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Introduction

Cette thèse a été effectuée au sein de l’équipe Inria MΞDISIM – qui fait suite à l’équipe-projet
MACS – sous la direction de Philippe Moireau et Dominique Chapelle.

Contexte général de la thèse

Les Maladies Cardio-Vasculaires (MCV) représentent la cause principale de mortalité en
Europe mais aussi, à travers le monde, dans les pays en voie de développement. À titre
d’illustration de l’amplitude de ces maladies il s’avère [Nichols et al., 2012] que les MCV sont à
l’origine de 47% des décès en Europe. La Figure 1 regroupe l’ensemble des principales causes
de décès chez les Femmes et les Hommes d’Europe âgés de moins de 65 ans et on peut
clairement observer que cesmaladies y prennent une place dominante. Même si la tendance
est à la baisse dans la plupart des pays européens, certains facteurs favorisant ces maladies
comme le tabagisme, les régimes alimentaires déséquilibrés ou le manque d’activité sportive
deviennent de plus en plus important [Nichols et al., 2012].

Pour permettre l’identification et la prévention de ces maladies, les cardiologues ont à
leur disposition tout un ensemble d’outils qui permettent d’obtenir des informations sur le
fonctionnement du système cardiovasculaire d’un patient. Parmi ces observations on dis-
tinguera les données dites invasives, c’est-à-dire qui nécessitent au préalable l’installation
in-vivo d’instruments de mesures, et les données non-invasives qui sont obtenues sans per-
turbation éventuelle de l’intégrité physique du patient. Bien que ces dernières soient géné-
ralement plus complexes à interpréter (car moins directes) elles sont celles qui intéressent
le plus les cardiologues car elles affectent le mois possible l’état de santé du patient. Un
exemple est l’électrocardiogramme qui permet de mesurer, à l’aide de capteurs disposés sur
la peau du patient, l’évolution dans le temps des variations du potentiel électrique nécessaire
à la rythmique cardiaque. Un autre exemple est l’imagerie cardiaque et on peut citer l’Ima-
gerie par Résonance Magnétique (IRM) – parmi toute une gamme de modalité d’imagerie
comme les CT-scan ou l’échographie. Ces images captent le champ magnétique émis lors de
la relaxation du spin des protons constituant la matière, préalablement excitée. Un exemple
typique est le cine-IRM qui permet d’évaluer à partir du niveau de gris de l’image la zone
correspondant au myocarde, le muscle cardiaque. Ces images donnent d’importantes infor-
mations sur les déformations au cours du cycle cardiaque de la surface interne et externe
du cœur (appelées endo- et épicarde). Cependant elles ne peuvent pas fournir d’informa-
tion sur les déformations dites intra-myocardiques. Pour cela un autre type d’imagerie est
envisageable, l’IRM de marquage tissulaire [Zerhouni et al., 1988, Axel and Dougherty, 1989].
Ces modalités d’imageries visent à permettre l’évaluation des déplacements du muscle car-
diaque au sein du myocarde en implantant dans l’image (par modulation spécifique de la
magnétisation du tissu) un motif régulier. Ce motif régulier, prenant généralement l’aspect

13
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(a) Chez l’Homme de moins de 65 ans

(b) Chez la Femme de moins de 65 ans

FIGURE 1 – Les différentes causes de décès en Europe. Données Extraites de European
Cardiovascular Disease Statistics, 2012 Edition.
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d’une grille, est assujetti aux déformations du muscle cardiaque pendant le temps d’acquisi-
tion. La Figure 2 nous permet d’illustrer ces différents types d’imagerie durant la systole, la
contraction cardiaque, d’un cœur.

(a) cine-IRM (coupe petit axe) (b) IRM de marquage tissulaire (coupe petit axe)

FIGURE 2 – Exemple de données non-invasives d’imagerie.

Bien que l’ensemble des ces données suffisent, dans la plupart des cas, à l’expert pour
permettre un disagnostic elles sont généralement incomplètes et bruitées. En effet, si on re-
prend l’exemple de la donnée image, il est commun d’imaginer qu’on possède seulement une
vingtaine d’images sur tout un cycle cardiaque. En plus de ce sous-échantillonnage temporel,
les images sont généralement bi-dimensionelles avec une faible résolution spatiale.

Au vu des enjeux et des difficultés que concentrent la prévention, le disagnostic et le
traitement des maladies cardio-vasculaires on comprend la nécessité de proposer des solu-
tions innovantes dans ce domaine. Les projets européens tels que le projet euHeart1, qui a
permis le financement de cette thèse, cherchent notamment à proposer au corps médical
un ensemble de nouveaux outils numériques et de modélisation. Ces outils proposent des
nouvelles solutions dans un large spectre d’application dont on peut citer l’aide à la plani-
fication pré-opératoire, le conseil et l’optimisation des programmes de traitement ainsi que
l’assistance au disagnostic.

Historiquement, l’utilisation de méthodes mathématiques appliquées à la médecine est
relativement ancienne et on peut par exemple citer les travaux du français P. C. A. Louis
qui fut l’un des premiers à démontrer mathématiquement, dans les années 1830, l’ineffi-
cacité de traitement par saignée des maladies infectieuses telles que la pneumonie [Louis,
1835]. Pour appuyer cette conclusion l’auteur utilisait principalement des outils statistiques
(simples) pour pouvoir comparer l’évolution de deux groupes de patients malades, un pre-
mier groupe auquel on fait subir des saignées et un autre non. Dans un des articles [Louis,
1834], traduit à l’époque en anglais et dont les propos sont aussi rapportés dans [Shimkin,
1964], P.C.A. Louis a appelé cette méthode “The Numerical Method” et a commenté

“The only reproach that can be made to the Numerical Method [...] is that it offers real difficulties
in its execution [...] but [...] research of truth requires much labor, and is beset with difficulty.”

1http://www.euheart.eu
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Ces mots de P.C.A. Louis, datant de près de 200 ans, apparaissent comme étant d’une éton-
nante actualité. Plus récemment, un exemple bien connu d’implication des sciences numé-
riques en routine clinique est la chirurgie robotique. Elle a pour objectif de permettre, grâce
à l’utilisation de robots adaptés à l’environnement médical, l’aide à l’intervention chirurgicale
en augmentant la précision et l’efficacité des gestes du médecin tout en restant le moins
invasif possible. Pour se donner un repère chronologique l’une des premières opérations
assistées fut en 1985 par Kwoh et. al. lors d’une biopsie du cerveau. On pourra notamment
se référer à [Lanfranco et al., 2004] pour quelques informations sur le paysage actuel de la
robotique chirurgicale. Les deux exemples que nous avons cités cherchent à innover et à pro-
poser de nouvelles solutions et ceci ce fait notamment par le mélange et l’interaction entre
plusieurs disciplines et communautés scientifiques. Ces interactions permettent notamment
de bâtir une relation de confiance avec le corps médical, une confiance qui s’acquiert avec le
temps comme signalé dans [Lanfranco et al., 2004]

“Robotics [...] has been slow to enter the field of medicine”.

Tout comme l’analyse statistique de données ou la robotique, l’analyse numérique de mo-
dèles biophysiques pourrait être un nouvel outil mis à disposition de la médecine. Cet outil
est basé sur le regroupement de considérations physiques, concernant le phénomène ob-
servé, encapsulées dans un formalisme mathématique. De nos jours, il existe déjà un grand
nombre de modèles décrivant des phénomènes intervenant dans les sciences du vivant.
En ce qui concerne le corps humain il existe déjà tout un ensemble d’outils de modélisa-
tion concernant un large spectre de phénomènes, par exemples les modèles de croissance
de tumeurs, l’analyse mécanique des os et des tendons ou encore l’étude de type interac-
tion fluide-structure pour la pression intracrânienne. Dans ce même registre, on peut aussi
donner l’exemple du flux sanguin dans les grandes artères dont la modélisation se fait par
l’utilisation de techniques avancées d’interaction fluide-structure [Fernández et al., 2007] qui
correspondent à un couplage de l’équation de Navier-Stokes pour un fluide incompressible,
le sang, avec les équations de la mécanique régissant la dynamique de la structure, ici l’ar-
tère. Un autre exemple important est la modélisation dans le domaine de l’électrophysiolo-
gie [Sachse, 2004, Pullan et al., 2005]. Cette modélisation cherche à représenter les phéno-
mènes chimiques et électriques se produisant se produisant au niveau du tissu cardiaque
et conduisant à son excitation électrique qui est responsable de la contraction des cellules
constituant le myocarde. En ce qui concerne la mécanique dumuscle cardiaque on peut citer
les travaux de [Hunter, 1975] ou [Peskin, 1982]. Plus récemment les travaux de [Sainte-Marie
et al., 2006] ont conduit à un modèle complet du cœur où la loi de comportement du maté-
riau est décomposée (de façon additive) en une partie passive, correspondant aux propriétés
visco-élastiques sous-jacentes du myocarde, et une partie active, sensible à l’activation élec-
trique. Ces trois derniers éléments de modélisation (flux sanguin, électrophysiologie et mé-
canique cardiaque) dépendent l’un de l’autre. Cependant, en pratique, le curseur de précision
est ajusté en fonction des besoins. Dans la perspective de proposer un outil supplémentaire
au médecin, les besoins du “modélisateur” sont évidemment imposés par le type de patho-
logie que l’on cherche à traiter. Dans cette thèse nous sommes particulièrement intéressés
aux MCV conduisant à une altération des propriétés mécaniques du tissu, et on peut penser
par exemple aux maladies de type cardiopathie coronarienne pouvant notamment conduire
à la nécrose (mort tissulaire) d’une partie du muscle cardiaque.

Comme nous l’avons mentionné plus haut, les médecins ont déjà à leur disposition tout
un ensemble de moyens d’observation sur l’état d’un patient. Nous avons notamment donné
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l’exemple des données d’IRM de marquage tissulaire qui est une donnée extrêmement riche
permettant d’observer les déformations du cœur pendant sa contraction. Ces données souf-
frent des défauts inhérents à tout processus de mesure mais sont en contrepartie spéci-
fiques au patient que l’on cherche à traiter. À l’extrême opposé, sur une ligne conceptuelle
modulant spécificité et précision, nous trouvons le modèle. En effet, un modèle par nature
nous donne des informations complètes (en temps et en espace) mais n’est a priori pas dis-
posé à représenter une situation bien précise. Pour cela, il est nécessaire de faire appel aux
méthodes d’assimilation de données pour permettre la personnalisation du modèle.

La discipline de l’assimilation de données est historiquement apparue dans le contexte
de la météorologie ou de l’océanographie, et on pourra se référer notamment à [Corpetti
et al., 2009, Blum et al., 2008] pour avoir un échantillon des différentes avancées récentes
dans ce domaine. Dans la communauté de l’assimilation de données, il est commun de
considérer que les données, aussi appelées observations et notées z dans l’ensemble de la
présentation de ces travaux de thèse, sont obtenues à partir d’une trajectoire cible x● par

z(t) =H(x●(t)) + χ(t),
où H est appelé l’opérateur d’observation et χ est un potentiel bruit (additif) de mesure. Le
modèle est quant à lui représenté par une dynamique généralement écrite sous la forme

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ●(t) = A(x●(t), θ●, t)
x●(0) = x◇ + ζx● , θ● = θ◇ + ζθ● ,

où (x◇, θ◇) sont des connaissances a priori sur la condition initiale et les paramètres de la tra-
jectoire cible et (ζx● , ζθ●) sont des incertitudes potentielles. L’assimilation de données cherche
donc à coupler les deux sources d’informations pour permettre de gommer ces incertitudes
sur le système, et ainsi reconstruire une trajectoire dite estimée fidèle aux données. Les mé-
thodes d’assimilation de données rentrent dans le cadre (plus général) des problèmes in-
verses, dans le sens où elles permettent de proposer un inverse généralisé de l’opérateur
d’observation. Il existe diverses méthodes d’assimilation de données que l’on peut séparer en
deux catégories. Une catégorie de méthodes dites variationnelles visent à minimiser un cri-
tère cherchant à équilibrer la confiance que l’on donne aux observations et aux a priori [Blum
et al., 2008,Papadakis and Mémin, 2008,Navon, 2008,Titaud et al., 2010] c’est-à-dire

min
ζx,ζθ

J(ζx, ζθ) = 1

2
∥ζx∥

2
Nx
+ 1

2
∥ζθ∥

2
Nθ
+ 1

2
∫ T

0
∥z(t) −H(x(t))∥2Nz

dt,

où x est solution de
⎧⎪⎪
⎨
⎪⎪⎩

ẋ(t) = A(x(t), θ, t)
x(0) = x◇ + ζx, θ = θ◇ + ζθ.

La deuxième famille de méthodes d’assimilation de données est la classe des méthodes dites
séquentielles qui cherchent à filtrer pendant la simulation les différences entre les observa-
tions et l’estimation courante de la trajectoire. Cette classe de méthode construit ce qu’on
appelle des observateurs que l’on note (x̂, θ̂) et dont la dynamique s’écrit sous la forme géné-
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rale [Bensoussan, 1971,Simon, 2006]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
˙̂x = A(x̂, θ̂, t) +Gx(z −H(x̂))
˙̂
θ = Gθ(z −H(x̂))
x̂(0) = x◇, θ̂(0) = θ◇,

où Gx et Gθ sont les opérateurs de gain construits dans le but d’obtenir le comportement
asymptotique suivant (x̂, θ̂) →

t→∞
(x●, θ●).

Au-delà des différentes possibilités de modélisation (en terme de formalisme et de précision)
il est clair que, pour avoir un impact dans le domaine d’application visé,

le travail de modélisation ne peut être complètement mis à profit que s’il s’inscrit

dans une stratégie d’assimilation de données.

En effet, par nature l’assimilation de données cherche à combiner les deux protagonistes,
modèle & données, pour créer une entité profitant des avantages des deux parties, c’est-à-
dire spécificité et précision. Cependant, comme a pu le signaler avant nous P.C.A. Louis, la
mise en oeuvre de ces méthodes (numériques) reste une tâche complexe. La raison princi-
pale étant qu’elles appartiennent à une discipline, par définition, extrêmement transverse
mélangeant modélisation, analyse mathématique et numérique et interprétation des don-
nées. Ces méthodes d’assimilation de données prennent une place de plus en plus impor-
tante dans le domaine de la modélisation pour les Sciences du Vivant. Dans le cas de la
mécanique cardiaque on peut notamment citer les travaux de [Moireau et al., 2009, Moi-
reau et al., 2008] qui proposent une méthodologie séquentielle d’assimilation de données
pour permettre l’estimation conjointe d’état et de paramètres. D’incroyables progrès se font
dans ces différentes disciplines (de façon plus ou moins indépendante) et l’assimilation de
données cherche alors à combiner des sources d’informations de plus en plus complexes et
précises. Cependant,

indépendamment du type de méthode d’assimilation de données, il est nécessaire de

savoir mesurer les dissimilarités entre le modèle et les observations.

Autrement dit, la difficulté inhérente à ces méthodes de couplage est qu’elles nécessitent de
savoir mesurer les différences du type z −H(x). La complexité de cette opération est bien
sûr liée au fait qu’en pratique le modèle et les observations sont de nature extrêmement dif-
férente. Dans le cas simplifié d’observations dites directes, c’est-à-dire dans le cas où l’opéra-
teur d’observation est linéaire, on cherche à s’appuyer sur la structure algébrique de l’espace
d’observation qui généralement permet le calcul de ces dissimilarités. Dans le cas plus réa-
liste d’observations indirectes cette différence n’a pas de sens direct. Si on reprend l’exemple
de la modélisation cardiaque, le modèle considère comme inconnue le déplacement depuis
une configuration de référence alors que les observations réalistes, par exemple les don-
nées d’IRM, se déclinent sous la forme d’une fonction de niveau de gris affichant les varia-
tions dans le temps de la surface externe de l’objet. Un cas moins complexe mais toujours
très illustratif est celui où les observations se déclinent comme un ensemble de surfaces ty-
piquement obtenues après la segmentation de la séquence IRM. Dans cet exemple, il faut
être capable de donner du sens à l’opération “une surface moins une autre”. C’est dans ce
contexte que vient s’inscrire les travaux de cette thèse. Plus précisément,
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nous proposons dans cette thèse un ensemble d’outils méthodologiques pour

mesurer des différences entre un modèle mécanique et des données complexes

(objets géométriques ou même images) pour permettre l’utilisation de méthodes

d’assimilation de données dans des cas réalistes.

Pour illustrer ces moyens de comparaison nous utiliserons un modèle biomécanique du
cœur décrit dans [Bestel et al., 2001, Sainte-Marie et al., 2006, Moireau et al., 2009, Chapelle
et al., 2012b] et déjà utilisé dans un contexte d’assimilation de données dans [Moireau et al.,
2009, Chabiniok et al., 2012]. Cette modélisation s’inscrit dans une description Lagrangienne
du déplacement y du matériau depuis une configuration de référence Ω0. Cette inconnue
(le déplacement) vérifie le principe fondamental de la dynamique. Dans ce cadre, les condi-
tions aux limites représentent les interactions entre le cœur et son entourage, alors que les
efforts extérieurs correspondent typiquement à la pression sanguine intra-ventriculaire et
sont les points d’entrée d’un possible couplage avec un modèle fluide. À ces efforts exté-
rieurs viennent s’équilibrer les contraintes internes, représentées par le tenseur de Cauchy
σ. Ces contraintes se décomposent en une partie dite passive, prenant en compte le com-
portement visco-élastique sous-jacent du matériau cardiaque, et une partie active, sensible
à l’excitation électrique du cœur. Ce modèle se base sur une composition additive de ces
deux composantes

σ = σ
passif

+ σ
actif

.

Le premier terme de cette loi additive est communément obtenu à partir de la dérivation
d’un potentiel hyperélastique W e. La modélisation des contraintes actives est quant à elle
basée sur le modèle de création et destruction des ponts d’actine-myosine de Huxley [Huxley,
1957] et permet (entre autre) de prendre en compte le fameux effet Frank-Starling [Chapelle
et al., 2012b]. Cet effet est fondamental pour la capacité d’adaptation à l’effort du cœur. Nous
noterons par ailleurs que cette contrainte active est le point d’entrée d’un potentiel couplage
avec un modèle électro-physiologique.

Par ailleurs, la stratégie d’assimilation de données que nous avons choisi de suivre tout au
long de ces travaux s’appuie sur une méthode séquentielle, décrite en détails dans [Moireau
et al., 2008], permettant l’estimation conjointe état-paramètres. Cette méthode de filtrage
cherche à construire la dynamique de l’estimateur (x̂, θ̂) (aussi appelé observateur) de telle
sorte que celui-ci converge vers la trajectoire exacte du système. Cette dynamique est bâtie
en filtrant les différences entre les observations réelles et celles reconstruites par application
de l’opérateur d’observation sur l’estimateur,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
˙̂x(t) = A(x̂, θ̂, t) +Gx(t)(z(t) −H(x̂(t))),
˙̂
θ(t) = Gθ(t)(z(t) −H(x̂(t))).

Plusieurs définitions des opérateurs de gains Gx et Gθ sont possibles. On citera notamment
le gain de Kalman [Kalman and Bucy, 1961, Bensoussan, 1971] qui, au moins en linéaire, est
directement lié à une approche dite variationelle visant à minimiser un critère d’optimalité
construit sur les conditions initiales (état et paramètres) de l’estimateur. Ce type de filtre
conduit cependant à une expression du gain qui, après discrétisation, apparaît comme une
matrice pleine de dimension égale à celle de la variable augmentée (x̂ θ̂)⊺. Cette parti-
cularité du filtre de Kalman, appelée “curse of dimensionality” dans la littérature, le rend
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inabordable dans la perspective de manipuler des vecteurs de degrés de libertés issus d’une
discrétisation éléments finis. Pour cette raison nous détaillons une autre alternative, le filtre
de Luenberger [Luenberger, 1971,Auroux and Blum, 2007,Ramdani et al., 2012], qui n’est cette
fois pas construit grâce à un critère optimal mais qui vise uniquement à stabiliser le système
de l’erreur d’estimation. À partir de là, l’assemblage de ces deux méthodes, initialement pro-
posé par [Moireau et al., 2009], permet de construire une stratégie complète d’estimation
état-paramètre. Le filtre de Luenberger pour l’état et un filtre de Kalman réduit à l’espace des
paramètres sont les deux composantes de cette stratégie.

Dans ce cadre les objectifs et problématiques de cette thèse peuvent se décrire de la
façon suivante. Nous cherchons à appliquer ce couple modèle & données dans un contexte
qui se rapproche des cas réalistes d’applications. Notamment, nous considérerons principa-
lement des données de type image. Comme nous l’avons détaillé précédemment ceci im-
plique de savoir mesurer les dissimilarités entre le modèle mécanique et les observations
extraites du système cible, cette tâche étant d’autant plus complexe que ces deux entités
sont de nature sensiblement différente. Pour faciliter cette procédure nous pourrons tout
d’abord supposer une étape préalable de traitement de l’image permettant d’obtenir des
observations plus simple à manipuler. Par exemple, dans le cas de la données d’IRM de
marquage tissulaire nous pourrons imaginer successivement qu’on a réussit à obtenir des
surfaces de tags, se déformant avec le motif de l’image, ou encore des grilles de tags ou fi-
nalement des champs de déplacement apparent dans l’image. Cependant, en réduisant au
minimum nos exigences sur cette étape de traitement des observations, le but est de tendre
vers une méthode d’assimilation directement bâtie sur l’image brute.

Dans le but de mieux appréhender les travaux novateurs effectués pendant cette thèse
nous proposons d’achever cette introduction par un récapitulatif des cinq chapitres accom-
pagnés de leurs principales contributions correspondantes.

Chapitre 1 - Le cœur numérique

Contributions principales (mots-clés)

Péricarde et surface de contact, loi passive exponentielle, implémentation d’un schéma
en temps conservatif, modélisation en boucle fermée du système cardiovasculaire.

Les contributions principales de ce chapitre de thèse peuvent se résumer de la façon
suivante. Nous avons participé à l’amélioration du modèle bio-mécanique du cœur décrit
dans [Sainte-Marie et al., 2006] et ce de la façon suivante. Nous avons implémenté le schéma
en temps conservatif proposé dans [Chapelle et al., 2012b] assurant ainsi une meilleure stabi-
lité lors des simulations directes du modèle. De plus nous avons mis en place une loi passive
de type exponentielle plus adaptée à la représentation des nonlinéarités du matériau [Nash
and Hunter, 2000,Costa et al., 2001,Dokos et al., 2002] s’exprimant de la façon suivante

W e = C0 exp (C1(J1 − 3)2) +C2 exp (C3(J4 − 1)2),
où J1 est le premier invariant réduit et J4 l’invariant réduit dans la direction de la fibre car-
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diaque, représente fidèlement les nonlinéarités (passives) du matériau. En ce qui concerne
les conditions limites, nous proposons de représenter l’interaction du cœur avec le sac pé-
ricardique en utilisant une surface de contact entourant la géométrie de calcul. Ce type de
condition limite est pris en compte grâce à un opérateur distance entre l’épicarde du modèle
et la surface de contact, introduisant donc une autre nonlinéarité dans le modèle.

Dans la perspective d’appliquer une méthode d’assimilation de donnée basée sur ce mo-
dèle, le coût d’une modélisation complète du problème d’interaction fluide-structure semble
prohibitif. Pour cette raison nous considérons une pression homogène à l’intérieur de la ca-
vité qui est, par ailleurs, liée à un modèle réduit du système cardiovasculaire – un modèle
de Windkessel – par l’intermédiaire d’une fonction de valve. On présente plusieurs types de
Windkessel, un modèle dit one-way et un modèle en boucle fermée.

Après avoir présenté le schéma en temps permettant la conservation au niveau discret de
l’énergie du système [Chapelle et al., 2012b] nous donnons des résultats numériques modé-
lisant un cœur sain et un cœur admettant un infarctus du myocarde localisé dans le septum.

Chapitre 2 - Filtrage des données à faible résolution temporelle

Contributions principales (mots-clés)

Analyse théorique et numérique d’un observateur d’état On/Off, comparaison de la stra-
tégie On/Off avec la stratégie d’interpolation des données.

Dans ce chapitre nous rappelons, et illustrons par plusieurs exemples, la méthode d’assi-
milation de données présentée dans [Moireau et al., 2008]. Par ailleurs nous présenterons
nos travaux autour de l’influence de la distribution temporelle des données sur l’estimateur
d’état de type Luenberger. En effet, une des particularités des données extraites d’imagerie
médicale type IRM est qu’elles ne sont disponibles qu’à une faible fréquence d’échantillon-
nage. Par exemple, on peut espérer obtenir environ une vingtaine de cine-IRM dans un bat-
tement cardiaque. Ceci empêche d’appliquer directement les algorithmes d’assimilation de
données qui supposent généralement que les données sont disponibles à chaque pas de
temps. Une solution naturelle dans ce genre de situation est d’utiliser un schéma d’inter-
polation en temps, une stratégie adoptée par [Moireau et al., 2009]. Cependant ce type de
schéma introduit directement, dans la dynamique de l’estimateur, l’erreur d’interpolation qui
agit de la même façon qu’un bruit de mesure. Pour cette raison nous avons étudié la discréti-
sation en temps d’un observateur de Luenberger de type prédiction-correction qui s’exprime
sous la forme suivante

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x̂n+1− = An+1∣n(x̂n+)
x̂n+1+ = x̂n+1− + δn+1Gx (zn+1 −Hx̂n+1+ ) ,

où δn vaut 1 si la donnée est disponible ou 0 sinon. L’analyse complète de cet observateur
d’un point de vue théorique et numérique ainsi que la comparaison avec l’estimateur utili-
sant un schéma d’interpolation en temps sont regroupées en fin de chapitre sous la forme
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d’un article pre-print.

Communications correspondantes :

● Article pre-print, Data assimilation of time under-sampled measurements using observers,
application to wave-like equations – Cîndea, N., Imperiale, A. and Moireau, P. .

● Conférence (communication orale), Congrès d’analyse numérique (CANUM) Super-Besse,
France, 2012.

Chapitre 3 - Assimilation des images de marquage tissulaire

Contributions principales (mots-clés)

Filtrage des plans de tags, grilles de tag et déplacements apparents. Analyse théo-
rique et numérique du filtre d’état. Schéma en temps pour l’estimateur d’état de type
prédiction-correction. Gestion d’opérateurs d’observation de grande dimension.

Dans ce chapitre nous proposons de construire des observateurs à partir d’un ensemble
relativement complet de potentielles données obtenues après une phase de traitement de
l’IRM de marquage tissulaire. Ce qui a motivé ce travail est la richesse apparente de images
marquées qui permettent d’évaluer (au moins de façon qualitative) les déformations intra-
myocardiques. Ainsi dans nos travaux nous supposons qu’un traitement de ce type d’images
a permis l’obtention des déplacements des points de la grille de tag – on parle d’un “feed-
back” direct des déplacements – mais aussi des données moins riches comme les plans de
tag ou les grilles de tag suivant les déformations du motif. Nous proposons par ailleurs un
moyen de filtrer les déplacements apparents calculés directement à partir de l’image bi-
dimensionelle.

Un des aspects les plus intéressants de ces travaux est que nous arrivons à montrer,
numériquement et théoriquement (après linéarisation des opérateurs), que lorsque le motif
de tag se raffine l’opérateur de stabilisation dans le filtre de Luenberger se comporte de
la même façon qu’un opérateur donnant le déplacement du solide dans un sous-domaine
comprenant l’ensemble des images taggées. Ceci conforte notre intuition sur le fait que ce
type de modalité d’imagerie détient une richesse d’information incomparable à celle des
techniques d’imageries plus classique comme les cine-IRM.

Une autre contribution apportée par ces travaux est de permettre, grâce à un schéma de
type prédiction-correction pour l’observateur de Luenberger, la manipulation d’opérateurs
d’observation à grande largeur de bande. En effet, en voulant traiter ces types de données
(particulièrement pour le cas des déplacements apparents) nous nous sommes confrontés
au problème de manipulation d’un espace d’observation de grande dimension, proportion-
nelle à la résolution des plans de l’image. Un schéma prédiction-correction permet d’utiliser
des méthodes de résolution des systèmes linéaires différentes pour ces deux étapes. Les
problèmes en mécanique du solide peuvent alors être résolus par un solveur direct (ce qui
est fait traditionnellement à cause du mauvais conditionnement des matrices éléments finis
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sous-jacentes) alors qu’on peut utiliser un algorithme itératif pour la résolution de l’étape cor-
rection, permettant ainsi de ne pas stocker les matrices intervenant dans le système linéaire
correspondant. Il a l’autre avantage de permettre d’utiliser deux codes de calcul différents et
indépendants pour la mise en place de cette stratégie d’assimilation de donnée : un gérant
le modèle et un autre les données, comme imaginé dans la bibliothèque d’assimilation Ver-
dandi [Chapelle et al., 2012a].

Communications correspondantes :

● Article pre-print, Cardiac estimation from tagged-MR images – Chapelle, D., Imperiale, A.
and Moireau, P. .

● Acte de conférence, Constitutive parameter estimationmethodology using tagged-MRI data
– A. Imperiale, R. Chabiniok, P. Moireau and D. Chapelle – FIMH 2011.

● Conférence (communication orale), Functional Imaging and Modelling of the Heart
(FIMH) N.Y.C., U.S.A., 2011.

● Conférence (poster), Cardiac Imaging & Modelling, Mayneord Phillips Summer School,
Oxford, U.K. 2012.

● Conférence (communication orale), Mathematical and Numerical Modelling of Physio-
logical Flows (MPF), Chia, Italy, 2013.

Chapitre 4 - Les courants et l’assimilation de données

Contributions principales (mots-clés)

Lien entre les mesures de similarités proposées en traitement d’image et le filtrage
d’état. Adaptation du formalisme des courants à l’assimilation de données. Proposition
d’une méthode d’assimilation de la donnée image brute.

Ce chapitre est dédié à la formulation plus générale de la méthode de filtrage qu’on utilise
dans les chapitres précédents. Plus générale dans le sens où on inscrit la méthode de filtrage
dans une méthodologie qui permet de prendre en compte tout type de mesure de similarité
construit a priori dans un cadre statique, ce qui est typiquement le cas dans la communauté
du traitement d’image. Ainsi nous autorisons la méthode d’assimilation de données à se
nourrir de l’ensemble des efforts considérables [Le Guyader and Vese, 2009, Arrate et al.,
2010, Derfoul et al., 2013, Le Guyader et al., 2013] faits au sein de cette communauté pour
proposer des mesures de similarité de plus en plus sophistiquées.

Comme exemple d’application, nous proposons d’adapter le formalisme des courants
[Glaunès et al., 2008, Chou and Younes, 2008, Arrate et al., 2010, Younes, 2010, Durrleman
et al., 2011]. Ce formalisme considère les surfaces comme des formes linéaires sur un es-
pace de fonctions régulières. Plus précisément, en considérant S une surface admettant n
comme vecteur normal, on définit un courant (aussi noté S) à partir de cette surface par son
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application sur les éléments w ∈ W tel que

⟨S,w⟩W ′W = ∫
S
n ⋅w dS.

Par ailleurs, on peut montrer [Glaunès et al., 2008, Arrate et al., 2010, Younes, 2010, Durrle-
man et al., 2011] qu’en choisissant comme espace de fonctions tests un espace de Hilbert à
noyau reproduisant (RKHS) on peut définir le représentant de Riesz s d’une surface S tel que⟨S,w⟩W ′W = (s,w)W et

s(x) = ∫
S
K(x, x̃)n(x̃) dS.

De cette façon on a construitW ′ un espace de Hilbert dans lequel les surfaces sont définies

et telle que la différence entre deux surfaces S1−S2 a du sens et peut être évaluée en utilisant

la norme surW ′. Pour adapter ce formalisme il faut ensuite comprendre comment un cou-

rant dépend du déplacement mécanique pour pouvoir établir la sensibilité de ce courant par

rapport à une variation de déplacement, un outil nécessaire à la construction de l’opérateur

de gain dans notre méthode de filtrage. De plus, nous proposons une méthode permettant

de construire à partir du niveau de gris d’une image de type cine-MRI une estimation du

représentant d’une surface, permettant ainsi de réduire le nombre d’étapes nécessaires de

traitement de données avant d’appliquer une stratégie d’assimilation de données.

Communications correspondantes :

● Article pre-print, State estimation of distributedmechanical systems using domain informa-
tion from current based discrepancy measurement – Imperiale, A., Routier R. and Moireau,
P..

● Acte de conférence, Improving efficiency of data assimilation procedure for a biomechani-
cal heart model by representing surfaces as currents – Imperiale, A., Routier, A., Durrleman,
S. and Moireau, P. – FIMH 2013.

● Conférence (poster), Functional Imaging and Modelling of the Heart (FIMH) London,

U.K., 2013.

Chapitre 5 - Perspectives d’applications sur données réelles

Contributions principales (mots-clés)

Mise en place d’une méthodologie permettant l’application de la méthode de filtrage sur

un cas réel. Méthode automatique d’adaptation de géométries de calculs et de construc-

tion des surfaces de contact. Construction des grilles de tags à partir des déplacements

apparents.

Dans ce dernier chapitre nous proposons de remettre l’ensemble des travaux et des

contributions présentés dans cette thèse dans un cadre d’application sur un cas réel. L’objec-

tif principal est de comprendre tout d’abord que, d’un point de vue méthodologique, nous
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pouvons appliquer ces méthodes sur un cas réaliste. Deuxièmement, nous mettons en va-

leur le fait que, même si les aspects méthodologiques sont présents, certaines difficultés

subsistent qui placent l’utilisation de données réelles un cran au dessus en terme de diffi-

culté de mise en oeuvre. Nous proposons, pour l’ensemble de ces problèmes supplémen-

taires, diverses solutions envisageables.

Plus précisément nous discutons l’obtention des données brutes de types champs de

déplacements ou grilles de tags à partir de l’IRM de marquage tissulaire ainsi que les sur-

faces internes et externes du ventricules gauche, obtenues à partir de l’IRM-cine. Ensuite,

d’un point de vue modèle, nous proposons un ensemble d’outils permettant la construction

de l’ensemble des géométries nécessaires (maillage de calcul et surface de contact) ainsi que

l’estimation d’une condition initiale pour le système dynamique. En ce qui concerne les diffi-

cultés pouvant apparaître en voulant appliquer la méthode d’assimilation de données nous

proposons une façon de gérer la surface de contact, qui apparaît comme une contrainte ainsi

qu’une façon d’estimer le déplacement du matériau au temps de marquage du motif de tag

(nécessaire au filtrage des images de marquage tissulaire, comme précisé dans le Chapitre

3).
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Even though this thesis is focused on performing inverse problems, a wide topic that will

be treated later on, it is of major importance to have a precise understanding of the direct
problem. In this chapter we focus our attention on presenting a complete biomechanical

model of the heart behavior. This model inspired from physiological observations and phys-

ical modeling gives a description of the complex heart material, from its underlying visco-

elasticity to its contractile function. It also takes into account the interactions between the

heart and the cardiovascular system. In order to provide numerical solutions, we carry out

the non-trivial task of discretizing the obtained dynamical system. This procedure enables us

to extract distributed quantitive mechanical indicators during the simulation time window –

e.g. stress within the cardiac fiber or pressure inside the heart cavities – that are of major

interest in the perspective of diagnosis assistance. This first chapter is divided as follows: to

start with we consider the physiological and modeling aspects of the passive behavior of the

heart tissue followed by its active counter-part. Next, we present how the heart biomechan-

ical model is linked with the rest of the cardiovascular system through a reduced modeling

approach. During this third part we also deal with the interactions between the heart and

its surroundings by detailing the boundary conditions appearing in the model. We finish by

providing some numerical results aiming at describing a healthy and an infarcted heart.

As it is not the goal of this Chapter to provide extensive physiological details but rather

to understand the conception of the biomechanical model that we will use, we have opted

to give an original presentation. The different physiological key points will be spread out in

Section 1.1, 1.2 and 1.3 (text in frame) wherever they may enlighten or justify the modeling

aspect under discussion. Here follows a small example:

Physiological key point

An active & passive material

The heart evolves during the cardiac cycle between two main operating modes:

an active mode – where the electrical activation triggers the heart contraction – and a

passive mode – where the heart is subject to what we call the passive filling due to the

inflow of blood.

For this reason we separate the presentation of the heart model into two main parts corre-

sponding to the passive and active behavior. Most of these key points are well-known as-

pects concerning the heart and the cardiovascular system and can be found in any reference

literature on the matter, see [Tortora and Derrickson, 2009] for example.

1.1 The passive behavior of the heart material

1.1.1 Mechanical model of the heart passive material
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Physiological key point

The heart function

The heart is a muscle responsible for the blood circulation in the organism. It is a

pump whose impulse comes from electrical signals and it is made of four chambers

– see Figure 1.1 for an illustration of the anatomy of the heart. These four chambers are

decomposed into two types: the two superior receiving chambers are the atria and the

two inferior pumping chambers are the ventricles. The right ventricle is responsible for

the blood circulation towards the lungs where the blood can be re-oxygenated whereas

the left ventricle ejects the blood to the rest of the body through the aorta. Filling and

ejection of blood in each ventricle is made possible by a system of valves. The two

atrioventricular valves, connecting the atria with their respective ventricles, allow the

blood flows coming from the circulation system to fill the ventricles and prevent back

flow from ventricles to atria during the heart contraction. Additionally, the aortic valve
and the pulmonary valve controls the blood ejection from the left and the right ventricle

respectively.

As any muscle the heart needs oxygen and nutrients. To obtain these necessary

elements from the blood, the heart has its own network of blood vessels constituting

the coronary circulation. The coronary arteries branch from the aorta and pervade

the heart. The blood is traveling from the arteries, into capillaries (where exchange

between the blood and the cells are made) and then into the coronary veins. Because of

this particular network we say that the heart runs under blood perfusion.

During a normal beat, the heart cells change length by over 20%.

Deformations in a total Lagrangian formalism To describe the kinematics of the heart

we use the Lagrangian formalism. In general, at any time t the region occupied by the de-

formed solid under consideration is denoted by Ω(t) with boundary ∂Ω(t). In a Lagrangian

formulation we use a reference configuration Ω0 to describe the deformations of the solid.

If ξ is the spatial variable defining Ω0, we assume that the deformation ϕ(ξ, t) leading to

the deformed configuration Ω(t) is a bijective mapping – see Figure 1.2. We can define the

displacement y(ξ) of a material point ξ in the reference configuration by

ϕ ∣ Ω0 × [0, T ]Ð→ Ω(t)(ξ, t)z→ x = ϕ(ξ, t) = ξ + y(ξ, t).
To describe the changes affecting the material at a local scale we will extensively use the

deformation gradient F with respect to the spatial variables,

F (ξ, t) = ∇
ξ
ϕ(ξ, t) = ✶ +∇

ξ
y(ξ, t).

From this tensor we classically define the Cauchy-Green strain tensor by

C = F ⊺ ⋅ F ,
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Figure 1.1: Representation of the heart anatomy (from [Netter, 1994]).
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and the Green-Lagrange strain tensor

e = 1

2
(C − ✶) = 1

2
(∇

ξ
y +∇

ξ
y⊺ +∇

ξ
y⊺ ⋅∇

ξ
y).

These tensors have a natural geometrical interpretation. For instance, considering two mate-

rial fibers dξ
1

and dξ
2

in the reference configuration deformed into dx1 and dx2, the Cauchy-

Green tensor defines the metrics in the reference configuration since

dx1 ⋅ dx2 = (F ⋅ dξ1) ⋅ (F ⋅ dξ2) = dξ1 ⋅C ⋅ dξ2.
On the other hand the Green-Lagrange tensor measure the variations in length of material

fibers

dx1 ⋅ dx2 − dξ1 ⋅ dξ2 = dξ1 ⋅ (C − ✶) ⋅ dξ2.
Transportation of volume and surface element It is quite common to define from the

deformation gradient how the volume and surface elements change as the solid is deform-

ing. Considering three material fibers dξ
1
, dξ

2
and dξ

3
a volume element

dΩ0 = dξ3 ⋅ (dξ2 ∧ dξ1),
is transported into

dΩ = dx3 ⋅ (dx2 ∧ dx1) = det(F ) dξ3 ⋅ (dξ2 ∧ dξ1) = J dΩ0.

A surface element dσ0 = dξ1 ∧ dξ2 is transported into dσ, such that for any vector field u we

have

dσ ⋅ u = J (dξ
1
∧ dξ

2
) ⋅ (F−1 ⋅ u) = (JF−⊺ ⋅ dσ0) ⋅ u,

that is to say,

dσ = JF−⊺ ⋅ dσ0.

The fundamental law of dynamics In this paragraph we rapidly recall the general weak

form of the fundamental principal of the dynamics. This presentation is largely inspired

from [Chapelle et al., 2012]. Denoting by σ the symmetric Cauchy stress tensor, describing the

internal stress of the solid in the deformed configuration, the fundamental law of dynamics

reads

ρÿ − div(σ) = ρf, in Ω,

where ρ is the volumic mass density of the solid and f represents the external force den-

sity. Assuming free surface boundary conditions, for a test displacement v♭ belonging to the

space of admissible displacements X y(Ω), the corresponding weak formulation reads

∫
Ω
ρÿ ⋅ v♭ dΩ +∫

Ω
σ ∶ ∇

x
v♭ dΩ = ∫

Ω
ρf ⋅ v♭ dΩ.

In a total Lagrangian formulation, we perform a change of variables to write this equation in

the reference configuration. The main reason for this operation is that the constitutive law,

binding stress and strain together, is, in most practical cases, known on this configuration.

Recalling the standard identity

∇
x
v♭ = ∇

ξ
v♭ ⋅∇

ξ
x−1 = ∇

ξ
v♭ ⋅ F−1,
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we obtain

∀v♭ ∈ X y(Ω0) ∫
Ω0

ρ0ÿ ⋅ v♭ dΩ0 +∫
Ω0

σ ∶ ∇
ξ
v♭ ⋅ F−1 J dΩ0 = ∫

Ω0

ρ0f ⋅ v♭ dΩ0.

In this expression we implicitly assume that the external forces are independent of the con-

figuration, which might not be the case in practice. We are now able to introduce the so-

called first Piola-Kirchhoff tensor T = Jσ ⋅ F−⊺ appearing in

∫
Ω0

ρ0ÿ ⋅ v♭ dΩ0 +∫
Ω0

T ∶ ∇
ξ
v♭ dΩ0 = ∫

Ω0

ρ0f ⋅ v♭ dΩ0.

Defining Σ = JF−1 ⋅ σ ⋅ F−⊺ the so-called second Piola-Kirchhoff tensor we obtain

∫
Ω0

ρ0ÿ ⋅ v♭ dΩ0 +∫
Ω0

Σ ∶ F ⊺ ⋅∇
ξ
v♭ dΩ0 = ∫

Ω0

ρ0f ⋅ v♭ dΩ0.

Since Σ is a symmetric tensor, this expression is equivalent to

∫
Ω0

ρ0ÿ ⋅ v♭ dΩ0 +∫
Ω0

Σ ∶ 1
2
(F ⊺ ⋅∇

ξ
v♭ +∇

ξ
v♭
⊺ ⋅ F) dΩ0 = ∫

Ω0

ρ0f ⋅ v♭ dΩ0.

Remarking that the differential of the Green-Lagrange tensor with respect to a test displace-

ment is expressed as

dye ⋅ v♭ = 1

2
(dyF ⊺ ⋅ v♭ + F ⋅ dyF ⋅ v♭) = 1

2
(F ⊺ ⋅∇

ξ
v♭ +∇

ξ
v♭
⊺ ⋅ F) ,

we finally obtain a fully symmetric weak form of the fundamental principal of the dynamics

∫
Ω0

ρ0ÿ ⋅ v♭ dΩ0 +∫
Ω0

Σ ∶ dye ⋅ v♭ dΩ0 = ∫
Ω0

ρ0f ⋅ v♭ dΩ0. (1.1)

Even though this expression is a fundamental starting point to model the mechanical behav-

ior of the heart, the most important task is to give a relevant stress-strain law for both active

and passive operating modes of the heart.

Linearized mechanics and linear stress-strain law Previously we have rapidly described

the general form of the mechanical formulation which depends nonlinearly on the displace-

ment of the solid through the Cauchy stress tensor but also through the strain tensor e. A

very popular case is when relatively small displacements around the reference configuration

occur so that e is approximated by

ε = 1

2
(∇

ξ
y +∇

ξ
y⊺).

If this assumption goes so far as neglecting terms of order two in both the displacement and

its spatial derivative (to favor intuition let us say that the displacement is small enough inH1-norm) then the fundamental principle is directly written on the reference configuration

∫
Ω0

ρ0ÿ ⋅ v♭ dΩ0 +∫
Ω0

σ ∶ ε(v♭) dΩ0 = ∫
Ω0

ρ0f ⋅ v♭ dΩ0.
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The remaining nonlinearity comes from the constitutive law. Assuming a linear elastic model,

that is to say there exists a fourth order tensor A such that

σ = A ∶ ε,
then the fully linear dynamical weak form of the mechanical model becomes

∫
Ω0

ρ0ÿ ⋅ v♭ dΩ0 +∫
Ω0

ε(v♭) ∶ A ∶ ε(y) dΩ0 = ∫
Ω0

ρ0f ⋅ v♭ dΩ0. (1.2)

Remark 1. We recognize here an instance of the abstract linear second order hyperbolic equation
of the form:

find u ∈ H such that ∀v ∈ H (ü, v)H + a(u, v) = l(v).
In our case we enter this particular mathematical setting only after some possibly restrictive lin-
earization assumptions and after considering a linear constitutive law. An important example is

the well-known Hooke law where

σ(ε) = λtr(ε)✶ + 2µε,
λ and µ being the so-called Lamé coefficients. Readers may refer to [Ciarlet, 1988] or [Le Dret,
2004] for a complete mathematical study of this class of problems. The two previous assumptions,
different in nature, are independent. As an example the Saint-Venant-Kirchhoff’s material is a
material where the assumption of small displacement is not verified but the stress-strain law is

linear and is defined by
Σ(e) = λtr(e)✶ + 2µe. (1.3)

Remark 2. In practice equation (1.2) is completed with some viscous component that may take

different forms, depending on the regularity of the solution, e.g.

∫
Ω0

A ε(ẏ) ∶ ε(v♭) dΩ0 or ∫
Ω0

ρ0ẏ ⋅ v♭ dΩ0.

Hyperelastic isotropic material In the previous physiological key point we gave an ap-

proximation of the deformation rate during the heart contraction (around 20%). This physi-

ological fact clearly rules out the small displacement assumption. As far as the constitutive

law is concerned, a linear relation between strain and stress is not sufficient in order to pro-

vide a biomechanical model that meets our expectations in terms of precision. Therefore

we have to consider the more general theory of hyperelasticity. Since it is not the purpose

of this thesis, we will restrict ourselves to only cite the main notions behind it in order to

help the understanding of the necessary modeling aspects. Readers can refer to e.g. [Ciarlet,

1988, Le Tallec, 2000, Temam and Miranville, 2005, Forest et al., 2008] for a more precise de-

scription of this theory.

In this context, a material is said to be elastic if the stress tensor in the current deformed

configuration only depends on the spatial variable x and on the deformation gradient F ,

namely

σ(x, t) = F(x(t), F (ξ, t)).
Here F represents the constitutive law that we want to characterize for the particular case

of the heart tissue. Applying the second principle of thermodynamics in its local form –
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namely the Clausius-Duhem inequality – and assuming, in a first step, that no dissipation

occurs during any admissible deformations of the material, one can state that there exists

an elastic potential W e such that

T (F ) = ∂W e

∂F
.

It is possible to characterize the dependencies of W e by choosing adequate admissible trans-

formations. As a first step let Q be any rigid rotation, this type of deformation does not alter

the amount of energy stored in the mechanical system, that is to say

W e(F ) =W e(Q ⋅ F ).
Choosing Q = √C ⋅ F−1 we see that W e is a function of C. Using the fact that, for now, we

restrict ourselves to isotropic materials we have

W e(C) =W e(Q ⋅C ⋅Q⊺).
Choosing Q as the matrix of the eigenvectors of the C tensor we can conclude that the elastic

potential for isotropic elastic material depends only of the eigenvalues of the tensor which

can be uniquely expressed with its invariants

I1 = tr(C), I2 = 1

2
((tr(C))2 − tr(C2)) , I3 = det(C).

The stress-strain law is then obtained from the differentiation of the elastic potential with

respect to its invariant

Σ(e) = ∂W e

∂e
(I1, I2, I3) = 2∂W e

∂C
(I1, I2, I3) = 2 3∑

i=1

∂W e

∂Ii

∂Ii

∂C
. (1.4)

Hence, the construction of a constitutive law is reduced to defining the expression of the

elastic potential in terms of invariants. One classical example is the Mooney-Rivlin law where

W e = κ1(I1 − 3) + κ2(I2 − 3).
In our case, we will see that the elastic potential modeling the passive behavior is more

complex, mainly due to the presence of fibers in the tissue that favors particular directions.

Remark 3. The linearization around the reference configuration of the stress tensor with respect

to e leads to an expression of the form (1.3) (assuming the reference configuration is stress-free),

where the Lamé coefficients are expressed by differentiation of the elastic potential. We will see

later an example of this linearization procedure.

Pressure-deviatoric decomposition We recall a useful decomposition of the stress tensor

with respect to the work produced in contraction or dilatation that will be of major impor-

tance when modeling incompressible materials. To start with, we define

p = − 1

3J
Σ ∶ C and Σ

d
= Σ + pJC−1.
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Considering a test displacement v♭ = λx, the differential of the Green-Lagrange tensor with

respect to this type of deformation is easily obtained by

dye ⋅ v♭ = 1

2
dyC ⋅ v♭ = 1

2
(dyF ⊺ ⋅ v♭ ⋅ F + F ⋅ dyF ⋅ v♭) = λC.

We finally obtain that Σ
d
, called the deviatoric part of the stress tensor, does not produce

work on this type of deformation

Σ
d
∶ dye ⋅ v♭ = λΣ ∶ C + λpJC−1 ∶ C = λΣ ∶ C (1 − 1

3
C−1 ∶ C) = 0.

Therefore, in the sequel we may use the following decomposition of the stress tensor

Σ = Σ
d
− pJC−1, (1.5)

where p will be referred to as the hydrostatic pressure.

Reduced invariants We now define the reduced invariants which are more adapted to the

pressure-deviatoric decomposition of the stress tensor in the sense that they remarkably

simplify the expression – with respect to the invariants – of both terms appearing in the

decomposition. The idea is to rewrite the elastic potential as

W e(I1, I2, I3) =W e(J1, J2, J3),
where {Ji}3i=1 are functions of {Ii}3i=1. To find the proper modification, once again we use

the contraction-dilatation transformation v♭ = x. Remarking that

∂I1

∂C
∶ C = I1, ∂I2

∂C
∶ C = 2I2, ∂I3

∂C
∶ C = 3I3,

we can choose

J1 = I1I− 1

3

3 , J2 = I2I− 2

3

3 , J3 = I 1

2

3 = J, (1.6)

so that
∂J1

∂C
∶ C = 0, ∂J2

∂C
∶ C = 0, ∂J3

∂C
∶ C = 3

2
J.

For the particular case of transformations that we are considering we can obtain another

useful decomposition result. As a matter of fact,

Σ ∶ dye ⋅ v♭ = −pJC−1 ∶ C = −3pJ,
combined with

Σ ∶ dye ⋅ v♭ = 2 3∑
i=1

∂W e

∂Ji

∂Ji

∂C
∶ C = 3∂W e

∂J
J,

we obtain

Σ
d
= 2 2∑

i=1

∂W e

∂Ji

∂Ji

∂C
, p = −∂W e

∂J
. (1.7)

Incompressibility
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Physiological key point

Nearly incompressible material

The question of the heart tissue compressibility is a rather complex one and its

consequences in terms of modeling and numerical aspects are of significant impor-

tance. One argument for assuming the heart material to be incompressible is that its

various structural components along with the blood perfusing the tissue are mainly

composed of compartmentalized water, an incompressible fluid. On the other hand,

the contraction of the tissue induces a decrease of vascular volume of the perfused

blood introducing an effective compressibility – see [Yin et al., 1996] for further insight

on the matter. In the sequel we will consider the heart to be a nearly incompressible

material.

To build a good intuition on how the incompressibility can be handled let us consider a

static problem of hyperelasticity. We recall that the elastic energy of the mechanical system

at hand is given by Ee = ∫
Ω0

W e(e) dΩ0.

If the solid is subject to external forces represented by the workWext, the resulting deforma-

tion y satisfies

y = argmin
y
(Ee −Wext).

For incompressible materials, every deformations preserve the volume at all points, which

means that a deformation is said to be admissible if it satisfies

J = det(F ) = 1.
This enters in the previously stated minimization problem as a constraint. It should be noted

that it also entails W e = W e(J1, J2). Finally the resulting deformation is the solution of the

minimization problem

min
y s.t. J=1

(Ee −Wext) =min
y

max
q
(∫

Ω0

W e(e) + q(1 − J) dΩ0 − Wext) ,
where q is the Lagrangian multiplier introduced to solve the constraint. Applying the opti-

mality condition of order one for a test displacement v♭ we obtain

∫
Ω0

⎛⎝∂W
e

∂e
− q∂J

∂e

⎞⎠ ∶ dye ⋅ v♭ dΩ0 − dyWext ⋅ v♭ = 0,
where we can identify the stress tensor

Σ = ∂W e

∂e
− q∂J

∂e
= ∂W e

∂e
− qJC−1,

and – as W e = W e(J1, J2) – we recognize the pressure-deviatoric decomposition of the

stress tensor, which means that the Lagrangian multiplier q is in fact the hydrostatic pres-

sure p. Therefore, for an incompressible material, we obtain the following so-called mixed
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formulation, ∀(v♭, q) ∈ X y ×X p:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω0

ρ0ÿ ⋅ v♭ dΩ0 +∫
Ω0

Σ(y, p) ∶ dye ⋅ v♭ dΩ0 = ∫
Ω0

ρ0f ⋅ v♭ dΩ0,

∫
Ω0

ρ0(detF (y) − 1)q dΩ0 = 0,
(1.8)

where X p is the functional space of admissible pressures.

Nearly incompressible materials To model nearly incompressible material one can add

a penalization terms in the elastic potential, for example

W e
κ(e) =W e(J1, J2) + κ

2
(1 − J)2,

where κ is the penalization parameter that tends to reach large values in order to penalize

the variations of J from the value 1. Other penalization schemes can be imagined, one

important example being the Ciarlet-Geymonat elastic potential

W e(e) = κ1(J1 − 3) + κ2(J2 − 3) + κ(J − 1) − κ ln(J), (1.9)

which provides an efficient way to model nearly incompressible material whose deformation

gives J close to one and J > 0. It is important to notice that this penalization procedure

allows to clear the system of actual constraints, therefore no mixed formulation is needed in

theory.

Modeling viscous material

Physiological key point

Viscosity of soft biological material

The mechanical behavior of soft biological tissues is known to be viscoelastic –

see [Pioletti et al., 1998]. One way, for example, to observe such viscous behavior is to

perform traction tests on the material at hand and to observe that the shape of the

stress-strain curve depends on the strain rate at which the experiment is performed.

To model viscous materials we invoke once again the Clausius-Duhem inequality that states

that during a thermomechanical process the dissipation is necessarily positive, which is writ-

ten, in the case of isothermal deformations, as

∀e, ė, ⎛⎝Σ − ∂W e

∂e

⎞⎠ ∶ ė ≥ 0.

One way to verify this inequality is to introduce a functional W v(e, ė), convex in ė, such that

Σ = ∂W e

∂e
+ ∂W v

∂ė
. (1.10)

A simple example being W v = η

2
tr(ė2) leading to

∂W v

∂ė
= ηė .
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1.1.2 Formulating cardiac passive model

Physiological key point

Structure of the heart tissue

In this keypoint we give further insight on the composition of the heart tissue and more

specifically of the ventricles. Each ventricle consists of three distinct layers : the inner

layer is called the endocardium which encloses the internal blood compartments, the

middle layer constituting most of the wall thickness is referred to as the myocardium

and the outer layer is the epicardium, constituting the exterior boundary. The ventricles

have a typical thickness of 0.5 cm on the right and 1.5 cm on the left.

Concerning the orientation of the heart, we can define the long axis as the main

principal axis of inertia. The inferior part of the ventricles is called apex and the upper

part – where the atria and the blood vessels are connected – is the base. The American

Heart Association (AHA) has proposed a subdivision of the left ventricle into seventeen

regions – see Figure 1.3. These regions roughly correspond to the main coronary

territories.

The ventricular wall is made of layers of parallel muscular fibers called myocytes,

occupying approximately 70% of the volume – the remaining 30% consists of various

interstitial components. The fibers are wound as in a coil and laid out on parallel lay-

ers extending from the endocardium to the epicardium with connections across layers

occurring in the apical region. The muscle fibers orientation changes with the position

through the wall. In the sub-epicardial region (a superficial layer) the direction rotates

from -60 to -80 degrees to nearly orthoradial orientation in the mid-wall regions whereas

in the sub-endocardial region the fibers rotate from +60 to +80 degrees. Several works

– see [Holzapfel and Ogden, 2009, Dokos et al., 2002] – have also shown that there ex-

ists another privileged component in the radial direction, hence orthogonal to the fiber

direction, called sheets.

Transverse isotropy From a modeling standpoint this arrangement of cardiac cells in the

myocardium clearly states that the heart wall is an anisotropic material. Consequently, so

should be the mechanical model. It is possible to show – see [Raoult, 2009] – that other invari-

ants are necessary to define the elastic potential. The type of anisotropy that we consider

is the transverse isotropy where we can find a particular direction n0 so that any rotation

around this axis does not change the local behavior of the material. The elastic potential can

be expressed as a function of five invariants

W e =W e(I1, I2, I3, I4, I5),
where

I4 = n0 ⋅C ⋅ n0, I5 = n0 ⋅C2 ⋅ n0. (1.11)
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Figure 1.3: Representation of the AHA regions of the left ventricle.

The expression (1.4) of the stress tensor can also be formulated in this case to obtain

Σ(e) = 2 3∑
i=1

∂W e

∂Ii

∂Ii

∂C
+ ∂W e

∂I4
n0 ⊗ n0 + ∂W e

∂I5
((C ⋅ n0)⊗ n0 + n0 ⊗ (C ⋅ n0)). (1.12)

Remark 4. It is possible to also use the pressure-deviatoric decomposition with reduced invari-

ants in the case of transverse isotropic hyperelastic law. In the case where one can characterize a

particular behavior for the three directions, the material is said to be orthotropic and the elastic

potential can be expressed with up to 8 invariants.

Passive constitutive law of the heart From the previously described composition of the

heart tissue, two main directions can be extracted : the direction given by the fibers and

the one representing the sheets direction. As far as the mechanical model is concerned,

most of the recent developments, see [Holzapfel and Ogden, 2009, Dokos et al., 2002, Gök-

tepe et al., 2011] for example, tend to consider the passive myocardium to be orthotropic.

In [Dokos et al., 2002] this statement is based on observing the heart wall response to sim-

ple shear experiments on three orthogonal planes, an argument followed by [Holzapfel and

Ogden, 2009]. Moreover several experiments – see [Holzapfel and Ogden, 2009, Humphrey

and Yin, 1989, Guccione et al., 1995, Costa et al., 2001, Nash and Hunter, 2000, Dokos et al.,

2002, Göktepe et al., 2011] – aiming at fitting strain measurements showed that an exponen-

tial constitutive law is well-suited to represent the heart material nonlinearities. In our case

we choose to define the passive elastic potential as transverse isotropic of exponential type.

We justify our approach in two manners. The first one being that, even though we do not

consider a complete orthotropic model, studies in [Guccione et al., 1995] or in [Vetter and

McCulloch, 2000] have shown that a transverse isotropic constitutive law based only on the
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fiber direction adequately reproduces measured epicardial strain. The second one is that in

practice, the characterization of sheets direction can become really complex since very little

physiological data are available.

At the reference configuration we consider the fiber direction n0. Defining the fourth

reduced invariant as

J4 = I4I− 1

3

3 , (1.13)

we express the passive elastic potential of the myocardium as a combination of a Ciarlet-

Geymonat isotropic law with penalized incompressibility terms and of a transverse isotropic

exponential law:

W e = µ1(J1−3)+µ2(J2−3)+C0 exp (C1(J1−3)2)+C2 exp (C3(J4−1)2)+κ(J−1)−κ ln(J). (1.14)

The linear terms – with respect to the invariants J1 and J2 – of the Ciarlet-Gaymonat law

are added to mainly give a better control on the stiffness around the reference configuration

and to insure an overall numerical stability of the system while the exponential part prevails

in larger deformations. From this expression, using (1.12) we obtain the stress tensor by

differentiating the elastic potential with respect to the invariants, namely,

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

∂W e

∂I1
=2C0C1I

− 2

3

3 (I1 − 3I 1

3

3 ) exp (C1(I1I 1

3

3 − 3)2) + µ1I
− 1

3

3 ,

∂W e

∂I2
=µ2I

− 2

3

3 ,

∂W e

∂I3
= − 2

3
C0C1I

− 5

3

3 I1(I1 − 3I 1

3

3 ) exp (C1(I1I 1

3

3 − 3)2),
+ 2

3
C2C3I

− 5

3

3 I4(I 1

3

3 − I4) exp (C3(I4I− 1

3

3 − 1)2),
− µ1

1

3
I1I
− 4

3

3 − µ2
2

3
I2I
− 5

3

3 + κ12(I−
1

2

3 − I−13 ),
∂W e

∂I4
= − 2C2C3I

− 2

3

3 (I 1

3

3 − I4) exp (C1(I1I 1

3

3 − 3)2).

(1.15)

As a direct consequence of the nonlinearities of the passive elastic potential, the weak for-

mulation of the fundamental principle of the dynamics (1.1) that will be discretized – in a

manner that will be described in following sections – is nonlinear. Therefore in order to ob-

tain a numerical solution we will use Newton’s method which requires the expression of the

tangent of the operator appearing in the nonlinear system, that is to say the derivative of the

stress tensor or equivalently the second derivative of the elastic potential. Here follows the
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desired expressions:

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

∂2W e

∂I21
=2C0C1I

− 4

3

3 (2C1(I1 − 3I 1

3

3 )2 + I 2

3

3 ) exp (C1(I1I 1

3

3 − 3)2),

∂2W e

∂I2∂I1
=0,

∂2W e

∂I3∂I1
= − 2

3
C0C1I

− 7

3

3 (2C1I1(I1 − 3I 1

3

3 )2 + 2I1I 2

3

3 − 3I3) exp (C1(I1I 1

3

3 − 3)2) − µ1
1

3
I
− 4

3

3 ,

∂2W e

∂I4∂I1
=0, ∂2W e

∂I1I2
= ∂2W e

∂I2∂I1
,

∂2W e

∂I22
= 0, ∂2W e

∂I3I2
= −µ2

2

3
I
− 5

3

3 ,
∂2W e

∂I4I2
= 0,

∂2W e

∂I1I3
=∂2W e

∂I3I1
,

∂2W e

∂I2I3
= ∂2W e

∂I3I2
,

∂2W e

∂I23
=2
9
I
− 10

3

3 [C0C1I1(2C1I1(I1 − 3I 1

3

3 )2 + 5I1I 2

3

3 − 12I3) exp (C1(I1I 1

3

3 − 3)2)
+ C2C3I4( − 4I3 + (5 + 2C3)I4I 2

3

3 − 4C3I
1

3

3 I
2
4 + 2C3I

3
4 ) exp (C3(I4I− 1

3

3 − 1)2)]
+ µ1

4

9
I1I
− 7

3

3 + µ2
10

9
I2I
− 8

3

3 + 1

2
κ(I−23 − 1

2
I
− 3

2

3 ),
∂2W e

∂I4I3
= − 2

3
C2C3I

− 7

3

3 (−I3 + 2(1 +C3)I 2

3

3 I4 − 4C3I
1

3

3 I
2
4 + 2C3I

3
4) exp (C3(I4I− 1

3

3 − 1)2),
∂2W e

∂I1I4
=∂2W e

∂I4I1
,

∂2W e

∂I2I4
= ∂2W e

∂I4I2
,

∂2W e

∂I3I4
= ∂2W e

∂I4I3
,

∂2W e

∂I24
=2C2C3I

− 4

3

3 ((1 + 2C3)I 2

3

3 − 4C3I
1

3

3 I4 + 2C3I
2
4) exp (C3(I4I− 1

3

3 − 1)2).
Passive filling of the heart At this point we have all the elements to consider the static

problem of passive heart filling. To this goal, we denote by EnL and EnR the left and right

endocardium of a model geometry. Each ventricle is subject to a uniform pressure P v
L and

P v
R. The loading terms induced by such loading is therefore

∀v♭ ∈ X y Pext(v♭) = −P v
L ∫
EnL

nL ⋅ v♭dσ − P v
R∫
EnR

nR ⋅ v♭dσ,
where nL,R are the outer normals of the endocardium of the left and right ventricle. As-

suming free surface boundary conditions on the rest of the geometry – that is to say of

Neumann homogenous type – then the static problem of passive filling consists in finding
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the displacement y from a reference configuration Ω0 that satisfies ∀v♭ ∈ X y(Ω0)
∫
Ω0

Σ(y) ∶ dye ⋅ v♭ dΩ0 = Pext(v♭). (1.16)

1.1.3 Numerical passive filling of the heart

To finish the description of the passive behavior we give some key points of how spa-

tial discretization can be performed to provide numerical solutions of problems such as the

static load problem (1.16). By doing so we will observe that the assumption of nearly incom-

pressible material significantly increases the difficulty of providing an accurate numerical

solution.

Finite element spatial discretization Let us consider for now a standard Galerkin P1 fi-

nite element discretization providing the finite dimensional space X y
h ⊂ X y and built using a

tetrahedral mesh of the reference configuration. The discrete static load problem reads

find y
h
∈ X y

h such that ∫
Ω0

Σ(y
h
) ∶ dye ⋅ v♭h dΩ0 = Pext(v♭h), ∀v♭h ∈ X y

h .

As the loading terms are written in the deformed configuration, they depend nonlinearly

on the displacement through the deformed normal surface n and the deformed surface

element dσ. For this reason, the construction of a numerical solution of this problem will

also require the differentiation of Pext with respect to the displacement in order to apply

Newton’s method. More precisely, writing the equation (1.16) as

∀v♭ ∈ X y F(y
h
, v♭) = 0,

and denoting by y
(k)
h the kth iteration with a given first guess y

(0)
h , Newton’s algorithm reads

dyF(y(k)h
, v♭) ⋅ (y(k+1)

h
− y(k)

h
) = −F(y(k)

h
, v♭). (1.17)

Considering only the left ventricle for the sake of simplicity, the tangent operator appearing

in (1.17) is decomposed as follows, ∀w♭ ∈ X y

dyF(y(k)h
, v♭) ⋅w♭ = ∫

Ω0

dyΣ(y(k)h
) ⋅w♭ ∶ dye(k) ⋅ v♭ dΩ0 +∫

Ω0

Σ(y(k)
h
) ∶ d2ye(v♭,w♭) dΩ0

+ P v
L ∫
En
(k)
L

v♭ ⋅ dy(n(k)L dσ) ⋅w♭,
where En(k)L is the endocardium deformed y the displacement y

(k)
h admitting n

(k)
L as its outer

normal vector field. In this expression we have used the notation

d2ye(v♭,w♭) = dy(dye ⋅ v♭) ⋅w♭ = 1

2
(∇

ξ
v♭
⊺ ⋅∇

ξ
w♭ +∇

ξ
w♭
⊺ ⋅∇

ξ
v♭) ,
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which is independent of the current deformation. If we denote by {ϕ
i
}Nh

i=1 the set of basis

functions of X y
h , the matrices appearing in the algorithm are

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

K(y(k)
h
) = (∫

Ω0

dyΣ(y(k)h
) ⋅ ϕ

j
∶ dye(k) ⋅ ϕi

+ Σ(y(k)
h
) ∶ d2ye(ϕi

, ϕ
j
)dΩ0)Nh

i,j=1
,

P(y(k)
h
) = (P v

L ∫
En
(k)
L

ϕ
i
⋅ dyn(k)L dσ ⋅ ϕ

j
)Nh

i,j=1

.

(1.18)

Let
Ð→
V ♭ ∈ RNh be the vector regrouping the degrees of freedom of a test function v♭h ∈ X y ,

Newton’s method – described in (1.17) – reads

(K(y(k)
h
) + P(y(k)

h
)) (Ð→Y (k+1) −Ð→Y (k)) = −Ð→R(y(k)

h
), (1.19)

where
Ð→
R is the residual obtained from

Ð→
R(y(k)

h
) = (∫

Ω0

Σ(y(k)
h
) ∶ dye(k) ⋅ ϕi

dΩ0 + P v
L ∫
En
(k)
L

n
(k)
L ⋅ ϕ

i
dσ)Nh

i=1

. (1.20)

Tangent stiffness In the sequel we give some complementary details on the first operator

appearing in (1.20) referred to as tangent stiffness. Using the expression of the stress tensor

with respect to the invariant we have, for a test function v♭ ∈ X y ,

dyΣ(y(k)h
) ⋅ v♭ = 2 4∑

i=1

(dy ∂W e

∂Ii
⋅ v♭ ∂Ii

∂C
+ ∂W e

∂Ii
dy

∂Ii

∂C
⋅ v♭)

= 2 4∑
i=1

4∑
j=1

∂2W e

∂Ij∂Ii
(∂Ij
∂C
∶ (dyC(k) ⋅ v♭)) ∂Ii

∂C
+ 2 4∑

i=1

∂W e

∂Ii

∂2Ii

∂C2
∶ (dyC(k) ⋅ v♭)

= 4 4∑
i=1

4∑
j=1

∂2W e

∂Ij∂Ii

∂Ij

∂e
∶ dye(k) ⋅ v♭ ∂Ii

∂e
+ 4 4∑

i=1

∂W e

∂Ii

∂2Ii

∂e2
dye

(k) ⋅ v♭,
where the expressions of the energy derivative – and its second derivative – are given in

(1.19). For the second part of the tangent stiffness operator we just recall that

dye
(k) ⋅ v♭ = 1

2
(F ⊺(y(k)

h
) ⋅∇

ξ
v♭ +∇

ξ
v♭
⊺ ⋅ F (y(k)

h
)) .

Remark 5. Traditionally the two terms of operator K(y(k)h ) appearing in (1.18) are written as

K(y(k)
h
) = (KL +KNL)(y(k)h

),
the first term is called the linear stiffness since it is based on the derivative of the stress tensor

whereas the second term is called the nonlinear stiffness.
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Tangent following pressure Concerning the second part of the tangent operator where

the cavity pressure appears. If we take two finite element test functions v♭h,w
♭
h ∈ X y

h , this

operator reads

dyPext(y(k)
h

, v♭h) ⋅w♭h = P v
L ∫
En
(k)
L

v♭h ⋅ (dyn(k)L dσ) ⋅w♭h. (1.21)

In order to give a computational expression of this operator we will use the fact that we

z

x

y

r

s

(0, 0) (1, 0)

(0, 1)

x(3)

x(1)

x(2)

Figure 1.4: Local coordinate system to compute following pressure tangent operator.

consider aP1 finite element space and we start by decomposing the integral on each triangle

of the considered surface (in our case the endo- or epicardium of the ventricles). On each

triangle, the spatial coordinate in the deformed configuration can be uniquely expressed

using a local barycentric coordinate system

x = x(r, s) = 3∑
i=1

λi(r, s)x(i),
where {λi(r, s)}3i=1 are the two dimensional linear shape functions

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ1(r, s) = r,
λ2(r, s) = s,
λ3(r, s) = 1 − r − s,

and {x(i)}3i=1 are the vertices of a deformed triangle, see Figure 1.4. With these notations, the

surface differential of the triangles of the deformed surface are given by

n dσ = ∂x

∂r
∧ ∂x

∂s
drds.
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One can easily verify that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂λ1

∂r
(r, s) = 1, ∂λ1

∂s
(r, s) = 0,

∂λ2

∂r
(r, s) = 0, ∂λ2

∂s
(r, s) = 1,

∂λ3

∂r
(r, s) = −1, ∂λ3

∂s
(r, s) = −1,

entailing
∂x

∂r
= x(1) − x(3) = e(2), ∂x

∂s
= x(2) − x(3) = e(1).

Moreover, any restriction of a function in X y
h to a triangle can also be expressed using the

local map, namely

w♭h(r, s) = 3∑
i=1

λi(r, s)w♭(i),
where {w♭(i)}3i=1 are the nodal values of the finite element function w♭h. Using this represen-

tation we obtain, at a local scale, the following expression

dyn dσ ⋅w♭h = ∂w♭h
∂r
∧ ∂x

∂s
+ ∂x

∂r
∧ ∂w♭h

∂s
= (w♭(1) −w♭(3)) ∧ e(1) + e(2) ∧ (w♭(2) −w♭(3)).

Introducing the compact notation

[∂x
∂s
∧ ] = ⎛⎜⎜⎝

0 −e(1)3 e
(1)
2

e
(1)
3 0 −e(1)1−e(1)2 e

(1)
1 0

⎞⎟⎟⎠ and [∂x
∂r
∧ ] = ⎛⎜⎜⎝

0 −e(2)3 e
(2)
2

e
(2)
3 0 −e(2)1−e(2)2 e

(2)
1 0

⎞⎟⎟⎠ ,
along with the 3 × 9 local matrix Q defined by

Q =
⎛⎜⎜⎜⎝O3×3 [∂x

∂r
∧ ] −[∂x

∂r
∧ ]
⎞⎟⎟⎟⎠
+
⎛⎜⎜⎜⎝−[

∂x

∂s
∧ ] O3×3 [∂x

∂s
∧ ]
⎞⎟⎟⎟⎠
,

then

∂w♭h
∂r
∧ ∂x

∂s
+ ∂x

∂r
∧ ∂w♭h

∂s
= Q⎛⎜⎜⎝

w♭
(1)

w♭
(2)

w♭
(3)

⎞⎟⎟⎠ .
Finally, defining I the 3 × 9 local matrix responsible for the numerical integration of a finite

element function on a triangle, that is to say

I = ⎛⎜⎝
1/6 1/6 1/6

1/6 1/6 1/6
1/6 1/6 1/6

⎞⎟⎠ ,
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then the local tangent operator of the following pressure operator is decomposed into

P v
L ∫

r,s
v♭h ⋅ ∂w

♭
h

∂r
∧ ∂x

∂s
+ ∂x

∂r
∧ ∂w♭h

∂s
drds = P v

L

⎛⎜⎜⎝
v♭
(1)

v♭
(2)

v♭
(3)

⎞⎟⎟⎠
⊺

I⊺Q

⎛⎜⎜⎝
w♭
(1)

w♭
(2)

w♭
(3)

⎞⎟⎟⎠ . (1.22)

Linearized passive law for studying incompressibility We have considered so far that

the heart tissue is a nearly incompressible material. As we will see, this modeling aspect

may introduce some difficulties when carrying out the numerical discretization of the model.

In this section we give some insights on why the standard finite element space may fail to

provide reasonable solutions in that case – see [Bathe, 1996] for an extensive description

of the subject. To do so we will consider the linearized stress tensor around the reference

configuration, which is obtained by conserving only the linear terms with respect to e when

expanding the expression (1.12). To start with, we give the extension of the invariants

RRRRRRRRRRRRRRRRRRRRRRRRRRR

I1 = tr(C) = 3 + 2tr(e),
I2 = 1

2
((tr(C))2 − tr(C2)) = 3 + 4tr(e) +O(∥e∥2),

I3 = det(C) = 1 + 2tr(e) +O(∥e∥2),
I4 = n0 ⋅C ⋅ n0 = 1 + 2n0 ⋅ e ⋅ n0.

(1.23)

To linearize (1.12) we start by giving the extension of the first term, that is to say the derivative

of the elastic energy, namely

∂W e

∂Ii
= ∂W e

∂Ii
∣
e=0
+ 4∑

j=1

∂2W e

∂Ii∂Ij
∣
e=0

∂Ij

∂e
∣
e=0
(e) +O(∥e∥2).

From (1.25) we obtain

RRRRRRRRRRRRRRRRRRRR

∂I1

∂e
∣
e=0
(e) = 2tr(e), ∂I2

∂e
∣
e=0
(e) = 4tr(e),

∂I3

∂e
∣
e=0
(e) = 2tr(e), ∂I4

∂e
∣
e=0
(e) = 2n0 ⋅ e ⋅ n0,

which gives us

∂W e

∂Ii
= ∂W e

∂Ii
∣
e=0
+ 2( ∂2W e

∂Ii∂I1
+ 2 ∂2W e

∂Ii∂I2
+ ∂2W e

∂Ii∂I3
) ∣

e=0
tr(e)

+ 2 ∂2W e

∂Ii∂I4
∣
e=0

n0 ⋅ e ⋅ n0 +O(∥e∥2). (1.24)
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We continue our linearization procedure by treating the derivatives of the invariants with

respect to the Cauchy-Green tensor appearing in (1.12),

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

∂I1

∂C
= ✶,

∂I2

∂C
= I11 −C = 2✶ + 2tr(e)✶ − 2e +O(∥e∥2),

∂I3

∂C
= I3C−1 = ✶ + 2tr(e)✶ − 2e +O(∥e∥2),

∂I4

∂C
= n0 ⊗ n0.

(1.25)

Finally, from (1.25) and (1.12), we obtain

Σ = 2∂W e

∂I1
✶ + 2∂W e

∂I2
(2✶ + 2tr(e)✶ − 2e) + 2∂W e

∂I3
(✶ + 2tr(e)✶ − 2e) + 2∂W e

∂I4
n0 ⊗ n0 +O(∥e∥2),

which, using (1.24), leads to

Σ = Σ
0
+ λtr(e)✶ + 2µe + n0 ⋅ e ⋅ n0 (α✶ + βn0 ⊗ n0) + γtr(e)n0 ⊗ n0 +O(∥e∥2), (1.26)

with the following detailed expressions of the coefficients with respect to the derivative of

the elastic potential

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

Σ
0
= 2(∂W e

∂I1
+ 2∂W e

∂I2
+ ∂W e

∂I3
) ∣

e=0
✶ + 2∂W e

∂I4
∣
e=0

n0 ⊗ n0,

λ = 4(∂2W e

∂I21
+ 4∂2W e

∂I22
+ ∂2W e

∂I23
+ 4 ∂2W e

∂I1∂I2
+ 2 ∂2W e

∂I1∂I3
+ 4 ∂2W e

∂I2∂I3
+ ∂W e

∂I2
+ ∂W e

∂I3
) ∣

e=0
,

µ = −2(∂W e

∂I2
+ ∂W e

∂I3
) ∣

e=0
,

α = 2( ∂2W e

∂I1∂I4
+ 4 ∂2W e

∂I2∂I4
+ 2∂2W e

∂I24
) ∣

e=0
,

β = 4∂2W e

∂I24
∣
e=0

,

γ = 4( ∂2W e

∂I1∂I4
+ 2 ∂2W e

∂I2∂I4
+ ∂2W e

∂I3∂I4
) ∣

e=0
.

(1.27)

Remark 6. If the reference configuration is chosen to be at rest, that is to say stress-free, then

the prestress field Σ
0
is necessarily equals to zero. If the elastic potential does not depend on the
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fourth invariant, as the Ciarlet-Gaymonat law for example (see (1.9)) then the linearized constitu-

tive equation is in fact the Hooke law (as mentioned previously) where the expressions of the Lamé

coefficients are given by the second and third equality in (1.27).

From the expression (1.15) we can derive the expression of the linearized constitutive law

depending on the different parameters of the passive law. Namely, using the fact that

I1∣
e=0
= 3, I2∣

e=0
= 3, I3∣

e=0
= 1, I4∣

e=0
= 1,

we obtain

∂W e

∂I1
∣
e=0
= µ1,

∂W e

∂I2
∣
e=0
= µ2,

∂W e

∂I3
∣
e=0
= −µ1 − 2µ2,

∂W e

∂I4
∣
e=0
= 0,

which directly implies that

Σ
0
= 0 and µ = 2(µ1 + µ2). (1.28)

The symmetric second derivative of the elastic potential evaluated at zero reads

( ∂2W e

∂Ii∂Ij
)4
i,j=1

∣
e=0
=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2C0C1 0 −2C0C1 − 1

3
µ1 0

⋅ 0 −2
3
µ2 0

⋅ ⋅ 2C0C1 + 2

9
C2C3 + 4

3
µ1 + 10

3
µ2 + 1

4
κ −2

3
C2C3

⋅ ⋅ ⋅ 2C2C3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

leading to

λ = −4
3
(µ1 + µ2) + κ + 8

9
C2C3, α = 4C2C3, β = 8C2C3 and γ = −8

3
C2C3. (1.29)

Regrouping (1.28) and (1.29) and assuming that only small displacements occur, we finally

obtain the desired expression of the linearized stress tensor

σ = (−4
3
(µ1 + µ2) + κ + 8

9
C2C3) tr(ε)✶ + 4(µ1 + µ2)ε

+ 4C2C3 (n0 ⋅ ε ⋅ n0(✶ + 2n0 ⊗ n0) − 2

3
tr(ε)n0 ⊗ n0) . (1.30)

Incompressibility and numerical locking For the sake of simplicity, as the goal of this

section is to provide the main components to understand the difficulty lying behind incom-

pressible material, we assume that we have an isotropic passive law – obtained by setting,

for example, C2C3 = 0. The linearized constitutive law is equivalent to the one obtained after

linearization of the Ciarley-Gaymonat stress-strain law and reduces

σ = (−4
3
(µ1 + µ2) + κ) tr(ε)✶ + 4(µ1 + µ2)ε = λtr(ε)✶ + 2µε.

Remark 7. In this particular case of linear isotropic constitutive law we can see that the Lamé

coefficients necessarily verify two constrains. The first one being that

µ > 0, (1.31)
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and is obtained by considering pure deviatoric deformation characterised by tr(ε) = 0. More

precisely, let y
d
be a displacement of the solid corresponding to a deviatoric deformation, the

mechanical energy needed to perform this deformation is obtained by

∫
Ω0

σ(ε(y
d
)) ∶ ε(y

d
) dΩ0 = 2µ∫

Ω0

ε(y
d
) ∶ ε(y

d
) dΩ0 > 0,

justifying the positivity of µ. The second one is obtained by considering contraction-extension

deformation of the form ε = α✶. For this type of deformation the obtained stress is
σ = (3λ + 2µ)α✶,

as expected from standard linear isotropic material, the adequate stress response to contraction-

extension deformation is compression or tension respectively, hence (3λ + 2µ)α is of the same

sign as α or equivalently

3λ + 2µ > 0. (1.32)

The assumption of small displacements implies that the pressure terms in the static load

problem does not depend of the deformation. Therefore the problem (1.16) takes the follow-

ing fully linear form : find y ∈ X y , such that ∀v♭ ∈ X y

a(y, v♭) = l(v♭),
where,

a(y, v♭) = ∫
Ω0

σ(y) ∶ ε(v♭) dΩ0 and l(v♭) = −PL∫
EnL0

v♭ ⋅ n dσ0. (1.33)

As we have done in the case of hyperelasticity we can provide a linearized pressure-deviatoric

decomposition

ε
d
= ε − 1

3
tr(ε)✶,

leading to the following expression of the bilinear form

a(y, v♭) = ∫
Ω0

3λ + 2µ
3

tr(ε(y))tr(ε(v♭)) + 2µε
d
(y) ∶ ε

d
(v♭) dΩ0.

For this type of problem, the adequate functional space isX y = H1(Ω0)3. As a remark we can

verify that this problem is well-posed. Indeed we note that the inequalities (1.31) and (1.32)

imply ∃C > 0, such that ∀v♭ ∈ H1(Ω0)3 a(v♭, v♭) ≥ C∥ε(v♭)∥2L2(Ω0)3
.

The Korn inequality [Le Dret, 2004, Ciarlet, 1988] insures the control of the H1(Ω0)3 norm by

the right hand-side of the previous estimate so that we can apply the Lax-Milgram theorem

to prove the well-posedness of the problem.

Remark 8. This problem favours solutions that satisfy the nearly incompressibility property of

the material. To see this it is sufficient to recall that the static load problem (1.33) is in fact the

optimality condition of order one of the following minimisation problem

min
v♭∈X y

1

2
a(v♭, v♭) − l(v♭).

Hence, considering all other parameters fixed, λ grows as κ, therefore the solution of this minimi-
sation problem will tend to verify tr(ε) = 0, which is the linearized version of the incompressibility
constrain J = 1.
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Defining

ε =
√

2µ

λ
,

we recast the bilinear form in (1.33) as

a(y, v♭) = 2µ∫
Ω0

ε(y) ∶ ε(v♭) dΩ0 + ε−22µ∫
Ω0

tr(ε(y))tr(ε(v♭)) dΩ0 = a1(y, v♭) + ε−2a2(y, v♭).
The spatial discrete static load problem then reads: find y

h
∈ X y

h such that ∀v♭h ∈ X y
h

a1(yh, v♭h) + ε−2a2(yh, v♭h) = l(v♭h).
Classical a priori estimates for standard Galerkin approximation gives us

∥y − y
h
∥H1(Ω0)3 ≤

√
C

α
inf

w♭
h
∈X y

h

∥y −w♭h∥H1(Ω0)3 ,

with C the continuity constant of a1 + ε−2a2, which is clearly in O(ε−2µ) and α the coercivity

constant in O(µ). Therefore the accuracy of the numerical solution may decrease in O(ε−1),
that is to say in O(κ 1

2 ). In practice numerical experiments show that the discrete system

behaves as an overly stiff material, the discrete solution tends to zero as κ grows. This phe-

nomenon is called numerical locking.

Remark 9. Taking into account this numerical artefact, two possible approaches can be consid-

ered. The first one is to use specific finite element spaces that verify the so-called inf-sup condition

(verified by the continuous system), which leads to a locking free numerical solution but naturally

increases the complexity of the implementation and the cost of the finite element procedure. The

second approach – followed in our work – is to assume that the material is compressible enough

so that the numerical locking is sufficiently small to be neglected with respect to other sources of
error (modeling errors for instance).

Numerical results of passive filling In the sequel we provide several numerical solutions

of the static load problem expressed in (1.19) for various values of the loading and of the

penalisation parameter κ. In order to have a better understanding of the numerical locking

phenomenon we use different toy geometries that represent the left ventricle. These ge-

ometries differ by their number of vertices as Figures 1.5(a), 1.5(b), 1.5(c) and 1.5(d) show and

are referred to by their number of tetrahedra in their thickness. For these simulations we

have chosen the following set of parameters

µ1 = 0.0, µ2 = 0.0, C0 = 1.9 ⋅ 103, C1 = 1.1 ⋅ 10−1, C2 = 1.9 ⋅ 103, C3 = 1.1 ⋅ 10−1.
As far as the boundary conditions are concerned, to block rigid modes we impose homoge-

neous Dirichlet boundary conditions on the base of the geometry. We plot in Figures 1.6(a),

1.6(b), 1.6(c) and 1.6(d) the evolution of the volume for various values of

κ = {103,104,105,5 ⋅ 105}.
For higher values of κ the continuation process used to solve the static load did not converge

– mainly due to the highly nonlinear profile of the elastic potential. However, with this results,

we can remark is that the 1-Tetra clearly acts as an over-stiff material and cannot be used

to obtain an accurate numerical solution. Secondly, even though the convergence process

slightly deteriorates we obtain a reasonable overall behaviour. This will justify our choice

when choosing the various parameters for the complete heart model.
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(a) 1-Tetra mesh, 344 vertices. (b) 2-Tetra mesh, 2628 vertices.

(c) 3-Tetra mesh, 8496 vertices. (d) 4-Tetra mesh, 19580 vertices.

Figure 1.5: Long axis view of the toy geometries, distinguished by their number of

tetrahedra in their thickness.
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(a) Penalization parameter κ = 103
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(c) Penalization parameter κ = 105
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(d) Penalization parameter κ = 5 ⋅ 105

Figure 1.6: Evolution of the volume for various values of the penalization parameter.
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1.2 The active behavior of the heart material

In the following we will give a rapid description of the multi-scale model of the active

behavior of the heart material. Readers may refer to [Sainte-Marie et al., 2006] or [Chapelle

et al., 2012] for more details. Even though our work provides little improvement on this

modeling part per say, we have carried out the non trivial task of implementing the algorithm

obtained after discretization and presented in [Chapelle et al., 2012].

1.2.1 Active stress of the heart material

Physiological key point

Contraction of a cardiac cell

As we have already mentioned, the heart material is mostly composed of muscular

cells called myocytes. At a microscale, each fiber contains a succession of sarcomeres,

responsible for the contraction of the cell, separated by the Z disks. This contraction is

enabled by the myosin – gathered in so-called thick filaments to form molecular motors

– that can attach to the surrounding thin filaments made of actin. The structure of a

myosin head attached to an actin site forms a so-called cross-bridge. The formations

of these cross-bridges induce the sliding of the interdigitated thin and thick filaments,

hence the shortening of the sarcomere, leading to a macroscopic contraction. The

initial (relatively to a contraction phase and corresponding to the prelaod of the heart)

number of cross-bridges in a sarcomere dictates the force that a single sarcomere can

produce during its contraction. Naturally, as the length of the sarcomere increases the

number of possible actin-myosin connections decreases leading to a loss of potential

contraction. Similarly, too small values of the length of a sarcomere reduce the number

of cross-bridges creations. Between these extreme situations, the sarcomere length

reaches an optimum value and this particularity of the cardiac cells will be referred to

as the Frank-Starling mechanism. In a normal state, the heart is known to be below the

optimal value of the sarcomere length so that an increase of the preload leads to an

increase of the active force. This feature is of utmost importance in a cardiac cycle since

it enables the heart to be synchronized with the venous return.

One-dimensional active stress in the constitutive law To take into account the active

properties of the heart we define a one-dimensional stress σ1D in the fiber direction and we

choose an additive composition law. In a general way, the stress-strain becomes

Σ = Σ
p
+ σ1D n0 ⊗ n0, (1.34)

where Σ
p

regroups all the passive modeling components described previously, namely,

Σ
p
= ∂W e

∂e
+ ∂W v

∂ė
.
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One convenient way to represent complex mechanical behaviors is to use rheological mod-

els.

..

Es
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µ

.
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.

W e
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η

.

es

.

ec

.

e1D

Figure 1.7: Combination of passive constitutive law (including elastic and viscous terms) with

an active one-dimensional component.

Decomposition of the active stress Following [Chapelle et al., 2012] we decompose σ1D
into a first elastic part describing the stiffness of the Z disks and a second active component

corresponding to a contraction model of the sarcomeres. The former is assumed to be a

simple linear spring constitutive law, namely

σs = Eses, (1.35)

and a remaining active part (σc, ec) describing the mechanical motors in the sarcomeres.

Because of large deformations, the individual strains in the active branch compose according

to a multiplicative law, namely

1 + 2e1D = (1 + 2es)(1 + 2ec), (1.36)

where we denote by e1D = n0 ⋅e⋅n0 the strain along the fiber direction. The generated stresses

satisfy (see [Chapelle et al., 2012])

σ1D = σc

1 + 2es =
σs

1 + 2ec . (1.37)

Equation (1.36) enables us to build a relation between the one-dimensional strain e1D and

the strain in the sarcomere ec. Combining (1.36), (1.37) and (1.35) we obtain

σc = Es(1 + 2ec) (
1

2

1 + 2e1D
1 + 2ec −

1

2
) 1 + 2e1D

1 + 2ec = Es
e1D − ec(1 + 2ec)3 (1 + 2e1D).

1.2.2 Constitutive law in the sarcomere

In order to provide the complete stress-strain law of the heart we follow [Chapelle et al.,

2012] and propose a definition of the relation between the strain and the stress in the sar-

comere, that is to say ec and σc respectively. This modeling aspect starts from the Huxley’s
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representation of binding and unbinding of a myosin head [Huxley, 1957] – the microscopic

scale – and is lifted to a mesoscopic scale by averaging the quantities considered in the pre-

vious lower scale.

On a microscopic scale, the binding of a myosin head occurs within a certain range [0, h]
for the displacement of the tip of the head with respect to a reference position on the actin

filament. When dividing the tip displacement by h, we obtain a dimensionless strain quantity

s. Defining by n(t, s) the normalized density of existing bridges at time t and strain s, the

derivative of n is written as
dn(t, s)

dt
= ∂n

∂t
+ ṡ∂n

∂s
.

Making the assumption of an infinitely stiff actin and myosin filaments we can state that the

microscopic strain ṡ is equivalent to the mesoscopic strain in the sarcomere ėc. Denoting by

f and g the binding and unbinding rate of bridges, the variation in time of the number of

bridge reads
∂n

∂t
+ ėc∂n

∂s
= (n0(ec) − n)f − ng. (1.38)

In (1.38) the strain dependent function n0 accounts for the Frank-Starling effect described in

the corresponding physiological key points. The different rates f and g are modelled by

RRRRRRRRRRRRRRRR
f(s, t) = ∣u∣+✶s∈[0;1],
g(s, t) = ∣u∣ + α∣ėc∣ − f(s, t) = ∣u∣+✶s∉[0;1] + ∣u∣− + α∣ėc∣,

(1.39)

where u denotes a variable reaction rate summarizing chemical activation, inducing contrac-

tion or relaxation depending on whether u is positive or negative. In (1.39) the term α∣ėc∣
appearing in the destruction rate g represents the fact that the destruction of bridges may

occur when the relative speed between myosin and actin is too high. One way to pass to an

upper scale is to consider the sarcomere as a collection of springs – the myosin heads – at-

tached in parallel so that the global stiffness of the sarcomere kc and the global associated

stress τc are RRRRRRRRRRRRRRRRRRRRRRR

kc(t) = k0∫
R
n(t, s)ds,

τc(t) = ∫
R

∂Wb

∂s
(t, s)n(t, s)ds.

(1.40)

In (1.40), k0 is the stiffness of the bridges. We choose Wb as

Wb(t, s) = k0

2
(s + s0)2, (1.41)

s0 being a possible prestrain. The stress in the sarcomere then reads

τc(t) = k0∫
R
(s + s0)n(t, s)ds. (1.42)

From (1.38) we obtain the variations in time of the global stiffness of the sarcomere

k̇c(t) = k0∫
R
(n0(ec) − n(t, s))f(t) − n(t, s)g(t)ds = −(∣u∣ + α∣ėc∣)kc(t) + k0n0∣u∣+,
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and the variation of the stress

τ̇c(t) = k0∫
R
(s + s0)((n0(ec) − n(t, s))f(t) − n(t, s)g(t))ds + ėckc

= −(∣u∣ + α∣ėc∣)τc(t) + ėckc + k0n0∫
R
(s + s0)f(s)ds.

Denoting by

σ0 = (1
2
+ s0)k0, (1.43)

and adding one contribution to account for the fact that the creation or destruction of

bridges dissipates energy through viscous effects. We finally obtain the following consti-

tutive law ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k̇c(t) = −(∣u∣ + α∣ėc∣)kc(t) + k0n0∣u∣+,
τ̇c(t) = −(∣u∣ + α∣ėc∣)τc(t) + ėckc + n0σ0∣u∣+,
σc = τc + µėc.

(1.44)

1.3 The complete biomechanical model of the heart

So far we have proposed to gather a set of modeling ingredients to represent the heart

material during both active and passive regimes. Moreover, the heart is situated within the

body and in interaction with numerous other components. Therefore, prior to giving the

complete biomechanical model of the heart we present how its relationship with the rest

of the cardiovascular system and with its surroundings can be taken into account. Let us

say that this section is dedicated to boundary conditions in a wide sense. In this matter the

contribution of our work is twofold: first we propose a model of the complete cardiovascular

system leading to a fully coupled system and secondly we propose a mean of describing the

contact between the outer surface of the ventricle and the pericardium.

1.3.1 Valve model andWindkessel systems

Physiological key point

A cardiac cycle

A cardiac cycle is made of four phases ruled by the various pressures in the structure

atrium-ventricle-artery and guided by a valve system.

1- Systole, isovolumetric phase: The ventricle is contracting in reaction to the electri-

cal activation of the cardiac cells. The valves between the atrium and the artery is

closed so that the contraction is isovolumetric. Therefore, the pressure inside the

cavity rapidly increases until it reaches the aortic pressure leading to the opening

of the aortic valve.
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2- Ejection phase: As the aortic valve is open, the ventricle – still contracting – ejects

the blood through the artery. The ejection occurs until the excitation of the ventri-

cle stops. At this point the pressure in the cavity decreases until it reaches a lower

value than the aortic pressure. The aortic valve closes.

3- Isovolumetric relaxation: Once again the cavity is in an isovolumetric phase, both

valves are closed. The cavity pressure drops rapidly until it reaches the atrium

pressure. At the end of this phase the atrioventricular valve opens.

4- Diastole, filling phase: As the valve is open, the blood runs from the atrium to the

ventricle leading to most of the passive filling of the ventricle. The contraction of

the atrium finishes the filling of the ventricle.

For the left ventricle, the volume reaches a peak at approximately 120 mL after the left

atrium contraction and its lower value is about 40− 50 mL after ejection of the aorta. Its

maximum pressure during ejection reaches 1.6 ⋅ 104 Pa.

C

∂C

P at ≤ P v

Q > 0

P ar ≤ P v

P v

Figure 1.8: Representation of a cavity within the structure atrium-ventricle-artery.

A valve model As we understood from the previous physiological key point, the valves

play a fundamental role – within the structure atrium-ventricle-artery – since they regulate

inflow and outflow of the blood. If we consider a cavity C delimited by the closure of the

endocardium with the two valve rings, its volume is

V(t) = ∫
C
dΩ,

and the flow of ejected blood Q− is obtained from

Q−(t) = −V̇(t).
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From a numerical standpoint, the complete fluid-structure interaction problem – see [Fer-

nández et al., 2007,Formaggia et al., 2009] as an example of references on the matter – is out

of reach in the perspective of performing inverse problems. Hence we follow [Sainte-Marie

et al., 2006] and model the valve system by a relationship between the ejected blood flow

and the pressures in the atrium P at, the ventricle P v and the artery P ar, namely

−V̇(t) = f(P at, P v, P ar). (1.45)

These scalar values represent an uniform pressure inside the cavity. Before giving an ex-

pression of the valve function f , we recall how the flow Q− is derived from the velocity of the

solid. To start with, let us notice that

d

dt
V(t) = d

dt
V(y(t)) = dyV(t) ⋅ ẏ.

Additionally, the differential of the volume with respect to the displacement comes by

∀v♭ ∈ X y dyV(t) ⋅ v♭ = ∫
C0
dyJ ⋅ v♭dΩ0 = ∫

C0

∂J

∂F
∶ dyF ⋅ v♭dΩ0,

where C0 is the cavity geometry in the reference configuration. To give an expression of the

integrand we consider two tensors A – assumed invertible – and B, we have

det(A + hB) − det(A) = det(A)(det(✶ + hA−1B) − 1)
= hdet(A)tr(A−1B) +O(h2)
= hdet(A)A−1 ∶ B +O(h2).

(1.46)

Hence, the volume differential becomes

dyV(t) ⋅ v♭ = ∫
C0
JF−1 ∶ dyF ⋅ v♭dΩ0

= ∫
C
✶ ∶ ∇

x
v♭dΩ = ∫

C
divx(v♭)dΩ.

Applying the Stokes theorem, the valve function is in relation with the velocity of the solid

through

Q−(t) = −∫
∂C

ẏ ⋅ nC dσ = f(P at, P v, P ar). (1.47)

In (1.47) we denoted by ∂C the surface of the cavity with normal vector field nC . Concerning

the valve function we follow [Sainte-Marie et al., 2006] and define

f(P at, P v, P at) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Kar(P ar − P v) +K iso(P at − P ar) if P v ≥ P ar,

K iso(P at − P v) if P at ≤ P v ≤ P ar,

Kat(P at − P v) if P v ≤ P at,

(1.48)

where the constants Kar and Kat represent the loss induced by the passage of the blood

through the different valves. They are proportional to πR2

ρc
, with R the radius of the valve
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Q

0 P vP at

P ar

Kat

Kar

K iso

Figure 1.9: The valve function.

under consideration, ρ the volumic mass of the blood and c its velocity. K iso is used to relax

the isovolumic constrain and can be seen as a penalization strategy.

Hence, we add in the model three pressure variables per cavity corresponding to

(P at
◻ , P v

◻ , P
at
◻ ), with ◻ = L,R,

along with two valve relations

Q−◻(t) = −V̇◻(t) = f(P at
◻ , P v

◻ , P
ar
◻ ), with ◻ = L,R.

Windkessel models During non isovolumetric phases, the heart interacts with the rest of

the cardiovascular system. A complementary model of this system should be provided in

order to represent these interactions. As we cannot afford a complex and detailed modeling

of the cardiovascular system and following [Sainte-Marie et al., 2006], we opt for a Windkessel

model [Wetserhof et al., 2008] – which is based on an analogy with electrical systems. The

intensity represents the blood flow in the part of the cardiovascular system under study and

the potential represents the blood pressure. As the blood runs through an organ to provide

necessary nutrients the blood pressure decreases, therefore organs can be represented as

resistances. Moreover, the elasticity of large arteries subject to high pressure gives birth to

spaces that can store blood. This particularity – called the Windkessel effect – is taken into

account using capacitances.

A one way model. For a given cavity C, Figure 1.10 describes a possible Windkessel system.

This model is made of two R-C blocks, the first one corresponding to the arterial pressure

and the second one to a further distal pressure. The prescribed pressure P e
◻ at the end of

the circuit can represent – in the case of the systemic circulation for example – the pressure

in the veins after a passage through the organs.

From the classical laws ruling electrical circuits we obtain the following relations (where
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C

C
p
!

R
p
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Cd
!

P d
!

Rd
!

P e
!

! = L,R
Q−

!
P ar
!

Figure 1.10: Sketch of the one way Windkessel model.

we omitted the ◻ symbol for the sake of clarity)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

Rp
(P ar − P d) +CpṖ ar = ∣Q−∣+,

1

Rd
(P d − P e) +CdṖ d = 1

Rp
(P ar − P d).

(1.49)

In (1.49), the input

∣Q−∣+ = Q−✶Q−>0,
corresponds to the ejected blood flow from the cavity when the valve is open. In practice

we give a closure to the complete system (biomechanical model of the heart wall and the

pressure variables) by prescribing the final pressure point P e
◻ and the atrial pressure as well.

A closed loopmodel. The system of relations (1.49) is written for both ventricles. It should

be noted that both the atrial pressures and the ending pressures are prescribed. To provide

a more realistic model one can consider a closed loop system (as shown in Figure 1.11) where

the ending pressure of the Windkessel system of the left ventricle would be the right atrial

pressure – thus forming a model of the systemic circulation. Reciprocally the left atrial pres-

sure would be connected to the right ventricle – that is to say the pulmonary circulation. In

this configuration the atrium and the ventricle (of a same side) are connected by a natural

conservation of the blood flow.

To start with, Figure 1.12(a) shows in details the Windkessel model for the sytemic circula-

tion. As for the one way model, it is made of two R-C blocks except that we added a resistance
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Figure 1.11: Complete modeling of the cardiovascular system using Windkessel models.

Rco to model the coronary system. We derive the following expressions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
p
LṖ

ar
L + 1

Rco
(P ar

L − P at
R ) + 1

R
p
L

(P ar
L − P d

L) = ∣Q−L∣+,

Cd
LṖ

d
L + 1

Rd
L

(P d
L − P at

R ) = 1

R
p
L

(P ar
L − P d

L),

Q+R +Cat
R Ṗ at

R = 1

Rd
L

(P d
L − P at

R ) + 1

Rco
(P at

L − P at
R ).

(1.50)

As far as the pulmonary circulation is concerned – see Figure 1.12(b) – the Windkessel model

is exactly as the one way model except that the ending pressure point is the left atrial pres-

sure. The arising relations are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
p
RṖ

ar
R + 1

R
p
R

(P ar
R − P d

R) = ∣Q−R∣+,

Cd
RṖ

d
R + 1

Rd
R

(P d
R − P at

L ) = 1

R
p
R

(P ar
R − P d

R),

Q+L +Cat
L Ṗ at

L = 1

Rd
R

(P d
R − P at

L ).

(1.51)

Finally the atria and the ventricles are connected by the conservation of the blood flow,



64 CHAPTER 1. FROM PHYSIOLOGY TO MECHANICAL MODELING FOR A NUMERICAL HEART

namely ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Qat

L = Q+L − ∣Q−L∣−.
Qat

R = Q+R − ∣Q−R∣−,
(1.52)

with ∣Q−◻∣− = Q−◻✶Q−◻<0, ◻ = L,R.
In (1.52) we denoted by Qat

L and Qat
R the flows of blood through the left and the right atrium

respectively. Assuming that a mechanical model is available on the atria, these quantities

take the form of (1.47).

1.3.2 The heart and its surrounding

Physiological key point

Location of the heart

The heart has the same size as a closed fist, about 12 cm long, 9 cm wide at its

broadest point and 6 cm thick. It rests on the diaphragm and lies in a region called the

mediastinum that extends from the sternum to the vertebral column and from the first

rib to the diaphragm. Situated around the heart, the pericardium protects the organ

while enabling rapid displacement during contraction.

In this section we focus our attention on modeling the interaction between the pericardium

and the outer surface of the heart. Since the endocardium is supposed to be able to slide

onto the inner pericardium, standard viscoelastic boundary condition may not be suitable.

Therefore we opt for a contact boundary condition that aims at penalizing the material point

outside a given geometry P representing the pericardium. We denote by EpιL and EpιR the

part of the left and right epicardium such that

A ∪ EpιL ∪ EpιR ∪B
form the complete outer surface of a heart geometry – see Figure 1.13. Let Epι = EpιL ∪ EpιR
be the gathering of the two surfaces, the penalization term takes the following form

Wc(y) = κc

2
∫
Epι
∣dist(x,P)∣2− dσ, (1.53)

where κc > 0 is a penalization parameter and dist is the signed distance operator. As

in [Moireau et al., 2009] we can express the derivative of this operator with respect to a test

displacement v♭ ∈ X y. Namely, let M be a point on the heart model, P be the projection

point of M onto P and nP be the normal of the pericardium surface at P , we have

dydist(x,P) ⋅ v♭ = dy (PM ⋅ nP) ⋅ v♭ = nP ⋅ v♭.
Hence, the variational form of the boundary condition is

Pc(v♭) = κc ∫
Epι
∣dist(x,P)∣− nP ⋅ v♭ dσ. (1.54)
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Figure 1.12: The Closed loop Windkessel model.
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Figure 1.13: Representation of the various areas of the heart model subject to boundary

conditions.

Concerning the apex and the base of the heart geometry we prescribed viscoelastic

boundary conditions, that is to say variational terms of the form

αA,B ∫
A,B

y ⋅ v♭ dσ + βA,B ∫
A,B

ẏ ⋅ v♭ dσ, (1.55)

to represent the fact that the veins and arteries connected to the base resist to the heart

displacement.

1.3.3 Complete discretization of the model

At this stage we have gathered all the necessary elements to constitute a biomechanical

heart model. Prior to giving some details on the numerical approximation procedure that

we carried out to provide a numerical solution, we recall that the complete model in its

variational form reads ∀v♭ ∈ X y ,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω0

ρ0ÿ ⋅ v♭ dΩ0 +∫
Ω0

Σ ∶ dye ⋅ v♭ dΩ0 =
(following pressure) − ∫

EnL

P v
L nL ⋅ v♭dσ −∫

EnR

P v
R nR ⋅ v♭dσ

(contact boundary condition) − κc ∫
Epι
∣dist(x,P)∣− nP ⋅ v♭ dσ

(viscoelastic boundary condition) − αA,B ∫
A,B

y ⋅ v♭ dσ − βA,B ∫
A,B

ẏ ⋅ v♭ dσ,

with Σ = ∂W e

∂e
+ ∂W v

∂ė
+ σ1D n0 ⊗ n0 , where

(rheological model) σ1D = 1 + 2e1D
1 + 2ec σc,

σc = τc + µėc = Es
e1D − ec(1 + 2ec)3 (1 + 2e1D),

(mean stiffness of sarcomeres) k̇c = −(∣u∣ + α∣ėc∣)kc + k0n0∣u∣+,
(mean stress of sarcomeres) τ̇c = −(∣u∣ + α∣ėc∣)τc + ėckc + n0σ0∣u∣+,

and

(valve model) Q−◻ = −∫
En◻

ẏ ⋅ n◻ dσ = f(P at
◻ , P

v
◻ , P

ar
◻ ),

(proximal R-C block of Winkdessel model)
1

Rp
◻

(P ar
◻ − P d

◻) +CdṖ ar
◻ = ∣Q−◻∣+,

(distal R-C block of Winkdessel model)
1

Rd
◻

(P d
◻ − P e

◻) +CdṖ d
◻ = 1

Rp
(P ar
◻ − P d

◻),

for ◻ = L,R.
(1.56)

In this model, the variables are the collection of the displacement, the velocity, the internal

variables describing the active part and the pressures of the Windkessel models, namely

(y, v, ec, τc, kc, P v
◻ , P

ar
◻ ), ◻ = L,R.

It should be noted that, as previously mentioned and following [Chapelle et al., 2012, Sainte-

Marie et al., 2006], we choose two decoupled one way Windkessel models where the atrial

and ending pressures are prescribed. The distal pressures can be directly derived from (1.49).

The electrical potential u is an input of this model.

Continuous energy balance Prior to give the time discretization of (1.56) we provide the

total energy balance of the system – as in [Chapelle et al., 2012] – which we will transfer at a
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discrete level in order to insure the numerical stability of the time scheme. To start with let

us remark that, for a test displacement v♭ ∈ X y , we have

Σ ∶ dye ⋅ v♭ = (∂W e

∂e
+ ∂W v

∂ė
) ∶ dye ⋅ v♭ + σ1D n0 ⊗ n0 ∶ dye ⋅ v♭

= (∂W e

∂e
+ ∂W v

∂ė
) ∶ dye ⋅ v♭ + σ1D dye1D ⋅ v♭.

Relation (1.36) gives us

dye1D ⋅ v♭ = des ⋅ v♭ (1 + 2ec) + dec ⋅ v♭ (1 + 2es),
hence, using (1.37) we obtain

Σ ∶ dye ⋅ v♭ = (∂W e

∂e
+ ∂W v

∂ė
) ∶ dye ⋅ v♭ + σcdec ⋅ v♭ + σsdes ⋅ v♭.

Therefore using the velocity as a test function in the variational formulation (1.56) we obtain

d

dt
(Ek + Ee + 1

2
∫
Ω0

Ese
2
s dΩ0 + αA,B ∫

A,B
∥y∥2dσ) +∫

Ω0

τcėc dΩ0 =
−∫

Ω0

η
∂W v

∂ė
∶ ėdΩ0 −∫

Ω0

µė2c dΩ0 − βA,B ∫
A,B
∥ẏ∥2 dσ + P v

◻Q
−
◻ +Pc(ẏ).

Following [Chapelle et al., 2012], we introduce the averaged elastic energy stored in a sarcom-

ere as Ec = k0
2
∫ (s + s0)2n(t, s) ds,

verifying

Ėc = k0∫ ėc(s + s0)n(t, s)ds + k0
2
∫ (s + s0)2((n0 − n(t, s))f(t) − n(t, s)g(t)) ds

= τcėc − (∣u∣ + α∣ėc∣)Ec + n0∣u∣+E0,
with E0 = k0

2
(1
3
+ s0 + s20). Finally we obtain the following energy estimate

d

dt
(Ek + Ee+1

2
∫
Ω0

Ese
2
s dΩ0 + αA,B ∫

A,B
∥y∥2dσ +∫

Ω0

Ec dΩ0) =

−∫
Ω0

(η ∂W v

∂ė
∶ ė + µė2c + (∣u∣ + α∣ėc∣)Ec) dΩ0 − βA,B ∫

A,B
∥ẏ∥2 dσ

+ P v
◻Q
−
◻ +∫

Ω0

n0∣u∣+E0 dΩ0 +Pc(ẏ).

(1.57)

In (1.57) we denoted by Ek the kinetic energy and

Ee = ∫
Ω0

W e dΩ0,

the passive three-dimensional elastic energy. The dissipative terms are of three types:
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• ∫
Ω0

η
∂W v

∂ė
∶ ė + µė2cdΩ0, the three-dimensional viscosity and the passive viscosity in

the sarcomere,

• ∫
Ω0

(∣u∣ + α∣ėc∣)Ec dΩ0, the dissipation during destruction or construction of bridges in

the sarcomere, i.e. during activation,

• βA,B ∫
A,B
∥ẏ∥2 dσ, the dissipation due to possible frictions with surrounding of the

heart.

On the other hand, the source terms are

• ∫Ω0
n0∣u∣+E0 dΩ0, the contraction power,

• Pc(ẏ), possible contact reaction with the epicardium.

The last term P v
◻Q
−
◻ is quite particular since it can be either an input in the energy balance

or a dissipative term depending on the state of the valves :

• Atrioventricular valve open, P v
◻ ≤ P at

◻ , it is a source term since

P v
◻Q
−
◻ =KatP v

◻(P at
◻ − P v

◻) ≥ 0.

The input comes from the pressure imposed by the atria.

• Isovolumetric phase, P at
◻ ≤ P v

◻ ≤ P ar
◻ , due to the penalization strategy, we also obtain a

source term

P v
◻Q
−
◻ =K isoP v

◻(P at
◻ − P v

◻) ≥ 0 ,

but of significantly lower magnitude since the scalar value K iso is small in practice.

• Aortic valve open, P v
◻ ≥ P ar

◻ ≥ P at
◻ , in this case it turns out to be a dissipative term

P v
◻Q
−
◻ =KarP v

◻(P ar
◻ − P v

◻) +K isoP v
◻(P at

◻ − P ar
◻ ) ≤ 0,

which represents the fact that the cavities are delivering blood into the Windkessel

models.

Time discretization of the heart model In order to ensure its stability, the numerical al-

gorithm is built so that the energy balance of the continuous problem is transmitted at the

time-discrete level. As far as the heart model is concerned, the particularity of the internal

variables makes the task more complex compared with standard nonlinear elasticity prob-

lems. In our work, we implemented the conservative time scheme proposed in [Chapelle

et al., 2012].



70 CHAPTER 1. FROM PHYSIOLOGY TO MECHANICAL MODELING FOR A NUMERICAL HEART

Prior to give the expression of the time scheme, let us gather some standard assertions

concerning the time discretization of nonlinear elastic problem – see [Gonzalez, 2000,Hauret

and Le Tallec, 2006] and reference therein for further details. From a general standpoint, we

look at the family of midpoint scheme of the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

vn+1 + vn
2

= yn+1 − yn
∆t

,

∫
Ω0

ρ0
vn+1 − vn

∆t
⋅ v♭ dΩ0 +∫

Ω0

Σn+ 1

2
♯ ∶ dyen+ 1

2
♯ ⋅ v♭ dΩ0 = 0.

(1.58)

In (1.58) we denoted by (⋅)n the approximation of an unknown at time n∆t and by (⋅)n+ 1

2

the standard midpoint value. The problem of finding an appropriate time scheme is then

reduced to giving the expression of the algorithmic tensors Σn+ 1

2
♯ and dye

n+ 1

2
♯ ⋅ v♭.

For the sake of simplicity we assumed in (1.58) that the no external forces are applied on

the system. Several possibilities are available, the first one that we introduce is the so-called

trapezoidal rule

Gn+ 1

2
♯ = G(yn+1) +G(yn)

2
, (1.59)

where G is any tensor depending on the displacement field. The second possibility, that we

will use in the sequel, is the midpoint rule where

Gn+ 1

2
♯ = G(yn+ 1

2 ). (1.60)

In both cases, as the derivative of the Green-Lagrange tensor is linear with respect to the

displacement, its expression is

dye
n+ 1

2
♯ ⋅ v♭ = 1

2
(F ⊺(yn+ 1

2 ) ⋅∇
ξ
v♭ +∇

ξ
v♭
⊺ ⋅ F (yn+ 1

2 )) .
Both (1.59) and (1.60) lead to conservative time schemes of order two – see [Gonzalez, 2000,

Hauret and Le Tallec, 2006]. That is to say, in both cases we have the following relation

between discrete energies

En+1k − Enk
∆t

+ En+1e − Ene
∆t

= O(∆t2). (1.61)

In [Chapelle et al., 2012] another type of possible midpoint expression of the algorithmic

tensor is used – originally proposed in [Gonzalez, 2000] – leading to a fully conservative

time scheme. However this expression leads to a significant increase of complexity, in terms

of implementation. Therefore we will restrict ourselves to a time discretization of type (1.60).

However, concerning the internal variables, we directly follow [Chapelle et al., 2012] to finally
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obtain the following time scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vn+1 + vn
2

= yn+1 − yn
∆t

,

∫
Ω0

ρ0
vn+1 − vn

∆t
⋅ v♭ dΩ0 +∫

Ω0

Σn+ 1

2
♯ ∶ dyen+ 1

2
♯ ⋅ v♭ dΩ0 =

− ∫
EnL

P v
L n

n+ 1

2
♯

L ⋅ v♭dσ −∫
EnR

P v
R n

n+ 1

2
♯

R ⋅ v♭dσ
− κc ∫

Epι
∣dist(xn+ 1

2 ,P)∣− nn+ 1

2
♯

P ⋅ v♭ dσ
− αA,B ∫

A,B
yn+

1

2 ⋅ v♭ dσ − βA,B ∫
A,B

vn+
1

2 ⋅ v♭ dσ,

with Σn+ 1

2
♯ = ∂W e

∂e

n+ 1

2
♯ + ∂W v

∂ė

n+ 1

2
♯ + σn+ 1

2
♯

1D n0 ⊗ n0 and

σ
n+ 1

2
♯

1D = 1 + 2en+ 1

2
♯

1D

1 + 2en+ 1

2
c

σ
n+ 1

2
c ,

σ
n+ 1

2
c =√kn+1c ( τc√

kc
)n+1 + µen+1c − enc

∆t
= Es

e
n+ 1

2
♯

1D − en+ 1

2
c

(1 + 2en+ 1

2
c )3 (1 + 2e

n+ 1

2
♯

1D ),

kn+1c − knc
∆t

= −(∣un+1∣ + α∣en+1c − enc
∆t

∣)kn+1c + k0n0∣un+1∣+,
1

∆t
(( τc√

kc
)n+1 − ( τc√

kc
)n) =√kn+1c

en+1c − enc
∆t

+n0σ0 ∣un+1∣+√
kn+1c

(1 − k0

2σ0
√
kn+1c

( τc√
kc
)n+1) − 1

2
(∣un+1∣ + α∣en+1c − enc

∆t
∣)( τc√

kc
)n+1.

(1.62)

Hence, The set of unknowns becomes

(yn+1, vn+1, en+1c , ( τc√
kc
)n+1, kn+1c , P v

◻
,n+1, P ar

◻
,n+1), ◻ = L,R.

It can be proved that this time scheme, along with a Gonzalez algorithmic stress tensor [Gon-

zalez, 2000], leads to an exactly conservative time scheme with respect to the continuous

energy balance stated in (1.57).

Concerning the contact boundary condition, the term appearing in the algorithm is

Pc(v♭)n+ 1

2
♯ = −κc∫

Epι
∣dist(xn+ 1

2 ,P)∣− nn+ 1

2
♯

P ⋅ v♭ dσ.
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In the perspective of performing a Newton’s method to solve this problem, one has to dif-

ferentiate Pc(v♭)n+ 1

2
♯ with respect to the displacement. This leads to the derivative of the

normal vector field of the surface representing the epicardium, i.e. its curvature. Besides in-

creasing the complexity of the terms involved in the Newton’s method, the curvature might

be irregular in practice when surfaces are represented by triangulated meshes. Thus, we

overcome this difficulty by proposing a linearized version of the contact boundary condition.

Namely we introduce the following linear operator

P̃c(v♭)n+ 1

2 = −κc∫
Epι
∣dist(xe,P)∣− neP ⋅ v♭ dσ − κc∫

Epι
✶dist(xe,P)<0 n

e
P ⋅ (yn+ 1

2 − ye) neP ⋅ v♭,
(1.63)

In (1.63) ye is an adequate extrapolated displacement, chosen so that this linearization pro-

cedure respect the order of consistence of the time scheme. More precisely we have

Pc(v♭)n+ 1

2
♯−P̃c(v♭)n+ 1

2 = −κc∫
Epι
∣dist(xe,P)∣− (dyneP ⋅(yn+ 1

2 −ye))⋅v♭ dσ +O(κc∥yn+ 1

2 −ye∥2).
The key argument to justify this approach is that, as any penalization strategy, the coefficient

κc is meant to reach large values whereas the product κc∣dist(xe,P)∣− remains finite. Hence

we can state that

Pc(v♭)n+ 1

2
♯ − P̃c(v♭)n+ 1

2 = O(∥yn+ 1

2 − ye∥) O(1 + κc∥yn+ 1

2 − ye∥).
By choosing an extrapolation point of order two, for example ye = 3

2
yn − 1

2
yn−1, we obtain

Pc(v♭)n+ 1

2
♯ − P̃c(v♭)n+ 1

2 = O(∆t2 + κc∆t4).
Hence, there exists for any large values of the penalization parameter a sufficiently small

time step such that the linearization procedure explained above does not alter the order two

consistency of the time scheme.

1.4 Simulation results

Prior to comment the numerical results that we have obtained, it seems important to

summarize the context of the experiment by gathering the various parameters used in our

simulations. These are extracted from the calibration strategy proposed in [Caruel et al.,

2013] – based on a reduced modeling approach.

● Passive parameters: As shown in Figure 1.18(b) and 1.19(b) we decompose the volume

of the geometry into four regions: the valve, the base and the left and right ventricles.

In these different regions we provide the following set of parameters to specify the

passive law (1.14)
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Valve Base Left Vent. Right Vent.

µ1 0 0 0 0
µ2 0 0 0 0
C0 85.5 ⋅ 103 28.5 ⋅ 103 5.7 ⋅ 103 5.7 ⋅ 103
C1 1.1 ⋅ 10−1 1.1 ⋅ 10−1 1.1 ⋅ 10−1 1.1 ⋅ 10−1
C2 57 ⋅ 103 28.5 ⋅ 103 5.7 ⋅ 103 5.7 ⋅ 103
C3 1.1 ⋅ 10−1 1.1 ⋅ 10−1 1.1 ⋅ 10−1 1.1 ⋅ 10−1
η 7 ⋅ 101 7 ⋅ 101 7 ⋅ 101 7 ⋅ 101
κ 2 ⋅ 105 2 ⋅ 105 2 ⋅ 105 2 ⋅ 105

The first remark is that we did not use the quadratic part – or Ciarlet-Geymonat part –

appearing in (1.14), but define the hyperelastic potential as a pure exponential function

of the invariants. Secondly we see that this decomposition of the geometry enables us

to stiffen the base and the valves in order to take into account the fact that they are

connected to the atria, the veins and the arteries. Finally, concerning the incompress-

ibility we are led to using a rather large value of κ since it needs to balance with the

active stress during contraction.

● Boundary conditions: The left endocardium and right endocardium of the geometry

are subject to a contact boundary condition as explained in the previous section. As far

as the visco-elastic boundary conditions are concerned – see (1.55) – we prescribe

αA = 9.5 ⋅ 106 , αB = 1.0 ⋅ 106 , βA = 3.0 ⋅ 104 , βB = 1.0 ⋅ 104.
We note that, in order to avoid large displacements at the apex, we tend to give large

values of the stiffness in the corresponding region.
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Figure 1.14: Electrical activation and starling function used in practice during a direct

simulation.

● Active parameters: For the active part of the heart model we provide the following

parameters
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Valve Base Left Vent. Right Vent.

α 1.5 1.5 1.5 1.5
σ0 6.2 ⋅ 105 6.2 ⋅ 105 6.2 ⋅ 105 7.44 ⋅ 105
Es 3.0 ⋅ 107 3.0 ⋅ 107 3.0 ⋅ 107 3.0 ⋅ 107
k0 1.0 ⋅ 105 1.0 ⋅ 105 1.0 ⋅ 105 1.0 ⋅ 105
µ 7 ⋅ 101 7 ⋅ 101 7 ⋅ 101 7 ⋅ 101

The parameters are identical in the different regions except that we slightly increase

the contractility in the right ventricle in order to make up for the fact that the thickness

of the heart wall in this part of the geometry is significantly reduced. Concerning the

Starling function n0 we prescribe a piecewise-linear function of ec – see Figure 1.14(b).

The activation potential is represented in Figure (1.14(b)).

● Windkessel models: As we have already mentioned we choose to link both left and

right cavities with a one-way model. The corresponding parameters are

Left Cavity Right Cavity

Cp 2.0 ⋅ 10−9 2.0 ⋅ 10−10
Rp 2.0 ⋅ 107 1.0 ⋅ 107
Cd 0.505 ⋅ 10−8 1.0 ⋅ 10−8
Rd 2.0 ⋅ 108 3.0 ⋅ 107
P e 1.0 ⋅ 103 1.0 ⋅ 103

Simulating a healthy heart These parameters where calibrated to represent a healthy

heart, in the sense that the principal physiological indicators follow standard known values.

For instance, Figures 1.16(a) and 1.17(a) shows the evolution of the pressures for the both left

and right cavity – more precisely both left and right atrium-cavity-aorta structure. Generally,

very little physiological information on the right ventricle is available, however for the left

ventricle we see that the ventricle and aortic pressure during systole reach a peak at approx-

imately 1.55 ⋅ 104 Pa which is relevant, having in mind the target of 1.6 ⋅ 104 Pa. Focusing on

the left cavity, we can see that, during the cycle the previously presented calibration of the

Windkessel model leads to a almost perfectly cycling aortic pressure – with an initial pres-

sure of 1.1 ⋅ 104 Pa.

As far as the cavity volumes are concerned, Figures 1.16(b) and 1.17(b) show their evolution

during a simulation run. Even though both cavity volumes reach after the atrial contraction

a rather smaller value than general physiological indicator (100 mL instead of 120 mL) the

overall evolution of the volumes are quite satisfactory, the volume after contraction is quite

good and we also observe that the atrial loading represents approximately a fifth of the

ejected volume (another physiological feature). Combining the cavity pressures and their

corresponding values enables us to obtain satisfactory PV-loop diagrams, as shown in Fig-

ures 1.16(c) and 1.17(c).

Figures 1.16(d) and 1.17(d) show the evolution of J used in the first part of this Chapter to

measure the incompressibility of the material. As expected, during contraction, the volume

decreases due to the dramatic increase of internal stresses. However, the large prescribed
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bulk value enables us to keep its value above 0.9 in both cavities which is consistent with our

assumption of a nearly incompressible material.

Figures 1.18 and 1.19 show snapshots of the deforming heart model (the steady light blue

line represents the reference configuration) in both short axis view (SAX) and long axis view

(LAX). This representation enables us to measure the apparent thickening of the heart wall

during contraction.

Simulating an infarct in the septum In the perspective of diagnosis assistance it is im-

portant to evaluate if the model of the heart behavior is able to capture the physiological

changing that may appear when a part of the heart wall is altered. To do so we set another

volume region in the septum of our geometry (the red part in Figure 1.15). We recall that,

when a part of a heart has suffered an infarct tissue, the part of the tissue that is damaged

tends to stiffen and to lack in contractility. To represent both effects we define two parame-

ters (that are constant per volume regions) θK and θ such that the hyperelastic potential and

the contractility of the tissue are transformed into

W e → 2θKW e , σ0 → 2θσ0.

To start with, Figure 1.20 compares the previously simulated healthy heart with a modelled

infarcted heart where only the contractility is decreased (more precisely we set θ = −1 in

the septum). Apart from the diminished stroke volume, we observe that the thickening of

the septum during contraction has clearly decreased. Figure 1.21 shows a modelled infarcted

heart where both the stiffness and the contractility are altered (θ = −1 and θK = 1 in the

septum), we see here the combination of two effects: the stiffening induces a loss of preload

after atrial contraction and the loss of contractility decreases the stroke volume. It is inter-

esting to see that these parameters affect the heart in two separate ways, it will have its

importance when we will perform inverse problems.

Figure 1.15: Example of an infarcted septum, in (red), in the heart geometry.
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Figure 1.16: Evolution of various indicators of the left ventricle during one cardiac cycle.
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Figure 1.17: Evolution of various indicators of the right ventricle during one cardiac cycle.
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Figure 1.18: Snapshots of the numerical solution of the heart model in short axis view.
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Figure 1.19: Snapshots of the numerical solution of the heart model in long axis view.
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Figure 1.20: Simulation results with an infarcted heart modelled using a decrease of

contractility: θ = −1.0 in the septum and θ = 0.0 in the remaining part of the heart.
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Figure 1.21: Simulation results with an infarcted heart modelled using a decrease of

contractility and an increase of passive stiffness: θ = −1.0, θK = 1.0 in the septum and

θ = θK = 0.0 in the remaining part of the heart.
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1.5 Conclusion

In this Chapter we have presented a complete biomechanical model of the heart. This

description was divided into two main components corresponding to the modeling of the

passive and the active behavior of the heart.

The passive part is associated with an hyperelastic potential of exponential type – up to

some terms accounting for the incompressibility of the material. This type of hyperelastic

law arises in the literature of cardiac tissue modeling as a standard to faithfully represents

the stress-strain relation of the material.

The active part is a multi-scale modeling inspired from Huxley’s model of creation and

destruction of cross-bridges. These cross-bridges are constituted whenever the electrical

signal is triggered, thus leading to a stiffening at the upper scale of the myocardial fiber.

Additionally we have detailed a model of the interactions between the heart and its sur-

roundings using a contact surface. Moreover, we have seen how the ventricles can be linked

with the rest of the cardiovascular system with a – possibly fully coupled – Windkessel model.

We have also provided extensive details on the discretization algorithm – as their imple-

mentation was a (non-visible) contribution of this thesis. As we have seen, this discretization

task induces some significant difficulties. More precisely, concerning the spatial discretiza-

tion, the fact that the heart material is a nearly incompressible material potentially induces

numerical locking. Hence, the choice of the bulk coefficient is crucial. Concerning the time

discretization, the active part of the constitutive law clearly increases the complexity of the

conservative time scheme.

Finally, we were able to provide numerical results that faithfully respect some standard

physiological characteristics in both healthy and infarcted situations. It is now nothing but

natural to aim at performing inverse problems using this model in order to potentially cap-

ture detailed physiological features of a particular case under observation.
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In Chapter 1 we have provided a complete description of a biomechanical model of the

heart behavior. A calibration strategy can be applied – using real data set or physiological

standard values – in order to obtain a numerical model of the heart that meets some im-

portant physiological indicators. However, in the perspective of patient specific simulations

or diagnosis assistance, the need for means of coupling data (or observations, medical im-

ages of a patient for example) with the biomechanical model at hand naturally appears. This

coupling is, in essence, the definition of data assimilation. This Chapter is decomposed as

follows. First, we start by giving an overview of the different classes of data assimilations

methods one could consider to perform this coupling. In the second section we provide

some details and examples of a particular type of sequential filter called nudging. In a third

part we gather the key components of the method explained in [Chapelle et al., 2009,Moireau

et al., 2009,Moireau and Chapelle, 2011] in order to perform joint state-parameter estimation.

In particular we will see that this procedure is a hybrid data assimilation method made of a

nudging strategy for the state space and of a reduceed-order Kalman filter for the parame-

ter space. This method is then numerically illustrated in the last Section where we retrieve

some constitutive parameters of the biomechanical model of the heart described in Chapter

1 using synthetic data.

Most of the contributions are gathered at the very end of this Chapter in the form of an

included pre-printed article:

Data assimilation of time under-sampled measurements using observers, application

to wave-like equations. – Cîndea, N., Imperiale, A. and Moireau, P.

2.1 Introducing sequential data assimilation methodology

The discipline of data assimilation historically appeared in the context of meteorology

and oceanography, see [Navon, 2008,Papadakis and Mémin, 2008,Blum et al., 2008,Corpetti

et al., 2009, Titaud et al., 2010] as an example of reference on the subject. It has grown very

popular in the context of life sciences, more particularly in cardiology – see [Sainte-Marie

et al., 2006,Sermesant et al., 2006,Moireau et al., 2009,Chabiniok et al., 2012,Delingette et al.,

2012]. The two main actors in a data assimilation context are the model and the data. The

former regroups physical informations on the system under consideration encapsulated in a

mathematical formalism and is, in most practical cases, subject to numerical discretization.

Traditionally, a model takes the form of a set of coupled partial differential equations, poten-

tially nonlinear. Apart from its ability to simulate any configuration, a model also contains

a large range of potential errors: on the operator governing the dynamical system, on the

boundary conditions, on the initial conditions, or even errors on the geometry (which can

be complex in the case of the heart biomechanical model) used to support the model. On

the other hand, the data provide specific and valuable informations on a real system but are

partial (in time and space), incomplete and are likely to be corrupted by the noise inherent

of any measurement process. A data assimilation procedure tries to cumulate the comple-

mentary sources of information to build an estimation of the real system under study.



2.1. INTRODUCING SEQUENTIAL DATA ASSIMILATION METHODOLOGY 87

To start with, let us introduce some standard notations that will help us to understand

most of the concepts lying behind data assimilation. Let x be the so-called state of the sys-

tem, for instance the solution of a partial differential equation – in that case the state space

is an infinite dimensional space – or a finite element solution of a discretized dynamical sys-

tem. In the following , the state space will be denoted by X . As an example, for the cardiac

biomechanical model described in the first Chapter, the state variable are

(y, v, ec, τc, kc, P v
◻ , P

ar
◻ ), ◻ = L,R,

that is to say the displacement and the velocity, the internal variables used in the contraction

model and the pressures of both left and right cavities appearing in the Windkessel models.

From a general point of view, we assume that x satisfies the following dynamical system

ẋ(t) = A(x(t), θ, t), (2.1)

where A is the potentially nonlinear dynamical operator and θ represents the set of parame-

ters characterizing the model. While the state space may be of infinite or very large dimen-

sion (e.g. the dimension of a finite element space), the set of parameters is generally far

smaller. More importantly, keeping in mind the example of a finite element procedure, the

dimension of the parameter space remains bounded whereas the dimension of the state

space tends, by nature, to reach large values. Moreover, even in the case of spatially dis-

tributed parameters we assume that their variations are sufficiently small to be represented

with a restricted number of degrees of freedom.

To fix the ideas let us give a relevant example in the case of the biomechanical model

of the heart described in Chapter 1. In the case of an infarct the damaged region of the

myocardium tends to stiffen. Hence, to take into account this particularity, one can consider

a positive spatial evolution law θK(ξ) such that the passive elastic potential becomes

W e = 2θK(µ1(J1 − 3) + µ2(J2 − 3) +C0 exp (C1(J1 − 3)2) +C2 exp (C3(J4 − 1)2))
+ κ(J − 1) − κ ln(J). (2.2)

The healthy case will then be represented by ∀ξ, θK(ξ) = 0. In an infarcted region the value

of θK increases depending on the severeness of the condition. As far as the spatial discretiza-

tion of this distributed parameter is concerned, one can use for example the AHA regions to

define a piecewise constant representation of θK leading to a set of 17 parameters for the

left ventricle.

Assuming that the problem (2.1) is well-posed, only the initial condition x(0) and θ need to

be prescribed. However, in most practical cases these quantities are not perfectly known and

we decompose the initial condition into a known part x◇, the so-called a priori, and an uncer-

tainty ζx. We also decompose the parameters into their a priori θ◇ and their corresponding

uncertainty ζθ so that the dynamical system (2.1) finally reads,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ(t) = A(x(t), θ, t),
x(0) = x◇ + ζx,
θ = θ◇ + ζθ,

(2.3)
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We could also consider possible modelling errors, a typical example being when one consid-

ers some additive noise ω in the dynamical system:

ẋ(t) = A(x(t), θ, t) +Bω(t),
but, for the applications contained within the scope of our work, we will restrict ourselves

to errors on initial conditions and on the parameters. In the context of cardiac modelling

and patient specific simulation these errors have natural interpretations. The main source

of error for the initial condition comes from the fact that the reference configuration of the

heart is never observed in practice and is, in most cases, only estimated. Concerning the

parameters, as the set of parameter represents the physiological condition of a patient (for

example the location and severeness of possible damaged parts of the tissue) it is hardly

known a priori – the contrary would dramatically diminish the interest of a diagnosis.

In this formalism, let us consider a target system, formally represented by the combi-

nation of state and parameter (x●, θ●), that we aim at estimating – for example the heart

condition of a patient. To help us reconstructing the target trajectory and additionally to

the a priori x◇ and θ◇ we assume that some observations z are available on the target sys-

tem. Classically, the process of extracting the measurements from the system is represented

through the action of the so-called observation operator H ,

z(t) =H(x●(t), t) + χ(t). (2.4)

In (2.4) we denoted by χ some possible additive noise appearing during the measurement

procedure. It should be noted that the parameters are not directly observed, which is rele-

vant with practical cases. This observation operator is of major importance since it enables

to map the state space to the observation space Z . In the most simple case of direct mea-

surements – where the observation space is reduced to a subspace of X – H takes the form

of a projection operator. In most practical cases we are facing indirect observations obtained

through a complex measurement process, and most likely leading to a nonlinear observation

operator.

As an illustration of observations, Figure 2.1 shows two snapshots of cine-MR images. In

this case, we understand that a complete definition of the observation operator, that is to

say the operator that from the tissue extracts the grey level image, is a difficult task since

it should incorporate the reaction of the tissue material points to the magnetic excitation

along with the measurement of tissue magnetic relaxation leading to the observed images.

To avoid this difficulty we will assume that a prior step a data processing is carried out in

order to obtain a simpler form of the observations. A classical example in the case of the

cine MR images is the segmentation of the endo- and epicardium of the left ventricle –

see [Chabiniok et al., 2012, Chabiniok et al., 2011] and references therein for an example of

data assimilation using this type of data. Moreover, during all the presentation of our work,

we will suppose that the time sampling of the data is coarse – which is, once again, relevant

with practical cases – prohibiting in particular a time differentiation of the data. This implies

that all the considered observations are obtained from the displacement of the material and

not the velocity.

As we will understand in the following section, most of the data assimilation procedures

are based from a capacity to compare the data with the model. Assuming that one can define
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(a) Example of Short Axis (SAX) View of a

heart

(b) Example of Long Axis (LAX) View of a

heart

Figure 2.1: Example of realistic observations (cine-MR images).

a proper observation operator, corresponding to the data at hand, and assuming that the

observation space Z is equipped with standard algebraic operations, then one can feed a

data assimilation by computing the difference

z(t) −H(x(t), t).
The assumption of that algebraic operations make sense in the observation space is in fact

not so trivial. For instance, having in mind the case of endo- and epicardium segmentations,

the difference between two surfaces has no simple definition. Therefore, in some practical

cases, we need to consider a more general relationship between the observations and the

exact trajectory, taking the form of the implicit relation

D(z(t), x●(t)) = χ(t). (2.5)

A typical example, for the case of surfaces, is to use the signed distance function – see

[Chabiniok et al., 2011,Chabiniok et al., 2012] as an example of application.

The goal of data assimilation is to reconstruct an estimator (x̂(t), θ̂(t)) of the exact trajec-

tory (x●(t), θ●) by coupling the model and the observations. In the following, the estimation(x̂(t), θ̂(t)) may also be referred to as the observer. To reach this goal several strategies

may be considered. These strategies are traditionally decomposed into two main families:

the first one being the family of variational methods – built around the idea of minimizing

a given functional – and the second one is the family of sequential methods where the dis-

crepancies between the observer and the data are filtered during the simulation – hence

their name. To start with and to fix the ideas we give a quick overview of these two types of

data assimilation procedures in a linear setting.

2.1.1 Overview of variational methods

In the following we suppose that both the dynamical operator A and the observation

operator H are linear. Moreover we assume, for simplicity, that the state space X and the
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observation space Z are finite dimensional spaces. Variational methods have been widely

used in the context of geophysical flows, see [Navon, 2008] or [Blum et al., 2008], and more

recently in the context of cardiac function estimation, see [Perego et al., 2011,Sermesant et al.,

2006,Sainte-Marie et al., 2006]. In essence, variational methods seek to minimize a functional

that balances the confidence one has in the a priori values and the confidence in the data.

An illuminating example is when, for simplicity, we consider only some state measurements

with some initial errors. The functional to be minimized reads:

J(ζx) = 1

2
∫ T

0
∥z(t) −Hx(t)∥2Mz

dt + 1

2
∥ζx∥2P−1xx

. (2.6)

This minimization is performed with respect to the unknown ζx. In (2.6), we denoted by Mz

the norm on the observation space and by P−1xx the norm on the initial conditions. These

norms play a fundamental role in the data assimilation method since they represent how

much importance one gives to the data or to the model. In a way variational methods can

be understood as a minimization problem under the constraint imposed by the model dy-

namical system. In a fully linear and autonomous setting the optimality condition of order

one fully characterizes the optimal value, hence we seek the error ζx verifying

dζxJ ∣ζx = 0.
Let ζ∗x be a test error, we differentiate the functional as follows:

dζxJ ⋅ ζ∗x = −∫ T

0
(z −Hx)⊺Mz Hdζxx ⋅ ζ∗xdt + ζ⊺xP−1xx ζ

∗
x .

Now remarking that ⎧⎪⎪⎨⎪⎪⎩
Î̇dζxx = Adζxx,
dζxx∣t=0 = ✶,

we define the so-called adjoint variable p verifying

⎧⎪⎪⎨⎪⎪⎩
ṗ(t) +A⊺p(t) = −H⊺Mz(z −Hx),
p(T ) = 0,

so that the gradient of the functional J reads

dζxJ ⋅ ζ∗x = −p(0)⊺ζ∗x + ζ⊺xP−1xx ζ
∗
x .

The optimal value derives from this expression

ζx = Pxxp(0) Ô⇒ ∀ζ∗x dζxJ ∣ζx ⋅ ζ∗x = 0.
In a nutshell, variational data assimilation procedures seek the minimum of the functional J
obtained by solving the following two ends problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) +R
ṗ(t) +A⊺p(t) = −H⊺Mz(z(t) −Hx(t)),
x(0) = x◇ + Pxxp(0),
p(T ) = 0.

(2.7)
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In practice, one has to consider an iterative process, in order to solve this problem: starting

from the a priori x◇ one solve the direct problem verified by x followed by the resolution of

the adjoint problem verified by p to obtain another estimation of the initial condition for the

direct problem. This iterative process continues until convergence. This formalism can be

directly extended to perform state and parameter estimation. In this case, the cost functional

becomes

J(ζx, ζθ) = 1

2
∫ T

0
∥z(t) −Hx(t)∥2Mz

dt + 1

2
∥ζ∥2P−1 ,

with,

ζ = (ζx
ζθ
) , and P = (Pxx Pxθ

Pθx Pθθ
) .

To conclude this rapid overview, variational methods provide a mean for estimation regard-

less of the model – or dynamical system – at hand. However, in order to numerically com-

pute the optimal solution one needs to solve several times the direct and adjoint problems.

2.1.2 Overview of sequential methods

As we mentioned in the introduction of this section, sequential data assimilation methods

aim at reconstructing the exact trajectory by filtering the discrepancy between the observa-

tion and the data during a simulation run. This type of method is particularly useful when

we are more interested in providing an estimation of the actual trajectory at some particular

moment in the time window than retrieving the exact initial condition of the target system.

Obviously, in the case of constant (in time) parameters, retrieving the initial condition or pro-

viding an estimation at a given time is equivalent. In a formal way this general type of method

tends to define a modified dynamical system called observer by incorporating to the model

dynamical system a correction term. More precisely, let us define (x̂(t), θ̂(t)) the sequential

estimator of the target trajectory (x●(t), θ●), the new system reads:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x(t) = Ax̂(t) +R +Gx(z(t) −Hx̂(t)),
˙̂
θ(t) = Gθ(z(t) −Hx̂(t)),
x̂(0) = x◇,
θ̂(0) = θ◇.

(2.8)

Where in (2.8) we denoted byGx andGθ the gain operators for the state and the parameters

respectively. The main goal of this estimator is to converge, in time, towards the exact trajec-

tory (x●(t), θ●).
In order to provide an example of a sequential estimator we consider for now and for

the sake of simplicity only some state measurements with some initial errors. A very popular

example is the so-called optimal filter verifying

x̂(T ) = x(T ), (2.9)

where T is the time window upper bound. In a linear framework the problem of characteriz-

ing this sequential estimator has been solved – see for example [Simon, 2006, Bensoussan,

1971] among others – and it leads to the famous Kalman filter. The expression of the gain
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operator is obtained by reformulating the problem (2.7) into a sequential formulation. More

precisely, and following the presentation made in [Moireau, 2008], we start by considering

R(t) the operator that for any initial condition (x(0), p(0)) gives the solution (x(t), p(t)).
This operator is well defined since, in a linear framework, one can prove the existence and

uniqueness of the minimizer of the functional J . Decomposing this (linear) operator into

R = (Rxx Rxp

Rpx Rpp
) ,

the solution at time (x(t), p(t)) is given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x(t) =Rxxx(0) +Rxpp(0) +Kx(t),
p(t) =Rpxx(0) +Rppp(0) +Kp(t).

These equations are typically obtained applying Duhamel’s formula. Using the fact that

p(0) = P−1xx (x(0) − x◇),
we obtain that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x(t) = (Rxx +RxpP
−1
xx )x(0) −RxpP

−1
xxx◇ +Kx(t),

p(t) = (Rpx +RppP
−1
xx )x(0) −RppP

−1
xxx◇ +Kp(t).

(2.10)

The fact that there exists a unique solution of the problem (2.7) insures the inversibility of

the operator (Rpx +RppP
−1
xx ). Thus, the expression of the initial state reads

x(0) = (Rpx +RppP
−1
xx )−1(p(t) +RppP

−1
xxx◇ −Kp(t)).

Introducing this expression in (2.10) leads to

x(t) = ((Rxx +RxpP
−1
xx )(Rpx +RppP

−1
xx )−1 −RxpP

−1
xx )x◇

+ (Kx(t) − (Rxx +RxpP
−1
xx )(Rpx +RppP

−1
xx )−1Kp(t))

+ (Rxx +RxpP
−1
xx )(Rpx +RppP

−1
xx )−1p(t).

Denoting this expression by

x(t) = x̂(t) + P (t)p(t), (2.11)

with x̂(t) independent of p(t) and differentiating with respect to the time variable we obtain

˙̂x + (Ṗ −AP − PA⊺ + PH⊺MzHP)p = Ax̂ +R + PH⊺Mz(z −Hx̂).
As x̂(t) is independent of p the matrix P necessarily follows the so-called Riccati equation,

namely ⎧⎪⎪⎨⎪⎪⎩
Ṗ − PA⊺ −AP + PH⊺MzHP = 0,
P (0) = Pxx,

(2.12)
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and we deduce the expression of the Kalman gain

Gx = PH⊺Mz. (2.13)

The matrix P following the differential equation (2.12) can be interpreted, from a probabilistic

standpoint, as the covariance matrix of the estimation error. Moreover we can easily check

that (2.11) combined with the fact that p(T ) = 0 necessarily entails the desired link with the

optimal solution defined in (2.9). This construction of the observer dynamical system directly

extends in the case of joint state-parameter estimation

Another example of sequential filtering is the so-called Luenberger filter or nudging –

see [Auroux and Blum, 2007, Luenberger, 1971, Ramdani et al., 2012, Bertoglio et al., 2013].

Focusing on state estimation, this procedure tries to stabilize the dynamical system verified

by the estimation error

x̃(t) = x●(t) − x̂(t).
That is to say, from (2.8), (2.3) and (2.4)

⎧⎪⎪⎨⎪⎪⎩
˙̃x(t) = (A −GxH)x̃(t) −Gxχ,

x̃(0) = ζx. (2.14)

This filter – in this general form – is not necessarily optimal since it only aims at controlling

the estimation error dynamical system towards zero. For this method to be reasonable, we

understand that the gain operator needs to be defined so that A −GxH is a dissipative op-

erator.

To conclude this prompt description of some methods to perform the reconstruction of

an estimation of a target trajectory from the data, let us summarize some drawbacks and

advantages. To start with, the variational method has the advantages to be available for

any type of model dynamical system. On the other hand it requires to perform an iterative

process to obtain a numerical solution and, for this particular reason, this type of method

is likely to be more efficient for situations where the cost of solving a direct problem is rela-

tively small. Secondly, Kalman filtering also provides an observer for any type of model and

is, on top of that, a sequential method, but it requires to solve the Riccati equation for the

full matrix P . This drawback turns out to be a major obstacle when facing large systems ob-

tained after finite element discretization of partial differential equations. Finally, comparing

to the first two data assimilation methods, the nudging procedure is not optimal, however it

benefits from a greater flexibility. As a matter of fact we will see in the next section that with

the simplest choice of the gain operator one can obtain – still in the linear case – an expo-

nential convergence of the observer towards the target trajectory. The major difficulty of this

strategy is that it requires a precise understanding of the operator governing the dynamical

system (2.3) in order to insure that A −GxH is dissipative. Additionally to the fact that this

method is model dependent and since, by nature, the parameters are constant in time, it is

not directly suitable for parameter identification.
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2.2 Nudging, a state estimation procedure

In this section we focus our attention on providing some theoretical components around

the nudging procedure that we will use in the context of a joint state-parameter estimation

for the cardiac model presented in Chapter 1.

2.2.1 From state estimation to control theory

To start with, let us recall the weak formulation of the fundamental principle of dynamics

(without the source term for simplicity and with homogeneous Dirichlet boundary condi-

tions), ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∫
Ω0

ρ0ÿ ⋅ v♭ dΩ0 +∫
Ω0

Σ ∶ dye ⋅ v♭ dΩ0 = 0,
y(0) = y

0
+ ζ

0
, ẏ(0) = y

1
+ ζ

1
,

where ζ
0

and ζ
1

are possible uncertainties on the initial condition. For the sake of simplic-

ity we make the assumption of small displacements so that the strong formulation of this

problem reads ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0ÿ − div(σ(y)) = 0, in Ω0

y = 0, on ∂Ω0

y(0) = y
0
+ ζ

0
, ẏ(0) = y

1
+ ζ

1
.

(2.15)

Moreover, we make the assumption, once again for simplicity reasons, of an isotropic mate-

rial admitting a Hooke’s law as its constitutive law

σ(y) = λtr(ε(y))✶ + 2µε(y).
With these assumptions, this type of problem fits into the general family of abstract problems

of the form ⎧⎪⎪⎨⎪⎪⎩
ẅ(t) +A0w(t) = 0,
w(0) = w0 + ζ0, ẇ(0) = w1 + ζ1. (2.16)

In (2.16), A0 ∶ D(A0) → H is a self adjoint, positive-definite operator with compact resolvent

– where H is a Hilbert space endowed with an inner product (⋅, ⋅) and the associated norm∥ ⋅ ∥. In our case we have

H = L2(Ω0)3, D(A0) = {w∗ ∈ H1
0(Ω0)3 ∣ div(σ(w∗)) ∈ L2(Ω0)3} ,

and

∀w∗ ∈ D(A0) A0w
∗ = − 1

ρ0
div(σ(w∗)).

Denoting by

x(t) = (w(t)
ẇ(t)) ∈ X = D(A

1

2

0 ) ×H = H1
0(Ω0)3 ×L2(Ω0)3,
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the system (2.16) can be rewritten as a first order dynamical system

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t),
x(0) = ⎛⎝w0 + ζ0

w1 + ζ1
⎞⎠ ,

(2.17)

where A ∶ D(A) → X is a skew-adjoint operator with compact resolvent defined by

A = ( 0 ✶−A0 0
) , D(A) = D(A0) × D(A 1

2

0 ).
To start with, we consider that the observations take the form

z(t) =Hx(t) + χ(t),
where the observation operator H ∈ L(X ,Z) is linear and bounded operator and Z is an-

other Hilbert space equipped with the norm ∥ ⋅ ∥Z . In this context, the nudging procedure –

used in [Moireau et al., 2009] and [Chabiniok et al., 2011, Bertoglio et al., 2012, Moireau et al.,

2013, ?, Chabiniok et al., 2012, Bertoglio et al., 2013] – proposes to build an estimation x̂(t) of

the exact trajectory x(t) through the following dynamical system

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x(t) = Ax̂(t) + γH∗(z(t) −Hx̂(t)),
x̂(0) = ⎛⎝w0

w1

⎞⎠ ,
(2.18)

that is to say the nudging gain operator takes the most simplest form of

G = γH∗,
where H∗ is the adjoint operator of the observation operator (for the corresponding metrics

in the state space and in the observation space) and γ > 0 is a scalar value. Therefore, the

dynamical system verified by the estimation error is

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

˙̃x(t) = (A − γH∗H)x̃(t) + γH∗χ(t),
x̃(0) = ⎛⎝ζ0ζ1

⎞⎠ .
(2.19)

Neglecting the observation noise – appearing as a source term in the estimation error dy-

namical system – for a moment so that we can favour our intuition, we can see that, since

A is a skew-adjoint operator, the nudging procedure is a modification of the (conservative)

model dynamical system entailing a damped dynamical system of the estimation error. More

precisely one can directly derive the following energy estimate

1

2

d

dt
∥x̃(t)∥2X = −γ∥Hx̃∥2Z .

Another equivalent interpretation is that the nudging procedure aims at stabilizing the es-

timation error dynamical system through a feedback control. The simple form of the gain

operator, compared to other data assimilation procedure, is the most attractive asset of this

nudging procedure.
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2.2.2 Examples of applications

The efficiency of the nudging procedure is appreciated by considering the speed of con-

vergence towards zero of the estimation error. In some (ideal) cases this speed can be the-

oretically estimated but in practical cases, as we will encounter later, the quality of the filter

will be estimated by considering the poles of the stabilized operator A − γH∗H .

In the linear case with a bounded and linear observation operator, it is a well-known

result – see [Liu, 1997] – that the exponential stabilization of the system (2.19) (where the

source term induced from the observation noise is omitted), namely

∃M > 0 and µ > 0 ∥x̃(t)∥X ≤M exp(−µt)∥x̃(0)∥X ∀t > 0, (2.20)

is equivalent to the so-called observability inequality verified by any solution of the system

(2.17). The inequality takes the following form. ∃T > 0 and CT > 0 such that any solution of

ẋ = Ax satisfies

∫ T

0
∥Hx(t)∥2Z dt ≥ CT ∥x(0)∥2X . (2.21)

The inequality (2.21) is a condition on the observation operator which – simply stated – de-

scribes the fact that, over time, the observation operator gathers enough coercivity to be

able to control the energy initially introduced in the system.

In this section we provide some classical examples of application of the nudging proce-

dure for various types of data and observation operators. These examples will enable us to

understand the main features of the nudging procedure.

Example of velocity feedback in a subdomain. To illustrate this filtering procedure we

suppose that we directly observe the velocity of the solution in a subdomain ω0 of the refer-

ence configuration Ω0, that is to say:

H = (0 H0) ∶
RRRRRRRRRRRRRRRR
H1

0(Ω0)3 ×L2(Ω0)3 Ð→ L2(ω0)3
(y
ẏ
) z→ ẏ∣ω0

.

In this particular case, the observation space is Z = L2(ω0)3 equipped with the classical L2-

norm on the domain of observation. Since the functional space of velocities is L2(Ω0)3, the

adjoint operator of H is easily defined as the characteristic function of the subdomain

∀z ∈ L2(ω0)3, H∗z = ✶ω0
z ∈ L2(Ω0)3.

Hence, the dynamical system verified by the observer is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

¨̂y − div(σ(ŷ)) = γ✶ω0
(z − ˙̂y∣ω0

), in Ω0,

ŷ = 0, on ∂Ω0,

ŷ(0) = y
0
, ˙̂y(0) = y

1
.

(2.22)
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From an energy standpoint we clearly see that this procedure adds a classical dissipative

term in the estimation error dynamical system

¨̃y − γ✶ω0
( ˙̃y∣ω0

) − div(σ(ỹ)) = 0,
entailing the following energy estimate

d

dt
(Ee(ỹ(t)) + Ek( ˙̃y(t))) = −γ∥ ˙̃y∥2L2(ω0)3

, (2.23)

where in (2.23) we denote the elastic energy and the kinetic energy as

∀v♭ ∈ H1
0(Ω0)3 Ee(v♭) = 1

2
∫
Ω0

σ(v♭) ∶ ε(v♭) dΩ0 and Ek(v♭) = 1

2
∫
Ω0

∥v̇♭∥2ρ0 dΩ0.

The convergence of this observer towards the exact trajectory clearly depends on the obser-

vation domain ω0. As a matter of fact, if ω0 satisfies the geometric control condition of Bar-

dos, Lebeau and Rauch [Bardos et al., 1992] then the observability inequality (2.21) is satisfied.

This leads to the exponential decrease of the estimation error energy, thus the exponential

convergence of the estimator towards the exact trajectory.

Remark 10. The weak formulation of the system (2.22) reads, ∀v♭ ∈ H1
0(Ω0)3,

(¨̂y, v♭)
Ek
+ (ŷ, v♭)

Ee
= γ (✶ω0

(z − ˙̂y∣ω0
), v♭)

L2(Ω0)3
= γ (z − ˙̂y∣ω0

, v♭∣ω0
)
L2(ω0)3

,

where we implicitly define the inner product, ∀v♭,w♭ ∈ H1
0(Ω0)3,

(w♭, v♭)
Ee
= ∫

Ω0

σ(w♭) ∶ ε(v♭) dΩ0 and (w♭, v♭)
Ek
= ∫

Ω0

v♭ ⋅w♭ρ0 dΩ0.

It is interesting to note that, considering the discrepancy measure

∀v♭ ∈ L2(Ω0)3, ED(z, v♭) = 1

2
∥z − v♭∣ω0

∥2L2(ω0)3
,

the previously stated weak formulation is reduced to

(¨̂y, v♭)
Ek
+ (ŷ, v♭)

Ee
= −γ ⟨dED(z, ˙̂y), v♭⟩L2(Ω0)

′L2(Ω0)
,

where dED is the Gâteaux derivative of the discrepancy measure, here represented as a linear

form on the velocity space. This form of the observer may inspire a similar filtering procedure with

a more general type of discrepancy measure.

Example of displacement feedback in a subdomain. This time we consider partial dis-

placement measurement, a case that is closer to the type of information that we will obtain

in the context of cardiac estimation, see [Chapelle et al., 2012] for more details on this par-

ticular case. The design of sequential observer in this context was originally introduced by

authors in [Moireau et al., 2009]. We suppose that

H = (H0 0) ∶
RRRRRRRRRRRRRRRR
H1

0(Ω0)3 ×L2(Ω0)3 Ð→H1(ω0)3
(y
ẏ
) z→ y∣ω0

.
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In this case, the observation space is Z = H1(ω0)3. To define the adjoint operator we can

introduce the so-called lifting or extension operator Extω0
defined by

Extω0
∶ RRRRRRRRRRR
H1(ω0)3 Ð→H1

0(Ω0)3
ϕz→ u = Extω0

(ϕ),
where u is solution of ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−div(σ(u)) = 0, in Ω0/ω0,

u = 0, on ∂Ω0,

u = ϕ, in ω0.

(2.24)

We denote byH1
ω0

the spaceH1(ω0)3 equipped with the norm

∀ ϕ ∈ H1
ω0
, ∥ϕ∥2H1

ω0

= ∥Extω0
(ϕ)∥2Ee .

Remarking that the extension operator verifies an orthogonality property, namely

∀ϕ ∈ H1(ω0)3, ∀v♭ ∈ H1
0(Ω0)3, v♭∣ω0

= 0, (Extω0
(ϕ), v♭)

Ee
= 0.

We can verify that Extω0
(⋅) is the adjoint operator of H0 for the metrics (⋅, ⋅)H1

ω0

and (⋅, ⋅)Ee
since ∀ϕ ∈ H1

ω0
and ∀v♭ ∈ H1

0(Ω0)3,

(ϕ, v♭∣ω0
)
H1

ω0

= (Extω0
(ϕ),Extω0

(v♭∣ω0
))
Ee

= (Extω0
(ϕ), v♭)

Ee
+ (Extω0

(ϕ),Extω0
(v♭∣ω0

) − v♭)
Ee

= (Extω0
(ϕ), v♭)

Ee
.

Hence the dynamical system verified by the estimator is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂y = v̂ + γExtω0
(z − ŷ∣ω0

), in Ω0,

˙̂v − div(σ(ŷ)) = 0 , in Ω0,

ŷ = 0, on ∂Ω0,

ŷ(0) = y
0
, v̂(0) = y

1
.

(2.25)

Concerning the convergence of this observer, authors in [Chapelle et al., 2012] have shown,

in the case of the scalar wave equation, that, if ω0 verifies the same geometric control condi-

tion of Bardos, Lebeau and Rauch [Bardos et al., 1992], then the observability inequality (2.21)

is verified.
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Remark 11. It is important to remark that, in the case of displacement observations, the natural

equation v = ẏ is modified and no longer true. This is a direct consequence of the definition of

the observer (2.18). Moreover, concerning the weak form of this dynamical system, both equations

should be considered inH1
0(Ω0)3, that is to say: ∀(v♭,w♭) ∈ H1

0(Ω0)3 ×H1
0(Ω0)3 we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( ˙̂y, v♭)
Ee
= (v̂, v♭)

Ee
+ γ (Extω0

(z − ŷ∣ω0
), v♭)

Ee
,

( ˙̂v,w♭)
Ek
+ (ŷ, w♭)

Ee
= 0,

ŷ(0) = y
0
, v̂(0) = y

1
.

(2.26)

This weak form is non-standard since it requires more regularity of the weak functional spaces

than the standard weak formulation of the linear elastodynamic problem since both ŷ and v̂

belongs to H1
0(Ω0)3. As far as the energy of the estimation error is concerned, we see that the

weak form of the estimation error dynamical system is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( ˙̃y, v♭)
Ee
= (ṽ, v♭)

Ee
− γ (Extω0

(ỹ∣ω0
), v♭)

Ee
,

( ˙̃v,w♭)
Ek
+ (ỹ, w♭)

Ee
= 0,

ỹ(0) = ζ
0
, ṽ(0) = ζ

1
.

(2.27)

Substituting (v♭,w♭) by (ỹ, ṽ), this system leads to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ṽ, ỹ)
Ee
= ( ˙̃y, ỹ)

Ee
+ γ (Extω0

(ỹ∣ω0
), ỹ)

Ee
,

( ˙̃v, ṽ)
Ek
+ (ỹ, ṽ)

Ee
= 0,

ỹ(0) = ζ
0
, ṽ(0) = ζ

1
.

(2.28)

In (2.28) we emphasized the coupling terms in (cyan). These coupling terms are a direct effect

of considering the first equation in H1
0(Ω0)3. Substituting in the second equation we obtain the

following energy estimate

d

dt
(Ee(ỹ(t)) + Ek(ṽ(t))) = −γ∥ỹ∥2H1

ω0

. (2.29)

Having in mind that the regularity of solutions of the linear elastodynamic problem is entirely

defined by the regularity of the initial conditions we can summarize the different situations. As-

suming that

(y
0
+ ζ

0
, y

1
+ ζ

1
) ∈ D(A0) ×D(A 1

2

0 ),
then a strong solution of (2.25) exists and estimate (2.29) is verified. However, if one seeks a weaker

solution, it appears that the best functional spaces are

(y
0
+ ζ

0
, y

1
+ ζ

1
) ∈ D(A 1

2

0 ) ×D(A 1

2

0 ),
so that the formulation (2.26) makes sense and the estimate (2.29) is verified.
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Remark 12. Considering the discrepancy measure

∀v♭ ∈ H1
0(Ω0)3, ED(z, v♭) = 1

2
∥z − v♭∣ω0

∥2H1
ω0

,

and remarking that, ∀v♭ ∈ H1(Ω0)3
− ⟨dED(z, ŷ), v♭⟩H1

0
(Ω0)

′
H1

0
(Ω0)
= (z − ŷ∣ω0

, v♭∣ω0
)
H1

ω0

= (Extω0
(z − ŷ∣ω0

),Extω0
(v♭∣ω0

))
Ee

= (Extω0
(z − ŷ∣ω0

)), v♭)
Ee
,

we can rewrite, as previously done in the case of velocity observations, the weak formulation of

the observer as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( ˙̂y, v♭)
Ee
= (v̂, v♭)

Ee
− γ ⟨dED(z, ŷ), v♭⟩H1

0
(Ω0)

′
H1

0
(Ω0)

,

( ˙̂v,w♭)
Ek
+ (ŷ, w♭)

Ee
= 0,

ŷ(0) = y
0
, v̂(0) = y

1
.

(2.30)

System (2.30) may inspire a nudging procedure for general – possibly non linear – discrepancy

measures.

Example of partial displacement feedback in a subdomain In this third example we

consider the case where only a part of the displacement is given in the subdomain. More

precisely let us define a particular direction e (that we assume invariant in space and time

for now) along with two orthogonal directions (e�1 , e�2). The observation operator reads

H = (H0 0) ∶
RRRRRRRRRRRRRRRR
H1

0(Ω0)3 ×L2(Ω0)3 Ð→H1(ω0)
(y
ẏ
) z→ y∣ω0

⋅ e.
Following the case of complete displacement feedback in a subdomain we use an extension

operator to define the adjoint of the observation operator. More precisely we introduce the

lifting operator Extω0
(⋅ ; e) defined by

Extω0
(⋅ ; e) ∶ ∣H1(ω0) Ð→H1

0(Ω0)3
ϕz→ u = Extω0

(ϕ ; e),
where u is the unique solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−div(σ(u)) = 0, in Ω0/ω0,

u = 0, on ∂Ω0,

u ⋅ e = ϕ, in ω0,

div(σ(u)) ⋅ e�1 = div(σ(u)) ⋅ e�2 = 0, in ω0.

(2.31)
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One can also verify the following orthogonal property

∀ϕ ∈ H1(ω0), ∀v♭ ∈ H1
0(Ω0)3, v♭∣ω0

⋅ e = 0, (Extω0
(ϕ ; e), v♭)

Ee
= 0,

since, by standard computation, we have

(Extω0
(ϕ ; e), v♭)

Ee
= −∫

ω0

div(σ(Extω0
(ϕ ; e))) ⋅ v♭ dΩ0

= −∫
ω0

div(σ(Extω0
(ϕ ; e))) ⋅ ((v♭ ⋅ e�1)e�1 + (v♭ ⋅ e�2)e�2) dΩ0

= 0.
Denoting byH1,e

ω0
the spaceH1(ω0) equipped with the norm

∀ ϕ ∈ H1,e
ω0
, ∥ϕ∥2

H
1,e
ω0

= ∥Extω0
(ϕ ; e)∥2Ee .

one can verify that Extω0
(⋅ ; e) is the adjoint operator of H0 for the corresponding metrics

since ∀ϕ ∈ H1,e
ω0

and ∀v♭ ∈ H1
0(Ω0)3

(ϕ, v♭∣ω0
⋅ e)
H

1,e
ω0

= (Extω0
(ϕ ; e),Extω0

(v♭∣ω0
⋅ e ; e))

Ee

= (Extω0
(ϕ ; e), v♭)

Ee
+ (Extω0

(ϕ ; e),Extω0
(v♭∣ω0

⋅ e ; e) − v♭)
Ee

= (Extω0
(ϕ), v♭)

Ee
.

The last assertion comes from the orthogonality property and the fact that

(Extω0
(v♭∣ω0

⋅ e ; e) − v♭)∣ω0
⋅ e = 0.

Hence the dynamical system verified by the estimator is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂y = v̂ + γExtω0
(z − ŷ∣ω0

⋅ e ; e), in Ω0,

˙̂v − div(σ(ŷ)) = 0 , in Ω0,

ŷ = 0, on ∂Ω0,

ŷ(0) = y
0
, v̂(0) = y

1
.

(2.32)

We can also demonstrate the same type of energy estimate as in (2.29) for the estimation

error. The corresponding discrepancy measure in this case reads

∀v♭ ∈ H1
0(Ω0)3, ED(z, v♭) = 1

2
∥z − v♭∣ω0

⋅ e∥2
H

1,e
ω0

.

Remark 13. Concerning the observability of this configuration it seems rather complicated for

this particular observation operator to be able to completely stabilize the estimation error dy-

namical system since it is blind to displacements in the orthogonal plane. The question is however

still valid in the case of anisotropic material or in the case of spatially and/or time varying obser-

vation direction e. Once again, we recall that the important aspect lying behind the concept of

observability is that it is sufficient to gather enough coercivity over time.
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Example of displacement feedback on the boundary In this paragraph we give an ex-

ample of major importance where the displacement information is available at the boundary

of the reference configuration. We will understand at the end of this Chapter that this is the

linear counter-part of practical cases arising when assimilating discrepancies between endo-

and epicardium surfaces of the heart. In this configuration the observation operator is de-

fined as

H = (H0 0) ∶
RRRRRRRRRRRRRRRR
H1(Ω0)3 × L2(Ω0)3 Ð→H 1

2 (∂Ω0)3
(y
ẏ
) z→ y∣∂Ω0

.

For this example to have any interest we assume that problem (2.15) admits homogeneous

Neumann boundary conditions. We introduce the lifting operator Ext∂Ω0
defined as

Ext∂Ω0
∶ RRRRRRRRRRR
H 1

2 (∂Ω0)3 Ð→H1(Ω0)3
ϕz→ u = Ext∂Ω0

(ϕ),
where u is solution of ⎧⎪⎪⎨⎪⎪⎩

−div(σ(u)) = 0, in Ω0,

u = ϕ, on ∂Ω0.
(2.33)

Once again we can also prove the orthogonal property

∀ϕ ∈ H 1

2 (∂Ω0)3, ∀v♭ ∈ H1(Ω0)3, v♭∣∂Ω0
= 0, (Ext∂Ω0

(ϕ), v♭)
Ee
= 0.

This property and the fact that

∀v♭ ∈ H1(Ω0)3 (Ext∂Ω0
(v♭∣∂Ω0

) − v♭)∣∂Ω0
= 0

insure that Ext∂Ω0
is the adjoint operator of the trace operator for theH 1

2 -norm. Therefore,

the observer is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂y = v̂ + γExt∂Ω0
(z − ŷ∣∂Ω0

), in Ω0,

˙̂v − div(σ(ŷ)) = 0 , in Ω0,

σ(ŷ) ⋅ n = 0, on ∂Ω0,

ŷ(0) = y
0
, v̂(0) = y

1
.

(2.34)

Remark 14. Observer (2.34) is a specification of the general dynamical system (2.30) with the

discrepancy measure

∀v♭ ∈ H1
0(Ω0)3, ED(z, v♭) = 1

2
∥Ext∂Ω0

(z − v♭∣∂Ω0
)∥2Ee .

This particular choice of the norm, resulting from the particular choice of the observation space,

has been proven by authors in [Moireau et al., 2009] to be crucial in terms of efficiency. As a
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matter of fact another possible choice to assimilate boundary observations would be to consider

the observation operator as

H = (H0 0) ∶
RRRRRRRRRRRRRRRR
H1(ω0)3 × L2(ω0)3 Ð→ L2(∂Ω0)3

(y
ẏ
) z→ y∣∂Ω0

,

or equivalently

∀v♭ ∈ H1
0(Ω0)3, ED(z, v♭) = 1

2
∥z − v♭∣ω0

∥2L2(∂Ω0)3
.

In this case, defining the extension operator as

ExtN∂Ω0
∶ RRRRRRRRRRR
L2(∂Ω0)3 Ð→H1(Ω0)3

ϕz→ u = ExtN∂Ω0
(ϕ),

where u is solution of ⎧⎪⎪⎨⎪⎪⎩
−div(σ(u)) = 0, in Ω0,

σ(u) ⋅ n = ϕ, on ∂Ω0,

directly gives the adjoint operator for the considered metrics since, using Green’s formula, we

obtain

∀ϕ ∈ L2(∂Ω0)3, ∀v♭ ∈ H1(Ω0)3, (Ext∂Ω0
(ϕ), v♭)

Ee
= (ϕ, v♭∣∂Ω0

)
L2(∂Ω0)3

.

However, by a spectral analysis of the stabilized operator appearing in the dynamical system veri-

fied by the estimation error, authors in [Moireau et al., 2009] have shown that choosing L2(∂Ω0)3
as the observation space is much less efficient than H 1

2 (∂Ω0)3, emphazising the importance of
the construction of the adjoint operator which is of course closely related to one’s understanding
of the observations at hand.

Example of partial displacement feedback on the boundary From definitions (2.33) and

(2.31) of the lifting operators in the case of boundary observations and partial observations

in a subdomain we can easily infer the nudging strategy in the case of partial displacement

at the boundary. More precisely, let e be a particular direction defined at the boundary and(e�1 , e�2) two orthogonal directions, we consider the observation operator

H = (H0 0) ∶
RRRRRRRRRRRRRRRR
H1(Ω0)3 ×L2(Ω0)3 Ð→H 1

2 (∂Ω0)
(y
ẏ
) z→ y∣∂Ω0

⋅ e.
As in (2.31) we introduce the lifting operator Ext∂Ω0

(⋅ ; e) defined by

Ext∂Ω0
(⋅ ; e) ∶ RRRRRRRRRRR

H 1

2 (∂Ω0) Ð→H1(Ω0)3
ϕz→ u = Ext∂Ω0

(ϕ ; e),
where u is solution of

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−div(σ(u)) = 0, in Ω0,

u ⋅ e = ϕ, on ∂Ω0,(σ(u) ⋅ n) ⋅ e�1 = (σ(u) ⋅ n) ⋅ e�2 = 0, on ∂Ω0.

(2.35)
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As previously, we can verify the orthogonal property

∀ϕ ∈ H 1

2 (∂Ω0), ∀v♭ ∈ H1(Ω0)3, v♭∣∂Ω0
⋅ e = 0, (Ext∂Ω0

(ϕ ; e), v♭)
Ee
= 0,

since

(Ext∂Ω0
(ϕ ; e), v♭)

Ee
= ∫

∂Ω0

(σ(Ext∂Ω0
(ϕ ; e)) ⋅ n) ⋅ ((v♭ ⋅ e�1)e�1 + (v♭ ⋅ e�2)e�2) dσ = 0.

Therefore, denoting byH 1

2
,e the spaceH 1

2 (∂Ω0) equipped with the norm

∀ϕ ∈ H 1

2
,e, ∥ϕ∥

H
1
2
,e = ∥Ext∂Ω0

(ϕ ; e)∥Ee ,
we verify that Ext∂Ω0

(⋅ ; e) is the adjoint operator of H0 and that the observer reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂y = v̂ + γExt∂Ω0
(z − ŷ∣∂Ω0

⋅ e ; e), in Ω0,

˙̂v − div(σ(ŷ)) = 0 , in Ω0,

σ(ŷ) ⋅ n = 0, on ∂Ω0,

ŷ(0) = y
0
, v̂(0) = y

1
.

(2.36)

Remark 15. The discrepancy measure corresponding to the observer (2.36) is

∀v♭ ∈ H1
0(Ω0)3, ED(z, v♭) = 1

2
∥Ext∂Ω0

(z − v♭∣∂Ω0
⋅ e ; e)∥2Ee .

Application in a nonlinear setting As we have mentioned in the introduction of this Chap-

ter, in most practical cases the observations are obtained from the real trajectory from a

complex and therefore nonlinear process. Hence we need to be able to give a filtering pro-

cedure that considers a nonlinear observation process. On top of that, as we are interested

in the particular cases of assimilating medical imaging (with low temporal resolution) we as-

sume displacement-based measurements, namely

z =H(y) + χ.
The nudging strategy in this case can be inferred from the general weak formulation (2.30)

of the filter. More precisely, considering the discrepancy measure

∀v♭ ∈ X y, ED(z, v♭) = 1

2
∥z −H(v♭)∥2Z , (2.37)

we define the observer as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( ˙̂y, v♭)
Ee
= (v̂, v♭)

Ee
+ γ (z −H(ŷ),dH(ŷ)v♭)

Z
,

( ˙̂v,w♭)
Ek
+ (ŷ, w♭)

Ee
= 0,

ŷ(0) = y
0
, v̂(0) = y

1
.

(2.38)
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Where dH(ŷ) is the tangent operator of the observation operator evaluated at ŷ. The corre-

sponding strong formulation of (2.38) reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂y = v̂ + γdH(ŷ)∗(z −H(ŷ)),
˙̂v − div(σ(ŷ)) = 0,
ŷ(0) = y

0
, v̂(0) = y

1
.

(2.39)

We justify our approach by remarking that, locally, we introduce some dissipation in the es-

timation error dynamical system. More precisely, from (2.38) we observe that the estimation

error verifies ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( ˙̃y, v♭)
Ee
= (ṽ, v♭)

Ee
− γ (z −H(ŷ),dH(ŷ)v♭)

Z
,

( ˙̃v,w♭)
Ek
+ (ỹ, w♭)

Ee
= 0,

ỹ(0) = ζ
0
, ṽ(0) = ζ

1
.

(2.40)

Therefore the energy associated with (2.38) verifies

d

dt
(Ee(ỹ(t)) + Ek(ṽ(t))) = −γ (z −H(ŷ),dH(ŷ)ỹ)Z .

Remarking that, using standard linearization arguments we haveRRRRRRRRRRRRRRRRR
z −H(ŷ) = z −H(y) + dH(y)ỹ +O(∥ỹ∥2X y) = dH(y)ỹ + χ +O(∥ỹ∥2X y),
dH(y)ỹ = dH(ŷ)ỹ +O(∥ỹ∥2X y),

we obtain

d

dt
(Ee(ỹ(t)) + Ek(ṽ(t))) = −γ∥dH(y)ỹ∥2Z − γ (χ,dH(y)ỹ)Z +O(∥ỹ∥2X y). (2.41)

Assuming that the observation noise is somehow limited, we observe that the dynamical

system (2.38) insures a locally dissipative behavior of the estimation error dynamical system.

The data assimilation procedure described by (2.38) directly extends in the case of implicit

relation between the observation and the target trajectory, namely

D(z, y) = χ,
by considering the following discrepancy measure

∀v♭ ∈ X y, ED(z, v♭) = 1

2
∥D(z, v♭)∥2Z . (2.42)

This leads to the following definition of the observer

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂y = v̂ − γdD(z, ŷ)∗D(z, v♭),
˙̂v − div(σ(ŷ)) = 0,
ŷ(0) = y

0
, v̂(0) = y

1
.

(2.43)
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Following the same arguments as previously the estimation errors dynamical system is also

locally dissipative, in the sense that

d

dt
(Ee(ỹ(t)) + Ek(ṽ(t))) = −γ∥dD(z, y)ỹ∥2Z − γ (χ,dD(z, y)ỹ)Z +O(∥ỹ∥2X y). (2.44)

Adjoint operators in a penalization strategy In the previous examples of application of

the nudging procedure we have seen that most of the presented adjoint operators are given

using an extension operator. As a matter of fact, the extension operator can be expressed –

in the case of displacement feedback – as

∀ϕ ∈ Z, u = Ext(ϕ) ∈ X y is solution of min
u∈X y ∣ H0u=ϕ

1

2
∥u∥2Ee .

Solving this minimization under constraint naturally leads to a mixed problem with an ad-

ditional distributed (in the observation space) variable which entails substantial numerical

cost in practice. To circumvent this difficulty authors in [Moireau et al., 2009] have proposed

a penalization strategy which reads, for a (small) penalization parameter ε > 0,

∀ϕ ∈ Z, uε = Extε(ϕ) ∈ X y is solution of min
u∈X y

ε

2
∥u∥2Ee + 1

2
∥ϕ −H0u∥2Z .

This penalization strategy, which is in fact a Tikhonov regularization of ϕ, is, numerically

speaking, much lighter than the previous one. It gives birth however to some natural ques-

tions that we will expose taking the example of boundary measurements.

From the necessary and sufficient order one optimality condition we can ensure that the

previous definition is equivalent to defining the lifting operator Extε∂Ω0
as

Extε∂Ω0
∶ RRRRRRRRRRR
H 1

2 (∂Ω0)3 Ð→H1(Ω0)3
ϕz→ uε = Extε∂Ω0

(ϕ),
where uε is solution of ⎧⎪⎪⎨⎪⎪⎩

−div(σ(uε)) = 0, in Ω0,

εσ(uε) ⋅ n + uε = ϕ, in ∂Ω0.

Hence, the observer would read

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂y = v̂ + γExtε∂Ω0
(z − ŷ∣∂Ω0

), in Ω0,

˙̂v − div(σ(ŷ)) = 0 , in Ω0,

σ(ŷ) ⋅ n = 0, on ∂Ω0,

ŷ(0) = y
0
, v̂(0) = y

1
.

(2.45)

Denoting byH 1

2
,ε the spaceH 1

2 (∂Ω0) equipped with the norm

∀ϕ ∈ H 1

2
,ε ∥ϕ∥

H
1
2
,ε = ∥Extε∂Ω0

(ϕ)∥Ee ,



2.3. JOINT STATE-PARAMETER ESTIMATION 107

we have ∀ϕ ∈ H 1

2 (∂Ω0)3 and ∀v♭ ∈ H1(Ω0)3,

(ϕ, v♭∣∂Ω0
)
H

1
2
,ε = (Extε∂Ω0

(ϕ), v♭)
Ee
+ (Extε∂Ω0

(ϕ),Extε∂Ω0
(v♭∣∂Ω0

) − v♭)
Ee
.

We see here that Extε∂Ω0
is not the adjoint operator of the trace operator since

(Extε∂Ω0
(v♭∣∂Ω0

) − v♭)∣∂Ω0
= −ε(σ(Extε∂Ω0

(v♭∣∂Ω0
)) ⋅ n).

However, remarking that, by construction, we have

(ϕ −Extε∂Ω0
(ϕ))∣∂Ω0

= O(ε),
we can comfort our intuition concerning the asymptotic behavior by noting that

(Extε∂Ω0
(ϕ),Extε∂Ω0

(v♭∣∂Ω0
) − v♭)

Ee
= −∫

∂Ω0

(ϕ−Extε∂Ω0
(ϕ))⋅(σ(Extε∂Ω0

(v♭∣∂Ω0
))⋅n) dσ = O(ε).

To conclude, even though this is not a complete demonstration, it seems that the penalized

extension operator is in fact an approximation of the adjoint operator in the sense that

(ϕ, v♭∣∂Ω0
)
H

1
2
,ε = (Extε∂Ω0

(ϕ), v♭)
Ee
+O(ε).

2.3 Joint state-parameter estimation

So far we have rapidly seen the main types of data assimilation procedure that may pro-

vide a solution to perform the reconstruction of a real trajectory being observed. We have

particularly detailed the nudging procedure that provides a cheap and efficient way to per-

form state estimation, assuming one can have a keen understanding of the underlying physi-

cal dynamical system. In this section we give further details on how the joint state-parameter

estimator is built – readers may refer to [Moireau et al., 2007, Moireau et al., 2009, Chapelle

et al., 2009, Moireau and Chapelle, 2011] for extensive details. More precisely we will use

the nudging filter to reduce the uncertainty on the state space in order to justify a reduced-

order Kalman filtering procedure on the remaining parameter space. This combination has

the advantage to circumvent the difficulty of managing the state large dimension – which

is managed by a numerically tractable nudging procedure – and it uses the generality of

Kalman filters to correct the parameters sequentially. To start with we rapidly recall some

classical constructions of Kalman filtering in a non linear setting – see [Tuan Pham et al.,

1997, Tuan Pham, 2000, Simon, 2006] – to finally give the complete state-parameter estima-

tion algorithm. We illustrate this procedure by estimating parameters in the cardiac model

described in the first Chapter.

2.3.1 Kalman filtering in a nonlinear setting

Time discrete optimal filtering. In the context of state and parameter estimation, the

Kalman filter, (2.8), (2.12) and (2.13) reads
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x(t) = Ax̂(t) +R + PxxH
⊺Mz(z(t) −Hx̂(t)),

˙̂
θ(t) = PθxH

⊺Mz(z(t) −Hx̂(t)),
x̂(0) = x◇,
θ̂(0) = θ◇.

(2.46)

We recall that the augmented covariance matrix P verifies the Riccati equation leading to the

following dynamical system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ṗxx = APxx + PxxA

⊺ − PxxH
⊺MzH

TPxx,

Ṗxθ = APxθ + PxθA
⊺ − PxxH

⊺MzH
TPxθ,

Ṗθθ = −PxθH
⊺MzH

TPxθ,

(2.47)

with the initial conditions

Pxx(0) = Pxx,0, Pθθ(0) = Pθθ,0, Pxθ(0) = 0. (2.48)

As we have seen in the first part of this Chapter, this filter is linked with the optimal solution

(2.7). In a time discrete setting, the corresponding functional to be minimized reads

J(ζx, ζθ) = 1

2
∥ζθ∥2P−1

θθ,0

+ 1

2
∥ζx∥2P−1xx,0

+ 1

2

n∑
k=1

∥zk −Hxk∥2Mk
z
, (2.49)

where Mk
z = ∆tMz comes from the natural numerical integration of the time integral and[0 ; n∆t] represents the simulation time window. To simplify the presentation we only con-

sider the state estimation problem – the discrete Kalman filter formulation for state and

parameter estimation will be directly derived afterwards. Hence we consider the following

functional

J(ζx) = 1

2
∥ζx∥2P−1xx,0

+ 1

2

N∑
k=1

∥zk −Hxk∥2Mk
z
. (2.50)

As previously observed in a time continuous context, this minimization is performed under

the constraint ⎧⎪⎪⎨⎪⎪⎩
xk = Ak∣k−1x

k−1 +R,
x0 = x◇ + ζx. (2.51)

In (2.51), Ak∣k−1 is the so-called transition operator. Therefore the functional (2.50) can be

reformulated as

J(x0) = 1

2
∥x0 − x◇∥2P−1xx,0

+ 1

2

n∑
k=1

∥zk −H k−1∑
j=0

Ak∣j+1R −HAk∣0x∥2Mk
z
.

In order to characterize the optimal solution – more precisely the optimal initial condition

– we start by gathering all the informations that we possess on the system and we define

z =
⎛⎜⎜⎜⎜⎝

z1⋮
zn −H n−1∑

j=0

An∣j+1R

⎞⎟⎟⎟⎟⎠
= ⎛⎜⎝

z̃1⋮̃
zn

⎞⎟⎠ ,
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where we use, for clarity, the compact notation

∀k = 1,⋯, n z̃k = zk −H k−1∑
j=0

Ak∣j+1R.

We also define the observation norm and operator consistent with these observations, namely

Mz = ⎛⎜⎝
M0

z ⋱
Mn

z

⎞⎟⎠ and H = ⎛⎜⎝
HA0∣0⋮
HAn∣0

⎞⎟⎠ ,
where, by convention, we set A0∣0 = ✶. With these notations the optimal solution of (2.50)-

(2.51) is in fact the minimizer of the functional

J(x0) = 1

2
∥x − x◇∥2P−1xx,0

+ 1

2
∥z −Hx0∥2Mz

.

Hence, the optimal solution verifying the optimality condition of order one is given by

x0 = (P−1xx,0 +H⊺MzH)−1(x◇ +H⊺Mzz).
As the number of observations increases one can hope to build a better estimation of the

exact trajectory. To represent the dependency of the optimal solution with respect to the

number of observations we denote

x0 = x0n.
In the following this type of dependencies will be indicated by subscripts whereas actual

time iterations will be represented in superscript. The next step is to provide a recursive

construction of this optimal solution that will be used to obtain a time discrete version of the

(sequential) Kalmn filter. To start with let us consider the following sequence of operators

RRRRRRRRRRRRRRRRRRRRRRR

P
−1
0 =H⊺MzH + P−1xx,0,

P
−1
n = n∑

k=0

A⊺k∣0H
⊺Mk

zHAk∣0 = A⊺n∣0H⊺Mn
z HAn∣0 + P−1n−1.

For completeness purposes we give – without demonstration – the following inversion Lemma,

Lemma. LetM1,M12,M21 andM2 four matrices. IfM1,M2 andM2 −M21M
−1
1 M12 are invert-

ible, thenM1 −M12M
−1
2 M21 is invertible and

(M1 −M12M
−1
2 M21)−1 =M−1

1 +M−1
1 M12(M2 −M21M

−1
1 M12)−1M21M

−1
1 .

With this relation we can give the explicit recurrence relation

Pn = Pn−1 − Pn−1A
⊺
n∣0H

⊺((Mn
z )−1 +HAn∣0Pn−1A

⊺
n∣0H

⊺)−1HAn∣0Pn−1. (2.52)

The optimal initial condition hence satisfies the following recursive scheme,

x0n = Pn(x◇ + n∑
k=0

A⊺k∣0H
⊺Mk

z z̃
k)

= Pn(P−1n−1x0n−1 +A⊺n∣0H⊺Mn
z z̃

n).
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Replacing Pn by its expression in (2.52) we obtain

x0n = x0n−1 + PnA
⊺
n∣0H

⊺Mn
z z̃

n −GnHAn∣0x
0
n−1,

with

Gn = Pn−1A
⊺
n∣0H

⊺((Mn
z )−1 +HAn∣0Pn−1A

⊺
n∣0H

⊺)−1
= PnP

−1
n Pn−1A

⊺
n∣0H

⊺((Mn
z )−1 +HAn∣0Pn−1A

⊺
n∣0H

⊺)−1
= Pn(A⊺n∣0H⊺Mn

z HAn∣0 + P−1n−1)Pn−1A
⊺
n∣0H

⊺((Mn
z )−1 +HAn∣0Pn−1A

⊺
n∣0H

⊺)−1
= Pn(A⊺n∣0H⊺Mn

z HAn∣0Pn−1A
⊺
n∣0H

⊺ +A⊺n∣0H⊺)((Mn
z )−1 +HAn∣0Pn−1A

⊺
n∣0H

⊺)−1
= PnA

⊺
n∣0H

⊺Mn
z (HAn∣0Pn−1A

⊺
n∣0H

⊺ + (Mn
z )−1)((Mn

z )−1 +HAn∣0Pn−1A
⊺
n∣0H

⊺)−1
= PnA

⊺
n∣0H

⊺Mn
z .

The optimal solution finally satisfies

x0n = x0n−1 +Gn(z̃n −HAn∣0x
0
n−1). (2.53)

The expression of the sequential filter directly follows from this relationship. Let us define

x̂+n the solution of (2.51) at iteration n and with initial condition x0n, namely

x̂n+ = An∣0x
0
n + n−1∑

k=0

An∣k+1R.

Defining

x̂n− = An∣n−1x̂
n−1
+ +R, (2.54)

and using (2.53) we remark that

x̂n+ = x̂n− +An∣0Gn(zn −Hx̂n−), (2.55)

Similarly we consider the propagated covariance

Pn
+ = An∣0PnA

⊺
n∣0.

Defining

Pn
− = An∣n−1P

n−1
+ A⊺n∣n−1, (2.56)

we observe the following relation

(Pn
+ )−1 = A−⊺n∣0(A⊺n∣0H⊺Mn

z HAn∣0 + P−1n−1)A−1n∣0=H⊺Mn
z H + (Pn

− )−1. (2.57)

Using once again the inversion Lemma, we obtain

Pn
+ = Pn

− − Pn
−H

⊺((Mn
z )−1 +HPn

−H
⊺)−1HPn

− ,

= Pn
− − (Pn

z )(Pn
zz)−1(Pn

z )⊺, (2.58)
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where in (2.58) we use the notations

RRRRRRRRRRRRRRRR
Pn
z = Pn

−H
⊺,

Pn
zz = (Mn

z )−1 +HPn
−H

⊺.

(2.59)

The discrete gain operator Gn
x hence reads

Gn
x = An∣0Gn = An∣0PnA

⊺
n∣0H

⊺Mn
z = Pn

+H
⊺Mn

z .

Following the same arguments (but backwards) used to give a simpler expression of Gn, the

gain operator is equivalently represented by

Gn
x = Pn

z (Pn
zz)−1.

Regrouping (2.54), (2.55), (2.56) and (2.58) we obtain the so-called Kalman-Bucy algorithm

[Bensoussan, 1971,Simon, 2006] written here as a predication-correction scheme:

(Initialization)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P 0
z = Pxx,0H

⊺,

P 0
zz = (M0

z )−1 +HPxx,0H
⊺,

P 0
+ = Pxx,0 − (P 0

z )(P 0
zz)−1(P 0

z )⊺,
G0

x = P 0
+H

⊺M0
z = P 0

z (P 0
zz)−1,

x̂0+ = x◇ +G0
x(z0 −Hx◇),

(2.60)

(Prediction)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x̂n− = An∣n−1x̂

n−1
+ +R,

Pn
− = An∣n−1P

n−1
+ A⊺

n∣n−1
,

(2.61)

(Correction)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pn
z = Pn

−H
⊺,

Pn
zz = (Mn

z )−1 +HPn
−H

⊺,

Pn
+ = Pn

− − (Pn
z )(Pn

zz)−1(Pn
z )⊺,

Gn
x = Pn

+H
⊺Mn

z = Pn
z (Pn

zz)−1,
x̂n+ = x̂n− +Gn

x(zn −Hx̂n−).
(2.62)

Remark 16. As we have mentioned, the algorithm (2.60), (2.61) and (2.62) directly extends in the

case of state-parameter estimation where we aim at minimizing the functional (2.49) under the

constraint ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xn = An∣n−1x
n−1 +Bn∣n−1θ

n−1 +R,
θn = θn−1,
x0 = x◇ + ζx,
θ0 = θ◇ + ζθ,
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where Bn∣n−1 is a linear operator acting on the parameter space into the state space – typically a

rectangular matrix. We decompose the covariance matrix into

Pn
− = ( Pn

xx− Pn
xθ−(Pn

xθ−)⊺ Pn
θθ−

) = (An∣n−1 Bn∣n−1

0 ✶
) Pn−1

+

⎛⎝
A⊺

n∣n−1
0

B⊺
n∣n−1

✶

⎞⎠

= (An∣n−1 Bn∣n−1

0 ✶
)⎛⎝

Pn−1
xx+A

⊺
n∣n−1

+ Pn−1
xθ+B

⊺
n∣n−1

Pn−1
xθ+(Pn−1

xθ+ )⊺A⊺n∣n−1 + Pn−1
θθ+ B

⊺
n∣n−1

Pn−1
θθ+

⎞⎠

=
⎛⎜⎜⎜⎜⎝

An∣n−1P
n−1
xx+A

⊺
n∣n−1 +An∣n−1P

n−1
xθ+Bn∣n−1+Bn∣n−1(Pn−1

xθ+ )⊺B⊺n∣n−1 +Bn∣n−1P
n−1
θθ+ B

⊺
n∣n−1

An∣n−1P
n−1
xθ+ +Bn∣n−1P

n−1
θθ+

(Pn−1
xθ+ )⊺A⊺n∣n−1 + Pn−1

θθ+ B
⊺
n∣n−1

Pn−1
θθ+

⎞⎟⎟⎟⎟⎠
.

Similarly, the gain operator is written as

Gn = (Gn
x

Gn
θ

) = ( Pn
xx+ Pn

xθ+(Pn
xθ+)⊺ Pn

θθ+

)(H⊺
0
) = ( Pn

xx+H
⊺

(Pn
xθ+)⊺H⊺) .

Finally, using the notation

Hn = ((Mn
z ) 12H 0) ,

we obtain the following algorithm

(Initialization)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P 0
+ = ((H0)⊺H0 + (P0)−1)−1,
G0

x = P 0
xx+H

⊺M0
z ,

G0
θ = (P 0

xθ+)⊺H⊺M0
z ,

x̂0+ = x◇ +G0
x(z0 −Hx◇),

θ̂0+ = θ◇ +G0
θ(z0 −Hx◇),

(2.63)

(Prediction)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂n− = An∣n−1x̂
n−1
+ +Bn∣n−1θ̂

n−1
+ +R,

θ̂n− = θ̂n−1+ ,

Pn
xx− = An∣n−1P

n−1
xx+A

⊺
n∣n−1 +An∣n−1P

n−1
xθ+B

⊺
n∣n−1+Bn∣n−1(Pn−1

xθ+ )⊺B⊺n∣n−1 +Bn∣n−1P
n−1
θθ+ B

⊺
n∣n−1,

Pn
xθ− = An∣n−1P

n−1
xθ+ +Bn∣n−1P

n−1
θθ+ ,

Pn
θθ− = Pn−1

θθ+ ,

(2.64)

(Correction)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pn
+ = ((Hn)⊺Hn + (Pn

− )−1)−1,
Gn

x = Pn
xx+H

⊺Mn
z ,

Gn
θ = (Pn

xθ+)⊺H⊺,
x̂n+ = x̂n− +Gn

x(zn −Hx̂n−),
θ̂n+ = θ̂n− +Gn

θ (zn −Hx̂n−).
(2.65)
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Extended Kalman filtering for nonlinear systems. For applications purposes, we are

interested in finding the corresponding Kalman filtering in a nonlinear setting. More precisely

we consider a consistent and stable time approximation of the target system (2.3) taking the

form of ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xn = An∣n−1(xn−1, θn−1),
x0 = x◇ + ζx,
θ0 = θ◇ + ζθ.

(2.66)

In (2.66) the transition operator An∣n−1 is nonlinear. In a complete nonlinear framework, the

observation operator is also nonlinear and the functional to be minimized in a variational

procedure is defined by

J(ζx, ζθ) = 1

2
∥ζθ∥2P−1

θθ,0

+ 1

2
∥ζx∥2P−1xx,0

+ 1

2

n∑
k=1

∥zk −H(xk)∥2Mk
z
. (2.67)

The Extended Kalman filtering (EKF) – see [Simon, 2006, Tuan Pham et al., 1997, Tuan Pham,

2000] – is a linearization scheme based on the pattern described in (2.63), (2.60) and (2.60).

More precisely, defining

dAn∣n−1 = (dxAn∣n−1 dθAn∣n−1)
the tangent operator of the transition operator and

dxH
n = dxH ∣x̂n

−
, and dHn = (dxHn(Mn

z ) 12 0)
the tangent operator of the observation operator, the EKF algorithm reads

(Initialization)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P 0
+ = ((dH0)⊺dH0 + (P0)−1)−1,
G0

x = P 0
xx+(dxH0)⊺M0

z ,

G0
θ = (P 0

xθ+)⊺(dxH0)⊺M0
z ,

x̂0+ = x◇ +G0
x(z0 −H(x◇)),

θ̂0+ = θ◇ +G0
θ(z0 −H(x◇)),

(2.68)

(Prediction)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂n− = An∣n−1(x̂n−1+ , θ̂n−1+ ),
θ̂n− = θ̂n−1+ ,

Pn
xx− = (dxAn∣n−1)Pn−1

xx+ (dxAn∣n−1)⊺ + (dxAn∣n−1)Pn−1
xθ+ (dθAn∣n−1)⊺+ (dθAn∣n−1)(Pn−1

xθ+ )⊺(dθAn∣n−1)⊺ + (dθAn∣n−1)Pn−1
θθ+ (dθAn∣n−1)⊺,

Pn
xθ− = (dxAn∣n−1)Pn−1

xθ+ + (dθAn∣n−1)Pn−1
θθ+ ,

Pn
θθ− = Pn−1

θθ+ ,

(2.69)

(Correction)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pn
+ = ((dHn)⊺dHn + (Pn

− )−1)−1,
Gn

x = Pn
xx+(dxHn)⊺Mn

z ,

Gn
θ = (Pn

xθ+)⊺(dxHn)⊺Mn
z ,

x̂n+ = x̂n− +Gn
x(zn −H(x̂n−)),

θ̂n+ = θ̂n− +Gn
θ (zn −H(x̂n−)).

(2.70)
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Unscented Kalman filtering. The Unscented Kalam Filter (UKF) – see [Julier et al., 1995,

Julier et al., 2000,Julier, 2002,Julier and Uhlmann, 2002,Julier and Uhlmann, 2004,Romanenko

and Castro, 2008, Särkkä, 2007, Moireau and Chapelle, 2011] – is another alternative for per-

forming state estimation in a nonlinear framework. This new method was initially proposed

to circumvent some classical drawbacks of the EK filter. The first one being that the EKF re-

quires the computation of the tangent operators of the model and the observation operator,

namely dA and dxH in our formalism. In practical cases, these computations may become

significantly complex. The second disadvantage is that this linearization scheme may be-

come extremely inaccurate and potentially leading to the algorithm divergence.

The UK filter is historically embedded in a stochastic framework where Pn
− , Pn

+ and x̂n−, x̂n+
are interpreted as covariances and means (a posteriori and a priori). In a Kalman filter, the

means and covariances are propagated by the model operator during the prediction phase

and by the observation operator during the correction phase. The idea of the UKF is to use a

particular choice of sampling points which are propagated by the nonlinear operators them-

selves (instead of their linearizations) in order to estimate the means and the covariances.

In this section we propose to summarize the construction of this filter. Readers may

refer to [Julier and Uhlmann, 2004, Moireau and Chapelle, 2011] for more details. To start

with let us consider a finite dimensional random variable x of mean E(x) and covariance

P (x). As we are interested in the propagation of these probabilistics moments, we consider

a nonlinear transformationA and the corresponding propagated random variable xA = A(x).
As we have mentioned, the unscented filter uses well-chosen sampling points denoted

by xi and transformed into

∀i = 1,⋯, nP xiA = A(xi),
where nP represents the number of sampling points. Each sampling point deviates from the

mean by a distance-to-mean value that we represent by x̃i so that

∀i = 1,⋯, nP xi = E(x) + x̃i.
We associate to the sampling points nP interpolation coefficients αi so that the gathering{(xi, αi)}nP

i=1 satisfies by construction

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

nP∑
i=1

αi = 1,

Eα(x) = nP∑
i=1

αix
i = E(x),

Pα(x) = nP∑
i=1

αi(xi −Eα(x)) ⋅ (xi −Eα(x))⊺ = P (x).

(2.71)
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It is in the sense of (2.71) that the sampling points are said to be well-chosen. It implies thatRRRRRRRRRRRRRRRRRRRRRRRRRRR

nP∑
i=1

αix̃
i = 0,

nP∑
i=1

αi(x̃i) ⋅ (x̃i)⊺ = P (x).
(2.72)

Assuming (2.72) is verified, classical arguments of linearization around the mean of the ran-

dom variable – see [Moireau and Chapelle, 2011] for detailed computations – leads to the

following estimates RRRRRRRRRRRRRRRR
Eα(xA) = E(xA) + o(E(∥x −E(x)∥2)),
Pα(xA) = P (xA) + o(E(∥x −E(x)∥2)).

(2.73)

Sampling points satisfiying (2.72) are referred to as sigma-points. In practice such sigma-

points can be constructed from unitary sampling points I[i] – with zero mean and unit co-

variance – by

xi = E(x) + P (x) 12 I[i].
See [Moireau and Chapelle, 2011] for numerous examples of sampling procedure. Casting

aside, for clarity reasons, the initialization step, the UKF filter reads

(Sampling) x̂
[i]n−1
+ = x̂n−1+ + (Pn−1

+ ) 12 I[i], ∀i = 1,⋯, nP, (2.74)

(Prediction)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x̂n− = ∑nP

i=1 αiAn∣n−1(x̂[i]n−1+ ),
Pn
− = ∑nP

i=1 αi(An∣n−1(x̂[i]n−1+ ) − x̂n−) ⋅ (An∣n−1(x̂[i]n−1+ ) − x̂n−)⊺,
(2.75)

(Resampling)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x̂
[i]n
− = x̂n− + (Pn

− ) 12 I[i], ∀i = 1,⋯, nP,
z[i]n =H(x̂[i]n− ), ∀i = 1,⋯, nP,

(2.76)

(Correction)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn− = ∑nP

i=1 αiz
[i]n,

Pn
z = ∑nP

i=1 αi(x̂[i]n− − x̂n−) ⋅ (z[i]n − zn−)⊺,
Pn
zz = (Mn

z )−1 +∑nP

i=1 αi(z[i]n − zn−) ⋅ (z[i]n − zn−)⊺,
Pn
+ = Pn

− − (Pn
z )(Pn

zz)−1(Pn
z )⊺,

Gn
x = Pn

z (Pn
zz)−1,

x̂n+ = x̂n− +Gn
x(zn − zn−).

(2.77)

Remark 17. Estimates (2.73) shows that the order of approximation proposed by the UK filter is

similar to that provided by a second order extended Kalman filter – see [Simon, 2006]. On top of

that, as the computation of the estimator only requires the computation of independent sampling

trajectories – also referred to as particle. This algorithm is, by construction, naturally performed

in parallel.
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2.3.2 Combination of nudging and reduced-order Kalman filtering

As their time continuous counter-part, the various algorithms that we have exhibited so

far remain – in the perspective of finite element discretization of a partial differential equa-

tion – numerically intractable since they require to manage a full covariance matrix of size

equal to the state space dimension. This so-called curse of dimensionality is a well-known lim-

itation of the standard Kalman filters and one way to circumvent this difficulty is to consider

a singular value decomposition of the covariance matrix in order to manage only matrices of

reduced size. This approach has been historically used in the context of data assimilation for

oceanography in [Tuan Pham et al., 1997] where authors extend this approach in a nonlin-

ear setting. In this section we start by recalling the main principle of reduced-order Kalman

filtering. This approach will be used in the second section where we present the complete

joint state-parameter filter using a nudging method to control the uncertainty on the state

space, hence justifying a reduced-order Kalman filter on the remaining parameter space.

Linear reduced-order filtering To start with let us replace in (2.56) the expression (2.58)

of the covariance a posteriori in order to obtain the recurrence relation for the a priori co-

variance

Pn
− = An∣n−1P

n−1
− A⊺n∣n−1 −An∣n−1P

n−1
− H⊺((Mn

z )−1 +HPn
−H

⊺)−1HPn−1
− An∣n−1.

Assuming that Pn
− and Pn−1

− are of rank p so that both matrices can be decomposed into

P k
− = Lk(Uk−1)−1(Lk)⊺,

for k = n,n − 1 with U an invertible p × p matrix and L is rectangular d × p (d being the state

space dimension) then the matrices appearing in the decomposition necessarily verify

RRRRRRRRRRRRRRRRR
Ln = An∣n−1L

n−1,

Un = Un−1 + (Ln)⊺H⊺Mn
z HL

n.

(2.78)

From (2.78) and (2.58) we note that the a posteriori covariance directly derives as

P+n = Ln(Un)−1(Ln)⊺. (2.79)
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Therefore, the reduced-order Kalman filter, in the linear case, reads

(Initilaization)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0 = L0U
−1
0 L⊺0 ,

L0 = L0,

U0 = U0 + (L0)⊺H⊺M0
zHL

0,

G0
x = L0(U0)−1(L0)⊺H⊺Mn

z ,

x̂0+ = x◇ +G0
x(z0 −Hx◇),

(2.80)

(Prediction)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x̂n− = An∣n−1x̂

n−1
+ +R,

Ln = An∣n−1L
n−1,

Un = Un−1 + (Ln)⊺H⊺Mn
z HL

n,

(2.81)

(Correction)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Gn

x = Ln(Un)−1(Ln)⊺H⊺Mn
z ,

x̂n+ = x̂n− +Gn
x(zn −Hx̂n−).

(2.82)

We remark that in the algorithm (2.81) and (2.82) the previously stated difficulty of managing

a full covariance matrix is reduced to managing the matrix U (of small size) at each time

step since the matrix L is by nature a sparse matrix. A typical example is when we consider

state-parameter estimation where the uncertainties are reduced to the parameter space,

namely

P0 = (0 0
0 Pθθ,0

) . (2.83)

In this case the decomposition of the covariance matrix simply reads

L0 = (Lx,0

Lθ,0
) = (0

✶
) and U−10 = P−1θθ,0.

Hence, omitting the initialization phase for the sake of clarity, the Kalman filter reduced to

the parameter space can be stated as

(Prediction)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂n− = An∣n−1x̂
n−1
+ +Bn∣n−1θ̂

n−1
+ +R,

θ̂n− = θ̂n−1+ ,

Ln
x = An∣n−1L

n−1
x +Bn∣n−1,

Ln
θ = Ln−1

θ = ✶,
Un = Un−1 + (Ln

x)⊺H⊺Mn
z HL

n
x,

(2.84)

(Correction)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x̂n+ = x̂n− +Ln

x(Un)−1(Ln
x)⊺H⊺Mn

z (zn −Hx̂n−),
θ̂n+ = θ̂n− + (Un)−1(Ln

x)⊺H⊺Mn
z (zn −Hx̂n−).

(2.85)
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Complete joint state-parameter methodology The approach that we will use in the con-

text of parameter identification for the cardiac biomechanical model presented in Chapter

1 is two fold. First we use a modified dynamical system aiming at stabilizing the state esti-

mation error – a modification described and illustrated in Section 2.2. Second, as the state

estimation error is stabilizing we use the decomposition (2.83) to perform the parameter

identification of the model.

In a complete linear context, using a prediction-correction algorithm for the time dis-

crete state estimation (detailed in Chapter 3) the complete joint state-parameter estimation

methodology reads.

(State Prediction)
x̂n−− − x̂n−1+

∆t
= (A + ηV ) x̂n−− + x̂n−1+

2
+Bn∣n−1θ̂

n−1
+ +R, (2.86)

(State Correction)
x̂n− − x̂n−−

∆t
= γH∗(zn −H x̂n− − x̂n−−

2
), (2.87)

(Joint Prediction)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θ̂n− = θ̂n−1+ ,

Ln
x = An∣n−1L

n
x− +Bn∣n−1,

Un = Un−1 + (Ln
x)⊺H⊺Mn

z HL
n
x,

(2.88)

(Joint Correction)

⎧⎪⎪⎨⎪⎪⎩
x̂n+ = x̂n− +Ln

x(Un)−1(Ln
x)⊺H⊺Mn

z (zn −Hx̂n−),
θ̂n+ = θ̂n− + (Un)−1(Ln

x)⊺H⊺Mn
z (zn −Hx̂n−). (2.89)

Using the arguments presented in [Chapelle et al., 2009,Moireau and Chapelle, 2011,Moireau

et al., 2007] this methodology can be used in a nonlinear setting using a reduced-order Un-

scented Kalman filter.

2.4 Example of application using cine-MR images

In this section we propose an example of application using cine-MR images. More pre-

cisely, we assume that a prior step of image processing led to the construction of the endo-

and epicardium surfaces of the left ventricle. To simulate this processing step we extract

from an infarcted direct simulation the parts of the model geometry corresponding to the

external surface of the left ventricle.

2.4.1 Available informations and discrepancy measure

Obviously, in practical cases, no one-to-one mapping from the model left ventricle sur-

face and the data surfaces are available. Therefore, following [Moireau et al., 2009, Chabin-

iok et al., 2011], we compare the estimated surfaces and the data using a signed distance

function. This example directly enters in the case of implicit discrepancy measure. More

precisely, defining S0 as the model left ventricle surface in the reference configuration and
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in light of (2.36) – where we have detailed a nudging procedure for direct partial displace-

ment feedback on the boundary – we aim at feeding the data assimilation procedure with

the following fidelity-to-data term:

ED(x̂, S) = 1

2
∥ExtS0

(dist(x̂, S) ; nS)∥2Ee . (2.90)

In (2.90) we denoted by S the data surface and dist(x̂, S) the signed distance between an

estimated position x̂ and the data surface S, typically defined by

dist(x̂, S) = (x̂ −ΠS x̂) ⋅ nS . (2.91)

In (2.90) and (2.91) we have defined nS the normal of the data surface S at the projection of

the estimation point on S, namely ΠS x̂. It should be noted that nS clearly depends on the

estimated position x̂.

Once the fidelity-to-data is defined, the next step – in order to build the dynamical system

verified by the state observer – is to differentiate this term with respect to a test displace-

ment. In this case, the dependancies of ED(x̂, S) are twofold: the first one is in the distance

operator and the second one is in the vector field used to define the extension operator.

More precisely, as explained at the end of Section 2.2.2, if we define the vector field u ∈ X y as

u = ExtS0
(dist(x̂, S) ; nS),

then u is equivalently represented as the solution of the optimization problem

min
u⋅nS=dist(x̂,S)

1

2
∥u∥2Ee . (2.92)

Introducing λ as the Lagrangian multiplier, this optimization problem is equivalent to

min
u∈X y

max
λ∈L2(S0)

1

2
∥u∥2Ee + (λ,u ⋅ nS − dist(x̂, S))L2(S0)

,

thus, leading to the mixed formulation, ∀(v♭, µ∗) ∈ X y ×L2(S0),
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(u, v♭)

Ee
+ (λ, v♭ ⋅ nS)L2(S0)

= 0,
(u ⋅ nS , µ∗)L2(S0)

= (dist(x̂, S), µ∗)L2(S0)
.

Therefore, differentiating this formulation with respect to a test displacement δy ∈ X y leads

to ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(dyu ⋅ δy, v♭)Ee + (dyλ ⋅ δy, v♭ ⋅ nS)L2(S0)

= − (λ, v♭ ⋅ (dynS ⋅ δy))L2(S0)
,

(dyu ⋅ δy) ⋅ nS = δy ⋅ nS − u ⋅ (dynS ⋅ δy).
We note that the derivative of the normal appears in these two equations. These terms lead

to further complications that we do not intend to manage. Instead we propose to define an

approximation of the differentiation of the extension, so that the strong formulation of the

state observer becomes
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂y = v̂ + γExtS0
(dist(x̂, S) ; nS), in Ω0,

˙̂v − div(σ(ŷ)) = 0 , in Ω0,

σ(ŷ) ⋅ n = 0, on ∂Ω0,

ŷ(0) = y
0
, v̂(0) = y

1
.

(2.93)

2.4.2 Applications using synthetic data

In these examples of applications we extract from the direct simulations of Figure 1.20

(infarcted represented with a lower contractility) and Figure 1.21 (infarcted represented with

a lower contractility and a higher stiffness) the external surface of the left ventricle. In both

cases we try to retrieve in one run of the sequential data assimilation method the values

of the parameter. In a first case we have the exact location of the infarcted region (but not

the values of the parameter) – this case will be referred to as the 2-Regions case – and in

a second case we use the AHA-Regions to retrieve both the location and the intensity of the

infarct.

Estimation of contractility, 2-Regions case. This case is the simplest case that we con-

sider. The infarct location is give and we propose to estimate only 2 active parameters in the

two regions (one region to account for the infarct and another one for the rest of the heart).

In figure 2.2 we plot the evolution during the one simulation run of the data assimilation

method with a large confidence in the data represented by a large weight on the observa-

tion norm, namely Mz = 107 ×MS0
(where MS0

is the mass norm on the external surface of

the ventricle). We see that the mean value of the parameters (the cyan solid line) and the

standard deviations of the parameters (the cyan dashed lines) converge towards the correct

values (the black solid line).

When we decrease the weight on the observation norm – as an example, Figure 2.3

shows the evolution of the parameters withMz = 105×MS0
– we observe that the parameters

converge slowly towards the exact value and the trust region, delimited by the standard

deviation, becomes naturally wider.
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Figure 2.2: Estimation of active parameters using endo- and epicardium synthetic

segmentation, Mz = 107 ×MS0
.
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Figure 2.3: Estimation of active parameters using endo- and epicardium synthetic

segmentation, Mz = 105 ×MS0
.
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Estimation of contractility, AHA-Regions case. In this case we perform parameter iden-

tification without any prior an the infarct location. In order to retrieve the location and the

intensity of the infarct, we use the AHA decomposition of the myocardium (See Figure 1.3

of Chapter 1) and we propose a piece-wise constant representation of the (spatially varying)

active parameter. Figure 2.4 shows the obtained parameter at the end of the simulation

run. The target parameters are obtained by interpolating the 2-Region mesh used in the

(infarcted) direct simulation (and presented in Figure 1.15 of Chapter 1) into the AHA-Region

mesh.
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Figure 2.4: Estimation of active parameters using endo- and epicardium synthetic

segmentation, Mz = 107 ×M.

We clearly see from Figure 2.4 a good reconstruction of the infarct location and also a

correct estimation of the parameters.

Estimation of stiffening and contractility, 2-Regions case. In this case, we propose to

perform the identification of the active and passive parameters used in the direct simulation

presented in the Figure 1.21 of the Chapter 1. The difficulty in this exercise is that during the

heart cycle the purely passive behavior of the heart is visible only during a short time at the

end of the ventricular diastole. Hence, it is during this time window that the estimation of

passive parameters can be performed.

In Figure 2.5 we show the evolution of the four parameters (two passives and two actives)

during one simulation run with a high confidence in the data, i.e. Mz = 107 ×MS0
. Even

though the reconstruction of the passive parameters is remarkably good, it is striking to see

that as soon as the contraction starts the estimation of the passive parameters stops. The

estimation of the active parameters is slightly deteriorated but, over all, it provides a correct

estimation.

When setting Mz = 105 ×MS0
, we see in Figure 2.6 that the estimation of the passive

parameters dramatically deteriorates. This is another illustration of the fact that the visibility

of the passive parameters in the cardiac cycle is very limited.
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Figure 2.5: Estimation of passive and active parameters using endo- and epicardium

synthetic segmentation, Mz = 107 ×MS0
.
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Figure 2.6: Estimation of passive and active parameters using endo- and epicardium

synthetic segmentation, Mz = 105 ×MS0
.
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Estimation of stiffening and contractility, AHA-Regions case. We finally provide a pas-

sive and active parameter estimation, without a priori on the infarct location, and using the

AHA regions as a spatial discretization of the parameters.
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Figure 2.7: Estimation of passive and active parameters using endo- and epicardium

synthetic segmentation, Mz = 107 ×M.

Figure 2.7 shows the set of parameters (active parameters in the row and passive pa-

rameters in the second row). While the estimation of active parameters is quite good, the

passive parameters are not well estimated nor can we even extract from this estimation –

when looking only at the passive estimation – the location of the infarct. Moreover in Fig-

ure 2.8 we show the evolution in time of these parameters and we clearly observe that the

passive parameters are totally hidden by the active parts.
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Figure 2.8: Time evolution of active (left column) and passive (right column) estimated

parameters using endo- and epicardium synthetic segmentation, Mz = 107 ×M.
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Data assimilation of time under-sampled measurements using ob-

servers, application to wave-like equations.

The main motivation of this work comes from the simple fact that, in a clinical routine, the

MR images are most likely to have a coarse distribution in time compared with the time line

of the numerical procedure. For example, the cine-MR images usually represents a sequence

of ~20 images in a cardiac cycle.

This clearly discards any hope of proposing a data assimilation method that use velocity

informations obtained by differentiating the observations with respect to the time variable

but more importantly it addresses the issue of manipulating – in a data assimilation proce-

dure – these highly coarse data. To circumvent this difficulty, it is common to use a time in-

terpolation scheme to reconstruct a continuous distribution of the data. For instance – in the

context of cardiac modelling – authors in [Moireau et al., 2009,Chabiniok et al., 2011,Bertoglio

et al., 2012, Chabiniok et al., 2012, Moireau et al., 2013] provide some estimation results ob-

tained using the filtering procedure described in this Chapter with a linear time interpolation

of the discrepancy measure. In this work in collaboration with N. Cîndea and P. Moireau,

we propose to study an observer built for vibrating systems – typically used for state esti-

mation – and that assimilates observations only when they are available. We also propose

to compare this strategy with the observer using an interpolation scheme – typically linear.

The comparison is carried out both theoretically – since we provide convergence estimates

in both cases – and numerically.The numerical assessment of these approaches is first per-

formed from a spectral analysis in the particular example of the (1D) wave equation. This

enables us to choose an optimal gain for the two observers and to infer an empirical law

linking these gain values and the ratio between the sampling and the numerical time step.

Secondly we compare the efficiency of the two observers in different cases by varying the

initial noise in the system and the sampling period.

The conclusions are twofold. First we observe that the interpolation remains valid in

the case of reasonable repartition (in time) of the data with potentially high levels of noise.

This particularity comes from the presence, at each time step, of the stabilized operator.

Secondly, in the case of poor data availability the on/off switch appears to be quite robust

since no interpolation error – otherwise entering as a source term in the estimation error

dynamical system – are introduced.
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1 Introduction

The discipline of data assimilation historically appeared in the context of meteorology and
oceanography – see for example the recent surveys [Blum et al., 2008, Corpetti et al., 2009] –
but has also reached new fields of research for instance in life sciences [Chapelle et al., 2013].
The two main ingredients in a data assimilation formulation are the model and the data. On
the one hand, the model regroups physical information on the system under consideration
encapsulated in a mathematical dynamical system – mostly based on (nonlinear) evolution
partial differential equations in the data assimilation community – and allows after discretization
to simulate various configurations of interest. However, the model contains a various range of
potential errors, for example: on the operator driving the dynamical system, on the boundary
conditions or on the initial conditions. On the other hand, the data bring complementary and
valuable information on the studied system but they are often partial – in space and time – and
are likely to be corrupted by the noise inherent to any measurement process. Data assimilation
aims at providing a reconstruction of the (observed) real trajectory by coupling the information
contained in the model and in the data, hence filtering their respective uncertainties.

To reach this goal several strategies have been considered which are traditionally classified
into two main families. The two approaches can be considered in a stochastic or deterministic
formalism but we will focus here on the deterministic one. The first family of methods is called
the variational approach [Papadakis and Mémin, 2008, Navon, 2008] which, in essence, seeks
to minimize a functional that balances the various uncertainties present in the model and the
data. The second one – of interest in our work – is the family of sequential methods where
the discrepancy between the simulated system and the data at hand is filtered in time in order
to adjust to the pursued trajectory. More precisely, a sequential data assimilation procedure
provides an observer x̂ of the exact trajectory x● – more often referred to as an estimator in
the stochastic context. The evolution satisfied by this observer is written in a general form
of a dynamical system with a feedback law based on the discrepancy between the model and
the data. The most popular observer is the Kalman filter formulated by equivalence with an
optimal criterion minimization [Bensoussan, 1971, Simon, 2006], hence applicable to any model.
However it ultimately leads to operators which are after discretization numerically intractable.
As an alternative for this “curse of dimensionality” – in the context of the wave-like systems
considered in the present article – several works [Ramdani et al., 2012, Moireau et al., 2009,
Li and Xu, 2011, Bertoglio et al., 2013] have proposed simplified but effective feedback laws
directly based on the physical properties of the system at hand. This strategy was originally
introduced by Luenberger [Luenberger, 1971] in a general context and is also denominated
nudging in the data assimilation community [Hoke and Anthes, 1976, Auroux and Blum, 2007].
In essence, this procedure only seeks to stabilize the dynamical system satisfied by the estimation
error x̃ = x● − x̂ without relying on any optimality condition.

In general, these observers are defined in an abstract time continuous framework assuming
that the model and the data are available at any time. This clearly represents the asymptotic
of any real configuration where in general the data are time-sampled. Eventually the model
should be considered with its time-discretization which has no reason to be dependent of the
time-sampling of the data. Therefore, we must analyze the impact of the data discretization in
the observer definition. In particular, we are concerned by coarse data in time with respect to the
model discretization. As an illustration, we can cite the case of image sequences assimilation
for cardiovascular systems – described e.g. in [Chabiniok et al., 2011, Imperiale et al., 2011,
Moireau et al., 2013] – where the time-sampling of the data is of one or two orders of magnitude
larger than the model time-step discretization. Facing this situation, there exist two alternatives.
The first one – considered for example in [Moireau et al., 2009] – consists in interpolating the

132



data in time in order to regenerate a time-continuous sequence which can then be compatible
with any time discretization of the model. This approach is very attractive from an abstract
standpoint but at the price of an additional time-interpolation error perturbing the observer
dynamics as any other measurement noise. Moreover, this perturbation has the consistency of
the data sampling period. A second approach – often used in practice without even mentioning
it – is to compute the discrepancy only when the data are available. This intermittent correction
is potentially error free but may induce correction shocks which limit the stabilization of the
error between the observer trajectory and the pursued trajectory.

In this paper, we address the issue of analyzing a data assimilation procedure where an
intermittent feedback law is defined and compared to a procedure where a time interpolation
of the data is considered. The comparison is carried out both theoretically – since convergence
estimates are provided in both cases – and numerically – using a simple one-dimensional wave
equation model. Indeed, we restrict our analysis to the specific case of a wave-like system and
the Luenberger associated observer proposed in [Moireau et al., 2009]. However, this work is in-
tended to illustrate how the data time-sampling influences the definition of any data assimilation
sequential strategy.

The outline of the paper is as follows. In Section 2 we introduce the observer methodology
in the case of wave-like systems and we propose two types of time discretization presented in
a general form. In Section 3 we provide convergence estimates of both observers. Section 4
and Section 5 are then devoted to numerical illustrations where (1) we analyse the spectra of
the stabilized operators appearing in the dynamical systems satisfied by the estimation error in
order to provide an optimal gain for both observers and (2) we provide time simulations which
illustrate the robustness of the on/off switch strategy with respect to the strategy where the
data are (poorly) interpolated.

2 Time discrete observer design

2.1 Nudging for wave-like systems

We consider in this work a general class of second order hyperbolic systems in bounded
domain characteristic of wave equations or elasticity systems. These models typically corre-
spond to simplified situations of those encountered in the cardiac modeling context where a
heart mechanical model is registered on coarse data obtained from a sequence of few medical
images [Sainte-Marie et al., 2006, Moireau et al., 2009]. Formally we introduce a Hilbert spaceH endowed with the inner product (⋅, ⋅) and we denote by ∥ ⋅ ∥ the associated norm. Then, we
define a self adjoint operator A0 ∶ D(A0) →H, positive-definite with compact resolvent and we
consider the general class of systems

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẅ(t) +A0w(t) = 0,
w(0) = w0 + ζ0, ẇ(0) = w1 + ζ1,

(1)

where ẋ denotes the time derivative of any variable x, (ζ0, ζ1) represent some potential errors on
the initial conditions and (w0,w1) are some known a priori. We point out that (1) represents
a conservative system and, therefore, any errors on the initial conditions are conserved in time.
Denoting by

x(t) = (w(t)
ẇ(t)) ∈ X = D(A

1

2

0 ) ×H,
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we can rewrite (1) as a first-order system

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ(t) = Ax(t), t > 0
x(0) = x0 + ζ, (2)

where x0 = (w0 w1)⊺, ζ = (ζ0 ζ1)⊺ and A ∶ D(A)→ X is defined by

D(A) = D(A0) × D(A 1

2

0 ), A = ( 0 ✶−A0 0
) .

On this system we consider a particular target system x● associated with a specific unknown
ζ●. Moreover, we assume that measurements z – also called observations – are available and
defined by

z(t) =Hx●(t), t > 0, (3)

where H ∈ L(X ,Z) is the so-called observation operator and Z is the Hilbert space associated
with the observations endowed with its norm ∥ ⋅ ∥Z . For the sake of simplicity we restrict
ourselves to bounded observation operators but a more general class of admissible observation
operators can also be considered [Tucsnak and Weiss, 2009]. The observation operator can be
applied to any solution of (2) and we assume that the pair (A,H) is exactly observable in a
time Tobs, i.e. there exists a constant Cobs > 0 such that every solution of (2) satisfies

∫ Tobs

0
∥Hx(t)∥2Z dt ≥ Cobs∥x(0)∥2X , x(0) ∈ X . (4)

In order to benefit from the available data z(t) and considering only the available a priori x0 that
we have on the initial condition, we consider the Luenberger observer x̂(t) [Chapelle et al., 2012a]
– see also similar formulations in [Ervedoza and Zuazua, 2009, Ramdani et al., 2012] – estimat-
ing x●(t) from the dynamics

⎧⎪⎪⎪⎨⎪⎪⎪⎩
˙̂x(t) = Ax̂(t) + γH∗ (z(t) −Hx̂(t)) , t > 0
x̂(0) = x0, (5)

where H∗ ∈ L(Z,X ) is the adjoint of the observation operator and γ > 0 is a gain parameter.
We justify the use of this observer by noticing that the estimation error x̃(t) = x●(t) − x̂(t)
satisfies the – damped – dynamics

⎧⎪⎪⎪⎨⎪⎪⎪⎩
˙̃x(t) = (A − γH∗H)x̃(t), t > 0
x̃(0) = ζ●. (6)

Provided that H satisfies (4) it is well known – see e.g. [Liu, 1997] – that the error is exponen-
tially stable, namely there exist two constants M > 0 and µ > 0 such that

∥x̃(t)∥X ≤M exp(−µt)∥x̃(0)∥X , t > 0. (7)

Remark 1
In the filtering strategy described by (5) we see that the initial dynamics (2) is modified by a
feedback law where the so-called gain operator is, here, simply given byG = γH∗. In comparison,
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in the context of Kalman filtering [Bensoussan, 1971, Simon, 2006], the gain is given by G =
P (t)H∗, where P ∈ L(X ,X) satisfies the Riccati equation

Ṗ = AP + PA∗ + PH∗HP, P (0) = P0,

in the mild sense.

Remark 2
We may distinguish in the wave-like equation context two classes of observation operators. The
one corresponding to velocity observations, namely H = (0 H0), and the one corresponding to

the direct observation of the field, i.e. H = (H0 0). It should be noted that in the context
of poor time resolution of the data the two cases are indeed two independent situations since
the data cannot be differentiated with respect to time without dramatically amplifying the
measurement noise. We point out that the exponential convergence of these two classes of
observers have been demonstrated. The first one is standard see [Haraux and Zuazua, 1988,
Cox and Zuazua, 1994, Moireau et al., 2007]. The second one is less classical since the adjoint
H∗ induces a modification of the identity between the time-derivation of the field and the
velocity. This observer can therefore only be considered as a virtual system and has been
demonstrated to converge in [Chapelle et al., 2012a, Chapelle et al., 2012b]. Ultimately the
exponential convergence of both observer systems requires the geometric control conditions to
be satisfied – see [Bardos et al., 1992] for the wave equation and [Daoulatli et al., 2010] for the
elasticity system.

2.2 Time discrete observer

In the first section, we have introduced an abstract observer which assumes that the data at
hand are available at any time. However in practice, they are time-sampled and we want to study
the influence of their discretization in the definition of the observer. In this respect, we decide to
directly introduce the time-discretization avoiding the technicalities induced by potential Dirac
distributions associated with the data time-sampling. However, we should consider an observer
time-discretization which conserves at the time-discrete level – and uniformly with respect to
the time-discretization – the stability properties of the estimation error. Unfortunately, when
discretizing in time systems such as (6) spurious high-frequency modes may arise provoking
the loss of the uniform decay rate of the error – see e.g. [Zhang et al., 2007, Zuazua, 2005,
Ervedoza and Zuazua, 2009]. These modes cannot be captured by the localized observation
operator, thus leading to a loss of uniform observability. In other words, a direct discretization
of the observer (5) for example using conservative mid-point rules

x̂n+1 − x̂n
∆t

= Ax̂n+1 + x̂n
2

+ γH∗(zn+1 + zn
2

−H x̂n+1 + x̂n
2

) (8)

may not satisfy at the discrete-level a time-discrete counterpart of the observation inequality
(4) of the form

Nobs∑
n=0

∥Hx(n∆t)∥2Z ≥ Cobs (∥w0∥2
D(A

1
2
0
)
+ ∥w1∥2) . (9)

Note that in (8) we still avoid to consider the time sampling of the data and denote by

zn =Hx●(n∆t), (10)

a discrete (in time) observation potentially available at any model time-step.
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Remark 3
We should point out that the observation inequality (9) can be expected to be obtained from
its continuous counterpart (4) only with a time discretization small enough so that there is
several time steps included in the characteristic time associated with the smallest frequency
of the system. Otherwise, we could imagine a degenerate situation where the measurements
are considered at the exact same frequency than a system mode making it unobservable. This
condition on the data sampling will be assumed to be satisfied in the rest of the article.

To circumvent this difficulty, authors in [Ervedoza and Zuazua, 2009] propose two main
options. The first possibility is to impose a (restrictive) CFL condition that discards these
undesired high frequency modes. The second option consists in adding an artificial viscous
term consistent with the order of the numerical scheme and responsible for the dissipation of
the spurious modes. Among various possibilities detailed in [Ervedoza and Zuazua, 2009], we
retain for instance the discretization

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂n+1− − x̂n+
∆t

= Ax̂n+1− + x̂n+
2

, n > 0
x̂n+1+ − x̂n+1−

∆t
= γn+1H∗(zn+1 −Hx̂n+1+ ) + ν∆tA

2x̂n+1+ , n > 0

x̂0+ = ⎛⎝w0

w1

⎞⎠ ,
(11)

where some numerical viscosity is introduced with the specific viscous operator (suggested by
[Ervedoza and Zuazua, 2009])

A2 = (−A0 0
0 −A0

) , (12)

and ν∆t controls the amount of this numerical viscosity. In order to respect the order of con-
sistency of this time scheme – and as advised in [Ervedoza and Zuazua, 2009] – we ought to
set ν∆t = O(∆t2). This time discretization can be understood as a prediction-correction scheme
where the dynamics of the model leading to x̂n− is then corrected by computing a model-data
interaction to produce x̂n+.

Once the time discretization of the observer is chosen, we can go back to our considerations
on the data time-sampling. We define (jr)r∈N ⊂ N as a strictly increasing sequence of natural
numbers so that the available measurements are

zr = z(jr∆t), r ∈ N. (13)

We then consider two strategies to introduce these time-sampled data in (11). The first one is
to consider the data only when they are available, hence in essence γn = 0 when the data zn is
not available. The second one consists in interpolating the data to generate an approximated
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zn for all n. We summarize these two strategies by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂n+1− − x̂n+
∆t

= Ax̂n+1− + x̂n+
2

, n > 0
x̂n+1+ − x̂n+1−

∆t
= δn+1γH∗ (dn+1 −Hx̂n+1+ ) + ν∆tA

2x̂n+1+ , n > 0
x̂0+ = (w0

w1
) = x̂0,

(14)

where (δn)n∈N and (dn)n∈N will be referred to as the switching coefficients and the interpolated
data respectively. For the first idea – named on/off switch and where the correction term only
appears when measurements are available – we have

δn = { 1
0

dn = { zr
0

if ∃r ∈ N ∶ n = jr
otherwise.

(15)

The second choice where we interpolate in time the data reads, in the particular case of linear
interpolation,

δn = 1 ∀n, dn = n − jr
jr+1 − jr zr+1 + (1 −

n − jr
jr+1 − jr ) zr jr ≤ n ≤ jr+1. (16)

Then in the next sections, we propose to study the convergence of the time-discrete observer
given by (14)-(15) – see Theorem 1 – and given by (14)-(16) – see Theorem 2.

Remark 4
There is also an exact counterpart at the time-discrete level of the popular Kalman observer
mentioned in Remark 1. The resulting time-discrete observer for the system (2)-(3) – called
Kalman-Bucy estimator [Kalman and Bucy, 1961] – is also based on a prediction-correction
paradigm reading

(Prediction)

⎧⎪⎪⎨⎪⎪⎩
x̂n+1− = An+1∣nx̂

n
+,

Pn+1
− = An+1∣nP

n
+A
∗
n+1∣n,

(17)

(Correction)

⎧⎪⎪⎨⎪⎪⎩
x̂n+1+ = x̂n+1− +∆tPn+1

+ H∗(zn+1 −Hx̂n+1− ),
Pn+1
+ = ((Pn+1

− )−1 +H∗H)−1, (18)

where we denoted by An+1∣n the state transition operator corresponding to a stable and con-
sistent discretization of the dynamical system (2) for instance in the case of a mid-point dis-
cretization

An+1∣n = (✶ − ∆t

2
A)−1(✶ + ∆t

2
A).

One can prove – see e.g. [Nichols, 2010] – that the time-discrete observer derives from seeking
the minimum value of the functional

J(x̃0) = 1

2
∥x̃0∥2P−1

0

+ 1

2

n∑
k=1

∥zk −Hxk∥2Mz
∆t, (19)

with xk subject to xk = Ak∣k−1x
k−1 and x0 = x0+x̃0. Hence, an on/off version of the Kalman-Bucy

observer corresponds to the minimum of the adequately adjusted functional

J(x̃0) = 1

2
∥x̃0∥2P−1

0

+ 1

2

cn∑
r=1

∥zr −Hxjr∥2Mz
(jr+1 − jr)∆t, (20)
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with
cn = card{j, 1 ≤ j ≤ n, δj = 1}. (21)

We expect that the proof that we will present for the nudging observer can be directly adapted
to the Kalman approach, hence justifying in the general context of sequential data assimilation
methods the choice of intermittently filtering the under-sampled data or continuously filtering
a reconstructed data by interpolation.

3 Convergence estimate for the estimation error

3.1 Convergence estimate for the on/off switch

Let us define the corrected estimation error by

x̃n+ = x●(n∆t) − x̂n+, (22)

and the corresponding predicted estimation error by

x̃n− = x●(n∆t) − x̂n−, (23)

where x● is the exact solution of (2) and x̂n+ and x̂n− satisfy (14)-(15). We start by giving the
dynamical system satisfied by this estimation error in the following proposition.

Proposition 1. Assuming that x0 ∈ D(A2
0)×D(A 3

2

0 ), the estimation errors defined by (22) and
(23) satisfy the following discrete dynamical system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃n+1− − x̃n+
∆t

= Ax̃n+1− + x̃n+
2

+ εn+1,
x̃n+1+ − x̃n+1−

∆t
= −δn+1γH∗Hx̃n+1+ + ν∆tA

2x̃n+1+ + εn+1ν ,

x̃0+ = x0 − x̂0,
(24)

where the consistency terms are

RRRRRRRRRRRRRRRRRRRRR

εn+1 = ∆t2

2
A3(1

3
x●(tn) − 1

2
x●(rn)), with tn, rn ∈ [n∆t; (n + 1)∆t],

εn+1ν = −ν∆tA
2x●((n + 1)∆t).

(25)

Proof. Starting from the definition of the predicted estimation error and from the correction
phase of the observer (14) we obtain

x̃n+1− = x●((n + 1)∆t) − x̂n+1+ + δn+1∆tγH∗(dn+1 −Hx̂n+1+ ) + ν∆t∆tA2x̂n+1+= (✶ + δn+1∆tγH∗H)x̃n+1+ + ν∆t∆tA
2x̂n+1+= (✶ + δn+1∆tγH∗H − ν∆t∆tA2)x̃n+1+ −∆tεn+1ν ,

which is exactly the second equation in (24). Secondly, to obtain the remaining equation it
suffices to notice that

x̃n+1− − x̃n+
∆t

= x●((n + 1)∆t) − x●(n∆t)
∆t

− x̂n+1− − x̂n+
∆t

.
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Hence, using a first-order finite difference approximation of ẋ●((n + 1)∆t), from the above
equality – assuming enough regularity on the initial condition – we can assure that there exist
a time tn and a time rn ∈ [n∆t; (n + 1)∆t] such that

x̃n+1− − x̃n+
∆t

= ẋ●((n + 1)∆t) + ẋ●(n∆t)
2

− x̂n+1− − x̂n+
∆t

+ ∆t2

2
(1
3

...
x ●(tn) − 1

2

...
x(rn)).

Therefore, from (2) and the first equation of (14) we conclude the proof. ∎
From this first result we can now give the convergence estimate for the on/off observer.

Theorem 1
Let A be a skew-adjoint operator with compact resolvent and H ∈ L(X ,Z) be a bounded linear
observation operator such that the observability inequality (4) holds. Assume that there exists
ρ ∈ (0,1] such that cn defined by (21) satisfies

cn ≥ ρn, n > 0. (26)

Then, for every x0 ∈ D(A2
0)×D(A 3

2

0 ) there exist positive constants M0, µ0, C1 and C2, indepen-
dent of ∆t ∈ (0,1) and n, such that x̃n+ solution of (24) satisfies

∥x̃n+∥X ≤M0 exp(−µ0cn∆t)∥x̃0∥X + ∆t

1 − exp(−µ0ρ∆t)(∆t2C1 + ν∆tC2). (27)

Proof. From the system (24) we can explicitly compute x̃n+1+ function of x̃n+, ε
n+1 and εn+1ν by

the following relation

x̃n+1+ = Pn+1Q x̃n+ +∆t(Pn+1εn+1 +Rn+1ε
n+1
ν ), (28)

where Pn, Q, Rn ∈ L(X ) are given byRRRRRRRRRRRRRRRRRRRRRRRRR

Pn = (✶ + δnγ∆tH∗H −∆tν∆tA
2)−1 (✶ − ∆t

2
A)−1 ,

Q = ✶ + ∆t

2
A,

Rn = (✶ + δnγ∆tH∗H −∆tν∆tA
2)−1 .

Note that since both semigroups generated by operators (∆tν∆tA
2−γ∆tH∗H) and A respectively

are semigroups of contraction we have that Pn and Rn are well defined and ∥Pn∥L(X) < 1 and∥Rn∥L(X) < 1 (see, for instance [Tucsnak and Weiss, 2009]). Hence, using this notation we can
write (24) as follows

x̃n+ = ⎛⎝
n∏
j=1

PjQ
⎞⎠ x̃0+ +∆t

n−1∑
i=0

⎛⎝
i∏

j=1

PjQ
⎞⎠(Pn−iεn−i +Rn−iε

n−i
ν ). (29)

Remark that if δn = 0 then PnQ is the operator driving the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃n+1− − x̃n+
∆t

= Ax̃n+1− + x̃n+
2

,

x̃n+1+ − x̃n+1−
∆t

= ν∆tA
2x̃n+1+ ,

x̃0+ = x0 − x̂0,
(30)
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which is a dissipative scheme, thus ∥PnQ∥L(X) ≤ 1. On the other hand, if δn = 1 then PnQ is
the operator driving the homogeneous error system (24) which is exponentially stable as long
as the observability inequality (4) is satisfied [Ervedoza and Zuazua, 2009]. Hence, there exist
two positive constants M0 and µ0 such that

XXXXXXXXXXX
n∏
j=1

(PjQ)XXXXXXXXXXXL(X) ≤M0 exp(−µ0cn∆t), n ∈ N. (31)

Combining (29), (31) and the fact that ∥Pn∥L(X) < 1 and ∥Rn∥L(X) < 1 we obtain the following
estimate

∥x̃n+∥X ≤M0 exp(−µ0cn∆t)∥x̃0+∥X +∆t
n−1∑
i=0

exp(−µ0ci∆t)(∥εn−i∥X + ∥εn−iν ∥X )
≤M0 exp(−µ0cn∆t)∥x̃0+∥X + ∆t

1 − exp(−µ0ρ∆t) max
1≤i≤n

(∥εi∥X + ∥εiν∥X ).
Finally, from (25) combined with the conservation of the energy associated with (2), we obtain
the final estimate (27) of Theorem 1 with

C1 = 5

12
∥A3x0∥X and C2 = ∥A2x0∥X . (32)

∎
The estimate (27) gives the convergence (in the energy norm) of the time semi-discrete

observer (14) to the solution of the continuous system (2) when n→∞ and ∆t→ 0. Moreover,
this estimate provides an explicit dependence between the error and the ratio ρ associated with
the sampling frequency. For instance, if the data time-sampling is a constant equal to ∆T we
have

ρ ∼ ∆t

∆T
.

Therefore if ∆T is large with respect to ∆t, then ρ is close to zero. Then, in the first term
of the estimate (27) right-hand side cn tends to 0 and the second term is O(∆T(∆t2 + ν∆t)).
Therefore the overall asymptotic estimate reads

∥x̃n+∥X = O(M0 +∆T(∆t + ν∆t

∆t
)).

From this asymptotic estimate, we see in the estimate (27) that the numerical viscosity coeffi-
cient appears as a consistency term, which is consistent with the fact that this artificial term
is in fact a perturbation of the standard and consistent discretization of (2). For this reason
we clearly understand why the viscosity coefficient should be kept ν∆t = O(∆t2). Furthermore,
the term M0 indicates that the initial condition error can not be stabilized. Moreover even if
M0 = 0 we see that the data time-sampling ∆T controlled the error estimate. If ∆T is typically
of the same order of magnitude as T , we retrieve the standard numerical error estimate which
deteriorates with the simulation time.

Remark 5
Note that when ρ = 1 we retrieve the estimate in [Chapelle et al., 2012b] which first exhibit
the gain offered by data assimilation strategies in numerical analysis estimates. More precisely,
in this particular case, authors in [Chapelle et al., 2012b] have shown that the numerical error
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between the exact solution and the numerical solution is bounded and independent of the total
simulation time. The input of data in the observer dynamics balances the accumulation of
numerical errors. When ρ ≠ 1, this remark is still valid but the time-sampling of the data also
governed the estimation. We provide in Section 5 a numerical illustration of this phenomenon.

Remark 6
Theorem 1 can be extended to obtain error estimates for a fully discrete observer, combining
(14) with Galerkin method. The idea is to adapt the proof of Theorem 1 using the method
described in [Chapelle et al., 2012b].

3.2 Convergence estimate using interpolated observations

Similarly to what we have proposed for the on/off strategy we analyze the time-discrete
observer that assimilates interpolated data – i.e. System (14)-(16). For the sake of clarity we
will use the same notation for the estimation error, namely

x̃n+ = x●(n∆t) − x̂n+ (33)

for the corrected estimation error and

x̃n− = x●(n∆t) − x̂n− (34)

for the predicted estimation error.

Proposition 2. Assuming that x0 ∈ D(A2
0) × D(A 3

2

0 ) then the estimation error defined by (33)
and (34) satisfies the following discrete dynamical system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃n+1− − x̃n+
∆t

= Ax̃n+1− + x̃n+
2

+ εn+1,
x̃n+1+ − x̃n+1−

∆t
= −γH∗Hx̃n+1+ + ν∆tA

2x̃n+1+ + εn+1ν + γH∗εn+1d ,

x̃0+ = x0 − x̂0,
(35)

where εn+1 and εn+1ν are given by (25) and εd is the interpolation error, namely

εn+1d =Hx●((n + 1)∆t) − dn+1. (36)

Proof. From the definition of the predicted estimation error and from the correction phase of
the observer (14) we obtain

x̃n+1− = x●((n + 1)∆t) − x̂n+1+ +∆tγH∗(dn+1 −Hx̂n+1+ ) + ν∆t∆tA2x̂n+1+= (✶ +∆tγH∗H)x̃n+1+ + ν∆t∆tA2x̂n+1+ +∆tγH∗(dn+1 −Hx●((n + 1)∆t))
= (✶ +∆tγH∗H − ν∆t∆tA2)x̃n+1+ −∆tεn+1ν −∆tγH∗εn+1d .

What remains of the proof follows the demonstration of Proposition 1. ∎
We can now give the convergence estimate in the case of interpolated data and, as a first

step, we do not make assumptions on the type of interpolation scheme.

141



Theorem 2
Making the same assumptions on A, H and x0 than Theorem 1 and denoting by

∣εd∣ = max
1≤i≤n

∥εid∥Z ,
we can state that there exist positive constantsM0, µ0, C1, C2 and C3, independent of∆t ∈ (0,1)
and n, such that,

∥x̃n+∥X ≤M0 exp(−µ0n∆t)∥x̃0∥X + ∆t

1 − exp(−µ0∆t)(∆t2C1 + ν∆tC2 + γC3∣εd∣). (37)

Proof. From the discrete dynamical system (35) satisfied by the estimation error we can extract
the explicit relation

x̃n+1+ = UVWx̃n+ +∆t(UVεn+1 + Uεn+1ν + γH∗εn+1d ), (38)

where U , V, W ∈ L(X ) are given by

RRRRRRRRRRRRRRRRRRRRRRRRR

U = (✶ −∆t ν∆tA
2 + γ∆tH∗H)−1 ,

V = (✶ − ∆t

2
A)−1 ,

W = ✶ + ∆t

2
A.

Following the same arguments as for Theorem 1

∥x̃n+∥X ≤M0 exp(−µ0n∆t)∥x̃0+∥X
+ ∆t

1 − exp(−µ0∆t) (max
1≤i≤n

∥εi∥X + max
1≤i≤n

∥εiν∥X + γ∥H∗∥L(Z,X)max
1≤i≤n

∥εid∥Z) . (39)

Hence we obtain the desired results with C1 and C2 expressed in (32) and C3 given by

C3 = ∥H∗∥L(Z,X). (40)

∎
It is striking to remark that estimate (37) directly follows intuition since, as we could imagine,

when only few data are available the interpolation error naturally increases hence the right-hand
side of (37) grows larger. Moreover, the gain γ appears as a coefficient on this part of the upper-
bound which clearly implies that the interpolation error enters in the observer dynamical system
as some additive noise on the data. To finally illustrate this phenomenon we propose to give an
a priori bound of the interpolation error in the case of linearly interpolated data.

Proposition 3. If we associate the sampling time (tr)r∈N ⊂ N to the sampling time steps(jr)r∈N ⊂ N, by tr = jr∆t and if we denote by

∆Tmax =max
r≥0
{tr+1 − tr},

then there exists a constant C4 depending only on the observation operator H and the initial
condition x0 such that ∣εd∣ ≤ C4∆T

2
max

. (41)
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Proof. To simplify the presentation we first focus our attention on the interval [t0, t1]. To start
with we remark that di in (16) can be written as

di =H ( i∆t − t0
t1 − t0 x●(t1) + t1 − i∆t

t1 − t0 x●(t0)) . (42)

Furthermore, there exists r0 ∈ [t0, i∆t] and r1 ∈ [i∆t, t1] such that

RRRRRRRRRRRRRRRRRR
x●(t0) = x●(i∆t + t0 − i∆t) = x●(i∆t) + (t0 − i∆t)ẋ●(i∆t) + (t0 − i∆t)2

2
ẍ●(r0),

x●(t1) = x●(i∆t + t1 − i∆t) = x●(i∆t) + (t1 − i∆t)ẋ●(i∆t) + (t1 − i∆t)2
2

ẍ●(r1).
Therefore, replacing x●(t0) and x●(t1) in (42) we obtain

di =H (x●(i∆t) + (t1 − i∆t)(t0 − i∆t) + (i∆t − t0)(t1 − i∆t)
t1 − t0 ẋ●(i∆t)

(t1 − i∆t)(t0 − i∆t)2
2(t1 − t0) ẍ●(r0) + (i∆t − t0)(t1 − i∆t)2

2(t1 − t0) ẍ●(r1))
hence

di −Hx●(i∆t) =H ((t1 − i∆t)(t0 − i∆t)2
2(t1 − t0) ẍ●(r0) + (i∆t − t0)(t1 − i∆t)2

2(t1 − t0) ẍ●(r1)) .
Using now the conservation of the energy associated with (2) this leads to

∥εid∥Z ≤ ∥H∥L(X ,Z)
(i∆t − t0)2(t1 − i∆t) + (i∆t − t0)(t1 − i∆t)2

2(t1 − t0) ∥A2x0∥X
and therefore

∥εid∥Z ≤ ∥H∥L(X ,Z)
(t1 − t0)2

8
∥A2x0∥X . (43)

We conclude the demonstration by giving the expression of the constant, namely

C4 = 1

8
∥H∥L(X ,Z)∥A2x0∥X .

∎
In the light of Theorem 1 and Theorem 2 we understand that the choice of the strategy,

namely either interpolated or on/off, relies on a compromise between stability and consistency.
On the one hand, the observer with intermittent correction phases bear an exact consistency
with respect to the data, however corrections shocks may occur thus leading to potential insta-
bilities. On the other hand, the observer fed with interpolated data admits a correction phase at
each model time-step – hence its greater stability – but artificially induces noise in the observer
dynamical system due to data interpolation error.

4 Numerical illustrations

We proceed in this section with the illustration of our theoretical results on a simple 1D
wave model. Our objective is to show how the two strategies can offer two different alternatives
depending on the data sampling. Namely, the on/off time discretization is a consistent formula-
tion with respect to the data sampling whereas the interpolated strategy ensures a stability at
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every time-step. We will proceed with two classes of numerical results. First we will present a
spectrum analysis to numerically demonstrate the stability properties of the proposed feedback
laws. This will in particular help us to fix the optimal gains of each method with respect to
the other. Secondly, we will present time evolution of the estimation errors for various sources
of initial uncertainties in order to show the impact of the data time-sampling in practical data
assimilation procedures.

We consider the example of the one-dimensional wave equation

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẅ(x, t) −wxx(x, t) = 0, (x, t) ∈ (0,1) × (0,∞)
wx(0, t) = wx(1, t) = 0, t ∈ (0,∞)
w(x,0) = w0(x) + ζ0(x), x ∈ (0,1)
ẇ(x,0) = w1(x) + ζ1(x), x ∈ (0,1).

(44)

In this setting we have

RRRRRRRRRRRRRRRRR
H = L2(0,1),
D(A0) = {w ∈ H1(0,1) ∣ wxx ∈ L2(0,1)} ,
A0ϕ = −ϕxx, ϕ ∈ D(A0).

It is easy to see that this particular case fits exactly in the abstract framework described in Sec-
tion 2. Concerning the observations, we follow the example presented in [Chapelle et al., 2012b]
and we assume that

z(t) = w(⋅, t)∣ω0
, t ∈ (0,∞), (45)

with ω0 =]0.3,0.7[⊂ (0,1) an open and non-empty interval. Hence, the observation space reads

Z = H1(ω0). (46)

Following [Chapelle et al., 2012a] we endow Z with the inner-product

∀ϕ1, ϕ2 ∈ H1(ω0) (ϕ1, ϕ2)Z = (Extω0
(ϕ1),Extω0

(ϕ2))H1(0,1) , (47)

where the extension operator Φ = Extω0
(φ) ∈ H1(0,1) is defined for all φ ∈ H1(ω0) as the

solution of ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Φxx = 0, x ∈ (0,1)/ω0

Φ = φ, x ∈ ω0

Φx(0) = Φx(1) = 0.
For the inner-products (⋅, ⋅)Z and (⋅, ⋅)H1(0,1), one can prove [Chapelle et al., 2012a] that the
adjoint of the observation operator is

H∗0 ∶ ∣Z →H1(0,1)
ϕ↦ Extω0

(ϕ),
and therefore the observer, decomposed into x̂ = (ŵ v̂)⊺, reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂w = v̂ + γExtω0
(z − ŵ∣ω0

),
˙̂v = ŵxx,

ŵx∣x=0 = ŵx∣x=1 = 0,
ŵ∣t=0 = w0,

v̂∣t=0 = w1.
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Figure 1: Evolution with respect to the viscous coefficient νh of the spectrum of the operator
driving the time continuous dynamical system for a fixed value of the gain γ = 5. In (black)

the operator without numerical viscosity, and in (green) with numerical viscosity.
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4.1 Spectral analysis

As the Luenberger filter aims at stabilizing the estimation error system it is natural to assess
the quality of the gain filter by evaluating its damping impact on the otherwise conservative
system. Following [Luenberger, 1971], this can be done after full discretization by observing the
evolution of the poles of the stabilized operator in both cases, namely using time interpolation
or the on/off switch.

To start with, the most natural spectrum to analyze is certainly the spectrum associ-
ated with the time-continuous observer formulation, namely with only its spatial discretiza-
tion. Then, the numerical results can be compared to the existing literature in particular with
[Moireau et al., 2009, Chapelle et al., 2012b]. This case is the asymptotic limit of the time dis-
cretization and should be considered as our ultimate goal when we expect to produce the most
accurate simulations. We will then see the impact of the time discretization in a second set of
results. Note that we must proceed with caution here since the on/off time discretization is in
essence a time-discrete strategy where we have to compose different operators over the sampling
period.

4.1.1 Time continuous spectral analysis

Loss of uniform stability after discretization and numerical viscosity After spatial
discretization, the estimation error dynamical system (6) reads

˙̃xh(t) = (Ah − γH∗hHh)x̃h(t), (48)

where Ah and Hh are consistent discretization – w.r.t a space step h – of the model and the
observation operator. Even though the observability inequality (4) is satisfied at a continuous
level, this discretization procedure already produces – similarly to what we have mentioned in the
case of time discretization – some spurious modes inducing the loss of the exponential stability
of (48) – see [Ervedoza and Zuazua, 2009]. To circumvent this difficulty we have introduced
some artificial viscosity for the time discretization which should also take into account the
spatial discretization. When ∆t → 0 we obtain the time-continuous error dynamics studied in
[Ervedoza and Zuazua, 2009], namely

˙̃xh(t) = (Ah − γH∗hHh + νhA2
h)x̃h(t). (49)

Therefore, we start our numerical investigations with Figure 1 where we plot the evolution
of the spectrum of the operator driving the dynamical system (49) w.r.t. various values of the
artificial viscosity coefficient. These spectra are compared with the spectrum of the operator
without numerical viscosity. By these examples we illustrate – in the particular case of the
spatial discretization of 1D wave equation using first order finite element method – the creation
of spurious high-frequencies that cannot be stabilized by the feedback operator H∗hHh. Hence,
stabilizing the complete frequency range is then performed by decomposing the tasks. The
feedback operator manages the low frequencies whereas the high frequencies are controlled by
the numerical viscosity.

It should be noted, however, that since this artificial viscosity corresponds to a perturbation
of the standard discretization of the problem it should be kept as low as possible. In practice
the choice of the coefficient νh can be done with an a priori knowledge (or estimation) of the
frequencies appearing in the specific problem of interest. However, in the rest of our following
investigation we will keep a numerical viscosity strong enough to produce unclouded figures.
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Figure 2: Evolution with respect to the gain γ of the spectrum of the operator driving the
time continuous dynamical system. In (black) the operator without numerical viscosity, with

numerical viscosity in (green).
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Overdamping effect and optimal choice of the gain We plot in Figure 2 the spectra for
various values of the gain parameter γ – in (black) the operator without numerical viscosity
and in (green) the operator with numerical viscosity. We fix in these examples νh = h2. These
plots enable us to illustrate the classical overdamping effect numerically pointed out by authors
in [Moireau et al., 2009]. As the gain increases, the frequencies, after being shifted towards the
left half plane, start to go back to the imaginary axis. This is particularly critical for the low
frequencies. This effect is crucial when choosing an adequate value of the gain with an order of
magnitude of

γ ∼√2ω0

with ω0 the lower frequency of the system, see [Moireau et al., 2009]. This indicates that, first,
even in the unrealistic case of an outstanding data-to-noise ratio, the gain cannot be chosen
“as large as possible”. In other words after some particular value of the gain the ability of the
observer to stabilize these low frequency modes looses its efficiency. Hence, the choice of the
gain is a compromise between the different range of frequencies we aim at stabilizing. In our
work we opt for a sort of “mean” strategy by choosing γ such that a maximum of frequencies are
shifted significantly to the left half plane without compromising too much the low frequencies
which are more present in the potential errors in practice. As an example in Figure 2 we choose
γ = 9.
4.1.2 Spectral analysis of the time discrete observers

Once we have understood the behavior of the time-continuous observer and choosen a tar-
get optimal gain we can now proceed to the numerical study of our different choices of time-
discretization.
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Figure 3: Comparison between the spectra of the time continuous operator (in (green)) and
the time-discrete observer using interpolated data (in (cyan)) with time overkill.

Relation between optimal gains and the sampling period In order to study the time
discrete observers, we need to define the two transition operators driving the homogeneous
equivalent of system (35) either with numerical viscosity or not, namely

RRRRRRRRRRRRRRRR
A

γ
n+1∣n

= (✶ + γ∆tHh
∗Hh)−1(✶ − 1

2
∆tAh)−1(✶ + 1

2
∆tAh),

A
γν
n+1∣n

= (✶ −∆tνA2
h + γ∆tHh

∗Hh)−1(✶ − 1

2
∆tAh)−1(✶ + 1

2
∆tAh),
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where, if x̃n+ is the solution of the system (35) with ε = εν = εd = 0, then
x̃n+1+ = Aγν

n+1∣n
x̃n+,

and, if ν∆t = 0 in (35), then
x̃n+1+ = Aγ

n+1∣n
x̃n+.

Note that in the definition of Aγν
n+1∣n

, the parameter ν aims at adjusting the amount of numerical

viscosity in order to discard spurious modes arising from the time discretization but also the
space discretization – see Section 4.1.1. Combining the necessary restrictions arising from both
time and space discretization, we understand that we need to choose here the global viscosity
coefficient as

ν = O(max{∆t2, h2}).
We now link the eigenvalues α and αν of the time discrete observer to the one corresponding

to the time continuous observer. Therefore, let us denote by λ an eigenvalue of the operator
Ah−γH∗hHh to be compared with α. If we initialize the time discrete and time continuous system
with the correponding eigenvectors vλ and uλ then (from the explicit form of the dynamics) we
obtain that, at a given time n∆t

∣ vλ(n∆t) = vλ exp(λn∆t)
unλ+ = uλαn,

hence seeking vλ(n∆t) ∼ unλ+ induces λ = ln(α)
∆t

. To numerically validate these arguments we

plot in Figure 3 the values

log(α)
∆t

(black) and
log(αν)

∆t
(cyan).

In order to be able to compare with the time-continous spectrum we set ∆t = h2 – this configu-
ration can be understood as an overkill in time – and we observe a perfect match between the
two plots.
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Figure 4: Comparison between the spectra of the time continuous operator (in (green)) and
the time-discrete observer using interpolated data (in (cyan)).

In Figure 4 we represent a configuration where ∆t = h. Here the spectrum differs from the
time-continuous analysis. We see that additional spurious high frequencies are not controlled by
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the stabilization operator. This justifies even more the use of numerical viscosity which allows
to keep the gain chosen in the time-continuous setting. But ultimately, the choice of the gain
made with respect to the time-continuous case is very robust to all time-step discretizations.

We can now move to the analysis of the on/off discrete operator in order to determine the
associated optimal gain. In this perspective it is convenient to seek for the time-continuous
limit, therefore we consider a time overkill situation by setting ∆t = h2. Then, to fix the ideas,
we consider the case where ∆T = 5∆t, namely

∀r ∈ N (jr+1 − jr) = 5.
We introduce the transition operators from time tn to tn+5 as

RRRRRRRRRRRRRRRRRRRRRRRRRR

Bγ
n+5∣n

= ((✶ − 1

2
∆tAh)−1(✶ + 1

2
∆tAh))4((✶ + γ∆tHh

∗Hh)−1(✶ − 1

2
∆tAh)−1(✶ + 1

2
∆tAh)),

Bνγ
n+5∣n

= ((✶ −∆tνA2
h)−1(✶ − 1

2
∆tAh)−1(✶ + 1

2
∆tAh))4

((✶ −∆tνA2
h + γ∆tHh

∗Hh)−1(✶ − 1

2
∆tAh)−1(✶ + 1

2
∆tAh)),

and we denote by β̃ and β̃ν the corresponding eigenvalues. These operators should be compared
to their equivalent transition operators from time tn to tn+5 in the interpolated case, namely
the simple composition

Aγ
n+5∣n

= (Aγ
n+1∣n

)5 and Aγν
n+5∣n

= (Aγν
n+1∣n

)5,
with corresponding eigenvalues α̃ and α̃ν . Then, in Figure 5 we show

log(β̃)
∆T

(black) and
log(β̃ν)
∆T

(red),

compared with α̃ and α̃ν in the time overkill configuration.
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Figure 5: Comparison between the time-discrete on/off observer (in (red)) and the
time-discrete observer using interpolated data (in (cyan)) to illustrate the relation between the

optimal gains in a time overkill context.

We set the gain value for the on/off observer five times larger than in the interpolated case
and we observe a perfect match. Consequently these numerical arguments confirm the intuition
that, in order to obtain similar damping rates between the two strategies, the gain value γswitch
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for the on/off switch needs to be five times larger than the gain value γint. for the interpolation
strategy. In a general context we can infer the empirical law

γswitch

γint.
= ∆T

∆t
(50)

and we point out that we do not face any overdamping phenomena which could have limited
the increase of the gain in the on/off switch which is an important contribution of our numerical
investigations.

Comparing stabilization properties of the observer We can now analyze a more intri-
cate case where ∆t = h. We continue to fix the ratio ∆T = 5∆t and the spectra of both observers
are presented in Figure 6. We observe that additionally to the peculiar form of the spectra more
spurious high frequencies appear, validating once again the use of numerical viscosity. Moreover,
concerning the on/off observer, we remark some high frequencies that are less stabilized. This
can be interpreted as an illustration of the fact that this observer may suffer from a decreased
stability on some modes – corresponding to these high frequencies.

Finally in Figure 7 we set ∆t = h2 and ∆T = 5h. This situation is relevant with practical
cases where the time-step of the numerical algorithm is much lower than the sampling time-step
of the data but more importantly that it is, in essence, meant to reach small values whereas the
sampling rate is fixed. The conclusion stated previously remains valid since we still observe a
slight deterioration of the damping of some high frequency modes for the on/off estimator.
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Figure 6: Comparison between the time-discrete on/off observer (in (red)) and the
time-discrete observer using interpolated data (in (cyan)) with ∆t = h and ∆T = 5h.

To conclude with this section we can say that the time-continuous spectrum analysis remains
a very useful tool to fix the optimal gain. It is obvious for the time-interpolated configuration
but in fact it is also the case with the on/off switch. The only modification with the on/off
switch configuration is that we have to multiply the gain found during the time-continuous
spectrum analysis by the ratio of the data time-step over the model time-step. The stability
property is preserved globally and we do not face any overdamping phenomena by increasing
the value of the gain in this case.
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Figure 7: Comparison between the time-discrete on/off observer (in (red)) and the
time-discrete observer using interpolated data (in (cyan)) with ∆t = h2 and ∆T = 5h.

5 Assessing robustness from numerical examples

We propose in this section to assess the effectiveness of the two observers using synthetic
data. More precisely, we consider the functions

ϕ0(s) = 16s2(1 − s)2, ϕ1(s) = { 3s − 4s3 if s ∈ (0,0.5),
4s3 − 12s2 + 9s if s ∈ (0.5,1), (51)

that we use to initiate a direct model of the form of (44). The solution of this direct model can
be computed analytically

w(x, t) = ∑
k

√
2(ak cos(πkt) + bk sin(πkt)) sin(πkx),

with

ak = 2
√
2(π2 − 12)(cos(πk) − 1)

π5k5
and bk = 48

√
2 sin(πk2 )
π4k4

from which we extract our synthetic observations. Then we simulate the observer where we
artificially introduce some errors by setting

x̂0 = (ϕ0 − αδϕ
ϕ1

) ,
where δϕ is a given perturbation of the initial condition (in displacement) and α is a scalar
value representing the perturbation amplitude. Hence, the estimation error dynamical system
is initialized with

x̃0 = α(δϕ0 ) .
In our numerical simulation, we set γint. = 9, the optimal value discussed in Section 4 and γswitch

is obtained from the ratio (50).
First, we propose to consider the case where α = 0, namely we initiate the numerical al-

gorithm with the exact – up to some projection errors – initial condition. It is well-known
that standard numerical schemes lead to an accumulation of numerical errors thus entailing a
deterioration of the numerical solution as the global simulation time grows larger. This phe-
nomenon is illustrated in Figure 8 where we plot the evolution in time of the estimation errors.
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Figure 8: Estimation error with ∆T
∆t = 20, α = 0. In (black) is the simulation without

correction, in (cyan) is the observer with linear data interpolation and in (red) is on/off
observer

Concerning the observer we set ∆T
∆t = 20 and compare the results of both strategies. We observe

that the corresponding estimation errors clearly stabilize to a plateau – during the complete
time window and even for large total simulation time – which is a particular behavior already
obtained in [Chapelle et al., 2012b]. In this configuration we observe that, due to the data
interpolation error the on/off strategy provides a better numerical solution than the observer
using interpolated data.

Second, we set ∆T
∆t = 20, α = 1 and δϕ(x) = sin(πx) – the first eigenfunction of the Laplacian

operator in the domain. It should be noted that it is not a mode of the stabilized operator driving
the dynamics of the estimation error, hence there are multiple excited modes in this dynamical
systems. The corresponding results are presented in Figure 9 where we can distinguish several
slopes – during early stages of the simulation – in the decay of the estimation error. These slopes
correspond to the time constant of stabilization associated with the various modes initially
introduced. In the remaining part of the time window we observe that both observers reach a
plateau – which is identical to the one observed in Figure 8.

In Figure 10, we increase the magnitude of the perturbation introduced in the system by
setting α = 102. This results in an increase of the potential high frequencies that are initially
introduced in the estimation error dynamics. When looking at the snapshots, we see that the
on/off observer suffers from high frequency oscillations that do not appear in the observer with
the time interpolation scheme. We see here the main advantage of using time interpolation.
Namely, since the dissipation brought by the observation operator is present at every time steps,
it benefits from a remarkable robustness to noise.

In a forth numerical experiment, we consider in Figure 11 the configuration where less
data are available on the system by setting ∆T

∆t = 200. It is striking to remark that the on/off
observer clearly fulfills its task by assimilating data only where they are available thus leading
to a great efficiency in the case of highly coarse time distribution of the observations. On the
opposite, the other observer oscillates around a plateau due to large interpolation errors. To
underline the impact of interpolation error, we have eventually change the type of interpolation
by using a cubic interpolation of the data. The resulting sampling is presented in Figure 12.
We understand that when the cubic reconstruction is better than the linear – here at the end
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Figure 9: Numerical results with ∆T
∆t = 20, α = 1 and δϕ(s) = sin(πs). In (green) is the exact

solution without perturbation, in (black) is the simulation without correction, in (cyan) is the
observer with linear data interpolation and in (red) is on/off observer.
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Figure 10: Numerical results with ∆T
∆t = 20, α = 102 and δϕ(s) = sin(πs). In (green) is the exact

solution without perturbation, in (cyan) is the observer with linear data interpolation and in
(red) is on/off observer.
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Figure 11: Numerical results with ∆T
∆t = 200, α = 1 and δϕ(s) = sin(πs). In (green) is the exact

solution without perturbation, in (black) is the simulation without correction, in (cyan) is the
observer with linear data, in (purple) is the observer with cubic data interpolation and in

(red) is on/off observer.
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of the time window – then the final estimation error is lower. However at the beginning of
the time window, we see that the cubic interpolation error is larger than with a simple linear
interpolation which is of dramatic consequence on the estimation error. This also proves that
without any idea on the model generating the data, a simple interpolation scheme is sufficient.

One last result concerns the case where the ratio ∆T
∆t is also set to 200 by decreasing the simu-

lation time-step and using the same sampling period as in Figure 10. This case is representative
of the final goal in a numerical procedure, namely for a given configuration we hope to increase
the precision by diminishing the model discretization step. In that case, the results are almost
exactly similar to the one presented in Figure 9, namely the observer fed with interpolated
data is less efficient due to large interpolation error – which is identical to the one introduced
in Figure 9 since it only depends on the sampling period as emphasized in Proposition 3. We
conclude that (1) the best strategy is always to use the available data, (2) it is in general less
risky to use the on/off switch time discretization scheme but (3) we can not expect a precision
improvement better than time-discretization step of the data.
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Figure 12: Illustration of the impact of time interpolation. The dashed line is the exact
solution at the point x = 1

2 and the squares are the sampled data. In (cyan) is the time
interpolation and in (purple) is the cubic interpolation.

6 Conclusion

In our work we have addressed the issue of designing an observer for vibrating systems that
is robust when the data have a coarse distribution in time. To circumvent this difficulty we have
proposed an on/off strategy that filters the observation only at times when they are available.
This strategy was theoretically and numerically analyzed and compared to the case when the
data are reconstructed using an interpolation scheme.

The conclusions are twofold. First we have seen that the interpolation remains valid in the
case of reasonable repartition (in time) of the data with potentially high levels of noise. This
particularity comes from the presence, at each time step, of the stabilized operator. Secondly,
in the case of poor data availability the on/off switch appears to be quite robust since no
interpolation error – otherwise entering as a source term in the estimation error dynamical
system – is introduced.
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[Zhang et al., 2007] Zhang, X., Zheng, C., and Zuazua, E. (2007). Exact controllability of the
time discrete wave equation: a multiplier approach. Discret. Contin. Dyn. S., pages 229–245.

160



[Zuazua, 2005] Zuazua, E. (2005). Propagation, observation, and control of waves approximated
by finite difference methods. SIAM Review, 47(2):197–243.

161



162 PRE-PRINT ARTICLE



CHAPTER 3
Cardiac estimation from tagged-MR

images

This Chapter takes the form of a pre-print article gathering the work carried out in collabo-

ration with D. Chapelle and P. Moireau.

Tagged-MR images are a particular medical image modality of the heart that, by implant-

ing a particular spatial modulation in the magnetization of the tissue, enables to obtain

within the image plane a regular pattern – typically of grid-like structure – that deforms with

the material. This deforming tag pattern can then be used in clinical routine to assess intra-

myocardial deformations.

In our work, we intend to use the valuable information contained in this image modality

within a data assimilation context in order to perform joint state and parameter estimation

for a complete biomechanical model of the heart. More precisely, we focus our attention on

proposing a means of comparison between the model and various types of data sets that

could be obtained after a prior step of image processing. This discrepancy measure is then

use to feed a sequential data assimilation procedure. Namely, we consider direct observa-

tion of the displacement– that we have coined as a limit case when the tag pattern spacial

frequency decreases – but also tag planes, tag grids and visible displacements – defined

within the image plane. This work comes after a previously published proceeding where we

consider – as a proof of concept – the single case of deforming tag planes

Constitutive parameter estimation methodology using tagged-MRI data. A. Imperiale,

R. Chabiniok, P. Moireau and D. Chapelle – FIMH 2011.

We also provide a new numerical time scheme for the state estimator based on a prediction-

correction paradigm. This new algorithm enables us to distinguish the model iteration and

the correction phases thus leading to an increased flexibility of the solving process. Typi-

cally, this strategy allows the use of iterative solver in order to manage full band observation

operators appearing when dealing with data defined in the image domain.

This estimation strategy is performed within a synthetic data context. In this context we

first run a direct simulation where we set an infarct in the septum of the model geometry

– charachterized by an increased stiffness and a reduced contractility. From this direct sim-

ulation, we extract the tag planes, tag grids and visible displacement in order to feed our

data assimilation procedure. From these data we are able to evaluate the location and the

intensity of the infarct with a remarkable precision, thus assessing the significant amount of

information contained in tagged-MR images and its potential use in clinical routine to pro-

pose diagnosis assistance.
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1 Introduction

Cardiac biomechanical modeling has made tremendous progress over the past decades, and
some accurate models are now available to represent the complex deformations of the organ
– among other quantities of interest – over full heartbeats, frequently based on multi-physics
and multi-scale formulations [Nash and Hunter, 2000, Sainte-Marie et al., 2006].

As for all natural systems – as e.g. also in geophysics – a great challenge consists in dealing
with the many unknown or uncertain quantities that need to be prescribed for running model
simulations and that crucially condition, indeed, the results accuracy, hence also the predic-
tive capability of the model in actual applications. These quantities include initial conditions,
boundary conditions, and various physical parameters, all of which can hardly – if at all – be
directly measured in such natural systems. Nevertheless, other types of measurements are usu-
ally available, and thus the problem can be recast in an estimation framework, in which these
measurements can be used to circumvent – or at least reduce – the uncertainties associated with
the dynamical model, thereby providing an estimation of uncertain quantities while allowing
predictive simulations. This type of approach is also often referred to as data assimilation.

Concerning the specific problem of estimation in cardiac biomechanical modeling, difficulties
arise from both (1) the complexity of the models considered, and (2) the nature of the avail-
able measurements, often relying on medical imaging. An effective estimation methodology has
been proposed in [Moireau et al., 2009] for this type of model, based on a so-called sequen-
tial approach – also known as observer method – by which the dynamical model is corrected
at each time using the computed discrepancy between the current simulation and the actual
measurements, see also [Chabiniok et al., 2012]. This strategy was designed to be applicable to
measurements concerning displacements, whether they be given internally – in a sub-region of
the system – or on a boundary or a part thereof, and it was also shown to be extendable to data
consisting of segmented surfaces as obtained by processing various types of medical imaging
dynamical sequences.

In this paper, we focus on estimation based on data provided by tagged-MR imaging se-
quences [Zerhouni et al., 1988, Axel and Dougherty, 1989]. Tagged-MR is often considered to
be the “gold standard” in cardiac imaging, in particular as regards the assessment of so-called
“cardiac mechanical indicators”, namely, indicators pertaining to displacements, strains, and
volumes [Axel et al., 2005]. As a matter of fact, tagged-MR images visualize the deforma-
tions of grids associated with the actual tissues, which is of course most valuable for clin-
ical purposes, both from a qualitative standpoint as assessed by the physician’s eye, and
with a view to obtaining such quantitative indicators. However, the problem of extracting
actual 3D material displacements from a tagged-MR sequence gives rise to serious difficulties
[Ryf et al., 2002, Rutz et al., 2008], and in fact in many cases only 2D “apparent” displacements
are obtained, which introduces specific inaccuracies in the displacement-based quantitative in-
dicators, in addition to usual inaccuracies pertaining to image processing. Of course these
difficulties are also of concern when extracted displacements are to be used in an estimation
setup, hence this justifies looking more closely into tagged-MR modalities to devise and analyze
strategies to adequately employ them for estimation purposes. Among these strategies, the use
of a prior step of processing performed to extract displacements will be considered, albeit other
options may prove more effective. Moreover, even when resorting to extracted displacements,
as much knowledge as possible should be incorporated into the estimation method as to the
precise nature of such measurements, e.g. 2D apparent displacements.

The outline of the paper is as follows. In a first section we recall the main principles lying
behind the design of observers. From this overview we will understand that they operate on a
so-called discrepancy measure. Therefore the last part of this first section is dedicated to listing
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the potential information extracted from tagged-MR images and to proposing – for every type
of data – such discrepancy measures. In the following section we carry out a complete analysis
of the observer in a simplified but highly relevant linearized configuration. We then address
the issue of space and time discretization of the observer in order to perform joint state and
parameter estimation. Finally, in the last section we propose several numerical experiments in
which we performed parameter identification based on synthetic measurements.

2 Position of the problem

2.1 Principles of observer design

The aim of an observer – also called state estimator – is to approximate a real trajectory,
in spite of initial uncertainties, using the knowledge provided by the measurements obtained
on this specific real trajectory. Let us consider a real trajectory xref(t), t ∈ [0,+∞), belonging
to the so-called state space X and solution, in our case, of a – potentially infinite-dimensional
– dynamical system summarized in the state form

ẋ = A(x, t)

for a specific initial condition. We assume that this initial condition is uncertain with

xref(0) = x0 + ζx,

where x0 is a known a priori and ζx is the error on the initial condition. Any simulation of x
– based on the discretization of the dynamical system – starting only from x0 will be affected
by errors that would in the best case decrease within the time constant of the physics of the
problem. To circumvent this difficulty we should try to benefit from the measurements at our
disposal on the trajectory. We denote by z these measurements – also called observations and
belonging to the observation space Z – which are assumed to be generated by an observation
operator H on the trajectory, up to additional measurements errors

z = H(xref, t) + χ.

The observer denoted by x̂ is a system that starts from the only part known in the initial
condition – namely x0 – and uses in time the available measurements z to generate a trajectory
x̂(t), t ∈ [0,+∞) that converges to xref as fast as possible. Therefore, simulating x̂ instead of x
from x0 gives a better approximation of the targeted system.

The main categories of observers we are dealing with here are observers computed by a
feedback law based on the measurements

{
˙̂x = A(x, t) + G(z−H(x̂, t))

x̂(0) = x0,

where G is called the gain operator. The dynamics of x̂ is corrected when a discrepancy is
observed between the actual measurements z and the measurement H(x̂) that would have ideally
been produced by x̂. This discrepancy

D(x̂, t) = z−H(x̂)

is also called innovation since it not only expresses an error of observation but also a source
of improvement for the estimator. We point out that with certain types of measurements
[Moireau et al., 2009] – as is typically the case with image-based observations – it is sometimes
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difficult to define an adequate observation operator but easier to directly compute a discrepancy.
This is not a problem for the observer definition since only the discrepancy appears.

In a complete linear situation, namely when the dynamics is linear

ẋ = A(t)x + R,

and when the observation operator is also linear

z = H(t)xref + χ,

the most well-known gain operator is given by the Kalman gain [Bensoussan, 1971]. This
operator is expressed as G(t) = P(t)H(t)∗ where P is an operator following the Riccati evolution
equation

Ṗ = AP + PA∗ + PH∗HP, P(0) = P0,

and H∗ is the adjoint of H. However, although P is computable for any dynamics opera-
tor A, it leads after spatial discretization to a discrete operator which is intractable in prac-
tice. This phenomenon has been known for decades and called “curse of dimensionnality”
[Bensoussan, 1971, Simon, 2006]. Therefore, for specific dynamics other types of gains have
been investigated as initiated by [Luenberger, 1971]. The idea based on the fact that for

{
˙̂x = Ax̂ + R +G(z −Hx̂)

x̂(0) = x̂0,
(1)

such that when computing the estimation error

x̃ = xref − x̂,

we get the following dynamics
{
˙̃x = (A−GH)x̃−Gχ

x̃(0) = ζx.

In fact, G has to be designed to stabilize the new dynamics operator A − GH so that the
homogeneous system tends to 0, namely

x̃χ=0 → 0.

This also controls the error dynamics in the presence of noise in the measurements. This strategy
is referred to as the Luenberger observer or nudging. For second-order hyperbolic systems like
the elastodynamics system [Chapelle et al., 2009] have shown that a very simple choice of

G = γH∗, (2)

with γ a scalar coefficient can be sufficient as we will recall in the next section. In fact the error
dynamics is then given by {

˙̃x = (A− γH∗H)x̃− γH∗χ

x̃(0) = ζx,

which can be controlled if A− γH∗H is (exponentially) stable. More precisely, we directly have
when χ = 0 the following energy estimate on the error, assuming for the sake of simplicity – but
useful in the practical cases of the present article – that A is skew-adjoint we get

‖x̃(t)‖2X − ‖x̃(0)‖2X ≤ −2γ

∫ t

0
‖Hx̃(s)‖2Z ds

showing that the error is at least non-increasing. Moreover we recall the following result when
A is a skew adjoint operator and H bounded – also sufficient in the present article.
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Theorem 1
Let A be a time-independent skew-adjoint operator generating a group and H ∈ L(X ,Z). The
error system x̃ of dynamics

˙̃x = (A− γH∗H)x̃

is exponentially stable if the following observability condition

∃(C, T ) | ∀x solution of ẋ = Ax
∫ T

0
‖Hx(s)‖2Z ds ≥ C ‖x(0)‖2X , (3)

is satisfied.

Proof. This result is rather classical and can be deduced for example from stabilizability-
controllability equivalence [Liu, 1997]. It is also possible to make a direct proof. We recall
first the direct energy estimate

∀s, 1

2

d

dt
‖x̃(s)‖2X ≤ −γ ‖Hx̃(s)‖2Z ,

giving

‖x̃(t+ T )‖2X − ‖x̃(t)‖2X ≤ −2γ

∫ t+T

t

‖Hx̃(s)‖2Z ds.

Therefore if we can verify that there exists a time T and a constant Cs such that

‖x̃(t)‖2X ≤ Cs

∫ t+T

t

‖Hx̃(s)‖2Z ds, (4)

we will have

‖x̃(t+ T )‖2X ≤ (1− 2

Cs
γ) ‖x̃(t)‖2X ,

ensuring the exponential stability. To prove (4), we decompose x̃ = φ+ η where
{
φ̇ = Aφ

φ(t) = x̃(t),

and {
η̇ = Aη −H∗Hx̃

η(t) = 0.

The first system satisfies the observability condition (3). This condition can be considered
between t and t+ T since A is a skew-adjoint operator generating a group. Hence there exists
a time T and a constant Co such that

‖φ(t)‖2X ≤ Co

∫ t+T

t

‖Hφ(s)‖2Z ds,

implying that

‖x̃(t)‖2X ≤ 2Co

∫ t+T

t

‖Hx̃(s)‖2Z ds+ 2Co

∫ t+T

t

‖Hη(s)‖2Z ds.

Concerning now the dynamics of η, we can verify, using Gronwall Lemma that
∫ t+T

t

‖Hη(s)‖2Z ds ≤ T ‖H‖4L(Z,X ) e
T

∫ t+T

t

‖Hx̃(s)‖2Z ds,

as soon as H is bounded. Therefore (4) is satisfied, ensuring the exponential stability of the
error system x̃. �
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In a nonlinear configuration, fewer theoretical results are available. However, an accepted
strategy is to replace in the gain the use of the adjoint of H by the adjoint of the tangent of
the observer dH(x̂)∗ around the estimated trajectory. Therefore for small errors we can expect
that the linearized error around the trajectory is stable. In fact we have after linearization of
the error {

˙̃
δx = (dA− γdH∗dH)δ̃x− γdH∗χ

δ̃x(0) = ζx,

of which we could expect a stabilization property [Khalil, 1992, Lohmiller and Slotine, 2005].
In the case where only a discrepancy operator is available, we only have to replace dH by −dD
since D(x, t) fundamentally extends the quantity z−H(x, t).

One last fundamental aspect that we need to describe in this introduction to observer design
is how parameter estimation – also called identification – can be carried out. Let us denote by
θ the uncertain parameter that we have to identify. Note that θ may be a vector of components
or even a field. The main idea is to introduce an augmented state vector and dynamics operator

♭x =

(
x
θ

)
, ♭A =

(
A(x, θ)

0

)
,

such that we still have ♭ẋ = ♭A(♭x). Then, a Kalman observer can be directly defined on this
augmented model leading to a covariance operator and gain

P =

(
Pxx Pxθ

Pθx Pθθ

)
, G =

(
Gx

Gθ

)
.

However, it may be more intricate to define a simple Luenberger observer for the augmented
system as the observations are frequently linked to the parameters through the state only.
Therefore, there is little hope that γH∗ will lead to an efficient gain. An alternative strategy
was proposed by [Moireau et al., 2008] as a generalization of the adaptive filtering strategy of
[Zhang and Clavel, 2001, Pham, 2001]. The idea is to keep the Luenberger observer on the
state while using a Kalman-like gain on the parameters. This strategy can be very effective in
practice since it is common to consider a parameter described much more coarsely than the state
discretization, thus alleviating the curse of dimensionality associated with optimal filtering. The
complete observer reads





˙̂x = A(x̂, t) + γH∗(z−Hx̂) + Lθ̇, x̂(0) = x0

θ̇ = U−1L∗H∗(z−Hx), θ̂(0) = θ0

L̇ = dxAL + dθA, L(0) = 0

U̇ = L∗H∗HL, U(0) = Pθθ(0),

(5)

where U is a reduced covariance operator on the parameter space and L is an extension operator
from the parameter space to the state space. We see in the dynamics (5) that the state gain is
the combination of the Luenberger gain and a gain directly inferred from the parameter filter
so that

Gx = (γ✶+ LU−1L∗)H∗.

In [Moireau et al., 2008], the convergence of the complete observer was also established – at
least in linear configuration – based on the idea that the Luenberger state observer reduces
the uncertainty to the parameter space where the optimal filter operates. In this sense, this
strategy also unified the data assimilation approach [Pham, 2001] and the adaptive filtering
strategy [Zhang and Clavel, 2001] as presented in [Moireau et al., 2008]. Moreover, the effec-
tiveness of this approach has already been applied to the biomechanical identification problem
in [Moireau et al., 2009, Imperiale et al., 2011, Chabiniok et al., 2012].
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2.2 Example of model formulation

We consider here a model of heart contraction involving a large displacement solid formula-
tion coupled to an electrophysiological model. We rely for the structure on the active multi-scale
formulation presented in [Sainte-Marie et al., 2006] and summarized by the rheological model
presented in Figure 1. We combine an active component inspired from Huxley’s crossbridge

..
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W e
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η
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es
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Figure 1: Rheological model of the heart material.

binding-unbinding model in the fiber direction and a visco-hyperelastic 3D passive model. The
active component is then triggered by a command directly linked to the transmembrane poten-
tial possibly modeled by an electrophysiological formulation [Sachse, 2004] in the solid domain
and assumed as given in the present article. Furthermore, we suppose that the heart wall
sustains a uniform intra-cavity pressure given as a function of time or modeled by a lumped
parameter system of ordinary differential equations also known as Windkessel model.

We now introduce some notations in order to summarize the model equations. We denote
the heart domain by Ω(t) at any time t. This domain is the image of a reference configuration
Ω0 through the solid deformation mapping ϕ

ϕ

∣∣∣∣∣
Ω0 × [0, T ] −→ Ω(t),

(ξ, t) 7−→ x = ϕ(ξ, t) = ξ + y(ξ, t),

where y denotes the solid displacement, hence the solid velocity is given by v = ẏ. We can then
define the necessary kinematics quantities. The deformation gradient F is given by

F (ξ, t) = ∇
ξ
ϕ = ✶+∇

ξ
y,

such that the deformed volume is given by J dΩ where J = detF and dΩ is the volume measure
(here in the reference configuration). In the same way, a change of area is given by JF−⊺ · dΓ.
Furthermore, we introduce the right Cauchy-Green deformation tensor C = F ⊺ · F , also called
“deformed metric tensor”. We finally recall that the Green-Lagrange tensor denoted by e is
defined by

e =
1

2
(C − ✶) =

1

2

(
∇

ξ
y + (∇

ξ
y)⊺ + (∇

ξ
y)⊺ · ∇

ξ
y
)
.

Regarding the mechanical quantities notation, we denote by ρ the heart mass per unit volume
and σ the Cauchy stress tensor associated with the deformed configuration. In the reference
configuration, we then define the associated first and second Piola stress tensors T = Jσ · F−⊺
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and Σ = F−1 · T = JF−1 · σ · F−⊺. The constitutive law can be considered as a nonlinear
rheological combination of a passive part and an active part. The passive part is described by
a hyperelastic law of potential W and a viscous component chosen proportional to the strain
rate ė

Σ(e, ė) =
∂W
∂e

(e) + ηsė.

As far as the expression of the potential W is concerned, most of the recent developments, see
[Dokos et al., 2002, Holzapfel and Ogden, 2009, Göktepe et al., 2011] for example, tend to con-
sider the passive myocardium to be orthotropic – using the fibers and sheets coordinate system.
In [Dokos et al., 2002] this statement is based on observing the heart wall response to simple
shear experiments on three orthogonal planes, see also [Holzapfel and Ogden, 2009]. More-
over several experiments – see [Nash and Hunter, 2000, Costa et al., 2001, Dokos et al., 2002]
or [Holzapfel and Ogden, 2009, Göktepe et al., 2011] – aiming at fitting strain measurements
showed that an exponential constitutive law is well-suited to represent the heart material non-
linearities. In our case we choose to define the passive elastic potential as transverse isotropic
of exponential type. We justify our approach in two manners: the first one being that even
though we do not consider a complete orthotropic model, studies in [Guccione et al., 1995] or
in [Vetter and McCulloch, 2000] have shown that a transverse isotropic constitutive law based
only on the fiber direction adequately reproduces measured epicardial strain; the second one
is that in practice, the characterization of sheets direction can become really complex since
very little physiological data are available. Hence, we define the hyperelastic potential as an
exponential potential, namely

W = C0 exp
(
C1(J1 − 3)2

)
+ C2 exp

(
C3(J4 − 1)2

)
+ κ(J − 1)− κ ln(J),

where J1 is the standard first reduced invariant , J4 is the reduced invariant accounting for the
anisotropy of the material in the fiber direction τ , namely

J1 = tr(C), J4 = τ · C · τ ,

and κ is the bulk coefficient.
For the active part we introduce 3 internal variables ec, kc, τc [Chapelle et al., 2012d], re-

spectively the active strain, the active stiffness and the associated active stress, along the fiber
direction. These 3 internal variables rely on a chemically-controlled constitutive law describing
myofibre mechanics [Bestel et al., 2001, Huxley, 1957, ?].

{
k̇c = −(|u|+ α |ėc|)kc + n0k0 |u|+ in Ω0

τ̇c = −(|u|+ α |ėc|)τc + ėckc + n0σ0 |u|+ in Ω0,
(6)

where α, k0, σ0 are physiological parameters, u is an input term directly related to the calcium
concentration i.e. to the electrical activity of the heart, while n0 denotes a prescribed function
of ec – most notably – to represent length-dependence effects and possibly also of other external
quantities e.g. perfusion related. Then, by rheological rules, we can build

σ1D =
1 + 2ec

1 + 2τ · e · τ (τc + µėc),

so that

Σ(e, ec, kc, τc) =
∂W
∂e

(e) + ηsė+ σ1D(ec, kc, τc)τ ⊗ τ .
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Concerning the boundary conditions, following [Chabiniok et al., 2012] we model the exter-
nal organs by visco-elastic boundary conditions on a subpart of the boundary which in reference
configuration gives

T · n = ksy + csv on Γn(t).

Regarding the pressure load, we consider a uniform following pressure on the left and right
endocardium easily written in deformed configuration

σ · nt = −pv,int on Γn,i(t), i = {1, 2}.

Finally the complete mechanical model reads





ẏ = v, in Ω0

ρv̇ − div(T ) = 0, in Ω0

T · n = ksy + csv on Γn

T · n = −Jpv,iF−⊺ · n on Γc,i

T · n = 0 on ∂Ω0\((∪iΓc,i) ∩ Γn)

(7)

and this, together with the internal variable dynamics (6), constitutes a formal definition of
the dynamical operator denoted by A in our above summarized description. A complete math-
ematical analysis of this type of system contains some open issues – in particular due to the
severe nonlinearities considered [Ciarlet, 1988, Le Tallec, 1994]– albeit we will present analyses
of simplified versions of the model under various assumptions below, see in particular Section
3.

2.3 Available data from imaging modalities

For the complete understanding of the physiological condition of a patient heart, physicians
usually seek for standard characteristics such as the mass, the volume or the ejection fraction.
Additionally intra-myocardial deformations are of great importance to assess the cardiac func-
tion. Even though the first three features can be obtained using various type of medical image
modalities – e.g. cine-MRI – the latter is more intricate to capture by non-invasive procedures.

Magnetic resonance imaging with tissue marking – referred to as tagged-MRI – was intro-
duced in the late 80’s [Zerhouni et al., 1988]. By non-invasively imprinting a pattern in the
acquired images – through specific magnetization of the tissue – this type of modality aims at
revealing the myocardial deformations. Various types of tagged image modalities have arisen
since its conception. They differ by the orientation, the temporal persistence or even the shape
of the pattern. For instance, the SPAcial Modulation of Magnetization (SPAMM) modality
– introduced by [Axel and Dougherty, 1989] – generates a grid-like pattern, whereas the first
tagging images included a radial pattern – see e.g. [Guttman et al., 1994]. The temporal re-
sistance of the pattern in SPAMM images covers the complete heart systole. Figure 2(a) is an
example of a SPAMM image (in short axis view) at marking time. We observe the regular pat-
tern within the image domain. Figure 2(b) shows the same image slice obtained during heart
contraction. In this last image we observe the deformation of the originally regular pattern
subject to the material displacements.

Even though SPAMM images are the most popular tagged-MRI, other modalities exist. For
example, we can cite the DANTE sequence – initially introduced by [Mosher and Smith, 1990] –
which provides a thinner tag grid pattern. Another example is the so-called CSPAMM modality
that aims at decreasing the tag pattern fading using two sequences of SPAMM images – see
[Fischer et al., 1993].
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Combinations of 2D images are historically the first type of tagged image modalities that
were studied. However they naturally suffer from through-the-plane motion. To circumvent
this limitation, later works have lead to the production of complete three-dimensional tagged
MRI – see [Ryf et al., 2002]. 3D tagging (3D SPAMM) is an imaging modality of major interest
since it could provide truly three-dimensional information on the heart strain.

From the most direct type of data to more complex observations, our work is dedicated to
the design of observers based on 2D or 3D SPAMM images. Such an endeavor requires – see
Section 2.1 – to be able to compute the discrepancies between the potentially pre-processed
data and the model. First, we assume that this image processing step leads to the reconstruc-
tion of the fully three dimensional deformation of the heart – from 3D SPAMM for instance
[Ryf et al., 2002] or from the collection of various 2D SPAMM [Kuijerm et al., 2000]. In this
context, following [Moireau et al., 2009] we propose an efficient way to assimilate this direct
displacement feedback. However, obtaining these data sets is a demanding process and we fur-
ther consider three distinct situations aiming at gradually decreasing our demands on this prior
processing step. To start with, we propose a discrepancy measure based on the assumption that
we are able to reconstruct the tag planes [Kerwin and Prince, 1998, Amini et al., 2001] fitting
the tag pattern. In the case of bi-dimensional images, obtaining these surfaces may require a
complex interpolation scheme in the image transverse direction. Therefore, in a second step, we
consider the case of tag grids [Amini et al., 1998] lying exclusively within the image planes. In
a final step we propose means of comparison between the model and 2D apparent displacements
[Osman and Prince, 1998, Ledesma-Carbayo et al., 2006] or [Bruurmijn et al., 2013].

(a) 2D slice at marking time (b) 2D slice during systole

Figure 2: Example of SPAMM images in short axis view.

2.3.1 Extracted 3D displacements from 3D grids

By constructing the tagging pattern in three directions, 3D SPAMM [Ryf et al., 2002] is
a powerful image modality that potentially leads to a reconstruction of the complete three
dimensional heart motion. For instance authors in [Rutz et al., 2008] propose to adapt the
HARmonic Phase (HARP) method – which performs tag patterns tracking by analyzing the
frequency contents of the image – to 3D images in order to extract these data. However, even
though recent works [Stoeck et al., 2012] have shown that the acquisition time of 3D SPAMM
can be reduced – typically by signal under-sampling – this modality suffers from long acqui-
sition time and potentially induces multiple breath-holds. Another technique to extract three
dimensional displacements of the heart from SPAMM images is to acquire two orthogonal sets
of 2D images in short and long axis – see for instance [O’Dell et al., 1995, Kuijerm et al., 2000]
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or [Pan et al., 2005]. IT should be noted that this process is likely to suffer from slice misreg-
istration and through-the-plane motion.

Having in mind these image modalities and image processing methods, it seems reasonable to
expect that the observations take the form of the complete heart displacement with a resolution
corresponding to the tag pattern spacing. In order to obtain a fully (discrete) displacement
feedback, the final step is to consider a spatial interpolation scheme between the tag grid and
the model mesh. This particular issue will be addressed in Section 4.1.

Nonetheless, in a continuous formalism, we can assume that we have at our disposal some
measurements of the displacement in a subdomain ω0 of the geometry. We introduce the
observation operator H such that the measurements are z = Hx + noise with

H :

∣∣∣∣∣
X y → Z
y 7→ ✶ω0

y.

We then need to specify the observation space Z. One possible choice is to consider L2(ω0)
3.

However, this space does not characterize the maximum amount of information we have on the
system since z comes from a displacement in H1(Ω0)

3. We should rather consider Z = H1(ω0)
3

and we will see in Section 3 a more complete mathematical justification of this choice. Following
[Moireau et al., 2009], we then introduce a convenient way to define a norm in this space. Let
us consider the following extension





−div(σlin(ψ)) = 0 in Ω0

ψ = ϕ in ω0

σlin · n = ksψ on Γn

σlin · n = 0 on ∂Ω0\ ∩ Γn,

(8)

where σlin denotes the stress tensor given by linearized isotropic elasticity – see more details in
Section 3 below – and with adequate boundary conditions on ∂Ω0 obtained from (7). We then
denote

ψ = Extω0
(ϕ).

Note that an equivalent variational characterization of the extension is given by

∀v♯ s.t. v♯|ω0
= 0, (Extω0

(ϕ), v♯)E0 = 0, (9)

where the energy dot-product is here defined by

(y
1
, y

2
)E0 =

∫

Ω0

σlin(y
1
) : ε(y

2
)dΩ+

∫

Γn

ks y1 ·y2dΓ =

∫

Ω0

ε(y
1
) : A : ε(y

2
)dΩ+

∫

Γn

ks y1 ·y2dΓ.

We can prove – see Section 3 for a similar dot product (·, ·)E0– that (Extω0
(ϕ),Extω0

(ϕ))
1

2

E0
is a

norm in Z = H1(ω0)
3. It is now possible to define the adjoint of the observation operator that

is needed in (2). We find in [Moireau et al., 2009] and Section 3 that H∗ is given by

H∗ :

∣∣∣∣∣
Z → X
z 7→ Extω0

(z).

Therefore we can define in a continuous formalism the observer introduced in [Moireau et al., 2009]
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corresponding to (2) with G = γH∗. In strong formulation, we have





˙̂y = v̂ + γExtω0
(z− ✶ω0

ŷ), in Ω0

ρ ˙̂v − div(T̂ ) = 0, in Ω0

T̂ · n = ksŷ + csv̂ on Γn

T̂ · n = −Jpv,iF−⊺ · n on Γc,i

T̂ · n = 0 on ∂Ω0\((∪iΓc,i) ∩ Γn).

(10)

As an illustrative example of analysis for this type of strategy, we will establish an energy
estimate of the estimation error

x̃ =



ỹ

ṽ


 =



y − ŷ

v − v̂




in the simplified case of linearized elasticity and without activation internal variables, namely,
with the constitutive law

σ = σlin(y) + ηsε(v),

where ε denotes the usual linearized strain tensor. The error then satisfies the following weak
formulation

∫

Ω0

ρ ˙̃v · v♯ dΩ + (ỹ, v♯)E0 +

∫

Ω0

ηs ε(ṽ) : ε(v
♯) dΩ +

∫

Γn

cs ṽ · v♯ dΓ = 0, ∀v♯,

with the additional observer-based relation

˙̃y = ṽ − γ Extω0
(✶ω0

ỹ),

assuming zero measurement error to fix the ideas. Weighing the latter relation by ỹ and using
the energy dot-product yields

(ṽ, ỹ)E0 =
d

dt

(1
2

∥∥ỹ
∥∥2
E0

)
+ γ(Extω0

(✶ω0
ỹ), ỹ)E0 =

d

dt

(1
2

∥∥ỹ
∥∥2
E0

)
+ γ

∥∥Extω0
(✶ω0

ỹ)
∥∥2
E0
,

where we have used the orthogonality property (9). We can now substitute this expression in
the above variational formulation applied with the test function v♯ = ṽ, which gives

d

dt

(1
2
‖ṽ‖2K +

1

2

∥∥ỹ
∥∥2
E0

)
= −

∫

Ω0

ηs ε(ṽ) : ε(ṽ) dΩ−
∫

Γn

cs ṽ
2 dΓ− γ

∥∥Extω0
(✶ω0

ỹ)
∥∥2
E0
, (11)

where
1

2
‖ṽ‖2K =

1

2

∫

Ω0

ρ ṽ 2 dΩ,

denotes the kinetic energy of the error. We can see that the total energy of the error – namely,
elastic energy of the deformation plus kinetic energy of the velocity – decreases at all times, and
at a faster rate than with the natural dissipation of the system, due to the observer correction
term.
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2.3.2 Tagged-MR planes

The limitations of 3D SPAMM that we have mentioned previously make this imaging modal-
ity difficult to use in a clinical routine. In most clinical cases only bi-dimensional tagged
MRI are available. These data sets can be treated plane by plane to extract apparent dis-
placements. In literature we can distinguish mainly two ways of carrying out this task. A
first manner is to track the tag pattern directly in the image plane. For instance authors in
[Prince and McVeigh, 1992, Dougherty et al., 1999] consider an optical flow methodology that
takes into account the fading of the tag pattern during the acquisition process. Another so-
lution proposed by [Ledesma-Carbayo et al., 2006] is to perform non-rigid image registration.
A second family of methods consists in working in the frequency domain. The most popu-
lar method is the HARP technique– see [Osman et al., 1999, Osman and Prince, 2000] – which
tracks the phase of the tag pattern. Following this trend, recent works proposed by authors
in [Garcia-Barnés et al., 2008, Bruurmijn et al., 2013] use the Gabor filter to obtain a better
estimation of local deformations in late systole – which appears to be a slight limitation of the
HARP methodology.

Prior to proposing a corresponding observer for this type of data, we assume that a first step
of image processing leads to the construction of geometrical objects taking the form of tag grids
or tag planes and following in time the deformations of the tag patterns – see [Amini et al., 1998,
Kerwin and Prince, 1998, Amini et al., 2001] for an example of tag planes construction and
[Amini et al., 1992, Radeva et al., 1996, Amini et al., 1998] for tag grids.

P̂i

(a) Estimated tag planes

P̂i

nPi

ΠPi
x̂

x̂

Pi

(b) Signed distance between estimated and observed
tag planes

Figure 3: Illustration of tag planes discrepancy measure.

For the definition of the spaces and norms associated with the discrepancy measures needed
in this section, following [?] we will use an extension operator mapping data provided on a
surface to the whole solid domain. More precisely, we denote by S0 a surface embedded in the
reference domain Ω0 and e a vector field given on S0, with (e1⊥, e

2
⊥) defined so that (e1⊥, e

2
⊥, e)

gives an orthonormal basis at any point in S0. The extension ψ = ExtS0
(e ; ϕ) from S0 of the

scalar field ϕ in the direction e is defined by





−div(σlin(ψ)) = 0 in Ω0

ψ · e = ϕ on S0

(σlin · n) · e1⊥ = (σlin · n) · e2⊥ = 0 on S0.

(12)
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Note that here the equivalent variational characterization of the extension is given by

∀v♯ s.t. v♯ · n = 0 on S0, (ExtS0
(e ; ϕ), v♯)E0 = 0. (13)

Then we can define a norm on the surface-based data using this extension, namely,
∥∥ψ

∥∥
E0
.

Therefore, considering the linear observation operator providing measurements y · e on the
surface S0, we can use this norm in the observation space. Accordingly, observer terms in the
form H∗(z−H ŷ) will give in a variational setting

(ExtS0
(e ; z−H ŷ),ExtS0

(e ; H v♯))E0 = (ExtS0
(e ; z−H ŷ), v♯)E0 ,

where the second expression is obtained by using the characterization (13) when observing that
on S0

ExtS0
(e ; H v♯) · e = v♯ · e.

Therefore we have in this case

H∗(z−H ŷ) = ExtS0
(e ; z−H ŷ). (14)

Now, when dealing more generally with a discrepancy operator D(ŷ, z) pertaining to the dis-
placements on a surface S0, we will generalize this strategy by using the observer correction
given by

−ExtS0
(dyD(ŷ, z) ; D(ŷ, z)),

obtained by directly substituting in (14) D(ŷ, z) for (z−H ŷ), and −dyD(ŷ, z) – associated with
a vector field on S0 – for e since in the linear case we have H ŷ = ŷ · e on S0. Of course, this also
easily generalizes to a measurement made of a collection of such surface-based data associated
with several surfaces (Si

0)
NS

i=1 and associated vector fields ei, for which the correction will be
given (in the linear case) by

H∗(z−H ŷ) =

NS∑

i=1

ExtSi
0
(ei ; z−H ŷ). (15)

Tag planes We consider data consisting in a set of NP tag planes T =
⋃NP

i P i deforming over
time. Following the original ideas of [Moireau et al., 2009] – see also [Imperiale et al., 2011] – the
discrepancy between the model and the data will be measured using the signed distances between
the tag planes and the corresponding synthetic data, namely, deforming surfaces obtained by
applying the model displacements to the initial configuration of the tag planes. Let us then
denote by T0 =

⋃NP

i P i
0 the set of tag planes in the reference configuration, mapped by the

estimated trajectory ŷ to T̂ =
⋃NP

i P̂ i. For any point in a synthetic tag plane x̂ = ξ+ ŷ(ξ) ∈ P̂ i

for some ξ ∈ P i
0, we can compute the signed distance to the corresponding actual tag plane by

dist(x̂,P i) = (x̂−ΠPi x̂) · nPi . (16)

The discrepancy operator is then the application mapping the displacement field to this collec-
tion of (scalar) distance fields defined over the planes of T0 – see Figure 3. When differentiating
with respect to the displacement field we have

dydist(x̂,P i) · v♯ = nPi · v♯,
hence, the application of the above-described strategy gives an observer that follows the me-
chanical system of equations (7), except for the first equation modified into

˙̂y = v̂ − γ

NP∑

i=1

ExtPi
0

(
nPi(x̂) ; dist(x̂,P i)

)
. (17)
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Tag grids We now consider the data in the form of a collection of tag lines deforming within

a set of (2D) image slices. We thus assume that we have NP such lines
(
Lij

)NP

i=1
in each 2D

image Ij , with 1 ≤ j ≤ NI . We cannot directly design the discrepancy operator based on
the corresponding model lines, since displacement fields are not well-defined along lines in the
variational space, hence this would not give a well-posed observer problem. To circumvent this
difficulty, we again consider the tag planes in the model and project each point of the planes
onto the neighboring image slices – by the Euclidean orthogonal projection denoted by ΠIj for
image Ij – and compute the signed distance of the projected point to the corresponding tag
line within each image – see Figure 4 – i.e.

dist(ΠIj x̂,Lij) =
(
ΠIj x̂−ΠLijΠIj x̂

)
· nLij .

Then we can interpolate the signed distances thus-obtained in the various images concerned –
which provides interpolated distance fields over the model tag planes as a discrepancy operator,
namely,

Di(ŷ, z) = J(j)

(
dist(ΠIj x̂,Lij)

)
, (18)

for each plane P i
0, where J(j) denotes the interpolation operator. When differentiating this

expression, we have
dydist(ΠIj x̂,Lij) · v♯ = nLij · v♯,

but we also have a contribution coming from the interpolation operator derivative. Since this
interpolation only depends on the coordinate of the point considered along the axis orthogonal to
all image slices, denoting by J ′

(j) the derivative with respect to this coordinate, a straightforward
computation finally yields

dyDi(ŷ, z) =
(
J(j)

(
nLij

)
+ J ′

(j)

(
dist(ΠIj x̂,Lij)

)
nI

)
· v♯,

where nI denotes the director vector of the orthogonal axis. Note that when considering e.g. lin-
ear interpolation the derivative J ′

(j) is directly given by the finite difference expression computed
between the two adjacent planes. This finally gives for the observer correction equation

˙̂y = v̂ − γ

NP∑

i=1

ExtPi
0

(
ei ; J(j)

(
dist(ΠIj x̂,Lij)

))
, (19)

with ei = J(j)

(
nLij

)
+ J ′

(j)

(
dist(ΠIj x̂,Lij)

)
ν.

2.3.3 Extracted 2D displacements

Here we will model the measurements corresponding to displacements obtained from the
processing of 2D tagged images. We can assume that we are able to track the intersections of
material fibers originally orthogonal to image planes throughout the dynamic sequence. This
holds e.g. for such fibers corresponding to the intersection of tag planes, but 2D-tag processing
techniques generally provide a (2D) displacement field all over the image planes. This displace-
ment corresponds to the shift in the position of the intersection of the deforming material fiber
with the image plane between the initial and current configurations. Note that the material
point located at the intersection between the fiber and the image changes over time due to
through-the-plane motion, hence the measurement is not a material displacement, see Figure 5.
This induces serious complications in the exact form of the tangent observation operator dH,
but in our case we will use an approximate form based on a small displacements assumption.
With this assumption, the observation operator clearly reduces to the components of the ma-
terial displacements tangential to the image plane. Therefore, in this case the measurement is
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Figure 4: Illustration of tag grids discrepancy measure

a two-component field over a plane – instead of a scalar field for the above distances – hence,
we resort to a slightly different extension operator relying on Dirichlet boundary conditions on
two conditions, namely, ψ = Ext′S0

(e ; ϕ) defined by





−div(σlin(ψ)) = 0 in Ω0

Πeψ = ϕ on S0

(σlin · n) · e = 0 on S0

(20)

where Πe denotes the projection onto the plane orthogonal to e, plane in which ϕ is assumed
to lie. Finally, the correction equation for the observer reads

˙̂y = v̂ + γ

NI∑

j=1

Ext′Ij

(
nI ; z−H(ŷ)

)
, (21)

where nI denotes the normal to the image planes, and the innovation term z − H(ŷ) will be
computed based on the actual tracking of material fibers, i.e. without small displacements
assumption.

3 An illuminating example: the linearized configuration

We consider a simplified configuration where the model and the observation operator are
linear. As explained in the previous section, this configuration is both an illustrative example
where we can handle all the proofs and also a relevant configuration since in nonlinear situations
we can analyze convergence for small errors around a trajectory by linearization [Khalil, 1992,
Lohmiller and Slotine, 2005].

We consider a linear elastic system in which the Cauchy stress tensor is given by

σ = A : ε(y),
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nI
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yapp

Figure 5: Illustration of apparent displacement in the image plane.

where the linear operator appearing in this (linear) constitutive law is assumed to be constant
for the sake of simplicity. We denote ∆e(·) = div(A : ε(·)) and define the following model





ẏ = v, in Ω0

ρv̇ −∆ey = f, in Ω0

y = 0 on ∂Ω0.

(22)

The external load is a time-dependent regular function f ∈ C1([0, T ],L2(Ω0)). Let us introduce
X v = L2(Ω0)

3, the displacement space X y = H1
0(Ω0)

3, and X = X y ×X v. Using the Korn and
Poincaré inequalities, X y is an Hilbert space with the following scalar product

∀(y
1
, y

2
) ∈ X y, (y

1
, y

2
)E0 =

∫

Ω0

ε(y
1
) : A : ε(y

2
) dΩ.

In a semi-group theory context we introduce the semi-group generator A ∈ L(D(A),X ) with

A =

(
0 ✶

−1
ρ∆e 0

)

and we can prove that (22) admits a classical solution C0([0, T ],X y) ∩ C1([0, T ],X v) for every
initial condition in the domain

D(A) =

{
(y, v) ∈ X y ×X v, div(A : ε(v)) ∈ X v

}
.

On this model we assume to have at our disposal some measurements of the displacement. We
introduce the observation operator H such that

H :

∣∣∣∣∣
X y → Z
y 7→ ✶ω0

y,
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where Z = H1(ω0)
3. Using the extension ψ = Extω0

(ϕ) defined by





−∆e(ψ) = 0 in Ω0

ψ = ϕ in ω0

ψ = 0 on ∂Ω0,

(23)

we can prove the following property.

Proposition 2

∀(ϕ
1
, ϕ

2
) ∈ Z2, (Extω0

(ϕ
1
),Extω0

(ϕ
2
))E0 , (24)

defines a scalar product on Z = H1(ω0)
3.

Proof. The proof is the simple extension of the results proven in [Chapelle et al., 2012a] for
scalar equations. Let ϕ be an element of Z. The only difficulty lies in proving the norm

equivalence with
∥∥ϕ

∥∥2
H1(ω0)3

. First, we have

∥∥ϕ
∥∥2
H1(ω0)3

=
∥∥∇ϕ

∥∥2
L2(ω0)3

+
∥∥ϕ

∥∥2
L2(ω0)3

≤
∥∥∇Extω0

(ϕ)
∥∥2
L2(Ω0)3

+
∥∥ExtΩ0

(ϕ)
∥∥2
L2(Ω0)3

≤ (1 + Cp)
∥∥∇Extω0

(ϕ)
∥∥2
L2(Ω0)3

≤ Ck(1 + Cp)
∥∥Extω0

(ϕ)
∥∥2
E0
,

with Cp given by the Poincaré inequality and Ck given by Korn inequality and a bound Ca on
the elasticity tensor. Conversely, by continuity of the extension on Ω0\ω0 with respect to the
data we have for ψ = Extω0

(ϕ)

∫

Ω0\ω0

ε(ψ) : A : ε(ψ) dΩ ≤ Cd‖ϕ|∂ω0
‖2
H

1
2 (∂ω0)3

.

Hence, denoting by Ct the constant arising from the continuity of the trace operator, we have

∥∥Extω0
(ϕ)

∥∥2
E0

≤
∫

ω0

ε(ψ) : A : ε(ψ) dΩ + Cd

∥∥ϕ
∥∥2
H

1
2 (∂ω0)3

≤ Ca

∥∥∇ϕ
∥∥2
L2(ω0)3

+ Cd‖ϕ|∂ω0
‖2
H

1
2 (∂ω0)3

≤ (Ca + CdCt)‖ϕ‖2H1(ω0)3
,

which completes the proof. �

It is now possible to define the adjoint of the observation operator.

Proposition 3
The operator H is bounded from X to Z and H∗ is given by

H∗ :

∣∣∣∣∣
Z → X y

ϕ 7→ Extω0
(ϕ).
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Proof. Let first prove that H is bounded. We consider ψ ∈ X y and ϕ such that ϕ = Hψ. We
have directly, from norm equivalences,

∥∥ϕ
∥∥2
Z
=

∥∥Extω0
(ϕ)

∥∥2
E0

≤ C1

∥∥ϕ
∥∥2
H1(ω0)3

≤ C1C2

∥∥ψ
∥∥2
H1

0(Ω0)3
.

Then we verify that for all ϕ ∈ Z and v♯ ∈ X y

(ϕ,H v♯)Z =

∫

Ω0

ε(Extω0
(ϕ)) : A : ε(Extω0

(v♯|ω0
)) dΩ.

By the variational characterization of the extension (9) we have

∫

Ω0

ε(Extω0
(ϕ)) : A : ε(Extω0

(v♯|ω0
)) dΩ =

∫

Ω0

ε(Extω0
(ϕ)) : A : ε(v♯) dΩ,

since
v♯|ω0

− Extω0
(v♯|ω0

) = 0 on ω0.

Therefore
(ϕ,H v♯)Z = (H∗ϕ, v♯)E0 ,

with H∗ given by

H∗ :

∣∣∣∣∣
Z → X y

ϕ 7→ Extω0
(ϕ).

�

We can now define the observer by the dynamics





˙̂y = v̂ + γExtω0
(z− ✶ω0

ŷ), in Ω0

ρ ˙̂v −∆e(ŷ) = 0, in Ω0

ŷ = 0, in ∂Ω0,

(25)

which converges to the solution of (22) under the observability condition given by the next
theorem.

Theorem 4
If there exists a constant C and a time T such that every solution of





ẏ = v, in Ω0

ρv̇ −∆ey = 0, in Ω0

y = 0 on ∂Ω0,

satisfies the observability condition

∫ T

0

∥∥Extω0
(✶ω0

y)
∥∥2
E0

dt ≥ C
∥∥y

∥∥2
E0

+ ‖v‖2L2 , (26)

then the observer given by the dynamics (25) converges to the solution xref of (22) such that

z = Hxref.
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Proof. We have defined the reference trajectory as a solution of

ẋref = Axref,

and the observer as the solution of

˙̂x = Ax + γH∗(z−Hx).

The error x̃ = xref − x̂ is then solution of

˙̃x = (A− γH∗H)x̃.

which from Theorem 1 converges exponentially to 0 for every initial condition when the observ-
ability condition (26) is verified.

�
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Figure 6: Example of rays associated with the P and W waves. The two types of waves
interact at the boundary where each ray generates one P-wave ray and one S wave ray. Each

multiple combination of these rays should encounter the domain of observation.

Following [Daoulatli et al., 2010] we define the elastic geometric control condition as the
condition that every combination of pressure (P) and shear (S) waves ray should encounter the
subdomain of observation – see [Daoulatli et al., 2010] for a complete description of such rays
and Figure 6 as an illustrative example. This condition generalizes to the vectorial case the
so-called geometric control condition (GCC) introduced by [Bardos et al., 1988], allowing to
control any solution of the acoustic wave equation from the observations of the time derivative
of the wave in a subdomain.

Theorem 5 (Geometric Control Condition)
The condition of Theorem 4 holds as soon as the elastic geometric control condition is satisfied.

Proof. For technical reasons we assume that the elastic geometric control condition is satisfied
for an observation domain ω̌0 slightly smaller than ω0, namely, with ω̌0 ⊂ ω0 and dist(Ω0 \
ω0, ω̌0) > 0. We first recall a classical observability result when the velocity is observed. In fact
there exists a constant C and a time T such that every solution of (22) satisfies the observability
condition

∫ T̆

0
‖v‖2L2(ω̌0)3

dt ≥ C
(∥∥y

∥∥2
E0

+ ‖v‖2L2(Ω0)3

)
, (27)
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with T̆ = T − δ for δ > 0 sufficiently small, as soon as the elasticity geometric control condition
is verified in the time interval [0, T [. Following what was already done for acoustic waves in
[Chapelle et al., 2012a] we will use a property of equirepartition (over time) of the total energy
localized within the observation subdomain between the kinetic and elastic contributions to
infer (26) from (27).

Let ψ ∈ C∞
c (Ω0) be a cutoff function satisfying

ψ(ξ) =

{
0, if ξ ∈ Ω0\ω0

1, if ξ ∈ ω̆0

and 0 ≤ ψ(ξ) ≤ 1 for every ξ ∈ Ω0. Denote also φ(t) = t2(T̆ − t)2. Then, by repeated
integrations by parts we obtain

0 =

∫ T̆

0

∫

ω0

φψ(ÿ −∆ey) · y dΩ dt

=

∫ T̆

0

∫

ω0

φ̈ψ
|y|2
2

dΩdt−
∫ T̆

0

∫

ω0

φψ|ẏ|2 dΩ dt

−
∫ T̆

0

∫

ω0

φ ε(y) : A : (∇ψ ⊗ y) dΩ dt+

∫ T̆

0

∫

ω0

φψ ε(y) : A : ε(y) dΩ dt.

Moreover,
∫

ω0

ε(y) : A : (∇ψ ⊗ y) dΩ ≤ C ‖ψ‖W1,∞

∥∥ε(y)
∥∥
L2(ω0)3

∥∥y
∥∥
L2(ω0)3

≤ C ‖ψ‖W1,∞

∥∥y
∥∥2
H1(ω0)3

.

This identity combined with the properties of the cutoff functions φ and ψ provides, for any
strictly positive ε, the existence of a constant C > 0 such that

∫ T̆−ε

ε

∫

ω̌0

|ẏ|2dΩ dt ≤ C

∫ T̆

0

∫

ω0

‖y(·, t)‖2H1(ω0)3
dt.

Substituting T̆ + 2ε for T̆ in all the above computations gives

∫ T̆+ε

ε

∫

ω̆0

|ẏ|2 dΩ dt ≤ C

∫ T̆+2ε

0
‖y(·, t)‖2H1(ω0)3

dt.

We proceed by making the change of variable τ = t− ε in the left-hand side integral, yielding

∫ T̆

0

∫

ω̆0

|ẏ(ξ, τ + ε)|2 dΩ dτ ≤ C

∫ T̆+2ε

0
‖y‖2H1(ω0)3

dt. (28)

Noting that y(ξ, t+ ε) satisfies the elastodynamics system with initial data (y(ξ, ε), ẏ(ξ, ε)) and
applying (27) with this shifted solution, we obtain that there exists also C such that

∫ T̆

0

∫

ω̆0

|ẏ(ξ, τ + ε)|2dΩdτ ≥ C
(
‖y(ε)‖2E0 + ‖ẏ(ε)‖2L2(Ω0)3

)
. (29)

Combining (28), (29) and the fact that the energy of the solution of the elastodynamics equation
is exactly conserved over time, we have our observability inequality (26) upon choosing ε = δ

2 .
�
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4 Discretization and analysis

4.1 Spatial discretization and simplified analysis

In this section we discuss the observer built using a set of tag planes that can be decomposed
into three distinct families. Each tag plane in a given family shares – at marking time – the
same orthogonal direction and, only for clarity purposes, we assume that the three directions,
denoted by (d1, d2, d3), are orthogonal. This type of data set may be referred to, in what fol-
lows, as (3D) tag planes. We will see how the estimation error dynamical system benefits – at
a spatial semi-discrete level – from a stabilization operator acting similarly to a direct volume
displacement feedback.

In a nonlinear setting, as we have seen in Section 2.1, the observer is built so that the
dynamical system of the linearized estimation error benefits from a stabilization operator of
the form dyD

∗(x, z)dyD(x, z) (where x = ϕ(ξ, t) is the exact trajectory used in the linearization
procedure). In the case of tag planes, this operator reads, in a weak formulation,

∀v♯, w♯ ∈ X y (dyD
∗dyD v♯, w♯)E0 =

NP∑

i=1

(ExtPi
0

(
nPi ; nPi · v♯

)
, w♯)E0 ,

where nPi is the normal of the tag plane P i
0 deformed by the transformation x = ϕ(ξ, t).

Therefore, in an energy analysis of the observation error as in Section 2.3.1 we would obtain
the dissipation term

NP∑

i=1

∥∥∥ExtPi
0

(
nPi ; nPi · ỹ

)∥∥∥
2

E0
.

This is different from the stabilization term considered in Section 2.3.1 based on 3D measure-
ments in a subdomain, but since the normal vectors nPi span all directions in space – assuming
3D tagging is used – we would expect to obtain comparable stabilization properties, at least
provided tag density is sufficient. To substantiate this conjecture without undue technicalities,
we consider to fix the ideas a term of the type

‖ϕ‖2Z =

NP∑

i=1

∥∥∥ExtPi
0

(
ϕ
)∥∥∥

2

H1(Ω0)
,

with a scalar field ϕ and a simple harmonic extension operator. In a first stage of analysis,
we consider this expression for a discrete function ϕH constructed based on piecewise-bilinear
shape functions associated with the regular tag grid, H denoting the distance between two
adjacent planes in any direction. We denote this discrete space by QH

1 (ω0), where ω0 is the
region spanned by the tag grid. Then, straightforward scaling arguments – as is standard in
finite element analysis, see e.g. [Bathe, 1996] – show that we have the following equivalence of
norms for each plane

∥∥∥ExtPi
0

(
ϕH

)∥∥∥
2

H1(Ω0)
∼ ‖ϕH‖2L2(Pi

0)
+H ‖∇P ϕH‖2L2(Pi

0)
,

where ∇P denotes the 2D gradient within the plane considered. Therefore, with all the tag
planes included we have the equivalence

‖ϕH‖2Z ∼
∑

K⊂ω0

(
‖ϕH‖2L2(∂K) +H ‖∇P ϕH‖2L2(∂K)

)
,
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where K denotes a generic (cubic) element within the tag grid mesh. Then, other scaling
arguments within these elements give

‖ϕH‖2L2(∂K) ∼ H−1 ‖ϕH‖2L2(K) , H ‖∇P ϕH‖2L2(∂K) ∼ ‖∇ϕH‖2L2(K) ,

hence, summing all the elements contributions,

‖ϕH‖2Z ≥ C ‖ϕH‖2H1(ω0)
,

where the constant C is here independent of the tag spacing H, and we see that the “obser-
vation norm” effectively controls the H1-norm within the observation domain, as in the above
mathematical analysis, albeit for discrete functions in the tag grid. In numerical simulations of
the observer we will instead need to consider ‖ϕh‖Z for ϕh fields given by finite element dis-
cretizations defined for the model. Nevertheless, in such cases the Z-norm is in essence similar
to ‖JH(ϕh|ω0

)‖Z , where JH denotes the interpolation operator into the tag grid discrete space,
and we have

‖JH(ϕh|ω0
)‖2Z ≥ C ‖JH(ϕh|ω0

)‖2H1(ω0)
≥ CH,h ‖ϕh‖2H1(ω0)

,

where CH,h is strictly positive and adequately controlled – namely, with lower bound indepen-
dent of both H and h – under compatibility conditions between the tag grid and the finite
element mesh, typically requiring that the finite element mesh parameter h and the tag spacing
H be of the same order. This may not always be the case in practice, since tag sampling is
quite coarse in current MRI modalities, but this provides a reference for the error control in our
observer strategy.

4.2 Time discretization

In this section we address the issue of the time discretization of the observer. During this
numerical procedure we have focused our effort on ensuring two main properties. The first one is
that the dissipative behavior of the (time discrete) estimation error – as emphasized in Theorem
1 – should be preserved, up to some consistency terms inherent to any discretization. Authors
in [Moireau et al., 2009] proposed a numerical time scheme for similar observers based on a mid-
point scheme. Our approach however differs in the sense that – and this is our second important
feature – the time-discrete observer is built on a prediction-correction paradigm. Consequently,
the prediction part – in practice, iterations of the direct model – and the correction part – i.e.
the action of filtering the discrepancies between the data and the model – can be managed in
separate ways.

4.2.1 Analysis of the time discrete observer

Following the presentation of Section 3 we assume that the dynamical system satisfied by the
target trajectory is driven by a linear operator – typically obtained after linearization. Hence,
we consider the dynamical system





ẋ(t) = (A + ηV)x(t),

x(0) = x0 + ζx,

(30)

where A is a skew-adjoint operator, V is a self auto-adjoint and semi-negative operator and
η ≥ 0 is the viscosity coefficient. A typical example of such dynamics is

A =

(
0 ✶

1
ρ∆e 0

)
and ηV =

(
0 0
0 ηs∆e

)
.
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representative of the systems studied in Section 2 or 3. In a first step, we consider a linear
observation operator and we neglect, for simplicity, the observation noise. Hence, denoting by
∆t the (constant) time step of the numerical procedure, the time discrete observations read

zn = Hx(n∆t).

As mentioned in the introduction of this Section we propose a prediction-correction time scheme
of the form





x̂n+1
− − x̂n+

∆t
= (A + ηV)

x̂n+1
− + x̂n+

2
, (31a)

x̂n+1
+ − x̂n+1

−

∆t
= γH∗

(
zn+1 −Hx̂n+1

+

)
, (31b)

x̂0+ = x0.

(31a) corresponds to the prediction step since the operators driving the target system appear.
(31b) on the other hand corresponds to the correction step. Defining the discrete estimation
error from the correction step

x̃n+ = x(n∆t)− x̂n+, (32)

and associating an error prediction with

x̃n+1
− = x((n+ 1)∆t)− x̂n+1

− , (33)

we obtain the following error system after some algebra detailed in Appendix A





x̃n+1
− − x̃n+

∆t
= (A + ηV)

x̃n+1
− + x̃n+

2
+ εn, (34a)

x̃n+1
+ − x̃n+1

−

∆t
= −γH∗Hx̃n+1

+ , (34b)

x̃0+ = ζx.

where the error source is given by the order two consistency term

εn =
∆t2

2

(1
3

...
x (tn)−

1

2

...
x (rn)

)
, with tn, rn ∈ [n∆t; (n+ 1)∆t]

arising from the mid-point discretization. Denoting the norm of the estimation error

Ẽn+1
+ =

1

2

∥∥x̃n+1
+

∥∥2
X
,

we can extract – see Proposition 7 in Appendix A – the energy estimate associated with (34a)-
(34b)

Ẽn+1
+ − Ẽn

+

∆t
= −η

∥∥∥∥∥
(√

−V
) x̃n+1

− + x̃n+
2

∥∥∥∥∥

2

X

− γ
∥∥Hx̃n+1

+

∥∥2
Z

− γ2
∆t

2

∥∥H∗Hx̃n+1
+

∥∥2
Z
+ (εn,

x̃n+1
− + x̃n+

2
)X . (35)
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In (35) we see the effect of the correction step (31b) leading to some dissipation terms brought
by the observation operator. The expression is the abstract and discrete version of expression
(11), perturbed with natural consistency terms.

As far as the convergence estimate for system (31a)-(31b) is concerned, assuming that
the corresponding homogeneous system is exponentially stable and following arguments in
[Chapelle et al., 2012b], we can prove – see Proposition 8 – the following estimate

∥∥x̃n+
∥∥
X
≤M exp(−µn∆t)

∥∥x̃0+
∥∥
X
+

∆t

1− exp(−µ∆t)
max
1≤i≤n

∥∥εi
∥∥
X
. (36)

The key point of estimate (36) is that the upper bound does not depend on the length of the
global time window. This particularity – pointed out by authors in [Chapelle et al., 2012b] in
a fully discrete setting and for another type of time scheme – shows how the data assimilation
procedure has the additional crucial benefit of improving the discretization error estimation,
beyond allowing to circumvent state uncertainties.

The exponential stability of the homogeneous system associated with (34a)-(34b) is however
not trivial and depends on the observability of the underlying conservative system and on the
amount of damping. Assuming that the observability of the conservative system ẋ = Ax is
verified, the main difficulty – see [Zuazua, 2005, Zhang et al., 2007, Ervedoza and Zuazua, 2009]
– is that the process of time discretization of system (30) produces spurious high frequency
modes which propagate at an arbitrary low velocity.

In the case of null viscosity, η = 0, a restriction (of CFL type) on the time step is required so
that the observability inequality of the time continuous system can be transmitted to the time
discrete system – see [Ervedoza and Zuazua, 2009]. In the case of low viscosity, η = O(∆t), we
can hope that the natural viscosity of the system acts as the numerical viscosity introduced
by [Ervedoza and Zuazua, 2009] in order to discard the undesired spurious modes. In the case
of general viscosity, we enter in another class of problems and can no longer count on the
observability inequality – which is based on the analysis of the conservative system.

4.2.2 Non-linear time-scheme

Even though fewer theoretical results can be obtained in the case of nonlinear observation
operators, we also provide a time scheme. Following [Moireau et al., 2009], this numerical pro-
cedure is based on a linearization scheme which leads, after a local analysis around the trajectory
used in the linearization, to a dissipative behavior similar to (35). More precisely, neglecting
the observation noise, we assume that the observations are obtained by

zn = H(x(n∆t)),

where H(·) is a nonlinear and sufficiently smooth observation operator. Following authors in
[Moireau et al., 2009] we propose to define the time discrete observer as





x̂n+1
− − x̂n+

∆t
= (A + ηV)

x̂n+1
− + x̂n+

2
, (37a)

x̂n+1
+ − x̂n+1

−

∆t
= γdHe

+
∗
(
zn+1 −H(x̂e+)− dHe

+(x̂
n+1
+ − x̂e+)

)
, (37b)

x̂0+ = x0,

where we denoted by x̂e+ an extrapolated trajectory and dHe
+ the tangent operator of the

observation operator evaluated at x̂e+, i.e.

dHe
+ = dH(x̂e+).
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Proposition 9 in Appendix A shows that the time scheme satisfied by the linearized estimation
error reads





x̃n+1
− − x̃n+

∆t
= (A + ηV)

x̃n+1
− + x̃n+

2
+ εn, (38a)

x̃n+1
+ − x̃n+1

−

∆t
= −γdHe

+
∗dHe

+x̃
n+1
+ + λn, (38b)

x̃0+ = ζx.

In equation (38b) the source term is

λn = O(
∥∥x((n+ 1)∆t)− x̂e+

∥∥2
X
).

We see here the we benefit from the linearization procedure proposed in (37b) – compared with
an explicit scheme – since, even though λn is, in essence, an error term it is proportional to the
square of the estimation error norm. Hence, assuming that the initial condition is reasonably
close to the target initial condition, this term will have little influence on the overall stability
of the numerical scheme. For this system the energy estimate naturally becomes

Ẽn+1
+ − Ẽn

+

∆t
= −η

∥∥∥∥∥
(√

−V
) x̃n+1

− + x̃n+
2

∥∥∥∥∥

2

X

− γ
∥∥dHe

+x̃
n+1
+

∥∥2
Z

− γ2
∆t

2

∥∥dHe
+
∗dHe

+x̃
n+1
+

∥∥2
Z
+ (εn,

x̃n+1
− + x̃n+

2
)X + (λn,

x̃n+1
+ + x̃n+1

−

2
)X . (39)

Expression (39) is the equivalent of expression (35) in a nonlinear setting using the tangent of the
observation operator. Additionally to the consistency terms, we observe that the linearization
term appears in the energy estimate. In the case of discrepancy measures, see Section 2.3.2
for practical examples, the observations and the real trajectory are linked through the implicit
relation

D(x, z) = 0.

In this case, the time discrete observer can be directly inferred from system (37a)-(37b)





x̂n+1
− − x̂n+

∆t
= (A + ηV)

x̂n+1
− + x̂n+

2
, (40a)

x̂n+1
+ − x̂n+1

−

∆t
= −γdDe

+
∗
(
D(x̂e+, z

n+1) + dDe
+(x̂

n+1
+ − x̂e+)

)
, (40b)

x̂0+ = x0.

The corresponding estimation error statisfies (38a)-(38b) but the operator dDe
+ = dD(x̂e+, z)

appears instead of the tangent of the observation operator. An estimate of the form of (39) can
be similarly deduced.

4.2.3 Algorithmic solution process

We now introduce a fully discrete model – solved in practice – by considering the vectors
of degrees of freedom associated with the FEM spatial discretization. We denote by capital
letters the vectors of degrees of freedom and by italic operators the matrices associated with the
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functional operators used until then. For example, we define by Y ∈ RNdof the vector of degrees
of freedom – of dimension Ndof – associated with the function y

h
defined in the finite-element

space Xh. We define by

∀(y
h,1
, y

h,2
), Y ⊺

1 MY2 = (y
h,1
, y

h,2
)L2

ρ(Ω0) =

∫

Ω0

ρy
h,1

· y
h,2

dΩ,

and by

∀(y
h,1
, y

h,2
), Y ⊺

1 KY2 = (y
h,1
, y

h,2
)E0 =

∫

Ω0

ε(y
h,1

) : A : ε(y
h,2

) dΩ +

∫

Γn

ks yh,1 · yh,2 dΓ,

the mass and stiffness matrix respectively. We then define a state vector as the concatenation
of the displacement degrees of freedom plus the velocity degrees of freedom X =

(
Y
V

)
and we

define the associated norm by

N =

(
K 0
0 M

)
.

Concerning the observation space, we define the observation operator after space discretization
H. By a slight abuse of notation we keep the same notation H when it applied to Y or to
X despite the fact that it corresponds in this latter case to

(
H 0

)
. Concerning the observation

space norm S, we consider the norm computed through the extension operators. For example
when considering 3D displacements, H is an interpolator between the mesh and the tag grid
whereas S is defined such that

∀(φH,1, φH,2), Φ⊺
H,1SΦH,2 = (φH,1, φH,1)Z = (Ext(y

h,1
),Ext(y

h,2
))E0

where in practice – as extensively detailed in [?] – the extension is computed with

Ext(Φ) = min
Φ=HΨ

Ψ⊺KΨ. (41)

Taking into account this spatial discretization, we can rewrite the correction step (31b) in the
form

N
(X̂n+1

+ − X̂n+1
−

∆t

)
= γH⊺S

(
Zn+1 −HX̂n+1

+

)
.

This expression turns into

X̂n+1
+ = X̂n+1

− + γ(N + γH⊺Sn+1H)−1H⊺Sn+1(Z
n+1 −HX̂n+1

− ), (42)

where Sn+1 = ∆tS. We remark that the correction (42) corresponds exactly to the Best Linear
Unbiased Estimator (BLUE) associated with the observation Zn+1, the observation covariance
S−1
n+1 the a priori state X̂n+1

− and the a priori state covariance N−1 [Simon, 2006]. If we
additionally consider the time discretization of the model by introducing a transition operator
An+1|n such that (31a) can be rewritten into

X̂n+1
− = An+1|n(X̂

n
+)

we finally get a time and space discretization of the form

1. Prediction:
X̂n+1

− = An+1|n(X̂
n
+), (43a)
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2. State Correction:

X̂n+1
+ = X̂n+1

− + γ(N + γH⊺Sn+1H)−1H⊺Sn+1(Z
n+1 −HX̂n+1

− ). (43b)

System (43a)-(43b) can be seen as a prediction-correction discrete-time sequential estimator as
it is the case for the discrete-time Kalman filter [Bensoussan, 1971, Simon, 2006] but here, the
a priori state covariance remains constant equal to N−1. Therefore whereas the discrete-time
Kalman filter is not computable for systems coming from PDEs, our filter is since N is sparse.

Let us now give some additional methodological key points to solve the correction step (43b)
in a very effective way. We remark that

N ≤ N + γH⊺Sn+1H ≤ N
(
1 + ∆t

)
,

which proves that N−1 is a good preconditioner to solve equation (43b) with an iterative solver.
This reveals to be very helpful as typically we do not want to store the operator H⊺Sn+1H.
Indeed, with an iterative solver, we only need to be able to compute for any vector X quantities
like N−1X and (N + γH⊺Sn+1H)X.

One last difficulty may arise in our specific case where quantities of the formH⊺Sn+1HX can
remain difficult to compute because of the choice of the observation norm S computed from the
extensions. In [Moireau et al., 2009], authors have demonstrated that a possible approximation
of the extension can be to found by replacing the constraint minimization (41) by a penalized
minimization

min
Ψ

{ǫΨ⊺KΨ+ (Φ−HΨ)⊺Mobs(Φ−HΨ)} (44)

where Mobs is the matrix associated with the simple L2-norm on the observation space. For
example, in the simple case of 3D displacement measurements

∀(φH,1, φH,2), Φ⊺
H,1MobsΦH,2 =

∫

ω0

y
h,1
y
h,2

dΩ.

Therefore we can simply solve this minimization problem with a gradient-based descent al-
gorithm involving only simple computation on the state and on the observation space. This
method reveals to be particularly efficient in the case of apparent displacements where the obser-
vation space is the concatenation of the set of image planes having a potentially high resolution,
hence S corresponds to a very dense operator.

4.3 Joint state and parameter discretization

Once we have defined the discrepancy operator and designed the state observer, we can
now consider the additional stage of parameter identification through the state and parame-
ter observer introduced at the end of Section 2.1. We should now define the adequate dis-
cretization of the system (5) compatible with the already defined discretization of the state
observer itself (40a)-(40b). To that purpose, two discretizations are available in the litera-
ture. The first one is based on the fact that (5) corresponds to applying a continuous-time
Reduced-Order Extended Kalman Filter (RoEKF) to the parametric space, hence a proper
discretization is clearly the prediction-correction scheme defined by the discrete-time RoEKF
[Moireau et al., 2008]. The second one [Moireau and Chapelle, 2011] is not directly an exact
discretization but more an extension at the discrete-time level. In fact, the parameter depen-
dency makes the joint state and parameter system nonlinear even if the state dynamics is linear.
Therefore, the RoEKF filter on the parameters is only an approximate optimal filter. Other
choices of approximate reduced order approximate optimal filter can therefore be used when
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they exist. It is typically the case of the Reduced-Order Unscented Kalman Filter (RoUKF) de-
rived in [Moireau and Chapelle, 2011]. This filter replaces at the discrete-time level the tangent
computations in (5) by finite differences computations which appear to be better adapted to
large nonlinearities. In addition, there is no need to specifically code the tangent operators but
rather introduce some particles that will allow to compute finite difference approximation. This
algorithm thus combine efficiency and computational simplicity. Moreover, it reduces to the
Reduced-Order Kalman Filter after linearization, which allows to validate its stability with an
error linearization study as done in [Moireau and Chapelle, 2011] and reported in the diagram
of Figure 7. Indeed, both algorithms reduce to the reduced-order Kalman filter after lineariza-
tion. For completeness we here recall the complete algorithm in our case, before proceeding to
the result section.

RoUKF

Discrete-time
Red. Order Kalman

Continuous-time
Red. Order Kalman

stability

consistency

Discrete-time RoEKF
Continuous-
time RoEKF

stability

consistency

error linearization

error linearization error linearization

Figure 7: Relations between reduced order filtering procedures

In fact, let us introduce unitary sampling points I [i] and weights αi with the following rules

r∑

i=1

αiI[i] = 0,
r∑

i=1

αiI[i] · I[i]⊺ = ✶ (45)

so that, at each time step, the sigma-points can be generated around the estimated values based
on the covariance estimation. Given an adequate sampling rule, we store the corresponding
weights in the diagonal matrixMα and precompute the so-called unitary sigma-points (i.e. with
zero mean and unit covariance) denoted by (~I[i])1≤i≤r+1; we also denote by [~I[∗]] the matrix

concatenating the (~I[i]) vectors side by side, and similarly for other matrices aggregating some
particle vectors.

we then perform at each time step

1. Sampling:




Qn =
√
(Un)−1

X̂n
[i]+ = X̂+

n + Ln
x ·Q⊺

n · ~I[i], 1 ≤ i ≤ r + 1

θ̂n[i]+ = θ̂+n + Ln
θ ·Q⊺

n · ~I[i], 1 ≤ i ≤ r + 1

(46a)
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2. State Prediction:




X̂n+1
[i]− = An+1|n(x̂

n
[i]+, θ̂

n+1
[i]+ ), 1 ≤ i ≤ r + 1

θ̂n+1
[i]− = θ̂n[i]+, 1 ≤ i ≤ r + 1

θ̂n+1
− =

∑r+1
i=1 αiθ̂

n+1
[i]− = θ̂n+

(46b)

3. State Correction




Zn+1
[i]− = Hn+1(X̂n+1

[i]− ), 1 ≤ i ≤ r + 1

X̂n+1
[i]−+ = X̂n+1

[i]− + γ(N + γH⊺Sn+1H)−1H⊺Sn+1(Z
n+1
[i]− −HX̂n+1

[i]− ), 1 ≤ i ≤ r + 1

X̂n+1
−+ =

∑r+1
i=1 αiX̂

n+1
[i]−

(46c)

4. Parametric Correction:




Ln+1
X = [X̂n+1

[∗]−+]Mα[~I[∗]]
⊺

Zn+1
− =

∑r+1
i=1 αiZ

n+1
[i]−

Γn+1 = [Zn+1
[∗]− ]Mα[~I[∗]]

⊺

Un+1 = 1+ (Γn+1)⊺Mn+1Γn+1

X̂n+1
+ = X̂n+1

−+ − Ln+1
x Un+1(Γn+1)⊺Mn+1(Zn+1 − Zn+1

− )

θ̂n+1
+ = θ̂n+1

− − Ln+1
θ Un+1(Γn+1)⊺Mn+1(Zn+1 − Zn+1

− )

(46d)

5 Results

To illustrate the data assimilation method we propose to perform parameter estimation in
a synthetic data context. More precisely, in these examples of application we will extract from
an infarcted direct simulation the tag planes, tag grids and visible displacements. To do so we
set in the septum – see Figure 8 – an infarct represented by an increase in stiffness and a lack
of contractility. To represent both effects we define two parameters θK and θ such that the
constant values C0 and C2 appearing in the hyperelastic potential and the contractility of the
tissue are transformed into

(C0, C2) → 2θ
K

(C0, C2) , σ0 → 2θσ0.

Both considered quantities, namely W and σ0, are positive. This prior knowledge is the reason
why the parameters appear in an exponential law in the data assimilation strategy. Moreover,
this insure stability when the parameters are dynamically evolving during the simulation time
window.

Using the calibration strategy of [Caruel et al., 2013] – based on a reduced modelling ap-
proach – we propose a complete set of model parameters, see Table 1, leading to a direct model
that meets standard values of physiological and mechanical indicators – see Figure 9. For the
parameters describing the infarct we choose

(θK , θ) =





(1,−1), in septum,

(0, 0), otherwise.
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Figure 8: Model geometry, location of the infarct use in direct simulations and in the 2-region
estimation case and geometry with AHA-regions in the left ventricle.
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Figure 9: Some indicators obtained from direct simulations.
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Valve Base Left Vent. Right Vent Valve Base Left Vent. Right Vent.

C0 85.5 · 103 28.5 · 103 5.7 · 103 5.7 · 103 α 1.5 1.5 1.5 1.5
C1 1.1 · 10−1 1.1 · 10−1 1.1 · 10−1 1.1 · 10−1 σ0 6.2 · 105 6.2 · 105 6.2 · 105 7.44 · 105
C2 57 · 103 28.5 · 103 5.7 · 103 5.7 · 103 k0 1.0 · 105 1.0 · 105 1.0 · 105 1.0 · 105
C3 1.1 · 10−1 1.1 · 10−1 1.1 · 10−1 1.1 · 10−1 µ 7 · 101 7 · 101 7 · 101 7 · 101
η 7 · 101 7 · 101 7 · 101 7 · 101 Es 3.0 · 107 3.0 · 107 3.0 · 107 3.0 · 107
κ 2 · 105 2 · 105 2 · 105 2 · 105

Table 1: Set of model parameters for the heart biomechanical model.

5.1 Synthetic data generation

As we have mentioned in the introduction of this section, we aim at using synthetic data to
assess the quality of our proposed tagged-MRI data assimilation strategy. However, generating
such synthetic measurements appears to be a very intricate operation also. We provide in the
following section the various methodological steps necessary to build, from the biomechanical
heart model, the tag planes, the tag grids and the tag apparent displacements.

5.1.1 Generating tag planes and tag grids

A natural idea to build the set of tag planes from a direct simulation is to construct, from the
deformed configuration at marking time, a set of bi-dimensional triangular meshes associated
with the planes and to consider the nodal interpolation operator between the model tetrahedral
mesh and the set of tag meshes. Denoting by JPi

m
the interpolation operator of a single tag

plane, its displacement y
Pi
m

is, in this context, given by

y
Pi
m

(ξ, t) =





JPi
m
(y(ξ, t)− y

m
), if ξ ∈ Ω0 ∩ P i

m,

0, otherwise,

where y
m

is the model displacement at the marking time. This leads [Imperiale et al., 2011]
to significantly irregular displacements near the intersections between the model boundary and
the tag planes. One way to circumvent this limitation is to consider the tag planes as an elastic
material and to regularize the interpolated displacement using an appropriate elastic model.
However, as the geometry at hand is bi-dimensional, a shell model would be required. To
simplify this task – which is, in essence, an issue of data regularization – we consider a set of
elastic (3D) tag layers

⋃NP

i V i
m. In practice each tag layer is built so that P i

m ⊂ V i
m. Hence, the

displacement of a tag plane P i
m derives from

y
Pi
m

(ξ, t) = y
Vi
m

(ξ, t)|Pi
m
, (47)

where y
Vm0i

is the displacement of the tag layer V i
m, verifying





−div(σV(y
Vi
m

)) = 0, in V i
m\

(
Ω0 ∩ P i

m

)
,

y
Vi
m

= JPi
m
(y − y

m
), in Ω0 ∩ P i

m,

σV(y
Vi
m

) · n = 0, on ∂V i
m.

(48)
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The procedure described in (48) is in fact the extension – in the sense of Section 2.3.2 – of the
interpolated displacement, namely

y
Vi
m

= ExtΩ0∩Pi
m

(
JPi

m
(y − y

m
)
)
.

In (48) we denoted by σV the Cauchy stress tensor describing the tag layer material. In practice,
a relevant choice is a linearization around a given trajectory of the heart material since, within
the image, the tag pattern follows the heart material points. As far as the tag grids are
concerned, they are obtained by clipping the tag plane meshes with the image planes. Figure
10 illustrates the complete procedure of construction of a tag plane and of several tag lines.

Pi

Li2

Li1

Li3

Li4

Vi
0 Vi

(
JPi

0

(y − y
m
)
)

Figure 10: Illustration of synthetic tag plane and tag lines construction.

5.1.2 Generating apparent displacements

Once the tag grids are created, the apparent displacement field can be approximated by
tracking the displacement of the tag lines intersection points. More precisely, at marking time,
we compute the intersection point of every tag lines ((red) crosses in Figure 11(a)). During
the simulation, as the tag lines deform, we track the displacement of the intersection points,
leading to the (green) vectors in Figure 11(b). Once the displacements of the intersection points
are computed a global apparent displacement on the image plane is obtained ((blue) vectors in
Figure 11(c)) by standard interpolation.

It should be noted that the complexity of apparent displacements – discussed in Section 2.3.3
– has already been taken into account during the creation of the tag grids since clipping tag
planes is, by nature, an operation of Eulerian type. As a matter of fact, any through-the-plane
motion of the tag planes will not reveal on the tag grids and, subsequently, in the synthetic
apparent displacements.

5.2 Discrepancy measure in practice

In this section we address a particular issue inherent to the estimation using tagged images
– intimately linked to the previously called marking time. Addressing this issue will enable us
to propose an efficient way to compute in practice the discrepancy measure between the model
and the various data type described in this paper.
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(a) Extracting tag grid intersection
points

(b) Tracking intersection points (c) Interpolation of intersection
point displacement in the image

plane

Figure 11: Illustration of synthetic apparent displacement computation.

The tagging process is not performed in the reference configuration – never observed in
practice. For this reason, the tagging pattern is necessarily built over an already deformed
configuration. Hence, any information obtained from a set of tagged-MR images should be
considered of Eulerian nature.

However, assuming the displacement at marking time y(ξ, tm) is known or (at least) esti-
mated, we can circumvent this difficult by introducing this additional information in the filtering
procedure.

From an algorithmic stand point, the discrepancy measure is computed as follows:

- 1 [offline] Build at marking time – i.e. using the prior on y(ξ, tm) – the set of tag planes⋃NP

i P i
m.

- 2 [offline] Build at marking time the interpolation operator {Ji}NP

i=1 from the deformed

configuration (by y(ξ, tm)) to the tag planes
⋃NP

i P i
m.

- 3 [online] From the estimated displacement, deform the tag planes
⋃NP

i P i
m by

∀i = 1, . . . , NP ŷ
Pi
m

(ξ, t) = ExtΩ0∩Pi
m
(Ji

(
ŷ(ξ, t)− y(ξ, tm)

)
). (49)

- 4 [online] From the estimated (deformed) tag planes
⋃NP

i P̂ i compute the innovation terms
appearing in (16) (planes data), in (18) (tag grids) or in (21) (apparent displacement).

In our context of synthetic data assimilation, we directly provided the displacement y(ξ, tm).
In real cases, the task of estimating the displacement at marking time could be carried out using,
for instance, the segmentation of the endo- and epicardium of the left ventricle – obtained
typically from cine-MR images. In any case it requires another source of information on the
system and this points out a certain limitation of the tagged-MRI data set for estimation
purposes.

5.3 Spectral analysis

The quality of the state filtering procedure can be assessed by the amount of damping we
introduce in the otherwise conservative or weakly damped system. For this reason we propose
in this section to analyze the spectra of the operators driving the target dynamical system
and the estimation error dynamical system. For simplicity we perform this analysis on the
spatial semi-discrete operator and we consider a linear elastic model typically obtained from
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the linearization around the null trajectory of the actual heart passive model. To facilitate this
analysis we also decrease the natural viscosity of the target system. Hence, we consider the
solutions of the following spectral problem

(
0 K
−K −C

)
X = λ

(
K 0
0 M

)
X, (50)

which corresponds to the operator without filter and where additionally to the stiffness K and
massM matrices, we denote by C the damping matrix obtained after spatial discretization. We
also consider the spectral problem

(
γK(εK +H⊺MobsH)−1H⊺MobsH K

−K −C

)
X = λ

(
K 0
0 M

)
X, (51)

where in (51) the form of the stabilization operator in (51) is obtained by solving the optimiza-
tion problem (44).
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Figure 12: Spectra of the time continuous operators. (Top left) : In (cyan) operators without
filter, in (red) complete displacement observer. (Top right): In (green) (3D) tag planes with

spacing 8mm. (Bottom left): In (green) (3D) tag planes with spacing 3.5mm. (Bottom right):
In (green) (3D) tag planes with spacing 0.25mm

Using the optimal criterion on the gain provided by authors in [Moireau et al., 2009], in
Figure 12 we show the spectra obtained for the operators without filter, with complete displace-
ment feedback and with (3D) tag planes. In these plots we also vary the spacing between two
consecutive tag planes to 8mm, 3.5mm and 0.25mm.

In the three situations we observe that for low frequencies the observer using tag planes acts
as the direct displacement observer – which is consistent with the analysis provided in Section
4.1. For coarse tag patterns we naturally observe that the higher frequencies are less stabilized
that with the direct displacement observer. This phenomenon disappears as the tag pattern
becomes thinner.
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5.4 Estimation results

Since we have evaluated – through spectral analysis – the state estimation capabilities of our
proposed observer, we can now assess the joint state and parameter estimator by identification of
the infarct location and intensity presented in the beginning of the result section. We distinguish
two situations. First we provide the exact location of the infarcted region but not the values of
the parameters characterizing the pathology. Hence we have two distinguish regions where we
should identify a contractility parameter and the main passive stiffness parameter. This case
may be referred to as the 2-Regions case. Second, we use the AHA-Regions to partition the
heart left myocardium and retrieve both active contractility and passive stiffness parameters by
AHA-Region. That being so, the infarct location will be inferred from the parameters spatial
variation through the AHA partition. In all cases, for the sake of simplicity, the reference
configuration and the intra-cavity pressures are assumed to be known and the initial condition
is defined by solving an equilibrium state with the lowest pressure sustained before the atrial
contraction. We point out that, since the stiffness is globally modified between the target system
and the observer, an error in the initial condition will be introduced during the estimation.

5.4.1 The 2-Regions case

We start with the simpler 2-Regions case and we only seek to assess the observability poten-
tial of the data provided. We assume a fine spatial distribution of the tag planes by setting the
space between two consecutive tag planes to 3.5mm. Denoting by MT the surface mass matrix
computed on the set of tags, we define the measurement observation norm S by setting, in (44)

Mobs =
1

m
MT .

The parameter m represents the square of the standard deviation of the discrepancy measure.
In the perspective of only assessing the method capabilities, the observations are extracted from
the direct simulations – as explained in Section 5.1 – with a high temporal resolution of 1 output
every 25 simulation time step – set in our simulations to 2.5 · 10−4 – , and no noise is added.
Therefore, following [Chabiniok et al., 2012] we rescale

m =
∆tobs
∆t

mobs = 25 mobs.

and set a high confidence in the observations withmobs = (0.65mm)2. The results are presented
in Figures 13, 14, 15 and 16. In Figure 13 we consider the most optimistic configuration
where three-dimensional tag planes are available whereas in Figure 14 we consider a more
realistic configuration where only two directions of tag planes – here a short axis grid only
– are available. Then, in Figure 15 we proceed with the corresponding bi-dimensional grid
as described in Section 5.1. We thus rely on the grid-based observer discrepancy. Finally we
present in Figure 16 the results where extracted 2D apparent displacements are defined as
the available measurements. In this particular case, since the innovation corresponds to the
comparison of two vector fields defined within the image planes, we take the observation norm
as a piecewise constant mass matrix in the image domain. The behavior of the estimation
procedure is very similar for all types of processed data considered, and the parameter values
are accurately estimated in the two regions, both for the active (contractility) and passive
(stiffness) parameters. It should be noted, in particular, that the estimations produced based
on 2D tagged data – namely, with tag planes and grids, and apparent displacements – are as
effective and accurate as that obtained with 3D tags.
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Figure 13: Estimation of passive and active parameters using (3D) tag planes.

5.4.2 The AHA-Regions case

We can now consider a configuration that could be encountered in an actual clinical context.
First, we only generate from the direct simulation approximately 20 “synthetic” images in the
cardiac cycle from which we extract bi-dimensional tag planes. Then, for the estimation, we
set-up an AHA-based partition [Cerqueira et al., 2002] since these regions roughly correspond
to the territory of the coronary arteries in the left ventricle. This delimitates 17 regions, namely
the 16 AHA regions and the remaining part of the heart.

The evolution of the joint state and parameter is presented in Figure 17 and 18. The state
convergence is demonstrated through the evolution of the volume curves and P-V loop plots
whereas the evolution of each parameter is presented in Figure 18. The results are divided
into 3 groups of parameters associated with the 3 different long axis elevations of the AHA
partitions, namely basal (region 1-6), mid (region 7-12) and apical (region 14-16). We can finally
produce in Figure 19 the ultimate parameter identification diagram in a bull’s eye representation
which can be seen as a potential practical presentation in a clinical routine. In addition, we
recall the identification that would be obtained with only exploiting cine-MRI segmentation
of the endocardium and epicardium as presented in the previous work [Chabiniok et al., 2012].
We directly understand here the identification benefit we have obtained with the tagged-MRI
measurements, in particular concerning the passive stiffness parameters.
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Figure 14: Estimation of passive and active parameters using tag planes.

6 Discussion

First, concerning state estimation, our results confirm the remarkable effectiveness of the
previously introduced SDF filter, and the excellent adequacy of both tagged-MR as an imaging
modality of choice for estimation purposes, and of our herein-proposed strategies for incorpo-
rating such data into the SDF methodology via specifically designed discrepancy operators.
Indeed, the above spectral analysis gives a very clear indication as to how fast state estimation
errors are being damped when using this estimation chain. The convergence of the spectrum
– with respect to tag spacing – towards that of the observer with full 3D observation substan-
tiates our above preliminary mathematical analysis, while the spectrum obtained with coarse
tags shows that standard tag spacing is amply sufficient to obtain uniform damping rates. This
is also confirmed with the results obtained in the joint state-parameter estimation trials, in
which mechanical indicators are effectively and accurately retrieved, recall Fig. 9.

As regards parameter estimation, the additional estimation stage provided by RoUKF fil-
tering – combined with the SDF state observer – also shows very good performance. In the
2-Regions estimation setup, in particular, both active and passive parameters are very accu-
rately estimated, and in a very short time as soon as the parameters concerned become ob-
servable in the type of behavior that is encountered along the cardiac cycle. Namely, passive
parameters are mostly observable during the – rather short – initial diastolic phase associated
with atrial contraction, while of course contractility parameters can only be revealed once the
electrical activation actually starts. Note that this 2-Regions setup gives a realistic strategy
in clinical perspectives, as cardiac MR performed for infarct diagnosis frequently includes late-
enhancement sequences, which can be segmented to provide the desired subdivision into healthy
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Figure 15: Estimation of passive and active parameters using tag grids.

and diseased regions. In case late-enhancement images (or the associated segmentations) are
not available, or when additional concurrent localization information is desired, estimation can
be performed based on the AHA subdivision. The corresponding estimation results exhibit the
same general features as with two regions – namely, rather fast convergence during diastole and
systole for passive and active parameters, respectively – albeit as expected the estimation is
less accurate for each individual parameter. Nevertheless, active parameters are still accurately
retrieved, and passive parameters are quite discriminately detected within the infarcted region,
and much more so than with estimation based on Cine-MR. Of course, fundamental identifia-
bility issues are of concern in this multiple parameter estimation context, and we can expect
that identifiability would be improved – hence estimation would be more accurate – when using
segmented Cine sequences in addition to tagged images in the estimation procedure.

7 Conclusions

We have proposed specific methods for integrating tagged-MR sequences in a data assim-
ilation framework with a beating heart model. Tagged-MR represent the “gold standard” in
cardiac imaging, and great benefits are expected from using the corresponding rich kinemati-
cal information for performing the joint estimation of the state of the system, and of various
modeling parameters of high potential value in terms of clinical diagnosis assistance.

In this data assimilation framework, a crucial ingredient lies in the adequate formulation of
a discrepancy operator to compare the model and the data. We have considered several options,
based on: (1) extracted 3D displacements; (2) tag planes in the 3D volume; (3) tag grids in 2D
slices; (4) apparent displacements in 2D slices. In practice, the specific choice of discrepancy
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Figure 16: Estimation of passive and active parameters using apparent displacements.
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Figure 18: Time evolution of active (left column) and passive (right column) estimated
parameters using tag planes with coarse time sampling of the observations.
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Figure 19: Estimation of active (top row) and passive (bottom row) parameters using tag
planes (middle column) and cine surfaces (right column) with coarse time sampling of the

observations.

operator could be based on the type of tagged sequence and on the available corresponding post-
processing tools, albeit our unified framework also allows detailed comparative assessments. For
the purpose of state estimation, each definition of discrepancy operator was accompanied by
the formulation of an adapted filtering operator, based on the SDF concept.

We have also proposed well-adapted discretization strategies. As regards time discretization,
in particular, a two-step “prediction-correction” type algorithm was designed for the proposed
estimation systems, allowing to completely dissociate the operations related to the model and
those performed for estimation purposes, e.g. with two different – coupled – software codes.
This is very valuable from a software architecture perspective, and in particular makes the
estimation strategy compatible with modular concepts such as those underlying the Verdandi
assimilation library [Chapelle et al., 2012c].

Mathematical analyses have been provided at the various stages of construction, to sub-
stantiate the convergence of the overall observer strategy based on a simplified illuminating
example, and also to assess the effects of discretization procedures.

Finally, some detailed numerical assessments of the overall estimation framework have been
performed, based on synthetic data produced by a reference cardiac simulation representing the
behavior of an infarcted heart in a realistic manner. The assessment results show that state
estimation is extremely effective, while the performance of parameter estimation depends on
the specific estimation objectives, as can be expected from the point of view of observability. In
particular, when the diseased region is pre-determined prior to estimation, active and passive
parameters are very accurately and quickly retrieved in the infarcted and healthy regions. When
the more challenging objective of estimation in an AHA subdivision is considered without any
prior on the diseased region, the convergence of each individual parameter value is less accurate,
but the overall distribution of parameters is very adequately retrieved, allowing for effective
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localization and quantitative assessment of the disease. This provides a great improvement over
similar estimation based on using Cine-MR alone, which only gives adequate results for active
parameters.

All major ingredients are thus in place for using this methodological framework in a patient-
specific context with actual data, which is of course a most natural perspective of this work.
Other perspectives concern the consideration of alternative discrepancy operators, such as with
the formalism of currents [Vaillant and Glaunès, 2005, Durrleman et al., 2008, Younes, 2010]
which would allow to dispense with using sophisticated image post-processing tools on Tagged-
MR as a prerequisite for data assimilation.
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Appendix A Time discretization analysis

We recall – see (32) and (33) – that the estimation error is defined as

x̃n+ = x(n∆t)− x̂n+,

and the associatied prediction estimation error as

x̃n+1
− = x((n+ 1)∆t)− x̂n+1

− .

The target trajectory x is solution of (30) and the observer x̂ satisfies (31a)-(31b).

Proposition 6
Assuming that x ∈ C3([0, T ],X ), then the estimation error satisfies the following discrete dy-
namical system





x̃n+1
− − x̃n+

∆t
= (A + ηV)

x̃n+1
− + x̃n+

2
+ εn, (52a)

x̃n+1
+ − x̃n+1

−

∆t
= −γH∗Hx̃n+1

+ , (52b)

x̃0+ = x0 − x̂0,

where the (bounded) source term is

εn =
∆t2

2

(1
3

...
x (tn)−

1

2

...
x (rn)

)
,

with tn, rn ∈ [n∆t; (n+ 1)∆t].

Proof. (52b) is directly infer from the definition of the prediction estimation error and using
(31b), namely

x̃n+1
− = x((n+ 1)∆t)− x̂n+1

− = x((n+ 1)∆t)− x̂n+1
+ + γ∆tH∗Hx̃n+1

+

= (✶+ γ∆tH∗H)x̃n+1
+ .

We now have to work our way to (52a). First, we remark that

x̃n+1
− − x̃n+

∆t
=

x((n+ 1)∆t)− x(n∆t)

∆t
− x̂n+1

− − x̂n+
∆t

. (53)

Using a finite difference approximation of ẋ((n + 1)∆t) and the regularity assumption on the
exact trajectory we can insure that there exist some times tn, rn ∈ [n∆t; (n+ 1)∆t] such that

x((n+ 1)∆t)− x(n∆t)

∆t
= (A + ηV)

x((n+ 1)∆t) + x(n∆t)

2
+

∆t2

2

(1
3

...
x (tn)−

1

2

...
x (rn)

)
. (54)

Therefore, feeding equation (53) with (54) and (31a), we obtain

x̃n+1
− − x̃n+

∆t
= (A + ηV)

x((n+ 1)∆t)− x̂n+1
− + x(n∆t)− x̂n+
2

+ εn. (55)

Finally equation (52a) is obtained from the definition of the estimation error and its prediction.
�

207



Proposition 7
The norm of the estimation error, namely

Ẽn+1
+ =

1

2

∥∥x̃n+1
+

∥∥2
X
,

satisfies the following estimate

Ẽn+1
+ − Ẽn+

∆t
= −η

∥∥∥∥∥
(√
−V

) x̃n+1
− + x̃n+

2

∥∥∥∥∥

2

X

− γ
∥∥Hx̃n+1

+

∥∥2
Z

− γ2∆t

2

∥∥H∗Hx̃n+1
+

∥∥2
Z
+ (εn,

x̃n+1
− + x̃n+

2
)X . (56)

Proof. Denoting by

Ẽn+1
− =

1

2

∥∥x̃n+1
−

∥∥2
X
,

we have, from system (52a)-(52b),




Ẽn+1
− − Ẽn+1

+

∆t
= −η

∥∥∥∥∥
(√
−V

) x̃n+1
− + x̃n+

2

∥∥∥∥∥

2

X

+ (εn,
x̃n+1
− + x̃n+

2
)X ,

Ẽn+1
+ − Ẽn+1

−

∆t
= −γ(H∗Hx̃n+1

+ ,
x̃n+1
+ + x̃n+1

−

2
)X .

(57)

Equation (52b) leads to

Ẽn+1
+ − Ẽn+1

−

∆t
= −γ(H∗Hx̃n+1

+ , x̃n+1
+ +

γ

2
∆tH∗Hx̃n+1

+ )X = −γ
∥∥Hx̃n+1

+

∥∥2
Z
− γ2∆t

2

∥∥H∗Hx̃n+1
+

∥∥2
X
,

which, by regrouping both equations in (57), entails the desired estimate. �

Proposition 8
Assuming that the homogenous discrete dynamical system of the error, associated with system
(52a)-(52b) is exponentially stable, then there exists two constants M and µ such that the time
discrete estimation error – solution of (52a)-(52b) – satisfies

∥∥x̃n+
∥∥
X
≤M exp(−µn∆t)

∥∥x̃0+
∥∥
X
+

∆t

1− exp(−µ∆t)
max
1≤i≤n

∥∥εi
∥∥
X
. (58)

Proof. From (52a) and (52b) we can give the explicit relation

x̃n+1
+ = PQx̃n+ +∆tPεn,

where ∣∣∣∣∣∣∣

P =
(
✶+∆tγH∗H

)−1(
✶− ∆t

2

(
A+ ηV

))−1
,

Q =
(
✶+

∆t

2

(
A+ ηV

))
.

Since both −γH∗H and
(
A+ηV

)
are dissipative operators they generate a contraction semigroup

and we have that P and ‖P‖L(X ) ≤ 1 – see [Tucsnak and Weiss, 2009] and references therein.
Using these notations we have

x̃n+1
+ =

(
PQ

)n
x̃0+ +∆t

n−1∑

k=0

(
PQ

)kPεn−k.
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The assumption that the homogeneous counterpart of system (52a)-(52b) is exponentially stable
is equivalent to ∥∥(PQ

)n∥∥
L(X )

≤ M exp(−µn∆t),

thus, we obtain

∥∥x̃n+
∥∥
X
≤M exp(−µn∆t)

∥∥x̃0+
∥∥
X
+∆t max

1≤i≤n

∥∥εi
∥∥
X

n−1∑

k=0

M exp(−µk∆t)

≤M
[
exp(−µn∆t)

∥∥x̃0+
∥∥
X
+

∆t

1− exp(−µ∆t)
max
1≤i≤n

∥∥εi
∥∥
X

]
.

�

Proposition 9
Assuming that x ∈ C3([0, T ],X ), then the estimation error satisfies the following discrete dy-
namical system





x̃n+1
− − x̃n+

∆t
= (A + ηV)

x̃n+1
− + x̃n+

2
+ εn, (59a)

x̃n+1
+ − x̃n+1

−

∆t
= −γdHe

+
∗dHe

+x̃
n+1
+ + λn, (59b)

x̃0+ = x0 − x̂0.

In equation (59b), the source term is

λn = O(
∥∥x((n+ 1)∆t)− x̂e+

∥∥2
X
).

Proof. Similarly to the linear case, we have defined the prediction estimation error as

x̃n+1
− = x((n+ 1)∆t)− x̂n+1

− .

This entails (59b) since from equation (37b) and the linearization of H(x((n + 1)∆t)) around
the extrapolated trajectory x̂e+ we have

x̃n+1
− = x((n+ 1)∆t)− x̂n+1

+ + γ∆tdHe
+
∗
(
zn+1 −H(x̂e+)− dHe

+(x̂
n+1
+ − x̂e+)

)

= (✶+ γ∆tdHe
+
∗dHe

+)x̃
n+1
+ +∆tλn.

All the other computations previously presented to prove Proposition 6 still hold, so that we
obtain the dynamical system (59a)-(59b) satisfied by the estimation error. �
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CHAPTER 4
The formalism of currents in a data

assimilation context

This Chapter takes the form of a pre-printed article gathering the work carried out in collab-

oration with A. Routier and P. Moireau.

The main contributions of this article are twofold. First we are able to bring together

the concept of external energy used in the image processing community – typically used to

attract a template object towards a specific region of interest of the gray-level image – and

the idea of discrepancy measure used in the field of data assimilation. More precisely, we

show that the descent methods used to solve static registration problems correspond in fact

to the correction steps of a dynamical state estimator. This enables us to foresee a sate

estimation methodology based on the sophisticate dissimilarity measurements proposed in

the image processing field.

As an example – and this is the second contribution of this article – we apply this strategy

to the formalism of currents. This formalism aims at representing surfaces as a computa-

tional support through their normal vector field. Therefore, any surface can be seen as a

linear form on a space of test vector fields, i.e. any surface belongs to the dual of this space

of test functions. This type of representation was already well-known and in our work we

focus our attention on plugging these concepts into a joint state and parameter estimation

strategy. The first trials within this context are were published in a proceeding

Improving efficiency of data assimilation procedure for a biomechanical heart model

by representing surfaces as currents. Imperiale, A., Routier, A., Durrleman, S. and Moireau,

P. – FIMH 2013.

Hence, with this new means of comparing the mechanical model and some observations

taking the form of surfaces – typically obtained after the segmentation of cine-MRI – we apply

a sequential data assimilation procedure to perform parameter identification on a complete

biomechanical model. Additionally, we show how this formalism enables us to enlarge the

range of data sets that we could filter and we give an example by computing discrepancy

measures between the model and level-set functions directly obtained from the raw images

– which clearly reduces our demands on a hypothetical prior image processing step.
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1 Introduction

Image segmentation is a classical but still active topic with many applications in particular
in medical imaging processing in order to extract organs boundaries in static images or in image
sequences [Chan and Shen, 2005, Scherzer, 2011]. Among the large variety of image segmenta-
tion methods, active contours (in 2D) or surfaces (in 3D), also called deformable objects, are
very popular – see for instance [Cohen et al., 1992, Caselles et al., 1997, Aubert et al., 2003,
Gout et al., 2005, Sermesant et al., 2003, Li and Acton, 2007, Cohen and Peyré, 2011] and ref-
erences therein. They traditionally rely on the minimization of a functional [Cohen et al., 1992,
Caselles et al., 1997, Aubert et al., 2003, Gout et al., 2005]– also called criterion – involving an
image-based computed similarity term and some a priori acting as regularization terms. There
is a impressive literature on the definition of the image-based similarity term in the image
processing community. For instance, distances to contours based similarity have been intro-
duced [Cohen et al., 1992, Sermesant et al., 2003, Peters et al., 2007, Peyré et al., 2012], but
also specific fields of contour-nudging such as the gradient vector flow [Xu and Prince, 1998,
Li and Acton, 2007, Guillot and Bergounioux, 2009]. In every situation the model-data simi-
larity generates a force that deforms the model object in the direction of the contours of the
observed object. Since two shapes are eventually compared, all the methods presented in the
image processing context find also an echo in the shape or geometry inference [Younes, 1998,
Delfour and Zolésio, 2011, Jones et al., 2006, Chazal et al., 2011, Peyré et al., 2012] where in-
tricate shape distances have been defined. Recently, an original formalism called currents has
been introduced [Vaillant and Glaunès, 2005, Durrleman et al., 2009, Younes, 2010] in order to
define a contour or a surface in a vectorial space by considering by duality their action on a
space of vector fields. Once this space is set up the similarity between two contours is directly
given by the norm of the difference. In fact, the complexity lies on the shape space definition
but then the distances is as simple as a norm. That is why among the rich shape inference
methods developed in the literature we have decided to focus on the generic approach offered
by the currents.

Coming back to the functional definition, we can say that, except in some a prori, it does
not rely on a strong physical – biophysical in medical imaging – description of the object even
in image sequences where a potential full model of the followed object should help a dynamical
segmentation. Conversely, data assimilation [Navon, 2008, Blum et al., 2008] – a scientific field
initiated in the 70’s in environmental sciences which aims at register a physical model on avail-
able data – has recently been introduced in life sciences applications as the tool to perform a
biophysical personalization of biomechanical model such as the heart [Chapelle et al., 2012b].
In data assimilation, variational methods also rely on a functional minimization with a model-
data discrepancy term and some a priori. However, whereas the physical models are very
detailed, the data at hand are assumed to be available in a form readily exploitable in the data
assimilation framework assuming that all the intricate data processing work has been made in
a previous step.

We believe that there exists an important benefit in exploiting with the same level of details
and the same level of confidence a model and data, in order to provide a unified and rich
state estimation of an imaged deformable body. Our strategy is to combine predictive model
of motions and state-of-the art similarity measurements in order to propose a unified state
estimation of the evolution of a deformable object. In this respect, our methodology is to present
how image registration methods defined in a static context where only one image is considered
can be translated in the dynamics context in order to correct the model evolution with the
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data similarity. It will result in a complex dynamic estimator – also called observer in the data
assimilation community – which extends the initial strategy presented in [Moireau et al., 2009]
by using the current formalism to better compare the model and the data. The gain of accuracy
obtained by the use of a current-based similarity will be assessed by evaluating the capability
of the estimator to stabilize efficiently to the target trajectory. As an illustration we specifically
have in mind the example of the interpretation of image sequences of the heart contraction,
but our methodology is general and can be adapted to various applications. Finally, this work
deeply deepens and extends the initial work of [Imperiale et al., 2013], with a computational
mechanics point of view allowing also a completely original numerical implementation.

The outline of the paper is as follows. In a first section we develop the formalism of a
deformable object submitted to a discrepancy measurement in order to register on a given
position. Here we present efficient Sobolev gradient descent strategies and show how various
extensions can be introduced, for example nonlinearities, rigid body registration etc. Then we
show how the formalism of currents can be considered in this framework and we derive all the
necessary computations for a practical implementation. In the third section, we then consider
the dynamical case where a sequence of data is available. We see how the currents-based
discrepancy defined in the static case can then be directly plugged into a sequential estimator
of the motion based on a physically accurate model. We illustrate our strategy with a heart
model and even show how some model parameter estimation can be jointly performed in order
to increase the prediction capability of the overall data-model interaction system.

2 The static case

In this first section we consider the static registration problem. This problem aims at fitting
a deformable object – initially in a given reference configuration – to some observations that we
have at our disposal. The main difficulty inherent to this type of problem is that the observations
are dramatically incomplete and a direct solving is by nature ill-posed. Traditionally, in the
most simple cases, a convenient way to propose a solution is to use a Tikhonov regularization
process [Henn and Witsch, 2001] in order to invert a generalized inverse of observation operator
giving the data to the reference configuration. Instead of explicitly computing some inverse, it
is also classical to use descent methods [Neuberger, 1997]. This descent method is built so that,
step by step, the obtained solution decreases a similarity measurement between the deforming
object and the data. Therefore as an introduction, we gather the key components in a simplified
linear setting in order to solve a registration problem using a descent method. This presentation
will enable us to propose adequate spaces for the displacements of the deformable object and for
the observation. In a second step we then illustrate how this procedure can extend to nonlinear
cases.

2.1 A preliminary linear example

2.1.1 The registration problem – abstract formulation

Let Ω0 be a reference configuration from where we consider a deformation map ϕ generating
the domain Ω. We have ∣∣∣∣∣

Ω0 → Ω

ξ 7→ x = ϕ(ξ) = ξ + y(ξ),

with y the displacement vector field. We want to formulate the registration problem as finding
a displacement field in a suitable functional space that will deform the reference configuration
into the observed configuration. From a notation point of view, we will denote in the sequel
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the displacement vector field by y whereas y will simply denote the displacement as an element
of a given functional space denoted Y. This first example is a simplified case in which we
assume that we have registered some landmarks, typically on the boundary of the domain as
it is often easier in image processing since the boundary of an object present a more textured
pattern. Proveided that these landmark are numerous enough, we can expect to have extracted
the displacement on a part of the boundary Γobs

0 ⊂ ∂Ω0. We can define a so-called observation
operator as the operator which can generate this type of observations

H :

∣∣∣∣∣
Y → Z
y 7→ z,

(1)

where Y generically represents the chosen displacement space and Z the observation space. In
our work we assume that both Y and Z are Hilbert spaces. We refer to the next section for the
adequate definition and choice of these spaces. From an abstract standpoint the registration
problem consists in solving the following problem

Find y ∈ Y such that D(y, z) = z −Hy is as close to 0 as possible. (P)

We will restrict to operator H ∈ L(Y,Z) as it will be mostly the case in the case. Introducing
the discrepancy functional – or similarity functional depending of the point of view – as

D(y, z) =
1

2
‖D(y, z)‖2Z (2)

we should find the minima – here 0 if z ∈ Ran(H) – of D . In practice, D is not invertible
assuming we rely on [Neuberger, 1997] (Chap. 3) to define a solution to our problem expressed
as a solution of a descent method.

Theorem 1 ([Neuberger, 1997] Chap. 3)
Let y⋄ ∈ Y and y(t) the function defined on [0,∞) by

{
ẏ(t) = −∇yD(y(t), z), t ≥ 0,

y(0) = y⋄,
(3)

has a limit ȳ = limt→∞ y(t) and

1. if Ran(H) ∩ Y 6= ∅, then D(ȳ) = 0 and y is the nearest element to y⋄ which has this
property.

2. in every case D(ȳ, z) = z − Πz where Π is the orthogonal projector onto Ran(H) =
Ker(H∗)⊥.

Let us recall in what sense the formulation (3) should be understood. First, we should
consider a set of admissible displacements {y(t)}t≥0 ⊂ Y depending on an artificial time t
such that when we evolve along this trajectory the discrepancy functional D(y(t), z) decreases.
Secondly, the functional evaluated on this set of admissible displacements becomes a time-
evolutive functional whose time derivative reads

∂

∂t
D(y(t), z) = 〈dyD(y(t), z), ẏ(t)〉Y∗,Y .

Therefore, by setting
∀y♭, 〈dyD(y, z), y♭〉Y∗,Y = −(ẏ(t), y♭)Y ,
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we naturally obtain that
∂

∂t
D(y(t), z) = −‖ẏ‖2Y ≤ 0,

which is a necessary condition for the discrepancy functional to decrease all along {y(t)}t≥0.
Since Y is assumed to be a Hilbert space, invoking the Riesz representation theorem, we can
introduce the gradient of the differential D as the element of Y such that

∀y♭, (∇yD(y, z), y♭)Y = 〈dyD(y, z), y♭〉Y∗,Y .

Hence, the trajectory y(t) satisfies, in a weak form, the following dynamics
{
(ẏ(t), y♭)Y = −(∇yD(y(t), z), y♭)Z , ∀y♭, t ≥ 0,

y(0) = y⋄,
(4)

which is the exact weak formulation of (3). Moreover, from the definition (2) of the functional
we obtain

∀y♭, (ẏ, y♭)Y = −〈dyD(y, z), y♭〉Y∗,Y = (z −Hy,Hy♭)Y .
Thus, denoting by H∗ ∈ L(Z,Y) the adjoint of the observation operator, we get

(ẏ, y♭)Y = (H∗(z −Hy), y♭)Y .

We see that the strong formulation of (3) is given as in [Neuberger, 1997] by

ẏ = −∇yD(y, z) = H∗(z −Hy). (5)

In fact in [Neuberger, 1997], it is proved that e−tH∗H converges to the projector on Ker(H).
Therefore we understand how (3) eventually filters the potential noise present into the data.
More precisely introducing the target solution y• such that

z = Hy• + χ

with χ some errors, the estimation error ỹ = y• − y follows the pseudo-dynamics

˙̃y = −H∗Hỹ −H∗χ.

leading to

ỹ = e−tH∗H ỹ(0) +

∫ t

0
e−(t−s)H∗HH∗χds.

However, since Ker(H) is rarely reduced to 0, the estimation can not be proved to converge to
0. This is why in practice other sources of information are introduced – typically some a priori
to generate a unique estimator with exact convergence.

Remark 1 – In the light of Theorem 1, we can understand the descent method (3) as a way
to compute the projection onto Ker(D∗) ⊂ Y. As it is expected of any projection process, it
highly depends on the chosen metrics and this choice will influence both the obtained result
and the speed of convergence of (3). In our setting, we need to choose both metrics of the
observation space and the displacement space.

2.1.2 Formulation associated with the choice of spaces

In this section we propose to summarize the various possibilities for the metrics on Z and
Y. Moreover, since the adjoint of the observation operator depends on these metrics we will
give the expression of H∗ in every relevant case, thus entailing the explicit expression of the
descent algorithm (3).
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Spaces definition A first idea is to define the most simple spaces for the displacements and
the observations as L2(Ω0,❘

3) and L2(Γobs

0 ,❘3) respectively. However these spaces are possibly
too naive since a displacement L2(Ω0,❘

3) has no trace on the boundary Γobs

0 and therefore can
not lead to an observed displacement in L2(Γobs

0 ,❘3). We can then assume that the displacement
we are seeking is the resulting displacement of a deformable body. Therefore, we should consider
that y ∈ H1(Ω0,❘

3) has it is the classical space of definition for an elastic body. Any element of
H1(Ω0,❘

3) has a trace on the boundary Γobs

0 and we can reasonably assume that the observation

space is H 1

2 (Γobs

0 ,❘3). In order to simplify the presentation of this first example, we suppose
that the deformable solid under consideration is fixed on part of its boundary and we will see in
the next section how we can relax this assumption. In essence, this means that we have some
landmarks where we absolutely trust that the displacement is null. We thus define ΓD

0 ⊂ ∂Ω0

and exclude ΓD

0 from Γobs

0 – namely Γobs

0 ∩ΓD

0 = ∅. Then, our space for the displacement becomes

H1
D
(Ω0,❘

3) =
{
y ∈ H1(Ω0,❘

3) | y|ΓD
0
= 0

}
.

From the previous definition, any combination of displacement and observation space can be
considered a priori

Y

L2(Ω0,❘
3)

H1
D
(Ω0,❘

3)

Z

L2(Γobs

0 ,❘3)

H 1

2 (Γobs

0 ,❘3).

However, clearly, some spaces seem more adapted to each other. And some combinations seems
unadapted since it is impossible to consider in general that a displacement initially in L2(Ω0,❘

3)
where no trace exists on the boundary can generate observations on L2(Γobs

0 ,❘3) and even more

in H 1

2 (Γobs

0 ,❘3). The objective in this first section is to show that these choices – even the non
relevant ones – have consequences with respect to our registration objective and the convergence
speed of our methodology.

Spaces metrics Before going further, we need to define adequate norms on the different
spaces introduced. Concerning H1

D
(Ω0,❘

3), we denote by σ
ℓ
the corresponding Cauchy stress

tensor assumed to be a linear function of the linearized strain tensor

ε =
1

2

(
∇

ξ
y + (∇

ξ
y)⊺

)
,

in the sense that
σ
ℓ
= A : ε, (6)

where the fourth order elasticity tensor is used to characterize the order of magnitude of the
deformation stiffness we are seeking. For our application cases, it is assumed to be constant but
this can be generalized with a spatially dependency by considering for example

A ∈ L∞(Ω)6.

From Korn and Poincaré inequalities we justify the use of the corresponding norm

∀y ∈ Y, ‖y‖2Y =

∫

Ω0

ε(y) : A : ε(y) dΩ.
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When Z is L2(Γobs

0 ,❘3), its metrics is given by the standard L2 inner product. In the case where

Z is not simply of L2 type, we define a H 1

2 -norm based on the following extension operator

ExtD
Γobs
0

:

∣∣∣∣∣∣∣∣∣∣∣∣

Z → Y

z 7→ y such that





−∇ · (σ
ℓ
(y)) = 0 in Ω0

σ
ℓ
(y) · n = 0 on ΓN

0\Γobs

0

y = z on Γobs

0

y = 0 on ΓD

0 .

(7)

Indeed, using this extension operator, we are able to define (see Appendix A) the following
norm on Z

‖z‖Z = ‖ExtD
Γobs
0

(z)‖Y (8)

which is equivalent to the usual Sobolev norm H 1

2 (Γobs

0 ,❘3). This choice of norm – consistent
with our definition of the norm on Y = H1

D
(Ω0,❘

3) – will reveal to be very helpful in the rest
of our computations.

Adjoint definition We can now define the corresponding adjoint of the observation operator,
namely H∗ ∈ L(Z,Y) such that

∀(y, z), (y,H∗z)Y = (Hy, z)Z . (9)

We verify by simple computations that

– in the case of Y = L2(Ω0,❘
3) and Z = L2(Γobs

0 ,❘3), we immediately see thatH /∈ L(Z,Y)
since there is no trace Γobs

0 defined from Y. This space is not adapted but we continue to
define a formal adjoint from the simple layer potential

Hδ

∣∣∣∣∣
L2(Γobs

0 ,❘3) → L2(Ω0,❘
3)

z 7→ δΓobs
0
z.

(10)

in order to provide a comparison element after discretization.

– In the case of Y = H1
D
(Ω0,❘

3) and Z = L2(Γobs

0 ,❘3), the adjoint ψ = H∗z is then defined
as the solution of the weak formulation

∀y♭,
∫

Ω
ε(ψ) : A : ε(y♭) dΩ =

∫

Γobs
0

z · y♭ dΩ,

thus, denoting by

ExtN
Γobs
0

:

∣∣∣∣∣∣∣∣∣∣∣∣

Z → Y

z 7→ ψ such that





−∇ · (σ
ℓ
(ψ)) = 0 in Ω0

σ
ℓ
(ψ) · n = 0 on ΓN

0\Γobs

0

σ
ℓ
(ψ) · n = z on Γobs

0

ψ = 0 on ΓD

0 .

(11)

the elastic extension on the domain of the boundary measurements introduced as Neuman
boundary conditions, we see that

H∗ :

∣∣∣∣∣
L2(Γobs

0 ,❘3) → H1
D
(Ω0,❘

3)

z 7→ ExtN
Γobs
0

(z).
(12)
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– By contrast, in the case of Y = H1
D
(Ω0,❘

3) and Z = H 1

2 (Γobs

0 ,❘3), the adjoint is given
as the extension on the domain of the boundary measurements introduced as Dirichlet
boundary conditions ExtD

Γobs
0

introduced in (7).

H∗ :

∣∣∣∣∣
H 1

2 (Γobs

0 ,❘3) → H1
D
(Ω0,❘

3)

z 7→ ExtD
Γobs
0

(z).
(13)

The demonstration of this result is based on the following Lemma – which can be seen as
an orthogonality property.

Lemma 2
For all ψ ∈ Y such that ψ|Γobs

0
= 0 we have

∀φ ∈ Z, (ExtD
Γobs
0

(φ), ψ)Y = 0.

Proof. From the definition of the extension operator (7), a direct computation entails

(ExtΓobs
0

(φ), ψ)Y =

∫

Ω0

ε(ExtD
Γobs
0

(φ)) : A : ε(ψ) dΩ

=

∫

∂Ω0

(
σ
ℓ
(ExtD

Γobs
0

(φ)) · n
)

︸ ︷︷ ︸
0 on ΓN

0

· ψ
︸︷︷︸

0 on ΓD
0 ∪Γobs

0

dΓ = 0.

�

With this property and the definition (8) of the inner-product we can verify that ExtD
Γobs
0

(·)
is the adjoint of the trace operator on Γobs

0 – in the sense of (9). Indeed, for any z ∈
H 1

2 (Γobs

0 ,❘3) and any y ∈ H1
D
(Ω0,❘

3)

(y|Γobs
0
, z)Z = (ExtD

Γobs
0

(y|Γobs
0

),ExtD
Γobs
0

(z))Y

= (y,ExtD
Γobs
0

(z))Y + (ExtD
Γobs
0

(y|Γobs
0

)− y,ExtD
Γobs
0

(z))Y

= (y,ExtD
Γobs
0

(z))Y .

Hence from (3) and the various definitions of the adjoint operator we can infer the different
forms that the descent method may take when the metrics on the observation space and the
displacement space change.

2.1.3 Numerical discretization

We rely on a numerical investigation here by discretizing the evolution equation (3). We
consider a spatial discretization using finite elements – P1 in this work. We associate with each
field – for instance y – its corresponding approximation denoted by the subscript h – for example
y
h
. Equivalently, this approximation can be represented by its corresponding vector of degrees

of freedom written with a vector in uppercase letter – i.e. ~Y . We then define any linear form
with a vector in straight uppercase letter and the finite element matrix operator with a bold
uppercase letter. For example, with an adequate choice of integration rules, we define the mass
operator by

∀~Y ♭, ~Y ♭⊺Mρ
~Y =

∫

Ω0

ρy
h
· y♭

h
dΩ,

223



with ρ is of the order of magnitude of the mass per unit volume of the considered object. To
simplify we denote M = M1. We also introduce

∀~Y ♭, ~Y ♭⊺Mobs~Y =

∫

Γobs
0

y
h
· y♭

h
dΓ.

In the same way, the stiffness operator is defined by

∀~Y ♭, ~Y ♭⊺K~Y =

∫

Ω0

ε(y
h
) : A : ε(y♭

h
) dΩ

and for the observations we introduce

∀~Y ♭, ~Y ♭⊺KobsZ =

∫

Ω0

ε(ExtD
Γobs
0

(z)) : A : ε(y♭
h
) dΩ.

To compute Kobs we refer to [Moireau et al., 2009] where an exact formulation is proposed and
an approximation is derived. For the sake of completeness we will recall these computations in
the forthcoming section. Finally, using the notation n+ α with α = 1 or 1

2 and

~Y n+ 1

2 =
~Y n+1 + ~Y n

2
,

the evolution equation (3) can be time-discretized using either an implicit scheme or a mid-point
scheme. We obtain

– in the case of Y = L2(Ω0,❘
3) and Z = L2(Γobs

0 ,❘3), in essence we try to solve (and it is
not necessarily as remarked before)

∀y♭,
∫

Ω0

ẏ · y♭ dΩ =

∫

Γobs
0

(z − y
|Γobs

0

) · y♭
|Γobs

0

dΓ,

which reads after time and space discretization

M
~Y n+1 − ~Y n

∆t
= H⊺Mobs(Z −H~Y n+α), (14)

– in the case of Y = H1
D
(Ω0,❘

3) and Z = L2(Γobs

0 ,❘3), the weak formulation (4) reads this
time

∀y♭,
∫

Ω0

ε(ẏ) : A : ε(y♭) dΩ =

∫

Ω0

ε
(
ExtN

Γobs
0

(z − y
|Γobs

0

)
)
: A : ε(y♭) dΩ

=

∫

Γobs
0

(z − y
|Γobs

0

) · y♭ dΩ,

leading to

K
~Y n+1 − ~Y n

∆t
= H⊺Mobs(Z −H~Y n+α), (15)

– in the case of Y = H1
D
(Ω0,❘

3) and Z = H 1

2 (Γobs

0 ,❘3), the weak formulation (4) becomes

∀y♭,
∫

Ω0

ε(ẏ) : A : ε(y♭) dΩ =

∫

Ω0

ε
(
ExtD

Γobs
0

(z − y
|Γobs

0

)
)
: A : ε(y♭) dΩ,

entailing

K
~Y n+1 − ~Y n

∆t
= Kobs(Z −H~Y n+α). (16)
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2.1.4 Numerical comparison in the case of boundary observations

In order to illustrate the differences between the various descent methods presented so far,
we propose to reconstruct a given reference displacement y• ∈ H1

D
(Ω0,❘

3) observed in a part of
the boundary of the geometry – see Figure 2. In Figure 1 we plot the evolution of the logarithm
of the error norm, namely

‖y• − yn‖2L2(Ω0,❘3) and ‖y• − yn‖2H1
D
(Ω0,❘3).

We also plot the logarithm of the convergence error, i.e.

‖y∞ − yn‖2L2(Ω0,❘3),

where y∞ represents the converged solution of the various algorithms described in (14), (15) and
(16). From the first plot of Figure 1 – showing the L2-norm of the error – we see how the choice
of the displacement space to perform the descent method is crucial since the algorithm (14)
does not converge towards the targeted displacement. This discrepancy between the algorithm
(14) and the algorithms (15) and (16) is clearly visible in Figure 2 where we observe that the
obtained displacement from the L2 descent method (in (green)) is clearly less smooth than
the other displacements. Moreover, when analyzing the second plot in Figure (14) we observe
that, naturally, the L2 descent method diverges. Hence, when trying to statically reconstruct
a “mechanical” displacement, this illustrative numerical example clearly rules out the descent
method (14). Additionally, it shows us that depending on the metrics on the observation space

we can obtain an improved precision using the H 1

2 -norm.
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Figure 1: In (green) the solution satisfying (14), in (red) the solution satisfying (15) and in
(cyan) the solution satisfying (16).

2.2 Sobolev gradient

The fact that in practice – as illustrated in Section 2.1.3 – the choice of Y = H1(Ω0,❘
3)

is not only better suited to define a mechanical deformation but also show better converge
compared to Y = L2(Ω0,❘

3) can typically be justified in the literature through the notion of
Sobolev gradient [Neuberger, 1997, Karátson and Faragó, 2005], a strategy already well-known
in image processing based on functional minimization [Charpiat et al., 2007, Jung et al., 2009,
Renka, 2009, Lin et al., 2010]. To facilitate the understanding of this similarity we remain in
the case of boundary observations, set Z = L2(Γobs

0 ,❘3) to define at least formally L2-gradient
of D from the single layer potential

∇L2D(y, z) = −δΓobs
0

(
z − y|Γobs

0

)
. (17)
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Figure 2: Comparison of the obtained deformed geometry in long axis view. The initial
configuration is colored in (yellow) whereas the observed configuration is represented in
(purple). In (green) the solution satisfying (14). In (red) the solution satisfying (15). In

(cyan) the solution satisfying (16).

On the other hand, the H1-gradient of D can be deduced from the expression (12) of the adjoint
operator

∀y♭, 〈dyD(y, z), y♭〉H1∗,H1 = (∇H1D(y, z), y♭)H1 = −(ExtN
Γobs
0

(
z − y|Γobs

0

)
, y♭)H1 , (18)

more explicitly
∇H1D(y, z) = −ExtN

Γobs
0

(
z − y|Γobs

0

)
.

From the weak formulation satisfied by the extension operator defined with Neumann boundary
conditions (12) we can verify that the following relation – characteristic in the literature of
Sobolev gradients – holds

∀y♭, (∇H1D(y, z), y♭)H1 = (∇L2D(y, z), y♭)L2 . (19)

Therefore, denoting by, the corresponding strong formulation between the two gradients reads

∇H1D = ExtN
Γobs
0

(∇L2D),

which is exactly the same type of relation obtained in the formalism of Sobolev gradients
[Neuberger, 1997, Karátson and Faragó, 2005]. It should be noted that, since we assumed that
a part of the boundary is the support of essential boundary conditions, our Sobolev gradient
only involves stiffness part of the H1 norm whereas in [Charpiat et al., 2007, Jung et al., 2009,
Renka, 2009, Lin et al., 2010] we see the complete H1 norm. Fixing some Dirichlet condition
was only meant to simplify the presentation. However, if we do not assume any Dirichlet
conditions and choose to register a potential rigid motion – as it will be presented in the
following Section 2.3.3 – we will also rely on a complete H1 norm. From a finite element
standpoint, the expression (17) reads

∀~Y ♭, ~Y ♭⊺M~∇L2D = −~Y ♭⊺H⊺Mobs(Z −H~Y ).
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Hence, the algorithm (14) can be written as

~Y n+1 − ~Y n

∆t
= −~∇L2D . (20)

Additionally, from the weak form of the relation (19) between the two different gradients of the
functional, we can see that

∀~Y ♭, ~Y ♭⊺K~∇H1D = ~Y ♭⊺M~∇L2D = −~Y ♭⊺H⊺Mobs(Z −H~Y ).

Thus, the descent method (15) is in fact given by

~Y n+1 − ~Y n

∆t
= −~∇H1D . (21)

To summarize, the Sobolev gradient methodology consists in writing the adjoint of an observa-
tion operator with respect to an inner-product of H1 type. We still have to interpret our final
– and in fact most effective – choice of gradient descent (16) in the light of Sobolev gradients.
In this respect, we first need to derive a penalization form of the adjoint operator given in (7)
in order to significantly simplified the expression of the descent method (16). Then the Sobolev
gradient associated with (16) should appear more naturally.

2.3 Penalization strategies and applications

In this section we address three problems that can be handled very conveniently using a
penalization approach. First, we will start by proposing a penalization form of the adjoint
operator given in (7) – already proposed in [Moireau et al., 2009] – which will simplify the
descent method (16). Secondly, we propose a way to incorporate in the registration problem
some additional a priori that we may possess on the targeted solution. Finally, we propose,
still through a penalization strategy, to also register potential rigid motion between the target
domain and the one to be deformed.

2.3.1 The penalized extension

Let us fix now Y = H1
D
(Ω0,❘

3) and Z = H
1

2
D(Γ

obs

0 ,❘3). The first penalization strategy that
we want to exploit concerns the definition of the adjoint operator given in Section 2.1.2. With
this choice of spaces, the adjoint operator can be written in the following form

H∗z = ExtD
Γobs
0

(z) = argmin
y | z=Hy

(
1
2‖y‖2H1

D
(Ω0,❘3)

)
. (22)

The disadvantage of this expression is that the data appear as a constraint, thus leading to
a mixed formulation which may be inconvenient to solve in practice. Therefore, following the
work in [Moireau et al., 2009], we modify this definition of the extension by introducing

Extǫ(z) = argmin

{
J ǫ(y) = ǫ

1

2
‖y‖2Y +

1

2
‖z −Hy‖2

L2(Γobs
0 ,❘3)

}
. (23)

This means that ψ = Extǫ(z) is then given by

∀y♭, ǫ(ψ, y♭)Y = (z −Hψ,Hy♭)L2(Γobs
0 ,❘3),

leading to the weak formulation

∀y♭, aǫExt(ψ, y
♭) = ℓ(y♭) (24)
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where
aǫExt(ψ, y

♭) = ǫ(ψ, y♭)Y + (Hψ,Hy♭)L2(Γobs
0 ,❘3)

is obviously continuous and coercive on Y, and

ℓ(y♭) = (z,Hy♭)L2(Ωobs
0 ,❘3)

is continuous. By the Lax-Milgram Theorem, the weak formulation (24) has a unique solution
which is now very easy to compute numerically. In fact after finite element discretization we
get

~Ext
ǫ
(Z) = (ǫK+H⊺MobsH)−1H⊺MobsZ. (25)

We see in (25) that the extension is basically the pseudo-inverse of the observation operator.

Hence, our specific choice of equivalent norm on H 1

2 (Γobs

0 ,❘3) through the extension shows the
direct link between a pseudo-inverse computation and the Sobolev gradient. In fact, rewriting
(16) with the penalized extension we obtain

~Y n+1 − ~Y n

∆t
= (ǫK+H⊺MobsH)−1H⊺Mobs(Z −H~Y n+α). (26)

In other words, from the comparison with the Sobolev gradient formalism proposed in Sec-
tion 2.2, we see that the descent algorithm (26) can be expressed as

~Y n+1 − ~Y n

∆t
= −(ǫK+H⊺MobsH)−1M~∇L2D . (27)

In (26) we directly see the advantage compared to the two previous choices (20) and (21). Indeed
here we see that our Sobolev gradient choice introduce a generalized inverse (ǫK+H⊺MobsH)−1

of the operator H⊺MobsH. Therefore, our gradient choice introduce the steepest descent as
(ǫK + H⊺MobsH)−1H⊺MobsH is in essence an operator as close as possible from the identity
operator [Neuberger, 1997]. We point out that this strategy can be related to the choice of a
preconditioner from Soboloev Gradient strategy[Karátson and Faragó, 2005].

Remark 2 – The extension can be interpreted as a way to go from the initially natural space
of observation L2(Γobs

0 ,❘3) to, in fact, a most efficient space H1
D
(Ωobs

0 ,❘3) or H 1

2 (Γobs

0 ,❘3).

2.3.2 From Tikhonov regularization to a priori enforcement

We have seen in Theorem 1 that it is possible to build a solution compatible with the
measurements in the sense that z = Hy•. The second statement of the theorem allows also
to take into account some noise in the measurements formally described by the adjunction of
function χ so that

z = Hy• + χ.

However, in a lot of practical situations, we may also have to take into account a trade-off
between two types of information. On the one hand, the measurements available on the system
where that we believe up to a certain degree of confidence. On the other hand, some a priori
we have on the solution with here also a reasonable level of confidence. In that case we should
imagine a functional as the combination of the discrepancy measure and an a priori distance

J =
β

2
‖y − y⋄‖2Y +

γ

2
D(y, z), (28)
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where β and γ are two weights expressing our respective levels of confidence in the a priori or
the observations. The evolution equation of Theorem 1 becomes

{
(ẏ, y♭)Y = β(y⋄ − y, y♭)Y + γ(H∗(z −Hy), y♭)Y , t ≥ 0

y(0) = y⋄.
(29)

The limit of this problem is then obtained from

((✶+
γ

β
H∗H)y∞, y♭)Y = (y⋄ +

γ

β
H∗z, y♭)Y (30)

and logically Hy∞ 6= z.
We can now assume that our a priori comes from the modeling of the mechanical behavior

of the object, meaning that y⋄ is the solution of the well-posed problem





−∇ · σ
ℓ
= f in Ω0

y = 0, on ΓD

0

σ
ℓ
· n = g, on ΓN

0 = ∂Ω0\ΓD

0

(31)

Considering this model a priori and the measurement corresponds typically to the class of
overdetermined problem where we have at our disposal – up to a certain level of confidence
the – stresses and displacements on the same subdomain or subpart of the boundary. In nu-
merous works [Bonnet and Constantinescu, 2005, Andrieux and Baranger, 2008], this problem
was tackled by introducing the notion of Error in Constitutive Equation (ECE) functional. To
simplify the presentation let us assume that f = 0 and consider only the case of measurement
of the displacement on all the boundary. It means that we have on Γobs

0 = ΓN

0 where

{
σ
ℓ
· n = g

y = z

We introduce the notation ExtD = ExtΓobs
0 =ΓN

0
for the lifting operator from Dirichlet conditions

of all the boundary and ExtN the operator solving the model (31). We can rewrite our functional
(28) in that case in the form

J = β

∫

Ω0

ε(y − Ext
N
(g)) : A : ε(y − Ext

N
(g)) dΩ

+ γ

∫

Ω0

ε(Ext
D
(y|Γobs

0
)− Ext

D
(z)) : A : ε(Ext

D
(y|Γobs

0
)− Ext

D
(z)) dΩ (32)

which is definitely similar (and even more general here since we accept specific weights β and
γ) to an (ECE) functional where we compare

JECE =

∫

Ω0

ε(y
D
− y

N
) : A : ε(y

D
− y

N
) dΩ

whit yD the solution associated with Dirichlet data and yN the solution associated with Neumann
data.

2.3.3 Rigid motion registration through penalization

We end this section by considering the case where none of the boundary can be assumed to
have Dirichlet boundary conditions, namely ΓD

0 = ∅ which is in fact the most classical situation
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in registration. In that case it is currently admitted to split the registration into two parts: the
rigid registration and the local registration. Concerning the rigid registration, we consider that
we have registered the objects such that their center of mass

ξ
C
=

1

|Ω0|

∫

Ω0

ξ dΩ

and inertia principal axis, namely the eigenvectors of

Q =
1

|Ω0|

∫

Ω0

(ξ − ξ
C
)2 dΩ

– sorted increasingly with respect to their corresponding eigenvalue – are registered on the
Euclidian axis (O, ex, ey, ez). We finally redefined the reference domain as the resulting domain
after this first step of rigid registration.

When no Dirichlet conditions are imposed, the elasticity problem with only Neumann con-
ditions has a kernel which consists of rigid motions of the form

KRM = {y | y(ξ) = τ + ω ∧ ξ}.

It is easy to prove that (see Appendix B) that a supplementary space of KRM is given by

YC =

{
y |

∫

Ω0

y(ξ) dΩ = 0 and

∫

Ω0

y(ξ) ∧ ξ dΩ = 0

}
.

As a result it is equivalent to minimize the functional (28) on YC or to minimize

JRM = β

(∫

Ω0

ε(y) : A : ε(y) dΩ +
(∫

Ω0

y dΩ
)2

+
(∫

Ω0

y ∧ ξ dΩ
)2

)
+ γD(y, z)

on Y equipped with the complete H1-norm. However, the non-local terms added to the func-
tional leads after spatial discretization to a finite element problem where the matrix has a full
band width. A strategy to circumvent this difficulty is therefore to rather minimize

J ǫ
RM

= β

∫

Ω0

ε(y) : A : ε(y) dΩ + βǫ

∫

Ω0

∣∣y
∣∣2 dΩ + γD(y, z)

Indeed we can prove (see Appendix B) that if ȳRM minimizes JRM and ȳǫ minimizes J ǫ
RM

, we
have

‖ȳRM − ȳǫ‖2Y = O(ǫ).

As a result, we rely after rigid motion registration on the same formalism by only defining in
the space and the criteria a complete H1 norm of the type

‖y‖2Y =

∫

Ω0

ε(y) : A : ε(y) dΩ + ǫ

∫

Ω0

∣∣y
∣∣2 dΩ.

In this situation, the penalization strategy introduces enough coercivity to block the rigid modes
and leads to a significantly simpler form of the cost functional.
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2.4 Non-linearities considerations

2.4.1 Model nonlinearities from large strains consideration

A first generalization of the concepts presented in the previous section is to take into account
large strains in the deformations [Lin et al., 2010, Le Guyader and Vese, 2011]. Therefore, we
introduce the essentials kinematics description. The deformation gradient F is given by

F (ξ, t) = ∇
ξ
ϕ = ✶+∇

ξ
y,

such that the deformed volume is given by J dΩ where J = detF and dΩ is the volume measure
(here in the reference configuration), while a change of area is given by JF−⊺ ·dS. Furthermore,
we introduce the right Cauchy-Green deformation tensor C = F ⊺ ·F which measure the change
of orientation of two vectors through the scalar product with

∀(δξ
1
, δξ

2
), x1 · x2 = ϕ(δξ

1
) · ϕ(δξ

2
) = δξ

1
· F ⊺ · F · δξ

2

Hence local changes of geometry are described by the nonlinear Green-Lagrange strain tensor

e =
1

2
(C − ✶) = 1

2

(
∇

ξ
y + (∇

ξ
y)⊺ + (∇

ξ
y)⊺ · ∇

ξ
y
)
.

with linearized expression ε.
We characterize the constitutive behavior of the object in large strains using the first Piola-

Kirchhoff T or second Piola-Kirchhoff Σ stress tensors in reference configuration which are re-
lated to the Cauchy stress tensor σ on the deformed configuration [Ciarlet, 1988, Le Tallec, 1994,
Bathe, 1996] by

Σ(ξ) = F (ξ)−1 · T (ξ) = J(ξ)F (ξ)−1 · (σ(ϕ(ξ))) · F (ξ)−⊺

We then define a hyperelastic potential W such that

Σ =
∂W

∂e
.

Defining the mechanical energy functional as

W =

∫

Ω0

W (e) dΩ

we can now modify our minimization functional with

J (y) = βW +
γ

2
‖z −Hy‖2Z (33)

The minimization then leads to



(yn+1 − yn
∆t

, y♭
)
Y
= −β

∫

Ω0

∂W

∂e
: dye(y)(y

♭) dΩ + γ(Hy♭, z −Hy)Z ,

y(0) = y⋄,

(34)

where dye(y)(y
♭) is the differential of the Green-Lagrange tensor with respect to the displace-

ment

dye(y)(y
♭) =

1

2

(
F ⊺ · ∇y♭ + (∇y♭)⊺ · F

)

Remark 3 – As opposed to what we have seen in Section 2.3.2, the non-linearity of W impose
to define an a priori by the introduction of the underlying a priori loading, for instance in the
case of a model of external force per unit mass f , the formulation can thus become

J (y) = β
(
W − 〈f, y〉V

)
+
γ

2
‖z −Hy‖2Z (35)
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2.4.2 Non-linear observation discrepancies: the distance to surfaces example

As an example of nonlinear discrepancy we consider the simple distance studied by authors
in [Moireau et al., 2009]. We consider that the observation is a given surface Sz and define the
distance to Sz by

distΓ :

∣∣∣∣∣
❘

3 7→ ❘
3

x → distSz(x) = distSz(x)nSz
(x)

This distance allows to consider a discrepancy term that generalize the previous D(y, z) =
z −Hy. In fact we introduce

D(y, z) : y 7→ distSz(ϕ(ξ)) = distSz(ξ + y(ξ))

and, to start with, we simply consider a L2 discrepancy

D0(y, z) =
1

2

∫

Γobs
0

∣∣distSz
(ϕ(ξ))

∣∣2 dΓ. (36)

L2 discrepancy In order to give the expression of the descent method used to solve the
registration problem using this type of similarity measurement we need to differentiate D0 with
respect to a test displacement. In this perspective, we first need to differentiate distSz

with
respect to the space variable x. We denote by πSz

(x) the projection of x on the surface Sz. We
get

∇ distSz(x) · δx = −∇ ((πSz
(x)− x) · nSz

) · δx

=

(
∇ x · δx

)
· nSz

−
(
∇πSz

(x) · δx
)
· nSz

− (πSz
(x)− x) ·

(
∇nSz

· δx
)

= δx · nSz
.

Hence, the derivative of the functional reads

〈dyD0(y, z), δy〉Y∗,Y =

∫

Γobs
0

distSz(ξ + y(ξ))nSz
(y(ξ)) · δy dΓ

= (dD(y, z)(δy), D(y, z))L2(Γobs
0 ,❘3).

As a result, a first descent method would be to consider

〈ẏ, y♭〉Y = −〈dyD(y, z), y♭〉Y∗,Y = (dD(y, z)(y♭), D(y, z))L2(Γobs
0 ,❘3). (37)

From a numerical point of view, we assume – as in [Moireau et al., 2009] – that surfaces are
represented by triangular meshes as it is commonly the case after image segmentation. Hence
we numerically compute the distance to a surface – see [Baerentzen and Aanaes, 2005] which
allows to compute signed distances on triangular surfaces with an exact change of sign when
crossing the surface mesh. We finally get the following descent algorithm

Mρ

~Y n+1 − ~Y n

∆t
= −dDn+α⊺Mobs ~D(~Y n+α, Z), (38)

or

K
~Y n+1 − ~Y n

∆t
= −dDn+α⊺Mobs ~D(~Y n+α, Z). (39)

with a predilection for the second choice since – as we have seen in Section 2.2 – it corresponds
to a H1 gradient which has been proved in the literature of Sobolev gradients [Neuberger, 1997,
Karátson and Faragó, 2005] to lead to better convergence results.
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H 1

2 -like discrepancy An even better gradient descent can be anticipated from (37) and from

the definition (26) of the adjoint operator in the case of H 1

2 -like observation space. This leads,
at the discretized level, to

~Y n+1 − ~Y n

∆t
= −(ǫK+ dD⊺MobsdD)−1dD⊺Mobs ~D(~Y n+α, Z), (40)

where the bilinear form dD⊺MobsdD is defined as

δ~Y dD⊺MobsdD~Y ♭ = (dD(y, z)(δy), dD(y, z)(y♭))L2(Γobs
0 ,❘3)

=

∫

Γobs
0

(nSz
· δy)(nSz

· y♭) dΓ.

We have equivalently

K
~Y n+1 − ~Y n

∆t
= −K(ǫK+ dD⊺MobsdD)−1dD⊺Mobs ~D(~Y n+α, Z),

which when ǫ→ 0 is the discretization of the following weak form

(ẏ, y♭)Y = −(ExtD
Γobs
0 ;nSz

(distSz), y
♭)Y . (41)

with

ExtD
Γobs
0 ;nSz

:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Z → Y

z 7→ y such that





−∇ · (σ
ℓ
(y)) = 0 in Ω0

σ
ℓ
(y) · n = 0 on ΓN

0\Γobs

0

σ
ℓ
(y) · e(j)Sz ,⊥

= 0, j = 1, 2 on Γobs

0

y · nSz
= z on Γobs

0

y = 0 on ΓD

0

(42)

In the linear case, we have seen that descent strategies like (41) can be deduced from a H 1

2

discrepancy, here typically of the form

D1(y) =
1

2

∫

Ω0

ExtDSz ;n(distSz) : A : ExtDSz ;n(distSz) dΩ.

However here this is not exactly the case. In fact, to retrieve this property we should have
defined the extension by

Ext♭
Γobs
0

(distSz) = argmin
y | y·nSz

=distSz

(
1
2‖y‖2H1

D
(Γobs

0 ,❘3)

)
. (43)

which is not equivalent to ExtDSz ;n(distSz) because distSz depends of the y. Some further compu-
tations show that the difference between the two extension definitions include additives surface
curvature terms of second order with respect to the distances. curvature terms can be intri-
cate to compute in practice, in particular with triangular meshes. We thus believe that with
ExtDSz ;n(distSz), we have an adequate compromise between efficiency and simplicity.

Moreover, even if the minimization principle is not exactly ensured anymore we can still
show that our methods converge for small initial errors in term of distances. In fact, introducing
again a target solution y• we can prove that the error ỹ = y• − y follows after linearization the
linearized error dynamics associated with δỹ

ǫ( ˙δỹ, y♭)Y + 〈dyD(y•, z)( ˙δỹ), dyD(y•, z)(y
♭)〉 = −〈dyD(y•, z)(δỹ), dyD(y•, z)(y

♭)〉
leading to the decrease of ‖δỹ‖Y . To summarize, we have presented a efficient strategy which
take us away from exact minimization principles but ensures a similar objective to what is
presented in [Neuberger, 1997], namely an effective descent procedure in order to make the
estimation error as small as possible.
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A time-discretization scheme based on linearization for nonlinear observation dis-
crepancies In practice, the resolution of (40) offer some technical difficulty as soon as α > 0.
In fact when the time-scheme is implicit we have a non-linear definition of ~Y n+1 which require
typically a Newton based method. However, an implicit time-scheme avoid any CFL condition
and allows to select any time-step. Following [Moireau et al., 2009] we show it is in fact possible
to replace (40) by a first order approximation-based time-scheme of the form

~Y n+1 − ~Y n

∆t
= −(ǫK+ dDe⊺MobsdDe)−1dDe⊺Mobs

(
~D(~Y e, Z) + dDe(~Y n+α − ~Y e)

)
(44)

where ye is an adequate extrapolated trajectory, typically

~Y e =
3~Y n − ~Y n−1

2

or simply ~Y e = ~Y n. In a similar context, this time scheme was proved in [Moireau et al., 2009]
to be consistent with (40) up to a second order of the time-step – when the extrapolation
~Y e is chosen carefully – and unconditionally stable also up to a second order of the time-
step. Moreover our Sobolev-gradient already necessitate the computation of operator of the
form dDe⊺MobsdDe, hence the linearization do not introduce further intricate operator to be
computed.

2.4.3 Illustrative example of registration from signed distance

To numerically assess the various registration methodology that we have described we present
two types of results. First we consider same example as the one proposed in Section ?? with
a linear observation operator. Here however we proceed to the registration using the distance-
to-surface discrepancy. The convergence profiles and the resulting solution are very similar to
those obtained with a linear observation operator, hence justifying our strategy to first derive
our algorithm in a linear framework.
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Figure 3: In (green) the solution associated with (38) with the time discretization based on
the linearization of the distance operator. Equivalently, in (red) the solution associated with

(39) and in (cyan) the solution associated with (40).

We then proceed to a more realistic case were we want to register an initial geometry on the
result of a segmentation. The segmentaed object is a pig heart manually segmented as described
in [Chabiniok et al., 2011]. The segmentation corresponds to two triangular surfaces represent-
ing the left and right endocardium. Each one are closed at the base due to software constraints.
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The initial geometry is a computational tetrahedral mesh used in [Chabiniok et al., 2011] for
mechanical simulations. We decide to register the initial geometry corresponding to to the end
diastolic phase on the image corresponding to the end systolic phase. No boundary conditions
is imposed and we therefore rely on the rigid motion filtering extension. Moreover, we adopt a
linear elasticity a priori. The results are presented in Figure 4 with the geometry before and
after the registration.

(a) Initial geometry (SAX-view) (b) Registered geometry (SAX-view)

(c) Initial geometry (LAX-view) (d) Registered geometry (LAX-view)

Figure 4: Solving a registration problem using the signed distance function. The model
geometry contours are in (green) and the target surface contours are in (cyan). First row:

Short-axis view (SAX) and Second row: long-axis view (LAX)

2.5 Integration of the formalism of Currents

In the previous section we have considered the signed distance operator, a first type of
nonlinear discrepancy measure well-suited to data type such as surfaces. However, as we
mentioned, this operator suffers from standard disadvantages that may deteriorate the effi-
ciency of the registration procedure. These drawbacks are in fact the main motivation to look
for more sophisticated fidelity-to-data terms. In this respect we focus here on the formal-
ism of currents which has been successfully used in the field of medical image analysis – see
[Vaillant and Glaunès, 2005, Durrleman et al., 2009, Younes, 2010]. The price to pay is that
this formalism clearly induces much more involved computation and derivation than a simple
distance. However, our objective is to show how the strategy presented in the previous sections
– and in particular in Section 2.4.2 – easily extends to this new and more intricate discrepancy.
In particular our Sobolev gradient based descent method allows to propose an effective strat-
egy which in the first step standard “L2”-based computations before introducing in a last step
an extension operator to accelerate the convergence. We point out that using a minimization
criterion involving directly the extension will lead to almost intractable terms in the formalism
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of currents.

2.5.1 The formalism of Currents

This formalism is based on the idea that, through its normal vector field, any surface can
be represented as a computational support. More precisely, if we consider a test vector field w
defined in the ambient space and a surface S admitting n as its normal then one can consider
the following operation resulting in the scalar value:

S(w) =

∫

S

w · n dΓ. (45)

The validity of this expression is entirely conditioned by the regularity of the involved vector
fields and the relationship between W the space of test vector fields and N , the space of
admissible normal vector fields is a recurrent topic when dealing with currents. As an extreme
example where the least regularity is assumed on the normal vector field, equation (45) is
defined for w ∈ W ⊂ C0(❘3,❘3) and n ∈ N ⊂ L1(S,❘3). Another appealing example is when
we expect the least regularity on W, that is to say the trace of any test vector field is defined
allowing (45) to make sense. This leads to w ∈ W = H1(❘3,❘3) and n ∈ N ⊂ L2(S,❘3). In
the following we will say that a surface S is represented as a current if its normal n belongs to
N and if the couple (W,N ) is such that S belongs to W∗, the dual of the space of test vector
fields. Additionally, if W is a Hilbert space then for any surface S represented as a current we
can define its Riesz representation s ∈ W such that

∀w ∈ W 〈S,w〉W∗,W = (s, w)W =

∫

S

w · n dΓ. (46)

At this early stage, we can see how this point of view can help us to introduce a fidelity-to-data
term since we can define the norm on the space of admissible surfaces by

∀S ∈ W∗ ‖S‖2W∗ = 〈S, s〉W∗,W =

∫

S

s · n dΓ. (47)

In the sequel we will see how we can use this formalism to provide numerically tractable expres-
sions of the terms appearing in the descent method. More precisely, going back to our original
registration problem, we consider Sz the given surface and Sy = H(y) the corresponding model
surface, subject to the solid displacement y. Consequently the discrepancy measure that we
aim at minimizing reads

D(y, z) =
1

2
‖Sz − Sy‖2W∗ . (48)

In the following, for the sake of simplicity, we will assume that the deformation ϕ of the solid
is smooth enough so that de deformed surface S can still be represented as a current. More
precisely, denoted by S0 the surface in the reference configuration, we assume that the operator

∀w ∈ W S(w) =

∫

S0

w(ξ + y(ξ)) · JF−⊺n0(ξ) dΓ,

remains a continuous linear form on W for any displacement y ∈ Y. Note that this hypothesis
may be strong but is a necessary step to derive the formalism in a first step.
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2.5.2 Differentiation of the discrepancy measure & tangent current

In Section 2.4 we defined a steepest descent method employing the differential of D . We
proceeded in two steps. First we compute a direct differentiate and then we use an extension
operator in order to define a Sobolev gradient and accelerate the convergence of the descent
method.

In the case of currents, the simple differentiation formally reads

− 〈dyD , δy〉Y∗,Y = (dS(δy), Sz − S)W∗ = 〈dS(δy), sz − s〉W∗,W . (49)

From (49) we understand that the first major difficulty that we are facing is the definition of the
Gâteaux derivative of the current S = H(y) around a displacement y and in the direction δy –
denoted by dS(δy) and referred to as the tangent current of S. As both integrands appearing
in (45) depend on the displacement, the expression of the tangent current is obtained by

∀w ∈ W 〈dS(δy), w〉W∗,W =

∫

S

(
∇ xw · δy

)
· dΓ +

∫

S

w ·
(
d dΓ(δy)

)
. (50)

where we use the compact notation of the surface element dΓ = n dΓ – n being the normal
vector field of the model surface. Hence the terms appearing in the descent method algorithm
take the following form :

− 〈dyD , δy〉Y∗,Y =

∫

S

(
∇ x(sz − s) · δy

)
· n dΓ +

∫

S

(sz − s) ·
(
d dΓ(δy)

)
. (51)

From the first term of (50) we understand that the trace of the spatial derivative of any test
vector field in W needs to be at least square integrable on any surfaces embedded in ❘3, in
order to define dS(δy) as an element of W∗. The second term of (50) is the derivative of the
surface element around a displacement y in the direction δy. This derivative is expressed by
differentiating successively the normal vector field and the surface measure, namely

d dΓ(δy) =
(
dn(δy)

)
dΓ + n

(
d dΓ(δy)

)
. (52)

There exist intrinsic forms of this differential which are well-known in the shape optimization
community [Delfour and Zolésio, 2011]. Here we propose a form which depends of a param-
eterization of the surface which will reveal to be of direct use in finite element procedures
[Chapelle and Bathe, 2011] as these terms also appear in shell formulations and their discretiza-
tions. Indeed, let us define φ0(ξ

1, ξ2) a parametrization of the model surface in the reference
configuration, admitting

i = 1, 2 αi =
∂φ0
∂ξi

(ξ1, ξ2)

as a basis of the tangent plane. Let φ(ξ1, ξ2) be the paramatrization of the deformed model
surface defined by φ = ϕ ◦ φ0. The basis of the its tangent plane is expressed by

i = 1, 2 ai =
∂φ

∂ξi
(ξ1, ξ2)

=
∂φ0
∂ξi

(ξ1, ξ2) +
∂

∂ξi
y(φ0(ξ

1, ξ2))

= αi +∇ξ
y⊺ · αi = αi + y

,i
.

In the previous expression we use the compact notation y
,i
= ∇

ξ
y⊺ · αi. Remarking that

∣∣∣∣∣∣∣

dn(δy) · n = 0,

dn(δy) · ai = −n · dai(δy) = −n · δy ,i
,
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we can give the expression of the first term appearing in (52)

dn(δy) = −
∑

i=1,2

(
n · δy

,i

)
ai = dτ(δy), (53)

with (a1, a2) the contravariant basis of the tangent plane verifying ai · aj = δij – where δ is the
Kronecker delta [Chapelle and Bathe, 2011]. This derivative is necessarily orthogonal to the
normal vector field – hence the notation dτ – and its components in the tangent plane are
expressed using the spatial derivative of the test displacement δy in the corresponding model
surface. Once again we assume enough regularity on the displacements for this term to be well
defined. Remarking that for any vectors u, v and w in ❘3 we have

(
u · v

)
w = w ⊗ v · u, (54)

expression (53) can also be understood as

dτ(δy) = −a1 ⊗ n · δy ,1
− a2 ⊗ n · δy ,2

, (55)

which emphasizes the fact that dτ(·) is a linear operator on the space of admissible displacement.
Moving on to the second term in (52), we rewrite the surface measure as

dΓ = ‖a1 ∧ a2‖ dξ1dξ2 =
√
a dξ1dξ2.

The scalar value a appearing in the previous expression can be differentiated to obtain

d
√
a(δy) =

1

2

da(δy)√
a

=
a1 ∧ a2√

a
·
(
da1(δy) ∧ a2 + a1 ∧ da2(δy)

)

= n ·
(
δy

,1
∧ a2 + a1 ∧ δy ,2

)
= δy

,1
·
(
a2 ∧ n

)
+ δy

,2
·
(
a1 ∧ n

)
.

We thus observe that there exists a real value c such that

a2 ∧ n = c a1 with c = −(a2 ∧ a1) · n = −‖a2 ∧ a1‖.

Using the same arguments for a1 ∧ n we obtain

n
(
d dΓ(δy)

)
= −

(
δy

,1
· a1 + δy

,2
· a2

)
n dΓ

= −
(
n⊗ a1 · δy

,1
+ n⊗ a2 · δy

,2

)
dΓ

= dν(δy) dΓ.

(56)

The obtained vector field is in the normal direction – justifying the notation dν – and also
uses the trace of the spatial derivative of the displacement on the model surface. Regrouping
equations (55) and (56) we will denote the derivative of a surface element by

d dΓ(δy) =
(
dτ(δy) + dν(δy)

)
dΓ. (57)

We understand here that we need a strong regularity on the displacement in order to define
(57). This means that the classical spaces H1(Ω0,❘

3) is not sufficient to consider this type of
terms. We should rely for example on a more regular space, for instance we could imagine the
displacements belong to Hs(Ω0,❘

3) with s ≥ 2. Here we then remain formal on the derivation
of the observer and leave the necessary regularity conditions to a future work.
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2.5.3 Reproducing Kernel Hilbert Spaces.

In order to provide a numerically tractable form of the vector fields appearing in (51) we
follow [Vaillant and Glaunès, 2005, Durrleman et al., 2009, Younes, 2010] and define W as a
Reproducing Kernel Hilbert Space (RKHS). Clearly the choice of this RKHS should be consis-
tent with the space of admissible displacements since an admissible displacement has generated
the target surfaces. We believe here also that a Hs(Ω0,❘

3) with s ≥ 2 could be a good can-
didate for the admissible displacements space in order to be compatible with the use of RKHS
spaces but the study of this question will remain beyond the scope of this article.

To start with RKHS spaces, we refer to [Aronszajn, 1950] and recall some standard proper-
ties of these spaces

Definition 3
The Hilbert space W is said to be a RKHS if the evaluation functions

∀x ∈ ❘3, ∀α ∈ ❘3 δαx

∣∣∣∣∣
W → ❘

w 7→ δαx (w) = α · w(x), (58)

are continuous linear forms, namely δαx ∈ W∗.

We can remark that any Hilbert space that verifies W ⊂ C0(❘3,❘3) is necessarily a RKHS.
Moreover, using the Riesz representation theorem we can ensure that for a given functional δαx
there exists a unique function kαx such that

∀w ∈ W 〈δαx , w〉W∗,W = (kαx , w)W = α · w(x).

Remarking the linearity with respect to α of the last term we can state that there exists a unique
two-arguments function k(·, ·) – called the kernel of W – verifying the so-called reproducing
property

∀x ∈ ❘3, ∀α ∈ ❘3, ∀w ∈ W α · w(x) = (k(x, ·)α,w)W . (59)

As a matter of fact, we will extract from this reproducing property most of the results that are
needed to solve the registration problem using the formalism of currents.

Proposition 4
Let S be a surface represented as a current and admitting n ∈ N as its normal vector field. If
W is a RKHS then the Riesz representation of S is given by

s(x) =

∫

S

k(x̃, x)n(x̃) dΓ. (60)

Proof. Applying the reproducing property in the definition of the operator S we obtain for any
test vector field w ∈ W

〈S,w〉W∗,W =

∫

S

w · n dΓ =

∫

S

(k(x̃, ·)n,w)W dΓ = (s, w)W .

�

If S1 and S2 are two surfaces represented as currents, then, using the expression of their
Riesz, we have

(S1, S2)W∗ = (s1, s2)W∗ = 〈S1, s2〉 = 〈S2, s1〉

=

∫

S1

∫

S2

n1(x) · k(x̃, x)n2(x̃) dΓ dΓ,
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and the norm between these objects can be computed by

‖S1 − S2‖2W∗ = ‖S1‖2W∗ − 2〈S1, S2〉W∗ + ‖S2‖2W∗

=

∫∫

S1

n1(x) · k(x̃, x)n1(x̃) dΓ dΓ+

∫∫

S2

n2(x) · k(x̃, x)n2(x̃) dΓ dΓ

− 2

∫

S1

∫

S2

n1(x) · k(x̃, x)n2(x̃) dΓ dΓ.

(61)

Choosing a kernel In practice, it is much more convenient to rather choose only the kernel
k than the space W. However, we need to choose this two-argument function such that we
can ensure that there exists a unique RKHS admitting this function as its kernel and secondly
such that the regularity ofW can be controlled. These questions have been extensively detailed
in [Vaillant and Glaunès, 2005, Glaunès et al., 2008, Durrleman et al., 2009] and we will just
gather the necessary results that we need for solving our particular registration problem.

For the sake of simplicity we will only consider real valued kernel. It is not a large restriction
since every key concept explained below can be extended when k is a tensor of order two. To
start with, we cite a first result which is a sufficient condition for the existence of a unique
RKHS from the choice of the kernel [Aronszajn, 1950]:

Lemma 5
If k is symmetric positive semi-definite scalar function, that is to say

∣∣∣∣∣∣∣∣∣∣

∀(xi, xj) ∈ ❘3 ×❘3, k(xi, xj) = k(xj , xi),

∀{xi}Ni=1 ⊂ ❘3 and {αi}Ni=1 ⊂ ❘3 ,
n∑

i,j=1

αi · k(xi, xj)αj ≥ 0,

(62)

then there exists a unique RKHS such that k is its kernel.

The demonstration of this theorem mainly uses a density argument by proving that the
closure of the finite dimensional space spanned by the function of the form K(·, xi)αi is in fact
a Hilbert space that necessarily admits k as its kernel and is unique. Another important result
that we consider concerns the regularity of the spaces created from a kernel.

Lemma 6
If, for an integer p ≥ 0, k is symmetric positive semi-definite scalar function such that its
derivatives of order 2p are continuous, bounded in ❘3 and such that ∀x ∈ ❘3, k(x, ·) and its
derivative of order p at least vanish at infinity then the unique RKHS associated with k is
continuously embedded in Cp(❘3,❘3).

This regularity property is also proved using the same density argument. The choice of
the kernel is crucial since, has we have seen in equation (61), it rules the metric on the
space of currents. As an example, numerical experiments were successfully carried out in
[Glaunès et al., 2008] using a Gaussian kernel of the form

∀x, x̃ ∈ ❘3 k(x, x̃) = exp
(
− ‖x− x̃‖

2

µ2

)
. (63)

Other types of kernel may be consider – see [Glaunès et al., 2008] for numerous examples.
From Lemma 5 and Lemma 6, the RKHS built form this kernel is continuously embedded in
C∞(❘3,❘3).
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2.5.4 Time discretization

From the expression (49) of the first derivative of the fidelity-to-data term, the time discrete
descent method reads





(yn+1 − yn
∆t

, y♭
)
Y
= (dSn+α(y♭), Sz − Sn+α)W∗ ,

y0 = y⋄,
(64)

where we use, for now at least, the natural gradient of the discrepancy measure. In (64)
we denote by Sn+α = H(yn+α) the model surface subject to the displacement yn+α and by
dSn+α(y♭) the tangent current around the displacement yn+α in the direction y♭. This system
is non linear and as previously we consider an extrapolated displacement ye and propose the
following linearization scheme:




(
yn+1 − yn

∆t
, y♭)Y = (dSe(y♭), Sz − Se − dSe(yn+α − ye))W∗ ,

y0 = y⋄.
(65)

In practice, the explicit part of the numerical scheme proposed in (65) is computed using (51)
applied to y♭. However, the other terms obtained after linearization employ the bilinear form
(dS(y♭), dS(y♯))W∗ , where y♯ is another test displacement. To deal with this new term we will
give an expression of the Riesz representation of the tangent current – denoted by ds – and
use the identity

(dS(y♭), dS(y♯))W∗ = 〈dS(y♭), ds(y♯)〉W,W∗ .

Proposition 7
Let us consider S – with normal vector field n – the deformed surface by a smooth displacement
y and represented as a current. If the space of test vector fields is a RKHS embedded in
C1(❘3,❘3) then the tangent current around y and in the direction δy exists and its Riesz
representation is given by

ds(δy)
∣∣∣
x
=

∫

S

(
∇ 1k(x̃, x) · δy(x̃)

)
n(x̃) dΓ +

∫

S

k(x̃, x)
(
dτ(δy) + dν(δy)

)∣∣∣
x̃
dΓ. (66)

Proof. Assuming thatW is a RKHS embedded in C1(❘3,❘3) implies the existence of the tangent
current dS(δy) as an element of W∗. Moreover, let h be a strictly positive scalar value, from
the reproducing property (59) we have for any α ∈ ❘3 and w ∈ W:

1

h

(
w
(
x+ hδx

)
− w

(
x
))
· α =

(1
h

(
k
(
x+ hδx, ·

)
− k

(
x, ·

))
α, w

)
W
.

Hence, as h tends to zeros we can understand how the reproducing property also exists for the
derivatives of the test vector field, namely:

(
∇ xw · δx

)
· α =

( (
∇ 1k(x, ·) · δx

)
α , w

)
W
, (67)

where ∇ 1k is the gradient of the kernel with respect to the first variable. Applying the re-
producing properties (59) and (67) to the definition of the tangent current (50) leads to the
expression of its Riesz representation. �
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Remark 4 – The differentiation operator and the Riesz identification are commutative since,
by differentiating the Riesz representation of S – defined in (60) – around y and in the direction
δy, we obtain

ds(δy) = d
(∫

S

k(x̃, x) n(x̃) dΓ
)
(δy)

=

∫

S

(
∇ 1k(x̃, x) · δy(x̃)

)
n(x̃) dΓ +

∫

S

k(x̃, x)
(
dτ(δy) + dν(δy)

)∣∣∣
x̃
dΓ

= δs(δy).

Proposition 8
Assuming that the space of test vector field is a RKHS embedded in C2(❘3,❘3), the bilinear
form appearing in the algorithm (64) is defined, around a displacement y and for any y♭ and y♯

in Y, by :

(dS(y♭), dS(y♯))W∗ =

∫

S

∫

S

(
∇ 2k(x̃, x)

)
· y♭(x)n(x) ·

(
dτ(y♯) + dν(y♯)

)∣∣∣
x̃
dΓdΓ

+

∫

S

∫

S

(
∇ 1k(x̃, x) · y♯(x̃)

)
n(x̃) ·

(
dτ(y♭) + dν(y♭)

)∣∣∣
x
dΓdΓ

+

∫

S

∫

S

(
∇ 2

12k(x̃, x) :
(
y♭(x)⊗ y♯(x̃)

))
n(x̃) · n(x) dΓ dΓ

+

∫

S

∫

S

k(x̃, x)
(
dτ(y♯) + dν(y♯)

)∣∣∣
x̃
·
(
dτ(y♭) + dν(y♭)

)∣∣∣
x
dΓdΓ.

(68)

Where, we denoted by ∇ 2
12k the Hessian cross matrix of k, ∇ 2

12k = ∇ 2

(
∇ 1k

)
.

Proof. As mentioned previously we will use the expression (66) of the Riesz representation of
the tangent current. To begin with, from (50), we have

(dS(y♭), dS(y♯))W∗ =

∫

S

(
∇ xds(y

♯)
∣∣∣
x
· y♭(x)

)
· n(x) dΓ

+

∫

S

ds(y♯)
∣∣∣
x
·
(
dτ(y♭) + dν(y♭)

)∣∣∣
x
dΓ. (69)

The regularity of ds(y♯) ∈ W – which is, by assumption, embedded in C2(❘3,❘3) – ensures
that the previous expression is well defined. From (66), we have, for any x ∈ ❘3

ds(y♯)
∣∣∣
x
=

∫

S

(
∇ 1k(x̃, x) · y♯(x̃)

)
n(x̃) dΓ +

∫

S

k(x̃, x)
(
dτ(y♯) + dν(y♯)

)∣∣∣
x̃
dΓ. (70)

In the following we concentrate our effort in giving the expression of the spatial derivative
of ds(y♯). To start with, the second term appearing in (70) is easily differentiated into

∇ x

(∫

S

k(x̃, x)
(
dτ(y♯) + dν(y♯)

)∣∣∣
x̃
dΓ

)
· y♭(x) =

∫

S

∇ 2k(x̃, x) · y♭(x)
(
dτ(y♯) + dν(y♯)

)∣∣∣
x̃
dΓ,

where ∇ 2k(x̃, x) stands for the derivative of the kernel with respect to the second spatial vari-
able.

Concerning the first term in (70), we apply (54) to obtain
∫

S

(
∇ 1k(x̃, x) · y♯(x̃)

)
n(x̃) dΓ =

∫

S

n(x̃)⊗ y♯(x̃) · ∇ 1k(x̃, x) dΓ,
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which, after spatial differentiation, leads to

∇ x

(∫

S

n(x̃)⊗ y♯(x̃) · ∇ 1k(x̃, x) dΓ
)
· y♭(x) =

∫

S

n(x̃)⊗ y♯(x̃) ·
(
∇ 2

12k(x̃, x) · y♭(x)
)
dΓ.

Now, applying once more (54), where u is replaced by ∇ 2
12k(x̃, x) · y♭(x), we obtain

∇ x

(∫

S

(
∇ 1k(x̃, x) · y♯(x̃)

)
n(x̃) dΓ

)
· y♭(x) =

∫

S

(
∇ 2

12k(x̃, x) :
(
y♭(x)

)
⊗ y♯(x̃)

))
n(x̃) dΓ.

Regrouping the previous computation, the spatial derivative of the Riesz representation of
the tangent current is then given by

∇ xds(y
♯)
∣∣∣
x
· y♭(x) =

∫

S

∇ 2k(x̃, x) · y♭(x)
(
dτ(y♯) + dν(y♯)

)∣∣∣
x̃
dΓ

+

∫

S

(
∇ 2

12k(x̃, x) :
(
y♭(x)

)
⊗ y♯(x̃)

))
n(x̃) dΓ. (71)

Replacing the expression (71) of the spatial derivative of the Riesz representation and the
expression (70) of the tangent current in the expression (69) of the bilinear form we obtain the
desired result (68). �

Remark 5 – In our numerical experiments we used a Gaussian kernel whose successive deriva-
tives are expressed as follows,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k(x̃, x) = exp
(
− ‖x− x̃‖

2

µ2

)
,

∇ 1k(x̃, x) = −
2

µ2
(x̃− x) k(x̃, x),

∇ 2k(x̃, x) =
2

µ2
(x̃− x) k(x̃, x),

∇ 2
12k(x̃, x) =

( 2

µ2
✶− 4

µ4
(
x̃− x

)
⊗
(
x̃− x

))
k(x̃, x).

(72)

We will discuss later the influence of the real value µ, referred to as the kernel width, in our
procedure.

Remark 6 – It is important to notice that, in essence, the bilinear form previously described
is necessarily symmetric and positive semi-definite. The symmetry property is self-evident and
the positivity comes from the fact for any admissible displacement y we have

(dS(y), dS(y))W∗ = ‖dS(y)‖2W∗ ≥ 0. (73)

2.5.5 Space discretization and assembling procedure

In this paragraph we deal with the numerical aspects of the previously described algorithm,
equations (65). More precisely, from a finite element standpoint, we investigate the expression
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of the matrix dSe|dSe and the vector ~Λe – potentially referred to as the innovation term – such
that

(dSe(y♭h), Sz − Se − dSe(yn+α
h − yeh))W∗ = ~Y ♭⊺~Λe − ~Y ♭⊺dSe|dSe

(
~Y n+α − ~Y e

)
,

where y♭h is a finite element test function. Starting with ~Λe, we have from (50) and (54) that

~Y ♭⊺~Λe = ~Y ♭⊺~Λe
1 + ~Y ♭⊺~Λe

2

=

∫

Se

(
∇ x(sz − se) · y♭h

)
· ne dΓ +

∫

Se

(sz − se) ·
(
dτ(y♭

h
) + dν(y♭

h
)
)
dΓ.

(74)

Denoting by nz the normal vector field of the observed surface and ne the normal vector field
of the model surface subject to the extrapolated displacement ye, both Riesz representation of
the two surfaces appearing in the previous expression are given by

sz(x) =

∫

Sz

k(x̃, x)nz(x̃) dΓ and se(x) =

∫

Se

k(x̃, x)ne(x̃) dΓ.

Remarking that

∇ xsz(x) · y♭h(x) =
∫

Sz

(
∇ 2k(x̃, x) · y♭h(x)

)
nz(x̃) dΓ

=
(∫

Sz

nz(x̃)⊗∇ 2k(x̃, x) dΓ
)
· y♭

h
(x),

the first term of the innovation is expressed as follows

~Y ♭⊺~Λe
1 =

∫

Se

ne(x) ·
(∫

Sz

nz(x̃)⊗∇ 2k(x̃, x) dΓ−
∫

Se

ne(x̃)⊗∇ 2k(x̃, x) dΓ
)
· y♭

h
(x) dΓ. (75)

Concerning the numerical integration of these terms, for the sake of simplicity and follow-
ing [Glaunès et al., 2008], we have chosen a one-point integration rule at the center of each
triangle, however our assembling strategy differs from [Imperiale et al., 2013]. We denote by
T e = {Ti}NT

i=1 the set of triangles of the model surface and {ci}NT

i=1 the set composed by the
center of every triangles. In the same manner we denote by

Tz = {T z
i }

Nz
T

i=1 and {czi }
Nz

T

i=1,

the triangles and their centers of the observed surface. In order to lighten the expressions, we
consider a triangle T ∈ T e of the deformed model surface and denote by n its normal unit
vector, |T | its surface area and c its center. With these notations and our choice of integration
rule, the contribution of a triangle in T e for ~Λe

1 is computed by

∫

T

(
∇ x(sz − se) · δy

)
· ne dΓ ≈

n |T | ·
( Nz

T∑

j=1

nz(c
z
j )⊗∇ 2k(c

z
j , c)

∣∣T z
j

∣∣−
NT∑

j=1

ne(cj)⊗∇ 2k(cj , c) |Tj |
)
· 1
3

(
δy(1) + δy(2) + δy(3)

)
,

(76)

where in (76) we consider δy a local finite element function on the triangle T , with components
at the P1 degrees of freedom denoted by δy(1), δy(2) and δy(3). We denote by Ic the 3× 9 local
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matrix responsible for the numerical integration using the one-point rule, namely

1

3

(
δy(1) + δy(2) + δy(3)

)
= Ic ·



δy(1)

δy(2)

δy(3)




=



1/3 1/3 1/3

1/3 1/3 1/3
1/3 1/3 1/3


 ·



δy(1)

δy(2)

δy(3)


 .

In an assembling procedure the local term ~Λe
1 at a triangle level is given by

I⊺c ·
( Nz

T∑

j=1

nz(c
z
j )⊗∇ 2k(c

z
j , c)

∣∣T z
j

∣∣−
NT∑

j=1

ne(cj)⊗∇ 2k(cj , c) |Tj |
)
· n |T | . (77)

The second term of the innovation can be computed classically using the local barycentric
coordinate system. On the considered triangle T ∈ T e, the spatial coordinate is uniquely
expressed in the local barycentric coordinate system by

x = x(r, s) =

3∑

i=1

λk(r, s)x
(k),

where {λi(r, s)}3i=1 are the two dimensional linear shape functions





λ1(r, s) = r

λ2(r, s) = s

λ3(r, s) = 1− r − s,

and {x(k)}3k=1 are the summits of the deformed triangle under consideration. With these nota-
tions, the surface element of the triangle is constant and given by

n dΓ =
∂x

∂r
∧ ∂x
∂s

drds

One can easily verify that





∂λ1
∂r

(r, s) = 1,
∂λ1
∂s

(r, s) = 0,

∂λ2
∂r

(r, s) = 0,
∂λ2
∂s

(r, s) = 1,

∂λ3
∂r

(r, s) = −1, ∂λ3
∂s

(r, s) = −1,

so that
∂x

∂r
= x(1) − x(3) = e(2),

∂x

∂s
= x(2) − x(3) = e(1).

We consider δy a local finite element function on the triangle T expressed in the local barycentric
coordinates as

δy(r, s) =
3∑

i=1

λk(r, s)δy
(k),
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and verifying
∂

∂r
δy = δy(1) − δy(3) and

∂

∂s
δy = δy(2) − δy(3).

The derivative of a surface element with respect to a test displacement is then given by

(
dτ(δy) + dν(δy)

)
dΓ =

∂x

∂r
∧ ∂

∂s
δy +

∂

∂r
δy ∧ ∂x

∂s
drds

= e(2) ∧ (δy(2) − δy(3)) + (δy(1) − δy(3)) ∧ e(1) drds.

Denoting by

[∂x
∂s
∧

]
=




0 −e(1)3 e
(1)
2

e
(1)
3 0 −e(1)1

−e(1)2 e
(1)
1 0


 and

[∂x
∂r
∧

]
=




0 −e(2)3 e
(2)
2

e
(2)
3 0 −e(2)1

−e(2)2 e
(2)
1 0


 ,

we can define Q, a 3× 9 local matrix, such that

(
dτ(δy) + dν(δy)

)
dΓ = Q ·



δy(1)

δy(2)

δy(3)


 drds,

where

Q =


O3×3

[∂x
∂r
∧

]
−
[∂x
∂r
∧

]

+


−

[∂x
∂s
∧

]
O3×3

[∂x
∂s
∧

]

 . (78)

With these notations and the choice of integration rule, the contribution of a triangle in T e for
~Λe
2 is computed by

∫

T

(sz − se) ·
(
dτ(δy) + dν(δy)

)
dΓ

≈
( Nz

T∑

j=1

k(czj , c)nz(c
z
j )
∣∣T z

j

∣∣−
NT∑

j=1

k(cj , c)n
e(cj) |Tj |

)
·Q ·



δy(1)

δy(2)

δy(3)




∫

r,s

drds

=
1

2

( Nz
T∑

j=1

k(czj , c)nz(c
z
j )
∣∣T z

j

∣∣−
NT∑

j=1

k(cj , c)n
e(cj) |Tj |

)
·Q ·



δy(1)

δy(2)

δy(3)


 .

Hence, in an assembling procedure the local term ~Λe
2 at a triangle level is given by

1

2
Q⊺ ·

( Nz
T∑

j=1

k(czj , c)nz(c
z
j )
∣∣T z

j

∣∣−
NT∑

j=1

k(cj , c)n
e(cj) |Tj |

)
. (79)

From the different operators that we need for the innovation term and from the expression (68)
of the bilinear form, we can directly give the local expression of dSe|dSe :

|Ti|
2

I⊺c ·
(
n(ci)⊗∇ 2k(cj , ci)

)⊺

·Qj +
|Tj |
2

Q⊺
i ·

(
n(cj)⊗∇ 1k(cj , ci)

)
· Ic

+
(
n(ci) |Ti| · n(cj) |Tj |

)
I⊺c · ∇ 2

12k(cj , ci) · Ic +
k(cj , ci)

4
Q⊺

i ·Qj . (80)
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To conclude the presentation of the discretization procedure for the current-based descent
method, we infer – from the spatial discretization of the terms described in this section – the
form of the various algorithm depending on the type of gradient that we consider. Namely,

– in the direct application of the norm in W∗

Mρ

~Y n+1 − ~Y n

∆t
= ~Λe − dSe|dSe(~Y n+α − ~Y e), (81)

– in the case of H1-type Sobolev-gradient

K
~Y n+1 − ~Y n

∆t
= ~Λe − dSe|dSe(~Y n+α − ~Y e), (82)

– in the case of our best choice of Sobolev-gradient based on the generalized inverse of the
tangent

~Y n+1 − ~Y n

∆t
= (ǫK+ dSe|dSe)−1

(
~Λe − dSe|dSe(~Y n+α − ~Y e)

)
. (83)

where in all cases we have used the time-scheme obtained by linearization of the discrepancy.

Approximating Gâteaux derivative for operators cross-checking The complexity of
the operator explicitly expressed in (80) naturally calls for means of cross-checking. A natural
way to do so is to use an approximation of the Gâteaux derivative of a current. More precisely,
defining by S0 a part of the deformable object surface in the reference configuration and S(y♭)
the corresponding surface deformed by any admissible displacement y♭, then the tangent current
around the reference configuration can be approximated by

∀y♭, dS0(y
♭) = lim

τ→0

1

τ

(
S(τy♭)− S0

)
∼ 1

τ

(
S(τy♭)− S0

)
,

for a small scalar value τ > 0.
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Figure 5: Evolution of the relative error between the assambled operator and the operator
approximated by in (84) with respect to the parameter τ .

Now, since we already set a finite element space that, by definition, approximate the space
of admissible displacement, the operator (dS(y♭), dS(y♯))W∗ can therefore be approximated by

∀y♭, ∀y♯, (dS(y♭), dS(y♯))W∗ ∼
N∑

i,j

(1
τ

(
S(τϕi)− S0

)
,
1

τ

(
S(τϕj)− S0

))
W∗
, (84)

247



where {ϕi}Ni=1 are the finite element basis functions. In Figure 5 we plot the evolution of the
relative error between the operator assembled using (80) and its approximation (84). We observe
a first appropriate behavior when τ decreases – which indicates a correct assembling procedure
– rapidly deteriorated for smaller values, characteristic of numerical errors inherent of this type
of approximation.

Domain decomposition The algorithms (81), (82) and (83) can be expressed as

A(~Y e)~Y n+1 = F (~Y e, ~Y n), (85)

where the matrix A and right-hand side term F appearing in the linear problem depends on
the type of gradient that we consider, namely

A =

∣∣∣∣∣∣∣∣∣∣

1

∆t
M+ αdSe|dSe,

ǫ

∆t
K+

( 1

∆t
+ α

)
dSe|dSe,

and

F =

∣∣∣∣∣∣∣∣∣∣

~Λe + dSe|dSe~Y e +
1

∆t
M~Y n + (1− α)dSe|dSe~Y n,

~Λe + dSe|dSe~Y e +
1

∆t

(
ǫK+ dSe|dSe

)
~Y n + (1− α)dSe|dSe~Y n.

From the expression of the bilinear form (68), we can understand that the matrix dSe|dSe

obtained after discretization is potentially full. The band width depends however on the kernel
width µ since it regulates the decrease of the Gaussian kernel. Figure 6 shows an example of the
evolution of the matrix pattern with respect to different values of the kernel width µ illustrating
the filling phenomenon – values lower than the computer precision fixed to 1e-17 are set to 0.

(a) µ = 10−1 (b) µ = 1 (c) µ = 101

Figure 6: Sparse pattern of the matrix dSe|dSe for a toy geometry example (with
1548 degress of freedom) for different values of the kernel width µ – values lower than the

computer precision fixed to 1e-17 are set to 0

In the perspective of a direct solver (commonly used in the context of non linear mechanics)
this feature may lead to a dramatic increase of the total computational time needed to solve
the linear problem. In order to circumvent this difficulty we propose to perform a domain
decomposition strategy to separate the degrees of freedom on the part of the surface concerned
by the current observation operator and the remaining degrees of freedom. Considering Γ the
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indexes of the degrees of freedom that belong to the surface under consideration and I the
remaining indexes, then the linear system (85) is decomposed block-wise into



AII AIΓ

AΓI AΓΓ






~YI

~YΓ



n+1

=



FI

FΓ


 ,

where the block AΓΓ is potentially full. As an example of possible choices, in order to obtain
the solution of (85) we can choose a Gauss-Seidel iterative algorithm





AII
~Y
(k+1)
I +AIΓ

~Y
(k+1)
Γ = FI,

AΓΓ
~Y
(k+1)
Γ +AΓI

~Y
(k)
Γ = FΓ.

(86)

Indeed in (86) we isolate the inversion of the block AΓΓ, which is full but of the size of the
number of degrees of freedom on the surface. Then we proceed to the inversion of A where the
band width corresponds to classical finite element operator. In practice this algorithm converges
typically in less than 10 iterations.

2.5.6 Image based registration

In this section, we want to benefit from the formalism of currents to solve goes a step
further in the unification of the registration problems and formalism. Here our objective is to
consider a lower level type of data, namely a level set segmentation of the image instead of a
triangulated surface – as required in the case of the signed distance operator. More precisely,
we assume that the observations on the target takes the form of an image where the boundary
– or a part of the boundary – represents significant changes in the image intensity. In this
context we then assume that a segmentation procedure is performed on the image in order
to obtain a level-set function whose zero-value isosurface corresponds to the segmentation of
the target surface boundary. Readers may refer to [Oster and Fedkiw, 2009, Paragios, 2003,
Chan and Shen, 2005, Scherzer, 2011] for an extensive presentation of level sets with application
to segmentation procedures.

From equations (77) and (79) of the innovation term appearing in the currents-based dis-
crepancy, we understand that the registration procedure requires (1) the centers of the triangles
cz, (2) their normal unit nz vectors and (3) their surface area |T z|. Computing the isosurface of
φ directly leads to an estimation of the centers of every triangles by using the center of the set
of voxels defining the isosurface. In theses voxels, the normal unit vector is classically estimated
through the spatial gradient of the level-set function,

nzi =
∇φ(czi )
|∇φ(czi )|

. (87)

Focusing on the definition of the surface area we have to deal with, we should want to
estimate it by considering the surface of the plane defined by the estimated normal vector field,
passing by the center of each voxel and clipping the voxel. Taking into account all the different
cases occurring when clipping a voxel with this plane may lead to unnecessary technicalities,
therefore we rather simplify the approach by replacing the voxel by an ellipsoid defined within
the voxel, see Figure 7. The intersection is then straightforward to compute. LetO be the image
orientation defined through three orthogonal unit vectors (i, j, k). In the canonical coordinate
system, i.e. after applying O−1, the ellipsoid is given by

1

δx21
x21 +

1

δx22
x22 +

1

δx23
x23 = 1, (88)
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Figure 7: Estimation of a triangle surface area through the normal vector field defined within
a voxel.

where δx1 × δx2 × δx3 is the voxel volume. Lying in the canonical coordinate system, we can
define the plane coordinate system using O−1nzi and complete the basis with two orthogonal
unit vectors u and v. Denoting by η1, η2 and η3 the spatial coordinates in this coordinate
system, the ellipse is defined by three parameters a, b, c such that

{
η3 = 0,

aη21 + bη22 + 2cη1η2 = 1.
(89)

Remarking that 

x1
x2
x3


 =


u v O−1nzi


 ·



η1
η2
η3


 ,

and replacing (x1, x2, x3) in (88), we infer the values of the coefficients

∣∣∣∣∣∣∣∣∣∣∣∣∣

a =
1

δx21
u21 +

1

δx22
u22 +

1

δx23
u23

b =
1

δx21
v21 +

1

δx22
v22 +

1

δx23
v23

c =
1

δx21
u1v1 +

1

δx22
u2v2 +

1

δx23
u3v3.

Eventually the triangle surface area is thus estimated by

|T z
i | = 2πλ1λ2, (90)

where λ1 and λ2 are the eigenvalues of the symmetric positive definite matrix

(
a c
c b

)
.
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Figure 8: Solving the registration problem using a level-set segmentation current. Evolution of
the deformable object during various of the descent method, in long axis view.

Figure 9: Solving the registration problem using a level-set segmentation current. Evolution of
the deformable object during various of the descent method, in short axis view.
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Examples of application with synthetic data. First we consider the same numerical
experience in which we evaluate our norm choices and Sobolev-gradient corresponding to (81),
(82) and (83). The results are presented in Figure 10 and we also understand the interest of
our particular choice of Sobolev-gradient of (83).

Then, we consider again the realistic registration problem defined in Section 2.4.3 from
the Pig data of [Chabiniok et al., 2011]. Since finding adequate level-set strategies for actual
heart MR-images [Paragios, 2003] is beyond the purpose of this methodological article, we
decide to not rely on the original MR-images of [Chabiniok et al., 2011]. Instead, we generate
a synthetic image by rasterizing [Bresenham, 1965] the manual segmentation of the pig heart.
After adding some white noise on the image, we perform a level-set segmentation based on
[Chan and Vese, 2001] using Yan Zhang’s 2D-3D image segmentation Matlab toolbox 1. We then
use the level set to define the current and register our computational mesh. The results are
presented in Figure 8 and 9.
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Figure 10: In (green) the solution associated with (81), in (red) the solution associated with
(82) and in (cyan) the solution associated with (83).

2.5.7 Similarity with active surfaces, Gradient Vector Flow (GFV) and Vector
Filed Convolution (VFC)

In the classical formalism of active contours or their three-dimensional equivalent, ac-
tive surfaces [Cohen et al., 1992, Caselles et al., 1997, Aubert et al., 2003, Gout et al., 2005,
Sermesant et al., 2003, Li and Acton, 2007, Cohen and Peyré, 2011], we consider a paramet-
ric surface S(t, r, s), where t represents an artificial time variable and (r, s) are the spatial
parametrization of the surface embedded in R3. The dynamics of this (active) surfaces is then
ruled by a descent method

{
Ṡ(t) = −

(
∇E int +∇Eext

)
(S(t)), t ≥ 0

S(0) = S⋄,
(91)

where S⋄ is a given prior on the surface. The formalism (91) should be compared to our
formalism where we defined the object deformation through its displacement with





(yn+1 − yn
∆t

, y♭
)
Y
= β

∫

Ω0

∂W

∂e
: dye(y)(y

♭) dΩ + γ(dS(y♭), Sz − S(y))W∗ ,

y(0) = y⋄,

(92)

1http://www.mathworks.com/matlabcentral/fileexchange/24998-2d3d-image-segmentation-toolbox
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In (91), E int is the so-called internal energy used in this formalism to favor smooth de-
formation which is thus directly comparable to the linear or non-linear elasticity penalization
presented in our formalism. Besides, Eext is an external energy typically computed from the
image. This external energy is typically designed so that its gradient leads to a vector field
embedded in the image domain to attract the active surface towards the so-called Region Of
Interests (ROIs) of the image. The term Eext is then directly comparable our discrepancy term.
In the literature however, it was accepted to circumvent the formal definition of this external
energy by by directly prescribing an external force f ext so that the dynamics of the active
surface reads {

Ṡ(t) = −∇E int(S(t)) + f ext(S(t)), t ≥ 0

S(0) = S0,
(93)

Popular examples of such external force are the so-called Gradient Vector Field (GVF) – see for
instance [Xu and Prince, 1998, Guillot and Bergounioux, 2009] – or the Vector Field Convolu-
tion (VFC) [Li and Acton, 2007] obtained through vectorial convolution of an edge map that
we denote by e – with I representing the grey-level intensity of the image. There exist various
ways to define an edge-map, a typical example is

e(x) = −‖∇I(x)‖2.

In this context we have

f ext(x) =

∫

I
kvfc(x, x̃)m(x, x̃)e(x̃)dI, (94)

where m is defined as a unit vector pointing to the kernel origin [Li and Acton, 2007]. This
definition of the external force should be compared to the definition of the Riesz representation
of a current (60). This important similarity goes as far as defining the convolution kernel kvfc

as a Gaussian kernel.

3 Dynamical case

In the first part of this work we have examined various strategies of static registration of a
deformable model on some given data. We can now move to the case where we have a time-
sequence of data. We focus here on the most relevant case of available surfaces segmented from
a 3D+t image sequence and we expect to apply the formalism of currents. In this context, we
assume to have modeled the motion – namely the time-deformation – on the deformable object
considered and we expect to benefit from it. This configuration enters in the context of data
assimilation [Blum et al., 2008, Navon, 2008, Chapelle et al., 2012b] and we specifically have in
mind cardiac applications where various models of the heart contraction exist. In the sequel we
show how this class of “dynamics registration” can benefit from the static case. In this respect
we intend to mainly follow the work of [Moireau et al., 2009] and propose to embed it in the
context of the the formalism of currents.

3.1 A sequential state estimator using distances

From a general standpoint, data assimilation aims at providing a reconstruction of a real
system using the two complementary sources of information namely a model representing the
physical process under study and some specific observations on the target system. In the
community of data assimilation, the model is generally a dynamical system taking the form of
potentially nonlinear partial differential equations. In most cases, it gathers some information
on the physics lying behind the observed phenomenon and encapsulated in a mathematical
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formalism. Notwithstanding its ability to represent any possible trajectory – with a variable
precision – a model often contains a various range of potential errors, e.g. on the operator
driving the dynamical system, on the initial conditions or on some parameters. By extracting
the valuable information contained in the observations, data assimilation procedure aims at
correcting these errors and, by doing so, providing a more precise simulation of the real system.
Formally in data assimilation we have to define a model – written in first order form – modeling
the physical phenomena, in our case the deformation evolution. This model formally reads

ẋ(t) = A(x(t)).

In order to rewrite a mechanical system – with inertia – in a first order form, we should
concatenate the displacement and the velocity in the state vector in order to define x =

(
y v

)⊺
.

On this class of system we consider a target trajectory denoted by x•, which follows





ẋ•(t) = A(x•(t)) + ω•,

x•(0) = x⋄ + ζ•,

where x⋄ is some a priori on the initial conditions and ζ• and ω• are potential uncertainties.
Along with this target trajectory we associate some observations of the form

z(t) = H(x•(t)) + χ(t).

In the spirit of the first part of this work, the observation operator only applies to the dis-
placement part of the state therefore H(x) is in fact H(y) and the tangent operator is then
dxH = (dyH 0). In this context, the principle of data assimilation is to retrieve the trajectory
x• with the combined help of the model A, the observations z and a method to compute the
discrepancy D(z, x) for any computed state x.

We distinguish two different categories of data assimilation methods. The first one, referred
to as the family of variational methods [Navon, 2008], is based on minimizing a functional
which balances the confidence we have on the a priori knowledge of the target system and the
confidence on the observations. Typically we define on a time window [0, T ]

JT (ζ, ω) =
1

2
‖ζ‖X

1

2
+

∫ T

0
(‖D(z, y)‖2Z + ‖ω‖2X ) dt (95)

for any trajectory 



ẋ(t) = A(x(t)) + ω,

x(0) = x⋄ + ζ.

The second category – which we will be focusing on – gather the so-called sequential data
assimilation methods. They aim at proposing an observer x̂ – also referred to as an estimator –
of the exact trajectory x• by filtering in time the discrepancy between the model and the
observation z. The observer dynamics is generally built under a feedback law based on the
discrepancy with the data which takes the form of





˙̂x(t) = Ax̂(t) +G(t)
(
z(t)−H(x̂(t))

)
,

x̂(0) = x⋄,

254



where G is the so-called gain operator also called filter operator since it allows to filter the
data noise through the use of the model. There exists various possible definitions of the gain
operator, a typical example being is the popular Extended Kalman Filter (EKF) [Simon, 2006,
Chapelle et al., 2012b] defined as G(t) = P (t)dH∗, where P is an operator – corresponding to
a covariance matrix in a stochastic standpoint – following the Riccati dynamical equation

Ṗ = dAP + PdA∗ + PdH∗dHP, P (0) = P0.

This gain operator has the advantage of proposing an observer for any model operator A. In
fact in the context of linear operators, this gain derives exactly from the minimization functional
(95) in the sense that

∀t, x̂Kal(t) = x[argmin(Jt(ζ,ω)))](t).

For nonlinear operators however, EKF represents only an approximation of the “optimal” gain
[Chapelle et al., 2012b]. At any rate, optimal filters suffer from the fact that the operator
P leads to a full matrix after spatial discretization – which represents a prohibitive cost in
the perspective of manipulating finite element variables. To circumvent this “curse of dimen-
sionality” and following [Luenberger, 1971], simpler alternative based on the specific model
dynamics. This idea is referred to as the nudging approach in the data assimilation community
[Hoke and Anthes, 1976, Auroux and Blum, 2008] and the resulting estimator is called Luen-
berger observer. There is no more equivalence with a minization criterion and the only objective
is then to make the estimation error x̃ = x• − x̂ as small as possible. Here we recognize the
same type of arguments as those encountered in the static case. Following this path, authors
in [Moireau et al., 2009, Chapelle et al., 2012a, Chapelle et al., ] have demonstrated in the con-
text of linear elastodynamics systems with linear observation operators the effectiveness of a
simple gain operator of the form G = γH∗. They define the observer as the solution of the
dynamics 




˙̂x(t) = A(x̂(t))− γH∗
(
z(t)−Hx̂(t)

)
,

x̂(0) = x⋄,

where we clearly recognize the derivative of the discrepancy functional defined in (2) in the
context of the static registration problem addressed in Section 2. The error dynamics is then
given by 




˙̃x(t) =
(
A−G(t)H

)
x̃(t) +G(t)χ(t),

x̃(0) = ζ•.

For elastodynamics systems, A is a skew-adjoint operator allowing the energy conservation of
the initial system

1

2

d

dt
‖x•‖2X = 0.

where X is a Hilbert space endowed with the norm ‖·‖X gathering the admissible state. Besides,
the energy of the estimation error reads

1

2

d

dt
‖x̃‖2X = −γ‖Hx̃‖2Z + g(ω∗(t), χ(t)), (96)

which is dissipative – up to the noise terms – and involves the observation operator. Even more
importantly, in data assimilation the error can be proved to converged to 0 at least when ω∗ and
χ are null– see [Moireau et al., 2009] in the elastodynamics case – whereas in the static case it
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was only possible to make the observed part of the error going to 0. This can be explained by
the presence of the strong a priori represented by the model.

When dealing with nonlinear operators, authors in [Moireau et al., 2009] propose the fol-
lowing extension which are directly written after spatial discretization

Mρ
~̈Y + ~K(~Y , ~̇Y ) = ~F , (97)

where Mρ is the mass matrix, ~K is the residual associated with the power of internal forces

and ~F is the residual associated with the power of external forces. For instance, in linear
viscoelasticity we have

~K(~Y , ~̇Y ) = K~Y +C ~̇Y

where K is the stiffness matrix and C account for some natural damping in the system, typically
of the form of a Rayleigh damping C = αMρ + βK with α and β two parameters. Then – still
in [Moireau et al., 2009] – the authors propose and fully analyze the following observer





˙̂
~Y = ~̂V − γ(ǫK+ dD⊺MobsdD)−1dD⊺Mobs ~D( ~̂Y, Z),

Mρ

˙̂
~V + ~K( ~̂Y, ~̂V ) = ~F ,

~̂Y (0) = ~Y⋄, ~̂V (0) = ~V⋄.

(98)

where the identity between the displacement and the velocity is perturbed with the specific
Sobolev-gradient associated with a L2 discrepancy norm. Therefore our strategy is to extend
the formulation (98) within the formalism of currents.

3.2 Formulation with a current-based discrepancy

Our idea is thus to extend the observer defined in [Moireau et al., 2009] which was limited
to a simple distance-to-surfaces discrepancy operator – as presented in (98) – to a current-based
discrepancy. As we have justified in the previous sections, we can directly infer the dynamics
of the estimator by merging the model dynamics with the current-based discrepancy defined in
the static case with the Sobolev gradient. To start with – similarly to Section 2.5.5 – we define

∣∣∣∣∣∣∣

(dS(y♭h), dS(y
♯
h))W∗ = ~Y ♭⊺dS|dS~Y ♯,

(dS(y♭h), Sz − S)W∗ = ~Y ♭⊺~Λ.

(99)

In this formulation both dS|dS and ~Λ depend nonlinearly on the displacements since both terms
dS and S – referred to as the tangent current and the current – are defined on the deformed
model surface. Hence, identifying with the terms appearing in (98), the spatial discretization
of the state observer for elastodynamics system using the formalism of currents reads





˙̂
~Y = ~̂V − γ(ǫK+ dS|dS)−1~Λ,

Mρ

˙̂
~V + ~K( ~̂Y, ~̂V ) = ~F ,

~̂Y (0) = ~Y⋄, ~̂V (0) = ~V⋄.

(100)
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Figure 11: Spectrum of the stabilized operator using either the H 1

2 -norm (in (cyan)) and the
L2-norm (in (red)). In (green) are the modes of the original operator, i.e. without

stabilization.

3.2.1 Stabilization property of the state estimator

As we have mentioned in the Section 3.1 the main goal of the Luenberger filter is to stabilize
the dynamics of the estimation error. Hence, in mechanical systems the principle is to add
some dissipative terms in the system dynamics. The idea was already developed in great detail
in [Moireau et al., 2009] so we limit ourselves to recalling briefly how the dissipative term is
assessed. To simplify, from (100) we derive the dynamics of the estimation error around the
null trajectory 




˙̃
~Y = ~̃V + γ(ǫK+ dS0|dS0)

−1dS0|dS0
~̃Y,

Mρ

˙̃
~V +C ~̃V +K~̃Y = 0,

~̃Y (0) = ~ζY , ~̃V (0) = ~ζV .

(101)

where ~ζ• =
(
~ζY ~ζV

)⊺

, dS0|dS0 is the operator defined by (99) with a tangent current evaluated

at a null displacement and K is the linearized elasticity matrix. We then obtain – following
[Moireau et al., 2009] – the energy balance

1

2

d

dt

(
~̃V ⊺Mρ

~̃V + ~̃Y ⊺K~̃Y
)
= − ~̃V ⊺C ~̃V − ~̃YK(ǫK+ dS0|dS0)

−1dS0|dS0
~̃Y,

which is, after linearization, a spatial discretized counterpart of the energy balance mentioned
in (96). As already proved in [Moireau et al., 2009], the operator K(ǫK+ dS0|dS0)

−1dS0|dS0

is symmetric positive since

K(ǫK+ dS0|dS0)
−1dS0|dS0 = K− ǫK(ǫK+ dS0|dS0)

−1K.

Therefore, the additional damping term in the energy balance of the error is given by ~̃Y ⊺K(ǫK+

dS0|dS0)
−1K~̃Y . By contrast when the Sobolev-gradient is not used the energy balance exists,

but in the form
d

dt

(1
2
~̃V ⊺Mρ

~̃V +
1

2
~̃Y ⊺K~̃Y

)
= − ~̃V ⊺C ~̃V − ~̃Y ⊺dS0|dS0

~̃Y.
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Thus the amount of damping added in the energy balance is this time ~̃Y ⊺dS0|dS0
~̃Y and in the

following we numerically show that it is less effective than K(ǫK+ dS0|dS0)
−1dS0|dS0.

In this respect, we continue to rely on [Moireau et al., 2009] where they solve a spectral
problem to characterize the amount of dissipation added by the data-discrepancy term to each
mode of the linearized error system. Consequently we find the family of (λ,Φ) such that

(
γK(ǫK+ dS0|dS0)

−1dS0|dS0 K
−K −C

)
Φ = λ

(
K 0
0 Mρ

)
Φ, (102)

as opposed to (
γdS0|dS0 K
−K −C

)
Φ = λ

(
K 0
0 Mρ

)
Φ. (103)

Note that these computations are performed here within the formalism of current as an exten-
sion of the computations performed in [Moireau et al., 2009] for linear observation operators or
distance operators. In Figure 11 we plot the spectra corresponding to both cases with a rigidity
matrix obtained from the standard Hook’s law and with low viscosity. The gain value is de-
fined by the criterion proposed by authors in [Moireau et al., 2009]. The left plot represents the
poles of the stabilized operator in (cyan) and the poles of the without stabilization in (green).
We clearly observe the shifting of the poles towards the left-half plane. We remark that this
shift concerns the complete frequency range which is a clear sign of efficiency. In the contrary,
the right plot of Figure 11 concerns the L2 case and we observe that even though some poles
– corresponding to the lowest frequencies – are stabilized, it appears that this formulation is
inefficient when looking at the overall amount of damping brought into the dynamics. These
numerical illustrations confirm this methodology inspired from the Sobolev gradient paradigm
is necessary to provide an efficient state estimator and proves that the choice of the adequate
observation norm is indeed crucial.

We now propose a second numerical assessment – through spectral analysis – of the current-
based observer. We propose to (1) compare with relevant other choices of observers and (2)
assess the sensibility of the observer with respect to the kernel width µ. More precisely, the “L2”
stabilization term of the other observers that we consider are built from observation operators
corresponding to

– the surface displacement feedback

~̃Y ⊺H⊺MobsH~̃Y =

∫

S0

‖ỹh‖2 dΓ, (104)

– the normal displacement feedback

~̃Y ⊺H⊺MobsH~̃Y =

∫

S0

(ỹh · n0)2 dΓ, (105)

– the linearization of the signed distance function around the null trajectory, which also
reads

~̃Y ⊺dD⊺
0M

obsdD0
~̃Y =

∫

S0

(ỹh · n0)2 dΓ. (106)

We compare these operators to the one extracted from the current-based discrepancy which
reads in a weak formulation

~̃Y ⊺dS0|dS0
~̃Y = (dS0(ỹh), dS0(ỹh))W∗ ,
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Figure 12: Spectral analysis and comparison of the various observers.
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where the expression of the right hand side is given by (68). These stabilization operators need
to be understand in a Sobolev-gradient strategies in the sense of (102). We show in Figure 12 the
obtained spectra. The first plot in Figure 12 corresponds to the surface displacement feedback
(104). The next two plots concern the feedback of the normal component displacement (105)
and the linearized signed distance operator (106). We clearly demonstrate here the loss of
observability induced by such observation operators compared to the complete displacement
feedback on the boundary.

The last three plots concerns the observer based on the current formalism. The difference
between the three plots is that we start from a large value of the kernel width – in the first
plot µ = 50 – and we evolve towards smaller values, namely µ = 10 and µ = 0.1. These plots
illustrate a crucial concept of the discrepancy measure based on currents. Namely, as the kernel
width decreases the stabilization property appears to significantly improve. This is due to the
fact that – as mentioned in [Durrleman et al., 2009, Durrleman et al., 2011] – the kernel width
directly controls the sensitivity of the metrics to shape variations and any shape dissimilarities
of characteristic length below µ will not be perceived by the discrepancy measure.

For a reasonable value of the band width we observe however a significantly improved damp-
ing of the system – compared with the distance-based observer. Moreover, in light of these plots
we could imagine that, to obtain the best behavior of the observer, we need to choose the lowest
kernel width. However this not possible in practice for several reasons. A first one would be that
the metrics would become sensitive to – otherwise smoothed – data noise. More importantly,
when µ → 0, the kernel acts as a Dirac delta function. Hence the Riesz representation of the
data surface can be assimilated to

sz ∼
µ→0

δSznz,

entailing
Sz − S →

µ→0
0, (107)

which could be interpreted as a non-visibility of the data from the model standpoint. To
conclude these spectral analysis show that the choice of the kernel width is of prime importance
and correspond to a compromise between shape sensitivity and observability.

3.2.2 Time discretization issues

We are now able to propose a complete discrete version of the Luenberger filter, and several
possibilities may be considered. The first approach – also proposed in [Moireau et al., 2009]
– consists in a midpoint time discretization coupled with the linearization procedure detailed
in Section 2.5.4 for the correction term derived from currents. This time discrete formulation
of the observer (100) reads





~̂Y n+1 − ~̂Y n

∆t
= ~̂V n+ 1

2 − γ(ǫK+ dSe|dSe)−1
(
~Λe + dSe|dSe( ~̂Y n+1 − ~̂Y e)

)
,

Mρ

~̂V n+1 − ~̂V n

∆t
+ ~K( ~̂Y n+ 1

2 , ~̂V n+ 1

2 ) = ~Fn+ 1

2 ,

~̂Y 0 = ~Y⋄, ~̂V 0 = ~V⋄.

(108)

Another choice is to consider the prediction-correction algorithm proposed in [Chapelle et al., ].
The primary goal of this time scheme is to separate the model iterations from the correction
phases in order to enable a different treatment for those two computational steps. More precisely
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in [Chapelle et al., ] this algorithm is used to solve – in one hand – the linear system inherited
from the mechanical model using a direct solver and to manage – on the other hand – the
observation operators – entailing a matrix with a wide band width in the application cases of
[Chapelle et al., ] – through an iterative solver. Denoting by

~̂Y n
−, ~̂Y

n
+ and ~̂V n

−, ~̂V
n
+

the predicted and corrected discrete unknowns of our problem, this algorithm reads

1. Prediction:




~̂Y n+1
− − ~̂Y n

+

∆t
=
~̂V n+1
− + ~̂V n+1

+

2
,

Mρ

~̂V n+1 − ~̂V n

∆t
+ ~K( ~̂Y n+ 1

2 , ~̂V n+ 1

2 ) = ~Fn+ 1

2 ,

(109a)

2. Correction

~̂Y n+1
+ − ~̂Y n+1

−

∆t
= −γ(ǫK+ dSe

+|dSe
+)

−1
(
~Λe + dSe

+|dSe
+( ~̂Y

n+1
+ − ~̂Y e

+)
)
, (109b)

It is striking to remark that in this prediction-correction paradigm the correction phase cor-
respond exactly to one iteration of the descent method used to solve the static registration
problem. Additionally it has been demonstrated that in this time scheme the correction can
constructed by interpolating the discrepancy – see [Moireau et al., 2009] and also below – or
only when the data are available [Ĉındea et al., ].

Stabilization example To illustrate this state estimation procedure we place our work in the
context of synthetic data assimilation. In this context we consider a first elastodynamics direct
model where the initial condition – in displacement – is obtained by solving an equilibrium
state of a simple one-cavity geometry – as illustrated in Figure 13(a) – subject to an internal
pressure. While the system vibrates – due to its low viscosity – we extract the internal and
external surfaces of the deforming object, corresponding to potential segmentations of the left
endo- and epicardium of the heart. Then, we artificially introduce an error in the initial condition
by increasing the initial pressure load and we use this data set in the estimator (100) in order to
retrieve the state of the direct model. In Figure 13(b) we plot the evolution of the cavity volume
for the direct model with a low initial pressure load (in (blue)) – from which we extracted the
data – and the direct model resulting from an increased pressure load (in (red)). We also plot
the state estimator in (green) fed with the synthetic surfaces represented as currents. While the
direct model naturally vibrates during the time window, the state estimator rapidly converge
towards the targeted trajectory.

3.2.3 Extension to nonlinear models: the cardiac mechanics example

To finally illustrate the data assimilation methodology described in this paper we ad-
dress the issue of parameter identification on a complete cardiac model extensively detailed
in [Sainte-Marie et al., 2006, Chapelle et al., 2012c]. In this model, the constitutive law cor-
responding to the cardiac material is made of two additive components corresponding to the
underlying visco-elasticity of the heart – referred to as the passive part of the material – and its
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(b) Illustration of state estimation through the
evolution of the cavity volume.

Figure 13: In (red) and (blue) are the direct models with high and low pressure respectively
where as the observer is the (green) line.

sensitivity to electrical activation – the active part. As regards the passive part, it is classical to
consider a hyperelastic potential of the exponential type [Holzapfel and Ogden, 2009], namely

W = C0 exp
(
C1(J1 − 3)2

)
+ C2 exp

(
C3(J4 − 1)2

)
+ κ(J − 1)− κ ln(J),

where J1 = tr(C) det(C)−
1

3 is the first reduced invariant, J4 =
(
τ ·C ·τ

)
det(C)−

1

3 is the reduced
invariant accounting for the anisotropy of the material in the fiber direction τ and κ is the bulk

coefficient with J = det(C)−
1

2 . The constant values C0, C1, C2 and C3 are model parameters
potentially subject to parameter identification. We point out that in the end W is in fact a
function of the Green-Lagrance dedormation tensor e.

For the active part we define 3 variables: the active strain ec, the active stiffness kc and the
corresponding stress τc in the fiber direction [Chapelle et al., 2012c]. The dynamics of these
variables is defined by a model of the chemical mechanism taking place at a myofiber scale

{
k̇c = −(|u|+ α |ėc|)kc + n0k0 |u|+ in Ω0

τ̇c = −(|u|+ α |ėc|)τc + ėckc + n0σ0 |u|+ in Ω0,
(110)

where α, n0, k0, σ0 are physiological parameters and u is an input term directly related to the
electrical activity of the heart. Applying the combination rules of a reological system we can
define a one-dimensional stress [Chapelle et al., 2012c]

σ1D =
1 + 2ec

1 + 2τ · e · τ (τc + µėc),

so that

Σ =
∂W

∂e
+ σ1Dτ ⊗ τ + ηė.

Concerning the boundary conditions, following [Chabiniok et al., 2011] we model the interac-
tions between the heart and the external organs by visco-elastic boundary conditions on a the
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epicardium of the model geometry. This leads, in reference configuration, to

T · n = ksy + csv on Γn(t).

Moreover, we simplify the blood pressure insight the cavities of the model geometry using a
uniform following pressure – as proposed in [Chabiniok et al., 2011] – which is easily written in
deformed configuration

σ · nt = −pv,int on Γn,i(t), i = {1, 2}.
Finally the complete mechanical model reads





ẏ = v, in Ω0

ρv̇ −∇ · (T ) = 0, in Ω0

T · n = ksy + csv on Γn

T · n = −Jpv,iF−⊺ · n on Γc,i

T · n = 0 on ∂Ω0\((∪iΓc,i) ∩ Γn)

(111)

and this, together with the internal variable dynamics (110), constitutes a formal definition
of the dynamical operator denoted by A in our above summarized description. After spatial
discretization, this model directly enter in the formalism proposed in (97) with only additional
internal variable computed at each point of integration [Sainte-Marie et al., 2006].

3.2.4 Extension to a joint parameter estimation strategy

So far we have mentioned the capability of filtering a current-based discrepancy measure
in a state observer methodology. However, one very interesting aspect in data assimilation
procedures is to simultaneously reduce the uncertainties on the state and jointly identify some
constitutive parameters. This can typically be used to better personalized the model on the
specific system that is observed. Considering the cardiac medical applications we presented, it
allows to create a patient-specific model that can correspond to the specific state of the patient
– possibly associated with a pathology.

In this respect, we rely on the joint state and parameter strategy proposed by authors in
[Moireau et al., 2008, Moireau and Chapelle, 2011] which has been successfully applied in the
field of data assimilation for biomechanical models. Readers may refer to [Chabiniok et al., 2011,
Chapelle et al., 2012b] for a presentation of this data assimilation procedure in practical situ-
ations. This data assimilation methodology is basically built under the idea that performing
a joint state and parameter estimation can be carried out by separating the task using two
different types of filter. The uncertainties on the state space are handled using a Luenberger
filter – as described in Section 3.1. Once the state uncertainties are controlled, a reduced-order
Unscented Kalman filter (RoUKF) [Moireau and Chapelle, 2011] is added in order to manage
the uncertainties on the remaining parameter space. In a nutshell, the RoUKF algorithm aims
at approximating - using appropriate sampling points – the operators accounting for the model
sensitivity with respect to the parameters. Using a Kalman-like method for the parameter is
possible since, in a lot of practical situations the parameters variations are smooth, hence allow-
ing to discretized them in a space of much smaller dimension than the state space dimension.

This approach is completely compatible with all the observation operators or discrepancy
operators presented before. In particular, it is fully compatible with the current formalism
associated with shape data. In this section we propose to rapidly summarize the main concepts
of this method before applying it using current-based discrepancy measure. For the sake of
simplicity we consider the model after time and space discretization, namely

Xn+1 = An+1|n(Xn) (112)
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and with the state estimator it reads

Xn+1 = A
n+1|n
ℓ (Xn, Zn) = An+1|n(Xn) +GℓD(Xn, Zn) (113)

where Gℓ is the Luenberger observer defined either from (108) or from (109). Moreover, we
introduce the unitary sampling points I [i] and weights αi with the following rules

p∑

i=1

αiI[i] = 0,

p∑

i=1

αiI[i] · I[i]⊺ = ✶, (114)

so that, at each time step, the sigma-points can be generated around the estimated values based
on the covariance estimation. Given an adequate sampling rule, we store the corresponding
weights in the diagonal matrixMα and precompute the so-called unitary sigma-points (i.e. with
zero mean and unit covariance) denoted by (~I[i])1≤i≤r+1. We also denote by [~I[∗]] the matrix

concatenating the (~I[i]) vectors side by side, and similarly for other matrices aggregating some
particle vectors. We then perform at each time step the following algorithm

1. Sampling:





Qn =
√
(Un)−1

X̂n
[i]+ = X̂+

n + Ln
x ·Qn⊺ · ~I[i], 1 ≤ i ≤ r + 1

θ̂n[i]+ = θ̂+n + Ln
θ ·Qn⊺ · ~I[i], 1 ≤ i ≤ r + 1

(115a)

2. State Prediction:





X̂n+1
[i]− = A

n+1|n
ℓ (x̂n[i]+, θ̂

n+1
[i]+ ), 1 ≤ i ≤ r + 1

θ̂n+1
[i]− = θ̂n[i]+, 1 ≤ i ≤ r + 1

θ̂n+1
− =

∑r+1
i=1 αiθ̂

n+1
[i]− = θ̂n+

(115b)

3. Parametric Correction:




Ln+1
x = [X̂n+1

[∗]−+]Mα[~I[∗]]
⊺

Dn+1
[i]− = D(X̂n+1

[i]− , θ̂
n+1
[i]+ )

Dn+1
− =

∑r+1
i=1 αiD

n+1
[i]−

Γn+1 = [Dn+1
[∗]− ]Mα[~I[∗]]

⊺

Un+1 = 1+∆t(Γn+1)⊺M+Γ
n+1

X̂n+1
+ = X̂n+1

− −∆tLn+1
x Un+1(Γn+1)⊺M+D

n+1
−

θ̂n+1
+ = θ̂n+1

− −∆tLn+1
θ Un+1(Γn+1)⊺M+D

n+1
−

(115c)

where M+ is a norm associated with the discrepancy computation as described below. The
advantage of this algorithm is that it can be implemented independently of the model as in the
data assimilation library Verdandi [Chapelle et al., 2012b]. However, it is in essence based on
the fact that the discrepancy tangent can be computed with the form

∑
i(D

n+1
[i]− )⊺M+(D

n+1
[i]− )

which can generate some technical difficulties when applied to the formalism of currents where
the duality is not represented by the transposition.

264



The innovation and the formalism of currents In (115c) we denoted by D(Zn+1, X̂
[i]−
n+1)

the discrepancy between the data given and a sampled model trajectory. This term corresponds
– in the data assimilation community – to the so-called innovation. Hence, in the context of
currents, the innovation reads

Dn+1
[i]− ← Sz − S[i]−, (116)

where S[i]− correspond to the model surface deformed by the displacement of the particle
i. This term has to be computed at each time step and it should be noted that it differs
from those treated in Section 2.5 since, in essence, (116) should be understood in W∗. As
a possible remedy, it was proposed in [Durrleman et al., 2009] a discretization of W∗ that is
computationally tractable. This method is based on the projection of the discrete momenta
of a surface – namely for a triangulated surface the center of each face and the corresponing
normal – into a fixed three-dimensional regular grid. From this projected momenta the Riesz
representation of the surface can be efficiently computed using a discrete fast Fourier transform.
If we imagine to use this technique, the dimension of the innovation vector will be that of the
(3D) grid. More precisely, if we denote by {αi}NG

i=1 the set of points defining the grid, then the
innovation will be

Dn+1
[i]− ← sz(αi)− s[i]−(αi) ∀i = 1, · · · , NG. (117)

We recall that, the expression (117) is given using the Riesz representation of both surfaces given
by (60). The norm on the observation space M+ could be typically defined as a 3 × 3-block
diagonal matrix, each block having (δx1, δx2, δx3) as its diagonal – δx1, δx2 and δx2 being the
dimensions of the (regular) grid. This definition of the observation norm is a relevant choice
since the grid is similar to the image domain – which, by nature, is a piece-wise constant object –
wherein the data are defined.

Even though this procedure has the advantage to combine precision – since it is a consistent
discretization of W∗, see [Durrleman et al., 2009] – and numerical tractability, it is a heavy
procedure to set up – from an algorithmic point of view. Hence, in our numerical simulations
we restrict ourselves to a simpler form of the innovation term (116). More precisely, we propose
to define the innovation by considering the action of the bilinear form Sz − S[i]− on every
triangles of the deformed model geometry, namely

Dn+1
[i]− ← (Ti, Sz − S[i]−)W∗ , ∀i = 1, · · · , NT . (118)

With this simpler form, denoting by {ci}NT

i=1 the center of the triangles {Ti}NT

i=1, the innovation
vector will be the concatenation of

Dn+1
[i]− ← sz(ci)− s[i]−(ci) ∀i = 1, · · · , NT ,

and the norm on the observation space reads

M+ =




|T z
1 |n1

. . . ∣∣∣T z
NT

∣∣∣nNT


 .

We still point out that, fundamentally the question of introducing the currents in the RoUKF
algorithm without modifying the scalar product is thus an intricate problem that should be
further address in future work. In our work we choose the second and simpler approach since
our purpose here is only to illustrate the potential capability to jointly identify some parameters
from data in the form of currents.
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Time interpolation of the innovation In most practical cases the data sampling step and
the numerical time step differ. A first idea is to consider the data only when they are available as
it it commonly the case in the data assimilation community [Chapelle et al., 2012b] and recently
justified for some data assimilation procedures [Ĉındea et al., ]. We have also mentioned the
solution proposed in [Moireau et al., 2009] with a linear interpolation scheme on the innovation
in order to reconstruct a time continuous innovation term so that we can apply the correction
at any time step. Namely, let us denote by {tk}k the set of sampling time when the data Sz(t

k)
are available, then a time distributed innovation of a particle would read

αk(Sz(t
k+1)− S[i]−(t)) + (1− αk)(Sz(t

k)− S[i]−(t)), (119)

with αk = ( t−tk

tk+1−tk
). It should be noted that, since the formalism of currents leads to algebraic

operations between surfaces we could recast the previous expression into
(
αkSz(t

k+1) + (1− αk)Sz(t
k)
)
− S(t). (120)

However, (120) provides little improvement since – due to the nonlinearities introduced by the
kernel – the interpolated observed currents is not equivalent to the currents defined by the
interpolated momenta, expressed as

Nz
T∑

j=1

k
(
αkczj (t

k+1) + (1− αk)czj (t
k), x

)(
αknz

∣∣T z
j

∣∣∣∣tk+1
+ (1− αk)nz

∣∣T z
j

∣∣∣∣tk
)
.
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Figure 14: Estimation of passive and active parameters from endo- and epicardium synthetic
segmentation using currents formalism.

Applications and results Similarly to what we have proposed in the case of state estimation
we propose to embed our illustration in a synthetic data context. To do so we we start by

266



proposing a direct model that represent an infarcted heart and we set in the septum of the
model geometry an infarct represented by an increase in stiffness and a lack of contractility.
This illustration is exactly similar to [Chapelle et al., ] which follows [Imperiale et al., 2011,
Chabiniok et al., 2011, Imperiale et al., 2013]. To summarize the infarct is characterized by
two parameters θK and θ such that the parameters C0 and C2 appearing in the hyperelastic
potential and the contractility of the tissue are transformed into

(C0, C2) → 2θ
K

(C0, C2) , σ0 → 2θσ0.

As an example, a possible way of describing the infarct is to set

(θK , θ) =





(1,−1), in the septum,

(0, 0), otherwise.

From this direct model we extract the endo- and epicardium surfaces of the left ventricle. Using
the filtering algorithm described in Section 3.2.4 and representing these surfaces as currents
we retrieve the values of the parameters in on cardiac cycle – see Figure 14. The dashed lines
corresponds to the standard deviation of each parameters, thus representing the confidence we
can have on the estimation provided by the data assimilation procedure.

Conlusion

In this article we have presented a unified formalism to register a deformable model on
data extracted from medical imaging. Our main idea is to base our formalism on the classical
description of mechanical deformation and kinematics. Then, we derive classical discrepancy
terms associated with the deformation definition. Furthermore, we extend these discrepancies
to state-of-the-art dissimilarities measurement based on the formalism of currents allowing to
efficiency defined surfaces data even when the segmentation is associated with a level-set. This
formalism defined in a static context allows typically to register a geometric mesh on data. We
then show how the static formalism directly extend to the dynamics context where we have at
our disposal a model of the deformation evolution and data, namely a data assimilation context.
We then see how the improvement offered by the formalism of currents in the static configura-
tion is also significant in the reduction of the estimation error in dynamical cases. Combined to
known joint state and parameter estimation strategies it allows us to register a model on data
and concurrently personalize the biophysical parameters of the model. In particular we illus-
trate this unified strategy in cardiac mechanics in order to show how sophisticated geometric
inference have a great potential in the popular topic of patient-specific geometric and biophysics
personalization in cardiac-mechanics [Smith and al, 2011, Chapelle et al., 2012b].
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A Equivalent norms on the observation space

We have the following lemma

Lemma 9
The bilinear form associated with

∀(z1, z2) ∈ Z2, (z1, z2)Z = (ExtD
Γobs
0

(z1),Ext
D

Γobs
0

(z2))Y

defined respectively a scalar product and a corresponding norm on H 1

2 (Γobs

0 ,❘
3) respectively

equivalent to their usual norms.

Proof. Concerning y = ExtD
Γobs
0

(z), the continuity of the Dirichlet problem with respect to the

data gives

∀y,
∫

Ω0

ε(y) : A : ε(y) dΩ ≤ C‖z‖2
H

1
2 (Γobs

0 ,❘3)
.

Furthermore by continuity of the trace operator

∃Ct, ‖z‖
H

1
2 (Γobs

0 ,❘3)
≤ Ct‖y‖H1(Ω0,❘3)

and using Korn inequality we have

∃(c, C) | ∀z ∈ H 1

2 (Γobs

0 ,❘3)

c‖z‖2
H

1
2 (Γobs

0 ,❘3)
≤

∫

Ω0

ε(ExtD
Γobs
0

(z)) : A : ε(ExtD
Γobs
0

(z)) dΩ ≤ C‖z‖2
H

1
2 (Γobs

0 ,❘3)

which achieves the proof. �

B Rigid motion filtering

We consider the minimization of the quadratic functional

∀y ∈ YJ (y) =
1

2
a(y, y)− f(y)

where a is a bilinear symmetric form where we want to filter the potential rigid body displace-
ments. More precisely introduce the space of rigid body displacements

Y0 =
{
y ∈ Y s.t. ∃(τ ,ω) ∈ ❘6 | y(x) = τ + ω ∧ x

}

and we assume that J = 0 on Y0
Hence, after differentiating the criterion, we have to solve

∀y♭ ∈ Y⊥
0 , a(y, y♭) = f(y♭), (121)

whereas
∀y♭ ∈ Y0, a(y, y♭) = 0 = f(y♭).

To do so, we first characterize the space

Y⊥
0 =

{
y ∈ Y s.t. ∀y♭ ∈ Y0, (y, y♭)L2(Ω) = 0

}
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Proposition 10
The space Y⊥

0 is characterized by

{
y ∈ Y s.t.

∫

Ω
y(x) dΩ = 0 and

∫

Ω
(x ∧ y) dΩ = 0

}

Proof. First, the space Y⊥
0 is of codimension 6 so its characterized by only 6 independent linear

relations. Let us consider y ∈ Y⊥
0 . Since

∀y♭ ∈ Y0, (y, y♭)L2(Ω,❘3) = 0,

we have in particular that

∀τ ∈ ❘3,

∫

Ω
y(x) · τ dΩ = 0.

Moreover, we also have

∀ω ∈ ❘3,

∫

Ω
y(x) · (ω ∧ x) dΩ = 0.

which implies that ∫

Ω
ω · (x ∧ y) dΩ = 0.

Therefore the space Y⊥
0 is characterized by

{
y ∈ Y s.t. ∀(τ , ω) ∈ ❘6 |

∫

Ω
y(x) · τ dΩ = 0 and

∫

Ω
(x ∧ y) · ω dΩ = 0

}

which conclude the proof. �

Therefore solving (121) is equivalent to solve

∀y♭ ∈ Y a(y, y♭)+κ

((∫

Ω
y(x) dΩ

)(∫

Ω
y♭(x) dΩ

)
+
(∫

Ω
y(x) ∧ x dΩ

)(∫

Ω
y♭(x) ∧ x dΩ

))
= f(y♭)

for any parameter κ. Indeed the additional term has no contribution on Y⊥
0 . We point out that

this variational problem corresponds to the functional

Jκ(y) =
1

2
a(y, y) +

κ

2

((∫

Ω
y(x) dΩ

)2
+
(∫

Ω
y(x) ∧ x dΩ

)2
)
− f(y)

but minimized without constraint. However this variational problem require to compute a non-
local term which are not very convenient. Therefore we replace it a the simpler formulation
which is find yǫ such that

∀y♭ ∈ Y a(yǫ, y
♭) + ǫ(yǫ, y

♭)L2(Ω,❘3) = f(y♭). (122)

Using this simplified variational formulation will be justified when we prove that the solution
yǫ is close to y in a given norm. We have that

∀y♭ ∈ Y⊥
0 ,

∣∣∣∣∣
a(yǫ, y

♭) + ǫ(yǫ, y
♭) = f(y♭)

a(y, y♭) = f(y♭)

therefore we have a
a(yǫ − y, y♭) = −ǫ(yǫ, y♭)
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leading to a constant C such that

|(yǫ − y)|2H1
0(Ω,❘3) ≤ Cǫ‖yǫ‖2L2(Ω,❘3)‖(yǫ − y)‖2L2(Ω,❘3)

Moreover yǫ and y are in Y⊥
0 . On Y⊥

0 by Korn and Poincaré inequality we can ensure that there
exists a constant C2 such that

‖(yǫ − y)‖H1(Ω,❘3) ≤ C2|(yǫ − y)|H1
0(Ω,❘3),

which means that finally
‖(yǫ − y)‖H1(Ω,❘3) ≤ CC2ǫ‖yǫ‖.

Therefore
‖(yǫ − y)‖H1(Ω,❘3) = O(ǫ)

which justifies to choose the variational formulation (122). This variational formulation is
directly associated with the penalized criterion

Jǫ(y) =
1

2
a(y, y) +

ǫ

2
‖y‖2L2(Ω,❘3) − f(y)

References

[Andrieux and Baranger, 2008] Andrieux, S. and Baranger, T. (2008). An energy error-based
method for the resolution of the Cauchy problem in 3D linear elasticity. Comput Method
Appl M, 197(9-12):902–920.

[Aronszajn, 1950] Aronszajn, N. (1950). Theory of Reproducing Kernels. Transactions of the
American Mathematical Society, 68(3):337–404.

[Aubert et al., 2003] Aubert, G., Barlaud, M., Faugeras, O., and Jehan-Besson, S. (2003). Im-
age segmentation using active contours: Calculus of variations or shape gradients? Siam J
Appl Math, 63(6):2128–2154.

[Auroux and Blum, 2008] Auroux, D. and Blum, J. (2008). A nudging-based data assimilation
method: the back and forth nudging (bfn) algorithm. Nonlinear Processes in Geophysics,
15:305–319.

[Baerentzen and Aanaes, 2005] Baerentzen, J. and Aanaes, H. (2005). Signed distance com-
putation using the angle weighted pseudo-normal. IEEE Transactions on Visualization and
Computer Graphics, 11(3):243–253.

[Bathe, 1996] Bathe, K.-J. (1996). Finite element procedures.

[Blum et al., 2008] Blum, J., LeDimet, F. X., and Navon, I. N. (2008). Data assimilation for
geophysical fluids. Computational Methods for the Atmosphere and the Oceans, 14:377–434.

[Bonnet and Constantinescu, 2005] Bonnet, M. and Constantinescu, A. (2005). Inverse prob-
lems in elasticity. Inverse Problems, 21(2):R1–R50.

[Bresenham, 1965] Bresenham, V. (1965). Algorithm for computer control of a digital plotter.
IBM Systems Journal, 4(1):25—30.

[Caselles et al., 1997] Caselles, V., Kimmel, R., and Sapiro, G. (1997). Geodesic active contours.
International journal of computer vision, 22(1):61–79.

270



[Chabiniok et al., 2011] Chabiniok, R., Moireau, P., Lesault, P.-F.and Rahmouni, A., Deux,
J.-F., and Chapelle, D. (2011). Estimation of tissue contractility from cardiac cine-mri using
a biomechanical heart model. Biomechanics and modeling in mechanobiology.

[Chan and Shen, 2005] Chan, T. and Shen, J. (2005). Image processing and analysis: varia-
tional, PDE, wavelet and stochastic methods. Siam.

[Chan and Vese, 2001] Chan, T. F. and Vese, L. A. (2001). Active contours without edges.
Image Processing, IEEE Transactions on, 10(2):266–277.

[Chapelle and Bathe, 2011] Chapelle, D. and Bathe, K. (2011). The Finite Element Analysis of
Shells - Fundamentals - Second Edition. Computational Fluid and Solid Mechanics. Springer.
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Towards applications to real cases and

perspectives

In this final chapter we propose to gather most of the methodological key points in order to

apply the data assimilation procedure extensively detailed in the Chapter 3. This procedure

aims at using the tagged-MR images to perform parameter identification of a complete car-

diac biomechanical model – see Chapter 1 for a presentation of such a model. In order to

feed this data assimilation method, we have assumed in Chapter 3 that a prior image pro-

cessing step led to the construction of various data type, such as deforming tag planes, de-

forming tag grids and apparent displacements – defined within the image plane. Therefore,

as a first step to apply, we will discuss the creation of these data types – mainly based on the

assumption that we were able to reconstruct, typically using an image processing software

– the apparent displacement. Furthermore, additionally to the tagged-MRI, we will assume

that we possess also the cine-MR images, which is not a restrictive assumption since these

data are much more common in clinical routine. We will see that, since these images provide

precised information on the contours of the specific observed organ, they bring complemen-

tary informations that we will use mostly to adjust some key features of the geometry used

in practice to bear the various computations. After the description of the available data, we

will address the various issues that necessarily arise if we want to perform a direct model

that corresponds – with some natural errors of course – to the specific case at hand. Finally,

we present the last adjustments needed to use the data assimilation methodology.

Extracting data from raw images

The data we are considering are cine- and tagged-MR images. Figures 4.1 and 4.2 show

an example of 2D image slices of both modalities during diastole and systole. We will see

that the complementary information encapsulated in both images will help us to circumvent

various difficulties. On the one hand, the cine-MR images provide – with a quite spectacular

precision – some information on the internal and external surfaces of the heart. Moreover,

compared to the tagged-MRI, they are very much persistent in time, thus leading to a con-

stant signal-to-noise ratio over the heat beat. On the other hand, tagged-MR images do not

directly give insight on the contour of the organ but provide extremely valuable information

on intra-myocardial deformations. Figures 4.1 and 4.2 show a sample of both modalities in

diastole and systole. In this section we discuss the various data sets that can be obtained

– with reasonable assumptions on the prior image precessing step – from these images.

Processing cine-MR images Thanks to their time persistence and their ability to delimi-

tate the heart external surface, cine-MR images can be used to extract the surfaces repre-
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(a) 2D slice at marking time (b) 2D slice during systole

Figure 4.1: Example of SPAMM images in short axis view, acquired at T0.

(a) 2D slice during diastole (b) 2D slice during systole

Figure 4.2: Example of cine-MR images in short axis view, acquired at T0.
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senting the left endo- and epicardium. In most practical cases, the right ventricle is likely

to be difficult to capture in cine-MR images. Figure 4.3(a) shows an example of left ventri-

cle segmentation in short-axis view. The segmentation of such images can be performed

either manually or with semi-automatic methods [Bister et al., 1989, Goshtasby and Turner,

1995, Cocosco et al., 2008]. Moreover, from these images one can build the surface of the

computational mesh needed to numerically solve the model dynamical system – see Figure

(4.3(b)). The construction of such computational meshes is much more complex, but in our

work we only assume that we have a reasonable template of the geometry. We will see in

the next section that this template can be adjusted a posteriori using the segmentation of

the left ventricle by solving a static registration problem – readers may refer to Chapter 4 for

a detailed presentation of such problems.

(a) Segmentation of the LV endo- and

epicardium (in (cyan) and (green))

(b) Computational mesh (in (red))

Figure 4.3: Cine-MRI process, in SAX view – Manual segmentation of cine-MRI performed by

Radomir Chabiniok, King’s College London, UK.

Processing tagged-MR images Since they are more common in clinical routine, the pro-

cessing of cine-MR images is nowadays a well managed problem [Bister et al., 1989, Gosh-

tasby and Turner, 1995, Cocosco et al., 2008]. Concerning the tagged-MR images we assume

that a prior step of image processing led to the extraction of apparent displacements defined

within the image plane. In the literature, this data type appears to be the most common type

of output of tagged-MRI processing. In practice, carrying out this task can be done in several

ways.

A first way is to use an optical flow methodology to track the deforming tag pattern directly

in the image plane – [Prince and McVeigh, 1992, Dougherty et al., 1999] for instance. Another

possibility proposed by [Ledesma-Carbayo et al., 2006] is to perform non-rigid image reg-

istration. Moreover, some methodologies are based on a frequency representation of the

image. The most popular method is the HARP technique which aims at tracking the phase of

the tag pattern– see [Osman et al., 1999,Osman and Prince, 2000].

Figure 4.4(a) illustrates a typical output of a tagged-MRI processing software based on

the work of [Clarysse et al., 2000]. Once the apparent displacements are acquired, we can

build the corresponding deforming tag planes and tag grids, and in what follows we propose

a methodology to perform this task.

0Obtained using the inTag plugin of the OsiriX software – http://www.creatis.insa-lyon.fr/inTag/.
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(a) Extraction of tag apparent

displacement from inTag plugin of the

OsiriX software

Figure 4.4: tagged-MRI process, in SAX view.

To start with, we consider the issue of generating the tag planes. The method that we

propose is highly related to the one described in the Chapter 3 of this thesis used to build

synthetic tag planes from a direct simulation of a model of the heart. The first step is to

built a set of template tag layers – denoted by {V i0}NTi=1 in Chapter 3 – and to perform a rigid

transformation of these templates into the image plane. It should be noted that in mod-

ern meta-data – such as Dicom images, a popular standard for medical image storing – the

orientation and origin of the image planes are usually provided. Once the tag layers are

transformed into the image orientation some adjustment may be required so that the com-

plete set of tag layers match the image tag pattern. In practice, it may happen that we can

observe some irregularities in the image tag pattern – mainly close to the external surface

of the organ – which may compromise the complete matching between the tag layers and

the tag pattern. In this situation, it is important to notice that the valuable informations in

tagged-MR images are spatially located within the heart wall, hence it is sufficient to require

that the tag layers fit the image tag pattern only in this area. Once the tag layers fit the tag

pattern, we have the linear interpolation operator from the image plane to the volume mesh

of each tag layer – ass illustrated in Figure 4.5. This step is classically done by computing

the barycentric coordinate of each pixel – localized by its center – within the tetrahedra of

the tag layer. Denoting by II∩V this operator and by Y⃗ app – as in Chapter 3 – the apparent

displacement in the image plane – then the displacement of the complete tag layer can be

obtained by solving the minization problem

min
Y⃗

ε

2
Y⃗ ⊺KY⃗ + 1

2
(I⊺I∩V Y⃗ app − Y⃗ )⊺M(I⊺I∩V Y⃗ app − Y⃗ ), (4.1)

where K is a stiffness matrix built on a tag layer and MI∩V correspond to a mass matrix.

The strategy (4.1) is in fact a Tikhonov regularization of the apparent displacement projected

in the tag layer. The solution of (4.1) is obtained through

Y⃗ = (εK + II∩VMI⊺I∩V)−1MI⊺I∩V Y⃗
app.

Once the tag layers are deformed we can extract the middle plane and repeat this procedure

at each image sampling step in order to obtain a set of deforming tag planes.
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y(p)
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(y(s2),λ2)

(y(s1),λ1)

Figure 4.5: Illustration of image plane-to-tag layer interpolation process.

In order to obtain the corresponding tag grids, a possibility is to clip the previously ob-

tained tag planes. However, the process of clipping geometries is – from an algorithmic point

of view – quite heavy and may lead to irregular one-dimensional line meshes. Therefore a

more suitable way is to adapt the previously stated methodology to a set of tag grids. Let{Lj}j ⊂ I be the set of template tag lines that, after a rigid transformation, are embedded

in the image slice I and match the tag pattern at least in the region where the heart ap-

pears. Let Ω be the computational mesh obtained from cine-MRI – see Figure 4.3(b). The

displacement of a tag line Li is defined as the solution of

min
Y⃗

ε

2
Y⃗ ⊺K1DY⃗ + 1

2
(Y⃗ app − Y⃗ ∣Li⋂Ω)⊺M(Y⃗ app − Y⃗ ∣Li⋂Ω), (4.2)

where we denoted by K1D a stiffness matrix corresponding to a one-dimensional elastic

energy, typically the Timoshenko’s beam model [Thomson, 1993]. Figure 4.6(a) illustrates

how the the apparent displacement is interpolated onto the tag line and Figure 4.6(b) shows

an example of tag grid reconstruction.

Methodological key point

Extracting data

● Extract from cine-MR images left endo- and epicardium surfaces at each image

sampling time step and at least on computational mesh from the image sequence.
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● From the tagged-MR images extract the apparent displacement defined within the

image plane. Build tag planes from apparent displacement interpolation and reg-

ularization. Build tag grids from tag planes clipping or apparent displacement

interpolation and regularization.

Li
⋂
Ω

(a) Tag line displacement interpolation (b) Reconstruction of deforming tag grids

(in (cyan))

Figure 4.6: Reconstruction of tag line deformation from apparent displacement.

Preparing the direct model

In the previous section we have described how we can build the various data types that

could potentially be used in a data assimilation procedure – typically using the observer-

based methodology described in [Moireau et al., 2009, Chabiniok et al., 2012] and recalled in

the Chapter 2 and Chapter 3 of this thesis. In this section we address some potential issues

that may arise when trying to perform a direct simulation based on a cardiac model. To

start with we will see how the computational geometry can be adjusted to the specifics of

the geometry appearing in the images using a static registration problem – as presented in

Chapter 4. Using a similar method, we also provide a way to automatically build the contact

surface used in the direct model given in Chapter 1 to represent the interaction between the

heart external surface and the pericardium. These first two adjustments are mainly built

using the cine-MRI segmentations – which shows at least once again that cine-MR images

are of utmost importance. We will finally see how these segmentations can also be used to

provide an estimation of the initial condition of the problem dynamics.

Adjusting computational meshes In practical cases, the segmented endo- and epicardium

and the corresponding surfaces in the segmented computational mesh are likely to have dis-

crepancies. These discrepancies come from the fact that the latter is much more intricate to

obtain since it needs to satisfy some requirements in order to bear the forthcoming numer-

ical computations – such as smoothness, non-overlapping of elements and so on. Therefore

the computational geometry is in practice segmented independently from the endo- and

epicardium surfaces and potentially subject to post-processing – typically algorithm for sur-

face fairing – see for example [Welch and Witkin, 1994, Desbrun et al., 1999] – or volume
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adjustment. In the perspective of applying data assimilation methods, these discrepancies

will directly enter as some noise that may deteriorate the estimation quality. To circumvent

this difficulty one solution is to perform a prior run of state observer fed with the segmenta-

tions of the left ventricle and then to extract from the simulations the dynamically registered

mesh. Even though this method is valid in practice, another possible solution is to statically

deform the computational mesh towards the segmented surfaces using a descent method

– as described in Chapter 4. Figure 4.7 represents the model geometry fitted to the segmen-

tation in Tele-Systole (TS). Denoting by S both the endo- and epicardium surfaces – the target
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Figure 4.7: Adjusting computational mesh (in (red)) to fit end systole data set (in (cyan) and

(green)).

surfaces – then this regristration problem can be solved by seeking the deformation ϕ of the

computational mesh Ω solution of

min
ϕ

1

2
Ee(e) + 1

2
∥dist(ϕ(Ω),S)∥2 . (4.3)

In (4.3) we denoted by Ee the elastic energy corresponding to the deformation ϕ and e the

Green-Lagrange tensor associated to ϕ. This elastic energy typically derives from an elastic

potential W e

Ee = ∫
Ω
W e dΩ . (4.4)

Inspired from [Moireau et al., 2009] and what we have mentioned in the Chapter 4 of this

thesis, we measure the discrepancy between the target surfaces and the geometry surface

using the signed distance function dist(⋅,S). Depending on the intensity of the distance be-

tween the target surfaces and the priori computational mesh, the deformation may become
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significant. To avoid critical alterations of the tetrahedra constituting the geometry, the elas-

tic potential W e should at least contain some terms penalizing the local volume measure

det(∇ϕ) – i.e. it is advised to consider in this registration problem the computational mesh

as a nearly incompressible material.

As another advantage of this methodology, it should be noted that – as a result – we have

smoothed the internal surface of the heart geometry, delimiting the left and right ventricle.

This delineation has its importance during identification of constitutive parameters restricted

to the left ventricle.

(a) SAX-view (b) LAX-view

Figure 4.8: Contact surface (in (yellow)) for the direct model.

Building of contact surface Once the model geometry is adjusted we also need to build

the contact surface necessary to represent the interactions between the heart and its sur-

roundings. The difficulty here is that this contact surface should encompass the geometry in

a smooth way so as not to block the sliding movements of the heart during systole. To do

so we consider a template T – in practice a sphere with a given thickness – built around the

computational mesh that we deform in the same manner as previously discribed in (4.3). In

this simpler registration problem – we are only interested in the resulting internal surface of

the deformed template – we can consider E line an elastic energy that derives from a linear

constitutive law. Hence the deformation ϕ is the solution of

min
ϕ

1

2
E line (e) + 1

2
∥dist(ϕ(T ),Ω)∥2 . (4.5)

Estimation of the reference configuration As we have mentioned several times through-

out this thesis, the reference configuration of the heart is never observed. In a synthetic con-

text this was not an issue since it could be directly prescribed as the geometry obtained after

tele-systole – as shown in Figure 4.9. This configuration, situated at the end of the isovolu-

metric relaxation, represents the configuration in the heart cycle that sustains the smallest

amount of internal stresses, justifying its choice as the closest configuration to the reference.

In a real context however, if we want to minimize the amount of initial errors introduced

in the system, we cannot restrict ourselves to define the geometry at the end of the isovol-

umetric relaxation as the reference configuration since – in the perspective of data assim-

ilation – it will introduce significant errors on the initial conditions. Therefore we have to
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Figure 4.9: Position in the heart cycle of the configuration closest to the reference

configuration
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Figure 4.10: Various fitted geometries used to solve the inverse problem.

provide at least an a priori estimation of the reference configuration. To do so we will as-

sume that at least some information on the pressure sustained by the cavity are available

on the system. Let us denote by PMD the homogeneous pressure inside the left-ventricle in

Mid-Diastole. The problem of estimating the reference configuration Ω0 can be expressed as

Find Ω0 such that internal stresses in ϕ(Ω0, tMD) balances the pressure PMD. (4.6)

To solve this problem we propose the following iterative process.

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

From a first guess y0
MD

,

do

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ωn+1
0 = Ωn

0 − ynMD

yn+1
MD

solution of ∫
Ω0

Σ(yn+1
MD
) ∶ dye ⋅ v♭ dΩ0 = −PMD∫

EnL

nL ⋅ v♭dσ

until ∥Ωn+1
0 −Ωn

0∥ ≤ ε.

(4.7)

To have a good chance for the algorithm (4.7) to converge, one needs to prescribe a reason-

able first guess y0
MD

. Since solving registration problems of the form of (4.3) is reasonably

cheap and automatic, we solve (4.3) with the segmentations obtained at the end of the iso-

volumetric relaxation and in Mid-Diastole. Thus we obtain two geometries G and GMD (see

Figure 4.10). Hence we define the first guess of the iterative process (4.7) as

y0
MD
= GMD − G.
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Methodological key point

Preparing direct model

● Adjust the computational mesh through solving a registration problem on the cor-

responding left ventricle segmentation using a nonlinear hyperelastic model.

● Build contact surface.

● Compute first guess of displacement from reference configuration in order to

solve the inverse problem for estimating the reference configuration.

Anticipating estimation difficulties

So far we have described the various types of data sets that could feed our data assimi-

lation procedure. In the particular case of tagged-MRI they take the form or either apparent

displacements in the image plane, deforming tag grids or deforming tag planes. We also

have detailed some key components of the direct model that need to be adjusted prior to

be able to run realistic direct simulations. In this third section we finally discuss some dif-

ficulties that may arise when applying the data assimilation procedure – detailed at length

in [Moireau et al., 2009] and recall in Chapter 2.

Kalman filtering and contact constraint In a nutshell the data assimilation that we aim

at using propose to jointly perform parameter and state estimation. On the one hand the po-

tential state uncertainties are controlled using a Luenberger type filter [Luenberger, 1971,Au-

roux and Blum, 2007, Ramdani et al., 2012] which, in essence, aims at adding some dissi-

pative components in the state error estimation dynamics so that it would benefit from an

improved stabilized behavior – compared to the natural damping present in the system.

On the other hand, the remaining parameter errors are tackled using a Reduced-order Un-

scented Kalman Filter (RoUKF) [Julier et al., 1995, Julier, 2002,Moireau and Chapelle, 2011] that

proposes to use adequate sampling points to approximate the propagation – through the

nonlinear dynamics – of the predicted and corrected mean and covariance of the system.

These sampling points are referred to particles. These particles are computed around the

estimated trajectory based on the covariance estimation.

However, this way of creating particles is blind to the contact constraint we propose to

impose in order to represent the peculiar relation between the outer surface of the heart

and the pericardium. Therefore once the particle are created, some of them may not re-

spect this constraint thus leading to a dramatic increase of the external forces resulting in

the representation of the contact using distances – as presented in Chapter 1. Hence we face

two problems, the first being that, in order to fairly approximate the model sensitivity of the

model with respect to the parameters the particles have to respect the contact constraint.

We thus need to refer to the work around Kalman filtering with nonlinear constraints – see e.

g. [Simon and Li Chia, 2002,Ungarala et al., 2007,Kandepu et al., 2008] – which, in essence, can
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be summarize at a fully-discrete level and from an algorithmic standpoint to statically solving

the contact constraint right after the particles are created. The second problem that we face

when introducing the contact constraint is that the Newton’s method may diverge during

the computation of the model iteration – typically during systole where the heart tends to

press onto the pericardium, downwards in the direction of the long axis. To circumvent this

difficulty each particle requires a time-step adaptation algorithm to enable time-step reduc-

tion. However doing this impose an intricate timeline management since each particle has

to converge prior to gather them in order to retrieve the estimated trajectory. The complete

algorithm is illustrated in Figure 4.11.
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Figure 4.11: Scheme of the unscented Kalman filter adapted for solving the contact

constraint.

Estimating displacement at tagging marking time Additionally, as we have understood

from Chapter 3, assimilating the (rich) information contained in the tagged-MR images re-

quires to have an estimation of the displacements at the marking time. We recall that this

is due to the Eulerian nature of the process of tagging. More precisely since the tag pattern

is imprinted in an already deformed configuration, typically during diastole, the deformation

of the tag grid follows – instead of a displacement from the reference configuration – the

deformation from this tagged configuration. To circumvent this difficulty, in Chapter 3, we

have propose a methodology based on the assumption that we were able to provide an
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estimation of the displacement at marking time. In the context of real observations, this es-

timation can be obtained typically by statically registering the computational mesh defined

at the end of the isovolumetric relaxation to the cine-MR segmentations that are as close as

possible of the marking time. This fact reflects once again that the cine-MR modalities gather

necessary information in order to apply data assimilation methods using tagged-MRI. As a

matter of fact it appears that, in the perspective of clinical applications, the couple tagged-

and cine-MR images should be considered as an invaluable joint source of information.

Methodological key point

Preparing direct model

● Adapt RoUKF to solve the contact constraint after particle creation.

● Enable separate timelines for each particle to allow time adaptation at a particle

level.

● Estimate displacement at marking time using cine-MR segmentations.

Perspectives

Data assimilation is the pathway to combine the valuable information contained in math-

ematical models with the potential information on the observed phenomena. In the context

of cardiac modelling, recent works [Moireau et al., 2009,Chabiniok et al., 2012,Moireau et al.,

2013] in this respect have shown that the audacious objective of proposing a complete pack-

age of methodological tools in order to provide diagnosis assistance in a clinical routine is

achievable. However, in this perspective, applying state-of-the-art data assimilation methods

requires to be able to compute a means of comparison between the biomechanical model

– on the one hand – and the observations – on the other hand. In practical cases, the model

and the data are of very different nature, thus the task of comparing them becomes signif-

icantly intricate. As a matter of fact, since any data assimilation method is based on such

discrepancy measure, the complete structure of any endeavours aiming at personalizing a

mathematical model from realistic data sets necessarily incorporates such complex dissim-

ilarity measure. It is in this context that the main contributions of this thesis take shape.

We have provided a realistic example of applications of complete data assimilation methods

using a biomechanical model of the heart and observations obtained from pre-precessed

tagged-MR images – a rich image modality potentially leading in clinical routine to a highly

precise assessment of the patient heart function. Moreover, we were able to derive a new

discrepancy measure – based on the formalism of currents and related to shape sensitivity

analysis – in order to compare mechanical systems with level-set segmentations of images.

These contributions were illustrated on synthetic but realistic examples of parameter identi-

fication. From this work we can extract several potential perspectives
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● As we have partially detailed in this final chapter, the closest perspective is to apply the

discrepancy operators built in our work from pre-processed tagged-MR images within

a real data context as it was done in [Chabiniok et al., 2012] for the distances operator

to surfaces – segmented from cine-MR modalities.

● In Chapter 4 we have derived a means of coupling elasticity systems and the formalism

of currents. However, for simplicity, we have put aside some technicalities concerning

the required regularity of the various spaces appearing in this methodology. Indeed,

we have shown that the tangent current of the model surface is defined through the

surface gradient of the deformation – which is not defined from standard regularity

assumptions. However, since there is a dual relation between the space of currents

and the space of test functions that belongs to the R.K.H.S. we could imagine to still

rigorously prove the well-posedness of these terms by imposing some regularities on

the space of test functions.

● From a data assimilation standpoint, we have seen that when the adjoint of the tangent

operator is not directly accessible the standard algorithms fail to propose an equivalent

alternative to enable data assimilation procedure written in a weak form. For example

in Chapter 4, the adjoint of a tangent current could not be derived thus prohibiting the

use of external data assimilation library such as Verdandi [Chapelle et al., 2012].

● Another perspective would be do get even closer to the raw image data than what we

have proposed in the Chapter 4. Indeed, in this context we have proven that the for-

malism of currents enables us to represent a surface from a pre-computed level-set.

However it would be an interesting perspective to be able to completely fill the gap

between the mechanical model and the raw images by proposing a surface represen-

tation directly from the gradient of the grey-level image.

● Long term perspectives could also be imagined from this novel current-based discrep-

ancy measure. Indeed, in a large amount of applications of data assimilation meth-

ods the data take the form of evolving geometrical objects or shapes. We could cite

the example of data assimilation methods in the context of electro-phyiological mod-

els [Konukoglu et al., 2011] where the data could potentially be the front propagation

of the transmembrane potential. Another possible example lies in the construction

of predictive model for fire propagation [Rochoux et al., 2013] where the observations

take the form of the flame fronts or even in the field of data assimilation for meteorol-

ogy [Corpetti et al., 2009, Titaud et al., 2010] where typically the clouds contours would

be represented as currents.
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Alexandre IMPERIALE

Méthodes d’assimilation de la donnée image pour la 

personnalisation de modèles mécaniques
Application à la mécanique cardiaque et aux images de marquage tissulaire

Cette thèse est dédiée à l’intégration de données complexes issues de l’imagerie dans une stratégie d’assimilation 

de données pour des modèles mécaniques. Notre stratégie s’appuie sur des travaux récents proposant une 

méthode séquentielle d’assimilation de données qui se décompose en un filtre de Luenberger pour l’espace d’état 

et un filtre optimal réduit à l’espace des paramètres. Nous l’appliquons à l’identification de paramètres pour un 

modèle biomécanique du cœur et, dans ce cadre, nous formalisons la construction  de comparateurs de formes 

évolués pour  deux types de données : d’une part des données extraites d’un traitement de l’Imagerie par 

Résonance Magnétique (IRM) de marquage tissulaire et, d’autre part, des données plus classiques de type 

contours de l’objet. D’abord fondés sur des simples distances nous enrichissons ces comparateurs grâce au 

formalisme des courants permettant d’inscrire le contour de l’objet dans le dual d’un espace de fonctions-test 

appropriées. Pour chacun des comparateurs nous analysons son impact sur l’observabilité du système et, pour le 

cas de l’imagerie de marquage tissulaire, nous prouvons qu’ils sont équivalents à une mesure directe du 

déplacement. D’un point de vue numérique, la prise en compte de ces mesures complexes présente d’importantes 

difficultées nous poussant à mettre en place des schémas numériques originaux permettant une manipulation 

plus flexible des différents opérateurs d’observation. Nous profitons de ces nouveaux moyens d’extraction de 

l’information contenue dans les données d’imagerie pour permettre, dans des cas réalistes, l’identification  de la 

position et de l’intensité d’un infarctus du myocarde.

Mots-clés : Assimilation de données, Comparateurs de formes, Mécanique cardiaque, IRM de marquage tissulaire, 

Courants.

This thesis aims at incorporating complex data derived from images into a data assimilation strategy  available for 

mechanical systems. Our work  relies on some recent developments that propose a sequential data assimilation 

method made of a Luenberger filter for the state space and an  optimal filter  reduced to the remaining parameter 

space. We aim at performing parameter identification  for a biomechanical model of the heart and, within the 

scope of this application, we formalize the construction of shape discrepancy  measurements for two types of 

data sets: first, the data expected of a processing step of tagged  Magnetic Resonance Imaging (tagged-MRI)  and, 

second, more standard data composed  by the contours of the object. Initially  based on simple distance 

measurements we enrich these discrepancy measures by incorporating the formalism of currents which enables 

to embed the contours of the object within the dual of an appropriate space of test functions. For each 

discrepancy operators we analyze its impact on  the observability  of the system and, in the case of tagged-MRI, we 

prove that they are equivalent to a direct measurement of the displacement. From a numerical standpoint, taking 

into account these complex data sets is a great challenge that motivates the creation of new numerical schemes 

that provide a more flexible management of the various observation  operators. We assess these new means of 

extracting the rich  information contained  in the image by identifying in realistic cases the position and  the 

intensity of an infarct in the heart tissue.

Keywords: Data assimilation, Shape discrepancy measure, Cardiac mechanics, Tagged-MRI, Currents.

Image-based data assimilation methods for the 

personalization of mechanical models
Application to cardiac mechanics and tagged-MRI


