 73.4 % 62.5 % 

k = 50  73.4 % 73.4 % 70.3 % 73.4 % 90.6 % 

Aliasing ds = 5  50 % 60.9 % 53,1 % 59.4 % 68.8 % 

ds = 7  68.8 % 68.8 % 68.8 % 68.8 % 75 % 

 

CITY (mean value 64 DN) 

Kind of Artifact  Artifact Detection Method 

CV CEM(X,Y) CEM(X,E) CEM(E,Y) KFS 

Strips k = 1  59.4 % 59.4 % 56.3 % 53.1 % 73.4 % 

k = 10  51.6 % 53.1 % 56.3 % 51.6 % 75 % 

k = 30  62.5 % 53.1 % 54.7 % 51.6 % 76.6 % 

Aliasing ds = 3  50 % 93.8 % 71.9 % 92.2 % 85.9 % 

ds = 5  51.6 % 59.4 % 75 % 65.6 % 79.7 % 

ds = 7  62.5 % 68.8 % 67.2 % 65.6 % 65.6 % 

 

Table 6.5: Result for artifact detection using a JPEG 2000 lossy compressor and a ZIP 

lossless compressor. 
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SEA 

 
 

Figure 6.13: Summary results of Table 6.5 for the sea image. 

 

 

FOREST 

 
 

Figure 6.14: Summary results of Table 6.5 for the forest image. 

 

 

CITY 

 

Figure 6.15: Summary results of Table 6.5 for the city image. 
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When we try to summarize the use of JPEG 2000 and ZIP, we again face a few good 

results and a majority of mid-performance results. See Section 6.2.3.3 for further 

explanations.  

 

 

6.2.3   Results of Existing Methods Based on Quality Metrics 

 

In contrast, for the method based on image quality metrics described in Chapter 5, Section 

5.4, the obtained results are shown in Table 6.6. As always, the results are expressed as their 

percentage of success. 

 
SEA (mean value: 19 DN) 

Kind of Artifact  Artifact Detection Using 

Image Quality Metrics 

Strips k = 1  23.4 % 

k = 3  23.4 % 

k = 6  23.4 % 

k = 9  23.4 % 

k = 10  23.4 % 

Aliasing ds = 5  51.6 % 

ds = 9  46.9 % 

 

FOREST (mean value: 39 DN) 

Kind of Artifact  Artifact Detection Using 

Image Quality Metrics 

Strips k = 2  65 % 

k = 6  65 % 

k = 10  65 % 

k = 50  73.4 % 

Aliasing ds = 5  51.6 % 

ds = 7  32.8 % 

 

CITY (mean value: 64 DN) 

Kind of Artifact  Artifact Detection Using 

Image Quality Metrics 

Strips k = 1  57.8 % 

k = 10  54.7 % 

k = 30  50 % 

Aliasing ds = 3  78.1 % 

ds = 5  65.6 % 

ds = 7  56.3 % 

 

Table 6.6: Results for artifact detection with synthetic artifacts using image quality metrics. 

  

 

We can recognize that for strip detection is not possible to detect any artifact within 

the sea image. For the forest image, we obtain 73.4% of success for k = 50, while for the city 

image, we get a 57.8% success rate for k = 1.  

  For aliasing detection, it is also not possible to detect any artifact within the sea 

image. However, we obtain 51.6% of success for the forest image and 78.1% of success for 

the city image. 
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6.3 Conclusions for Artifact Detection 
 

In this section, we will provide an overview about the performance of the various artifact 

detection methods, while an overall summary of the entire thesis will be presented in Chapter 

7. 

When we take the approaches presented in Chapter 5, Sections 5.1, Section 5.2, and 

Section 5.4 we realize that strips have a good chance to be detected in a sea environment 

with an intensity of k ≥ 10; however, in the forest and the city environment we need k ≥ 30. 

In contrast, aliasing can be detected in a city environment, but not for a sea or a forest image, 

because the city’s bandwidth is wider than that of sea and forest.  

An analysis of the approach presented in Section 5.3 shows that acceptable results 

are obtained for the sea environment with strips of k = 10 with the complexity variation 

method (CV). For the forest environment we got acceptable results when we have strips of k 

≥ 50 with the Kolmogorov structure function (KSF). In the city environment for aliasing with 

ds = 3 and ds = 5, we obtained acceptable results using the KFS method. When comparing 

baseline JPEG to JPEG 2000, we obtained better artifact detection results analyzing the 

errors produced by the baseline JPEG method because the baseline method produces larger 

structural errors when depicting artifacts than JPEG 2000. 

This can also serve as a more general explanation to the effects seen in Section 

6.2.2.1. Here we face the situation of mixed quality results that have not yet been explained. 

We assume that the SNCD is no ideal tool for image quality assessment. This will be 

explained further in Section 6.4. 

 

In Figures 6.16 to 6.18, we present three summary results, demonstrating the 

performance of the different methods. 

 

 

SEA 

    
 

Figure 6.16: Summary results for the sea images using the different approaches proposed in 

Chapter 5. 
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FOREST 

   
 

Figure 6.17: Summary results for the forest images using the different approaches proposed 

in Chapter 5. 

 

 

 

CITY 

   
 

Figure 6.18: Summary results for the city images using the different approaches proposed in 

Chapter 5. 

 

 

In these summary results, we can recognize that, in most cases, the RD analysis 

approach produces better results than the other approaches. The main reason for this effect 

seems to be an inadequate description of complexities for NCD-based tools when we 

compare images with and without artifacts. 

  

Finally, we have developed a tool for artifact detection using the previously 

explained methods; its interface is shown in Figure 6.19. This interface supports the 

calculation of NCD and also the use of the Rate-Distortion function; we can also to vary the 

size of the image patches.  
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Figure 6.19: Tool for artifact detection: via this interface we can select the calculation of 

NCD, or use Rate-Distortion; one can also vary the image patch size. 

 

 

Using this interface we can evaluate the performance the different methods in a 

straightforward manner; it can also be used for educational purposes, and as a testing tool. 

 

 

6.4 The SNCD as a Metric for Image Quality Assessment 
 

In this section, we propose the SNCD as a metric for the measurement of image quality, 

especially when we analyze residual errors. Here we do not consider the detection of artifacts 

but we concentrate on the quality of full images where we show the performance of this 

metric comparing it with other metrics that we can found in the literature as in (Sheikh et al. 

2006a; Wang & Li 2010; Sheikh & Bovik 2006b). 

 

 

6.4.1   Database Description 

 

In order to perform experiments with the SNCD metric and to make appropriate 

comparisons, we use a database that has already been used by other researchers and is 

available on the Internet. The database that we use is the Cornell-A57 collection (Simoneclli 

& Adelson 1989), consisting of three original images (baby, harbor, and horse) as shown in 

Figure 6.20 and which also includes distorted images. For each original image, we have six 

types of distortion: 
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- blurring by a Gaussian filter (BLR) 

- blurring by a Gaussian filter (BLR) 

- JPEG 2000 compression with the dynamic contrast-based quantization 

algorithm (DCQ) 

- quantization of the LH (L = Low and H = High) sub-bands of a 5-level 

discrete wavelet transform, where the sub-bands were quantized via uniform 

scalar quantization (FLT) 

- JPEG 2000 compression without visual frequency weighting (JP2) 

- baseline JPEG compression (JPG) 

- additive white Gaussian noise (NOZ) 

 

For each type of distortion, we have 3 intensities; thus we have a database of 54 

images (3 images × 6 distortion types × 3 distortion parameters) plus three original 

(undistorted) images. 

 

 

 
Figure 6.20: Original images of the Cornell-A57 database. 

 

 

Each image has a size of 512×512 pixels; we can see that the baby picture and the 

horse picture contain a predominant object that we will use to analyze the behavior of our 

selected compression methods together with the existing metrics. 

 

 

6.4.2   Metrics for Image Quality Assessment 

 

To assess the quality of images as already defined in Section 3.1, we have three approaches: 

the "full reference" approach, the "non-reference" approach, and finally, the "reduced 

reference" approach. 

For comparison, in the present work, from the many existing metrics in the literature 

with a full reference approach (where we compare image pairs), we use the PSNR and SSIM 

metrics that are also used and evaluated in (Sheikh et al. 2006a; Wang & Li 2010). 

 

The PSNR (Peak Signal-to-Noise Ratio) is given by (see Section 3.1): 
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where MSE is the Mean Squared Error and L is the maximum dynamic range; for gray-scale 

images with 8 bits/pixel L = 255. 

 

Another metrics is the SSIM (Structural Similarity Index, see Section 3.1) that has 

three independent components: luminance, contrast, and structure. The SSIM is given by: 
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(6.2) 

 

(6.3) 

 

 

(6.4) 

 

 

(6.5) 

 

where µx , σx and σxy represent the global mean, the standard deviation, and the cross-

correlation of images x and y. C1, C2 and C3 are selectable constants. 

 

 

6.4.3   Comparison of Metrics 

 

In order to compare the PSNR, SSIM, and the SNCD, we use three correlation coefficients. 

These correlation coefficients are calculated from the results obtained by a subjective 

evaluation of images of the database and the results obtained by the three metrics (when 

applying them in comparisons between the original images and their distorted versions). This 

subjective assessment was performed by a group of experts who evaluated the quality of 

each image in the database. 

The correlation measures we will use are : 

 

- The Pearson correlation coefficient (PCC) is an index that measures the linear 

relationship between two quantitative random variables. Unlike the covariance, 

Pearson correlation is independent of the scale of the measured variables. To 

calculate the PCC, we use the following MATLAB instruction: corr(MOS, RG, 

'type', 'Pearson'), where MOS is the result for the subjective evaluation, and RG is 

the result using the image quality metrics. 

 

- The Spearman correlation coefficient (SCC) is a measure of correlation (association 

or interdependence) between two continuous random variables. To calculate it, the 

data is sorted and replaced by their ordered indices. We used the following 

MATLAB instruction: corr(MOS, RG, 'type', 'Spearman'), where MOS is the result 

for the subjective evaluation, and RG is the result using the image quality metrics. 

 

- The Kendall correlation coefficient (KCC) is another non-parametric correlation 

measure. To calculate the KCC, we used the following MATLAB: corr(MOS, RG, 

'type', 'Kendall'), where MOS is the result for the subjective evaluation, and RG is 

the result using the image quality metrics. 
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We used all three of these correlations as they are most often similar, but differ on a 

few occasions. 

 

 

6.4.4   Analysis of Results 

 

In a first sequence of tests, we calculated the RG quality measures of the images of the entire 

database, and compared them with the MOS subjective evaluation using the correlation 

coefficients explained above. The MOS subjective evaluation was obtained from seven 

imaging experts by using a continuous rating system; greater values represent a greater 

distortion.  

The final correlation coefficient results are shown in Table 6.7. 

 

CORRELATION COEFFICIENTS 

 PCC SCC KCC 

PSNR 0.6347 0.6189 0.4309 

SSIM 0.7528 0.8066 0.6058 

SNCD XY JPEG-LS 0.0967 0.1501 0.1287 

SNCD XE JPEG-LS 0.2943 0.1860 0.1217 

SNCD EY JPEG-LS 0.1245 0.1273 0.1063 

SNCD XY ZIP 0.0929 0.0448 0.0518 

SNCD XE ZIP 0.295 0.0278 0.0154 

SNCD EY ZIP 0.0196 0.0789 0.0686 

 

Table 6.7: Correlation results between MOS and RG values of the different metrics to 

evaluate image quality using the entire database.  

 

 

 
 

Figure 6.21: Summary results of Table 6.7. 

 

 

We can see that the best results are obtained by the classical metrics; we obtain a 

Pearson correlation of 0.7528 using SSIM metrics, a Spearman correlation of 0.8066, and a 

Kendall correlation of 0.6058. The values obtained by the SNCD are really very low, 

indicating that it is not a good representation of the subjective assessment of quality; we 

obtained for the SNCD between the X image and the E map the following values: a Pearson 
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correlation of 0.2943, a Spearman correlation of 0.1860, and a Kendall correlation of 0.1287 

using a JPEG-LS compressor. 

 

A second experiment we conducted was to sub-divide the database for each given 

parent image since, as mentioned above, the database contains two parent images with a 

predominant structure, and another parent image that does not have a predominant structure; 

then we could see how they behave with respect to the metrics. The results are shown in 

Tables 6.8 to 6.10 and in graphical representation in Figures 6.22 to 6.24. 

 

CORRELATION COEFFICIENTS FOR “BABY” 

 PCC SCC KCC 

PSNR 0.7786 0.6925 0.5686 

SSIM 0.7559 0.7152 0.5556 

SNCD XY JPEG 0.1983 0.3024 0.1895 

SNCD XE JPEG 0.3102 0.2239 0.1111 

SNCD EY JPEG 0.1503 0.5501 0.4510 

SNCD XY ZIP 0.4109 0.4613 0.3595 

SNCD XE ZIP 0.0975 0.0072 0.0458 

SNCD EY ZIP 0.2105 0.3664 0.2680 

 

Table 6.8: Correlation results between MOS and RG values of the different metrics to 

evaluate image quality using the 18 degraded baby images.  

 

 

CORRELATION COEFFICIENTS FOR “HARBOUR” 

 PCC SCC KCC 

PSNR 0.6137 0.7438 0.5461 

SSIM 0.7375 0.8182 0.6382 

SNCD XY JPEG 0.2312 0.0723 0.0066 

SNCD XE JPEG 0.3629 0.2965 0.1645 

SNCD EY JPEG 0.4642 0.1560 0.0724 

SNCD XY ZIP 0.2773 0.0465 0.1118 

SNCD XE ZIP 0.1945 0.0031 0.0461 

SNCD EY ZIP 0.3626 0.1829 0.0855 

 

Table 6.9: Correlation results between MOS and RG values of the different metrics to 

evaluate image quality using the 18 degraded harbour images. 

 

 

CORRELATION COEFFICIENTS FOR “HORSE” 

 PCC SCC KCC 

PSNR 0.7968 0.6863 0.4771 

SSIM 0.7779 0.7936 0.5948 

SNCD XY JPEG 0.3282 0.3230 0.2941 

SNCD XE JPEG 0.2917 0.0423 0.0196 

SNCD EY JPEG 0.0595 0.1538 0.0980 

SNCD XY ZIP 0.3099 0.1950 0.1373 

SNCD XE ZIP 0.0829 0.1373 0.1111 

SNCD EY ZIP 0.1605 0.1889 0.1111 

 

Table 6.10: Correlation results between MOS and RG values of the different metrics to 

evaluate image quality using the 18 degraded horse images. 
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CORRELATION COEFFICIENTS FOR “BABY” 

 
 

Figure 6.22: Summary results of Table 6.8. 

 

 

CORRELATION COEFFICIENTS FOR “HARBOUR” 

 
 

Figure 6.23: Summary results of Table 6.9. 

 

 

CORRELATION COEFFICIENTS FOR “HORSE” 

 
 

Figure 6.24: Summary results of Table 6.10. 
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When we sub-divide the database into smaller databases for each parent image, we 

see that the traditional metrics for image quality still show a better performance (see Figures 

6.22 to 6.24). For baby, our best correlation results are a Pearson correlation of 0.7786 when 

using PSNR, a Spearman correlation of 0.7152 using SSIM, and a Kendall correlation of 

0.5686 using PSNR. For the harbour image, we obtain as our best correlation results a 

Pearson correlation of 0.7375 when using SSIM, a Spearman correlation of 0.8182 using 

SSIM, and a Kendall correlation of 0.6382 using SSIM. Finally, for the horse image we 

obtain as best results a Pearson correlation of 0.7968 when using PSNR, a Spearman 

correlation of 0.7936 using SSIM, and a Kendall correlation of 0.5948 using SSIM.  

We also see that the performance of the SNCD has improved somewhat compared to 

our first full database experiment, although is still not comparable with the classical metrics. 

We obtain the following best SNCD results: for the baby image, we obtain a Pearson 

correlation of 0.4109 when using SNCD XY, a Spearman correlation of 0.5501 using SNCD 

EY, and a Kendall correlation of 0.4510 using SNCD EY. For the harbour image, we get a 

Pearson correlation of 0.4642 when using SNCD EY, a Spearman correlation of 0.2965 

using SNCD XE, and a Kendall correlation of 0.1645 using SNCD XE. Finally, for the horse 

image we obtain a Pearson correlation of 0.3282 when using SNCD XY, a Spearman 

correlation of 0.3230 using SNCD XY, and a Kendall correlation of 0.2941 using SNCD XY.  

We could expect that SNCD can improve the comparison performance for images 

with a predominant structure, but experience shows that it is not. 

 

Therefore, the third experiment to perform is to sub-divide the database according to 

the type of distortion. In this case, we have 6 types of distortion with 9 distorted images for 

each one. The results are shown in Tables 6.11 to 6.16 and in graphical representation in 

Figures 6.25 to 6.30. 

  

 

CORRELATION COEFF. FOR “BLR” DISTORTION 

 PCC SCC KCC 

PSNR 0.5904 0.4667 0.3889 

SSIM 0.9421 0.8000 0.6667 

SNCD XY JPEG-LS 0.8243 0.5167 0.3889 

SNCD XE JPEG-LS 0.7199 0.5000 0.3889 

SNCD EY JPEG-LS 0.5738 0.3833 0.2778 

SNCD XY ZIP 0.3872 0.2833 0.2778 

SNCD XE ZIP 0.5924 0.4333 0.2778 

SNCD EY ZIP 0.6477 0.5333 0.4444 

 

Table 6.11: Correlation results between MOS and RG values of the different metrics to 

evaluate image quality using the blurring distorted 9 images. 
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CORRELATION COEFF. FOR “DCQ” DISTORTION 

 PCC SCC KCC 

PSNR 0.5637 0.5000 0.3889 

SSIM 0.9369 0.9667 0.8889 

SNCD XY JPEG-LS 0.9472 0.8833 0.7778 

SNCD XE JPEG-LS 0.4522 0.3833 0.2222 

SNCD EY JPEG-LS 0.9115 0.8500 0.7222 

SNCD XY ZIP 0.5940 0.7333 0.5556 

SNCD XE ZIP 0.2456 0.2333 0.1667 

SNCD EY ZIP 0.9051 0.9667 0.8889 

 

Table 6.12: Correlation results between MOS and RG values of the different metrics to 

evaluate image quality using the JPEG 2000 + DCQ distorted 9 images. 

 

 

 

CORRELATION COEFF. FOR “FLT” DISTORTION 

 PCC SCC KCC 

PSNR 0.9100 0.9000 0.7222 

SSIM 0.8982 0.8500 0.6667 

SNCD XY JPEG-LS 0.4327 0.3333 0.2222 

SNCD XE JPEG-LS 0.9533 0.9167 0.7778 

SNCD EY JPEG-LS 0.9432 0.9000 0.8333 

SNCD XY ZIP 0.4342 0.2667 0.1667 

SNCD XE ZIP 0.9519 0.9500 0.8333 

SNCD EY ZIP 0.9803 0.9667 0.8889 

 

Table 6.13: Correlation results between MOS and RG values of the different metrics to 

evaluate image quality using the FLT allocation distorted 9 images. 

 

 

CORRELATION COEFF. FOR “JP2” DISTORTION 

 PCC SCC KCC 

PSNR 0.7957 0.8000 0.6667 

SSIM 0.8641 0.8167 0.6667 

SNCD XY JPEG-LS 0.6422 0.6833 0.5000 

SNCD XE JPEG-LS 0.7495 0.7000 0.5000 

SNCD EY JPEG-LS 0.7470 0.7000 0.5556 

SNCD XY ZIP 0.1047 0.1500 0.1667 

SNCD XE ZIP 0.6645 0.6333 0.5000 

SNCD EY ZIP 0.6742 0.7167 0.5556 

 

Table 6.14: Correlation results between MOS and RG values of the different metrics to 

evaluate image quality using the JPEG 2000 Compression distorted 9 images. 
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CORRELATION COEFF. FOR “JPG” DISTORTION 

 PCC SCC KCC 

PSNR 0.7008 0.6333 0.5000 

SSIM 0.9178 0.9333 0.7778 

SNCD XY JPEG-LS 0.6659 0.7167 0.6111 

SNCD XE JPEG-LS 0.1015 0.4167 0.1667 

SNCD EY JPEG-LS 0.6852 0.7333 0.5556 

SNCD XY ZIP 0.7225 0.7833 0.6111 

SNCD XE ZIP 0.0300 0.0667 0.0556 

SNCD EY ZIP 0.0163 0.0833 0.1111 

 

Table 6.15: Correlation results between MOS and RG values of the different metrics to 

evaluate image quality using the baseline JPEG Compression distorted 9 images. 

 

 

CORRELATION COEFF. FOR “NOZ” DISTORTION 

 PCC SCC KCC 

PSNR 0.9340 0.9500 0.8333 

SSIM 0.8834 0.9500 0.8333 

SNCD XY JPEG-LS 0.3986 0.2500 0.2222 

SNCD XE JPEG-LS 0.3254 0.2833 0.2222 

SNCD EY JPEG-LS 0.4414 0.5000 0.3889 

SNCD XY ZIP 0.5715 0.3333 0.3333 

SNCD XE ZIP 0.8552 0.8333 0.7222 

SNCD EY ZIP 0.9194 0.9167 0.8333 

 

Table 6.16: Correlation results between MOS and RG values of the different metrics to 

evaluate image quality using the Gaussian Noise distorted 9 images. 

 

 

CORRELATION COEFFICIENTS FOR “BLR” DISTORTION 

 
 

Figure 6.25: Summary results of Table 6.11. 
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CORRELATION COEFFICIENTS FOR “DCQ” DISTORTION 

 
 

Figure 6.26: Summary results of Table 6.12. 

 

 

CORRELATION COEFFICIENTS FOR “FLT” DISTORTION 

 
 

Figure 6.27: Summary results of Table 6.13. 

 

 

CORRELATION COEFFICIENTS FOR “JP2” DISTORTION 

 
 

Figure 6.28: Summary results of Table 6.14. 
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CORRELATION COEFFICIENTS FOR “JPG” DISTORTION 

 
 

Figure 6.29: Summary results of Table 6.15. 

 

 

CORRELATION COEFFICIENTS FOR “NOZ” DISTORTION 

 
 

Figure 6.30: Summary results of Table 6.16. 

 

 

The results of this third experiment grouped by the type of distortion are very 

interesting. We have encouraging results for the SNCD. The performance of the SNCD has 

improved considerably in all cases. It outperforms the traditional metrics SSIM and PSNR for 

the DCQ case and for the FLT case; however, for the remaining distortion cases, the obtained 

values are quite comparable to the classical metrics (see Figures 6.25 to 6.30).  

In addition, for all distortions cases based on compression, the performance of SNCD 

is inferior as this method is based on data compression, and therefore, cannot identify the 

compression distortions, but still shows very comparable values. 

 

In the third experiment where we sub-divided the database by type of distortion we have 

good results for SNCD. Why we do not have the same results when we work with the 

database sub-divided per parent image, or when working with the entire database? A reason 

may be that the SNCD method properly evaluates the distortion or quality of the images, but 

does not consider the magnitude of the type of distortion for the entire database. This means 
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that for the subjective assessment, some kind of distortion is more influential than another. In 

contrast, during SNCD computation, the sequence of distortion types can be rearranged; 

however, the SNCD determines with good approximation the intensity of the type of 

distortion. This holds for all results shown in the different tables. 

 

We ran a fourth experiment to generate and analyze distorted images with the same 

or about the same mean squared error MSE. For this experiment, we take the original images 

of Figure 6.20 and create distorted images. We calculate the measure of quality of the images 

of the new database (9 distorted images for the three original images shown in Figure 6.20; 

the distortions for each original image are: baseline JPEG compression, JPEG 2000 

compression and Added Noise; all distortions have about the same MSE values between 3200 

and 3400 and PSNR values between 22 and 24; these distorted images are shown in Figure 

6.31) and compared them using the correlation coefficients explained above. The results are 

shown in Table 6.17 and in Figure 6.32. 

  

 

 

  

 
 

Figure 6.31: Distorted images of the Cornell-A57 database with nearly the same MSE and 

PSNR. 
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CORRELATION RESULTS OF THE 4th EXPERIMENT  

 PCC SCC KCC 

PSNR 0.7722 0.9160 0.8003 

SSIM 0.0576 0.0672 0.0572 

SNCD XY JPEG-LS 0.2219 0.1092 0.1143 

SNCD XE JPEG-LS 0.7333 0.6555 0.5145 

SNCD EY JPEG-LS 0.0536 0.4034 0.1715 

SNCD XY ZIP 0.5946 0.6471 0.5145 

SNCD XE ZIP 0.7496 0.7311 0.5717 

SNCD EY ZIP 0.0345 0.2185 0.1143 

 

Table 6.17: Correlation results between MOS and RG values of the different metrics to 

evaluate the 9 distorted images of Figure 6.31. 

 

 

 
 

Figure 6.32: Summary results of Table 6.17. 

 

 

 

In order to evaluate this fourth experiment we need a subjective assessment; this 

subjective assessment was obtained from six imaging experts. The subjective evaluation 

leads to values between zero and one. Values closer to one are for highly distorted images, 

values closer to zero are for images with low distortion. We can see that PSNR yields the 

best results; we obtain a Pearson correlation of 0.7722, a Spearman correlation of 0.9160, 

and a Kendall correlation of 0.8003. The results obtained for the SNCD are not so good but 

better than those obtained for the complete database of 54 images; for SNCD XY we obtain a 

Pearson correlation of 0.5946, a Spearman correlation of 0.6471, and a Kendall correlation 

of 0.5145. Although we can imagine that PSNR would not work properly because all images 

have about the same PSNR, the small variations in the PSNR values are sufficient to reflect 

the subjective evaluation of images; that is why we obtain a better result using the PSNR 

metric (see Figure 6.32). 
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Chapter 7 

 

Conclusions and Discussion 

 
7.1   Conclusions 

 

In this thesis, we proposed new methodologies and approaches for artifact analysis and 

artifact detection in optical satellite images. We also proposed approaches based on 

Kolmogorov complexity and information theory to better understand the behavior of artifacts 

and their influence on the classification and indexing process. 

 

After making a study of the acquisition chain of a satellite image and the different 

processes through which an image passes, we have identified potential sources of artifact 

generation. By analyzing the satellite image quality and considering its importance for a 

good classification or indexing process, we could see that artifacts have a negative influence 

on them. Artifacts mainly affect the statistical parameters of an image so we established a 

relationship between information theory, Kolmogorov complexity, and the different methods 

for message insertion in multimedia data such as watermarking, steganography, and image 

fakery since they create effects similar to the presence of artifacts in satellite images. Based 

on these findings, we developed three new approaches for artifact analysis and detection; the 

first approach uses an experimentally derived RD curve to study error maps; the second 

approach uses the NCD to study similarities; our third approach uses different distortion 

measures to obtain new experimental curves to analyze error maps. The new experimental 

curves are similar to RD curves; for instance, we developed the CEM curve, where we used 

the SNCD as a measure of similarity.  

 

We applied the methods to two databases, one for images with synthetic artifacts, 

and another one with actual instrumental artifacts. The former is based on images of three 

land cover categories (city, forest, and sea) and contains striping and aliasing artifacts. The 

latter contains images of the MERIS, IKONOS, SPOT and ROSIS instruments with a variety 

of artifacts. In order to handle all data efficiently in conjunction with all artifact detection 

methods, we also developed a toolbox supporting all methods. 

 

For artifact detection, the methods that we propose yield better results than an 

already existing method which uses well-known image quality metrics. When we compare 

rate-distortion (RD) analysis with normalized compression distance (NCD), rate-distortion 

analysis provides better results. The detection of artifacts depends on the environment we are 
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working in.  In sea images it is easier to detect strip artifacts but not aliasing artifacts, while 

in the city and the forest images it is easier to detect aliasing. 

 

The results with hyperspectral images that have a high radiometric resolution are not 

good when striping artifacts are contained in the less significant bits and cannot be detected. 

To improve this result, we converted images into bit planes and reformatted them using 

horizontal or vertical scanning; acceptable results for hyperspectral images are found with 

vertical (column-wise) scanning when the striping artifacts have the same orientation. 

 

The approximation of the Rate-Distortion curve based on the Kolmogorov 

complexity, using the Symmetric Normalized Compression Distance SNCD, is a good 

approximation and, together with the residuals or error map analysis gives us the ability to 

analyze the behavior of the compressor with different compression parameters. The results 

help us to discriminate between different types of images as each group has a different 

behavior when calculating the SNCD. 

 

When we look at SNCD for image quality assessment, our initial expectations are not 

fulfilled: the traditional image quality assessment metrics show a better performance than 

our SNCD method. The reason for this is that the good classification performance of SNCD 

cannot be exploited by details created by typical distortions.   

 

When we analyze the performance of the SNCD and NCD by comparing an original 

image with a degraded version of this image, the obtained values for SNCD and NCD are 

almost identical. For other applications where different images are compared, the variation 

between the value of the SNCD and NCD can be significant. The SNCD as a metric for 

assessing image quality is limited to a single type of distortion with different levels of 

intensity.  

 

 

7.2   Discussion 

 

The selection of the compressor to be used for approximating the Kolmogorov Complexity 

needs some additional discussion. In principle, it could be any compressor, supposing that a 

better compressor gives a better approximation to Kolmogorov Complexity; however, it 

would be better to use a compressor being adapted to the type of data to be analyzed.  Then 

we can fully exploit the type of redundancy that can occur in the data. If we use a ZIP 

compressor, we exploit the sequential redundancy in a string, while a JPEG compressor can 

exploit the two-dimensional spatial redundancy in an image. Data in general may have 

different types of redundancy. Ideally, one could exploit all kinds of redundancy and get a 

more reliable approximation to the Kolmogorov Complexity. In Figure 7.1, we see an 

illustration of this idea where the data contain several types of redundancy R1, R2, R3, … 

and the remaining part would be random data A. In reality, however, we are more or less 

limited to the use of an existing established method. 
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Figure 7.1: Redundancy in the data. 

 

 

Another important aspect to be discussed is the calculation of the C(x,y) function for 

SNCD or NCD where one uses a concatenation of the data x and y. As we have a number of 

options how to concatenate x and y (e.g., along lines or columns, or by interspersing data), 

the concatenation process should be related to the type of redundancy to be exploited. If we 

use a ZIP compressor, a sequential concatenation by would be most appropriate; however, if 

we use a JPEG compressor that exploits spatial two-dimensional redundancy, a sequential 

concatenation is no longer suitable, and we have to find a more appropriate process for the 

calculation of C(x, y). This can be done by the following equation that introduces a neutral 

element. 

  

 
 ),(),,(max2

),(),,(min2),(),(
),(





yCxC

yCxCxyCyxC
yxSNCD




  (7.1) 

 

where: ф is a neutral element. 

 

The neutral element for the concatenation process would be an empty string; but if 

we extract a dictionary from data y to compress data x in order to calculate C(x,y), the neutral 

element would be x or y, leaving the expression as follows: 

 

 
 ),(),,(max2

),(),,(min2),(),(
),(

yyCxxC

yyCxxCxyCyxC
yxSNCD




 . (7.2) 

 

The process explained above is presented in Figure 7.2. The C(x, y) function receives 

the data x and y. The first step is to extract a dictionary dy from data y. After that, we do the 

encoding of data x using the dictionary dy giving as a result a compressed version x’. Finally, 

we calculate the inverse compression ratio. We divide the size of the compressed version by 

the size of the original version (|x’| / |x|). 

A 
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Figure 7.2: Concatenation process. 

 

 

This topic, however, is still open for further research. 
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