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General Introduction

Context

Given a set of objects with profits (including negative profits) assigned not only to separate
objects but also to pairs of them, the Binary Quadratic Optimization (BQO) problem
consists in finding a subset of objects to maximize the overall profits.

BQO is a well-known NP-hard combinatorial optimization problem and provides a
variety of applications, including financial analysis, social psychology, machine scheduling,
computer aided design, statistical mechanics, traffic management, molecular conformation
and cellular radio channel allocation. Moreover, BQO can be served as a unified model
for many combinatorial optimization problems, such as graph coloring, maximum cut, set
packing, maximum independent set, maximum clique, maximum edge weight clique, linear
ordering and generalized independent set problems, etc.

Exact methods (e.g. branch and bound, branch and cut, lagrangean decompositions
and column generation) are quite useful to obtain optimal solutions for problem instances
of limited sizes. However, because of the high computational complexity, heuristic and
metaheuristic algorithms are practically used to produce approximate solutions to larger
problem instances.

This thesis is devoted to developing effective metaheuristic algorithms for solving the
BQO problem. Meantime, we undertake to tackle combinatorial optimization problems
that can be transformed into the form of BQO, with a direct application or a trivial
adaptation of our developed algorithms for BQO.

Objectives

The first objective of this thesis is to solve large BQO problem instances by drawing on
approaches (e.g., variable fixation or multilevel framework) that are capable of reducing
the scale of an original problem so as to carry out extensive exploitation in a decreased
search area. As a result, we proposed backbone guided tabu search (BGTS) algorithms
on the basis of variable fixation technique and developed a backbone multilevel memetic
algorithm (BMMA) following the traditional multilevel framework.

The second objective is focused on generating preferable initial solutions for efficiently
exploring search space of BQO. For this end, we allow for the greedy random adaptive
construction, the restart/recovery strategy and the path relinking approach, where both
restart/recovery and path relinking are fundamental principles underlying tabu search
and especially attract us given that it was never studied before on BQO. The use of
each foregoing method gave rise to GRASP-Tabu Search (GRASP-TS), GRASP-Tabu
Search with Population Management (GRASP-TS/PM) as well as Path Relinking (PR)
algorithms.
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General Introduction

The third objective consists in investigating new applications of BQO. To achieve this
goal, we consider problems including maximum cut (MaxCut), maximum clique (MCP),
maximum vertex weight clique (MVWCP) and minimum sum coloring (MSCP). We trans-
formed them into the formulation of BQO and then effectively solved them with our pro-
posed algorithms for BQO.

Our final objective is to propose a highly effective search algorithm for dealing with the
cardinality constrained binary quadratic optimization problem (also known as maximum
diversity problem (MDP)). For this purpose, we devised a tabu search based memetic
algorithm (TS/MA) in which the tabu search component utilizes a successive filter candi-
date list strategy and is joined with a solution combination strategy based on identifying
strongly determined and consistent variables.

Contributions

The main contributions of this thesis are the following:

∙ We proposed a backbone guided tabu search framework that interweaves a tabu
search phase with a variable fixing/freeing phase. Within this framework, we devel-
oped four BGTS algorithms for solving BQO by combining different variable scoring
and fixing/freeing rules. Specifically, we designed two variable scoring rules based on
the variable contribution to a set of solutions, with distinction whether each solution
in the set is treated equally. Meanwhile, we devised two variable fixing/freeing rules,
one inheriting the backbone components obtained from the historic fixing/freeing
phases while the other reconsidering all the backbone components according to the
current fixing/freeing phase. Experimental results showed that one of the developed
BGTS algorithms is capable of matching the best known results for all the tested
instances and improving the performance of the basic TS in terms of both solution
quality and computational efficiency. A further analysis provided explanation why
one particular variable fixing/freeing and scoring rule led to better computational
results than another one.

∙ We developed a backbone multilevel memetic algorithm to tackle large BQO problem
instances. The proposed BMMA algorithm incorporates a backbone based coarsen-
ing phase, an asymmetric uncoarsening phase and a memetic refinement phase, where
the backbone based procedure and the memetic refinement procedure make use of
tabu search to obtain improved solutions. Experimental results and comparisons
with other state-of-the-art algorithms indicated that BMMA is able to attain all the
best known values with a computing effort less than any existing approach.

∙ We devised GRASP-TS and GRASP-TS/PM algorithms that hybrid GRASP with
tabu search for BQO, where tabu search is used for solution improvement. GRASP-
TS uses an adaptive random greedy function to construct an initial solution from the
scratch. GRASP-TS/PM makes use of a restart/recovery strategy to produce a solu-
tion, in which partial solution components inherit corresponding elements of an elite
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General Introduction

solution fetched from a population and the remaining solution components are rebuilt
as in the GRASP-TS procedure. We also directly applied GRASP-TS and GRASP-
TS/PM to solve the MaxCut problem after transforming MaxCut into the form of
BQO. Furthermore, we conducted an adaptation and extension of the GRASP-TS al-
gorithm (denoted by GRASP-TS/MCPs) to solve MCP and MVWCP reformulated
as the form of BQO. Experiments on BQO, MaxCut, MCP and MVWCP problem
instances indicated that our proposed algorithms are very competitive when compar-
ing with other best algorithms in the literature, although being not special purpose
algorithms tailored for MaxCut, MCP and MVWCP.

∙ We implemented two path relinking algorithms for BQO that comprise a reference
set initialization method, a tabu search based improvement method, a reference set
update method, a relinking method and a path solution selection method. The
proposed algorithms differ from each other mainly on the way they generate the
path, one employing a greedy strategy (PR1) and the other employing a random
strategy (PR2). In addition, our PR algorithms were also employed to solve MaxCut
and MSCP after transforming them into the formulation of BQO. We evaluated the
performance of the proposed PR algorithms on BQO, MaxCut and MSCP problem
instances and demonstrated that both PR1 and PR2 yielded highly competitive
outcomes in comparison with the previous best known results from the literature.

∙ We presented an effective memetic algorithm based on tabu search for tackling car-
dinality constrained BQO. The tabu search component uses a successive filter can-
didate list strategy and the solution combination component employs a combination
operator based on identifying strongly determined and consistent variables. Anal-
ysis of comparisons with state-of-the-art algorithms demonstrate statistically that
our TS/MA algorithm competes very favorably with the best performing algorithms.
Key elements and properties of TS/MA are also analyzed to disclose the source of
its success.

Organization

The manuscript is organized in the following way:

∙ In the first chapter, we introduce the BQO problem and present its applications
both in practical and combinatorial optimization problems. Then, we summarize
basic ingredients of most local search implementations targeted at BQO. In addition,
we place an emphasis on reviewing various heuristic and metaheuristic algorithms
proposed for solving BQO. Finally, we present standard BQO benchmark families
that are frequently used to evaluate performance of algorithms.

∙ In the second chapter, we first present a backbone guided tabu search framework
which mainly consists of a tabu search phase and a variable fixing/freeing phase,
where the variable fixing/freeing phase operates based on variables scoring rules and
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variable fixing/freeing rules. Then we describe the tabu search procedure, two vari-
able scoring rules and two variable fixing/freeing rules, where different combinations
of scoring rules with fixing/freeing rules produce four BGTS algorithms. Finally, we
evaluate our proposed algorithms on the challenging BQO benchmark instances and
report experimental results.

∙ In the third chapter, we investigate a backbone multilevel memetic algorithm aiming
at solving large BQO problem instances. Following the general multilevel scheme,
we detail each component of our multilevel algorithm adapted for BQO and demon-
strate the effectiveness of the proposed BMMA algorithm by providing experimental
comparison between BMMA and other state-of-the-art algorithms.

∙ In the fourth chapter, we first describe GRASP-TS and GRASP-TS/PM algorithms
for solving BQO. Then, we describe a GRASP-TS/MCPs algorithm, which adapts
the proposed GRASP-TS, to solve the MCP and MVWCP problems transformed
into the BQO form. Finally, we evaluate our proposed algorithms on benchmark
instances from BQO, MaxCut, MCP and MVWCP problems and show comparisons
with best preforming algorithms.

∙ In the fifth chapter, we present two path relinking algorithms for BQO. A general
path relinking scheme for BQO is displayed, followed by the implementation of each
ingredient in it. Besides, we illustrate how to recast the minimum sum coloring prob-
lem into the BQO formulation. Extensive computational results on BQO, MaxCut
and MSCP benchmark instances are shown to demonstrate the effectiveness of the
proposed path relinking algorithms.

∙ In the last chapter, we describe an effective memetic algorithm based on tabu search
for tackling MDP. First, we present the main scheme of TS/MA and detail each
component in it. Then we show our computational results and comparisons with
the current best performing approaches. Finally, we analyze the key elements and
properties of TS/MA.
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Chapter 1

Introduction

This chapter introduces the binary quadratic optimization (BQO) problem and various
domains where BQO is applied. Considering that local search is frequently incorporated
as a major component into most algorithms we review for dealing with BQO, we then
summarize basic ingredients of local search implementations used for BQO. Afterwards,
we review various heuristic and metaheuristic algorithms proposed in the literature. Fi-
nally, we provide standard BQO benchmark families that are most often used to evaluate
performance of various algorithms.

Contents

1.1 Binary quadratic optimization problem . . . . . . . . . . . . . . 5

1.1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Application domains . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Basic preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Heuristic and metaheuristic algorithms . . . . . . . . . . . . . . . 11

1.3 Benchmark instances . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1 Binary quadratic optimization problem

1.1.1 Problem description

Given a symmetric n×n matrix Q = (qij), where qij ∈ ℜ, the BQO problem is to identify
a binary vector x of length n for the following objective [Beasley, 1998]:

Maximize: f(x) = xtQx =
n
∑

i=1

n
∑

j=1

qijxixj ,

subject to: xi ∈ {0, 1}, i = 1, . . . , n.

(1.1)
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CHAPTER 1. INTRODUCTION

Actually, the matrix Q corresponds to a graph G = (V,E) with vertex set V =
{1, . . . , n} and edge set E = [eij ], where eij = qij if qij ∕= 0. Hence, an alternative objective
of BQO is to partition V into two subsets V0 and V1 such that

∑

i∈V1
eii +2

∑

i∈V1,j∈V1
eij

is maximized.

Fig. 1.1 shows an illustrative example to make transformation between the two above-
mentioned definitions. The objective function value of this example equals q22+q44+q66+
2q24 + 2q26.
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Figure 1.1: A graph example of illustrating the BQO problem

Binary quadratic optimization is also named as (unconstrained) quadratic bivalent pro-
gramming, (unconstrained) quadratic zero-one programming, (unconstrained) quadratic
pseudo boolean programming, unconstrained binary quadratic programming, binary quadratic
programs, quadratic unconstrained binary optimization.

Imposing a cardinality constraint to BQO results in the notable maximum diversity
problem (MDP) [Kuo et al., 1993]. The objective of MDP can be formulated as follows:

Maximize: f(x) = xtQx =
1

2

n
∑

i=1

n
∑

j=1

qijxixj,

subject to
n
∑

i=1

xi = m, xi ∈ {0, 1}, i = 1, . . . , n

(1.2)

BQO is a canonical NP-hard combinatorial optimization problem. There is a limited
number of its subclass that are polynomially solvable [Barahona, 1986; Jha and Pardalos,
1987; Picard, 1974]. Also, the problem of determining if an BQO problem has a unique
global optimal solution remains NP-hard [Pardalos and Jha, 1992]. Furthermore, even if
we know BQO contains a unique global optimum, this problem still belongs to the class
of NP-hard [Pardalos and Jha, 1992].
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1.1. BINARY QUADRATIC OPTIMIZATION PROBLEM

1.1.2 Application domains

1.1.2.1 Practical problems

The formulation of BQO can represent problems in a variety of domains, including:

∙ financial analysis [Laughunn, 1970; McBride and Yormark, 1980]

∙ statistical mechanics [Barahona et al., 1988]

∙ social psychology [Harary, 1953]

∙ computer aided design [Krarup and Pruzan, 1978]

∙ traffic management [Gallo et al., 1980; Witzgall, 1975]

∙ machine scheduling [Alidaee et al., 1994]

∙ cellular radio channel allocation [Chardaire and Sutter, 1994]

∙ molecular conformation [Phillips and Rosen, 1994]

For example, in the capital-budgeting problem, given a set of intercorrelated investment
proposals and the covariances of each pairwise proposals, a decision-maker needs to select
a portfolio of proposals to minimize the investment risk that is measured as covariances
between proposal returns. In the statistical physics, given magnetic impurities and the
energy interaction between two impurities, the mathematical model of minimizing the
energy of the spin glass corresponds to the BQO formulation.

1.1.2.2 Combinatorial optimization problems

The BQO formulation has been served as a common model for many combinatorial opti-
mization problems pertaining to graphs, such as:

∙ Graph coloring problem [Kochenberger et al., 2005]

∙ Maximum cut problem [Kochenberger et al., 2011]

∙ Set packing problem [Alidaee et al., 2008]

∙ Set partitioning problem [Lewis et al., 2008]

∙ Maximum independent set problem [Pajouh et al., 2011]

∙ Maximum edge weight clique problem [Alidaee et al., 2007]

∙ Linear ordering problems [Lewis et al., 2009]

∙ Generalized independent set [Kochenberger et al., 2007]

7



CHAPTER 1. INTRODUCTION

For example, the maximum cut problem can be naturally transformed into the BQO
model. Given an undirected graph G = (V,E) with vertex set V = {1, . . . , n} and edge set
E ⊆ V × V , each edge e(i, j) is associated with a weight wij , the maximum cut problem
(MaxCut) asks for a partition of V into two disjoint subsets such that the total weight
of cut (edges crossing the two subsets) is maximized. Formally, the objective function of
MaxCut is:

Maximize: f(x) =

n
∑

i=1

n
∑

j=1

wijxi(1− xj),

subject to: xi ∈ {0, 1}, i = 1, . . . , n.

(1.3)

The following corresponding relation is apparent in comparison with the formulation
of BQO shown in Eq. 1.1:

qii =

n
∑

j=1,j ∕=i

wij , qij = −wij, (i ∕= j) (1.4)

More generally, the method of reformulating the original problem into the BQO model
consists in identifying a proper quadratic penalty function to replace each problem con-
straint and then adding all the penalty functions to the linear or quadratic objective
function. A proper penalty function assures that its function value is zero when the con-
straint is satisfied. In particular, the BQO model mainly deals with the following two
types of constraints.

#1 : Ax = b (1.5)

#2 : xi + xj <= 1 (1.6)

For the transformation of the constraints #1 and #2, the following penalty functions
p1 and p2 are used, respectively:

p1(x) = P (Ax− b)t(Ax− b) (1.7)

p2(x) = Pxixj (1.8)

where a positive scalar P is selected for the minimization problem while a negative scalar
is used for the maximization problem.

Once a problem at hand is reformulated into the form of BQO, a general purpose
algorithm for BQO can be used to address this specific problem, which avoids the necessity
to design a new method for each new problem.
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1.2 Previous work

Due to its theoretical significance as an NP-hard problem and immense potential appli-
cations, BQO has attracted researchers to design various solution procedures to tackle it.
Exact algorithms (e.g., branch and bound [Pardalos, 1990; Billionnet and Sutter, 1994;
Palubeckis, 1995; Hansen et al., 2000], decomposition method [Chardaire and Sutter, 1994;
Mauri and Lorena, 2011; Mauri and Lorena, 2012], linearization followed by linear 0-1 pro-
gramming [Glover and Woolsey, 1973; Glover and Woolsey, 1974] and semidefinite relax-
ation based method [Helmberg and Rendl, 1998; Rendl et al., 2006; Billionnet and Elloumi,
2007]) are capable of finding optimal solutions for problem instances with a maximum of
500 variables. However, because of the high computational complexity, various heuristics
are commonly used to create approximate solutions to larger problem instances. Since
this thesis is not focused on the exact algorithms, the following sections mainly review
various heuristic and metaheuristic algorithms reported in the literature.

1.2.1 Basic preliminaries

Since local search is either directly used to solve BQO or a vital sub-routine embedded
in most algorithms to improve solution quality, we first summarize basic ingredients of
the local search procedure proposed for BQO before introducing various heuristics and
metaheuristics.

1.2.1.1 Search space and evaluation function

A solution of BQO is a boolean vector of length n; i.e., x = {x1, . . . , xn} ∈ Ψ = {0, 1}n.
Thus, the solution space Ψ is of size 2n. Given a solution x ∈ Ψ, its quality or fitness is
usually directly measured by the objective function f(x) of Eq. 1.1.

1.2.1.2 Neighborhood structure

Neighborhood structure determines a set of solutions that can be directly reached from
the current solution. The following two types of neighborhood structures are principally
used for BQO:

1-flip: flip a variable xi to its complementary value 1− xi;

k-flip: flip k (2 <= k <= n) variables xi1 , . . . , xik simultaneously to the corresponding
complementary values 1− xi1 , . . . , 1− xik , respectively.

The 1-flip neighborhood is bounded by O(n). The size of k-flip neighborhood increases
exponentially with k and is bounded by

(

n
k

)

. A local search algorithm with the complete k-
flip neighborhood consumes enormous amounts of computational efforts when contrasted
with 1-flip neighborhood.

1.2.1.3 Move selection

To perform a move that transforms a solution x to its neighborhood solution, the following
move selection strategies are generally utilized:
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first improvement (FirstImp): scan the neighborhood of the current solution x and
pick the first solution found better than x;

best improvement (BestImp): exhaustively explore the neighborhood of x and return
the solution with the best solution quality.

1.2.1.4 Fast move evaluation

To enhance the efficiency of neighborhood exploitation, it is vital to quickly evaluate each
solution in the neighborhood. In other words, one needs to find an efficient method to
calculate move gain; i.e., the objective difference between a solution and its neighboring
solution. In the following we first present how to quickly calculate the move gain for 1-flip
move [Glover and Hao, 2010] and then generalize it to the k-flip move [Katayama and
Narihisa, 2004].

1.2.1.4.1 Fast evaluation for 1-flip move Let x and x′ denote two solutions where
x′ is a solution in the neighborhood of x and let N = {1, . . . , n} denote the index set for
the set of variables x = {x1, . . . , xn}. Then the move gain upon flipping a variable xi can
be calculated as follows.

First, we maintain a vector Δ to record move gains of transforming from the solution x
to each neighboring solution x′ when performing 1-flip moves. Specifically, when flipping
the variable xi, the move gain Δi is calculated as follows:

Δi = (1− 2xi)(qii + 2
∑

j∈N,j ∕=i,xj=1

q(i,j)) (1.9)

Once a move is performed, we just need to update a subset of move gains affected by
the move. Specifically, the following abbreviated calculation can be performed to update
Δ upon flipping a variable xi:

Δi =

{

−Δi if i = j

Δi + 2qij(1− 2xi)(1− 2xj) otℎerwise
(1.10)

1.2.1.4.2 Fast evaluation for k-flip move The generalized k-flip move can be con-
sidered as a sequence of 1-flip moves, thus it is not hard to infer the following equation for
the calculation of the move gain produced by a k-flip move. Formally, let xi1 , . . . , xik are
k variables to flip, then the move gain Δi1,...,ik for simultaneously flipping the k variables
can be computed as follows:

10
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Δi1,...,ik = Δi1 (1-flip)

+Δi2 + 2qi1i2(1− 2xi1)(1− 2xi2) (2-flip)

+Δi3 + 2qi1i3(1− 2xi1)(1− 2xi3) + 2qi2i3(1− 2xi2)(1− 2xi3) (3-flip)

+Δi4 + 2qi1i4(1− 2xi1)(1− 2xi4) + 2qi2i4(1− 2xi2)(1− 2xi4)

+2qi3i4(1− 2xi3)(1− 2xi4) (4-flip)

...
...

=

k
∑

r=1

Δir + 2

k−1
∑

r=1

k
∑

s=r+1

qiris(1− 2xir)(1 − 2xis) (k-flip)

1.2.2 Heuristic and metaheuristic algorithms

Many heuristic and metaheuristic algorithms emerged in the BQO literature, which we can
mainly categorize into the several classes: greedy construction search method, simulated
annealing, tabu search, population based approach (e.g. evolutionary algorithms, memetic
algorithms and scatter search) and other approaches. In the following sections we present
them in detail.

1.2.2.1 Fast solving heuristics

[Boros et al., 1989] developed a Devour Digest Tidy-up procedure, also known as DDT
method. On the basis of the posiform representation Z of BQO, DDT includes the Devour,
Digest and Tidy-up phases. Devour identifies a term T from L (L denotes the set of all
the elements of Z) with the largest coefficient and places it into S. Digest draws logical
conclusions by assigning the disjunctive equation of all the elements in S equaling to 0 (in
terms of minimization). If no logical conclusion can be drawn, then T is simply removed
from L to S, and return to Devour. Otherwise, Tidy-up begins to substitute the logical
conclusions previously drawn into Z. The above DDT procedure repeats until L is an
empty set. Experiments indicated that DDT performs especially effective on problems of
low density.

Consider the case that the DDT method simultaneously set several variables with value
1 or 0 would result in worse result than to give inferred assignment to only one variable,
[Glover et al., 2002] proposed several one-pass heuristics to guarantee that in each pass only
one variable gets the implied assignment. The differences among the proposed one-pass
heuristics lies in the different strategies of evaluating contributions of variables. Exper-
imental comparisons among the proposed one-pass heuristics showed that some of them
perform quite effectively for certain problem instances, but no single method dominates
on every problem instance.

[Hanafi et al., 2011] devised five alternative DDT heuristics based on different rep-
resentation of the BQO formulation, where DDT1 to DDT4 methods respectively have
standard, posiform, bi-form and negaform representations and DDT5 has a posiform rep-
resentation along with a one-pass mechanism. An obviously additional difference of their
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DDT alternatives from [Boros et al., 1989; Glover et al., 2002] lies in the use of a r-flip
local search procedure to improve solutions obtained by DDT constructions. Extensive
tests on small, medium and large benchmark instances disclosed that (1) DDT3 with the
bi-form representation generally produces the best results for medium and large instances;
(2) the proposed r-flip local search contributes to significant improvement of the results
of the proposed DDT methods with only a slight increase of time consumption.

[Boros et al., 2007] presented a local search scheme which is operated as below. Starting
from an initial solution, each iteration constructs a candidate set and then picks a variable
from this set and changes its value to its complement, thus moving to the next solution.
This iterative procedure repeats until the candidate set is empty. Based on the above
scheme, they studied five initialization methods, two candidate set construction methods
and four variable selection methods, thus reaching up to 40 local search alternatives.
Experiments on multiple benchmark instances indicated that the local search alternative
combining the following methods achieved the best performance. The initial method
assigns each variable with a fractional value equaling to the proportion of the sum of all
the positive entries of the matrix in the sum of the absolute value of each entry of the
matrix. The candidate set construction method consists of such variable that flips its
value would bring improvement to the current solution no matter whether it was already
flipped in the previous iteration. The variable selection methods selects the smallest-index
variable from the candidate set with the largest improvement to the current solution.

1.2.2.2 Greedy construction search method

[Merz and Freisleben, 2002] proposed a randomized greedy construction heuristic to quickly
obtain an improved solution. The greedy construction procedure starts from a solution
with all variables assigned to be 0.5 (the so called third state). The first step randomly
picks a variable and randomly assign a value 0 or 1 to it. Each successive construction step
considers all the variables with value 0.5 and pick a variable from them with probability
proportional to the gain value when changing the variable’s value from 0.5 to 0 or 1. The
construction procedure ends when no variable lies in the third state. In addition, two local
search heuristics named 1-opt and k-opt are presented. The 1-opt local search is a simple
ascent algorithm based on 1-opt neighborhood. Each iteration for the k-opt local search
repeats performing the best 1-flip move subject to requiring that this move has not been
performed during this iteration until all 1-flip moves are performed and picks the best
solution to start the next iteration. The above iteration is repeated until no improved
solution can be obtained. The complexity of this k-opt local search for per iteration is
O(n2). Furthermore, they analyzed the performance of the multi-start randomized greedy
algorithm, the multi-start 1-opt local search, the multi-start k-opt local search and the
multi-start k-opt local search with randomized greedy initial solutions and observed that
the superiority of the proposed k-opt local search over 1-opt local search is more obvious
for small scale problem instances than for medium and large scale problem instances.

[Palubeckis and Tomkevicius, 2002] applied a greedy random adaptive search proce-
dure, GRASP-PT, that basically switches between a construction phase and a local search
phase. For each step in the construction phase, GRASP-PT maintains a candidate list
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that contains a certain number of variables with the largest gain values calculated accord-
ing to a specific gain function and picks a variable from this candidate list with probability
proportional to its gain value. The local search phase implements a simple ascent algo-
rithm. In addition, an enhanced version of GRASP-PT implemented by replacing local
search with tabu search, called GMSTS-PT and a classic random restarting procedure
combined with tabu search in the improvement phase, called MSTS-PT, are also tested
for the comparative purpose. Computational results demonstrated that (1) GRASP-PT
is not competitive with GMSTS-PT and MSTS-PT; (2) the greedy construction phase of
GMSTS-PT is superior to the random restart procedure of MSTS-PT.

1.2.2.3 SA-Simulated Annealing

[Alkhamis et al., 1998] presented a simulated annealing based heuristic, SA-AHA, accord-
ing to a traditional simulated annealing algorithm framework. It begins with a randomly
generated solution and an initial temperature. At each iteration, SA-AHA generates a
random 1-flip move. If this is an improving move, it is automatically performed; Other-
wise, this move is performed with a probability e−Δ/T where Δ indicates the move gain
and T is the current temperature constant. After a certain number of iterations, the tem-
perature is decreased according to a cooling function from [Aarts et al., 1988]. The above
procedure is repeated until either no solution is accepted in 10 consecutive temperatures or
the temperature has fallen below a pre-specified value. Experiments on problem instances
with 100 variables and comparisons with several bounding techniques based algorithms
indicated that SA-AHA outperforms the reference algorithms. Especially, SA-AHA is able
to solve hard problem instances very efficiently while bounding algorithms can not solve
them in a reasonable computation time. Additional analysis demonstrated that matrix
density does not affect the efficiency of the SA-AHA algorithm.

In [Beasley, 1998], a simulated annealing algorithm, SA-B, was presented. Basically,
the iterative procedure of SA-B is the same as SA-AHA. However, in SA-B each iteration
applies a different temperature constant to determine probability of accepting a non-
improving move. In addition, at the end of the annealing process, a local search procedure
based on the first improvement strategy is utilized to further improve solution quality.
Experimental results for the GKA benchmark indicated that SA-B generally converges
faster to best solutions than the reference algorithms although it obtains inferior solution
quality for several instances. In addition, tested on the ORLIB benchmark showed that
SA-B is especially effective for the 10 largest instances with 2500 variables.

[Katayama and Narihisa, 2001] designed an implementation of simulated annealing
methodology similar to SA-AHA, called SA-KN. However, SA-KN adopts multiple an-
nealing processes, each of which starts with a different initial temperature and takes the
best solution found in the previous annealing process as the initial solution, to enhance its
search ability. Experimental results for ORLIB problem instances with variables ranging
from 500 to 2500 indicated that SA-KN achieves competitive performances, especially for
the large instances, as demonstrated in SA-B.
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1.2.2.4 TS-Tabu Search

[Glover et al., 1998] introduced an adaptive memory tabu search algorithm, AMTS that
uses recency and frequency information to affect a move. Particularly, recency information
is used to penalize a move that is recently conducted while frequency information is mainly
used to break ties when many moves have the same best evaluation value. Strategic oscil-
lation is employed to alternate between constructive phases (progressively setting variables
to 1) and destructive phases (progressively setting variables to 0), which are triggered by
critical events, i.e., when the next move causes the objective function to decrease. Oscil-
lation amplitude is adaptively controlled by a span parameter. Tests on GKA benchmark
showed AMTS outperforms the best exact and heuristic methods previously reported in
the literature.

[Beasley, 1998] proposed a tabu search algorithm, TS-B, based on 1-flip neighborhood.
It begins from an initial solution with each variable assigned to be 0 and marked as non-
tabu. During each iteration it conducts a best non-tabu move. This performed move is
then marked as tabu for the next T consecutive iterations (T is known as tabu tenure and
set as T = min(20, n/4)). If the current iteration finds a better solution than the best
solution found so far, a local search procedure with first-improvement strategy is launched
to further improve this new solution. TS-B repeats the above procedure until the current
iteration reaches the maximum allowed iteration. Notice that TS-B does not incorporate
the fast evaluation technique and also neglects an aspiration criterion.

[Palubeckis, 2004b] examined five multistart tabu search strategies, with names from
MSTS1 to MSTS5. Each multistart tabu search algorithm employs a tabu search proce-
dure, called TS-P to enhance solution quality and a multi-start strategy to produce a new
initial solution located in a more promising area. Notice that TS-P is very similar to TS-B
except that TS-P employs a tactic to get 1-flip moves fast evaluated. The first restart
strategy produces a new initial solution in a random way. The second restart strategy
identifies a candidate set of variables that are prone to change their values when moving
from the current solution to an optimal one and applies a steepest ascent algorithm that
only takes variables in this candidate set into consideration and keeps the other variables
fixed at specific values. The third restart strategy is the same as the constructive phase
of GRASP-PT [Palubeckis and Tomkevicius, 2002]. The fourth restart strategy incorpo-
rates a set of elite solutions that is used to calculate the probability of each variable with
the assigned value 1. If the probability for a given variable is larger than 0.5, then this
variable is assigned to be 1 in the resulting new solution; otherwise it is assigned to be
0. The last restart strategy uses a perturbation scheme of changing the problem instance
at hand, followed by a short run of tabu search on the modified instance. Experiments
on largest ORLIB instances and Palubeckis instances demonstrated that the algorithm
with the second restart strategy incorporated performs best among the several proposed
multistart algorithms.

[Palubeckis, 2006] developed an iterated tabu search algorithm (ITS) that combines
a tabu search procedure to improve the solution quality and a perturbation mechanism
to create a new initial solution. The tabu search procedure is exactly the one used in
[Palubeckis, 2004b]. The perturbation mechanism is operated as follows. First, it con-
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structs a candidate list of a specified size which consists of variables with the largest 1-flip
move gains with regard to a local optimal solution. Then it randomly selects a variable
from this set and flips this variable to move toward a new solution. Finally, it updates
corresponding move gains of variables caused by the move. The above procedure is re-
peated until the number of perturbed variables reaches the specified count. Experimental
results indicated that although the simplicity of ITS, it is very competitive with other
state-of-the-art algorithms.

[Liu et al., 2006] proposed a hybrid r-opt/1-opt tabu search algorithm, HLS, which
switches among three phases: a hybrid local search phase, a destruction phase and a
construction phase. First, the hybrid local search phase that hybrids 1-opt and r-opt
local search is launched. This phase behaves like a basic variable neighborhood search
procedure [Hansen and Mladenović, 2003] but excludes useless r-opt moves according to
a theorem that is capable of reducing the number of moves needed to be considered by
several orders. When no improved move is found, the hybrid local search phase terminates.
Meantime, the destruction phase is followed to carry out the 1-flip move with the least
damage to the current solution. The conducted move is tagged tabu and the destruction
phase continues until there occurs a non-tabu move that can improve the current solution.
At this time, a construction phase is triggered to perform the best non-tabu move and
this performed move is immediately tagged tabu. If the obtained solution is better than
the best solution ever found, the algorithm returns to the hybrid local search phase. If
no variable exists that can make further improvement, the algorithm then returns to the
destruction phase. Tested results showed the proposed genetic hybrid r-opt/1-opt tabu
search generally outperforms 1-opt tabu search and performs better than a 1-opt based
multistart tabu search algorithm for problem instances with very large size and density.

[Glover et al., 2010] presented a diversification-driven tabu search algorithm, D2TS,
for BQO. D2TS alternates between a basic tabu search procedure, named TS-GLH, and
a memory-based perturbation strategy guided by a long-term memory. TS-GLH uses
1-flip neighborhood and best improvement strategy. A tabu list is included to prevent
solutions visited within a certain number of iterations, known as tabu tenure (set as
n/100 + rand[1, 10] where rand[1,10] takes an random integer from the interval [1,10]),
from being revisited. Furthermore, an aspiration is used to permit a move to be selected
in spite of being tabu if it leads to a solution better than the current best solution. For
the perturbation, three memory structures are introduced: (1) a flipping frequency vector
to record the number of times a variable has been flipped from the initial iteration until
the current iteration; (2) an elite set of solutions to record a certain number of best local
optimal solutions; (3) a consistency vector to count the times of each variable that is
assigned with the common value in the set of elite solutions. By use of these information,
the perturbation operator operates an elite solution and favors variables with low flipping
frequency and high consistency to flip. Computational results showed that D2TS is capable
of matching or improving the previously reported results for the challenging ORLIB and
Palubeckis instances.

[Lü et al., 2012] studied neighborhood union and token-ring search methods to combine
1-flip and 2-flip neighborhoods within a tabu search algorithm. The 1-flip based tabu
search (N1) is the same as the one in TS-GLH [Glover et al., 2010]. The 2-flip based
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tabu search (N2) constrains consideration to such 2-flip moves that separately flipping
each variable involved in this 2-flip move would lead to the move gain ranked top 3

√
n

among all the 1-flip moves, in order to reduce the computational efforts of identifying the
best move from the complete N2 neighborhood. The neighborhood union includes the
strong neighborhood union (N1

⊔

N2) that picks each move from both N1 and N2 while
selective neighborhood union (N1

∪

N2) that at each iteration makes a move selected
from N1 with probability p and N2 with probability 1 − p. The token ring search (N1
→ N2) continuously performs moves within a single neighborhood until no improvement
is possible and then switches to the other neighborhood to carry out moves in the same
fashion. Experimental results lead to the following rankings: for a single neighborhood
N2 > N1 while for neighborhood union N1

∪

N2 > N1→ N2 > N1
⊔

N2 .

1.2.2.5 Population based search methods

[Lodi et al., 1999] introduced an evolutionary heuristic, called EH, for solving BQO. EH
is characterized by the following special features. First, EH contains a preprocessing
phase with the purpose of fixing certain variables at their optimal values and reducing the
problem size. This type of fixation belongs to permanent fixation since for each successive
round of local search, these variables are excluded from consideration. Second, a local
search procedure based on the alternation between construction phase and destructive
phases like in [Glover et al., 1998] is employed to get an improved solution. Finally, EH
uses a uniform crossover operator to generate offspring solutions, where variables with
common values in parental solutions are temporarily fixed in this round of local search.
Experimental results indicate that EH can match the best known results for problem
instances with up to 500 variables in a very short computing time. A further analysis
demonstrates that the preprocessing phase is effective for small problem instances but is
impossible to reduce the problem size for large ones.

[Merz and Freisleben, 1999] devised a hybrid genetic algorithm, GLS-MF, in which a
simple local search is incorporated into the traditional genetic algorithm. The local search
procedure uses 1-flip neighborhood and best improvement strategy. The crossover operator
is a variant of uniform crossover, requiring the generated offspring solution has the same
hamming distance away from parents. Once the newly generated offspring solution satisfies
the updating criterion, it becomes a member of the population and replaces the solution
with the worst solution quality. A diversification component is launched when the average
hamming distance of the population drops below a threshold d = 10 or the population
is not updated for more than 30 consecutive generations. Experimental results showed
that a simple evolutionary algorithm is sufficient to find best known results for problem
instances with less than 200 variables but for those with a high number of variables, it is
essential to incorporate local search to attain high quality solutions.

[Katayama et al., 2000] proposed an alternative genetic local search algorithm, named
GLS-KTN. The local search procedure of GLS-KTN combines k-opt local search proposed
in [Merz and Freisleben, 2002] and a 1-opt local search of [Katayama and Narihisa, 2001]. A
traditional uniform crossover and a mutation operator are exploited to generate a suitable
offspring solution. A similar diversification/restart strategy as GLS-MF is integrated to
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maintain a diversified population. Tested on ORLIB benchmark, GLS-KTN attained best
known results in a short running time and better average solution quality than GLS-MF.

[Merz and Katayama, 2004] conducted landscape analysis and observed that (1) local
optima of BQO problem instances are concentrated in a small fraction of the search space;
(2) the fitness of local optima and the distance between local optima and the global
optimum are correlated. Based on this, they designed a memetic algorithm, MA-MK,
in which an innovative variation operator is utilized to generate an offspring solution
and the k-opt local search proposed in [Katayama et al., 2000] is utilized to improve
solution quality. Specifically, the initial population is generated with a randomized greedy
heuristic introduced in [Merz and Freisleben, 2002]. The innovative variation operator
introduces new alleles not contained in both parents by referring to the move gain of
performing 1-flip move, avoiding the rediscovery of local optima already visited to the
utmost extent. The selection rule for maintaining a new population is similar to (u+�)-ES
evolutionary strategy. Evaluated on ORLIB benchmark instances, the proposed approach
is demonstrated especially effective in solving large ORLIB instances.

[Lü et al., 2010b] developed a hybrid genetic-tabu search with multi-parent crossover,
named GTA to solve BQO. GTA jointly uses traditional uniform crossover and logic multi-
parent combination operators to generate suitable and diversified offspring solutions. In
the multi-parent crossover operator, a variable’s strength is defined as the sum of its
weights for an elite set of solutions, where its weight for a single solution is measured as
the inversion of the number of variables with assigned value 1 in this solution. If a variable’s
strength is higher than average strength, its value in the generated offspring solution is 1;
otherwise its value is 0. In addition, GTA applies a pool updating strategy that depends
on both the solution quality and the Hamming distance between this solution and the elite
set. Evaluated on 25 Palubeckis benchmark instances with 2500 to 5000 variables, GTA
obtained highly competitive results in comparison with the previous best known results
from the literature.

[Lü et al., 2010a] proposed a hybrid metaheuristic approach, called HMA, which inte-
grates a basic tabu search procedure into a genetic search framework. First, HMA com-
bines a traditional uniform crossover operator with a diversification guided path relinking
operator to guarantee the quality and diversity of an offspring solution. Second, HMA
defines a new distance by reference to variable’s importance instead of treating all the
variables the same as the Hamming distance and employs a quality-and-distance criterion
to update the population as in GTA. Finally, a tabu search procedure is responsible for in-
tensified examination around the offspring solutions. Computational results showed HMA
is among the best performing procedures for solving challenging BQO problem instances
from Palubeckis family.

[Amini et al., 1999] presented a scatter search approach, SS, including a diversification
generation method, a solution improvement method, a reference set update method, a
subset generation method and a solution combination method. The diversification gen-
eration method systematically generates a collection of diverse trial solutions based on a
seed solution in a way of setting an incremental parameter that determines at which bits
of the seed solution should be flipped. The improvement method performs a compound
move that sequentially cycles among 1-flip, 2-flip and 3-flip candidate moves until no at-
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tractive move can be identified. The reference set update method replaces solutions in the
reference set with new candidate solutions according to the quality measurement. In order
to build a new solution, a linear combination of selected solutions from the reference set is
applied. Since some variables would receive fractional values in the combined solution, a
rounding procedure is followed to make this solution feasible. Experiments on three classes
of problems showed that the proposed scatter search method is very robust, especially for
large problem instances.

1.2.2.6 Other algorithms

[Shylo and Shylo, 2011] developed a global equilibrium search, named GES, which performs
multiple temperature cycles. Each temperature cycle alternates between an initial solution
generation phase and a tabu search phase. The use of historical facilitates to determine
the probability that a variable receives value 1 in the generated solution. The tabu search
procedure is similar to the one used in [Glover et al., 2010] except requiring that each
admissible move produces a solution with hamming distance to a reference set surpassing
a distance threshold. Computational tests indicate that GES performs quite well in terms
of both the solution quality and computing speed.

[Cai et al., 2011] presented a memetic clonal selection algorithm (MCSA) with es-
timation of distribution algorithm (EDA) vaccination, called MCSA-EDA, for solving
BQO. MCSA-EDA adopts EDA vaccination, fitness uniform selection scheme (FUSS) and
adaptive TS to overcome the deficiencies of traditional CSA algorithm. Experimental
comparisons indicate that MCSA-EDA enhances the performance of CSA.

[Wang et al., 2011a] provided a tabu Hopfield neural network with estimation of dis-
tribution algorithm, THNN-EDA, based on ideas from EDA and TS. The cooperation
between long term memory of EDA with the short term memory of TS avoids the net-
work trapped in local optima and thus provides a good performance for THNN-EDA. Ex-
perimental results on standard BQO problem instances and MaxCut problems instances
reformulated as BQO showed that THNN-EDA is better than or competitive with other
HNN based algorithms and some metaheuristic algorithms.

1.3 Benchmark instances

To examine the performance of algorithms, the following benchmarks with a total of 126
instances are most often used in the BQO literature. The detailed characteristics of these
problem instances are also shown in Table 1.1.

∙ [Glover et al., 1998] (GKA family): 45 small scale instances, ranging in size from 25
to 500 variables and in density from 6.5% to 100%. These instances were generated
from the P&R routine.

∙ [Beasley, 1998] (Beasley family): 60 small and medium scale instances, ranging in size
from 50 to 2500 variables and with the density of 10%. These instances are available
from OR-Library [Beasley, 1996] and can be downloaded at: http://people.brunel.ac.
uk/∼mastjjb/jeb/orlib/bqpinfo.html.
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Table 1.1: Benchmark instances for BQO
Family Sub-family Variables

n
Number
instances

Density
(d)(%)

Q diagonal
elements

Q off-diagonal
elements

GKA GKA-a 30-100 8 6.5 to 50 [-100, 100] [-100,100]
GKA-b 20-125 10 100 [-63, 0] [0, 100]
GKA-c 40-100 7 10 to 80 [-50, 50] [-100,100]
GKA-d 100 10 6.5 to 50 [-50, 50] [-75,75]
GKA-e 200 5 10 to 50 [-50, 50] [-100,100]
GKA-f 500 5 10 to 100 [-75, 75] [-50,50]

ORLIB b50 50 10 10 [-100, 100] [-100,100]
b100 100 10 10 [-100, 100] [-100,100]
b250 250 10 10 [-100, 100] [-100,100]
b500 500 10 10 [-100, 100] [-100,100]
b1000 1000 10 10 [-100, 100] [-100,100]
b2500 2500 10 10 [-100, 100] [-100,100]

Palubeckis p3000 3000 5 50-100 [-100, 100] [-100,100]
p4000 4000 5 50-100 [-100, 100] [-100,100]
p5000 5000 5 50-100 [-100, 100] [-100,100]
p6000 6000 3 50-100 [-100, 100] [-100,100]
p7000 7000 3 50-100 [-100, 100] [-100,100]

∙ [Palubeckis, 2004b] (Palubeckis family): 21 large instances, ranging in size from 3000
to 7000 variables and in density from 50% to 10%. The sources of the generator and
input files to replicate these problem instances can be found at: http://www.soften.kt
u.lt/∼gintaras/ubqop its.html.

In this thesis, we mainly focus on hard instances consisting of the 10 largest instances
from ORLIB with 2500 variables and those from the Palubeckis family with 3000 to 7000
variables. In particular, we are interested in the most challenging Palubeckis instances
with no less than 5000 variables since the other small and medium scale instances can be
solved very easily by many algorithms in the literature.

19





Chapter 2

Backbone Guided Tabu Search

We present a backbone guided tabu search (BGTS) framework that alternates between
two phases: (1) a basic tabu search procedure to optimize the objective function as far as
possible; (2) a variable fixing/freeing procedure using the notion of strongly determined
variables to alternately fix backbone components of the solutions which likely share values
in common with an optimal solution. Based on such a fact that our variable fixing/freeing
procedure needs to decide how to score variables and which variables should be identified
as backbone variables to be fixed, we investigate two rules for scoring variables and two
rules for fixing variables. The different combinations of these rules constitute four BGTS
algorithms. Experimental comparisons dispose that one of the proposed BGTS algorithms
is capable of matching the best known results for all the tested instances and boosts the
performance of the basic TS in terms of both solution quality and computational efficiency.
Additional analysis of deviations from the best known solution and the correlations be-
tween the fitness distances of high-quality solutions illustrates why one particular variable
fixing and scoring rule leads to better computational results than another one. This chap-
ter is based on the paper published in EvoCOP2011 International Conference [Wang et
al., 2011b].

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Backbone guided tabu search algorithms . . . . . . . . . . . . . 22

2.2.1 General scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Tabu search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Reference solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.4 Rules for scoring variables . . . . . . . . . . . . . . . . . . . . . . 26

2.2.5 Rules for fixing and freeing variables . . . . . . . . . . . . . . . . 27

2.2.6 Four derived algorithms . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Benchmark instances and experimental protocol . . . . . . . . . 29

2.3.2 Comparison among 4 different BGTS algorithms . . . . . . . . . 29

2.3.3 Comparison between BGTS and its underlying TS . . . . . . . . 31

21



CHAPTER 2. BACKBONE GUIDED TABU SEARCH

2.4 Discussion and analysis . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Variable fixing errors . . . . . . . . . . . . . . . . . . . . . . . . . 31
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2.1 Introduction

The backbone terminology comes from the context of the well-known satisfiability problem
(SAT). Informally, the backbone of a SAT instance is the set of literals (A literal is a
boolean variable or the negation of a boolean variable) which are true in every satisfying
truth assignment ([Monasson et al., 1998; Kilby et al., 2005]). [Zhang, 2004] presents an
effective backbone-based heuristic for SAT and an example of a similar strategy is reported
for the multi-dimensional knapsack problem in [Wilbaut et al., 2009]. Such a strategy was
also proposed in connection with exploiting strongly determined and consistent variables in
[Glover, 1977], and has come to be one of the basic strategies associated with tabu search.
(Discussions of this strategy in multiple contexts appear in [Glover and Laguna, 1997;
Glover, 2005].)

We restrict attention to the “strongly determined” aspect of strongly determined and
consistent variables, and borrow the “backbone” terminology from the SAT literature as a
vehicle for naming our procedure. The SAT notion of a backbone refers to a set of variable
assignments that are shared by all the global optima of an instance. From a practical
standpoint this definition clearly has little utility since we do not know these global optima
in advance and our goal is to find one of them. Hence we instead take an approach based
on available knowledge by keeping track of a set of solutions generated during the course
of the search that exhibit the highest quality, and use the criterion of being strongly
determined as an indicator of those assignments that likely to be shared in common with
a global optimum. In particular, we use a simplification of the notion of [Glover, 1977]

by considering a variable to be strongly determined if changing its assigned value in a
high quality solution will cause the quality of that solution to deteriorate significantly.
Identifying a backbone according to this criterion, we then “instantiate” the backbone by
fixing the values of those variables that qualify for membership.

We proposed four backbone guided tabu search algorithms based on different rules for
scoring variables and fixing variables. Experimental results showed that the performance of
the proposed BGTS algorithms strongly depend on the variable fixing strategies employed
but are not very sensitive to the variable scoring methods. Further analysis sheds light
on how different fixing and scoring strategies are related with the search behavior and the
search space characteristics.

2.2 Backbone guided tabu search algorithms

In order to describe the BGTS algorithms more precisely, we first give the following de-
notations. Let F denote the index set for the fixed variables and U the index set for the
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free (unfixed) variables. Note that F and U partition the index set N = {1, . . . , n}, i.e.,
F ∪U = N , F ∩U = ∅. Let na be the number of variables to be added when new variables
are fixed and nd the number of variables to be dropped when new variables are freed. In
addition, let xFi , for i ∈ F , denote the current values assigned to the fixed variables, and
let x0 denote the starting solution at each run of TS.

2.2.1 General scheme

Algorithm 2.1: Outline of the BGTS framework for BQO

1: Input: matrix Q
2: Output: the best binary n-vector x∗ found so far
3: Initialization: F = {}, U = {x1, . . . , xn}, f(x∗) = −∞, fp = −∞
4: repeat

5: Construct an initial solution x0: x0
i = xF

i for i ∈ F and x0
i = Rand{0, 1} for i ∈ U

6: x ← Tabu Search(x0, U) /∗ Section 2.2.2∗/
7: Obtain a population of reference solutions P from current TS procedure /∗ Section 2.2.3 ∗/
8: if f(x) > f(x∗) then
9: x∗ = x, f(x∗) = f(x)

10: end if

11: if f(x) > fp then

12: (Variable Fixing Phase)
13: Apply Variable Scoring Rule to score variables /∗ Section 2.2.4 ∗/
14: Apply Variable Fixing Rule to fix na backbone variables /∗ Section 2.2.5 ∗/
15: ∣F ∣ = ∣F ∣+ na, ∣U ∣ = ∣U ∣ − na
16: else

17: (Variable Freeing Phase)
18: Apply Variable Scoring Rule to score variables /∗ Section 2.2.4 ∗/
19: Apply Variable Freeing Rule to free nd backbone variables /∗ Section 2.2.5 ∗/
20: ∣F ∣ = ∣F ∣ − nd, ∣U ∣ = ∣U ∣+ nd
21: end if

22: fp = f(x)
23: until a stop criterion is met

Algorithm 2.1 describes the framework of our BGTS algorithms. It begins with a
randomly constructed initial solution x0 and repeatedly alternates between a tabu search
(TS) procedure and a phase that either fixes or frees variables until a stop criterion is
satisfied. The TS procedure is employed to improve the input solution and to obtain a
population of reference solutions with the purpose of scoring and fixing variables.

If the objective value f(x) obtained by the current round of TS is better than the
previous one fp, a variable fixing phase is launched. Specifically, the fixing phase first
uses Variable Scoring Rule to give score values to variables. Then Variable Fixing Rule
sorts the variables according to these values and determines a number na of variables that
go into a set F of variables to be fixed. Consequently, the set of variables F will not be
allowed to change its composition during the next round of TS, although conditionally
changing the value of a fixed variable is another interesting strategy worthy of further
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investigation. It is understood that the values of variables x0i in the starting solution x0

are selected randomly except for i ∈ F .

On the contrary, if the TS procedure fails to find an improved solution relative to
fp, the algorithm performs the freeing phase that permit reduced number of variables
fixed during the next round of TS, thus freeing some variables. The freeing phase selects
variables freed based on variable scoring and freeing rules.

The proposed BGTS framework cycles between a tabu search phase and a variable
fixing/freeing phase and it terminates when a stopping condition arrives.

2.2.2 Tabu search

As demonstrated in [Glover et al., 1998] and more recently in [Palubeckis, 2004b; Palubeckis,
2006; Glover et al., 2010; Lü et al., 2010b; Lü et al., 2010a], tabu search based on 1-flip
neighborhood is one of the most successful local search algorithms for solving BQO. Recall
that the 1-flip move consists in changing (flipping) the value of a single variable xi to its
complementary value 1−xi. Hence, we employ a tabu search algorithm to carry out 1-flip
neighborhood exploitation.

To increase search efficiency, it is critical to quickly evaluate neighborhood moves. We
apply the technique incorporated in [Glover and Hao, 2010] that maintains a vector Δ
to record move gain of transferring the solution x to its neighboring solution x′ when
performing a 1-flip move, this vector Δ can be initialized as follows:

Δi = (1− 2xi)(qii + 2
∑

j∈N∖{i},xj=1

qij) (2.1)

After a move is performed, we just need to update those elements in Δ affected by
the move. Specifically, the following abbreviated calculation is used to update Δ upon
flipping a variable xi:

Δi =

{

−Δi if i = j

Δi + 2qij(1− 2xi)(1− 2xj) otℎerwise
(2.2)

To ensure solutions visited within a certain span of iterations will not be revisited,
tabu search typically incorporates a short-term memory, known as tabu list [Glover and
Laguna, 1997]. In our implementation, each time a variable xi is flipped, a random integer
is taken from an interval tt = [a, b] (where a and b are chosen integers) as the tabu tenure
of variables xi to prevent xi from being flipped for a specified number of iterations. In
the current study, we select to set a = 0.007n and b = a+10. Specifically, our tabu list is
defined by a n-element vector T . When xi is flipped, we assign the sum of a random integer
from tt and the current iteration count Iter to the itℎ element T [i] of T . Subsequently, for
any iteration Iter, a variable xk is forbidden to take part in a swap move if T [k] > Iter.

Our tabu search algorithm then restricts consideration to variables not currently tabu,
and selects a variable to flip that produces the best (largest) Δi value. In the case that
two or more moves have the same best move gain, ties are broken randomly.
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Accompanying this rule, a simple aspiration criterion is applied that permits a move
to be selected in spite of being tabu if it leads to a solution better than the current best
solution. By convention we speak of “better” and “best” in relation to the objective
function value f(x). (Similarity, we refer to the objective function value when speaking
of solution quality.) The tabu search procedure stops when the best solution cannot be
improved within a given number � of moves that called improvement cutoff. We set
� = 100000 in the experiments.

The pseudo-code of the tabu search procedure is shown in Algorithm 2.2.

Algorithm 2.2: Pseudo-code of the tabu search procedure for BQO

1: Input: a given solution x and its objective function value f(x)
2: Output: an improved solution x∗ and its objective function value f(x∗)
3: Initialize vector Δ according to Eq. 2.1, initialize tabu list vector T by assigning each element

with value 0, Iter = 0, NonImpIter = 0
4: while NonImpIter < � do

5: Identify the index i∗nt from all non-tabu moves that leads to the maximum Δ value (break ties
randomly); Similarly identify i∗t from tabu moves

6: if Δi∗t
> Δi∗nt

and f(x∗) + Δi∗t
> f(x∗) then

7: i∗ = i∗t
8: else

9: i∗ = i∗nt
10: end if

11: xi∗ = 1− xi∗ , f(x) = f(x) + Δi∗

12: Update Δ according to Eq. 2.2
13: Update T by assigning T [i] = Iter + rand(tt)
14: if f(x) > f(x∗) then
15: x∗ = x, f(x∗) = f(x)
16: NonImpIter = 0
17: else

18: NonImpIter = NonImpIter + 1
19: end if

20: Iter = Iter + 1
21: end while

Notice that underlying the BGTS framework, the moves in TS only considers variables
from the set U of unfixed variables to be flipped while keeping backbone variables in the
set F fixed at specific value, either 0 or 1.

2.2.3 Reference solutions

Reference solutions are used for fixing or freeing variables. We conjecture that there exists
a subset of variables, of non-negligible size, whose optimal values are often also assigned to
these same variables in high quality solutions. Thus, our goal is to identify such a critical
set of variables and infer their optimal values from the assignments they receive in high
quality solutions. Our expectation is that this will reduce the search space sufficiently to
enable optimal values for the remaining variables to be found more readily. On the basis
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of this conjecture, we maintain a set of reference solutions consisting of good solutions
obtained by TS. Specifically, we take a given number p of the best solutions from the
current round of TS (subject to requiring that these solutions differ in a minimal way),
which then constitute a solution population P for the purpose of fixing or freeing variables.
In our implementation, we empirically set p = 20. (A more refined analysis is possible
by a strategy of creating clusters of the solutions in the reference set and of considering
interactions and clusterings among subsets of variables as suggested in [Glover, 1977].)

2.2.4 Rules for scoring variables

Definition 1. Relative to a given solution x = {x1, x2, ..., xn} and a variable xi, the
(objective function) contribution of xi in relation to x is defined as:

V Ci(x) = (1− 2xi)(qii +
∑

j∈N∖{i}
2qijxj) (2.3)

As noted in [Glover et al., 1998] and in a more general context in [Glover et al., 2010],
V Ci(x) identifies the change in f(x) that results from changing the value of xi to 1 - xi;
i.e.,

V Ci(x) = f(x′)− f(x) (2.4)

where x′j = xj for j ∈ N − {i} and x′i = 1 − xi. We observe that under a maximization
objective if x is a locally optimal solution, as will typically be the case when we select x
to be a high quality solution, then V Ci(x) ≤ 0 for all i ∈ N , and the current assignment
xi = xi will be more strongly determined as V Ci(x) is “more negative”.

Definition 2. Relative to a given population of solutions P = {x1, . . . , xp} and their
corresponding objective function values F = {f(x1), . . . , f(xp)} indexed by I = {1, . . . , p},
and relative to a chosen variable xi, let Pi(0) = {k ∈ I : xki = 0} and Pi(1) = {k ∈ I :
xki = 1}, the (objective function) contribution of xi in relation to P is defined as follows.

Contribution for xi = 0:

V Ci(P : 0) =
∑

k∈Pi(0)

(� ⋅ V Ci(x
k) + (1− �) ⋅ Ã(f(xk)) ⋅ V Ci(x

k)) (2.5)

Contribution for xi = 1:

V Ci(P : 1) =
∑

k∈Pi(1)

(� ⋅ V Ci(x
k) + (1− �) ⋅ Ã(f(xk)) ⋅ V Ci(x

k)) (2.6)

where fmin and fmax are respectively the minimum and maximum objective values of the
set F and Ã(⋅) represents the normalized function:

Ã(f(xk)) = (f(xk)− fmin)/(fmax − fmin + 1) (2.7)
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Definition 3. Relative to a variable xi and a population of solutions P , the score of
xi with respect to P is then defined as:

Score(i) = min{V Ci(P : 0), V Ci(P : 1)} (2.8)

Rule 1 for scoring variables (SR1):
Only consider the contribution of variables to the reference solutions by setting � equaling
to 1.0. Obviously, the second part of Definition 2 that is multiplied by 1 − � is equal to
0 if assigning � = 1.0, thus the objective function values of the reference solutions are
neglected.
Rule 2 for scoring variables (SR2):
Simultaneously consider the contribution of variables and the solution quality of the refer-
ence solutions by assigning a value to � from the interval [0, 1). Preliminary experiments
suggests � = 0.4.

2.2.5 Rules for fixing and freeing variables

Rule 1 for fixing variables (FIX1):
Order the elements of i ∈ U such that score(i1) ≤ . . . ≤ score(i∣U ∣)
Let F (+) = i1, . . . , ina
F := F ∪ F (+) (∣F ∣ := ∣F ∣+ na)
U := U − F (+) (∣U ∣ := ∣U ∣ − na)
xFi = x0i for i ∈ F (+), (xFi is already determined for i ∈ “previous F” := F − F (+) and
x0i represents the value that xi should be assigned to according to Eq. 2.8, i.e., x0i = 0 if
V Ci(P : 0) < V Ci(P : 1) and x0i = 1 otherwise.)

Rule 1 for freeing variables (FREE1):
Order the elements of i ∈ F such that score(i1) ≥ . . . ≥ score(i∣F ∣)
Let F (−) = i1, . . . , ind
F := F − F (−)(∣F ∣ := ∣F ∣ − nd)
U := U

∪

F (−)(∣U ∣ := ∣U ∣+ nd)

Rule 2 for fixing variables (FIX2):
Set ∣F ∣ := ∣F ∣+ na
Order the elements of i ∈ N such that score(i1) ≤ . . . ≤ score(in)
(We only need to determine the first ∣F ∣ elements of this sorted order.)
Let F = i1, . . . , i∣F ∣
U := N − F (∣U ∣ := ∣U ∣ − na)
xFi = x0i for i ∈ F

Rule 2 for freeing variables (FREE2):
Set ∣F ∣ := ∣F ∣ − nd
Order the elements of i ∈ N such that score(i1) ≤ . . . ≤ score(in)
(We only need to determine the first F elements of this sorted order.)
Let F = i1, . . . , i∣F ∣
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U := N − F (∣U ∣ := ∣U ∣+ nd)
xFi = x0i for i ∈ F

Remarks: FIX1 differs in two ways from FIX2. At each fixing phase, FIX2 fixes ∣F ∣
variables, while FIX1 only fixes na new variables since ∣F ∣ − na variables are already
fixed. In other words, once a variable is fixed by FIX1, its value cannot be changed unless
a freeing phase frees this variable. Instead of inheriting the previously fixed variable
assignment as in FIX1, FIX2 selects all ∣F ∣ variables to be fixed at each fixing phase.
FREE1 only needs to score variables belonging to F and then to select those with the
highest scores to be freed, while FREE2 redetermines the variables to be freed each time.

Based on the fact that in the initial stage, the number of unfixed variables is large while
this number becomes smaller and smaller through a series of passes when the TS method
finds progressively improved solutions, we employ a strategy that gradually reduced num-
ber of newly added backbone variables na throughout such a succession of improvements.
Specifically, the number of backbone variables at the first fixing phase is relatively large
and is then gradually reduced with a geometric ratio when successive improvements occur,
as follows.

Let Fix(ℎ) denote the number of new variables (na) that are assigned fixed values and
added to the fixed variables at fixing phase ℎ. We begin with a chosen value Fix1 for
Fix(1), referring to the number of backbone variables at the first fixing phase and then
generate values for higher fixing phases by making use of an “attenuation fraction” g as
follows.

Fix(ℎ) =

{

Fix1 (ℎ = 1)

Fix(ℎ− 1) ⋅ g (ℎ > 1)
(2.9)

We select the value Fix1 = 0.25n and the fraction g = 0.4 in our experiments.

Contrary to the fixing phase, the number of the backbone variables released from their
assignments at each freeing phase is not adjusted, due to the fact that at each trial only a
small number of backbone variables are wrongly fixed and need to be freed. Specifically,
we set the number nd of backbone variables as follows.

nd =

{

60 (nd <= ∣F ∣)
∣F ∣ otℎerwise

(2.10)

2.2.6 Four derived algorithms

Our four BGTS algorithms consist of four different combinations of the two variable fixing
rules and the two variable scoring rules. Specifically, using � = 1.0 as our scoring rule, we
employ the variable fixing rules FIX1 and FIX2 to get the first two algorithms, respectively.
Likewise, the third and fourth algorithms are derived by combining the scoring rules
� = 0.4 with FIX1 and FIX2, respectively.
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Table 2.1: Results of BGTS algorithms with variable fixing rules FIX1 and FIX2 (� = 1.0)
FIX1 FIX2

Instance BKR gbest gavg ℎits tb avg tbest gbest gavg ℎits tb avg tbest
Diff?

p3000.1 3931583 0 413 15 172 40 0 3193 5 54 63 Y
p3000.2 5193073 0 0 20 62 2 0 397 12 26 5 Y
p3000.3 5111533 0 71 18 115 6 0 1144 2 43 4 Y
p3000.4 5761822 0 114 16 93 5 0 3119 7 61 7 Y
p3000.5 5675625 0 372 8 86 5 0 1770 2 147 16 Y
p4000.1 6181830 0 0 20 65 14 0 319 19 74 16 N
p4000.2 7801355 0 1020 11 295 64 0 2379 5 81 59 Y
p4000.3 7741685 0 181 18 201 17 0 1529 9 58 20 Y
p4000.4 8711822 0 114 18 171 56 0 1609 9 209 39 Y
p4000.5 8908979 0 1376 9 231 58 0 2949 2 231 134 Y
p5000.1 8559680 0 670 1 999 999 368 2429 0 1800 1800 Y
p5000.2 10836019 0 1155 6 740 47 582 2528 0 1800 1800 Y
p5000.3 10489137 0 865 3 1037 279 354 4599 0 1800 1800 Y
p5000.4 12252318 0 1172 3 1405 1020 608 4126 0 1800 1800 Y
p5000.5 12731803 0 268 13 1003 192 0 2941 3 588 279 Y
p6000.1 11384976 0 914 6 451 68 0 4694 4 550 209 Y
p6000.2 14333855 0 1246 1 739 739 88 3332 0 1800 1800 Y
p6000.3 16132915 0 2077 2 1346 1267 2184 8407 0 1800 1800 Y
p7000.1 14478676 0 2315 1 2470 2470 744 4155 0 3000 3000 Y
p7000.2 18249948 716 2340 0 3000 3000 2604 6164 0 3000 3000 Y
p7000.3 20446407 0 2151 7 981 478 0 8150 5 1836 149 Y
Av. 34 897 9.3 746 516 359 3330 4.0 988 848 Y

2.3 Experimental results

2.3.1 Benchmark instances and experimental protocol

To evaluate the performance of the proposed four BGTS algorithms, we test them on 21
benchmark instances from the Palubeckis family. The characteristics of these instances
can be found from Section 1.3. Given the stochastic nature of the algorithms, each problem
instance is independently solved 20 times. Our BGTS algorithms are programmed in C
and compiled using GNU GCC on a PC running Windows XP with Pentium 2.83GHz
CPU and 8GB Memory. The stop condition for a single run is respectively set to be
5, 10, 30, 30, 50 minutes for instances with 3000, 4000, 5000, 6000 and 7000 variables,
respectively.

2.3.2 Comparison among 4 different BGTS algorithms

We present in Tables 2.1 and 2.2 the computational results with � equaling to 1.0 and
0.4, respectively. Each table reports the results using both FIX1 and FIX2 variable fixing
rules. Column 2 gives the best known results (BKR) obtained by all previous methods
applied to these problems. The remaining columns give the results of one of the two
versions (FIX1 and FIX2) according to four criteria: (1) the best solution gap, gbest, to
the best known results (i.e., gbest = BKR − fbest where fbest denotes the best solution
value obtained by our algorithm), (2) the average solution gap, gavg , to the best known
results (i.e., gavg = BKR−favg where favg represents the average objective value), (3) the
number of times over 20 runs, hits, for reaching BKR and (4) the CPU time, consisting of
the average time and the best time, tb avg and tbest (in seconds), for reaching BKR. The
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Table 2.2: Results of BGTS algorithms with variable fixing rules FIX1 and FIX2 (� = 0.4)
FIX1 FIX2

Instance BKR gbest gavg ℎits tb avg tbest gbest gavg ℎits tb avg tbest
Diff?

p3000.1 3931583 0 308 16 98 4 0 3315 5 75 2 Y
p3000.2 5193073 0 0 20 59 9 0 488 13 50 3 Y
p3000.3 5111533 0 166 17 108 2 0 1355 4 28 5 Y
p3000.4 5761822 0 19 19 109 24 0 1684 10 74 2 Y
p3000.5 5675625 0 275 11 147 14 0 1796 3 154 40 Y
p4000.1 6181830 0 0 20 61 13 0 354 19 78 3 N
p4000.2 7801355 0 783 11 369 44 0 2722 3 382 106 Y
p4000.3 7741685 0 254 17 234 29 0 1474 8 75 29 Y
p4000.4 8711822 0 75 19 250 13 0 2537 7 158 12 Y
p4000.5 8908979 0 1769 8 361 275 0 3112 3 101 41 Y
p5000.1 8559680 0 791 2 721 228 325 2798 0 1800 1800 Y
p5000.2 10836019 0 860 4 540 37 0 2397 1 45 45 Y
p5000.3 10489137 0 1698 5 702 292 354 4939 0 1800 1800 Y
p5000.4 12252318 0 1123 2 103 76 444 3668 0 1800 1800 Y
p5000.5 12731803 0 455 12 747 261 0 3250 3 145 114 Y
p6000.1 11384976 0 1450 9 1014 432 0 5405 2 1178 768 Y
p6000.2 14333855 0 1079 3 911 515 0 4923 1 192 192 Y
p6000.3 16132915 0 2320 3 1000 642 0 6137 1 147 147 Y
p7000.1 14478676 0 1784 2 1519 785 1546 4556 0 3000 3000 Y
p7000.2 18249948 0 2743 1 2238 2238 1710 5986 0 3000 3000 Y
p7000.3 20446407 0 3971 3 1457 870 0 11604 1 1113 1113 Y
Av. 0 1044 9.7 607 324 209 3548 4.0 733 668 Y

last column Diff? indicates the superiority of FIX1 over FIX2 when a 95% confidence
t-test is performed in terms of the objective values. Furthermore, the last row “Av.”
indicates the summary of the algorithm’s average performance.

Table 2.1 shows the computational results of variable fixing strategies FIX1 and FIX2
where � = 1.0. One observes that for all the considered criteria, FIX1 outperforms FIX2
for almost all the instances. Specifically, FIX1 is able to reach the best known results for
all instances except one (p7000.2) while FIX2 fails for 8 cases. Moreover, FIX1 has an
average hits of 9.3 over 20 runs, more than two times larger than FIX2’s 4.0. FIX1 is also
superior to FIX2 when it comes to the average gap to the best known results. In addition,
FIX1 performs slightly better than FIX2 in terms of the CPU time. The T-test also
demonstrates that FIX1 is significantly better than FIX2 except only one case (p4000.1).

Table 2.2 gives the computational results of variable fixing strategies FIX1 and FIX2
when � is set to be 0.4 instead of 1.0. From Table 2.2, we observe that FIX1 outperforms
FIX2 in terms of all the considered criteria, including gbest, gavg, ℎits, tb avg and tbest.
One also notices that this is quite similar to the case of � = 1.0. Therefore, we can
conclude that the variable fixing strategy FIX1 is generally superior to FIX2 when using
the two variable scoring strategies considered. In other words, the two variable scoring
strategies have a similar influence on the computational results. The ability of the tabu
search method using FIX1 together with SR2 to obtain all of the best known results in
the literature places this method on a par with the best methods like [Glover et al., 2010;
Lü et al., 2010a], while its solution times are better than those obtained in [Glover et al.,
2010].
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Table 2.3: Results of the basic TS algorithm
Basic TS Algorithm

Instance BKR fbest gbest gavg ℎits tb avg tbest
p3000.1 3931583 3931583 0 207 12 50 50
p3000.2 5193073 5193073 0 306 12 29 50
p3000.3 5111533 5111533 0 679 12 67 50
p3000.4 5761822 5761822 0 394 18 44 50
p3000.5 5675625 5675625 0 675 5 61 50
p4000.1 6181830 6181830 0 13 16 76 50
p4000.2 7801355 7801355 0 1766 5 108 50
p4000.3 7741685 7741685 0 526 9 204 50
p4000.4 8711822 8711822 0 175 14 231 50
p4000.5 8908979 8908979 0 1148 11 323 50
p5000.1 8559680 8559680 0 925 1 1650 50
p5000.2 10836019 10836019 0 1628 1 23 50
p5000.3 10489137 10489137 0 2799 2 869 50
p5000.4 12252318 12251403 915 2202 0 1800 50
p5000.5 12731803 12731803 0 1011 3 531 50
p6000.1 11384976 11384976 0 1097 4 1244 50
p6000.2 14333855 14333257 598 3180 0 3600 50
p6000.3 16132915 16132915 0 1642 6 2279 50
p7000.1 14478676 14477845 831 2400 0 3600 50
p7000.2 18249948 18249799 149 2875 0 3600 50
p7000.3 20446407 20446407 0 4426 2 1134 50
Av. 118 1432 6.34 1025 1025

2.3.3 Comparison between BGTS and its underlying TS

We now assess the effect of the proposed variable fixing strategies on the performance of
TS by comparing our BGTS algorithms with its underlying TS procedure on the set of
21 instances. For this purpose, we run the TS procedure described in Section 2.2.2 under
the same time limit as our BGTS algorithms. The results are shown in Table 2.3. From
Tables 2.2, 2.1 and 2.3, one observes that two BGTS algorithms with variable fixing rules
FIX1 do boost the performance of the basic TS in terms of the criteria (1)-(5) for almost
all the instances.

2.4 Discussion and analysis

In this section, we discuss and analyze some key factors which may explain the performance
differences among BGTS algorithms with different variable fixing and scoring rules. For
this purpose, we examine the Variables Fixing Errors (number of wrongly fixed variables)
relative to the putative optimal solution and show a fitness landscape analysis of high-
quality solutions.

2.4.1 Variable fixing errors

As previously demonstrated, the variable fixing rules FIX1 dominates FIX2 for both scor-
ing rules (with � = 1.0 and � = 0.4). In order to ascertain why this is the case, we conduct
an experiment to compare the total number of wrongly fixed variables during the search
using these two variable fixing rules. For this, we carry out our experiment on instance
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p5000.5 and repeat the experiment 20 times. For each run, we count, after each fixing
or freeing phase, the number of mismatched variables of the current (possibly partial)
solution with respect to the best known solution1. Figure 2.1, where each point represents
the accumulated Variable Fixing Errors over 20 runs, shows how the variable fixing rules
affect the Variable Fixing Errors at each fixing or freeing phase under two variable scoring
rules: the left one is for � = 0.4 and the right is for � = 1.0. From Figure 2.1, one observes
that the number of variable fixing errors induced by FIX1 and FIX2 (with both scoring
strategies) increases rapidly at the beginning of the search and then decreases gradually
when the search progresses. However, the number of the Variable Fixing Errors of FIX1 is
much smaller than that of FIX2 throughout the search process. This observation together
with the results in Tables 2.1 and 2.2 demonstrate that the variable fixing strategy plays
a vital role in our BGTS algorithms for both � = 1.0 and � = 0.4.
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Figure 2.1: Comparison of variable fixing errors between two fixing rules

2.4.2 Fitness distance correlation analysis

In this section, we show a search landscape analysis using the fitness distance correlation
[Jones and Forrest, 1995], which estimates how closely the fitness and distance are related
to the nearest optimum in the search space. For this purpose, we collect a large number of
high-quality solutions by performing 20 independent runs of our BGTS algorithms, each
run being allowed 30 fixing and freeing phases, where each phase has 20 elite solutions
recorded in the population P . Thus, 20 ∗ 30 ∗ 20 = 12, 000 solutions are collected and
plotted. Figures 2.2 and 2.3 show the hamming distance between these solutions to the
best known solution against the fitness difference Δf = BKR - f(xk) of these high-quality
solutions for instances p5000.1 and p5000.5, respectively.

Figure 2.2 discloses that the majority of the high quality solutions produced by variable
fixing rule FIX1 (two upper sub-figures) has a much wider distance range than the solutions

1The best known solutions are obtained by different algorithms, sharing exactly the same assignment.
Thus, we assume that it is very likely to be the optimal solution.
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Figure 2.2: Fitness distance correlation: instance p5000.1
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Figure 2.3: Fitness distance correlation: instance p5000.5
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produced by rule FIX2 (two bottom sub-figures), which indicates that the search space of
FIX1 is more dispersed than that of FIX2. Moreover, the high-quality solutions of FIX1
are much closer to the x-axis than FIX2, implying that FIX1 can obtain better objective
values than FIX2. In sum, this indicates the higher performance of the FIX1 rule.

Figure 2.3 presents a trend quite similar to that of Figure 2.2 in terms of the solu-
tions’ distance range and the percentage of high quality solutions when comparing the
two variable fixing rules FIX1 (two upper sub-figures) and FIX2 (two bottom sub-figures).
However, a clear difference from Figure 2.2 is that high quality solutions are distributed
in a wider range. In particular, the distribution of solutions is more continuous and does
not produce the “isolated cluster effect” shown in Figure 2.2. This indicates that instance
p5000.5 is much easier than p5000.1 to solve as shown in Tables 2.1 and 2.2. Indeed, for
instance p5000.5, the search space seems smoother, enabling the search to traverse easily
from solutions that are far from optimal to the best known solution.

2.5 Conclusions

In this chapter, we propose a backbone guided tabu search (BGTS) framework that alter-
nates between a basic tabu search phase and a variable fixing/freeing phase for handling
the binary quadratic optimization problem. The variable fixing/freeing phase dynami-
cally enlarges/reduces the backbone (fixed variables), enabling the successive tabu search
to exploit a reduced search area consisting only of those non-fixed variables. Within the
BGTS framework, we investigated four BGTS algorithms with different combinations of
two variable fixing rules and two variable scoring rules.

Using 21 standard instances from the Palubeckis family, we showed that one of the
proposed BGTS algorithms obtained highly competitive outcomes in comparison with the
previous best known results from the literature. A direct comparison between BGTS and
the underlying TS procedure confirms that incorporating backbone boosts the performance
of the basic tabu search algorithm.

To analyze the intrinsic differences of the proposed four BGTS algorithms, we counted
the errors of fixed variables in each fixing/freeing phase in comparison with a (near)
optimal solution and identified the correlations between fitness distances of high quality
solutions to characterize the search behavior of the variable fixing and scoring rules. Our
experimentation discloses that our TS method indeed performs differently according to
the variable fixing rule employed, but is much less sensitive to the variable scoring rule.
The finding that one of the BGTS algorithms obtains the best solutions in the literature to
the challenging test problems examined underscores the value of analyzing their impacts.

In the next chapter, we develop a new algorithm underlying the multilevel framework
for handling the large BQO problem instances, in which we hierarchically simplify the
initial problem by means of extracting backbone variables, apply an enhanced memetic
algorithm to refine a solution for each intermediate level problem and an asymmetric
uncoarsening phase that go back in a level-by-level manner to the initial problem to correct
the erroneously extracted backbone variables.
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Chapter 3

Backbone Multilevel Memetic
Algorithm

This chapter presents a backbone multilevel memetic algorithm (BMMA) designed to
approximate large BQO instances. The proposed algorithm is composed of a backbone-
based coarsening phase, an asymmetric uncoarsening phase and a memetic refinement
phase, where the backbone-based procedure and the memetic refinement procedure make
use of tabu search to obtain improved solutions. Evaluated on 11 largest instances from
the Palubeckis family, the proposed algorithm proves to be able to attain all the best
known values with a computing effort less than any existing approach. The content of this
chapter is published in CPAIOR2012 International Conference [Wang et al., 2012e].
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CHAPTER 3. BACKBONE MULTILEVEL MEMETIC ALGORITHM

3.1 Introduction

In this chapter, we are interested in investigating the so-called multilevel approach to
handling large BQO instances. The multilevel approach is known to be useful to tackle
large instances of several other types of combinatorial optimization problems [Walshaw,
2004]. For example, multilevel algorithms are among the best performing approaches
for large graph partitioning problems [Toulouse et al., 1999; Walshaw and Cross, 2000;
Meyerhenke et al., 2009; Benlic and Hao, 2011].

Generally, the multilevel paradigm consists of three phases [Walshaw, 2004]: (1) a
coarsening phase to create a hierarchy of coarser (smaller and intermediate) problems
through grouping or extracting problem variables; (2) an initial optimization phase to
obtain a solution to the coarsest (smallest) problem using an optimization procedure; (3)
an uncoarsening phase (also called projection) to recover progressively each intermediate
problem and apply to it the optimization procedure to further improve the solution quality.

We investigate the multilevel approach applied to BQO. The proposed multilevel al-
gorithm integrates a coarsening phase based on the backbone notion (Section 3.2.2), a
population-based memetic optimization procedure (Section 3.2.4) and an asymmetric un-
coarsening phase (Section 3.2.5). Experiments on a set of 11 largest BQO benchmark
instances from the literature demonstrate that our proposed algorithm is able to attain
the current best known results with much less computing time than any other existing
algorithm (Section 3.3).

3.2 Backbone multilevel memetic algorithm

3.2.1 The general multilevel scheme

The general scheme of our multilevel algorithm for BQO is shown in Algorithm 3.1. To be-
gin with, the initial matrixQ0 is transformed into a sequence of coarser matrices Q1, . . . , Qq

such that n1 > . . . > nq where each ni (i = 1, . . . , q) is the number of variables in Qi. To
obtain each intermediate matrix, we apply the idea of creating and extracting backbone
variables, as explained in Section 3.2.2). This coarsening phase stops when q reaches a
prefixed value called the threshold level. For the series of matrices Q0, . . . , Qq, we call Q0

the highest level problem and Qq the lowest level problem.

The next phase aims to generate an initial (optimized) solution to the lowest level
problem Qq. In our case, we employ the population-based hybrid metaheuristic approach
(HMA) presented in [Lü et al., 2010a]. Here, an initial population of solutions Pq for Qq

is generated and improved by HMA.

Finally, the uncoarsening phase successively selects and adds some previously extracted
variables to the current problem Qi (0 < i < q), leading to a higher level (and larger)
problem Qi−1. The solutions Pi of the current problem together with the newly added
variables are projected to the new problem Qi−1 and further optimized by HMA to obtain
an improved population Pi−1 of solutions. The uncoarsening phase stops when the highest
level i = 0 is reached. At this point, the best solution found during the search is returned
as the final solution to the problem Q0.
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The following sections detail each phase of our multilevel algorithm.

Algorithm 3.1: Outline of the BMMA algorithm for BQO

1: Input: n0 × n0 matrix Q0; maximum coarsening level q
2: Output: the best solution and its objective function value
3: i = 0
4: while i < q do

5: Qi+1 ← Coarsen(Qi) /∗ Create coarser intermediate matrices; see Section 3.2.2 ∗/
6: i = i+ 1
7: end while

8: Pi ← Initial Solution(Qi) /∗ Generate initial solutions to the coarsest (lowest level) problem; see
Section 3.2.3 ∗/

9: Pi ← Memetic Refinement(Pi, Qi) /∗ Apply the memetic algorithm to optimize the initial
solutions; see Section 3.2.4 ∗/

10: while i > 0 do

11: i = i− 1
12: Pi ← Projection(Pi+1, Qi) /∗ Back to a higher level matrix; see Section 3.2.5 ∗/
13: Pi ← Memetic Refinement(Pi, Qi) /∗ Apply the memetic algorithm to optimize the current

solutions ∗/
14: end while

3.2.2 The backbone-based coarsening phase

The backbone multilevel memetic algorithm employs a coarsening phase to cluster back-
bone variables. From a given matrix Qi (i = 0, . . . , q), our coarsening procedure repeats
the following steps: 1) build a solution (an approximation of the global optimum) of prob-
lem Qi, 2) use the solution to identify a set of backbone variables and, 3) create a simplified
(or lower level) problem (i.e., a smaller matrix Qi+1) by extracting from Qi the rows and
columns corresponding to the backbone variables. Algorithm 3.2 gives the pseudo-code of
this backbone-based coarsening phase.

Algorithm 3.2: Pseudo-code of the backbone-based coarsening phase

1: Input: an n0 × n0 matrix Q0; maximum coarsening level q
2: Output: a series of coarser matrices Q1, Q2, . . . , Qq

3: i = 0
4: while i < q do

5: Si ← Initial Solution(ni)
6: Si ← Tabu Search(Si, Qi)
7: Record the best solution S∗ and its objective function value f(S∗)

8: Identify the backbone variables Bi in level i with regard to the solution S#
i /∗ Formula (2) ∗/

9: Remove the corresponding row and column of each variable in Bi from Qi to get a lower level
matrix Qi+1

10: i = i+ 1
11: end while

The coarsening phase mainly consists of a while loop which starts from the highest
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level problem with i = 0. During the loop, we first construct an initial solution Si by
randomly assigning a value 0 or 1 to each variable of the current level problem and employ
tabu search (see Section 2.2.2) to find a good local optimum for backbone identification.
We additionally record the best solution S∗ found so far and its objective function value
f(S∗).

To identify the set of backbone variables of Qi, we use Vi to denote the set of the
variables of Qi and Si a solution to Qi. We first calculate the contribution V Ck(S

#
i ) of

each variable xk in Vi (see Section 2.2.4), where S#
i is a solution composed of Si and the

assignment of each backbone variable acquired prior to the level i.

V Ck(S
#
i ) = (1− 2xk)(Q0(k, k) +

∑

m∈N0∖{k},xm=1

2Q0(k,m))
(3.1)

where N0 = {1, 2, . . . , n0} and xm is the value of each variable in S#
i .

Then we use these V Ck(S
#
i ) values to sort the variables in a non-decreasing order and

select the top nai variables with respect to their contribution values. According to the
preliminary experiments, we set nai = ni × 0.2 if i = 0 and nai = nai−1 × 0.4 otherwise
(i > 0). These variables constitute the set of our backbone variables denoted by Bi and
are extracted from the matrix Qi, leading to a new and simplified lower level problem
Qi+1.

Finally, we set i = i+ 1 and repeat the while loop until i reaches the maximal level q
(set to be equal to 3 in our experiments).

Obviously, each lower level problem Qi (i > 0) is a sub-problem of the highest level
problem Q0 and the solution of Qi plus the value assignments of the backbone variables
extracted prior to level i constitute a solution of Q0.

3.2.3 Initial population of solutions

After the coarsening phase, a solution is sought for the problem of the lowest level (Qq).
For this, an initial population of solutions Pq is first constructed as follows. Each solution
in Pq is generated in such a way that each variable receives randomly either 0 or 1. If
this solution is not a duplicate of any solution in the population, it becomes a member
of Pq. The above procedure repeats until the number of solutions reaches the population
size which we set to 8 in the algorithm. The solutions are then optimized by applying the
population-based memetic algorithm HMA which is explained below.

3.2.4 The population-based memetic algorithm

The original population-based memetic algorithm HMA uses jointly the well-known uni-
form and a path-relinking crossover operators [Lü et al., 2010a]. In this work, only the
uniform crossover (UX) [Syswerda, 1989] is employed since experimental studies show that
UX performs well under the multilevel framework. UX operates on two parent solutions
randomly selected from the population and generates an offspring solution such that each
of its variables takes the value of the corresponding variable in either parent one or parent
two with equal probability.
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For each offspring solution, HMA applies the tabu search procedure (see Section 2.2.2)
to improve the solution. To maintain the diversity of its population, HMA uses a dedi-
cated rule to decide whether an offspring solution is added to the population. For this,
HMA introduces a quality-and-distance goodness score for the offspring solution. If this
goodness score is higher than the lowest score in the population, then the offspring so-
lution is inserted into the population and replaces the solution with the lowest goodness
score. Otherwise, this offspring solution remains inserted into the population with a small
probability. More details about the memetic algorithm can be found in [Lü et al., 2010a].

3.2.5 The asymmetric uncoarsening phase

In a multilevel approach, the uncoarsening phase carries out the inverse of the coarsening
phase and typically traverses level by level the intermediate problems from the problems
of the lowest level q to the highest level 0. For each level, each coarsened variable is
uncoarsened to restore the original variables of the immediate upper level i − 1. In this
section, we explain how our uncoarsening phase is realized with regard to our backbone-
based coarsening phase.

variable contribution in a non-decreasing order

2 3
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Figure 3.1: Illustration of the asymmetric uncoarsening phase

Our uncoarsening phase progressively brings back the backbone variables extracted
during the coarsening phase and allows them to take part in the subsequent optimiza-
tions. To achieve this, several strategies can be applied. For example, we can add back
in a systematic way the extracted backbone variables in the strict reverse order of their
extraction. We will discuss this systematic uncoarsening method in Section 3.4. Here we
adopt another uncoarsening strategy (called asymmetric uncoarsening) which our experi-
ments have shown to be more effective.

The idea of our asymmetric uncoarsening phase is based on the hypothesis that the
values of the backbone variables with a high contribution will have a higher probability
of being optimal than the values of variables with a lower contribution. Therefore, it is
desirable to freeze highly contributing variables at their assigned values as long as possible
during the uncoarsening phase and to restore first those backbone variables with small
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contributions. These restored variables become part of the variables considered by the
optimization process applied at each uncoarsening step. Since the backbone variables are
restored according to contribution values instead of the order in which they are extracted,
we refer to this strategy as an asymmetric uncoarsening phase. Notice that asymmetric
uncoarsening may lead to a number of levels different from that created by the coarsening
phase.

Figure 3.1 illustrates our asymmetric uncoarsening strategy. Each box represents the
set Vi of all the variables of Qi and the length of the box represents the size of Vi. The left
portion of the figure shows a coarsening phase with 2 levels which extracts the backbone
variables to simplify the highest level problem Q0 into two lower level problems Q1 and
Q2 in sequence. The right portion of the figure shows an asymmetric uncoarsening phase
with 3 levels by adding back progressively the backbone variables from the lowest level
problem Q

′

3 to a series of intermediate levels and finally to the highest level problem Q
′

0.

The process is achieved as follows. As mentioned in the backbone-based coarsening
phase, the variables at each coarsening step are sorted in a non-decreasing order with
regard to their contribution values and a certain number of variables are selected as back-
bone variables. Based on this, we separate the set of the backbone variables extracted
at each coarsening step into K subsets, marked as 1, . . . ,K (In our example, K = 3, see
below for the meaning of K). During the uncoarsening phase, we first select the subsets
marked as 1 (which contain the backbone variables with small contributions) and add the
variables contained in these subsets into set V

′

3 to create the set V
′

2 , leading to the higher
level problem Q

′

2. The same operations are successively applied to variable subsets marked
as 2 and K (In our example, K = 3). In this way, we finally go back to the highest level
problem Q0.

Algorithm 3.3: Pseudo-code of the asymmetric uncoarsening phase

1: Input: The lowest problem Qq, a fixed uncoarsening level K > 1
2: Output: The best binary n0-vector S

∗ and the objective function value f(S∗)
3: Divide the set of backbone variables extracted at each coarsening level into K subsets with

equal size
4: Fetch one subset from each coarsening level and combine them to generate the set UCk for

each uncoarsening level k = K, . . . , 1
5: k = K
6: while k > 0 do
7: k = k − 1
8: Uncoarsen the variables in UCk+1 to obtain the matrix Qk by inserting the row and

column of each variable in UCk+1 into the matrix Qk+1

9: Project each solution in population Pk+1 to the corresponding solution in Pk

10: Pk ← Memetic Refinement(Pk, Qk)
11: Record the best solution found so far S∗ and its objective function f(S∗)
12: end while

The pseudo-code of the asymmetric uncoarsening phase is shown in Algorithm 3.3. To
begin with, we separate the set of backbone variables extracted at each coarsening level
into K subsets where K defines the number of the uncoarsening steps needed to go back to
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Table 3.1: Computational results of the BMMA algorithm
BMMA

Instance BKR fbest favg � tbest tb avg tavg
p5000.1 8559680 8559680(1) 8558912 424 86 86 645
p5000.2 10836019 10836019(2) 10835253 527 92 219 607
p5000.3 10489137 10489137(2) 10488450 1057 344 351 630
p5000.4 12252318 12252318(2) 12251122 809 98 275 584
p5000.5 12731803 12731803(11) 12731423 493 158 326 554
p6000.1 11384976 11384976(5) 11384566 854 170 400 878
p6000.2 14333855 14333855(5) 14333101 1132 341 416 939
p6000.3 16132915 16132915(3) 16130610 1147 179 545 848
p7000.1 14478676 14478676(4) 14477235 1423 656 944 1349
p7000.2 18249948 18249948(1) 18247518 1424 951 951 1289
p7000.3 20446407 20446407(9) 20444603 3414 550 761 1132
Av. 13626885 13626885 13625708 1155 330 479 860

Deviation%. 0.000000 0.008633

Q0. Then we fetch one subset from each coarsening level and combine them to construct
the set UCk for each uncoarsening step k (k = K, . . . , 1). This is a preparatory step for
the uncoarsening phase (Alg. 3.3, lines 3-4).

From this point, an uncoarsening loop is launched with k starting at K. For each
step, we reduce k by 1 and uncoarsen the variables in UCk+1 by including them into the
set Vk+1 to construct the set Vk and by inserting the row and column of each variable
in UCk+1 into the matrix Qk+1 to obtain the matrix Qk. In addition, the solutions of
population Pk are obtained by projecting the solutions of Pk+1 plus the added backbone
variables in UCk+1 with their corresponding values. Finally, the memetic optimization
algorithm is used to refine the population Pk. The above loop continues until the highest
level k = 0 is reached. The best solution found so far S∗ and its objective function f(S∗)
are always recorded.

3.3 Experimental results

3.3.1 Benchmark instances and experimental protocol

In this section, we carry out extensive experiments to evaluate the performance of our
backbone multilevel memetic algorithm (BMMA). Since the multilevel scheme is designed
to cope with large problem instances, we take 11 largest instances with variables from
5000 to 7000 from the Palubeckis family that are known to be very difficult to solve for
several algorithms. The stopping criteria is the completion of a round of the multilevel
procedure rather than a time limit and each problem instance is independently solved 20
times.

3.3.2 Computational results of the BMMA algorithm

Table 3.1 presents the results of our BMMA algorithm. Columns 1 and 2 give the instance
names and the best known results in the literature. Columns 3 to 8 report respectively
BMMA’s best solution values fbest and the number of times to reach fbest over 20 runs
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Table 3.2: Computational results of the HMA algorithm
HMA

Instance BKR fbest favg � tbest tb avg tavg
p5000.1 8559680 8559355(1) 8558671 783 349 349 600
p5000.2 10836019 10836019(1) 10835298 262 452 452 600
p5000.3 10489137 10489137(2) 10488711 637 518 555 600
p5000.4 12252318 12252275(1) 12250982 637 589 589 600
p5000.5 12731803 12731803(9) 12731195 684 251 434 600
p6000.1 11384976 11384807(1) 11384506 812 884 884 900
p6000.2 14333855 14333855(1) 14332723 1456 761 761 900
p6000.3 16132915 16132915(2) 16130419 1098 603 641 900
p7000.1 14478676 14478676(1) 14476628 1300 1072 1072 1300
p7000.2 18249948 18249948(2) 18247600 1403 1086 1119 1300
p7000.3 20446407 20446407(6) 20444120 3728 508 855 1300
Av. 13626885 13626836 13625532 1164 643 701 873

Deviation%. 0.000358 0.009928

in parentheses, the average solution values favg, the standard deviation �, the best time
tbest and the average time tb avg to reach the best solution values fbest, and the average
time tavg consumed for a BMMA run (in seconds). The last two rows report the average
over the 11 instances for each evaluation criteria and the average percent deviation of the
solution values from the best known values.

From Table 3.1, we find that the average objective values attained by BMMA are very
close to the best known results, with an average percent deviation 0.008633%. Finally,
the best and average time to reach our best solution values are only 330 and 479 seconds,
respectively. In sum, our BMMA algorithm is quite effective in finding the best known
values for these challenging instances.

3.3.3 Comparison with hybrid metaheuristic approach

We now assess the advantage of the multilevel scheme by comparing the BMMA algorithm
with its optimization algorithm HMA which is applied at each uncoarsening level (see
Section 3.2.4). For this purpose, we run HMA within the time limit tavg (see Table 3.1),
i.e., the time of a BMMA run. The results are shown in Table 3.2.

From Tables 3.1 and 3.2, one observes that the BMMA algorithm outperforms the HMA
algorithm in terms of several different criteria. Specifically, when it comes to the best so-
lution values found, HMA is inferior to BMMA on 3 instances (5000.1, 5000.4 and 6000.1).
In addition, HMA’s best and average solution deviation from the best known results are
0.000358% and 0.009928%, in comparison with BMMA’s deviation values 0.000000% and
0.008633%. Furthermore, the best and average time for BMMA to find the best solution
values are respectively 330 and 479 seconds which are 49% and 32% less than that of
HMA. These outcomes must be qualified by observing that, as shown in [Lü et al., 2010a],
given longer time limits HMA consistently attains the best known results of the literature.

3.3.4 Comparison with other state-of-art algorithms

In order to further evaluate our BMMA algorithm, we compare it with several best-
performing algorithms in the literature. These methods are respectively named ITS
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Table 3.3: Comparison between BMMA and other algorithms : Gap to the best known
result

Instance BMMA BGTS D2TS HMA ITS MST2 SA DHNN-
EDA

p5000.1 0 0 325 0 700 325 1432 2244
p5000.2 0 0 0 0 0 582 582 1576
p5000.3 0 0 0 0 0 0 354 813
p5000.4 0 0 0 0 934 1643 444 1748
p5000.5 0 0 0 0 0 0 1025 1655
p6000.1 0 0 0 0 0 0 430 453
p6000.2 0 0 0 0 88 0 675 4329
p6000.3 0 0 0 0 2729 0 0 4464
p7000.1 0 0 0 0 340 1607 2579 4529
p7000.2 0 0 104 0 1651 2330 5552 5750
p7000.3 0 0 0 0 0 0 2264 1707
Av. 0 0 39 0 586 589 1394 2661

Table 3.4: Comparison between BMMA and other algorithms : Best time (seconds)
Instance BMMA BGTS D2TS HMA ITS MST2 SA DHNN-

EDA
p5000.1 86 556 2855 587 507 540 605 1572
p5000.2 219 1129 1155 464 421 649 691 1572
p5000.3 351 874 1326 758 672 788 945 1572
p5000.4 275 379 838 1453 596 935 1059 1572
p5000.5 326 629 623 686 551 719 1057 1572
p6000.1 400 597 509 994 978 1037 615 2378
p6000.2 416 428 1543 1332 839 887 1085 2378
p6000.3 545 601 2088 1406 957 1218 1474 2378
p7000.1 944 1836 1217 1435 1771 1449 1952 3216
p7000.2 951 1569 849 1770 1013 1722 1738 3216
p7000.3 761 703 3520 2456 1446 2114 2138 3216
Av. 479 846 1502 1213 886 1096 1214 2240

[Palubeckis, 2006], MST2 [Palubeckis, 2004b], SA [Katayama and Narihisa, 2001], D2TS
[Glover et al., 2010], HMA [Lü et al., 2010a], BGTS [Wang et al., 2011b] and DHNN-EDA
[Wang et al., 2011a]. Given the fact that all these algorithms were run under different
environments, often with larger time limits, it is thus hard to make a completely fair com-
parison. Nevertheless, this experiment indicates that our proposed algorithm performs
exceedingly well in relation to these reference state-of-the-art algorithms.

Table 3.3 compares the best solution values reported by each reference algorithm. To
highlight the difference among the reference algorithms, we show the gap between the best
solution of each algorithm and the best known solution. From Table 3.3, we observe that
the BMMA, BGTS and HMA algorithms perform similarly well in that they are all able
to attain the best known results on all the instances. In addition, the BMMA algorithm
outperforms the other four reference algorithms, named ITS, MST2, SA and DHNN-
EDA and is slightly better than the D2TS algorithm. To be specific, the four reference
algorithms have an average solution gap from 586 to 2661 and the D2TS algorithm has an
average solution gap of 39 to the best known values.

Table 3.4 compares the average time to reach the best solution values. The BGTS,
HMA and D2TS algorithms are run on a PC with a Pentium 2.66GHz CPU and DHNN-
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Table 3.5: Comparison between the symmetric and asymmetric uncoarsening methods
Symmetric Asymmetric

Instance BKR fbest favg � fbest favg �
p5000.1 8559680 8559075 8558510 412 8559680 8558912 424
p5000.2 10836019 10836019 10834954 707 10836019 10835253 527
p5000.3 10489137 10489137 10487669 1247 10489137 10488450 1057
p5000.4 12252318 12252318 12250980 662 12252318 12251122 809
p5000.5 12731803 12731803 12731247 525 12731803 12731423 493
p6000.1 11384976 11384733 11384026 1285 11384976 11384566 854
p6000.2 14333855 14333727 14332568 997 14333855 14333101 1132
p6000.3 16132915 16130915 16129770 683 16132915 16130610 1147
p7000.1 14478676 14478676 14475669 1344 14478676 14477235 1423
p7000.2 18249948 18249844 18246763 1513 18249948 18247518 1424
p7000.3 20446407 20446407 20441970 3971 20446407 20444603 3414
Av. 13626885 13626605 13624921 1213 13626885 13625708 1155

Deviation%. – 0.002055 0.014415 – 0.000000 0.008633 –

EDA is run on a comparable PC with a Pentium 2.8GHz CPU. The ITS, MST2 and
SA algorithms are run on a Pentium III 800 PC. We transformed their original times by
dividing them by 3 given that our computer is about 3 times faster than the Pentium III
800 PC [Glover et al., 2010].

From Table 3.4, we can make the following observations. First, among the three
algorithms (BMMA, BGTS and HMA) which reach the best known results for all the 11
instances, our proposed BMMA algorithm needs an average time of 479 seconds to reach
the best solution values, against 846 and 1213 seconds for the BGTS and HMA algorithms
respectively.

Second, for the 4 other algorithms (D2TS, ITS, MST2, SA, DHNN-EDA) which fail to
find the best known solutions for at least two instances, our BMMA algorithm clearly dom-
inates all of them both in terms of the best solution values and computational efficiency.
In particular, BMMA needs one fifth of the time needed by the most recent DHNN-EDA
algorithm to attain much better solutions.

In sum, this experimental study demonstrates the merit of our BMMA algorithm for
solving the large instances of the BQO problem.

3.4 A short discussion

In order to verify the proposed asymmetric backbone uncoarsening phase indeed works
well compared to a more customary type of multilevel procedure, we also implemented
a symmetric backbone uncoarsening phase, which adds back progressively the backbone
variables from the lowest level Qq to the highest level Q0 by following the strict reverse or-
der the backbone variables are extracted during the coarsening phase. For this experiment,
we kept other components of our BMMA algorithm unchanged except the uncoarsening
component. Table 3.5 shows the computational results of the two different uncoarsening
methods.

As we can see in Table 3.5, the asymmetric uncoarsening performs better than the
symmetric one in terms of the best, average and standard deviation values. Specifically,
the asymmetric uncoarsening obtains the best known values for all the instances while
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the symmetric uncoarsening leads only to 6 best known results. Moreover, the asym-
metric uncoarsening reaches better average values with a smaller deviation from the best
known results (0.008633% versus 0.014415% for symmetric uncoarsening). In addition,
the asymmetric uncoarsening is also superior to the symmetric uncoarsening in terms of
the standard deviation, with the value 1155 versus 1213.

3.5 Conclusions

Solving large random BQO problem instances is a challenging task. We have shown the
multilevel approach constitutes an effective approach to cope with these large random in-
stances. The proposed algorithm combines a backbone-based coarsening phase, an asym-
metric uncoarsening phase and a memetic refinement procedure, each incorporating tabu
search to obtain improved solutions. Experiments on the most challenging instances (with
5000 to 7000 variables) demonstrate that the proposed algorithm is able to find all the
best known results while using much less computing time than the previous state-of-the-
art algorithms. We anticipate that our approach can be further refined by investigating
alternative strategies for the coarsening and uncoarsening phases.

So far, we have developed backbone guided tabu search algorithms and a backbone
multilevel memetic algorithm, with the common core of reducing the problem scale to
conduct intensive exploitation in a smaller search area. In two follow-up chapters, we will
focus on devising new strategies of constructing initial solutions for BQO, either used in a
multistart mechanism or an evolutionary framework, to direct search into newly promising
area. Meantime, we will also concentrate on solving applications of BQO such as maximum
cut, maximum clique, maximum vertex weight clique and minimum sum coloring problems
with our devised algorithms for BQO.
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Chapter 4

Probabilistic GRASP-Tabu Search

In this chapter, we propose a simple GRASP-Tabu Search algorithm working with a single
solution (denoted by GRASP-TS) and an enhanced version by combining GRASP-Tabu
Search algorithm with Population Management strategy (denoted by GRASP-TS/PM)
to solve the BQO problem. Furthermore, we conduct an adaptation and extension of the
GRASP-TS algorithm (denoted by GRASP-TS/MCPs) to solve the maximum clique prob-
lem (MCP) and maximum vertex weight clique problem (MVWCP) by recasting them into
the BQO formulation. The first experiment with both GRASP-TS and GRASP-TS/PM
algorithms on 31 large random BQO problem instances and 54 MaxCut instances indicate
that the proposed GRASP-TS and GRASP-TS/PM are very competitive with state-of-
the-art algorithms, where GRASP-TS/PM is capable of improving the best known results
for 19 MaxCut instances. The second experiment with GRASP-TS/MCPs on a total of
160 DIMACS and DIMACS-VW benchmark instances indicate that GRASP-TS/MCP
is competitive with or better than the other reference algorithms aiming at these two
problems, obtaining improved results for 13 DIMACS-VW instances. The content of this
chapter is based on the paper [Wang et al., 2012g] accepted to Computers & Operations
Research and the paper [Wang et al., 2012b] submitted to Discrete Optimization.
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4.1 Introduction

The construction of an initial solution is essential when designing an algorithm. One pop-
ular method of producing an initial solution is the so-called greedy random adaptive search
procedure (GRASP). This method generally starts from an empty solution and each step
enlarges this solution according to a greedy random construction heuristic until a complete
solution is obtained. Another method is the use of the restart/recovery strategy, which
constitutes a major principle underlying tabu search. Instead of creating an initial solution
from the scratch, the restart/recovery method usually employs a destructive/constructive
process that dismantles only part of a previously visited elite solution and rebuilds the
remaining portion.

In this chapter, we propose two algorithms for solving BQO that combine GRASP
and Tabu Search. The first, GRASP-TS, uses a basic GRASP algorithm with single
solution search while the other, GRASP-TS/PM, launches each tabu search by introducing
a population management strategy based on an elite reference set. In GRASP-TS/PM
we pick a single solution at a time from the reference set, and operate on it, utilizing the
ideas of “elite solution recovery” and “probabilistic evaluation” proposed in [Glover, 1989;
Xu et al., 1998]. The tabu search procedure uses the one described in Algorithm 2.2 to
improve solution quality.

In addition, consider that BQO has served as a unified model for numerous combi-
natorial optimization problems, we investigate its applications to the MaxCut, MCP and
MVWCP problems. For the solving of MaxCut, we use the GRASP-TS and GRASP-
TS/PM algorithms without any adaptation after transforming it into the BQO form. For
the solving of MCP and MVWCP, we extend our GRASP-TS algorithm to better address
them in the form of BQO and denote the extended version as GRASP-TS/MCPs.

We evaluate the proposed GRASP-TS and GRASP-TS/PM algorithms on BQO and
MaxCut benchmarks and evaluate the GRASP-TS/MCPs algorithm on MCP andMVWCP
benchmarks. Comparisons with other state-of-the-art algorithms demonstrate the effi-
ciency of the proposed algorithms.
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4.2 GRASP-Tabu Search

4.2.1 General GRASP-TS procedure

The GRASP algorithm is usually implemented as a multistart procedure [Resende and
Ribeiro, 2003; Resendel and Ribeiro, 2005], consisting of a randomized greedy solution
construction phase and a sequel local search phase to optimize the objective function as
far as possible. These two phases are carried out iteratively until a stopping condition is
satisfied.

Our basic GRASP-Tabu Search algorithm (denoted by GRASP-TS) for the BQO fol-
lows this general scheme (see Algorithm 4.1) and uses a dedicated greedy heuristic for
solution construction (see Section 4.2.2) as well as tabu search (see Section 2.2.2) as its
local optimizer.

Algorithm 4.1: Outline of GRASP-TS for BQO

1: Input: matrix Q
2: Output: the best binary n-vector x∗ found so far and its objective value f∗

3: f∗ = −∞
4: repeat

5: Construct a greedy randomized solution x0 /∗ Section 4.2.2 ∗/
6: x ← Tabu Search(x0) /∗ Section 2.2.2 ∗/
7: if f(x) > f∗ then

8: x∗ = x, f∗ = f(x)
9: end if

10: until a stopping criterion is met

4.2.2 Solution construction

GRASP-TS constructs a new solution at each step according to a greedy random construc-
tion heuristic, which was originally used in probabilistic Tabu Search (PTS) [Glover, 1989;
Xu et al., 1996; Xu et al., 1998] and motivated by the fact that the GRASP construction
resembles this PTS approach.

The construction procedure consists of two phases: one is to adaptively and iteratively
select some variables to receive the value 1; the other is to assign the value 0 to the left
variables. Starting with an empty solution, a variable xi with the maximum qii is picked
as the first element of the partial solution.

Given the partial solution px = {xk1 , xk2 , ..., xk�}, indexed by pi = {k1, k2, ..., k�}, we
calculate its objective function value (OFV ) as:

OFV (px) =
∑

i∈pi,xi=1

(qii +
∑

j∈pi,j ∕=i

qij ⋅ xj) (4.1)

At each iteration of the first phase we choose one unassigned variable according to
a greedy function and then assign value 1 to it. Specifically, we calculate the objective
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function increment (OFI) to the partial solution px if one unassigned variable xj (j ∈
N ∖ pi) is added into px with value 1.

OFIj(px) = qjj +
∑

i∈pi
(qij ⋅ xi) (4.2)

At each step, all the unassigned variables are sorted in an non-increasing order ac-
cording to their OFI values. Note that we only consider the first rcl variables, where rcl
is called the restricted candidate list size. The r-th ranked variable is associated with a
bias br = 1/er. Therefore, the r-th ranked variable is selected with probability p(r) that
is calculated as below:

p(r) = br/

rcl
∑

j=1

bj (4.3)

Once a variable xj is selected and added into the partial solution px with the assignment
value 1, the partial solution px and its index pi, its objective function value OFV (px) and
the left variables’ OFI values are updated correspondingly as follows:

px = px ∪ {xj}, pi = pi ∪ {j} (4.4)

OFV (px) = OFV (px) +OFIj(px) (4.5)

For any variable xk (k ∈ N ∖ pi),

OFIk(px) = OFIk(px) + qjk (4.6)

This procedure repeats until all the OFI values of the unassigned variables are nega-
tive. Then, the new solution is completed by assigning the value 0 to all the left variables.

4.3 GRASP-Tabu Search with Population Management

4.3.1 General GRASP-TS/PM procedure

Starting from the basic GRASP-TS algorithm, we introduce additional enhancements
using the idea of maintaining a pool of elite solutions. By combining GRASP-TS with the
population management strategy, our reinforced GRASP-TS/PM algorithm offers a better
balance between intensification and diversification as a means of exploiting the search
space. The general architecture of the GRASP-TS/PM algorithm is described in Alg. 4.2,
which is composed of four main components: a reference set construction procedure (lines
4, 23 in Alg. 4.2, Section 4.3.2), a randomized greedy solution reconstruction operator
(line 11 in Alg. 4.2, Section 4.3.3), a tabu search procedure (line 12 in Alg. 4.2, Section
2.2.2) and a reference set updating rule (lines 16-21 in Alg. 4.2, Section 4.3.4).

GRASP-TS/PM starts from an initial reference set (RefSet) consisting of b local
optimum solutions (line 4), from which the worst solution xw in terms of the objective
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value is identified (line 6). Then, Examine(x) = True indicates that solution x is to be
examined (line 7). At each GRASP-TS/PM iteration, one solution x0 is randomly chosen
from the solutions to be examined in RefSet (Examine(x0) = True), reconstructed
according to the randomized greedy heuristic and optimized by the tabu search procedure
to local optimality (lines 9-12). If the improved solution x meets the criterion of updating
RefSet, the worst solution xw is replaced by x in RefSet and Examine(x) is set to be
True (lines 16-19). Then, the new worst solution xw is identified (line 20). This procedure
repeats until all the solutions in RefSet have been examined. When this happens, RefSet
is rebuilt as the initial reference set construction except that the best solution x∗ becomes
a member of the new RefSet (line 23).

Algorithm 4.2: Outline of GRASP-TS/PM for BQO

1: Input: matrix Q
2: Output: the best binary n-vector x∗ found so far and its objective value f∗

3: f∗ = −∞
4: RefSet ← Initialize RefSet( ) /∗ Section 4.3.2 ∗/
5: while The stopping criterion is not satisfied do

6: Find the worst solution xw in RefSet in terms of the objective value
7: Let Examine(xi) = True, i = 1, . . . , b (∣RefSet∣ = b)
8: repeat

9: Randomly choose one individual x0 from RefSet with Examine(x0) = True
10: Examine(x0) = False
11: x ← Reconstruct Solution(x0) /∗ Section 4.3.3 ∗/
12: x ← Tabu Search(x) /∗ Section 2.2.2 ∗/
13: if f(x) > f∗ then

14: x∗ = x, f∗ = f(x)
15: end if

16: UpdateSucc ← Update RefSet(RefSet, x) /∗ Section 4.3.4 ∗/
17: if UpdateSucc is TRUE then

18: RefSet ← RefSet∪ {x} ∖ {xw}
19: Examine(x) = True
20: Record the new worst solution xw in RefSet
21: end if

22: until (∀x ∈ RefSet, Examine(x) = False)
23: RefSet ← Reconstruct RefSet(RefSet) /∗ Section 4.3.2 ∗/
24: end while

4.3.2 RefSet initialization and reconstruction

The initial reference set contains b different local optimum solutions and is constructed
as follows. Starting from scratch, we randomly generate a solution, improve it to local
optimality by our tabu search procedure (Alg. 2.2, Section 2.2.2) and then add it into the
reference set if this solution does not occur in RefSet. The procedure repeats until the
size of RefSet reaches b.

As shown in Algorithm 4.2, the reference set is recreated when all the solutions in
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RefSet have been examined. In this case, the best solution x∗ becomes a member of the
new RefSet and the remaining solutions are generated in the same way as in constructing
the initial RefSet.

The initial or the renewed reference set can also be obtained by applying the ran-
domized greedy construction heuristic described in Section 4.2.2. However, experimental
studies showed although there are no significant performance differences, random genera-
tion generally leads to slightly better results. For this reason, we adopt random generation
of reference sets.

4.3.3 Solution reconstruction

In GRASP-TS/PM, a new solution is reconstructed based on an elite solution, borrowing
the idea of elite solution recovery strategy described in [Glover, 1989; Xu et al., 1998].
More specifically, GRASP-TS/PM creates a new solution by first inheriting parts of the
“good” assignments of one elite solution in RefSet to form a partial solution and then
completing the remaining parts as GRASP-TS does. We describe how the partial elite
assignments are inherited as follows.

Given an elite solution x in RefSet, we reconstruct a new solution by the strategic
oscillation, which was proposed in the early literature [Glover, 1977] in a multi-start role to
replace the customary multi-start design by using a destructive/constructive process that
dismantles only part of a selected solution and rebuilds the remaining portion. Specifically,
it exploits critical variables identified as strongly determined, and has come to be one of
the basic strategies associated with tabu search.

For the identification of strongly determined variables, we first evaluate the objective
function contribution of a given variable xi for a reference solution x, denoted by V Ci(x)
(see Section 2.2.4). After calculating each variable’s V C value, we sort all variables in
a non-decreasing order according to their V C values. Then the top � variables are se-
lected and assigned the same values as in x. Thus, the assignments of these � strongly
determined variables form a partial solution. Note that, instead of using the “strongly
determined” move evaluations described above, an alternative way to make the proba-
bilistic assignments can be based on the “consistent variables” evaluations given by the
population of elite solutions as shown in [Glover, 1977]. In addition, a combination of the
population-based determination and the move value-based determination would also be
possible, as shown in Section 2.2.4.

With the partial elite solution, we determine the assigned values of the remaining
variables in the new solution using the randomized greedy heuristic as in GRASP-TS (see
Section 4.2.2). Notice that GRASP-TS starts with an empty solution to construct an
initial solution.

4.3.4 RefSet updating

The updating procedure of RefSet is invoked each time a newly constructed solution is
improved by tabu search. Specifically, the improved solution is added into RefSet if it is
distinct from any solution in RefSet and better than the worst solution xw in terms of
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the objective function value. Under this circumstance, xw is replaced and thus RefSet is
updated.

4.4 An extension of GRASP-TS to maximum clique prob-
lems

In this section, we adapt our GRASP-TS algorithm to the maximum clique and maximum
vertex weight clique problems (MCPs). For this purpose, the adapted GRASP-TS/MCPs
algorithm uses the union of 1-flip and 2-flip neighborhoods to explore the solution space,
instead of depending only on 1-flip neighborhood of GRASP-TS.

4.4.1 Maximum clique problems

Given an undirected graph G = (V,E) with vertex set V and edge set E, a clique is a set
of vertices C ⊆ V such that every pair of distinct vertices is connected with an edge in G,
i.e., the subgraph generated by C is complete. The maximum clique problem (MCP) is
to find a clique of maximum cardinality. An important generalization of the MCP, known
as the maximum vertex weight clique problem (MVWCP), arises when each vertex i in
G is associated with a positive weight wi. The MVWCP calls for a clique of G with the
maximum

∑

i∈C wi. It is clear that the MCP is a special case of the MVWCP with wi = 1
for each vertex.

The MCP is known to be NP-hard and the associated decision problem is NP-complete
[Garey and Johnson, 1979]. Furthermore, no polynomial time algorithm is known to be

able to approximate the clique within a factor of n/2(log n)
(1−�)

for any � > 0 where n is
the number of nodes in graph [Knot, 2001]. Besides its theoretical significance, the MCP
provides practical applications mainly including information retrieval, signal transmission,
computer vision and bioinformatics [Balus and Yu, 1986; Ji et al., 2004]. Given the interest
of the MCP, a large number of solution procedures has been reported in the literature, such
as continuous-based heuristic [Busygin, 2006], iterated local search [Grosso et al., 2008], k-
opt local search [Katayama et al., 2005; Pajouh et al., 2011], reactive local search [Battiti
and Protasi, 2001; Battiti and Mascia, 2010; Wu and Hao, 2011], phased local search
[Pullan, 2006], dynamic local search [Pullan and Hoos, 2006], simulated annealing [Geng
et al., 2007], ant colony optimization [Solnon and Fenet, 2005] and a hybrid algorithm
[Singh and Gupta, 2006].

As a generalization of the MCP, it is obvious that the MVWCP has at least the same
computational complexity as the MCP. Moreover, the MVWCP has important applica-
tions in the domains of computer vision, pattern recognition and robotics [Ballard and
Brown, 1983]. To solve the MVWCP, a variety of algorithms has been reported in the
literature, comprising several exact algorithms [Babel, 1994; Österg̊ard, 2001], an augmen-
tation algorithm [Manninno and Stefanutti, 1999], a distributed computational network
algorithm [Bomze et al., 2000], a trust region technique algorithm [Busygin, 2006] and an
effective phased local search algorithm [Pullan, 2008].
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4.4.2 Transformation of MCPs to the BQO model

4.4.2.1 Linear model for the MCP and MVWCP

Given an undirected graph G = (V,E) with vertex set V and edge set E, each vertex
associated with a positive weight wi, the linear programming model for the MVWCP can
be formulated as follows [Sengor et al., 1999]:

Max f(x) =
n
∑

i=1

wixi

subject to: xi + xj ≤ 1, ∀{vi, vj} ∈ E

xi ∈ {0, 1}

(4.7)

where n = ∣V ∣, xi is the binary variable associated to vertex vi, E denotes the edge
set of the complimentary graph G.

Notice that if wi = 1 (i ∈ {1, . . . , n}), Equation (1) turns into the linear model of the
MCP.

4.4.2.2 Nonlinear BQO alternative

The linear model of the MVWCP can be recast into the form of the BQO by utilizing
the quadratic penalty function g(x) = Pxixj to replace the inequality constraint of the
MVWCP where P is a negative penalty scalar [Kochenberger et al., 2004]. This infeasi-
bility penalty function is considered to be valid given that g(x) = 0 once the inequality
constraint is satisfied. To construct the nonlinear BQO model, each inequality constraint
is replaced by the penalty function g(x) which is added to the linear objective of Eq. 1.
The resulting BQO alternative will have the same objective value as the linear form sub-
ject to all penalty items equaling to 0, indicating that all constraints are satisfied. Hence,
the nonlinear BQO model can be formulated as follows:

Max xQx =

n
∑

i=1

wixi +

n
∑

i=1

n
∑

j=1,j ∕=i

wijxixj (4.8)

where wij = P if {vi, vj} ∈ E and 0 otherwise.

Further, a penalty scalar P is considered to be suitable as long as its absolute value
∣P ∣ is larger than half of the maximum linear objective function coefficient (∣P ∣ > wi/2).
Consider that the quadratic penalty function should be negative under the case of a max-
imal objective, we select P = −1000 and P = −1 for the MVWCP and MCP benchmark
instances tested in our experiments, respectively. The optimized solution x obtained by
solving the nonlinear BQO formulation indicates that such a choice for P enables the sum
of all the quadratic penalty functions g(x) to equal to 0. In other words, the subgraph
constructed by the variables with the assignment of 1 in the optimized solution x forms a
clique.
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4.4.2.3 An example of the transformation

To illustrate the transformation from the MVWCP to the BQO, we consider the following
graph:

Its linear formulation according to Equation (4.7) is:

Max f(x) = 2x1 + 3x2 + 4x3 + 5x4 + 2x5 + 3x6

s.t. x1 + x3 ≤ 1; x1 + x4 ≤ 1;

x1 + x6 ≤ 1; x2 + x4 ≤ 1;

x2 + x6 ≤ 1; x3 + x5 ≤ 1;

x3 + x6 ≤ 1; x5 + x6 ≤ 1.

(4.9)

Choosing the scalar penalty P = −15, we obtain the following BQO model:

Max f(x) = 2x1 + 3x2 + 4x3 + 5x4 + 2x5 + 3x6 − 30x1x3 − 30x1x4

−30x1x6 − 30x2x4 − 30x2x6 − 30x3x5 − 30x3x6 − 30x5x6
(4.10)

2 3

5 4

1 6

Original graph G0

4

6 25

13

Complement graph of G0

w1=2

w2=3 w3=4

w6=3

w4=5w5=2
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w5=2 w6=3 w2=3

Figure 4.1: A graph sample of illustrating the transformation method of MCPs into BQO

which can be re-written as:

(

x1 x2 x3 x4 x5 x6
)

×

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 0 −15 −15 0 −15
0 3 0 −15 0 −15
−15 0 4 0 −15 −15
−15 −15 0 5 0 0
0 0 −15 0 2 −15
−15 −15 −15 0 −15 3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

×

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1
x2
x3
x4
x5
x6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(4.11)

Solving this BQO problem yields x3 = x4 = 1 (all other variables equal zero) and the
optimal objective function value is 9.

4.4.3 Solution construction

For the MCP, the initial solution is constructed with the same method in Section 4.2.2. For
the MVWCP, each step we build a restricted candidate list RCL in which each variable
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has a positive OFI value. Then we choose one variable from RCL with a probability of
1/∣RCL∣ and add it assigned with value 1 into the partial solution. This process continues
until RCL becomes empty. Although its simplicity, this strategy is demonstrated to be
effective for the MVWCP.

4.4.4 Tabu search

For each initial solution generated by the greedy probabilistic construction, we apply an
extended version of Alg. 2.2 to further improve its quality. The tabu search in Alg. 2.2
uses a simple 1-flip move (flipping the value of a single variable xi to its complementary
value 1 − xi) to conduct the neighborhood search. Here we not only exploit the 1-flip
move but also incorporate a 2-flip move (flipping the values of a pair of variables (xi, xj)
to their corresponding complementary values (1−xi, 1−xj)) [Glover and Hao, 2010]. The
above two types of moves constitute the neighborhood structures N1 and N2.

One drawback of an N2 move is the amount of time it consumes. Considerable effort is
required to evaluate all the 2-flip moves because the neighborhood structure N2 generates
n(n− 1)/2 solutions at each iteration. To overcome this obstacle, we employ an instance
of the successive filter candidate list strategy of [Glover and Laguna, 1997] by restricting
our attention to moves in N2 that can be obtained as follows. The first step is to examine
all the 1-flip moves of the current solution x, and if any of these moves is improving we
go ahead and select it. But if no 1-flip move is improving, we limit attention to 1-flip
moves that produce an objective function value no worse than f(x) + 2P , where f(x)
is the objective function value of x. (Recall that we are maximizing and the penalty P
is negative. This implies that the candidate 1-flip moves can violate at most a single
additional constraint beyond those violated by x, since a single constraint is penalized as
Pxij + Pxji and hence incurs a penalty of 2P .) Finally, only the 1-flip moves that pass
this filtering criterion are allowed to serve as the source of potential 2-flip moves.

Tabu search typically introduces a tabu list to assure that solutions visited within a
certain number of iterations, called the tabu tenure, will not be revisited. In the present
study, each time a variable xi is flipped, this variable enters into the tabu list and cannot
be flipped for the next TabuTenure iterations. For the neighborhood structure N1, our
tabu search algorithm then restricts consideration to variables not forbidden by the tabu
list. For the neighborhood structure N2, we consider a move to be non-tabu only if both
variables associated with this move are not in the tabu list and only such moves are
considered during the search process.

For each iteration in our tabu search procedure, a non-tabu move is chosen according
to the following rules: (1) if the best move from N1 leads to a solution better than the
best solution obtained in this round of tabu search, we select the best move from N1,
thus bypassing consideration of N2; (2) if no such a move in N1 exists, we select the best
move from the combined pool of N1 and N2. A simple aspiration criterion is applied that
permits a move to be selected in spite of being tabu if it leads to a solution better than
the current best solution. Once a move is performed, we fast update the set of variables
affected by this move (see Section 1.2.1.4). The tabu search procedure stops when the
best solution cannot be improved within a given number � of moves.

56



4.5. EXPERIMENTAL RESULTS

4.5 Experimental results

4.5.1 Results on BQO benchmark

The first experiment is to evaluate the GRSAP-TS and GRASP-TS/PM algorithms for
the 31 challenging BQO instances. There are six parameters in the proposed algorithms,
i.e., time limit to terminate algorithms, restricted candidate list size (rcl), the size of
RefSet (b), the inheriting parts of the “good” assignments of one elite solution in RefSet
(�), tabu tenure (tt), improvement cutoff of tabu search (�). We set rcl = 50, b = 10 and
� = 0.25n for this set of BQO benchmark. Notice that these parameter settings are also
used for the MaxCut and MCPs benchmarks. In addition, we set the other parameters
as follows: (1) time limit: 1 minute for the 10 ORLIB instances and 5, 10, 20, 30 and 50
minutes, respectively for the 21 Palubeckis instances with 3000, 4000, 5000, 6000 and 7000
variables (this time cutoff is the same as in [Lü et al., 2010a]) (2) tt = [n/100, n/100 +10]
(3) � = 5n.

These parameter values were determined based on preliminary experiments. For in-
stance, we experimented with selecting rcl ∈ {50, 0.1 ⋅ n, 0.2 ⋅ n, 0.3 ⋅ n, 0.4 ⋅ n, 0.5 ⋅ n,
1.0 ⋅ n} on a preliminary set of problem instances and observed that rcl = 50 is a good
compromise in terms of the best objective value, average average objective value, standard
deviation and CPU time. Better parameter values would be possible in some cases, but as
we see below, the proposed algorithms with the given parameter values are able to achieve
a highly competitive performance.

Table 4.1 shows the computational statistics of the GRASP-TS and GRASP-TS/PM
algorithms on the 31 BQO instances. Columns 1 and 2 respectively give the instances
names and the best known results BKR in the literature. Note that these best results were
first reported in [Palubeckis, 2004b; Palubeckis, 2006] and recently improved in [Glover
et al., 2010; Lü et al., 2010a]. The columns under headings “GRASP-TS” and “GRASP-
TS/PM” list the best objective value fbest, the average objective value favg, the standard
variance of the objective value � and the average CPU time time (seconds) for reaching
fbest over the 20 runs. Furthermore, the last row “Av.” indicates the summary of average
performances of our algorithms.

Table 4.1 discloses that generally GRASP-TS/PM performs better than GRASP-TS
on these BQO benchmarks. First, we notice that both GRASP-TS and GRASP-TS/PM
can reach all the previous best objective values for the 31 BQO instances within the
given time limit, demonstrating their very good performance in finding the best solution.
However, GRASP-TS/PM is superior to GRASP-TS when it comes to the average gap to
the previous best objective values gavg on these instances, 316.9 versus 509.6, although the
CPU time to obtain the best solution is slightly longer. Moreover, the average variance of
GRASP-TS/PM is 252.0, which is much smaller than 386.4 of GRASP-TS.

In order to further evaluate our GRASP-TS and GRASP-TS/PM algorithms, we com-
pare our results with some best performing algorithms in the literature. Notice that a
completely fair comparison is impossible since the reference algorithms are implemented
by different authors and run under different conditions. Our comparison here on the BQO
instances as well as that on the MaxCut problem are thus presented only for indicative
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Table 4.1: Computational results of GRASP-TS and GRASP-TS/PM on BQO instances
GRASP-TS GRASP-TS/PM

Instance BKR fbest favg � time fbest favg � time
b2500.1 1515944 1515944 1515944 0 12 1515944 1515944 0 12
b2500.2 1471392 1471392 1471138 218 38 1471392 1471257 154 52
b2500.3 1414192 1414192 1414179 58 34 1414192 1414192 0 33
b2500.4 1507701 1507701 1507701 0 11 1507701 1507701 0 10
b2500.5 1491816 1491816 1491816 0 13 1491816 1491816 0 17
b2500.6 1469162 1469162 1469162 0 24 1469162 1469162 0 20
b2500.7 1479040 1479040 1479014 63 34 1479040 1479039 3 60
b2500.8 1484199 1484199 1484198 4 27 1484199 1484199 0 25
b2500.9 1482413 1482413 1482407 6 30 1482413 1482412 4 42
b2500.10 1483355 1483355 1483308 142 31 1483355 1483355 0 56
p3000.1 3931583 3931583 3931573 44 103 3931583 3931583 0 113
p3000.2 5193073 5193073 5193073 0 47 5193073 5193073 0 63
p3000.3 5111533 5111533 5111501 86 103 5111533 5111533 0 153
p3000.4 5761822 5761822 5761822 0 78 5761822 5761822 0 53
p3000.5 5675625 5675625 5675514 162 160 5675625 5675573 180 172
p4000.1 6181830 6181830 6181830 0 128 6181830 6181830 0 141
p4000.2 7801355 7801355 7801098 709 316 7801355 7801332 47 363
p4000.3 7741685 7741685 7741679 19 232 7741685 7741685 0 253
p4000.4 8711822 8711822 8711783 72 357 8711822 8711812 30 321
p4000.5 8908979 8908979 8908376 985 206 8908979 8908643 726 385
p5000.1 8559680 8559680 8558628 554 893 8559680 8558895 422 530
p5000.2 10836019 10836019 10835517 469 553 10836019 10835858 288 760
p5000.3 10489137 10489137 10488369 722 86 10489137 10488780 321 570
p5000.4 12252318 12252318 12250975 635 662 12252318 12251098 641 960
p5000.5 12731803 12731803 12731151 509 478 12731803 12731710 221 804
p6000.1 11384976 11384976 11384218 476 1314 11384976 11384613 205 1415
p6000.2 14333855 14333855 14332637 786 1255 14333855 14333119 843 229
p6000.3 16132915 16132915 16130966 1254 371 16132915 16131166 1224 1350
p7000.1 14478676 14478676 14476478 1128 2798 14478676 14477110 881 2540
p7000.2 18249948 18249948 18247495 1566 2178 18249948 18248499 901 1938
p7000.3 20446407 20446407 20444906 1310 1704 20446407 20445621 720 2809
Av. 0* 509.6* 386.4 460.5 0* 316.9* 252.0 524.2
∗: The gaps to the best known result (BKR − fbest,BKR− favg) are calculated.
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Table 4.2: Best results comparison among GRASP-TS, GRASP-TS/PM and other state-
of-the-art algorithms on larger BQO instances

best solution gap (i.e., BKR− fbest)
Instance BKR ITS MST1 MST2 SA D2TS HMA GRASP-

TS
GRASP-
TS/PM

p5000.1 8559680 700 3016 325 1432 325 0 0 0
p5000.2 10836019 0 0 582 582 0 0 0 0
p5000.3 10489137 0 3277 0 354 0 0 0 0
p5000.4 12252318 934 3785 1643 444 0 0 0 0
p5000.5 12731803 0 5150 0 1025 0 0 0 0
p6000.1 11384976 0 3198 0 430 0 0 0 0
p6000.2 14333855 88 10001 0 675 0 0 0 0
p6000.3 16132915 2729 11658 0 0 0 0 0 0
p7000.1 14478676 340 7118 1607 2579 0 0 0 0
p7000.2 18249948 1651 8902 2330 5552 104 0 0 0
p7000.3 20446407 0 17652 0 2264 0 0 0 0
Av. 585.6 6705.2 589.7 1394.3 39 0 0 0

purposes and should be interpreted with caution. Nevertheless, our experiments provide
an indication of the performance of the proposed algorithms relative to the state-of-the-art
algorithms.

For this purpose, we restrict our attention to comparisons in terms of quality with six
methods that have reported the best results for the most challenging problems. These
methods are respectively named ITS [Palubeckis, 2006], MST1 [Palubeckis, 2004b], MST2
[Palubeckis, 2004b], SA [Katayama and Narihisa, 2001], D2TS [Glover et al., 2010] and
HMA [Lü et al., 2010a]. Moreover, we focus only on the 11 largest and most difficult
instances with variables from 5000 to 7000 since the best results for instances with size
smaller than 5000 can be easily reached by all these state-of-the art algorithms.

Table 4.2 shows the gap to the best known objective value of our GRASP-TS and
GRASP-TS/PM algorithms compared with the reference algorithms. The last row presents
the averaged results over the 11 instances. The results of the first 4 reference algorithms
are directly extracted from [Palubeckis, 2006], the results of D2TS are from [Glover et al.,
2010] and the results of HMA come from [Lü et al., 2010a]. Note that the results of all
these algorithms are obtained almost under the same time limit.

From Table 4.2 it is observed that both GRASP-TS and GRASP-TS/PM outperform
the 5 reference algorithms (ITS, MST1, MST2, SA and D2TS) and are also competitive
with our HMA algorithm in terms of the quality of the best solution, demonstrating the
efficacy of the two GRASP-Tabu Search algorithms in finding the best objective values.
In order to further discriminate between GRASP-TS, GRASP-TS/PM and HMA, we
compare the average solution gaps (20 independent runs) to the best known objective
values over 31 instances. We find that GRASP-TS/PM is slightly better than HMA with
a gap of 316.9 against 332.2. Also GRASP-TS is inferior to both GRASP-TS/PM and
HMA with a gap of 509.6.

We also apply the Friedman non-parametric statistical test followed by the Post-hoc
test to the results in Table 4.2 to see whether there exists significant performance differ-
ences between our proposed algorithms and the reference methods. Firstly, we observe
from the Friedman test that there is a significant difference among the compared algorithms
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(with a p-value of 3.737e-06). Furthermore, the Post-hoc analysis shows that GRASP-TS
is significantly better than MST1 and SA (with p-values of 5.330108e-06 and 3.622423e-03,
respectively) but is not significantly better than ITS, MST2 and D2TS (with p-values of
5.347580e-01, 5.347227e-01 and 9.995954e-01, respectively).

Since the best solution values obtained by GRASP-TS, GRASP-TS/PM and HMA
are the same, we carry out the above statistical tests with regard to the average solution
values. Notice that 31 BQO instances are considered in this experiment. Firstly, from the
Friedman test, we confirm that there exists a significant performance difference between
GRASP-TS, GRASP-TS/PM and HMA (with a p-value of 4.267e-06). Furthermore, the
Post-hoc analysis shows that both GRASP-TS/PM and HMA are significantly better
than GRASP (with p-values of 4.089688e-06 and 3.296903e-04, respectively). However,
we cannot conclude whether GRASP-TS/PM or HMA performs significantly better than
the other (with a p-value of 5.999315e-01).

4.5.2 Results on MaxCut benchmark

In this section, we directly solve the MaxCut problem with the proposed GRASP-TS and
GRSASP-TS/PM algorithms. The formulation of MaxCut as well as the transformation
of MaxCut into BQO can be found in Section 1.1.2.2. The experiment is conducted
on 54 instances and uses the following parameter settings: (1) time limit=30 minutes,
comparable with the time reported in [Marti et al., 2009] (2) tt = [n/10, n/10 + 10]
(3) � = 10000. The experimental results are summarized in Table 4.3, using the same
statistics as in Table 4.1. The previous best results are from references [Burer et al., 2001;
Festa et al., 2002; Marti et al., 2009; Palubeckis, 2004a; Shylo and Shylo, 2010].

From Table 4.3, we observe that GRASP-TS/PM outperforms GRASP-TS with respect
to the best and average objective values. Specifically, GRASP-TS/PM has the best gap
relative to the previous best result of 0.78 on average over 54 instances while GRASP-
TS has a gap of 5.76. Moreover, GRASP-TS/PM has an average objective gap over 20
runs relative to the previous best known value of 4.50, which is two times smaller than
obtained by GRASP-TS with a gap of 9.68. However, GRASP-TS/PM needs slightly
more CPU time to reach its best solutions and its objective value variance is slightly
larger than GRASP-TS. It is noteworthy that both methods achieve exceedingly high
quality outcomes, although GRASP-TS/PM emerges the clear winner. In particular,
GRASP-TS/PM improves the previous best known results on 19 instances (in bold), while
GRASP-TS improves the previous best known results for 9 instances.

For comparative purposes, Table 4.4 also includes the results of three state-of-the-art
algorithms. These reference methods are Scatter Search [Marti et al., 2009] (column 3),
CirCut heuristic [Burer et al., 2001] (column 4) and VNSPR [Festa et al., 2002] (column
5). The last three rows of Table 4.4 show the summary of the comparison between each
algorithm including ours and the previous best known results. The rows better, equal,
worse respectively denote the number of instances for which each algorithm gets better,
equal and worse results than the previous best known results. The results of these reference
algorithms are directly extracted from [Marti et al., 2009] (results obtained on a personal
computer with a 3.2GHz Intel Xenon processor and 2.0 GB of RAM which is comparable to
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Table 4.3: Computational results GRASP-TS and GRASP-TS/PM on MaxCut instances
GRASP-TS GRASP-TS/PM

Instance BKR fbest favg � time fbest favg � time
G1 11624 11624 11624.0 0.0 100 11624 11624.0 0.0 47
G2 11620 11620 11619.6 0.7 677 11620 11620.0 0.0 210
G3 11622 11620 11619.9 0.5 854 11620 11620.0 0.0 297
G4 11646 11646 11646.0 0.0 155 11646 11646.0 0.0 49
G5 11631 11631 11631.0 0.0 235 11631 11631.0 0.0 232
G6 2178 2178 2177.4 0.6 453 2178 2177.9 0.2 518
G7 2003 2006 2005.9 0.3 304 2006 2006.0 0.0 203
G8 2003 2005 2004.7 0.5 565 2005 2004.9 0.3 596
G9 2048 2054 2053.4 0.7 581 2054 2053.6 0.7 559
G10 1994 2000 1999.3 0.6 845 2000 1999.3 0.7 709
G11 564 564 564.0 0.0 18 564 564.0 0.0 10
G12 556 556 555.5 0.9 723 556 556.0 0.0 233
G13 582 582 581.1 1.0 842 582 581.8 0.6 516
G14 3064 3062 3061.6 0.5 812 3063 3062.1 0.4 1465
G15 3050 3040 3037.7 1.0 419 3050 3049.1 0.2 1245
G16 3052 3049 3044.4 1.2 1763 3052 3050.9 0.7 335
G17 3043 3043 3040.6 0.8 1670 3047 3045.8 1.1 776
G18 988 992 989.3 1.3 977 992 992.0 0.0 81
G19 903 906 904.4 1.0 490 906 906.0 0.2 144
G20 941 941 941.0 0.0 578 941 941.0 0.0 80
G21 931 927 925.7 0.8 484 931 930.6 0.5 667
G22 13359 13346 13336.1 4.9 983 13349 13342.4 3.0 1276
G23 13342 13318 13311.7 3.7 1668 13332 13322.4 4.4 326
G24 13337 13313 13306.0 4.5 643 13324 13317.3 3.7 1592
G25 13326 13315 13306.9 3.8 767 13326 13318.1 3.3 979
G26 13314 13306 13294.8 4.9 1483 13313 13303.3 4.2 1684
G27 3318 3316 3304.2 4.5 256 3325 3318.1 3.7 832
G28 3285 3275 3267.8 3.5 82 3287 3277.4 3.8 1033
G29 3389 3386 3370.9 7.1 21 3394 3384.5 6.0 993
G30 3403 3395 3383.3 4.4 1375 3402 3393.4 4.1 1733
G31 3288 3286 3279.4 3.7 904 3299 3287.7 4.2 888
G32 1410 1394 1391.8 1.4 903 1406 1397.3 3.1 1232
G33 1382 1368 1365.6 1.0 1501 1374 1369.1 2.1 506
G34 1384 1376 1371.3 1.7 1724 1376 1372.5 2.2 1315
G35 7684 7653 7648.6 2.6 1124 7661 7657.4 2.7 1403
G36 7677 7646 7641.1 2.4 543 7660 7652.1 5.1 1292
G37 7689 7664 7657.1 2.4 983 7670 7662.0 4.1 1847
G38 7681 7653 7644.3 4.0 667 7670 7659.8 4.8 1296
G39 2395 2388 2381.9 2.5 911 2397 2387.1 5.0 742
G40 2387 2378 2359.6 5.8 134 2392 2384.3 5.8 1206
G41 2398 2367 2355.3 6.9 612 2398 2383.7 8.2 1490
G42 2469 2453 2447.5 2.9 1300 2474 2461.7 5.6 1438
G43 6660 6660 6658.3 1.0 969 6660 6659.4 0.7 931
G44 6650 6649 6647.1 1.1 929 6649 6647.7 0.8 917
G45 6654 6654 6652.5 0.8 1244 6654 6652.6 0.7 1791
G46 6645 6648 6645.4 1.4 702 6649 6646.0 1.7 405
G47 6656 6656 6654.5 1.0 1071 6656 6655.4 0.7 725
G48 6000 6000 6000.0 0.0 13 6000 6000.0 0.0 4
G49 6000 6000 6000.0 0.0 27 6000 6000.0 0.0 6
G50 5880 5880 5880.0 0.0 80 5880 5880.0 0.0 14
G51 3846 3843 3839.3 1.9 628 3847 3843.8 1.5 701
G52 3849 3844 3840.6 1.5 1274 3850 3846.8 1.9 1228
G53 3846 3847 3844.3 1.3 1317 3848 3845.8 1.0 1419
G54 3846 3848 3845.6 1.2 1231 3850 3847.8 1.9 1215
Av. 5.76* 9.68* 1.89 770.6 0.78* 4.50* 1.96 804.3
∗: The gaps to the best known result (BKR − fbest,BKR− favg) are calculated.
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Table 4.4: Best results comparison among GRASP-TS, GRASP-TS/PM and other state-
of-the-art algorithms on MaxCut instances

best solution value
Instance BKR SS CirCut VNSPR GRASP-

TS
GRASP-
TS/PM

G1 11624 11624 11624 11621 11624 11624
G2 11620 11620 11617 11615 11620 11620
G3 11622 11622 11622 11622 11620 11620
G4 11646 11646 11641 11600 11646 11646
G5 11631 11631 11627 11598 11631 11631
G6 2178 2165 2178 2102 2178 2178
G7 2003 1982 2003 1906 2006 2006
G8 2003 1986 2003 1908 2005 2005
G9 2048 2040 2048 1998 2054 2054
G10 2000 1993 1994 1910 2000 2000
G11 564 562 560 564 564 564
G12 556 552 552 556 556 556
G13 582 578 574 580 582 582
G14 3064 3060 3058 3055 3062 3063
G15 3050 3049 3049 3043 3040 3050
G16 3052 3045 3045 3043 3049 3052
G17 3043 3043 3037 3030 3043 3047
G18 988 988 978 916 992 992
G19 903 903 888 836 906 906
G20 941 941 941 900 941 941
G21 931 930 931 902 931 931
G22 13359 13346 13346 13295 13346 13349
G23 13342 13317 13317 13290 13318 13332
G24 13337 13303 1314 13276 13313 13324
G25 13326 13320 13326 12298 13315 13326
G26 13314 13294 13314 12290 13306 13313
G27 3318 3318 3306 3296 3316 3325
G28 3285 3285 3260 3220 3275 3287
G29 3389 3389 3376 3303 3389 3394
G30 3403 3403 3385 3320 3395 3402
G31 3288 3288 3285 3202 3286 3299
G32 1410 1398 1390 1396 1394 1406
G33 1382 1362 1360 1376 1368 1374
G34 1384 1364 1368 1372 1376 1376
G35 7684 7668 7670 7635 7653 7661
G36 7677 7660 7660 7632 7646 7660
G37 7689 7664 7666 7643 7664 7670
G38 7681 7681 7646 7602 7653 7670
G39 2395 2393 2395 2303 2388 2397
G40 2387 2374 2387 2302 2378 2392
G41 2398 2386 2398 2298 2367 2398
G42 2469 2457 2469 2390 2453 2474
G43 6660 6656 6656 6659 6660 6660
G44 6650 6648 6643 6642 6649 6649
G45 6654 6642 6652 6646 6654 6654
G46 6645 6634 6645 6630 6648 6649
G47 6656 6649 6656 6640 6656 6656
G48 6000 6000 6000 6000 6000 6000
G49 6000 6000 6000 6000 6000 6000
G50 5880 5880 5880 5880 5880 5880
G51 3846 3846 3837 3808 3843 3847
G52 3849 3849 3833 3816 3844 3850
G53 3846 3846 3842 3802 3847 3848
G54 3846 3846 3842 3820 3848 3850

Better — 0 0 0 9 19
Matched — 22 20 6 18 20
Worse — 32 34 48 27 15
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our computer with a Pentium 2.83GHz and 8 GB RAM). However, not all the algorithms
are run under the same conditions and hence, this comparison should be interpreted with
caution. Notice also that while some reference algorithms are MaxCut specific heuristics,
our algorithm is designed for the more general BQO problem.

Table 4.4 discloses that GRASP-TS/PM and GRASP-TS can find new best results on
19 and 9 instances, respectively among the 54 instances and both match the previous best
known results on 20 and 18 instances. For the tested instances, both GRASP-TS/PM and
GRASP-TS perform better than the reference algorithms. In particular, GRASP-TS/PM
(GRASP-TS respect.) fails to reach the best known results for 15 (27 respect.) instances
while the reference algorithms SS, CirCut and VNSPR fail on 32, 34 and 48 instances,
respectively. The computing times (in seconds) to reach the best solution of GRASP-TS
(770) and GRASP-TS/PM (804) are larger than SS (621) and CirCut (616) but much
smaller than VNSPR (64505).

As for Table 4.2, we apply the Friedman test and the Post-hoc test to the results in
Table 4.4 to see whether there are significant performance differences between the proposed
methods and other competitors on the 54 MaxCut instances. Firstly, we discover from the
Friedman test that SS, CirCut, VNSPR, GRASP-TS and GRASP-TS/PM demonstrate
significant differences (with a p-value of 2.2e-16). Secondly, when comparing GRASP-
TS with SS, CirCut and VNSPR, the Post-hoc analysis indicates that GRASP-TS is
significantly better than VNSPR (with a p-value of 3.788002e-10) but is not significantly
better than SS and CirCut (with p-values of 4.534268e-01 and 9.358923e-02, respectively).
Thirdly, when comparing GRASP-TS/PM with SS, CirCut and VNSPR, the Post-hoc
analysis indicates that GRASP-TS/PM is significantly better than SS, CirCut and VNSPR
(with p-values of 4.059707e-06, 2.433377e-08, 0.000000e+00, respectively). Finally, we
observe that GRASP-TS/PM is significantly better than GRASP-TS (with a p-value of
6.795472e-03).

In summary, the computational results on the 85 random and structured instances
demonstrate the efficacy of our proposed GRASP-Tabu Search algorithms for solving the
BQO problems, with GRASP-TS/PM emerging as superior to the other methods studied
in our comparative tests.

4.5.3 Results on MCP benchmark

This experiment evaluates the performance of the GRASP-TS/MCPs algorithm on 80
DIMACS maximum clique instances. For this set of benchmark, we use the following pa-
rameter settings: (1) time limit: 1 minute for instances of dsjc, keller except keller6,
mann except mann a45 and mann a81, hamming, gen, c-fat, johnson, p hat, san ex-
cept san1000, and sanr; 10 minutes for instances of brock except those with 800 vari-
ables, C except C2000.9 and C4000.5, and keller6; 60 minutes for instances brock800 1,
brock800 2, brock800 3, brock800 4 and mann a45; 600 minutes for instances C2000.9,
C4000.5, mann a81 and san1000 (2) tt = [5, 12] (3) � = 1000 for instances of brock, dsjc
and mann; � = 50 for c-fat and san; � = 10000 for other instances.

Table 4.5 shows computational statistics of GRASP-TS/MCPs for the set of 80 DI-
MACS benchmark instances. Columns 1 to 3 give the instances names (Instance), num-

63



CHAPTER 4. PROBABILISTIC GRASP-TABU SEARCH

ber of vertices (Order) and the best known results (BKR) ever reported in the literature
[Katayama et al., 2005; Singh and Gupta, 2006; Pullan, 2006; Pullan and Hoos, 2006;
Pullan, 2008; Wu and Hao, 2011]. The columns under heading GRASP-TS/MCPs report
the best solution values (fbest), the average solution values (favg), the standard deviations
(�), the number of times of reaching (fbest) over 100 runs (Succ.), and the average CPU
time in seconds (tb avg) of Succ. runs (fbest). Results marked in bold in the fourth column
and seventh column respectively indicate that GRASP-TS/BQO is able to reach the best
known results BKR on these instances and reach BKR for each run out of 100 runs. An
entry with < � signifies that the average CPU time was less than 0.01 second.

From Table 4.5, we observe that GRASP-TS/MCPs is able to reach the best known
results for 77 out of 80 instances. For the 3 remaining instances GRASP-TS/MCPs gets
a value of 79 for C2000.9, 344 for mann a45 and 1098 for mann a81, with small gaps 1,
1, and 2 to the best known results. Moreover, GRASP-TS/MCPs has a success rate of
100% for 67 instances. Only a few of the best algorithms that are specifically tailored for
solving the maximum clique problem can compete with this result (see also Table 4.7).
The above results demonstrate thus the effectiveness of our proposed method to tackle the
maximum clique problem via the binary quadratic optimization framework.

Table 4.5: Computational results of GRASP-TS/MCPs on 80 MCP instances

GRASP-TS/MCPs
Instance Order BKR fbest favg � Succ. tb avg

brock200 1 200 21 21 21.0 0.0 100 0.11
brock200 2 200 12 12 12.0 0.0 100 0.33
brock200 3 200 15 15 15.0 0.0 100 2.20
brock200 4 200 17 17 17.0 0.0 100 0.73
brock400 1 400 27 27 25.8 1.0 42 265.81
brock400 2 400 29 29 29.0 0.4 99 139.10
brock400 3 400 31 31 31.0 0.0 100 20.87
brock400 4 400 33 33 33.0 0.0 100 11.92
brock800 1 800 23 23 21.1 0.3 3 1600.37
brock800 2 800 24 24 21.2 0.7 6 2165.91
brock800 3 800 25 25 22.5 1.1 17 2067.96
brock800 4 800 26 26 23.0 2.4 40 1719.04
C125.9 125 34 34 34.0 0.0 100 < �
C250.9 250 44 44 44.0 0.0 100 0.01
C500.9 500 57 57 57.0 0.0 100 0.95
C1000.9 1000 68 68 68.0 0.0 100 12.01
C2000.5 2000 16 16 16.0 0.1 98 59.43
C2000.9 2000 80 79 78.4 0.5 41 17591.58
C4000.5 4000 18 18 17.9 0.2 95 8953.89

DSJC500.5 500 13 13 13.0 0.0 100 0.16
DSJC1000.5 1000 15 15 15.0 0.0 100 13.87

keller4 171 11 11 11.0 0.0 100 < �
keller5 776 27 27 27.0 0.0 100 0.12
keller6 3361 59 59 58.6 0.8 79 238.55

MANN a9 45 16 16 16.0 0.0 100 < �
MANN a27 378 126 126 126.0 0.0 100 17.30
MANN a45 1035 345 344 343.0 0.3 5 2073.98
MANN a81 3321 1100 1098 1097.0 0.3 5 18847.50
hamming6-2 64 32 32 32.0 0.0 100 < �
hamming6-4 64 4 4 4.0 0.0 100 < �
hamming8-2 256 128 128 128.0 0.0 100 < �
hamming8-4 256 16 16 16.0 0.0 100 < �
hamming10-2 1024 512 512 512.0 0.0 100 0.23
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(Continued. . . )
GRASP-TS/MCPs

Instance Order BKR fbest favg � Succ. tb avg

hamming10-4 1024 40 40 40.0 0.0 100 0.06
gen200 p0.9 44 200 44 44 44.0 0.0 100 0.01
gen200 p0.9 55 200 55 55 55.0 0.0 100 < �
gen400 p0.9 55 400 55 55 55.0 0.0 100 0.21
gen400 p0.9 65 400 65 65 65.0 0.0 100 0.01
gen400 p0.9 75 400 75 75 75.0 0.0 100 0.01

c-fat200-1 200 12 12 12.0 0.0 100 0.01
c-fat200-2 200 24 24 24.0 0.0 100 0.02
c-fat200-5 200 58 58 58.0 0.0 100 0.01
c-fat500-1 500 14 14 14.0 0.0 100 0.05
c-fat500-2 500 26 26 26.0 0.0 100 0.02
c-fat500-5 500 64 64 64.0 0.0 100 0.13
c-fat500-10 500 126 126 126.0 0.0 100 0.05
johnson8-2-4 28 4 4 4.0 0.0 100 < �
johnson8-4-4 70 14 14 14.0 0.0 100 < �
johnson16-2-4 120 8 8 8.0 0.0 100 < �
johnson32-2-4 496 16 16 16.0 0.0 100 0.01
p hat300-1 300 8 8 8.0 0.0 100 < �
p hat300-2 300 25 25 25.0 0.0 100 < �
p hat300-3 300 36 36 36.0 0.0 100 0.01
p hat500-1 500 9 9 9.0 0.0 100 0.01
p hat500-2 500 36 36 36.0 0.0 100 0.01
p hat500-3 500 50 50 50.0 0.0 100 0.02
p hat700-1 700 11 11 11.0 0.0 100 0.21
p hat700-2 700 44 44 44.0 0.0 100 0.01
p hat700-3 700 62 62 62.0 0.0 100 0.02
p hat1000-1 1000 10 10 10.0 0.0 100 0.05
p hat1000-2 1000 46 46 46.0 0.0 100 0.04
p hat1000-3 1000 68 68 68.0 0.0 100 0.17
p hat1500-1 1500 12 12 11.8 0.4 78 24.24
p hat1500-2 1500 65 65 65.0 0.0 100 0.11
p hat1500-3 1500 94 94 94.0 0.0 100 0.27
san200 0.7 1 200 30 30 30.0 0.0 100 0.29
san200 0.7 2 200 18 18 18.0 0.0 100 0.75
san200 0.9 1 200 70 70 70.0 0.0 100 < �
san200 0.9 2 200 60 60 60.0 0.0 100 0.03
san200 0.9 3 200 44 44 44.0 0.0 100 0.01
san400 0.5 1 400 13 13 13.0 0.0 100 45.39
san400 0.7 1 400 40 40 40.0 0.0 100 14.26
san400 0.7 2 400 30 30 30.0 0.0 100 5.66
san400 0.7 3 400 22 22 22.0 0.0 100 3.95
san400 0.9 1 400 100 100 100.0 0.0 100 0.96

san1000 1000 15 15 15.0 0.4 99 8882.43
sanr200-0.7 200 18 18 18.0 0.0 100 0.01
sanr200-0.9 200 42 42 42.0 0.0 100 0.01
sanr400-0.5 400 13 13 13.0 0.0 100 0.40
sanr400-0.7 400 21 21 21.0 0.0 100 0.11

In order to further evaluate our BQO approach for the MCP, we show a comparison
of GRASP-TS/MCPs with the very recent GLS-H2 algorithm [Pajouh et al., 2011]. To
the best of our knowledge, only GLS-H1 and GLS-H2 use a BQO formulation to solve
the equivalent maximum stable problem. Given that GLS-H2 generally performs much
better than GLS-H1, we compare our algorithm with GLS-H2. The GLS-H2 algorithm is
a local search based approach utilizing the local maxima properties of a box-constrained
quadratic optimization formulation of the equivalent maximum independent set problem.
Notice that experiments of GLS-H2 are conducted on a HP workstation with Intel 2.67
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Table 4.6: Comparison between GRASP-TS/MCPs and GLS-H2 on 32 MCP instances
GRASP-TS/MCPs GLS-H2

Instance BKR fbest favg tb avg fbest favg tb avg

brock200 1 21 21 21.0 0.11 19 16.07 45.61
brock200 2 12 12 12.0 0.33 11 7.93 21.95
brock200 4 17 17 17.0 0.73 15 11.87 35.71
brock400 2 29 29 29.0 139.10 23 18.79 482.74
brock400 4 33 33 33.0 11.92 22 19.07 479.59
brock800 2 24 24 21.2 2165.91 18 15.05 5291.88
brock800 4 26 26 23.0 1719.04 18 14.91 5343.73

keller4 11 11 11.0 < � 9 7.51 22.31
keller5 27 27 27.0 0.12 18 15.75 6156.88

MANN a9 16 16 16.0 < � 14 13 1.74
MANN a27 126 126 126.0 17.30 118 117.97 278.57
MANN a45 345 344 343.1 2073.98 331 330.98 15830.69
hamming6-2 32 32 32.0 < � 32 31.18 2.16
hamming6-4 4 4 4.0 < � 4 3.38 1.43
hamming8-2 128 128 128.0 < � 128 127.64 103.51
hamming8-4 16 16 16.0 < � 16 14.84 78.27
c-fat200-1 12 12 12.0 0.01 12 11.06 2.01
c-fat200-2 24 24 24.0 0.02 24 22.31 4.15
c-fat200-5 58 58 58.0 0.01 58 57.14 17.23

johnson8-2-4 4 4 4.0 < � 4 3.42 0.53
johnson8-4-4 14 14 14.0 < � 14 13.62 2.62
johnson16-2-4 8 8 8.0 < � 8 6.87 10.02
p hat300-1 8 8 8.0 < � 8 5.45 22.83
p hat300-2 25 25 25.0 < � 23 19.22 77.42
p hat300-3 36 36 36.0 0.01 33 30.02 164.96
p hat700-1 11 11 11.0 0.21 8 6.49 527.55
p hat700-2 44 44 44.0 0.01 41 34.99 1850.03
p hat700-3 62 62 62.0 0.02 59 53.94 3962.09
san200 0.7 2 18 18 18.0 0.75 12 12 39.75
san200 0.9 1 70 70 70.0 < � 45 45 43.53
san200 0.9 2 60 60 60.0 0.03 35 34.9 50.89
san200 0.9 3 44 44 44.0 0.01 32 24.21 58.75

GHz processor and 3GB RAM while our experiments are conducted on a PC with 2.83GHz
processor and 8GB memory. Table 4.6 shows the results of GRASP-TS/MCPs compared
with GLS-H2, where results marked in bold indicate a better performance with respect to
the corresponding statistical criteria. Given that GLS-H2 only reported the results on a
selected subset of the DIMACS benchmarks, the comparison between GRASP-TS/MCPs
and GLS-H2 is based on these instances.

From Table 4.6, we find that our GRASP-TS/MCPs algorithm dominates GLS-H2 on
all three measures of best solution values, average solution values and computing time.
Specifically, GRASP-TS/MCPs obtains better solution values than GLS-H2 for 21 in-
stances and equal solution values for other 11 instances. The table shows not only that
GRASP-TS/MCPs is superior, but is much faster to reach the best solution values than
GLS-H2.

Furthermore, we compare our GRASP-TS/MCPs algorithm with several recent algo-
rithms that are specially designed for the max clique problem. These algorithms include
an adaptive tabu search algorithm AMTS [Wu and Hao, 2011], a simulated annealing al-
gorithm SAA [Geng et al., 2007] and a phased local search that interleaves sub-algorithms
and a plateau search PLS [Pullan, 2006]. Table 4.7 presents the best solution values fbest
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and the average time tb avg to reach fbest for each reference algorithm (GRASP-TS/MCPs,
AMTS, SAA and PLS, respectively) where the best solution values among them are marked
in bold.

As can be seen from Table 4.7, GRASP-TS/MCPs, AMTS and PLS outperform SAA
in terms of the best solution values. Specifically, the adaptive tabu search method AMTS
performs the best since it attains the largest clique for all the graphs except MANN a81.
Both GRASP-TS/MCPs and PLS attain the best known results for 77 instances but
GRASP-TS/MCPs performs slightly better than PLS on C2000.9, with a value 79 versus
78. SAA only finds the best known results for 56 instances. When referring to the
computing time, it is difficult to make a fair comparison since SAA, PLS and GRASP-
TS/MCPs are run on different computers (Pentium IV 1.4 GHz CPU for SAA, Pentium IV
2.4GHz CPU for PLS and Pentium IV 2.83GHz CPU for GRASP-TS/MCPs and AMTS).
Nevertheless, to our best estimation it appears that GRASP-TS/MCPs is much faster to
reach the best solution values than SAA, but is slower than AMTS and PLS.

Table 4.7: Comparison among GRASP-TS/MCPs, AMTS, SAA and PLS on
80 MVWCP instances

GRASP-TS/MCPs AMTS SAA PLS
Instance BKR fbest tb avg fbest tb avg fbest tb avg fbest tb avg

brock200 1 21 21 0.11 21 0.01 21 5 21 < �
brock200 2 12 12 0.33 12 0.36 12 8 12 0.03
brock200 3 15 15 2.20 15 0.01 14 2 15 0.03
brock200 4 17 17 0.73 17 1.76 16 < 1 17 0.08
brock400 1 27 27 265.81 27 37.77 25 22 27 1.08
brock400 2 29 29 139.10 29 1.18 25 29 29 0.38
brock400 3 31 31 20.87 31 1.79 25 26 31 0.18
brock400 4 33 33 11.92 33 0.60 25 26 33 0.10
brock800 1 23 23 1600.37 23 234.63 21 131 23 30.09
brock800 2 24 24 2165.91 24 33.14 21 124 24 24.41
brock800 3 25 25 2067.96 25 52.40 21 122 25 15.08
brock800 4 26 26 1719.04 26 15.23 21 125 26 6.54
C125.9 34 34 < � 34 < � 34 < 1 34 < �
C250.9 44 44 0.01 44 < � 44 4 44 < �
C500.9 57 57 0.95 57 0.13 57 59 57 0.19
C1000.9 68 68 12.01 68 1.15 68 222 68 1.88
C2000.5 16 16 59.43 16 0.66 16 877 16 0.73
C2000.9 80 79 17591.58 80 450.10 74 776 78 112.82
C4000.5 18 18 8953.89 18 126.63 17 903 18 149.65

DSJC500.5 13 13 0.16 13 < � 13 17 13 0.01
DSJC1000.5 15 15 13.87 15 0.31 15 363 15 0.47

keller4 11 11 < � 11 < � 11 < 1 11 < �
keller5 27 27 0.12 27 0.06 27 143 27 0.05
keller6 59 59 238.55 59 10.81 51 644 59 550.95

MANN a9 16 16 < � 16 0.02 16 < 1 16 < �
MANN a27 126 126 17.30 126 0.07 126 49 126 0.03
MANN a45 345 344 2073.98 345 112.85 334 393 344 28.76
MANN a81 1100 1098 18847.50 1098 27.55 1080 1879 1098 269.66
hamming6-2 32 32 < � 32 < � 32 < 1 32 < �
hamming6-4 4 4 < � 4 < � 4 < 1 4 < �
hamming8-2 128 128 < � 128 < � 128 3 128 < �
hamming8-4 16 16 < � 16 < � 16 < 1 16 < �
hamming10-2 512 512 0.23 512 0.31 512 427 512 < �
hamming10-4 40 40 0.06 40 0.92 40 144 40 < �
gen200 p0.9 44 44 44 0.01 44 < � 44 21 44 < �
gen200 p0.9 55 55 55 < � 55 < � 55 1 55 < �
gen400 p0.9 55 55 55 0.21 55 0.55 55 31 55 0.25
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(Continued. . . )
GRASP-TS/MCPs AMTS SAA PLS

Instance BKR fbest tb avg fbest tb avg fbest tb avg fbest tb avg

gen400 p0.9 65 65 65 0.01 65 0.01 65 28 65 < �
gen400 p0.9 75 75 75 0.01 75 0.04 75 75 75 < �

c-fat200-1 12 12 0.01 12 < � 12 < 1 12 < �
c-fat200-2 24 24 0.02 24 0.17 24 < 1 24 < �
c-fat200-5 58 58 0.01 58 0.11 58 < 1 58 < �
c-fat500-1 14 14 0.05 14 0.14 14 4 14 < �
c-fat500-2 26 26 0.02 26 0.23 26 < 1 26 < �
c-fat500-5 64 64 0.13 64 0.10 64 < 1 64 < �
c-fat500-10 126 126 0.05 126 2.66 126 < 1 126 < �
johnson8-2-4 4 4 < � 4 < � 4 < 1 4 < �
johnson8-4-4 14 14 < � 14 < � 14 < 1 14 < �
johnson16-2-4 8 8 < � 8 < � 8 < 1 8 < �
johnson32-2-4 16 16 0.01 16 < � 16 < 1 16 < �
p hat300-1 8 8 < � 8 < � 8 < 1 8 < �
p hat300-2 25 25 < � 25 < � 25 < 1 25 < �
p hat300-3 36 36 0.01 36 < � 36 2 36 < �
p hat500-1 9 9 0.01 9 < � 9 < 1 9 < �
p hat500-2 36 36 0.01 36 < � 36 1 36 < �
p hat500-3 50 50 0.02 50 < � 50 32 50 < �
p hat700-1 11 11 0.21 11 < � 11 18 11 0.01
p hat700-2 44 44 0.01 44 < � 44 3 44 < �
p hat700-3 62 62 0.02 62 < � 62 12 62 < �
p hat1000-1 10 10 0.05 10 < � 10 6 10 < �
p hat1000-2 46 46 0.04 46 < � 46 16 46 < �
p hat1000-3 68 68 0.17 68 0.08 68 100 68 0.02
p hat1500-1 12 12 24.24 12 2.18 12 490 12 3.28
p hat1500-2 65 65 0.11 65 0.33 65 40 65 0.01
p hat1500-3 94 94 0.27 94 0.32 94 215 94 0.03
san200 0.7 1 30 30 0.29 30 0.21 17 9 30 < �
san200 0.7 2 18 18 0.75 18 0.24 15 9 18 0.02
san200 0.9 1 70 70 < � 70 0.17 61 12 70 < �
san200 0.9 2 60 60 0.03 60 0.13 60 12 60 < �
san200 0.9 3 44 44 0.01 44 0.08 44 6 44 < �
san400 0.5 1 13 13 45.39 13 11.46 7 < 1 13 0.06
san400 0.7 1 40 40 14.26 40 8.76 21 36 40 0.06
san400 0.7 2 30 30 5.66 30 29.98 16 25 30 0.10
san400 0.7 3 22 22 3.95 22 56.29 17 30 22 0.19
san400 0.9 1 100 100 0.96 100 1.87 57 38 100 < �

san1000 15 15 8882.43 15 315.17 8 < 1 15 4.72
sanr200-0.7 18 18 0.01 18 < � 18 < 1 18 < �
sanr200-0.9 42 42 0.01 42 < � 42 5 42 0.01
sanr400-0.5 13 13 0.40 13 0.01 13 17 13 0.01
sanr400-0.7 21 21 0.11 21 < � 21 13 21 0.01

4.5.4 Results on MVWCP benchmark

In this section, we verify the effectiveness of the GRASP-TS/MCPs algorithm on the set
of 80 DIMACS-VW benchmark instances of the more complex MVWCP problem. Our
parameters have the following settings: (1) time limit: 1 minute for instances of keller
except keller6, hamming, gen, c-fat, johnson, p hat, sanr and mann a9; 5 minutes for
instances of brock, C except C2000.5, C2000.9, C4000.5, dsjc and san; 60 minutes for
C2000.5, C2000.9 and keller6; 600 minutes for C4000.5, mann a27, mann a45, mann a81
(2) tt = [5, 12] (3) � = 5000 for all the instances except instances of san with � = 10. Table
4.8 presents the results of this experiment in which columns 1 to 8 give the same statistical

68



4.5. EXPERIMENTAL RESULTS

characteristics as in Table 4.5. The best known results BKR (column 3) are taken from
[Pullan, 2008]. The last column newly added gives the clique cardinality achieved by our
approach for information.

From Table 4.8, we observe that our GRASP-TS/MCPs algorithm is able to find new
best solution values for 13 instances (marked in bold) and match the previous best known
results for 66 instances. Only for one instance p hat500-2, GRASP-TS/MCPs is slightly
worse with a value of 3920 vs. 3925. In addition, GRASP-TS/MCPs consumes a very
short time to reach these values for most instances, indicating its effectiveness for solving
the MVWCP in terms of both solution quality and computing time.

Table 4.8: Computational results of GRASP-TS/MCPs on 80 MVWCP in-
stances

GRASP-TS/MCPs
Instance Order BKR fbest favg � Succ. tb avg Clique

brock200 1 200 2821 2821 2821.0 0.0 100 0.02 19
brock200 2 200 1428 1428 1428.0 0.0 100 0.08 9
brock200 3 200 2062 2062 2062.0 0.0 100 0.09 13
brock200 4 200 2107 2107 2107.0 0.0 100 0.22 13
brock400 1 400 3422 3422 3422.0 0.0 100 0.72 21
brock400 2 400 3350 3350 3350.0 0.0 100 1.00 21
brock400 3 400 3471 3471 3471.0 0.0 100 0.57 23
brock400 4 400 3626 3626 3626.0 0.0 100 4.01 33
brock800 1 800 3121 3121 3121.0 0.0 100 3.95 20
brock800 2 800 3043 3043 3043.0 0.0 100 42.29 18
brock800 3 800 3076 3076 3076.0 0.0 100 8.22 20
brock800 4 800 2971 2971 2970.1 0.3 8 105.53 26
C125.9 125 2529 2529 2529.0 0.0 100 0.02 30
C250.9 250 5092 5092 5092.0 0.0 100 0.05 40
C500.9 500 6822 6955 6955.0 0.0 100 0.21 48
C1000.9 1000 8965 9254 9254.0 0.0 100 37.50 61
C2000.5 2000 2466 2466 2460.7 11.1 71 1366.51 14
C2000.9 2000 10028 10999 10987.5 18.7 72 2711.97 72
C4000.5 4000 2792 2792 2753.2 34.2 19 19902.77 16

DSJC500.5 500 1725 1725 1725.0 0.0 100 3.82 12
DSJC1000.5 1000 2186 2186 2180.9 10.6 81 115.42 13

keller4 171 1153 1153 1153.0 0.0 100 0.05 11
keller5 776 3317 3317 3317.0 0.0 100 5.34 27
keller6 3361 7382 8062 7741.3 104.3 2 3418.36 56

MANN a9 45 372 372 372.0 0.0 100 0.01 16
MANN a27 378 12264 12277 12271.5 1.9 4 22864.81 126
MANN a45 1035 34129 34194 34183.4 4.9 2 17524.05 343
MANN a81 3321 110564 111137 111117.4 6.8 1 6167.28 1096
hamming6-2 64 1072 1072 1072.0 0.0 100 < � 32
hamming6-4 64 134 134 134.0 0.0 100 < � 4
hamming8-2 256 10976 10976 10976.0 0.0 100 0.80 128
hamming8-4 256 1472 1472 1472.0 0.0 100 < � 16
hamming10-2 1024 50512 50512 50193.2 770.3 67 24.47 512
hamming10-4 1024 5086 5129 5125.2 2.3 8 32.49 34
gen200 p0.9 44 200 5043 5043 5043.0 0.0 100 0.02 37
gen200 p0.9 55 200 5416 5416 5416.0 0.0 100 0.43 52
gen400 p0.9 55 400 6718 6718 6718.0 0.0 100 0.28 47
gen400 p0.9 65 400 6935 6940 6940.0 0.0 100 0.11 48
gen400 p0.9 75 400 8006 8006 8006.0 0.0 100 0.67 75

c-fat200-1 200 1284 1284 1284.0 0.0 100 0.01 12
c-fat200-2 200 2411 2411 2411.0 0.0 100 0.34 23
c-fat200-5 200 5887 5887 5887.0 0.0 100 0.20 58
c-fat500-1 500 1354 1354 1354.0 0.0 100 0.20 12
c-fat500-2 500 2628 2628 2628.0 0.0 100 3.10 24
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(Continued. . . )
GRASP-TS/MCPs

Instance Order BKR fbest favg � Succ. tb avg Clique
c-fat500-5 500 5841 5841 5841.0 0.0 100 1.15 62
c-fat500-10 500 11586 11586 11586.0 0.0 100 1.29 124
johnson8-2-4 28 66 66 66.0 0.0 100 < � 4
johnson8-4-4 70 511 511 511.0 0.0 100 < � 14
johnson16-2-4 120 548 548 548.0 0.0 100 < � 8
johnson32-2-4 496 2033 2033 2022.4 10.1 40 26.71 16
p hat300-1 300 1057 1057 1057.0 0.0 100 0.03 7
p hat300-2 300 2487 2487 2487.0 0.0 100 0.02 20
p hat300-3 300 3774 3774 3774.0 0.0 100 0.04 29
p hat500-1 500 1231 1231 1231.0 0.0 100 0.17 8
p hat500-2 500 3925 3920 3920.0 0.0 100 < � 31
p hat500-3 500 5361 5375 5375.0 0.0 100 0.36 42
p hat700-1 700 1441 1441 1441.0 0.0 100 0.30 9
p hat700-2 700 5290 5290 5290.0 0.0 100 0.03 40
p hat700-3 700 7565 7565 7565.0 0.0 100 2.07 58
p hat1000-1 1000 1514 1514 1514.0 0.0 100 3.78 9
p hat1000-2 1000 5777 5777 5777.0 0.0 100 0.09 42
p hat1000-3 1000 7986 8111 8111.0 0.0 100 0.65 58
p hat1500-1 1500 1619 1619 1618.8 0.9 95 17.25 10
p hat1500-2 1500 7328 7360 7360.0 0.0 100 3.61 58
p hat1500-3 1500 10014 10321 10267.4 35.8 9 34.14 84
san200 0.7 1 200 3370 3370 3370.0 0.0 100 0.06 30
san200 0.7 2 200 2422 2422 2422.0 0.0 100 0.41 14
san200 0.9 1 200 6825 6825 6825.0 0.0 100 0.02 70
san200 0.9 2 200 6082 6082 6082.0 0.0 100 0.02 60
san200 0.9 3 200 4748 4748 4748.0 0.0 100 0.64 34
san400 0.5 1 400 1455 1455 1455.0 0.0 100 5.74 8
san400 0.7 1 400 3941 3941 3941.0 0.0 100 2.64 40
san400 0.7 2 400 3110 3110 3110.0 0.0 100 6.81 30
san400 0.7 3 400 2771 2771 2770.8 2.2 99 42.54 18
san400 0.9 1 400 9776 9776 9776.0 0.0 100 0.31 100

san1000 1000 1716 1716 1716.0 0.0 100 40.93 9
sanr200-0.7 200 2325 2325 2325.0 0.0 100 0.08 15
sanr200-0.9 400 5126 5126 5126.0 0.0 100 < � 36
sanr400-0.5 400 1835 1835 1835.0 0.0 100 1.41 11
sanr400-0.7 400 2992 2992 2992.0 0.0 100 0.47 18

Table 4.9 compares the results obtained by our GRASP-TS/MCPs algorithm and
the well-known PLSW algorithm [Pullan, 2008]. The columns under headings GRASP-
TS/MCPs and PLSW list the best solution values fbest obtained by each algorithm, number
of times to reach fbest over 100 runs Succ., and the average CPU time tb avg (in seconds)
to reach fbest. From Table 4.9, we observe that GRASP-TS/MCPs obtains solutions of the
same or better quality for 79 out of 80 instances in comparison with PLSW . In addition,
GRASP-TS/MCPs has a success rate of 100% for 64 instances while PLSW has a 100%
success rate for only 52 instances. Finally, the computing time of GRASP-TS/MCPs is
globally competitive to that of PLSW .

In sum, the BQO model with GRASP-TS/MCPs proves to be an effective approach
to provide competitive results not only for the maximum clique problem but also for the
more complex maximum vertex weight clique problem.

70



4.5. EXPERIMENTAL RESULTS

Table 4.9: Comparison between GRASP-TS/MCPs and PLS on 80 MVWCP
instances

GRASP-TS/MCPs PLSW [Pullan, 2008]
Instance fbest Succ. tb avg fbest Succ. tb avg

brock200 1 2821 100 0.02 2821 100 0.19
brock200 2 1428 100 0.08 1428 100 0.02
brock200 3 2062 100 0.09 2062 100 0.01
brock200 4 2107 100 0.22 2107 100 0.70
brock400 1 3422 100 0.72 3422 32 437.19
brock400 2 3350 100 1.00 3350 61 415.95
brock400 3 3471 100 0.57 3471 100 12.04
brock400 4 3626 100 4.01 3626 100 0.05
brock800 1 3121 100 3.95 3121 100 31.46
brock800 2 3043 100 42.29 3043 69 893.42
brock800 3 3076 100 8.22 3076 100 3.35
brock800 4 2971 8 105.53 2971 100 3.77
C125.9 2529 100 0.02 2529 100 8.08
C250.9 5092 100 0.05 5092 17 247.69
C500.9 6955 100 0.21 6822 – –
C1000.9 9254 100 37.50 8965 5 344.74
C2000.5 2466 71 1366.51 2466 18 711.27
C2000.9 10999 72 2711.97 10028 – –
C4000.5 2792 19 19902.77 2792 – –

DSJC500.5 1725 100 3.82 1725 100 0.95
DSJC1000.5 2186 81 115.42 2186 100 47.76

keller4 1153 100 0.05 1153 100 0.02
keller5 3317 100 5.34 3317 100 119.24
keller6 8062 2 3418.36 7382 – –

MANN a9 372 100 0.01 372 100 < �
MANN a27 12277 4 22864.81 12264 – –
MANN a45 34194 2 17524.05 34129 – –
MANN a81 111137 1 6167.28 110564 – –
hamming6-2 1072 100 < � 1072 100 < �
hamming6-4 134 100 < � 134 100 < �
hamming8-2 10976 100 0.80 10976 100 < �
hamming8-4 1472 100 < � 1472 100 < �
hamming10-2 50512 67 24.47 50512 100 < �
hamming10-4 5129 8 32.49 5086 1 1433.07
gen200 p0.9 44 5043 100 0.02 5043 100 4.44
gen200 p0.9 55 5416 100 0.43 5416 100 0.05
gen400 p0.9 55 6718 100 0.28 6718 2 340.11
gen400 p0.9 65 6940 100 0.11 6935 4 200.79
gen400 p0.9 75 8006 100 0.67 8006 100 < �

c-fat200-1 1284 100 0.01 1284 100 < �
c-fat200-2 2411 100 0.34 2411 100 < �
c-fat200-5 5887 100 0.20 5887 100 < �
c-fat500-1 1354 100 0.20 1354 100 < �
c-fat500-2 2628 100 3.10 2628 100 0.01
c-fat500-5 5841 100 1.15 5841 100 < �
c-fat500-10 11586 100 1.29 11586 100 < �
johnson8-2-4 66 100 < � 66 100 < �
johnson8-4-4 511 100 < � 511 100 < �
johnson16-2-4 548 100 < � 548 100 < �
johnson32-2-4 2033 40 26.71 2033 100 44.68
p hat300-1 1057 100 0.03 1057 100 0.01
p hat300-2 2487 100 0.02 2487 100 19.36
p hat300-3 3774 100 0.04 3774 47 418.11
p hat500-1 1231 100 0.17 1231 100 0.42
p hat500-2 3920 100 < � 3925 – –
p hat500-3 5375 100 0.36 5361 – –
p hat700-1 1441 100 0.30 1441 100 0.20
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(Continued. . . )
GRASP-TS/MCPs PLSW

Instance fbest Succ. tb avg fbest Succ. tb avg

p hat700-2 5290 100 0.03 5290 100 78.51
p hat700-3 7565 100 2.07 7565 12 718.40
p hat1000-1 1514 100 3.78 1514 100 7.61
p hat1000-2 5777 100 0.09 5777 87 940.62
p hat1000-3 8111 100 0.65 7986 – –
p hat1500-1 1619 95 17.25 1619 100 48.91
p hat1500-2 7360 100 3.61 7328 4 1056.19
p hat1500-3 10321 9 34.14 10014 – –
san200 0.7 1 3370 100 0.06 3370 100 < �
san200 0.7 2 2422 100 0.41 2422 66 397.38
san200 0.9 1 6825 100 0.02 6825 100 < �
san200 0.9 2 6082 100 0.02 6082 100 < �
san200 0.9 3 4748 100 0.64 4748 72 219.68
san400 0.5 1 1455 100 5.74 1455 100 200.44
san400 0.7 1 3941 100 2.64 3941 100 0.03
san400 0.7 2 3110 100 6.81 3110 100 0.05
san400 0.7 3 2771 99 42.54 2771 100 4.41
san400 0.9 1 9776 100 0.31 9776 100 < �

san1000 1716 100 40.93 1716 – –
sanr200-0.7 2325 100 0.08 2325 100 0.62
sanr200-0.9 5126 100 < � 5126 5 182.54
sanr400-0.5 1835 100 1.41 1835 100 0.67
sanr400-0.7 2992 100 0.47 2992 100 141.50

4.6 Conclusions

In this chapter, we studied a simple and a population-based GRASP-Tabu Search algo-
rithms for solving the BQO problem. Both algorithms are based on a dedicated randomized
greedy construction heuristic, enhanced by reference to the ideas of “strongly determined
variables” and “elite solution recovery” of probabilistic Tabu Search, and using a tabu
search local optimization procedure. Additionally, the algorithm with population man-
agement (GRASP-TS/PM) integrates a population management strategy for maintaining
a pool of diversified elite solutions.

Furthermore, we have reformulated the maximum cut problem, maximum clique prob-
lem and maximum vertex weight clique problem into the BQO formulation and applied the
general BQO approach rather than a tailored algorithm to tackle these problems. Specif-
ically, we directly solved the maximum cut problem with the two proposed GRASP-Tabu
Search algorithms and solved the maximum clique problems with the GRASP-TS/MCPs
algorithm that adapts and extends the simple GRASP-Tabu Search algorithm.

Experiments conducted with both GRASP-TS and GRASP-TS/PM algorithms on 31
BQO instances and 54 MaxCut instances have demonstrated that both GRASP-Tabu
Search algorithms obtain highly competitive results in comparison with the previous best
known results from the literature. In particular, for the 54 MaxCut instances, GRASP-
TS/PM can improve the best known results for 19 instances whose optimum solution values
are still unknown. Experiments conducted with the GRASP-TS/MCPs algorithm on a
total of 160 maximum clique and maximum vertex weight clique instances have shown that
the proposed GRASP-TS/MCPs algorithm not only proves competitive with the leading
methods that are specifically tailored for the MCP problem, but outperforms the leading
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methods for the more complex MVWCP problem. Out of 80 benchmark instances of
MVWCP our method matches the best known results on 66 instances, and finds new best
known results on 13 instances, while accomplishing this in a very short time span.

In the next chapter, we will resort to a highly effective path relinking metaheuristic
approach to produce initial solutions, whose idea is to build a path (a sequence of solutions)
connecting two elite solutions and select out based on certain measures one or several
solutions from the constructed path. In addition to the solving of BQO and MaxCut
problems, we will also investigate the application of BQO on the minimum sum coloring
problem with the proposed path relinking algorithms.
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Chapter 5

Path Relinking

This chapter presents two path relinking (PR) algorithms for BQO; one is based on a
greedy strategy (PR1) to generate the relinking path from the initial solution to the guiding
solution and the other operates in a random way (PR2). In addition, we directly apply
the proposed Path Relinking algorithms to solve the minimum cut problem (MaxCut) and
the minimum sum coloring problem (MSCP) after transforming them into the formulation
of BQO. Extensive computational results with both PR algorithms on 31 BQO problem
instances and 103 MaxCut problem instances indicate that both PR1 and PR2 are very
competitive with several state-of-the-art algorithms. Moreover, experiments on 23 most
often used MSCP instances indicate that our PR2 algorithm is able to reach competitive
results compared with several special purpose MSCP algorithms but requires considerable
computing time to find solutions of good quality for large instances. The content of
this chapter is based on the paper [Wang et al., 2012f] accepted to European Journal of
Operational Research and the paper [Wang et al., 2012c] submitted to Optimization.
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5.1 Introduction

Path relinking is a general search strategy closely associated with tabu search and its
underlying ideas share a significant intersection with the tabu search perspective [Glover
et al., 2000; Glover et al., 2003; Glover et al., 2004], with applications in a variety of
contexts where it has proved to be very effective in solving difficult problems [Glover et
al., 2003]. The path relinking approach is mainly composed of a diversification generation
method, a path generation method, a solution selection method and an improvement
method, where the common purpose of the path generation method and solution selection
method lies in the generation of potential solutions with good quality and diversity.

Consider that no study has been reported on applying path relinking to BQO, this
chapter proposes two path relinking algorithms for the BQO, by following the general
scheme described in [Glover et al., 2004]. These two algorithms differ from each other
mainly on the way of generating the path, PR1 employing a greedy strategy and PR2
employing a random construction. In addition, given that BQO has emerged during the
past decade as a unified model for a wide range of combinatorial optimization problems
and the BQO approach has the advantage of directly applying an algorithm designed for
BQO to solve other classes of problems rather than resorting to a specialized solution
method, we investigate the performance of the proposed Path Relinking algorithms for
the maximum cut problem. In particular, we investigate for the first time the application
of this BQO approach to solve the minimum sum coloring problem.

Experiments with PR1 and PR2 on a total of 134 BQO and MaxCut test instances
indicate that our Path Relinking algorithms yield highly competitive outcomes when com-
paring with other best performing algorithms. In addition, we carry out the experiment
on 23 MSCP instances with PR2 and contrast results with those of several reference al-
gorithms specifically dedicated to the MSCP and those of an IP model solved with the
latest CPLEX version (CPLEX V12.2).

5.2 Path relinking algorithms

5.2.1 General framework

Algorithm 5.1 shows the path relinking procedure for BQO. It starts with the creation
of an initial set of b elite solutions RefSet (line 4, Section 5.2.2) and identifies the best
and worst solutions in RefSet in terms of the objective function value for the purpose
of updating RefSet (line 5). For each elite solution xi ∈ RefSet, a binary value Tag(i)
indicates whether xi can take part in a relinking process. Initially, assigning each solution
in RefSet a TRUE Tag which becomes FALSE when it is selected as the initiating solution
or the guiding solution. The set PairSet contains the index pairs (i, j) designating the
initiating and guiding solution from RefSet used for the relinking process. PairSet is
initially composed of all the index pairs (i, j) such that at least one corresponding Tag
has the value TRUE (line 7). As soon as PairSet is constructed, all the Tag are marked
FALSE (line 8).

The inner while loop (lines 9-32) generates new solutions by building paths for each
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Algorithm 5.1: Outline of the Path Relinking algorithms

1: Input: matrix Q
2: Output: the best binary n-vector x∗ found so far and its objective value f∗

3: repeat
4: Initialize RefSet = {x1, . . . , xb}
5: Identify the best solution x∗ and the worst solution xw in RefSet and record the objective

value f∗ of solution x∗

6: Tag(i) = TRUE, (i = {1, . . . , b})
7: PairSet←− {(i, j) : xi, xj ∈ RefSet, xi ∕= xj , T ag(i) ∪ Tag(j) = TRUE}
8: Tag(i) = FALSE, (i = {1, . . . , b})
9: while (PairSet ∕= ∅) do

10: Pick solution pair (xi, xj) ∈ RefSet with index pair (i, j) in PairSet
11: Apply the Relinking Method to produce the sequence xi = x(1), . . . , x(r) = xj

12: Select x(m) from the sequence and apply tabu search to improve x(m)
13: if f(x(m)) > f∗ then
14: x∗ = x(m), f∗ = f(x(m))
15: end if
16: if (Update RefSet(RefSet, x(m)) then
17: RefSet ← RefSet∪ {x(m)} ∖ {xw}
18: Tag(w) = TRUE
19: Record the new worst solution xw in RefSet
20: end if
21: Apply the Relinking Method to produce the sequence xj = y(1), . . . , y(r) = xi

22: Select y(n) from the sequence and apply tabu search to improve y(n)
23: if (f(y(n)) > f∗) then
24: x∗ = y(n), f∗ = f(y(n))
25: end if
26: if (Update RefSet(RefSet, y(n)) then
27: RefSet ← RefSet∪ {y(n)} ∖ {xw}
28: Tag(w) = TRUE
29: Record the new worst solution xw in RefSet
30: end if
31: PairSet←− PairSet ∖ (i, j)
32: end while
33: until the stopping criterion is satisfied

pair of solutions of PairSet and updates RefSet with specific new solutions. First, one
index pair (i, j) is selected from PairSet according to lexicographical order (line 10) to
designate two solutions xi, xj ∈ RefSet. The Relinking Method is then applied to these
two solutions to generate two paths connecting xi and xj (lines 11, 21, Section 5.2.3).
Secondly, one solution x(m) on each path is selected to be further improved by the tabu
search algorithm (lines 12, 22, Section 2.2.2). The next step tests Update RefSet to
decide if the new improved solution is used to update RefSet (lines 16, 26, Section 5.2.2).
If the update is confirmed, the new solution is inserted in RefSet to replace the worst
solution xw with its Tag set to be TRUE (lines 16-18, 26-28, Section 5.2.2). The current
selected pair (i, j) is then deleted from the set PairSet (line 31). This while-loop procedure
continues until all the pairs in PairSet are examined, i.e., PairSet becomes empty.

Our path relinking algorithm has the following characteristics. First, considering the
path generation procedure, each solution pair originating from RefSet undergoes a relink-
ing phase and two paths are considered for each pair (xi, xj): one from xi to xj and the
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other from xj to xi. Secondly, each new high-quality solution derived by path relinking
is a candidate to take part in a subsequent relinking process as an initiating or guiding
solution, using a probabilistic selection process that assures the solution will eventually
get selected. Thirdly, upon the completion of the path relinking phase that ultimately
examines all pairs of solutions in RefSet, we rebuild RefSet to restart the path-relinking
procedure, and repeat this restarting process until the stopping criterion is satisfied.

5.2.2 RefSet initialization, rebuilding and updating

The initial RefSet contains b different locally optimal solutions and is constructed as
follows. Starting from scratch, we randomly assign a value of 0 or 1 to each variable to
produce an initial solution, and then subject this solution to tabu search to obtain a local
optimum (see Sect. 2.2.2). The resulting improved solution is added to RefSet if it does
not duplicate any solution currently in RefSet. This procedure is repeated until the size
of RefSet reaches the cardinality b (b is a parameter and set as 10 in the experiment).

When PairSet becomes empty, RefSet is recreated. The best solution x∗ previously
found becomes a member of the new RefSet and the remaining solutions are generated
in the same way as in constructing RefSet in the first round.

The updating procedure of RefSet is invoked each time a newly constructed solution is
improved by tabu search. The improved solution is permitted to be added into RefSet if
it is distinct from any solution in RefSet and better than the worst solution xw in RefSet.
Once this condition is satisfied, the worst solution xw is replaced by the improved solution
and the position w is indicated as referring to a new solution.

5.2.3 Path relinking

The relinking method is used to generate new solutions by exploring trajectories (strictly
confined to the neighborhood space) that connect high-quality solutions. The solution
that begins the path is called the initiating solution while the solution that the path leads
to is called the guiding solution [Glover et al., 2000; Glover et al., 2003; Glover et al., 2004].
We propose two ways to generate such a path: one is based on a dedicated greedy function
(whose evaluations are given by the objective function of UBQO problem) while the other
operates in a random manner. Algorithms 5.2 and 5.3 describe these two methods in
details.

In order to describe our relinking procedure, we first give some primary definitions,
denoting the initiating solution by xi and the guiding solution by xj:

∙ NC: the set of variable indices for which xi and xj have different values.

∙ Δt: a vector that stores the objective value deviation of the current solution from
the resulting solution after flipping the tth variable.

∙ PV : the path vector that stores the selected flip variable at each step throughout the
transiting from xi to xj (Consequently, by knowing either the initiating solution or
the current terminal solution, each solution generated on the path can be recovered
by referring to PV ).
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∙ FI: a vector that records the difference f(x)− f(xi) for each solution x generated
when transiting from xi to xj.

Algorithm 5.2: Pseudo-code of Relinking Method 1

1: Input: A pair of solutions xi and xj

2: Output: Path solution x(1), . . . , x(r) from xi to xj

3: Identify the set NC between xi and xj

4: Initialize the Δt assignments for t ∈ NC
5: PV = ∅, FI0 = 0, r = ∣NC∣ − 1
6: for k = 1 to r do

7: Find a t ∈ NC with the best Δt value
8: PV ← PV ∪ {t}
9: x(k) = {xu : xu = xj

u, u ∈ PV ;xu = xi
u, u ∈ N ∖ PV }

10: FIk = FIk−1 +Δt

11: f(x(k)) = f(xi) + FIk
12: Update all Δt values (t ∈ NC) affected by the move
13: NC ← NC∖{t}
14: end for

Algorithm 5.2 shows the first relinking method. Initially, we identify the set NC of
variables whose values differ between the initiating solution and the guiding solution. The
Δ value of each element in NC is also precalculated. At each step toward the guiding
solution, we select the variable with the best Δ value and then add it into the path
vector PV . Moreover, we record the current increment FI value and the objective value
f(x) of the current generated solution x. Finally, the vector Δ is updated using the fast
incremental evaluation technique of [Glover et al., 2010]. Since two adjacent solutions
on the path differ from each other in the assignment of only one variable, this relinking
procedure accomplishes the path construction from the initiating solution to the guiding
solution after exactly ∣NC∣ − 1 steps.

Algorithm 5.3: Pseudo-code of Relinking Method 2

1: Input: A pair of solutions xi and xj

2: Output: Path solution x(1), . . . , x(r) from xi to xj

3: Identify the set NC between xi and xj

4: Initialize the Δt assignments for t ∈ NC
5: PV = ∅, FI0 = 0, r = ∣NC∣ − 1
6: for k = 1 to r do

7: Select a t ∈ NC at random
8: PV ← PV ∪ {t}
9: x(k) = {xu : xu = xj

u, u ∈ PV ;xu = xi
u, u ∈ N ∖ PV }

10: FIk = FIk−1 +Δt

11: f(x(k)) = f(xi) + FIk
12: Update all Δt values (t ∈ NC) affected by the move
13: NC ← NC∖{t}
14: end for
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The second relinking method, shown in Algorithm 5.3, is based on the rule of selecting
an element in NC randomly at each step (line 7). The remained components of the method
are the same as in Algorithm 5.2.

5.2.4 Path solution selection

Since two consecutive solutions on a relinking path differ only by flipping a single variable,
it is not productive to apply an improvement method to each solution on the path since
many of these solutions would lead to the same local optimum. In addition, the improve-
ment method is a time-consuming process, so we restrict its use to being applied to only a
single solution on the path, which we select by reference both to its solution quality and to
the hamming distance of this solution to the initiating and guiding solutions. Specifically,
we set up a candidate solution list (CSL), consisting of the path solutions having a dis-
tance of at least 
 ⋅ ∣NC∣ from both the initiating and guiding solutions (where 
 ∈ (0, 1]
is a parameter and set as 1/3 in the experiments). The solution with the highest quality
in CSL is picked for further amelioration by the improvement method.

5.3 Experimental results

We carry out three sets of experiments to evaluate the proposed PR algorithms. The first
two experiments apply both PR1 and PR2 on BQO and MaxCut benchmarks and the
last experiment employs PR2 on MSCP benchmark. Our algorithms use CPU clock time
to give the stopping condition subject to having completed at least one round of the PR
procedure.

5.3.1 Experiments on BQO benchmark

Our first experiment undertakes to evaluate the PR algorithms on the 31 BQO instances
with 2500 to 7000 variables. The results are summarized in Tables 5.1 and 5.2. The time
limit for 10 ORLIB instances for a single run is set to be 1 minute and for the 21 larger
random instances with 3000, 4000, 5000, 6000 and 7000 variables is set at 5, 10, 20, 30
and 50 minutes. For BQO instances, the tabu tenure (tt) and the improvement cutoff (�)
are set as: tt = [n/100, n/100 + 10] and � = 5n.

Tables 5.1 and 5.2 respectively show the computational statistics of applying our
PR1 and PR2 algorithms to the 10 ORLIB instances and the 21 large random instances.
In both tables, columns 1 and 2 respectively give the instance names and the previous
best objective values BKR. These best values were first reported in [Palubeckis, 2004b;
Palubeckis, 2006] and recently improved in [Glover et al., 2010]. The columns under head-
ings PR1 and PR2 list: the best objective value fbest, the average objective gap to the
previous best objective values gavg (i.e., BKR− favg) (where favg represents the average
objective value over 20 runs) and the average CPU time in seconds denoted by tb avg for
reaching the best objective values fbest over 20 runs. Furthermore, the last row “Av.”
indicates the summary of our algorithm’s average performance.
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Table 5.1: Computational results of PR1 and PR2 on ORLIB instances
PR1 PR2

Instance BKR fbest gavg tb avg fbest gavg tb avg

b2500.1 1515944 1515944 0.0 11 1515944 0.0 14
b2500.2 1471392 1471392 0.0 101 1471392 58.4 102
b2500.3 1414192 1414192 13.4 49 1414192 0.0 36
b2500.4 1507701 1507701 0.0 6 1507701 0.0 7
b2500.5 1491816 1491816 0.0 14 1491816 0.0 18
b2500.6 1469162 1469162 0.0 25 1469162 0.0 23
b2500.7 1479040 1479040 0.0 48 1479040 0.0 50
b2500.8 1484199 1484199 0.0 20 1484199 0.0 16
b2500.9 1482413 1482413 0.0 51 1482413 0.0 103
b2500.10 1483355 1483355 0.0 55 1483355 0.0 75

Av. 1.34 38 5.84 44.4

Table 5.2: Computational results of PR1 and PR2 on Palubeckis instances
PR1 PR2

Instance BKR fbest gavg tb avg fbest gavg tb avg

p3000.1 3931583 3931583 0.0 85 3931583 80.4 81
p3000.2 5193073 5193073 0.0 68 5193073 0.0 64
p3000.3 5111533 5111533 35.8 115 5111533 71.7 155
p3000.4 5761822 5761822 0.0 56 5761822 0.0 97
p3000.5 5675625 5675625 90.2 162 5675625 278.5 226
p4000.1 6181830 6181830 0.0 125 6181830 0.0 159
p4000.2 7801355 7801355 71.2 456 7801355 313.5 302
p4000.3 7741685 7741685 0.0 295 7741685 63.9 436
p4000.4 8711822 8711822 0.0 277 8711822 0.0 392
p4000.5 8908979 8908979 490.8 272 8908979 385.1 327
p5000.1 8559680 8559680 611.8 623 8559680 918.0 387
p5000.2 10836019 10836019 620.3 821 10836019 498.7 609
p5000.3 10489137 10489137 995.4 1285 10489137 317.5 967
p5000.4 12252318 12252318 1257.7 760 12252318 1168.4 767
p5000.5 12731803 12731803 51.3 676 12731803 166.3 726
p6000.1 11384976 11384976 201.0 1820 11384976 822.4 1136
p6000.2 14333855 14333855 221.1 1391 14333855 576.8 1076
p6000.3 16132915 16132915 1743.5 1128 16132915 2017.3 1053
p7000.1 14478676 14478676 935.4 2275 14478676 1523.1 1917
p7000.2 18249948 18249948 1942.4 1793 18249948 2986.1 1591
p7000.3 20446407 20446407 331.9 1251 20446407 2310.5 1503
Av. 457.1 749.2 690.4 665.3
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Table 5.3: Best results comparison among PR1, PR2 and other state-of-the-art algorithms
on Palubeckis instances

best solution gap (i.e., BKR− fbest)
Instance BKR PR1 PR2 ITS MST2 SA D2TS HMA
p5000.1 8559680 0 0 700 325 1432 325 0
p5000.2 10836019 0 0 0 582 582 0 0
p5000.3 10489137 0 0 0 0 354 0 0
p5000.4 12252318 0 0 934 1643 444 0 0
p5000.5 12731803 0 0 0 0 1025 0 0
p6000.1 11384976 0 0 0 0 430 0 0
p6000.2 14333855 0 0 88 0 675 0 0
p6000.3 16132915 0 0 2729 0 0 0 0
p7000.1 14478676 0 0 340 1607 2579 0 0
p7000.2 18249948 0 0 1651 2330 5552 104 0
p7000.3 20446407 0 0 0 0 2264 0 0
Av. 0 0 585.6 589.7 1394.3 39 0

Table 5.1 discloses that both PR1 and PR2 can stably reach all the previous best
objective values for the 10 largest Beasley instances. Moreover, PR1 performs slightly
better than PR2 when it comes to the criteria of gavg and tb avg to the previous best
result BKR. Table 5.2 indicates that on the 21 large and difficult random instances, PR1
produced the same results as PR2 given that both can reach the previous best known
objective values for all of the tested instances. However, PR1 is superior to PR2 in terms
of the average gap (457.1 versus 690.4) although the CPU time to obtain the best solution
is slightly longer (749.2 versus 665.3 seconds).

In order to further evaluate our PR1 and PR2 algorithms, we compare our results
with those obtained from some of best performing algorithms in the literature. For this
purpose, we restrict our attention to comparisons with 5 methods that have reported the
best results for the most challenging problems. These methods are respectively named
ITS [Palubeckis, 2006], MST2 [Palubeckis, 2004b], SA [Katayama and Narihisa, 2001],
D2TS [Glover et al., 2010] and HMA [Lü et al., 2010a]. The results for the first 3 of these
reference algorithms are directly extracted from [Palubeckis, 2006] and those for D2TS
and HMA come from [Glover et al., 2010; Lü et al., 2010a].

Tables 5.3 and 5.4 show the best solution gap and average solution gap to the best
known objective value of the 7 algorithms used for comparison, including PR1 and PR2.
In these two tables, the last row presents the averaged results over the listed instances.
Notice that the results of all these algorithms are obtained almost under the same time
limit. Since best known results can be easily reached for the small size instances by all
these state-of-the art algorithms, we only list the results comparison for larger instances
where Table 5.3 contains 11 instances and Table 5.4 contains 21 instances.

Table 5.3 indicates that both PR1 and PR2 outperform ITS, MST2 and SA in terms
of the best solution values. PR1 and PR2 achieve the best known results for the 11 most
challenging instances while ITS, MST2, SA fail for 5, 5, 10 out of 11 instances. In addition,
D2TS performs slightly worse since it fails to reach the best known result for one instance
p7000.2. However, it is difficult to conclude which algorithm among PR1, PR2 and HMA
performs the best based on the evaluation criterion of the best solution found.

In order to further discriminate among the compared algorithms, Table 5.4 presents
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Table 5.4: Average results comparison among PR1, PR2 and other state-of-the-art algo-
rithms on Palubeckis instances

average solution gap (i.e., BKR− favg)
Instance BKR PR1 PR2 ITS MST2 SA D2TS HMA
p3000.1 3931583 0 80 0 0 0 0 0
p3000.2 5193073 0 0 97 97 97 0 0
p3000.3 5111533 36 72 344 287 535 0 33
p3000.4 5761822 0 0 154 77 308 0 0
p3000.5 5675625 90 279 501 382 459 0 145
p4000.1 6181830 0 0 0 0 734 0 0
p4000.2 7801355 71 314 1285 804 1887 0 142
p4000.3 7741685 0 64 471 1284 79 0 6
p4000.4 8711822 0 0 438 667 536 0 38
p4000.5 8908979 491 385 572 717 984 0 546
p5000.1 8559680 612 918 971 581 2455 656 507
p5000.2 10836019 620 499 1068 978 2101 12533 512
p5000.3 10489137 995 318 1266 1874 2451 12876 332
p5000.4 12252318 1258 1168 1952 2570 1134 1962 1228
p5000.5 12731803 51 166 835 1233 1172 239 284
p6000.1 11384976 201 822 57 34 2248 0 140
p6000.2 14333855 221 577 1709 1269 2067 1286 526
p6000.3 16132915 1744 2017 3064 2673 3845 787 2311
p7000.1 14478676 935 1523 1139 2515 5504 2138 819
p7000.2 18249948 1942 2986 4301 3814 7837 8712 1323
p7000.3 20446407 332 2311 3078 7868 8978 2551 1386
Av. 457.1 690.4 1109.6 1415.4 2162.4 2082.9 489.4

the average solution gap to the best known value of each algorithm. Firstly, we notice
that over the first 10 instances with 3000 and 4000 variables, D2TS outperforms all the
other 6 compared algorithms with an average gap of 0 to the best known values, meaning
that D2TS is quite robust over 20 runs for these 10 instances. PR1 and PR fail to reach
the gap of 0 for 4 and 6 instances, respectively. Secondly, considering the overall set of 21
instances, we find that PR1 performs the best with a gap of 457.1. HMA performs slightly
worse than PR1 with a gap of 489.4. PR2 takes the third place with a gap of 690.4. In
conclusion, this experiment demonstrates that both PR1 and PR2 also perform quite well
with regard to the average solution quality.

5.3.2 Experiments on MaxCut benchmark

Our second experiment undertakes to test our PR algorithms without any alternation
on 3 sets of MaxCut benchmarks with a total of 103 instances, which are named Set1,
Set2 and Set3. The transformation method of MaxCut into BQO formulation can be
found in Section 1.1.2.2. The benchmark Set1 includes 69 instances, named G1,. . .,G72,
with variable sizes ranging from n=800 to 10000.1. The first 54 instances have been em-
ployed by numerous authors to test their algorithms [Burer et al., 2001; Festa et al., 2002;
Marti et al., 2009; Palubeckis, 2004a; Shylo and Shylo, 2010] and the results for the re-
maining 15 larger instances are reported in [Choi and Ye, 2000]. The benchmark Set2
contains 30 instances with size n=128 (named G54100,. . .,G541000), n=1000 (named

1http://www.stanford.edu/∼yyye/yyye/Gset
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G10100,. . .,G101000) and n=2744 (named G14100,. . . ,G141000), respectively.2 Compu-
tational results on these instances were reported in [Burer et al., 2001; Festa et al., 2002;
Marti et al., 2009; Palubeckis, 2004a; Shylo and Shylo, 2010]. The benchmark Set3 is
composed of 4 DIMACS instances containing from 512 to 3375 vertices and 1536 to 10125
edges.3. For MaxCut instances, the tabu tenure (tt) and the improvement cutoff (�) are
set as: tt = [n/10, n/10 + 10] and � = 10000.

In Tables 5.5-5.8, columns 1 and 2 respectively give the instance names and the best
known results BKR from references [Burer et al., 2001; Marti et al., 2009; Palubeckis,
2004a; Shylo and Shylo, 2010] which are all tailored MaxCut algorithms unlike our algo-
rithms aiming at the solving of BQO. The columns under the headings PR1 and PR2 list
the best objective value fbest, the average objective value favg and the CPU time in sec-
onds denoted by tb avg for reaching the best results fbest. The columns under the headings
SS and CirCut report the best objective value fbest and the required CPU time to reach
fbest. We focus on comparing our algorithms with the SS and CirCut algorithms, which
yield best results in the literature on many test instances. The results of SS and CirCut
algorithms are directly extracted from [Marti et al., 2009]. The last three rows summarize
the comparison between these algorithms and ours. The rows better, equal and worse
respectively denote the number of instances for which each algorithm gets results that are
better, equal and worse than the previous best known results. We mark in bold those
results that are the updated best known values obtained by PR1 and PR2.

Table 5.5 reports the results on 54 instances from Set1 within a time limit of 30 minutes.
From this table, we first notice that our algorithms are able to find better objective values
than the best known values in the literature. Meanwhile, PR2 slightly outperforms PR1 in
terms of the best objective values. Specifically, PR1 can improve the previous best known
objective values for 24 instances and match the previous best for 22 instances, while PR2
can improve the previous best known objective values for 25 instances and match the
previous best for 24 instances. Moreover, PR1 and PR2 fail to reach the best known
results for 8 and 5 instances respectively, while SS and CirCut fail on 32 and 34 instances,
respectively. Additionally, PR1 and PR2 reaches its best results in a shorter CPU time
than the time taken by SS and CirCut to reach their best results. These outcomes provide
evidence of the efficacy of our path relinking approach.

Table 5.6 reports the results of 15 largest instances in Set1 with variables ranging
from 5000 to 10000. For instances with 5000, 7000, 8000, 9000 and 10000 variables, we
report the results for a time limit of 1, 2, 4, 4 and 4 hours, respectively. The previous
best objective values BKR are cited from [Choi and Ye, 2000], which is the only paper,
to the best of our knowledge, that reports the results on these instances. As can be seen
from Table 5.6, both PR1 and PR2 obtain new best known results on 13 out of these 15
large instances and obtains results inferior to the best known results only on 2 instances.
Moreover, PR2 outperforms PR1 by obtaining better solutions for 14 instances.

The results of the 30 instances in Set2 are shown in Table 5.7. For the instances with
variables numbering 128, 1000 and 2744, the results are reported with a time limit of 1

2http://www.optsicom.es/maxcut/#instances
3http://dimacs.rutgers.edu/Challenges/Seventh/Instances/
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Table 5.5: Computational results of PR1 and PR2 and comparison with other state-of-
the-art algorithms on small and medium MaxCut instances of Set1

PR1 PR2 SS CirCut
Instance BKR fbest favg tb avg fbest favg tb avg fbest tb avg fbest tb avg

G1 11624 11624 11624.0 2 11624 11624.0 1 11624 139 11624 352
G2 11620 11620 11620.0 6 11620 11620.0 9 11620 167 11617 283
G3 11622 11620 11620.0 17 11620 11620.0 2 11622 180 11622 330
G4 11646 11646 11646.0 3 11646 11646.0 2 11646 194 11641 524
G5 11631 11631 11631.0 3 11631 11631.0 4 11631 205 11627 1128
G6 2178 2178 2178.0 9 2178 2178.0 6 2165 176 2178 947
G7 2003 2006 2006.0 2 2006 2006.0 7 1982 176 2003 867
G8 2003 2005 2005.0 8 2005 2005.0 6 1986 195 2003 931
G9 2048 2054 2054.0 16 2054 2054.0 10 2040 158 2048 943
G10 1994 2000 2000.0 22 2000 1999.8 29 1993 210 1994 881
G11 564 564 564.0 4 564 564.0 1 562 172 560 74
G12 556 556 556.0 17 556 556.0 15 552 242 552 58
G13 582 582 582.0 28 582 582.0 22 578 228 574 62
G14 3064 3063 3062.1 44 3064 3062.6 1188 3060 187 3058 128
G15 3050 3050 3049.3 49 3050 3049.3 51 3049 143 3049 155
G16 3052 3052 3051.3 27 3052 3051.4 47 3045 162 3045 142
G17 3043 3047 3045.5 235 3047 3046.4 110 3043 313 3037 366
G18 988 992 992.0 16 992 992.0 12 988 174 978 497
G19 903 906 906.0 11 906 906.0 14 903 128 888 507
G20 941 941 941.0 13 941 941.0 9 941 191 941 503
G21 931 931 931.0 11 931 931.0 19 930 233 931 524
G22 13359 13359 13353.5 1652 13359 13354.5 943 13346 1336 13346 493
G23 13342 13342 13333.0 517 13342 13331.6 879 13317 1022 13317 457
G24 13337 13337 13327.3 1257 13333 13325.3 1876 13303 1191 13314 521
G25 13326 13338 13328.0 957 13339 13328.2 1078 13320 1299 13326 1600
G26 13314 13324 13313.7 710 13326 13312.3 333 13294 1415 13314 1569
G27 3318 3337 3327.3 851 3336 3326.9 753 3318 1438 3306 1456
G28 3285 3296 3286.0 1723 3296 3288.9 1512 3285 1314 3260 1543
G29 3389 3404 3395.2 861 3405 3391.9 1618 3389 1266 3376 1512
G30 3403 3412 3404.6 1655 3411 3404.8 843 3403 1196 3385 1463
G31 3288 3306 3299.7 624 3306 3299.5 752 3288 1336 3285 1448
G32 1410 1408 1400.9 893 1410 1404.6 450 1398 901 1390 221
G33 1382 1382 1373.9 1019 1382 1376.1 986 1362 926 1360 198
G34 1384 1382 1375.4 1608 1384 1378.2 1747 1364 950 1368 237
G35 7684 7674 7663.3 1372 7679 7670.8 959 7668 1258 7670 440
G36 7677 7666 7653.1 316 7671 7658.7 1790 7660 1392 7660 400
G37 7689 7673 7663.3 1736 7682 7667.9 965 7664 1387 7666 382
G38 7681 7674 7663.4 614 7682 7670.4 1775 7681 1012 7646 1189
G39 2395 2402 2391.3 526 2407 2391.1 1588 2393 1311 2395 852
G40 2387 2394 2381.2 1748 2399 2383.3 879 2374 1166 2387 901
G41 2398 2402 2380.0 1181 2404 2388.9 529 2386 1017 2398 942
G42 2469 2475 2462.3 1177 2478 2466.2 1575 2457 1458 2469 875
G43 6660 6660 6660.0 22 6660 6659.9 19 6656 406 6656 213
G44 6650 6650 6649.9 18 6650 6649.9 32 6648 356 6643 192
G45 6654 6654 6653.9 43 6654 6653.9 50 6642 354 6652 210
G46 6645 6649 6648.2 18 6649 6648.8 36 6634 498 6645 639
G47 6656 6657 6656.6 99 6657 6656.8 20 6649 359 6656 633
G48 6000 6000 6000.0 3 6000 6000.0 3 6000 20 6000 119
G49 6000 6000 6000.0 3 6000 6000.0 2 6000 35 6000 134
G50 5880 5880 5880.0 2 5880 5880.0 2 5880 27 5880 231
G51 3846 3848 3844.6 312 3848 3846.4 158 3846 513 3837 497
G52 3849 3851 3847.6 610 3851 3848.4 373 3849 551 3833 507
G53 3846 3849 3846.9 151 3850 3847.7 88 3846 424 3842 503
G54 3846 3852 3848.6 522 3851 3847.8 318 3846 429 3842 524
Av. 469.3 490.6 621.0 616.7

Better 24 25 0 0
Equal 22 24 22 20
Worse 8 5 32 34
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Table 5.6: Computational results of PR1 and PR2 on large MaxCut instances of Set1
PR1 PR2

Instance BKR fbest favg tb avg fbest favg tb avg

G55 9960 10253 10233.7 3996 10265 10234.0 3231
G56 3649 3975 3958.0 3991 3981 3959.2 3842
G57 3220 3448 3436.0 3656 3472 3462.0 4403
G58 — 19183 19159.3 3979 19205 19182.0 3715
G59 — 6027 5989.2 3876 6027 6006.2 5194
G60 13658 14109 14077.5 7738 14112 14091.8 6300
G61 5273 5716 5688.8 7782 5730 5695.7 5381
G62 4612 4804 4785.7 8110 4836 4830.2 6114
G63 8059 26876 26845.8 4826 26916 26879.3 5867
G64 7861 8623 8569.5 8790 8641 8594.1 6974
G65 13286 5482 5468.7 16248 5526 5515.9 15004
G66 — 6272 6257.8 16031 6314 6302.4 15191
G67 — 6856 6832.0 17213 6902 6884.6 12372
G70 9499 9405 9378.6 15202 9463 9434.0 14531
G72 6644 6892 6876.2 14422 6946 6933.8 15898

Better 13 13
Equal 0 0
Worse 2 2

second, 10 minutes and 30 minutes. Table 5.7 shows that our PR1 and PR2 algorithms
once again outperform the two reference algorithms. Both PR1 and PR2 can match the
best known results on 21 and 20 out of 30 instances, respectively. By contrast, SS and
CirCut can match the previous best results on 10 instances. PR1 and PR2 fail to match
the best known results on 9 and 10 out of 30 instances, respectively. By contrast, both SS
and CirCut fail to match the previous best results on 20 instances.

Comparing PR1 and PR2 to each other, the PR2 algorithm achieves better results for
4 instances (G14100, G14400, G14800 and G141000) while PR1 obtain better results for
2 instances (G14300 and G14500). In addition, PR2 obtains its best solutions faster than
PR1, 377.5 vs 473.2 seconds on average. We note that CirCut consumes less CPU time
than ours, though the quality of its solutions does not measure up.

The results of 4 instances from Set3 using a time limit of 30 minutes are shown in Table
5.8. For the instance pm3-15-50, both PR1 and PR2 are able to improve the previous best
known result from a value of 3000 to the value of 3010 and 3014, respectively. For the
instance pm3-8-50, PR1 and PR2 match the previously best known result but the other
referred algorithms fail to do so. (We note that an algorithm fail to obtain a number of
best known results and still qualify as a top performing algorithm in the literature, given
that other algorithms may generally obtain still fewer best known results.) Moreover, both
of our algorithms and CirCut can reach the best known result on instance g3-8 with CPU
time 292, 258 and 54 seconds, respectively. However, both PR algorithms perform slightly
worse than SS on instance g3-15.

To verify whether the proposed PR algorithms are able to further improve the results
by allowing longer computational time, we re-ran PR1 and PR2 on the MaxCut instances
using 10 times longer time than before, as shown in Table 5.9. Surprisingly, both PR1
and PR2 can further improve its best results on a total of 33 instances. Although we only
show the better results without differentiating whether they come from PR1 or PR2, we
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Table 5.7: Computational results of PR1 and PR2 and comparison with other state-of-
the-art algorithms on MaxCut instances of Set2

PR1 PR2 SS CirCut
Instance BKR fbest favg tb avg fbest favg tb avg fbest tb avg fbest tb avg

G54100 110 110 110.0 0 110 110.0 0 110 1.9 110 16.2
G54200 112 112 112.0 0 112 112.0 0 112 1.9 112 18.6
G54300 106 106 106.0 0 106 106.0 0 106 2.1 106 15.8
G54400 114 114 114.0 0 114 114.0 0 114 2.1 114 16.0
G54500 112 112 112.0 0 112 112.0 0 112 2.3 112 15.8
G54600 110 110 110.0 0 110 110.0 0 110 2.1 110 15.4
G54700 112 112 112.0 0 112 112.0 0 112 2.0 112 14.8
G54800 108 108 108.0 0 108 108.0 0 108 2.1 108 15.4
G54900 110 110 110.0 0 110 110.0 0 110 1.8 110 15.5
G541000 112 112 112.0 0 112 112.0 0 112 1.4 112 16.4
G10100 896 896 894.3 99 896 894.6 24 882 406.1 880 106.0
G10200 900 900 900.0 1 900 900.0 1 894 302.4 892 116.0
G10300 892 892 890.5 342 892 891.3 71 884 410.4 882 112.0
G10400 898 898 898.0 3 898 898.0 1 892 485.9 894 103.0
G10500 886 886 885.4 48 886 885.4 36 880 400.9 882 106.0
G10600 888 888 888.0 1 888 888.0 1 870 461.8 886 119.0
G10700 900 900 898.1 400 900 898.2 414 890 386.2 894 115.0
G10800 882 882 881.3 39 882 881.2 31 880 466.9 874 104.0
G10900 902 902 900.9 143 902 901.5 63 888 493.6 890 121.0
G101000 894 894 893.5 27 894 893.7 8 886 352.8 886 111.0
G14100 2446 2442 2437.1 581 2444 2437.6 1682 2428 1320.6 2410 382.0
G14200 2458 2456 2452.1 985 2456 2452.4 361 2418 1121.1 2416 351.0
G14300 2442 2440 2432.9 491 2438 2435.5 551 2410 1215.8 2408 377.0
G14400 2450 2446 2440.2 1739 2448 2440.0 1036 2422 1237.2 2414 356.0
G14500 2446 2446 2437.9 877 2444 2438.7 1193 2416 1122.5 2406 388.0
G14600 2450 2448 2441.2 1163 2448 2442.3 884 2424 1213.9 2412 331.0
G14700 2444 2440 2431.5 1829 2440 2435.0 1384 2404 1230.6 2410 381.0
G14800 2448 2442 2436.9 1725 2444 2438.9 1055 2416 1132.0 2418 332.0
G14900 2426 2422 2414.7 1605 2422 2417.3 1185 2412 1213.9 2388 333.0
G141000 2458 2452 2445.8 2097 2454 2448.8 1345 2430 1125.8 2420 391.0

Av. 473.2 377.5 537.3 163.2
Better 0 0 0 0
Equal 21 20 10 10
Worse 9 10 20 20

Table 5.8: Computational results of PR1 and PR2 and comparison with other state-of-
the-art algorithms on MaxCut instances of Set3

PR1 PR2 SS CirCut
Instance BKR

fbest favg tb avg fbest favg tb avg fbest tb avg fbest tb avg

g3-15 283206561 279830931 277345801.1 3000 276903146 273564256.6 1272 281029888 1023 268519648 788
g3-8 41684814 41684814 41508934.7 292 41684814 41521529.9 258 40314704 66 41684814 54
pm3-
15-50

3000 3010 3006.6 1602 3014 3007.3 1890 2964 333 2895 427

pm3-8-
50

458 458 458.0 2 458 458.0 2 442 49 454 39

Av. 1224.0 855.5 367.7 326.9
Better 1 1 0 0
Equal 2 2 0 1
Worse 1 1 4 3
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Table 5.9: Computational results of our PR algorithms on MaxCut instances with longer
CPU time

Instance fbest tb avg Instance fbest tb avg Instance fbest tb avg

G25 13340 3539 G27 3341 3040 G28 3298 17482
G30 3413 4795 G31 3310 10801 G37 7686 3903
G38 7688 17230 G39 2408 3087 G40 2400 11947
G41 2405 945 G42 2481 5580 G55 10274 31764
G56 3993 11727 G57 3484 4968 G58 19225 20499
G59 6039 28790 G60 14131 62466 G61 5748 29056
G62 4854 59568 G63 26941 45136 G64 8693 66851
G65 5544 94934 G66 6340 74375 G67 6928 114438
G70 9529 135572 G72 6978 141167 G14100 2446 2105

G14200 2458 1657 G14600 2450 1476 G14700 2442 2824
G14800 2446 3543 G14900 2426 7165 G141000 2458 8929

find that PR1 and PR2 obtain the same results on 7 instances of set 2, while better results
come from PR2 for the 25 instances of Set1 (except the instance G31).

5.3.3 Experiments on MSCP benchmark

In this section, we recast the minimum sum coloring problem (MSCP) into the BQO
formulation and solve it with the proposed PR2 algorithm. Before presenting our exper-
imental results, we first introduce the MSCP and illustrate how to transform it into the
form of BQO.

5.3.3.1 Minimum sum coloring problem

Given an undirected graph G = (V,E) with vertex set V and edge set E, a K -coloring
of G is a function c : v 7→ c(v) that assigns to each vertex v ∈ V a color c(v), where
c(v) ∈ {1, 2, . . . ,K}. A K -coloring is considered proper if each pair of vertices (u, v)
connected by an edge (u, v) ∈ E receive different colors c(u) ∕= c(v). The minimum sum
coloring problem is to find a proper K -coloring c such that the total sum of colors over
all the vertices

∑

v∈V c(v) is minimized. The minimum value of this sum is called the
chromatic sum of G and denoted by

∑

(G). The number of colors related to the chromatic
sum is called the strength of the Graph and denoted by s(G).

The MSCP is NP-hard for general graphs [Kubicka and Schwenk, 1989] and provides
applications mainly including VLSI design, scheduling and resource allocation [Bar-Noy et
al., 1998; Malafiejski, 2004]. Given the theoretical and practical significance of the MSCP,
effective approximation algorithms and polynomial algorithms have been presented for
some special cases of graphs, such as trees, interval graphs and bipartite graphs [Bar-
Noy and Kortsarz, 1998; Bonomo et al., 2011; Hajiabolhassan et al., 2000; Jansen, 2000;
Kroon et al., 1996; Malafiejski, 2004; Salavatipour, 2003; Thomassen et al., 1989]. For the
purpose of practical solving of the general MSCP, a variety of heuristics have been proposed
in recent years, comprising a parallel genetic algorithm [Kokosinski and Kawarciany, 2007],
a greedy algorithm [Li et al., 2009], a tabu search algorithm [Bouziri and Jouini, 2010], a
hybrid local search algorithm [Douiri and Elbernoussi, 2011], an independent set extraction
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based algorithm [Wu and Hao, 2012] and a local search algorithm [Helmar and Chiarandini,
2011].

5.3.3.2 Transformation of the MSCP to the BQO model

5.3.3.2.1 Linear model for the MSCP Given an undirected graph G = (V,E) with
vertex set V (n = ∣V ∣) and edge set E. Let xuk be 1 if vertex u is assigned color k, and 0
otherwise. The linear programming model for the MSCP can be formulated as follows:

Min f(x) =

n
∑

u=1

K
∑

k=1

k ⋅ xuk

subject to: c1.
K
∑

k=1

xuk = 1, u ∈ {1, . . . , n}

c2. xuk + xvk ≤ 1, ∀(u, v) ∈ E, k ∈ {1, . . . ,K}
c3. xuk ∈ {0, 1}

(5.1)

5.3.3.2.2 Nonlinear BQO alternative The linear model of the MSCP can be recast
into the BQO form according to the following steps:

For the constraints c1., we represent these linear equations by a matrix Ax = b and
incorporate the following penalty transformation [Kochenberger et al., 2004]:

#1 : f1(x) = P (Ax− b)t(Ax− b)

= P [xt(AtA)x− xt(Atb)− (btA)x+ btb]

= P [xt(AtA)x− xt(Atb)− (btA)x] + Pbtb

= xD1x+ c

(5.2)

For the constraints c2., we utilize the quadratic penalty function g(x) = Pxukxvk to
replace each inequality xuk + xvk ≤ 1 in c2. and add them up as follows [Kochenberger et
al., 2004]:

#2 : f2(x) =

n
∑

u=1

n
∑

v=1,u ∕=v

K
∑

k=1

wuvxukxvk

= xD2x

(5.3)

where wuv = P if (u, v) ∈ E and 0 otherwise.
To construct the nonlinear BQO formulation ℎ(x), we first inverse the minimum ob-

jective of the MSCP to be −f(x) in accordance with the general BQO model under a
maximum objective, which becomes the first component of ℎ(x). Then we add the penalty
function f1(x) into ℎ(x) such that f1(x) = 0 if all the linear equations in c1. are satisfied
and otherwise f1(x) is a penalty term with large negative values. In the same way, we
add the penalty function f2(x) into ℎ(x). Hence, the resulting BQO formulation for the
MSCP can be expressed as follows:
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BQO : Max ℎ(x) = −f(x) + f1(x) + f2(x)

= xQ′x+ c
(5.4)

Once the optimal objective value for this BQO formulation is obtained, the minimum
sum coloring value can be readily obtained by taking its inverse value.

Further, a penalty scalar P is considered to be suitable as long as its absolute value ∣P ∣
is larger than half of the maximum color (∣P ∣ > K/2). Consider that penalty functions
should be negative under the case of a maximal objective, we select P = −500 for the
benchmark instances experimented in this paper. The optimized solution x obtained by
solving the nonlinear BQO formulation indicates that such selection ensures both f1(x)
and f2(x) equal to 0. In other words, each variable xuk with the assignment of 1 in the
optimized solution x forms a feasible K-coloring in which vertex u gets the color k.

5.3.3.2.3 An example of the transformation To illustrate the transformation from
the MSCP to the BQO formulation, we consider the following graph with ∣V ∣ = 4 and
expect to find a legal K-coloring with K = 2.

1

2

3

4

Figure 5.1: A graph sample of illustrating the transformation method of MSCP into BQO

Its linear formulation according to Equation (5.1) is:

Max f(x) = −x11 − 2x12 − x21 − 2x22 − x31 − 2x32 − x41 − 2x42

c1. x11 + x12 = 1;

x21 + x22 = 1;

x31 + x32 = 1;

x41 + x42 = 1;

c2. x11 + x21 ≤ 1; x12 + x22 ≤ 1;

x11 + x41 ≤ 1; x12 + x42 ≤ 1;

x21 + x31 ≤ 1; x22 + x32 ≤ 1;

x31 + x41 ≤ 1; x32 + x42 ≤ 1;

c3. x11, x12, . . . , x42 ∈ {0, 1}
Choosing the scalar penalty P = −5, we obtain the following BQO model:

Max f(x) = xQx− 20
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where xQx is written as:

(

x11 x12 . . . x41 x42
)

×

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

4 −5 −5 0 0 0 −5 0
−5 3 0 −5 0 0 0 −5
−5 0 4 −5 −5 0 0 0
0 −5 −5 3 0 −5 0 0
0 0 −5 0 4 −5 −5 0
0 0 0 −5 −5 3 0 −5
−5 0 0 0 −5 0 4 −5
0 −5 0 0 0 −5 −5 3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

×

⎛

⎜

⎜

⎜

⎜

⎜

⎝

x11
x12
...

x41
x42

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Solving this BQO model yields x11 = x22 = x31 = x42 = 1 (all other variables equal
zero) and the optimal objective function value f(x) = −6. Reversing this objective func-
tion value leads to the optimum (the minimum sum coloring) of 6 for this graph.

5.3.3.3 Results of the BQO-PR approach for the MSCP

Our final experiment aims at the evaluation of our proposed BQO-PR approach for the
minimum sum coloring problem. We use a set of 23 graphs4, which are the most of-
ten used benchmark instances in the literature. The time limit for a single run of our
BQO-PR approach is set as follows: 1 hour for the first 16 instances in Table 5.10; 10
hours for dsjc125.1, dsjc125.5, dsjc125.9, dsjc250.1 and dsjc250.5; 20 hours for dsjc250.9
and dsjc500.1. Given the stochastic nature of our approach, each problem instance is
independently solved 20 times.

According to preliminary experiments, we set tt as the maximal value between 40 and
a random integer from the interval [N/100, N/100+50] (where N denotes the number of
variables in the resulting BQO model). In addition, we set � = 2N for the improvement
of the initial solutions in RefSet and � = 500 for the improvement of the solutions on the
path, respectively.

Table 5.10 presents the computational statistics of the BQO model. Columns 1 to 3
give the instance names Instances along with the vertex number V and edge number E
of the graphs. Columns 4 and 5 show the number of colors K to be used and the number
of variables N in the BQO formulation. Column 6 summarizes the best known results
BKR from the previous literature [Bouziri and Jouini, 2010; Douiri and Elbernoussi, 2011;
Helmar and Chiarandini, 2011; Li et al., 2009; Kokosinski and Kawarciany, 2007; Wu and
Hao, 2012]. The columns under the heading of BQO-PR report our results of the BQO
model solved by the PR algorithm: the best objective values Best, the average objective
values Avr, the standard deviation �, the average time tb avg (in seconds) to reach the
best objective value fbest over 20 runs, and the average time (in seconds) tavg consumed
to reach the best objective value obtained in each run. The last two columns of Table
5.10 show the results (the best solution and the time to reach the best solution) of the
CPLEX V12.2 MIP solver using the linear model of Section 5.3.3.2.1. Results marked

4http://mat.gsia.cmu.edu/COLOR/instances.html
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Table 5.10: Computational results of BQO-PR and CPLEX on MSCP instances
BQO-PR CPLEX

Instances V E K N BKR
fbest favg � tb avg tavg fbest tb avg

myciel3 11 20 6 66 21∗ 21 21.0 0.0 < 1 < 1 21 < 1
myciel4 23 71 7 161 45∗ 45 45.0 0.0 < 1 < 1 45 < 1
myciel5 47 236 8 376 93∗ 93 93.0 0.0 2 2 93 1
myciel6 95 755 10 950 189∗ 189 189.0 0.0 497 497 189 123
myciel7 191 2360 10 1910 381 381 384.9 3.7 70 384 383 609
anna 138 493 13 1794 276∗ 276 276.3 0.4 870 721 276 < 1
david 87 406 13 1131 237∗ 237 237.0 0.0 524 524 237 < 1
huck 74 301 13 962 243∗ 243 243.0 0.0 3 3 243 < 1
jean 80 254 12 960 217∗ 217 217.0 0.0 79 79 217 < 1

queen5.5 25 160 7 175 75∗ 75 75.0 0.0 < 1 < 1 75 < 1
queen6.6 36 290 9 324 138∗ 138 138.0 0.0 6 6 138 284
queen7.7 49 476 9 441 196∗ 196 196.0 0.0 6 6 196 1
queen8.8 64 728 10 640 291∗ 291 298.1 5.1 1064 780 291 27595
games120 120 638 10 1200 443∗ 443 446.5 3.2 755 880 443 4
miles250 128 387 10 1280 325∗ 325 328.6 2.3 777 1704 325 < 1
miles500 128 1170 22 2816 705∗ 713 722.5 6.4 653 1942 705 15
DSJC125.1 125 736 8 1000 326 329 338.5 6.3 1684 7115 333 36000
DSJC125.5 125 3891 22 2750 1015 1050 1082.6 20.2 32924 15186 1127 36000
DSJC125.9 125 6961 50 6250 2511 2529 2573.8 26.2 34801 24650 NF –
DSJC250.1 250 3218 12 3000 977 1027 1062.9 16.8 8893 17206 1064 36000
DSJC250.5 250 15668 35 8750 3246 3604 3724.9 59.1 27009 26065 NF –
DSJC250.9 250 27897 80 20000 8286 8604 8869.4 122.2 70737 65673 NF –
DSJC500.1 500 12458 16 8000 2850 3152 3234.1 41.7 42447 59241 3874 72000

in bold indicate BQO-PR or CPLEX matches the BKR on these instances and results
marked as ”NF” suggest no feasible solution are found.

From Table 5.10, we observe that our BQO-PR approach is able to reach the best
known results for 15 out of 23 instances, among which 14 results are proved by CPLEX
to be optimal values. Only very few best heuristics specifically tailored to the MSCP can
compete with this performance for these instances (see Table 5.11, Section 5.3.3.4). To
attain these solutions, BQO-PR needs an average time ranging from less than one second
to 30 minutes. However, BQO-PR fails to match the best known results for the remaining
instances after 0.6 to 18.5 hours.

On the other hand, CPLEX V12.2 solves 15 instances among which a new upper bound
(which is also the optimal solution) for the instance miles500 is discovered. The running
time needed to solve these instances is in most cases short (from less than one second to 10
minutes) with the exception for the problem queen8.8 (requiring about 7.6 hours). For the
remaining 8 instances, CPLEX V12.2 either terminates with an sub-optimal solution (5
cases) which is worse than the best upper bound (and worse than the bound of BQO-PR)
or fails to find a feasible integer solution (3 cases indicated by ’NF’) even after 10 to 20
hours.

5.3.3.4 Comparison with other special purpose algorithms for the MSCP

In order to further evaluate our BQO-PR approach, we show a comparison of the proposed
approach with several special purpose algorithms for the MSCP. These algorithms include
a hybrid local search algorithm HLS [Douiri and Elbernoussi, 2011], an advanced recursive
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Table 5.11: Comparison between BQO-PR and other specific MSCP algorithms
Instances BKR BQO-PR HLS MRLF PGA TS EXSCOL MDS(5)
myciel3 21∗ 21 21 21 21 – 21 21
myciel4 45∗ 45 45 45 45 – 45 45
myciel5 93∗ 93 93 93 93 – 93 93
myciel6 189∗ 189 189 189 189 – 189 189
myciel7 381 381 381 381 382 – 381 381
anna 276∗ 276 – 277 281 – 283 276
david 237∗ 237 – 241 243 – 237 237
huck 243∗ 243 243 244 243 – 243 243
jean 217∗ 217 – 217 218 – 217 217

queen5.5 75∗ 75 – 75 75 – 75 75
queen6.6 138∗ 138 138 138 138 – 150 138
queen7.7 196∗ 196 – 196 196 – 196 196
queen8.8 291∗ 291 – 303 302 – 291 291
games120 443∗ 443 446 446 460 – 443 443
miles250 325∗ 325 343 334 347 – 328 325
miles500 705∗ 713 755 715 762 – 709 712
DSJC125.1 326 329 – 352 – 344 326 326
DSJC125.5 1015 1050 – 1141 – 1103 1017 1015
DSJC125.9 2511 2529 – 2653 – 2631 2512 2511
DSJC250.1 977 1027 – 1068 – 1046 985 977
DSJC250.5 3246 3604 – 3658 – 3779 3246 3281
DSJC250.9 8286 8604 – 8942 – 9198 8286 8412
DSJC500.1 2850 3152 – 3229 – 3205 2850 2951

largest first algorithm MRLF [Li et al., 2009], a parallel genetic algorithm PGA [Kokosinski
and Kawarciany, 2007], a tabu search algorithm TS [Bouziri and Jouini, 2010], a very
recent independent set extraction based heuristic EXSCOL [Wu and Hao, 2012] and a
recent local search heuristic MSD(5) [Helmar and Chiarandini, 2011]. Given that no
computing time is reported in [Bouziri and Jouini, 2010; Douiri and Elbernoussi, 2011;
Kokosinski and Kawarciany, 2007; Li et al., 2009] and different termination conditions
are used in these studies, we would prefer to base the comparison on solution quality.
Table 5.11 presents the best objective values obtained by each algorithm (BQO-PR, HLS,
MRLF, PGA, TS, EXSCOL and MSD(5), respectively) where the best solution values
among them are marked in bold. The results for HLS, PGA and TS which are unavailable
are marked with ”–”.

As we can observe in Table 5.11, the proposed BQO-PR approach outperforms HLS,
MRLF, PGA and TS in terms of the best solution values. Specifically, BQO-PR finds
better solutions than HLS, MRLF, PGA and TS for 3, 14, 8 and 7 instances, respectively.
However, BQO-PR performs less well compared with the most effective MSCP heuristics
EXSCOL and MDS(5) for most instances.

5.3.3.5 A short discussion

From Tables 5.10 and 5.11, we observe that our BQO-PR approach is quite robust to reach
optimal or best known solution values within a short period of time for the instances with
N < 2000 variables in comparison with a slow convergence for instances with many more
BQO variables (see column TAV R in Table 5.10). This can be partially explained by
the fact that the number of the BQO variables (equaling V ⋅ K where V is the number
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of vertices and K is the number of colors) sharply increases with the growth of V and
K. Additionally, at present our approach is not able to solve graph instances with BQO
variables surpassing the threshold value of 20,000 because of the memory limitation. These
obstacles could be overcome by designing more effective data structures used by the BQO
algorithms.

Generally, to improve the efficiency of the BQO approach, it would be useful to in-
tegrate in the BQO implementation dedicated techniques and solution strategies. For
instance, pre-processing techniques could be applied to simplify the input matrix. Specific
techniques can be envisaged to take advantage of particular matrix characteristics (in-
duced by the targeted problem such as the MSCP). Indeed, based on these characteristics
(which could be found in different types of problems), special purpose search mechanisms
and operators could be designed. These possibilities (and certainly many other ones)
constitute interesting research directions.

5.4 Conclusions

In this chapter, we proposed two effective path relinking algorithms for the BQO problem.
The proposed algorithms are composed of a reference set construction method, a tabu
search based improvement method, a reference set update method, a relinking method
and a path solution selection method. The proposed algorithms differ from each other
mainly on the way they generate the path, one employing a greedy strategy (PR1) and
the other employing a random strategy (PR2). Moreover, we investigated the performance
of the proposed PR1 and PR2 algorithms for the minimum cut problem (MaxCut) and
investigated for the first time the possibility of solving the NP-hard minimum sum coloring
problem (MSCP) via binary quadratic optimization (BQO).

Computational experiments with PR1 and PR2 on 134 well-known BQO and MaxCut
benchmark instances have demonstrated that both algorithms are capable of attaining
highly competitive results in comparison with the previous best known results from the
literature. In particular, for 103 MaxCut instances, our algorithms can improve the best
known results for almost 40 percent of these instances whose optimum solutions are still
unknown.

Moreover, computational experiment on 23 MSCP instances have shown that the pro-
posed BQO-PR approach is able to reach competitive solutions when compared with
several special purpose MSCP algorithms for a number of instances. However, due to
the limitation of the current implementation, the BQO approach for the MSCP requires
considerable computing time to find solutions of good quality for large instances. This
study also shows that even if the state of the art CPLEX V12.2 MIP solver can solve some
MSCP instances, the MSCP would remain a very challenging problem for CPLEX V12.2
(and any exact solution approach).

Up to now, we have successfully dealt with the general binary quadratic optimiza-
tion problem without any constraints included. In the next chapter, we are interested in
solving cardinality constrained binary quadratic optimization, also known as the maxi-
mum diversity problem and will develop a tabu search based memetic algorithm for this
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problem.
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Chapter 6

A tabu search based memetic
algorithm for the maximum
diversity problem

This chapter presents a highly effective memetic algorithm based on tabu search for han-
dling a cardinality constrained binary quadratic optimization problem (also known as the
maximum diversity problem (MDP)). The tabu search component uses a successive filter
candidate list strategy and the solution combination component employs a combination
operator based on identifying strongly determined and consistent variables. Computa-
tional experiments on three sets of 40 popular benchmark instances indicate that our
tabu search/memetic algorithm (TS/MA) easily obtains the best known results for all the
tested instances (which no previous algorithm has achieved) and obtains improved results
for 6 instances. Analysis of comparisons with state-of-the-art algorithms demonstrate sta-
tistically that our TS/MA algorithm competes very favorably with the best performing
algorithms. Key elements and properties of TS/MA are also analyzed to disclose the
source of its success. The content of this chapter is based on the paper [Wang et al.,
2012d] submitted to Computers & Operations Research.

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Tabu Search/Memetic Algorithm . . . . . . . . . . . . . . . . . . 99

6.2.1 Main scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.2 Search space and evaluation function . . . . . . . . . . . . . . . . 99

6.2.3 Population initialization, rebuilding and updating . . . . . . . . 100

6.2.4 Tabu search procedure . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.5 Solution combination by reference to critical variables . . . . . . 102

6.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.1 Benchmark instances . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.2 Experimental protocol . . . . . . . . . . . . . . . . . . . . . . . . 104

97



CHAPTER 6. A TABU SEARCH BASED MEMETIC ALGORITHM FOR THE
MAXIMUM DIVERSITY PROBLEM

6.3.3 Computational results for TS/MA . . . . . . . . . . . . . . . . . 106

6.3.4 Comparison with state-of-the-art algorithms . . . . . . . . . . . . 106

6.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4.1 Parameter sensitivity analysis . . . . . . . . . . . . . . . . . . . . 110

6.4.2 Tabu search analysis . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4.3 Solution combination operator analysis . . . . . . . . . . . . . . . 114

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1 Introduction

The maximum diversity problem (MDP) consists in identifying a subset M of a given
cardinality m from a set of elements N , such that the sum of the pairwise distance be-
tween the elements in M is maximized. More precisely, let N = {e1, . . . , en} be a set of
elements and dij be the distance between elements ei and ej. The objective of MDP can
be formulated as follows [Kuo et al., 1993]:

Maximize f(x) =
1

2

n
∑

i=1

n
∑

j=1

dij ⋅ xi ⋅ xj

subject to
n
∑

i=1

xi = m, xi ∈ {0, 1}, i = 1, . . . , n

(6.1)

where each xi is a binary (zero-one) variable indicating whether an element ei ∈ N is
selected to be a member of the subset M .

MDP is an NP-hard problem and provides practical applications mainly including
location, ecological systems, medical treatment, genetics, ethnicity, product design, im-
migration and admissions policies, committee formation, curriculum design, and so on
[Katayama et al., 2005; Mart́ı et al., 2011].

Due to its theoretical significance and many potential applications, various solution
procedures have been devised for the MDP problem. Exact algorithms are able to solve
instances with less than 100 variables in reasonable computing time [Mart́ı et al., 2010].
However, because of the high computational complexity, heuristic and metaheuristic algo-
rithms are commonly used to produce approximate solutions to larger problem instances.
Examples of these methods include various GRASP variants [Andrade et al., 2003; An-
drade et al., 2005; Duarte and Marti, 2007; Silva et al., 2004; Silva et al., 2007], tabu search
based algorithms [Aringhieri et al., 2008; Aringhieri and Cordone, 2011; Palubeckis, 2007;
Wang et al., 2012a], variable neighborhood search [Brimberg J, 2009], iterated greedy
algorithm [Lozano et al., 2011] and hybrid evolutionary algorithm [Gallego et al., 2009;
Katayama et al., 2005]. A review concerning MDP can be found in [Mart́ı et al., 2011].

Our proposed TS/MA falls within the memetic algorithm classification as laid out in
[Neri et al., 2011] (and in particular adopts the scatter search template described in [Glover
and Laguna, 1997]). First, we use tabu search to improve each solution generated initially
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or created by combining members of a current population. The TS moves are simple swaps
that flip (or add and drop) solution elements, drawing on the successive filter candidate list
strategy [Glover and Laguna, 1997] to accelerate the move evaluations. Second, we design
a solution combination operator to take advantage of solution properties by reference to
the analysis of strongly determined and consistent variables [Glover, 1977]. Finally, we
introduce a population rebuilding strategy that effectively maintains population diversity.

In order to evaluate the performance of TS/MA, we conduct experimental tests on
3 sets of challenging benchmarks with a total of 40 instances. The test results indicate
that TS/MA yields highly competitive outcomes on these instances by finding improved
best known solutions for 6 instances and matching the best known results for the other
instances. Furthermore, we analyze the influence of some critical components and demon-
strate their key roles to the performance of the proposed TS/MA algorithm.

6.2 Tabu Search/Memetic Algorithm

Algorithms that combine improvement methods with population-based solution combina-
tion algorithms, and hence that can be classified as memetic algorithms [Neri et al., 2011],
often prove effective for discrete optimization [Hao, 2011]. By linking the global character
of recombinant search with the more intensive focus typically provided by local search,
the memetic framework offers interesting possibilities to create a balance between intensi-
fication and diversification within a search procedure. Our TS/MA algorithm follows the
general memetic framework and is mainly composed of four components: a population
initialization and rebuilding procedure, a tabu search procedure, a specific solution com-
bination operator and a population updating rule. As previously noted, our procedure
more specifically adopts the form of a scatter search procedure, and utilizes combinations
from the structured class proposed for scatter search in [Glover, 1994].

6.2.1 Main scheme

The general architecture of our TS/MA algorithm is described in Algorithm 6.1. It starts
with the creation of an initial population P (line 3, Section 6.2.3). Then, the solution
combination is employed to generate new offspring solution (line 8, Section 6.2.5), where-
upon a TS procedure (line 9, Section 6.2.4) is launched to optimize each newly generated
solution. Subsequently, the population updating rule decides whether such an improved
solution should be inserted into the population and which existing individual should be
replaced (line 13, Section 6.2.3). Finally, if the population is not updated for a certain
number of generations, the population rebuilding procedure is triggered to build a new
population (line 20, Section 6.2.3). In the following subsections, the main components of
our TS/MA algorithm are described in detail.

6.2.2 Search space and evaluation function

Given an n element set N = {e1, . . . , en}, the search space Ψ of MDP consists of all the
m-elements subsets of N ; i.e., Ψ = {S∣S ⊂ N, ∣S∣ = m}. Thus the search space size
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Algorithm 6.1: Outline of the TS/MA algorithm for MDP

1: Input: an n× n matrix (dij), a given cardinality m ≤ n
2: Output: the best solution x∗ found
3: P = {x1, . . . , xp} ← Population Initialization( ) /∗ Section 6.2.3 ∗/
4: x∗ = arg max{f(xi)∣i = 1, . . . , p}
5: while a stop criterion is not satisfied do

6: repeat

7: randomly choose two solutions xi and xj from P
8: x0 ← Combination Operator(xi, xj) /∗ Section 6.2.5 ∗/
9: x0 ← Tabu Search(x0) /∗ Section 6.2.4 ∗/

10: if f(x0) > f(x∗) then
11: x∗ = x0

12: end if

13: {x1, . . . , xp} ← Population Updating(x0, x1, . . . , xp) /∗ Section 6.2.3 ∗/
14: if P does not change then

15: UpdatingNonSuccess = UpdatingNonSuccess+ 1
16: else

17: UpdatingNonSuccess = 0
18: end if

19: until UpdatingNonSuccess > �
20: P = {x1, . . . , xp} ← Population Rebuliding() /∗ Section 6.2.3 ∗/
21: end while

equals
(

n
m

)

. A feasible solution of MDP can be conveniently represented as an n-vector of
binary variables x such that exactly m variables receive the value of 1 and the other n−m
variables receive the value of 0. Given a solution x ∈ Ψ, its quality or fitness is directly
measured by the objective function f(x) of Eq. 6.1.

6.2.3 Population initialization, rebuilding and updating

The initial population contains p different local optimal solutions and is constructed as
follows. First, we randomly generate an initial feasible solution, i.e., any n-vector with
exactly m elements assigned the value of 1. Then this solution is submitted to the tabu
search procedure to obtain an improved solution which is also a local optimum but not a
first local optimum encountered (see Section 6.2.4). Then, the solution improved by tabu
search is added in the population if it does not duplicate any solution in the population.
This procedure is repeated until the population size reaches the specified value p.

This procedure is also used by the TS/MA algorithm when the population is not
updated for � consecutive generations (� is a parameter and called the population rebuilding
threshold). In this case, the population is recreated as follows. First, the best solution
x∗ from the old population becomes the first member of the new population. Second, for
each of the remaining solutions in the old population, we carry out the following steps:
(1) randomly interchange � ⋅m variables with the value of 1 and � ⋅m variables with the
value of 0 where 0 < � < 1 (� is a parameter and called the perturbation fraction); (2) this
perturbed solution is submitted to tabu search to obtain an improved solution; (3) if this
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refined solution is not a duplication of any solution in the new population, it is added in
the new population; otherwise, the method returns to step (1).

The population updating procedure is invoked each time a new offspring solution is
generated by the combination operator and then improved by tabu search. As in a simple
version of the scatter search template of [Glover and Laguna, 1997], the improved offspring
solution is added into the population if it is distinct from any solution in the population and
better than the worst solution, while the worst solution is removed from the population.

6.2.4 Tabu search procedure

To improve the quality of a solution, we use a tabu search procedure which applies a
constrained swap operator to exchange a variable having the value of 1 with a variable
having the value of 0. More formally, given a feasible solution x = {x1, . . . , xn}, let U
and Z respectively denote the set of variables with the value of 1 and 0 in x. Then, the
neighborhood N(x) of x consists of all the solutions obtained by swapping two variables
xi ∈ U and xj ∈ Z. Since this swap operator keeps the m cardinality constraint satisfied,
the neighborhood contains only feasible solutions. Clearly, for a given solution x, its
neighborhood N(x) has a size of m ⋅ (n−m).

To rapidly determine the move gain (the objective change on passing from the current
solution to its neighboring solution), we apply the following technique:

First, we employ a vector Δ to record the objective variation of moving a variable xi
from its current subset U/Z into the other subset Z/U . This vector can be initialized as
follows:

Δi =

{

∑

j∈U −dij (xi ∈ U)
∑

j∈U dij (xi ∈ Z)
(6.2)

Then, the move gain of interchanging two variables xi ∈ U and xj ∈ Z can be calculated
using the following formula:

�ij = Δi +Δj − dij (6.3)

Finally, once a move is performed, we just need to update a subset of move gains
affected by the move. Specifically, the following abbreviated calculation can be performed
to update Δ upon swapping variables xi and xj [Lü et al., 2012]:

Δk =

⎧









⎨









⎩

−Δi + dij (k = i)

−Δj + dij (k = j)

Δk + dik − djk (k ∕= {i, j}, xk ∈ U)

Δk − dik + djk (k ∕= {i, j}, xk ∈ Z)

(6.4)

Given the size of the swap neighborhood which is equal to m ⋅ (n − m), it could be
computationally costly to identify the best move at each iteration of tabu search. To
overcome this obstacle, we employ the successive filter candidate list strategy of [Glover
and Laguna, 1997] that breaks a compound move (like a swap) into component operations
and reduces the set of moves examined by restricting consideration to those that produce
high quality outcomes for each separate operation.
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For the swap move, we first subdivide it into two successive component operations:
(1) move the variable xi from U to Z; (2) move the variable xj from Z to U . Since the
resulting objective difference of each foregoing operation can be easily obtained from the
vector Δ, we then pick for each component operation top cls variables in terms of their Δ
values recorded in a non-increasing order to construct the candidate lists UCL and ZCL.
Finally, we restrict consideration to swap moves involving variables from UCL and ZCL.
The benefits of this strategy will be verified in Section 6.4.

To ensure solutions visited within a certain span of iterations will not be revisited,
tabu search typically incorporates a short-term memory, known as tabu list [Glover and
Laguna, 1997]. In our implementation, each time two variables xi and xj are swapped, two
random integers are taken from an interval tt = [a, b] (where a and b are chosen integers)
as the tabu tenure of variables xi and xj to prevent any move involving either xi or xj
from being selected for a specified number of iterations. (The integers defining the range
of tt are parameters of our procedure, identified later.) Specifically, our tabu list is defined
by a n-element vector T . When xi and xj are swapped, we assign the sum of a random
integer from tt and the current iteration count Iter to the itℎ element T [i] of T and the
sum of another random integer from tt and Iter to T [j]. Subsequently, for any iteration
Iter, a variable xk is forbidden to take part in a swap move if T [k] > Iter.

Tabu search then restricts consideration to variables not currently tabu, and at each
iteration performs a swap move that produces the best (largest) move gain according to
Eq. (6.3). In the case that two or more swap moves have the same best move gain, one of
them is chosen at random.

To accompany this rule, a simple aspiration criterion is applied that permits a move
to be selected in spite of being tabu if it leads to a solution better than the best solution
found so far. The tabu search procedure terminates when the best solution cannot be
improved within a given number � of iterations which we call the improvement cutoff.

The pseudo-code of the tabu search procedure is shown in Algorithm 6.1.

6.2.5 Solution combination by reference to critical variables

Our memetic algorithm uses a dedicated solution combination operator to generate promis-
ing offspring solutions. The combination operator is based on the idea of critical variables
which are given the name strongly determined and consistent variables in [Glover, 1977].
In the context of MDP, the notion of strongly determined and consistent variables can be
defined as follows.

Definition 1 (Strongly determined variables). Relative to a given solution x =
{x1, x2, ..., xn}, let U denote the set of variables with the value of 1 in x. Then, for a
specific variable xi ∈ U , the (objective function) contribution of xi in relation to x is
defined as:

V Ci(x) =
∑

xj∈U
dij (6.5)

Obviously, the objective function of MDP can be computed with regard to V C as
follows:

102



6.2. TABU SEARCH/MEMETIC ALGORITHM

Algorithm 6.2: Pseudo-code of the tabu search procedure for MDP

1: Input: a given solution x and its objective function value f(x)
2: Output: an improved solution x∗ and its objective function value f(x∗)
3: Initialize vector Δ according to Eq. 6.2, initialize tabu list vector T by assigning each element

with value 0, initialize U and Z composed of variables with value of 1 and 0 in x, respectively,
Iter = 0, NonImpIter = 0

4: while NonImpIter < � do

5: Identify top cls variables from U and top cls variables from Z in terms of the Δ value to
construct UCL and ZCL

6: Identify the index i∗nt and j∗nt of non-tabu variables from UCL and ZCL that leads to the
maximum � value (computed according to Eq. 6.3) by swapping xi∗nt

and xj∗nt
(break ties

randomly); Similarly identify i∗t and j∗t for tabu variables
7: if �i∗t j∗t > �i∗ntj

∗

nt
and f(x∗) + �i∗t j∗t > f(x∗) then

8: i∗ = i∗t , j
∗ = j∗t

9: else

10: i∗ = i∗nt, j
∗ = j∗nt

11: end if

12: xi∗ = 0, xj∗ = 1, f(x) = f(x) + �i∗j∗ , U = U∖{xi∗} ∪ {xj∗}, Z = Z ∪ {xi∗}∖{xj∗}
13: Update Δ according to Eq. 6.4
14: Update T by assigning T [i] = Iter + rand(tt), T [j] = Iter + rand(tt)
15: if f(x) > f(x∗) then
16: x∗ = x, f(x∗) = f(x)
17: NonImpIter = 0
18: else

19: NonImpIter = NonImpIter + 1
20: end if

21: Iter = Iter + 1
22: end while

f(x) =
1

2
⋅
∑

xi∈U
V Ci(x) (6.6)

We sort all the variables in a non-increasing order according to their objective function
contribution and select top � variables (� is a parameter of our algorithm) as strongly
determined variables SD.

Definition 2 (Consistent variables). Relative to two local optimal (high quality)
solutions xi and xj , let Ui and Uj respectively denote the set of variables with the value
of 1 in xi and xj . Then, the consistent variables are defined as:

C = {xk∣xk ∈ Ui ∩ Uj} (6.7)

Given two local optimal solutions xi and xj and a set of variables N , our critical
variable combination operator constructs one offspring solution according to the following
steps:

1. Identify strongly determined variables SDi and SDj with regard to xi and xj , re-
spectively;
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2. Select consistent variables that simultaneously emerges in SDi and SDj ; i.e., C =
SDi ∩ SDj;

3. Randomly pick m-∣C∣ variables from the set N -C to satisfy the cardinality constraint
(maintaining the number of variables with the value of 1 equal to m);

4. Construct a feasible offspring solution by assigning the value 1 to the variables
selected in steps (2) and(3) and assigning the value 0 to the remaining variables.

6.3 Experimental results

6.3.1 Benchmark instances

Three sets of benchmarks with a total of 40 large instances (with at least 2000 variables)
are utilized to evaluate the performance of the proposed approach. Small and medium
scale benchmarks are excluded in our experimentation because these problem instances
can be easily solved by many heuristics in a very short time and present no challenge for
our TS/MA algorithm.

1. Random Type 1 instances (Type1 22): 20 instances with n = 2000,m = 200,
where dij are integers generated from a [0,10] uniform distribution. These in-
stances are first introduced in [Duarte and Marti, 2007] and can be downloaded
from: http://www.uv.es/∼rmarti/paper/mdp.html.

2. ORLIB instances (b2500): 10 instances with n = 2500,m = 1000, where dij are
integers randomly generated from [-100,100]. They all have a density of 0.1. These
instances are derived from the BQO problem by ignoring the diagonal elements and
are available from ORLIB.

3. Palubeckis instances (p3000 and p5000): 5 instances with n = 3000,m = 0.5n and 5
instances with n = 5000,m = 0.5n, where dij are integers generated from a [0,100]
uniform distribution. The density of the distance matrix is 10%, 30%, 50%, 80%
and 100%. The sources of the generator and input files to replicate these problem
instances can be found at: http://www.soften.ktu.lt/∼gintaras/max div.html.

6.3.2 Experimental protocol

Our TS/MA algorithm is programmed in C and compiled using GNU g++ on a Xeon
E5440 with 2.83GHz CPU and 8GB RAM. All computational results were obtained with
the parameter values shown in Table 6.1. Given the stochastic nature of our algorithm,
we solve each instance in the Type1 22 and ORLIB benchmarks 30 times, and solve each
instance in the Palubeckis benchmark 15 times. For comparative purposes, TS/MA has
the same time limit as other reference algorithms, which is set to 20, 300, 600 and 1800
seconds for each instance of Type1 22, b2500, p3000 and p5000, respectively.
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Table 6.1: Settings of important parameters of the TS/MA algorithm
Parameters Section Description Value
p 6.2.3 population size 10
� 6.2.3 population rebuilding threshold 30
� 6.2.3 perturbation fraction 0.3
tt 6.2.4 tabu tenure interval [15,25]
� 6.2.4 tabu search improvement cutoff 6 ⋅m
cls 6.2.4 candidate list size of each component operation min(

√
m,

√
n−m)

� 6.2.5 number of strongly determined variables 0.7 ⋅m

Table 6.2: Computational results of TS/MA for Type1 22 instances
TS/MA

Instance BKR Best Succ. Avg. � Tbest Tavg.

Type1 22.1 114271 114271(0) 17/30 114265.03(5.97) 12.18 14.69 14.95
Type1 22.2 114327 114327(0) 28/30 114318.60(8.40) 31.43 6.06 6.47
Type1 22.3 114195 114195(0) 14/30 114183.77(11.23) 14.77 11.36 11.33
Type1 22.4 114093 114093(0) 2/30 114076.13(16.87) 14.31 18.13 11.97
Type1 22.5 114196 114196(0) 7/30 114164.63(31.37) 28.58 12.51 12.67
Type1 22.6 114265 114265(0) 9/30 114248.57(16.43) 12.67 8.12 10.54
Type1 22.7 114361 114361(0) 30/30 114361.00(0.00) 0.00 5.12 5.12
Type1 22.8 114327 114327(0) 21/30 114313.87(13.13) 29.01 7.33 8.43
Type1 22.9 114199 114199(0) 8/30 114191.00(8.00) 12.20 8.24 10.87
Type1 22.10 114229 114229(0) 25/30 114227.27(1.73) 4.89 9.76 9.64
Type1 22.11 114214 114214(0) 6/30 114191.57(22.43) 18.43 13.76 12.76
Type1 22.12 114214 114214(0) 6/30 114189.50(24.50) 21.12 10.95 10.74
Type1 22.13 114233 114233(0) 22/30 114230.33(2.67) 6.95 11.74 11.60
Type1 22.14 114216 114216(0) 28/30 114214.70(1.30) 4.95 8.21 8.23
Type1 22.15 114240 114240(0) 9/30 114239.27(0.73) 0.51 15.70 11.57
Type1 22.16 114335 114335(0) 22/30 114331.40(3.60) 7.48 9.11 9.52
Type1 22.17 114255 114255(0) 12/30 114245.20(9.80) 9.78 8.42 10.97
Type1 22.18 114408 114408(0) 15/30 114406.93(1.07) 1.12 6.13 8.24
Type1 22.19 114201 114201(0) 24/30 114196.47(4.53) 9.45 6.52 6.73
Type1 22.20 114349 114349(0) 25/30 114341.37(7.63) 23.33 11.56 11.88

Av. (0) 16.5/30 (9.57) 13.158 10.171 10.212

Table 6.3: Computational results of TS/MA for ORLIB instances
TS/MA

Instance BKR Best Succ. Avg. � Tbest Tavg.

b2500-1 1153068 1153068(0) 28/30 1152983.20(84.80) 317.29 78.33 82.01
b2500-2 1129310 1129310(0) 24/30 1129224.87(85.13) 195.90 124.79 139.29
b2500-3 1115538 1115538(0) 24/30 1115399.60(138.40) 276.80 78.13 81.75
b2500-4 1147840 1147840(0) 19/30 1147701.33(138.67) 216.29 108.33 109.71
b2500-5 1144756 1144756(0) 23/30 1144702.87(53.13) 126.81 49.65 45.52
b2500-6 1133572 1133572(0) 24/30 1133517.60(54.40) 108.80 63.74 62.74
b2500-7 1149064 1149064(0) 17/30 1148977.13(86.87) 116.40 87.16 87.04
b2500-8 1142762 1142762(0) 23/30 1142731.33(30.67) 160.70 70.33 30.67
b2500-9 1138866 1138866(0) 30/30 1138866.00(0.00) 0.00 77.63 77.63
b2500-10 1153936 1153936(0) 30/30 1153936.00(0.00) 0.00 71.22 71.22

Av. (0) 24.2/30 (67.21) 151.899 80.937 83.071
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Table 6.4: Computational results of TS/MA for Palubeckis instances
TS/MA

Instance BKR Best Succ. Avg. � Tbest Tavg.

p3000-1 6502308 6502330(-22) 6/15 6502282.80(25.20) 39.98 247.92 332.45
p3000-2 18272568 18272568(0) 14/15 18272560.87(7.13) 26.69 114.72 129.23
p3000-3 29867138 29867138(0) 15/15 29867138.00(0.00) 0.00 78.64 78.64
p3000-4 46915044 46915044(0) 15/15 46915044.00(0.00) 0.00 214.77 214.77
p3000-5 58095467 58095467(0) 14/15 58095448.47(18.53) 69.35 136.47 131.38
p5000-1 17509215 17509369(-154) 13/15 17509325.80(-110.8) 116.74 1034.80 1012.41
p5000-2 50102729 50103071(-342) 7/15 50103060.07(-331.07) 12.49 840.94 1003.51
p5000-3 82039686 82040316(-630) 3/15 82040150.13(-464.13) 85.02 1239.04 1228.27
p5000-4 129413112 129413710(-598) 3/15 129413543.13(-431.13) 138.10 1164.76 1002.71
p5000-5 160597781 160598156(-375) 3/15 160598009.87(-228.87) 103.71 1434.65 1045.47
Av. (-212.1) 9.6/15 (151.51) 59.208 650.671 617.884

6.3.3 Computational results for TS/MA

Tables 6.2, 6.3 and 6.4 respectively show the computational statistics of the TS/MA
algorithm on the 20 Type1 22 instances, 10 ORLIB instances and 10 Palubeckis instances.
In each table, columns 1 and 2 give the instance names (Instance) and the best known
results (BKR) reported in the literature [Brimberg J, 2009; Lozano et al., 2011; Palubeckis,
2007; Wang et al., 2012a]. The columns under the heading TS/MA report the best solution
values (Best) along with the gap of Best to BKR shown in parenthesis (BKR-Best), the
success rate (Succ.) for reaching Best, the average solution values (Avg.) along with the
gap of Avg. to BKR shown in parenthesis (BKR-Avg.), the standard deviation (�), the
average time (Tbest) to reach Best and the average time (Tavg.) to reach the solution value
at the end of each run (in seconds). Results marked in bold indicate that TS/MA matches
BKR and if also marked in italic indicate that TS/MA improves BKR. Furthermore, the
last row Av. summarizes TS/MA’s average performance over the whole set of benchmark
instances.

From Tables 6.2, 6.3 and 6.4, we observe that TS/MA can easily reach the best known
results for all the tested instances within the given time limit, which none of current
state-of-the-art algorithms can compete with. In particular, TS/MA improves the best
known results for 6 Palubeckis instances and even its average quality is better than the
best known results previously reported in the literature.

6.3.4 Comparison with state-of-the-art algorithms

In order to further evaluate our TS/MA algorithm, we compare it with four best perform-
ing algorithms recently proposed in the literature. These reference methods are Iterated
Tabu Search (ITS) [Palubeckis, 2007], Variable Neighborhood Search (VNS) [Brimberg J,
2009], Tuned Iterated Greedy (TIG) [Lozano et al., 2011] and Learnable Tabu Search
with Estimation of Distribution Algorithm (LTS-EDA) [Wang et al., 2012a]. The results
of these reference algorithms are directly extracted from [Wang et al., 2012a].

Tables 6.5, 6.6 and 6.7 display the best and average solution values obtained by ITS,
VNS, TIG, LTS-EDA and our TS/MA algorithm. Since the absolute solution values are
very large, we report the gap of best and average solution values to the best known results.
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Table 6.5: Comparison among TS/MA and other state-of-the-art algorithms for Type1 22
instances

ITS[2007] VNS[2009] TIG[2011] LTS-EDA[2012] TS/MA
Instance BKR Best Avg. Best Avg. Best Avg. Best Avg. Best Avg.
Type1 22.1 114271 65 209.87 48 150.60 48 101.57 5 60.73 0 5.97
Type1 22.2 114327 29 262.27 0 168.87 0 69.90 0 89.87 0 8.40
Type1 22.3 114195 69 201.40 19 110.83 5 117.77 0 98.97 0 11.23
Type1 22.4 114093 22 200.53 70 188.13 58 141.93 0 79.87 0 16.87
Type1 22.5 114196 95 273.27 87 184.10 99 194.70 51 134.47 0 31.37
Type1 22.6 114265 41 168.17 30 99.30 9 96.20 0 40.17 0 16.43
Type1 22.7 114361 12 167.47 0 56.30 0 71.27 0 18.20 0 0.00
Type1 22.8 114327 25 256.40 0 163.33 0 193.60 0 159.10 0 13.13
Type1 22.9 114199 9 139.83 16 78.47 16 80.37 0 70.97 0 8.00
Type1 22.10 114229 24 204.93 7 139.33 35 121.43 0 56.20 0 1.73
Type1 22.11 114214 74 237.77 42 145.13 59 139.57 3 69.87 0 22.43
Type1 22.12 114214 55 249.53 95 143.30 88 156.00 15 84.93 0 24.50
Type1 22.13 114233 93 279.87 22 168.07 42 167.40 6 85.30 0 2.67
Type1 22.14 114216 92 248.50 117 194.30 64 202.80 0 81.00 0 1.30
Type1 22.15 114240 11 117.50 1 62.87 6 80.53 0 22.03 0 0.73
Type1 22.16 114335 11 225.40 42 215.43 35 67.90 0 36.47 0 3.60
Type1 22.17 114255 56 217.53 0 170.00 18 144.53 6 57.07 0 9.80
Type1 22.18 114408 46 169.97 0 57.10 2 117.37 2 22.83 0 1.07
Type1 22.19 114201 34 243.20 0 124.60 0 144.37 0 35.87 0 4.53
Type1 22.20 114349 151 270.67 65 159.43 45 187.23 0 95.40 0 7.63

Av. 50.7 217.204 33.05 138.97 31.45 129.82 4.4 69.97 0 9.57

Table 6.6: Comparison among TS/MA and other state-of-the-art algorithms for ORLIB
instances

ITS[2007] VNS[2009] TIG[2011] LTS-EDA[2012] TS/MA
Instance BKR Best Avg. Best Avg. Best Avg. Best Avg. Best Avg.
b2500-1 1153068 624 3677.33 96 1911.93 42 1960.33 0 369.20 0 84.80
b2500-2 1129310 128 3677.33 88 1034.33 1096 1958.47 154 453.53 0 85.13
b2500-3 1115538 316 3281.93 332 1503.67 34 2647.87 0 290.40 0 138.40
b2500-4 1147840 870 2547.93 436 1521.07 910 1937.13 0 461.73 0 138.67
b2500-5 1144756 356 1800.27 0 749.40 674 1655.87 0 286.07 0 53.13
b2500-6 1133572 250 2173.47 0 1283.53 964 1807.60 80 218.00 0 54.40
b2500-7 1149064 306 1512.60 116 775.47 76 1338.73 44 264.60 0 86.87
b2500-8 1142762 0 247.73 96 862.47 588 1421.53 22 146.47 0 30.67
b2500-9 1138866 642 2944.67 54 837.07 658 1020.60 6 206.33 0 0.00
b2500-10 1153936 598 2024.60 278 1069.40 448 1808.73 94 305.27 0 0.00

Av. 409 2388.79 149.6 1154.83 549 1755.69 40 300.16 0 67.21

Table 6.7: Comparison among TS/MA and other state-of-the-art algorithms for Palubeckis
instances

ITS[2007] VNS[2009] TIG[2011] LTS-EDA[2012] TS/MA
Instance BKR Best Avg. Best Avg. Best Avg. Best Avg. Best Avg.
p3000-1 6502308 466 1487.53 273 909.80 136 714.67 96 294.07 -22 25.20
p3000-2 18272568 0 1321.60 0 924.20 0 991.07 140 387.00 0 7.13
p3000-3 29867138 1442 2214.73 328 963.53 820 1166.13 0 304.33 0 0.00
p3000-4 46915044 1311 2243.93 254 1068.47 426 2482.20 130 317.07 0 0.00
p3000-5 58095467 423 1521.60 0 663.00 278 1353.27 0 370.40 0 18.53
p5000-1 17509215 2200 3564.93 1002 1971.27 1154 2545.80 191 571.00 -154 -110.8
p5000-2 50102729 2910 4786.80 1478 2619.00 528 2511.73 526 892.80 -342 -331.07
p5000-3 82039686 5452 8242.33 1914 3694.40 2156 6007.13 704 1458.53 -630 -464.13
p5000-4 129413112 1630 5076.90 1513 2965.90 1696 3874.80 858 1275.20 -598 -431.13
p5000-5 160597781 2057 4433.90 1191 2278.30 1289 2128.90 579 1017.90 -375 -228.87
Av. 1789.1 3489.43 795.3 1805.79 848.3 2377.57 322.4 688.83 -212.1 -151.51
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Table 6.8: TS/MA versus ITS, VNS, TIG and LTS-EDA (Wilcoxon’s test at the 0.05
level)

Type1 22 ORLIB Palubeckis
p-value Diff.? p-value Diff.? p-value Diff.?

ITS 1.91e-06 Yes 0.002 Yes 0.002 Yes
VNS 1.91e-06 Yes 0.002 Yes 0.002 Yes
TIG 1.91e-06 Yes 0.002 Yes 0.002 Yes

LTS-EDA 1.91e-06 Yes 0.002 Yes 0.002 Yes

Table 6.9: Post-hoc test for solution sets obtained by varying p
p = 5 10 20 30 40
10 0.00057
20 0.00665 0.98856
30 0.00954 0.97713 1.00000
40 0.67881 0.08822 0.33919 0.40233
50 0.99509 0.00447 0.03686 0.05000 0.93341

Smaller gaps indicate better performances. Negative gaps represent improved results. The
best performances among the 5 compared algorithms are highlighted in bold. In addition,
the averaged results over the whole set of instances are presented in the last row.

As we can observe from Tables 6.5, 6.6 and 6.7, our TS/MA algorithm outperforms the
four reference algorithms in terms of both the best and average solution values. Specifically,
TS/MA is able to match or surpass the best known results for all the 40 instances, while
ITS, VNS TIG and LTS-EDA can only match for 2, 10, 5 and 19 out of 40 instances,
respectively. Furthermore, the average gap to the best known results of TS/MA is much
smaller than that of each reference algorithm.

We also conduct nonparametric statistical tests to verify the observed differences be-
tween TS/MA and the reference algorithms in terms of solution quality are statistically
significant. Table 6.8 summarizes the results by means of the Wilcoxon signed-ranked
test, where p-value<0.05 indicates that there is significant difference between our TS/MA
algorithm and a reference algorithm. We observe that TS/MA is significantly better than
all these reference algorithms for each set of benchmark.

In sum, this comparison demonstrates the efficacy of our TS/MA algorithm in attaining
the best and average solution values.

Table 6.10: Post-hoc test for solution sets obtained by varying �
� = 10 20 30 40
20 0.94381
30 0.97070 0.99994
40 0.06421 0.32684 0.26205
50 0.00410 0.04573 0.03171 0.90493
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Table 6.11: Post-hoc test for solution sets obtained by varying tt
tt = [1,15] [15,25] [15,50] [25,50] [25,100]

[15,25] 0.00039
[15,50] 0.03906 0.80788
[25,50] 0.03907 0.80786 1.00000
[25,100] 0.98891 0.00492 0.19158 0.19122
[50,100] 0.99959 0.00009 0.01470 0.01478 0.93517

Table 6.12: Post-hoc test for solution sets obtained by varying �
� = m 2 ⋅ m 3 ⋅ m 4⋅ m 5⋅ m 6⋅ m 7⋅ m 8⋅ m 9 ⋅m
2 ⋅m 0.85330
3 ⋅m 0.40765 0.99961
4 ⋅m 0.18981 0.98742 0.99999
5 ⋅m 0.07000 0.90758 0.99887 1.00000
6 ⋅m 0.00000 0.00091 0.01459 0.05167 0.15025
7 ⋅m 0.09187 0.93831 0.99961 1.00000 1.00000 0.11842
8 ⋅m 0.56656 0.99999 1.00000 0.99983 0.99200 0.00640 0.99624
9 ⋅m 0.00238 0.30550 0.76509 0.93839 0.99371 0.74514 0.98743 0.61304
10 ⋅m 0.00033 0.10856 0.45123 0.72441 0.91867 0.94677 0.88215 0.30514 0.99999

Table 6.13: Post-hoc test for solution sets obtained by varying cls
cls = m0.1 m0.2 m0.3 m0.4 m0.5 m0.6 m0.7 m0.8 m0.9

m0.2 0.54620
m0.3 0.00009 0.20682
m0.4 0.00000 0.00069 0.80485
m0.5 0.00000 0.00001 0.27148 0.99846
m0.6 0.00000 0.00400 0.96156 0.99999 0.96747
m0.7 0.00006 0.16582 1.00000 0.85461 0.32774 0.97735
m0.8 0.02148 0.93895 0.96158 0.09351 0.00663 0.25356 0.93893
m0.9 0.36772 1.00000 0.34752 0.00210 0.00003 0.01062 0.28899 0.98470
m1.0 0.99005 0.99004 0.00952 0.00000 0.00000 0.00003 0.00676 0.32694 0.95488

Table 6.14: Post-hoc test for solution sets obtained by varying �
� = 0.1 ⋅m 0.2 ⋅m 0.3 ⋅m 0.4 ⋅m 0.5 ⋅m 0.6 ⋅m 0.7 ⋅m 0.8 ⋅m 0.9 ⋅m

0.2 ⋅m 1.00000
0.3 ⋅m 0.89398 0.91762
0.4 ⋅m 0.40401 0.44709 0.99885
0.5 ⋅m 0.08163 0.09732 0.89377 0.99942
0.6 ⋅m 0.02051 0.02487 0.63285 0.97663 0.99999
0.7 ⋅m 0.00309 0.00376 0.28305 0.80029 0.99359 1.00000
0.8 ⋅m 0.93734 0.95360 1.00000 0.99617 0.83526 0.54017 0.21556
0.9 ⋅m 0.99999 1.00000 0.95358 0.53992 0.13699 0.03792 0.00602 0.97662
1.0 ⋅m 1.00000 1.00000 0.93739 0.49383 0.11605 0.03077 0.00497 0.96654 1.00000
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6.4 Analysis

6.4.1 Parameter sensitivity analysis

We first show a parameter sensitivity analysis based on a subset of 11 instances. For each
TS/MA parameter, we test a number of possible values while fixing the other parameters
to their default values from Table 6.1. We test p (population size) in the range [5, 50],
� (population rebuilding threshold) in the range [10, 50], � (tabu search perturbation
fraction) in the range [0.1, 1.0], � (tabu search improvement cutoff) in the range [m, 10⋅m],
cls (candidate list size) in the range [m0.1,m1.0] and � (number of strongly determined
variables) in the range [0.1⋅m,m]. Similarly, for the tabu tenure tt, we try several intervals
in the range [1,100]. For each instance and each parameter setting, we conduct experiments
under exactly the same conditions as before.

We use the Friedman test to see whether the performance of TS/MA varies significantly
in terms of its average solution values when we vary the value of a single parameter as
mentioned above. The Friedman test indicates that the values of � do not significantly
affect the performance of TS/MA (with p-value=0.2983). This means that TS/MA is not
very sensitive to the perturbation fraction when rebuilding the population. However, the
Friedman test reveals a statistical difference in performance to the different settings of
parameters p, �, tt, �, cls and � (with p-values of 0.000509, 0.004088, 0.0001017, 1.281e-
07, 1.735e-11 and 0.002715, respectively). Hence, we perform the Post-hoc test to examine
the statistical difference between each pair of settings of these parameters and show the
results in Tables 6.9 to 6.14. We observe that although certain pairs of settings present
significant differences (with p-value<0.05), there does not exist a determined setting for
each parameter that is significantly better than all the other settings.

To further investigate the performance of TS/MA with different settings for each pa-
rameter, we show in Figure 6.1 the box and whisker plots which depict the smallest result,
lower quartile, median, upper quartile, and the largest result obtained with each param-
eter value. For the sake of clarity, these results are displayed as the percentage deviation
of the average results from the best-known results reported in the literature, computed as
BKR−Avg.

BKR ⋅ 100%.

From the box and whisker plots in Figure 6.1, we obtain the following observations.
First, setting p ∈ {10, 20, 30}, � ∈ {10, 20, 30}, tt ∈ [15, 25], � ∈ {6 ⋅ m, 10 ⋅ m}, cls ∈
{m0.4,m0.5}, � ∈ {0.6⋅m, 0.7⋅m} seems preferable in terms of both the solution quality and
the variation of solution values. This observation also demonstrates the appropriateness
of the settings of parameters in Table 6.1. Second, varying values of the parameter cls,
i.e., candidate list size of the swap-based neighborhood mostly affects the performance of
the TS/MA algorithm, with deviations ranging from [0,0.5%] against deviations ranging
from [0,0.05%] with other parameters. Third, the performance of TS/MA is less sensitive
to the population rebuilding threshold (�) than to other parameters with deviations less
than 0.03% for each setting.
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Figure 6.1: Box and whisker plot of the results obtained with different settings for each
sensitive parameter
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6.4.2 Tabu search analysis

In this section, we provide experiments to demonstrate the successive filter candidate list
strategy implemented in our tabu search procedure, denoted as FastBestImp, plays an
important role to the performance of the TS/MA algorithm. For this purpose, we test the
following three other tabu search procedures within our TS/MA algorithm.

Successive 1-flip based tabu search (1-flip): This approach starts from an initial
feasible solution x and at each iteration first picks a variable xi from Z such that flipping
xi to the value of 1 would increase the objective function value of the current solution x
by the greatest amount. Next, given the selected first flip, we pick a variable xj from U
such that flipping xj to the value of 0 creates the least loss in the objective function value
of x. These two successive 1-flip moves assure the resulting solution is always feasible
with ∣U ∣ = m. In addition, each time a variable is flipped, a tabu tenure is assigned
to the variable to prevent it from being flipped again for the next A iterations (where
A is drawn randomly from the interval tt; see Table 6.1). Finally, a move leading to
a new solution better than the best solution found so far is always selected even if it
is classified tabu. The above procedure repeats until the solution cannot be improved
for consecutive m/4 iterations. Additional details can be found in [Lü et al., 2010a;
Wang et al., 2012a].

First Improvement based tabu search (FirstImp): Starting from an initial
feasible solution, each iteration sequentially fetches a variable xi from U and then scans
each variable xj from Z. If swapping xi and xj improves the current solution, then we
perform this move to obtain a new solution. If there is no improved move by interchanging
the unit-value of xi with the zero-value of any variable from Z, we fetch the next variable
from U and so on. If no improved move is found by interchanging each variable from U
and each variable from Z, the best move among them (which does not improve the current
solution) is then performed. The selected variables xi and xj become tabu active and thus
neither can be involved in a new move during the next B iterations (where B is drawn
randomly from tt; see Table 6.1). However, if a move improves the best solution found so
far, it is always performed even if it is tabu active. The method continues until the best
solution found so far cannot be improved for � consecutive iterations (see Table 6.1).

Best Improvement based tabu search (BestImp): The only difference between
BestImp and our FastBestImp approach is that BestImp identifies a best neighborhood
solution within the complete swap neighborhood, without employing the successive filter
candidate list strategy described in Section 6.2.4. Several algorithms in the literature
(e.g.,[Aringhieri and Cordone, 2011; Ghosh, 1996; Palubeckis, 2007]) are based on BestImp.

We carry out experiments for the TS/MA algorithm with FastBestImp replaced by
1-flip, FirstImp and BestImp under the same experimental conditions (see Section 6.3.2)
and test all the 40 instances (see Section 6.3.1). The experimental results are shown in
Figure 6.2, in which the left portion and the right portion respectively present the best
gap and the average gap, for each tested instance, to the best known result.

As shown in the left portion of Figure 6.2, FastBestImp achieves the best performance
with a smaller gap between the best solution value and the best known result than 1-
flip, FirstImp and BestImp for each instance, except for several Type1 22 instances where
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Figure 6.2: Best and average solution gaps to the best known result for 3 sets of benchmark
instances
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Table 6.15: TS/MAcx versus TS/MAux using Wilcoxon’s test (at the 0.05 level)
TS/MAcx TS/MAuxProblem R+

TS/MAcx

R-

TS/MAux

p-value Diff.?
AD-B AD-Av AD-B AD-Av

Type1 22 190 0 0.000143 Yes 0 9.57 0.40 27.38
ORLIB 55 0 0.001953 Yes 0 67.21 0 267.39

Palubeckis 55 0 0.001953 Yes -212.10 -151.51 -194.50 38.48

both FastBestImp and 1-flip can reach the best known results. In addition, 1-flip basically
outperforms FirstImp and BestImp for the Type1 22 instances while BestImp outperforms
1-flip and FirstImp for the ORLIB and Palubeckis instances.

When it comes to the average gap to the best known result, the right portion of Figure
6.2 clearly shows that once again FastBestImp achieves the best performance among the
compared strategies for all the tested instances. In addition, the comparison among 1-flip,
FirstImp and BestImp indicates that 1-flip generally performs better for the Type1 22
and ORLIB instances while BestImp performs better for the Palubeckis instances.

6.4.3 Solution combination operator analysis

In order to assess the role of the operator described in Section in 6.2.5 for combining
solutions, we conduct additional experiments to compare it with a traditional uniform
crossover operator for combining solutions [Syswerda, 1989]. For MDP, uniform crossover
consists in identifying variables that have the value of 1 in both parents and keeping this
value unchanged for these variables in the offspring solution. Then the remaining variables
are randomly assigned the value 0 or 1 subject to the cardinality constraint, i.e., the total
number of variables with the value of 1 equals m in the offspring solution.

We compare this modified TS/MA algorithm with the uniform crossover, denoted
by TS/MAux, and the original TS/MA with the critical variable solution combination
operator, denoted by TS/MAcx under the same experimental conditions (see Section 6.3.2).
In order to detect the difference between TS/MAux and TS/MAcx, we also conduct the
Wilcoxon nonparametric statistical test and summarize the results in Table 6.15. In this
table, columns 2 to 5 report the results from the Wilcoxon test in terms of the average
quality. Column AD-B reports the average gap over each set of benchmark instances of
the best solution value to the best known result. Column AD-AV reports the average gap
over each set of benchmark instances of the average solution values to the best known
results.

The following observations can be made from Table 6.15. First, the results from
the Wilcoxon test indicate that TS/MAcx is significantly better than TS/MAux for each
set of benchmark instances. Second, in terms of AD-B, TS/MAcx performs better than
TS/MAux for both Type1 22 (0 for TS/MAcx versus 0.40 for TS/MAux) and Palubeckis
benchmarks (-212.1 for TS/MAcx versus -194.50 for TS/MAux). TS/MAcx performs the
same as TS/MAux for the ORLIB benchmark considering that both can reach the best
known results for each instance. Notice that although inferior to TS/MAcx, TS/MAux is
still able to improve the best known results over the Palubeckis benchmark. Finally, in
terms of AD-Av, TS/MAcx always outperforms TS/MAux.
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6.5 Conclusion

In this chapter, we have proposed an effective memetic algorithm for the maximum diver-
sity problem (a special case of BQO with cardinality constraint) based on tabu search. The
tabu search component utilizes successive filter candidate list strategy and is joined with
a solution combination strategy based on identifying strongly determined and consistent
variables.

Computational experiments on three sets of 40 popular benchmark instances have
demonstrated that the proposed TS/MA algorithm is capable of easily attaining all the
previous best known results and improving the best known results for 6 instances. More-
over, statistical tests have confirmed that our proposed algorithm performs significantly
better than several recently proposed state-of-the-art algorithms.

Finally, in addition to a parameter sensitivity analysis, we have studied the effects
of the dedicated tabu search procedure based on the swap move combined with the suc-
cessive filter candidate list strategy and the specific combination operator based on the
concept of strongly determined and consistent variables. These studies have confirmed
the importance of these two key components for the high performance of the proposed
algorithm.
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Conclusions

In this thesis, we developed several effective algorithms for solving the binary quadratic
optimization problem. In addition, we tackled several other combinatorial optimization
problems either by directly applying or with a slight adaptation of one or multiple al-
gorithms proposed for BQO, with the premise that these problems are transformed into
the form of BQO. Finally, we proposed a highly effective algorithm for a cardinality con-
strained binary quadratic optimization problem.

The backbone guided tabu search algorithms and the backbone multilevel memetic
algorithm have been proposed for dealing with large problem instances, based on the idea
of decreasing the scale of initial problem so as to carry out the exploitation in a small
but promising search area. Specifically, BGTS relies on the variable fixation technique to
fix backbone variables at specific values, which are forbidded being changed during the
successive optimization phase. The BMMA applies a multilevel framework to solve the
original problem level by level. We evaluated BGTS on 21 challenging instances from
the Palubeckis benchmark and BMMA on 11 largest instances from the same benchmark.
Tests on BGTS algorithms indicated that one of the proposed BGTS algorithms obtained
highly competitive outcomes in comparison with the best known results and boosted the
performance of the basic TS algorithm. Tests on the BMMA algorithm showed that
BMMA matched the best known results for all the examined instances while using much
less computing time than BGTS as well as state-of-the-art algorithms from the literature.

The GRASP-Tabu Search and GRASP-Tabu Search with Population Management al-
gorithms have been proposed, placing an emphasis on constructing initial solutions in
order to locate at a hopeful search area. GRASP-TS constructs an initial solution by
reference to a random greedy adaptive function. GRASP-TS/PM employs a destruc-
tive/constructive process that dismantles only part of a previously visited elite solution
and rebuilds the remaining portion as GRASP-TS does. In addition, we have developed a
GRASP-TS/MCPs algorithm to solve the maximum clique and maximum vertex weight
clique problems in the form of BQO, which extended GRASP-TS by making use of the
neighborhood union (1-flip and 2-flip) instead of 1-flip in the tabu search procedure. Al-
though both GRASP-TS and GRASP-TS/PM are used for solving BQO, we also directly
applied them without particular adaptation to address the maximum cut problem that is
transformed into the BQO formulation. Experiments conducted with both GRASP-TS
and GRASP-TS/PM algorithms on two sets of 31 BQO instances and one set of 54 Max-
Cut instances have demonstrated that both GRASP-TS and GRASP-TS/PM algorithms
obtained highly competitive results in comparison with the best known results from the
literature. In particular, for the 54 MaxCut instances, GRASP-TS/PM improved the
previously best known results for 19 instances. Experiments conducted with GRASP-
TS/MCPs on a total of 160 MCP and MVWCP benchmark instances have shown that
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GRASP-TS/MCPs are competitive with the leading methods that are specifically tailored
for the MCP and MVWCP problems. In particular, out of the 80 MVWCP benchmark
instances our method matches the best known results on 66 instances, and finds new best
known results on 13 instances, while accomplishing this with very short solution times.

We have also devised two path relinking algorithms that generate initial solutions by
exploiting within the neighborhood space a path that connects an initiating solution with
a guiding solution, where each step of the path (representing a solution) has the distance
to the guiding solution reduced by 1. The proposed algorithms differ from each other
mainly on the way they generate the path, one employing a greedy strategy (PR1) and
the other employing a random strategy (PR2). Besides, we transformed the minimum sum
coloring problem and tackled for the first time the possibility of solving MSCP via BQO,
which we denote as BQO-PR approach. Extensive experiments with PR1 and PR2 on five
sets of BQO and MaxCut benchmarks with a total of 134 instances have demonstrated
that both algorithms are capable of attaining highly competitive results. In particular,
for 103 MaxCut instances, our algorithms improved the best known results for almost
40 percent of these instances. Experiments on 23 MSCP instances have shown that the
proposed BQO-PR approach is able to reach competitive solutions when compared with
several special purpose MSCP algorithms for a number of instances. However, due to
the limitation of the current implementation, the BQO approach for the MSCP requires
considerable computing time to find solutions of good quality for large instances.

Finally, we have developed a highly effective memetic algorithm based on tabu search
for the cardinality constrained binary quadratic optimization problem, in which the tabu
search component utilizes successive filter candidate list strategy and the solution com-
bination component is based on identifying strongly determined and consistent variables.
Experiments on 40 popular benchmark instances have shown that the proposed TS/MA
algorithm have achieved all the best known results (which no previous algorithm has
achieved) and improved the best known results for 6 instances. Besides a parameter sensi-
tivity analysis, we have studied the effects of the dedicated tabu search procedure and the
specific combination operator and confirmed the importance of these two key components
for the high performance of the proposed algorithm.

Perspectives

The following aspects can be considered in the future study. For the BGTS algorithm, the
fixing phase identifies backbone variables by drawing on the idea of exploiting strongly de-
termined variables. We can also include consideration of consistent variables by reference
to the frequency that variables receive assigned values in high quality solutions. In addi-
tion, our current BGTS implementation forbids a backbone variable changing its assigned
value in the follow-up tabu search phase unless a freeing phase enables it to become a
non-backbone variable. An interesting alternative strategy is to allow a backbone variable
to change its assigned value when some specific condition is verified. For example, such
a condition could be that the change of the assigned value of a certain backbone variable
leads to a solution that is better than the best solution found so far.
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The preservation of population diversification in our population based algorithms (e.g.,
GRASP-TS/PM, PR and TS/MA) depends on the rebuilding of the population when the
search stagnates. This is a quite rudimentary strategy, thus more advanced strategies
are worthy of investigation. The first consideration consists in incorporating a distance
threshold that designates a minimum distance of one solution to the population, requiring
that a solution is qualified to be a member of the population only if it passes the spec-
ified distance threshold. Another alternative is to define a fitness function in terms of
both solution quality and distance to evaluate solutions. Besides, one can elaborate two
populations where one features good solution quality and the other features good solution
diversity, in order that a couple of solutions used to produce offspring solutions can be
chosen either both from the high-quality population or from the diverse population or
selected with one from each population.

The solution selection method that determines how to select among solutions generated
on the path is a critical component in our path relinking algorithms. The current method
chooses the one with the best objective function value subject to a predetermined distance
of the chosen solution from both the initiating solution and the guiding solution. For
the future study, we can select a solution by reference to the quality of its best neighbor
solution or we could also take into account the quality of its second and third best neighbor
solutions. (A weighted quality measure involving these three solutions would include the
rule of picking only the best neighbor solution by setting the weights of the other two
solutions equal to a “small epsilon” value to break ties.)

Inspired by the fact that the search space of the cadinality constrained BQO is smaller
than that of BQO as a result of requiring that the number of “1” equals to the speci-
fied cardinality K, we intend to address BQO through solving a sequence of cardinality
canstrained BQO problems with different K values, taking advantage of conducting exten-
sive exploitation in a constrained search space. Since it is not practical to solve cardinality
constrained BQO with K fetching from 0 to the maximum number of variables of BQO,
a related issue is how to pick out some effective K values. A possible choice would refer
to the number of “1” in a set of local optimal solutions obtained by using an algorithm
for BQO.
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Yang WANG
Metaheuristics for large binary quadratic optimization and its applications
Métaheuristiques pour l’optimization quadratique en 0/1 à grande échelle et ses applications

Résumé
Cette thése étudie le problème NP-difficile de
optimization quadratique en variables binaires (BQO),
à savoir le problème de la maximisation d’une fonction
quadratique en variables binaires. BQO peut
représenter de nombreux problèmes importants de
différents domaines et servir de modèle unifié pour un
grand nombre de problèmes d’optimisation
combinatoire portant sur les graphes. Cette thèse est
consacrée au développement d’algorithmes
métaheuristiques efficaces pour résoudre le BQO et
ses applications. Premièrement, nous proposons
algorithmes de “backbone guided” recherche tabou et
d’un algorithme mémétique multi-niveaux sur la base
de la technique de la fixation de variables. Ces
techniques sont toutes deux basées sur l’idée de la
réduction du problème afin de mener à bien une
exploitation exhaustive d’une petite région de
recherche. Ensuite, nous nous concentrons sur des
procédés avancés de génération des solutions
initiales préférables et développons des algorithmes
combinant GRASP avec la recherche tabou et les
algorithmes de path-relinking. En outre, nous
résolvons des problèmes, y compris le problème de
coupe maximum, de clique maximum, de clique
maximale de sommets pondérés et la somme
coloration minimum, soit en appliquant directement ou
avec une légère adaptation de nos algorithmes
développés pour BQO, avec l’hypothèse que ces
problèmes sont reformulés en BQO. Enfin, nous
présentons un algorithme mémétique basé sur la
recherche tabou qui s’attaque efficacement au BQO
avec contrainte de cardinalité.

Abstract
This thesis investigates the NP-hard binary quadratic
optimization (BQO) problem, i.e. the problem of
maximizing a quadratic function in binary variables.
BQO can represent numerous important problems
from a variety of domains and serve as a unified
model for many combinatorial optimization problems
pertaining to graphs. This thesis is devoted to
developing effective metaheuristic algorithms for
solving BQO and its applications. First, we propose
backbone guided tabu search algorithms on the basis
of variable fixation technique and a backbone
multilevel memetic algorithm following the general
multilevel framework, both of which are based on the
idea of decreasing the problem scale so as to carry
out extensive exploitation in a small search area. Then
we focus on advanced methods of generating
preferable initial solutions and develop GRASP
combined with tabu search algorithms and path
relinking algorithms. In addition, we undertake to
tackle problems including maximum cut, maximum
clique, maximum vertex weight clique and minimum
sum coloring either by directly applying or with a trivial
adaptation of our developed algorithms for BQO, with
the premise that these problems are recast into the
form of BQO. Finally, we present a memetic algorithm
based on tabu search that effectively tackles the
cardinality constrained BQO.

Mots clés
Optimization quadratique en variables binaires,
recherche tabou, fixation de variables, GRASP, path
relinking, algorithme mémétique.

Key Words
Binary quadratic optimization, tabu search, variable
fixation, GRASP, path relinking, memetic algorithm.
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