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Preface

The information age has radically shifted every aspect of our lives, perhaps first and
foremost our scientific ones.

Before the information age, 99% of humanity’s interaction with technology was limited
to a car, airplane, telephone, or television. While technology had had a dramatic impact
on life— from medicine to cheap manufacturing— for the populace at large direct everyday
interaction with technology was rare.

Internet has changed all that. It has brought high technology into everyday lives, to the
point that it is unimaginable to do without. Science is no longer the exclusive domain of the
scientist. Now we enter into the age of the makers.

Makers don’t invent from whole cloth, they assemble. They take bits bits and pieces
gathered from the far-flung corners of the world and combine them to do something new,
something different. Oftentimes, something scientific.

——————————————

Who is a scientist? Historically, science was largely performed by the nobles and well-to-
do. In the 19th century the natural sciences— geology, astronomy, etc...— were regarded as
social activities. Discovering a new plant, or planet for that matter, was as much a way to
impress ones friends as it was to push back the frontiers of science.

It wasn’t until the early-to-mid 20th century that science become a career instead of a
hobby. WWI and especially WWII were times of tremendous scientific progress, pushed by
the various governments’ fervent desires to discover and invent the secret weapons that would
win the war. With the governments’ desire came funding, stability, and jobs.

Now in the early 21st Century, science is undergoing another transformation. Scientific
principles are no longer hidden in an ivory tower, papers are no longer locked behind closed
doors. Individuals are now able to quickly and efficiently access the scientific world. In a
way, science has gone full loop. In past times, only the rich had the time to indulge in idle
fantasies. Now, we are perhaps all rich enough for such explorations. Now, we are becoming
makers.

——————————————

Most hard science will still be done by professional scientists, just like most hard journal-
ism is done by professional journalists. But just as the journalistic world is supplemented by
the bloggers, so is the scientific world supplemented by the makers. We must not forget this
burgeoning world of the amateur scientist.

To this end, our scientific output must not be hidden. It must be obvious, available, and
accessible. In this spirit, this dissertation is an experiment, much the same that a PhD is an
experiment. This dissertation is designed such that the results and application are easy to
understand for those with a less-than-formal background.
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Introduction

Every age has its theme, and ours is energy. Our civilization is founded on the stuff. It
warms our houses, keeps the lights on, runs the computers, and is present in every single
aspect of our lives. It is no coincidence that, according to the Economist, three of the ten
largest companies in the world are energy companies, and eight of the largest ten are involved
either in transportation and/or energy.

Without energy, the author would not have written this paper, and the reader would not
be reading it.

It is impossible to overestimate the impact energy has had on our lives, and perhaps only
the most savage of cultures lost in the deepest jungles of the Amazon or the African heartland
can even truly relate to what it means to go without.

Civilization as we know it would disappear overnight if we were to lose our energy source.
Thus, it would seem wise to make every drop, so to speak, count. Unfortunately, progress
along this front has been difficult. Some would have us believe that we can drill our way
out of our problem. With the greatest respect[24], and in light of the ongoing Deep Horizons
catastrophe in the Gulf of Mexico, the author disagrees.

The case has been laid out and it is clear that there is a pressing need to reduce energy
waste and consumption.

——————————————

Everyone talks about saving gas, but do we actually know how to do it? Of course,
we can always say that “better technology” will find a solution, but that begs the question
“What exactly is better technology?” Do we need better technology in order to improve fuel
efficiency, or can we do that now, with the existing tools we have at hand?

We might learn something about the current state of technology vs. the current state of
applied controls by examining the Grand DARPA Challenge. The Grand DARPA Challenge
was a competition to build an autonomously driven vehicle that would race across the Mojave
Desert, on a 240km course driving at average speeds in excess of 35km/hr. The first year,
2004, the farthest any of the 21 teams’ vehicles went was a little less than 12km. Contrast
this to 2005, when the challenge was not only successfully met, it was completed by a total
of 5 out of 23 teams. Indeed, only one team failed to best the previous year’s record. While
technology evolves quickly, it does not evolve that quickly.

No, we have to look elsewhere for an explanation of the dramatic improvement in only
365 days.

We have to look to controls.

——————————————
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The field of modern optimal control is a relatively young field of mathematics. Fifty-
one years ago, Lev Semenovich Pontryagin published The Mathematical Theory of Optimal
Processes, founding the modern study of optimal control.

(Of course, like all mathematics, even if optimal control is a relatively recent branch of
mathematics, the roots go back much further, all the way to Bernoulli, who first mentioned
the Principle of Optimality in connection with the Brachistochrone Problem1, and Newton,
who solved it.)

Pontryagin inspired many of his contemporaries. Indeed, Rudolph Kalman used his work
to develop the Linear Quadratic Regulator in 1960, followed later on in the year by what is
now known as the discrete-discrete Kalman Filter and then in 1961 the continous-continuous
Kalman Filter.

Shortly before Pontryagin published his seminal paper, Bellman introduced the idea of
Dynamic Programming, a sort of brute force approach to optimal control of discrete-time
systems. Optimal control was found to express a fundamental property of motion in nat-
ural systems. Bellman demonstrated that the natural direction for solving optimal control
problems is backwards in time.

Since then, much fundamental research has been performed in the field of optimal control.
Clarke[16] and Sussmann[46] have relaxed and generalized its principles to overcome some of
the original limitations of the PMP. Today, the advent of high-power computers in low-power
packages is opening the door to optimizing processes that just a few years ago would have
been too costly or time consuming.

——————————————

According to Benjamin Dessus, roughly half of the installed power base in the West
is made up of cars and trucks. Obviously, there is a wealth of opportunities to use optimal
control to make reductions in emissions and fuel consumption. However, all optimality studies
depend on an engine efficiency model (or alternatively an engine specific fuel consumption
(SFC) model). In previous studies, these models were assumed to be available ahead of
time.[25, 51, 39]

Unfortunately, this is not the case in reality. Car manufacturers are notoriously tight-
lipped and guard their data jealously. Furthermore, engine data alone does not tell the whole
story, as it is ideal data from an ideal engine under ideal conditions. As any driver knows,
the manufacturer reported fuel economy is terribly imprecise in real-world situations.

For an optimality study, it is essential to know the true system efficiency, which cannot
be predicted from engine data alone. Many other car-specific factors come into play, such as
transmission losses, rolling resistance, air drag, etc... Even when these values can be found
in literature or from the manufacturer, they are oftentimes unreliable (e.g. coefficients of air
resistance) and have limited usefulness.

A better optimality approach would take into account the real-world parameters of the
individual vehicle in question. This approach should be able to adapt to changing circum-
stances, such as mass change when a passenger gets out of a car or an air resistance change

1Literally, “shortest time”. The Brachistochrone Problem was one of the earliest problems posed in the
calculus of variations. The problem was to “find the shape of the curve down which a bead sliding from rest
and accelerated by gravity will slip (without friction) from one point to another in the least time”. Newton
solved it in one day. The answer: a cycloid.
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when the driver puts down a convertible top. This approach also would even allow monitor-
ing motor efficiency with time, opening the door to early fault warning. (A tire low-pressure
warning comes to mind.)

——————————————

Can we improve fuel efficiency for every single car in the world, without modifying a single
one of them? Can we do this without imposing burdensome— and dangerous— driving styles
on the drivers? Can efficiency be improved without sacrificing air quality?

The author believes the answer is yes.

But first we have to develop some tools along the way.

********************

Dissertation overview

Goal: The goal of this PhD is to develop a system by which we can optimize fuel efficiency
in individual vehicles, based on data gathered from these same. We offer targeted, specific
controls trajectories for each individual car and individual trip.

• Chapter 1 is a survey of the state of the art in modeling and optimal control.

• Chapter 2 details current state of the art in sensoring and processing components in
addition to describing the sensor package and data logger developed during the research
project.

• Chapter 3 shows the application to the fuel efficiency mapping problem. A case study
is presented demonstrating the observer. There are also tips and techniques that are of
interest to those who would like to apply this work in a real-world environment.

• Chapter 4 illustrates the process for applying Pontryagin’s Maximum Principle to an
arbitrary vehicle. Several case studies are presented, demonstrating the controller.

• Appendix A is devoted to the subject of non-linear observers, with a special focus on
the continuous-discrete time domain and fusion of asynchronous data.

• Appendix B is devoted to the subject of optimal controllers, with a special focus on
Pontryagin’s Maximum Principle.

In addition to the ones cited above, additional appendices contain many of the tools that
had to be created and/or invented in order to turn the theory into practice. Specifically:
data protocols, schematics, a short description of the CAN bus and a working CAN logger,
a description of the data files, an example of using Google Earth to visualize data, Quad
coordinates, etc...

Lastly, there is a worked example of Pontryagin’s Maximum Principle, designed to be
especially useful for engineers and scientists who have not yet been exposed to optimal control.
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Notation conventions

Throughout this dissertation, the following notation conventions apply:

Description Example Meaning

Bold, lowercase letter x vector
Bold, upppercase letter A matrix
c, subscripted Ac continuous time
d, subscripted Ad discrete time

i, j, subscripted Ai,j ith, jth element

k, subscripted xk kth time step

T , superscripted AT matrix transpose
Hat, over letter x̂ estimated value (as opposed to real)
Star, superscripted u∗ optimal

Minus, superscripted P−k intermediate value between time k and time k + 1
Dot, superscripted ẋ time deivative

Table 1: Notation conventions

Variable conventions

Throughout this dissertation, the following variable conventions apply:

Variable Meaning

f system model vector valued function
h measurement model vector valued function
x state vector
y measurement vector
u control vector
A Jacobian of f with respect to x
B Jacobian of f with respect to u
H Jacobian of h with respect to x
J cost
K gain matrix
P state noise covariance
nx number of state variables
ny number of measurement variables
nu number of control variables
∆t time step
η engine efficiency
φ inverse of engine efficiency, i.e. 1/η

Table 2: Variable conventions
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Optimal control theory has only recently broken into the automotive industry. An im-
portant motivation for this progress is the increasing number of electronic sensors in modern
cars, opening the door to more and better controls, for instance in the automatic control of
the air-fuel mixture. Sophisticated control methods are currently used in a variety of applica-
tions, however, in the industry most such problems typically model very short time intervals
and do not require optimal control techniques. Optimizing a passenger car’s efficiency along
its trajectory is still confined to the world of research.

The car efficiency optimization problem has been considered in [39, 53]. Most of the
literature has chosen to use Dynamic Programming (Sec. B.2.3)[9, 25] or Non-Linear Pro-
gramming (Sec. B.2.4), although recently some studies have examined the use of Pontryagin’s
Maximum Principle as it applies to hybrid cars.[39, 53]

The authors of [25] found that optimal control applied to semi-trucks could both increase
fuel efficiency and decrease driving time, all while reducing wear and tear on the transmission.

This chapter is devoted to establishing the necessary models for (1) generating a efficiency
map for an individual car and (2) creating the optimal control from this map.

1.1 State models

The optimization problem presented in this dissertation is split by necessity into two
parts: observation of holistic system efficiency and application of optimal control to real-
world examples. To this end, in the following two sections we present state-space models for
1) the observation problem and 2) the control problem.

The observer model represents the link between the sensors and the state, whereas the
controller model needs only the state variables necessary for optimization. The upshot is that
the 17-state observer model is reduced to a 2-state controller model, or even 1-state if the
optimal target is only a one-dimensional speed target, and not the two dimensional pairing
of position and speed.

1.2 Observer model

The observer model is designed to give an estimation of holistic fuel efficiency, based
on data collected only from real-world driving.[43] It is built on a simplified model of car
kinematics, ignoring complex effects such as increased rolling resistance during turns, etc... If
additional measurements are available, the model can be extended in order to give an increase
in accuracy, but with the associated increase in computation time.

1.2.1 Modeling

We begin by establishing the system model.

1.2.1.1 Model variables

See Table 1.1.
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Variable Description Units

xi car displacement in the î axis [m]

vi car speed in the î axis [ms ]

ai, aj , ak car acceleration in the îjk axes [m
s2
]

Fthrust thrust force along î axis [N]
ψ car heading ∈ [0, 2π) [rad]
θ car pitch ∈ [−π

2 ,
π
2 ) [rad]

Sj road straightness coefficient [ radm ]

(horizontal plane)

Sk road straightness coefficient [ radm ]

(vertical plane)
N,E,D Northing, Easting, and Down [m]

(local projection plane)
Ein energy content input, fuel [J]
Pin power input, fuel [W]

bi, bj , bk accelerometer biases in the îjk axes [m
s2
]

θe engine angular displacement [rad]

ωe engine angular speed [ rads ]

Crr rolling resistance coeffecient [-]
Cd air drag coefficient [-]

A car frontal cross-section area [m2]

ρ air density [ kg
m3 ]

M total vehicle mass [kg]
Ma total accelerated mass [kg]
g acceleration due to gravity [m

s2
]

Table 1.1: Observer model variables
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1.2.1.2 Reference frames

Two reference frames are used:

• An inertial reference frame îjk linked to the car, where +î points in the direction of
forward movement, +ĵ points 90 degrees left, and +k̂ points straight up from the car.
See Fig. 1.1a

• A global reference frame NED (North-East-Down) which is the local mercator projec-
tion of geodetic latitude-longitude-altitude coordinates. Note that in order to maintain
right-handed orthogonality, Down represents negative altitude. Also, note that proper
care must be taken while projecting geodetic coordinates into a mercator projection.
[52] provides a good explanation of the process, along with Matlab code. See Fig. 1.1b

k

j

i

(a) Body (b) North-East-Down

Figure 1.1: Reference frames

1.2.1.3 Kinematics

Net acceleration is proportional to the sum of forces along the road surface. See Fig. 1.2.

Mav̇i = ΣF = Fthrust − Fdrag − Froll − Fgravity (1.1)

Fdrag =
1

2
ρCdAv

2
i (1.2)

Froll = Crr(Mg cos(θ) + Skv
2
i ) (1.3)

Fgravity =Mg sin(θ) (1.4)
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Fdrag

Froll

Fthrust

Fgravity

vi, ai

ω, α

θ

Figure 1.2: Free-body car diagram

where

Ma =
J

r2w
+M

Ma is the equivalent accelerated mass, and takes into account the angular momentum of
the various spinning parts of the car, where J is the sum of all polar moment of inertias,
and rw the wheel radius. This constant represents all the various bits and pieces that must
accelerate in order for the car itself to accelerate.

Note that this model does not separate braking forces (both engine braking and friction
brakes) from thrust forces. For non-hybrid vehicles, this is an unnecessary distinction, as
only data gathered while the engine is propelling the car forward is interesting.

The car is assumed fixed to the road, and there is a no-slip condition in both longitudinal
and latitudinal directions. Furthermore, it is assumed that the car undergoes no rolling rota-
tion about the î-axis (φ, φ̇ ≡ 0). Thus, vj , vk=0 and any acceleration Σaj or Σak represents
a centripetal acceleration, i.e. the car is on a curving path:

aj,b = Sjv
2
i

ak,b = Skv
2
i

(1.5)

Note 1 Sj and Sk, the road straightness coefficients, represent the inverse of road curvature.
Straightness coefficients are preferable to road curvature coefficients, since straightness coef-
ficients are finite when on a straight section of road. Realistic values for Sj seem to lie on
the interval [-0.05, 0.05] and for Sk in [-0.005, 0.005]

Likewise, the rate of change of ψ and θ is dependent on the road straightness coefficients
and forward velocity:

ψ̇ = Sjvi
θ̇ = Skvi

(1.6)

Note 2 In the N̂ED coordinate system, +ψ represents a yaw to the right, and +θ represents
a pitch upwards.
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The N,E,D dynamic equations are written in spherical coordinates centered about the
body reference frame:

Ṅ = cos(ψ) cos(θ)vi
Ė = sin(ψ) cos(θ)vi
Ḋ = − sin(θ)vi

(1.7)

The engine turns at a fixed rate with respect to the wheels, neutral gear and differential
withstanding. In a normal car transmission, (See 4.4.2), this ratio is different between gears
but otherwise constant.

ω̇e = v̇iNspd (1.8)

As we cannot directly measure Nspd, we suppose that the engine and wheels are not
connected, which is the same as taking Nspd ≡ 0. While this is obviously physically incorrect,
since we have very good independent sensors for estimating ωe and vi, this approach yields
satisfactory results.

Lastly, a measured acceleration will always have slight biases in each direction, not only
due to imperfections in fabrication and in mounting, but also due to changes of load dis-
tribution in the car. Note also that an accelerometer in a gravity field measures the pull of
gravity in addition to the net body acceleration. These considerations lead us to the following
equations:

ai,m = ai,b +
M
Ma
g sin(θ) + bi

aj,m = aj,b + bj
ak,m = ak,b − g cos(θ) + bk

(1.9)

1.2.1.4 Energy analysis

Instantaneous power-in is the volume of fuel consumed per second times the amount of
energy per volume.

Pin = kV̇fuel (1.10)

Instantaneous power-out is the thrust force times velocity:

Pout = Fthrustvi (1.11)

Efficiency is defined as

η =
Pout
Pin

(1.12)

Power-out is also equal to torque times angular velocity:

Pout = Teωe (1.13)

Thus, by rearranging eqns. (1.11) and (1.13) the torque is

Te = Fthrust
vi
ωe

(1.14)

Note 3 Result 1.14 is completely independent of transmission gear ratios.
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1.2.2 Complete observer model

Unknown parameters are included in the model in order to observe them. Fthrust is
the most critical of them, as Fthrust is used to estimate Pout, but we do not have a direct
measurement of it.

The state and measurement vectors— x,y respectively— are:

x =




xi
vi

Fthrust
ψ
θ
N
E
D
Sj
Sk
Ein
Pin
θe
ωe
bi
bj
bk




y =




xi,m
ai,m
aj,m
ak,m
DEMψ

DEMalt

GPSlat
GPSlon
GPSalt

INJduration
INJtime




(1.15)

where the state equations are

ẋi = vi

v̇i =
1

Ma

(
Fthrust − sign(vi)

(
1

2
ρCdAv

2
i +MCrr

(
g cos(θ) + Skv

2
i

))
−Mg sin(θ)

)

ψ̇ = Sjvi
θ̇ = Skvi
Ṅ = vi cos(ψ) cos(θ)

Ė = vi sin(ψ) cos(θ)

Ḋ = −vi sin(θ)
Ėin = Pin
θ̇e = we

(1.16)
and

Ḟthrust = Ṡj = Ṡk = Ṗin = ω̇e = ḃi = ḃj = ḃk = 0 (1.17)
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where the observation equations are

xi,m = xi

ai,m =
1

Ma

(
Fthrust − sign(vi)

(
1

2
ρCdAv

2
i +MCrr

(
g cos(θ) + Skv

2
i

)))
+ bi

aj,m = Sjv
2
i + bj

ak,m = −g cos(θ)− Skv2i + bk
DEMψ = ψ
DEMalt = −D
GPSlat = N
GPSlon = E
GPSalt = −D

INJduration = Ein
INJtime = θe

(1.18)
and where

• xi,m is the measured distance at time tk

• ai,m, aj,m, ak,m are the measured accelerations in the longitudinal, latitudinal, and ver-
tical body-frame axes at time tk

• DEMψ, DEMalt are road headings and road altitude, respectively, at time tk. This data
is read from a DEM (Digital Elevation Map), when available. Note that it is entirely
possible to get reliable heading data from the DEM without having the associated
altitude data, and that furthermore these two measurements are decoupled in time.

• GPSlat, GPSlon, GPSalt are, respectively, the GPS latitude, longitude, and altitude
measurements taken at time tk and geodetically transformed into the local NED pro-
jection system.

• INJduration is the duration the fuel injector is open, times the quantity of fuel per
second of opening, times the amount of energy per quantity of fuel. In other words,
∆Ein ∝ t, and so this is equivalent to the measured energy input at time tk

• INJtime is the time tk at which the injector opens, which represents a multiple of π
radians (See Sec. 2.3.4.1 for more details.) of angular distance traveled by the engine
since the previous measurement.

Note 4 The GPS is not used as a speed measurement, since it was impossible to know if
our particular GPS unit measured speed directly through doppler shift or if it simply reported
speed as a filtered change of position with respect to time. In the former case, it would indeed
have been a good measurement. If it is possible to find a GPS that uses doppler shift, then it
would improve system accuracy to integrate it into the measurement model.

1.2.3 Observability normal form

We present here a normal form of the observer, as described in [21]. The system is
identical to the previous model, but transformed such that the structure follows certain rules
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(such as each state in a block can only depend on the states above it, and at the very least
the topmost state in a block must be an output). The observability normal form is useful for
demonstrating observability (cf. Sec. A.1.2), amongst other things.

We would like to write the normal form system as

ż = Az+ b(z) (1.19)

First we rewrite the variable names:




x1 = xi
x2 = vi
x3 = FT
x4 = ψ
x5 = θ
x6 = N
x7 = E
x8 = D
x9 = Sj
x10 = Sk
x11 = Ein
x12 = Pin
x13 = θe
x14 = we
x15 = bi
x16 = bj
x17 = bk

ẋ1 = x2
ẋ2 = 1

Ma

(
x3 + sign(x2)

(
1
2ρCdAx

2
2 +MCrr

(
g cos(x5) + x10x

2
2

))

−Mg sin(x5))
ẋ3 = 0
ẋ4 = x9x2
ẋ5 = x10x2
ẋ6 = x2 cos(x4) cos(x5)
ẋ7 = x2 sin(x4) cos(x5)
ẋ8 = −x2 sinx5
ẋ9 = 0
ẋ10 = 0
ẋ11 = x12
ẋ12 = 0
ẋ13 = x14
ẋ14 = ẋ2Nspd

ẋ15 = 0
ẋ16 = 0
ẋ17 = 0

(1.20)
where the measurements are

y1 = x1
y2 = x4
y3 = x6
y4 = x7
y5 = −x8
y6 = x11
y7 = x13
y8 =

1
Ma

(
x3 − sign(x2)

(
1
2ρCdAx

2
2 +MCrr

(
g cos(x5) + x10x

2
2

)))
+ x15

y9 = x9x
2
2 + x16

y10 = −g cos(x5)− x10x22 + x17

(1.21)

In order to transform system (1.16) into the observability normal form, we propose the
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following change of coordinates Φ(x) = z and its inverse Φ−1(z) = x





z1 = x1
z2 = x2
z3 = x3 −Mg sin(x5)

−MCrr
(
g cos(x5) + x10x

2
2

)

z4 = x4
z5 = x9x2
z6 = x6
z7 = x7
z8 = −x8
z9 = x2 sin(x5)
z10 = x22x10 cos(x5)

+ sin(x5)
Ma

(z3 − 1
2ρCdAz

2
2)

z11 = x11
z12 = x12
z13 = x13
z14 = x14
z15 = 1

Ma

(
x3 − 1

2ρCdAx
2
2

−MCrr (g cos(x5)
+x10x

2
2

))
+ x15

z16 = x9x
2
2 + x16

z17 = −g cos(x5)
−x10x22 + x17

x1 = z1
x2 = z2

x3 = z3 +MCrr

(
g
√

1− (z9/z2)2

+
Maz2z10 − z9

(
z3 − 1

2ρCdAz
2
2

)

Maz2
√
1− (z9/z2)2

)

+Mg
z9
z2

x4 = z4
x5 = arcsin (z9/z2)
x6 = z6
x7 = z7
x8 = −z8
x9 = z5/z2

x10 =
Maz2z10 − z9

(
z3 − 1

2ρCdAz
2
2

)

Maz32
√
1− (z9/z2)2

x11 = z11
x12 = z12
x13 = z13
x14 = z14
x15 = z15 − 1

Ma

(
z3 − 1

2ρCdAz
2
2

+Mg(z9/z2))
x16 = z16 − z5z2
x17 = z17 + g

√
1− (z9/z2)2

+
Maz2z10 − z9

(
z3 − 1

2ρCdAz
2
2

)

Maz2
√

1− (z9/z2)2
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which gives

ż =




A1 0 0 0 0 0 0 0 0 0
0 A2 0 0 0 0 0 0 0 0
0 0 A3 0 0 0 0 0 0 0
0 0 0 A4 0 0 0 0 0 0
0 0 0 0 A5 0 0 0 0 0
0 0 0 0 0 A6 0 0 0 0
0 0 0 0 0 0 A7 0 0 0
0 0 0 0 0 0 0 A8 0 0
0 0 0 0 0 0 0 0 A9 0
0 0 0 0 0 0 0 0 0 A10




z+




0

− 1
Ma

1
2ρCdAz

2
2

b3(z)
0

b5(z)
b6(z)
b7(z)
0
0

b10(z)
0
0
0

b14(z)
b15(z)
b16(z)
b17(z)




(1.22)

where

A1 =




0 1 0

0 0 1
Ma

0 0 0


 , A5 =




0 1 0
0 0 1
0 0 0




A2 = A6 = A7 =

(
0 1
0 0

)

A3 = A4 = A8 = A9 = A10 = 0

In addition, we have

ytk =




1 0 0| 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0| 1 0| 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0| 1| 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0| 1| 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0| 1 0 0| 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0| 1 0| 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0| 1 0| 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0| 1| 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0| 1| 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0| 1




z (1.23)

Eqns. (1.22) and (1.23) are the model’s normal form. Note that x2 > vi,min > 0, that
θ = x5 ∈ [−π

4 ;
π
4 ], and that cos(arcsin(α)) =

√
1− α2 (because |α| < π

2 ). Therefore the
function is well defined. Again, it bears repeating that the system is no longer observable
when x2 = 0, and certainly has numerical stability problems as x2 becomes tiny. This will
be taken into account in the following sections.
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This change of variables brings the model into the form

ż =




A1 0 0 0 0 0 0 0 0 0
0 A2 0 0 0 0 0 0 0 0
0 0 A3 0 0 0 0 0 0 0
0 0 0 A4 0 0 0 0 0 0
0 0 0 0 A5 0 0 0 0 0
0 0 0 0 0 A6 0 0 0 0
0 0 0 0 0 0 A7 0 0 0
0 0 0 0 0 0 0 A8 0 0
0 0 0 0 0 0 0 0 A9 0
0 0 0 0 0 0 0 0 0 A10




z+




0

− 1
Ma

1
2ρCdAz

2
2

b3(z)
0

b5(z)
b6(z)
b7(z)
0
0

b10(z)
0
0
0

b14(z)
b15(z)
b16(z)
b17(z)




(1.24)

where

A1 =




0 1 0

0 0 1
Ma

0 0 0


 , A5 =




0 1 0
0 0 1
0 0 0




A2 = A6 = A7 =

(
0 1
0 0

)

A3 = A4 = A8 = A9 = A10 = 0

1.3 Controller model

The controller model is very basic, as nothing more complicated is needed to model
distance traveled and energy consumed. Thus, the only controls are the engine speed, the
transmission gear ratio, and the desired torque. Calculating power input requires only the
addition of the engine efficiency to the model. The rest of the variables in eq. (1.15) are not
necessary for minimizing the energy usage.

In addition, we must define the cost, J , to be minimized across the controller trajectory.
While for this work absolute energy consumption was chosen, this cost could easily include
other factors, such as particulate output, C02 emissions, etc... (In which case, it goes without
saying that the controller model would have to be remade in order to model these new costs.)

1.3.1 Modeling

1.3.1.1 Model variables

See Table 1.2.
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Variable Description Units

vi car speed in the î axis [ms ]

ωe engine angular speed [ rads ]

Te engine torque [Nm]
Nspd transmission ratio [-]

η engine efficiency [-]

Table 1.2: Controller model variables

1.3.1.2 Cost

A minimizing controller must have a cost, J , to minimize.
A heat engine transforms the fuel energy into work energy and waste heat. In the case of

a car engine, a part of the work energy is lost due to various frictions and thermodynamic
inefficiencies in a car (air resistance, rolling resistance, transmission losses, etc...) a part of
the energy is used to run the various car accessories, and the balance is transformed into
kinetic and/or potential energy.

We seek to minimize fuel consumption, that is to say, minimize Ein

J = Ein =

∫ T

0
Pindt (1.25)

T can be fixed-horizon or not, i.e. if we wish we can apply a time criteria to the opti-
mization or not, depending on the goals of a particular driving phase. See Sec. 4.2 for further
details.

1.3.1.3 Kinematics

We start with the basic net forces equation developed in eq. (1.1), given in its refined
form:

v̇i =
1

Ma

(
Fthrust − sign(vi)

(
1

2
ρCdAv

2
i +MCrr

(
g cos(θ) + Skv

2
i

))
−Mg sin(θ)

)

By combining eqns. (1.8) and (1.14) into the above, we arrive at

v̇i =
1

Ma

(
TeNspd − sign(vi)

(
1

2
ρCdAv

2
i +MCrr

(
g cos(θ) + Skv

2
i

))
−Mg sin(θ)

)
(1.26)

We keep vi in the model, instead of transforming it into
ω

Nspd

because it is a continuous

variable, whereas Nspd is not.

1.3.2 Complete controller model

The state vector is
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x =

(
xi
vi

)
(1.27)

and the dynamic equations are given by:

ẋ =




vi
1

Ma

(
TeNspd − sign(vi)

(
1

2
ρCdAv

2
i +MCrr

(
g cos(θ) + Skv

2
i

))
−Mg sin(θ)

)



(1.28)

While the engine efficiency, η, is a function of many parameters, most of these are intrinsic
to the engine construction. Most of the remainder are a function of the engine control system.
Practically, the only two parameters that are left to the user to be controlled are the engine
speed and torque. As luck would have it, these are the most important in determining engine
efficiency. As such, we suppose η to be only a function of ωe and Te, and define a function φ
and its polynomial approximation (to be used in Chap. 4).

φ(ωe, Te) =
1

η(ωe, Te)
≈ a0 + a1ωe + a2Te + a3ωeTe + a4ω

2
e + a5T

2
e + . . . (1.29)

and thus we can calculate

Pin =
ωeTe

η(ωe, Te)
= ωeTeφ(ωe, Te) (1.30)

1.4 Discussion

The key parameter in the minimization problem is η. This is the parameter that links
the controls with the cost. The model for η is difficult to estimate, as it depends on several
other estimated parameters, one of which, Fthrust is very noisy and itself difficult to mea-
sure/estimate. Thus the observation problem hinges on the best possible estimation of Fthrust
possible.

This is in itself provokes a cascade of dependencies. A close examination of Fthrust shows
that it depends heavily on θ, and to a less extent several constants (Crr, Cd, ρ, etc...) and the
car’s velocity (vi). While vi is easy to measure and estimate (from GPS and odometry data),
θ is somewhat difficult to measure in a dynamic system without a gyroscope. Of course, at
a complete stop, θ can be inferred from the direction of the gravity vector, but when the car
is accelerating it becomes difficult to have a clear measurement.

Other state parameters, such as N,E, are important only insofar as they contribute to
improving the estimation of Fthrust. The only exceptions to this are the engine speed and
energy input states, (θe, ωe, Ein, Pin). The engine speed is important as it is a control. The
input energy is important because it is the quantity to be minimized. However, for both
of these the model and measurements are excellent, so their impact on the model is not as
critical as Fthrust.
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As frequently seen in this dissertation, controlling and observing have different needs, and
thus onboard equipment can be split along these two lines.

Monitoring equipment is composed of a sensor package, a µC (microcontroller), and an
SD card for data storage.

The controlling equipment is a µP (microprocessor) that calculates the optimal control
trajectory for a given driving route. It bases its controls on information from previously
observed sensor data and GPS routing software.

In an industrial setting, a car manufacturer would already have access to all this sensor
data, and indeed in a more global sense to the efficiency map. However, the challenge
is just that: to recreate the efficiency map with other techniques than depending on the
manufacturer.

This project’s sensor suite was inspired by the MPGuino[17], a basic mpg (mile per gallon)
calculator based on the arduino[1], that has inspired a large following due to its simplicity
and ease of use. The MPGuino calculates fuel consumption based on a calibrated fuel flow
and car speed.

Figure 2.1: MPGuino

Unfortunately, the arduino has several structural defects which prevent it from being used
for our needs, not least of all the choice of an basic model ATMega chip which has insufficient
memory and peripherals.

There are several commercially available data loggers available, but these have the disad-
vantage of:

• being closed source

• being expensive

• having limited expansion
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2.1 Microprocessors

A microprocessor puts most or all of a computer’s CPU onto a single integrated circuit.
The microprocessor has seen incredible progress since its introduction forty years ago. They
see use in every single facet of life, from portable music players to computer peripherals to
aerospace control systems.

This project uses a microprocessor to compute the optimal control.

2.2 Microcontrollers

Microprocessors are much like microcontrollers. In fact, a microcontroller can be seen
as a microprocessor core with peripheral support, such as analog-to-digital converters, serial
port protocols, etc... Today, a microcontroller has an impressive array of sensors and speaks
a number of bus protocols.

Due to the addition of the peripherals, in general they do not perform at quite such
dizzying speeds as pure microprocessors. However, they can throttle back to the point that
they are only consuming nW of power.

While there are still speed gains to be made, and floating point math is to be avoided
due to the lack of a floating processing unit, it is fully sufficient to use a microcontroller as
the foundation of our sensor suite.

As such, an Atmel ATMega644p forms the core of the system. Chip speed is set by
an 8Mhz internal RC oscillator. The microcontroller was programmed in C. The chip was
chosen as it is relatively easy to develop, has a low price, requires no external components
(thus saving development time), and has an active user community (www.avrfreaks.net).

Future versions will be built around the Atmel XMEGA, which employs the same instruc-
tion set as the ATMega series, but has much more advanced peripherals and a much faster
(32MHz) and more stable (<.1%) RC oscillator. This allows true 32-bit timers, along with a
much more accurate timestamp.1

Project source code can be found online at www.eissq.com[44]

2.3 Sensor package

The sensor package is made up of 4 sensors:

1. Three-axis accelerometer

2. GPS

3. Fuel injector timer (for measuring fuel flow and engine position)

4. Odometer

Note 5 While neither a gyroscope nor a compass is used in the sensor package due to the
requirement for a low-cost design, the observer detailed below was nonetheless designed with
the possibility of adding these sensors. If gyroscope or compass data is available, it can be
directly used without modification.

1This version exists today, but testing has not yet been completed.
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2.3.1 GPS

GPS, first started by the American military in the 1970s, has in the last 10 years rev-
olutionized geolocalization. Its weaknesses are largely due to a non-gaussian error (due in
part to the fact that only satellites overhead can be seen) and the inability to penetrate
buildings and earth, meaning that a GPS fix is oftentimes unavailable in urban canyons, and
always unavailable in tunnels. GPS also suffers from a lack of (relative) precision, only being
accurate to sub-meter scales.

GPS works on the principle of triangulation. The GPS receiver is based on the very simple
idea that it can calculate absolute distance from signal propagation time, i.e. the difference
in time between when a signal was sent from the satellite and when it was received by the
receiver. With the signal propagation time the receiver can calculate distance to the the
satellite’s known position. Geometrically, the intersection of any three lines is sufficient to
place the receiver in 3-dimensional space so the receiver seeks out three known positions in
order to have a fix. (In theory. In reality, the GPS receiver must solve an equation with 4
unknowns, as an absolute time solution must also be found before the receiver can calculate a
signal’s ∆t. Thus, in practice a GPS receiver must have 4 satellites visible in the constellation
before it can return a 3-D fix.)

Trivial as the idea may seem, the realities of compensating for time compression due to
a satellite’s relativistic speed with respect to the Earth, and time dialation due to proximity
to Earth’s gravity well are, to greatly understate, complicated.

The US is constantly upgrading the GPS network with new and better satellites, and
many of GPS’s inherent problems will be done away with by the promising new EU-sponsored
Galileo system, but at the time of this dissertation Galileo was still many years away due to
inter-EU squabbling. If it ever flies, it will herald in a new age of global positioning, as the
accuracy and precision are far higher than GPS.

For our research, we used the San Jose Technology FV-M8 GPS. This particular model
was very popular with hobbyists and researchers because of its 5Hz update rate and low price
(<$50). While better GPSes have appeared on the market since, this one fulfilled needs.

However, if a new GPS unit were to be selected, we would take care to use one that output
the raw GPS data, instead of only the filtered data. The filtered data poses problems as by
its very nature the filtered data always lags behind the real-time state. If the raw GPS data
were available, the position could be calculated as part of the observer model, allowing the
Kalman Filter to do the work of filtering noise. This would help capture the true dynamics of
the system, as manufacturers are loath to release the proprietary data of how they regulate
their filters.

Care must be taken with GPS data to properly interpret and filter the measurement data.
As show in Fig. 2.2, the GPS can have significant error, even after it has had complete 3-D
fixes with > 4 satellites. Ostensibly, the GPS delivers an estimation of the tracking accuracy,
the HDOP, but in our experience this value is to be taken skeptically, as we have already
seen the GPS get “dynamically stuck” at a clearly wrong series of coordinates for extended
periods of time, all while the GPS reports a very low HDOP.

2.3.2 Accelerometer

Current accelerometer technology is MEMS. From Wikipedia:
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Figure 2.2: GPS repeatability errors (Plotted with GET, Appendix F)

“Conceptually, an accelerometer behaves as a damped mass on a spring. When
the accelerometer experiences an acceleration, the mass is displaced to the point
that the spring is able to accelerate the mass at the same rate as the casing. The
displacement is then measured to give the acceleration.”

Most accelerometers work in-plane, so they can only measure acceleration in one dimen-
sion. A 3-D accelerometer is made of 3 in-plane accelerometers mounted in one package, each
pointing along a cartesian axis.

Consumer-grade accelerometers are of the piezoelectric type. When a force is applied to a
piezoelectric crystal, a voltage is induced. By transducing this voltage the sensor can output
an acceleration value. Currently, more and more accelerometers have direct digital outputs,
sparing the designer the difficulty of creating a precision analog circuit.

The switch from analog to digital signals saves considerable time in the design and im-
plementation of the circuit. Digital signals reduce— or completely eliminate— the need for
intensive noise-rejecting circuit simulation and design.

Indeed, at low data transmission speeds, the circuit pathway is not important. In fact,
the only significant consideration is proper capacitance and grounding of the Vcc and GND
lines, respectively.

We used the STMicro LIS3LV02D three-axis digital accelerometer. We chose this ac-
celerometer in particular because it has digital outputs, in addition to having class-leading
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resolution (12-bits).
The accelerometer uses the TWI bus (sometimes called by its trademarked name I2C) to

communicate with the microcontroller at 500kbps, more than sufficient for the 40Hz refresh
rate. Data is timestamped for future use.

Note 6 The accelerometer can also be used to measure road quality, which would give a better
estimation of rolling resistance.[3]

2.3.3 Odometer

The total distance the car has traveled is essential to high-quality observability. The
GPS does not have sufficient reliability— not accuracy, nor resolution, nor speed— for this.
Odometry is the use of data from sensors to measure a change of position. All cars have some
form of odometer or another. The oldest cars have mechanical odometers that are driven by
a spinning cable attached to a transmission gear, but modern cars use electric signals, usually
derived from the ABS system.

The odometer sensor in cars is usually a toothed wheel that rotates past a hall sensor.
This contactless sensoring system is very robust, does not wear out, is unaffected by dirt and
grime, and gives high-quality signals. Its largest drawback is that the sensor teeth must go
past the hall sensor quickly enough to trigger it. This speed threshold tends to be around
3-5 kph.

Many, but not all, modern cars have a Vss (vehicle speed sensor) signal, which is a PWM
signal sent over a dedicated line. This signal is calibrated to give x pulses per y kilometers,
and is often used by a stereo’s speed-sensitive volume control feature or a GPS navigation
system’s dead-reckoning module, although cars can also use it to drive the speedometer.

Note 7 The aspiring tinkerer who would like to install a data logger such as is described here
is advised not to use the ABS signal directly, as it is a very high impedance signal and there
is great risk of perturbing the ABS system, with unknown consequences to safety.

In this case, we take the 12V Vss PWM signal and use a voltage divider to bring signals
down to acceptable levels for the µC.

While this is in general a low-noise signal, care must be taken. Data is as accurate as
the wheel radius model. For simplicity, we assume that wheel radius is a constant, however
this is a simplification, as not only does it decrease with increasing car weights (flattening
of the wheel), but it also varies based on air pressure (function of atmospheric pressure, tire
temperature, and centripetal acceleration).

In addition to these inaccuracies, jitter in the µC real-time clock can influence speed
observations.

In one test case, the car’s Vss was non-functional, so we were forced to develop an interface
to the car’s CAN bus. This is detailed in Appendix D.

2.3.4 Fuel injector timer

The µC measures the time that the fuel injector opens, and for how long it stays open. The
result is that we have two measurements with one sensor: engine angular distance (explained
in Sec. 2.3.4.1) and fuel volume injected (explained in Sec. 2.3.4.2).
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We timestamp the rising and falling edges of the signal, adding an opto-isolator in order
to ensure that the µC can never have an adverse effect on the vehicle’s ECU. All negative
voltage components are blocked by a diode, thus protecting the circuitry from reverse voltage
spikes. In order to protect the car ECU from short circuits, a current limiting resistor is
placed immediately at the voltage shunt.

2.3.4.1 Engine angular distance/velocity

Properly controlling the engine demands measuring its position with a great deal of ac-
curacy. The engine position is measured through multiple sensors in order for the ECU to
properly time fuel injection, spark, etc... Sensors such as the camshaft position sensor are
robust and accurate, and can be excellent choices for measuring angular position.

However, the engine angular position can also be measured by sensing voltage pulses in
the fuel injection or in the spark plug wires. This method lacks somewhat in resolution, as
it can only give position in multiples of π (or thereabouts, as explained in the following).

The position can also be measured optically with a colored dot on a rotating element
of the engine, for instance the main engine pulley. However, installing the optical reader is
probably more trouble than it’s worth since there are so many other, excellent sources.

While we cannot regularly sample the engine’s angular displacement, we can know at each
fuel injection impulse that the engine has returned to its previous orientation. How many
revolutions that is depends on the car. Contrary to expectations, in a 4-cycle engine a single
fuel injector can inject multiple times during one complete combustion cycle.

(a) Simultaneous (b) Grouped (c) Sequential

Figure 2.3: Fuel injection schemes

• Simultaneous (Fig 2.3a): In this scheme, all injectors fire at the same time, and thus

each injector pulse indicates that the engine has rotated
4π

# of cylinders
radians.

• Grouped (Fig 2.3b): In this scheme, injectors fire in groups. Depending on the number
of cylinders, this could be any factor of the total number of cylinders. For instance, some
Jaguars V-12 engines use four groups of three injectors, whereas some older Citroen
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engines have two groups of two. Each injector pulse indicates that the engine has

rotated
4π

# of groups
radians.

• Sequential (Fig 2.3c): Each fuel injector fires independently of the others. This is
the most common in modern cars, but by no means ubiquitous. Each injector pulse
indicates that the engine has rotated 4π radians.

Note 8 Some engines can switch between injector grouping styles, depending on engine con-
ditions. For instance, sequential injection may be used for low engine speeds, switching to
simultaneous injection at high speeds. The same principle is used in changing from light
loads to heavy loads. Care must be taken to identify if an engine is capable of switching injec-
tion schemes. If so, additional data will be required in order to identify the injector scheme.
This information can come from the observer or from the OBD-II interface, to name two
possibilities.

2.3.4.2 Fuel flow meter

There are varying ways of measuring fluid flow. It can be directly measured by impeller
blade, turbine, or even ultrasound. Except for the last one, all these methods require direct
contact with the fluid being measured, which in the case of gasoline is difficult due to its
reactivity, and the last one itself is prohibitively expensive. In any case, each of these requires
installing extra equipment in the vehicle, which would understandably be unacceptable to
many owners.

Having already encountered these problems, the online community explored the technique
of using the fuel injector pulse width to measure fuel economy. This technique is accurate to
±1%. [17], and is thus well within the bounds of reasonable error.

Note 9 All these techniques suffer from the fact that they measure volume, and not mass.
This is a non-negligible difference, but unfortunately short of measuring temperature in the
fuel tank and compensating based on a particular blend of gasoline’s coefficient of thermal
expansion, there is little that can be done about this. Fortunately, this can be disregarded as
the relative efficiencies are of interest here. They will stay the same and so the impact will
not be major.

This method infers fuel flow by measuring fuel injector pulse duration. A fuel injector is
effectively a needle (pintle) that plugs a small hole (discharge orifice). When current flows
through an electromagnetic coil, the needle is pulled back from the hole, allowing fuel to flow
through. When current stops flowing, a spring pushes the needle snug with the hole, stopping
fuel flow. (See Fig. 2.4)

While measuring the voltage pulse applied to the injector neglects some factors, such
as opening and closing speed, opening and closing hysteresis, variations in fuel pressure,
temperature, density, etc..., the reality is that simply measuring the beginning and end of
the positive voltage purposes are quite consistent. There is certainly an unknown bias, but
these can be measured and other errors are absorbed into the model and have no effect on
the final control.

26



Figure 2.4: Fuel injector cutaway

Note 10 With the advent of peak-injectors, which use a sudden current surge to rapidly open
the injector and then use PWM to keep it open without burning the coil, this technique will
have to be modified.

Furthermore, this technique does not work with direct injection diesel engines, as the fuel
pressure is no longer constant, violating the principle that fuel quantity injected is proportional
to injector opening duration.

A possible solution to both problems could be to install an additional sensor installed in
order to measure fuel flow in the fuel lines.

Another very strong possibility is to measure the oxygen sensor and MAF( mass airflow
sensor) instead of the fuel injector timing pulse, as this method can compensate for changes
in density, changes in fuel blend (95/98 octane, summer/winter, ethanol/gasoline, etc...) ,
and works as well with diesel fuel as gasoline.

2.4 Other sensors

2.4.1 Gyroscope

Inertial navigation systems[22], as they pertain to car navigation, have been studied in
countless research papers.[47] In most of these cases, a gyroscope is used, however we opted
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not to use one due to costs. Commercially available gyroscopes fall into three categories:

1. Mechanical gyroscopes— These are built around a spinning (gyrating) mass. They are
large, bulky, require separate power supply, expensive, and prone to failure.

2. MEMS— Micro Electro-Mechanical Systems. These are not true gyroscopes. They
are composed of two three-axis accelerometers mounted to a digital signal processor or
microcontroller of some kind. These gyroscopes integrate angular acceleration to arrive
at angular position. The reference vector is given by gravity.

This is generally effective, as average acceleration can be assumed to be zero in the
long run, but has serious shortcomings when instantaneous acceleration is large. Fur-
thermore, accelerometers tend to be noisy and have low resolution, so noise on the
level of several milli-gravity is normal. Inertial orientation as resulting from the double
integration is therefore particularly prone to error.

3. Ring laser— The nec plus ultra of gyroscopes, these are extremely expensive, and thus
out of range a project that hopes to have wide-scale acceptance.

2.4.2 Compass

Accurate digital compasses are starting to see wider acceptance, finding their way into
low-end consumer electronics. While in the end, they were not necessary for the desired level
of accuracy, they are still a promising technology and can only serve to improve results, once
the price comes down a little more.

Note 11 The author feels that it should be possible to geolocate a car with only a DEM
(Digital Elevation Map), compass, and odometer. This exercise in pattern matching is left as
a difficult, but challenging, exercise to the reader.

2.5 Additional equipment

2.5.1 Data storage

All data is stored on an SD card. MMC and SD cards have an SPI compatibility mode.
(Note, the higher capacity (>2GB) SDHC cards do not.) This compatibility mode, well
documented online, gives a basic access to the SD card over the SPI bus, albeit at reduced
speeds.

In order to reduce computational complexity, some liberties are taken with the SD card’s
FAT16 file system. Specifically, a large file of several GB (2GB is the maximum size permitted
in FAT16), initialized to zeros, is saved on the card. Then, data is logged sequentially in 512
byte blocks, starting at the beginning of the file. Because this file is not fragmented, the
sequential writes always write within the memory-space allocated to the file.

Data retrieval is simple. The original file simply needs to be copied to the computer, and
then the unwritten space pared off. Data accumulates at several megabytes a minute, so a
2GB card can be used for several months for daily commuter usage.

Further details can be found in Appendix C.1.4.

28



2.5.2 Digital Elevation Map

The DEM (Digital Elevation Map) is a mapping of points along the road. In this particular
case, a shapefile formatted document was provided by the Luxembourgish mapping agency.
This document included all roads in Luxembourg, with an altitude precision of 1m.
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Figure 2.5: DEM vs. GPS along a trajectory

Unfortunately, today DEM data is difficult to come by, to the point of being impractical.
In most cases, this data is sold by mapping companies at exorbitant prices, precluding wide-
scale usage. (The authors were fortunate in Luxembourg to have the support of the national
mapping administration, and thus have free access to quality DEM data.)

While the NASA developed SRTM data [34] is widely available, it is of limited resolution
and, by its nature, misses nuances such as the difference between bridges and tunnels.

As free, high-quality mapping data [18] becomes more and more available, it can be used
to better the model.

Figure 2.6 shows the advantages that the DEM can bring to correcting the GPS. Notice
in specific the 20m discrepency at the 7000m mark. Clearly this sort of GPS error can wreak
havoc with the slope estimation and as a consequence in the force estimation if not accounted
for.
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A cornerstone of any vehicle optimal control study is an engine efficiency model (or alter-
natively an engine specific fuel consumption (SFC) model). Unfortunately, this information
is very difficult to come by. In previous studies, these models were assumed to be available
ahead of time.[25, 51, 39]

In reality, this is not the case. Car manufacturers are notoriously tight-lipped and guard
their data jealously. Furthermore, engine data alone does not tell the whole story, as it is ideal
data from an ideal engine under ideal conditions. As any driver knows, the manufacturer
reported fuel economy are vary considerably in real-world situations.

For an optimality study, it is essential to know the true system efficiency, which cannot
be predicted from engine data alone. Many other car-specific factors come into play, such
as transmission losses, rolling resistance, air resistance, etc... The values, when they can be
found, are oftentimes unreliable (e.g. coefficients of air resistance) and have limited usefulness.

A better optimality approach would take into account the real-world parameters of the
individual vehicle in question. This approach should be able to adapt to changing circum-
stances, such as a mass change when a passenger gets out of a car or an air resistance change
when a convertible top being is put down. This approach also would allow monitoring motor
efficiency with time, opening the door to an early indication of fault development.

3.1 Model

We recall the model developed in Section 1.2.2, using the variables highlighted in Table
1.1.

ẋi = vi
v̇i = 1

Ma

(
Fthrust − sign(vi)

(
1
2ρCdAv

2
i

+MCrr
(
g cos(θ) + Skv

2
i

))

−Mg sin(θ))

Ḟthrust = 0

ψ̇ = Sjvi
θ̇ = Skvi
Ṅ = vi cos(ψ) cos(θ)

Ė = vi sin(ψ) cos(θ)

Ḋ = −vi sin(θ)
Ṡj = 0

Ṡk = 0

Ėin = Pin
Ṗin = 0

θ̇e = we
ẇe = 0

ḃi = 0

ḃj = 0

ḃk = 0

xi,m = xi
ai,m = 1

Ma

(
Fthrust − sign(vi)

(
1
2ρCdAv

2
i

+MCrr
(
g cos(θ) + Skv

2
i

)))
+ bi

aj,j = Sjv
2
i + bj

ak,m = −g cos(θ)− Skv2i + bk
DEMψ = ψ
DEMalt = −D

θm = θ
GPSlat = N
GPSlon = E
GPSalt = −D

INJduration = Ein
INJtime = θe

(3.1)
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3.1.1 Values used

Table 3.1 gives typical model parameter values. The car parameters are taken from
published values for the 2004 Smart Roadster Coupé. Note that mass is considered to include
an average 70kg driver with 5kg of clothing and personal material.

Parameter Value

g 9.805
ρ 1.2
Crr 0.010
Cd 0.39
M 920
Ma 948
A 1.93
rw 0.2954

Table 3.1: Model parameters

3.1.2 Car model observer

3.1.2.1 Car model observability

It is reasonable to suppose that certain measurements will not be available, depending
on sensor state and the current environment. For instance, the GPS fix can be lost in a
tunnel or in urban canyons. We present here an observability study for the various loss of
sensors. These results summarize a theoretical study of the differentiable system observability
property, but can also be inferred from intuitive considerations.

• Loss of GPS: Clearly, without the GPS we lose observability for N,E,D1, ψ. However,
observability is preserved for the rest of the model.

• Loss of accelerometer: As the model is completely observable with only the GPS and
the fuel injector sensor, this only impacts the observability of the accelerometer bias.
By inference, we see that the model works with only a two-axis accelerometer available.

• Loss of Vss: No impact on observability.

• Loss of DEM: No impact on observability.

• Loss of engine speed sensor: (Even though one sensor measures both engine speed and
fuel flow, for questions of observability we separate the two, as it is possible to have
independent sensors for both.) No impact on observability only if the transmission ratio
is known at all times.

1D is a nuanced case. Without the GPS, it is impossible to fix the car’s position sufficiently well on the
map in order to be able to use a DEM.

34



• Loss of fuel flow sensor: Clearly, observability of energy flow is lost. Without energy
flow, efficiency cannot be calculated, and so this is the most important sensor for our
study.

Of course, it goes without saying that as we lose sensors we lose accuracy. For obvious
reasons, we only consider losing one sensor at a time. The above observability study should
not be used as a rationale for decreasing the number of sensors, but instead only for validating
an approach which does not, for whatever reason, use all desired sensors.

3.1.2.2 Choice of observer

The choice of observer is paramount. The model is of a large dimension (17 states) and
the final result, the efficiency η, involves dividing by a derivative of a measured state.

At first attempt, the UKF (Cf. A.3.2) was explored as a possible solution, but there were
grave difficulties integrating the measurements into the model. In [33], Moullion provides a
reasonable explanation of why this behavior is seen. He explains that the UKF’s correction
compares a physical mean, the measured value, with a sigma-space mean, the value calculated
by the model non-linearity. Depending on this nonlinearity, there can be a strong deviation
from the true mean, and it is difficult to transform the physical mean into the sigma-space.

Sigma point mean

Sigma Point #2

Sigma point #1

Estimated value

y=f(x)

Figure 3.1: Sigma point averaging
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If the true value equals the estimated value, we would expect that the system would apply
no correction. However, as can be seen in Fig. 3.1, the sigma mean value µ̂ is not equal to
the estimated value, and so there will be an error ǫ and in consequence a correction.

Specifically, the problem with the UKF came from the need to estimate θ as accurately
as possible in order to likewise estimate Fthrust as accurately as possible. (Cf. Sec. 1.4) Since
the acceleration measurements are the most important measurements for estimating θ, this
difference between the sigma space mean and the cartesian space mean provokes an estimation
error that reverberates through the entire model and rapidly makes the results useless.

It is outside the scope of this dissertation to develop a generalized approach to converting
measurements into the appropriate coordinate system in order to fully apply UKF. Thus in
the end, in spite of the UKF’s superior stability, its computational costs and sensitivity to
the measurement model rules it out.

The classical EKF (Cf. A.3.1), although theoretically not as robust as the UKF, still gives
satisfactory performance. As such, henceforth we base our observer on this observer. (In Sec.
A.4, we include a discussion of the Adaptive High-gain Extended Kalman Filter[45, 8] as a
possible continuation of the EKF approach.)

We recall that this model is in continuous-discrete time, as described in Section A.2.3

{
ẋ = f(x(t),u(t), t)
yk = h(xk,uk, k)

We recall that this is a CD-EKF, as described in Section A.3.1.3, and using the shorthand
described in (A.11)

Prediction:

x̂−k = x̂k−1 +

∫ tk

tk−1

dx

dt
dt

P̂−k = P̂k−1 +

∫ tk

tk−1

dP̂

dt
dt

where
dx̂

dt
= f(x,u) and

dP̂

dt
= (AcP̂+ P̂AT

c +Qc)
∣∣∣ P̂|tk−1

= P̂k−1
(3.2)

and Qc is a positive-definite matrix in Rnx×nx

Correction:
Kk = P̂−kH

T
k (HkP̂

−
kH

T
k +Rk)

−1

x̂k = x̂−k +Kk

(
ytk − h(x̂−k ,u)

)

P̂k = (I−KkHk)P̂
−
k

(3.3)

where Rk is a positive-definite matrix in Rny×ny
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3.1.2.3 Jacobian

The CD-EKF requires the Jacobian Ac of the transition equations, and the Jacobian Hk

of the measurement equations.

The Jacobian Ac can be numerically calculated, but finding the formal Jacobian for the
system described by eqns. (3.1) is not complicated. Even if Jacobians seem complicated to
some, they are straightforward to calculate, can be validated numerically and/or formally,
and form the foundation of the EKF, one of the most widely-used observers in modern science.

Ac is a (17× 17) matrix with zeros everywhere, except at the following indices:

Ac =




0 A1,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 A2,2 A2,3 0 A2,5 0 0 0 0 A2,10 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 A4,2 0 0 0 0 0 0 A4,9 0 0 0 0 0 0 0 0
0 A5,2 0 0 0 0 0 0 0 A4,10 0 0 0 0 0 0 0
0 A6,2 0 A6,4 A6,5 0 0 0 0 0 0 0 0 0 0 0 0
0 A7,2 0 A7,4 A7,5 0 0 0 0 0 0 0 0 0 0 0 0
0 A8,2 0 0 A8,5 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 A11,12 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 A13,14 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




(3.4)
where

A1,2 = 1

A2,2 = −sign(vi) 1
Ma

(ρCdAvi + 2CrrMSkvi)

A2,3 = 1
Ma

A2,5 = M
Ma
g(Crr sin(θ)− cos(θ))

A2,10 = − M
Ma
Crrv

2
i

A4,2 = Sj
A4,9 = vi
A5,2 = Sk
A5,10 = vi

A6,2 = cos(ψ) cos(θ)
A6,4 = −vi sin(ψ) cos(θ)
A6,5 = −vi cos(ψ) sin(θ)
A7,2 = sin(ψ) cos(θ)
A7,4 = vi cos(ψ) cos(θ)
A7,5 = −vi sin(ψ) sin(θ)
A8,2 = − sin(θ)
A8,5 = −vi cos(θ)

A11,12 = 1
A13,14 = 1
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Likewise for the output equations Jacobian, H:

Hdist =
(
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

)

Hacc =




0 Hacc
1,2 Hacc

1,3 0 Hacc
1,5 0 0 0 0 Hacc

1,10 0 0 0 0 1 0 0

0 Hacc
2,2 0 0 0 0 0 0 Hacc

2,9 0 0 0 0 0 0 1 0

0 Hacc
3,2 0 0 Hacc

3,5 0 0 0 0 Hacc
3,10 0 0 0 0 0 0 1




Hψ =
(
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

)

Hθ =
(
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

)

HGPS =




0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0




HSj =
(
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

)

HINJ =

(
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

)

HDEM =
(
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

)

where

Hacc
1,2 = − 1

Ma
sign(vi)(ρCdAvi + 2CrrMSkvi)

Hacc
1,3 = 1

Ma

Hacc
1,5 = M

Ma
Crrg sin(θ)

Hacc
1,10 = − M

Ma
Crrv

2
i

Hacc
1,15 = 1

Hacc
2,2 = 2Sjvi

Hacc
2,9 = v2i

Hacc
2,16 = 1

Hacc
3,2 = −2Skvi

Hacc
3,5 = g sin(θ)

Hacc
3,10 = −v2i

Hacc
3,17 = 1

See Section A.5 for an explanation of how to create Hk. See Algorithm 1 for pseudo-code
of how Hk is used in practice.

3.1.3 Observer pseudo-code

The original code was written in Matlab, but is easily adaptable to any language.
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Algorithm 1: Observer loop

while forever do
while no new measurement do

integrate
dx̂(t)

dt
and

dP̂

dt
end

x̂−k ← x̂(tk)

P̂−k ← P̂(tk)

Measurement

ytk ← event(s) at time tk
∆t ← tk − tk−1

Correction

construct new measurement Jacobian, Hk

construct new measurement covariance, Rk

Kk ← P̂−kH
T
k (HkP̂

−
kH

T
k +Rk)

−1

P̂k ← (I−KkHk)P̂
−
k

x̂k ← x̂−k +Kk(ytk − h(x̂−k ,u)

Update loop

x̂(tk) ← x̂k
P̂(tk) ← P̂k

k ← k + 1

end

We use a Runge-Kutta-4 integrator for integrating the continuous model and covariance
differential equation systems. Note, however, that the interval itself is ∆t, and as such changes
every iteration, not for numerical reasons as in classical adaptive step versions of RK, but
because of the asynchronous measurements.

There is not much to gain by using a variable-step integrator, such as Runge-Kutta-4-
5. Due to the nature of the observer loop, there tend to be multiple integration intervals
between each update of a particular variable. For example, while awaiting a new acceleration
measurement, the system will have been integrated multiple times across smaller intervals as
other measurements, such as fuel burn, arrive.

3.1.4 Tuning

It can be quite complicated to tune a model with 17 states. In the following, several
strategies are provided for tuning the observer.

3.1.4.1 Tuning state model covariances

• xi: the kinematic model is exact, the model noise is thus low.

• vi: the kinematic model is exact, the model noise is thus low.
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• Fthrust: the model is obviously incorrect— Ḟthrust is supposed equal to 0— and moreover
is also subjected to very rapid swings. The model error is quite high.

Note 12 It is possible to improve the frequency response of Ḟthrust by using a local
polynomial model, of the type Ḟthrust = ξ1, ξ̇1 = ξ2, ξ̇2 = ξ3, ... This type of model
better represents variables that are likely to have rapid swings in state, as the modeled
variable can vary like an n-order polynomial.

The cost of this improved response is the addition of dimensions to the state model,
with a commensurate increase in processing costs. In this particular case, satisfactory
results were obtained with the basic model.

• ψ: The car heading is dependent on a kinematic process, and in the long run the model
is exact. (The car will always be on the road, always pointing in the direction the road
goes.) The error is low.

• θ: The car pitch is dependent on a kinematic process, and in the long run the model
is exact. (The car will always be sitting with all four wheels on the ground, always
parallel to the road surface). The error is low.

• N,E,D: Northing, Easting, and Down are dependent on a simplified kinematic model
(Coriolis effects are neglected), and thus the model is quite good. In the author’s
experience, a very low covariance noise value gives good results, as will be shown below.

• Sj : the horizontal road straightness coefficient has a poor model, Ṡj = 0, but due to
the very small nature of Sj itself the tuning value will be low on an absolute scale. See
Note 12 for suggestions on how the model can be improved.

• Sk: the vertical road straightness coefficient has a poor model, Ṡk = 0, but due to the
very small nature of Sk itself the tuning will be low on an absolute scale. Moreover, we
can be certain that Sk changes slowly (otherwise driving a car would be like riding on
a roller-coaster) so Sk should be smaller than Sj . See Note 12 for suggestions on how
the model can be improved.

• Ein: The model for Ein is based on the conservation of energy, and is thus exact. The
model noise is low.

• Pin: The model for Pin is poor: Ṗin = 0. Moreover, Pin is capable of high frequency
swings (at the speed at which the driver depresses the pedal) and thus model noise is
quite high. See Note 12 for suggestions on how the model can be improved.

• θe: The engine angular distance model is very good, indeed it is kinematically exact.
As a consequence the model noise is very low.

• ωe: The engine angular velocity should be considered to be a very noisy model, as 1)
the engine angular distance measurement is very good so there is little risk to placing
a high degree of confidence in the measurement and not in the model, and 2) when the
transmission shifts or is put into neutral the engine changes speed very rapidly. See
Note 12 for suggestions on how the model can be improved.
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• bi, bj , bk: The accelerometer biases should be considered to react glacially slowly, since
the accelerometer bias is estimated consistently across multiple trips. There will be
slight variations with different loading patterns, however. I.e. a car will tilt when
passengers get in or out, thus provoking slightly different biases depending on passenger
weight and distribution, so the biases must be allowed some room for movement.

3.1.4.2 Tuning measurement model covariances

• Accelerometer noise: in the k̂ direction (upwards-downwards from the car), the ac-
celerometer is far noisier than in the ĵ (side-to-side) and î (forward-backwards) direc-
tions. This is due to road noise from bumps, uneven surfaces, etc...

• GPS noise: GPS error is internally estimated by the GPS receiver, and expressed as
HDOP (Horizontal Degree Of Precision), a value that is part of the data sent by the
GPS unit. If using the NMEA protocol, this data is sent in the $GPGGA and $GPGSA

packets.

Unfortunately, HDOP was not reliable in absolute terms, as the estimated error was
frequently underestimated. After losing a GPS fix and then regaining it at a later time,
the GPS position error could be orders of magnitude greater than that predicted by
HDOP.

We suggest using a relatively high base value for the GPS noise covariance, and increas-
ing it as a function of increasing HDOP.

• Vss noise: the Vss is a very clean signal, but the quantization of this signal can lead
to errors. (See Fig. 3.2.) These quantization errors decrease with increasing time
resolution, but unfortunately even at a time resolution of 125µs the error was higher
than the author would have liked. Real-world results can be seen in Fig. 3.3. While
this error can somewhat be smoothed out, it would be better to increase the sampling
speed.

Figure 3.2: Quantized signal
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Due to limitations in hardware it was not possible to sample at a higher rate, although
future versions of the data logger certainly could. 10µs resolution is probably the
minimum required in order to eliminate quantization errors.

Quantization errors aside, it seems that a 1% odometer error is reasonable.

• Engine angular distance noise: this has the same quantization error problem as the Vss,
although there is for all intents and purposes no error whatsoever in angular distance
traveled. (Obvious, since the injector only fires at the same point in the cycle every
time.) This value can be very low and still yield good results.

• If a DEM is present, the noise at the precise node is very low, but determining if one
is at a node, and if not how far away one is from said node, can be difficult. We had
good experience with a value roughly 1000 times smaller than the GPS.

3.1.4.3 Values used

We present here the values used in the above-described observer.

3.1.4.4 Normalization

Another approach to observer tuning is to normalize all variables. States and measure-
ments that are considered noisier, or less reliable, are given higher relative values, and vice-
versa for states and measurements that are more reliable.
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Variable Value

Q(1, 1) 0.1
Q(2, 2) 0.01
Q(3, 3) 90000
Q(4, 4) 0.01
Q(5, 5) 1.5625× 10−8

Q(6, 6) 0.0001
Q(7, 7) 0.0001
Q(8, 8) 0.00001
Q(9, 9) 10−6

Q(10, 10) 1/v2i × 10−9

Q(11, 11) 0.01
Q(12, 12) 50000
Q(13, 13) 0.01
Q(14, 14) 500
Q(15, 15) 10−17

Q(16, 16) 10−17

Q(17, 17) 10−17

Table 3.2: System covariance values

Variable Value

Rdist 0.05
Racc(1, 1) 1
Racc(2, 2) 4
Racc(3, 3) 50
Rψ 0.03
Rθ 0.03
RGPS(1, 1) (GPS HDOP)2 × 100
RGPS(2, 2) (GPS HDOP)2 × 100
RGPS(3, 3) (GPS HDOP)2 × 1000
RSj

106

RINJ(1, 1) 1
RINJ(2, 2) 0.016
RDEM 1

Table 3.3: Measurement covariance values

We used a non-normalized approach as it gives an absolute feel to the problem physics,
but the reader might prefer the normalized approach as it is more abstract and focuses more
on the computational math, and less on the application.

3.2 Data gathering

Data was gathered through normal car driving. Not requiring special actions on the part
of drivers is an essential facet of the approach.

However, due to this constraint, a large part of the rpm vs. torque relationship is not
explored. Specifically, low torque at high rpm is a relatively rare occurrence in normal
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driving. In fact, most normal drivers do not drive at high rpms (>4000rpm) no matter what
the circumstances, and when they do it is only for brief periods of heavy acceleration, i.e.
high torque. Nonetheless, these points are not strictly necessary, as the peak efficiency will
not occur at these high rpm-low torque relationships.

Moreover, the optimal procedure will push the driver to explore high efficiency areas, at
the expense of other zones, improving our model in the area that most needs it. In short, the
most important area to characterize first is the zone of greatest efficiency.

In our experience, an hour of highway driving, along with several starts, was sufficient to
fill a significant part of the curve, and have a reasonable curve fitting.

3.3 Results

Several cars were selected for sampling. The specific car represented here is a Smart
Roadster Coupé, with a 60kW engine that has been chip remapped at some previous point—
when, how and with what was unknown to the owner— to a higher output. This provides a
good case study as even the manufacturer does not know the performance of this particular
engine. The additional cars give similar results (Sec. 3.6), although a detailed study is not
presented.

Each result considers three cases: 1) GPS and DEM data were provided to the observer,
2) only GPS data is provided, and 3) neither GPS nor DEM data is provided. Let us point out
that in this third degraded mode observability is no longer preserved for variables N,E,D, ψ.
However, observability for the rest of the system is preserved, and thus we can still calculate
efficiency.

Note that efficiency is only plotted for moments when the car’s engine is propelling the
car.

3.3.1 Highway

Figure 3.4 shows results gathered from data logged on a highway.
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Figure 3.4: Highway data
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Remark that efficiency grows with increasing torque, which is to be expected.2

3.3.2 In-town

Figure 3.5 shows results gathered from data logged in a city.
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Figure 3.5: In-town data

Again, remark that efficiency grows with increasing torque, which is to be expected. Also
remark that the system is noisier, with transient efficiencies reaching unreasonable values.
This is certainly due to the fact that in-town driving is more chaotic, with rapid shifts from
acceleration to deceleration phases.

Nonetheless, the results are consistent with the previous highway example.

3.3.3 Maximum acceleration

Figure 3.6 shows results when the car is undergoing maximum acceleration.
Efficiency is globally higher in maximum acceleration than the previous two examples.

This is because there are less pressure losses behind the throttle body and thus the engine
is not working as hard to intake air. However, efficiency here is already slightly suffering
versus peak efficiency because at maximum power the car’s engine management system injects
additional fuel in order to help cool the cylinders. This additional fuel is not completely
burned, and thus the engine has a lower fuel efficiency.

3.3.4 Efficiency map

An engine efficiency map, Fig. 3.7, is made by averaging together efficiency values as
functions of rpm and torque. Note that the efficiency graph shows a continuous and smooth
progression from low to high efficiency, and shows a sharp drop off to the right as the rpm

2The reason for this might not be immediately obvious to the lay eye. Efficiency is a function of many
variables, but one important variable is pumping losses. As the throttle plate restricts the airflow into the
engine, it creates a zone of low pressure behind the throttle body. The engine must work harder to create this
vacuum, and so there is more energy lost due to this pressure differential.

45



1555 1560 1565 1570 1575
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

[s]

[%
]

 

 

with GPS and DEM

with GPS, without DEM

without GPS and DEM

(a) Efficiency vs. time

1555 1560 1565 1570 1575
0

20

40

60

80

100

120

[s]
[N

m
]

 

 

with GPS and DEM

with GPS, without DEM

without GPS and DEM

(b) Torque vs. time

Figure 3.6: Maximum acceleration data

reaches the redline (≈ 6300rpm, not shown in the figure). This is raw data from hours of
driving, in urban and highway environments, and has not been post-processed in any way,
except to average the data in each grid point, and that a grid point is not drawn if the
standard deviation is too high (±5%).3

A sample efficiency map, Fig. 3.8, is given for reference.

3.3.5 Discussion

As can be seen, the data graphed in the three test cases coincide so well it is often difficult
to distinguish between results with all sensors and results without GPS and/or DEM. Where
these sensors make the biggest difference is in urban environments, with lots of sharp turns
and acceleration/deceleration phases.

This shows that the efficiency model is very robust, in spite of the fact that the altitude
estimation becomes unsatisfactory. Therefore, DEM and GPS data do not seem to be strictly
necessary. This is most likely due to the fact that the absolute altitude data is not necessary.
As the odometer permits estimating the car’s acceleration, θ remains observable. More to
the point, the altitude data is heavily filtered, as it is less reliable, and thus the estimation
of Fthrust depends most heavily on the acceleration measurement.

If needed, one can eliminate these two sensors, reducing hardware costs and simplifying
the programming task. However, despite the robustness of the observer, it is still preferable to
use GPS and DEM when possible. While not dramatic, the results are clearly worse without
the altitude data, and so as a consequence the efficiency map will be less precise.

It is interesting to note in these plots that the theoretical property of observability is
clearly confirmed in practice. That is to say, despite the noise the whole state necessary for
calculating η can be retrieved from the measurements and in consequence the observer can
be said to perform to satisfaction. Even in the more complicated urban cycle, error remains

3A too high standard deviation means a too large variation of ωe, Te in the grid point, which means that it
might not accurately reflect reality. As there are already many valid grid points, it does not harm the overall
fitting to discard these points.
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Figure 3.7: Efficiency map for Smart Roadster Coupé

Figure 3.8: Sample efficiency map

sufficiently small.

It must be noted that the efficiency values are globally too high. (Thermal efficiency is
generally in the 25-30% range, and this is before taking drivetrain losses into account.) This
is not a major concern, as it indicates a bias in one or another of the car parameters. For
instance, if Crr, the coefficient of rolling resistance, is estimated too high then as a result
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Fthrust will be overestimated, which in turn leads to a higher calculation of Pout and finally
in consequence a globally higher efficiency. Or, if the amount of fuel injected per cycle is
underestimated, then there is a percentage bias that affects the entire curve. However, as
long as any optimality study uses these same values, it will lead to a similar optimal control.

3.4 Curve fitting

Analytic optimal control approaches require an efficiency or specific fuel consumption
model represented by an equation that depends on the system state. We used the mesh
presented in Fig. 3.7 as the raw data for the curve fitting. The curve fitting is not very
sensitive to the mesh granularity, and so a mesh resolution that tracks relatively closely to
a 100x100 grid is a good compromise between data point averaging and resolution. This led
to grid squares 50[rpm] wide by 2[Nm] tall. Averages were only included as explained in the
previous section: there must be a minimum number of points making up the average, and
the standard deviation must be sufficiently small (±5% efficiency).

It is clear that that the empty areas seen in the unexplored torque-rpm-efficiency rela-
tionship will have a tendency to allow potentially undesirable fitting effects. The lack of data
at these points can lead to a fitting with impossibly high efficiencies, especially in the case of
a polynomial fitting.

These effects can be handled by 1) forcing the graph to conform to expectations (a car
engine will always have one or two efficiency islands, and in modern passenger cars designed
to run efficiently at 2000-4000rpm it is reasonable to suppose that there will never be an
additional efficiency island to the extreme right), 2) cutting the fitting off at any minimum
and setting all η outside this minimum to 0, or 3) seeking more data by performing additional
experiments to better map this area.

While #3 would seem to make the most sense, in fact it would be seen as unacceptable
by the average driver, and so this approach should be overlooked as impractical. #1 is
interesting because it is easy programatically. It suffices to line the righthand border with a
column of grid points with zero efficiency. #2 is most likely the best, though, as it allows the
curve fitting to most faithfully model the area of greatest interest.

3.4.1 Efficiency fitting

Here we seek to fit the curve η(ωe, Te). Keeping in mind that the goal is to create an
optimal control for minimizing fuel consumption, it is desirable to keep the model as simple
as possible, by limiting the fitting polynomial order to the greatest practical extent. The
resulting curve parameters are not very sensitive to the mesh granularity, nor to polynomial
class.

Curves were fit by a classical least-squares algorithm, and the coefficient of determination,
R2 is given. In least-squares fittings, the problem is to find the coefficient vector c in

F(ωe, Te)c = η

where F is a matrix with the rows made by the polynomial function we are looking to fit
(in the cases below, that can be η(ωe, Te), φ(ωe, Te) = 1

η
, or Pin(ωe, Te)) evaluated at the

corresponding grid point.
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In order to ensure numerical stability, it is always good practice to first normalize and
center the system:

Fn(ωe, Te)cn = ηn

where
mF = mean of columns of F (as a row vector)
σF = std. deviation of columns of F (as a row vector)

Fn,(i,j) =
Fi,j −mF,i

σF,i

and
mη = mean(η)
ση = std. deviation(η)

ηn,i =
ηi −mη

ση

If the original coefficients are needed, they are given by

c = (FTF)−1FT (Fncnση +mη)

where mη is a column vector where every element has the value mη

The classes of polynomials presented below are chosen based on the highest degree of an
individual variable, not the polynomial’s degree itself. This approach was chosen because the
results naturally grouped together in such a way.

3.4.1.1 Polynomials of highest degree 2
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Figure 3.9: 2nd order η fittings

This is the class of polynomials where the highest degree in a single variable is 2. It would
seem that the simplest model is already sufficient, although the R2 value could be seen as a
bit low in the simplest cases.
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3.4.1.2 Polynomials of highest degree 3
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Figure 3.10: 3rd order η fittings

Figure 3.10a shows a slightly or somewhat better residual than the 2nd order, but not
significantly so. Figure 3.10b has a higher fitting coefficient, but the efficiency island turns
into a ridge. While this might indeed be the case, it is difficult to tell from the real data, so
with all other things being equal we prefer the simpler model.

3.4.1.3 Polynomials of highest degree 4
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Figure 3.11: 4th order η fittings
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As seen in Fig. 3.11 there is a high degree of correlation between the polynomial model
and the data. It would seem that Fig. 3.11a is good candidate for an efficiency map, as with
only 6 parameters it seems to capture the essential efficiency island.

3.4.1.4 Conclusion

In the end, it would seem that simple polynomials with highest degree 2 are already
sufficient versus higher order fittings. In the interests of simplicity, we will choose this fitting
model. It has the added advantage of being very robust in having a well defined efficiency
peak. However, if increased resolution is necessary, Fig. 3.11 shows promise.

Another possible fitting approach would be to estimate the polynomial coefficients directly
using the EKF. However, this is not as reliable in this case, as one could miss special features
in the efficiency graph. It appears preferable to build a non-parametric efficiency map, and
then curve-fit it. Another reason for this approach is explained at the end of [13].

It must be added that these curves cannot be completely used as published, as they do
not show the engine’s limitations. While these can only be mapped by a dynamometer test,
for all intents and purposes they can be inferred by performing a series of WOT (wide open
throttle) tests. Figure 3.7, for instance, is bounded quite nicely by the results from several
WOT tests that have been averaged into the data. Likewise for Fig. 3.20. Figure 3.12 shows
how the efficiency curve could look like with limitations on ωe and Te.
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Figure 3.12: Example efficiency map with bounds

3.4.2 Specific fuel consumption fitting

Here we seek to identify the inverse, φ(ωe, Te) = 1/η. This is a useful fitting because, as
explained in Sec. 1.3.2, the controller model uses the inverse of η so it is natural to try to fit
η−1
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3.4.2.1 Polynomials of highest degree 2

w
e
 [rpm]

T
e
 [

N
.m

]

R
2
 = 0.43259

 

 

1000 2000 3000 4000 5000 6000
0

20

40

60

80

100

120

140

0

5

10

15

(a) η−1 = α0 + α1ωeTe + α2ω
2
eTe + α3ωeT

2
e

w
e
 [rpm]

T
e
 [

N
.m

]

R
2
 = 0.47156

 

 

1000 2000 3000 4000 5000 6000
0

20

40

60

80

100

120

140

0

5

10

15

(b) η−1 = α0 +α1ωeTe +α2ω
2
eTe +α3ωeT

2
e +α4ω

2
eT

2
e

Figure 3.13: 2nd order η−1 fittings

The residual for these second order polynomials is quite poor. This is certainly because
we are trying to fit the inverse of a function that was quite well described by a polynomial
with positive coefficients. It follows, then that this function will resist fitting by a low number
of coefficients.

3.4.2.2 Polynomials of highest degree 3
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Figure 3.14: 3rd order η−1 fittings

52



Figure 3.14 shows similar behavior to the above. The R2 value is quite poor.

3.4.2.3 Polynomials of highest degree 4
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Figure 3.15: 4th order fitted curve, η−1 = α0+α1ωeTe+α2ω
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Even with 4th order variables, the polynomial shown in Fig. 3.15 still has a great deal of
difficulty capturing the essential dynamics.

3.4.2.4 Conclusion

In fact, the poor fit is not as drastic as it might seem. By examining 1/φ we can see
how well the curve fitting corresponds to the original data shape. If the overall shape of the
function is correct, then we can use φ in the optimal calculations and expect to see similar
results.
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3.4.3 Pin fitting

Here we seek to identify the entire power input function, Pin(ωe, Te). This could be a
very useful fitting since this describes the entire efficiency expression as it appears in the
Hamiltonian (Cf. Ch. 4).

3.4.3.1 Polynomials of highest degree 2
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Figure 3.16: 2rd order Pin fittings

The residual for these second order polynomials is quite good. We see that there is little
to be gained by adding additional terms, and so a simple polynomial seems to fit well.

3.4.3.2 Polynomials of highest degree 3

Figure 3.17 does not show a significant improvement from the previous examples.

3.4.3.3 Polynomials of highest degree 4

These higher order polynomials seem to show interesting behavior, but it is difficult to
tell which is the “true” model. In these cases, it is important to avoid over-fitting the data.

3.4.3.4 Conclusions

Higher order models do not seem to add anything intrinsic to the general form of the
fitting, and so we conclude that lower order models are sufficient.

3.5 Validation

The Smart was tested on a dynamometer in order to validate the proposed method. The
test was performed by putting the dynamometer into constant speed operation, and varying
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Figure 3.17: 3rd order Pin fittings

the torque produced by the Smart’s engine.

The constant speed steps were taken in units of 100rpm, over a range from 2500rpm to
6000rpm. The torque was varied between 25Nm and 80Nm.

As the reader can see in Fig. 3.19, the curve fitted results correspond nicely to the observed
results in Fig. 3.9b. While there is a scaling effect versus the experimental data results, this
is easily corrected by calculating some of the parameters rather than using the reported
manufacturer values, e.g. Crr, Cd, fuel injection calibration, etc... It is also possible that the
dynamometer calibration be somewhat off, as a dynamometer equipment is usually used for
showing a relative change (useful when hot-rodding a car) instead of absolute accuracy.

What is more important is that the maximum efficiency occurs at roughly the same point
in the two graphs, and the overall form is identical.

3.6 Additional results

As evidence that the above experiment is in no way specific nor tuned to the Smart
Roadster, we present the efficiency graphs for a 2005 Peugeot 206RC. The engine is of a
completely different construction, has a different number of cylinders, different displacement,
and most of all is naturally aspirated, whereas the Smart Roadster is turbocharged.

It is interesting to note that in these graphs the same basic patterns emerge again, as
expected. There is a maximum efficiency island at medium torque and rpm settings, although
in the Peugeot’s naturally aspirated engine it seems to occur at a slightly lower rpm than in
the Smart’s turbocharged engine.

Note that results are repeatable enough that once the efficiency map is established, the
engine model can be used to estimate other car parameters. For instance, it would be possible
to estimate rolling resistance and thus give a sort of low-pressure tire warning. It is also
possible to estimate mass, or to see the change that aerodynamic modifications make in the
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Figure 3.18: 4th order fitted curve, Pin = α0+α1ωeTe+α2ω
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drag coefficient. It could furthermore be used to track slow deteriorations in the motor’s
general health, serving as an early warning system for engine maintenance.
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Figure 3.20: Efficiency map, Peugeot 206RC
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Chapter 4

Applying Pontryagin’s Maximum
Principle
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4.1 Defining optimality

On an internal combustion engine’s torque-speed map, the zone of maximum efficiency
does not necessarily coincide with the zones of least emissions.[27] In certain cases, these
zones can be far apart, and any optimal study destined for mass utilization must choose the
optimal cost with care.

High 

MPG
Low 

HC

Low 

CO

Low 

NOx

Engine speed

E
n

g
in

e
 t

o
rq

u
e

(a) Gasoline, manifold injection

Low 

PM
Low 

NOx

High 

MPG

Engine speed

E
n

g
in

e
 t

o
rq

u
e

Low, 

HC, CO

(b) Diesel, direct injection

Figure 4.1: Engine operation zones

In Fig. 4.1, we distinguish between the Diesel cycle and the Otto cycle engines. HC
indicates hydrocarbon emissions, NOx represents nitrous-oxide emissions, PM represents par-
ticulate matter, and CO carbon monoxide.

MPG, for the non-native reader, refers to miles per gallon.1

In particular, there is a definite tradeoff between NOx emissions and fuel consumption.
This is the consequence of the intersection of chemistry with thermodynamics. One of the
most basic elements of thermodynamics explains that the higher the compression, the higher
the Carnot efficiency. On the other hand, basic chemical analysis shows that the higher the
compression, the higher the quantity of NOx formed as a result.

The challenge for a holistic control strategy is thus to simultaneously reduce emissions
while increasing fuel economy.

1While the measurement is expressed in archaic units, it is a superior way of expressing fuel economy to
its pseudo-inverse “L per 100km”. Due to the human propensity to understand, and favor, large numbers
over small, it is sociologically better to link a greater good with a greater quantity. The difference between
2.9L/100km and 3.0L/100km appears miniscule to a potential buyer, but it represents years of research and
refinement. Whereas the difference between 78mpg and 81mpg is clear to even the most mathematically
challenged among us. The author hopes to one day see car efficiency given in kpl.
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4.2 Fixed time versus non-fixed time optimization

Optimal control approaches, such as PMP, can treat the optimal dynamic problem in
fixed-time or non-fixed time. In the former case, the problem consists of minimizing the cost
for a trajectory between 0 and T , T being fixed. In the second case, T is a parameter to be
optimized (and thus the minimum cost will be less than or equal to the fixed-time case). The
PMP conditions are different in the two cases, which justifies treating them separately.

From a practical point of view it also makes sense to differentiate between the two prob-
lems. If the goal is to get to a certain point (e.g. drive a certain distance, accelerate to a
certain speed), the problem is clear when T is fixed. As long as a reasonable value for T is
given, it is likely that the solution is also reasonable, even without taking into account the
state constraints (maximum engine speed, road speed limit, etc.) If T is non-fixed, it is more
difficult to imagine the solution ahead of time. For instance, minimizing the cost can lead to
T being small (the cost being the integral of a positive value between 0 and T ), but inversely
the smaller T is the more time spent at the upper limits of the motor’s performance envelope,
with the associated efficiency penalty, and at higher speeds, with the associated aerodynamic
losses. (After all, the most fuel efficient way to get anywhere is not to use fuel: pushing the
car, for example.) Clearly, it comes down to a sort of mathematic compromise.

In the case where T is non-fixed, the problem’s meaning depends to a great deal on the
goal (position or speed), as will be seen in the case studies, Sec. 4.4, 4.5.

4.3 Global vs. local optimization

It makes sense to think about practical optimization as a series of slices which can be
joined together to produce a “more optimal” trajectory. While this trajectory is no longer
properly called the optimal trajectory for an entire car trip, the practicality of actually
applying the trajectory make the theoretical considerations somewhat less imperative. The
practical aspects lead us to an approach where we try to establish a set of rules that drivers
can follow naturally for different phases of the trip. Once the system has identified η as a
function of T, ωe and optimized the trajectory, the objective is to transmit the information
in some way that the driver can understand. (“Accelerate briskly rather than gently— but
don’t floor it either.”)

A natural separation that springs to mind is to distinguish between acceleration phases,
such as merging into traffic, and cruise phases, such as going long distances on highways and
autoroutes.

Fuel economy pptimization in cities is a more arduous task, and has less impact in absolute
terms, as it first requires a city traffic model, which is outside the scope of this PhD.2

Moreover, fuel optimization has less to say about in-city driving, as the number of kilometers
driven in-city are far fewer than those driven in more rural environments. Note, however, that
optimization that takes into account emissions, such as NOx, SOx, particles, etc..., is still very
interesting in urban environments, and with the advent of hybrid cars these optimizations
become much more practical.

2However, the sensor suite and observer developed earlier in the dissertation are already being used by
other researchers in order to gather data for modeling traffic flow.
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Case studies

We will now study several cases with multiple goals and then calculate the corresponding
optimal trajectory. This allows us to validate our approach, knowing that the real-world
application requires a more exhaustive study.

The problem is that optimal controls are very restrictive: the slightest slip, the tinniest
error and optimality is lost. Our goal, then, is to optimize driving styles in a human way, in a
way that does not require that the driver have unearthly powers of prediction and calculation.
With the right rules, the driver will be able to drive more economically while only having to
look a short distance into the future.

Note 13 The “pulse and glide” technique is not treated here. This approach to high-efficiency
driving involves a period of acceleration (the pulse) followed by a period in which the engine
is shut off (the glide). While this approach is possibly more fuel efficient, it is too dangerous
to be considered here, as in modern cars shutting off the engine removes the source of vacuum
for the brake boost, leading to a situation where the brakes are no longer effective after one
or two uses.

Fitting polynomial: For the case study, we have chosen to use the fitting φ = 1/η. This
choice is motivated by the fact that it is an easily differentiable polynomial, which eases the
analytic task. While the results presented in Sec. 3.4.2 show that this is not the best fit for
the ensemble of points, it is nonetheless a good fit for the area of peak efficiency, and has the
necessary behavior, i.e. a pronounced peak efficiency followed by clear dropoffs to the sides.

The fitting polynomial and coefficients are presented in Tab. 4.1.

Coefficient Value

α0 9.4360
α1 -0.018136
α2 -0.068797
α3 3.7201e-06
α4 2.1965e-05
α5 3.6204e-04

Table 4.1: Coefficients for φ = α0 + α1ωe + α2Te + α3ωeTe + α4ω
2
e + α5T

2
e

4.4 One dimension: acceleration on the straight and level

We suppose that the ground is perfectly flat, and that the car is only allowed to have a
forward velocity. As such





ẋi = vi

v̇i =
1

Ma

(
TeNspd −

(
1

2
ρCdAv

2
i +MCrrg

))
(4.1)
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where ωe, Te, xi, vi are all ≥ 03

The target is v(T ) = v∗, where tf = T is supposed non-fixed. We make no assumption
about the distance traveled. The problem is thus to accelerate to the given speed while using
the least amount of energy necessary. The problem of T fixed, interesting from a practical
point of view as explained above, will be considered later.

We now apply use the PMP theorem (see Annex B.2.5). Combining the cost eq. (1.30)
with eq. (B.13), we can write the Hamiltonian, H, as

H = λẋ+ λ0J = λxvi + λv
1

Ma

(
TeNspd −

(
1

2
ρCdAv

2
i +MCrrg

))
+ λ0ωeTeφ(ωe, Te) (4.2)

Since xi does not appear in the target, as here the problem is only in one dimension, the

costate transversality conditions impose λx(T ) = 0, and since λ̇x = −∂H
∂xi

= 0, λx = 0 for all

t.

In the maximal version of the PMP, λ0 ≤ 0. However, when λ0 6= 0 we can normalize
and take λ0 = −1, as the costate vector’s magnitude is unimportant. This leaves the case of
λ0 = 0. If λ0 = 0 then in order for the Hamiltonian H to be constant v̇i must be 0, since the
vector < λ0, λ > 6= ~0, but a constant vi clearly cannot be an optimal trajectory. Thus we can
conclude that λ0 6= 0 and thus we take λ0 = −1. This yields the reduced equation

H = λv
1

Ma

(
TeNspd −

(
1

2
ρCdAv

2
i +MCrrg

))
− ωeTeφ(ωe, Te) (4.3)

From the Hamiltonian transversality conditions (Sec. B.2.5.1), we know that H(T ) = 0
and for an optimal control H(t) =constant.

Furthermore, from the fact that along the trajectory, v̇i ≥ 0, and ωeTeφ(ωe, Te) ≥ 0, then
for H(T ) = 0 to hold, the costate λv ≥ 0. We can deduce that λv = 0 is an absurd solution,
as it requires that ωeTeφ(ωe, Te) = 0, so therefore λv > 0.

4.4.1 CVT case

A CVT (Continuously Variable Transmission) is a special type of transmission that is
seeing increasing use, especially on hybrid and high efficiency vehicles. While the exact
nature of the transmission depends on the particular manufacturer, the objective is to be
able to have an arbitrary output speed for any given input speed. This allows the engine to
always run as close as possible to peak efficiency for a given power demand.

The CVT model is particularly interesting as it appears that this is a major trend in
modern cars. In the CVT case, we suppose that ωe and Te are the controls, u.

Examining the Hamiltonian more closely, and recalling that Nspd =
ωe
vi

is non-constant

in a CVT equipped car, we can see that λ̇v > 0 since

λ̇v = −
∂H

∂vi
= λv

1

Ma

(
ωeTe
v2i

+ (ρCdAvi)

)
> 0

3In the case of ωe, xi, vi, this is immediately obvious, as they can only increase. Te, on the other hand,
is more subtle. If Te were negative, this would imply a braking phase. In a pure acceleration phase, clearly
braking would be less efficient, hence Te ≥ 0
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Figure 4.2: Prototype Lexus RX 400h CVT

Maximizing H(t) with respect to the controls then reduces to maximizing only the part
of the Hamiltonian that depends on ωe and Te

ωeTe

(
1

η(ωe, Te)
+

λv
Mavi

)

which is a 3rd degree polynomial in (ωe, Te) and only depends on vi and λv The problem is
reduced, thus, to a shooting problem. (Remember that φ = 1/η, so the numerical shooting
problem can depend on φ or 1/η, depending on the approach.)

As discussed in Sec. B.3, we can resolve the shooting problem with numerical methods.

4.4.1.1 T, non-fixed horizon

As can be seen in Fig. 4.3, the results are somewhat realistic— putting aside for the
moment that the Smart Roadster has a 6-spd gearbox, and not a CVT. It takes around 10
seconds to reach 100km/hr, which is consistent with the car’s real-world performance.4 The
car attains the maximum velocity of 180km/hr after about 1 min. Again, consistent with
real-world performance. Nonetheless, due to the CVT assumption this demonstration is not
very realistic.

Note that λv(0) was determined by resolving:

max
(ωe,Te)∈Uadm

H(x,u, λ) = 0

4Manufacturer’s data indicates 0-100 in 10.9s, but this is not a straight-up apples-to-apples comparison.
In the maximum acceleration test, the real Smart loses a significant amount of time in gear shifts (≈ 3 s), but
makes up by accelerating harder between shifts.
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(a) Speed and Costate (b) Rpm and Torque

(c) Hamiltonian (d) Control trajectory

Figure 4.3: Optimization on the straight and level: CVT, Tf non-fixed

for a given initial speed v > 0. (Remember that here the Hamiltonian by definition = 0, but
also that along an optimal trajectory the control u must maximize H. In other words, any
control which is not optimal will not only not maximize the Hamiltonian, but it will allow it
to be other than 0.)

Note that the Hamiltonian was not completely preserved, due to the numerical integration.
There are two ways to solve this problem. The first is to use a numerical algorithm that
preserves the Hamiltonian.[40] This type of integration method is effective but difficult to put
into practice. Another method, based on the theory of observers, was developed by Busvelle
et al. and gives highly satisfactory results for a low numerical cost.[14] This problem has not
been considered as critical since the errors are within tolerance.

The trajectory in the control/efficiency space can be seen in Fig. 4.3d. Note that at
t ≈ 10s the control reaches its limits and is no longer singular. Conceptually, this results
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makes sense, since initially the car is at a low speed, where efficiency losses are greater than
drag losses. As the car accelerates, however, it becomes more important to accelerate harder,
leaving the area of maximum efficiency, in order to minimize the time spent with the higher
drag losses.

4.4.2 Multi-speed transmission case

The multi-speed case is interesting as it represents the vast majority of cars that have a
limited number of fixed gears. In this case, our case study uses a six-speed gear-box.

Figure 4.4: Classic multi-speed transmission

The Hamiltonian is written as before:

H = λv
1

Ma

(
TeNspd −

(
1

2
ρCdAv

2
i +MCrrg

))
− ωeTeφ(ωe, Te)

but this time the control is made of the pairing (Nspd, Te) where Nspd is the ratio ωe/v which
in the case of a six-speed transmission can have six distinct values.5 The two controls are
not equivalent to a static feedback since ωe = Nspdv

5Not taking reverse into account, of course. Indeed, there is a theoretically interesting problem which is
not examined in this PhD. Imagine a car on a perfectly sinusoidal road (in the vertical sense). The car starts
off pointing “uphill” and the optimal target is to reach the top while minimizing fuel consumption. No one
would doubt that the car’s most efficient trajectory would never require rolling backwards in neutral to a
“downhill” part before reengaging the transmission in order to benefit from some small forward velocity and
the associated higher engine efficiency at moderate speeds.

However, this is only because there is a critical point at which the car’s rolling resistance and aerodynamic
drag losses become so large that to roll backwards is de facto less efficient. Obviously, if there were no drag
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Therefore, the Hamiltonian as a function of Nspd is

H = λv
1

Ma

(
TeNspd −

(
1

2
ρCdAv

2
i +MCrrg

))
−NspdvTeφ(Nspdv, Te)

and so using the chain rule

λ̇v = −
∂H

∂vi
= λv

1

Ma
ρCdAvi +NspdTeφ(Nspdv, Te) +N2

spdvTe
∂

∂ωe
[φ(ωe, Te)]

While passing from the domain of the physical controls in the (ωe, Te) space to the domain
in (Nspd, Te), the constraints become dependent on the state. The maximum principle thus
must be one which takes into account the state constraints. This is a more complicated
theorem because the costate vector can have discontinuities that must be calculated. In this
case, however, it is not clear that this will be necessary. In effect, the intuition is that the
controls will gravitate around the zones of maximum efficiency, at the expense of the zones
where the efficiency drops off rapidly, which occurs especially at the state constraints. Thus,
as discussed in Sec. B.2.5.3, the optimal solution can be found without considering the state
constraints, and then compared with the true constraints. If the solution does not violate the
physical bounds in (ωe, Te), then this is the optimal solution sought after. If this is not the
case, however, then there is no other choice than to apply the Pontryagin Maximum Principle
with state limits, such as described in [10] and in Pontryagin’s book [37].

4.4.2.1 T, non-fixed horizon

Figures 4.5 show the results from PMP with the same target as the previous CVT sec-
tion. The car goes from 36km/hr to 100km/hr in 9.3s, which represents a medium-to-high
acceleration of around 0.2g. The gears are changed at around 4500rpm, which is consistent
with this kind of spirited acceleration. Note, however, that these trajectories correspond to
a problem that is somewhat non-intuitive: reach a given speed while using the least amount
of fuel possible, with time, T , on a non-fixed horizon. Since the cost is “paid” the instant the
car reaches the final speed, this implies a relatively short total acceleration time.

In Fig. 4.5d, the control is superimposed on the control/efficiency graph. The control
trajectories as a function of the gears can be clearly seen. At 120km/hr, the optimal solution
is close to leaving the state constraint space and thus becomes no longer optimal. It is
relatively easy to guess what the optimal trajectory will be after this point (by the Bellman
dynamic programming principle as elaborated in Sec. B.3.3, but the PMP as it is applied
cannot be used to calculate an optimal trajectory greater than 120km/hr. However, in most
cases throughout Europe and the world the speed is limited to 120km/hr and so this is
inconsequential.

losses whatsoever the optimal trajectory is to coast back and forth, only applying the control torque when the
energy can be “bought” at the cheapest price, that is to say the point where vi gives the highest efficiency.
Defining this critical point would be an interesting study, and might have real-world applications for systems
that have very low drag losses and very steep efficiency curves. Trains come to mind, such as perhaps an
electric train in a coal mine.
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(a) Speed and Costate (b) Transmission gear, Rpm and Torque

(c) Hamiltonian (d) Control trajectory vs. efficiency

Figure 4.5: Optimization on the straight and level: 6-speed transmission, Tf non-fixed

4.4.2.2 T, fixed horizon

This time, the goal is to reach the target speed v∗ in a time Tf , while minimizing fuel
consumption. To be specific, the goals are 140km/hr in 30s, which corresponds to a relatively
normal acceleration while merging onto an autoroute.

The Hamiltonian is identical to the non-fixed horizon case, but this time the transversality
criteria no longer give that H = 0 for all time t, although H constant along any optimal
trajectory still (and always) holds. This is then a classical shooting problem, where λv(0)
must be determined such that v(Tf ) = v∗. Since this is a shooting problem in only one
dimension, it is straightforward to solve, for instance by the secant or bisection methods.

Results are shown in Fig. 4.6. At first glance, they seem surprising.

In the beginning, the control clearly stays at maximum Nspd, minimum Te, which could
be seen as almost the same thing as putting the car into neutral. Indeed, if the model had had

68



(a) Speed and Costate (b) Transmission gear, Rpm, and Torque

(c) Hamiltonian (d) Control trajectory vs. efficiency

Figure 4.6: Optimization on the straight and level: 6-speed transmission, Tf fixed

a neutral speed, it almost certainly would have coasted along until the acceleration phase at
which point it behaves remarkably like the non-fixed time example. This is consistent with our
expectations, since the most fuel efficient way to accelerate to a certain speed, disregarding
the distance taken, is going to be to wait until the right moment and then accelerate.

The analogy taken to the extreme would be the case of a driver who must drive at
140km/hr at noon tomorrow. Obviously, the most fuel efficient strategy will be to wait until
the last possible moment, using not a drop of gas, and then accelerate with the optimal profile
in non-fixed horizon.

4.4.3 Real-world tests

As with the earlier sections, the real-word tests were performed on a Smart Roadster
Coupé with a 6-spd manual transmission. Since the fixed-horizon case gives an identical
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acceleration profile to the non-fixed horizon case, we test only the latter.

A convenient section of road was chosen as the test route. The 2km length was relatively
flat and straight, and allowed unimpeded acceleration to 90kph.

Figure 4.7: Acceleration test route (Plotted with GET, Appendix F)

While not ideal, as there were cars parked on either side of the road, we were able to
perform conclusive tests that show that Pontryagin’s Maximum Principle does indeed lead
to a lower fuel consumption. Results can be seen in Figs. 4.8 and 4.9 and are summed up in
Tab. 4.2.

Driving style Energy used Difference

Soft driving 2929.0kJ -
Pontryagin trajectory 2516.4kJ -14.1%

Table 4.2: Classic driving style vs. optimal control

There are several remarks to be made:
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Figure 4.8: Slow acceleration test

• The improvement was seen on a driving style that would normally have been considered
to be quite efficient: slow starts, easy application of throttle, no sudden movements,
etc...

• These results are in 1-D only, so it makes a certain amount of sense that there is such a
stark difference between optimal control and “douce” driving. The “douce” driving style
takes the car much further before reaching the target speed. So while the acceleration
phase is not optimal, a soft driving approach will not be as bad in a 2-D case as this
data might imply.

• It is surprisingly difficult to follow the optimal trajectory, if for no other reason then
that the gas pedal is a very rudimentary interface. The optimal PMP controls require
relatively constant torque, which is difficult— if not impossible— to manage without
instrumentation.

4.5 Two dimensions: distance on the straight and level

In this section, we search the optimal trajectory for a target speed and distance, which
perhaps reflects reality better as a more common desire is to go a certain distance then it
is to simply reach a certain speed. We define the target N = {xi(T ) = x∗i , vi(T ) = v∗i } and
suppose that x∗i is big enough, on the order of several kilometers, in order to determine the
long term optimal strategy.
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Figure 4.9: PMP optimal control acceleration test

In this case, we can no longer ignore the relation ẋi = v in the now two-dimensional
system (implying that the augmented system, as described in App. B.2.5, is dimension 4).

4.5.1 CVT

Returning to the CVT case— it allows for easier computations and/or formal calculations,
and above all facilitates the theoretical work and taking into account the constraints— and

recalling that Nspd =
ωe
vi

is non-constant in a CVT equipped car, we see that the Hamiltonian

is now written as in eq. (4.2)

H = λxvi + λv
1

Ma

(
Te
ωe
vi
−

(
1

2
ρCdAv

2
i +MCrrg

))
− ωeTeφ(ωe, Te)

The adjoint vector system is thus

λ̇x = −∂H
∂x

= 0

λ̇v = −∂H
∂v

= λv
1

Ma

(
ωeTe
v2i

+ (ρCdAvi)

)
− λx

(4.4)

from which we see that λx is constant.

Suppose λv(0) is fixed. Since the initial system conditions (but only system, not aug-
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mented) are now fixed, that is to say v(0) = vi,0 and x(0) = 0, we can determine λx(0) with
the following condition:

max
Nspd,Te

H(vi,0, 0, λv, λx, Nspd, Te) = 0

We now have all the initial conditions for the augmented system (vi(0), x(0), λv(0), λx(0))
and can now integrate this system. If vi stays positive, we thus obtain a time Tf for which
x(Tf ) = x∗. For this time Tf , we will also have calculated λv(T ). Thus for a given λv(0), we
can calculate λv(T ) at the final time Tf

The transversality conditions implies that λv(Tf ) = 0. We thus come, again, at a shooting
problem, where the objective is to find λv(0) such that λv(T ) = 0

Results are seen in Fig. 4.10. The controls stay at their lower limits for the entire tra-
jectory, and thus the car starts off at vi(0) and advances under its own inertia, eventually
slowing down to a steady state speed for this minimal power condition.

Figure 4.10: Optimization in two dimensions: CVT, Tf non-fixed

Note that the initial value λv(0) is extremely difficult to determine exactly, and thus the
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problem is numerically very sensitive.

We can explain this sensitivity by numerically calculating λv(0). For this, we will calculate
the speed that corresponds to the minimum power and show its optimality.

The minimal power P̃ corresponds to the lowest possible ωe, Te (the lower-left point of
the control space graph). We note that

P̃ =
ω̃eT̃e

η(ω̃e, T̃e)
(4.5)

By realizing that the force on the car is found by P = Fv, we can solve for the corre-
sponding steady-state speed vi:

1

2
ρCdAv

3
i + CrrMgvi = ω̃eT̃e (4.6)

Let

p =
CrrMg
1
2CdA

q = − ω̃eT̃e
1
2CdA

(4.7)

Then by finding the cubic root of eq. 4.6, we obtain

ṽi =
3

√√√√−q +
√
q2 + 4

27p
3

2
+

3

√√√√−q −
√
q2 + 4

27p
3

2
(4.8)

With ṽi in hand, we can look for the initial costate vector values. Since H = 0 and v̇ = 0,
we get P̃ = λxvi which gives

λx(0) = λ̃x =
ω̃eT̃e

viη(ω̃e, T̃e)
(4.9)

To find λv(0), recall that by using the costate equation and the transversality condition

λ̇v = λv
1

M

(
ω̃eT̃e
ṽ2i

+ ρCdAṽi

)
− λx

λv(T̃ ) = 0

(4.10)

T̃ is the final time, which can be calculated from the target x∗i since the speed is constant,

and thus T̃ = x∗

ṽi

By integrating in reverse time, that is to say time-to-go, from s=0 to s = T̃ we have

λv(0) =
λx
α

(
1− e−αT̃

)
(4.11)

where α = 1
M

(
ω̃eT̃e
ṽ2i

+ ρCdAṽi

)

Eq. (4.11) shows the extreme sensitivity of the shooting problem when T̃ is large (which
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will generally happen when x∗i is large). Nonetheless, the control problem itself is numerically
very stable, since the control is constant and on the limit of the control space. This calculation
shows the optimality of the trajectory, at the condition of verifying afterwards that (ω̃e, T̃e) do
indeed satisfy the conditions for maximizing the Hamiltonian. This can be done numerically,
or even formally, since the considered polynomials are particular and of a known degree. It
is also necessary to show that this extremal is optimal, which is clearly the case here, by
uniqueness.
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Chapter 5

Conclusion and Discussion

As cars become more and more advanced, we will have unheard of access to sensors.
Thanks to these improvements, the principles of optimality as described in this paper are
increasingly possible in a real-world scenario

This dissertation has shown that it is possible to create a car efficiency model from an
observer based on cheap and readily available sensors. This efficiency model can then be used
to create an optimal control profile.

5.1 Impact and future work

5.1.1 Sensor suite

The sensor suite proved to be very reliable and accurate. Since the beginning of the
dissertation work, the total cost manufacturing cost has dropped significantly, by almost
50%. It is currently being extended to measure data in all cars, especially hybrid and diesel
cars. These future models will be able to directly read the CAN bus, reducing the amount
of additional sensors necessary.

The third version is undergoing testing, and the sensor suite is already seeing usage in
other laboratories. Aside from measuring data directly related to a car’s functioning, there
are many future applications for sensor suite/observer combination, such as more accurate
road mapping, traffic monitoring, etc...

5.1.2 Observer

The observer as presented in this PhD provides a basis for estimating a car’s efficiency
with a high degree of confidence. While there are always additional model parameters that
can be taken into account for an even higher precision, the observer already gives consistent,
repeatable results. The observer results are in line with results taken from a test bench
dynamometer.

The hope is that this observer can be used to give researchers options for studying car
efficiency and related field, other than depending on car manufacturers. Furthermore, this
observer gives results that are certainly better than the original manufacturer’s data, as the
results are a function of a specific car, with all the variation that can occur during a car’s
long life.
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Likewise, individual engineers and makers will be able to pursue their projects without
having to have a large organization backing them in order to convince automotive manufac-
turers to divulge information.

Lastly, the results are repeatable enough that once the efficiency map is established,
the engine model can be used to estimate other car parameters. For instance, it would be
possible to estimate rolling resistance and thus give a sort of low-pressure tire warning. It is
also possible to estimate mass, or to see the change that aerodynamic modifications make in
the drag coefficient. It could furthermore be used to track slow deteriorations in the motor’s
general health, serving as an early warning system for engine maintenance.

Future work is to continue developing the AEKF for estimating the system state, as it
promises to solve some of the observation problems, e.g. that the noise frequency can actually
be slower than the perturbation frequency and that the model is in constant perturbations
since there is no control input. See App. A.4 and [45].

5.1.3 Controller

As it is difficult to verify directly the fuel efficiency as predicted from the model in
a non-lab environment, the optimal control provides a further validation of the efficiency
model. Furthermore, while more cases must be studied for a complete application, the results
presented here show that the optimal control approach is sound.

Nonetheless, while the PMP controller is easy to understand, it is difficult to implement
onboard a car. Significant advances in ergonomics must be made before such a controller can
be used in everyday scenarios.

Possible implementation strategies are:

• A gas pedal that when pushed to a certain position, the floor for instance, triggers the
optimal control mode.

• An in-car meter that displays the costate vector

• A display that uses an up arrow or down error to indicate speeds which are too fast or
too slow. The intensity of the arrow can indicate whether the setpoint error is small or
large.

• A meter that displays engine efficiency, not fuel efficiency. Such a meter would take
into account the kinetic and potential energy stored in a car.

It is hoped that any future studies explore first the implementation side, as it is becoming
increasingly clear that the optimal control and the ”average” control are radically different.
The ”average” control has developed naturally after a century of driving, so it is likely that
the optimal control will in some way upset the traditional way of driving.

However, there are still possibilities to improve control while allowing drivers to continue
driving as they always have. For instance, the car alternator can be switched on and off at
appropriate times, as could the air conditioning. In hybrid cars, the battery SOC (state-of-
charge) can be managed intelligently as a function of road profile.
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Part I

Theory

“In theory, there is no difference between theory and practice. In practice there
is.”

–Yogi Berra
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A.1 Observers and observability

Alone, measured data is of little use. It is often too noisy to be directly added to the
model, and so some amount of filtering and processing is first necessary. The filter of choice
is a model-based parametric filter, one that combines the system model predictions and the
real-world measurements in order to estimate the internal state. In a deterministic case, these
filters are known as observers.

An observer’s purpose is to:

1. Reconstruct a system’s state based on measurements.

2. Suppress system and measurement noise.

3. Reconciliate data

In many, if not most, cases, it is unfeasible to measure all system states. This can be for
reasons of cost, space, impracticality, or simply impossibility. Thus we employ the observer
to estimate these “hidden” states.

Generally, system models can be expressed in the following terms1 (although we will see
in Section A.2 that they can be written slightly differently, depending on the time domain):

{
dx(t) = f(x,u)dt+ dw(t)
dy(t) = h(x,u)dt+ dv(t)

where x is the state, y the measured output, u the control input, and dw, dv random variables
representing process and measurement noise, respectively.

Note 14 The above model expresses the system in the most general sense. Traditionally,
the noises dw(t), dv(t) are struck from the equation as they are by definition non-derivable.

Furthermore, controls texts and publications oftentimes present the affine case,
dx

dt
= A(x)+

g(x)u or even the linear case,
dx

dt
= Ax + Bu. In the dissertation, except when noted the

most general case f(x,u) is always presented.

The challenge is to filter the noises dw and dv without filtering real-world dynamics,
all while still responding rapidly to perturbations. Except in simple linear cases, we will
always be forced to make some compromises, and this is before considering other issues, such
as numerical stability, etc... However, some very good methods already exist and we will
examine them in Section A.3.

This chapter presents an overview of observers and describes the three major time-domains
used in sytem modeling, along with a discussion of techniques for handling data fusion, such as
redundant and asynchronous data. Algorithms for two current filters, the Extended Kalman
Filter and the Unscented Kalman Filter, are given, along with a discussion of the new AEKF.

1This representation assumes a Gaussian noise distribution. This is not strictly true, and in fact is likely
not true for most models. However, the Gaussian assumption leads to mathematically proven observers that
have proven to be robust even when the Gaussian assumption is patently false. The most general model would
be f(x, u, w) = Φ, but this is so abstract as to lose applicability to many real-world problems.

84



A.1.1 Observer

In rigorous terms, an observer is a mathematical algorithm that reconstructs the entire
state of a deterministic system based only on the system model and its outputs. One common
family of observer is the linear asymptotic observer, a model of the form:

x̂k+1 = Ax̂k +Buk + L(yk − h(x̂k)) (A.1)

where the matrix L is such that x̂ approaches x as k →∞ for all initial conditions x(0) and
x̂(0). This type of matrix is called a Luenberger observer.

The Kalman Filter can be seen as a special variant of a Luenberger observer for an
observable time-invariant system at T∞. However, the Kalman method is not the only way
to create a Luenberger observer. Indeed, any matrix L that places the eigenvalues of (A−LC)
in such a way that their real components are all negative is of this family.

A.1.2 Observability

Observability describes whether or not there is sufficient information to observe all the
system states. For instance, imagine that we wanted to know a car’s speed between point A
and B. As speed is just distance over time, if we have a distance measurement (odometer)
and a time measurement (clock), we can calculate speed. This simple example system is
observable.

Now, imagine we define a new system, one with states speed, distance, and path. This
time we want to know the path the car took. If we still only have two instruments, the
odometer and the clock, clearly we do not have enough information to observe the car’s path.
We would need additional information, such as a GPS or overhead photos of the car along
its route. Thus, with only an odometer and clock this extended system is not observable.

Definition: Roughly speaking, a system is observable if, by knowing the controls leading
up to a state and knowing that outputs of that state, it is possible to backtrack in time in
order to find an earlier state, or apply the dynamic equations in order to predict where the
system will be in the future.

In more rigorous terms, a system is said to be observable if for every vector xd in Rn

there is a finite time T such that if x(0) = xd and one applies an arbitrary control u, the
knowledge of the trajectory on y during the time interval [0, T ] allows one to determine xd.

This definition of observability is the basic definition that corresponds to our intuition.
There are, however, many more nuanced definitions possible, such as for local, infinitesimal,
etc..., that are sometimes for useful. For supplemental definitions, see [13].

Linear observability: In the linear case, the observability test is straightforward. For a
linear system of form:





dx

dt
= Ax+Bu

y(t) = Cx+Du

85



the system is observable if the Kalman Criterion Matrix

Qo =




C
CA
...

CAn−1


 (A.2)

is of full rank nx.[19]

Non-linear observability: In the nonlinear case, it can happen that a system is observable
at certain states and non-observable at others. (For instance, in the system described by eqns
(1.16), (1.17), (1.18), when vi = 0 then the system becomes non-observable.)

It is difficult to talk about global observability. Instead, we are interested in locally
observable systems. First, however, we must make a quick detour to define distinguishability.

Definition: distinguishability– Two states x0(0) and x1(0) are distinguishable
if there exists a bounded input u such that y0(t) 6= y1(t) for some t ∈ [0, T ]

Definition: local observability– A non-linear system is locally observable at x0

if there exists a neighborhood of x0 such that every x in that neighborhood
other than x0 is distinguishable from x0.

A.1.2.1 Observability test by Lie derivative

One test for local observability depends on the Lie derivative. (The derivation and pur-
pose of Lie derivatives is far outside the scope of this PhD. If the reader would like further
information, s/he is encouraged to read Boothby’s excellent description.[11])

The Lie derivative of h with respect to f is

Lfh = ∇hf =
∂h

∂x
f

By convention, L0
f (h) = h. Higher-order Lie derivatives are give by:

Lnf (h) =
∂

∂x

[
Ln−1f (h)

]
f

Thus, let

l(x,u) ≡




L0
f (h)
...

Lnx−1
f (h)


 (A.3)

where f, h are the dynamic and measurement models, as defined in eq. (A.1).

Note 15 If ẋ = f(x,u), then ḣ =
∂h

∂x

∂x

∂t
=
∂h

∂x
f = L1

f (h). Similarly, ḧ = L2
f (h),

...
h = L3

f (h),

and so on and so forth. Thus the vector l(x,u) is nothing more than a series of derivatives
of the output model.
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Finally the test for local observability is that

Q(x0,u) ≡
∂l(x0,u)

∂x
(A.4)

is rank nx

A.1.2.2 Observability test by normal form

A second test for observability is whether the model can be put into the normal form of
observability. Indeed, all methods by which the model is brought into the normal form are by
definition methods that show observability (no matter the change of coordinates, observability
is an intrinsic property).[21] Therefore, we can verify observability and compute the change
of coordinates in one single action, as below.

Note 16 Both the Lie Derivative and the Observability Normal Form approaches are valid,
but in Sec. 1.2.3 we present the normal form of eq. (1.15), as it has further uses beyond
demonstrating observability.

The normal structure is unique in the single output case, and thus in this special case we
can call it the canonical form, but not in the more general multiple output case the normal
structure is not unique. We use the most common generalization, but there has been no
study as of yet to create a sort of “zoology” of normal forms.[7]

A.2 Time domains

Presented here is a short discussion of the three time domains into which systems and
their observations can fall, following whether or not the dynamics and/or the outputs are
discretized.

A.2.1 Continuous-continuous

These models are of the form
{

ẋ = f(x(t),u(t), t)
y = h(x(t),u(t), t)

(A.5)

These models assume that the system is continuous in time, and that the measurements
are also continuous. In consequence, the prediction of the state and state covariance matrices
are continuous.

Note 17 These cases are frequent in mathematical analyses, but are unlikely to be analyzed by
an observer in real-world situations. Observers are almost uniformly implemented on digital
computers, and so the following two cases that have a discrete component to the outputs are
of more interest in real-world controls problems.
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A.2.2 Discrete-discrete

These models are of the form
{

xk = f(xk−1,uk−1, k)
yk = h(xk,uk, k)

(A.6)

Observers based on this model rely on a discrete prediction of the state and the state
covariance matrix, and a discrete correction of these two. This is the most commonly used,
as it is the easiest and cheapest to program.

For linear systems, there is little reason to stay in continuous time when designing an
observer. Time-invariant linear systems can be converted to discrete-time systems by [19]

ẋ = Ax+Bu⇒ x(t) = e(t−t0)Ax0 +

∫ t

t0

e(t−τ)ABu(τ)dτ (A.7)

which, with the condition that uk is constant along the interval [tk, tk+1], yields

{
xk+1 = Adxk +Bduk
yk = h(xk,uk, k)

(A.8)

Furthermore, if A is invertible:

Ad = eAT , Bd = A−1(eAT−I)B (A.9)

In the more general case, the continuous time-domain system (A.5) can be discretized by

{
xk+1 = Φ(xk)
yk = h(xk,uk, k)

where Φ is the resolvent2 of the ODE in (A.5) between tk and tk+1 and where

Ad =
∂Φ(xk)

∂xk

which can be calculated by using the Jacobian of A(x), denoted Ac =
∂A(x)

∂x
{

Ȧd = AcAd

Ad(tk) = I (=Identity)

However, the most common and expedient approach to discretizing continuous models is
to first linearize the model about its current state and then discretize as in eq. (A.7). This
implies taking the Jacobian, either numerically or analytically. For finite steps in time, this
is inherently less accurate than using a continuous model for prediction.

2The resolvent is the integral of Ac along the path x(t). It has the interesting property that
Φtk+1/tkΦtk/tk−1

= Φtk+1/tk−1
and so xk+1 = Φtk+1/t0x(t0)
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A.2.3 Continuous-discrete

These models are of the form
{

ẋ = f(x(t),u(t), t)
yk = h(xk,uk, k)

(A.10)

The continuous-discrete variant is a hybrid, best-of-both-worlds solution for physical prob-
lems treated on digital computers. It models a dynamic system that changes in continuous
time, but has measurements arriving at discrete intervals.

In fact, the measurements do not even need to be synchronized. The ease with which
asynchronous measurements is handled is a great advantage of the continuous-discrete system
over the discrete-discrete one.

For the vast majority of physical systems, continuous-discrete time is the logical choice,
since they fall neatly into the two time domains. Such systems change continuously with time
t, but the data measurements are at discrete times tk. Nonetheless, discrete-discrete can be
interesting in terms of numerical computation time.

Note 18 Continuous-discrete systems pose an interesting theoretical problem for the defini-
tion of observability. The attentive reader will notice that there is no guarantee that there
is ever a time when all measurements arrive simultaneously. This leads to a good question:
“Is this system observable?” In this specific case, the answer is clearly “yes”. However, to
the best of the authors’ knowledge there is no general study of observability for asynchronous
measurements, as in [21] for the continuous case and [2] for the adaption to the discrete case.
The problem is clearly not obvious since one can build an academic system for a continuous-
time model which is observable for continuous measurements and for synchronous discrete
measurements, but not for asynchronous discrete measurements.3

3Example: Note Π = {(a, b) ∈ R
2; a2 + b2 = 1} the unit circle.

Let X = Π× R
∗

+ × R
∗

+ and the system Σ on X.















ẋ1 = −x2x4

ẋ2 = x1x4

ẋ3 = 0
ẋ4 = 0

,







y1 = x1x3

y2 = x2x3

y3 = x4

and x3, x4 > 0

1. The system Σ is observable, whether it is continuous or discrete. Specifcally, y2
1+y2

2 = x2
3(x

2
1+x2

2) = x2
3

give x3 and thus y1 and y2 suffice to give x1 and x2

2. The asynchronous system is non-observable because there are certain values for x4 which makes x3

indistinguishable.

Suppose that y1 and y2 are measured alternatively at a step time ∆t. The solution to Σ is















x1 = cos(x4t+ C1)
x2 = sin(x4t+ C1)
x3 = C2

x4 = C3

If ∆t is poorly chosen such that x4∆t = π
2
+ 2kπ then
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A.3 Kalman Filters

Kalman Filters refer to a wide class of model-based stochastic filters. While originally
developed as a discrete-time linear filter [32], the Kalman Filter was quickly extended (no
pun intended) to continuous time and non-linear systems[26]. In the 50 years since Kalman’s
seminal paper, the term “Kalman Filter” has grown to encompass a much larger series of
filters.

It goes without saying that different filters will have different advantages and disadvan-
tages. For instance, the Extended Kalman Filter has good noise rejection properties, but can
be slow to respond to perturbations, and global convergence has never been shown. Indeed,
to the contrary, it has been shown that it does not globally converge.

The High-gain Kalman Filter[21] demonstrates global convergence, but it overly sensitive
to noise. The Adaptive High-gain Extended Kalman Filter combines the EKFs noise rejection
properties with the HGKF’s responsiveness, but adds a number of additional parameters to be
tuned.[7] The Unscented Kalman Filter presents interesting possibilities for better predictions
of non-linear systems, but adds additional tuning parameters that are poorly understood,
greatly increases computation time, and does not cope well with a non-linear measurement
model.

We present in the following two Kalman Filter variants that are seeing wide application,
the EKF and the UKF. These filters were chosen as likely candidates for modeling η (Chap.
1). We also present a new Kalman filter that presents an interesting direction for further
study.[45]

A.3.1 Extended Kalman Filter

The Extended Kalman Filter (EKF) is a tried-and-true approach used extensively in
science and engineering. While there are other filters available, such as the Unscented Kalman
Filter [30], the DD1 Filter [36], the High Gain Kalman Filter [21], etc..., the EKF has proven
to be a very suitable approach for a wide class of problems, including vehicle localization[33].
Some of EKF’s advantages are simplicity, computational costs, tuneability, and years of
experience in real-world applications.

The EKF requires calculating the Jacobians of various model functions.4 We use the



























y1(0) = x3 cos(C1)
y2(∆t) = x3 sin(C1 +

π
2
) = x3 cos(C1)

y1(2∆t) = x3 cos(C1 +
2π
2
) = −x3 cos(C1)

y2(3∆t) = x3 sin(C1 +
3π
2
) = −x3 cos(C1)

...

and so it becomes impossible to find both x3 and C1, with the obvious conclusion that the system is
non-observable.

4Indeed, it is its principle disadvantage as the Jacobian is a first order approximation of a non-linear system
at a specific point, a point which is only an estimation of the real state, and so by its very nature is sub-
optimal, and can affect the filter accuracy or even lead to divergence of the filter. Many other filters have
been developed that seek to address this shortcoming. See Section A.3.2 for an example of a popular one.
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following shorthand to represent commonly used Jacobians:

Ac =
∂A

∂xi

Bc =
∂A

∂ui

Hc =
∂H

∂xi
(A.11)

A.3.1.1 Continuous-continuous EKF

In the CC-EKF, both the model and the measurements are continuous in time. This is
the most classic form of the EKF, and yet the hardest to use in a strictly correct sense.5

˙̂x = A(x̂,u) +K(t) (y(t)− h(x̂,u))
˙̂
P = AcP̂+ P̂AT

c +Qc −K(t)RcK
T (t) (A.12)

where

K(t) = P̂HcR
−1
c (A.13)

and where Qc is a positive semi-definite matrix in Rnx×nx and Rc is a positive-definite matrix
of dimension Rny×ny

A.3.1.2 Discrete-discrete EKF

The DD-EKF has a discrete model and discrete measurements. Common engineering and
scientific usage is to discretize linear and non-linear systems as this form is particularly cheap
to calculate.

Prediction:

x̂−k = f(xk−1,uk−1, tk−1)

P̂−k = AkP̂k−1A
T
k +Qd (A.14)

where Qd is a positive semi-definite matrix in Rnx×nx

Correction:
Kk = P̂−kH

T
k (HkP̂

−
kH

T
k +Rk)

−1

x̂k = x̂−k +Kk

(
yk − h(x̂−k ,uk)

)

P̂k = (I−KkHk)P̂
−
k

(A.15)

where Rk is a positive-definite matrix of dimension Rny×ny

5Instead of using a true analog computer for the correction, a daunting task to say the least, digital
computers running at extremely high sample rates are used instead.

91



A.3.1.3 Continuous-discrete EKF

The CD-EKF is used for systems with continuous dynamics, but discrete measurements.

Prediction:

x̂−k = x̂k−1 +

∫ tk

tk−1

dx

dt
dt

P̂−k = P̂k−1 +

∫ tk

tk−1

dP̂

dt
dt (A.16)

where
dx̂

dt
= f(x̂,u) and

dP̂

dt
= (AcP̂+ P̂AT

c +Qc)
∣∣∣ P̂|tk−1

= P̂k−1
(A.17)

and Qc is a positive semi-definite matrix in Rnx×nx

Correction:
Kk = P̂−kH

T
k (HkP̂

−
kH

T
k +Rk)

−1

x̂k = x̂−k +Kk

(
ytk − h(x̂−k ,uk)

)

P̂k = (I−KkHk)P̂
−
k

(A.18)

where Rk is a positive-definite matrix of dimension Rny×ny

The continuous-discrete Kalman Filter has found applications in diverse industries. One
of the advantages of the CD-EKF is that it allows for continuous integration until a new
measurement arrives, making it, when seen under a certain light, the fastest filter, i.e. it
has the shortest computational time between measurement input and calculation of the state
estimate. Thus in spite of additional integration costs vs. the discrete-discrete filter, the
continuous-discrete can be the best solution for a real-time observation problem.

A.3.2 Unscented Kalman Filter

The Unscented Kalman Filter is a recent innovation [30] that is based on the assumption
that it is easier to approximate a gaussian distribution than it is to approximate a non-linear
function.

The UKF works by creating an n-dimensional cloud of sigma points around the expected
mean. These points are precisely determined in order to exactly approximate the first, second,
third, and fourth moments (kurtosis). The exact number of sigma points required for such
an approximation is 2n+ 1, where n is the number of states in the dynamic system. [28]

The properties of the UKF have been studied in detail elsewhere [29, 31], but we sum up
the primary advantages here:

• As the mean and covariance of x are reproduced to the second order, the calculated
values of the mean and covariance of y are correct to the second order as well. This
implies that the mean is calculated to a higher order of accuracy than the EKF, whereas
the covariance is calculated to the same order of accuracy.[30]
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• UKF requires no calculation of derivatives or Jacobians, operations that are generally
non-trivial, human error-prone, and can lead to significant implementation difficulties.

The UKF was originally designed as a discrete-discrete filter. In additional to the co-
variance parameters— similar to the EKF case— there are three additional parameters that
must be chosen: α, β, κ

Note: if the true distribution of x is Gaussian, β = 2 is optimal.

Prediction:

Xk−1 = [x̂k−1 . . . x̂k−1 . . . x̂k−1] +
√
c

[
0

√
P̂k−1 −

√
P̂k−1

]

Xk = fd(Xk−1, k − 1)

x̂−k = Xkwm

P̂−k = XkWXT
k +Qk−1 (A.19)

where

c = α2(n+ κ)

wm = [W
(0)
m . . . W

(2n)
m ]T

W = (I− [wm . . . wm])× diag(W
(0)
c . . .W

(2n)
c )× (I− [wm . . . wm])

T

and where
W

(0)
m = λ/(n+ λ)

W
(0)
c = λ/(n+ λ) + (1− α2 + β)

W
(i)
m = λ/(2(n+ λ)), i = 1, . . . , 2n

W
(i)
c = λ/(2(n+ λ)), i = 1, . . . , 2n

Correction:

X−k = [x̂−k . . . x̂−k . . . x̂−k ] +
√
c

[
0

√
P̂−k −

√
P̂−k

]

Y−
k = h(X−k , k)

µ̂k = Y−
k wm

Sk = Y−
k W[Y−

k ]
T +Rk

Ck = X−kW[Y−
k ]
T

Kk = CkS
−1
k

x̂k = x̂−k +Kk(yk − µ̂k)
P̂k = P̂−k −KkSkK

T
k (A.20)

However, in [41], the UKF was extended to the continuous-discrete domain, and called
the Unscented Kalman-Bucy Filter. In [50], a more efficient square root form was given,
which we detail below.
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A.3.3 Square root filters

An algorithmic variant of classic filters is created by taking the square root of the state
noise covariance matrix, P. In these cases, the mathematical characteristics are preserved,
for instance positive-definiteness is guaranteed, and the numerical properties are improved,
as computation is done more accurately because very small numbers become larger, and very
large numbers smaller. [15]

A.3.3.1 Square-root continuous-discrete EKF

The following algorithm is detailed in [4, 15], but it is repeated below for ease of reference.

Assume x0,P0 given. (If P0 is not given, it can generally be initialized with the identity
matrix.) Let

Ak = eA(x̂(tk),u(tk))∆t

Define the following Cholesky square roots:

SkS
T
k = P̂

LLT = Q

DDT = R

Prediction: Form matrix L1 as:

L1 =
[
Ak−1Sk−1 L

]
(A.21)

and calculate M1 by taking the Q factor of

[l,M1] = lq factorization{L1} (A.22)

where l is not further used.

Determine S−k by taking the first nx columns of M1

[
S−k 0

]
= M1 (A.23)

Integrate ẋ to find x̂−k

x̂−k = x̂k−1 +

∫ tk

tk−1

dx

dt
dt

Correction: Compute the measurement model Jacobian Hk = Hc(x(tk)) as in eq. (A.11).

Form matrix L2 as:

L2 =

[
D HkS

−
k

0 S−k

]
(A.24)

and calculate M2 by taking the Q factor of

[l,M2] = lq factorization{L2} (A.25)

where l is not further used.
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Extract the matrices Wk,Kk,Sk

[
nx︷︸︸︷ ny︷︸︸︷

ny{ Wk 0
nx{ Kk Sk

]
= M2 (A.26)

Compute the Kalman gain Kk

Kk = KkW
−1
k (A.27)

Compute final state estimate x̂(tk)

x̂k = x̂−k +Kk

(
yk − h(x̂−k ,u)

)
(A.28)

A.3.3.2 Square-root continuous-discrete UKF

Called the Square Root Unscented Kalman-Bucy Filter, it provides results mathematically
identical to the Unscented Kalman-Bucy Filter, only for reasons of numerical stability and
speed it avoids recalculating the cholesky decomposition at each time step.

The following algorithm is detailed in [41, 50], but it is repeated below for ease of reference.

Prediction:

M(t) = A−1(t)
[
X(t)WfT (X(t), t) + f(X(t), t)WXT (t) +Q

]
A−T (t)

dXi(t)

dt
= f(X(t), t)wm +

√
c [0 A(t)Φ(M(t)) −A(t)Φ(M(t))]i (A.29)

where

c = α2(n+ κ)

X(t) = [x̂k(t) . . . x̂k(t) . . . x̂k(t)] +
√
c
[
0

√
S(t) −

√
S(t)

]
(A.30)

and

Φij(M(t)) =





Mij(t) , if i > j
1
2Mij(t) , if i = j

0 , if i < j

(A.31)

Correction:
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Y−
k = h(X−k , k)

µ̂k = Y−
mwm

[
q,S−k

]
= qr decomposition

{[√
W

(c)
1 (Yi=1:2L − µ̂k)

√
Rk

]}

Sk = cholesky update{S−k ,Yi=0 − µ̂k,W(c)
0 }

Ck = X−kW[Y−
k ]
T

Kk = (Ck(S
T
k )
−1)S−1k

x̂k = x−k +Kk(yk − µ̂k)
U = KkSk

Ak = cholesky update{A−k ,U,−1} (A.32)

The algorithm, which is not particularly obvious in the literature, is as follows:

Algorithm 2: SR-UKF-CD

while t < T do
form Xtk−1

from mtk−1
and Atk−1

while no new measurement do

integrate
dX̂(t)

dt
end

X̂−k ← X̂(tk)

Correction

construct new measurement covariance, Rk

extract A−k from X̂−k
S−k ← the square, lower-diagonal matrix S−k from QR decomposition
Sk ← cholesky factor of

S−k + sign
(
W

(c)
0

)√
W

(c)
0 (Yi=0 − µ̂k)(Yi=0 − µ̂k)T

U ← KkSk
for i = 1 to columns(U) do

A−k ← cholesky factor of (A−k −UiU
T
i )

end

Update loop

m̂(tk) ← m̂k

Â(tk) ← Â−k
k ← k + 1

end

Note 19 Taking the cholesky factor at each iteration instead of the cholesky update is not
efficient. It is written in the above way only for algorithmic clarity. An efficiency SR-UKBF
should use a cholseky update.
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A.4 Adaptive High-gain EKF

The AEKF is a recent innovation in the field of non-linear observers. Proposed in [8]
as a solution that combines the best features of EKF noise filtering and high-gain EKF
perturbation sensitivity, the AEKF is based on the concept of innovation, a metric that
indicates the deviation between the historical predicted state and the historical measured
state. When the innovation becomes arbitrarily high, it triggers an increase in gain that
switches the AEKF from unity-gain mode to high-gain mode.

Furthermore, the AEKF is a mathematically proved observer. Its stability is grounded
by theory, as opposed to the simple EKF. This can have important consequences for safety,
if an observer is used for closed-loop control purposes.

A.4.1 Observability normal form

(In the case of a multiple-input/multiple-output system, a change of variables is not
necessarily unique and thus we talk of normal form instead of canonical form.)

High-gain observers, developed within the framework of [21], have been proven to achieve
global exponential convergence. (Recall that the EKF has only been proven to converge
locally, i.e. when the estimated state is in a neighborhood ε of the true state.) This ex-
ponential convergence property requires that the model be in a very specific form, called
observability normal form, which characterizes the observability of the system. The general
multiple-output normal form is described in Sec. A.4.3.

Note 20 At risk of stating the obvious, before building any kind of observer it is necessary
to first verify that the system is observable. Obviously, it is impossible to design an observer
if the system itself is not observable (no matter the change of coordinates, observability is an
intrinsic property). However, all methods by which the model is brought into the normal form
are by definition methods that show observability. Therefore, we can verify observability and
compute the change of coordinates in one single action.

A.4.2 Continuous-discrete AEKF

The multiple output CD-AEKF [7] is repeated here for completeness.
We write the continuous-discrete time normal form as

{
ż = Az+ b(z)

ytk = Ckz
(A.33)

For a system with nx states and ny measurements:

Prediction:

ẑ−k = ẑk−1 +

∫ tk

tk−1

[Aẑ+ b(ẑ)] dt

P̂−k = P̂k−1 +

∫ tk

tk−1

[
(A+ b∗(ẑ)) P̂+ P̂ (A+ b∗(ẑ))T +QG

]
dt

(A.34)

where P̂|tk−1
= P̂k−1 and ẑ|tk−1

= ẑk−1
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Correction:
Kk = P̂−kC

T
k (CkP̂

−
kC

T
k +RG(k))

−1

ẑk = ẑ−k +Kk(ytk − C(ẑ−k ))
P̂k = (I−KkCk)P̂

−
k

Id,k =
∑k

i=m+1∆ti||γ(yi −
∼
yi)||2Rny

Gk = F(Gk−1, Id,k)

(A.35)

where

1. QG,RG(k) are the high-gain modified state noise covariance matrix and measurement
noise covariance matrix, both as described in Sec. A.4.4.

2. Id,k is the innovation and F is the adaptation, both explained in Sec. A.4.4.

3. b∗(ẑ) is the Jacobian matrix (∂b(z)/∂z) |ẑ
4. γ is a diagonal matrix of normalizing constants, as explained in Sec. A.4.4

5. Gk ≥ 1 is the high-gain parameter, explained in Sec. A.4.4. In addition, G0 = 1

6. z0 and P0 are initial guesses for state and state covariance, and furthermore P0 is
symmetric, definite, positive matrix.

A.4.3 AEKF Theory

Since, unlike the single-output case, there is no unique normal form for multiple out-
put models[21] the observer must be designed accordingly. This representation is described
immediately below.

Definition 1 As earlier, z ∈ Rnx denotes the state vector. z is divided into sub-vectors
denoted zi for i ∈ {1, . . . , p}, where each one exists in a compact subset of Rnx,i. Hence
the dimension of zi is nx,i with

∑p
i=1 nx,i = nx. The dynamics of a given sub-vector zi =

(zi,1 . . . zi,nx,i)
T are of the form:

żi =




0 αi,2 0 . . . 0

αi,3
. . .

...
...

. . .
. . . 0

αi,nx,i

0 . . . 0




zi +




bi,1(zi,1)
bi,2(zi,1 , zi,2)

...
bi,nx,i−1(zi,1 , . . . , zi,nx,i−1)

bi,nx,i(z)




While the other bi,j(·) do not, the sub-vector field components of the form bi,nx,i(·) do have
the right to depend on the full state.

The full system is of the form eq. (A.33). In matrix Ck, the row correponding to the ith

output is composed of zeros; except for index (nx,1 + nx,2 + ...+ nx,i−1 + 1), which is equal to
αi,1

The hypotheses are:

1. Although omitted, αi,j can be time dependent. All the αi,j(t) functions are bounded and
cannot vanish (which would lead to a loss of observability).

98



2. The vector field b(z) is supposed compactly supported and Lipschitz.

For such systems we can design an AEKF as in Sec. A.4.2 which has the following con-
vergence property:

Theorem 1 For any time T ∗ > 0 and any ǫ∗ > 0, there exist

1. 0 < d < T ∗ that define an innovation

2. G0 > 1 and Gmax > G0

3. a function Gk = F(Gk−1, Id) such that Gk ∈ [1, Gmax]

such that for any time t ≥ T ∗:

‖z(t)− ẑ(t)‖2Rnx ≤ ǫ∗e−a(t−T
∗)

where a > 0 is a constant independent from ǫ∗

A.4.4 AEKF considerations

Understanding the AEKF requires introducing certain concepts. We start with the high-
gain matrices QG and RG. For reasons of Lipschitz constants (explained in [7], Chapter 5):

QG = G∆GQc∆G (A.36)

where Qc is a symmetric positive semi-definite matrix, and ∆G is a diagonal matrix with
elements determined by

1. The normal form leads to a block-wise diagonal matrix A, as in eq. (1.22). The matrix
A is split into p square submatrices. Define n∗x as the width of the largest submatrix.

2. In ∆G, for each square block ∆G,i (of width nx,i) corresponding to one of the p blocks
in A (also of width nx,i), the elements are determined by

for k=1...nx,i ∆G,i(k, k) = Gn
∗

x−nx,i+k−1

For similar reasons as for QG

RG(k) = G−1δGRkδG (A.37)

where Rk is a symmetric positive semi-definite matrix, and δG is a diagonal matrix with
elements determined by taking the first element of each subdiagonal of ∆G

for i=1...p δG(i, i) = ∆G,i(1, 1)

The application of RG(k) to an asynchronous measurement model is detailed in Data
fusion, Sec. A.5.
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Figure A.1: INNOVATION TIMESCALE

A.4.4.1 Understanding “innovation”

The innovation at time t is calculated in a moving window from (t− d) to t, and as such
d is the characterizing parameter. Innovation for a variable-step asynchronous continuous-
discrete system is written as

Id,k(t) ≡
k∑

i=m+1

∆ti||γ(yi −
∼
yi)||2Rny (A.38)

where
∆ti = ti − ti−1 (A.39)

and
m = min

tm∈[t0,tk]
(tm ≥ t− d) (A.40)

and γ is a normalizing matrix.

γ = diag(γ1, γ2, . . . , γny) (A.41)

and
∼
yi is found by integrating the IVP presented in eq. (A.33)





ż = Az+ b(z)
∼
yi = Ciz(ti)

and

z(tm) = ẑ(tm)

(A.42)

In other words, the innovation is the sum of the length of the time interval, ∆ti, times
the difference between the measured state and the innovative predicted state, γ||y − ∼

y||2
Rny ,

of each time interval that happened after t−d seconds. See Fig. A.1. (This point is justified
by a Lemma in [7])

Innovation can be thought of as an experiment to see what happens if the observer
correction is turned off at time t − d and the system is allowed to continue naturally. The
amount of innovation is, roughly speaking, proportional to the square of the norm of the
error between the observed trajectory and the non-observed trajectory.
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A.4.4.2 Understanding “adaptation”

In a classical High-Gain Kalman Filter, the high-gain parameter, G is fixed. In an AEKF,
a function called adaptation varies the value of G on the interval [1, Gmax]. G = 1 and
G = Gmax correspond to the unity-gain mode, otherwise known as the classical EKF, and
the high-gain EKF mode, respectively. The adaptation, F, is driven by the estimatation
quality measurement, the innovation.

In the CD-AEKF, the adaptation can be used as a threshold-based switch which incre-
mentally steps G up and down between 1 and its maximum value. As explained in [7], an
incremental function is suitable in the continuous-discrete case.

F is used in order to limit the overshoot. It is known that for high-gain filters, there is a
peak phenomenon[21] when the adaptation switches. This phenomenon creates a perturbation
to the covariance matrix P , which resembles a poorly initialized P0.

Note 21 The model described by (1.16) is driven ONLY by perturbations. Thus the high-
gain triggering frequency will be high, and as such the goal of the adaptation is to reduce to
a maximum the peak phenomena.

An example adaptation function F(Gk−1, Id,k) would be

If (Id,k > upper threshold) AND (G < Gmax) ⇒ (G = G+ 1)
If (Id,k < lower threshold) AND (G > 1) ⇒ (G = G− 1)

Preliminary results with the AEKF are promising as the high-gain component allows the
observer to converge much more quickly when there is an unmodeled perturbation, such as a
sudden braking or acceleration.

A.5 Data fusion

One of the particular problems that can occur in filtering is treating asynchronous and
redundant data. In a multiple-output system, diverse sensor measurements are combined
together in order to form the state estimation. Some sensor units might give multiple sensor
readings, such as a GPS that in addition to the desired latitude and longitude outputs gives
altitude, speed, bearing, etc...

Furthermore, in a discrete-time sampled system, it is often the case that various sensor
data arrives asynchronously, and this asynchronous data need not necessarily have a constant
sampling rate.

These situations are both handled well by parametric model-based filters (such as the
Kalman Filters presented above).

A.5.1 Redundancy

In general, sensors are chosen such that each sensor gives different information from the
others, however this is not always the case. When more than one sensor measures the same
data, this data becomes redundant. One way to handle the redundant data measurements is
to simply ignore them, but this is less than ideal, especially as the redundant case is easy to
treat.
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Each redundant data source acts like a new output in the measurement model H(x,u).
Each source has an associated covariance value (in the R matrix) that reflects the confidence
in each particular measurement, exactly as would be done if the data were not redundant.

For instance, take the case of a system receiving altitude information from both a GPS
and a DEM (Digital Elevation Map). A GPS is not very accurate in altitude terms, and
tends to get a “stuck” on a particular bias, so the measurement covariance parameter for the
GPS would be tuned to a relatively high value. On the other hand, a DEM is often accurate
to sub-cm resolution, so it would have a relatively low covariance value.

The advantage of data redundancy is that if one sensor or another is lost, the model still
retains its good qualities, and, more importantly, cannot lose observability. Again, drawing
on the above example, there are times when a GPS cuts out— urban canyons, tunnels,
etc..., and times when a DEM does not have any relevant data. The combination of the two
“sensors” gives us the best possible results.

Redundancy can occur in any time domain. Furthermore, with certain sensors the infor-
mation is complementary, e.g. digital map data is more precise, but GPS data has a finer
grid resolution.

A.5.2 Asynchronous data

Asynchronous measurements, by their very nature, can only occur in discrete update
time domains, e.g. continuous-discrete and discrete-discrete. There have been many papers
written about data fusion of asynchronous signals, some which recommend interpolating lower
frequency signals in order to form a sort of “oversampling”, or resampling higher frequency
signals in order to form a sort of “undersampling”. The author recommends against this
approach, as not only can it introduce unwanted effects, it completely breaks down if some
of the measurements are not only asynchronous but also do not have a consistent sampling
time.

The asynchronous case is not as straightforward as the redundancy case. Some measure-
ments can arrive as a function of time, some as a function of a state variable, and some as
externally triggered events. (See Note 18 for a discussion of asynchronous system observabil-
ity.)

Such a set of measurement data necessitates an approach with a variable time step, where
a new update/correction is triggered at each moment there is a new data value. This implies
a constantly changing measurement matrix Hk.

As shown in Algorithm 1, we integrate the differential system equations until we encounter
an event at time tk. At this moment, we start by determining what measurements are present
and then stack them into the output vector, yk. Then we assemble the measurement Jacobian
matrix Hk in the same fashion, again by stacking the individual row vectors associated with
the measurements.

Once we have assembled Hk, we can proceed as normal with the discrete update/correc-
tion of the observer.

Additionally, the measurement covariance matrix Rk must change as a function of the
time step and of the available data. It is always of dimension Rny×ny
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Note 22 The above fusion techniques are equally valid for the discrete-discrete
approach. However, if the DD-EKF had been used instead of the CD-EKF, Q
would have varied at each iteration as a function of time since the covariance
of a gaussian noise of covariance q after a time ∆t is q∆t. I.e., the longer
the observer waits without any measurement data, the higher the uncertainty,
which is represented by a growing q. Thus in the discrete-discrete case:

Qd = Qc∆ttk (A.43)
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Dynamic optimization problems can be solved with different approaches, depending on
the particular nature of the problem. Globally, optimization problems can be tackled along
three major lines, presented in descending order of computational costs:

• Dynamic programming: uses the principle of optimality of subtrajectories in order to
recursively compute a control for any x0 and any t. The solution for a continuous
problem stems from resolving the Hamilton-Jacobi-Bellman (HJB) equation, a partial
differential equation in state space.

• Direct methods: referred to as “first discretize, then optimize”. These methods re-
quire discretizing the commands u along multiple subsections of time, and then seeking
the optimal trajectory across each subspace. The direct shooting and direct multiple
shooting methods are examples of this approach.

• Indirect methods: referred to as “first optimize, then discretize”. They have the advan-
tage of being able to present a complete optimal synthesis of the problem, dramatically
reducing computational costs. The shooting and multiple shooting methods are exam-
ples of this approach.

B.1 Controllers and controllability

B.1.1 Controllers

Roughly speaking, the control is the vector u that brings the state from x(0) to x(tf ) in
finite time tf < T .

Thus, the controller is the mathematical algorithm that calculates the control u.

B.1.2 Controllability

Controllability, like observability, is an important property for any system we wish to
completely control. Controllability refers to the ability to act on all the variables required to
control the system. The world is full of systems that we can observe, but not act upon: a
bouncing ball, a paper airplane, a waterfall, etc... What is missing in all these cases is that
we have no external actor, and thus they are not controllable.

Controllability is a mathematical way of expressing the idea that if a system starts at A
then there is a sequence of commands, out of all the possible commands, that will bring the
system to state B.

In more rigorous terms, a system is said to be controllable if for all vector pairs (xa,xb)
in Rn there exists a finite time T and a command u defined on [0, T ] such that, when the
command u is applied, the solution x(t) starting from x(0) = xa gives x(T ) = xb.

Linear controllability: The Kalman rank condition states that a linear system of the
form





dx

dt
= Ax+Bu

y(t) = Cx+Du

106



is controllable if and only if the controllability matrix

(
B AB . . . An−1B

)
(B.1)

is of rank nx.[19]

Non-linear controllability: In the nonlinear case, it can happen that the system is con-
trollable at certain points, but not at others.

We can speak about a larger condition of global controllability. For an affine system of
the form

ẋ = f(x) +

nu∑

i=1

gi(x)ui

where gi is a vector valued function.

We have a test for local controllability, but similar to the observability test in Sec. A.1.2,
we must use Lie algebra to apply it.

First we define the Lie bracket operator (The derivation and purpose of Lie brackets is far
outside the scope of this PhD. If the reader would like further information, s/he is encouraged
to read Boothby’s excellent description.[11]):

[f, g] ≡ ∂g

∂x
f − ∂f

∂x
g

and higher order Lie brackets:

(ad1f , g) ≡ [f, g]

(ad2f , g) ≡ [f, [f, g]]
...

(adkf , g) ≡ [f, (adk−1f , g)]

Note: ad is read “adjoint”.

The system is locally controllable about a point if and only if the controllability matrix

[
g1 . . . gnu [ad1gi , gj ] . . . [ad

nu
gi
, gj ] . . . [ad1f , gi] . . . [ad

nx−1
f , gi]

]
(B.2)

has rank nx.

B.2 Optimal control

We might ask ourselves the question, ‘If a system is controllable, is there a such thing as
a “perfect” control?’

First, we have to define what a “perfect” control is. One popular choice is to define
“perfect” as “minimizing a cost”. (Or “maximizing a benefit”. The opposite of one is
mathematically identical to the other.)

Thus, among all the possible solutions that bring x(0) to x(T ), we look to find a trajectory
u∗ that minimizes a cost, J(T,x,u). Such a trajectory, if it exists, is called an “optimal
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control” for this cost.

The existence of an optimal trajectory is dependent on the system regularity and the
cost function. It is possible that an optimal control does not exist in the class of considered
controls, but that it exists in a larger space of controls.[49]

B.2.1 Concept of time in optimal control

In [5] Bellman showed that the natural approach to optimality problems is to work back-
wards in time from the solution. Call this time to go.

Time to go makes a certain amount of sense when it is considered that the objective is
known, but not necessarily the initial point. While we can easily calculate the finite number
of ways to optimally approach the final point, there are an infinite number of ways to leave
the initial point, and we have no way to immediately distinguish those that are possibly
optimal from those that are not.

Thus, we talk about integrating from the final target x(T ) to the initial point x(0).

One confusing facet of inverse time is how to refer to it. If one talks of time T in an
inverse time problem, does this refer to time T with respect to forward or backward time?
For this reason, we prefer the phrase “time to go”, which, when scrupulously used, removes
all ambiguity. We represent “time to go” by s and thus

t = 0 7→ s = T
t = T 7→ s = 0

Inversing the dynamic equations is straightforward. It suffices to take the negative of the
dynamic equation

ẋ∗ = −ẋ (B.3)

B.2.2 Linear quadratic control

When the system is linear, or is linearized about an operation point, a special general
solution can be found in the case where the cost is of the form

J =
1

2

∫ tf

0
(xTQlqrx+ uTRlqru)dt (B.4)

where Qlqr and Rlqr are positive semi-definite and positive definite constant matrices, re-
spectively.

Note 23 Since the solution has already been found for all linear systems with the cost as
described in eq. (B.4), the principle of time to go is not used here.

B.2.2.1 Continuous LQR

The optimal control is then

u∗ = −Klqrx (B.5)
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where

Klqr = R−1lqrB
TSlqr (B.6)

and where Slqr is the convergence of the differential Riccati equation

Ṡlqr = −SlqrA−ATSlqr + SlqrBR−1lqrB
TSlqrQlqr (B.7)

B.2.2.2 Discrete LQR

Perhaps a more practical use for the LQR is optimal control in discrete-time. We present
here the slightly modified approach for the discrete LQR.

S0 = Qdlqr +AT
k (BkR

−1
dlqrB

T
k )
−1Ak

Sk = Qdlqr +AT
k (S

−1
k−1 +BkR

−1
dlqrB

T
k )
−1Ak

Kdlqr,k = (BT
k SkBk +Rdlqr)(B

T
k )
−1SkAk

(B.8)

(B.9)

where Qlqr and Rlqr are as in the above case for the continuous control.

The control is as before:
u∗ = −Kdlqr,kxk

The LQR is particularly interesting for basic control, as it provides a first point of entry to
optimal control. If the model is known, then the Jacobian can be derived (or calculated) and
as a consequence it is computationally cheap to create an optimal control that has sufficient
degrees of freedom for minimizing the inputs or the state values.

The LQR control is easy to apply, and far outperforms rudimentary controllers such as
PIDs. If, however, the cost that we seek to minimize cannot be effectively approximated by
eq. (B.4), we are forced to explore higher complexity optimization solutions.

B.2.3 Dynamic Programming

Dynamic programming is a design technique similar to “divide-and-conquer”. Divide-
and-conquer algorithms partition the problem into independent subproblems, solve the sub-
problems recursively, and then combine their solutions in order to solve the original problem.

Thus, dynamic programming is an optimality approach where a complex optimization
problem is broken down into a sequence of decision steps over time. It uses the princple of
optimality of subarcs in order to recursively compute feedback control for all time t and all
x0

In the continuous-time case, this leads to the Hamilton-Jacobi-Bellman (HJB) equation.

∂S

∂t
+H1

(
x,
∂S

∂x

)
= 0

Dynamic programming, while “optimal” in the sense that it eventually finds an optimal
solution, is resource intensive. It is also not well adapted to high accuracy, and it is possible
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that it miss singular optimal paths. The allure of dynamic programming is its programming
simplicity for complex models with arbitrary initial states.

B.2.4 Non-linear Programming

Non-linear programming (NLP) reformulates the optimal control problem into a finite
dimensional model of the form

min
w

a(w) subject to b(w) = 0, c(w) ≥ 0 (B.10)

where the finite dimensional vector w represents the optimization degrees of freedom, and
with the differentiable scalar function a and vector valued functions b, c

NLP, while widely used in industry, does not give any feel to the problem dynamics.
Moreover, while the computation technique is more graceful than dynamic programming, it
still is a process that requires intense usage of computer memory and processor. Moreover,
there is no way with NLP to be sure that the optimal solution as given by the solver is the
true optimal solution.

B.2.5 Pontryagin’s Maximum Principle

Note 24 The PMP is often used as Pontryagin’s Minimum Principle, which simply inverses
Pontryagin’s original “benefit function” to be maximized into a “cost function” to be mini-
mized. The mathematics are the same, only the sign of the cost J is different.

PMP states a necessary condition that must hold on the entire length of an optimum
trajectory, starting from a fixed initial state, x(0). [49]

Consider the system

ẋ = f(x(t),u(t)) (B.11)

with associated cost function

J(x,u, t) = K(x(T )) +

∫ T

0
L(x(t),u(t), t)dt (B.12)

where L the instantaneous cost, and K the terminal cost.

We can define the Hamiltonian as

H(x,u, λ) = λT f(x,u) + λ0L(x,u, t) (B.13)

where λ is the costate vector, also known as the adjoint vector, and λ0 ≤ 0 (since this is
Pontryagin’s Maximum Principle. In the case of the Minimum Principle, λ0 ≥ 0) such that
the vector < λ0, λ > 6= ~0

Note 25 λ0 is generally normalized to −1 by dividing the costate vector λ by λ0. However,
in the case where λ0 = 0 this obviously cannot be done. This case arises when the optimal
trajectory is independent of the cost, which can occurs, for instance, when there is only one
possible trajectory.
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Suppose that x∗(t),u∗(t), λ∗(t) represent the optimal state, optimal control, and optimal
costate trajectories, respectively. I.e. u∗(t) is the control that that brings the state from an
initial state x(0) to a final state x(T ) and minimizes the cost J , and x(t) is the associated
state trajectory. Then there exists a costate trajectory λ(t) such that

ẋ =
∂H

∂λ

λ̇ = −∂H
∂x

(B.14)

and for almost all t, 0 ≤ t ≤ T

H(x∗,u, λ) ≤ H(x∗,u∗, λ) (B.15)

that is to say that the optimal control u∗ is the control that maximizes H amongst all the
possible controls u that can be applied to bring x(0) to x(T ).

By using the system and costate vector, we can define the augmented system z:

ż =

{
ẋ

λ̇
(B.16)

The PMP is particularly adept at solving minimal time problems (when the cost function
depends only on time), but can also be solved for fixed time, or can be solved independent
of time. If the fixed time limit is set far enough in the future, this will yield identical results
to the solving independently of time.

PMP can give a set of global rules that can be expressed in analytic terms, called an
optimal synthesis. Such an optimal synthesis can easily be programmed into a microprocessor,
greatly reducing the real-world resources necessary to compute the optimal control. These
rules read like an instruction manual— they dictate what control should be applied and when,
much like a numerical recipe. See Appendix G for a worked example.

B.2.5.1 Transversality conditions

Transversality on the costate vector If not all states at the final state x(T ) are fixed,
then the costate vector can be such that the transversality conditions at one or both endpoints
satisfy

λT0 x(0)σ = 0 (B.17)

and

(
λT − λ

∂K

∂t

)T
x(T )σ = 0 (B.18)

for all σ such that x+ ǫσ is within o(ǫ) of the termination point of an optimal trajectory for
all sufficiently small ǫ > 0.

In other words, these two conditions verify that the costate vector is perpendicular to the
state vector at the endpoints.
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Note 26 If there is no value-added cost K, this condition has an immediate consequence
when a state xjis not present in the optimal target. The transversality condition gives λj = 0.

Note 27 If the target x = ~0, then we can only take σ = 0 and the transversality conditions
do not add any additional information to the problem.

Transversality on the Hamiltonian If the final time for arriving at the final state x(T )
is not fixed, there is a transversality condition at t = T

H(x∗,u∗, λ∗) = −λ0∂K
∂t

(B.19)

B.2.5.2 Limits on the control

Limits on the control pose no particular problem. Indeed, this sort of control limit
oftentimes presents itself in the form of bang-bang controls, controls that are applied only at
the upper or lower bound of the possible control.

B.2.5.3 Limits on the state

Limits on the state are much more complicated to deal with. While there are several
versions of the Maximum Principle that allow for state limits– see for instance [16], the
theory and application is sufficiently complicated that satisfactory results can be more easily
obtained with other methods. The problem with state limits comes from the fact that the
costate vector can become discontinuous at the state boundaries.

Oftentimes, a state limit is avoided by the simple nature of the problem. For instance,
it is unlikely that a fixed-time energy optimal trajectory for a car trip will push the car to
break the speed limit. If it does, the fixed-time horizon can simply be elongated, which will
almost certainly find a solution at a slower speed. It is in general easier to examine the PMP
optimal solution and modify the input parameters in case of a state limit, than it is to treat
the state limits analytically.

Penalization methods: Another method to manipulate the optimal solution so as to
impose state limits it to us penalization methods. By weighting certain limits, the optimal
solution can be forced to obey the state limits. For instance, suppose that we want to impose
a limit on the state. We can add a cost of the form

α

∫ T

0
g(x(t))dt

to the original cost function J(x,u, t), where α is the weighting value, and g is a function
that is 0 when the state is within its limits, and strictly positive everywhere else. The hope
is that by adding this cost the the optimal solution will force the optimal trajectory to stay
within the prescribed limits.

The mathematical justification for this approach can be found in [49].
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B.3 Numerical methods for optimal control

Choosing the appropriate method is based on questions of numerical stability, compu-
tation time, and desired accuracy. While this dissertation focuses on Pontryagin, we also
present here strategies for Non-Linear Programming and Dynamic Programming problems.

B.3.1 Indirect methods

Indirect methods are used for Pontryagin problems where the costate vector λ is also
sought. Their advantages are a higher level of precision, converge toward the true optimal
solution without risk of getting stuck at local minima, and are memory efficient. Lastly, the
multiple shooting method is parallelizable, for increased computational speed.

B.3.1.1 Shooting method

The shooting method is a way of reducing a boundary value problem (BVP) to an initial
value problem (IVP). Its name is inspired from the problem of shooting at a known target. It
is not known in advance how high to aim the shot, so one simply aims, fires, and sees where
the shot lands. If it lands short, the next is aimed higher. Conversely, if it lands far, the next
is aimed lower.

Figure B.1: Shooting method

The principle is to take the first boundary condition as an initial point and then create
a second condition stating the gradient of the function at the initial point. The IVP is now
completely well-posed and the system can be integrated. If the system arrives at a final value
other than the target, the initial gradient condition is adjusted. This loop is iterated until
the integrated value converges on the true target to within an acceptable amount of error.
The solution to the IVP is now also the solution to the BVP.
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In mathematical terms, we have a BVP of the form

{
ż(t) = f(t, z(t))

r(z(0), z(tf )) = ~0
(B.20)

where r(x, y) stands for “boundary conditions at x and boundary conditions at y”, and where

z =

(
x
λ

)

is the augmented state.

We transform this into an IVP by supposing z0 = z(0) and

{
ż(t) = f(t, z(t))

r(z0, z(tf , z0)) = ~0
(B.21)

We now have a classic IVP where we seek z0 such that the second half of eq. (B.21)
holds true. Effectively, we are looking for the roots, and this can be solved by a classical
zero-crossing method, for example Newton or bisection.

Figure B.2: Shooting method

B.3.1.2 Multiple shooting method

With respect to the simple shooting method, the multiple shooting method breaks the
interval [0, tf ] intoN intervals [ti, ti+1] and assigns an initial guess values z(ti) to the beginning
of each interval. The interest is to improve the stability of the shooting method.
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The application of the maximum principle as applied to the optimal control problem ż as
described in eq. B.20 reduces to

ż(t) = f(t, z(t)) =





f0(t, z(t)) if t0 ≤ t1
f1(t, z(t)) if t1 ≤ t2

...
fs(t, z(t)) if ts ≤ tf

(B.22)

where t1, t2, . . . , ts ∈ [t0, tf ] can be commutations of the optimal control and, in the case of
state constraints, contact with the state frontier. Continuity is be preserved for z at the
commutations, but the costate can jump at the frontiers in state constraint cases.

We begin by defining a function Φ(t) that is valid on t = [0, T ] (a line connecting each
state initial value with its final value is a good first guess, but in fact, it can be any Lipschitz
continuous function). An initial guess of unknowns z0 is made. Then system (B.22) is
integrated until ||z(t, z0)− Φ(t)|| > ε for some ε > 0. We designate the time variable at this
point as t1. Now the integration of the system continues from t1 using Φ(t1) as the initial
’guess’ for the solution. This process continues until time t = b is reached.

Now the error function e(s) = ||z(ti)−zi|| is formulated where s =
[
z0 z1 . . . zN−1

]T
,

where zi is the initial state for the trajectory on the interval [zi, zi+1. After this is accom-
plished, a correction is made to z0 using a classical zero-crossing method, for example Newton
or bisection.

This process is repeated, only now the number of iterations N is fixed, and the function
Φ(ti) is replaced by zi. The iterations stop once the global convergence is satisfactory.

Figure B.3 shows the multiple shooting method for the simple case of a one-dimensional
system.

Note 28 The multiple shooting method improves stability by increasing the number of nodes
over the simple shooting method. While there are many more unknowns in the multiple
shooting method, the method is parallelizable.[12]

B.3.2 Direct methods

Direct methods are used for Non-Linear Programming models. These solutions are less
accurate than the indirect methods, but are oftentimes easier to program, trading computer
time for programming time. They also easily handle state constraints and are not very
sensitive to the initial value guess.

B.3.2.1 Direct single shooting

Generally, direct shooting methods are the the easiest when a controls problem is first
approached. The strong points of direct single shooting are (1) that it can use fully adaptive,
error controlled, state-of-the-art ODE or DAE solvers; (2) that it has only a few optimization
degrees of freedom even for large ODE or DAE systems; and (3) that only initial guesses for
the control degrees of freedom are needed.

The weak points are (1) that the ODE solution x(t;q), where the arguments after the
semi-colon (;) denote the dependence on the interval’s initial value and control, can depend
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Figure B.3: Multiple shooting method

very nonlinearly on q; (2) that unstable systems are difficult to treat; and (3) it tells us little
about the nature of the costate vector.[20]

Due to its simplicity and general efficiency, the direct single shooting approach is often
used in engineering applications, e.g. gOPT.[38]

The direct single shooting approach starts by discretizing the controls into N subintervals.
We choose grid points on the interval t0 = τ0 < τ1 < τ2 < · · · < τN−1 < τN = tf and chose
the controls u piecewise constant, u(t) = qi for t ∈ [τi, τi+1] so that u(t) depends only on the
finitely many control parameters q = {q0,q1, . . . ,qN−1, T} and can be denoted by u(t;q),
again where the arguments after the semi-colon (;) denote the dependence on the interval’s
initial value and control. If that problem is for a fixed time T , the last element of q disappears,
as T is no longer an optimization variable.

Path constraints are discretized in order to avoid a semi-infinite problem, for example by
requiring that the constraints hold only at grid points τi. Thus the optimal problem reduces
to the following finite dimensional nonlinear programming problem (NLP):

min
q

∫ T

0
L(x(t;q),u(t;q))dt+K(x(T ;q) (B.23)

subject to path and terminal constraints and to

s0 − x0 = 0

This problem can be solved by a finite dimensional optimization solver, e.g. sequential
quadratic programming (SQP).[35]
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B.3.2.2 Direct multiple shooting

The direct multiple shooting, as developed in [6], combines advantages of simultaneous
methods with the direct single shooting approach. In direct multiple shooting, we proceed
as follows. First, as in the case for direct single shooting, we discretize the controls piecewise
on a coarse grid.

u(t) = qi for t ∈ [τi, τi+1]

where the intervals can be as large as in the direct single shooting case. Second, we solve the
ODE on each interval [τi, τi+1] independently, starting with an artificial initial value si

{
ẋi = f(xi(t),qi) for t ∈ [τi, τi+1]

xi(τi) = si

By numerical solution of these IVPs, we obtain trajectory arcs xi(t; si,qi)

Simultaneously with the decoupled ODE solution, we also numerically compute the cost
function integrals

li(si,qi) =

∫ τi+1

τi

L(xi(τi; si,qi),qi)dt

In order to constrain the artificial degrees of freedom si to physically meaningful values, we
impose continuity conditions si+1 = xi(τi+1; si,qi)

Thus we come to the following NLP formulation that is completely equivalent to the direct
single shooting NLP, but contains the extra variables si and has a block sparse structure.

min
s,q

N−1∑

i=0

li(si,qi) +K(sN ) (B.24)

subject to path and terminal constraints and to

s0 − x0 = 0
si+1 − xi(τi+1; si,qi) = 0

If we summarize all variables as w = (s0,q0, s1,q1, . . . , sN ,qN ) we obtain an NLP which
can be exploited in the tailored SQP solution procedure.[6]

B.3.3 Dynamic programming methods

The Hamilton-Jacobi-Bellman equation (HJB) is

∂S

∂t
+H1

(
x,
∂S

∂x

)
= 0 (B.25)

where
H1 = max

u∈U
λT ẋ− L(x,u)

There are a number of discretization methods. The scheme for finite difference discretiza-
tion proposed below is one of the simplest, but higher order schemes can be used. We start by
writing a finite difference method simple discretization of eq. (B.25). Remark that in order
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to ensure stability, the discretization scheme must be decentered. Thus, in order to discretize

〈
∂S

∂x
, ẋ(x,u)

〉
=

n∑

p=1

∂S

∂xp
ẋp

we must discretize
∂S

∂xp
by a difference divided to the right or left, depending on the sign of

ẋp
Let us consider a mesh in space (xi), where i = (i1, . . . , in) ∈ Z, which we will suppose to

be regular in order to simplify matters, and as consequence a regular discretization of time,
(tj). Let h = (h1, . . . , hn) be the spatial step size, and k = tj+1− tj be the temporal step size.

Let Si be the approached value of S(tj ,xi). It suffices to approach
∂S

∂xp
(xi) by a difference

divided to the left if ẋp(xi,u) > 0, and to the right if ẋp(xi,u) < 0
For a ∈ R

a+ = max(a, 0) = a+|a|
2

a− = min(a, 0) = a−|a|
2

(B.26)

For all p ∈ {1, . . . , n} we note êp = (0, . . . , 1, . . . , 0) where the 1 is at the pth place. We
thus obtain the explicit scheme

0 =
Si,k+1 − Si,k

k
+max

u∈U




n∑

p=1

(
Si,k − Si−êp,k

hp
ẋp(x,u)

+ +
Si+êp,k

− Si,k
hp

ẋp(x,u)
−

)
− L(xi,u)




(B.27)
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Part II

Practice

“Practice is everything.”

–Periander, Tyrant of Corinth

“Everything is practice.”

–Pelé
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C.1 Overview

This appendix details the various data formats used in this dissertation. Specifically

• Quad-coordinates: database specification for quad-tile coordinate system (Sec. C.1.1)

• Configuration: the XML formats used to characterize cars and trips (Sec. C.1.3)

• Observer files manifest: the files generated by the observer program (Sec. C.1.2)

• Logging: the protocol in which the microcontroller code saves the data (Sec. C.1.4)

C.1.1 Quad-tiles and quad-coordinates

While latitude-longitude is the traditional way to geolocate objects, it is not a format that
leads itself to easy and rapid search algorithms with fixed-point microcontrollers. A better
system is quad-tile coordinates.

Quad-tiles split the world into 4 tiles at each zoom level. Zoom level 1, the entire Earth,
has four tiles made by two splits: one along the equator and another along the prime meridian
(assuming a Mercator projection where the world is already split in half along the 180◦

meridian). See Fig. C.1.

Figure C.1: Quad-tile, zoom level 1
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Subsequent tiles can be cut into four smaller tiles, ad infinium. The tile information
can be represented as a series of pairs of 1’s and 0’s. In each pair, the first bit, the MSB,
represents the left/right side(0=left, 1=right) and the second bit, the LSB, represents the
top/bottom (0=top, 1=bottom). Thus each zoom level requires 2 bits.

As such, the entire Australian continent is contained in the quad-tile 11, all of Greenland
is contained in the quad-tile 00, and the South American continent is split between quad-tiles
01 and 00. See Fig. C.1.

With a 32-bit integer (zoom level 16), the tiles are < 600m on a vertical side (where
obviously the horizontal width will be a function of latitude), which is already a quite small
bounding box.

With a 64-bit integer (zoom level 32), the tiles are < 1cm on a side, which gives a very
high degree of precision for geolocalization.

Thus quad-tiles lead themselves to geolocalization because these base integer sizes are
(luckily) already well-suited to the problem.

Note 29 The attentive reader will remark that quadcoordinates are incapable of representing
an exact point. Furthermore, any point falling on the edge of one of the two bisecting axes at
zoom level 1 cannot even be contained in a quad-tile. Thus, both the Equator and North Pole
pose representational problems, even if from an engineering perspective this is not relevant.

C.1.1.1 Quad-tiles database entry format

A system of roads can be seen as an ordered list of interconnected nodes. Nodes can be
shared by multiple roads. The database storage and search algorithm used in this dissertation
are detailed below:

Node entry: Each node ID is the same as the quad-tile coordinate for that same node.
Trading storage space (cheap) for processor speed (expensive), each node also has its associ-
ated latitude-longitude coordinates. The number of intersecting ways is provided, and lastly
the 32-bit ID for the n ways that intersect the node are given.

Node entry

Node ID Latitude Longitude # of Intersecting ways n Intersecting ways
ID

32-bit
unsigned

32-bit
signed

32-bit
signed

8-bit unsigned n * 32-bit unsigned

Table C.1: Node entry data format

Way entry: Each way ID is represented by a 32-bit unsigned integer. The number of nodes
that a way includes is given (in the case of a way that has more than 256 nodes, it can be
split into two ways with no loss of information), followed by the node IDs themselves. Lastly,
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a way is split into a given number of subpoints, which do not necessarily correspond to the
nodes making up the way, and the elevation for each node is given.

Way entry

Way ID # of
nodes

n Nodes # of Elevation points n Elevation points

32-bit
unsigned

8-bit
unsigned

n * 32-bit
unsigned

8-bit unsigned n * 32-bit unsigned

Table C.2: Way entry data format

Note 30 If it is not immediately obvious why simply using nodes for elevation is unaccept-
able, consider that most mapping agencies only use nodes when necessary to represent the
curvature of a road. The road is considered to be straight between two nodes. If the distance
between two nodes is several kilometers (imagine a road in the Australian Outback, or the
desert in western America), there will certainly be a number of hills that are hidden by this
oversimplification.

Quad-tile bounding box entry: The quad-tile bounding box entry indicates all the
ways that cross the bounding box. This is a useful representation for finding all the ways
close to a given point. As in the case for the node entries, the quad-tile bounding box’s
ID is also its coordinate. The zoom level is also given (by necessity, as the 64-bit field
1100000000000000000000000000000000000000000000000000000000000000 at zoom level 1 would give
one fourth the planet, whereas at zoom level 32 it would represent a square roughly one cm
on a side almost exactly at the intersection of the equator and the prime meridian.), followed
by the number of ways and finally by the IDs of all the contained ways.

Note 31 There is nor preferred sense to a quad-tile’s binary representation. That is to say,
a level 1 tile could as well put level one completely at the right, and the left-shift as the zoom
increases, or a level 1 zoom could be associated only with the first two left-most bits (otherwise
known as MSB) followed by level 2 at the third and fourth bits, etc... The choice depends on
the needs of a particular system.

Quad-tile bounding box entry

Quad tile coordinate ID Zoom level # of contained ways n Contained ways

64-bit unsigned 8-bit unsigned 8-bit unsigned n * 32-bit unsigned

Table C.3: Quad-tile bounding box data format
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C.1.1.2 Quad-tiles database tree format

Node search algorithm: A simple binary search tree. (See Fig. C.2) The node value leaf
data entry is the pointer to the appropriate information in the data table. The center, i.e.
starting node, is the very first file entry in the index file. All searches are based on this
starting point.

Node binary search tree

Node ID Pointer to left leaf Pointer to right leaf Pointer to entry in data file

32-bit unsigned 32-bit unsigned 32-bit unsigned 64-bit unsigned

Table C.4: Nodes binary search tree data format

Figure C.2: Binary search tree

Ways search algorithm: A simple binary search tree. The way value data points to the
appropriate information in the data table. The center, i.e. starting node, is the very first file
entry. All searches are based on this starting point.

Ways binary search tree

Way ID Pointer to left leaf Pointer to right leaf Pointer to entry in data file

32-bit unsigned 32-bit unsigned 32-bit unsigned 64-bit unsigned

Table C.5: Ways binary search tree data format
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Quad-tile bounding box search algorithm: A somewhat more complex quad search
tree. The way value data points to the appropriate information in the data table. The
center, i.e. starting node, is the very first file entry in the index file. All searches are based
on this starting point. In a quadtree, subgroups are divided into four leaves (See Fig. C.3),
not two as in a binary search tree. As in the case for quad-tiles, 00 represents the NW
quadrant, 01 the SW, 10 the NE, and 11 the SE one.

Quad tile quad search tree

Quad-
tile
ID

Pointer to
00 tile

Pointer to
01 tile

Pointer to
10 tile

Pointer to
11 tile

Pointer to en-
try in data file

64-bit
unsigned

32-bit
unsigned

32-bit
unsigned

32-bit
unsigned

32-bit
unsigned

64-bit
unsigned

Table C.6: Quad-tile bounding box quad search tree data format

Figure C.3: Quad search tree

C.1.2 XML configuration file overview

The XML file

A sample XML file is provided:

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<ponthy con f i g>

<car>
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<owner owner=”Kenn Sebesta ”/>
<make make=”Smart”/>
<model model=”Roadster ”/>
<year year=”2004”/>
<c o l o r c o l o r=” grey ”/>

</ car>
<eng ine>

<type type=”698 cc I n l i n e 3 Turbo Suprex”/>
<disp lacement d isp lacement=”698 cc ”/>
<power power=”60kW @5250rpm”/>
<torque torque=”110Nm @4500rpm”/>
<compress ion comp=”9 : 1 ”/>
< i d l e rpm=”850”/>
< i n e r t i a lumped=” 0.061 ”/>

</ eng ine>
<wheels>

< t i r e summer=”205/45 R16”/>
< i n e r t i a lumped=” 0 .62 ”/>
< !−−I n e r t i a PER wheel / t i r e assembly−−>

</wheels>
<acce l e romete r type=”LIS3LV02DL”>

<c a l i b r a t i o n>
< r o l l phi=” 2.58287237237842 ”/>
<p i t ch theta=”0.0277744014756975 ”/>
<yaw ps i=” 1.66349305108413 ”/>
<s c a l e s c a l e=” 0.989656407165839 ”/>

</ c a l i b r a t i o n>
</ acce l e romete r>
<t r an smi s s i on type=”6−spd s e qu en t i a l ”>

< !−−These are the f i n a l d r i v e r a t i o s between the engine and the wheel a x e l−−>
<r e v e r s e gear=””/>
< f i r s t gear=” 13 .25 ”/>
<second gear=” 9 .604 ”/>
<th i rd gear=” 7 .37 ”/>
<f our th gear=” 5 .796 ”/>
< f i f t h gear=” 4 .208 ”/>
<s i x th gear=” 3 .23 ”/>

</ t ransmi s s i on>
<drag>

<aero Cd=” 0 .39 ”/>
< r o l l i n g Crr=” 0.0125 ”/>

</drag>
<area f r o n t a l=” 1 .93 ”/>
<mass wet=”844”/>
< i n j>

<c a l i b r a t i o n fue lPerSecond=” 0.008 ”/>
<c a l i b r a t i o n lag=”−0.0004”/>
< !−−The d i f f e r e n c e between the a c t ua l i n j e c t o r
opening time and the i n j e c t o r v o l t a g e pu l s e
l eng th , in [ s ] .−−>
<t iming pattern=” s e qu en t i a l ”/>

</ i n j>
<vss>

<c a l i b r a t i o n metersPerTick=”0.270183975491887 ”/>
</ vss>
< f i l e Name=”2009−10−27. dat”/>
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< f i l e Name=”2009−10−28. dat”/>
< f i l e Name=”2009−10−30. dat”/>
< f i l e Name=”2009−11−01. dat”/>

</ ponthy con f i g>

This file can be adapted to any new car. For the most part, it is self explanatory. However,
included are explanations for the few that are not:

• engine–> inertia lumped: the total lumped rotational inertia for all of the drivetrain
except the tires and wheels.

• accelerometer–> calibration: the rotation matrix and scale that must be applied to
the accelerations measured by the sensor in order to bring them into the body frame.

• drag–> Cd: Coefficient of air resistance

• drag–> Crr: Coefficient of rolling resistance

• area–> frontal: maximum cross-sectional area as seen from the front

• mass–> wet: car mass including all fluids (coolant, oil, windshield wiper fluid, etc...)

• inj–> calibration –> lag: the difference between the actual injector opening time
and the injector voltage pulse length, in [s]

• inj–> calibration –> fuelPerSecond: the quantity of fuel delivered by all injectors
in one second

• vss–> calibration: how far the car rolls forward per vss pulse

• file Name: the individual trip data files that have been imported for a given car.

C.1.3 Observer file generation overview

When data is imported, a certain number of files are generated:

• <file name>, data.mat Data extracted from all sensors, except GPS

• <file name>, extract.mat Data extracted from the GPS NMEA strings

• <file name>, results.mat The Kalman Filter results

• <file name>, DEM.mat Optional. An ordered list of the ways taken during a trip.

• <file name>, gps.txt All the GPS NMEA strings in text format

• <file name>, spd.kmz A Google Earth file in KML format that shows the trip path
and speed. See App. F for details.
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Data 

length

︸︷︷︸
0xFF

︸︷︷︸
Data 

type

︸︷︷︸
Data content

︸︷︷︸
Error 

check

︸︷︷︸

Figure C.4: Overall data format

C.1.4 Data packet overview

Here we discuss the data format used by the sensor suite for saving data to the SD card.

Logged data is saved sequentially onto the SD card, with all data sources interwoven
together.

Each type of data is prefaced by a preamble and ended with an error checking byte
(modified CRC). (See Fig. C.4)

1. The first byte is always 0xFF.

2. The second byte indicates the message type:
0x00 Error message
0x01 Accelerometer data
0x02 GPS data
0x03 Vss data
0x04 Injector data
0x05 Time skew data

3. The third byte is the message length, including the error check.

4. The message itself depends on the data type. See the following section, C.1.5.

5. Finally, the message is terminated by an error-checking byte. This byte is calculated
as the sum modulo 256 of a subset of the message bytes, starting with the data length
byte and continuing to the last message byte (therefore not including the error-checking
byte itself).

Note 32 Classically, CRC algorithms use XOR operations, instead of addition modulo 256.
Future versions of the logging program will move to the true CRC algorithm.

C.1.5 Data types

C.1.5.1 Error messages

Error messages are saved in ASCII human-readable format, followed by a newline.
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Timestamp (in [ms])

︸︷︷︸
x-axis

acc

︸︷︷︸
y-axis

acc

︸︷︷︸
z-axis

acc

︸︷︷︸
x-axis

acc

︸︷︷︸
y-axis

acc

︸︷︷︸
z-axis

acc

︸︷︷︸

Figure C.5: Accelerometer data format

C.1.5.2 Accelerometer data

The accelerometer data (Fig. C.5) is composed of:

• 4-byte timestamp in [ms]

• 2-byte x-axis acceleration data in [mg]

• 2-byte y-axis acceleration data in [mg]

• 2-byte z-axis acceleration data in [mg]

C.1.5.3 GPS data

GPS data is saved as NMEA raw strings, without any processing. Since data is only
written to memory once the 512-byte buffer is full, there is no guarantee that any individual
GPS data packet contains a complete NMEA string.

C.1.5.4 Vss data

Timestamp (in [ms])

︸︷︷︸
[125μs]

︸︷︷︸
Timestamp (in [ms])

︸︷︷︸
[125μs]

︸︷︷︸

Figure C.6: Vss data format

Vss data (Fig. C.6) is composed of:

• 4-byte timestamp in [ms]

• 1-byte timestamp representing [125µs]

C.1.5.5 Injection data

Injector data (Fig. C.7) is composed of:

• 4-byte timestamp in [ms]

• 2-byte injector duration in [250ns] increments
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Timestamp (in [ms])

︸︷︷︸
Injector 

duration

︸︷︷︸
Timestamp (in [ms])

︸︷︷︸
Injector 

duration

︸︷︷︸

Figure C.7: Injection data format

C.1.5.6 Skew data

Timestamp (in [ms])

︸︷︷︸
Skew 

[ms]

︸︷︷︸
Timestamp (in [ms])

︸︷︷︸
Skew 

[ms]

︸︷︷︸

Figure C.8: Skew data format

Skew data (Fig. C.8) is composed of

• 4-byte timestamp in [ms]

• 1-byte skew in [ms]
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D.1 Overview

Figure D.1: CAN bus installation

The CAN bus (a.k.a. CANbus), is a fault-tolerant, bi-directional bus that was originally
designed for automotive use, but has since become a quasi-standard in industry and noisy
environments. CAN is mandatory in all European vehicles since 2004.

While CAN is technically only a bit transmission protocol, in the automotive world the
term is used interchangeably to mean ISO 11898-2, which completely defines the physical
layers, including signal levels, wire count, etc...

In the case of ISO 11898-2, there are two wires, both transmitting the same bit. The wires
pass between dominant, 0, and recessive, 1, states. The dominant is so-named since if both
a dominant and recessive bit are sent simultaneously, only the dominant bit is transmitted
on the bus.

Technically, this is achieved by having an open-collector style bus, where the line is pulled
HI (recessive) by a pull-up resistor, and then is pulled LO (dominant) by a transistor. The
transistor obviously being far stronger than the pull-up resistor, when both a dominant and
recessive bit are sent at the same time by two different devices, the transistor signal squashes
the resistor signal.

A CAN message is composed of an arbitration field, a control field, a data field, and a
CRC field. The arbitration field is designed such that if two CAN devices start speaking
simultaneously, then the one with lower arbitration has priority.
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(This occurs by the physics of the communication: if two arbitration fields are different,
at some moment one device will transmit a 0 (dominant) when the other is transmitting a 1
(recessive). Since the 1 is recessive, all other devices on the bus will see a 0. As each CAN
device is monitoring the bus as well as transmitting on it, as soon as a device recognizes that
its recessive bit has been overwritten by a dominant, it stops transmitting. As such, for an 11-
bit arbitration field, 0b00000000000 is obviously always highest priority and 0b11111111111

is always lowest.)

Figure D.2: CAN 2.0A (“standard CAN”) Data Frame

Figure D.3: CAN 2.0B (“extended CAN”) Data Frame

Convention states that the arbitration field is also the message ID. While this is by no
means a requirement of the protocol, unless there is strong reason to suspect otherwise it can
be assumed that an arbitration field is the same as the message ID.

The data field is always between 0 and 8 bytes long, as indicated by the control field.

D.2 Case study

Inspired by [42], and armed with the above information, a Smart Roadster’s CAN bus was
reverse engineering by logging all CAN messages, and then comparing with logged data from
the sensor suite. There are many messages for which the meaning was never discovered, but
they were unnecessary for our purposes. Some certainly indicate if headlights are on, if the
convertible top is open, etc... (These could be later interesting for trying to gauge electrical
load as a part of the overall engine output.)

A simple circuit was designed to interface to the automotive CAN bus. The circuit needs

• A CAN transceiver to turn dominant/recessive bits into 0’s and 1’s and vice-versa

• A CAN controller in order to read the bit stream, perform error checking, bit destuffing,
etc...
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In this case, we chose the STM32F103VET6, an ARM Cortex M3 microcontroller with
onboard CAN controller, and coupled it to a MAX3051 CAN transceiver.

The CAN messages as decoded are below:
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Figure D.4: CAN Messages table
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Figure E.1: Data logger installation

E.1 Circuit-board schematic

The circuit board schematic was designed in Eagle CAD.
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E.2 Circuit-board layout

The circuit board was designed in Eagle.
Top layer:

Figure E.4: Data logger layout, top

Bottom layer:
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Figure E.5: Data logger layout, bottom

E.3 Improvements

If the reader would like to use these schematics directly, s/he would be well advised to
take into account the following bugs and worthwhile upgrades:

• The ATMega has been superseded by the XMEGA line. These chips are in all ways
superior; it is cheaper, faster, more accurate, and has more peripherals.

• In the functioning board, the transistor Q1 had to be replaced by an optorelay because
the FV-M8 GPS had trouble initializing correctly. The optorelay has a faster rise time.
It’s primary disadvantage is cost, so with a different GPS the transistor might not need
replacing.

• The CK trace on the accelerometer can be removed. It is not important that the
accelerometer have an external syncing signal.

• The reset button should be reconfigured to use an RC filter so that a reset is delayed
by several seconds, in order that the button can also be used for other purposes.

• The PPS input should have an RC filter

A future version could/should include:
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• A CAN bus and LIN bus transceiver, in order to be compatible with all foreseeable
cars.

• An analog input that can be used for fuel pressure sensing (diesel cars)

• A DC-DC converter in order to draw less current from the car’s battery (important
when the car is off)

As a small bonus, a separate circuit trace was made under the SD card. This is specifically
designed to be able to test the STMicro LIS331DL. The relevant area must first be cut out
from the circuit board. The pad layout is designed to be soldered on top of the existing
accelerometer area. In fact, any digital accelerometer can be installed into this area, as long
as the output pads correspond.

In addition, there are a number of PA* pads on the board. These are unconnected ADC
inputs, and can be used for future expansion, depending on needs.
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E.4 Sensor suite parts manifest

Part Value Count

ATM324P ATMega324p 1

C1 ≥ 10uF, ESR ≤ 4 1

C2 47uF 1

C3 ≥ 10uF, ESR ≤ 4 1

C4 ≥ 10uF, ESR ≤ 4 1

C5 ≥ 10uF, ESR ≤ 4 11

C6 ≥ 10uF, ESR ≤ 4 1

CR2

FUSE 100mA fast blow 2

IC2 LM2937 1

IC3 LIS3LV02DQ 1

IC5 FOD617A 1

LED Bi-color 1

Q1 PNP transistor 1

R1 47Ω 1

R2 10kΩ 1

R3 10kΩ 1

R4 330kΩ 1

R5 300Ω 1

R6 100kΩ 1

R7 ≤ 4.7kΩ 1

S1 SKHMPSE010 1

JTAG 10-pin IDC header 1

OUPUT 14-pin IDC header 1

RS232 2-pin IDC header 1
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Appendix F

Google Earth
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Figure F.1: Google Earth

The Google Earth Toolbox [48], is a useful collection of utilities that aid in the presen-
tation, understanding, and analysis of geodetic data. Certainly, this project could not have
gone as far as it did if it were not for the excellent capabilities of Google Earth and Google
Earth Toolbox.

For this project, Google Earth Toolbox code was modified: cleaned, streamlined, and
upgraded. Specific needs that were not present in Google Earth Toolbox were addressed,
such as the (in)ability to display properly formatted XML code, or to output arbitrary XML
code to the Google Earth KML format.

The Google Earth files generated by the Matlab code allow one to see, at a glance, car
path, car speed, starting and ending points, and trip time. Take for instance Fig. F.1. The
KML output file identifies:

• Start and Stop locations, helpfully marked with thumbtacks.

• Speed, as represented by color. The colormap was intentionally chosen to imitate
Matlab’s “jet”. Dark blue represents a stopped car, whereas deep red represents high
speed. All outputs are normalized to 180km/hr, a value that seems quite reasonable
for the upper end, and yet still leaves room for definition at slower speeds

• Waypoints, as represented by the blue boxes with floating numbers. This indicates the
trip time that the car was at the particular spot.

Trip time is perhaps the most important feature of the Google Toolbox Extensions, as it
allows easy cross correlation between logged data time (absolute ms since the trip started)
and GPS data time (UTC).

Code modifications have been submitted to Google Earth Toolbox for integration into
future versions of the Toolbox.
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Appendix G

The Ball and Wheel: a worked
example for Pontryagin’s Maximum
Principle
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G.1 Introduction
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Figure G.1: Diagram of Ball and Wheel

The Ball and Wheel system is made of a spherical ball with angular momentum Ib rolling
on the rim of a wheel with angular momentum Iw. The wheel is driven by a torque source, τw
that is limited by τw,min ≤ τw ≤ τw,max. The objective is to balance the ball at the unstable
equilibrium point at the very top of the wheel. In order for the system to be controllable (see
Sec. B.1.2), τw,min < 0 and τw,max > 0 must hold. The ball is acted upon by gravity and by
friction with the wheel rim. We assume a no-slip condition between the wheel and the ball.

This appendix presents a two-variable system, where only the ball’s position and trans-
lational velocity with respect to the wheel are modeled. In consequence, the wheel and the
ball can have arbitrary angular velocities, as long as the ball does not physically move from
the set-point position. In this example, we develop a full synthesis solution.

Optimal target: In this example, we are looking for the time optimal control. In other
words, we want the sequence of controls that minimize the time required to go from an initial
point to a final set-point. Note that this is a different optimization problem from the one we
wish to solve for the car, which minimizes fuel; and is also different from the LQR (See Sec.
B.2.2), which seeks to minimize the state and control deviations.

The time optimal cost is expressed as

J(x,u, t) =

∫ tf

0
1dt (G.1)
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and thus from eq. (B.12)
L(x,u, t) = 1 (G.2)

G.2 Two-state example

(We rapidly present here the Ball and Wheel dynamic equations, without modeling them.
Interested readers are encouraged to read [23] for a detailed derivation using Euler-Lagrange.)

The state vector is

x =

(
θwb
θ̇wb

)
(G.3)

with dynamic equations

ẋ =




θ̇wb(
1

R+ r

)[
IbRτw +mg sin(θwb)(Iwr

2 + IbR
2)

IbIw + Iwmr2 + IbmR2

]

 (G.4)

G.2.1 Linearization by feedback

Linearization by feedback is a technique which greatly facilitates designing the control.
The idea behind this approach is to find a diffeomorphism and a state-feedback control law
that transform the nonlinear system into a linear time-invariant (LTI) system, as these LTI
systems have certain desirable properties of convergence and stability. A complicated non-
linear control can be easily designed on the linear system. We give here the equations for a
full-state-feedback linearization.

Let
uf (τw, θwb) = IbRτw +mg sin(θwb)(Iwr

2 + IbR
2) (G.5)

and

γ =

(
1

R+ r

)(
1

IbIw + Iwmr2 + IbmR2

)
(G.6)

This transforms (G.4) into

ẋ =

(
θ̇wb
γuf

)
=

(
x2
γuf

)
(G.7)

and

τw =
uf −mg sin(θwb)(Iwr2 + IbR

2)

IbR
(G.8)

G.2.2 Pontryagin’s Maximum Principle

The primordial goal is to find the equations for the costate vector (a.k.a. adjoint vector),
λT = (λ1 . . . λnx), as these describe the control.

First, recall the Hamiltonian, eq. (B.13)

H(x,u, λ) = λT f(x,u)− L(x,u, t) (G.9)

151



then combining (G.2), (G.7) (where f(x,u) = ẋ = (θ̇wb γuf )
T ), and (G.9)

H = λ1θ̇wb + λ2γuf − 1 (G.10)

En suite, we want the control that maximizes the Hamiltonian across the trajectory. We
find this classically, by 1) testing for absolute extrema at the control boundaries and 2)
looking for local extrema by taking the partial derivative of H with respect to u and setting
equal to 0

∂H

∂uf
= 0 = λ2γ (G.11)

This reveals that there are no local extrema as a function of uf . Therefore, the absolute
extrema are the only extrema.1

Recalling that the torque is limited by τw,min ≤ τw ≤ τw,max (as described in the initial
problem statement), we deduce that the uf that maximizes H is

u∗f =

{
uf,min = uf (τw,min, 0) when λ2 < 0
uf,max = uf (τw,max, 0) when λ2 > 0

(G.12)

Note 33 We choose θ = 0 as it has a negligible effect on u∗f . In fact, this step is not
necessary if we were finding a numerical solution, but in order to have a simple synthesis we
make this very minor simplification in calculating the control saturations.

Note 34 This type of control is called bang-bang. The control is either maximum or min-
imum, depending only on the sign of λ2. As such, it becomes paramount to know when λ2
crosses zero. This bears repeating: here the most important information we seek from the
costate vector is the zero-crossing time. Once we can express this analytically for any (con-
trollable) state, then we are done and we have only to check that the trajectory is in fact
optimal.

Next, recall the relationship between the Hamiltonian and the costate vector (eq. (B.14))

λ̇ = −Hx (G.13)

which gives

λ̇1 = −∂H
∂x1

= − ∂H

∂θwb
= 0

λ̇2 = −∂H
∂x2

= − ∂H

∂θ̇wb
= −λ1

(G.14)

Thus we can deduce that λ1 = C1, and λ2 = −C1t+ C2

Let’s pause for a moment and take stock of what we know:

1. H = 0 (From eq. (B.19))

2. uf is bang-bang, i.e. it is either uf,min or uf,max

3. λ1 is constant, and λ2 is a line dependent on time, with slope −λ1
1Of course, this goes without saying as it is a necessary result for a linear system. The approach is presented

for completeness in the case of a non-linear PMP optimization.
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Point (1): We know that the Hamiltonian is always 0, and we know that at t = T that
uf (T ) = u∗f . We also know that θ̇wb(T ) = 0 and thus from (G.10) we can calculate that

λ2(T ) =
1

u∗f

Unfortunately we cannot further use the transversality conditions, since— from Note 27
(pg. 112)— due to the fact that our final point is x = ~0 we cannot conclude anything more
from the condition.

Point (2): While we know what controls we will give, it still remains to be seen when we
will give these controls.

Point (3): Unfortunately, we have no additional equations with which to fix C1, C2. We
must therefore perform an exhaustive analysis of λ2 in order to understand when to switch
between controls.

Note 35 Keep in mind that Pontryagin’s Maximum Principle is a necessary but not suffi-
cient condition for optimality. The fact that we have found trajectories that maximize H does
not, therefore, mean that they are necessarily optimal.

Inverse time and “time to go”: Optimization problems are naturally considered in
inverse time. This makes a certain amount of sense when it is considered that the objective is
known, but not necessarily the initial point. While we can easily calculate the finite number
of ways to optimally approach the final point, there are an infinite number of ways to leave
the initial point, and we have no way to distinguish those that are possibly optimal from
those that are not.

Thus, we talk about integrating from the final target x(T ) to the initial point x(0). The
author suggests that if the above is not clear, that it be reread, and kept in mind throughout
the following analysis. It bears repeating: in optimal control, we integrate starting at the
final target and only stop once we reach the initial target.

One confusing facet of inverse time is how to refer to it. If one talks of time T in an
inverse time problem, does this refer to time T with respect to forward or backward time?
For this reason, we prefer the phrase “time to go”, which, when scrupulously used, removes
all ambiguity. We represent “time to go” by s and thus

t = 0 7→ s = T
t = T 7→ s = 0

Inversing the dynamic equations is straightforward. It suffices to take the negative of the
dynamic equation

ẋ∗ = −ẋ (G.15)
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This gives us the new extended system

(
ẋ∗

λ̇∗

)
=




−x∗2
−γu∗f
0
λ1


 (G.16)

As we know x∗(0) and x∗(s = T ) this can be seen as a BVP (Boundary Value Problem)
which can be solved, for example with shooting or multiple-shooting methods. (See Sec. B.3.)
However, in this particular case we can analytically turn the BVP into an IVP (Initial Value
Problem) in order to have a synthesis of what to do across the entire space of attainable
points (the control convex).

In other words, we create the synthesis by finding the solution for the exhaustive list of
all possible IVPs.

Consider that λ2
∗, like λ2, is a linear function of time-to-go of the form

λ∗2(s) = λ∗1s+ β = αs+ β (G.17)

where λ∗1 = Constant = α. We know that at time-to-go s = 0 that

λ∗2(0) = λ2(T ) =
1

u∗f
(G.18)

and so we clearly see that (λ∗1)0 + β = β =
1

u∗f

Knowing that uf (T ) can be either positive or negative, we can directly infer the nature
of λ∗2— it is a line that has at most 1 zero-crossing, depending only on whether α and β have
the same sign or not. As the two cases are symmetrical in the linear case, we will only treat
the case where β > 0.2

If β > 0 and α ≥ 0, then from (G.17) λ∗2(s) > 0 and has no zero-crossing for all time-to-go
s. Therefor u∗f (t) = uf,max and thus by integrating eq. (G.16), we can solve the IVP which
yields

x∗1(s) =

(
1

2
γuf,max

)
s2

x∗2(s) = −(γuf,max)s
(G.19)

And thus by rearranging (G.19) we see that in this case the optimal trajectory lies on

the parabola x∗1 =
1

2γuf,max
(x∗2)

2, x∗1 ≥ 0, x∗2 ≤ 0. This is half of the switching locus, the

other half occurring when β < 0.

2Note that B → 0 is not treated as this would imply u∗f →∞. Clearly if the control can be infinite, then
in the case of a linear system T → 0.
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If β > 0 and α < 0, then from (G.17) λ∗2 has one zero-crossing at 0 = αs0 +
1

uf,max

s0 = −
1

αuf,max
(G.20)

and thus by integrating the IVP (and using the final values of the segment from 0 to s0 as
the initial values for the segment from s ≥ s0)

uf = uf,max
x∗1(s) = 1

2γuf,maxs
2

x∗2(s) = −γuf,maxs



 for 0 ≤ s ≤ s0

uf = uf,min
x∗1(s) = γ(12uf,mins

2 + (uf,min − uf,max)s0s− 1
2s

2
0(uf,min − uf,max))

x∗2(s) = γ(−uf,mins+ (uf,min − uf,max)s0)



 for s0 ≤ s

(G.21)
Now we must perform the same analysis for β < 0, but thanks to the system’s symmetry

we find equivalent results, only negative.
It might not seem it, but we’re almost done.

G.3 Interpreting the synthesis

Switching Locus uf=uf,max

uf=uf,min

x1

x2

Figure G.2: Optimal control synthesis for Ball and Wheel

Note that the first part of eq. (G.21) is identical to eq. (G.19). From this we can gather
that the optimal control from any space intersects the switching locus and then commutes to
follow the parabola to the final destination. (see Fig G.2)

In other words, there are four possibilities:

• The initial point is on the switching locus to the right of the origin. In this case, there

155



are no commutations to be made and the optimal control is to apply u∗f until the system

reaches ~0.

• The initial point is above the switching locus. In this case, the optimal strategy is to
apply u∗f,min until the switching locus is reached, at which point the bang-bang control

commutes to u∗f,max, which is applied until the system reaches ~0.

• The initial point is on the switching locus to the left of the origin. The exact same as
when to the right, only the opposite control is applied.

• The initial point is above the switching locus. The exact same as when the point is
above the switching locus, only the opposite sequence of controls is applied.

Thus we have the time optimal control. Incidentally, the optimal time T can be found by
simply integrating from the final point xf = ~0 to the initial point x0

Note 36 What happens in the case where the optimal control is not perfectly applied? In this
case, one can see that if the optimal control is misapplied, or the system has a perturbation,
that this is equivalent to an IVP with a new initial value at the current system state. The
system still converges to the set point, only an additional commutation will be required.
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The PhD presents a combined approach to improving individual car efficiency. An optimal
observer, the Extended Kalman Filter, is used to create an efficiency model for the car.
Particular attention was paid to handling the asynchronous and redundant nature of the
measurement data.

A low-cost sensor suite developed to measure data is described. This sensor suite was
installed on multiple vehicles to good success. It employs an accelerometer, gps, fuel injector
timer, and Vss input to measure all the data necessary to reconstruct the car’s state. This
observer and sensor suite can be used as the base for any study which requires car efficiency
maps, allowing research to proceed without manufacturer supplied data.

Once the efficiency map is found, it is then curve-fitted in order to reduce model com-
plexity. The simplified model is then used as a basis for optimal control through Pontryagin’s
Maximum Principle.

Real-world test results are given, both for efficiency mapping, and for optimal control.
Detailed discussion of the observer and controller is presented, in order to ease understanding
and save implementation time.


