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Abstract

Emerging Resistive Memory Technology
for Neuromorphic Systems and Applica-
tions

Research in the field of neuromorphic- and cognitive- computing has gen-

erated a lot of interest in recent years. With potential application in fields

such as large-scale data driven computing, robotics, intelligent autonomous

systems to name a few, bio-inspired computing paradigms are being inves-

tigated as the next generation (post-Moore, non-Von Neumann) ultra-low

power computing solutions. In this work we discuss the role that differ-

ent emerging non-volatile resistive memory technologies (RRAM), specif-

ically (i) Phase Change Memory (PCM), (ii) Conductive-Bridge Memory

(CBRAM) and Metal-Oxide based Memory (OXRAM) can play in dedi-

cated neuromorphic hardware. We focus on the emulation of synaptic plas-

ticity effects such as long-term potentiation (LTP), long term depression

(LTD) and spike-timing dependent plasticity (STDP) with RRAM synapses.

We developed novel low-power architectures, programming methodologies,

and simplified STDP-like learning rules, optimized specifically for some

RRAM technologies. We show the implementation of large-scale energy

efficient neuromorphic systems with two different approaches (i) determin-

istic multi-level synapses and (ii) stochastic-binary synapses. Prototype

applications such as complex visual- and auditory- pattern extraction are

also shown using feed-forward spiking neural networks (SNN). We also in-

troduce a novel methodology to design low-area efficient stochastic neurons

that exploit intrinsic physical effects of CBRAM devices.



Résumé

Technologies Émergentes de Mémoire Résistive
pour les Systèmes et Applications Neuromor-
phiques

La recherche dans le domaine de linformatique neuro-inspirée suscite beaucoup

d’intérêt depuis quelques années. Avec des applications potentielles dans des domaines

tels que le traitement de données à grande échelle, la robotique ou encore les systèmes

autonomes intelligents pour ne citer qu’eux, des paradigmes de calcul bio-inspirés sont

étudiés pour la prochaine génération solutions informatiques (post-Moore, non-Von

Neumann) ultra-basse consommation. Dans ce travail, nous discutons les rôles que les

différentes technologies de mémoire résistive non-volatiles émergentes (RRAM), notam-

ment (i) Phase Change Memory (PCM), (ii) Conductive-Bridge Memory (CBRAM) et

de la mémoire basée sur une structure Metal-Oxide (OXRAM) peuvent jouer dans des

dispositifs neuromorphiques dédiés. Nous nous concentrons sur l’émulation des effets de

plasticité synaptique comme la potentialisation à long terme (Long Term Potentiation,

LTP), la dépression à long terme (Long Term Depression, LTD) et la théorie STDP

(Spike-Timing Dependent Plasticity) avec des synapses RRAM. Nous avons développé

à la fois de nouvelles architectures de faiblement énergivore, des méthodologies de

programmation ainsi que des règles dapprentissages simplifiées inspirées de la théorie

STDP spécifiquement optimisées pour certaines technologies RRAM. Nous montrons

limplémentation de systèmes neuromorphiques à grande échelle et efficace énergétiquement

selon deux approches différentes: (i) des synapses multi-niveaux déterministes et (ii)

des synapses stochastiques binaires. Des prototypes d’applications telles que lextraction

de schéma visuel et auditif complexe sont également montrés en utilisant des réseaux

de neurones impulsionnels (Feed-forward Spiking Neural Network, SNN). Nous intro-

duisons également une nouvelle méthodologie pour concevoir des neurones stochastiques

très compacts qui exploitent les caractristiques physiques intrinsèques des appareils

CBRAM.
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Manuscript Outline

This dissertation was written and submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy (Nanoelectronics and Nanotechnology) in The

University of Grenoble, 2013. The topic addressed in the manuscript focuses on the use

of emerging resistive memory technology for neuromorphic systems and applications.

Chapter.1, begins with the motivation behind pursuing R&D in the field of neuromor-

phic systems. It then focuses on some basic concepts from neurobiology. A review of

state-of-the art hardware implementation of biological synapses and their limitations

are discussed. The concept of emerging non-volatile resistive memory technology is

introduced. Towards the end of the chapter, we briefly summarize the scope and the

overall strategy adopted for the research conducted during this PhD thesis.

In Chapter.2, we discuss how Phase Change Memory (PCM) technology can be

used to emulate biological synapses in large-scale neuromorphic systems with low-power

dissipation and easy to implement programming methodology.

In Chapter.3, we discuss how filamentary-switching type of memory devices can

be used to emulate biological synapses in large-scale neuromorphic systems. The first

part of the chapter focuses on Ag/GeS2 based Conductive-bridge (CBRAM) technol-

ogy, while the second part focusses on HfOx based resistive metal-oxide (OXRAM)

technology.

In Chapter.4, where we describe how RRAM devices can be used to design innova-

tive neuron structures. We present an original methodology to design hybrid neuron

circuits (CMOS + non volatile resistive memory) with stochastic firing behaviour. Fi-

nally the manuscript ends with a general conclusion and overall perspective on the

topic.

Chapter.5, provides an overall conclusion and perspective of the research conducted

for this thesis. A brief comparison of the three synaptic technologies is provided,

followed by a description of the on-going activities and the ones that need further

investigation. Finally the chapter ends by highlighting some issues requiring more

attention to enable further progress in the field of neuromorphic or cognitive hardware.
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“No decision is right or wrong by itself...

what you do after taking the decision defines it”

1

Background

This chapter begins with a motivation behind pursuing R&D in the field of neuro-

morphic systems. We then focus on some basic concepts from neurobiology. A review

of state-of-the art hardware implementation of biological synapses and their limitations

are discussed. The concept of emerging non-volatile resistive memory technology is in-

troduced. Towards the end of the chapter, we briefly summarize the scope and the

overall strategy adopted for the research conducted during this PhD thesis.

1.1 Neuromorphic Systems

Neuromorphic hardware refers to an emerging field of hardware design that takes its

inspiration from biological neural architectures and computations occurring inside the

mammalian nervous system or the cerebral cortex. It is a strongly interdisciplinary

field comprising principles and knowledge from neurobiology, computational neuro-

science, computer science, machine learning, VLSI circuit design, and more recently

nanotechnology. Unlike conventional Von-Neumann computing hardware (i.e Proces-

sors, DSPs, GPUs FPGAs), neuromorphic computing is different, as memory (storage)

and processing are not completely isolated tasks in the later. Memory is intelligent and

participates in processing of information. Neuromorphic computing may also referred

to as Cognitive computing. Neuromorphic and bio-inspired computing paradigms have

been proposed as the third generation of computing or the future successors of moore

type von-neumann machines (Fig.1.1).

1



1. BACKGROUND

Figure 1.1: Proposed future computing roadmap with emerging beyond-moore technolo-

gies (adapted from IBM research colloquia-2012, Madrid, M. Ritter et. al.).
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1.1 Neuromorphic Systems

1.1.1 Historical Perspective

Historically the roots of neuromorphic hardware or neuro-inspired computing can be

traced back to the works of physiologists McCulloch and Pitts, who came up with an

interesting neuron model in 1943 [1]. They proposed a neuron model with two weighted

inputs and one output. It was governed by a simple binary activation function. In 1958,

Rosenblatt formulated the next milestone in the form of the Perceptron [2], or the first

neuromorphic engine, which still holds as a very central concept in the field of artificial

neural networks. The field was relatively stagnant through the 70s as key issues surfaced

regarding the limitations of computational machines that processed neural networks

[3]. Firstly, single-layer neural networks were incapable of processing the exclusive-

or circuit. More importantly the computers of the time were not efficient enough to

handle the long run time required by large neural networks. The advent of greater

processing power in computers, and advances with the backpropogation algorithm [4],

brought back some interest in the field. The 80s saw the rise of parallel distributed

processing systems to efficiently simulate neural processes, mainly under the concept

of connectionism [5]. The pioneering work of Carver Mead brought VLSI design to the

forefront for neuro-inspired designs [6], when he designed the first silicon retina and

neural learning chips in silicon.

Several interesting demonstrations of neurocomputers surfaced in the period from

80s to early 90s. For instance, IBM demonstrated a neuro-inspired vector classifier

engine, known as ZISC (zero instruction set computing) processor [7], developed by Guy

Paillet, who later formed a neuromorphic chip company called CogniMem Technologies

Inc. Intel demonstrated the ETANN (Electrically Trainable Artificial Neural Network)

chip with 10240 floating-gate synapses in 1989 [8]. L-Neuro by Philips, ANNA by

AT&T, SYNAPSE 1 by Siemens [9], and MIND-1024 of CEA [10], were some other

demonstrations of neurocomputers in that period.

However, advances in neuroscience in the 90s, particularly the interest in LTP/LTD

and learning rules like STDP brought another turning point in the field [11]. The weak-

nesses of the perceptron model could now be overcome by using time critical spike based

neural coding. This followed by the advances in the field of emerging non-volatile resis-

tive memory (RRAM) technologies (also commonly and vaguely defined as memristors),

sparked enormous renewed interest in the field of neuromorphic hardware in the 2000s.

3



1. BACKGROUND

Figure 1.2: Data obtained from the Web of Knowledge using the search expres-

sions: Topic=(neuromorphic and memristor) OR Topic=(neuromorphic and RRAM)

OR Topic=(neuromorphic and PCM) OR Topic=(neuromorphic and Phase change) OR

Topic=(neuromorphic and resistive switching) OR Topic=(neuromorphic and magnetic)

OR Topic=(phase change memory and synapse) OR Topic=(conductive bridge memory

and synapse) OR Topic=(PCM and synapse) OR Topic=(CBRAM and synapse) OR

Topic=(RRAM and synapse) OR Topic=(OXRAM and synapse) OR Topic=(OXRAM

and neuromorphic) for the time period Jan 2007- April 2013 (a) Publications, (b) Cita-

tions.
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1.1 Neuromorphic Systems

The inherently similar properties of two-terminal nanoscale RRAM devices and biolog-

ical synapses field them as the ultimate ’synaptic’ candidate for building ultra-dense

large scale neuromorphic systems.

The steep interest can be gauged by the fact that several large international projects

such as the Blue-Brain Project (IBM/EPFL), Spinnaker (Manchester/ARM), Brain-

ScaleS (Heidelberg), Neurogrid (Stanford) and SYNAPSE (DARPA) have been floated

over the last 10 years. With the most recent ones being the ‘Human Connectome

Project’ (US), the BRAIN Initiative (US) and the massive European flagship- ‘Human

Brain Project’ (HBP) with an estimated budget exceeding 1.19 billion euros and a time

span of 10 years. Fig.1.2, shows the upward rising trend and renewed interest in recent

years.

1.1.2 Advantages

Apart from an improving historical trend, there are more concrete reasons that justify

R&D for the development of special-purpose dedicated neuromorphic hardware. Neu-

romorphic computing offers several advantages compared to conventional von-neumann

computing paradigms, such as-

• Low power/energy dissipation

• High scalability

• High fault-tolerance and robustness to variability

• Efficient handling of complex non-linear computations

• Programming free unsupervised learning

• High adaptability and re-configurability

While emulation of neural networks in software and Von-Neumann type hardware

has been around for a while, they fail to realize the true potential of bio-inspired

computing in terms of low power dissipation, scalability, reconfigurability and low in-

struction execution redundancy [13]. The human brain is a prime example of extreme

biological efficiency on all these accounts- it consumes only about 20 W of power and

occupies just about 2 L volume. Fig.1.3a shows the enormous number of CPUs required
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Figure 1.3: (a)Number of synapses Vs number of processing cores required for cat scale

brain simulations using IBM Blue Gene supercomputer, (b) Growth of Top 500 supercom-

puters overlaid with recent IBM results and projection for realtime human-scale cortical

simulation. Green line (lower) shows the 500th fastest supercomputer, dark blue line (mid-

dle) shows the fastest supercomputer, and light blue line (upper) shows the summed power

of the top 500 machines [12].

to simulate just 1% of the human brain. Fig.1.3b, shows the extrapolated trend for the

best supercomputers to perform full human brain scale simulations is real time. The

trend predicts that for a full brain scale real-time simulation, 4 PB of memory and

more than 1 EFlops/s of processing would be required [12]. Just for a 4.5 % human

brain scale simulation the IBM Blue-gene supercomputer requires 144 TB memory, 0.5

PFlops/s processing, and about 1 Megawatt power.

Fig.1.4a, shows a power/energy comparison between the existing digital von-neumann

systems and the brain. Even with strong Moore scaling till 2020’s there will remain a

huge power efficiency gap of more than 1000x. Fig.1.4b, outlines the power consump-

tion difference between different neurons. A biological neuron consumes approximately

3.84 x 108 ATP molecules in generating a spike. Assuming 30-45 kJ released per mole

of ATP, the energy cost of a neuronal spike is in the order of 10−11 J. The density of

neurons under cortical surface in various mammalian species is roughly 100,000/mm2,

which translates to a span of about 10 µm2 per neuron. Silicon neurons have power

consumption in the order of 10−8 J/spike on a biological timescale. For example, an

Integrate-and-Fire neuron circuit consumes 3-15 nJ at 100 Hz and a compact neuron
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Figure 1.4: (a) System power scaling for IBM Watson supercomputer w.r.t human brain,

(adapted from IBM research colloquia-2012, Madrid, Ritter et. al.). (b) Biological and

silicon neurons have much better power and space efficiencies than digital computers [14].

model consumes 8.5-9.0 pJ at 1 MHz, which translates to 85-90 nJ at 100 Hz. For sili-

con neurons, the on-chip neuron area is estimated to be about 4,000 µm2. The power

efficiency of digital computers is estimated to be 10−3 to 10−7 J/spike. Most current

multi-core digital microprocessor chips have dimensions from 263 to 692 mm2. A single

core has an average size from 50 to 90 mm2 [14].

To emulate massively parallel asynchronous neural networks, the Von-Neumann ar-

chitecture requires very high bandwidths (GHz) to transmit spikes to-and-fro between

the memory and the processor. This leads to high power dissipation. The true po-

tential of bio-inspired learning rules can be realized only if they are implemented on

optimized special purpose hardware which can provide direct one-to-one mapping with

the learning algorithms running on it [15].

1.1.3 Applications

Bio-inspired computing paradigms and neuromorphic hardware has a far reaching po-

tential application base. Software based artificial neural networks are already being

used efficiently in fields such as pattern- classification, extraction, recognition, machine-

learning, machine-vision, robotics, optimization, prediction, natural language process-

ing (NLP) and data-mining [16], [17]. Big-data analytics, data-center applications,

and intelligent autonomous systems are new emerging fields where neuromorphic hard-
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ware can play a significant role. Heterogeneous multi-core architectures with efficient

neural-network accelerators have also been proposed in the recent years [18]. Neuro-

morphic concepts are also being explored for defense and security applications such as

autonomous navigation [19], use in drones, crypt-analysis and cryptography. Neuromor-

phic hardware can also be used for health-care applications such as future generation

prosthetics [20], brain-machine interfaces (BMI), and even serve as a reconfigurable

simulation platform for neuroscientists.

1.2 Neurobiology Basics

Neurobiology is an extremely vast and complicated field of science. This section in-

troduces some basic concepts and building blocks of a neuromorphic system such as

neurons, synapses, spikes (action-potentials) and synaptic plasticity. We briefly de-

scribe how real stimuli or sensory information is converted to action potentials or spike

trains for using the simplified examples of the mammalian retina for visual, and the

cochlea for auditory processing respectively.

1.2.1 Neuron, Synapse and Spike

A neuron is an electrically excitable cell, the basic building block of the nervous system.

Neurons process, and transmit information between each other through detailed elec-

trical and chemical signaling mechanisms. Neurons connect to each other with the help

of synapses forming neural networks which perform different functions inside the brain

such as vision, auditory perception, memory, movement, speech and communication

with different body parts. It is estimated that there are about 1011 neurons, and 1015

synapses connecting them, to form various neural networks in the human cerebral cor-

tex [21]. Increasing number of neurons and high synaptic connectivity leads to higher

overall intelligence of the organism (Fig.1.5).

As shown in Fig.1.6, a neuron consists of three main parts- a cell body called the

soma, the dendrites, and the axon. Dendrites are filaments that arise from the soma

branching multiple times. The cell body (soma) is the metabolic center of the cell and

it contains the cell nucleus. The nucleus stores the genes of the neuron. Dendrites

act as the receivers for incoming signals from other nerve cells. The axon is the main
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1.2 Neurobiology Basics

Figure 1.5: Species with increasing intelligence, number of neurons and synapses. Neuron

and synapse numbers extracted from [22], [23], [24], [25], [26].

Figure 1.6: Illustration showing the basic structure of a neuron cell. Inset shows a zoom

of the biological synapse. Adapted and modified from [27].
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conducting unit, extruding from the soma, that is responsible for carrying electrical

signals (called as action-potentials or spikes) to other neurons.

The spikes are rapid, transient, all-or-none nerve impulses, with an amplitude of

100 mV and a duration of about 1 ms (Fig.1.8). The neuron is surrounded by a plasma-

membrane, made up of bilayer phospholipid molecules. The bilayer molecules make the

membrane impermeable to the flow of ions. The impermeable membrane gives rise to

a potential-gradient across the neuron and its extra-cellular medium due to differential

ionic concentrations. In the unperturbed or equilibrium state, the neuron membrane

stays polarized at a resting value of -70 mV [21]. However, the membrane is embedded

with two special protein structures: namely ion-pumps, and voltage gated ion-channels,

that allow the flow of ions in and out of the neuron under specific conditions. Ions such

as Na+, K+, Cl− and Ca2+, play an essential role in the generation and propagation

of the action-potentials.

Synapse is the region where the axon-terminal of one neuron comes close to the start

of the dendrites of another neuron (see inset of Fig.1.6). Functionally, the synapse acts

as a complex communication channel or the conductance medium between any two

neurons, through which neuron signals are transmitted. The neuron which sends the

spike to a synapse is termed as the pre-synaptic neuron, while the one that receives the

spike is called the post-synaptic neuron. A single neuron in the cerebellum can have

about 103 - 104 synapses, thus leading to massive parallel connectivity in the brain.

Synapses and synaptic transmission can be either chemical or electrical in nature.

Electrical synapses are faster compared to chemical synapses. The signal trans-

mission delay for electrical synapses is about 0.2 ms, compared to 2 ms for chemical

synapses [28]. Electrical synapses are common in neural systems that require fast

response time, such as defensive reflexes. An electrical synapse is a mechanical and

electrically conductive link between two neurons that is formed at a narrow gap be-

tween the pre- and post- synaptic neurons known as a gap junction. Unlike chemical

synapses, electrical synapses do not have gain. The post-synaptic signal is either of the

same strength or smaller than the original signal.

Chemical synapses allow neurons to form circuits within the central nervous system

that are crucial for biological computations that underlie perception and thought. The

process of chemical synaptic transmission is summarized in Fig.1.7. The process begins

with the action potential traveling along the axon of the pre-synaptic neuron, until it
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Figure 1.7: Illustration showing the chemical synaptic transmission process. Adapted

and modified from [27].

reaches the synapse. Electrical depolarization of the membrane at the synapse leads to

opening of ion-channels that are permeable to calcium ions. Calcium ions flow inside

the pre-synaptic neuron, rapidly increasing the Ca2+ concentration. The high calcium

concentration activates calcium-sensitive proteins attached to special cell structures

(called vesicles) that contain chemical neurotransmitters. The neurotransmitters are

then released into the synaptic cleft, the narrow space between the membranes of the

pre- and post-synaptic neurons. The neurotransmitter diffuses within the cleft and

binds to specific receptor molecules located in the post-synaptic neuron membrane.

Binding of neurotransmitter activates receptor sites of the post-synaptic neuron.

Activation of receptors may lead to opening of ion-channels in the postsynaptic cell

membrane, causing ions to enter or exit the cell, thus changing the resting membrane

potential. The resulting change in the membrane voltage is defined as post-synaptic

potential (PSP). If the PSP depolarizes the membrane of the post-synaptic neuron, it

is called an Excitatory Post Syanptic Potential (EPSP). While, if the PSP hyperpolar-

izes the cell membrane, it is defined as an Inhibitory Post Synaptic Potential (IPSP).

Depending on the type of PSP that a synapse generates, it can be classified as an

excitatory- or inhibitory- synapse.

A neuron constantly integrates or sums all the incoming PSPs, that it receives at

its dendrites, from several pre-synaptic neurons. The incoming EPSPs and IPSPs lead
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Figure 1.8: (a) Illustration of neuron Action-Potential (spike). (b) EPSP and IPSP,

adapted from [29].

to a change in the resting potential of the membrane. When the membrane potential

depolarizes beyond -55 mV, it leads to spiking or action potential generation inside

the post-synaptic neuron. Thus, a neuron would spike only if the following criteria is

satisfied by eq.1.1

Σ(EPSP)− Σ(IPSP) > (−55mV ) (1.1)

Fig.1.8 shows that if the resultant stimuli at the post-synaptic neuron is less than the

firing threshold (-55 mV), it leads to a failed initiation and no spike. In case of a failed

initiation, the ion-pumps and the voltage gated ion-channels restore the membrane

potential back to the resting value of -70 mV. An interesting attribute of synaptic

transmission is that it has been shown to be stochastic in nature due to probabilistic

release of neurotransmitters [30].

1.2.2 Synaptic Plasticity and STDP

The strength (or weight) of a synapse is defined by the intensity of change that it can

induce in the membrane potential of a post-synaptic neuron. Within a neural net-

work synaptic strength may differ from one synapse to another, and evolve with time,

depending on the nature of stimuli. The ability of a synapse to change its strength,

in response to neuronal stimuli is defined as synaptic plasticity. Increase of synap-

tic strength is defined as synaptic-potentiation, while decrease is defined as synaptic-
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depression. Synaptic plasticity effects, can either be shortterm (lasting for few seconds

to minutes) or long-term (few hours to days). Different underlying mechanisms such

as- changes in the quantity of released neurotransmitters, and changes in the response

activity of the receptors, cooperate to achieve synaptic plasticity. Plasticity effects in

both excitatory and inhibitory synapses have been linked to the flow of calcium ions

[31].

Learning and memory are believed to result from the effects of long-term synaptic

plasticity such as long-term depression (LTD) and long-term potentiation (LTP)[32].

Both LTP and LTD are governed by multiple mechanisms that vary by species and

the region of the brain in which they occur. In LTP the enhanced communication

is predominantly carried out by improving the post-synaptic neuron’s sensitivity to

signals received from the pre-synaptic neuron. LTP increases the activity of the existing

receptors, and the total number of receptors on the post-synaptic neuron membrane.

While, LTD is thought to result mainly from a decrease in post-synaptic receptor

density [33]. Conventionally, synaptic plasticity has been understood and formulated

to be bi-directional, continuous, finely graded or analog levels of synaptic conductance

states [34]. However recent neurobiological studies [35], indicate that bi-directional

synaptic plasticity may be composed of discrete, non-graded and more digital or binary-

like (all or none) synaptic conductance states [36].

Spike-timing dependent plasticity (STDP) is a biological process or learning-rule

that adjusts the efficacy of synapses based on the relative timing of spiking of the pre-

and post-synaptic neurons. According to STDP, if the pre-synaptic neuron spikes be-

fore the post-synaptic neuron, the synapse is potentiated. Whereas if the post-synaptic

neuron spikes before the pre-synaptic neuron, the synaptic connection is depressed

or weakened (LTD) [38]. Fig.1.9 shows the experimentally observed classical anti-

symmetric STDP rule in cultured hippocampus neurons [37]. Note that the relative

change of synaptic strength is more profound if the time difference (∆t) between the

spikes is smaller. As ∆t increases, the effect of LTD and LTP becomes less profound

like an exponential decay. STDP may vary depending upon the type of synapse and

the region of the brain [39]. For classical anti-symmetric STDP rule, the width of

the temporal windows for LTD and LTP are roughly equal in hippocampal excitatory

synapses, whereas in the case of neocortical synapses the LTD timing window is con-

siderably wider [40]. For some synapses [41], the STDP timing windows are inverted
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Figure 1.9: Experimentally observed, classical anti-symmetric STDP rule, in cultured

hippocampus neurons. ∆t < 0 implies LTD while ∆t > 0 implies LTP [37]. Change in

EPSP amplitude is indicative of change in synaptic strength.

compared to the form of STDP shown in Fig.1.9. Different forms of symmetric-STDP

rules have also been shown in literature [42].

1.2.3 Retina: The Natural Visual Processing System

Fig1.10, shows an anatomical diagram of the retina and the signal pathway for visual

stimuli. Light stimuli (photons) is first converted into electrical signals and then to

a sequence or train of action potentials (spikes) at the output of the retina. The

retina consists of three major types of neuron cells; (i) photoreceptors (rods and cones),

(ii) intermediate-neurons (bipolar, horizontal and amacrine), and (iii) ganglion cells.

Light is first converted into electrical signals, through complex biochemical processes,

occurring inside the rods and cones. The rods are mainly responsible for night time

vision, have a high sensitivity to light and high amplification. The cones are primarily

responsible for color vision, more suited for day-time, are less sensitive to light, and

have lower amplification [32].

The electrical signals generated at the photoreceptor cells are passed to the intermediate-

neurons (bipolar, horizontal and amacrine cells) through synaptic connections. The

intermediate-neurons then pass the signals to the ganglion cells. The amacrine, bipolar
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Figure 1.10: (a) Illustration showing different types of cells in the retina (b) Anatomical

diagram of visual stimuli signal pathway starting at the photoreceptors and ending at the

optic-nerve. Adapted from [32].
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Figure 1.11: Pathway from the retina through the LGN of the thalamus to the primary

visual cortex in the human brain [32].

and horizontal cells combine signals from several photoreceptors in such a way that the

electrical responses evoked in ganglion cells depend critically on the precise spatial and

temporal patterns of the light that stimulates the retina [32]. The retina compresses

visual information by a factor of 100, as the number of photoreceptor cells is approxi-

mately 100 million while the number of nerve fibers comprising the optic nerve is only

one million.

The ganglion cells are responsible for producing the final output of the retina and

their axons converge to the optic nerve. Based on the type of ganglion cell, there

can be different output spike patterns for a given stimuli. The spatial region inside

which a ganglion cell is sensitive to any stimuli is defined as its receptive-field. For

most ganglion cells the receptive field is divided into two parts: a circular zone at

the center, called the receptive field center, and the remaining area of the field, called

the surround. ON-type ganglion cells fire frequently if their receptive field center is

illuminated, while OFF-type ganglion cells fire frequently only if their receptive field

surround is illuminated. In Fig.1.10b, the ganglion cell G1 is OFF-type, while G2 is

ON-type.

The optic nerve conducts the output spike trains from the ganglion cells to the

region known as lateral geniculate nucleus (LGN) of the thalamus. The LGN acts

as the relay station between the retina and the visual cortex (Fig.1.11). The visual
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cortex is one of the most studied and well-understood cortical system in primates. It

consists of several layers; V1, V2 etc. Information inside the visual cortex is propagated

in a hierarchical manner mainly in one direction (‘Feedforward’) [11]. Functionally,

the neurons in the layer V1 respond as highly selective spatiotemporal filters. Their

receptive fields can be typically modeled by Gabor filters [43], which are sensitive to

spatial and temporal orientation (or movement). The neurons of the second layer

(V2) are functionally responsible for higher tasks such as encoding of complex shapes,

combination of directions, edge detection, and surface segmentation [44].

Synaptic plasticity and STDP are believed to play an important role in the learning

of complex intermediate features in visual data in an unsupervised manner [45]. It has

been shown [46] that receptor fields similar to the ones found in V1 can emerge naturally

through STDP on sufficiently large visual stimuli.

1.2.4 Cochlea: The Natural Auditory Processing System

The human ear can be broadly divided in three regions (outer-, middle- and inner-ear).

Hearing starts with the capture of sound in the outer-ear (Fig.1.12a). Sound waves and

mechanical energy flow through the middle-ear to the inner-ear (cochlea), where it is

transduced in to electrical neural signals and coding. The complex auditory pathways

of the brain stem mediate certain functions, such as the localization of sound sources,

and forward auditory information to the cerebral cortex. Several distinct brain areas

analyze sound to detect the complex patterns characteristic of speech.

The human cochlea consists of coils with progressively diminishing diameter, stacked

in a conical structure like a snail’s shell. The interior of the cochlea contains three

fluid-filled tubes, wound helically around a conical bony core called the modiolus. In a

cross-sectional view (Fig.1.12b), the uppermost fluid-filled tube is the scala-vestibule,

the middle tube is scala-media, and the lowermost tube is called the scala-tympani.

A thin membrane (Reissner’s membrane) separates the scala-media from the scala-

vestibuli. The basilar membrane, which forms the partition between the scala-media

and the scala-tympani, is a complex structure where the transduction of auditory-to-

electrical signals occurs.

The basilar membrane acts as a mechanical analyzer of sound frequencies. Its

mechanical properties vary continuously along the cochlea’s length. As the cochlear

chambers become progressively larger from the organ’s apex toward its base the basilar
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Figure 1.12: (a) Illustration of the human ear and (b) cross-section of the cochlea, adapted

from [29].

Figure 1.13: (a) Illustration of uncoiled basilar membrane with different frequency sen-

sitive regions, adapted from [47](b) inner hair cell, movement of the stereocilium leads to

generation of receptor potentials, adapted from [29]
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Figure 1.14: (a) Illustration showing the organ of corti in the cochlear cross-section. (b)

zoomed view of the organ of corti showing location of the inner hair cells, adapted from

[21]

membrane decreases in width. The membrane is relatively thin and floppy at the apex

of the cochlea but thicker and tauter towards the base. Such variation in mechanical

properties accounts for the fact that the basilar membrane is tuned to a progression of

frequencies along its length [21]. At the apex of the human cochlea the partition re-

sponds best to the lower frequencies of the order of 20 Hz, while at the opposite end, the

membrane responds to higher frequencies around 20 kHz (Fig.1.13a). The relation be-

tween characteristic frequency and position upon the basilar membrane varies smoothly

and monotonically but is not linear. Instead, the logarithm of the best frequency is

roughly proportional to the distance from the cochlea’s apex.

The organ of Corti is an important receptor part of the inner ear. It extends as

an epithelial ridge along the length of the basilar membrane (Fig.1.14). It contains

approximately 16,000 hair cells innervated by about 30,000 afferent nerve fibers, which

carry information into the brain along the eighth cranial nerve. Like the basilar mem-

brane, both the hair cells and the auditory nerve fibers are tonotopically organized: At

any position along the basilar membrane they are optimally sensitive to a particular

frequency, and these frequencies are logarithmically mapped in ascending order from

the cochlea’s apex to its base. The organ of Corti contains two types of hair cells

(Fig.1.13b). The inner hair cells form a single row of approximately 3500 cells. Farther

from the helical axis of the cochlear spiral lie rows of about 12,000 outer hair cells [21].

When the basilar membrane vibrates in response to a sound, the organ of Corti

is also carried with it. This leads to deflection of hair bundles (Fig.1.13a). The me-
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chanical deflection of the hair bundle is the stimulus that excites each hair cell of the

cochlea. This deflection leads to generation of receptor potentials. The receptor poten-

tials of inner hair cells can be as great as 25 mV in amplitude. An upward movement

of the basilar membrane leads to depolarization of the cells, whereas a downward de-

flection leads to hyperpolarization. Due to the tonotopic arrangement of the basilar

membrane, every hair cell is most sensitive to stimulation at a specific frequency. On

average, successive inner hair cells differ in characteristic frequency by about 0.2%. In-

formation flows from cochlear hair cells to neurons whose cell bodies lie in the cochlear

ganglion. Since this ganglion follows a spiral course within the bony core (modiolus) of

the cochlear spiral, it is also called the spiral ganglion(Fig.1.14). About 30,000 ganglion

cells connect the hair cells of each inner ear. Each axon connects a single hair cell, but

each inner hair cell directs its output to several nerve fibers, on average about 10. This

arrangement has important consequences. Firstly, the neural information from which

hearing arises originates almost entirely at inner hair cells, which dominate the input

to cochlear ganglion cells. Secondly, the output of each inner hair cell is sampled by

many nerve fibers, which independently encode information about the frequency and

intensity of sound.

Each hair cell therefore forwards information of somewhat differing nature to the

brain along separate axons. Finally, at any point along the cochlear spiral, or at

any position within the spiral ganglion, neurons respond best to stimulation at the

characteristic frequency of the contiguous hair cells. The central nervous system can

get information about sound stimulus frequency in two ways. Firstly, a spatial code; the

neurons are arrayed in a tonotopic map such that position is related to characteristic

frequency. Secondly, a temporal code; the neurons fire at a rate reflecting the frequency

of the stimulus.

1.3 Simplified Electrical Modeling

Numerous models of biological neurons and synapses, with varying degrees of com-

plexity and abstraction, exist in literature. The complexity and the choice of a model

depends on the application. For better understanding the working of the biological

neurons or to simulate biology it is essential to have a detailed model which takes in
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Figure 1.15: (a) Simplified circuit equivalent of the Hodgin-Huxley (HH) neuron model.

(b) Circuit model with synapses as variable programmable resistors [49].

account the dynamics at the level of individual ion-channels and underlying biophys-

ical mechanisms. While for the purpose of bio-inspired or neuromorphic computing,

which is more closely related to the scope of the work presented in this thesis, simple

behavioral models are sufficient.

One of the earliest and simplest neuron models is the Integrate-and-Fire (IF) neuron

model shown as early as 1907 [48]. In this model a neuron is represented by a simple

capacitive differential eq.1.2-

I(t) = Cm ·
dVm

dt
(1.2)

Where, Cm denotes the neuron membrane capacitance. According to the IF model,

the neuron constantly sums or integrates the incoming pre-synaptic currents and fires

(generates action potential) when the membrane voltage reaches a certain firing thresh-

old voltage (Vth). An advanced and more relevant form of the IF model is the Leaky-

Integrate-and-Fire (LIF) model, described by the eq.1.3-

I(t)− Vm(t)

Rm
= Cm ·

dVm(t)

dt
(1.3)

The LIF model takes in account the leakage-effect of the neuron membrane potential

by drift of some ions, assuming that the neuron membrane is not a perfect insulator. Rm

denotes the membrane resistance. For the neuron to fire, the accumulated input should

exceed the threshold Ith>Vth/Rm. Several CMOS-VLSI hardware implementations of

functional IF and LIF neuron models have been described in literature [50].
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A more detailed model is the Hodgkin-Huxley neuron model (HH). It describes the

action potential by a coupled set of four ordinary differential equations [51]. Fig.1.15a,

shows the simplified circuit equivalent of the HH model. The bilayer phospholipid

membrane is represented as a capacitance (Cm). Voltage-gated ion-channels are rep-

resented by nonlinear electrical conductances (gn, where n is the specific ion- channel

for Na+, K+), the conductance is a function of voltage and time. The electrochemical

gradients driving the flow of ions are represented by batteries (En and EL). Ion-pumps

are modeled by current sources (Ip). Interestingly, neurons have also been modeled

as pulse frequency signal processing devices, and synapses as variable programmable

resistors (Fig.1.15b) [49].

1.4 Nanoscale Hardware Emulation of Synapses

Several different hardware embodiments of artificial neural networks exist in literature.

In this section we summarize some state-of-art hardware implementations of synapses

based on (i) VLSI-technology and (ii) Exotic devices. We outline some limitations of

these approaches and introduce the concept of emerging non-volatile Resistive Memory

(RRAM) technology and its advantages. The underlying or unifying theme in most of

the embodiments discussed in this section is that the synapse is broadly treated as a

non-volatile, programmable resistor.

1.4.1 VLSI-technology

These include emulation of synaptic behavior with VLSI structures such as floating-gate

transistors, DRAM and SRAM.

1.4.1.1 Floating-gate Synapses

The 10240 synapses in Intels ETANN chip were realized using EEPROM cells (see

Fig.1.16) [8]. For each synapse circuit in ETANN, a pair of EEPROM cells are in-

corporated in which a differential voltage representing the weight may be stored or

adjusted. Electrons are added to or removed from the floating gates in the EEPROM

cells by Fowler-Nordheim tunneling. A desired differential floating-gate voltage can be

attained by monitoring the conductances of the respective EEPROM MOSFETs.
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Figure 1.16: Intel ETANN synapse structure implemented using EEPROM floating-gate

devices [8].

Figure 1.17: (a) Layout of poly silicon floating-gate synaptic device [52]. (b) ciruit

schematic of floating-gate synapse with transconductance amplifier [52]. (c) layout of

floating-gate pFET synaptic device [53].
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Figure 1.18: (a) circuit schematic of analog DRAM based synapse with three additional

transistors [55]. (b) circuit schematic of DRAM based synapse with transconductance

amplifier [56].

Double-poly floating gate transistors along with transconductance amplifiers (Fig.1.17a,b)

were used by Lee et. al [52], for implementing VLSI synapse circuits. In this approach

the synaptic weight was programmed using Fowler-Nordheim tunneling, and the neural

computation is interrupted for the duration of the applied programming voltages. Cor-

relation learning rules have also been demonstrated on synapses made of floating-gate

pFET type structures, as shown in Fig.1.17c, [53]. In this approach Fowler-Nordheim

tunneling is used to remove charge from the floating-gate and thus increase the synapse

channel current. Conversely, pFET hot-electron injection is used to add charge to the

floating-gate and decrease the synapse channel current. More recently synaptic plastic-

ity effects like LTP/LTD and the STDP learning rule were demonstrated on floating-

gate pFET structures with the help of additional pre-synaptic computational circuitry

[54].

1.4.1.2 Dynamic Random Access Memory (DRAM) or Capacitive Synapses

Different DRAM (or capacitor based) synaptic hardware implementations utilizing both

analog and digital types of storage have been proposed in literature. Jerzy et.al, demon-

strated an analog multilayer perceptron network with back-propagation algorithm using

nonlinear DRAM synapses [55]. Their synapse consists of a storage capacitor and 3

additional transistors (Fig.1.18a).

The DRAM based analog synaptic weight storage suffers from capacitive discharge,

need for frequent refresh, noise induced from the switching transistors and errors due to

clock feedthrough [55]. Lee et.al, proposed a DRAM based synapse with 7 additional
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Figure 1.19: Capacitor based synapse with additional learning and weight update circuit

blocks [58].

transistors or a transconductance amplifier (Fig.1.18b). They show a 8-bit synaptic

weight accuracy with a 0.2 s refresh cycle. Additional decoder circuitry is required to

program the synapse weight voltage. Takao et.al, demonstrated a digital chip architec-

ture with 106 synapses [57]. They use an on-chip DRAM cell array to digitally store

8-bit synaptic weights with automatic refreshing circuits. In some capacitive imple-

mentations there are additional weight update circuits inside the synaptic block, like

the one shown in Fig.1.19, [58]. The additional circuits are needed to implement the

learning rules. Similar of circuits with learning functionality are also shown in [59],

[50].

1.4.1.3 Static Random Access Memory (SRAM) Synapses

More recently, the use of standard and modified SRAM cells has also been proposed for

synaptic emulation. IBM proposed a modified 8-T transposable SRAM cell (Fig.1.20) in

their digital neurosynaptic core [60]. Their modified 8-T structure enables single-cycle

write and read access in both row and column directions. The cell area is 1.6 µm2 in

45 nm node. The 8-T SRAM synapses have binary weights which are probabilistically

controlled. A variant structure containing 4-bit analog weight was also implemented

[60].

4-bit SRAM cells are also used to store individual synaptic weights in the wafer-

scale FACETS neuromorphic project [61]. Fig.1.21 shows the schematic diagram of

a single synapse for the FACETS project. Two types of plasticity rules: short-term

depression (STD) and STDP are implemented using the FACETS synapses.
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Figure 1.20: IBM’s 45 nm node neurosynaptic core and 8-T transposable modified SRAM

cell [60].

Figure 1.21: Synapse schematic comprising of 4-bit SRAM cells for the wafer-scale

FACETS neuromorphic project [61].
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The Spinnaker approach uses specially designed hardware synaptic channels with

off-chip mobile DDR SDRAM memory with a 1 GB capacity. Synaptic weights use a

large, concurrently-accessed global memory for long-term storage. Since the SDRAM

resides off-chip, it is easy to expand available global memory simply by using a larger

memory device [62].

1.4.1.4 Limitations of VLSI type synapses

While synaptic emulations that use VLSI constituents discussed in the previous sec-

tion (like floating-gate transistors, DRAMs, SRAMs, DDR-SDRAM) are tempting to

use, considering the availability of standardized design tools and a mature fabrication

process, their exist several limitations. Floating-gate devices are not ideal for map-

ping bio-inspired learning rules because unlike biological synapses they are 3-terminal.

During synaptic learning individual synapses may undergo weight modification asyn-

chronously, which is not very easy to do with the available addressing schemes for large

Flash arrays. Floating-gate devices also require high operating voltages. In many cases,

additional pre-synaptic circuitry is required to implement timing dependent learning

rules, due to the difference in the charging and discharging physics of the floating gate

devices. The pulse shapes used to program floating-gate devices are complicated. En-

durance of even state-of-the art floating-gate devices (Flash) is not very high. Due to

the operating physics, there exists an inherent limitation on the frequency of program-

ming synapses based on floating-gate FETs.

The DRAM or capacitor based synapses require frequent refresh cycles to retain

the synaptic weight. In most of the capacitor based demonstrations, a single synapse

circuit needs more than 10 additional transistors to implement learning rules, as shown

in sec.1.4.1. The capacitor is also an area consuming entity for the circuit. The SRAM

based synapses further suffer due to disadvantage in terms of area consumption and

volatility. When the network is turned off, the synaptic weights are lost, and so they

need to be stored to some offline memory during or after the learning. Reloading of

the synaptic weights during learning operation will lead to additional power dissipation

and silicon area overhead. These limitations lay the basis for the interest in synaptic

emulation with new types of emerging non-volatile memory technology (RRAM) as

described in sec.1.4.3.
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1.4.2 Exotic Device Synapses

Several interesting exotic devices such as organic-transistors, single-electron transistors,

optically-gated transistors, atomic-switches and even thin-film transistors have been

used to implement synaptic behavior.

Alibart et. al, propose an organic nanoparticle field-effect transistor (NOMFET)

that can emulate effects such as synaptic short-term plasticity effects (potentiation/depression)

and STDP based learning rules [63]. The NOMFET structure (Fig.1.22a) exploits (i)

the transconductance gain of the transistor and (ii) the memory effect due to charges

stored in the nano-particles (NPs). The NPs are used as nanoscale capacitors to store

the electrical charges and they are embedded into an organic semiconductor layer of

pentacene. The transconductance of the transistor can be dynamically tuned by the

amount of charge in the NPs. More recently the NOMFET based synapses were also

used to demonstrate associative learning based on Pavlov’s dog experiment [64].

A.K Friesz used SPICE models to propose a carbon nanotube based synapse cir-

cuit (Fig.1.22b) [65]. The output of their CNT synapse circuit produces excitatory

post-synaptic potentials (EPSP). Carbon nanotube transistors with optically controlled

gates (OG-CNTFETs) have also been proposed by different groups for synaptic em-

ulation (see Fig.1.22c,d) [66], [67]. Agnus et.al [67], show that the conductivity of

the OG-CNTFETat can be controlled independently using either a gate potential or

illumination at a wavelength corresponding to an absorption peak of the polymer.

Recently, 2-terminal ”atomic switch” structures consisting metal electrodes, a nanogap

and an Ag2S electrolyte layer (see Fig.1.23a), have been shown to emulate short-term

synaptic plasticity and LTP type of effects [68], [69]. Avizienis et. al, [70] fabricated

massively interconnected silver nanowire networks (Fig.1.23b) functionalized with in-

terfacial Ag/Ag2S/Ag atomic switches. Cantley et.al, used spice models to demonstrate

hybrid synapse circuits comprising of nano-crystalline ambipolar silicon thin-film tran-

sitors (TFT) and memristive devices [71].

The exotic devices discussed herein suffer from limitations such as complicated

fabrication process, poor CMOS compatibility, low technological maturity, and high

voltage operation in some cases.
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Figure 1.22: (a) Physical structure of the NOMFET. It is composed of a p+ doped

bottom-gate covered with silicon oxide (200 nm). Source and drain electrodes are made

of gold and Au NPs (20 nm diameter) are deposed on the interelectrode gap (5 µm),

before the pentacene deposition [64]. (b) The carbon nanotube synapse circuit [65]. (c)

Neural Network Crossbar with OG-CNTFET synapse [66]. (d) Schematic representation

of a nanotube network-based OG-CNTFET [67].
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Figure 1.23: (a) Schematics of a Ag2S atomic switch inorganic synapse. Application

of input pulses causes the precipitation of Ag atoms from the Ag2S electrode, resulting

in the formation of a Ag atomic bridge between the Ag2S electrode and a counter metal

electrode. When the precipitated Ag atoms do not form a bridge, the inorganic synapse

works as STP. After an atomic bridge is formed, it works as LTP [68]. (b) SEM image of

complex Ag networks produced by reaction of aqueous AgNO3 with (inset) lithographically

patterned Cu seed posts [70].

1.4.3 Resistive Memory Technology (RRAM)

Resistive random access memory (RRAM) is an umbrella term for emerging non-volatile

memory (NVM) devices and concepts based on electrically switchable resistance states.

The motivation behind the development of RRAM technologies is to overcome the lim-

itations of existing VLSI memory concepts. A RRAM cell is generally a capacitor-like

MIM structure, composed of an insulating material ‘I’ sandwiched between two metal-

lic electrodes ‘M’ [72]. The MIM cells can be electrically reversibly switched between

two or more different resistance states by applying appropriate programming voltages

or currents. The programmed resistance states are non-volatile. Based on the type

of material stack and the underlying physics of operation, the RRAM devices can be

classified in several categories. Fig.1.24, shows different types of emerging RRAM tech-

nologies classified on the basis of the underlying resistance-switching physics. RRAM

is also vaguely defined as ‘memristor’ or ‘ReRAM’.

This thesis focuses on three specific types of RRAM technologies: (i) unipolar Phase

Change Memory (PCM), based on phase change effects in chalcogenide layers, (ii)

bipolar Conductive Bridge Memory (CBRAM), based on electrochemical metallization

effect, and (iii) bipolar Oxide based resistive memory (OXRAM), based on valency

change/electrostatic memory effects.
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Figure 1.24: Classification of the resistive switching effects which are considered for

non-volatile memory applications [72].
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Table 1.1: Comparison of emerging RRAM technology with Standard VLSI technologies.

Adapted from ITRS-2012. (Values indicated for PCM and Redox are the best demon-

strated.) Redox includes both CBRAM and OXRAM devices.

Parameter DRAM SRAM NOR

Flash

NAND

Flash

PCM Redox

(OX/CB)

Cell Area 6F2 140F2 10F2 5F2 4F2 4F2

Feature Size

(nm)

36 45 90 22 20 9

Read Time

(ns)

<10 0.2 10 50 12 <50

Write-Erase

Time

<10 ns 0.2 1 µs /

10 ms

1 ms /

0.1 ms

50 ns /

120 ns

0.3 ns

Write Voltage

(V)

2.5 1 12 15 3 0.6/-0.2

Read Voltage

(V)

1.8 1 2 2 1.2 0.15

Write Energy

(J)

5E-15 5E-16 1E-10 >2E-

16

6E-12 1E-13

Endurance 64 ms NA >10

years

>10

years

>10

years

>10

years
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RRAM technologies offer interesting attributes both for replacing standard VLSI

type memories and also for emulating synaptic functionality in large-scale silicon based

neuromorphic systems (see Tab.1.1). Some promising features of RRAM are: full

CMOS compatibility, cheap fabrication, high integration density, low-power operation,

high endurance, high temperature retention and multi-level operation [73], [74], [75].

The two terminal RRAM devices can be integrated in 2D or 3D architectures with-

selector device configuration (1 Transistor/Diode - 1 Resistor) or selector-free con-

figuration (1 Resistor) [72]. The detailed RRAM working, and state-of-art synaptic

implementations with RRAM devices is discussed in chapters 2 and 3.

1.4.3.1 Memistor Synapse (The father of Memristor or RRAM)

The memistor is one of the earliest electronic devices developed specially for emula-

tion of synaptic functionality in artificial neural networks. It was first proposed and

demonstrated in 1960 [76], by Bernard Widrow and Ted Hoff (who later became one

of the inventors of the microprocessor), used as synapse in their pattern classification

ADALINE neural architecture [77]. Memistor is a three-terminal device, not to be con-

fused with the two-terminal memristor first theoretically postulated by Leon Chua in

1971 [78], and later experimentally claimed by HP labs [79], rather it is a predecessor

to both of them.

Memistor working is based on reversible electroplating reactions. Fig.1.25a, shows

the photograph of Widrows memistor made of pencil led graphite and a supporting

copper rod. Resistance is controlled (or programmed) by electroplating copper from

a copper sulphate-sulphuric acid solution on a resistive substrate (graphite). Change

in memistor conductance with application of plating current and a hysteresis effect

is shown in Fig.1.25b. Fig.1.26a shows the original ADALINE neural architecture

with a 3x3 memistor array and 1 neuron, developed in 1960. Fig.1.26b shows a more

recent and compact version of the same. Inspired from widrow’s electroplating based

memistor, a fully solid state memistor for neural networks was demonstrated in 1990

[80]. It is a 3-terminal device based on tungsten-oxide (WO3), Ni-electrodes and a Al-

gate Fig.1.27a. A voltage controlled, reversible injection of H+ ions in electrochromic

thin films of WO3 is utilized to modulate its resistance. A hygroscopic thin film of

Cr2O3 is the source of H+ ions. The resistance of the device can be modulated over

four orders of programming window. The programming speed can be modulated by

33



1. BACKGROUND

Figure 1.25: (a) Photo of the constituents of the copper-sulphate based memistor device.

(b) Characteristic programming curves showing hysteresis loop in the memistor devices,

adapted from [76].

Figure 1.26: (a) Photo of the ADALINE architecture with 1 neuron and 3x3 memistor

synapses [76]. (b) Recent photo of the ADALINE system containing memistors taken at

IJCNN-2011.
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Figure 1.27: (a) Cross-section schematic of the tungsten oxide based 3-terminal memistor.

(b) Programming characteristics of the solid state memistor device, adapted from [80].

control voltage. Fig.1.27b shows the time-dependent programming characteristics of

the solid-state memistors.

1.5 Scope and approach of this work

The work done in this PhD thesis focuses on the development of a complete ”synapse-

solution” for using specific RRAM devices inside large-scale ultra-low power neuromor-

phic systems.

The ”synapse-solution” comprises of different ingredients starting from individual

devices, circuits, programming-schemes and learning rules. For each of the three RRAM

technologies investigated in this work (i.e. PCM, CBRAM and OXRAM), we begin

with investigating the basic working and characteristics of the devices. We then iden-

tify what device characteristics can be directly used in a neural learning environment,

and which ones are not usable. At the device level we identify some material and phys-

ical characteristics that can be tuned or engineered to optimize the individual synaptic

performance. At the architectural level, we propose specific connection topologies and

detailed programming methodologies (Read, Write, Refresh) for building low-power

neuromorphic systems. At the level of algorithms or learning we propose the use of

simplified and optimized learning rules. Finally we demonstrate relevant applications

such as complex auditory and visual pattern extraction/recognition. The overall strat-

egy for developing a perfect hardware ”synapse-solution” should be of bi-directional

nature (see Fig.1.28). The bottom-up approach begins with an individual synaptic

device, while the top-down approach is more application centric.
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Figure 1.28: Bi-directional strategy (Top-down + Bottom-up) adopted for the work

presented in this PhD thesis. To develop the ideal ”synapse-solution” optimization and

fine-tuning was performed at different levels such as architectures, learning-rules and

programming-schemes.(BS: Binary Stochastic synapses).
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1.6 Conclusion

In this chapter, we looked at some key motivations behind R&D in the field of neu-

romorphic computing. We then summarized the main biological concepts relevant for

the purpose of this work. In the last section of the chapter, we discussed several dif-

ferent hardware implementations of synapses and the positioning of emerging RRAM

technologies. The following chapters specifically focus on synaptic emulation using

individual RRAM technologies (PCM, CBRAM and OXRAM).
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“An experiment is something which everyone believes

except the person who did it,

A simulation is something that no one believes...

except the person who did it.”

2

Phase Change Memory Synapses

This chapter discusses how Phase Change Memory (PCM) technology can be used

to emulate biological synapses in large-scale neuromorphic systems with low-power

dissipation and easy to implement programming methodology.

2.1 PCM Working Principle

PCM devices consist of an active chalcogenide layer sandwiched between two metal

electrodes. The working principle exploits reversible and nonvolatile phase-change

phenomenon inside chalcogenide layers such as Ge2Sb2Te5 (GST). The high resistive

amorphous phase is usually defined as the RESET state, while the low-resistive crys-

talline phase as the SET state. When a bias is applied across the two electrodes of the

PCM, current flows through the metallic heater and the chalcogenide layer, causing

joule-heating. Depending on the pulse-duration, fall-time edge, and the amplitude of

the current flowing through the device, crystalline, amorphous, or partially crystalline

and partially amorphous regions can be created inside the chalcogenide layer. If the

chalcogenide layer is melted and quenched quickly, it does not get sufficient time to re-

organize itself into a crystalline structure and thus amorphous regions are created. If

the chalcogenide layer is heated, between the glass-transition and the melting temper-

ature, for sufficiently long time it leads to crystallization [73]. Intermediate resistance

states can also be obtained by tuning the programming conditions and controlling the

volume of amorphous/crystalline volume fraction created inside the chalcogenide layer

[73].
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Figure 2.1: Illustration of biological synapse and the equivalent PCM synapse in a neural

circuit connecting a spiking pre- and post- neuron [81]. TEM cross-section image of the

GST PCM devices fabricated for this study is shown.

2.2 State-of-Art PCM Synapses

Kuzum et.al [82] have shown the emulation of progressive LTP- and LTD- like effects,

by programming their PCM synapses, with different voltage pulse trains of increasing

amplitude (Fig.2.2b).

Kuzum et. al [83] have shown emulation of asymmetric and symmetric forms of

STDP using PCM synapses. For implementing the STDP rules they propose the inter-

action of a specially designed pre-neuron spike (a combination of two or three different

pulse trains) and a simple post-neuron spike (Fig.2.3a) at the PCM synapse. Half of

the pre-neuron spike consists of a depressing pulse train of increasing amplitude, while

the other half consists of a potentiating pulse train of decreasing amplitude. The post

neuron spike is a single pulse of inverted polarity. Only an overlap of the pre- and post-

neuron spike leads to a change in the synaptic weight. When the post neuron spike

arrives late, it overlaps and adds with the potentiating half of the pre-neuron spike.

The resultant pulse leads to potentiation or conductance increase of the PCM device.

Similarly if the post-neuron spike arrives before the pre-neuron spike, it will overlap

and add with the depressing half of the pre-spike, thus resulting in synaptic depression

resistance increase of the PCM device. A similar approach by IBM [84] outlines the

use of a select transistor connected across one terminal of the PCM device (1T-1R). In
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Figure 2.2: (a) Cross-section of the GST-PCM device showing amorphous and crys-

talline regions. (b) Potentiation and depression using voltage pulse trains with changing

amplitude, adapted from [82].

this case the post-neuron spike is a combination of depressing and potentiating pulse

trains. While the pre-neuron spike is a simple gating pulse for controlling the select

transistor.

The approaches used to implement STDP, discussed here suffer from the issue of

complicated pulse shapes. Implementing pulse trains that are not of identical am-

plitude would lead to additional circuitry in the CMOS neuron circuits. Such pulse

schemes when implemented in large scale neural systems would lead to excessive power

dissipation and capacitive line charging across the synaptic crossbars or arrays. Pulse-

trains are not energy efficient, as they include application of several pulses even when

a particular synaptic event does not occur. In the following sections of this chapter, we

present our novel solution (2-PCM Synapse) for overcoming these limitations.

Recently, different forms of STDP emulation over small resistance modulation win-

dows was demonstrated [85] in GST based PCM devices by using bipolar programming

pulses (Fig.2.4). The authors claim that mechanism for resistance modulation is differ-

ent from the one based on joule heating and actual phase-change in GST. They rather

explain the resistance changes on basis of charge trapping and releasing in crystalline

GST [85]. It is worth mentioning that PCM devices and chalcogenide based systems

have also been proposed to emulate certain neuron-like characteristics. Ovshinsky, the

father of modern day PCM, was also among the first ones to suggest the possibility of
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Figure 2.3: (a) Spike scheme with set and reset pulse trains. (b) Spikes for different

forms of STDP [83].

Figure 2.4: PCM conductance increases or decreases in response to negative or positive

pulses, respectively. The pulse amplitudes vary with identical 30 ns widths [85].
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using PCM for cognitive processing applications or ovonic computers [86]. The thresh-

old switching feature of PCM is central to the concept of ovonic cognitive processing.

Ovshinsky shows that the gradual reset-to-set transition of PCM devices by applica-

tion of partially crystallizing pulses can be exploited in a manner analogous to the

firing action of LIF and IF neurons [86]. More recently C.D. Wright et.al demonstrated

the realization of a phase change processor exploiting the non-volatility and threshold-

switching property of PCM and chalcogenide layers [87]. Their processor can perform

bio-inspired and simple arithmetic functions like addition, subtraction, multiplication,

and division with simultaneous storage of results.

2.3 Device and Electrical Characterization

At LETI, we fabricated lance-type PCM test devices (Fig.2.1), with a 100 nm-thick

phase change layer and a 300 nm-diameter tungsten plug, were fabricated and charac-

terized. Two different chalcogenide materials were integrated: nucleation dominated

Ge2Sb2Te5 (GST) and growth-dominated GeTe [88]. GST and GeTe were chosen to ex-

amine how materials with different crystallization parameters would impact the synap-

tic behavior.

For all the measurements, a current limiting resistance of 100 Ω was connected

in series with the top pad of the PCM device. The electrical test setup is described

in detail in [89], where bottom pad is grounded and the signal is applied to the top

pad. Throughout this chapter, an increase in the PCM conductance is referred to as

synaptic potentiation (or long term potentiation, LTP [90]), while a decrease in PCM

conductance is referred to as synaptic depression (or long term depression, LTD [90]).

Fig.2.5a and Fig.2.5b show the measured current-voltage (I-V) and resistance-current

(R-I) curves, for GST and GeTe PCM devices. In Fig.2.5a (I-V curve), the device was

initially reset to the amorphous state. As the applied voltage is increased, electronic

switching occurs at the threshold voltage, and the amorphous region becomes conduc-

tive (the so called volatile electronic-switching [91]). Fig.2.5b (R-I curve), illustrates

well the difference between a SET state (crystalline), a potentiated state (partially

crystalline), and a strong RESET state (large amorphous region). At the beginning

of the test, the device was reset to a high resistive amorphous state using a strong
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Figure 2.5: (a) IV characteristics for PCM devices with 100 nm thick GST and GeTe

layer starting from initially amorphous phase. (b) R-I characteristics of GST and GeTe

PCM devices, with inset showing the PCM phase of intermediate resistance states. (c) R-V

curves for GST devices with six different pulse widths. Read pulse = 0.1 V, 1 ms. Legend

indicates applied pulse widths. (d) Temperature Vs Time profile for PCM programming

pulses [81].
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Figure 2.6: (a) Experimental LTP characteristics of GST PCM devices. For each curve,

first a reset pulse (7 V, 100 ns) is applied followed by 30 consecutive identical potentiating

pulses (2 V). Dotted lines correspond to the behavioral model fit described in Eq.2.3 and

eq.2.4. (b) Experimental LTP characteristics of GeTe PCM devices. (c) LTP simulations

for GST devices using circuit-compatible model. (d) Conductance evolution as a function of

the applied voltage for GST devices with six different pulse widths, using circuit-compatible

model (sec.2.5.2). Legends in Figs.2.6(a–d) indicate pulse widths [81].
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reset-pulse (7 V, 100 ns, rise/fall time = 10 ns). This was followed by the applica-

tion of a programming pulse. After the programming pulse, a small reading voltage of

0.1 V was applied to measure the device resistance. Fig.2.5c, shows the characteristic

resistance-voltage (R-V) curves for GST based PCM devices, for different program-

ming pulse widths. For a given pulse amplitude, the resistance decreases much faster

for longer pulse widths. Thus, by using the combination of right pulse width and right

pulse amplitude, PCM resistance (or conductance) can be modulated, as an analog

to synaptic weights. For both Fig.2.5b and Fig.2.5c the rise and fall times of the set

pulse are always 10 ns. The reset-to-set transition in GeTe is more abrupt compared

to GST; GeTe being a growth dominated material crystallizes much faster compared

to GST which is nucleation dominated. On the other hand the set-to-reset transition

appears to show more gradual resistance change for both GST and GeTe as it is pos-

sible to obtain different intermediate resistance values by controlling the volume of the

amorphous region created inside the phase change layer post-melting.

2.3.1 LTP Experiments

LTP can be emulated if the PCM is progressively programmed along the RESET-

to-SET transition (or amorphous-to-crystalline). LTD can be emulated if the PCM

is progressively programmed from the SET-to-RESET transition (or crystalline-to-

amorphous). In order to emulate spiking neural networks (SNN), it is desired that

both LTP and LTD can be achieved by application of simple and identical pulses. Gen-

eration of complex types of spikes or pulses would require additional complexity in the

neuron circuit design. Two types of pulses can be defined for our purpose: depressing

or amorphizing pulse (reset) and a potentiating or partially crystallizing pulse (a weak

set). Fig.2.6a and Fig.2.6b show LTP-like conductance variation of PCM devices with

GST and GeTe, respectively. Initially, the devices were programmed to a high resistive

state by using a strong depressing pulse (7 V, 100 ns). This was followed by the ap-

plication of several identical potentiating pulses, which are simple rectangular voltage

pulses with a rise and fall times of 10 ns (2 V for GST, 1.5 V for GeTe). The voltage

amplitude of the potentiating pulses is chosen such that the resulting current flowing

through the device is just sufficient to switch the device and cause minimum amount of

crystallization with the application of each pulse. Nucleation-dominated behavior leads

to a more gradual conductance change in GST, when compared to GeTe (GeTe being
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growth dominated). The saturation of the conductance programming window in GeTe

occurs in less than a third of the total number of pulses required for GST. From the

viewpoint of storage capacity (in the form of synaptic weights) inside a neural network,

a GST synapse seems superior to a GeTe synapse, as GST offers a higher number of

intermediate conductance states.

2.3.2 LTD Experiments

Fig.2.9 shows the emulation of LTD-like behavior on PCM devices. The devices were

first crystallized by applying a strong potentiating pulse (2 V, 1 µs), followed by the

application of several identical depressing pulses (7 V, 50 ns). It was not possible

to obtain a gradual synaptic depression by applying identical depressing pulses. The

LTD experiment seems more like an abrupt binary process, with negligible intermediate

conductance states. Multi-physical simulations (described in Sec.2.4) were performed to

interpret the LTD experiment. From these simulations (shown embedded in Fig.2.9),

we observed that the volume of the molten region created after the application of

each pulse remains almost the same if the pulses are identical. We also performed

LTD simulations with consecutive pulses of increasing amplitude (not shown here),

and observed a gradual decrease in the device conductance with the application of

each pulse, in agreement with other papers [82]. A strong depressing pulse would

melt a larger region compared to a weak depressing pulse, creating a larger amorphous

cap and a lower value of final device conductance. Thus, in order to obtain gradual

synaptic depression behavior, the amplitude of the consecutive pulses should increase

progressively. This is also in agreement with the set-to-reset transition seen in Fig.2.5b.

Innovative pulse sequences like the ones suggested in [82] could help in achieving LTD

with multiple intermediate states. Nevertheless, implementing such complex pulse-

schemes with varying amplitudes can lead to practical problems, such as capacitive line

charging and high power dissipation, when implemented in large scale neural systems.

Moreover, the generation of non-identical pulses would lead to an augmented complexity

in the design of the CMOS neuron circuits. Additionally, emulation of LTD or synaptic

depression on PCM devices is significantly more energy consuming compared to the

emulation of synaptic potentiation, as the former requires amorphization (occurring at a

higher temperature compared to crystallization). In the following sections, we introduce
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a new solution (The 2-PCM Synapse) to emulate LTD/LTP with PCM devices, thus

overcoming the limitations discussed above.

2.3.3 Mixed Tests

Within an evolving neural network, a synapse might undergo potentiation or depression

(with varying intensities) or a combination of both, depending upon factors such as

spiking characteristics of the post-and pre-synaptic neurons. In order to emulate such

realistic synaptic modifications, we performed different hypothetical test situations for

the PCM synapse. One such test is shown in Fig.2.7. In this test, we show the PCM

synapse undergoing three modifications. A single test sequence comprises of a strong

potentiating event (as LTP) followed by a moderate and a strong depressing event (as

LTD). The strong LTP event is performed by applying a long potentiating pulse of 2

V during 4 µs. The moderate and strong depressing events are performed by applying

6 V, during 100 ns and 7 V during 300 ns, respectively. Thus one sequence of the

test consists of 3 distinct pulses. After each pulse, a small reading voltage of 0.1 V is

applied to measure the device resistance. The entire sequence was repeated 30 times.

Fig.2.7b, shows the change in resistance (or synaptic weight) of the PCM with every

sequence, and Fig.2.7c displays the variation in resistance with every individual pulse

of the 30 sequences. The resistance values obtained were well reproducible. In another

similar test (Fig.2.8), we modified the combination of LTP and LTD events. In this

test a single sequence comprises two identical strong depressing events followed by a

moderate potentiating event. The depressing events were performed by applying a

depressing pulse of 5.5 V during 70 ns. The moderate potentiating event was emulated

using a pulse of 1.5 V and 1 µs.

Notice that the difference in PCM resistance values after application of the two

LTP pulses used in Fig.2.7 is much more that the ones obtained in Fig.2.8. This is due

to the fact that in the later case the depressing pulses are identical. Also, according to

the test shown in Fig.2.7, the device attains much lower values of resistance compared

to Fig.2.8, on the application of the potentiating pulse. This is also in agreement with

the trend shown in Fig.2.5c, as in the case of Fig.2.7, the width of the potentiating

pulse is four times the width used in the case of Fig.2.8.
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2.3 Device and Electrical Characterization

Figure 2.7: . (a) Illustration showing a single test sequence applied to the PCM device,

consisting of one potentiating and two depressing events of varying intensity. (b) Varia-

tion of PCM resistance for all the 30 test sequences. The circle indicate resistance after

application of the potentiating pulse, while the square and triangle indicate the reading

values after application of 1st and 2nd depressing pulses respectively. (c) Variation of PCM

resistance with every individual pulse [92].
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Figure 2.8: (a) Illustration showing a single test sequence, consisting of two identical

depressing pulses and one potentiating pulse. (b) Variation of PCM resistance for all the

30 test sequences. The circle indicate resistance after application of the potentiating pulse,

while the square and triangle indicate the reading values after application of 1st and 2nd

depressing pulses respectively. (c) Variation of PCM resistance with every individual pulse

[92].
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Figure 2.9: Experimental LTD characteristics of GST and GeTe PCM devices. Inset

shows simulated phase morphology of GST layer after the application of consecutive de-

pressing pulses [81].

2.4 Physical Simulation

In this section, we present electro-thermal simulations to study the underlying physics of

the LTP and LTD experiments described in Sec.2.3. The motivation for such a study is

to optimize the synaptic characteristics by engineering the crystallization properties of

the phase change materials. Crystallization properties of phase change materials can be

altered to some extent by doping [93],[94], modifying the stoichiometric compositions,

[95], [96], [97] and interface engineering [98]. A better control over the crystallization

parameters by materials engineering is also in the interest of multi-level PCM imple-

mentation [99] and enhanced data-retention characteristics [100]. All the simulations

were performed for the GST based PCM devices.

The electro-thermal simulator, developed in MATLAB and C++, was described in

detail in [101]. The simulations were performed in the 2D axi-symmetrical coordinate

reference system. In all the simulations, a series load resistance, Rs, and a parasitic

capacitance Cp (Fig.2.10a) were considered. Fig.2.10(b-e) show the time evolution of

several simulated electro-thermal parameters for a PCM device (initially amorphous),
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Figure 2.10: (a) 2D Axi-symmetrical half cell description used for physical simulations.

(b) Simulated time evolution of applied voltage pulse and drop across the device for a

potentiating pulse. (c) Simulated maximum temperature in GST layer with the applied

pulse. (d) Simulated current passing through the device during the applied pulse. (e)

Simulated resistance of the device with the applied pulse [81].
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Figure 2.11: (a) Simulated depressing (reset) pulse indicating the instance of time snap-

shot. (b) Time snapshot of the simulated phase morphology of the GST phase change layer

[81].

during the application of a potentiating pulse (2.1 V, 30 ns). The evolution of the

voltage drop across the device, the current, the resistance, and the maximum cell

temperature is shown. Fig.2.11 shows a time snapshot of the GST phases during the

application of a depressing pulse (8 V, 25 ns), starting from an initially crystalline

state. The selected time is the beginning of the quenching process (i.e., the falling edge

of the reset pulse, Fig.2.11a). Before this instant, a mushroom shaped melted mass

of GST (brown color) in the region right above the W-plug is seen. As the quenching

progresses, the GST amorphizes, moving inwards from the melted crystalline interface

towards the center of the mushroom.

Formation of thin amorphous GST (green color) can be seen at melted-crystalline

interface in Fig.2.11b. The first few points in the LTP curves (for GST) shown in

(Fig.2.6a) are crucial in determining the total number of intermediate conductance

states that can be obtained for a given programming-window. The maximum change in

conductance was indeed observed to occur during the application of the first 5 pulses for

GST. In order to better understand the variation of conductance during the application

of first few pulses in the LTP experiment, we performed the simulations shown in

Fig.2.12.

The nucleation rate (I) and growth velocity (V) in the phase change layer were

modeled using eq.2.1 and eq.2.2, respectively, adapted from [101]
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Figure 2.12: (a) Simulated LTP curves while fixing the nucleation rate (NR) and varying

the growth rate GR compared to GST (taken as reference: GR = 1, NR = 1). Cor-

responding simulations of GST layer morphology are shown (0th pulse: reset; 1st-5th:

potentiating). (b) Simulated LTP curves while fixing the growth rate (GR = 1) and vary-

ing the nucleation rate (NR) compared to GST (taken as reference material: NR = 1, GR

= 1). Corresponding simulation of GST layer morphology are also shown [81].
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I = Na ·On · γ · Z · exp(−∆G∗

kT
) (2.1)

V = γ · d · (1− exp(
-∆Gv

RT
· M

ρ
)) (2.2)

where Na is the number of nucleation sites, γ atomic vibration frequency, ∆G the

free energy, Z Zeldovitch parameter, On number of atoms at critical nucleus surface,

M the molar mass, d inter-atomic distance, q volumic mass, and ∆Gv the difference in

Gibbs free energy between the amorphous and the crystalline phases. The calculation

of each parameter is detailed in [101].

For the simulations shown in Fig.2.12, the fitting of the GST-LTP experimental

data (corresponding to the 50 ns pulse width, Fig.2.6a) was defined as the reference

nucleation rate (NR = 1) and the reference growth velocity (GR = 1). LTP simulations

(Fig.2.12a) with artificially increased (GR = 10) and artificially reduced (GR = 0.1)

growth velocities with respect to GST (GR = 1) were performed, keeping the nucleation

rate constant. Similarly, LTP simulations with artificially increased (NR = 2) and

artificially reduced (NR = 0.1) nucleation rates were also performed (Fig.2.12b). The

artificial boost or decrease in NR and GR was performed by directly multiplying eq.2.1

and eq.2.2 with a constant value. Three major observations were made. First, the

maximum value of conductance was reached in fewer pulses if either the growth or the

nucleation rate were enhanced. Second, the shape of the bulk amorphous region created

after application of the initial reset pulse had a strong dependence upon the values of

the growth and the nucleation rates. It is not straightforward to decouple the effect

of the nucleation and of the growth parameters as the shape of the amorphous region

or morphology changes after the application of each potentiating pulse [102]. A high

growth rate (GR = 10) leads to a strong crystal growth from the amorphous-crystalline

interface during the falling edge of the reset pulse, thus distorting the mushroom-like

shape of the amorphous region. A low growth rate (GR = 0.1) leads to a more uniform

mushroom shape of the amorphous region. Finally, after the application of the first

potentiating pulse, conductance was more sensitive to changes in the nucleation rate

compared to growth. Fig.2.12 also shows the strong impact of nucleation rate and

growth velocity on the morphological evolution of the crystalline phase inside phase

change layer.
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2.5 Modeling

2.5.1 Behavioral model for system level simulations

In order to model the millions of PCM synapses in large scale neural networks, and

thus to evaluate the potential of PCM synaptic technology, a computationally efficient

model of its behavior is particularly desirable. For this purpose, we introduced the

following phenomenological equation (eq.2.3) to model the LTP characteristics of the

GST and GeTe devices during a LTP pulse:

dG

dt
= α · exp(−β · G−Gmin

Gmax−Gmin
) (2.3)

where G is the device conductance, a and b are fitting parameters. Gmin and

Gmax are the minimum and maximum values of device conductance, respectively. This

equation was originally introduced to model memristive devices [103]. To model the

conductance change ∆G after the application of a short LTP pulse of duration ∆t,

eq.2.3 may be integrated as in eq.2.4

∆G = α ·∆t · exp(−β · G−Gmin

Gmax−Gmin
) (2.4)

These equations gave a very satisfactory fit of our measurements for both GST and

GeTe devices, as shown in Fig.2.6a and Fig.2.6b. This is valuable because the shape

of the potentiation curve should have a serious impact on the system performance as

suggested by the works in computational neuroscience [104]. For GST and GeTe, we

used unique sets of parameters (α, β, Gmin, and Gmax) for different pulse widths.

Tab.2.1 lists the values of the parameters used for the fitting two pulse widths for GST

and GeTe shown in Fig.2.6a and Fig.2.6b, respectively.

2.5.2 Circuit-compatible model

To design hybrid neural circuits consisting of CMOS neurons and PCM synapses, a

circuit-compatible model for the PCM is required. We thus developed a circuit com-

patible PCM model, specifically tailored to capture the progressive character of the LTP

experiments shown in the previous sections. This simple circuit-compatible model, in-

spired by [105], was developed using the VHDL-AMS language and includes both LTP

and LTD. The simulations were performed with the Cadence AMS simulator. Fig.2.6c
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Table 2.1: Fitting parameters of the behavioral model for 300 ns GST LTP curve and

100 ns GeTe LTP curve shown in Fig.2.6a and Fig.2.6b respectively.

Parameters GST (300 ns) GeTe (100 ns)

Gmin (µS) 8.50 8.33

Gmax (mS) 2.3 2.9

α (S/s) 1100 3300

β -3.8 -0.55

shows the simulated LTP curves for six different pulse widths for GST. Tab.2.1 lists all

the constants and fitting parameters used in the circuit-compatible model. The model

consists of three parts: electrical, thermal, and phase-change. For the electrical part,

an Ohmic relationship between current and voltage is assumed (eq.2.5):

V = i · Rgst (2.5)

We preferred not to include the threshold switching effect in this model, as its pri-

mary purpose is to emulate LTP behavior during learning in large-scale neural networks

simulations, where simulation efficiency is essential. Rgst is the low field resistance of

the device, which consists of the sum of the GST layer resistance and the bottom and

top electrodes resistance Rs. The resistance of the phase change layer (eq.2.6) is a

function of the amorphous volume fraction Ca:

Rgst = Rs + R0c
1−Ca · R0a

Ca (2.6)

R0c and R0a correspond to the resistances of the fully crystallized and fully amor-

phized states, respectively. We used a logarithmic interpolation, which is intermediate

between the series and parallel cases [105], as this led to the best fitting for our GST

devices. In order to evaluate the impact of resistance drift [106] on the stability of the

learning, we included a behavioral modeling of this phenomenon, which can be option-

ally enabled or disabled in the simulations. To do so, R0a is replaced with Ra as in

eq.2.7:

Ra = R0a ·
(
t

t0

)Ca.dr

(2.7)
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Table 2.2: Parameters used for the GST compact model simulations shown in Fig.2.6c.

Parameter value Description

Electrical Model

Rs 100 Ω Serial resistance (top and bottom elec-

trodes)

R0a 159 kΩ Resistance of the fully amorphized state

R0c 135 kΩ Resistance of the fully crystallized state

Thermal Model

Rta0 15.9 x 103 W/K Thermal resistance of the fully crystallized

state

Rtc0 5.07 x 103 W/K Thermal resistance of the fully amor-

phized state

T0 300 K Ambient temperature

Phase-Change Model

Ea 0.335 Fitting parameter for crystallization rate

at high temperature

Eb 5.77 x 103 Fitting parameter for crystallization rate

at low temperature

Tg 380 K Lowest temperature at which crystalliza-

tion can occur

Tm 698 K Melting temperature of the phase change

material

τa 8.17 x 10−13 s−1 Amorphization rate (fitting)

τc 1.10 x 10−6 s−1 Crystallization rate (fitting)

dr 0.03 Drift coefficient
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2.5 Modeling

where t0 is the time, at which the latest phase change occurred (i.e., when Tb last

crossed Tg).

In the thermal part of the model, the electrical power Pt and the temperature

of the phase-change material Tb are connected by the eq.2.8, with T0 the ambient

temperature:

Tb = T0 + Pt · Rtgst (2.8)

The thermal resistance of the phase change layer Rtgst is described by the following

eq.2.9:

Rtgst = (1− Ca) · Rtc0 + Ca · Rta0 (2.9)

where Rtco and Rtao are the thermal resistances for the completely crystallized

and completely amorphized states. Due to the threshold switching effect, the electrical

power during phase change is essentially independent on the amorphous ratio. The elec-

trical power is therefore calculated using the fully crystallized phase-change resistance

(eq.2.10), for which no threshold switching occurs, instead of the low field resistance

Pt =
V2

Rs + R0c
(2.10)

The phase-change part of the model uses behavioral equations. Amorphization

occurs when Tb is higher than Tm, the melting temperature. The amorphization rate

is assumed to increase linearly with the temperature, and is zero when Tb is equal to

Tm, thus ensuring continuity with the crystallization rate at this temperature. This

leads to the eq.2.11:

dCa

dt
=

1

τa
· Tb − Tm

Tm
(2.11)

when Tb > Tm

The equation modeling the crystallization rate (eq.2.12) does not attempt to model

nucleation-driven and growth-driven rate separately. The expression we used is, how-

ever, reminiscent to growth rate modeling. It includes a term Ca
2, because crystalliza-

tion rate typically depends on the amorphous crystal interface surface for growth-driven

process (and volume for nucleation-driven process).

dCa

dt
=
Ca2

τc
· (1− exp(Ea ·

Tb − Tm
Tb

)) · exp(−Eb

Tb
) (2.12)
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when Tb < Tm and Tb > Tg

This model, with parameters listed in Tab.2.1, gives good fitting results for the LTP

curves (Fig.2.6c), although the fit is not as excellent as the behavioral model (Fig.2.6a).

Simulation of the conductance evolution as a function of the applied voltage with the

same parameters is shown in Fig.2.6d. Although the fitting is less accurate for shorter

pulses, all the curves in Fig.2.6 were fitted with a single set of parameters. The model

captures the correct behavior of the PCM for a relatively wide range of measurements

with a small number of semi-physical parameters. It is therefore adapted for fast

exploration and easier circuit design where PCM devices are employed to emulate

millions of synapses.

2.6 PCM Interface Engineering

It is important to note that as a neural network undergoes learning, the synapses (or

PCM devices) may undergo continuous programming (i.e. frequent LTP/LTD events)

and get saturated. To overcome the issue of synaptic weight saturation, we defined a

refresh-sequence, described in detail in Sec.2.7. We show in Sec.2.8, that in order to

enable continuous synaptic learning and to reduce the system power dissipation with

PCM synapses, it is desirable to increase the number of intermediate resistance states

in the LTP-curves of the PCM devices (Fig.2.6a,b). In other words, if the PCM device

takes much longer to attain its minimum resistance value or if it crystallizes slowly, it

leads to improved power/energy efficiency of the neural network. In this section we

show that by addition of a thin HfO2 interfacial layer to standard GST-PCM devices:

(i) the number of intermediate resistance states (or synaptic weights) in the LTP-curves

can be increased, and (ii) the set/reset current for individual programming events can

be significantly decreased, thus improving the performance both at the level of the full

neuromorphic system and also the individual PCM-synapses.

Lance-type PCM devices with a 300 nm diameter tungsten (W) heater-plug and

100 nm-thick GST layer were fabricated. A HfO2 layer of 2 nm thickness, was de-

posited between the heater plug and the GST layer by atomic layer deposition (ALD)

(Fig.2.13a). Due to the insulating HfO2 layer, the PCM device is initially in a high

resistive state and cannot be programmed. To enable programming a forming step to
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Figure 2.13: (a) TEM of the GST PCM device with HfO2 interface layer. (b) Resistance

versus voltage applied curve, for the interface layer (2nm thick HfO2) PCM device, during

the initial forming step[98].

breakdown the HfO2 layer is required [107]. In this step, shown in Fig.2.13b, a stair-

case sequence of increasing voltage pulses is applied to the device (0-3 V). Initially the

device resistance is very high (about 1 MΩ), the breakdown occurs when the device

resistance jumps to a lower value (few kΩ). The LTP-curve for the interface PCM

devices is shown in Fig.2.14a. Initially the device is amorphized to a low conductive

state by applying a reset pulse (4 V, 100 ns). This is followed by the application of

several potentiating pulses (partially crystallizing) of 2.1 V and the same pulse width.

The conductance curves shown in Fig.2.14a are obtained by applying trains of pulses

with different pulse widths. The conductance gradually increases with the application

of each pulse, showing a strong influence of the pulse-width. The conductance window

of the devices with the interface layer saturates with the application of more than dou-

ble the number of potentiating pulses compared to GST devices without interface layer

(Fig.2.6a). Several material related physical or chemical factors may explain the pos-

sible cause for more number of intermediate points in the LTP curves for the interface

devices. For instance, interface layers can impact the crystallization kinetics affecting

activation energies associated with growth and nucleation sites [108], [109]. Diffusion

from the interfacial oxide inside the phase change layer can also lead to a change in the

properties of the reset-to-set transition. Pinpointing the exact cause for the increase

in the number of LTP points would require a more detailed material analysis of the

devices. Fig.2.14b shows that for each applied pulse, the measured currents in the
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Figure 2.14: (a) LTP curves for the GST devices with 2 nm thick HfO2 layer. Inset shows

the test procedure (Reset pulse: 4V/100ns and potentiating pulse: 2.1 V. (b) Current values

for each pulse of the LTP test shown in (a). [98].

LTP experiment remains constant. The programming current values were decreased by

more than 50% compared to standard GST devices. The set/reset current decreases

as the effective contact area between the W-plug and the GST layer scales and better

thermal insulation is achieved [107]. Although the actual W-plug diameter is 300 nm,

the forming step leads to formation of small nanoscale conductive filament(s) inside

the insulating HfO2 layer. Thus the effective contact area for the flow of current to the

GST layer is limmited to the dimensions of the nanoscale filaments and not the entire

W-plug [107].

Fig.2.15a, shows the-experimentally acquired waveforms for the first five potentiating-

pulses applied in the LTP experiment for the 200 ns pulse width. Effective pulse-width

can be defined as the difference between the actual pulse-width applied, and the time

spent before the occurrence of the electronic switching-event in the amorphous region.

Notice that with the application of each pulse, the effective pulse-width keeps increas-

ing. Effective pulse width is important because crystallization takes place only in the

duration after the electronic switch has occurred. Before the electronic switch, almost

negligible current passes through the cell and the temperature of the phase change layer

stays below the crystallization temperature.

Fig.2.15b, shows the plot of effective pulse width and the normalized differential

resistance (∆RN ) for each point in the LTP curve for the 200 ns pulse width. ∆R is
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Figure 2.15: (a) Experimentally acquired waveforms for the applied voltage pulse and

the actual voltage drop across the PCM devices. The waveforms were acquired for the first

5 pulses of the 200 ns LTP curve shown in Fig.2.14a. (b) Graph showing a plot of effective

pulse width and the normalized differential resistance (for 200 ns LTP curve shown in

Fig.2.14). The resistance values were normalized with respect to maximum value of ∆R,

[98].

defined as Ri - Ri+1, for the ith pulse in the LTP curve. The normalization is done

with respect to the maximum value of ∆R. As the LTP experiment progresses the

value of ∆RN decreases, this trend was observed for all the applied pulse widths. The

decrease in resistance between two pulses depends upon the effective pulse-width, the

pulse amplitude, and the instantaneous morphology of the crystalline and amorphous

regions inside the phase change layer. With the application of successive potentiating

pulses, the amorphous region inside the phase change layer decreases, new conductive

percolation paths are formed and the existing ones are strengthened. Thus there is a

steady decrease in the value of ∆R.

2.7 The ”2-PCM Synapse”

To emulate synaptic behavior (i.e. gradual synaptic potentiation,depression and STDP-

like rules), using PCM devices as synapses, we developed a novel low-power methodol-

ogy called the ”2-PCM Synapse” (Fig2.16) [110]. In this approach, we use two PCM

devices to implement a single synapse and connect them in a complementary configu-

ration to the post-synaptic output neuron. Both PCM devices are initialized to a high

resistive amorphous state. When the synapse needs to be potentiated, the so-called

LTP device undergoes a partial crystallization, increasing the equivalent weight of the
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Figure 2.16: The ”2-PCM Synapse” concept schematic. The contribution of the current

flowing through the LTP device is positive, while that of the LTD device is negative,

towards the integration in the output neuron [110].

synapse. Similarly, when the synapse must be depressed, the LTD device is crystal-

lized. As the LTD device has a negative contribution to the neurons integration, the

equivalent weight of the synapse is reduced.

Important benefits of the ”2-PCM Synapse” approach are the following: Firstly,

exploiting mostly the crystallization phenomenon of chalcogenide devices, it allows

defining a programming methodology which uses identical neuron spikes (or pulses)

to obtain both gradual LTP and LTD. In sec.2.3.2, we showed that gradual LTD-like

effect is not achievable with application of identical programming pulses for PCM de-

vices. To this purpose, the programming schemes described in [82] utilize variable

pulses with changing amplitudes. In fact, generation of such non-identical pulses lead

to the increased complexity of pre/post CMOS neuron circuits, added parasitic effects,

such as capacitive line charging, and excessive power dissipation in the neural network.

These limitations can be overcome by the crystallization dominated ”2-PCM Synapse”

methodology. Secondly, the ”2-PCM Synapse” is a low-power approach, because ma-

jority of the synaptic events are achieved through crystallization, which is a less energy

consuming process for PCM compared to amorphization. The current required for

amorphization is typically 510 times higher than for crystallization, even for state-of-
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Figure 2.17: (a) Biological STDP (from [37]) and simplified STDP used in the proposed

PCM implementation. In the simplified rule, a synapse receiving a postsynaptic spike with

no presynaptic spike in the LTP window undergoes an LTD regardless of the existence of

a presynaptic spike [111]. (b) Write, Reset and Read pulses for the programming scheme

proposed in sec.2.7.2, [110].

the art PCM devices (see Fig.2.28). Another inherent advantage of our approach is

the decrease of the impact of PCM resistance-drift on the stored synaptic information

discussed in detail sec.2.9.

2.7.1 Simplified STDP-rule

Reproducing the complex δT dependent biological STDP learning rule (Fig.1.9a) with

PCM is not straightforward. The programming pulses need to be tuned both in du-

ration and in amplitude depending on the exact timing difference between the pre-

and post- synaptic spike events [82]. The benefit of this biomimetic approach (where

biology is matched as closely as possible) is that it does not require making assump-

tions on how the synapses will be exploited for learning in the final system. Indeed,

if the biological low-level synaptic update rule is replicated with reasonable accuracy

in the electronic system, there is a significant chance that any higher level learning or

computation occurring in biological neural networks will be reproducible in artificial

hardware as well. There are, however, benefits in designing specific STDP rules tar-

geted towards specific applications. The exact shape of the STDP learning rule may

not be required to capture the correct computational behavior. To go further, the

measured STDP curve in vitro might not reflect the actual behavior of the neurons in
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vivo [112]. Finally, there is not just one STDP rule: a broad family of synaptic update

characteristics in function of the prepost synaptic time difference were recorded [113].

Here, we utilize a novel simplified and optimized STDP learning rule that is easy and

efficient to implement with PCM devices. In this STDP rule, all the synapses of a neu-

ron are equally depressed upon receiving a postsynaptic spike, except for the synapses

that were activated with a presynaptic spike a short time before, which are strongly

potentiated [114]. Contrary to a biological synapse, the magnitude of the potentiation

or depression is independent on the relative timing between the presynaptic spike and

the postsynaptic spike, as shown in Fig.2.17a.

2.7.2 Programming Scheme

In this section we present the detailed programming scheme for implementing the sim-

plified STDP rule on the ”2-PCM Synapse” architecture. We discuss the cases of PCM

devices with selector (1T-1R) and without selector (1R). The pulse shapes for the Read,

Write and Reset pulses is indicated in Fig.2.17b.

2.7.2.1 Read

The read operation described here (Fig.2.18), is the normal operation of the network

between two output neuron activations. When an input neuron receives an incoming

event, it generates a small voltage pulse that is propagated to all its output neurons

through its synapses. The resulting current flowing to each output neuron is the differ-

ence between the current from LTP and the LTD devices. The read pulse amplitude

and duration can be minimal, as long as it allows reasonably accurate reading of the

low-field resistance of the PCM. The output neurons are of type LIF [50]. When the

integrated current reaches the neuron’s threshold, the network enters a write mode

operation to update the synaptic weights through the simplified STDP rule. Each time

an input neuron is activated, it enters or re-enters a LTP internal state for the duration

of the STDP LTP window (TLTP ), as shown in Fig.2.17a.

2.7.2.2 Write

When an output neuron fires, it transmits a post-spike signal to every input neuron,

signaling write operations. In write operations, input neurons generate a LTP pulse of
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Figure 2.18: Read Operations. Current from both LTP and LTD PCM devices is inte-

grated in the output neuron, with a positive and negative contribution, respectively [111].

Figure 2.19: Write operations based on the simplified-STDP rule. For a specific PCM,

G ↗ denotes an increase in conductance (thus, partial crystallization of the device), while

G → denotes no change in conductance [111].
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amplitude VWR such that VWR < VSET < 2.VWR, only if they are in the LTP state. The

output firing neuron generates a negative feedback pulse −VWR for the LTP devices and

a positive feedback pulse 2.VWR for the LTD devices. When a LTP pulse interacts with

the feedback pulses, the effective voltage across the LTP device is 2.VWR > VSET and

the voltage across the LTD device is VWR < VSET. The conductance of the LTP device

is then increased. If there is no LTP pulse for a given input, it means that pre-post

spike timing difference in not within the LTP window and thus the conductance of the

LTD device must be increased according to our simplified STDP rule. This is indeed

this case, as the voltage across the LTP device is −VWR > −VSET and the voltage

across the LTD device is 2.VWR > VSET (Fig.2.19).

Selector devices are not required for the write operations, as the input LTP pulse

amplitude is below the SET threshold of the PCM devices, so the synaptic weights of

the other output neurons is not affected. The LTP pulses may however significantly

alter the integration value of other output neurons. This is a non-issue in the proposed

architecture as lateral inhibition is implemented: when a neuron fires, integration of

the others is disabled for an inhibit refractory period Tinhibit [114].

2.7.2.3 Refresh

Because the conductance of the PCM devices gradually increases during the learning,

a refresh mechanism is introduced to reduce the conductance of LTP and LTD devices

while keeping the weight of the equivalent synapse unchanged. The principle of the

refresh operation is shown in figure 2.20. When one of the two devices reaches its max-

imum conductance, they are both reset and the one that had the higher conductance

undergoes a series of SET pulses until the equivalent weight is reached again. Because

one of the devices stays at minimum conductance, this mechanism enables continued

evolution of the weights.

Knowing the average number of conductance steps N achievable for a given PCM

technology, with a given SET pulse duration and amplitude, a refresh operation is

necessary after N potentiations or N depressions of the synapse (whichever comes

first, assuming that one of the devices is initially at minimum conductance). Therefore,

output neurons can initiate a refresh operation on their synapses after a fixed number

of activations, which would be N in the worst case. Although such a simple mechanism

would certainly involve a substantial amount of unnecessary resets, as few synapses
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Figure 2.20: Refresh principle: The two devices forming a synapse are reset, and the one

that had the higher conductance is reprogrammed such that the equivalent weight of the

synapse stays unchanged [111].

Figure 2.21: Refresh-operation flowchart [111].
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Figure 2.22: Refresh-operation: RESET pulses generation to re-initialize the LTP and

LTD devices conductance to the minimum when VRESET > 2.VSET. [111].

would undergo N potentiations or N depressions in a row, it does not require permanent

monitoring of the state of the LTP and LTD devices. N can be high (value approaching

100 is shown in [84]), thus reducing the time/energy overhead cost to a minimum.

Simulations show that even N = 10 incurs only a marginal cost for the system on a

real-life learning experiment with almost 2,000,000 synapses (see sec.2.8).

Refresh operations are described in the diagram in Fig.2.21. The synapses are

read, reset and reprogrammed sequentially. The other neurons are disabled during the

process. To strongly amorphize the PCM, a RESET pulse of amplitude VRESET has to

be applied across the device, as shown in Fig.2.22. If VRESET < 2.VSET, a voltage of

VRESET across the PCM can be obtained with the interaction of two pulses of amplitude

VER such that VER < VSET < 2.VER, as shown in Fig.2.23. In this case, the voltage

across the other synapses in the crossbar is always below the SET threshold and their

conductance is not affected.

Therefore, if the condition VRESET < 2.VSET is true, no selector device is required

for refresh operations. It is noteworthy that this condition is usually verified for scaled

down PCM devices [115]. As neither the read nor the write operations actually require
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Figure 2.23: Refresh-operation without selectors: RESET pulses generated to re-initialize

the LTP and LTD devices conductance to the minimum when VRESET < 2.VSET. The LTD

(respectively LTP) device is reset when the negative part −VER (respectively positive part

VER) of the erase pulse coming from the input neuron overlaps with the post-synaptic erase

pulse [111].
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one, selector devices could be eliminated completely. This would theoretically allow the

highest possible PCM integration density in a crossbar and free the underlying CMOS

layer for neuron integration.

If VRESET > 2.VSET, the VRESET voltage cannot be obtained with two pulses of

amplitude below VSET. Selectors are thus required to disable the other PCM devices

and prevent their conductance to be altered, when the 2-PCM synapse being refreshed

is reset, as shown in Fig.2.22 (disabled PCM devices are grayed).

2.8 Complex Visual Pattern Extraction Simulations

In this section, we present the results of a large scale learning simulation of our STDP

implementation with the ”2-PCM Synapse” architecture. We used a special purpose

C++ event-based simulator called XNET, that was developed to simulate large scale

spiking neural networks (SNN) based on use of resistive memory (RRAM) devices as

synapses [114], [116]. In the simulations, real-time, asynchronous complex video data

recorded from an artificial silicon-retina sensor [117] is presented to our SNN with

PCM synapses. The network undergoes learning with STDP and is able to extract

complex repetitive patterns from the visual stimuli in a fully unsupervised manner. In

the present case, the learned patterns are car trajectories, which can be used to detect,

track or count cars.

2.8.1 Network and the Stimuli

Fig.2.24 shows the topological view of the simulated two-layer feed-forward SNN. It

is a fully connected network, with 60 neurons in the first layer and 10 neurons in

the second. The bottommost layer represents incoming stimuli from a 128×128 pixels

Address Event Representation (AER) dynamic vision sensor [117]. A pixel generates

an event each time the relative change of its illumination intensity reaches a positive or

a negative threshold. Therefore, depending on the sign of the intensity change, events

can be of either type ON or type OFF, corresponding to a increase or a decrease in

pixel illumination, respectively. There are two synapses per pixel, one for each event

type. The total number of synapses in this system is thus 2×128×128×60 + 60×10 =

1,966,680 and thus 3,933,360 PCM devices (2 PCM/synapse).
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Figure 2.24: 2-Layer Spiking Neural Network (SNN) topology used in simulation. The

network is fully connected and each pixel of the 128×128 pixel AER dynamic vision sensor

(DVS-retina) is connected to every neuron of the 1st layer through two synapses, receiving

positive and negative change in illumination events respectively. Lateral inhibition is also

implemented for both layers [110].

The visual stimuli used was recorded from the TMPDIFF128 DVS sensor [117]. It

represents cars passing under a bridge over the 210 freeway in Pasadena. The sequence

is 78.5 s in duration, containing a total of 5.2 M events, with an average event rate of

66.1 k events per second. Fig.2.25 shows a rendering of the sequence, where the traffic

lanes have been marked.

2.8.2 Neuron and Synapses

The neurons used in simulations are described by a standard LIF neuron model.

Tab.2.3, provides all the neuron parameters used for the simulation with GST and

GeTe PCM devices. Ithres, denotes the neuron threshold firing current, expressed in

Siemens (S) to make it independent of the read pulse’s voltage and duration. TLTP ,

is the LTP time window for the STDP rule (Fig.2.17a). Trefrac, is the neuron refrac-

tory period (time during which it cannot fire). Tinhibit, is the inhibitory time, when a

neuron spikes, it disables all the other neurons during a period Tinhibit, during which

no incoming spike is integrated (Lateral-inhibition). τleak is the neuron leaky time-

constant. N, is the number of activations of an output neuron required to initiate the
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Figure 2.25: AER video data snapshot. Cars passing on a freeway recorded with the DVS-

sensor described in [117]. The original video has no lane demarcations, yellow demarking

lines were drawn later for lane-clarity [110].

refresh operations. LTP/LTD is the relative strength or equivalent weight change) of

LTP compared to LTD. The LTP/LTD ratio of 2 used in our simulations ensures that

repetitively potentiated synapses converge to their maximum equivalent weight quickly

enough for the neuron to become selective to a traffic lane. This can be implemented

by adding a current gain of 2 on the LTP input of the neurons.

All the parameters are obtained through genetic evolution optimization algorithm,as

described in [114]. The optimized parameter values may change depending on: (i)

characteristics of the synaptic devices (for example- Tab.2.1), (ii) the specific type

of learning application (car detection in this case), and (iii) the stimuli dynamics, in

this case it corresponds to the average spiking activity generated by the cars at the

bottom of the retina (where activity is maximal due to the perspective). More detailed

information on the meaning and the optimization of the parameters for the learning

can be found in [114].

To compare the performance of the different PCM synapses, we repeated the simu-

lations with LTP characteristics of all the 3 types of PCM devices (i.e. GST, GeTe and

GST+HfO2). The behavioral model described in sec.2.5 is used for fitting the experi-
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Table 2.3: Neuron parameters for the learning. A different set of parameters is used

depending on the PCM materials. See [114] for a detailed explanation of the parameters.

Parameter GST GeTe

1st Layer 2nd Layer 1st Layer 2nd Layer

Ithres 2.49 S 0.00437 S 2.50 S 0.00431 S

TLTP 7.59 ms 7.12 ms 11.5 ms 12.9 ms

Trefrac 554 ms 410 ms 524 ms 393 ms

Tinhibit 15.7 ms 56.5 ms 11.8 ms 70.9 ms

τleak 100 ms 821 ms 115 ms 714 ms

N 30 10

LTP/LTD 2.0 2.0

mental LTP-curves of the PCM synapses. Tab.2.1, shown earlier provides the values of

the parameters used for describing the GST and GeTe synapses in XNET simulator.

Several different factors can lead to device-to-device and cycle-to-cycle variability in

PCM devices [118].

To evaluate the robustness to synaptic variability of our neuromorphic system,

the simulated neural network included a pessimistic 20% dispersion (meaning that

the standard deviation of every parameter is 20% of their mean value) for all the

parameters of the behavioral model, described in sec,2.5, (i.e Gmin, Gmax, α and β).

Fig.2.26 shows how the synapse LTP-curves look inside the simulator after adding the

variability (100 different sets of parameters obtained by adding 20% dispersion from

the values extracted from the fitting of Fig.2.6 and Fig.2.14). In our simulations, the

parameters of a PCM device are changed each time it is refreshed. The 20% dispersion

can therefore be seen as a representative of both device-to-device, and also cycle-to-

cycle variability.

2.8.3 Learning Performance

Figure 2.27 shows the learning results for the AER dataset. The neurons are fully

selective to single lane trajectories after only 8 presentations of the sequence, corre-

sponding to approximatively 10 minutes of real-time traffic. STDP learning and lateral
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Figure 2.26: How synapses actually look inside the neural network: Simulated variability

for (a) GST- (b) GeTe- and (c)Interface- PCM devices. The plots show the increase in

conductance as a function of the number of SET pulses (LTP-curves), for 100 different

sets of parameters, obtained by applying 20% dispersion (standard deviation of the mean

value) from values extracted from fitting [98], [111]. Inset of (c) shows the experimentally

obtained LTP-curve for a 200 ns potentiating pulse.
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Figure 2.27: Learning Results for GST, GeTe and Interface synapses: (a) Final output

neuron sensitivity patterns for the 6 lanes and (b) Lane-specific car detection rates, [110],

[98]. Lane-6 is not learnt by any neuron.

inhibition can be disabled altogether for continuous car detection afterward. Output

neurons in the second layer are able to detect cars in 4/6 for systems based on GST-

PCM synapses, and 5/6 lanes for systems based on GeTe-PCM and Interface layer-PCM

synapses, respectively. The sixth lane is never learned, because it is at the very right of

the retina and cars activate less pixels over their trajectory than those on other lanes.

Over the learned lanes, the average detection rate is above 92%, with no false positive

(i.e. neurons fire only once per car and they never fire for cars passing on a different

lane that the one they learned). Learning statistics are given in table 2.4: the synaptic

weight update frequency (or post-synaptic frequency) is of the order of 0.1 hertz and

the average pre-synaptic frequency is around 2 Hz. The average frequencies are similar

for the two layers.

The frequency of potentiating pulses (SET) per device was about 55 times higher

that the frequency of RESET pulses for Interface-layer PCM based system, 25 times

higher for GST-PCM based system, and about 10 times higher for the GeTe-PCM

based system. This is consistent with the fact that refresh operations were initiated

after 60 activations for a given output neuron with Interface devices, 30 for GST devices,

and only 10 activations for GeTe. As mentioned earlier, this result suggests that the

efficiency of the system can be further increased by engineering the PCM device with
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Table 2.4: Learning statistics, over the whole learning duration (8×85 = 680 s). The SET

pulses number includes both the write pulses for the learning and the additional pulses to

reprogram the equivalent synaptic weight during refresh operations (Fig.2.20).

/device /device (max) /device/s Overall

GST (2 V / 300 ns LTP pulses)

Read pulses 1,265 160,488 1.9 4.97 x 109

SET pulses 106 430 0.16 4.16 x 108

RESET pulses 4.2 7 0.0062 1.65 x 107

GeTe (1.5 V / 100 ns LTP pulses)

Read pulses 1,265 160,488 1.86 4.97 x 109

SET pulses 190 740 0.28 7.48 x 108

RESET pulses 20 37 0.030 7.99 x 107

GST+HfO2 (interface) (2.1 V / 200 ns LTP pulses)

Read pulses 1,265 160,488 1.9 4.97 x 109

SET pulses 144 430 0.21 5.64 x 108

RESET pulses 2.6 7 0.0038 1.6 x 107
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Table 2.5: Energy statistics and synaptic power for the test case described in table 2.4,

by using voltage and current values extracted from literature.

PCM Technology ERESET ESET Power

(pJ) (pJ) (µW)

GST-PCM 1552 121 112

Jiale Liang, VLSIT 2011 [119] 1.2 0.045 0.056

Xiong, Science 2011 [120] 0.1 0.03 0.02

Pirovano, ESSDERC 2007 [115] 24 4.9 3.6

D.H. Im, IEDM 2008 [121] 5.6 0.9 0.68

the optimum conductance window and phase change material stack, to maximize the

number of conductance levels reachable with a series of identical SET pulses.

2.8.4 Energy/Power Consumption Analysis

Using the learning statistics from tab.2.4, we made a rough estimate of the power

consumed for the programming of the PCM synapses:

Etotal = ESET.Ntotal SET pulses + ERESET.Ntotal RESET pulses (2.13)

with ESET ≈ VSET.ISET.tSET (2.14)

with ERESET ≈ VRESET.IRESET.tRESET (2.15)

With the SET and RESET voltages and currents measured on our GST devices and

tSET = 30 ns, tRESET = 50 ns, ESET ≈ 121 pJ and ERESET ≈ 1,552 pJ. Using these

values, the estimated synaptic programming power consumption for GST based learning

is 112 µW. The total synaptic programming power consumption for the interface layer

(GST + HfO2) systems was almost halved to 60 µW. The power consumption decreases

with interface devices as they require less frequent refresh (RESET), and the current

for individual SET/RESET programming is decreased due to the interface layer as

explained in sec.2.6. We did not include the read energy in the calculation as it proved
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Figure 2.28: PCM programming current scaling trend [110].

to be negligible. Indeed, in the worst case, the total read energy would be as follows:

Etotal read = Ereadmax .Ntotal read pulses (2.16)

with Ereadmax ≈ V 2
read.Gmax.tread (2.17)

With Vread = 0.1 V and tread = 10 ns, we estimated Ereadmax ≈ 0.17 pJ and

Etotal read ≈ 0.8 µW.

This calculation does not include dissipation in the CMOS circuitry for the neurons

and also neglects the extra energy required for capacitive line charging in the crossbar,

which can be significant in modern technology.

Fig.2.28 shows that on average, the current required for RESET and SET scales

almost linearly with the PCM area. Tab.2.5 shows estimations of the synaptic power

consumption with several published devices. With extremely scaled PCM technologies,

a power consumption as low as 100 nW seems achievable for the ˜2 million synapses

with continuous STDP learning. If learning would only occur for limited amounts of

time, the energy consumption could be orders of magnitude lower.

With an average SET / RESET frequency per device of the order of 1 Hz, continuous

learning for over 3 years would require an endurance of 108 cycles, which is easily
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Figure 2.29: (a) Resistance drift with time for different initial programming conditions.

Measurement was carried out on GST PCM devices. Equation governing the drift dynamics

is also shown. (b) Experimental Resistance-Voltage curves for different programming pulse

widths on GST PCM devices [122].

achievable with PCM [73]. Performance degradation would not be drastic even if the

synaptic devices fail, thanks to the high level of fault tolerance of this kind of neural

networks [116]. The strong synaptic variability taken in account in all the simulations,

as shown in Fig.2.26, validates the robustness of our neural network.

2.9 Resistance-Drift and Mitigation Strategy

In PCM devices, the amorphous or high-resistance states are not entirely stable. Melt-

quenched amorphous regions created inside the chalcogenide layer undergo structural

relaxations and the resistance of PCM device tends to increase with time (known as

resistance-drift). The resistance-drift follows an empirical exponential rule which de-

pends upon the initial programmed resistance and a parameter known as the drift-

coefficient (ν) [123]. The crystalline or low-resistance states of PCM are shown to be

free from resistance-drift [124]. Fig.2.29a shows the resistance-drift measured in our

GST-PCM devices and the equation governing the drift dynamics. The devices were

programmed in two different initial (reset) states and the resistance was read at differ-

ent time intervals. Inside a neural network such resistance-drift may cause undesired

change of trained synaptic weights.

In this section, we discuss how the ”2-PCM Synapse” architecture is inherently

tolerant to PCM resistance-drift. We also introduce an alternative ”Binary-PCM
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Synapse” architecture and programming methodology with a stochastic STDP learning

rule, which can strongly mitigate the effects of PCM resistance drift.

2.9.1 ”Binary PCM Synapse”

In this alternative approach, we propose to use PCM devices as binary synapses but

with a stochastic-STDP rule. In this architecture, there will be 1-PCM device per

synapse. Two resistance states (or weights) can be defined for the PCM synapse. The

high-resistance state should be chosen such that it is a partial-reset (Fig.2.29b) state.

The partial-reset state should lie in the negligible or low-driftable region. For GST

based devices a resistance value < 50 kΩ will lie in low or negligible drift regime [124],

[123]. At the system level, a functional equivalence [125] exists between deterministic

multi-level and stochastic-binary synapses (Fig.2.30). In the case of supervised NN,

several works have exploited this concept [126],[127],[128]. In this work, we use a

similar approach for a fully unsupervised SNN. Our approach is also motivated by

some works from biology [129], which suggest that STDP learning might be a partially

stochastic process in nature.

2.9.1.1 Programming Scheme

Fig.2.31a shows an example of our stochastic-STDP rule. The y-axis represents a

probability to switch from the set-to-reset or reset-to-set states for the PCM synapses.

Fig. 2.31b shows the architecture and the programming scheme required to implement

the stochastic learning with binary PCM synapses.

The stochasticity is controlled by an extrinsic PRNG (pseudo-random number gen-

erator) circuit [131]. The PRNG circuit controls the probability of LTP and LTD with

a 2-bit signal. Initially, the input neurons (A-D) generate small read pulses when they

encounter any stimuli event. The read current is integrated in the output neurons A’

and B’. When the output neuron reaches its firing threshold it generates a feedback

signal(3) and a post-spike signal. In the example shown in Fig.2.31b, the output neuron

A’ fires and B’ doesn’t fire. The signal(3) activates the gates of all the select transistors

on the synaptic line connected to A’. If LTP is to be implemented the Input neuron

will send a signal(1), as shown for Input neuron A in this example. In the case of

LTD the input neuron will send a signal(2), as shown for the input neuron D. The

probabilities of LTP/LTD can be tuned according to the learning rule (Fig. 2.31a).
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Figure 2.30: Illustration depicting functional equivalence of deterministic multi-level and

stochastic binary synapses. p indicates probability of change in conductance or switching

[130].

Figure 2.31: (a) Simplified stochastic STDP learning rule. On corresponds to set and

Off to reset of the PCM synapse. (b) Schematic of the Binary-PCM Synapse architecture

and the proposed programming-scheme [122].
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The programming scheme described herein can also be adapted for a selector-free con-

figuration by changing the signals(1)-(4). Selector-free programming for ”Binary-PCM

Synapse” is shown in Fig.2.32. Whenever a post-synaptic neuron fires, a feedback pulse

1/2 VRESET is fed back to all the synapses connected to it. If 1/2 VRESET < VSET ,

the signal will not affect the resistive state of the connected synapses by its own be-

cause its amplitude will be under the set threshold. At the same time, a write-mode

signal is provided to all pre-synaptic neurons so that they will fire according to the

probabilities given by the STDP rule and implemented by means of the PRNG block.

If a pre-synaptic neuron was active in the LTP window, there is a pLTP probability for

a V∆ and signal to be fired. It will interact with the feedback signal so that the actual

voltage drop across the corresponding synapse is VSET = V∆ - ( - 1/2 VRESET ) and

the synapse is switched to the ON state. The amplitude of the V∆ pulse on its own is

not large enough to program the other connected synapses. If a pre-synaptic neuron’s

last activity is outside the LTP time window, its output will be a +1/2 VRESET pulse

with a pLTD probability or a -1/2 VRESET pulse with a (1-pLTD) probability. The

positive pulse will interact with the feedback resulting in a pulse of amplitude VRESET

= +1/2 VRESET -(-1/2 VRESET ), while the negative pulse will result in a voltage drop

across the device that is negligible, thus keeping the resistance of the cell unaltered.

2.9.1.2 Analysis

In order to study the impact of PCM resistance-drift in our network we first classify its

operation in two different modes: (a) Learning-mode and (b) Read-mode. In learning

mode the synaptic programming is enabled and the network is trained using various

datasets or stimuli. It is only during this mode that the synaptic weights can be

changed. For the ”2-PCM Synapse” architecture, in the learning-mode, the PCM are

typically not experiencing drift. Only, whenever a refresh-sequence is applied to a

synapse, it pushes the respective PCM devices into the driftable region. In the refresh-

sequence (sec.2.7.2.3), both devices are reset and one of them is reprogrammed to

a lower resistance state. For the device which stays in the fully reset state, drift is

irrelevant: the more reset it is, the better. The other device, which is reprogrammed

to a high resistance but intermediate state, may experience drift until it encounters

sufficient crystallizing events (LTP or LTD) that push it in the non-driftable region.
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Figure 2.32: Schematic of the Binary-PCM Synapse architecture and the proposed

programming-scheme for selector-free configuration.

Such drift can delay learning, and its occurrence can be attributed to the refresh-

frequency. More precisely, the drift in learning will be a consequence of the on-going

competition between the refresh-frequency and the set-frequency.

Set-frequency depends on (1) nature of the learning rule and (2) nature of the

stimuli used for training, while the refresh-frequency mainly depends on the type of

chalcogenide material used, as shown in sec.2.8.3.

Drift is more dramatic in the case of the read-mode compared to learning mode,

since the system has no means to compensate for it through learning. In the read-mode,

synaptic programming is disabled and a pre-trained neural network is used to identify

patterns in new datasets or stimuli without changing the synaptic weights. Thus impact

of resistance-drift in the read-mode is proportional to the final weight distribution of

the synapses at the end of the training, and the time interval after which the network

is operated in read-mode post training.

Synaptic weight distribution at the end of learning mode gives the number of

synapses that are left in the high-resistance or driftable state. An inherent advan-

tage of the ”2-PCM Synapse” approach, compared to the methodology used in [82],

is that we implement both potentiation and depression by crystallization. Thus the
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Figure 2.33: (a) Distribution of synaptic resistance states for the ”2-PCM Synapse”

architecture at the end of the visual learning simulation. (b) Distribution of synaptic

resistance states for the ”Binary-PCM Synapse” architecture with 20 kΩ mean Roff [122].

majority of PCM devices at the end of the learning are programmed in low resistance

or non-driftable states. This is irrespective of the fact that we use a pre-dominantly

depression (LTD) based learning rule. As crystalline or low resistance states are more

stable and immune to the resistance drift [123], [124], [132] the ”2-PCM Synapse”

diminishes the loss of synaptic information in the read-mode.

Fig.2.33a, shows the final synaptic resistance (weights) distribution at the end of

the cars learning simulation. About 60% of the devices are in the non-driftable region.

The strong reduction in percentage of devices in driftable region is more evident from

Fig.2.35. We can see that the number of set events is about ten times greater than

number of reset events for the ‘2-PCM Synapse’ as LTD is also implemented by set or

crystallization.

In the case of ”Binary-PCM Synapse” architecture the impact of drift in learning-

mode can be fully mitigated if the reset state of the PCM devices is tuned carefully

to a partial-reset state (negligible drift region). Fig.2.33b, shows the final synaptic

resistance distribution at the end of learning when the simulation was performed for

the ”Binary-PCM Synapse” architecture with stochastic learning. In this simulation

the mean reset state was defined as 20 kΩ, which lies in the non-driftable region. At the

end of the learning, about 97% of the synapses are in the reset state. This is due to the
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Figure 2.34: (a) Distribution of synapses in off-state for the ”Binary-PCM Synapse” and

(b) Distribution of synapses in on-state, for the PCM synapses with mean Roff values of

20 kΩ, 30 kΩ and 123 kΩ [122].

strongly LTD dominant nature of our learning rule (Fig.2.31a). Even though majority

of the synapses are in reset state, they will not drift as they lie in the non-driftable

region.

We performed the cars-learning simulations for the ”Binary-PCM Synapse” archi-

tecture with 3 different PCM reset resistance states, keeping the set state constant: (1)

negligible drift region (mean Roff = 20 kΩ), (2) Low drift region (mean Roff = 30 kΩ),

and (3) high drift region (mean Roff > 100 kΩ). The final synaptic resistance distri-

butions for the reset devices and the set devices in the 3 cases are shown in Fig.2.34a,

and Fig.2.34b, respectively.

Fig.2.35, presents a comprehensive comparison of the learning performance, statis-

tics and energy/power dissipation for the visual-pattern extraction simulations between

the ”2-PCM Synapse” and the ”Binary-PCM Synapse” architectures. In fig.2.35, as

we move from the ”2-PCM Synapse” architecture to the ”Binary-PCM Synapse”, the

number of read-events becomes half as the number of PCM devices is also halved.

However the read frequency/device/s stays constant. The read-frequency stays con-

stant as it depends on the nature of stimuli used for training the network. In the case

of ”Binary-PCM Synapse” the set and reset events are a direct representative of the

number of LTP and LTD events. However in the case of ”2-PCM Synapse” the reset

events represent the number of refresh-sequences while the set events denote both LTP
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Figure 2.35: (Left) Comparison of learning statistics for the ”2-PCM Synapse” and

”Binary-PCM Synapse” architectures. (Right) Car detection rates for the ”Binary-PCM

Synapse” architecture [122]. For both statistics two cases of ”Binary-PCM Synapse” are

shown (with mean Roff = 20 kΩ and 30 kΩ).
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and LTD. The energy consumption decreases in the case of ‘Binary-PCM Synapse’ as

the current required to program partial-reset states (20 kΩ and 30 kΩ) is much less

compared to the current required to program a strong reset state (128 kΩ). However

the energy consumption doesn’t decrease drastically as the number of reset-events in-

creases in the ‘Binary-PCM Synapse’ architecture. In both cases (Roff:20 kΩ, 30 kΩ ),

the power consumption by the PCM devices during learning remains low (<80 µW).

From Fig.2.5b,c we can see that it is possible to tune different levels of PCM resis-

tance windows by changing the programming conditions. Thus we performed several

parametric simulations to study the impact of PCM resistance window on the system

power dissipation and learning performance. In the first case we keep the RON con-

stant at 110 Ω, and change the ROFF . In the second case we fix ROFF to 1.06 MΩ

and change the RON . For all simulations, the the average detection rate was 94%.

Obtaining a high detection rate with an unsupervised system and binary synapses is a

strong accomplishment from a machine learning point of view. Binary synapses appear

especially fit to process this kind of highly dynamic video data.

Fig.2.36a shows that the ratio between the total number of RESET and SET events

remains constant when the resistance window changes. Indeed, this means that the

programming activity is dominated by the input stimuli and the STDP learning rule.

Analysis of the learning-mode power: Fig.2.36b shows that when ROFF is decreased

while keeping RON fixed it is possible to reduce the synaptic programming power by

about 32%. This is explained by the fact that smaller current values are required to

obtain smaller ROFF values. Weakening the SET state (increasing RON ) does not

translate into a reduction of the programming power. This is explained by two rea-

sons: 1) the STDP rule is strongly dominated by LTD, i.e. RESET operations, rather

than SET operations; 2) when the resistance window is decreased, the number of RE-

SET events increases (Fig.2.37). So, the effect of weakening the SET conditions gets

compensated by the increased number of RESET events.

RON plays more important role in determining the read power dissipation, as it

determines the current flowing into the synapses at each read pulse. As shown in

Fig.2.36c, when the resistance window is reduced by increasing the RON value (blue

curve), it is possible to reduce the power consumption for read operations by 99%. We

can observe that the trends in power consumption for learning-mode and read-mode

are opposite, thus two strategies can be adopted for optimizing power consumption
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Figure 2.36: (a) Ratio between the number of RESET and SET events as a function of

the resistance window ROFF /RON . (b) Programming power as a function of decreasing

ROFF - red line (keeping RON = 110 Ω constant) and increasing RON - blue line, (keeping

ROFF = 1.06 MΩ constant). (c) Read power as a function of decreasing ROFF - red line

(keeping RON = 110 Ω constant), and increasing RON - blue line (keeping ROFF = 1.06

M Ω constant) [133].
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Figure 2.37: SET and RESET events as functions of resistance window [133].

based on the usage of the system. If the network is mostly used in learning-mode, in

order to minimize the system power consumption smaller values of ROFF are recom-

mended because the reduction of the RESET current has much stronger impact on the

programming power in the case of PCM synapses. On the contrary, if the network is

mostly used in read-mode, larger values for RON and ROFF are recommended to reduce

read-mode power consumption.

2.10 Conclusion

In this chapter we demonstrated that PCM devices could be used to emulate LTP-like

and LTD-like synaptic plasticity effects. We showed that while gradual LTP can be

obtained with the application of identical potentiating (crystallizing) pulses , the nature

of LTD is abrupt when identical depressing (amorphizing) pulses are used. The reason

for the abrupt LTD behavior was explained through experiments and multi-physical

simulations. We studied the role of crystallization kinetics (growth and nucleation

rates) in LTP emulation, using PCM devices fabricated with two different chalcogenide

materials: nucleation dominated GST, and growth dominated GeTe. A versatile (i)

behavioral model and a (ii) circuit compatible model, useful for large scale neural

network simulations with PCM devices were developed.

To overcome the limitations of abrupt LTD, we developed a novel low-power archi-

tecture (“2-PCM Synapse”) and a detailed programming methodology (Read-, Write-

and Refresh- protocol) for architectures (i) with selector devices (1T-1R) and (ii) with-

out selector devices (1R). We simulated a 2-layer spiking neural network (SNN), spe-
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cially designed for complex visual pattern extraction application, consisting about 4

million PCM devices and a simplified STDP learning rule. Our SNN was able to extract

the orientation and shapes of moving cars on a freeway with a very high average detec-

tion rate (> 90%) and extremely low synaptic programming power consumption of 112

µW. We demonstrated that by engineering the interface of GST-PCM devices (adding

a 2 nm HfO2 layer), energy efficiency of our neuromorphic system can be enhanced

both at the level of individual synapses and the overall system. With the interface

layer, power consumption was decreased to as low as 60 µW, while individual synaptic

programming power is decreased by > 50%. We then investigated in detail the im-

pact of PCM resistance-drift on our neuromorphic system. We show that the “2-PCM

Synapse” architecture has high tolerance towards loss of synaptic information due to

resistance drift. To further mitigate the impact of resistance drift, we introduce an al-

ternative architecture and programming methodology (called “Binary-PCM Synapse”)

with a stochastic STDP learning rule. System level simulations confirmed that using

the “Binary-PCM Synapse” approach doesn’t affect the learning performance. Synaptic

power consumption as a function of ROFF and RON values was investigated. The re-

sults show that the learning-mode power consumption can be minimized by decreasing

the ROFF value, while read-mode power consumption can be optimized by increasing

both the RON and ROFF values. The synaptic power consumption can be strongly

reduced to a few 100 nWs if state-of-the-art PCM devices are used.

To go further, the novel network topology introduced in [134] can be exploited, with

spatially localized neurons, providing similar learning performance with only a tenth

of the synapses. Thus requiring only about 130000 synapses bringing the prospect of

a practical hardware realization even closer. The chapter establishes the potential of

PCM technology for future intelligent ‘ubiquitous’ embedded neuromorphic systems.
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“If two wrongs don’t make a right, try three”

-Laurence Peter

3

Filamentary-Switching Type

Synapses

This chapter discusses how filamentary-switching type of memory devices can be

used to emulate biological synapses in large-scale neuromorphic systems. The first

part of the chapter focuses on Ag/GeS2 based Conductive-bridge (CBRAM) technol-

ogy, while the second part focusses on HfOx based resistive metal-oxide (OXRAM)

technology.

3.1 CBRAM Technology

CBRAM also known as programmable metalization cell (PMC), consists of a solid

electrolyte layer sandwiched between two metal electrodes. The working principle is

understood to be based on reversible electrochemical redox reations [135]. Usually the

top electrode (anode) contains an electrochemically active layer that acts as a donor of

metal ions. When voltage bias of a specific polarity is applied across the device, metal

ions from the anode diffuse and drift in the electrolyte, and get reduced at the inert

electrode (Fig.3.1a). A small metallic filament or dendritic nanowire of metal ions is

formed between the two electrodes leading to a conductive ON state. When reverse

polarity is applied the metallic filament dissolves and the device switches to OFF state.

Intermediate resistance levels can be obtained by tuning the dimensions of the metallic

filament[136].
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3. FILAMENTARY-SWITCHING TYPE SYNAPSES

Figure 3.1: (a) Schematic of the CBRAM device showing the formation of the conductive-

filament (b) Simulated modulation of Roff, adapted from [137].

3.1.1 CBRAM state-of-art Synapses

Yu et. al [137] simulated STDP emulation on CBRAM cells containing Ag top-electrode

and Ge0.3Se0.7 electrolyte. Fig.3.1b, shows the simulated off-state resistance modulation

in Ag/Ge0.3Se0.7 CBRAM devices by applying pulses with varying pulse widths and

amplitudes. Fig.3.2, shows the proposed programming scheme and simulated STDP

emulation for the same devices.

Fig.3.3, shows another 2-terminal CBRAM-like device used for synaptic emulation.

It consists of a layered structure including a cosputtered Ag and Si active layer with

a properly designed Ag/Si mixture ratio gradient that leads to the formation of a Ag-

rich (high conductivity) region and a Ag-poor (low conductivity) region [138]. Unlike

CBRAM, the cosputtered devices don’t undergo electrochemical redox reactions and

there is no formation or dissolution of a conductive filament. However due to cosput-

tering of Ag and Si, nanoscale Ag particles are incorporated into the Si medium during

device fabrication and a uniform conduction front between the Ag-rich and Ag-poor

regions is formed. Under applied bias, the continuous motion of the conduction front

in the device replaces discrete, localized conducting filament formation and results in

analog switching behavior with multiple intermediate resistance states [138]. Fig.3.3a,

shows emulation of LTP- and LTD- like effects, when the device is programmed by a

series of 100 identical potentiating (3.2 V, 300 µs) pulses followed by a series of 100

identical depressing pulses (-2.8 V, 300 µs).
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3.1 CBRAM Technology

Figure 3.2: (a) Shapes of pre- and post- neuron spikes used to emulate STDP on

Ag/Ge0.3Se0.7 CBRAM devices (b) Simulated STDP-like curve for the Ag/Ge0.3Se0.7

CBRAM devices, adapted from [137].

To emulate STDP with the Ag+Si/Ag devices, Jo et. al [138] implemented a special

CMOS neuron circuit that converts the relative timing information of the neuron spikes

into pulse width information seen by the synaptic devices. Their neuron circuit consists

of two CMOS based IF-neurons (pre- and post) connected by a Ag+Si/Ag device

synapse. The neuron circuit employs a time division multiplexing (TDM) approach

with globally synchronized time frames to convert the spike timing information into a

pulse width. Fig.3.3b, shows the measured change of the synaptic weight after each

neuron spiking event obtained in the hybrid CMOS-neuron/RRAM-synapse circuit.

Almost all of these recent demonstrations of RRAM based synaptic emulation treat

the synapse as a deterministic multi-valued programmable non-volatile resistor. Al-

though such treatment is desirable, it is challenging in terms of actual implementation.

Programming schemes for multi-level operation in RRAM devices are more complicated

compared to binary operation. Gradual multi-level resistance modulation of RRAM

synapses may require generation of successive non-identical neuron spikes (pulses with

changing amplitude or width or a combination of both), thus increasing the complexity

of the peripheral CMOS neuron circuits which drive the synapses. Pulse trains with

increasing amplitude lead to higher power dissipation and parasitic effects on large

crossbars. Another issue is that aggressive scaling leads to increased intrinsic device

variability. Unavoidable variability complicates the definition and reproducibility of
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3. FILAMENTARY-SWITCHING TYPE SYNAPSES

Figure 3.3: (a) Incremental increase and decrease of device conductance on application of

potentiating and depressing puless (b) Demonstration of STDP in the Ag+Si/Ag devices,

inset shows a SEM image of the fabricated synapse array, adapted from [138].

intermediate resistance states in the synaptic devices. In the following sections of this

chapter, we present an alternative approach to overcome the issues with multi-level

synapses. We show a neuromorphic system which uses CBRAM devices as binary

synapses with a stochastic-STDP learning rule.

3.1.2 Device and Electrical Characterization

1T-1R CBRAM devices (both isolated and in 8x8 matrix), integrated in standard

CMOS platform [75], were fabricated and tested1 (Fig. 3.4). A Tungsten (W) plug

was used as bottom electrode. The solid electrolyte consisted of a 30 nm thick GeS2

layer deposited by RF-PVD and a 3nm thick layer of Ag deposited by a DC PVD

process. The 3 nm thick Ag layer is dissolved into the GeS2 using the photo-diffusion

process [139]. Then a 2nd layer of Ag about 75 nm thick was deposited to act as top

electrode.

CBRAM operating principle relies on the reversible transition from high (reset) to

1In the following sections, we use the terms strong- and weak- programming conditions. However

these have a relative definition with respect to the technology and materials used for fabricating the

CBRAM devices. For the devices presented here, a weak-condition refers to a short pulse width (<10

µs), usually 1 µs or 500 ns, with a voltage <2.5 V applied at the anode or the bit-line. A strong

condition corresponds to a pulse width>10 µs.
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3.1 CBRAM Technology

Figure 3.4: (Left) TEM of the CBRAM resistor element. (Right) Circuit schematic of

the 8 X 8 1T-1R CBRAM. matrix. (note: the devices used in this study had a GeS2 layer

thickness of 30 nm. The 50 nm TEM is for illustrative purpose only [130].)

low (set) resistive states owing to the formation and dissolution of a conductive filament

in the electrolyte layer. In particular, applying a positive voltage at the Ag electrode

results in the drift of Ag+ ions in the GeS2 and discharge at the inert counter electrode

(W), leading to the growth of Ag dendrites that eventually shunt the top and the bottom

electrodes. Upon reversal of voltage polarity, an electrochemical dissolution of the

conductive bridge occurs, resetting the system to the OFF (reset) state (Fig. 3.5). No

forming step is required for this device stack. Simple fabrication, CMOS compatibility,

high scalability, low power dissipation, and low operating-voltages [140] make CBRAM

devices a good choice for the design of synapses in dense neuromorphic systems.

3.1.3 Limitations on LTD emulation

We demonstrate LTP-like behavior (i.e. gradual ON-state resistance decrease) in our

GeS2 based samples by applying a positive bias at the anode and gradually increasing

the select transistor gate voltage (Vg) (Fig. 3.5a). This phenomenon of gradual resis-

tance decrease can be explained with our model [136], assuming a gradual increase in

the radius of the conductive filament formed during the set process. Larger gate volt-

ages supply more metal ions leading to the formation of a larger conductive filament

during the set process [141].

Nevertheless, this approach implies that each neuron must generate pulses with in-

creasing amplitude while keeping a history of the previous state of the synaptic device,
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3. FILAMENTARY-SWITCHING TYPE SYNAPSES

(a) (b) 

Figure 3.5: (a) On-state resistance modulation using current compliance. Fitting us-

ing model [136] is also shown (extracted filament radius are indicated). (b) Resistance

dependence on gate voltage during the set-to-reset transition [130].

thus leading to additional overhead in the neuron circuitry. Moreover, we found it diffi-

cult to reproducibly emulate a gradual LTD-like effect using CBRAM. Fig. 3.5b shows

the abrupt nature of the set-to-reset transition in our devices. Precisely controlling the

dissolution of the conductive filament was not possible during the pulsed reset process.

Note that for emulating a spiking neural network (SNN) it is essential that both LTP

and LTD be implemented by pulse-mode programming of the synaptic devices. Pulse

based synaptic programming is an analogue for the neuron spikes or action-potentials.

3.1.4 Deterministic and Probabilistic Switching

Fig. 3.6 shows the On/Off resistance distributions of an isolated 1T-1R CBRAM (dur-

ing repeated cycles with strong set/reset conditions). The OFF state presents a larger

dispersion compared to the ON state. This can be interpreted in terms of non-uniform

breaking of the filament during the reset process, due to the unavoidable defects

[142],[143] close to the filament which act as preferential sites for dissolution. By

fitting the Roff-spread data with our physical model [136], the distribution of the left-

over filament-height was computed. Using the computed distribution of the left-over

filament height and the equations in [136] we estimated the spread on the voltage

(Vset) and time (Tset) needed for a successful consecutive set operation (Fig. 3.7).

Moreover, when weak-set programming conditions are used immediately after a reset,
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Figure 3.6: On/Off resistance distribution of an isolated 1T-1R device during 400 cycles

when strong programming is used [130].

a probabilistic switching of the device may appear as seen in fig. 3.8. In fig. 3.8 the

set operation fails in several cycles as the set-programming conditions are not strong

enough to switch the device in those cycles.

In a large-scale system, such stochastic switching behavior at weak conditions will

get compounded with the inclusion of ’device-to-device’ variations. To take into account

the device-to-device variability, we performed similar analysis on the matrix devices.

Fig. 3.9 shows the On/Off resistance distributions for all devices cycled 20 times with

strong conditions. As expected, the spread on Roff values is larger compared to the

Roff spread for a single device shown in fig. 3.6.

To quantify the trend of probabilistic switching (both set/reset) we designed two

simple experiments: a cycling procedure with a strong-set condition and progressively

weakening-reset condition was used to determine reset probability (fig. 3.10a) while a

strong-reset condition and progressively weakening set condition was used to determine

the set-probability (fig. 3.10b). As shown in fig. 3.10, the overall switching probability

(criterion for successful switch: Roff/Ron>10), for 64 device matrix, increases with

stronger programming conditions. It is thus conceivable to tune the CBRAM device

switching probability by using the right combination of programming conditions.
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Figure 3.7: Computed distributions (generated using Roff data from fig. 3.6 and model

[136], of: (a) Tset and (b) Vset (Inset) values for consecutive successful set operation (mean

and sigma are indicated). For computing (a) the applied voltage is 1 V and for (b) a ramp

rate of 1 V/s is used in the quasi-static mode [130].

Figure 3.8: Stochastic switching of 1T-1R device during 1000 cycles using weak-conditions

(switch-probability=0.49) [130].
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Figure 3.9: On/Off resistance distributions of the 64 devices of the 8x8 matrix cycled 20

times. Inset shows Ron and Roff values in log scale with dispersion for each cycle [130].

Figure 3.10: Overall switching probability for the 64 devices of the matrix (switching

being considered successful if Roff/Ron>10) using (a) weak-reset conditions and (b) weak-

set conditions. Vg of 1.5V was used in both experiments [130].
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3.1.5 Stochastic STDP and Programming Methodology

Fig. 3.11 shows the core circuit of our architecture. It is similar to the one that we

proposed for deterministic synapses in [110],[116] but is adapted for bipolar-devices

and stochastic learning rule. The core consists of three main blocks- (i) Input/Output

CMOS-neuron circuits (ii) CBRAM synapse-crossbar connecting the neurons. This

may be implemented without (1R) or with (1T-1R) selector devices (Fig. 3.11(a) and

(b), respectively), and (iii) Pseudo-random number generator (PRNG) circuit. The

PRNG block is only used for implementing optional extrinsic stochasticity as explained

later. All neurons are modeled as leaky-integrate and fire (LIF) type.

Our stochastic-STDP rule (Fig. 3.12) is a simplified version of the deterministic

biological STDP rule [37]. The optimization of the LTP window and neuron parameters

is performed using genetic-evolution algorithm [134]. The STDP rule functions as

follows: when an output neuron fires, if the input neuron was active recently (within

the LTP time window) the corresponding CBRAM synapse connecting the two neurons,

has a given probability to switch into the ON-state (probabilistic LTP). If not, the

CBRAM has a given probability to switch to the OFF-state (probabilistic LTD).

Synaptic programming can be implemented using specific voltage pulses. The case

without selector device is straightforward (Fig. 3.11(a)). After an output neuron spikes,

it generates a specific voltage waveform (signal (3)). Additionally, the input neurons

apply signal (1) if they were active recently (within the LTP time window), else they

apply signal (2). The conjunction of the input and output waveforms implements

STDP. In the case with selector devices (Fig. 3.11(b)), the gates are connected to the

output neurons as shown. When an output neurons spikes (fires), it applies a specific

voltage waveform to the gates of the selector devices (signal (3)), while non-spiking

output neurons will apply signal (4) on the corresponding gates. The input neurons

apply pulses similar to the case without selector devices (i.e. signals (1) and (2)). The

above described signaling mechanism leads to change in synaptic conductance but does

not account for probabilistic or stochastic switching. Probabilistic switching can be

implemented in two ways (see Fig.3.13):

• Extrinsically, by multiplying the signal of the input spiking neuron with the

PRNG output, whose signal probability can be tuned by combining with logical

AND and OR operations several independent PRNGs, that can be implemented
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Figure 3.11: (a) Circuit schematic with CBRAM synapses without selector devices, LIF

neurons, in the external probability case. (b) Circuit schematic with CBRAM synapses

with selector devices, LIF neurons, in the external probability case. In both cases, the pre-

sented voltages waveforms implement the simplified STDP learning rule for the CBRAMs

[130].
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Figure 3.12: Probabilistic STDP learning rule (used for audio application). X-axis shows

the time difference of post-and pre-neuron spike [130].

for example with linear feedback shift registers (LFSR) [131] (see Fig.3.14). This

approach is illustrated in Fig. 3.11. The PRNG output allows or blocks the input

neuron signals according to the defined probability levels.

• Intrinsically, by using weak programming conditions (Figures 3.8 and 3.10). In

this case, the input neuron applies a weak programming signal, which leads to

probabilistic switching in the CBRAM devices.

Exploiting the intrinsic CBRAM switching probability avoids the presence of the

PRNG circuits, thus saving important silicon footprint. It also reduces the program-

ming power, as the programming pulses are weaker compared to the ones used for

deterministic switching. However it might be difficult to precisely control the switch-

ing probability of individual synapses using weak-conditions in a large-scale system.

When weak programming conditions are used, both ’device-to-device’ and ’cycle-to-

cycle’ variations contribute to probabilistic switching. Decoupling the effect of the

two types of variations is not straightforward in filamentary type of devices (due to

the spread on left-over filament height post-reset). In order to precisely control the

switching probability a better understanding and modeling of the device phenomena

at weak programming conditions is required. If precise values of switching probability
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Figure 3.13: Schematic showing two different approaches for implementing stochasticity

with binary synapses [130].

are desired then extrinsic PRNG circuits should be used. For instance a 2-bit PRNG

control signal as shown in Fig. 3.11 can be used to separately tune the LTP and LTD

probability.

The core with and without selector devices are equivalent from a functional point

of view. Selector-free configuration is the most compact (4F2) and highest CBRAM

integration density can be obtained with it. Although adding selector element consumes

more area (>4F2), it helps to reduce the sneak-path leakage and unwanted device

disturbs during the STDP operation which are difficult to control with just 1R devices.

Since we did not fabricate a full test chip to measure the leakage and disturb effects in

the 1R case, the simulations described in Section IV are based on synaptic programming

methodology with-selector devices (1T-1R).

3.1.6 Auditory and Visual Processing Simulations

We performed full system-level simulations with our special purpose event-based Xnet

simulator tool. The neuron circuits are modeled with behavioral equations as in

[116],[134]. The synapses are modeled by fitting data of Fig. 3.6 and Fig. 3.9 with

a log-normal distribution, in order to take into account the experimental spread in the
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Figure 3.14: Tunable Pseudo-random-number generator (PRNG) circuit [131], the output

being tuned according to STDP in Fig.3.12.

Figure 3.15: Concept and data-flow of the unsupervised learning simulations [130].
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Figure 3.16: (a) Single-layer SNN simulated for auditory processing.(b) 2-layer SNN for

visual processing.(Right) AER video data snapshot with neuron sensitivity maps [130].

conductance parameters. Effect of both ’device-to-device’ and ’cycle to cycle’ variations

are captured in the synapse model. Fig.3.15 summarizes the concept and data-flow path

in our simulations. Two different SNN were used to process auditory and visual data.

Fig. 3.16a shows the network designed to learn, extract, and recognize hidden patterns

in auditory data. Temporally encoded auditory data is filtered and processed using

a 64-channel silicon cochlea emulator (similar to [144], simulated within Xnet). The

processed data is then presented to a single layer feed-forward SNN with 192-CBRAM

synapses (i.e. every channel of the cochlea is connected to the output neuron by 3

CBRAM synapses).

Initially (from 0 to 400s), gaussian audio noise is used as input to the system, and the

firing pattern of the output neuron is completely random (as seen in Fig. 3.17). Then

(from 400 to 600s), an arbitrarily created pattern is embedded in the input noise data

and repeated at random intervals. Within this time frame, the output neuron starts

to spike predominantly when the pattern occurs, before becoming entirely selective

to it at the end of the sequence. This is well seen on the sensitivity d’ (a standard

measurement in signal detection theory) presented in Fig. 3.18a, which grows from 0

to 2.7. By comparison, a trained human on the same problem achieves a sensitivity

of approximately 2 [145]. During the same period, the number of false positives also

decreases to nearly 0 (Fig. 3.18b). At the end of the test case (from 600 to 800s), pure

noise (without embedded patterns) is again presented to the system. As expected, the

output neuron does not activate at all, i.e. no false positive is seen (Fig. 3.17,3.18).
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Figure 3.17: (a) Full auditory-data test case with noise and embedded repeated patterns.

(b) Auditory input data and (c) spiking activity for selected time intervals of the full test

case of the output neuron (shown in Fig.16b) [130].

Figure 3.18: (a) Pattern Sensitivity (d’) for the test case shown in fig. 3.17. The system

reaches a very high sensitivity (d’>2). (b) Number of false detections by the output neuron

during the auditory learning [130].
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Figure 3.19: Final sensitivity map of 9 output neurons from the 1st layer of the neural

network shown in Fig.17b. Average detection rate for 5 lanes was 95% [130].

The total synaptic learning power (Plearning) consumption (i.e. the power required

to read, write and erase the CBRAMs) was extremely low (0.55 µW in the extrinsic

probability case, 0.15 µW in the intrinsic probability case). The estimation of synaptic

learning power is described in detail in Tab.1[130], Eq.3.1-3.3, were used:

Eset/reset = Vset/reset × Iset/reset × tpulse (3.1)

Etotal = (Eset × totalsetevents) + (Ereset × totalresetevents) (3.2)

Plearning =
Etotal

Tlearning
(3.3)

In the extrinsic probability case, about 90% of the energy was used to program the

CBRAM devices, and about 10% to read them (while in the case of intrinsic probability

it was about 81% and 19% respectively). The sound pattern extraction example can

act as a prototype for implementing more complex applications such as speech recogni-

tion and sound-source localization. Fig. 3.16b shows the network simulated to process

temporally encoded video data, recorded directly from an artificial silicon retina [117].

A video of cars passing on a freeway recorded in address-event-representation (AER)

format by the authors of [117] is presented to a 2-layered SNN. In each layer, every

input is connected to every output by a single CBRAM synapse.

The CBRAM based system learns to recognize the driving lanes, extract car-shapes

(Fig. 3.19) and orientations, with more than 95% average detection rate. The total

synaptic-power dissipation was 74.2 µW, in the extrinsic probability case and 21 µW

in the intrinsic probability case. This detection rate is similar to the one that we

simulated on the same video test case with a deterministic system based on multi-level

PCM synapses [110],[81],[111]. The example SNN on visual pattern extraction, shown
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Table 3.1: Network statistics for auditory and visual learning simulations with stochastic

binary CBRAM synapses [130].

Auditory Test Case

Total Set events 102646

Total Reset events 41810

Total Read events 2.10 x 107

Total CBRAM synapses 192

Visual Test Case

Total Set events 449725

Total Reset events 26837412

Total Read events 2.49 x 109

Total CBRAM synapses about 2 million

(ISET = µA) (IRESET = 90 µA)

here, can be used as a prototype to realize more complex functions such as image

classification [45],[116], position detection and target-tracking. Tab.3.1, and tab.3.2

summarize all the network and energy statistics from the two unsupervised learning

simulations.

We tested the two test applications with both extrinsic and intrinsic probability

programming methodologies. Sensitivity and detection rates were nearly identical in

both cases, which suggests a relative equivalence of the two approaches. Total synaptic

power consumption was lower when the intrinsic probability methodology was used.

This suggests that the power saved by using weak programming pulses is greater than

the power dissipated due to the extra programming pulses required to implement the

intrinsic probability. Additionally, we performed simulations without any intrinsic or

extrinsic conductance spreads (ideal or non-variable synapses). These gave sensitivity

values and detection rates similar to the ones when the spread was considered, sug-

gesting that the experimentally measured variability in our devices had no significant

impact on the overall system learning performance. This is consistent with variability-

tolerance of STDP-based networks [116].
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Table 3.2: Energy/Power statistics for auditory and visual learning simulations with

stochastic binary CBRAM synapses [130].

Auditory Test Case

Total duration 800 s

Total Energy dissipated 436 µJ

Synaptic prog. power 0.55 µW

Visual Test Case

Total duration 680 s

Total Energy dissipated 50.4 mJ

Synaptic prog. power 74.2 µW

3.2 OXRAM Technology

Metal-oxide based resistive memory (OXRAM) has created considerable amount of

interest in the non-volatile memory community in recent years [74]. Based on the choice

of material stack, OXRAM devices can either function as bipolar or unipolar. The

underlying physics of OXRAM devices is still debated and not completely understood,

however the resistive-switching phenomenon is widely understood to be a consequence

of the dynamics of oxygen defects and vacancies. In the case of bipolar devices (more

widely studied), when a forming voltage is applied to a fresh device, a soft-breakdown

occurs. Oxygen ions drift to the top electrode due to high electric field, where they

accumulate leading to an oxygen reservoir. A conductive filament (CF) composed of

oxygen vacancies is thus formed switching the device in the ON state (see Fig.3.20). In

order to switch the device to OFF state, a voltage of reversed polarity is applied and

oxygen ions drift back into the oxide layer, where they recombine with oxygen vacancies

and disrupt the CF [74].

3.2.1 State-of-art OXRAM Synapses

Several material stacks, (based on Ti, AlOx, TiN, HfOx, TiOx, Pt, W, Al) and different

programming strategies (such as increasing reset/set voltages, increasing compliance

current, identical reset/set pulses) have been employed to demonstrate the emulation

of LTP- and LTD- like effects in OXRAM devices. Tab3.3 and Fig.3.21, summarize

some of these recent approaches and references.
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3. FILAMENTARY-SWITCHING TYPE SYNAPSES

Figure 3.20: Illustration depicting OXRAM working principle and underlying physics

[74].

Table 3.3: Recent OXRAM based synaptic emulations

Ref Material Stack LTP Strategy LTD Strategy

[146] TiN/Ti/AlOx/TiN Increasing set

pulse amplitude

Increasing reset

pulse amplitude

[147] Ti/AlOx/TiN Increasing Com-

pliance Curent

Increasing reset

pulse amplitude

[148] TiN/TiOx/HfOx/TiOx/HfOx/Pt Not implemented Identical reset

pulses

[149] Pt/Al/TiO2-x/TiOy/W Identical set

pulses

Identical reset

pulses

[150] W/Al/PCMO/Pt Identical set

pulses

Identical reset

pulses
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3.2 OXRAM Technology

Figure 3.21: (a) LTD obtained by increasing RESET pulse, LTP by increasing SET pulse.

[146] (b) LTD obtained by increasing the RESET pulse amplitude, LTP by increasing

compliance current [147]. (c) LTD only, obtained by identical RESET pulses [148]. (d)

and (e): LTD and LTP obtained by identical RESET and SET voltage [149], [150].

3.2.2 Device and Electrical Characterization

We fabricated and studied OXRAM devices composed of a TiN/Ti/HfOx/TiN stack

(Fig.3.22a) with two different HfOx layer thickness (10 and 15 nm). The tested devices

were composed of 1R structure, i.e. with direct access to top and bottom electrodes,

without any selector device. Fig.3.22b shows the typical current-voltage (I-V) char-

acteristic for our devices obtained in quasi-static mode (dc-bias mode) indicating the

forming, RESET, and SET operations. In the forming process a voltage staircase from

0 to 4 V with a step of 0.02 V (with a current compliance of 1 mA) is applied to the

devices.

3.2.3 LTD Experiments: ROFF Modulation

We observed that gradual ROFF modulation in our HfOx devices is reproducibly pos-

sible only with the application of varying reset conditions. Fig.3.23 shows results of

ROFF modulation in quasi-static mode. Fig.3.23a, shows in detail the implemented test

case. Initially formed devices are programmed to a low-resistance SET state, by apply-

113



3. FILAMENTARY-SWITCHING TYPE SYNAPSES

Figure 3.22: (a) Schematic view of the tested OXRAM memory device. (b) Typical I-V

characteristic for tested OXRAM devices (10 nm HfOx).

ing a dc-SET voltage ramp. This is followed by the application of several subsequent

cycles of SET/RESET operations, with a fixed SET condition, but changing RESET

condition. The device resistance is read, and recorded, by applying a small reading

voltage (0.1 V) between each consecutive operation. ROFF modulation is acheived by

changing the stopping voltage Vstop of the dc voltage ramp applied during the RESET

operation. 5 different values of Vstop (in the range -0.6 V to -1 V) give rise to 5 differ-

ent RESET or ROFF states (Fig.3.23b). Current compliance is not required during the

RESET operation, however for SET operations a compliance current (IC = 1 mA) is

imposed to protect the devices from excessive flow of current in the low-resistace state

and device failure. For all SET operations the Vstop = 2.5 V. The SET operations, be-

tween two consecutive RESET operations, act as a ’refresh’ operation, as they restore

the devices to same initial state.

Similar tests were also performed in pulsed-mode operation. Pulsed-mode oper-

ations are more relevant for spiking neural networks. Fig.3.24a shows the test case

schematic. During SET operations, a programming voltage pulse (VSET ) is applied on

the series combination of the OXRAM device and a 1 kΩ load resistor used as a current

limiter. During RESET operations a negative voltage pulse VRESET (in the range -0.8

V to -1.1 V) was applied directly on the top electrode. For each VRESET value, devices

were cycled 10 times with subsequent SET and RESET operations. VSET in all cases

was + 1.8 V. The pulse widths for both VRESET and VSET = 50 µs. Fig.3.24b shows

clear evidence of ROFF modulation with VRESET .
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3.2 OXRAM Technology

Figure 3.23: (a) Schematic description of test case for ROFF modulation in quasi-static

mode with SET ’refresh’ operation. (b) Experimental data confirming ROFF modulation

in quasi-static mode (10 nm HfOx).

Figure 3.24: (left) Schematic description of test for ROFF modulation in pulsed-mode

with SET ’refresh’ operation. (right) Experimental data confirming ROFF modulation in

pulsed-mode (10 nm HfOx).
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Figure 3.25: (left) Schematic description of test for ROFF modulation in pulse mode

without SET ’refresh’ operation. (right) Experimental data confirming ROFF modulation

in pulse mode (10 nm HfOx).

Fig.3.25, shows the results for a pulsed-mode ROFF modulation test performed

without the refreshing SET operation between two consecutive RESET operations.

After an initial SET pulse of amplitude + 1.8 V and width 50 µs, 9 consecutive RESET

pulses of increasing amplitude and width 50 µs were applied. The ROFF modulation

trend was consistent with tests shown in Fig.3.24 and Fig.3.23.

Tests with identical reset pulses didn’t show very promising results in terms of

gradual ROFF modulation. The behavior was similar to the one observed in the case

of CBRAM devices. Fig.3.26a, describes one such test case. After an initial SET

operation (1.8 V, 50 µs), a sequence of 50 reset pulses of 50 ns width and given pulse

amplitude were applied. Fig.3.26b shows the typical response of the tested devices:

after very few intermediate states (3-5), the ROFF value saturates to a ceiling value,

that depends on the amplitude of the RESET voltage.

However, very few devices showed a gradual increase of ROFF with identical RE-

SET pulses. Fig.3.27a shows a gradual change in conductance of around 3 orders of

magnitude in response to 50 subsequent reset pulses (-1 V, 50 ns) for a 10 nm thick

HfOx layer device. Fig.3.27b shows similar results for a 15 nm thick HfOx layer device.

An interesting observation is that, compared to the 10 nm thick HfOx , the change in

resistance is less than one decade, but the response is much slower (requiring 10000 reset

pulses). The underlying physics for such behavior is not understood and still a matter

of investigation, moreover the results shown in Fig.3.27 were not very reproducible.

If in future, such effects can be obtained reproducibly, a ”2-OXRAM Synapse” type
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Figure 3.26: (left) Schematic description of test for ROFF modulation in pulse mode

with identical reset-pulses. (right) Experimental data for the described test with identical

reset pulses (10 nm HfOx).

Figure 3.27: Cumulative device response in conductance to identical RESET pulse train

for (a) 10 nm thick and (b) 15 nm thick HfOx layer devices.
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Figure 3.28: Schematic description of test for RON modulation in quasi-static mode. (b)

Experimental data showing the trend in RON .

Figure 3.29: Device response to a pulse train of identical SET pulses.

of implementation (similar, but inverse of the ”2-PCM Synapse” approach), primarily

based on LTD can be envisioned.

3.2.4 LTP Experiments: RON modulation

LTP type of behavior or RON modulation was investigated in quasi-static mode. As

shown in the schematic of Fig.3.28a, after an initial RESET operation, the device was

subjected to a sequence of SET operations while increasing the imposed compliance

current (IC) in the circuit. RON modulation of about 1 decade is possible in quasi-

static mode (Fig.3.28b).

We also performed tests to check the response of device towards identical SET
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Figure 3.30: Binary switching operation for our OXRAM devices with ’strong’ program-

ming conditions.

pulses. However, as shown in Fig.3.29, after the first SET operation no effect of the

subsequent SET pulses is observed. After the first switch to low-resistance state, in all

subsequent SET operations most of the applied voltage drops across the 1 kΩ series

current limiting resistor, thus leaving the state of the OXRAM device almost unaltered.

The failure to gradually modulate RON with identical pulses, in OXRAM, is similar to

the one observed in case of CBRAM devices (Sec.3.1.2).

3.2.5 Binary operation

In the previous section, we showed that our OXRAM devices with HfOx layer were

not good enough for gradual LTP/LTD type response with application of identical

programming pulses. We thus prefer to use OXRAM devices as binary synapses with

stochastic learning rules, as also proposed in the case of CBRAM devices. Fig.3.30,

shows a OXRAM binary cycling test with strong programming conditions. A pulse

width of 50 ns was used for both SET and RESET operations.

In order to investigate if it was possible to reproduce CBRAM like intrinsic-stochasticity

with OXRAM devices, we used weak RESET conditions (i.e VRESET was decreased).

From Fig.3.31 we see that rather than inducing RESET failures, the only thing that
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Figure 3.31: Binary switching operation for our OXRAM devices with ’weak’ RESET

programming conditions.

changes compared to Fig.3.30 is the level of ROFF , thus decreasing the resistance pro-

gramming window.

We then studied the effect of using weak SET conditions. Fig.3.32 shows that

decreasing the applied voltage actually results in switching failures during the SET

operation. However, these failures are mostly concentrated in one region of the cycling

curve and no truly stochastically distributed. We thus propose to use strong program-

ming conditions alongside the use of extrinsic PRNG circuits to externally implement

stochastic-STDP, rather than relying on the use of weak programming conditions.

3.2.6 Learning Simulations

We performed the cars visual pattern extraction simulations (similar to the one de-

scribed in sec.3.1.6) using OXRAM binary switching data shown in Fig.3.30 and stochas-

tic STDP rule (Fig.3.12). The learning and power statistics of the simulations are sum-

marized in Tab.3.4 and Tab.3.5. The cars average detection rate was similar to the one

for CBRAM (> 90%). However the total energy dissipation and power consumption

was much less compared to both PCM and CBRAM devices (Total Energy = 1.6 mJ,

Total Power = 2.4 µW).
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Figure 3.32: Binary switching operation for our OXRAM devices with ’weak’ SET pro-

gramming conditions.

Table 3.4: Learning statistics, over the whole learning duration for binary OXRAM

synapses(8× 85 = 680 s).

/device /device (max) /device/s Overall

HfOx OXRAM devices

Read pulses 1,265 160,488 1.9 4.97 x 109

SET pulses 0.34 32 0.0005 6.67 x 105

RESET pulses 11 39 0.016 2.12 x 107

Table 3.5: Energy/Power statistics for visual learning simulations with stochastic binary

OXRAM synapses (Total learning duration = 680 s ).

Read Energy 0.04 mJ

SET Energy 0.26 mJ

RESET Energy 1.3 mJ

Total Energy dissipated 1.6 mJ

Synaptic prog. power 2.4 µW

(ISET = 1.1 mA) (IRESET = 1.1 mA)
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3.3 Conclusion

We proposed for the very first time a bio-inspired system with binary CBRAM synapses

and stochastic STDP learning rule able to process asynchronous analog data streams

for recognition and extraction of repetitive patterns in a fully unsupervised way. The

demonstrated applications exhibit very high performance (auditory pattern sensitivity>2.5,

video detection rate>95%) and ultra-low synaptic power dissipation (audio 0.55µW,

video 74.2µW) in the learning mode. We show different programming strategies for

1R and 1T-1R based CBRAM configurations. Intrinsic and extrinsic programming

methodology for CBRAM synapses is also discussed.

We briefly investigated the possibility of implementing synaptic behavior with 1R

(selector-free) OXRAM devices. Modulation of ROFF both in quasi-static and pulse-

mode was confirmed. Modulation of RON was demonstrated only in quasi-static mode

due to the difficulty in controlling the compliance current in pulse-mode with 1R struc-

tures. Results suggest that the studied technology could be successfully used in pulsed

neural networks by exploiting the gradual increase of the ROFF value, however at

the cost of varying or non-identical programming pulses. We also investigated binary

switching characteristics of the devices. Difficulty in controlling the distribution of

switching failures with weak programming conditions make it impractical to exploit the

intrinsic switching probability. However, our OXRAM technology can be successfully

used in probabilistic networks by using strong-programming conditions and introducing

extrinsic stochasticity.
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“Silence is the language of nature...

all else is poor translation.”

-Rumi

4

Using RRAM for Neuron Design

This chapter discusses how RRAM devices can be used to design innovative neu-

ron structures. We present an original methodology to design hybrid neuron circuits

(CMOS + non volatile resistive memory) with stochastic firing behaviour. In order

to implement stochastic firing, we exploit unavoidable intrinsic variability occurring in

emerging non-volatile resistive memory technologies. In particular, we use the vari-

ability on the ‘time-to-set’ (tset) and ‘off-state resistance’ (ROff) of Ag/GeS2 based

Conductive Bridge (CBRAM) memory devices. We propose a circuit and a novel self-

programming technique for using CBRAM devices inside standard Integrate and Fire

neurons. Our proposed solution is extremely compact with an additional area overhead

of 1R-3T. The additional energy consumption to implement stochasticity in Integrate

and Fire neurons is dominated by the CBRAM set-process.

4.1 Introduction

Neuromorphic computing is usually accomplished with deterministic devices and cir-

cuits. However, literature in the fields of neural networks [151],[152] and of biology [153]

suggests that in many situations, actually providing a certain degree of stochastic, noisy

or probabilistic behavior in their building blocks may enhance the capability and sta-

bility of neuroinspired systems. Some kind of neural networks even fundamentally rely

on stochastic neurons, like Boltzmann machines [154],[155]. Finally stochastic neurons

may perform signal processing in extremely noisy environments using a phenomenon

known as ‘stochastic resonance’ [156],[157]. In Chapter.2 and Chapter.3, we showed
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how unsupervised learning can be achieved with the help of stochastic learning rules

and binary RRAM synapses.

Providing extrinsic stochastic behavior to neurons using pseudo-random number

generator circuits (PRNG) leads to significant silicon area/power overheads. This ex-

plains interest in developing silicon neurons with an intrinsic stochastic behavior, but

which may be controlled. In previous works, different techniques to implement con-

trolled stochasticity in hardware neural networks have proposed. It is possible to exploit

the thermal noise in the CMOS but this may lead to silicon overheads and unwanted

correlations [151]. Other techniques exploit CMOS circuits with using noise but have

significant area overhead [158], or the noise of photons with photodetectors [159] or even

special kinds of ‘noisy transistors’ [160]. Finally it was proposed to use fundamentally

probabilistic nanodevices like single electron transistors [161], but which might suffer

from poor CMOS compatibility and room temperature operation. In this chapter, we

describe an original circuit and methodology to design a neuron with stochastic firing

behavior exploiting certain physical effects of emerging non-volatile resistive memory

technology devices such as Conductive Bridge memory (CBRAM). There are signifi-

cant advantages of our approach such as extremely low area overhead and full CMOS

compatibility.

4.2 CBRAM Stochastic Effects

The basics and working of our CBRAM devices has already been discussed in sec.3.1.2.

Here we focus on the spread in ROFF values for CBRAM devices. By cycling many

times our devices a statistical distribution of the high resistive state (ROff) was obtained.

Dispersion in ROff may be interpreted in terms of stochastic breaking of the filament

during the reset process, due to the unavoidable defects close to the filament which act

as preferential sites for dissolution. In sec.3.1.4, we showed, with the help of modeling,

that a distribution in ROff leads to a spread in others physical quantities like the left-

over filament height (h) and the tset. Fig. 4.1 inset shows an example of the oscilloscope

trace for the evolution of voltage drop across the cell (Vc) during a set pulse. Initially,

the cell is in the high resistive state (ROff ' 106 Ω) and most of the applied voltage

drops on the cell. Then at time tSETan abrupt decrease of Vc is observed, revealing

a sudden drop of the cell resistance corresponding to the switching from high to low
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Figure 4.1: (a) ROff distribution obtained in GeS2 based 1R CBRAM devices.(b) Exper-

imental (line) and simulated (dotted) tSETdistribution obtained cycling the CBRAM cell

with a pulse amplitude Va=3 V. (b in the inset) Example of a typical oscilloscope trace

tracking the voltage on the CBRAM (Vc) and the applied pulse (Va). Between every set

operation a reset operation was performed (not shown) [163].

resistive state. Starting from some of the measured values of ROff (Fig. 4.1(a)) we

collected the spread in tSETwhen the applied pulses were Va=3 V and tpulse = 5 µs

(Fig. 4.1(b)). The dotted line in Fig. 4.1(b), shows the simulated values of tset. To

obtain the simulated curve of tset, first the distribution of h was calculated using [162]:

ROff =
ρonh+ ρoff(L− h)

πr2
(4.1)

where ρon is the resistivity of the Ag-rich nanofilament, ρoff is the resistivity of the

GeS2, L is the chalcogenide thickness and r is the conductive filament radius, then

tSETusing:

tset =
L− h

vh exp

(
−EA
kBT

)
sinh

(
αq Vc−∆

kBT

) (4.2)

where q is the elementary charge, vh is a fitting parameter for the vertical evolution

velocity, EA is the activation energy, kB is the Boltzmann constant, T is the temperature

(300 k), α and ∆ are fitting parameters to take into account vertical electric field
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dependency and the overpotential that controls the kinetic of the cathodic reaction

respectively (Table 4.1). In the following section we show how the spread in tSETcan

be used to make the firing of an Integrate and Fire neuron non-deterministic.

4.3 Stochastic Neuron Design

4.3.1 Integrate and Fire Neuron

The complexity of a neuron circuit depends on the overall functionality of the neural

network and of the chosen biological models. For our purpose of concept validation, we

chose one of the simplest, the Integrate and Fire neuron model. Fig. 4.2(a) shows the

concept of a simple Integrate and Fire neuron model. It constantly sums (integrates)

the incoming synaptic-inputs or currents (excitatory and inhibitory) inside the neuron

integration block using a capacitor. More advanced designs also work with this principle

[50]. This integration leads to an increase in the membrane potential of the neuron

Vmem. When the membrane potential reaches a certain threshold value Vth, the neuron

generates an output spike (electrical signal). After the neuron has fired the membrane

potential goes back to a resting value (initial state), through discharging of the capacitor

Cmem. Usually, the output firing activity of a Integrate and Fire neuron is deterministic

because the neuron fires every time the membrane potential reaches a defined threshold

value.

4.3.2 Stochastic-Integrate and Fire principle and circuit

To introduce non-deterministic or stochastic behavior in Integrate and Fire neuron, we

propose to connect a CBRAM device to the capacitor Cmem, such that Cmem could

Table 4.1: Parameters used in the simulations

Parameter Value Parameter Value

vh 2 m/s EA 0.35 eV

ρon 2.3 x 10−6 Ωm ρoff 10−3 Ωm

α 0.08 ∆ 0.15 V

r 2.2 nm L 30 nm
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Figure 4.2: (a) Schematic image shown the basic concept of a Integrate and Fire neuron

[50]. (b) Schematic showing the basic concept of our proposed Stochastic Integrate-Fire

neuron (S-IF) [163].
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Figure 4.3: (a)-(d) Schematic of output neuron firing patterns for different example test

cases [163].

only discharge through the CBRAM device by switching it to the low-resistive state

(Fig. 4.2(b)). The anode of the CBRAM and the Vmem net of the capacitor should be

connected. The duration for which current can flow through the low-resistive CBRAM

device can be controlled using a transistor. In such a configuration, the spread on

the tSETof the CBRAM would translate to a spread on the discharge-time (tdsc) of

the capacitor. For consecutive neuron spikes, this would lead different initial state of

Cmem, thus making the firing of the neuron stochastic. Fig. 4.3 illustrates conceptually

the impact of four different values of tSET(keeping constant pre-synaptic weights), on

the inter-spike interval. In case (a), tSETis very long thus the capacitor has a very

weak discharge. As a consequence just few additional incoming pre-neuron spikes are

required to charge back the Vmem to the level of Vth, thus leading to an output pattern

with the shortest inter-spike interval. In case (b), tSETwas the shortest, and hence the

capacitor discharged the most.

Thus for this case, more incoming pre-neuron spikes are needed to recharge Vmem.

Case (c) represents a deterministic Integrate and Fire situation with full Vmem dis-

charge. Finally, case (d) depicts a situation with different tSETdurations for consecu-

tive output spikes. It is a possible representation of neuron inter-spike intervals for a

random sequence of tSETvalues that can be obtained by cycling the CBRAM device
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Figure 4.4: Proposed circuit-equivalent of the S-IF neuron [163].

Figure 4.5: Circuit used to demonstrate the concept of a S-IF effect when the CBRAM

is in the set state [163].
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multiple times.

The circuit equivalent of the Stochastic-Integrate and Fire neuron concept shown

in Fig. 4.2(b) is presented in Fig. 4.4. It consists of a current-source to simulate input

currents coming from synapses and pre-neurons, a capacitor Cmem to integrate the

current and build up the neuron membrane-voltage Vmem, a nMOS transistor M1 to

perform set operation, two nMOS transistors M2 and M3 to perform the reset operation,

a comparator block, a spike-generation block, a delay-element ∆t and a CBRAM device.

The delay element is used to perform the reset operation of the CBRAM device at the

end of each neuron spike.

In Fig. 4.4, initially the CBRAM is in high-resistive state. As incoming pre-synaptic

current is accumulated in Cmem, Vmem would constantly build up at the anode of the

CBRAM. During this time M1, M2 and M3 are off. When the neuron spikes, the

spike-generation block will generate an output-spike and two additional pulsed-signals

(S1, S2) going to M1 and ∆t respectively. S1 acts as a gating signal to turn on M1.

Vmem build-up and switching on of M1 will enable set-operation of the CBRAM since

a positive voltage drop is established between the anode and the cathode. However

during the set-operation, M2 and M3 are not turned on, as ∆t delays the signal S2.

At the end of the set-operation, the signal S2 will turn on M2 and M3 thus building

up the voltage at the cathode to switch the CBRAM to the off-state (reset). Thus,

before the next consecutive neuron spikes the CBRAM device is automatically reset and

reprogrammed to a different initial Roff state. Note that the flow of current through

the CBRAM, during the set-operation, leads to a discharge of the capacitor Cmem

thus decreasing the membrane voltage Vmem. The amount of decrease in Vmem can

be estimated by calculating the total duration (tdsc) for which current flows through

the switched CBRAM. tdsc is the difference of the pulse-width of the signal S1 and the

tSET(inset of Fig. 4.1). Depending on the value of tSETevery time the neuron spikes,

different amount of Cmem discharge will occur. Thus, in between any two firing cycles,

the neuron may require different amount of incoming current to charge Vmem to the

level of Vth.
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Figure 4.6: Full evolution of Vmem simulating the circuit shown in Fig. 4.5. (a) Pre-neuron

incoming pulses are used to build up Vmem. (b) Initially Vmem builds up as consequence

of incoming currents (charging phase). Set operation lead to different discharge of Cmem

(tdsc). During the recharging phase a different number of incoming pulses will raise Vmem

till Vth. (c) Expected different inter-spike intervals depending on the tset [163].
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Figure 4.7: (a) Pre-neuron incoming pulses are used to build up Vmem. (b) Zoom on

Vmem during the discharging phase for different tSETin the range 300 ns - 600 ns. Lower

tSETleads to lower residual membrane voltage Vmem [163].

4.4 Results and Discussion

4.4.1 Set- and Reset- Operation

We performed SPICE transient simulation, with Eldo simulator, to validate the pro-

posed concept using a simplified circuit shown in Fig. 4.5. Fig. 4.6(a) shows a simulated

train of incoming pulses (excitatory currents) and the corresponding evolution of the

Vmem (Fig. 4.6(b)) between two consecutive neuron spike-cycles. When Vmem reaches

a threshold voltage Vth (Vth ' 3.5 V in our simulation), the CBRAM device undergoes

set-operation, and Cmem begins to discharge. Fig. 4.6(b) shows the discharging and re-

charging of Cmem for four different simulated values of tSET(in the range 300 ns - 600

ns). Fig. 4.6(c), shows the expected output of the neuron. Note that different number

of incoming pulses are required to reach the neuron firing threshold again, since the

initial Vmem value is dominated by the stochasticity in tSET. Five additional incoming

pulses are needed to reach the threshold for the shortest value of tSET(300 ns). Fig. 4.7

shows the zoomed version of Cmem discharging for the the different simulations shown

in Fig. 4.6. Note that the longest tSET(600 ns) corresponds to the least amount of
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Figure 4.8: (a) Time-evolution of Vmem and Vcathode that establish a voltage drop on the

CBRAM to enable reset operation. Larger M3 increase the voltage drop, since Vcathode

builds up more. Vmem corresponding to a tSETof 300 ns is considered. (b) Pulse applied

to M3 [163].

Cmem discharge, and vice-versa. To simulate the reset operation, a pulse of 45 ns with

an amplitude of 3 V was applied at M2 and M3, while keeping M1 off. Such high

voltage on M3 is required to build up Vcathode. Fig. 4.8 shows the time evolution of

Vcathode and Vmem when the initial value of Vmem was generated by a tSETof 300 ns for

two different width of M3. The actual voltage drop on the CBRAM can be increased

increasing the size of the nMOS as shown in Fig. 4.8. Moreover, during the reset, an

additional discharge of Vmem is possible depending on the size of M3, since M2, that is

directly connected to Vmem, is turned on by S2 (Fig. 4.9(a)).

4.4.2 Parameter Constraints

Due to the intrinsic physics of CBRAM device, some constraints in implementing the

proposed circuit should be considered. In particular, Vth has to be greater than the

minimum value of the voltage-drop required to set the CBRAM device for a given

pulse-width. The amplitude of S1 should be sufficient to turn on the gate of M1,

while the pulse-width of S1 depends on the Vth and the spread on tset. If S1 pulse-

width is very long it would always lead to a complete discharge of Cmem and the

tSETstochasticity cannot be exploited. However S1 cannot be arbitrarily small, it has

to be greater than the minimum tSETvalue at a given voltage applied on the anode of
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Figure 4.9: (a) Time-evolution of Vmem during the reset operation for tSETin the range

300 ns - 600 ns. Different residual voltages are obtained. (b) Pulse applied to M3 [163].

the CBRAM device. The dependence of applied pulse-width and the amplitude of Va

for CBRAM set-operation is shown in [164]. Thus, by tuning the characteristics of S1,

the stochastic response of the neuron can be controlled. The amplitude of S1 would

determine the amount of current flowing through M1 (compliance current) and thus

the final value of the CBRAM resistance in the set state. The set state resistance would

determine the programming conditions for the consecutive reset-operation [165]. Thus,

the characteristics of S2 can be tuned based on the final CBRAM resistance obtained

after the set-operation.

4.4.3 Energy Consumption

For the proposed S-IF, additional energy consumption per spiking cycling of the neuron

will be devoted to perform set and reset operation. The extra-energy consumption is

dependent on the ratio of ROff and ROn; in particular on ROn since hundreds of µA

can flow before M1 would be turned off, if the low resistance state is ' 104 Ω. We

estimated the energy consumption during the set operation using: Eset=Vset Iset tset.

In our simulations we used Vset=3.5 V (i.e. Vth), Iset= 350 µA, tset in a range between

300 ns and 600 ns that gives an energy mean value of 55 nJ. The energy devoted to

reset the CBRAM is negligible. For a real system, this 55 nJ could be strongly reduced

increasing the resistance of the low resistive value, since for the proposed application

the ratio ROff/ROn is not a major constraint.
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4.5 Conclusion

In this chapter, we showed how CBRAM used in an unexpected fashion may allow de-

signing stochastic neurons with low area overheads. We showed how CBRAM physics

naturally leads to a stochastic behavior in the programming time, which may be ex-

ploited in a circuit. SPICE simulations validate the concept on a simple Integrate and

Fire neuron. The concept could be extended to more complex neuron designs like [50].

These results highlight the benefits of novel non memory technologies, whose impact

may go beyond traditional memory markets.

135



4. USING RRAM FOR NEURON DESIGN

136



5

Conclusions and Perspective

5.1 Conclusion

During this research activity we explored how some of the emerging RRAM devices

(PCM, CBRAM and OXRAM) may be used inside neuromorphic systems and appli-

cations. We mainly emphasized on the emulation of synaptic plasticity effects such as

long-term potentiation/depression (LTP/LTD) and learning rules like STDP. We also

proposed a methodology to design compact stochastically firing neuron circuits that

exploit intrinsic physical effects of RRAM devices.

In the case of PCM, we fabricated and studied devices with different stacks (GST,

GeTe and GST+HfO2). We showed that while LTP-like conductance can be emulated

with identical programming pulses, the same is not true for LTD-like effects. The

difference arises due to the underlying physics of phase-change devices. To overcome

the limitation imposed by abrupt LTD, we developed a unique low-power methodology

known as the “2-PCM Synapse”. It uses 2-PCM devices (one device responsible for

LTP and the other for LTD) connected in a complementary architecture. We developed

a detailed programming methodology (Read, Write and Refresh schemes) for the “2-

PCM Synapse” architecture. We showed that this approach has many advantages

such as low-power and high tolerance to PCM-resistance drift as it’s predominantly

based on crystallization. We showed that by engineering PCM devices with a HfO2

dielectric layer the performance of both individual synapses, and the overall system

can be improved. We also presented a methodology to strongly mitigate the impact of

resistance-drift in neuromorphic systems based on PCM synapses. Using the “2-PCM
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Synapse” we showed complex-visual pattern extraction application and performed a

detailed energy/power analysis of our system.

In the case of CBRAM, we fabricated and studied (1R, 1T-1R and 8 x 8 matrix)

devices with Ag/GeS2 stack. We found that for CBRAM, both LTP and LTD cannot

be emulated with identical pulses. While it was possible to emulate LTP with varying

(non-identical) programming conditions, LTD was always abrupt due to uncontrolled

filament dissolution. Thus we adopted an alternative approach for neuromorphic sys-

tems based on CBRAM synapses. We used the synapses in a probabilistic and binary

manner (as opposed to deterministic and multi-level). We used an optimized stochastic

STDP rule to compensate for the fewer conductance states. We showed that stochastic-

ity can be implemented either intrinsically (by using weak programming conditions), or

extrinsically (by using external PRNG circuits). Using our binary stochastic CBRAM

synapse approach we showed complex auditory and visual pattern extraction applica-

tions. Similar analysis was also performed for OXRAM 1R devices based on HfO2 layer.

However the study on OXRAM was preliminary and not as detailed as in the case of

PCM and CBRAM. In case of all the three technologies that we used, there are some

important observations that should be pointed out-

• Robustness to variability: In all the learning simulations, it was observed that

the neural network is highly tolerant to synaptic variability (see Fig.2.26) For

the PCM simulations, a 20% standard deviation dispersion was applied to each

synapse parameter described in Tab.2.1. For the CBRAM/OXRAM simulations

actual dispersion extracted from experimental data (for example see Fig.3.9,

Fig.3.30) was used.

• Impact of the Neurons: In all the simulations we used optimized neuron pa-

rameters (example Tab.2.3) for high quality learning obtained through genetic

evolution algorithm. It is possible that certain shortcomings of the synaptic char-

acteristics were absorbed by the optimization of the neuron parameters. However

this point is still under investigation and needs further detailed analysis.

• Equivalence of binary and multi-level synapses: In terms of learning performance

the results obtained with both binary-stochastic and multi-level deterministic
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synapses were equivalent for the cars learning experiment. However some appli-

cations might need higher synaptic redundancy in the case of binary synapses to

compensate for fewer resistance levels.

5.2 Which one is better

In order to choose a technology that defines the ideal synapse, it becomes very important

to first fix the overall system constraints, in terms of the final application, the learning

rule and the neuron structures. A comparison of state-of-the art RRAM technology

parameters, reported in literature, is provided in Tab.1.1.

Direct comparison of the three RRAM technologies discussed in this manuscript

for synaptic application is not a straightforward task, due the numerous options and

possibilities available at different levels in the design of a neuromorphic system (see

Fig.1.28). However some parameters on the basis of which classifications can be done

are-

5.2.1 Intermediate Resistance States

A technology with a large number of intermediate resistance states is very desirable,

however if a stochastic learning rule is used, the number of intermediate resistance states

become insignificant and just binary switching is suffice. Some learning applications

may require several intermediate synaptic weights, while satisfactory learning can be

achieved for others with just binary or few weights. Low number of synaptic weights

may also be compensated by increasing the total number of synapses in the network

or the per/neuron synaptic redundancy. For the 3 different devices that we fabricated

PCM showed the maximum number of intermediate states (60 in the case of GST +

HfO2 devices). Programming scheme used to implement intermediate states is also an

important factor, as neuron action potentials are identical. For our devices, OXRAM

offered the least number of intermediate states, while CBRAM showed decent RON

modulation but at the cost of variable programming pulses.

5.2.2 Energy/Power

The energy analysis requires more careful consideration as it is closely linked to the

type of learning rule used in the system, and the final application being addressed.
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It is always desirable that the programming energy for both SET/RESET events be

minimized. However even if one of the two energies (SET or RESET) is higher, it

may still minimally impact the total system power dissipation, if a learning rule is

chosen such that it pre-dominantly favors the less energy consuming synaptic event.

For instance, our simplified STDP learning rules were predominantly LTD dependent,

so RESET energy of the synaptic devices was more significant compared to SET energy.

This can be further complicated if the architecture of the synaptic devices is changed.

As in the case of “2-PCM Synapse”, where LTD is also obtained through crystallization,

thus the RESET energy doesn’t play a significant role. Among our 3 technologies, PCM

was the most energy consuming, followed by CBRAM and then OXRAM. Our PCM

devices consumed more energy as they were large analytical structures and not ultra-

scaled. High programming currents would require larger driving transistors or selector

devices and would also limit the size of the synaptic arrays.

5.2.3 Endurance

As far as device endurance is considered, from Tab.2.4 we can see that for each type

of event (LTP/LTD) the programming frequency/device/s is always less than 0.5 Hz.

This means that any RRAM technology with an endurance of 108 cycles would function

for a learning time of 108 s (or > 3 years of continuous learning), assuming a worst

case programming frequency of 1 event/dev/sec. From Tab.1.1 we can see that all the

three RRAM technologies (PCM,CBRAM,OXRAM) easily satisfy this criteria.

5.2.4 Speed

Device switching response time is not an issue for any of the technology, as biolog-

ical timescales for neuro-synaptic modifications are in the range of ms. All the 3

RRAM technologies respond at least 103 - 106 times faster (µs–ns) than the biological

timescales. Among our devices, PCM were the fastest in terms of programming pulses,

followed by OXRAM and then CBRAM. A fast switching device also brings down the

energy dissipated per RESET/SET event.
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5.2.5 Resistance Window

Generally a large resistance programming window is desirable as it increases the noise

margin for the intermediate resistance states. However the exact RON and ROFF

ranges may impact the energy dissipation, particularly while reading the resistance

of the synaptic array. To minimize read-power dissipation a high RON and ROFF is

preferred. However very high RON values increase the parasitic charging times (RC

delay) of the memory crossbar. The range of RON and ROFF values will also impact

the choice of the driving transistors in the memory control circuitry and the size of

largest possible crossbar/matrix.

In terms of device area and scalability, state-of-the art devices for all the 3 RRAM

technologies offer highest possible integration density with a cell area of 4F2 (Tab.1.1).

In our case the CBRAM devices were the most compact, followed by OXRAM and the

PCM.

5.3 On-Going and Next Steps

In this section I would like to mention some on-going and future activities that couldn’t

be completed in the time frame of the PhD, but are very relevant to take the work

described in the thesis to the next level-

• OXRAM: We only investigated 1R structures and HfO2 stack. It would be inter-

esting to see if more intermediate resistance states can be obtained by engineering

the material stack, as also shown in literature. As an ongoing activity we are test-

ing 1T-1R OXRAM devices.

• Full test-systems: At CEA-LETI, we are packaging multiple PCM, CBRAM and

OXRAM devices using wire-bonding (Fig.5.1c). The idea is to test these packages

on special test boards designed by our colleagues at CEA-LIST. These boards

(Fig.5.1b) emulate the functionality of neurons and are driven by a PC and FPGA.

• Fully co-integrated chips: We are also designing prototype CMOS-RRAM fully

integrated circuits (Fig.5.1d), that contain RRAM arrays and CMOS driving

circuits.

141



5. CONCLUSIONS AND PERSPECTIVE

Figure 5.1: Snapshot of current on-going activities (a) Multi-electrode Array (MEA)

of the NeuroPXI system to collect neuron signals [166]. (b) Neuromorphic test-board

developed by CEA-LIST for testing packaged RRAM. (c) Wire-bonded and packaged PCM

and CBRAM devices. (d) Layout of a CBRAM synapse array + CMOS control circuit

designed in collaboration with CEA-LIST.
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• Interfacing with Biology: Recently we started an activity which involves the

use of a real neuron signal acquisition system called NeuroPXI [166]. In this

activity, which is in a very early phase, we plan to collect in-vitro/ in-vivo neu-

ron signals (Fig.5.1a) from rat retina and process them with our RRAM based

neural network. The motivation behind this activity deals with better under-

standing/processing of real neuron signals and development of future generation

neuro-prosthetic systems.

5.4 The road ahead...

Generally speaking the present time is very favorable and interesting for neuromorphic

research due to some large funding support and recent projects launched worldwide

(see Sec.1.1.1). However, for a sustained and meaningful progress in the field, some

shortcomings that need to be addressed are-

• Standardization: There is a strong need for standardizing different blocks of a neu-

romorphic processing core. These may include neuron-models, synaptic-models,

communication protocols, input and output data formats (ex-AER), learning rules

etc. Standardization of the key blocks would also enable development of neuro-

morphic specific design and simulation tools

• Application Benchmarking: There is a need to create an application database to

correlate neuromorphic system learning performance and specifications of build-

ing blocks such as synapses and neurons.

• Learning Rules: As far as the learning rules are considered, the field requires a lot

of development. New learning rules which are more adapted to devices (synaptic

or neuron related) should be developed. Just relying on STDP is not sufficient

for a broad application base.
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Appendix B

Résumé en Français

B.1 Chapitre I: Découverte

Ce chapitre décrit les motivations pour poursuivre la R&D dans le domaine des systèmes

neuromorphiques. Nous nous concentrons alors sur quelques concepts de base de la

neurobiologie. Un état de l’art sur l’implémentation matériel de synapses biologiques

est présenté et leurs limites sont discutées. Le concept de mémoire résistive non-volatile

issu de technologies emergentes est introduit. A la fin du chapitre, nous résumons

brièvement la portée et la stratégie globale adoptée pour la recherche menée au cours

de cette thèse.

B.2 Chapitre II: Synapses avec des Mémoires à Change-

ment de Phase

Dans ce chapitre, nous avons démontré que les dispositifs PCM peuvent être utilisés

pour imiter les effets de plasticité synaptique en simulant à la fois la LTP et la LTD.

Nous avons montré que, bien que la LTP progressive puisse être obtenu par l’application

d’impulsions de potentialisation identiques (cristallisation), la nature de la LTD est

abrupte lorsque des impulsions de dépression identiques (amorphisant) sont utilisées.

La raison pour laquelle le comportement de la LTD est brutal a été expliquée par

des expériences et des simulations multi-physiques. Nous avons étudié le rôle de la

cinétique de cristallisation (taux de croissance et de nucléation) en émulation LTP,

utilisant des dispositifs PCM fabriqués avec deux matériaux chalcogénures différents:
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Figure B.1: Bi-directional strategy (Top-down + Bottom-up) adopted for the work pre-

sented in this PhD thesis. To develop the ideal ”synapse-solution” optimization and

fine-tuning was performed at different levels such as architectures, learning-rules and

programming-schemes.(BS: Binary Stochastic synapses).
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Figure B.2: Illustration of biological synapse and the equivalent PCM synapse in a neural

circuit connecting a spiking pre- and post- neuron [81]. TEM cross-section image of the

GST PCM devices fabricated for this study is shown.

le GST où la nucléation est dominante et le GeTe où la croissance domine. Un modèle

polyvalent (i) et un modèle comportemental (ii) compatibles circuit, utiles pour des

simulations de réseaux de neurones à grandes échelles avec des dispositifs PCM, ont été

développés. Pour surmonter les limitations abrupt de LTD, nous avons développé une

nouvelle architecture faible consommation (“2-PCM Synapse”) et une méthodologie de

programmation détaillé (en lecture, en écriture et un protocole de rafrâıchissement)

pour les architectures (i) avec dispositifs de sélection (1T-1R) et (ii) sans dispositif de

sélection (1R).

Nous avons simulé un réseau de neurones impulsionnels (SNN, Spiking Neural Net-

work) à 2 couches, spécialement conçu pour les applications d’extraction de motif vi-

suel complexe, composé d’environ 4 millions de disposotifs PCM et simulant une règle

d’apprentissage STDP simplifiée. Notre SNN a pu extraire l’orientation du déplacement

et les formes des voitures circulant sur une autoroute avec un taux de détection moyen

très élevé (>90 %) et une très faible consommation d’énergie nécessaire pour la pro-

grammation des synapses, 112 µW. Nous avons montré qu’en modifiant l’interface des

dispositifs GST-PCM (par ajout d’une couche de HfO2 de 2 nm), l’efficacité énergétique

de notre système neuromorphique peut être améliorée tant au niveau des synapses in-

dividuelles que pour l’ensemble du système. Avec cette couche d’interface, la consom-

151
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Figure B.3: (a) IV characteristics for PCM devices with 100 nm thick GST and GeTe

layer starting from initially amorphous phase. (b) R-I characteristics of GST and GeTe

PCM devices, with inset showing the PCM phase of intermediate resistance states. (c) R-V

curves for GST devices with six different pulse widths. Read pulse = 0.1 V, 1 ms. Legend

indicates applied pulse widths. (d) Temperature Vs Time profile for PCM programming

pulses [81].
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Figure B.4: (a) Experimental LTP characteristics of GST PCM devices. For each curve,

first a reset pulse (7 V, 100 ns) is applied followed by 30 consecutive identical potentiating

pulses (2 V). Dotted lines correspond to the behavioral model fit described in Eq.2.3 and

eq.2.4. (b) Experimental LTP characteristics of GeTe PCM devices. (c) LTP simulations

for GST devices using circuit-compatible model. (d) Conductance evolution as a function of

the applied voltage for GST devices with six different pulse widths, using circuit-compatible

model (sec.2.5.2). Legends in Figs.2.6(a–d) indicate pulse widths [81].
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Figure B.5: The ”2-PCM Synapse” concept schematic. The contribution of the current

flowing through the LTP device is positive, while that of the LTD device is negative,

towards the integration in the output neuron [110].

mation d’énergie a été réduite à 60 µW, tandis que le consommation individuelle des

programmations synaptiques est diminué de plus de 50 %.

Nous avons ensuite étudié en détail l’impact de la dérive temporelle de la valeur de

résistance des dispositifs PCM dans notre système neuromorphique. Nous montrons

que l’architecture “2-PCM Synapse” a une grande tolérance vis-à-vis de la perte de

l’information synaptique due à la dérive de la résistance. Pour atténuer davantage

les effets de la dérive de la résistance, nous introduisons une autre architecture ainsi

qu’une méthodologie (appelé “binaire PCM Synapse programmation”) avec une règle

d’apprentissage de type STDP stochastique. Des simulations au niveau système ont

confirmées que l’utilisation de l’approche “binaire PCM Synapse” n’affecte pas les per-

formances d’apprentissage. La consommation d’énergie par les synapses en fonction

des valeurs ROFF et RON a été étudiée. Les résultats montrent que la consomma-

tion d’électricité en mode d’apprentissage peut être minimise en réduisant la valeur

de ROFF , tandis que la consommation d’énergie en mode de lecture peut être opti-

misée en augmentant à la fois les valeurs de RON et ROFF . La consommation d’énergie

synaptique peut être fortement réduite à quelques 100 nW lorsque les meilleurs disposi-

tifs PCM de l’état de l’art sont utilisés. Pour aller plus loin, la nouvelle topologie du
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Figure B.6: 2-Layer Spiking Neural Network (SNN) topology used in simulation. The

network is fully connected and each pixel of the 128×128 pixel AER dynamic vision sensor

(DVS-retina) is connected to every neuron of the 1st layer through two synapses, receiving

positive and negative change in illumination events respectively. Lateral inhibition is also

implemented for both layers [110].

réseau mis en place dans [134] peut être exploitée, avec des neurones spatialement lo-

calisées, offrant des performances d’apprentissage similaire avec seulement un dixième

des synapses. Ainsi, le besoin d’utiliser seulement 130000 synapses rend la perspec-

tive d’une réalisation pratique du matériel encore plus proche. Le chapitre démonte le

potentiel de l’utilisation de la technologie PCM pour les futurs systèmes de neuromor-

phiques embarqués intelligents et omniprésents.

B.3 Chapitre III: Synapses avec des Mémoires à ‘Filamentary-

switching’

Nous avons proposé pour la première fois un système bio-inspirée avec des synapses

CBRAM binaires et une règle d’apprentissage STDP stochastique capables de traiter

des flux de données analogiques asynchrones pour la reconnaissance et l’extraction de

motifs répétitifs d’une manière totalement non supervisée. Les applications démontrées

présentent des performances très élevées (sensibilité aux motifs auditifs > 2.5, taux

de détection vidéo > 95 %) et une dissipation de puissance synaptique ultra-faible
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Figure B.7: (Left) TEM of the CBRAM resistor element. (Right) Circuit schematic of

the 8 X 8 1T-1R CBRAM. matrix. (note: the devices used in this study had a GeS2 layer

thickness of 30 nm. The 50 nm TEM is for illustrative purpose only [130].)

(audio 0.55 µW, vidéo 74.2 µW) dans le mode d’apprentissage. Nous montrons des

stratégies de programmation différentes pour les configurations CBRAM 1R et 1T-

1R. La méthodologie de programmation intrinsèque et extrinsèque pour des synapses

CBRAM est également discutée.

Nous avons brièvement étudié la possibilité de mettre en oeuvre le comporte-

ment synaptique avec des dispositifs OXRAM en configuration 1R (sans dispositif de

sélection). La modulation de ROFF en mode quasi-statique et en mode impulsion a été

confirmée. La modulation de RON a été démontrée uniquement en mode quasi-statique

en raison de la difficulté de contrôler le courant limitant en mode impulsion avec des

structures 1R. Les résultats suggèrent que la technologie étudiée pourrait être utilisé

avec succès dans les réseaux de neurones impulsionnels en exploitant l’augmentation

progressive de la valeur ROFF , au prix toutefois d’impulsions de programmation non

identiques ou variables. Nous avons également étudié les caractéristiques de commu-

tation binaires des dispositifs. La difficulté de contrôler le taux d’échecs avec des

conditions de programmation de commutation faibles rendent impossible l’exploitation

de la probabilité de commutation intrinsèque. Cependant, notre technologie OXRAM

peut être utilisée avec succès dans des réseaux probabilistes en utilisant des conditions

de programmation fortes et en introduisant une stochasticité extrinsèque.
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Figure B.8: Illustration depicting functional equivalence of deterministic multi-level and

stochastic binary synapses. p indicates probability of change in conductance or switching

[130].

Figure B.9: On/Off resistance distributions of the 64 devices of the 8x8 matrix cycled 20

times. Inset shows Ron and Roff values in log scale with dispersion for each cycle [130].
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Figure B.10: Overall switching probability for the 64 devices of the matrix (switching

being considered successful if Roff/Ron>10) using (a) weak-reset conditions and (b) weak-

set conditions. Vg of 1.5V was used in both experiments [130].

Figure B.11: (a) Single-layer SNN simulated for auditory processing.(b) 2-layer SNN for

visual processing.(Right) AER video data snapshot with neuron sensitivity maps [130].
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Figure B.12: (a) Full auditory-data test case with noise and embedded repeated patterns.

(b) Auditory input data and (c) spiking activity for selected time intervals of the full test

case of the output neuron (shown in Fig.16b) [130].

Figure B.13: Final sensitivity map of 9 output neurons from the 1st layer of the neural

network shown in Fig.17b. Average detection rate for 5 lanes was 95% [130].
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Figure B.14: (a) ROff distribution obtained in GeS2 based 1R CBRAM devices.(b) Ex-

perimental (line) and simulated (dotted) tSETdistribution obtained cycling the CBRAM

cell with a pulse amplitude Va=3 V. (b in the inset) Example of a typical oscilloscope trace

tracking the voltage on the CBRAM (Vc) and the applied pulse (Va). Between every set

operation a reset operation was performed (not shown) [163].

B.4 Chapitre IV: Utiliser des RRAM pour la conception

de neurones

Dans ce chapitre, nous avons montré comment la CBRAM utilisé de façon inatten-

due peut permettre la conception de neurones stochastiques avec une forte densité

d’intégration. Nous avons montré comment le comportement physique de la CBRAM

conduit naturellement à un comportement stochastique pour le temps de programma-

tion, ce qui peut être exploitée dans un circuit. Des simulations SPICE valident le

concept d’un simple neurone “Integrate and Fire”. Le concept pourrait être étendu à

la conception de neurones plus complexes comme reference [50]. Ces résultats mettent

en évidence les avantages des nouvelles technologies de mémoires non-volatiles, dont

l’impact peut aller au-delà des marchés traditionnels de la mémoire.
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Figure B.15: Proposed circuit-equivalent of the S-IF neuron [163].

B.5 Chapitre V: Conclusions et Perspectives

Au cours ce travail de recherche, nous avons exploré la façon dont certains dispositifs

RRAM émergents (PCM, CBRAM et OXRAM) peuvent être utilisés dans des systèmes

et des applications neuromorphiques.

Nous avons insisté principalement sur l’émulation de la plasticité synaptique comme

la potentialisation/dépression à long terme (LTP / LTD) et les régles d’apprentissage

comme STDP. Nous avons également proposé une méthodologie pour concevoir des

circuits de neurones stochastiques. Dans le cas des PCM, nous avons fabriqué et étudié

des dispositifs avec des empilements diffèrents (GST, GeTe et GST + HfO2). Nous

avons montré que, bien que la conductance LTP peut être émulé avec des impulsions

de programmation identiques, il n’en est pas de même pour la LTD. La diffèrence

provient de la physique sous-jacente des dispositifs à changement de phase.

Pour surmonter la limitation imposée par la LTD trop abrupte, nous avons développé

une méthodologie de faible puissance unique connue sous le nom “2-PCM Synapse”.

Elle utilise une configuration à 2 PCM (un dispositif en charge de la LTP et l’autre

pour la LTD) raccordés dans une architecture complémentaire. Nous avons développé

une méthodologie de programmation détaillée (lecture, écriture et actualisation) pour

l’architecture “2-PCM Synapse”. Nous avons montré que cette approche présente de

nombreux avantages telles que la faible consommation et la grande tolérance vis-à vis

de la dérive temporelle de la résistance des PCM car son fonctionnement est princi-

palement basé sur la cristallisation. Nous avons montré que des dispositifs PCM avec
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une couche diélectrique de HfO2 améliorent les performances à la fois des synapses

individuelles mais aussi de l’ensemble du système.

Nous avons également présenté une méthodologie pour atténuer fortement l’impact

de la dérive de la résistance dans des systèmes neuromorphiques basés sur des synapses

PCM. Avec l’utilisation de la “2-PCM Synapse” nous avons montré des applications

d’extraction de schémas visuels complexes et nous avons aussi effectué une analyse

énergétique détaillée de notre système.

Dans le cas des CBRAM, nous avons fabriqué et étudié (1R, 1T-1R et 8 x 8 ma-

trice) des dispositifs avec des empilements Ag/GeS2. Nous avons constaté que pour

la CBRAM, aussi bien la LTP que la LTD ne peuvent pas être émulées avec des im-

pulsions identiques. Alors qu’il était possible d’émuler la LTP avec des conditions de

programmation variables (Pulses non identiques), la LTD a toujours été brutale en

raison de la dissolution incontrôlée des filaments. Ainsi, nous avons adopté une ap-

proche alternative pour les systèmes neuromorphiques basé sur les synapses CBRAM.

Nous avons utilisé les synapses de manière probabiliste et binaire (par opposition à

déterministe et multi-niveau). Nous avons utilisé une règle STDP stochastique opti-

misée pour compenser les états de conductance les plus bas. Nous avons montré que la

stochasticité peut être mise en oeuvre soit intrinsèquement (en utilisant des conditions

de programmation faibles), ou de façon extrinsèque (en utilisant des circuits de PRNG

externes). Grâce à notre approche stochastique et binaire des synapses CBRAM, nous

avons montré des applications d’extraction de motifs visuels et auditifs complexes. Une

analyse similaire a également été réalisée pour les composants OXRAM 1R basé sur

une couche de HfO2.

D’une manière générale, nous sommes à l’heure actuelle dans des conditions très fa-

vorables pour la recherche dans le domaine du neuromorphique en raison d’importantes

aides financières et de récents projets lancés dans le monde entier (Voir Sec.1.1.1).

Cependant, pour un progrès soutenu et significatif dans le domaine, certaines pistes

qui doivent être abordées. Ce sont:

• La Normalisation: Il y a un fort besoin de standardisation des blocs diffèrent

d’un noyau de traitement neuromorphique. Il peut s’agir de modèles de neu-

rone, de synapse, des protocoles de communication, du format des données de

sortie et d’entrée (ex-AER), des règles d’apprentissages etc... La normalisation
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des blocs principaux permettrait également le développement d’architecture neu-

romorphique spécifique et d’outils de simulation.

• Analyse comparative de l’application: Il est nécessaire de créer une base de

données d’applications pour corréler les performances d’apprentissage de systèmes

neuromorphiques et des blocs de base spécifiques comme les synapses et les neu-

rones.

• Les règles d’apprentissage: Pour les règles d’apprentissage considérées, le domaine

nécessite beaucoup de développement. De nouvelles règles d’apprentissages plus

adaptées aux composants (synapses ou neurones liés) devraient être développées.

S’appuyer seulement sur la STDP n’est pas suffisant pour une large base d’application.
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