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Physical and numerical aspects of thermoacoustic instabilities in
annular combustion chambers

Abstract: Modern pollutant emission regulation has led to the use of lean premixed
combustion in gas turbine combustors, a technology which is prone to develop ther-
moacoustic instabilities. This phenomenon is the result of a resonant feedback between
combustion, acoustic waves and �ow dynamics in con�ned combustion chambers. In this
work, combustion instabilities are studied using a Helmholtz equation with a reactive term
that takes into account the coupling between combustion and acoustics. The discretization
of the resulting Helmholtz equation on unstructured meshes leads to a large sparse
non-symmetric complex nonlinear eigenvalue problem of size N (N is equal to the number
of nodes in the mesh). Its solution provides the frequencies and growth rates (complex
eigenvalues) and the structure (eigenvectors) of the resonant modes of the combustor.
Since dangerous combustion instabilities occur mostly at low frequencies, the nonlinear
eigenvalue problem must be solved in order to obtain the smallest magnitude eigenvalues.
The nonlinear problem is linearized using a �xed point iteration procedure. This leads to
a sequence of linear eigenproblems which must be solved iteratively in order to obtain one
nonlinear eigenpair. Therefore, e�cient and robust parallel eigensolvers for the solution of
linear problems are investigated, and strategies to accelerate the solution of the sequence of
linear eigenproblems are also proposed. In modern gas turbines with annular combustors,
the most dangerous resonant modes often take the form of azimuthal waves, making their
study of �rst importance. This work focuses on azimuthal modes in annular combustors:
their stability and nature (standing, spinning or mixed) are investigated as a function of
the symmetry of the con�guration. Thanks to the e�ciency of the algorithms for the
solution of the thermoacoustic eigenproblem, the 3D Helmholtz solver AVSP is used for
the study of combustion instabilities of an annular industrial combustor.

Keywords: Thermoacoustic instabilities, Annular combustion chambers, Azimuthal
modes, Eigenvalue problems, Parallel eigensolvers, Block eigensolvers.
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Aspects numériques et physiques des instabilités
thermoacoustiques dans les chambres de combustion annulaires

Résumé: L'exigence croissante des régulations concernant les émissions de polluants a
poussé les motoristes à concevoir des chambres de combustions fonctionnant en régime
pauvre (prémélangé). Cependant cette technologie est particulièrement sujette au
développement d'instabilités thermoacoustiques. Ce phénomène résulte d'une boucle
rétroactive entre la combustion, l'acoustique, et la dynamique de l'écoulement dans les
chambres de combustion con�nées. Dans ce travail, les instabilités de combustion sont
étudiées en utilisant l'équation de Helmholtz avec ajout d'un terme réactif qui permet de
prendre en compte le couplage entre la combustion et l'acoustique. La discrétisation de
l'équation de Helmholtz résultante sur un maillage non structuré mène à un problème
aux valeurs propres non linéaire. La matrice associée à ce problème est complexe,
non-symétrique, de taille N (N étant égal au nombre de noeuds du maillage). La solution
du problème aux valeurs propres fournit les fréquences et les taux d'ampli�cation (valeurs
propres complexes) ainsi que les structures (vecteurs propres) des modes propres de la
chambre de combustion. Les instabilités de combustion les plus dangereuses se produisant
généralement aux fréquences les plus faibles, le problème non linéaire doit être résolu
a�n d'obtenir les valeurs propres de plus petit module. Pour cela il est d'abord linéarisé
en utilisant une méthode de point �xe. On résout de facon itérative une séquence de
problèmes aux valeurs propres linéaires qui converge vers une solution du problème non
linéaire initial. Par conséquent, di�érents solveurs aux valeurs propres parallèles, robustes,
et e�caces sont étudiés. Des strategies pour accélérer la résolution de la séquence de
problèmes linéaires sont également proposées. Dans les turbines à gaz modernes présentant
des chambres de combustion annulaires, les modes de résonance les plus dangereux
prennent souvent la forme d'ondes azimutales. Ces travaux se focalisent donc sur l'analyse
de ces modes, notamment l'e�et de la symétrie de la con�guration sur leur stabilité et
leur nature (stationnaire, tournant, ou mixte). L'e�cacité des algorithmes étudiés et
implémentés dans le solveur de Helmholtz 3D AVSP, rend ainsi possible l'analyse des
instabilités thermoacoustiques d'une chambre de combustion annulaire industrielle.

Mots clés: Instabilités thermoacoustiques, Chambres de combustion annulaires, Modes
azimuthaux, Problèmes aux valeurs propres, Solveurs aux valeurs propres parallèles,
Solveurs aux valeurs propres bloc.
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Chapter 1. Introduction

1.1 Gas turbines and pollution

1.1.1 Pollutant emissions and combustion

The United Nations population forecast foresees an increment of the current world popu-
lation (around 7 billion people) to 9.6 billion people in 2050 and more than 10 billion in
2100 [165], following a medium-variant projection (Fig. 1.1). Consequently, since people
need energy, the energy consumption is expected to grow accordingly from 13 terawatts
(TW) today, to 28 TW in 2050 and 46 TW in 2100 [79]. Despite the development of al-
ternative clean energies, fossil fuels provide the 85% of the world energy [57]. Nevertheless
fossil fuels are limited and not evenly distributed over the world, leading to energy security
problems and geopolitical tension. Moreover, they are associated with global warming and
pollution [166]. In spite of these drawbacks, replacing fossil fuels today is impossible and,
consequently, it is crucial to e�ciently use them in the context of new technologies.

Figure 1.1: World's population (1950-2010) according to di�erent projections [165].

As mentioned before, combustion produces a large amount of pollutants that a�ect the
environment and that are harmful for the human health. Pollutant emissions come from
the combustion of hydrocarbons present in fossil fuels, generating greenhouse gases like
carbon dioxide (CO2) and pollutants such as unburned hydrocarbons (UHC), nitrogen
oxides (NOx) and carbon monoxides (CO) as well as particles like soots [136] (Fig. 1.2).

Incomplete combustion results from insu�cient oxidizer (oxygen) or from the quenching
of the �ame due to heat losses near the wall or due to a high strain rate. In order to
avoid incomplete combustion, lean combustion can be employed, meaning that a quantity
of oxygen larger than the one imposed by the stoichiometric condition is used. Nevertheless,
the oxygen in excess promotes the oxygen-nitrogen reaction and therefore the formation of
nitrogen oxides [23]. NOx emissions from combustion are primarily NO. According to the
Zeldovich mechanism [177], NO is generated to the limit of available oxygen (about 200,000
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1.1. Gas turbines and pollution

1. INTRODUCTION

Figure 1.1: Schematic representation of aircraft emissions and their causal

linkages with potential climate changes -

2

Figure 1.2: Aircraft pollutant emission and their potential impact on climate change [58].

ppm) in air at temperatures above 1300◦C. At temperatures below 760◦C, NO is either
generated in much lower concentrations or not at all. Fig 1.3 summarizes the generation of
main emissions as a function of the air/fuel ratio. For lean �ames, CO and CO2 production
decreases strongly, although NOx emissions are at �rst promoted by the excess of oxygen
and then decrease for very lean regimes, due to the temperature drop (the heat release is
maximum at stoichiometric condition and then it decreases for lean combustion and so does
the temperature).

The impact of the pollutant emissions due to combustion has multiple aspects:

• Combustion and climate change: Among all pollutant emissions due to combustion,
CO2 and water vapor are the main �greenhouse� gas contributing to global warm-
ing [2]. The e�ects of global warming are numerous:

� Physical impact: it refers to the e�ects on the rain fall and extreme weather with
drought and cyclone activity, glacier retreat and disappearance, volcano activity,
earthquakes, rise of the sea level and its temperature [160].

� Regional e�ects: global warming changes the regional climate e.g. the forming
and melting of ice, the current in oceans and air �ows and the hydrological cycle.
Coastal regions are heavily a�ected by the rising of the sea level [160].

� Ecosystems: Plants and animals are responding (extinction or movement) to
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Chapter 1. Introduction

Figure 1.3: Evolution of pollutant emissions with the air/fuel ratio.

temperature changes, having strong e�ects on biological systems [112]

• Impact on human health: pollutant emissions induce hazardous e�ects on human
health. Fig. 1.4 (extracted from [58]) summarizes symptoms due to every pollutant.

Therefore, nowadays it has become crucial to reduce pollutant emissions. This is the ob-
jective, for example, of the CAEP (Committee for Aviation Environmental Protection) [96],
part of the ICAO, which has proposed to deal with both NOx and CO2 emissions. The
increasingly demanding environmental policies have led engine manufacturers to use lean
combustion, which represents a good compromise in order to have e�cient systems with low
emissions. However, lean combustion is subject to potential problems such as combustion
instabilities (see Sec. 1.2), which are the topic of this PhD.

1.1.2 Gas turbine principles

The �rst known precursor of a gas turbine is the Hero's aeolipile around the year 50, which
consists in a steam turbine used as a toy. In the 16th century Leonardo da Vinci drew the
Chimmey Jack: hot air rises from a �re and passes through an axial turbine at the exhaust,
which is connected to a roasting split and makes it turn. Another example is the Branca's
jet turbine in the 17th century (Fig. 1.5). The �rst patent was given to John Barber. His
gas turbine had most of the elements present in a modern gas turbine and was designed to
power a horseless carriage. In 1903 the Norwegian Ægidius Elling built the �rst gas turbine
producing more power than the one necessary to run its own components. A few years
later, General Electric started its own production division and the �rst aeronautical design
was patented in the 30's by Sir Franck Whittle.

Today, gas turbines are used in a broad range of applications such as power generation,
compressor stations at gas pipelines, water and sewage pumping stations or engines for
aircrafts and ships. An e�cient design of gas turbines is imposed by the increasing demand
of energy and fossil fuels and the associated pollutant emissions. For most aircraft and
helicopters, gas turbines have become the only propulsion method. On the energy market,

18



1.1. Gas turbines and pollution

Figure 1.4: Representative health e�ects from local air quality pollutants [58].

Figure 1.5: Hero's aeolipile (left); Da Vinci's Chimmey Jack (center) and Branca's jet gas turbine
(right).

they are mandatory to complete other sources which are very slow to start up (such as
nuclear plants) or unpredictable (sun or wind).

A gas turbine is an internal combustion engine that operates with rotary motion. Ba-
sically, it is composed of three main parts: a compressor, a combustion chamber and a
turbine, as shown in Fig. 1.6. It works following the Brayton cycle of Fig. 1.7: Air passes
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Compressor

Combustion
 chamber

Turbine

Figure 1.6: Siemens SGT5-8000H gas turbine reachs power outputs of up to 375 MW.

the compressor, where it is isentropically compressed, increasing the thermal e�ciency
(steps 1 � 2). Then it is mixed with fuel and burnt in the combustion chamber at constant
pressure (steps 2 � 3). At the exit of the combustion chamber, the hot gases expand in the
turbine back to the initial pressure (steps 3 � 4). Finally the hot gases are rejected in the
atmosphere at constant pressure (steps 1 � 4). The recovered energy in the turbine is used
to move the compressor, through a shaft. In the case of aircraft engines, the exhaust gases
pass through a nozzle where the �ow velocity is incremented to create thrust.

p

v

1

2 3

4

Q
T

s

1

2

3

4

Q

Figure 1.7: Brayton cycle in a gas turbine. p-v and T-s diagrams.

The combustion process is one of the key elements in a gas turbine. Most modern
combustion chambers are of annular type (Fig. 1.8). In order to achieve a high e�ciency,
two aspects can be exploited:
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1.1. Gas turbines and pollution

• A higher combustion temperature leads to a higher performance engine. A lot of
research work has ben invested in order to increase the thermal tolerance of the
turbine blades, so that higher combustion temperatures can be reached.

• A higher compression rate, which can be obtained by adding compressor stages.

Figure 1.8: Annular combustion chamber (Source: The Jet Engine, Rolls-Royce plc.).

The regulation policies concerning pollutant emissions (such as NOx, CO2 and CO)
are increasingly demanding. Therefore, the reduction of pollutant emissions has become a
major issue during the design stage of gas turbines. It is a great challenge for engineers to
reach high performance gas turbines while reducing the emissions, since both are con�icting
goals. Indeed, as shown in Sec. 1.1.1, a higher temperature (good from an e�ciency point of
view) increases the NOx emissions. Reducing the available oxygen reduces the NOx but, on
the other hand, increases the carbon monoxide CO and the unburnt hydrocarbon (UHC)
emissions. The compromise reached by gas turbine manufacturers is the lean premixed
combustion, which employs a low fuel-air mass �ow ratio. This reduces the combustion
temperature and the formation of hot spots, and therefore NOx formation. The reduction
of hot spots has the secondary bene�t of reducing the indirect combustion noise (the noise
coming from the expansion of these hot spots through the turbine). Nevertheless, using lean
combustion can lead to thermoacoustic instabilities [74, 118], which are due to the coupling
between the combustion and the acoustic modes of the combustion chamber. They are
characterized by large pressure �uctuations and heat release oscillations that can lead to
severe problems like noise emission, heat �ux enhancement on duct lining, global extinction
of the �ame, structural vibrations or fatigue, ... The prediction of this phenomenon at en
early design stage has become a very important task. Nevertheless, due to the complexity
of the coupling mechanisms underlying this phenomenon, combustion instabilities remain
a great challenge today and are not fully understood yet.
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1.2 Combustion instabilities

1.2.1 Combustion instabilities overview

Combustion instabilities are the framework of the present work. The high e�ciencies
of modern gas turbines that allow to reach large power densities, along with the use of
lean combustion to reduce pollutant emissions, lead to combustion instabilities. This phe-
nomenon results from the coupling between the combustion in the �ame zone and the
acoustic modes of the combustion chamber. It leads to high pressure and heat release os-
cillations in the chamber the which can even provoke its destruction. This is the case of
the picture in Fig. 1.9, which shows a rocket motor chamber with several damages caused
by thermoacoustic instabilities [84].

Figure 1.9: Damaged rocket chamber from combustion instabilities.

The article by Raun et al. [122] constitutes an excellent review of thermoacoustic in-
stabilities throughout the recent history. Combustion-driven acoustic oscillations were �rst
observed by Higgins in 1777. Higgins found that placing a hydrogen di�usion �ame inside
a closed or a open-ended tube could produce a sound, depending on the tube and fuel
supply line lengths. This phenomenon was called the singing �ame. In 1858, LeConte [73]
described the in�uence of sound produce by musical instrument on �ames:

�I happened to be one of a party of eight persons assembled after tea for the
purpose of enjoying a private musical entertainment. Three instruments were
employed in the performance of several of the grand trios of Beethoven, namely,
the piano, violin and violoncello. Two '�sh-tail' gas burners projected from the
brick wall near the piano. (...) Soon after the music commenced, I observed
that the �ame of the last-mentioned burner exhibited pulsations in height which
were exactly synchronous with the audible beats. This phenomenon especially
striking when the strong notes of the violoncello came in. It was exceedingly in-
teresting to observe how perfectly even the trills of this instrument were re�ected
on the sheet of �ame. A deaf man might have seen the harmony.�

Rijke published in 1859 [124] his study of the so-called today Rijke tube: he found that
sound was produced by placing a hot metal gauze in the lower half of open-ended verti-
cal tubed. In 1878 Lord Rayleigh [123] o�ered an explanation to combustion instabilities.
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1.2. Combustion instabilities

Since then, combustion instabilities has been a known phenomenon, although it became
the object of intense research with the development of high power density combustion sys-
tems that exhibit these undesired instabilities, specially in rockets [30]. Thermoacoustic
instabilities are characterized by large pressure amplitude oscillations and heat release �uc-
tuations, which have associated a series of undesirable consequences: noise emission, heat
�ux enhancement on duct linings, global extinction of the �ame, structural vibrations or
fatigue of burner and liner parts and even the failure of the turbine [161].

1.2.2 Instabilities mechanism

Heat release
oscillations

Acoustic 
oscillations

Flow and mixture 
perturbations

Figure 1.10: Feedback mechanism leading to combustion instabilities [82].

Thermoacoustic instabilities are the result of a resonant feedback between combustion,
acoustic waves and �ow dynamics [19, 33, 35] (Fig. 1.10). When the heat release �uctuates,
the gases dilatation rate varies in time, acting as an unsteady local source of volume that
pushes the surrounding gases, leading to an increment of the local pressure which propagates
then as acoustic waves. These pressure waves propagate and are re�ected at the combustion
chamber walls, inlet and outlet (the re�ection depends on the corresponding impedances),
coming eventually back to the �ame zone. The re�ected acoustic waves perturb the �ow
and mixture, which leads to heat release �uctuations in the �ame, closing a loop (Fig. 1.10)
that can be potentially unstable if certain phase and gain conditions are satis�ed. The heat
release �uctuations are driven basically by two mechanisms [82]:

• Variation of the �ame surface area: the perturbed �ow is accelerated and decelerated
in the �ame zone, which changes the �ame shape and leads to an overall �ame surface
area variation and consequently, to oscillations in the total heat release.

• Fluctuations of the local equivalence ratio: the acoustic waves can induce �ow �uc-
tuations through both the air and fuel inlets, which results in local mixture hetero-
geneities. These mixture variations are convected to the �ame front, causing �uctua-
tions in the heat release [135].

The Rayleigh criterion [98, 123] establishes the necessary condition to have a thermoa-
coustic instability, which depends on the phase between the pressure and the heat release
oscillations:

�If heat be given to the air at the moment of greatest condensation or be taken
from it at the moment of greatest rarefaction, the vibration is encouraged.�
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Mathematically expressed, the instability condition reads as:
∫

T

∫

V

p′q′dV dt > 0, (1.1)

where p′ and q′ denote the pressure and heat release �uctuations respectively, V is the
volume of the domain and T is the period of the oscillation.

Figure 1.11: Evolution of energy gain and losses with the perturbation amplitude for a combus-
tion instability [11].

Figure 1.12: Typical time-evolution of a combustion instability: exponential grow of the acoustic
pressure followed by an overshoot before reaching a limit cycle [117].

If the energy gain due to the coupling between acoustics and combustion is greater than
losses (acoustic �ow through boundaries and viscous dissipation), the amplitude of the
�uctuations increases exponentially until a limit cycle is reached due to saturation, which
is controlled by nonlinear e�ects [81]. This behavior is represented in Fig. 1.11 [11], which
shows the energy gain and losses associated with a thermoacoustic instability as a function
of the square of the acoustic velocity �uctuation u′2. According to [34], the losses increase
linearly with the perturbation amplitude, whereas the energy gain due to the coupling
between �ame and acoustics increases �rst linearly (region I) and then it saturates for
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1.2. Combustion instabilities

higher perturbation amplitudes (region II). The level of perturbation for which energy gain
and losses are equal is known as limit cycle [95, 83], which is characterized by sustained
oscillations. The time evolution of a typical combustion instability is displayed in Fig. 1.12:
�rst, the pressure �uctuations increase exponentially in the linear zone. Then an overshot
is often observed before the system reaches a limit cycle with a sustained level of oscillation,
for which losses balance the energy gain. In the present work, we focus on tools which can
predict the linear regime. Acoustics remains linear in most cases when p′/p̄ is smaller than
1%, i.e., when the �uctuation over the mean value of the pressure remains small.

1.2.3 Control of combustion instabilities

Although thermoacoustic instabilities should preferably be avoided at an early design stage,
it is important to be able to control and suppress instabilities when they appear a posteriori.
We can distinguish mainly two methods for the control of thermoacoustic instabilities:

• Passive control techniques [12, 30, 40, 82, 111]:

� Acoustic dampers: resonators can be used to damp acoustic modes. In the case
of gas turbine combustors the unstable eigenfrequencies are generally low, so
that large volumes would be needed to make this method e�ective. Since the
space is very limited in most applications, the use of these resonators is limited.

� Use of ba�es in order avoid the acoustic �ux [30].

� Operating conditions: changes in the air/fuel mass �ow rate, air temperature
injection, fuel/oxidizer ratio, fuel staging [137], etc. will change the �ame re-
sponse, having an e�ect on the phase lag between pressure and heat release
�uctuations [22].

� Design changes: the geometry of the combustion chamber (swirler position, mod-
i�cations of the burner outlet, etc.) can modify the �ame time response and so
the stability of the con�guration [111].

Although these techniques are relatively cheap and robust, they are not very �exible
and they may be ine�ective at very low frequencies [36] (under a few hundred Hertz).

• Active control techniques [88]: sensors are employed to detect the presence of an in-
stability (pressure signal). They are connected by a closed feedback loop to actuators
that act according to the signal from sensors to suppress the instability. Although
many theoretical studies and experiments on academic chambers have been carried
out showing their e�ectiveness [115, 116, 147], these methods can not provide enough
robustness from an industrial point of view today, especially in terms of certi�cation
for aircraft or helicopters.

1.2.4 Study of combustion instabilities: several approaches

Many approaches are possible for the study of combustion instabilities: from theoretical
models to full scale Large Eddy Simulations, passing by low-order network methods. The
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modeling level required by these approaches decreases as the cost and complexity increases.
In the following, the di�erent options available today for the study of instabilities are brie�y
described.

• Experimental works: simpli�ed con�gurations have been used in order to study
thermoacoustic instabilities experimentally. Although for many years only longitu-
dinal instabilities were studied [20, 21, 37, 101, 102, 113, 120, 141], more recently,
simpli�ed annular con�gurations have allowed the study of azimuthal modes. Moeck
et al. [90] and Gelbert et al. [46] have studied azimuthal instabilities in an annular
Rijke tube, using heating grids as unsteady heat source. Dawson et al. [173] and
Worth et al. [172] have used an annular con�guration with swirled premixed �ames
to study the interaction between �ames and the e�ect of mean swirl on the stabil-
ity and nature of azimuthal modes. Another recent interesting work concerning the
experimental study of azimuthal instabilities can be found in [17].

• Theoretical methods: An important analytical research e�ort has been invested
in order to understand the underlying phenomena governing the mutual interaction
between combustion and acoustics, leading to combustion instabilities [26, 33, 35, 62,
86, 98, 118, 168]. The main drawback of analytical models is that a certain number
of hypothesis must be considered to simplify the problem and hence only academic
or highly simpli�ed con�gurations can be studied.

• Low-order network models: low-order models are applied to simpli�ed geometries,
which allows to obtain fast responses and phenomenological interpretation [111]. One-
dimensional schemes based on one-dimensional acoustic wave propagation in a net-
work of ducts, are often studied [51], but also two-dimensional and three-dimensional
simpli�ed geometries [1, 15, 40]. In order to investigate complex geometries, network
models are used, which decompose the real geometry in a set of constant density
lumped acoustic elements. Each one of them is modeled by means of a transfer func-
tion matrix, which can be solved analytically [118, 119, 158]. This approach also
allows taking into account the e�ect of the Mach number [33]. Recently, a semi-
analytical approach using a 1D network model has been proposed for the study of
azimuthal modes in a one-ring con�guration [111], which has been extended to a 2D
network for the study of two-ring con�gurations in [10]. The main drawback of this
approach is the low level of geometric complexity that can be taken into account.

• Three-dimensional numerical simulation: of course, numerical tools are widely
used for the study of combustion instabilities. Large Eddy Simulation (LES) [67, 152,
176] is a powerful numerical tool able to take into account all the mechanisms involved
in the combustion-acoustics coupling, reproducing naturally combustion instabilities
in complex geometries. Recently, LES has been successfully employed for the simula-
tion of azimuthal instabilities in real gas turbine combustion chambers in [153, 169].
The very high computational cost of LES and the required heavy post-processing are
the main drawbacks of this approach.

A less expensive method is the use of acoustic solvers based on a �nite element ap-
proach that solves the linearized reactive Euler equations in the frequency or time
domain under the assumption of linear acoustics [33, 118]. This work focuses on
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1.2. Combustion instabilities

this kind of solver for the simulation of thermoacoustic instabilities. AVSP is the
acoustic solver used and further developed during this thesis. Originally developed
at CERFACS (�Centre Européen de Recherche et de Formation Avancée en Calcul
Scienti�que�), it solves a reactive Helmholtz equation in the frequency domain for
unstructured meshes, using a �nite volume discretization [97, 144]. Neglecting turbu-
lence and viscous e�ects and assuming that the �ow is frozen (ū = 0), it solves the
wave equation in a non-isothermal �ow, taking into account a distributed heat source
and impedances of walls, inlet(s) and outlet(s).

1.2.5 Instabilities in annular combustion chambers
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Figure 1.13: Pressure modulus and phase corresponding to standing, spinning and mixed modes.

Today, most modern gas turbines use annular combustion chambers. In annular con�g-
urations, combustion instabilities often appear as azimuthal waves [19, 27, 82, 118]. Since
the radial and longitudinal directions are shorter than the azimuthal one, the lowest fre-
quency modes correspond to azimuthal modes, which requires methods to identify these
instabilities at an early design stage. This is the reason why, in the last years a lot of
work has been invested in the research of azimuthal instabilities. Azimuthal modes can be
standing, spinning or mixed, depending on the modulus and phase of the pressure waves
(Fig. 1.13) [41, 140, 169, 90, 46, 171, 174]. A recent LES simulation of a full annular com-
bustion [170] and experimental works [174, 17] suggest that swirlers induce an azimuthal
mean �ow that in�uences the occurrence of spinning and standing modes. The dynamic
nature of azimuthal modes has also been studied theoretically [100, 103, 140, 111]. Sen-
siau [144, 145] and Noiray [100] have shown that purely spinning modes can appear only
in perfectly symmetric con�gurations, while standing or mixed modes would appear other-
wise. Nevertheless, the e�ect of the nature of azimuthal modes on instabilities is still an
open issue.
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1.3 From thermoacoustics to the parallel resolution of a

large scale eigenvalue problem

In AVSP, the thermoacoustics code used in this study, the discretization of the Helmholtz
equation on unstructured meshes leads to an eigenvalue problem [97] and its construction
will be detailed in Chapter 2. When the �ame is taken into account, and/or complex
impedances are considered, the eigenvalue problem is actually a nonlinear eigenproblem. Its
solution provides the frequencies (eigenvalues) and structures (eigenvectors) of the chamber
eigenmodes, as well as their growth rate, which allows to know whether modes are stable
or unstable. Solving the eigenproblem in AVSP is a challenging task from a numerical and
a mathematical point of view for many reasons:

• The associated matrix is sparse complex non-symmetric and non-Hermitian. No par-
ticular simpli�cations leading to faster, simpler and more robust algorithms can be
exploited, as it would be the case for symmetric (or hermitians) matrices, for exam-
ple [72].

• It is known from experience that combustion instabilities happen at low frequencies. It
means that the eigenvalue problem must be solved in order to obtain a few eigenvalues
corresponding to those of smallest magnitude (the lowest frequencies). Unfortunately,
the eigensolvers that can be found in literature are well adapted to the computation
of largest magnitude eigenvalues. The computation of smallest magnitude eigenvalues
remains a di�cult problem.

• The size of the matrix associated with the corresponding eigenproblem is equal to
the number of mesh nodes. The meshes employed for the discretization of real con-
�gurations have a very large number of elements (a few millions of nodes typically),
which leads to a very large sparse eigenproblem. The consequences of facing very
large problems are multiple:

� The matrix is not built explicitly, since the necessary amount of memory needed
for its storage would be prohibitive. Only the result of applying the matrix
to a vector can be computed. Therefore, direct methods can not be used, and
iterative methods become the only option in order to compute a few eigenvalues
lying in a certain region of the spectrum [156].

� Since the matrix is not explicitly available, the use of explicit preconditioners to
accelerate the convergence is not possible, which would be very interesting for
the use of shift-and-invert approaches [156].

� Another important aspect is the parallelism of the algorithms. Indeed, in the
framework of High Performance Computing (HPC), e�ective parallel algorithms
with good scalability are needed, in order to handle real con�gurations within a
reasonable elapsed time.

• As mentioned before, a nonlinear eigenproblem must be solved. Today, nonlinear
eigensolvers of general purpose are not available in the literature. In order to handle
this limitation, the eigenproblem is �rst linearized and then a sequence of linear
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problems has to be solved to obtain one solution of the nonlinear problem, making
the process long and expensive. This work investigates di�erent ways of accelerating
the said process.

Numerical linear algebra in general, and eigenvalue problems in particular, are very active
�elds of research, specially since the introduction of modern computers around 1950. The
article by Golub and van der Vorst [48] constitutes an excellent review of the eigenvalue
problem throughout the 20th century, and contains more than 150 references concerning
eigenvalue computation. The eigenvalue problem for a square matrix A consists in the
determination of nontrivial solution of

Ax = λx

where λ represents an eigenvalue of A and x is an eigenvector. The question that summarizes
the eigenvalue problem is: how can eigenvalues and eigenvectors be computed e�ciently and
how accurate are they? Many methods have answered this question, but only a few are of
practical use today. One of the �rst and simplest methods is the so-called Power iteration.
It is based on the idea that if a given vector is repeatedly applied to a matrix, and properly
normalized, then it will eventually lay in the direction of the eigenvector associated with
the largest magnitude eigenvalue. The Power method is not used directly today, but it is
exploited (implicitly) by more e�cient techniques, like Krylov methods, inverse iteration
or the QR algorithm [129, 156, 167].

One thing is clear: a method for the calculation of the eigenvalues of any matrix of
order n must be necessarily iterative. If it was possible to compute the eigenvalues of a
nth order matrix A in a �nite number of computation, depending only on n, it would be
in contradiction with the fundamental theorem of Abel-Ru�ni: no algorithm exists for the
computation of the roots of a general polynomial of degree greater than 4.

Therefore, the methods used in AVSP and studied in this work are iterative. Tradition-
ally, the solver used in AVSP for the computation of a few smallest magnitude eigenvalues
was the Implicitly Restarted Arnoldi method [4, 78], implemented in the Fortran package
ARPACK [75]. A basic version of the Jacobi-Davidson method [146, 149, 150, 151] was
also available in AVSP. In this work, these and other methods are investigated for solving
the eigenvalue problem from combustion instabilities in an e�ective fashion. Some of them
showing promising features have been implemented in the acoustic solver.

1.4 Objectives and organization of the present work

1.4.1 Objectives

The present work is circumscribed by the framework of thermoacoustic instabilities. It
develops along two well di�erentiated axes: on one hand, a physical study of thermoa-
coustic instabilities in annular combustion chambers via the acoustic solver AVSP; on the
other hand, the study and development of e�cient numerical algorithms necessary to the
solution of the nonlinear eigenproblem that comes from the discretization of the Helmholtz
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equation [144]. Indeed, AVSP has been widely used for the study of combustion instabil-
ities [50, 97, 145, 148], using Flame Transfer Functions (FTF) for describing the �ame-
acoustics mutual interaction [28, 29, 38, 142]. The main objectives of this thesis can be
summarized as follows:

• Study and development of fast and robust parallel eigensolvers adapted to the ther-
moacoustic context of AVSP.

• Accelerate the computation of eigenvalues and eigenvector of the nonlinear eigeprob-
lem in AVSP. The nonlinear eigenvalue problem is handled by solving a sequence of
linear eigenproblems. Techniques allowing the use of solutions previously computed
in order to accelerate the solution of the next problem in the sequence are proposed.

• Today most modern gas turbine combustors are annular, which means that the most
dangerous resonant modes often take the form of azimuthal waves. In this work,
azimuthal modes in annular combustion chambers are investigated. The study of
their nature (standing, spinning or mixed) and stability depending on the symmetry
of the system is one of the objectives of this work. The e�ect of Flame Transfer
Function parameters and the coupling between cavities is also investigated.

As a result, this work is a mixed study between two �elds: thermoacoustics and numerical
methods for the solution of large sparse eigenproblems. It is typical of many present research
themes where the interaction between the physical and the numerical method used to solve
it is very strong and requires speci�c attention.

1.4.2 Organization of the manuscript

Part I The current chapter is a description of the general framework of combustion in-
stabilities. Growing energy demand and environmental issues have put gas turbine engine
manufactures into a challenging situation. Combustors using lean combustion are particu-
larly prone to develop combustion instabilities. The prevention of these instabilities at an
early design stage has become of �rst importance. In Chapter 2, the basic equations and
hypothesis that allow the study of thermoacoustic instabilities in this work are described.
A wave equation with a reactive term is then obtained. Its discretization on unstructured
meshes leads to a nonlinear eigenvalue problem whose solution provides the frequency,
stability and structure of the resonant modes of the combustion chamber.

Part II This part is dedicated to the numerical aspects of the solution of the nonlinear
eigenproblem, which is linearized using a �xed point method. In Chapter 3, algorithms for
the solution of the resulting linear eigenproblems are described. The pertinence of these
algorithms for the solution of the thermoacoustic eigenvalue problem is investigated in
Chapter 4. Several strategies for accelerating the �xed point iteration method are proposed,
showing good results.
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Part III Today, most modern gas turbine combustors are of annular type, showing az-
imuthal instabilities. This part is dedicated to the study of azimuthal modes in annular
chambers. In Chapter 5, an academic annular combustion chamber is studied using both an
analytical model called ATACAMAC and the 3D Helmholtz solver AVSP, showing a very
good agreement. The use of this analytical tool helps the analysis of the e�ect of symmetry
breaking on the stability and nature of azimuthal modes is investigated. In Chapter 6,
combustion instabilities in a real annular combustor are studied using AVSP.
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This chapter is dedicated to the description of the physical model used in this work
for the study of thermoacoustic instabilities in combustion chambers. Starting from the
Navier-Stokes equations, the hypotheses needed to construct a wave equation in reactive
�ows are �rst presented. The �ame model that allows to link the �ame response to acoustic
�uctuations is described and extended to annular con�gurations that present many �ames
circumferentially-arranged in annular chambers, representative of modern gas turbine com-
bustors.
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Assuming harmonic �uctuations, the wave equation in the time domain can be written
in the frequency domain, taking the form of a non homogeneous Helmholtz equation whose
right-hand side term accounts for the coupling between combustion and acoustics.

The discretization of the Helmholtz equation on unstructured meshes, using a �nite
volume formulation, leads to a complex non-symmetric nonlinear eigenvalue problem. The
matrices that de�ne the eigenvalue problem are mostly determined by the mesh size and
quality, as well as by the acoustic boundary conditions and the integration of the active
�ame e�ects. There is a direct link between the quality of the acoustic model (and its
complexity) and the eigenproblem which will have to be solved later. For example, meshes
with very large size variations between the smallest and the largest elements, will lead to
ill-conditioned matrices. Similarly, using complex impedances at the boundaries or active
�ame formulation will lead to a nonlinear eigenvalue problem, which is more complicated
to solve than a linear one. Throughout this work, we will point out the implications of
modeling on the applied mathematical methods required to solve the problem.

2.1 From Navier-Stokes equations to a wave equation

for reactive �ows

The thermoacoustic instabilities mechanism is the result of complex interactions between
turbulence, combustion and acoustic waves in the con�ned domain that is a combus-
tion chamber. A certain number of hypothesis (described in the following) are often
made [35, 97, 118] in order to simplify the problem: most of them are reasonable and
allow to capture the main physical phenomena involved in thermoacoustic instabilities.
The mixture is considered as a perfect gas where all species have the same molar weight
and heat capacity. Then, starting from the general Navier-Stokes equations, within the
context of linear acoustics, these hypothesis allow the derivation of a wave equation that
takes into account the interaction between the �ame and the acoustic waves.

2.1.1 The fundamental set of equations

As shown in [35], the mass conservation and momentum equations for a compressible viscous
�uid, in absence of external forces (H1) read:

Dρ

Dt
+ ρ∇ · ~u = 0, (2.1)

ρ
D~u

Dt
= −∇p+

∂σi,j
∂xj

~ei, (2.2)

where σi,j is the viscous stress tensor and ~ei is the unit vector in the direction of the
coordinate i. From the energy equation, the following equation is obtained for the entropy:

ρT
DS

Dt
= q +∇ · (k∇T ) + σi,j

∂ui
∂xj

, (2.3)

where k is the thermal conductivity and q is the rate of heat added by the combustion to
the �uid. Viscosity can dissipate energy at high frequencies, but for the range of frequencies
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2.1. A wave equation for reactive �ows

at which thermoacoustic instabilities rise (low frequencies), the corresponding wave lengths
are large so that it is commonly assumed that viscous terms can be neglected (H2), i.e.,
σi,j = 0 in Eqs. (2.2) and (2.3). Moreover, heat transfer by conduction is also neglected in
Eq. (2.3).

From the First Principle of thermodynamics, the entropy equation can be written as

DS

Dt
=
Cv
p

Dp

Dt
− Cp

ρ

Dρ

Dt
.

Using the mass conservation equation (Eq. (2.1)), this equation can be recast as

1

γp

Dp

Dt
+∇ · ~u =

γ − 1

γ

q

p
.

Hence, the fundamental set of equations is:

1

γp

Dp

Dt
+∇ · ~u =

γ − 1

γ

q

p
(2.4)

ρ
D~u

Dt
+∇p = 0. (2.5)

2.1.2 Linearization of the fundamental set of equations

The �uid variables are decomposed into a mean value, denoted by the subscript 0, plus a
�uctuation, denoted by the subscript 1,

p(~x, t) = p0(~x) + p1(~x, t),

ρ(~x, t) = ρ0(~x) + ρ1(~x, t),

~u(~x, t) = ~u0(~x) + ~u1(~x, t).

It is assumed, within the context of linear acoustics (H3), that �uctuations are small com-
pared to the mean values: p1 � p0, ρ1 � ρ0, u1 � c0. Note that the reference velocity is the
sound speed c0(~x). The mean �ow ~u0 is considered null (H4). This is a strong assumption
that constraints the application of these equations to situations where the Mach number is
small and its e�ect on acoustics can be neglected [97].

Considering this variable decomposition and neglecting second order terms, the funda-
mental set of equations (Eqs. (2.4�2.5)) is linearized, giving the following set of linearized
equations:

1

γp0

∂p1

∂t
+∇ · ~u1 =

γ − 1

γp0

q1, (2.6)

∂

∂t
~u1 +

1

ρ0

∇p1 = 0, (2.7)

where q1 is the �uctuating part of the heat release. Note that Eqs. (2.6�2.7) are equivalent
to the linearized Euler equations for non-reactive �ows, except that the right-hand side
term of Eq. (2.6) is non null. It takes into account the combustion e�ect on the acoustics.
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2.1.3 A wave equation for reactive �ows

As done in classic acoustics, the set of linearized equations can be combined in order to
obtain the wave equation. Indeed, taking [∂/∂t(Eq. (2.6)) −∇(Eq. (2.7))], it follows

1

γ(~x)p0

∂2p1(~x, t)

∂t2
−∇ · 1

ρ0(~x)
∇p1(~x, t) =

γ(~x)− 1

γ(~x)p0

∂q1(~x, t)

∂t
. (2.8)

The left-hand side of Eq. (2.8) has the form of the classic wave equation in a variable sound
speed �ow, but in the present case, there is a non null right-hand side term that accounts
for the �ame e�ect on acoustics (active �ame). The combustion is also present through
temperature variations, which is the reason why the quantity ρ0(~x) is not constant in space
and it must be kept within the divergence (passive �ame). If the molecular weights of all
the species that compose the equivalent gas are considered constant (H5), it follows that
γ(~x) is constant [118]. In this case, the wave equation reads as

∂2p1(~x, t)

∂t2
−∇ · c2

0(~x)∇p1(~x, t) = (γ − 1)
∂q1(~x, t)

∂t
. (2.9)

Within the framework of linear acoustics it is reasonable to assume that the pressure
�uctuations have the form of an harmonic wave:

p1(~x, t) = <[p̂(~x)e−iωt], p̂ ∈ C, ω ∈ C⇒

⇒ p1(~x, t) = eωit<[p̂(~x)e−iωrt],

where ωr = <(ω) and ωi = =(ω). The acoustic pressure can be then viewed as an harmonic
signal that oscillates with angular frequency ωr and whose amplitude grows (ωi > 0) or
decreases (ωi < 0). Analogously, the velocity �uctuation ~u1 and the heat release �uctuations
q1 can be written as

~u1(~x, t) = <[~̂u(~x)e−iωt],

q1(~x, t) = <[q̂(~x)e−iωt].

Alternatively, the imaginary part of the complex quantities p̂e−iωt, ~̂ue−iωt, q̂e−iωt can be
taken instead. In either case, using the harmonic assumption for the �uctuating variables,
the wave equation in the time domain becomes a Helmholtz equation in the frequency
domain:

∇ · c2
0(~x)∇p̂(~x) + ω2p̂(~x) = iω(γ − 1)q̂(~x). (2.10)

The objective of AVSP is to solve Eq. (2.10) in a 3D �eld with the proper boundary
conditions. Writing Eq. (2.7) in the frequency domain allows to express the acoustic velocity
in terms of the pressure �uctuation gradient

− iω~̂u+
1

ρ0(~x)
∇p̂(~x) = 0. (2.11)

In the context of the present work, three boundary conditions are usually considered:
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2.2. Flame model

• Rigid walls that impose zero normal acoustic velocity on the boundary, i.e., ~̂u·~nBC = 0.
This condition can be rewritten as a Neumann condition for the acoustic pressure
using Eq. (2.11):

∇p̂ · ~nBC = 0 on ∂ΩN . (2.12)

• A Dirichlet condition for the acoustic pressure, imposing a null pressure on the cor-
responding boundary:

p̂ = 0 on ∂ΩD. (2.13)

• A reduced complex impedance Z = p̂/(ρ0c0~̂u · ~nBC) establishing a general relation
between ~̂u and p̂ on the corresponding patch (the concept of acoustic impedance is
further developed in Sec. 2.3.1). This condition can be written as a Robin condition
for the acoustic pressure using Eq. (2.11):

c0Z∇p̂ · ~nBC − iωp̂ = 0 on ∂ΩZ . (2.14)

For a Dirichlet condition we have Z = 0, whereas for a wall Z =∞.

2.2 Flame model

One of the di�cult points of the present model for thermoacoustic instabilities, is the
description of the �uctuating heat release term q̂. The objective is to write this quantity in
terms of acoustic variables (~̂u, p̂), so that Eq. (2.10) can be entirely expressed in acoustic
variables ~̂u, p̂. In this work, Flame Transfer Functions (FTF) are used to link the heat
release �uctuation q̂ to the acoustic velocity �uctuation û. The idea behind FTF is simple:
an acoustic perturbation is introduced to the �ame and its response is analyzed by quantying
q̂ as a function of û. This idea was �rst introduced by Crocco [28, 29] for compact �ames.
In the frequency domain, the global FTF is de�ned as the ratio between the relative heat
release �uctuations integrated over the �ame volume Vf (Q̂/Q̄) and the relative inlet velocity
perturbation (û/ū):

F (ω) =
Q̂/Q̄

û/ū
= N3e

iωτ , (2.15)

where ω is the angular frequency. The FTF is a function of the frequency ω and is deter-
mined by the gain N3 = |F (ω)| and its phase τ = Arg(F (ω)/(2πω)). In Eq. (2.15) the
interaction index N3 is dimensionless. One can alternatively write

F (ω) =
Q̂

û
= N2e

iωτ , (2.16)

where the interaction index N2 has dimensions (N2 =
Q̄

ū
N3 [J/m])1.

Flame Transfer Functions have been widely used in the literature for the study of ther-
moacoustic instabilities [80]. It has been shown that the FTF depends on the �ame
shape [66] as well as on operating conditions [68]. Flame Transfer Functions have been

1See Tab. 2.2 for notations
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investigated for laminar and turbulent �ames for which only axial velocity perturbations
are considered. Examples of FTF for laminar conical �ames can be found in [39, 65, 68] and
laminar and turbulent V-�ames in [142, 3], respectively. The e�ect of thermal boundary
conditions and combustor con�nement on perfectly premixed swirl �ames is investigated
in [162]. Recently, FTF formulations have been extended to FDF (Flame Describing Func-
tion) by EM2C [148] to include the e�ects of the amplitude of the acoustic velocity u1 on
the �ame response. FDF will not be used here.

2.2.1 Local Flame Transfer Function

The FTF of Eq. (2.16) is a global formulation that links the heat release �uctuations
integrated over the �ame zone Q̂ =

∫
Vf
q̂dV to the velocity �uctuation û at a given reference

point placed at the burner inlet. This model was extended to a local formulation by Nicoud
et al. in [97], where the local response of the �ame q1(~x, t) at the instant t is linked to the
acoustic velocity �uctuations ~u1(~xref , t − τ) at the instant t − τ at a reference point ~xref
suitably chosen (Fig. 2.1).

�xref
�nref

q1(�x, t)

q1(�x, t)

Burner inlet Flame

�u1(�x, t− τ)

Figure 2.1: Scheme of a combustion chamber with a forced acoustic perturbation through the
burner inlet: the velocity �uctuation ~u1 through the inlet is measured at the reference point ~xref
and is responsible of the heat release �uctuations q1 in the �ame.

The extension to a local formulation of the global model of Eq. (2.16) allows to write
the heat release �uctuation in the frequency domain q̂ as:

q̂(~x) = nlocal(~x)~̂u(~xref ) · ~nrefeiωτlocal(~x) [W/m3], (2.17)

where ~xref is the reference point where the velocity �uctuation is considered along the
direction ~nref , which is taken in general normal to the inlet.

In Eq. (2.17), the local FTF parameters nlocal [W/m4] and τlocal [s] depend on the pul-
sation frequency ω. Note also that the choice of the reference point ~xref where the velocity
�uctuations are measured plays an important role in this model. As shown by Tru�n

38
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in [164] it must be chosen close enough to the �ame, so that |~xref − ~xflame| remains small
compared to the wavelength λ of the forced acoustic mode. Typically, the Helmholtz num-
ber He = |~xflame − ~xref |ω/c � 1. When the �ame is compact, the time delay τlocal is
expected to be the same for all �ame points and therefore equal to the global time delay τ
of Eq. (2.15).

Although the response of the �ame is linear for small amplitude velocity �uctuations,
nonlinear e�ects appear [8, 11] when the velocity oscillation amplitude increases, until a
limit cycle is reached, for which the the oscillation level is sustained. When the velocity
�uctuations are of the same order than the mean �ow, the FTF depends not only on the
excitation frequency ω, but also on the amplitude of the velocity �uctuations |~u1|. Then
the FTF can be extended [34] to the so-called Flame Describing Function (FDF) de�ned
as

F (ω, |û|) =
q̂/Q̄

û/ū
,

which takes into account nonlinear e�ects on the �ame response. Linear thermoacoustic
analysis provides a stability criterion, but the use of the FDF becomes necessary in order
to study certain nonlinear phenomena such as limit cycles, mode switching or instability
triggering [16, 63].

Generally the FTF can be determined experimentally, analytically and numerically. Ex-
perimentally, loudspeakers are used to excite the �ow and velocity or pressure sensors allow
to measure the unsteady velocity û in Eq. (2.17). The heat release �uctuations, on the
other hand can be determined by chemiluminescense of radicals CH∗ or OH∗ [38, 154, 171].
Experimental studies for the determination of the FTF of laminar and turbulent �ames in-
clude [56, 82]. Nevertheless, for complex industrial combustors, the experimental determi-
nation of the FTF is di�cult and costly because it requires optical access to the combustion
chamber. Concerning analytical determinations, Flei�l et al. introduced in [42] a model
based on the kinematic analysis of the �ame front evolution for conical �ames. This model
was extended in [38, 142] and recently Palies et al. [109] adapted it to premixed swirled
�ames. Finally, the FTF can be determined via Computational Fluid Dynamics (CFD)
computations [53, 64, 25, 162]. In this approach the combustion chamber is excited with
forced �ow oscillations in order to perturb the �ame, so that time series of unsteady velocity
and heat release �uctuations are obtained. Then, the obtained data are post-processed in
order to obtain the gain and the phase of the FTF.

2.2.2 From global to local Flame Transfer Functions

In certain cases, the local parameters nlocal(~x) and τlocal(~x) describing the point wise heat
release q̂(~x) can be obtained from numerical simulations, e.g. from LES. Nevertheless, in
many other cases (experiments, analytical models, etc.), only the global value of the heat
release Q̂ =

∫
V
q̂dV is available. Tab. 2.2 contains di�erent de�nitions of the interaction

index corresponding to global formulations of the FTF.

AVSP requires a local heat release q̂ de�ned by nlocal and τlocal. When these �elds are
not available, they must be obtained from the global values of Tab. 2.2. Knowing that
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Type Name De�nition Units Order of magnitude

Dimensional nlocal(x)
q̂

û(xref ) · nref
[J/m4] O(109)

Table 2.1: De�nition of the local interaction index nlocal(x) in AVSP.

Type Name De�nition Units Order of magnitude

Crocco N1
Q̂

û(xref ) · nref
γ − 1

Sfγp0

[−]
Thot
Tcold

− 1 (see [118])

Dimensional N2
Q̂

û(xref ) · nref
[J/m] O(109)

Non-dimensional N3
Q̂/Q

û(xref ) · nref/u
[−] O(1)

Table 2.2: Convention for global amplitude values N1, N2 and N3 with �uctuations of the global
heat release Q̂ [W ]. Q and u stand for scales of global heat release and velocity, usually taken as
the time averaged volume integrated heat release and bulk velocity respectively. In the Crocco's
formulation, Sf is a reference surface equal to the cross section area of the injector upstream of
the region where the �ame stands.

the global heat release Q̂ must satisfy
∫

V

q̂dV , the following relation must link the local

interaction index nlocal and time delay τlocal to the global quantities of Tab. 2.2:
∫

Vf

nlocal(~x)eiωτlocal(~x)dV = N2e
iωτ . (2.18)

Assuming that τlocal(~x) = τlocal and nlocal(~x) = nlocal are constant in the �ame (which is
consistent for compact �ames) then, from Eq. (2.18) one simply obtain:

nlocal =
N2

Vf
and τlocal = τ within the �ame, (2.19)

nlocal = 0 and τlocal = 0 outside the �ame, (2.20)

with Vf is the �ame volume.

Crocco's model

The Crocco's model [28, 29] is well adapted for analytical comparisons when the �ames
are compact. This one-dimensional formulation assumes that the heat release �uctuation
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u1(t− τ)

xref

Q1(t)

Sf
�nref

Figure 2.2: Scheme of Crocco's �ame model.

integrated over the �ow domain Q̂ can be written as:

Q̂ =

∫

V

q̂(~x)dV = Sf
γp0

γ − 1
N1
~̂u · ~nrefeiωτ , (2.21)

where Sf is a reference surface representative of the section that occupies the �ame (see
Fig. 2.2).

The point wise FTF quantities nlocal and τlocal required by AVSP can be obtained from
the global Crocco's parameters considering, as before, that they are constant in the �ame

and zero everywhere else. From Q̂ =

∫

V

q̂(~x)dV , we have:

∫

Vf

nlocale
iωτlocaldV = Sf

γp0

γ − 1
N1e

iωτ , (2.22)

which yields to the following relation:

nlocal =
γp0

(γ − 1)

Sf
Vf
N1 and τlocal = τ. (2.23)

2.2.3 Flame model extension to multi-burner combustors

The classical model described in Sec. 2.2 links the heat release �uctuations in the �ame
zone to the velocity �uctuations in the burner and was basically designed for longitudinal
acosutic modes in a single duct with a single �ame. In annular combustors, which have
many circumferentially-arranged burners (typically 15-24), it does not seem reasonable to
relate the heat release �uctuations of each �ame to the velocity through a single burner.
Sensiau et al. propose in [145] an extension of the �ame model of sec. 2.2 to multi-sector
annular combustors which is based on the so-called Independence Sector Assumption in
Annular Combustors (ISAAC): Heat release �uctuations in a given sector are driven only
by the velocity �uctuations through its own swirler (Fig. 2.3).

Therefore, the annular chamber is divided into N equals sectors and the heat release
�uctuations in each sector are related to its own reference point:

q̂(~x) =





nlocal(~x, ω)eiωτlocal(~x,ω)~̂u(~xref1) · ~nref1 for ~x ∈ Sector 1,

nlocal(~x, ω)eiωτlocal(~x,ω)~̂u(~xref2) · ~nref2 for ~x ∈ Sector 2,
...

nlocal(~x, ω)eiωτlocal(~x,ω)~̂u(~xrefN ) · ~nrefN for ~x ∈ Sector N.

(2.24)
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q̂2

q̂1

q̂3

q̂4

q̂5

q̂6

û1

û2

û3

û4

û5

û6

S1

S2

S3

S4

S5

S6

Figure 2.3: Scheme of an annular combustion chamber with 6 burners. ISAAC assumption: the
heat release �uctuations in each burner q̂i are driven by its own unsteady velocity �uctuations ûi.

The ISAAC assumption is implicitly used in many annular combustor studies [69, 158,
140, 93] and remains valid as long as the interactions between neighboring �ames can be
neglected. This is acceptable for most gas turbine combustion chambers and it has been
con�rmed via Large Eddy Simulations of an helicopter combustion chamber composed of
�fteen identical burners in [153, 170].2 Moreover, the �ame model of Eq. (2.24) can be still
used for the study of azimuthal modes since the main e�ect of these modes is to introduce
longitudinal pulsations of the �ow rates through each burner [153, 170, 52, 14].

2.3 Acoustic energy and the Rayleigh criterion

Under the hypothesis previously considered, it is possible to de�ne the following acoustic
energy associated with the pressure and velocity �uctuations p1 and ~u1 [118]:

e1(~x, t) =
1

2

(
ρ0(~x)u2

1(~x, t) +
p2

1(~x, t)

γp0

)
. (2.25)

In [62] the authors provide other de�nitions of disturbance energy that account not only
for acoustic waves, but also for entropy and vorticity waves convected by a mean �ow
~u0 6= 0, but we will limit this discussion to the classical acoustic from of Eq. (2.25).

The temporal evolution of e1 can be obtained by combining the fundamental linearized
equations as p1× [Eq. (2.6)] + ρ0~u1· [Eq. (2.7)], so that the following conservation equation
for e1 is obtained:

∂

∂t

[
1

2

(
ρ0(~x)u2

1(~x, t) +
p2

1(~x, t)

γp0

)]
+∇ · p1(~x, t)~u1(~x, t) =

γ − 1

γp0

p1(~x, t)q1(~x, t). (2.26)

2Nevertheless, there are cases where �ame-to-�ame interactions play an important role [174, 171] and
can not be neglected, like rocket engines. They are not studied in this PhD.
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De�ning the source term:

r1(~x, t) =
γ − 1

γp0

p1(~x, t)q1(~x, t),

and the acoustic �ux:
~f1(~x, t) = p1(~x, t)~u1(~x, t),

Eq. (2.26) is integrated over the domain Ω using the Green-Ortrogradsky theorem to obtain:

∂

∂t

∫

Ω

e1(~x, t) dV +

∮

∂Ω

~f1(~x, t) · ~nBC dS =

∫

Ω

r1(~x, t) dV, (2.27)

where

E1(t) =

∫

Ω

e1(~x, t) dV,

F1(t) =

∮

∂Ω

~f1(~x, t) · ~nBC dS and

R1(t) =

∫

Ω

r1(~x, t) dV.

The conservation equation for the total acoustic energy in the domain Ω is:

d

dt
E1(t) = R1(t)− F1(t). (2.28)

The meaning of Eq. (2.28) is clear: the evolution of the acoustic energy E1 integrated
over the domain Ω is controlled by the balance between the volumic term R1 and the
acoustic �ux F1 through the boundary ∂Ω. The volumic term

r1(~x, t) =
γ − 1

γp0

p1(~x, t)q1(~x, t)

results from the coupling between the pressure and the heat release �uctuations. If the
boundary conditions are such that the acoustic �ux F1(t) = 0, then the acoustic energy
E1 depends only on the thermoacoustic volumic term R1. If the last increases with time,
then dE1

dt
> 0, which reveals the existence of a thermoacoustic instability. Depending on the

phase between the pressure �uctuation p1 and the heat release �uctuation q1, the volumic
term R1 will appear either as an energy source or as an energy sink, as stated by Rayleigh in
1878 [123]: �At the phase of greatest condensation heat received by the air, and at the phase
of greatest rarefaction heat is given up from it, and thus there is a tendency to maintain the
vibrations.� Note that in the present �ame model, the phase between p1 and q1 is controlled
by the FTF delay parameter τ :

R1(t) =

∫

Ω

γ − 1

γp0

p1
Q̄

Ū
nu1e

iωdV =
γ − 1

γp0

Q̄

Ū

∫

Ω

p1u1e
iωτdV.

The Rayleigh criterion depends directly on the �eld of τ and on the phase between p1 and
u1 which is controlled by the impedances on boundaries and can not be changed easily. As
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a consequence R1 depends mainly on τ . In [111], the stability of azimuthal modes in an
academic annular con�guration is investigated as a function of τ . In [170], a compressible
LES of a real combustion chamber allows to demonstrate that changing the kinetics of the
combustion reaction (i.e., modifying the delay τ) can be enough to damp the thermoacoustic
instability installed in the chamber.

In general, the �ux p1~u1 is associated with acoustic losses through the boundaries ∂Ω of
the domain. In this case, the Rayleigh criterion is only a necessary condition for thermoa-
cosutic instabilities to occur. More generally, the acoustic energy E1 integrated over the
domain Ω will increase (the thermoacoustic instability will occur) if the gain due to R1 is
larger than the losses at the boundaries:

∫

Ω

γ − 1

γp0

p1q1 dV >

∮

∂Ω

p1~u·~nBC dS.

2.3.1 Acoustic impedance

The concept of impedance appears �rst in the �eld of electricity. The electric impedance
Z allows to link the current I to the potential di�erence V in the case of sinusoidal power,
following the Ohm's law V = Z I. Under the assumption of harmonics oscillations, we can
introduce an acoustic impedance Z analogous to the electric impedance, where the role of
the potential di�erence V is played by the pressure oscillation p̂ and the role of the current
I is played by the velocity ~̂u. Hence we can write :

Z =
p̂(~x)

ρ0c0 ~̂u(~x) · ~n
, (2.29)

where ~n is the domain boundary normal. In Eq. (2.29), Z is a complex reduced acoustic
impedance, whose argument represent the phase between pressure and velocity �uctuations
along the direction ~n at point ~x. Note that, in general, the impedance is a function of the
frequency ω, i.e., Z = Z(ω).

In many low-order models for thermoacoustics, the con�guration is modeled as a 1D
network of acoustic elements [47, 139, 33], and the acoustic impedance is used in transfer
matrices that link pressure and velocity signals, replacing elements with a complex geometry
by the equivalent impedance [141, 121, 164]. A famous example in the literature is the
equivalent complex impedance Z(ω) of the Helmholtz resonator [13]:

Z(ω) =
ρck2

2π
+ j

(
ω
ρ`

S
− ρc2

ωV

)
,

where k is the wavenumber (k = ω/c), ` is the length of the small tube, S is its section and
V is the volume of the big cavity.

Re�ection coe�cient and impedance

A very intuitive way of expressing boundary conditions for acoustic problems is to use the
re�ection coe�cient R, which is equal to the ratio between the amplitudes of the re�ected
(A−) and incident (A+) waves at the point ~xw (Fig. 2.4):
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2.3. Acoustic energy and the Rayleigh criterion

R =
A−e−i

~k·~xw

A+ei~k·~xw
. (2.30)

Intuitively, |R|< 1 implies that �uctuations are damped at the boundary, which trans-
lates into an acoustic �ux leaving the domain, leading to a net loss of acoustic energy. On
the contrary, |R|> 1 means that the oscillations are ampli�ed at the wall and a net acoustic
�ux enters the domain.

A+e−iω(t−�k·�x)

A−e−iω(t+�k·�x)

Wave fronts

�k

�xw
�n

Figure 2.4: Incident and re�ected waves traveling along the direction ~k.

The pressure p̂ and the velocity ~̂u at the point ~xw can be written as the superposition of
two traveling planar waves, propagating in opposite directions along ~k, as

p̂(~xw) = A+ei
~k·~xw + A−e−i

~k·~xw ,

~̂u(~xw) =
A+

ρc
ei
~k·~xw − A−

ρc
e−i

~k·~xw .

(2.31)

From the de�nition of impedance (Eq. (2.29)) at the point ~xw, the impedance can be
written in terms of re�ected and incident waves

Zw =
p̂(~xw)

ρc~̂u(~xw) · ~n
=
A+ei

~k·~xw + A−e−i
~k·~xw

A+ei~k·~xw − A−e−i~k·~xw
.

The relation between impedance and re�ection coe�cient is straighforward3:

Zw =
1 +R

1−R ⇔ R =
Zw − 1

Zw + 1
. (2.32)

3Note however that the link between Z and R depends on the sign convention used for the normal vector
~n at boundaries: in AVSP, all normal vectors ~n are considered entering the domain
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2.4 From the Helmholtz equation to a nonlinear eigen-

value problem

Using Eq. (2.11), the heat release �uctuation q̂(~x) from Eq. (2.17) can be written in terms
of the pressure gradient at the reference point:

q̂ = nlocale
iωτlocal

1

iωρ0

∇p̂(~xref )
︸ ︷︷ ︸

~̂u(~xref )

·~nref , (2.33)

which allows to obtain, using Eq. (2.33) in Eq. (2.10), the Helmholtz equation for reactive
�ows entirely written in terms of the acoustic pressure oscillation p̂

∇ · c2
0(~x)∇p̂(~x) + ω2p̂(~x) =

(γ − 1)

ρ0(~x)
nlocal(~x, ω)eiωτlocal(~x,ω)∇p̂(~xref ) · ~nref . (2.34)

This section shows how the discretization of Eq. (2.34) with boundary conditions de�ned
by Eqs. (2.12�2.14), using a �nite volume formulation on unstructured tetrahedral meshes,
leads to a nonlinear complex eigenvalue problem. The underlying numerical aspects in
AVSP are inherited from AVBP [126, 138] and they have been developed to o�er excel-
lent parallel performances. The subsequent developments are extracted from the PhD of
C. Sensiau [144], where one can additionally �nd the equivalent �nite element formulation
obtained from the �nite volume formulation used in AVSP. The resulting discretization
matrices are never stored, since the necessary machine memory when dealing with very
large meshes can become una�ordable. In this formulation, called �matrix free�, matrices
are never formed explicitly and only the output vector, resulting of applying the associated
linear operator to a given input vector, can be computed.

In AVSP, the discrete values of the acoustic pressure and the sound speed are stored at
the mesh nodes, while the pressure gradient is evaluated at the center of the cells and it is
constant for each cell. For the sake of simplicity, the developments and schemes presented
here correspond to 2D meshes, but the extension to 3D cases is straightforward. In Fig. 2.5,
a cell corresponding to a 2D mesh composed of triangular elements is displayed. The cell is
noted Ωj and its three edges have lengths Le1 , Le2 and Le3 , with normals ~ne1 , ~ne2 and ~ne3 ,
respectively. The index used for the edges is the index of their opposite nodes. It is useful
to note that, for a triangular element, we have

L1~nL1 + L2~nL2 + L3~nL3 = 0. (2.35)

2.4.1 Discretization of the ∇ · c2
0∇p operator

The calculation of the∇·c2
0∇p operator at the node j requires knowing the pressure gradient

∇p for the adjacent elements Ωj. The pressure gradient at the element Ωj is noted ∇p|Ωj

and it is computed as the mean value over the cell

∇p|Ωj
=

1

SΩj

∫

Ωj

∇p dS.
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1

2 3L1

L2L3 Ωi

p1

p2

p3

e1

e2
e3

�ne1

�ne2�ne3

Figure 2.5: Ωj is one cell of a 2D unstructured (or regular) mesh. The discrete values of the
pressure p̂(~x) from Eq. (2.34) are stored at the nodes of the elemet, noted p1, p2 and p3 respectively,
as well as the discrete values of the sound speed �eld c0(~x), c01 , c02 and c03 . The edges of the
element are noted e1, e2 and e3 and the corresponding exterior normals are ~ne1 , ~ne2 and ~ne3 . The
area of the cell is SΩi (VΩi is the corresponding volume in the 3D case).

Using the Green-Ostrogradsky theorem, it can be recast as

∇p|Ωj
=

1

SΩj

∮

∂Ωj

p ~n dL =
1

SΩj

[∫

e1

p ~ne1 dL+

∫

e2

p ~ne2 dL+

∫

e3

p ~ne3 dL

]
.

Having the discrete values of the pressure stored at nodes and considering a linear evolution
of the pressure along the element edges, it follows

∇p|Ωj
=

1

SΩj

[
(p2 + p3)Le1

2
~ne1 +

(p1 + p3)Le2
2

~ne2 +
(p1 + p2)Le3

2
~ne3

]
.

Reordering terms and using Eq. (2.35), one can �nally write

∇p|Ωj
=

1

2SΩj

[p1Le1~ne1 + p2Le2~ne2 + p3Le3~ne3 ] . (2.36)

On the other hand, the sound speed evaluated at the elements adjacent to the node j,
noted c0|Ωj

is also needed for the discretization of ∇ · c2
0∇p at node j. The sound speed at

the center of the element Ωj is simply evaluated as the mean of the node values

c0|Ωj
=
c01 + c02 + c03

3
. (2.37)

2.4.1.1 Computation of ∇ · c2
0∇p|j for interior nodes

An interior node of a 2D triangular mesh is represented in Fig. 2.6, where the notations
of the geometric elements used in the following are described. With the orientation of the
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j

l1

l2

�n1
l12

l11

ΩN
j

�n2

l21l22

�n11

�n12

�n21�n22

L1

L2

L3

L4

L5

L6

1
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3

4
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6

Ω1

Ω2

Ω3

Ω4

Ω5

Ω6

Figure 2.6: Representation of an interior node, noted j for a 2D triangular mesh, shared by the
elements Ωi, for i = 1, . . . , 6. The dual cell noted ΩN

j associated with the node j is represented by
the shaded area. It is delimited by the segments (of length li1 and li2) linking the center of each
element Ωi (medians intersection) to the middle of the corresponding edge. The normals ~ni1, ~ni1
are external to the dual cell. The segments li (dashed-lines) link the middle of two consecutive
edges and, from Thales' theorem, li = Li/2.

normals Fig. 2.6, and using Thales' theorem, we have, for the element Ω1

l11~n11 + l12~n12 = l1~n1 =
L1

2
~n1. (2.38)

The discrete value of ∇ · c2
0∇p at node j, noted ∇ · c2

0∇p|j, is computed as the mean
value of ∇ · c2

0∇p over the dual cell ΩN
j :

∇ · c2
0∇p

∣∣
j

=
1

SΩN
j

∫

ΩN
j

∇ · c2
0∇p dS =

1

SΩN
j

∮

∂ΩN
j

c2
0∇p · ~n dL.

As mentioned before, the values c0|Ωi
and ∇p|Ωi

are assumed constant over the element
Ωi. Consequently they are constant along the corresponding segments li1 and li2, and the
integral over the border of the dual cell gives

∇ · c2
0∇p

∣∣
j

=
1

SΩN
j

[
c2

0|Ω1∇p|Ω1·(l11~n11 + l12~n12) + · · ·+ c2
0|Ω6∇p|Ω6 ·(l61~n61 + l62~n62)

]
.
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Finally, using Eq. (2.38) one obtains

∇ · c2
0∇p

∣∣
j

=
1

SΩN
j

6∑

i=1

c2
0|Ωi
∇p|Ωi

·Li
2
~ni, (2.39)

where ∇p|Ωi
and c2

0|Ωi
are given by Eqs. (2.36) and (2.37), respectively.

In matrix notation, the discrete pressure values can be arranged in a vector p̄, whose j
component is p̂|j, i.e., the pressure at node j. On the other hand, the discretized operator
∇·c2

0∇ can be written as a sparse matrix, noted A, whose (i, j) entry aij can be determined
from Eq. (2.39). The matrix A is symmetric up to scaling, that is,

SΩN
i
aij = SΩN

j
aji.

The position of the non-zero entries of the matrix A depends on the nodes numbering while
its number depends on the mesh itself (2D, 3D, structured, unstructured, etc.)

2.4.1.2 Computation of ∇ · c2
0∇p|j for nodes located at the domain border

Ω1

Ω2

Ω3

j
1

2

3

4
�n11

�n12

�n21

�n22

�n31

�n32

l32

l31

l21

l22

l12

l11

l2

l1l3

L1

L2

L3 �n1

�n2

�n3

lb3 lb1

�nb �nb

ΩN
j

Figure 2.7: Representation of node, noted j, located at the border of a 2D triangular mesh. ~nb
is the interior normal of the domain border.

As for an interior node, for a node j located at the domain border (Fig. 2.7) it is possible
to write

∇ · c2
0∇p

∣∣
j

=
1

SΩN
j

[
c2

0|Ω1∇p|Ω1 · (l11~n11 + l12~n12 − lb1~nb) +

c2
0|Ω2∇p|Ω2 · (l21~n21 + l62~n22) + c2

0|Ω3∇p|Ω3 · (l31~n31 + l32~n32 − lb3~nb)
]
,
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which using Eq. 2.38 reads as

∇ · c2
0∇p

∣∣
j

=
1

SΩN
j

[
c2

0|Ω1∇p|Ω1 ·
L1

2
~n1 + c2

0|Ω2∇p|Ω2 ·
L2

2
~n2 + c2

0|Ω3∇p|Ω3 ·
L3

2
~n3

−c2
0|Ω1∇p|Ω1·lb1~nb − c2

0|Ω3∇p|Ω3·lb3~nb
]
.

The only di�erence with respect to Eq. (2.39) is the term within the box. This term is
de�ned by the type of boundary condition associated with the node j. The Robin condition
allows to write the pressure gradient at node j as

∇p · ~n|j = i
ω

c0jZj
pj,

where Zj is the complex acoustic impedance. On the other hand, for the Neumann condi-
tion, we have

∇p · ~n|j = 0.

The normal gradients to the border are expressed hence in terms of the impedance at node
j: (

c2
0|Ω1∇p|Ω1lb1 + c2

0|Ω3∇p|Ω3lb3
)
· ~nb = i

c0jω

Zj
(lb1 + lb3)pj.

Note that here, the acoustic impedance Zj is de�ned using a normal vector ~nb pointing into
the domain.

Therefore, for a boundary node, we have

(2.40)
∇ · c2

0∇p
∣∣
j

=
1

SΩN
j

[
c2

0|Ω1∇p|Ω1 ·
L1

2
~n1 + c2

0|Ω2∇p|Ω2 ·
L2

2
~n2 + c2

0|Ω3∇p|Ω3 ·
L3

2
~n3

− i
c0jω

Zj
(lb1 + lb3)pj

]
.

Eq. (2.40) shows that the discretization of ∇ · c2
0∇p|j for a node placed at the border is

the same as the one for an interior node, except that it is necessary to add the boundary
condition term

− ic0jω

Zj
(lb1 + lb3)pj. (2.41)

This term is null for a Neumann condition (Zj = ∞) and it does not appear either for a
Dirichlet condition, which is taken into account by imposing pj = 0 to the concerned nodes.
For all other cases, the term of Eq. (2.41) depends on ω. The dependency on the frequency
ω is not only due to the explicit presence of ω in Eq. (2.41), but also through the complex
impedance Zj, whose value depends generally on the frequency ω.

The nodes a�ected by a Robin boundary condition, have associated a diagonal matrix B,
whose non-null entries bjj (being j the index of the concerned boundary nodes) are (leaving
ω outside)

bjj =
−i
SΩN

j

c0j

Zj
(lb1 + lb3).
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In summary, for a mesh composed of N nodes, the discretized term ∇ · c2
0∇p̂(~x) of

Eq. (2.34) can be written as:

∇ · c2
0∇p̂(~x)→ �nite volume discretization → A p̄+ ωB(ω) p̄︸ ︷︷ ︸

Robin B.C.

, (2.42)

where p̄ ∈ CN is the vector of discrete pressure node values, B ∈ CN×N is a complex
diagonal associated with the boundary conditions and A ∈ RN×N is a sparse real matrix.

2.4.2 Discretization of the right-hand side term

The right-hand side term of Eq. (2.34) has the form

(γ − 1)

ρ0(~x)
nlocal(~x, ω)eiωτlocal(~x,ω)∇p̂(~xref ) · ~nref .

Once the geometry has been discretized, the discrete values of ρ0(~x), nlocal(~x) and τlocal(~x)
can be arranged in a vector q̄, whose element qj is de�ned by the discrete nodal values of
the discretized variables

qj =
(γ − 1)

ρ0j

Q̄

Ū
nlocalje

iωτlocalj .

Only the nodes within the �ame zone have qj 6= 0, so that the number of non-zero entries
of q̄ is equal to the number of nodes placed in the �ame zone.

The pressure gradient at node jref is computed as the mean of the pressure gradient of
the dual cell ΩN

jref
:

∇p|jref =
1

SΩN
jref

∫

ΩN
jref

∇p dS.

Since the pressure gradient is constant over each element surrounding the node jref , and
the dual cell ΩN

jref
takes exactly 1

3
of the surface (1

4
of the volume for 3D tetrahedral meshes)

of each one of them, the integral can be computed as

∫

ΩN
jref

∇p dS =
6∑

i=1

SΩi

3
∇p|Ωi

.

Therefore, the discretization of the term ∇p̂(~xref ) · ~nref leads to (from Fig. 2.6)

∇p|jref =
1

SΩN
jref

6∑

i=1

SΩi

3
∇p|Ωi

·~nref . (2.43)

Consequently, the discretized right-hand side term of Eq. (2.34), in matrix notation, can
be written as

(γ − 1)

ρ0(~x)
nlocal(~x, ω)eiωτlocal(~x,ω)∇p̂(~xref ) · ~nref → discretization → C p̄ = n̄r̄T p̄.
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The values of the entries of the vector r̄T are given by Eq. (2.43). Hence, only the entries
corresponding to the nodes surrounding the reference point ~xref are non-zero. Thus the row
index of the non-null elements of the matrix C = n̄r̄T are the index of the nodes located
in the �ame zone and the column index of its non-null entries are the indices of the nodes
surrounding the reference point ~xref .

2.5 The nonlinear eigenvalue problem

nl(�x), τl(�x)

Ptref

Z �= 0

Z �= 0

u1 = 0

u1 = 0

Figure 2.8: 2D tetrahedral mesh (1489 nodes) of a tube with a �ame placed at the middle and
an impedance Z 6= 0 at the top and bottom sides. Zoom of the �ame zone, showing the reference
point Ptref and the point within the �ame (nl 6= 0, τl 6= 0).

From the previous section, it has been obtained that the discretized Helmholtz equation
(Eq. (2.34)) becomes

Ap̄+ ωBp̄+ ω2p̄ = C(ω)p̄, (2.44)

where:

• A is a N × N sparse real matrix (being N the size of the associated mesh) that is
structurally symmetric. It comes form the discretization of the operator ∇c2

0(~x)∇.

• B is a N×N complex diagonal matrix. Its non-null entries correspond to the external
domain nodes that are concerned by a Robin condition. The term ωB does not appear
if only Neumann and/or Dirichlet boundary conditions are used.

• C is a rectangular sparse complex matrix coming from the discretization of the right-
hand side term of Eq. (2.34). The row index of its non-null entries are equal to the
nodes index that are in the �ame zone, the associated column indices are those of the
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nodes surrounding the reference point node jref . It appears when the active �ame
is considered in the thermoacoustic simulation.

The structure of the matricesA, B andC are shown in Fig. 2.9 for a simple case displayed
in Fig. 2.8. It consists in a 2D tube with a �ame placed at the middle. The left and right
sides are rigid walls (u1 = 0), whereas the top and bottom sides have an impedance Z 6= 0.
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Figure 2.9: Structure of the sparse matrices A, B and C issued from the discretization of the
Helmholtz equation of the 2D unstructured mesh of Fig. 2.8.

Eq. (2.44) is a nonlinear eigenvalue problem. As exposed in Chapter 4, there are no
standard methods for the solution of such a problem. Therefore, Eq. (2.44) is handled by
solving a sequence of linear eigenproblems obtained when the value of ω is set to a constant
ω∗ in ω∗B(ω∗) and C(ω∗), so the nonlinear dependency from ω disappears. The resulting
linear eigenvalue problem

[A + ω∗B(ω∗)−C(ω∗)] p̄ = −ω2p̄ ⇒ OP(ω∗)p̄ = −ω2p̄, (2.45)

where OP(ω∗) ∈ CN×N = A+ω∗B(ω∗)−C(ω∗) (being N the number of the mesh nodes) is
a non-symmetric complex matrix. In the following, Chapter 3 is dedicated to the description
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of algorithms for the solution of general large non-symmetric sparse eigenproblems, while
in Chapter 4 the use of these algorithms for the solution of OPp̄ = −ω2p̄ is investigated.
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Eigenvalue problem: algorithms and

numerical aspects
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Chapter 3
Algorithms for the solution of the

thermo-acoustic eigenproblem
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Chapter 3. Algorithms for the solution of the thermo-acoustic eigenproblem

When we deal with very large matrices, such as the one obtained in Eq. (2.45), the
computation of its complete spectrum is out of question, due to the limited amount of
available computing resources. For example, for a dense matrix A of order n = 106, even
its storage is not feasible: if double precision is chosen to represent a real number, it will
take 1012 numbers × 8 bytes, i.e., 8000 gigabytes to store the matrix A, what obviously
is not of any practical use. The size of the matrix to solve in this work is determined by
the mesh size (the number of nodes), which can lead to matrices of order n ≈ O(107) for
real geometries. Besides, in complex arithmetic the needed amount of memory is even dou-
bled. Fortunately, very large matrices that arise in most applications (structural mechanics,
electronic, chemistry, . . . ) are sparse, what reduces the memory requirements drastically.
This is also the case for the matrix OP obtained from the discretization of the Helmholtz
equation, as seen in Chapter 2.

Direct methods for the computation of the complete spectrum of dense matrices, like the
QR algorithm [156, Chapter 2] are based on similarity transformations. In general, applying
a similarity transformation causes �ll-in, so after a few transformations, an initially sparse
matrix becomes a dense matrix and then, as mentioned above, solving it directly is not an
option when its size is large. On the other hand, in most applications, it is not necessary
to compute the whole spectrum of the matrix, but only a few eigenvalues within a region of
interest (largest magnitude, smallest real part, . . . ). The study of thermoacoustic instabili-
ties in combustion chambers requires the computation of the lowest eigenfrequencies, which
correspond to the smallest magnitude eigenvalues of the matrix OP. Hence the algorithms
presented in this chapter are used for computing the part of the spectrum nearest zero.

The alternative to direct eigensolvers is the use of iterative methods. These methods
build subspaces with suitable properties that eventually contain good approximations of an
invariant subspace of the matrix in question. In addition, they allow to compute a given
region of the spectrum using only matrix-vector products, which is well adapted to the
matrix-free formalism employed in AVSP.

This chapter describes the algorithms dedicated to the solution of the large complex
sparse eigenproblems that appear in AVSP. It is organized as follows: The �rst section
introduces Krylov subspaces and Rayleigh-Ritz extraction, which are the main ingredients
of more complex algorithms. The second and the third sections are dedicated to the de-
scription of two algorithms based on Krylov subspaces: The implicitly restarted Arnoldi
method and the Krylov-Schur method, respectively. The fourth section introduces block
algorithms, which might be an interesting alternative to to recycle invariant subspaces pre-
viously computed, since they can start from a set of vectors. The �fth section introduces
the Jacobi-Davidson algorithm, one of the most important alternatives to the Krylov-based
methods. In the last section, the stopping criterion used to decide if the approximated
eigenpairs can be accepted as solution of the problem, is brie�y described.
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3.1 Krylov subspaces and Rayleigh-Ritz extraction

Probably the most basic method for the computation of eigenvalues of a matrix A is the
Power method [156, Chapter 2][129, Chapter 4]. Its use as an explicit method for the
computation of the dominant (largest magnitude) eigenpair goes back at least to 1913 [94].
Let us assume that the matrix A is nondefective and that (λi, xi) (i = 1, . . . , n) is the
complete set of its eigenpairs such that |λ1|> |λ2|> · · · > |λn|. Then, since xi are linearly
independent, any vector u1 can be written as a linear combination of them

u1 = γ1x1 + · · ·+ γnxn.

Now, if a power k of the matrix A is applied to the vector u1, from Akxi = λkxi, it follows
that

Aku1 = γ1λ
k
1x1 + γ2λ

k
2x2 + · · ·+ γnλ

k
nxn.

Therefore, if |λ1|> |λi| (i > 2) and γ1 6= 0, then when k → ∞ the �rst term γ1λ1x1 domi-
nates, so that Aku1 becomes an increasingly accurate multiple of the dominant eigenvector
x1.

In spite of its simplicity, the Power method is at the basis of more sophisticated methods
that are going to be presented in this chapter. It is also closely connected to the QR
algorithm [156, Chapter 2][167, Chapter 4], one of the greatest success of modern matrix
computations. The QR algorithm and its variants can be used to: compute the whole
spectrum of a general matrix, its singular value decomposition, the generalized Schur form
of a matrix pencil and many other applications.

The sequence of vectors generated by the Power method u1, Au1, A2u1, . . . , Ak−1u1

spans a particular subspace with interesting features. The Power method uses only the
vector uk = Ak−1u0 of the current iteration, throwing away the information contained in
the previously computed vectors. It turns out that the subspace spanned by the sequence of
vectors generated by the Power method can contain precious information, as the following
example taken from [156, Chapter 4] shows.

Let A be a diagonal matrix of order 100 whose eigenvalues are 1, 0.95, 0.952,. . . , 0.9599.
Starting from a random vector u1, the solid line in Fig. 3.1 plots the tangent of the angle
between the k-vector uk = Ak−1u1 and the dominant eigenvector x1 of A. Since the ratio
between the dominant and the subdominant eigenvalue of A is 0.95, the convergence is very
slow as expected. The dashed line plots the angle between x1 and the subspace spanned by
the sequence u1, Au1, A2u1, . . . , Ak−1u1. Finally, the dash-dot line shows the convergence
of the subdominant vector x2.

This example shows that the sequence u1, Au1, A2u1, . . . , Ak−1u1 span a subspace that
contains information about the eigenspace of the matrix A and it contains more information
than only the vector uk of the Power method iteration k. This kind of sequence is called a
Krylov sequence.
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Figure 3.1: Power method convergence. Taking into account the previous vectors generated by
the Power method improves the convergence rate and they can contain valuable information about
the next eigenvectors.

3.1.1 Krylov sequences and Krylov subspaces: de�nitions and
properties

De�nition Let A be of order n 6= 0 and let u 6= 0 be a vector in Cn. Then the sequence

u,Au,A2u,A3u, . . .

is a Krylov sequence based on A and u. The matrix

Kk(A, u) = [u Au A2u . . . Ak−1u]

is called the kth Krylov matrix. Finally, the subspace

Kk(A, u) = R[Kk(A, u)]

is called the kth Krylov subspace, where R(v1, . . . , vk) denotes the space spanned by
(v1, . . . , vk).

Krylov subspaces have the following properties:

1. the sequence of Krylov subspaces satis�es

Kk(A, u) ⊂ Kk+1(A, u)

and
AKk(A, u) ⊂ Kk+1(A, u).
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3.1. Krylov subspaces and Rayleigh-Ritz extraction

2. If σ 6= 0, σ ∈ C,
Kk(A, u) = Kk(σA, u) = Kk(A, σu).

3. For any κ, κ ∈ C,
Kk(A, u) = Kk(A+ κI, u).

4. If W ∈ Cn×n is nonsingular, then

Kk(W−1AW,W−1u) = W−1Kk(A, u).

We say that a Krylov sequence terminates at ` if ` is the smallest integer such that

K`+1(A, u) = K`(A, u). (3.1)

Theorem 3.1 presents some important facts about termination of Krylov sequences.

Theorem 3.1 A Krylov subsequence based on A and u terminates at ` if and only if ` is
the smallest integer for which

dim[K`+1] = dim[K`]. (3.2)

If the Krylov sequence terminates at `, K` is an eigenspace of A of dimension `. On the
other hand, if u lies in an eigenspace of dimension m, then for some ` ≤ m, the sequence
terminates at `.1

As the former example shows (Fig. 3.1), Krylov subspaces contain increasingly accurate
approximations to certain eigenvectors of the matrix in question, more precisely, those
eigenvectors that have eigenvalues lying on the periphery of the spectrum of the matrix.
More details about convergence of Krylov sequences can be found for instance in [156].

3.1.2 Rayleigh-Ritz extraction

The most commonly used method for extracting spectral information of a given subspace
is called the Rayleigh-Ritz method. The starting point is the matrix A and a subspace U
containing an approximate eigenspace of it. Note that U is chosen as a Krylov subspace
associated with the matrix A, but this is not a necessary condition to carry out the Rayleigh-
Ritz procedure. The basis of the method is given in the following theorem:

Theorem 3.2 Let U be a subspace and let U be a basis for U . Let V H be a left inverse of
U and set

B = V HAU.

If X ⊂ U is an eigenspace of A, then there is an eigenpair (L,W ) of B such that (L,UW )
is an eigenpair of A with R(UW ) = X .

1See [156, page 271] for the proof.
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Proof We suppose that (L,UW ) is an eigenpair of A. Then

AUW = UWL.

If we multiply this relation on the left by V H , we obtain

BW = V HAUW = V HUWL = WL,

so that (L,W ) is an eigenpair of B.

Theorem 3.2 says that it is possible to �nd exact eigenspaces of the n × n matrix A
contained in U by computing eigenpairs of the k × k (with k << n) Rayleigh quotient B,
which is much cheaper. Obviously, in practice, we will not have a subspace U containing
an exact eigenspace X of A, but an approximation X̃ . By continuity, it is reasonable to
think that there would be an eigenpair (L̃, W̃ ) of B such that (L̃, UW̃ ) is an approximate
eigenpair of A with R(UW̃ ) ∼= X̃ . Therefore, the following procedure allows to compute
an approximate eigenspace X̃ of A:

1. Let U be a basis for U and let V H be a left inverse of U .

2. Form the Rayleigh quotient B = V HAU .

3. Compute a suitable eigenpair (M,W ) of B .

4. Then the pair (M,UW ) is an approximate eigenpair of A.

This procedure is known as a Rayleigh-Ritz procedure. The pair (M,UW ) is called a
Ritz pair, being M its Ritz block and UW its Ritz basis. W is the primitive Ritz basis and
the space R(UW ) is called the Ritz space. When it comes to the computation of single
eigenpairs, then the Ritz pair can be written as (λ, Uω) and λ is called a Ritz value, Uω a
Ritz vector and ω a primitive Ritz vector.

In its general form, described over these lines, the Rayleigh-Ritz method uses two dif-
ferent basis U and V , spanning di�erent subspaces, to form the Rayleigh quotient B. It is
called then an oblique Rayleigh-Ritz method2. A very important particular case is when U is
chosen orthonormal and V equal to U . In this case we talk of the orthogonal Rayleigh-Ritz
method. In addition the primitive Ritz basis W is also taken orthonormal so that the Ritz
basis X̂ = UW is orthonormal as well. Unless the contrary is speci�ed, the methods used
in this work uses the orthogonal Rayleigh-Ritz method. The �rst advantage of this choice
is given by the following theorem3:

2In the context of linear systems, the Rayleigh-Ritz method is also known as Galerkin method (if V = U)
or Galerkin-Petrov method (if V 6= U). These methods try to solve the equation Ax = b, choosing x to
satisfy

1. x ∈ U
2. Ax− b ⊥ V.

3Proof in [156, page 286]
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Theorem 3.3 If (M, X̂) is an orthonormal Rayleigh-Ritz pair with respect to U , then

R = AX̂ − X̂M

is minimal in any unitarily invariant norm.

The other positive aspect is that working with unitary matrices has evident advantages
within the context of �nite precision arithmetic.

Any Ritz pair (λ, ω) satis�es

1. x ∈ U

2. Ax− λx ⊥ V .

The Rayleigh-Ritz method is also called a projection method because a Ritz pair (µ, x)
is an eigenpair of the matrix PVAPU , where PV and PU are orthogonal projectors onto U
and V , respectively.

3.1.3 The shift-and-invert transformation

Let us recall that in the thermoacoustic problem the concern is about the lowest resonant
frequencies of the system, i.e., those corresponding to the smallest magnitude eigenvalues.
Nevertheless, it has been already pointed out that due to the link between Krylov subspaces
and the Power method, these subspace converge naturally toward eigenspaces associated
with eigenvalues lying on the periphery of the spectrum of the matrix. This di�culty can be
overcome thanks to the shift-and-invert enhancement. This technique can be used to make
the interior eigenvalues of the matrix A dominant, so they are naturally approached by a
Krylov subspace. Consider that λ1, λ2, . . . , λn are the eigenvalues of A (in no particular
order). If a good approximation κ to λ1 is available, then, the eigenvalues of the matrix
(A− κI)−1 are

µ1 =
1

λ1 − κ
, µ2 =

1

λ2 − κ
, . . . , µn =

1

λn − κ
.

As κ→ λ1, µ1 →∞ and for i > 1, the µi approach (λi − λ)−1, which are �nite quantities.
Therefore, if κ is chosen close enough to λ1, the shift-and-invert procedure makes µ1 the
dominant eigenvalue of the transformed matrix (A − κI)−1. Then the original eigenvalue
of A can be computed from µ1 as λ1 = 1

µ1
+ κ. More generally, if one is interested in

the closest eigenvalues to a particular target κ, computing the dominant eigenvalues of the
transformed matrix (A−κI)−1 allows to �nd the eigenvalues of A closest to the given target
κ.

In our case, computing the smallest magnitude eigenvalues (those closest to zero) of the
matrix OP is equivalent to compute the largest magnitude eigenvalues of the inverse matrix
OP−1. Therefore, in order to use the shift-and-invert enhancement the operator OP−1 is
thus needed or, alternatively, the result of applying it to a given vector x = OP−1y. This
is equivalent to solve a large sparse non-symmetric linear system OPx = y each time that
the operator OP has to be applied to an input vector y. If preconditioning techniques are
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not available or it is not possible to use them, solving these linear systems is a challenging
problem that would require a study apart itself, which is the reason why this technique has
not been retained in this work.

3.2 The Implicitly Restarted Arnoldi algorithm

The Arnoldi method is an e�cient procedure for approximating a suitably chosen subset
of the spectrum of a large sparse matrix A of order n. Its origin can be found in the work
of Arnoldi, back in the 50's [4]. It is a generalization of the Lanczos algorithm designed for
symmetric matrices [72]. After k steps, the method produces a Hessenberg matrix Hk of
order k. The idea is to use the eigenvalues of the small matrix Hk to approximate a subset
of the eigenvalues of the large matrix A, using the Rayleigh-Ritz procedure.

There are some di�culties inherent to the Arnodi (or Lanczos) method. As k increases,
some of the Ritz pairs of Hk will hopefully approach eigenpairs of A. But, for memory
reasons, we cannot keep increasing the size of the factorization until we reach the con-
vergence. Therefore, when k becomes too large, the process needs to be restarted. The
Implicitly Restarted Arnoldi method, developed by Sorensen and Lehoucq in [78], is a pow-
erful method to restart the Arnoldi iteration.

3.2.1 The Arnoldi factorization

After k steps, the Arnoldi process computes the following factorization of the n matrix A:

AVk = VkHk + fke
T
k , (3.3)

where V H
k Vk = Ik. The vector fk is the residual and is orthogonal to the columns of

Vk and ek is the last column of the k order identity matrix Ik. The k × k matrix Hk is
an upper Hessenberg matrix, which can be seen as the orthogonal projection of A onto
R(Vk) = Kk(A, v1). The factorization (3.3) can be also written as follows:

AVk = Vk+1Ĥk, with Ĥk+1 =

(
Hk

hk+1,ke
T
k

)
.

In this more compact form, hk+1 is the norm of the residual fk and the last column vk+1

of Vk+1 is the normalized residual. Let us set β = hk+1,k, then dropping subscripts, the
Arnoldi decomposition can be written as AV = V H + βveT or AV = V̂ Ĥ, where the hats
over the matrices V and H represent an augmentation by a column and a row respectively.

Algorithm 3.1 implements the Arnoldi process, which builds an Arnoldi decomposition
starting from a given initial vector v1.

Let us introduce two important properties of the Arnoldi factorization:

Uniqueness There exists a one-to-one correspondence between a non-terminating Krylov
sequence Kk+1(A, v1) and the corresponding Arnoldi decomposition. In other words, if the
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Algorithm 3.1 [Vk+1, Ĥk] = ARL_reortho(A, v1, k)

Given a n matrix A and an initial vector v1, construct an Arnoldi decomposition of order
k < n, AVk = VkHk+βvk+1e

T
k = Vk+1Ĥk with selective re-orthogonalization, using Classical

Gram Schmidt.

Set V (:, 1) = v1/norm(v1)
for j = 1, 2, . . . , k do
w = AV (:, j)
wnorm1 = norm(w)
H(1 : j, j) = V (:, 1 : j)Hw
w = w − V (:, 1 : j)H(1 : j, j)
wnorm = norm(w)
if wnorm <

√
2wnorm1 then

s = V (:, 1 : j)Hw
H(1 : j, j) = H(1 : j, j) + s
w = w − V (:, 1 : j)s
wnorm = norm(w)

end if
β = wnorm
if β 6= 0 then
H(j + 1, j) = β
V (:, j + 1) = w/β

end if
end for

Krylov sequence Kk+1(A, v1) does not terminate, its associated Arnoldi decomposition is
unique up to scaling of the columns of Vk+1.

Reduced Arnoldi decompositions and invariant subspaces We will say that an
Arnoldi decomposition is unreduced if its associated Hessenberg matrix Ĥk is unreduced,
i.e., hi+1,i 6= 0, for i = 1, . . . , k. If this is not the case, we say that the Arnoldi factoriza-
tion is reduced. The following theorem establishes the condition under which an Arnoldi
decomposition AVk = Vk+1Ĥk is reduced:

Theorem 3.4 Let the orthonormal matrix Vk+1 satisfy

AVk = Vk+1Ĥk,

where Ĥk is Hessenberg. Then Ĥk is reduced if and only if R(Vk) contains an eigenspace
of A.4

3.2.2 The implicitly restarted Arnoldi method

The amount of memory is usually limited, which means that it is not possible to expand
the Arnoldi factorization as far as necessary until the convergence of the desired eigenpairs

4Proof in [156, page 306]
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is reached. Then let us assume that m is the maximum size of the Arnoldi factorization
that we can a�ord:

AVm = VmHm + βvm+1e
T
m.

Once the factorization has been computed, the Ritz procedure is used in order to evaluate
a set of eigenvalues of interest. If these eigenvalues are not approximated well enough, then
the process has to be restarted. In order to do that, the idea is to improve the starting
vector, using a �lter polynomial. A particular case of �lter polynomial, is the very natural
choice of a linear combination of Ritz vectors that we are interested in. As presented in [78],
the QR algorithm can be used to form a �lter polynomial which will be applied implicitly
to the starting vector v1. But �rst, we will explain further the motivation of this procedure.

3.2.2.1 Filter polynomials

In order to explain in a simple manner why the process does work, let us assume that A has
a complete set of eigenpairs (λi, xi). Then any vector can be written as a linear combination
of eigenvectors of A and, particularly, the starting vector of the Arnoldi factorization. If
we are interested in the �rst k eigenvalues of A, then v1 can be expanded in the form

v1 =
k∑

i=1

γixi +
n∑

i=k+1

γixi,

from which follows that, if p is any polynomial

p(A)v1 =
k∑

i=1

γip(λi)xi +
n∑

i=k+1

γip(λi)xi.

It seems clear that if we have a polynomial p so that the values p(λi)(i = k + 1, . . . , n) are
small compared to those p(λi)(i = 1, . . . , k), then v1 will be rich in the components of the
wanted vectors and de�cient in the ones not wanted. The polynomial p is called a �lter
polynomial. If the Arnoldi factorization is of size m and we are interested in k eigenpairs,
the degree of p ism−k. The cost of calculating p(A)v1, being p of degreem−k, is expensive
(m − k matrix-vector products) if it is done directly. In the following section, an elegant
and economic way of computing the Krylov decomposition of Kk[p(A)v1] using shifted QR
steps is introduced. This procedure is known as implicit restarting.

3.2.2.2 Implicit Restarted Arnoldi method

The method will work in the following manner:

1. Start with an Arnoldi decomposition of size k

AVk = VkHk + βkvk+1e
T
k .

2. Expansion phase: the decomposition is expanded to one of order m, with m suitable
chosen so that it �ts in the available memory:

AVm = VmHm + βmvm+1e
T
m.
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3. Contraction phase: apply a �lter polynomial p of degree m− k to reduce the decom-
position to one of size k, using the implicit restarting process, to obtain

AṼk = ṼkH̃k + β̃kṽk+1e
T
k .

4. Repeat steps 2�3 until the desired Ritz values have converged.

The process allowing to apply the �lter polynomial p (in its factored form)

p(t) = (t− κ1)(t− κ2) · · · (t− κm−k),

to the decomposition AVm = VmHm +βvm+1e
T
m in an implicit way, which will be analogous

to a basic QR algorithm step, is explained in the following.

Let us start by shifting the decomposition

(A− κ1I)Vm = Vm(Hm − κ1I) + βvm+1e
T
m.

If Hm − κ1I = Q1R1 is the QR factorization of the shifted Hessenberg matrix, then

(A− κ1I)Vm = VmQ1R1 + βvm+1e
T
m. (3.4)

Multiplying on the right by Q1 we have

(A− κ1I)(VmQ1) = (VmQ1)(R1Q1) + βvm+1(eTmQ1),

which can be recast into
AV (1)

m = V (1)
m H(1)

m + βvm+1b
(1)H
m , (3.5)

with
V (1)
m = VmQ1, H

(1)
m = R1Q1 + κ1I, and b

(1)H
m = eTmQ1.

One can see that H(1)
m is actually the result from one QR step with shift κ1 applied to Hm.

Let us analyze more carefully the properties of the factorization from Eq. (3.5):

1. Since the QR algorithm preserves the Hessenberg form, the matrix H
(1)
m is also of

Hessenberg form. Besides, at most its last subdiagonal element is zero.

2. The matrix V (1)
m is orthonormal.

3. The matrix Q1 is upper Hessenberg and so the vector b(1)H
m = eTmQ1 is the last row of

Q1, which means that only the last two components of b(1)
m are nonzero.

Now these three facts allow to say that expression (3.5) is almost an Arnoldi factorization.
Almost because the last two components of b(1)

m are nonzero and thus it cannot be written
as b(1)

m ∝ em. But if we equate the �rst (m−1) colums of Eq. (3.5), then we have an Arnoldi
factorization of order (m− 1), i.e., its order has been reduced by one.

And this is not all. Indeed, what is maybe the most important feature of this method
has not been shown yet. Let us recall that what it is sought is to �lter the initial vector
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v1 with a �lter polynomial that makes the initial vector richer in the wanted directions,
attenuating the components of the unwanted ones. If Eq. (3.4) is post-multiplied by e1, as
R1 is upper triangular, we get

(A− κ1I)v1 = r
(1)
11 v1.

Since (Hm − κ1I) is unreduced, r(1)
11 is nonzero. This means that the �rst column of V (1)

m is
a multiple of (A− κ1I)v1. One can already begin to realize the power and elegance of the
method.

If we repeat this process with κ2, . . . , κm−k we end up obtaining the following decompo-
sition:

AV (m−k)
m = V (m−k)

m H(m−k)
m + βvm+1b

(m−k)H
m . (3.6)

As done before, let us analyze the di�erent terms in Eq. (3.6):

1. H(m−k)
m is upper Hessenberg. At most its last m− k subdiagonal elements are zero.

2. V (m−k)
m is orthonormal.

3. Q = Q1Q2 . . . Qm−k is zero below its (m − k) subdiagonal. This can be seen in the
following Wilkinson diagram for k = 3 and m = 6

Q = Q1Q2Q3 =




q q q q q q

q q q q q q

q q q q q q

q q q q q q

0 q q q q q

0 0 q q q q




,

which means that b(m−k)H
m is the last row of Q, and hence its �rst k − 1 components

are zero.

4. The �rst column of V (m−k)
m is a multiple of (A−κ1I)(A−κ2I) · · · (A−κm−kI)v1. The

initial vector v1 has been �ltered with p(A).

Fig. 3.2 displays a scheme of this restart process, showing the Arnoldi decomposition before
and after applying the m− k shifts. The k �rst columns of Eq. (3.6) can be written in the
form

AV (m−k)
m = V (m−k)

m H
(m−k)
k + h

(m−k)
k+1 v

(m−k)
k+1 eTk + βqmkvm+1e

T
k ,

where V (m−k)
k consists of the �rst k columns of V (m−k)

m , H(m−k)
k is the leading principal

submatrix of order k of H(m−k)
m , and qmk is the last row of the matrix Q = Q1Q2 . . . Qm−k.

Therefore, setting

Ṽk = V
(m−k)
k , (3.7)

H̃k = H
(m−k)
k , (3.8)

β̃k = ‖h(m−k)
k+1 v

(m−k)
k+1 + βqmkvm+1‖2, (3.9)

ṽk+1 = β̃−1
k (h

(m−k)
k+1 v

(m−k)
k+1 + βqmkvm+1), (3.10)
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Figure 3.2: Scheme of an the implicit restart process m.

we retrieve an Arnoldi decomposition of order k

AṼk = ṼkH̃k + β̃ṽk+1e
T
k

whose starting vector is proportional to (A− κ1) · · · (A− κm−k)v1, i.e., it has been �ltered
by p(A). The economy of the method is outstanding: no matrix-vector multiplications
involving A are needed to form the new starting vector, and its Arnoldi factorization of
order k is obtained for free. Implementation issues, as well as an algorithm implementing
a single implicit QR step and its inclusion in a whole restarted Arnoldi cycle can be found
in [156].

This method has been used with great success for the solution of large eigenvalue prob-
lems by the scienti�c community. ARPACK is the name of its de�nitive FORTRAN im-
plementation developed by Lehoucq, Sorensen and Yang5, which is used in AVSP. More
details can be found in the ARPACK's user guide [75].

Exact shifts and Forward Instability
The Implicitly Restarted Arnoldi method o�ers to the user the possibility of choosing

the shift to be applied. If the Ritz values are chosen as shifts, it is called exact shifts.
In this case, the Rayleigh quotient assumes a particular form where the discarded Ritz
values appear on the diagonal of the unwanted part of the Rayleigh quotient. To see this

5http://www.caam.rice.edu/software/ARPACK/
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more clearly, let us consider the unreduced Hessenberg matrix H, and let µ be a Ritz value
(eigenvalue of H). Then, it can be proved that [156, p. 329], after one QR step with shift
µ, the resulting matrix H̃ has the form

H̃ =

(
H̃11 h̃12

0 µ

)
, (3.11)

where H̃11 is unreduced. Now, if k QR steps are applied, using as shifts the eigenvalues of
H (µm, . . . , µk+1), then the �nal matrix Hm−k

m (from Eq. 3.6) has the form

H(m−k)
m =

(
H̃k H

(m−k)
12

0 T (m−k)

)

where T (m−k) is an upper triangular matrix with the Ritz values µk+1, . . . , µm (in this order
when they are applied on the inverse order)on its diagonal.

Because H(m−k)
m is diagonal by blocks, H̃k must contain the Ritz values that were not

used as shifts during the contraction phase. The consequences of this is that one can choose
the Ritz values that are kept and those that are discarded: after the expansion phase, the
eigenvalues of the Hessenberg quotient are computed and those wanted to be discarded can
be used as shifts in the contraction phase. This way of restarting the process will be used
to steer the Arnoldi algorithm to regions of interest (smallest magnitude eigenvalues in the
present case).

Eq. (3.11) remains true in exact arithmetic. Unfortunately, in the presence of rounding
error, it can happen that given an exact shift, the computed matrix can fail to de�ate �
i.e., its (m,m − 1)-element can be far from zero. This phenomenon is known as forward
instability of the QR step, and it can prevent eventually the purge of undesirable Ritz values.
In fact, an unwanted Ritz value can become permanently locked into the decomposition.

Despite its name, forward instability cannot generate instability in the Arnoldi process
itself, and the relation AV = V H + βueT will continue to hold to working accuracy. At
worst it can only delay its progress.

3.3 The Krylov-Schur method

General orthonormal Krylov decompositions were �rst introduced by Stewart in [155]. They
are a generalization of Arnoldi decompositions, and they constitute an elegant way to over-
come the limitations imposed by the need to preserve the restrictive form of an Arnoldi
factorization. Indeed, the two defects of the implicitly restarted Arnoldi procedure � the
forward instability and the di�culty to de�ate converged Ritz pairs � come from the commit-
ment to maintaining the Hessenberg structure of its Rayleigh quotient. Therefore, de�ation
and purging can be treated in a natural and e�cient way by relaxing the de�nition of an
Arnoldi decomposition, to obtain a decomposition based on Krylov subspaces that is closed
under certain transformations. Because the method is based on Schur decompositions of the
Rayleigh quotient, Stewart called it the Krylov-Schur method. The concepts and notations
used here come from [155, 156].
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3.3.1 Krylov decompositions

The Krylov decomposition is introduced here by its de�nition:

De�nition A Krylov decomposition of order k is a relation of the form

AUk = UkBk + uk+1b
H
k+1, (3.12)

where Bk is of order k and the columns of (Uk uk+1) are independent. Equivalently, it is
possible to write

AUk+1 = Uk+1B̂k,

with Uk+1 = (Uk uk+1) and

B̂k =

(
Bk

bHk+1

)
.

If Uk+1 is orthonormal, the Krylov decomposition is orthonormal. The space R(Uk+1) is
called the space spanned by the decomposition and Uk+1 the basis of the decomposition. If
two Krylov decompositions span the same space they are said to be equivalent.

Eq. (3.12) has the same form as an Arnoldi decomposition, but the vectors of the basis
Uk+1 are not required to be orthonormal. In addition, the matrix B̂k is not assumed to have
any particular form, being uniquely determined by the basis Uk+1. If (V v)H is any left
inverse of Uk+1 then, from Eq. (3.12), it follows that Bk = V HAUk and bHk+1 = vHAUk, i.e.,
Bk is a Rayleigh quotient of A. For an orthonormal Krylov decomposition, UH

k+1Uk+1 = I,
so that Bk = UH

k AUk. In the following, only orthonormal Krylov decompositions are
considered.

Krylov decompositions are closed under two types of transformations: similarity and
translation. The �rst transformation allows to transform the pair (Bk, Uk) along with the
vector bHk+1. The second one changes the vector uk+1.

3.3.1.1 Similarity transformations

Dropping subscripts, let us start with a Krylov decomposition

AU = UB + ubH ,

and let Q be nonsingular. Then by post-multiplying by Q, we obtain the equivalent Krylov
decomposition

A(UQ) = (UQ)(Q−1BQ) + u(bHQ)

≡ AŨ = ŨB̃ + ub̃Hk+1.
(3.13)

Both Krylov decompositions are similar. This transformation allows to reduce the Rayleigh
quotient to any convenient form. For example, if the Rayleigh quotient is reduced to Jordan
form, then we can talk about a Krylov-Jordan decompositions. From this point of view,
an Arnoldi decomposition could be called a Krylov-Hessenberg decomposition. Precisely,
the name of Krylov-Schur method comes from the fact that it uses the Schur form S of the

71



Chapter 3. Algorithms for the solution of the thermo-acoustic eigenproblem

Rayleigh quotient B. Indeed, as exposed later, similarity transformations are at the heart
of the Krylov-Schur method, since they are used not only to reduce the Rayleigh quotient
to an upper triangular matrix, but also in order to sort the eigenvalues appearing in its
diagonal attending to any prescription.

3.3.1.2 Translation

To introduce the operation of translation, let

γũ = u− Ug,
where γ 6= 0. Then it is easily veri�ed that

AU = U(B + gbH) + ũb̃H ,

with b̃H = γbH , is a Krylov decomposition with the same space as the original. Note that
translation cannot produce any arbitrary vector ũ since γ 6= 0. The new vector ũ will
always contain the original vector u, so that the two decompositions span the same space.

These two transformations allow to establish an important result: every Krylov decom-
position is equivalent (i.e., it spans the same space) to a (possibly unreduced) Arnoldi
decomposition. If the Arnoldi decomposition in unreduced, then it is essentially unique,
and the original Krylov decompositions must come from a non-degenerate Krylov subspace.

3.3.1.3 Equivalence between Krylov and Arnoldi decompositions

The following theorem states that every Krylov decomposition has an equivalent Arnoldi
decomposition.

Theorem 3.5 Let
AU = UB + ubH

be a Krylov decomposition of order k. Then it is equivalent to an Arnoldi decomposition. If
the Hessenberg matrix of the Arnoldi decomposition is unreduced, the Arnoldi decomposition
is essentially unique.

In [156] a detailed algorithm to obtain the Arnoldi decomposition equivalent to a given
Krylov decomposition is presented. Here, following [155], only the main steps to obtain
the Arnoldi decomposition starting for the Krylov decomposition are described. They
constitute the sketch of the proof for Theorem 3.5.

1. By similarity transformation, orthogonalize the columns of U .

2. Use a translation in order to make u of norm one and orthogonal to U .
3. By a unitary similarity transformation, reduce b to a multiple of ek.

4. Finally, using an unitary similarity transformation reduce B to Hessenberg form. The
reduction must be done rowwise by Householder transformations beginning with the
last row, so that not nonzero elements are introduced into the �rst k− 1 components
of b.
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3.3.2 The Krylov-Schur method as an alternative to the implicitly
restarted Arnoldi method

The method is called Krylov-Schur because it uses the Schur form of the Rayleigh quotient
matrix B. Purging unwanted Ritz values and de�ating (locking) converged ones in the
implicitly restarted Arnoldi algorithm are awkward tasks because of the structure of the
Arnoldi decomposition. Krylov-Schur decompositions o�er an elegant way of dealing with
these two aspects. First, it is easier to move eigenvalues around in a triangular matrix (the
Schur form of the Rayleigh quotient) than in a Hessenberg matrix. Second, if the Krylov
decomposition can be partitioned in the form

A(U1 U2) = (U1 U2)

(
B11 B12

0 B22

)
+ u(bH1 bH2 ),

then AU1 = U1B11 +ubH1 is also a Krylov decomposition, which means that the decomposi-
tion can be truncated at any position without additional operations. This suggests a very
natural restarting algorithm: compute the Schur decomposition of the Rayleigh quotient B
and move the desired eigenvalues into the leading block using unitary similarity transforma-
tion. Once this has been done the unwanted Ritz values are purged just by throwing away
the rest of the decomposition. These are the main ingredients of the Krylov-Schur restart
technique, a natural, e�ective and elegant alternative to the implicitly restarted Arnoldi
method.

3.3.2.1 Sorting eigenvalues in a Schur form

The Krylov-Schur method requires being able to move eigenvalues around in a triangular
matrix. To avoid dealing with 2× 2 diagonal blocks, the complex Schur form is considered
here. If one has to re-order eigenvalues in a real Schur form, then �rst it is transformed
into its complex form. In [156] some general notions about exchanging eigenvalues around
in a triangular (or block-triangular) matrix are exposed.

For the implementation of the Krylov-Schur algorithm proposed in this work (see
sec. 3.3.2.3), two di�erent (although based on the same concepts) algorithms have been
retained for exchanging eigenvalues in the Rayleigh quotient's diagonal. The �rst one is
inspired from the algorithm used by Sleijpen et al. in their MATLAB implementation of the
Jacobi-Davidson style QR algorithm [44]6. A permutation vector coming from sorting the
diagonal elements in any prescribed order is given to the re-ordering routine together with
the triangular matrix and the corresponding Schur vectors matrix. The output is the tri-
angular matrix with the diagonal elements sorted and the matrix of Schur vectors updated
consequently. The �exibility of this option is obvious, allowing the user to move eigenval-
ues around with total freedom. More details about this algorithm for the re-ordering of
the diagonal elements of a triangular matrix using Given rotations can be found in [43,
Ch.6]. The second algoritm is based on LAPACK routines. There is not a single LAPACK
routine that allows to re-order all the diagonal elements of an upper triangular matrix in
a prescribed order at once, but it is possible to use a combination of subroutine to achieve

6http://www.math.uu.nl/~sleij101/
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the objective. For more details on these algorithms, see the LAPACK subroutine xLAEXC

(http://www.netlib.org/lapack/).

Algorithm 3.2 [Q,S]=SortSchur(A,σ,k)
Given a complex matrix A ∈ Cn×n, compute the Schur decomposition AQ = QS,
with the k leading elements of diag(S) sorted according to the order prescribed by
σ.

[Q,S]=Schur(A) ! Compute the complex Schur form of A

perm = SortEig(diag(S),σ) ! Sort the eigenvalues of S according to σ
[Q,S] = SwapSchur(Q,S, perm(1 : k)) ! Reorder the Schur form

Algorithm 3.2 is a general description of the re-ordering algorithm. As input it takes a
complex matrix A of order n whose ordered Schur decomposition is going to be computed,
a parameter σ and an integer k. The outputs are the matrices Q and S so that

AQ = QS,

where Q is an unitary transformation matrix and S is the ordered Schur form. The k
leading elements of diag(S) are sorted according to σ. The parameter σ can be:

• A chain of characters. For example: 'SM', diag(S) are sorted from smallest to largest
magnitude; or 'LM', from largest to smallest magnitude.

• A complex scalar: diag(S) are sorted with increasing distance from σ.

• A vector of scalars: let us assume that the length of σ is `, with ` <= n. Then the
�rst k elements of diag(S) are component-wise the closest to σ. If k > ` the remaining
elements of diag(S) are sorted with increasing distance from σ(`).

3.3.2.2 The Krylov-Schur restart technique

As it is the case for the implicitly restarted Arnoldi method, a cycle of the Krylov-Schur
method has an expansion phase that ends up with the computation of the eigenvalues of
the Rayleigh quotient of order m and a contraction phase that reduces the order of the
decomposition to k, keeping the k wanted Ritz values and throwing away the rest. Thus,
the Krylov-Schur cycle begins with an order k Krylov-Schur decomposition

AUk = UkSk + uk+1b
H
k+1 = Uk+1Ŝk,

where Uk+1 is orthonormal and Sk is upper triangular. To get this decomposition an
Arnoldi decomposition is built starting from an initial vector and then, using an unitary
similarity transformation, the Hessenberg matrix is reduced to its complex Schur form. The
expansion phase is done analogously to the expansion phase of the Arnoldi method, using
Algorithm 3.3.

Note that Algorithm 3.3 uses Classical Gram-Schmidt (CGS) with selective re-
orthogonalization in order to orthogonalize the new direction w against the existing Krylov
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basis Uj+1. It is chosen over the Modi�ed Gram-Schmidt (MGS) method because it is
better suited for parallel computing and it is the choice done in ARPACK as well, whose
stability is out of question and can be considered as a reference. In [130] one can �nd
di�erent implementations of the Arnoldi process using either CGS, MGS or Householder
transformations, as well as the computational cost of each implementation.

Before performing the expansion of the Krylov-Schur decomposition, the expanded
Rayleigh quotient Ŝk, for k = 4 has the form




s s s s

0 s s s

0 0 s s

0 0 0 s

b b b b



.

At the end of the expansion phase, for m = 8, Ŝm has been updated to

Algorithm 3.3 [Um+1,B̂m]=contARL_reortho(k,m,A, Uk+1, B̂k)

Given the orthonormal matrix Uk+1 and the Rayleigh quotient B̂k of the Krylov decom-
position AUk = UkBk + uk+1b

H
k+1 = Uk+1B̂k of order k, contARL_reortho extend it to a

Krylov decomposition AUm = UmSm + um+1b
H
m+1 = Um+1Ŝm of order m, using the Arnoldi

process.

for j=k+1,. . . ,m do
w = AU(:, j)
wnorm1 = norm(w)
!First CGS iteration

B(1 : j, j) = U(:, 1 : j)Hw
w = w − U(:, j)B(1 : j, j)
wnorm = norm(w)
!Re-orthogonalization

if wnorm <
√

2wnorm1 then
s = U(:, 1 : j)Hw
S(1 : j, j) = S(1 : j, j) + s
w = w − U(:, 1 : j)s
wnorm = norm(w)

end if
S(j + 1, j) = wnorm
U(:, j + 1) = w/wnorm

end for
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


s s s s h h h h

0 s s s h h h h

0 0 s s h h h h

0 0 0 s h h h h

b b b b h h h h

0 0 0 0 h h h h

0 0 0 0 0 h h h

0 0 0 0 0 h h h

0 0 0 0 0 0 h h

0 0 0 0 0 0 0 h




,

where h has been chosen by analogy to the Hessenberg form. The expanded Krylov decom-
position of order m reads as

AUm = UmBm + βum+1e
T
m. (3.14)

Finally, an unitary similarity transformation is applied to Eq. (3.14) using Algorithm 3.2
in order to compute the ordered Schur form of the Rayleigh quotient Bm, S̃m = QHBmQ,
putting the k wanted Ritz values in the leading block of S̃m, to obtain the equivalent
decomposition

AŨm = ŨmS̃m + um+1b̃
H
m+1, (3.15)

where Ũm = UmQ and b̃m+1 = βeTmQ. Then we have just to truncate the resulting decompo-
sition (3.15) to reduce its order to k. Since the Schur form S̃m has the k wanted eigenvalues
in its leading block, truncating the decomposition is equivalent to keep the wanted Ritz
values, and throwing away the unwanted ones. Although the proof is not straightforward
(see [156] for the proof), this simple procedure is equivalent to apply m − k shifts to the
Rayleigh quotient in the implicitly restarted Arnoldi algorithm, using the unwanted Ritz
values as shifts. At this point, the process can continue with the expansion phase again.

3.3.2.3 Final algorithm

The algorithm presented in this section implements the Krylov-Schur method for the com-
putation of nev approximate eigenpairs (µj, xj) of the large sparse complex matrix A of
order n, corresponding to those of smallest magnitude. It starts with an initial vector u0

and it computes the Krylov decomposition of order m

AUm = UmBm + um+1b
H
m+1 = Um+1B̂m.

Then the Krylov-Schur restart technique is used to reduce the Krylov decomposition to
a Krylov-Schur decomposition

AŨk = ŨkSk + uk+1b̃
H
k+1 = Ũk+1Ŝk
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of order k, where the k wanted Ritz values appear on the diagonal of Sk, and then it
is expanded again to a m order Krylov decomposition. This procedure is repeated until
the residual rj = Axj − µjxj is small enough for the nev wanted eigenvalues respect to
a prescribed tolerance tol or the maximum number of iterations maxiter is reached. The
convergence criteria will be treated more precisely later in this chapter. Note that it exists
an inexpensive way of evaluating the norm of the residual rj. Indeed, starting from

AŨk = ŨkSk + uk+1b̃
H
k+1,

let (µj, xj) be the approximate eigenpair of A associated to the Ritz pair (µj, pj), such that
xj = Ukpj, being pj the j-eigenvector of the Rayleigh quotient Skpj = µjpj. Then the norm
of the residual rj can be written as

‖rj‖= ‖AUkpj − µjUkpj‖= ‖(AUkpj − UkSk)pj‖= ‖uk+1b
Hpj‖= |bHpj|. (3.16)

As soon as a certain number nconv of Ritz values has converged, the size k of the
reduced Krylov-Schur decomposition is set to k = k0 + nconv, where k0 is the initial size
chosen for the reduced Krylov-Schur decomposition. This strategy has been taken from
ARPACK, where it is used to avoid an eventual stagnation in the expansion-contraction
process. Algorithm 3.4 implements the Krylov-Schur method, taking into account these
considerations.

The parameter k0 must be at least equal to the number of wanted eiganvalues nev. When
using the implicitly restarted Arnoldi method or the Krylov-Schur method, there is not a
general rule to choose k0 and m optimally (the size of the restarted Krylov space and the
size of the biggest Krylov space we can a�ord, respectively). The common advice is to
choose m = 2k0 at least. The parameter k0 can a�ect the convergence of the method. Even
is we are interested only in very few eigenvalues, if k0 is chosen too small, it may penalize
the convergence. The advise given here is not to choose k0 smaller than 5. Of course, these
observations are not written in stone and they can be extremely case-dependent.

3.3.3 Harmonic Ritz pairs computation

Harmonic Ritz vectors were introduced by Morgan in [91] for symmetric matrices as good
approximations of interior eigenvectors. The goal of harmonic Ritz pairs is to emulate the
e�ect of the shift-and-invert transformation, but avoiding the inverted operator (A−κI)−1

when computing eigenpairs nearest to κ. This is achieved by working with two bases, one
that spans the subspace of an approximate eigenspace of the matrix A, U , and another that
is de�ned as

V := (A− κI)U. (3.17)

The following de�nition of of harmonic Ritz pair is given in [156]:

De�nition Let U be a subspace and U an orthonormal basis of it. Then (δ + κ, Uw) is a
harmonic Ritz pair with shift κ if

UH(A− κI)H(A− κI)U = δUH(A− κI)Uw. (3.18)
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Algorithm 3.4 [eigval, eigvec]=KS_solver(k0,m,A, u0, nev, tol,maxiter)

Given the initial vector u0, KS_solver computes the nev approximate eigenvalues eigval
of the n non-symmetric complex matrix A corresponding to those of smallest magnitude,
and the nev corresponding eigenvectors eigvec. The user must provide the reduced Krylov
decomposition of size k0 and the extended Krylov decomposition sizem as well; the tolerance
tol used for the convergence test; and the maximum number of Krylov-Schur restarts allowed
maxiter.

S(1:m+1,1:m) = 0
kbef = k0

[U(:,1:k+1),S(1:k+1,1:k)]=ARL_reortho(A,u0,k0)
for i=1,. . . ,maxiter do
k = k0 + nconv
[U(:, 1 : m+ 1), S(1 : m+ 1, 1 : m)] = contARL_reortho(kbef ,m,A, U, S)
[Q,S(1 : m, 1 : m)] = SortSchur(S(1 : m, 1 : m),′ SM ′, k)
U(:,1:k) = U(:,1:m)Q(:,1:k)
b = (S(m+ 1,m)Q(m, 1 : k))H

Compute the eigenvectors of the Schur matrix S(1 : k, 1 : k):
S(1 : k, 1 : k)V = DV
eigS = diag(S(1 : k, 1 : k))
nconv = 0
for j = 1, . . . , nev do
res = |bHV (:, j)|
if res ≤ tol ∗ |eigS(j)| then
nconv = nconv + 1

end if
end for
if nconv = nev then
eigval(1 : nev) = eigS(1 : nev)
eigvec(:, 1 : nev) = U(:, 1 : k)V (:, 1 : nev)
return

else if i = maxiter then
'Max. number of iteration reached without convergence'
return

end if
kbef = k
S(1 : k + 1, 1 : k) = [S(1 : k, 1 : k); bH ]
U(:, 1 : k + 1) = [U(:, 1 : k)U(:,m+ 1)]

end for

When the Rayleigh-Ritz method is used for computing harmonic Ritz pairs, it is referred
as the harmonic Rayleigh-Ritz method.

In [157], Stewart extends the Krylov-Schur method to the computation of harmonic Ritz
values (actually to any Rayleigh quotient with the form (V HU)−1V HAU). It is done by
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showing that the Rayleigh quotient

B̂ = (V HU)−1V HAU

can be written as a translation of the classical Rayleigh quotient B of a Krylov decompo-
sition AU = UB + ubH

B̂ = B + gbH ,

where g = (V HU)−1V Hu. Therefore, if the starting point is the Krylov decomposition

AU = UB + ubH ,

then using a translation transformation de�ned by the vector g = (V HU)−1V Hu,

AU = UB̂ + ûbH

is an equivalent Krylov decomposition, with B̂ = B+gbH and û = u−Ug, and the Rayleigh
quotient B̂ = (V HU)−1V HAU .

For the computation of harmonic Ritz pairs V is chosen as V = (A − κI)U . From
Eq. (3.18) and considering the Krylov decomposition (A− κI)U = U(B − κI) + ubH , it is
found

[(B − κI)H(B − κI) + bbH ]w = δ(B − κI)Hw. (3.19)

Then the computation of harmonic Ritz pair is done by solving the small generalized eigen-
value problem (3.19). If (B − κI)−H is well conditioned, then it is possible to solve the
equivalent standard eigenproblem

[(B − κI) + (B − κI)−HbbH ]w = δw.

For V = (A−κI)U , the matrix B̂ = B− gbH resulting from a translation is precisely equal
to [(B − κI) + (B − κI)−HbbH ]. In this case, g takes the form

g = (B − κI)−Hb.

This suggests the following procedure to compute the harmonic Ritz values (δ + κ, Uw)
using the Krylov-Schur method:

1. The starting point is the Krylov decomposition AU = UB + ubH of order m.

2. Apply a translation transformation to (B − κI) using g = (B − κI)−Hb, so that

B̂ = B + gbH = (B − κI) + (B − κI)−HbbH .

The matrix B̂ includes the shift κ. Note that solving the eigenproblem B̂w = δw
is equivalent to solve Eq. (3.19). To preserve the Krylov decomposition equality the
translation is applied to u consequently: û = u − Ug. At this point the Krylov
decomposition reads

(A− κI)U = UB̂ + ûbH .
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3. Compute the Schur form of B̂
B̂Q = QŜ,

with its diagonal elements sorted in increasing magnitude order and apply the unitary
similarity transformations Ũ = UQ and b̃H = bHQ, so that

(A− κI)Ũ = Ũ Ŝ + ûb̃H .

4. Use the harmonic Rayleigh-Ritz extraction to compute the harmonic Ritz pairs (δ +
κ, Uw) and check for convergence.

5. In order to restart the process, reduce the decomposition to order k by simply trun-
cating it and remove the shift κ from Ŝ. Before the decomposition can be extended
again, it is necessary to orthonormalize the last vector û against Ũ , using a translation
transformation again.

3.4 Block methods

Block methods for the solution of eigenproblems allow to build a search basis starting from
an initial block of vectors, contrary to the single vector methods that start from a single
vector. Block methods have their place in the development of modern numerical linear
algebra. Advantages of using block methods are:

• It is the natural choice when more than one good initial vector is available.

• They are well adapted for the computation of multiple or clustered eigenvalues.

• They do better use of the memory hierarchy, what can yield to signi�cant gain for
large dense matrix vector products (BLAS 3 e�ciency). This is also in the case of
sparse matrix.

As explained in Chapter 4, the interest here is in exploiting multiple initial vectors,
since we are not concerned by multiple (clustered) eigenvalues and in AVSP the matrix-
vector products are coded without using storage schemes and one can only perform one
matrix-vector product at once, so that the cache advantage can not be exploited.

In [76, 175] block versions of the implicitly restarted Arnoldi method are proposed, but
the fact is that due to the di�culties inherent to the method (de�ation of converged Ritz
values, forward instability) it can not be extended naturally to its block variant. The rea-
son resides mainly in the use of the implicit shifted QR method for restarting. A genuine
implicitly restarted block Arnoldi method would require block implicit shifted QR decom-
position to �lter out the unwanted Ritz values, but unfortunately currently there are not
known e�cient methods performing a block implicit shifted QR decomposition. Note that
the IRBL method presented in [6, 5] is actually based on explicit shifted QR decomposi-
tion, which is not as stable as the implicit shift QR decomposition. For this reason, the
Krylov-Schur method presented formerly is a better candidate for the implementation of a
block method for the solution of eigenproblems, since it does not use implicit shifted QR
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decompositions and its �exibility allows a natural extension to its block variant. Therefore,
in this section an implementation of a block Krylov-Schur method is presented, while the
option of an implicitly restarted block Arnoldi method is not considered. More details
about block methods can be found in [6, 7, 45, 49, 128, 132, 133, 134].

The block Krylov-Schur algorithm for the solution of general non-symmetric complex
eigenproblems presented in what follows, is an extension of the algorithm in [178], where
a block Krylov-Schur method for the solution of symmetric eigenproblems is proposed.
The main di�culty of block methods arises when vectors in a new block become linearly
dependent. This is known as the rank de�cient case. A more detailed description of
this phenomena and its cure can be found in [45]. In [178] rank revealing pivoted thin
QR decompositions are proposed as a solution to deal with this concern. An additional
advantage of the block Krylov-Schur method is that the block size has not to be constant
and it can be adapted during the process, what is implemented in [178] as well. Here, since
there are no reasons to modify the block size and for the sake of simplicity it is going to be
kept constant. The rank de�cient case is treated simply by using a vector-wise construction
of the block Krylov decomposition, as will be shown. Before presenting the block algorithm,
the block Arnoldi procedure to obtain orthonormal Krylov basis is described.

The subspace iteration method is another block method that allows to start from an
initial set of vectors. This method consists basically in applying repeatedly a matrix A
to the search subspace and then using the Rayleigh-Ritz extraction in order to obtain
approximated eigenpairs of A. It is often used along with acceleration techniques (such
Chebyshev �lter polynomials) that enhances the convergence of the method toward a given
region of the spectrum of A.

In Sec. 3.4.1 the Arnoldi algorithm is extended to the block version, which is used in
Sec. 3.4.2 within the proposed algorithm implementing the block version of the Krylov-
Schur method. Finally, in Sec. 3.4.3, we detail an implementation of the subspace iteration
method with Chebyshev acceleration.

3.4.1 The block Arnoldi procedure

Block versions of the Arnoldi algorithm for the construction of an orthonormal Krylov basis
based on an initial p − size block V1 are given in [130]. There are mainly two versions:
block Arnoldi and the Ruhe's variant. Given a matrix A, with Vp being the initial block of
p orthonormal vectors, both algorithms end up with the following decomposition:

AVm = VmHm + vphm:p,1:mE
T
m, (3.20)

where [Vm vp] is an orthonormal (m+ p)− size Krylov basis; Em is the matrix of the last p
columns of the identity matrix of size m and Hm is a band Hessenberg matrix, with p non
zero subdiagonal elements, instead of only one. In its compact form, Eq. (3.20) reads as

AVm = Vm+pĤm,
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where Vm+p = [Vm vp] and Ĥm =

(
Hm

hm:p,1:m

)
, whose Wilkinson diagram for p = 3 and

m = 9 is

Ĥm =




∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 0 0 ∗




.

Note that using this notation, and considering the block size p �xed, the size m of the
block Arnoldi factorization must be a multiple of p, i.e., block steps = m/p. Algorithm 3.5
implements the block Arnoldi procedure. It is a straightforward block analogue of the
sequential Algorithm 3.1.

Algorithm 3.5 [Vm+p,Ĥm]=Bl_ARL(m, p,A, Vp)

Given the orthonormal matrix n×p Vp, build a m-size p-block Arnoldi factorization AVm =

Vm+pĤm.

k = 0
while k + p ≤ m do
W = AV (:, k + 1 : k + p)
H(1 : k + p, k + 1 : k + p) = V (:, 1 : k + p)HW
W = W − V (:, 1 : k + p)H(1 : k + p, k + 1 : k + p)
k = k + p
Compute the thin QR factorization of W :
W = V (:, k + 1 : k + p)H(k + 1 : k + p, k − p+ 1 : k)

end while

Algorithm 3.5 can include a re-orthogonalization phase. The main advantage of using
this block variant of the Arnoldi algorithm is that it allows to take advantage of the BLAS-3
performance. On the other hand, it needs detection and treatment of the rank de�cient case.
Since the matrix-free formalism implemented in AVSP can only perform one matrix-vector
product at once, using Algoritm 3.5 is not of practical use. A vector-wise version, known
as the Ruhe's variant [127] is considered instead. It is implemented in Algorithm 3.6. Since
each new vector w = Avk is orthogonalized against the whole current Krylov basis, the
rank de�cient case is taken into account naturally, without requiring any special treatment.

Note that Algorithm 3.6 uses selective re-orthogonalization like Algorithms 3.1 and 3.3.
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Algorithm 3.6 [Vm+p,Ĥm]=ARL_Ruhe(k0, kf , A, Vk0+p, Ĥk0)

Given the k0 − size block Arnoldi decomposition AVk0 = Vk0Hk0 + vk0+1,pHk0+p,kE
T
k0

=

Vk0+pĤk0 , ARL_ruhe extends it to the kf − size decomposition AVkf =

Vkf+pĤkf . It assumes that k0 and kf are multiple of the block size
p.

for i = k0, . . . , kf + p− 1 do
Set j = i− p+ 1
w = AV (:, j)
wnorm1 = norm(w)
H(1 : i, j) = V (:, 1 : i)Hw
w = w − V (:, 1 : i)H(1 : i, j)
wnorm = norm(w)
if (wnorm <

√
2wnorm1) then

h = V (:, 1 : i)Hw
H(1 : i, j) = H(1 : i, j) + h
w = w −H(:, 1 : i)h
wnorm = norm(w)

end if
H(i+ 1, j) = wnorm
V (:, i+ 1) = w/wnorm

end for

At most one re-orthogonalization step is done. In ARPACK, the DGKS method [31] is
used instead, which employs the same test for re-orthogonalization, but the process can
be iterated more than once, until the desired precision or a given number of iterations are
reached.

3.4.2 A block Krylov-Schur algorithm

The extension of the Krylov-Schur method to its block version is straightforward. Let k
and m (both set to be multiple of the block size p) be the size of the restarted and the
extended block Krylov decompositions, respectively. The method has the following main
steps:

1. Given an initial orthonormal n× p matrix Vp, Algorithm 3.6 is used to compute the
block Arnoldi decomposition

AVm = VmHm + vphm:p,1:pE
T
m.

2. An unitary similarity transformation is used to compute the equivalent block Krylov-
Schur decomposition. This is done using Algorithm 3.2. Then we have

A(VmQ) = (VmQ)Sm + vphm:p,1:mE
T
mQ ≡

AUm = UmSm + upB
H ,
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where Um = VmQ, up = vp, BH = hm:p,1:mE
T
mQ and Sm is the complex Schur form of

the band Hessenberg matrix Hm, with the k wanted Ritz values in the leading block.
The compact form is

AUm = Um+pŜm,

being Um+p = [Um up] and Ŝm =

(
Sm

upB
H

)
.

3. Use Ritz extraction to compute approximate eigenpairs and test for convergence.
Then the decomposition is reduced to size k, just by truncating the decomposition
and keeping only the �rst k columns:

AUk = UkSk + upB
H = Uk+pŜk.

4. The k − size decomposition is extended to size m using Algorithm 3.6 again.

Steps 2 to 4 are repeated until the wanted eigenvalues have converged or the maximum
number of restarted iterations is reached. This procedure is completely equivalent to the
sequential Krylov-Schur method. Only the algorithm for the computation of the block
Krylov decomposition changes and k and m have to be kept multiples of the block size p.
Algorithm 3.7 implements this method. As said before, contrary to what is done in [178],
here the block size is kept constant, since we are not concerned a priori by multiple or
clustered eigenvalues, what reduces the complexity of the algorithm.

In Algorithm 3.7, the number of wanted eigenvalues nev must be at least equal to k,
although it is recommended to use a value of k > nev.

As explained before, a single vector Krylov method applies a �lter polynomial of degree
Kdeg which is equal to m − k, i.e., the size of the extended Krylov decomposition minus
the size of the restarted one. On the other hand, if k and m are kept the same, the
block method applies a �lter polynomial of degree Kblock = Kdeg/p, being p the block size,
which can penalize the e�ciency of the method. This rises another concern: the equivalence
between the block Krylov-Schur method and the implicitly restarted block Arnoldi method.
In the case of their sequential versions, both methods are equivalent if the IRA algorithm
uses as shifts the same Ritz values that are discarded when the Krylov-Schur decomposition
is truncated. This is true because the number of shifts to apply (m − k) in the �rst case
is equal to the number of Ritz values that are thrown away in the second case. In the
block version of the IRA algorithm, there will be m− k unwanted Ritz values as well, but
now it is possible to apply only (m − k)/p shifts, since every shift reduces the size of the
decomposition by p. It means that one has to choose which Ritz values are used as shift
among all the unwanted ones and this choice will modify the resultant restarted Krylov
subspace. In the block Krylov-Schur method, the restart is doing just by keeping the k
wanted Ritz values. Therefore, there is no guarantee that both restarted Krylov subspace
are equivalent.
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Algorithm 3.7 [eigval, eigvec]=block_KSmethod(k,m,p,A,initblock,nev,tol,maxiter)
Given an initial matrix n × p of linear independent vectors initblock, block_KSsolver
computes the nev approximate eigenvalues eigval of the n non-symmetric complex matrix
A corresponding to those of smallest magnitude, and the nev corresponding eigenvectors
eigvec. User must enter k and m corresponds to the size of the restarted and the extended
block Krylov decompositions, respectively; the tolerance tol used for the convergence test;
and the maximum allowed number of Krylov-Schur restarts maxiter.

Orthogonalize the initial block:
initblock = V (:, 1 : p)R, where V (:, 1 : p)HV (:, 1 : p) = I

If k and m are nor multiple of p, modify them so that:
mod(m̃, p) = 0 and mod(k̃, p) = 0, with m̃ ≤ m and k̃ ≤ k

Set k = k̃ and m = m̃
S(1 : m+ p, 1 : m) = 0
[V (:, 1 : k + p), S(1 : k + p, 1 : k)] = ARL_Ruhe(0, k, A, V, S)
for i = 1, . . . ,maxiter do

[V (:, 1 : m+ p), S(1 : m+ p, 1 : m)] = ARL_Ruhe(k,m,A, V, S)
[Q,S(1 : m, 1 : m)] = SortSchur(S(1 : m, 1 : m),′ SM ′, k)
U(:, 1 : k) = U(:, 1 : m)Q(:, 1 : k)
BH = S(m+ 1 : m+ p,m− p+ 1 : m)Q(m− p+ 1 : m, 1 : k)
Compute the eigenvectors of the Schur matrix S(1 : k, 1 : k):
S(1 : k, 1 : k)V = DV

eigS = diag(S(1 : k, 1 : k))
nconv = 0
for j = 1, . . . , nev do
res = ‖BHV (:, j)‖2

if res ≤ tol ∗ |eigS(j)| then
nconv = nconv + 1

end if
end for
if nconv = nev then
eigval(1 : nev) = eigS(1 : nev)
eigvec(:, 1 : nev) = U(:, 1 : k)V (:, 1 : nev)
return

else if i = maxiter then
`Max. number of iteration reached without convergence'
return

end if
Truncate the factorization for restart:
S(1 : k + p, 1 : k) = [S(1 : k, 1 : k);BH ]
U(:, 1 : k + p) = [U(:, 1 : k) U(:,m+ 1 : m+ p)]

end for
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3.4.3 Subspace iteration with Chebyshev acceleration

The simplest version of the subspace iteration method is a block version of the power
method, �rst introduced by Bauer under the name of Treppeniteration (staircase iter-
ation) [9]. Starting with an initial block of m vectors arranged in the n × m matrix
X0 = [x1, . . . , xm] the matrix Xk = AkX0 is computed for a certain power k. The columns
in Xk will loose their linear independency for increasing values of k, so that the idea is to
re-establish their linear independency using, for instance, the QR factorization. Under a
certain number of assumptions [129], the columns of Xk will converge to the Schur vectors
associated with the m dominant eigenvalues of A: |λ1|> |λ2|> · · · > |λm|. Instead of using
the columns of Xk as approximations to the Schur vectors, using them in a Rayleigh-Ritz
procedure will produce in general better approximations, which yields to the Algorithm 3.8

Algorithm 3.8 Basic Subspace Iteration
Given the n×m matrix X0 = [x1, . . . , xm], iterate until an invariant subspace of A ∈ Cn×n

is found.

1: Orthonormalize the initial block: X = qr(X0).
2: for i = 1, . . . until convergence do
3: Compute X̂ = AX.
4: Orthonormalization of X̂: X = qr(X̂).
5: Form the Rayleigh quotient B = XHAX and compute its eigenvectors V =

[v1, . . . , vm].
6: Update X with the Ritz vectors: X ← XV .
7: Test for convergence.
8: end for

This algorithm is well suited for the computation of largest magnitude eigenpairs, but
the interest in this work is on smallest magnitude eigenvalues. Therefore, preconditioning
techniques must be used in order to make the method converged toward the zone of interest.
Two classic options are:

• Shift-and-invert. As seen before in this chapter, it consists in working with the matrix
(A− σI)−1, with σ ∈ C. In this case, the eigenvalues near σ will converge fast. The
problem is that this option needs the solution of linear systems involving the matrix
A, which can be a di�cult problem itself, as mentioned before.

• Polynomial acceleration. Instead of using the polynomial Ak which enhances the
convergence of largest magnitude eigenvalues, the idea is to use the polynomial
Tm[(A− σI)ρ], being Tm the Chebyshev polynomial of the �rst kind of degree m.

The second option is retained here. In the following, some details about Chebyshev
polynomials and their properties are given.

3.4.3.1 Chebyshev polynomials

Chebyshev polynomials are very important in the study of iterative methods in linear alge-
bra, as is the case of the conjugate gradient method. In practice they are used to accelerate
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single vector iterations or projection processes. In real arithmetic, the Chebyshev poly-
nomial of the �rst kind of degree k is de�ned as:

Ck(t) =

{
cos(k cos−1t), |t|< 1,

cosh(k cosh−1t), |t|> 1.
(3.21)

The Chebyshev polynomial of degree k can be computed using the following three-term
recurrence:

C0(t) = 1,

C1(t) = t,

Ck+1(t) = 2tCk(t)− Ck−1(t), k = 1, 2, . . .

The following theorem from [129] establishes an important result concerning Chebyshev
polynomials that justi�es their use as �lter polynomials.

Theorem 3.6 Let [α, β] be a non-empty interval in R and let γ be any real scalar such
with γ ≥ β. Then the minimum

min
p∈Pk,p(γ)=1

max
t∈[α,β]

|p(t)|

is reached by the polynomial

Ĉk ≡
Ck

(
1 + 2 t−β

β−α

)

Ck

(
1 + 2 γ−β

β−α

) .

For the proof see [24]. In other words, Theorem 3.6 says that among all the possible
polynomials of degree k, Ĉk reaches the smallest possible absolute values in the interval
[α, β], such that Ĉk(γ) = 1.

The de�nition of Chebyshev polynomials can be extended naturally to complex arith-
metic [129]. The Chebyshev polynomial of degree k can still be computed using the
three-term recurrence

C0(z) = 1,

C1(z) = z,

Ck+1(z) = 2zCk(z)− Ck−1(z), k = 1, 2, . . .

The segment [α, β] in real arithmetic becomes an ellipse E in the complex plane which is
symmetric with respect to the real axis, i.e., its center is on the real axis and its foci are
either pure real or pure imaginary numbers (Fig. 3.3).

3.4.3.2 Subspace iteration with Chebyshev acceleration

This algorithm consists in using Chebyshev polynomials during the subspace iterations to
accelerate the convergence of the method. As exposed in [129], if the ellipse E(c, a, e)
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Figure 3.3: Ellipses in the complex plane de�ned by their center c, foci c− e and c+ e and major
semi-axis a.

(Fig. 3.3) encloses the unwanted part of the spectrum of A, then the asymptotically best
min-max polynomial is the polynomial

pk(λ) =
Ck[(λ− c)/e]
Ck[(λ1 − c)/e]

, (3.22)

where Ck is the Chebyshev polynomial of degree k of the �rst kind and λ1 is an approxi-
mation of the �rst wanted eigenvalue that is not enclosed by the ellipse E. Therefore, the
successive applications of the polynomial de�ned by Eq. (3.22) to a set of vectors U during
the subspace iterations, will make U converge to an invariant subspace corresponding to
the eigenvalues that lay out the ellipse E.

The computation of zk = pk(A)z0 is performed iteratively thanks to the three-term
recurrence for Chebyshev polynomials [129] as:

1. Given the initial vector z0, compute

σ1 =
e

λ1 − c
,

z1 =
σ1

e
(A− cI)z0.

2. Iterate for i = 1, . . . , k − 1:

σi+1 =
1

2/σ1 − σi
,

zi+1 = 2
σi+1

e
(A− cI)zi − σiσi+1zi−1.

Algorithm 3.9 implements the Subspace iteration method with Chebyshev acceleration.
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Algorithm 3.9 Chebyshev Subspace Iteration
Given the n×m matrix X0 = [x1, . . . , xm], iterate until an invariant subspace of A ∈ Cn×n

corresponding to the k smallest magnitude eigenvalues is found. The parameters c, a and e
are de�ned by the ellipse E that encloses the unwanted part of the spectrum of A. λ1 is an
approximation of the smallest magnitude eigenvalue which is used only for a normalization
purpose.

Orthonormalize the initial block: X = qr(X0).
for i = 1, . . . until convergence do
Z0 = X
σ1 = e

λ1−c
Z1 = σ1

e
(A− cI)X

for i=2,. . . ,k do
σi = 1

2/σ1−σi−1

Zi = 2σi
e

(A− cI)Zi−1 − σi−1σiZi−2

end for
X̂ ← Zk
Orthonormalization of X̂: X = qr(X̂).
Form the Rayleigh quotientB = XHAX and compute its eigenvectors V = [v1, . . . , vm].

Update X with the Ritz vectors: X ← XV .
Test for convergence.

end for

3.5 The Jacobi-Davidson method

The Jacobi-Davidson method is probably the main alternative to Krylov-based methods
for the solution of very large eigenproblems. Its origin can be found in the Davidson's
algorithm [87] for the computation of a few eigenvalues of symmetric matrices. In 1990
Olsen et al. [106] proposed a new algorithm that can be seen as the Davidson's method
with an approximate Newton correction. The �nal Jacobi-Davidson algorithm presented
here was �rst proposed by Sleijpen, van der Vorst and their colleagues in 1996 [150] and
further developed in [44, 149, 151] for harmonic Ritz vectors and generalized eigenvalue
problems. They derived it by considering an algorithm of Jacobi [59]. Since then, it has
been successfully used for many di�erent applications. The developments presented here
are taken from [156], where more details can be found.

3.5.1 Approximate Newton methods for eigenproblems

The Jacobi-Davidson can be seen as a Newton method for the solution of eigenproblems.
In order to clarify this link with the Newton method, let us assume that (µ, z) is an ap-
proximate eigenpair of the matrix A. The objective is then to determine corrections η and
v so that (µ+ η, z + v) is a better approximation to the actual eigenpair (λ, u)

(A− λI)u = 0.
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For a reason elucidated later in Sec. 3.5.2, the subsequent relations are written in terms
of an approximation Ã = A + E, where E is small, instead of the actual matrix A. If
(µ+ η̂, z + v̂) is an exact eigenpair of A, then

[(Ã− E)− (µ+ η̂)](z + v̂) = 0.

Developing products and dropping the second order terms (Ev̂ and η̂v̂), it can be written
as

(Ã− µI)v̂ − η̂z ∼= −(A− µI)z.

Hence, approximate corrections η and v are de�ned as the solutions of the equation

(Ã− µI)v − ηz = −(A− µI)z ≡ −r.

This equation o�ers only n relations, whereas the number of unknowns are n + 1 (the n
components of v and the scalar η). In order to close the problem, the additional condition

ωHv = 0,

where ω is a suitably chosen vector, is considered. In matrix notation, it reads as
(
Ã− µI −z
ωH 0

)(
v

η

)
=

(
−r
0

)
,

which can be recast as the following triangular system:
(
Ã− µI −z

0 ωH(Ã− µI)−1z

)(
v

η

)
=

(
−r

ωH(Ã− µI)−1r

)
.

Hence, we obtain the approximate Newton correction formula:

v = −(Ã− µI)−1(r − ηz), where η =
ωH(Ã− µI)−1r

ωH(Ã− µI)−1z
. (3.23)

As shown later, ω is chosen as z in the Jacobi-Davidson method. In this case, Eq. (3.23)
becomes

v = −(Ã− µI)−1(r − ηz), where η =
zH(Ã− µI)−1r

zH(Ã− µI)−1z
. (3.24)

This solution was proposed by Olsen et al. [106] and it is sometimes known as Olsen's
method.

Let us consider now for a moment, the implications of working with the exact matrix A.
In this case, Ã = A and the equation for the exact corrections η̂ and v̂ is

(A− µI)v̂ − η̂z = −(Az − µI)z ≡ −r.

Again, the additional condition ωH v̂ = 0, being ω a suitably chosen vector, is considered
to close the problem. Eq. (3.24) becomes

v̂ = −(A− µI)−1(r − η̂z), where η̂ =
ωH(A− µI)−1r

ωH(A− µI)−1z
. (3.25)
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Eq. (3.25) is called the Newton correction formula. It implies that, starting from an ap-
proximate eigenpair (µ, z), if Eq. (3.25) can be solved exactly, then the exact eigensolution
(µ + η̂, z + v̂) is found. Note that the cost of the exact solution is thus solving 2 linear
systems, which can be prohibitive for very large problems.

At this point, the link with the Newton method can be shown easily considering one step
of Newton's method for solving following the nonlinear system of equations

{
(A− λI)u = 0
1
2
uTu− 1 = 0

.

If an approximation (µ, z) is available, such that
{

(A− µI)z = r
1
2
zT z − 1 = 0

,

then one step of the Newton's method is given by
(

znew

µnew

)
=

(
z

µ

)
−
(

(A− µI) −z
zT 0

)−1(
r

0

)
.

Finally if Ã is put in the place of A and znew = z + v and µnew = µ+ η, then Eq. (3.24) is
retrieved, showing the equivalence between the Olsen's method and using an approximate
Newton step.

3.5.2 The correction equation

Now the concern is about the correction equation and its solution. The �rst thing to do
is �nd an equivalent formula to Eq. (3.23) involving only v, which is of theoretical and
practical use. In order to derivate it, Eq. (3.23) is written in the form

(Ã− µI)v = −r + ηz. (3.26)

Oblique projectors

In order to get rid of η, oblique projectors can be used. An oblique projector

Pz,r⊥ = I − zrH⊥
rH⊥ z

applied to a vector u, projects it onto the orthogonal complement of r⊥ along z. In par-
ticular, Pz,r⊥z = 0 and Pz,r⊥r = r. Thus, If we multiply Eq. (3.26) on the left by Pz,r⊥ we
obtain

Pz,r⊥(Ã− µI)v = −r. (3.27)

This equation can be viewed as a singular system of equations which has in�nitely many
solutions. More particularly, any solution v satisfying the relation

(Ã− µI)v = −r + ηz for η ∈ C (3.28)
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is solution of the system (3.27), as can be veri�ed multiplying (3.28) by Pz,r⊥ . We have
ignored so far the constraint ωHv = 0. This condition can be taken into account if we
introduce the projector

Pz,ω = I − zωH

ωHz
.

Then, the constraint v ⊥ ω can be replaced by the relation Pz,ωv = v. Hence, Eq. (3.27)
can be replaced by

Pz,r⊥(Ã− µI)Pz,ωv = −r, v ⊥ ω. (3.29)

In terms of solutions of the system of equations, this relation involving both projectors can
be viewed in the following way: among all the solutions of the system (3.27), the unique
solution that is orthogonal to ω is given by (3.29) and it is the unique solution v = Pz,ωv.
Eq. (3.29) is called the approximate Newton correction equation and it characterizes the
vector v [156, p. 404].

Orthogonal projectors

The previous relations involve oblique projectors, which can be arbitrarily large and can
show an undesirable numerical behavior in �nite precision on a computer. So it would be
desirable to replace the projections Pz,r⊥ and Pz,ω by a single orthogonal projection.
Concerning Pz,ω, a simple geometrical picture shows that it seems natural to take ω = z.
Indeed, for if v ⊥ z and v is small, then ‖v‖2 is very close to the minimum distance between
z and span(z + v). In other words, v is close to the smallest possible correction. Taking
ω = z, the oblique projector Pz,ω becomes the orthogonal projector

P⊥ = I − zzH

zHz
.

On the other hand, Pz,r⊥ can be taken equal to P⊥ only if z ⊥ r. Theorem 3.7, which is
the single vector version which Theorem 3.2 is based on (see proof in [156, page 63]), shows
that if µ is taken as the Rayleigh quotient

µ =
zHAz

zHz
,

then z is, indeed, orthogonal to r.

Theorem 3.7 Let z 6= 0 and for any µ set rµ = Az − µz. Then ‖rµ‖2 is minimized when

µ =
zHAz

zHz
.

In this case rµ ⊥ z.

Therefore, using orthogonal projectors, the (approximate) correction equation becomes

P⊥(Ã− µI)P⊥v = −r, v ⊥ z.

All the facts exposed so far about the correction equation are summarized by the follow-
ing theorem [156, page 404].
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Theorem 3.8 Let (µ, z) be an approximate normalized eigenpair of A where

µ = zHAz

and let
r = Az − µz.

Let
Ã = A+ E

and assume that (Ã − µI) is nonsingular. Then the Newton-based correction v that is
orthogonal to z is given by the correction formula

v = −(Ã− µI)−1(r − µz), where η = −z
H(Ã− µI)−1r

zH(Ã− µI)−1z
. (3.30)

Equivalently, v is the unique solution of the correction equation

(I − zzH)(Ã− µI)(I − zzH)v = −r, v ⊥ z. (3.31)

In Theorem 3.8, the vector v is called the orthogonal (approximate Newton) correction,
equation (3.30) is the orthogonal correction formula and equation (3.31) is the orthogonal
correction equation. From now on, only orthogonal correction will be considered, dropping
the quali�er �orthogonal�. When dealing with Ã = A �approximate� does not apply.

In the following we explain the reason why Ã = A+ E is considered instead of working
directly with A. Note that if Ã is taken equal to A the method would converge quadratically.
It is possible to cite three situations in which it is desirable to take Ã 6= A:

• Natural approximations: This case arises when A can be written asA = Ã−E and Ã is

easier to invert than A (in the sense of being easy to solve system involving (Ã−µkI)),
being E small. For example, if A is diagonally dominant, then it can be split as
A = D−E, which allows to implement the approximate Newton method solving only
diagonal systems. This situation is closely related to the Jacobi's method [59].

• Constant shift approximations: At each iteration of the Newton method, a system
involving the matrix (A − µkI) must be solved. Assuming that is possible to obtain
a matrix factorization, since µk changes at every iteration, it would be necessary to
obtain a new factorization for each new value of µk. This can be avoided if the matrix
(A− τI) is considered instead, where τ is the center of a focal region containing the
eigenvalues we are interested in. If

Ã = A+ Ek, where Ek = (µk − τ)I, then Ã− µkI = A− τI.

In this case the remainder Ek varies at each iteration.

• Inexact solution: When dealing with large general matrices, it is often impossible to
solve the correction equation directly, and the use of iterative linear solvers is the
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only alternative. In general, we will stop the iterative solver (referred to as the inner
iterations) when the residual

s = −r − (I − zzH)(A− µI)(I − zzH)v (3.32)

is small enough. Quantifying the e�ect of the linear solution accuracy (inner iteration)
on the convergence of the approximate Newton method (the outer iteration) is a
capital issue in the analysis of the Jacobi-Davidson method. Using the backward
error theorem (Theorem 3.9) is is possible to relate s and E, showing that the error
associated with the inexact solution of the correction equation can be �absorbed�
naturally by the perturbation E.

Theorem 3.9 Let r = Au− µu. Then there is a matrix

E =
ruH

‖u‖2
2

such that
‖E‖p
‖A‖p

=
‖r‖2

‖A‖p‖u‖2

, p = 2, F,

and
(A− E)u = µu.

Therefore, from Theorem 3.9, there is a matrix

E = − sv
H

‖v‖2
2

such that
[(I − zzH)(A− µI)(I − zzH) + E]v = −r. (3.33)

The last step is to show that E can be moved inside the brackets with A. First,
since (I − zzH)r = r and P 2

⊥ = P⊥, from (3.32) it follows that (I − zzH)s = s.
Moreover, the iterative method should produce a solution v orthogonal to z and then
(I − zzH)v = v, so that

(I − zzH)(A+ E − µI)(I − zzH)v = −r.

Therefore, terminating the inner iteration with a residual s is equivalent to perform
the outer iteration with an approximate Ã for which ‖E‖2= ‖s‖2. More details about
convergence of the method can be found in [156, p. 406-410]

Concerning iterative linear solvers for the solution of the correction equation, the ones
based on Krylov subspaces are the best suited to easily ensure that the computed solution
v is orthogonal to z as is established in the following proposition.

Proposition 3.10 For the sake of simplicity, let us denote B = (I−zzH)(A−µI)(I−zzH)
the matrix associated with the correction equation. Because Bz = 0 and so BHz = 0,
starting from an initial guess v0 = 0 using a Krylov linear solver, ensures that the solution
v of the system Bv = −r is always orthogonal to z.
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Proof Starting from an initial guess v0, any Krylov linear solver searches for a solution
in the space v0 + span(w0, Bw0, . . . , B

kw0) where w0 = −r − Bv0. Now, Bz = 0 because
(I − zzH)z = 0, and taking into account that (I − zzH)H = (I − zzH), it follows that
BHz = 0 as well. Thus, if v0 = 0, since zHr = 0 and z is in the null space of BH , each
direction of the Krylov space span(r, Br, . . . , Bkr) is orthogonal to z, as it is shown:

1. v0 = 0 so that ω0 = −r. Then, the �rst direction of the Krylov space ω0 ⊥ z;

2. and for any ` ≤ k, zHB`r = (BHz)HB`−1r = 0, because BHz = 0.

Consequently any solution v in that space will be orthogonal to z.

In this work we are concerned by the constant shift approximation and the inexact
solution of the correction equation cases. Concerning the constant shift approximation, it
can be interesting to solve the correction equation for (A− τI) rather than for (A−µkI) in
order to reach a faster convergence: at the beginning of the process, µk will be in general
a very poor approximation and using the target τ would lead to a faster convergence. On
the other hand, due to the size of the problem, an iterative solver has to be use to obtain
an approximate solution of the correction equation.

3.5.3 The Jacobi-Davidson algorithm

The Jacobi-Davidson method is the result of combining the approximate Newton method
described in the former section with a Rayleigh-Ritz approximation for the computation
of the approximate eigensolutions. The �rst advantage of combining both techniques is
that the Rayleigh-Ritz procedure can focus the Newton iteration on the region that we
are interested in. Other advantage is that, as shown previously for the Power method,
while the algorithm tries to converge a given eigenpair, it produces information that later
speeds up convergence to other eigenpairs in the area [156]. This is because it does not
only focus in a single vector, but it works with subspaces that contain information about
other eigensolutions within a region. Concerning the �rst point, if the Newton process does
not start close enough to an eigenpair, there is no real control over what eigenvalue the
method will converge to. On the other hand, using the Newton method alone, means that
the correction vector vk is applied once to the current approximate eigenvector zk and then
is discarded. This is equivalent to say that, zk+1 is chosen (up to normalization) as

zk+1 = z0 + v0 + v1 + · · ·+ vk. (3.34)

Now, if every new correction vector is saved, then it is possible that another vector
in the subspace spanned by (z0, v0, v1, . . . , vk) provides a better approximate eigenvector
than (3.34). In particular, the chosen linear combination is that given by the Rayleigh-Ritz
procedure:

Vk is an orthonormal basis of span(z0, v0, v1, . . . , vk).

Then form the Rayleigh quotient
Ck = V H

k AVk.
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The eigenpairs of Ck are computed, and the closest one (µk, pk) to a given target τ is
selected. Finally, the new approximate eigenvector of A is given by

zk+1 = Vkpk. (3.35)

Hence, the Ritz pair (µk, zk+1) is the approximation to the eigenpairs given by the Rayleigh-
Ritz procedure.

Algorithm 3.10 The basic Jacobi-Davidson algorithm
Given a normalized vector z, the algorithm attempts to compute an eigenpair whose eigen-
value is near a focal point τ .

1: Set V1 = [z]
2: for k = 1, . . . , kmax do
3: Using Vk compute a normalized Ritz pair (µk, zk) such that µ is the closest to τ
4: rk = Azk − µkzk
5: if rk is su�ciently small then
6: return (µk, zk)
7: end if
8: Choose a shift σ near µk or τ
9: Solve the linear system

(I − zkzHk )(Ã− σI)(I − zkzHk )v = −rk, so that v ⊥ zk

10: Compute w by orthonormalizing v against Vk
11: Set Vk+1 = [Vk, w]
12: end for

Algorithm 3.10 implements this procedure, a basic Jacobi-Davidson method. In the
following, this algorithm is enhanced to be able of computing a set of eigenpairs in a region
of interest, taking into account aspects such as de�ation and restarting.

De�ation

Once the method has converged to one eigenpair and starts seeking for a new one, a strategy
avoiding the convergence to a vector that has already been found is needed. This can be done
by constraining the iterations to proceed outside the space spanned by the already converged
eigenvectors, for instance in spaces orthogonal to the found invariant subspace. This is
possible by considering the Schur vectors associated with the converged eigenvalues. If U =
[u1, u2, . . . , up] is the set of Schur vectors associated with the converged invariant subspace,
then the other Schur vectors lie in the orthogonal complement of span(U). Consider an
existing partial Schur decomposition

AU = UT, (3.36)
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where T is an p×p upper triangular matrix. It is possible to extend Eq. (3.36) by mimicking
the reduction to Schur form. Let (U U⊥) be unitary, and write

(
UH

UH
⊥

)
A
(
U U⊥

)
=

(
T H

0 B

)
.

Now suppose that (µ, z) is a normalized eigenpair of B, and let (z Z⊥) be unitary. Then
(

zH

ZH
⊥

)
B
(
z Z⊥

)
=

(
µ gH

0 C

)
.

is upper triangular form and it is possible to write




UH

zHUH
⊥

ZH
⊥U

H
⊥


A

(
U U⊥z U⊥Z⊥

)
=




T Hz HZ⊥

0 µ gH

0 0 C


 .

Hence,

A
(
U U⊥z

)
=
(
U U⊥z

)( T Hz

0 µ

)
(3.37)

is a partial Schur decomposition of A of order one higher than the one given in Eq. (3.36).
Because it requires the construction of U⊥, Eq. (3.37) is not well adapted for large sparse
problems, which are the interest of this work. However, it is possible to recast the algorithm
in terms of the matrix A. Let

P⊥ = U⊥U
H
⊥ = I − UUH ≡ I − P

be the orthogonal projector onto the column space of U⊥. Then, since B = UH
⊥ AU⊥,

A⊥ = P⊥AP⊥ = U⊥U
H
⊥ AU⊥U

H
⊥ = U⊥BU

H
⊥ .

If (µ, z) is an eigenpair of B such, and let y = U⊥z, then (µ, y) satis�es

1. A⊥y = µy,

2. y ⊥ U.
(3.38)

And vice-versa, if y satis�es (3.38) and let z = UH
⊥ y, then Bz = µz. Therefore, there is a one-

to-one correspondence between the eigenvectors of A⊥ lying in R(U⊥) and the eigenvectors
of B, what implies that the knowledge of the eigenvector y is all that is necessary to extend
the partial Schur decomposition. Thus, from (3.37), the extended Schur decomposition is
given by

A
(
U y

)
=
(
U y

)( T t

0 µ

)
, where t = UHAy. (3.39)

Now, consider the residual
r = A⊥z − µz.

97



Chapter 3. Algorithms for the solution of the thermo-acoustic eigenproblem

It must be tested if it is small enough to accept the associated pair as an eigenpair of A.
Taking a look to Eq. (3.39) (and putting z instead of y) what is actually wanted is to get
a satisfactorily small residual

s = Az − Ut− µz.
In [156, page 415] is shown that ‖r‖2= ‖s‖2, so the convergence can be based on r. In
practice, the residual r is not computed directly. First Az − µz is computed and then the
resulting residual is orthogonalized against U .

Suppose that we have the Schur vectors U and the matrix V of orthonormalized correc-
tions which is assumed to be orthogonal toR(U), and the new correction vector v. Then the
Jacobi-Davidson algorithm can be used in order to extend the partial Schur decomposition,
following these steps:

1. The new correction vector v is orthogonalized against V and incorporated into it. A
priori it will be already orthogonal to U , but if during the orthogonalization process
against V there is cancellation, it could be no longer orthogonal to U. Therefore,
orthogonalization of v against U is required as well.

2. Extend the Rayleigh quotient B = V H
⊥ A⊥V . Observe that since V ⊥ U , it is possible

to compute simply B = V HAV .

3. Compute the Ritz pairs of B and choose the closest one to the target τ , (µ, z).

4. Test the convergence of the new Ritz pair using r = A⊥z − µz.

5. If the residual is not small enough, then solve the correction equation

(I − zzH)(A− κI)(I − zzH)v = −r

in order to obtain the new correction v.

6. Repeat the process from step 1 until the convergence of the Ritz pair (µ, z) is achieved.

This process builds incrementally a partial Schur decomposition where each new Schur
direction is computed using the Jacobi-Davidson method in spaces orthogonal to the already
computed invariant subspace associated with the Schur vectors. Once a subspace of the
desired dimension has been computed, the eigenvector of A are recovered from the computed
Schur vectors. Note that in general, this process can not be carried out inde�nitely until
all the wanted eigenpairs have been converged, since for machine memory reasons, the size
of the subspace V that one can store is limited. A restart procedure is thus necessary.

Restarting

In practice, basis of the subspaces V and W = AV have to be stored. The a�ordable
corresponding dimensions will be constrained by the storage capacity of the computer. As
it occurs with the IRA and the Krylov-Schur methods, to overcome this constraint, a restart
mechanism is required. It must allow to shrink the most valuable spectral information
contained in V in a lower dimension space that before it is extended again. The advantage
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of the Jacobi-Davidson method versus both previously mentioned ones is that it does not
require to preserve neither any special relation in the new basis nor any particular structure
in the new Rayleigh quotient, what makes the task easier. If m is the maximum dimension
of the basis Vm that can be a�orded, once this dimension is reached the process has to be
restarted from a basis V` of size ` < m (typically ` is chosen at least equal to the number
of desired eigenpairs) containing as much useful information as possible. The following
procedure allows to restart the iteration with the basis V`, whose Ritz subspace corresponds
to the ` Ritz values of Cm = V H

m AVm that are closest to the chosen focal point τ .

1. Compute the Schur decomposition Cm = QTQH , where the diagonal elements of T
are ordered so that |tii − τ |≤ |ti+1,i+1 − τ |.

2. V` = VmQ(:, 1 : `)

3. W` = WmQ(:, 1 : `)

4. C` = T (1 : `, 1 : `)

The implementation of these aspects (de�ation and restart) within the Jacobi-Davidson
procedure corresponds to the Jacobi-Davidson style QR algorithm presented in [44], where
the authors extend the method to the solution of generalized eigenproblems and the com-
putation of Harmonic Ritz pairs as well.

3.5.4 JDQR: a practical Jacobi-Davidson algorithm implementa-
tion

The Jacobi-Davidson algorithm implemented in AVSP (see Algorithm 3.11) is similar to
the implementation of the method given in [44], referred to by the authors as JDQR.
Algorithm 3.11 extends a partial Schur decomposition of the matrix A using the Jacobi-
Davidson method. It includes a tracking strategy that produces a smoother convergence:
when the current approximation (µ, z) has an associated residual which is larger than a given
threshold εthres (which is chosen larger than the one used to decided the convergence), the
Ritz values are sorted in increasing distance from a target value τ0. If at the iteration k,
‖r‖< εthres, then the target for the next iteration is set to τ = µk instead of τ0. When
the tracked eigenpair is converged, the target is set again to be τ0 before converging the
next one. Algorithm 3.11 is conceived to be used by a higher level routine that decides the
number of wanted eigenpairs nev, the focal point τ , the maximum and the minimum size
of the basis V , etc.

Inputs for the algorithm are the existing converged Schur vectors Uconv of A, the current
size k of the basis Vk and Wk = AVk and the Rayleigh quotient Ck, the focal point τ0, the
threshold value for tracking εthres, the maximum size m a�ordable for V and the size of the
restarted basis ` and the maximum number of restarted allowed. Outputs are µ, u and t,
such that

A(U u) = (U u)

(
T t

0 µ

)
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Algorithm 3.11
[µ, u, t]=JDQR(U(:,1:nconv),V (:,1:k),W (:,1:k),C(1:k,1:k),τ0,εthres,`,m,maxiter)

Set iter = 0; kinit = k; τ = τ0; tr = 0
while iter<maxiter do
iter = iter + 1
for k = kinit, . . . ,m do
[Q,T]=SortSchur(C(1:k,1:k),τ ,k)
Choose µ = T (1, 1) and p = Q(:, 1), the Ritz pair closest to τ
Approximate eigenvector of A: z = V (:, 1 : k)p, and Az: y = W (:, 1 : k)p
Compute the residual r = y−µz, orthogonalize it against U(:,1:nconv) and compute
its norm: rnorm=norm(r)
if tr = 1 and rnormbef < rnorm then
τ = µ

else if tr = 0 and rnorm < εthres then
τ = µ, tr = 1

end if
Convergence test:
if rnorm is small enough then
nconv = nconv + 1
Prepare outputs and de�ate: u = z; t = UHy; V = V (:, 1 : k)Q(:, 2 : k);
W = W (:, 1 : k)Q(:, 2 : k);C = T (2 : k, 2 : k)

return
else if k = m then
Restart:
V (:, 1 : `) = V (:, 1 : m)Q(:, 1 : `);
W (:, 1 : `) = W (:, 1 : m)Q(:, 1 : `);
C(1 : `, 1 : `) = T (1 : `, 1 : `);
kinit = `

end if
No convergence reached and k < m. Solve the correction equation:

(I − zzH)(A⊥ − τI)(I − zzH)v = −r

Orthogonalize v against V (:, 1 : k) and U(:, 1 : nconv)
Extend the Rayleigh basis and the Rayleigh quotient:
V (:, k + 1) = v, W (:, k + 1) = Av, C(k + 1,1:k)=vHW (:,1:k),
C(1:k,k + 1)=V (:,1:k)HW (:,k + 1), C(k + 1,k + 1)=vHW (:,k + 1)
rnormbef = rnorm

end for
end while

is a partial Schur decomposition of one higher dimension.
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The higher level routine must furnish Algorithm 3.11 with the necessary inputs. If the
process starts from the beginning, then there are two situations. The �rst one corresponds
to the case when the computation starts from a single random vector. Then the higher
level routine computes an Arnoldi decomposition of size `

AV` = V`H` + βv`+1e
T
` ,

and the Jacobi-Davidson starts with U = [ ], V = V`, W = AV and C = H`. The second
case is when the process starts from a given number k of initial vectors. The initial block
of vectors is then orthonormalized to obtain Vk and the process can start as indicated
previously, with U = [ ], V = Vk, W = AVk and C = V H

k AV
H
k = V H

k W .

Once the partial Schur decomposition

AUnev = UnevTnev

of the matrix A of size nev equal to the number of desired eigenpairs has been obtained using
repeatedly Algorithm 3.11, the corresponding eigenvalues and eigenvectors are obtained
using the Rayleigh-Ritz procedure.

3.6 Stopping criterion for convergence

All the iterative methods need condition to decide when the process can be stopped when
the quality of the approximation is satisfactory. The problem is that since the exact solution
is unknown, one can not compare the current eigenvector approximation xk with the actual
solution x and stop when the angle φ(xk, x) is small enough. An alternative is to compute
the residual

rk = Axk − λkxk,
where λk is a suitable approximation of λ, and stop when ‖rk‖ is su�ciently small. But,
how small? A criterion based on the backward error can o�er an answer to this question.
Assuming that ‖xk‖= 1, Theorem 3.9 establishes that the approximation (λk, xk) is the
exact solution of a perturbed problem (A+ Ek)

(A+ Ek)xk = λkxk,

with ‖Ek‖2/‖A‖2= ‖rk‖2/‖A‖2. Therefore the iterative method can be stopped when

‖Axk − λkxk‖2

‖A‖2

≤ tol, (3.40)

where tol is a level of accuracy that is considered as satisfactory for a given problem. In
practice, computing ‖A‖2 is too expensive, so a cheaper lower bound is used, what is even
more restrictive in terms of backward error than Eq. (3.40). Since |λk|≤ ‖Bk‖2≤ ‖A‖2,
where Bk is the corresponding Rayleigh quotient obtained by the iterative method, in this
work an eigenpair is considered as converged when

‖Axk − λkxk|‖2

|λk|
≤ tol,
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what ensures a small backward error associated with the pair (λk, xk). This stopping
criterion is widely used in other libraries for the solution of large eigenproblems, such as
ARPACK [75] or SLEPC7.

In [77] a study about determining stopping criteria for general sparse matrices is carried
out. More details about convergence can be found in [110] for symmetric matrices. The
non-hermitian case is analyzed in [129, 156]. In [18] one can �nd information about
defectiveness and non-normality.

7http://www.grycap.upv.es/slepc/
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Chapter 4. Numerical aspects of the solution of the thermoacoustic nonlinear eigenproblem

As seen in Chapter 2, the solution of the Helmholtz equation

∂2p1

∂t2
−∇ · c2

0∇p1 = Φ(p1)

on unstructured meshes using a �nite volume discretization leads to the nonlinear eigen-
problem

Ap̄︸︷︷︸
∇·c20∇p1

+ ωB(ω)p̄︸ ︷︷ ︸
Complex B.C

+ ω2p̄︸︷︷︸
∂2p1/∂t2

= C(ω)p̄︸ ︷︷ ︸
Φ(p1)

. (4.1)

Every nonlinear eigenpair (ω, p̄) of Eq. (4.1) represents an eigenfrequency and the structure
of the corresponding acoustic mode, respectively. Because thermoacoustic instabilities arise
at low frequencies, Eq. (4.1) must be solved in order to obtain a few nev smallest magnitude
nonlinear eigenvalues and the associated eigenvectors. Since there are no eigensolvers for
the solution of general nonlinear eigenproblems, the problem is linearized by �xing a value
ω̃ for the nonlinear eigenvalue ω, so that the nonlinear terms C(ω) and ωB(ω) become
constant. Then, the Eq. (4.1) can be written as

OP(ω̃)p̄ = −ω2p̄, (4.2)

where OP(ω̃) = A+ ω̃B(ω̃)−C(ω̃). Eq. (4.2) is a linear eigenproblem that is solved using
any of the available solvers in AVSP. Its solution is then used as a new linearization value ω̃
to obtain a new linear eigenproblem. The process is repeated until the successive solutions
of the sequence of linear eigenproblems converge to the sought nonlinear eigenvalue ω of
Eq. (4.1). This procedure is referred to as �xed point iterative method.

Therefore, the nonlinear eigenproblem (4.1) is handled by solving a sequence of linear
eigenproblems OPp̄ = −ω2p̄. The algorithms for the solution of linear eigenproblems
described in Chap. 3 are used in this chapter for solving OPp̄ = −ω2p̄. The in�uence
of their numerical parameters associated with each method is analyzed. Three test cases
are used for this purpose, two of them small enough (N ≈ O(103)) so that computing
the whole spectrum with MATLAB is possible. Although they are academic cases, they
contain the main ingredients of more realistic problems, and particularly, the presence of
the active �ame taken into account through the combustion matrix C. This means that
the operator OP is a sparse complex non-symmetric matrix, for which computing a few
smallest magnitude eigenpairs constitutes a challenging problem from a numerical point
of view. Strategies for accelerating the �xed point method are also discussed: during
the sequence of linear eigenproblems solved at each �xed point iteration, the solution of
previously solved linear eigenproblems can be a good approximation of the solution of the
next one. Being able to reuse this information can reduce signi�cantly the computational
cost of each �xed point iteration, and consequently the overall solution time.

The chapter is organized as follows: the test cases are described in sec. 4.1. In sec. 4.2,
the di�erent eigensolvers are studied and the in�uence of their numerical parameters is
analyzed. Sec. 4.3 is dedicated to the solution of the nonlinear eigenproblem. The e�ect
of the mesh quality on the eigensolver is treated in sec. 4.4. The parallel implementation
of the algorithms is discussed in Sec. 4.5, before concluding with some general remarks in
sec. 4.6.
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4.1. Test cases description

4.1 Test cases description

The numerical experiments presented in this chapter are performed for three di�erent aca-
demic con�gurations. Although their size and their geometry can di�er from those of actual
industrial problems, they contain all the essential ingredients that can pose a di�cult prob-
lem from a mathematical point of view. This will allow to analyze the available methods and
determine which are best suited to solve the eigenproblem obtained from the discretization
of the Helmholtz equation described in Chapter 2.

4.1.1 Test case A

It consists in a 2D rectangle of dimensions 0.5× 0.05m with temperature jump and a �ame
placed at the middle (Fig. 4.1) of the tube. The mesh is composed by 1489 nodes and 2782
cells, re�ned at the �ame zone (Fig. 4.2). Boundary conditions are u′ = 0 for left, top and
bottom sides and p′ = 0 for the right side of the tube, which means that the term ωB(ω)
is null. Tab. 4.1 contains the values of the physical quantities.

u� = 0

u� = 0

u� = 0

p� = 0

x

y

Lx = 0.5m

Ly = 0.05mc0 = 347.187ms−1 c0 = 694.374ms−1

Figure 4.1: 2D rectangle with temperature jump.

x

y

pref

Figure 4.2: The mesh is re�ned in the �ame zone. The reference point is placed right before the
�ame.

When the active �ame is taken into account, the matrix OP(ω) = A − C(ω) has the
structure shown in Fig. 4.3. Although the matrix A is real symmetric (up to a row scaling
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Chapter 4. Numerical aspects of the solution of the thermoacoustic nonlinear eigenproblem

Fresh gases Hot gases

γ = 1.4 γ = 1.4

T = 300K T=1200K

W = 0.02897 kg/mol W = 0.02897 kg/mol

Table 4.1: Test case A: gas properties.

of its elements), the matrix OP is complex non-symmetric due to the combustion matrix
C, which is complex non-symmetric.
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OP (ω) A C(ω)

Figure 4.3: Portrait of the matrix OP, showing the structure of each one of the matrices A and
C(ω) corresponding to the 2D tube.

The 10 smallest magnitude eigenfrequencies without active �ame corresponding to the
solution of the linear problem Ap̄ = −ω2p̄ appear in Tab. 4.2 and the structures of the �rst
2 modes are shown in Fig. 4.4.

1 press

0

1

−1

press

0

Mode 2 (694.3Hz)Mode 1 (272.3Hz)

Figure 4.4: Structure of the �rst and second longitudinal modes of the 2D tube with temperature
jump without active �ame.

4.1.2 Test case B

This test case is an annular duct divided into 8 identical sectors, with a �ame placed at
the middle of each sector. The inner radius Rmin = 1.5 m and the outer radius Rmax =
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4.1. Test cases description

Frequencies (Hz)

ω1 272.3

ω2 694.3

ω3 1117.0

ω4 1160.8

ω5 2080.8

ω6 2503.1

ω7 3043.6

ω8 3461.7

ω9 3470.4

ω10 3600.0

Table 4.2: 10 smallest magnitude eigenfrequencies of the 2D tube with temperature jump without
active �ame (C = 0).

1.7 m (Fig. 4.5). The mesh is composed by 5560 nodes and 22056 cells. All the boundary
conditions corresponds to rigid acoustic walls (u′ = 0), so that B is still zero. The properties
of the gas are speci�ed in Tab. 4.3.

Lx = 0.5 m

Rmin = 1.5 m

Rmax = 1.7 m

xflame = 0.25 m

xptref = 0.15 m

c0fresh c0hot u� = 0

u� = 0

u� = 0

u� = 0

8
re

f.
p
ts

.

Figure 4.5: Annular duct with temperature jump and �ame. Top: A view of the 5560 node mesh;
the �ame is placed at x = 0.25m and the reference points at x = 0.15m. Bottom: the annular
duct is divided into 8 sectors with the reference points located in each. The boundary conditions
are u′ = 0 for all patches.
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Fresh gases Hot gases

γ = 1.4 γ = 1.4

T = 504K T= 2015K

W = 0.02897 kg/mol W = 0.02897 kg/mol

c0 = 450 ms−1 c0 = 900 ms−1

Table 4.3: Test case B: gas properties.

The structure of the matrixOP(ω) = A−C(ω) corresponding to this case is displayed in
Fig. 4.6. The combustion matrix C shows eight groups of non-null elements corresponding
to each one of the eight sectors considered by the multi-burner combustion model introduced
in Chapter 2.
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OP(ω) A C(ω)

Figure 4.6: Test case B: structure of the matrix OP, showing the structure of each one of the
matrices A and C(ω).

The �rst 10 smallest magnitude eigenfrequencies of test case B with temperature jump
and without �ame are shown in Tab. 4.4, while the structure of the �rst 2 modes are
displayed in Fig. 4.7. The �rst eigenfrequency is null (rigid body mode) because u′ = 0
is used as boundary condition for all the patches. The double frequencies correspond to
azimuthal modes.

4.1.3 Test case C

This con�guration is a simpli�ed model of an annular combustor with six tubular burners.
The properties of the fresh (in the burners) and hot (in the annular chamber) gases are the
same as for case B (see Tab. 4.3). The �ames are placed at each burner/chamber junction.
The mesh is composed of 36510 cells and 173556 cells. Concerning boundary conditions,
p′ = 0 at the burners inlet and the rest of patches are rigid walls (u′ = 0) (Fig. 4.8). This
test case is considered because of its larger size. With respect to the previous cases (which
are solved on one processor), the results presented in what follows concerning the test case
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4.1. Test cases description

Frequencies (Hz)

ω1 0

ω2 80.0

ω3 80.0

ω4 141.2

ω5 141.2

ω6 209.6

ω7 209.6

ω8 274.4

ω9 276.5

ω10 337.7

Table 4.4: Test case B: 10 smallest magnitude eigenfrequencies of the annular duct with temper-
ature jump and no active �ame (C = 0).

Figure 4.7: Structure of the �rst (80 Hz) and second (141.2 Hz) azimuthal modes of the annular
duct with temperature jump without active �ame (C = 0).

C, have been obtained using many processors, showing that the algorithms implemented in
AVSP have been implemented in a parallel computational context.

1

2

3

4

5

6

Rmin = 1.45 m

Rmax = 1.75 m

x = 0

xptref = −0.1 m

0.5 m 0.5 m

d = 0.2 m

outlet

u� = 0

inlet

p� = 0

Ref. points Flames(n, τ)

Figure 4.8: Test case C: simpli�ed annular combustion chamber with 6 identical burners. The
�ames are places right at the interface between the tubes and the annular chamber at x = 0m.
At the inlet of the tubes and the walls u′ = 0 is imposed; p′ = 0 is imposed at the outlet of the
annular chamber.
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The 10 smallest magnitude eigenfrequencies without active �ame appear in Tab. 4.5 and
the structure of the �rst 2 modes are displayed in Fig. 4.9.

Frequencies (Hz)

ω1 34.8

ω2 95.4

ω3 95.4

ω4 180.9

ω5 180.9

ω6 266.2

ω6 269.5

ω6 353.4

ω6 353.4

ω6 422.9

Table 4.5: Test case C: 10 smallest magnitude eigenfrequencies obtained with temperature jump
without active �ame (C = 0).

Figure 4.9: Test case C: structure of the �rst mode (34.8 Hz) which is the longitudinal mode
of the burners and second mode (95.4 Hz) which is the �rst azimuthal mode of the chamber with
temperature jump and no active �ame (C = 0).

4.2 Parametric study and comparison of eigensolvers

In this section the in�uence of the main numerical parameters of the di�erent solvers imple-
mented in AVSP is investigated. In order to analyze the numerical behavior of the di�erent
eigensolvers, the considered quantities are: computational time, number of matrix/vectors
products (matvec) and number of iterations (implicit restarts or Jacobi-Davidson steps)
needed for the computation of the desired eigenpairs.
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4.2. Parametric study and comparison of eigensolvers

4.2.1 In�uence of convergence threshold tol

A given eigenpair (λ, x) is considered solution of Ax = λx when the associated normalized
residual norm satis�es

‖Ax− λx‖2

|λ| ≤ tol.

If the eigenvalues have to be computed more accurately, there is obviously a prize to pay:
the computational cost increases in general when tol gets smaller. The chosen value for tol
must be small enough to ensure an acceptable level of accuracy and reduce the chances of
missing eigenvalues; but asking for a very high accuracy will just increase the computational
cost unnecessarily.

The whole spectrum of the test case A without active �ame is computed with the func-
tion eig of MATLAB. Then, using ARPACK, we ask for the 10 smallest magnitude (SM)
eigenvalues, for di�erent values of tol. In Tab. 4.6 appear the eigenfrequencies obtained in
each case.

EIG (MATLAB) ARPACK (tol = 10−2) ARPACK (tol = 10−4)

272.25828 272.25820 272.25828

694.28538 694.28540 694.28538

1117.02961 1117.02961 1117.02961

1660.77236 1660.77237 1660.77236

2080.78000 2080.78002 2080.78000

2503.09511 2503.09487 2503.09510

3043.55136 3043.52788 3043.55136

3461.64601 3470.36046 3461.64872

3470.37628 3600.06698 3470.37629

3600.04314 3846.20832 3600.04314

Table 4.6: Test case A without active �ame: smallest eigenfrequencies (Hz) obtained with MAT-
LAB (considered as the reference) and with ARPACK for di�erent values of tol.

This example illustrates what happens if the value of tol is not small enough: the eigen-
solver can skip one or more eigenvalues if they are very close to each other. For tol = 10−2

ARPACK �nds ω8 = 3470.36Hz and then ω10 = 3600.07Hz, skipping ω9 = 3470.38Hz. A
tolerance tol = 10−4 is enough for ARPACK to �nd all the smallest magnitude eigenvalues
without missing any of them. On the other hand, for the problem considered in this work,
computing eigenfrequencies with two correct decimal digits is enough. Therefore, it does
not make sense asking for an accuracy higher than tol = 10−4 if there are no �physical�
reasons to think that some eigenvalues could have been missed by the eigensolver.

Fig. 4.10 shows the computational time, number of matrix/vector products and restarts
for ARPACK, the Krylov-Schur solver (KS) and the Jacobi-Davidson solver (JDQR). These
are obtained for test case A (without active �ame), when 10 eigenvalues are computed
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Figure 4.10: Computational cost as a function of the asked tolerance when computing the 10
�rst eigenvalues of case A without active �ame.

with a search subspace of size m = 50. As expected, the overall cost increases when the
convergence threshold decreases, for all the three solvers. Nevertheless, the JDQR solver
is the most penalized. The reason is that Krylov-based solvers improve the quality of
all the asked eigenpairs simultaneously, while the Jacobi-Davidson solver converges one
approximate eigenpair at once. Therefore, if a large number of eigenpairs must be found
with high accuracy, the JDQR solver is probably not the best option.

4.2.1.1 Accuracy and degenerate eigenvalues

The accuracy of the approximate eigenpairs, plays an important in the computation of
eigenvalues with algebraic multiplicity larger than one, referred to as degenerate eigenval-
ues. If the matrix OP is non-defective then the algebraic and geometric multiplicity of
degenerate eigenvalues are equal. In the context of this work, degenerate eigenvalues are
often found due to the symmetry of the problem but they are not defective: they have as-
sociated a number of linearly independent eigenvectors equal to their algebraic multiplicity.
This is the case of an azimuthal mode given by a couple of eigenvalues which are equal and
have associated two linearly independent eigenvectors (see Chapter 5). In the following it
is shown that computing eigenvalues with a higher level of accuracy can prevent skipping
degenerate eigenvalues.

Let us consider the test case C without active �ame, which has degenerate eigenvalues
corresponding to azimuthal modes. When the �rst 5 eigenpairs are sought, Tab. 4.7 shows
the eigenfrequencies computed by the di�erent solvers for tol = 10−4, tol = 10−6 and
tol = 10−8. The results in Tab. 4.7 show that a small value of tol is required for the solvers
to capture the doublets associated with azimuthal modes. In the case of ARPACK and KS,
a value of tol = 10−8 is enougth. For JDQR, a value tol = 10−9 is needed to compute the
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4.2. Parametric study and comparison of eigensolvers

Freq. (Hz) 1 2 3 4 5

tol = 10−4

ARPACK 34.82 95.41 180.85 266.23 269.46

KS 34.82 95.41 180.85 266.23 269.46

JD 34.82 95.41 180.85 266.23 269.46

tol = 10−6

ARPACK 34.82 95.41 180.85 266.23 269.46

KS 34.82 95.41 180.85 266.23 269.46

JD 34.82 95.41 180.85 266.23 269.46

tol = 10−8

ARPACK 34.82 95.41 95.41 180.85 180.85

KS 34.82 95.41 95.41 180.85 180.85

JD 34.82 95.41 95.41 180.85 266.23

Table 4.7: Test case C without active �ame: 5 smallest eigenfrequencies obtained with ARPACK,
KS and JDQR for di�erent values of tol.

5 smallest eigenfrequencies correctly.

Concerning the JDQR solver, there is an interesting result regarding convergence of de-
generate eigenvalues. As the following example shows, for a �xed value of tol, the level
of accuracy chosen for the solution of the correction equation can play a role in the order
in which eigenvalues are found. The 10 smallest magnitude eigenvalues of the test case B
without active �ame are computed for tol = 10−4. The parameter that is investigated is the
number of GMRES iterations used for solving approximately the correction equation. Ide-
ally, the JDQR should converge �rst the two eigenvectors associated with the �rst doublet
(the degenerate eigenvalue corresponding to the azimuthal mode), then those corresponding
to the second azimuthal doublet and so on. Instead, the order in which eigenvectors are
found depends on the accuracy of the correction equation solution (Tab. 4.8). This exam-
ple shows that for a �xed value of tol, the obtained eigenvalues using the Jacobi-Davidson
algorithm can be di�erent depending on the accuracy of the correction equation solution
(the convergence threshold of the inner iteration). In [44] the authors investigate the con-
vergence of degenerate eigenvalues as well. Although the convergence seems to be delayed
in the presence of doublets or triplets, the eigenvalues are found in the correct order. The
reason is probably that the value of tol chosen by the authors is much more restrictive than
the one used here (tol = 10−9 instead of tol = 10−4). Indeed, if the same problem is solved
again with tol = 10−10, JDQR �nds the doublets one after the other in the correct order.

4.2.2 In�uence of the search subspace maximum size m

The role played by the maximum sizem of the search subspace is more important in the case
of Krylov methods than in the case of the Jacobi-Davidson algorithm. The reason is the
way these methods work: Krylov�based methods aim at converging a given eigenspace of
size nev equal to the number of demanded eigenvalues, while the Jacobi-Davidson algorithm
converges eigenpairs sequentially one after the other. In general, for reasonable values of m
the Krylov methods restart several times before an approximate eigenspace is found. On
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5 GMRES it 15 GMRES it 25 GMRES it

1. 71.00 1. 71.00 1. 71.00

2. 141.16 2. 141.16 2. 141.16

3. 209.61 3. 209.61 3. 209.61

4. 274.41 4. 274.41 4. 274.41

5. 276.48 5. 276.48 5. 276.48

6. 337.73 6. 337.73 6. 337.73

7. 395.77 7. 395.77 7. 71.00

8. 449.29 8. 449.29 8. 141.16

9. 498.20 9. 71.00 9. 209.61

10. 71.00 10. 141.16 10. 337.73

Table 4.8: Case B without active �ame: order of convergence for the �rst 10 eigenfrequencies
computed with JDQR for tol = 10−4 depending on the number of inner iterations used for the
solution of the correction equation.

the other hand, it can happen that the Jacobi-Davidson method �nds all the demanded
eigenpairs before the search subspace reaches the maximal allowed size m. In this case,
increasing the value of m does not change the behavior of the Jacobi-Davidson solver.

Fig. 4.11 displays the computational cost (in terms of run time, matrix/vector prod-
ucts and restarts) for ARPACK, KS and JDQR solvers when the �rst 10 eigenvalues are
computed with tol = 10−4 for test case A and B.

From the results in Fig. 4.11, three conclusions raise:

1. JDQR solver is barely a�ected by the maximum size of the search subspacem, whereas
the Krylov-based solvers are very sensitive to this parameter. Choosing m equal to 2
or 3 times the number of wanted eigenvalues (nev) seems to be a reasonable choice.

2. For both ARPACK and KS solvers there exists an optimal size m that minimizes the
computational cost.

3. The behavior of the Krylov-based solvers is similar (as it could be expected since
there are mathematically equivalent). The KS solver seems though slightly faster
than ARPACK, specially for larger values of m.

Concerning the ARPACK and KS solvers, when m increases the number of restarts de-
creases. Nevertheless the computation time is not monotonically decreasing with m: it
decreases �rst and then it increases, existing an optimal value of m. The reason is that
when m increases, the time spent per restart (extension of the base and computation of
the eigenpairs of the Rayleigh quotient matrix) becomes larger and it becomes dominant,
increasing the overall computational time.

One could wonder if there is a general rule to choose m optimally (that minimizes the
run time), depending on the number of wanted eigenpairs nev. In the literature there is
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Figure 4.11: In�uence of the maximum search subspace size m on the computational cost of 10
smallest magnitude eigenvalues with tol = 10−4 for ARPACK, KS and JDQR solvers.

not a general recipe for this tuning. Although there is no general answer, it is possible to
give an idea of the optimal choice, seeking an optimal ratio between m and nev. Fig. 4.12
plots computational time as a function of m for di�erent number of asked eigenvalues nev
for test cases A and C without active �ame. The curves are normalized by the maximum
computational time obtained for each value of nev. The minimum of each curve is marked
with the corresponding ration m/nev. The tolerance for case A is tol = 10−4 while for case
C is chosen equal to (tol = 10−8) in order to ensure that degenerate eigenvalues are not
missed.

The results show that the optimal ratio m/nev (from the computational time point of
view) depends on the number of wanted eigenvalues. However both cases exhibit the same
trends: the optimal ratio decreases when the number of wanted eigenpairs increases. If the
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Figure 4.12: In�uence of the ratio m/nev on the computation time for test cases A and C.

number of eigenpairs to compute is typically more than 10 and there is enough available
memory, it does not seem appropriate to choose m smaller than 3 × nev for problems of
these sizes. However, from experience, for real cases with N ≈ O(106), the ratio m/nev
must be chosen larger to make the solver converge. The conclusion is that the optimal ratio
m/nev is extremely case dependent.

4.2.3 Jacobi-Davidson: in�uence of the correction equation solu-
tion accuracy

As exposed in Chapter 3, the Jacobi-Davidson algorithm is a class of iterative subspace
method for which every iteration consists of two main steps: (i) enlarge the so-called search
subspace by adding a new basis vector and (ii) extract an approximate eigenpair from the
said search space by using the Rayleigh-Ritz procedure. These two steps are the key points
of the outer iteration that is called here a JD step. To obtain a new basis vector at each
outer iteration, it is necessary to solve approximately the correction equation using an
iterative solver, which constitutes the inner iterations. Since the most part of the time of
the outer iteration is spent performing the inner iterations, the solution of the correction
equation is the bottleneck of the Jacobi-Davidson method. This topic has been discussed
in a large number of works [44, 54, 55, 150, 151], specially the matter of how to include
preconditioning for the correction equation solution.

In the present work, a Generalized Minimal Residual Method (GMRES) [131] is used to
obtain the approximate solution of the correction equation at each JD step. No precon-
ditioning is used since the explicit operator is unavailable and the stopping criterion for
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4.2. Parametric study and comparison of eigensolvers

the approximate solution of the correction equation is established by �xing a given number
of GMRES iterations (the inner iterations). As the theoretical results presented in [54]
show, it is possible to link the optimal level of accuracy of the correction equation to the
residual of the associated approximate eigenpair. The authors demonstrate that solving the
correction equation beyond a certain level of accuracy does not improve the convergence of
the outer iteration and it is a waste of resources.

The three test cases without active �ame are used in order to try to extrapolate an
optimal value for the number of full GMRES iterations. Fig. 4.13 shows the e�ect of the
number of GMRES iterations (that is, the stopping criterion for the correction equation
solution) on the computational time, number of matrix/vector products and JD steps when
computing the 10 smallest magnitude eigenfrequencies with tol = 10−6 (which ensures
�nding all the doublets for cases B and C). Looking at the number of JD steps in Fig. 4.13
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Figure 4.13: For test case A, B and C, e�ect of the number of inner iterations (full GMRES
iterations here) on the performance of the JD solver.

one sees that, at �rst, it decreases fast with the number of GMRES iterations but then it
reaches a limit. This behavior illustrates well what has already been mentioned: solving the
correction equation beyond a certain level of accuracy does not improve the performance
of the outer iterations and it just increases the time spent per iteration. The number of
GMRES iterations for which this limit is reached seems to be larger for the test case A
than for B and C. Extrapolating these results to other cases, since it is not of practical use
to tune this parameter for every case, it seems a good compromise choosing the number of
GMRES iterations equal to 25.

4.2.4 Harmonic extraction

Harmonic Ritz values are considered in literature [91, 92, 107] as a good alternative to the
shift-and-invert spectral transformation that avoids the need of �inverting� matrices. They
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appear as a good alternative for the computation of eigenvalues nearest to a given target
τ , specially when the interest is in eigenvalues laying in the interior of the spectrum. For
example, in [125] the authors show the e�ciency of performing harmonic extraction in a
Krylov-Schur solver compared to considering spectral transformations such as shift-and-
invert.

Imposed by the physics of the problems, the matrices to deal with in this work have
spectra that lay along the negative part of the real axis (although sometimes they may have
some eigenvalues with positive real part), and in general the magnitude of the imaginary
part of the eigenvalues are signi�cantly smaller than the magnitude of the corresponding
real part. The objective is to compute a few smallest magnitude eigenvalues: although they
are not interior eigenvalues (see Fig. 4.14), smallest magnitude eigenvalues are more di�cult
to capture than the largest magnitude ones, and the harmonic extraction may be a good
option. For this reason harmonic Ritz values have been implemented in the Krylov-Schur
solver (see Chapter 3).

�

�

Region
 of interest

(SM)  

Figure 4.14: Scheme of the periphery of a typical spectrum from a matrix issued from the
discretization of the Helmholtz equation.

The KS solver is used with classic and harmonic extraction in order to compute the
10 smallest magnitude eigenvalues of the test cases A, B and C without active �ame with
tol = 10−6. The harmonic shift τ is set to a value near 0 in order to capture the smallest
magnitude eigenvalues. The run time and the number of implicit restarts needed by the
KS solver in each case appear in Tab. 4.9 for both extraction techniques.

The results of Tab. 4.9 suggest that using harmonic Ritz values does not really improve
the convergence of the method when computing the smallest magnitude eigenvalues in these
cases. Nevertheless, it might still be useful for the computation of a few interior eigenvalues,
which is necessary in cases where the �rst tens of smallest magnitude eigenvalues are not
of interest and the target is around the 50th or the 100th eigenfrequency, for example. For
test case A, a few eigenvalues around a given target τ are computed in two di�erent ways:

1. Using harmonic extraction, which must return those eigenvalues of the matrix A
closest to the harmonic shift τ .

2. Computing the smallest magnitude eigenvalues δ of the shifted matrix (A− τI) using
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Time(s) Restarts Matvec

CASE A
Classical Ritz 4.77 108 4136

Harmonic Ritz 4.76 106 4110

CASE B
Classical Ritz 5.82 21 776

Harmonic Ritz 5.41 21 784

CASE C
Classical Ritz 14.68 55 2007

Harmonic Ritz 13.54 52 1887

Table 4.9: Computational cost of classical Ritz values and harmonic Ritz values corresponding
to the calculation of the nev = 10 SM eigenvalues of cases A, B and C without active �ame with
tol = 10−6 (m = 70).

classical Rayleigh-Ritz extraction. Then, the original eigenvalues ω of the matrix A
are simply ω = τ + δ.
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Figure 4.15: Convergence history of the harmonic Ritz values (� �) and the classic Ritz values
(��) when computing nev = 5 eigenvalues closest to 15000 Hz of the test case A (tol = 10−4 and
m = 100).

Let us suppose that, for the test case A without active �ame, the 5 eigenvalues closest
to 15000 Hz are wanted. Then the proper shift (τ = −((2π)15000)2) is used to compute
the harmonic Ritz values nearest τ , in the case of harmonic extraction, and the smallest
eigenvalues of the shifted matrix (A−τI) are computed using classical Ritz extraction. The
residual (res = |Ax− λx|/|λ|) curves obtained for both strategies are plotted in Fig. 4.15.
After 2000 implicitly restarted iterations, the KS solver with harmonic extraction did not
converge, whereas the classic Ritz extraction did after 522 iterations. The eigenfrequencies
(ω = τ + δ) obtained in the last case appear in Tab. 4.10.
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14940.7 Hz

14972.7 Hz

15012.0 Hz

15058.2 Hz

15098.1 Hz

Table 4.10: Eigenfrequencies closest to 15000 Hz of the test case A without active �ame.

This example shows that even for the computation of a few interior eigenvalues (those
calculated here correspond to the 128th�132th smallest magnitude eigenvalues of the matrix
A), a shift transformation gives better results than harmonic extraction. The stagnation
of the residuals corresponding to the harmonic Ritz values is due to the fact that the
harmonic shift τ is chosen too close to an actual eigenvalue. This inherent problem to
harmonic extraction is di�cult to overcome, since it is impossible to know a priori whether
the chosen shift is very close or not to an actual eigenvalue. And even if this was possible
(for this example it is the case since the whole spectrum is known), it may happen that the
eigenvalues are too close to each other, so that is impossible to choose a shift that will not
produce such a stagnation in practice.

Harmonic Ritz values can be computed using the Jacobi-Davidson method as well [156].
In [44] the authors show how the Jacobi-Davidson method for the solution of generalized
eigenproblems (Jacobi-Davidson method style QZ) can be used for the calculation of har-
monic Ritz pairs. A Matlab implementation of this algorithm (re�ered to as JDQZ in [44]),
downloaded from G.L.G. Sleijpen's web site1, has been compared to a Matlab implementa-
tion of the JDQR algorithm described in Chapter 3 and no signi�cant di�erences concerning
the convergence have been found.

4.3 Strategies for the solution of the nonlinear eigenpro-

blem

One of the di�culties of the thermoacoustic model considered in this work is the need to
solve the nonlinear eigenvalue problem

Ap̄+ ωB(ω)p̄+ ω2p̄ = C(ω)p̄ (4.3)

in order to compute the nev smallest magnitude nonlinear eigenvalues

|ω1|≤ |ω2|≤ · · · ≤ |ωnev|.

As in other works treating nonlinear eigenproblems [55, 89], since there exists no general
methods for the solution of such problems, Eq. (4.3) is linearized in order to obtain a
problem that can be solved using one of the available methods for the solution of linear

1http://www.math.uu.nl/~sleij101/
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eigenproblems. Depending of its nature, the problem can be linearized in many ways [163].
Here, a Fixed Point (FP) iterative procedure is chosen in order to linearize Eq. (4.3).
Basically, it consists in �xing a given value ω̃(j), called here linearization value, to the
nonlinear terms of Eq. (4.3), so that they become constant and they can be added to the
linear part A, in order to obtain the linear eigenproblem

[A + ω̃(j)B(ω̃(j))−C(ω̃(j))]p̄+ ω(j)2
p̄ = 0, (4.4)

which can be written simply as
OP(j)p̄ = −ω(j)2

p̄, (4.5)

where OP(j) = A + ω̃(j)B(ω̃(j))−C(ω̃(j)).

Unless the solution of Eq. (4.5) ω(j) is equal to the used linearization value ω̃(j) (which
means that ω(j) is a solution ω of Eq. (4.3)), the method proceeds using ω(j) as the new
linearization value, that is, ω̃(j+1) = ω(j), so that a new linear eigenvalue problem

OP(j+1)p̄ = −ω(j+1)2
p̄

has to be solved. This procedure is repeated in order to make ω(j) converge to a nonlinear
eigenvalue ω solution of Eq. (4.3). The convergence is stated when the distance |ω̃(j)−ω(j)|
is smaller than a certain threshold ε.

The solution of each linear eigenproblem (Eq. (4.5)) is referred to as nonlinear iteration
or FP iteration, and the set of nonlinear iterations performed until reaching the convergence
is called the nonlinear loop. During the nonlinear loop only one nonlinear eigenvalue ωi (and
the corresponding eigenvector p̄i) of Eq. (4.3) can be tracked. If many nonlinear eigenpairs
have to be computed, the whole procedure has to be repeated as many times as desired
nonlinear eigenpairs (ωi, p̄i) (i = 1, . . . , nev).

In summary, the �xed point procedure, in its simplest form, proceeds as follows:

1. At the jth FP iteration the approximation ω̃(j) to ω is used to linearize Eq. (4.3). The
resulting problem

OP(j)p̄ = −ω(j)2
p̄

has to be solved in order to obtain ω(j).

2. The solution ω(j) is used as a new linearization value, i.e., ω̃(j+1) = ω(j) and a new
linear eigenproblem

OP(j+1)p̄ = −ω(j+1)2
p̄

has to be solved, whose solution ω(j+1) will constitute the next linearization value.

3. Step 2 is repeated until two successive values ω(`−1), ω(`) are close enough. The value
ω(`) is accepted as a solution of Eq. (4.3) when the distance |ω(`) − ω̃(`)| is smaller
than a chosen threshold ε.

In practice, at the jth FP iteration iteration, a few nev linear eigenvalues of

OP(j)p̄ = −ω(j)2
p̄

121



Chapter 4. Numerical aspects of the solution of the thermoacoustic nonlinear eigenproblem

are computed

|ω(j)
1 |≤ |ω(j)

2 |≤ · · · ≤ |ω(j)
k |≤ · · · ≤ |ω(j)

nev|

sorted from smallest to largest magnitude. In order to preserve the convergence of the
nonlinear loop, the linear eigenvalue ω(j)

k closest to the current linearization value ω̃(j) must
be chosen as the (j + 1)th linearization value ω̃(j+1) = ω

(j)
k . That is, the output ω(j) of the

jth nonlinear iteration is the linear eigenvalue ω(j)
k closest to ω̃(j).

On the other hand, let us suppose that the nonlinear eigenvalue ωi has just converged
after ` FP iterations, and the next nonlinear eigenvalue ωi+1 has to be computed. Then,
the linear eigenvalues

ω
(`)
1 , ω

(`)
2 , . . . , ω

(`)
k , . . .

obtained at the `th nonlinear iteration for the computation of ωi can provide a good initial
guess to start a new nonlinear loop in order to compute the next nonlinear eigenvalue ωi+1.

If the nonlinear problem is sti�, it may happen that the sequence ω(0), ω(1), ω(2), . . . of
values obtained at each FP iteration does not converge. In this case the FP method can
be used with a relaxation parameter α (0 ≤ α < 1): the next linearization value ω̃(j+1) is
chosen now as a convex combination of the current one ω̃(j), and the last obtained solution
ω(j):

ω̃(j+1) = (1− α)ω(j) + αω̃(j).

Algorithm 4.1 implements the relaxed FP procedure to compute a nonlinear eigenpair
(ωi, p̄i) of Eq. (4.3).

Algorithm 4.1 ωi, p̄i]=FP_relax(ω(0), α, ε)

Given the relaxation parameter α (0 ≤ α < 1) an the initial guess ω(0), FP_relax returns
the approximate eigenpair (ωi, p̄i) of Eq. (4.3). The nonlinear eigenvalue ωi is converged
when |ω̃(j) − ω(j)|≤ ε.

Set ω̃(1) = ω(0)

for j = 1, 2, . . . do
Solve OP(j)p̄ = −ω(j)2

p̄ to obtain nev eigenvalues:
|ω(j)

1 |≤ · · · |ω(j)
k |· · · ≤ |ω

(j)
nev|

and the corresponding eigenvectors.
Select the linear eigenvalue ω(j)

k closest to ω̃(j): Set ω(j) ← ω
(j)
k .

Convergence test:
if |ω̃(j) − ω(j)|≤ ε then
Return ωi = ω(j) and the corresponding eigenvector p̄i.

else
Compute the next FP value ω̃(j+1) as:
ω̃(j+1) = (1− α)ω(j) + αω̃(j)

end if
end for
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4.3.1 Acceleration techniques: recycling solutions between �xed
point iterations

The linear eigenproblems at each nonlinear iteration can be solved one after the other
considering each one of them as a new linear eigenproblem independent from the previous
ones. But the fact is that the solution obtained during the previous nonlinear iteration can
be a good approximation for the solution of the next one, so that exploiting this information
can accelerate the convergence of the next linear eigenproblem. To support this idea, the
sequence of solutions obtained during the computation of one mode of the test case B with
active �ame (C(ω) 6= 0) is analyzed. Starting from the solution of the problem without
active �ame (see Tab. 4.4), the mode with active �ame closest to the 7th (209.6 Hz) mode
without combustion is computed, using Algorithm 4.1 without relaxation (α = 0). The
nonlinear eigenproblem corresponding to this case is

Ap̄+ ω2p̄ = C(ω)p̄,

since B = 0 due to the Neumann boundary conditions. At each FP iteration, the following
quantities are calculated, which are summarized in Tab. 4.11:

• The relative Frobenius norm of the di�erence between two consecutive matrices

∆F =
‖OP(j−1) −OP(j)‖F

‖OP(j)‖F
.

• The relative distance between the outputs of two consecutive nonlinear iterations

δ(%) =
|ω(j−1) − ω(j)|
|ω(j)| × 100.

• The angle between the subspaces P (j) = span{p̄(j)
1 · · · p̄(j)

nev} formed by the eigenvectors
obtained for two consecutive FP iterations and denoted 6 (P (j−1), P (j)).

# FP it. ω
(j)
7 (Hz) ∆F δ(%) 6 (P (j−1), P (j)) (degrees)

0 209.6000 � �

1 219.7025 - i3.9021 0.0404 4.92 48.82

2 219.8656 - i2.5189 0.0051 0.63 0.28

3 219.8675 - i2.5046 8.04e-5 6.58e-3 4.3e-3

4 219.8676 - i2.5044 1.06e-6 8.69e-5 5.72e-5

Table 4.11: Results obtained using the FP procedure (with α = 0) when converging the 7th

eigenfrequency with active �ame of the test case B.

The FP procedure exhibits a quick convergence. Looking at the quantity ∆F , one realizes
that the matrix OP(j) can be seen as the matrix OP(j−1) corresponding to the previous
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Figure 4.16: For test case B, spectra of the matrices OP(1), OP(2) and OP(3) obtained during
the FP procedure.

nonlinear iteration plus a small perturbation ∆, i.e., OP(j) = OP(j−1) + ∆. Moreover,
the small angle between the linear eigenvectors of two consecutive linear eigenproblems
suggests that the subspace P (j−1) is a good approximation of P (j). The spectra of the
matrices OP(1), OP(2) and OP(3) (Fig. 4.16) shows that the sequence of linear solutions
computed during the nonlinear loop are very close to each other. Therefore, it would be
very advantageous being able to recycle the eigensolutions between successive nonlinear
iterations in order to accelerate the solution of the next linear eigenproblem.

Depending on the eigensolver, four strategies aiming at reusing the linear solutions of a
previous nonlinear iteration, are investigated:

• Using a block Krylov method: it starts from a block of vectors instead of just one
direction. The idea is to choose as initial block the linear eigenvectors P (j−1) of
OP(j−1) to solve the problem OP(j)p̄ = −ω(j)2

p̄. The block-size p is then equal to
the number nev of wanted eigenpairs.

• Using ARPACK or the KS solver: these methods can only start from a single vector.
The way proposed here to take into account the nev available directions from the
previous FP iteration consists in choosing the initial vector u0 for the solution of
OP(j)p̄ = −ω(j)2

p̄ as a linear combination of the eigenvectors P (j−1).

• Using JD solver o�ers a natural way of recycling the eigenvectors P (j−1) for the so-
lution OP(j)p̄ = −ω(j)2

p̄: an orthonormal basis U of P (j−1) and the corresponding
Rayleigh-quotient C = UHOP(j)U are computed. Then, since the Jacobi-Davidson
algorithm does not require any particular form of C, it can be used to extend the
search subspace and carry on the process.
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• Using a Subspace iteration with Chebyshev acceleration: starting from subspace
formed by the nev linear eigenvectors P (j−1) of OP(j−1) (which can be eventually
completed with random vectors), subspace iterations are performed to obtain the
solution of OP(j)p̄ = −ω(j)2

p̄.

4.3.2 Block Krylov methods for recycling eigenspaces

At the end of each FP step, nev eigenvectors corresponding to the nev smallest magnitude
eigenvalues have been computed. Since we want to reuse the obtained solution, the block
method must be used with a block size p equal to nev, so that it can start from an initial
set of vectors corresponding to the nev eigenvectors computed during the last FP iteration.

In the case of a single vector (SV) Krylov method, if m is the maximum allowed size
of the search subspace and k is the size of the restarted subspace, then the degree of the
�lter polynomial applied at each implicit restart is (m− k). On the other hand, for a block
Krylov method, the degree of the �lter polynomial is divided by the block size p, being
(m − k)/p. Consequently, if m and k are kept the same for both the single vector and
the block solvers, the e�ciency of the �lter polynomial is reduced in the case of the block
solver [76, 178]. Therefore, using the same dimension for the search subspace (i.e., the same
amount of memory) the convergence rate of the block method is expected to be inferior
compared to the one of the single vector solver. The question is: is the approximation of
the solution provided by the initial block good enough to make the use of the block method
advantageous, despite the expected lower convergence rate? To answer this question two
successive FP iterations from Tab. 4.11 are considered: the problem OP(2)p̄ = ω(2)2

p̄ is
solved using the solution from OP(1) (with an accuracy tol = 10−6 for the eigensolver).
Although, in general, the block size must be equal to the number of wanted eigenpairs, in
order to see the e�ect of the block size p, nev is set to 3 while the block size p takes the
values 3, 5, 7 and 9 (the �rst 3 vectors of each block correspond to the previously computed
linear eigenvectors and then, when necessary, they are completed with random vectors).
The computational cost is plotted in Fig. 4.17: from left to right, the normalized run time
(denoted relative time), the number of matrix/vector products (matvec) and the number of
restarts for the di�erent block sizes. As expected, keeping m = 70 the same for the di�erent
block sizes, the e�ciency of the method deteriorates when the size block p increases.

A comparison with the single vector KS method is performed: the same problem
(OP(1) → OP(2)) is solved keeping the same maximum search space size m for both
solvers. The single vector method starts from a random vector, so no a priori informa-
tion is exploited, while the block solver starts from the solution of OP(1). In Tab. 4.12
are summarized the ratios of runtime, number of matvec, and number of implicit restarts
between the block and the single vector methods. For the comparison, the block size p is
set equal to nev in each case. The results show that, even for small block sizes, using the
block method is not a good strategy in the context of this work.

In order to illustrate how the convergence rate of the block method is penalized due to
the lower degree of the �lter polynomial compared to the single vector method, Fig. 4.18
plots the convergence history of the residuals obtained for both methods, for nev = 5

(p = 5) when solving OP(3)p̄ = −ω(3)2
p̄. The solution P (2) is used as initial set of vectors
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Figure 4.17: Computational cost of computing the nev = 3 smallest magnitude eigenvalues of
the test case B for increasing block size p.

nev (p) Time block

Time SV

Matvec block

Matvec SV

Restarsts block

Restarts SV

3 1.66 1.46 1.46

5 5.02 4.42 4.41

7 8.38 7.12 7.07

9 17.88 13.74 13.71

Table 4.12: Comparison of block and single vector Krylov-Schur methods when solving OP(2)p̄ =

−ω(2)2
p̄ for the test case B, with the initial block given by the eigenvectors of OP(1) (for the block

solver).

in the block solver, whereas the single vector solver starts from a single random vector. Al-
though the residuals corresponding to the �rst iteration of the block method are smaller, the
superior convergence rate of the single vector outperforms the block method very quickly.

Similar results to the ones in Tab. 4.12 are obtained for the other nonlinear iterations of
Tab. 4.11 and for any other case. The poor convergence of the method might be balance
by the higher computing performance of matrix/matrix products. For instance, according
to the computation time in Tab. 4.12 required for the calculation of 3 eigenpairs, the
BLAS-3 performance should be 1.66 times faster than the sequence of BLAS-2 operations
applied to each set of 3 vectors, which seems not probable. Anyway, this feature can not
be exploited in AVSP since only one matrix/vector product can be performed at once.
Moreover, when a few tens of eigenvectors have to be recycled, the block size p is too large
to expect a reasonable convergence rate, which makes the use of block methods unpractical.
Nevertheless, the block-Krylov algorithm can be interesting for other problems, e.g. where
the multiplicity of eigenvalues is known a priori and choosing a size block equal to it can
improve the convergence, provide the block size remains small (2 or 3) [178].
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Figure 4.18: Test case B: residuals corresponding to the �rst 5 eigenpairs of OP(3)p̄ = −ω(3)p̄,
solved with the block and the SV versions of the KS solver.

4.3.3 Using linear combinations of previous eigensolutions

As explained in Chapter 3, if the initial vector u0 of a Krylov subspace can be written as
a linear combination of k eigenvectors of the matrix A

u0 = γ1v1 + γ2v2 + · · ·+ γkvk,

with γj 6= 0, j = 1, . . . , k, then the Krylov sequence terminates at step k, and the Krylov
subspace Kk(u0, A) is an eigenspace of dimension k of the matrix A. In our case, this means
that if the vector u0 = p̄

(j)
1 + p̄

(j)
2 + · · · + p̄

(j)
nev is used as initial vector for ARPACK or

the KS solver to compute the nev smallest magnitude eigenvalues of OP(j), the methods
are expected to converge within the �rst restarted iteration, since the initial vector is a
linear combination of the solution eigenvectors. By continuity, since the subspace P (j−1)

is close to the one spanned by P (j), one can expect that starting the Krylov solver from
u0 = p̄

(j−1)
1 + p̄

(j−1)
2 + · · · + p̄

(j−1)
nev will improve the convergence for the eigensolution of

OP(j), compared to starting from a random vector. Note that the coe�cients of the linear
combination are all equal to one, since no a priori reason makes believe that there is any
optimal combination2. The following simple procedure is considered:

1. The problem OP(j−1)p̄ = −ω(j−1)2
p̄ corresponding to the (j − 1)th FP iteration was

solved and nev eigenpairs (ω(j−1), p̄(j−1)) were computed.

2. Form the vector u0 = p̄
(j−1)
1 + p̄

(j−1)
2 + · · ·+ p̄

(j−1)
nev .

2The optimal tuning of the linear combination coe�cients is case dependent and it is not of practical
use.
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3. Using ARPACK or the KS solver, solve the problem OP(j)p̄ = −ω(j)2
p̄ using u0 as

initial vector.

This strategy is tested for test case A. The FP procedure is used without relaxation
(α = 0) to compute the smallest magnitude nonlinear eigenvalue of the problem with active
�ame. At every nonlinear iteration nev = 5 linear eigenvalues are computed (see Tab. 4.13),
using ARPACK and KS with tol = 10−4. As before, the iteration 0 corresponds to the
solution of the problem without active �ame (C(ω) = 0), which is a linear eigenproblem.

# FP it. ω
(j)
1 (Hz) ∆F δ(%) 6 (P (j−1), P (j)) (degrees)

0 272.3000 � � �

1 159.6988 - i9.2850 6.7317e-2 70.6 13.72

2 159.6703 - i5.4399 4.7616e-3 2.41 0.3368

3 159.6703 - i5.4390 1.2049e-6 6.08e-4 8.5048e-5

Table 4.13: Results obtained using the FP procedure (with α = 0) when converging the 1st

nonlinear eigenfrequency with active �ame of the test case A.

Fig. 4.19 plots the convergence history of the residual norms for the 5 smallest magnitude
eigenpairs of OP(1), OP(2) and OP(3) computed with ARPACK and KS. Each problem was
solved 1) starting from a random vector (� line) and 2) using the linear combination of
the eigenvectors obtained at the previous FP iteration as initial vector (�◦� line). Although
both algorithms are mathematically equivalent, their numerical implementations yield to
di�erent convergence behaviors, which is not surprising. The residuals plotted in Fig. 4.19
show how the number of iterations needed for the solution of each linear eigenproblem is
reduced by simply starting from a linear combination of previous eigenvectors. Logically,
the savings become more important as the FP iterations converge, since the starting vector
contains increasingly accurate information about the invariant subspace to be computed. In
Tab. 4.14 appear the total time taken by ARPACK and KS to perform the 3 FP iterations
with and without the recycling strategy. At the end of the 3rd FP iteration, when the
nonlinear eigenfrequency ω1 can be considered as converged, savings of around 40% in time
are obtained thanks to this simple recycling procedure.

without recycling with recycling Time savings (%)

ARPACK 18.24 s 11.09 s 39.2

KS 17.46 s 11.06 s 36.7

Table 4.14: Test case A: Total time spent by ARPACK and KS during the 3 FP iterations
corresponding to Fig. 4.19 for the computation of the �rst nonlinear eigenfrequecny ω1, with and
without the recycling strategy.
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Figure 4.19: Test case A: Residuals corresponding to the nev = 5 smallest magnitude eigenpairs
of the sequence of linear problems OP(1), OP(2) and OP(3) solved with tol = 10−4 for the com-
putation of the smallest magnitude nonlinear eigenfrequency ω1. (�◦�): with recycling strategy;
(��) without recycling strategy.

4.3.4 Jacobi-Davidson method for recycling eigensolutions

Starting from a single vector, the Jacobi-Davidson method can be used to build the search
space solving iteratively the correction equation. Nevertheless, if the initial vector does
not contain any particular information on the solution (which is the case in general), the
convergence of the method can be very erratic at the beginning, until the method is able to
�focus� on the region of interest around the target τ . In practice, certain Jacobi-Davidson
algorithm implementations use the initial vector to build �rst an Arnoldi basis of a given size
k and then the Jacobi-Davidson method is used to go on with the process and extend the
search subspace up to a size m, before restarting. In general, this improves the convergence
of the method. In our case, within the context of the FP procedure, the solution of the
previous FP iteration o�ers something better than an Arnoldi basis built from a random
vector. Thus, to solve the linear problem OP(j)p̄ = −ω(j)2

p̄, the following procedure is
proposed in order to initialize the JDQR solver, taking advantage of the eigenvectors P (j−1)

obtained at the previous FP iteration:
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1. The problem OP(j−1)p̄ = −ω(j−1)2
p̄ corresponding to the (j − 1)th FP iteration was

solved and nev eigenpairs (ω(j−1), p̄(j−1)) were computed.

2. An orthonormal basis Unev of P (j−1) = [p̄
(j−1)
1 , ..., p̄

(j−1)
nev ] is computed with its asso-

ciated Rayleigh quotient Cnev = UH
nevOP(j)Unev. Then the Rayleigh-Ritz procedure

extracts an approximate eigenpair (ω̃, p̃) closest to the target τ .

3. The JDQR algorithm is then used to extend Cnev, Unev until nev eigenpairs have
converged.

0 10 20 30 40 50 60
5

4

3

2

1

0

1

2

0 10 20 30 40 50 60
5

4

3

2

1

0

1

2

0 10 20 30 40 50 60
5

4

3

2

1

0

1

2

No. JD steps No. JD stepsNo. JD steps

lo
g 1

0 
(r

es
)

lo
g 1

0 
(r

es
)

lo
g 1

0 
(r

es
)

JD’s residuals:

OP(0) → OP(1) OP(1) → OP(2) OP(2) → OP(3)

No recycling
Recycling

Figure 4.20: Test case A: Residual curves corresponding to the computation of the nev = 5
smallest magnitude eigenpairs of the linear problems OP(1), OP(2) and OP(3) solved with tol =
10−4 for the computation of the smallest magnitude nonlinear eigenfrequency ω1. (�◦�): with
recycling strategy; (��) without recycling strategy.

The smallest magnitude nonlinear eigenvalue ω1 of test case A with active �ame is
computed the with JDQR solver, with and without the recycling strategy. Again, the 5
smallest magnitude linear eigenvalues are computed at every FP iteration with tol = 10−4.
Fig. 4.20 plots the convergence history of the residual norm (normalized by the magnitude
of the corresponding eigenvalue) for every FP iteration (starting from the solution of the
problem without active �ame). Without recycling, each linear eigenproblem requires almost
60 JD steps to converge to the 5 smallest magnitude eigenvalues. On the other hand, when
the previous solutions are exploited, the number of required JD steps is reduced drastically,
with a progressive gain as the FP procedure converges to the nonlinear eigenpair ω1.

The savings obtained thanks to the recycling strategy are remarkable, specially at the
latest FP iterations. Tab. 4.15 contains the cumulated time for the 3 FP iterations computed
with JDQR solver with and without recycling. The results show that, in this particular
case, 70% of the total time can be saved by exploiting previous eigensolutions.

A potential advantage of JD algorithm respect with the Krylov methods is that, in order
to compute the ith nonlinear eigenpair of Eq. (4.3), it is not necessary to compute (at least)
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without recycling with recycling Time savings (%)

JD solver 13.0 s 3.9 s 70

Table 4.15: Test case A: Total time spent by JDQR during the 3 FP iterations of Fig. 4.20 for
the computation of the smallest magnitude nonlinear eigenvalue ω1, starting from a random vector
and taking advantage of the solutions previously computed.

i linear eigenpairs at each FP iteration, as it would be the case when using a Krylov solver.
Instead, only a few eigenpairs nev < i closest to the target τ can be computed at each
nonlinear iteration, saving an important amount of work. Note, however, that when the
target τ is interior to the spectrum (what happens when the wanted nonlinear eigenpair
(ωi, p̄i) has a corresponding index i equal to a few tens), the convergence of the JD solver
can deteriorate so that computing only a few (k < i) eigenpairs nearest the target τ with
JD becomes more expensive than using a Krylov method for computing a larger number
(nev ≥ i) of eigenpairs. In any case, it is not possible to give general rules to use the
eigensolvers optimally, which comes with experience.

4.3.5 Chebyshev subspace iteration

The last strategy investigated here for recycling eigenspaces, is the use of the subspace
iteration method with Chebyshev acceleration. As exposed in Chapter 3, this method is
a subspace iteration accelerated by using Chebychev �lter polynomials of degree k. In
practice this means that a certain amount of information about the spectrum is needed in
order to build the �optimal� ellipse associated with the Chebyshev �lter polynomial.

The procedure proposed here to compute a nonlinear eigenpair using the Chebyshev
subspace iteration during the FP procedure is the following: construct an ellipse based
on the spectrum of OP(1) and, since the spectrum between successive linearized matrix
does not change drastically (e.g., Fig. 4.16 and Fig. 4.21), use this ellipse for the rest of
the FP iterations. In order to compute the Chebyshev �lter polynomial, the semi-axis a, b
of the associated ellipse, and an estimation λ1 of the smallest magnitude eigenvalue for
normalization purposes (see Chapter 3) are needed. In order to obtain these quantities,
some previous computations are performed:

1. The �rst �xed point iteration (OP(1)) is solved using any other solver (ARPACK, KS
or JD) in order to obtain the nev smallest magnitude eigenvalues. This provides the
necessary right-side limit of the ellipse.3

2. Compute the largest magnitude eigenvalue and the eigenvalue with the largest mag-
nitude imaginary part of OP(1), which provides the left-side limit and a lower bound
of the semi-axis b. These eigenvalues lay in the periphery of the spectrum, so their
computation is expected to be cheap.

3As it is shown later in this section, the right-side limit of the ellipse (the one closest to zero in the
present work) does not play a very important role for the convergence of the method. It can be then roughly

estimated, for example, from the solution of OP(0).
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Test case A is used in the following in order to evaluate the pertinence of this approach
to recycle previous solutions during the nonlinear iterations for the computation of the
smallest nonlinear eigenvalue ω1. At every FP iteration, 10 smallest magnitude eigenpairs
of the linear eigenproblem OP(j)p̄ = −ω(j)2

p̄ are computed. Fig. 4.21 shows the spectrum
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Figure 4.21: Spectrum of the matrices OP(1), OP(2) and OP(3) obtained from the successive
�xed point iterations when converging the smallest non linear eigenvalue ω1. In black the ellipse
used for the Chebyshev �lter polynomial, containing the unwanted part of the spectrum.

of the matrices OP(1), OP(2) and OP(3) for test case A. The spectra of the successive
linearized operators are very similar to each other, so that the ellipse obtained considering
the spectrum of OP(1) is used for the other FP steps as well. The Chebyshev subspace
iteration method is used for solving each linearized eigenproblem, starting from an initial
subspace U (0)

m of size m > nev that contains the nev = 10 eigenvectors obtained at the
previous FP iteration and which is completed with random vectors.

4.3.5.1 In�uence of the subspace size m and the polynomial degree k

The 10 smallest magnitude eigenvalues of the matrices OP(1), OP(2) and OP(3) are com-
puted using the solution of the previous FP iteration in each case. The in�uence of the
search subspace size m and the degree of the Chebyshev �lter polynomial k are studied.
It is recommended when using a subspace iteration method, taking the size of the search
subspace m > nev, which improves the convergence in general [129]. In order to solve
OP(j)p̄ = −ω(j)2

p̄, the initial subspace U0
m is formed with the nev = 10 eigenvectors P (j−1)

of the previous FP step and it is completed with random vectors up to m. The computa-
tional costs of each FP iteration (number of subspace iterations, number of matrix/vector
products and runtime in seconds) are plotted in Fig. 4.22.

The runtime gets smaller as the FP method proceeds, showing that the recycling strategy
gets more e�ective i.e., the better the initial approximation to the solution is (as it is the
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case for the other recycling strategies). The curves in Fig. 4.22 show that, in general,
taking the subspace size m too large makes the computation longer, which means that the
optimal value of m, for this particular case, must be taken closer to the number of wanted
eigenvalues (nev = 10). Concerning the polynomial degree k, the results plotted in Fig. 4.22
suggests that the degree polynomial must be taken large (k ≈ O(100)), although there is
an optimal value of k beyond which the performance will be penalized. This conclusion is
also valid for the subspace size m. It must be notice the large amount of matrix/vector
products performed in each case (matvec ≈ O(104 − 105)).
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Figure 4.22: Test case A: Computational cost (number of restarted iteration, matrix/vector
products and runtime) of the computation of 10 smallest magnitude eigenvalues associated with
the sequence of linear problems OP(1), OP(2) and OP(3) obtained during the computation of the
smallest magnitude nonlinear eigenvalue ω1 (k: degree of the Chebyshev polynomial; m: size of
the subspace).

4.3.5.2 In�uence of the ellipse

The in�uence of the chosen Chebyshev ellipse on the convergence of the method is investi-
gated in the following. The ellipse of Fig. 4.21 is kept as the reference case. Respect to the
reference ellipse four variations are considered:

1. Ellipse 1: the right-side limit of the ellipse as well as its semi-axis b are kept constant
while the left side is moved further to the left. With respect to the reference case,
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although the unwanted part of the spectrum is the same, the area of the ellipse is
incremented.

2. Ellipse 2: keeping constant the other limits, the right-side limit is moved to the right,
so that many wanted eigenvalues get into the ellipse.

3. Ellipse 3: as ellipse 2 but the right-side is displaced to the left instead, leaving outside
the ellipse some unwanted eigenvalues.

4. Ellipse 4: the semi-axis b is increased. The unwanted eigenvalues remain in the ellipse
but the area of the ellipse is incremented.

The linear problem OP(2)p̄ = −ω(2)2
p̄ is solved starting from the eigenvectors P (1) (and

completing the subspace with random vectors up to m = 25) using the four ellipses of
Fig. 4.23 to computed the Chebyshev �lter polynomial in each case.
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Figure 4.23: Four variations (� �) with respect to the reference ellipse (�) used to investigate
the in�uence of the quality of the ellipse on the method's convergence.

The normalized residual norms corresponding to computation of the nev = 10 smallest
magnitude linear eigenvalues of OP(2) are plotted in Fig. 4.24, for m = 25 and k = 150.
In each case, the residual curves are plotted for the reference ellipse and the variant one.
The tolerance is set to tol = 10−6. The results in Fig. 4.24 show that the area of the ellipse
plays an important role on convergence: the ellipse must be chosen the smallest as possible
as long as it encloses the unwanted part of the spectrum, which is in agreement with the
theoretical observations in [129]. In the context of this work, choosing an optimal ellipse
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Figure 4.24: Residuals corresponding to the four di�erent ellipses considered before for the
computation of the corresponding Chebyshev polynomials. (� �) Residuals of the modi�ed ellipse.
(�) Residuals of the reference ellipse.

is not possible, since no accurate information about the complete spectrum is available in
general. For example, the semi-axis b is chosen conservatively larger than the imaginary
magnitude of the eigenvalue with the largest imaginary part in order to be sure that the
ellipse encloses the unwanted eigenvalues. On the other hand, the right limit of the ellipse
does not play an important role on the convergence rate, as far as it cuts the real axis
around the area of interest.

4.3.5.3 Comparison with the Krylov-Schur solver

The comparison between the Chebyshev subspace iteration method and the KS solver is
done for two implementations: a Fortran implementation in AVSP (for which the former
results have been obtained) and a Matlab version of both solvers.

The second iteration of the FP iteration OP(2)p̄ = −ω(2)2
p̄ is solved with both methods,

recycling in each case the solution of the previous FP step in order to compute nev = 10
linear eigenpairs. The search subspace maximum size m is set to 60 for the KS solver,
and 15 in the case of the Chebyshev subspace iteration method4 (referred to as SI). The
comparison is not performed keeping constant the search subspace size m, but choosing an
optimal value for each one of the solvers, so that they are both working in their respective

4The initial subspace is formed by 10 eigenvectors obtained for OP(1) and completed with 5 random
vectors.
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�comfort zones�. The convergence threshold tol is set to 10−4 for both solvers, and the
polynomial degree k = 150 for the SI solver.

Fortran Matlab

KS SI KS SI

Restarted it. / Subspace it. 45 11 45 13

Matvec. 2237 24915 2237 29445
T ime(KS)
Time(SI)

3.50
17.48

= 0.2 22.9
4.32

= 5.3

Table 4.16: Computational cost of computing 10 smallest magnitude linear eigepairs ofOP(2)p̄ =

−ω(2)2
p̄ with KS and SI solvers for both the Fortran and the Matlab implementations. Both solvers

reuse the solution of the previous FP iteration.

The results are shown in Tab. 4.16. The di�erence in terms of number of subspace iter-
ations between the Fortran and the Matlab implementation of SI are due to the fact that
the random vectors used in each case are di�erent, leading to di�erent convergence behav-
iors. The number of required matrix-vector products in the case of the Chebyshev subspace
iteration method is about 11-12 times the number of matrix-vector products required by
the KS solver. This explains the opposite behaviors in terms of runtime between the two
implementations: for the SI solver, when the �lter polynomial is applied to the vectors
Um of the search basis, in the case of the Fortran implementation (within the AVSP code),
only one matrix-vector product can be performed at a time (BLAS 2 type implementation);
while the Matlab implementation allows to perform sparse matrix-matrix products (BLAS
3 e�ciency) so that the �lter polynomial can be applied simultaneously to all the m vectors
Um. Consequently, in Matlab the matrix-vector products are very e�ective and less time
consuming, so that the SI solver is more e�cient than the KS solver. On the other hand,
concerning the Fortran implementation of both methods, the KS method is faster than
the SI solver since the matrix-vector product is much more expensive than in Matlab. In
conclusion, due to the current matrix-free implementation in AVSP, the Chebyshev sub-
space iteration algorithm is not competitive compared to other methods (such as the KS
solver). Nevertheless, if performing matrix-matrix products in a e�cient fashion becomes
possible in AVSP, the Chebyshev subspace iteration algorithm appears as a very interesting
alternative to recycling solutions during the FP procedure.

4.4 Mesh quality and convergence

The value of the non zero elements of the matrix A arising from the discretization of the
operator ∇ · c2

0∇ depends on the discrete nodal values of c0 and on the mesh geometrical
parameters, notably the volume Vj of the dual cells associated with each node j (see Chap-
ter 2). As far as the employed mesh allows the correct discretization of the geometry in
order to capture the smallest required wavelength, the obtained eigenfrequencies and the
corresponding eigenmodes of the con�guration in question are practically independent of
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the mesh. Nevertheless, since the mesh determines the entries of the matrix A, it plays a
role in the computation of the acoustic modes associated with the lowest frequencies.

M1: 222857 cells
41944 nodes 
Vcell

max

Vcell
min

= 9.69

M2: 242387 cells
44463 nodes 
Vcell

max

Vcell
min

= 1806.13

M3: 209385 cells
38092 nodes 
Vcell

max

Vcell
min

= 15440.54

Figure 4.25: Three meshes M1, M2, M3 with increasing maximum/minimum volume cell ratio.

The quality of the mesh plays an important role on the convergence of the linear eigen-
solver for the solution of OPp̄ = −ω2p̄. In the present context, the quality of the mesh
depends on the volume ratio between the biggest and the smallest cells. To investigate this
behavior a very simple geometry consisting in a 3D rectangular box (0.25× 0.25× 1 m) is
used. It is discretized using 3 di�erent meshes (Fig. 4.25): M1, M2 and M3. Since the mesh
size determines the eigenproblem size, the three meshes have roughly a similar number
of elements, so that the comparison between them can be considered independent of the
problem size N . The ratio

Rv =
Vcell

max

Vcell
min

becomes larger from M1 to M3, so that M1 is the most homogeneous (better quality) and
M3 is the most heterogeneous (worst quality). The soundspeed �eld c0(~x) is constant in
space (c0 = 2347m/s) so it does not play any role on the scaling of the matrix A. For the
sake of simplicity, the boundary conditions are set to u′ = 0 (B(ω) = 0), and no active �ame
is considered. The 10 smallest magnitude eigenpairs of the associated linear eigenproblem

Ap̄ = −ω2p̄
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are computed for the three meshes using the KS and the JDQR solvers with tol = 10−6

and m = 60. The values of the �rst 10 eigenfrequencies obtained for each mesh appear
in Tab. 4.17. The discrepancies between the values get larger for higher frequencies, due
to the poor discretization of transverse directions associated to these frequencies for the
meshes M2 and M3. The runtime and the number of matvec are plotted in Fig. 4.26

ωi (Hz) M1 M2 M3

1. ≈ 0 ≈ 0 ≈ 0

2. 173.59 173.59 173.58

3. 347.13 346.97 346.59

4. 520.58 520.44 519.75

5. 693.89 692.68 690.46

6. 693.89 692.87 690. 52

7. 693.90 692.94 690.73

8. 715.22 713.84 711.06

9. 715.22 713.96 711.08

10. 775.67 774.66 772.12

Table 4.17: 10 smallest magnitude eigenfrequencies obtained using the meshes M1, M2 and M3.
Since the rigid wall B.C. u′ = 0 is used for all the patches, the �rst frequency is null (rigid body
mode).
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Figure 4.26: Runtime and matvec when computing the 10 smallest magnitude eigenvalues for
the rectangular box, using KS and JD solvers (tol = 10−6 and m = 60) for meshes M1, M2 and
M3.
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The results are very clear: using a mesh as homogeneous as possible improves the con-
vergence speed of the eigensolver. In this particular case, KS is faster than JD, but the
convergence of both methods are penalized in a similar way depending on the used mesh.
From the eigensolver point of view, it is faster solving a larger problem using a homogeneous
mesh rather than solving a small problem using a heterogeneous mesh.

4.5 Parallel implementation of the algorithms

The AVSP code is designed to perform simulations on real combustion chambers with
complex geometries whose discretization leads to large meshes (the number of nodes N ≈
O(106)). In this context, using large parallel platforms becomes mandatory. The parallel
implementation strategy followed in this work is based on the partitioning of the mesh,
since it de�nes the size of the problem and governs most of the calculation. Therefore,
in the present context, the parallel approach consists in splitting the complete mesh into
sub-meshes so that each processor is in charge of one sub-mesh.

The most computationally intensive building boxes of all the eigensolvers considered
in this work are the numerical kernels working on large vectors (of size N) de�ned on the
complete mesh. Namely, the sparse matrix-vector product and the dot product calculations
are the kernels parallelized here. The computations involving smaller matrices, e.g. the
Hessenberg or Rayleigh quotient matrices, are replicated on all the processors and the
required operations are performed redundantly on each processor. The motivation for these
redundant calculations is actually to reduce the communication volume, which constitutes
a well-known performance bottleneck on high performance computers.

Based on the mesh partitioning, the parallel matrix-vector product y = OPx is imple-
mented in two steps. First, all processor exchange the values of x along their interfaces with
the other neighboring processors and second, a local sparse matrix-vector product is per-
formed. This computational kernel involves neighbor to neighbor communication using two-
sided MPI routines. It is implemented using subroutines inherited from AVBP [126, 138].

The dot product calculation is also performed classically: all processors compute a dot
product on their local entries of the vectors and then a MPI reduction is used to compute
the �nal result. Because it involves a global synchronization among all the processors, the
dot product calculation (and norm calculations as a particular case of dot products) is
a well known bottleneck on high performance computers. This is the reason why, when
orthogonalization schemes need to be implemented, the choice here is using the classical
Gram-Schmidt with selective re-orthogonalization, which exhibits the best trade-o� between
numerical quality and parallel performance. When the QR factorization of a tall and skinny
matrix is required, such as in block Krylov or subspace iteration methods, we still use this
Gram-Schmidt variant, while a QR avoiding-communication algorithm [32] might have been
worth considering.

In order to illustrate the parallel implementation in AVSP of the algorithms described in
Chapter 3, a scalability study has been performed, using (P)ARPACK (which is considered
the reference) and the implemented versions of the Krylov-Schur and the Jacobi-Davidson
solvers. The test case corresponds to the industrial case described in Chapter 6. No active
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�ame or complex boundary conditions are considered. Therefore, a linear eigenproblem of
size n = 1, 782, 384 is solved using the three eigensolvers in order to compute nev = 10
smallest magnitude eigenvalues. The maximum size of the search subspace is chosen equal
tom = 120 for the three solvers, so that the study is roughly iso-memory5. The convergence
threshold is set equal to tol = 10−4 for the three solvers.
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Figure 4.27: Scalability study: for the case described in Chapter 6, evolution of the computational
cost as a function of the number of processors for (P)ARPACK, KS and JDQR solvers (nev = 10,
m = 120 and tol = 10−4 for the three eigensolvers).

Fig. 4.27 displays the runtime required by the three eigensolvers for the computation of
10 smallest magnitude eigenvalues, for di�erent number of processors (48, 72, 96 and 120).
Taking ARPACK as the reference, the results of Fig. 4.27 shows that the implementations
of the KS solver is slightly faster than ARPACK while the JDQR solver is much faster.

Concerning the scalability of the di�erent algorithms, Tab. 4.18 displays the e�ciency
for each number of processors (taking 48 processors as the reference), computed as:

E�ciency =
time (48 procs)
time (p procs)

48

p
. (4.6)

In the ideal case where the algorithms scale perfectly, Eq. (4.6) gives 1. The results displayed
in Tab. 4.18 shows that the parallel implementations of the three algorithms present very
good scalability. Scalability e�ciencies greater than 1 are probably due to memory hierarchy
e�ects.

5The memory needed by both ARPACK and KS solvers is ideally the same whereas the amount of
required memory is slightly larger in the case of the JDQR solver due to the memory allocation required
by GMRES for the solution of the correction equation.
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72 procs 96 procs 120 procs

ARPACK 0.93 1.1 0.98

KS 0.97 1.05 0.97

JDQR 1.02 0.85 0.96

Table 4.18: Scalability e�ciency computed using Eq. (4.6) for the three algorithms (ARPACK,
KS and JDQR) for each number of processors.

4.6 Some comments

Three small test cases have been used in this chapter to investigates the use of the available
solvers in AVSP for the solution of the nonlinear eigenproblem Eq. (4.3). This has allowed
to establish some trends on how to use optimally these numerical tools. During this work an
important number of cases has been solved using AVSP and the experience shows that there
does not exist a �best for everything� eigensolver and that the optimal strategy depends
on each particular case. Nevertheless, from experience, it is possible to give some general
advice:

• If the number of wanted eigenvalues nev is larger than 5-10, in general, choosing a
Krylov solver is the best option, since they intend to converge the wanted eigenpairs
simultaneously. On the other hand, the Jacobi-Davidson algorithm �nds eigenpairs
one after the other, so that if nev is large it will take longer in general, specially if
the requested tolerance tol is low (e.g. tol ≤ 10−6).

• For the computation of a nonlinear eigenvalue, a standard procedure would be: 1)
solving the associated linear problem (without active �ame and/or complex boundary
conditions) in order to obtain a good initial guess; 2) then apply any of the recycling
strategies during the FP procedure for solving the nonlinear problem (with combus-
tion and/or complex boundary conditions), starting from the solutions of the linear
problem.

• For computing interior eigenvalues, two options are available: 1) using JD to �nd the
eigenvalues closest to the target τ or 2) using a Krylov solver to �nd the smallest
magnitude eigenvalues of the shifted matrix (OP − τI). In either case, the conver-
gence can be di�cult to reach if τ is �very interior�. A third option consists in using
the KS solver with harmonic extraction considering the harmonic shift τ . As seen,
the convergence of this method is subject to choosing τ far enough from an actual
eigenvalue (which is obviously not known a priori).
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Today, most modern gas turbines have annular combustion chambers. Low frequency
thermoacoustic modes very often take the form of azimuthal modes in annular combustors
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since the azimuthal direction is often associated to a larger spatial dimension than the
radial direction. Therefore, the study of azimuthal modes is of �rst importance.

In this chapter, azimuthal modes in an annular academic con�guration are investigated,
and more precisely, the e�ect of the azimuthal symmetry of the con�guration on the stability
and nature of azimuthal modes. Although this work is focused on the 3D Helmholtz solver
AVPS, in this chapter an analytical tool called ATACAMAC for the study of azimuthal
modes is also introduced: this analytical method has been developed at CERFACS by
Parmentier et al. [111, 10]. The reason for this is that the results obtained using AVSP may
be di�cult to analyze to extract phenomenological conclusions. The analytical expressions
provided by ATACAMAC constitute an excellent tool that provides, on one hand, fast
results and on the other hand, a theoretical interpretation of the results obtained with
AVSP.

Sec. 5.1 introduces previous works concerning the study of azimuthal modes and the
motivation of the study performed in this chapter. Sec. 5.2 describes the N = 24 burners
academic annular combustor used for the study of azimuthal modes with AVSP and ATA-
CAMAC. In Sec. 5.3, the main aspects of the analytical tool ATACAMAC for the study of
general non-symmetric annular con�gurations are introduced. More details concerning the
obtaining of the analytical expressions can be found in the Appendix. Sec. 5.4 constitutes
a phenomenological analysis of the e�ect of the con�guration symmetry on the nature of
azimuthal modes. The academic N = 24 burners con�guration is studied in Sec. 5.5 using
both AVSP and ATACAMAC, showing a very good agreement. Symmetry braking is per-
formed and its e�ect on azimuthal modes stability and nature is investigated in order to
illustrate the concepts previously introduced in the chapter. Some concluding remarks are
given in Sec. 5.6.

5.1 Background

In modern gas turbine combustion chambers, azimuthal modes appear at low frequen-
cies and often couple with unsteady heat release �uctuations, leading to thermoacous-
tic instabilities which can be dangerous. Therefore the study of azimuthal modes
in annular combustion chambers has become a very active research topic in the last
years [158, 70, 71, 174, 171, 90, 46, 40]. Azimuthal modes can be standing, spinning or
mixed and they can be seen as the combination of two traveling waves, traveling in clock-
wise A+ and counter clockwise direction A−. The ratio of the amplitudes of the turning
waves A+/A− determines the nature of the corresponding azimuthal mode [111].

The azimuthal symmetry of the con�guration can play a role in the stability and nature
of azimuthal modes and can be used as an additional degree of freedom to control unstable
modes. In [105] the authors propose to reduce the symmetry order of the con�guration
using ba�es to prevent combustion instabilities in F-1 rocket engines [30]. Stow and Dowl-
ing [159] used Helmholtz resonators in order to break the circumferential symmetry on an
annular academic test bench. Recently, Moeck et al. [90] and Gelbert et al. [46] performed
experiments in a annular Rijke tube with 12 heating grids acting like �ames. They intro-
duced azimuthal variations by feeding the heating grids with di�erent power inputs, which
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modi�ed the azimuthal modes behavior. Notably, the staging pattern could split nomi-
nally degenerate azimuthal modes (doublets) with the same frequency and growth rate,
into non-degenerate pairs (singlets). This behavior was already described by Perrin and
Charnley [114], who proposed a theoretical approach based on group symmetry theory in
order to explain bell structural vibration modes. Introducing a certain degree of asymme-
try in the bell structure can suppress the phenomenon of bell warble. In [41], Evesque et
al. introduced the spin-ratio, an analytical parameter to discriminate spinning modes from
standing ones, but they did not provide prediction of the mode nature. Noiray et al. [100]
study the e�ect of azimuthal staging on the thermoacoustic behavior of annular chambers
theoretical and numerically, taking into account nonlinear phenomena such as �ame sat-
uration. They identify key parameters of the analytical model that determine the nature
of the corresponding azimuthal mode. In [140], Schuermans et al. propose a theoretical
model that suggest that standing modes are observed for low amplitudes and a transition
to spinning modes occurs for higher amplitudes.

The swirl mean �ow can be also important, as shown in [170] by Wolf et al., where full
combustor LES is performed. The authors show that the azimuthal mode switches alter-
nately between standing and spinning, and the direction of the spinning mode is promoted
by the mean swirl �ow. Dawson et al. [174, 171] use clockwise/anti-clockwise swirlers in
order to investigate the mean �ow e�ect on combustion instabilities, showing a strong cor-
relation between the bulk swirl direction and the preferential direction of the azimuthal
spinning mode.
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a) b)
Figure 5.1: a) A sketch of the combustor used in the Vx4.3A series Siemens gas turbines. b)
Longitudinal cut along the burner axis, showing the combustion chamber and the casing [30].

The simpli�ed annular con�guration used in this chapter corresponds to a schematic
version of the 24 burners industrial power generator combustor studied in [30, 12, 71]
(Fig. 5.1), where the �rst, second and fourth standing modes appeared to be unstable. A
geometrical modi�cation of the burner, referred to as Cylindrical Burner Outlet (CBO),
was used in order to increase the �ames time-delay τi by approximately a quarter of the
acoustic period (Fig. 5.2 a) ). Moreover, the azimuthal symmetry of the con�guration was
broken by misaligning the centerlines of a few of the the burner nozzles, which was found to
improve the stability of the system. Berenbrink and Ho�mann [12] and Krueger et al. [71]
performed symmetry breaking by mixing burners with and without CBO. As shown in
Fig. 5.2 b), increasing the number of burners with CBO always improves the stability of the
system (reaching larger power outputs), which, in this particular case, leads to the following
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a) b)
a) b)a) b)

Figure 5.2: a) Siemens Hybrid burner with cylindrical burner outlet (CBO). b) Stability limits
for di�erent cylindrical burner outlet (CBO) con�gurations [12] Longitudinal cut along the burner
axis, showing the combustion chamber and the casing [30].

question: is stabilization due to the use of CBO's or is it promoted by the symmetry
breaking? The con�guration described in the following section is simulated with AVSP in
order to try to answer this question. The AVSP results are compared with an extension
of the analytical model by Parmentier et al. [111], further developed by M. Bauerheim,
currently PhD. student at CERFACS.

5.2 Description of the academic annular con�guration

with N = 24 burners

The geometry of a simpli�ed annular chamber with N=24 burners used for the AVSP
simulation is displayed in Fig. 5.3. In order to ensure mesh independency of the results, the
geometry is discretized using a very �ne mesh (given the simplicity of the geometry and the
typical wavelength to capture). It contains 436704 nodes and 2301192 cells. A detail of the
mesh of a single sector and the sound speed �eld is shown in Fig. 5.4. Concerning boundary
conditions, impermeable walls (u1 = 0) are used everywhere except at the burners inlet,
where null acoustic pressure �uctuation p1 = 0 is imposed, emulating the connection to a
large plenum.

With the parameters speci�ed in Tab. 5.1, the frequencies of the �rst 5 acoustic modes
with passive �ame appear in Tab. 5.2. The repeated frequencies (93.7 and 182.0 Hz)
correspond to the two �rst degenerate azimuthal modes.

The Crocco's model (see Chapter 2) is used here for the �ame model, since it is well
adapted for the analytical comparison when the �ames are compact [97].
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Figure 5.3: Geometry of the simpli�ed annular chamber used for AVSP. The �ames are compact
and they are placed in the burner/chamber junction (in the burner side). The reference points
used in the �ame model described in Chapter 2 are placed right upstream the �ames.

Figure 5.4: Mesh of one of the 24 sectors of the annular chamber. The fresh gases are in the
tubes (burners) while the hot gases �ll the annular chamber.

5.3 A network model for a BC (Burner + Chamber)

non-symmetric con�guration

The analytical methodology called ATACAMAC (Analytical Tool to Analyze and Control
Azimuthal Modes in Annular Chambers) by Parmentier et al. [111] to study azimuthal
modes in BC (Burners + Chamber) con�gurations, where an annular chamber is fed by
N burners (Fig. 5.5), has been generalized by M. Bauerheim, currently PhD student at
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Chamber

Half perimeter Lc 6.59 m

Section Sc 0.6 m2

Burner

Length L0
i 0.6 m

Section Si 0.01 m2

Fresh gases

Mean temperature T 0
u 700 K

Mean density ρ0
u 9.79 kg/m3

Mean sound speed c0
u 743 m/s

Burnt gases

Mean temperature T 0 1800 K

Mean density ρ0 3.81 kg/m3

Mean sound speed c0 1191 m/s

Flame parameters

Interaction index ni 1.0 −
Time-delay τi variable s

Table 5.1: Geometrical and physical parameters used in AVSP and for the analytical model.
They correspond to a typical large scale industrial gas turbine.

Freq. (Hz) Nature

1. 25.8 1st Longitudinal

2. 93.7 1st Azimuthal

3. 93.7 1st Azimuthal

4. 182.0 2nd Azimuthal

5. 182.0 2nd Azimuthal

Table 5.2: First 5 eigenfrequencies of the annular chamber with 24 cylindrical burners with
passive �ame, corresponding to the �rst longitudinal mode and the �rst and second azimuthal
modes.

CERFACS. This extension allows to obtain an expression for eigenfrequencies for a general
asymmetric case for any mode of order p and any number of burners N . Moreover, it gives
the structure and nature of the mode (spinning, standing or mixed). The main aspects
of this analytical model are described in Secs. 5.3.1 to 5.3.5. More details can be found
in [10, 111].
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Chamber 
outlet (u’=0) 

Flames 

i-th Burner 

Figure 5.5: BC (Burners + Chamber) con�guration to study azimuthal modes in annular cham-
bers

5.3.1 Model description

This model focuses on a BC (Burner + Chamber) con�guration where an annular chamber
is fed by N burners (Fig. 5.5). An impedance Z is imposed at the entrance of each burner.
Mean density and sound speed in the annular chamber are noted ρ0 and c0, while the
mean density and sound speed of the unburnt gases in the burners are noted ρ0

u and c0
u.

The perimeter and the section of the annular chamber are noted 2Lc = 2πRc and Sc,
respectively. The length and section of the burner i are Li and Si, being α = zf,i/Li the
normalized abscissa that de�nes the �ame location in the burner i. The model assumes that
the pressure �uctuations in the chamber depends only on the azimuthal coordinate θ, being
constant along the direction z. This hypothesis is satis�ed in combustors terminating
in a choked nozzle, which behaves as a rigid wall (u′ = 0 under the low Mach number
assumption [85]). The pressure in the burners depends only on the abscissa z.

5.3.2 ANR methodology to obtain the analytical dispersion rela-
tion of asymmetric annular combustors

To reduce the size of the system, the ANR (Annular Network Reduction) methodology
proposed in [10] is applied: the annular chamber is split into N sectors which only di�er in
the burner/chamber junctions (Fig. 5.6). Between each burner, the free propagation of the
azimuthal waves is modeled by a transfer matrix Ri, as proposed in [111]:

[
Ri

]
=

[
w 0

0 1
w

]
, (5.1)
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Figure 5.6: Schematic 3D view of a BC con�guration with N = 4 burners. Zoom on the ith

sector, where Γi represents the burner/chamber interaction [111] (top). Each sector is decomposed
into a free propagation of azimuthal waves q+ and q− (characteristic length 2Lc/N) and a compact
burner/chamber interaction (characteristic length a � λ) modeled by the coupling parameter Γi
(bottom).

where w = e2jkLc/N .

The junction where the interaction between the ith burner and the annular chamber
occurs has been investigated by O'Connor et al. [104, 60, 61] and can be assumed compact.
A transfer matrix T ∗i for the interaction part of Fig. 5.6 can be deduced:

[
p′

ρ0c0u′

]

i+1

=
[
T ∗i

] [ p′

ρ0c0u′

]

i+ 1
2

=

[
1 0

2jΓi 1

][
p′

ρ0c0u′

]

i+ 1
2

, (5.2)

where the coupling parameter Γi [111, 10, 108, 143] can be written in terms of the equivalent
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admittance Ytr of the whole ith burner as:

Γi = −j
2

Si
Sc
Ytr(Z, α, Li, ni, τi) (5.3)

When a velocity node (Z =∞) or a pressure node (Z = 0) is imposed at the upstream end
of each burner and the �ame are located right in the burner/chamber junction (α = 1), an
expression for the coupling parameters Γi has been deduced in [111]:

Γi =
1

2

Siρ
0c0

Scρ0
uc

0
u

tan(kuLi)
(
1 +N1ie

jωτi
)

(Z =∞) (5.4)

Γi = −1

2

Siρ
0c0

Scρ0
uc

0
u

cotan(kuLi)
(
1 +N1ie

jωτi
)

(Z = 0) (5.5)

where ku = ω
cu

and (N1i, τi) are the interaction index and the time-delay of the FTF for
the ith �ame.

The matrix T ∗i of Eq. (5.2) is recast to use characteristic waves q± = p′ ± ρ0c0u′ instead
of the primitive variables p′ and u′, which leads to the Ti de�nition:

[
Ti

]
=

[
1 + jΓi jΓi

−jΓi 1− jΓi

]
(5.6)

Finally, from Fig. 5.6 and [111], the transfer matrix Mi of the ith sector reads as:

[
q+

q−

]

i+1

=
[
Ti

] [
Ri

]

︸ ︷︷ ︸
Mi

[
q+

q−

]

i

(5.7)

Using the periodicity of the system (i.e.

[
q+

q−

]

N+1

=

[
q+

q−

]

1

) and the equation of one

sector (Eq. (5.7)) leads to: (
N∏

i=1

Mi

)[
q+

q−

]

1

=

[
q+

q−

]

1

(5.8)

The system de�ned by Eq. (5.8) has non-trivial solutions only if its determinant is null.
Therefore, the ANR methodology provides an implicit analytical dispersion relation for the
pulsation ω for a general non-symmetric BC con�guration:

det

(
N∏

i=1

Mi − Id
)

= 0 (5.9)

where Id is the 2-by-2 identity matrix.
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Chapter 5. Stability and nature of azimuthal modes in annular combustion chambers

5.3.3 Eigenfrequencies and modes nature of an annular duct (un-
perturbed case)

If the coupling parameter Γi = 0 for all the burners, then Eq. (5.8) reduces to:
[
wN 0

0 1
wN

][
q+

q−

]

1

=

[
q+

q−

]

1

, (5.10)

with ω = e2jkLc/N . The dispersion relation becomes then:

ωN = 1,

whose solutions are roots of the unity ω0 = e2jpπ/N . Consequently, the eigenfrequencies of
the unperturbed annular duct are:

f =
pc0

2Lc
, ∀p ∈ N. (5.11)

In this situation, the generated eigenspace {V } from Eq. (5.10) is two-dimensional: it can
be either two standing, two spinning or two mixed azimuthal waves. These two azimuthal
modes can be then combined to obtain any type of azimuthal mode (standing, spinning or
mixed).

5.3.4 Eigenfrequencies and mode nature of a symmetric BC con-
�guration (N identical burners)

When all the sectors are identical (Mi = M), the computation of the equation det(
∏
Mi−

Id) = 0 reduces to det(MN − Id) = 0. Hence, the whole system can be analyzed by
considering only one sector:

det
(
MN − Id

)
= 0⇔ det(M − ej2pπ/N) = 0 ,∀p ∈ N. (5.12)

Eq. (5.12) corresponds to the dispersion relation of one sector perturbed by one burner
where the phase-lag ∆φ = 2pπ

N
is imposed to the pth order mode. Parmentier et al. [111]

have solved the problem for N = 1, 2 and 4 burners, assuming low-coupling parameters:

Γi � 1, ∀i ∈ [1, N ].

Under this low-coupling assumption, characteristic waves q+ and q− are suppose to be close
of those ones of the unperturbed problem (annular cavity alone, Sec. 5.3.3), what allows to
obtain an asymptotic solution for the corresponding wave numbers ε+ and ε−:

w± = (1 + E±)w0 i.e. kLc = pπ + ε±, (5.13)

where w0 = e2jpπ/N and E± = 2jε±

N
. The expression for ε± is derived in the following

section, as a particular case when all the sectors are identical. For instance, Parmentier et
al. have proved in [111] that the the eigenspace {V } corresponding to the �rst azimuthal
mode (p = 1) in an annular chamber with N = 4 identical burners is degenerated, i.e. both
eigenmodes have associated the same frequency and growth rate:

ε+ = ε− = −2Γ0 and hence Im(f±) = − c0

πLc
Im(Γ0) ∝ N1sin(ω0τ), (5.14)

where Γ0 is the value of Γ±i when ω± = ω0 = pc0π
Lc

and N1, τ are the FTF parameters.
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5.3. A network model for a BC (Burner + Chamber) non-symmetric con�guration

5.3.5 Eigenfrequencies and mode nature of a general non-
symmetric BC con�guration

The system that describes the general BC con�guration with Γi that can be di�erent for
each burner reads:

M =
N∏

1=1

TiRi.

Assuming low coupling parameters (Γi � 1, i = [1, . . . , N ]), a Taylor expansion of the
matrix M at the second order can be performed, which leads to the following dispersion
relation at second order:

(5.15)
det (M − Id) = −w

2N − 2wN + 1

wN
− jS(w2N − 1)

wN
+

+
N−1∑

i=1

N∑

j=i+1

ΓiΓj[w
2N − wN−2(j−i) − w2(j−i) + 1] + o(Γ2

i ),

where S =
∑N

i=1 Γi. Under low coupling assumption, the solution is supposed to be close
to the one of the unperturbed problem [111]: kLc = pπ + ε± or w± = (1 + E±)w0 where
E± = 2j ε

±
N

and w0 = e2jpπ/N . The coupling parameters depends on the frequency, and
therefore on the wave number ε± too. Thay can be approximated by:

Γ±i (ω) = Γ±i (ω = ω0)︸ ︷︷ ︸
Γ0
i

+
2jε±ω0

N

(
∂Γ±i
∂ω

)

ω=ω0︸ ︷︷ ︸
Γ1
i

+o(ε), (5.16)

where ω0 = pπc0

Lc
corresponds to the angular frequency of the unperturbed BC con�guration

(Sec. 5.3.3).

Knowing that Γ0
i ' ε± 1, a Taylor expansion at second order of Eq. (5.15), after the

convenient simpli�cations, leads to the following wave numbers expression:

ε± = −1

2

(
Σ0 ±

√
Σ2

0 − A
)

(5.17)

where

A = 4
N−1∑

i=1

N∑

j=i+1

Γ0
iΓ

0
j

[
sin

(
2pπ

N
(j − i)

)]2

is the non-symmetric part and Σ0 =
N∑

i=1

Γ0
i .

When a given symmetry pattern gives
√

Σ2
0 − A = 0 for a mode of order p then ε+ = ε−

and the associated subspace {V } is two-dimensional (i.e. is a degenerate doublet): the

1The analytical solution of the dispersion relation will lead to the solution ε± ∝ Γ0
i showing that Γ0

i is
indeed a �rst order term and that Γ0

i Γ0
j and Γ0

i ε
± are second order terms.
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Chapter 5. Stability and nature of azimuthal modes in annular combustion chambers

resulting mode can be either spinning, standing or mixed. Otherwise, when
√

Σ2
0 − A 6= 0,

the two wave numbers ε+ 6= ε− and each one is associated to one di�erent eigenmode V ±

(two singlets).

Consequently, one can de�ne a splitting strength S0 =
√

Σ2
0 − A in Eq. (5.17), which

is a measure of how much a given symmetry pattern splits a degenerate doublet (DD) of
order p into two singlets with di�erent frequencies and growth rates. The splitting strength
can be recast into:

S2
0 = Σ2

0 − A =
N∑

i,j=1

Γ0
iΓ

0
jcos

(
4pπ

N
(j − i)

)
(5.18)

Burner coupling
parameter

Γi

(i = 1, . . . , N)

Γi = 1
2
Siρ

0c0

Scρ0uc
0
u
tan(kuLi)

(
1 +N1ie

jωτi
)

(Z =∞)

Γi = −1
2
Siρ

0c0

Scρ0uc
0
u
cotan(kuLi)

(
1 +N1ie

jωτi
)

(Z = 0)

Global coupling
parameter

Σ0 Σ0 =
∑N

i=1 Γ0
i

Splitting
strength

S0 S2
0 =

∑N
i,j=1 Γ0

iΓ
0
jcos

(
4pπ
N

(j − i)
)

Table 5.3: ATACAMAC controlling parameters.

5.4 Symmetry and azimuthal modes

Following the ideas introduced in [114], this sections intends to establish, qualitative and
quantitatively, a classi�cation of the di�erent behaviors of azimuthal modes that can take
place in annular combustion chambers, as a function of the symmetry of the system and
of the order p of the azimuthal mode. Exploring these questions with the 3D solver AVSP
would be virtually impossible because of the cost of simulations. The ATACAMAC method
provides analytical solutions which are more e�cient to understand what controls the
growth rates of modes.

The symmetry order (SO) of a given con�guration is de�ned here as the number of
basic identical elements it is composed of using a rotation operation. In other words, it is
the number of elemental sectors (one burner if they are all identical or several if they are
di�erent) that are needed to get the whole annular chamber (Fig. 5.7) by rotation.2

Depending on the mode and symmetry orders p and SO, respectively, the subspace
formed by the modes associated to an azimuthal eigenfrequency is one-dimensional or two-
dimensional. We distinguish between symmetric (N identical burners and SO = N) and
general non-symmetric con�gurations.

2Patterns obtained by re�ection symmetries are nor covered by the present qualitative analysis.
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5.4. Symmetry and azimuthal modes

SO = 8 SO = 4 SO = 2

Basic repetition element

Figure 5.7: Annular chambers with N=8 burners. Using two types of burners, 3 di�erent patterns
with decreasing symmetry order.

5.4.1 Symmetric case (N identical burners)

When all burners are identical then SO=N . Two di�erent behaviors are possible:

• Non-degenerate singlets: When p = mN/2, ∀m ∈ N (only p = mN exists in
cases with an odd number of burners), the splitting strength S0 is not null and the
corresponding wave numbers given by ATACAMAC are:




ε− = 0

ε+ = −NΓ0
(5.19)

Associated to each wave number ε± there is one eigenmode V ±. Qualitatively, the
�rst mode V − is standing and imposes a pressure node at every burner, so that it is
unperturbed by them (ε− = 0) resulting in a neutral mode. The second mode V + is
also standing but imposing a velocity node (i.e. a pressure anti-node) at every burner
(ε+ = −NΓ0), so that it is highly perturbed by burners. The rotation angle between
both modes is π/(2p) (see Fig. 5.8). Both modes have di�erent frequencies and
they are both standing, since they must remain locked with respect to the burner(s)
positions (if not, their respective frequencies would change).

• Degenerate doublets: All other azimuthal modes with order p 6= mN/2, ∀m ∈ N
(p 6= mN when N is and odd number) are degenerate. They are associated with two
eigenmodes V ±, since the corresponding frequencies are the same because S0 = 0:

ε− = ε+ = −N
2

Γ0 (5.20)

Qualitatively, both waves are equally perturbed by the burners, independently of
the rotation angle φ (particularly π/(2p)) that is applied to them (Fig. 5.9). It
means that no matter how the mode is oriented with respect to the burners, the
associated eigenfrequency does not change. It also means that, a priori, the mode can
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|p1|
N=4, p=2

V +V −

π

2p
=

π

4

Figure 5.8: Representation of two singlets: an azimuthal mode or order p = 2 in a BC con�gu-
ration with N=4 identical burners. V − has pressure anti-nodes at the burners, and thus is highly
perturbed. V + is obtained by rotating V − an angle π/(2p) = π/4. It has pressure nodes at the
burners location, resulting in a neutral mode with a frequency that di�ers from the one of V −.

be spinning, standing or mixed, since there is no privileged position for the mode to
lock on. Therefore the eigenspace {V } associated to the corresponding frequency is
two-dimensional: it is formed by two azimuthal waves (both either standing, spinning
or mixed) that can be combined to form any type of azimuthal mode (standing,
spinning or mixed). Noiray et al. [99] have shown that non-linearities on the FTF
can however promote one of these natures, a phenomenon which can not be capture
by ATACAMAC with classical FTFs.

5.4.2 General non-symmetric case

When a certain pattern with di�erent kind of burners is used, the SO of the con�guration
is reduced with respect to the symmetric case (SO=N), i.e., SO<N . Still, two options are
possible, depending on the SO and on the order p of the azimuthal mode:

• Non-degenerate singlets: Azimuthal modes with order p = mSO

2
, ∀m ∈ N

(p = mSO when SO is an odd number) are non-degenerate singlets with wavenumber
perturbations: 



ε− = 0

ε+ = −Σ0 = −∑N
i=1 Γ0

i

(5.21)

As for the symmetric case, these modes impose either a pressure or pressure anti-
node at each burner, leading to an unperturbed standing wave (ε− = 0) or a highly
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|p1|

π

2p
=

π

4

N=8, p=2

V +V −

Figure 5.9: Representation of two degenerate doublets: an azimuthal mode or order p = 2 in a
BC con�guration with N=8 identical burners. V − have pressure anti-nodes at two of the burners.
When it is rotated of π/4 it leads to V +, which has still anti-nodes pressure on two of the burners,
so that it is the equivalent to V −, having associated the same eigenfrequency.

perturbed standing mode (ε+ = −Σ0), respectively. With respect to the symmetric
case, non-degenerate singlets appear for lower order modes, since SO < N .

• Nearly-degenerate singlets: Azimuthal modes with order p 6= mSO

2
∀m ∈ N

(p 6= mSO when SO is and odd number) are nearly-degenerate singlets [114]: the de-
generate doublet of symmetric con�gurations (denoted DD with εDD = −1

2
Σ0) is split

depending on the splitting strength S0. Therefore the wave number perturbations
are:

ε± = −1

2
Σ0

︸ ︷︷ ︸
εDD

± 1

2
S0

︸︷︷︸
Splitting

(5.22)

5.4.3 A necessary condition for stability

Breaking the azimuthal symmetry of the system may appear as an additional degree of
freedom in order to get stable modes. Nevertheless, independently of the asymmetry pat-
tern, there is a necessary condition for stability that must be satis�ed. From Eq. (5.22) it
is clear that max(Im(ε+), Im(ε−)) > 1

2
Im(ε+ + ε−). Therefore, the necessary condition to

stabilize a mode, which does not depend on the asymmetry pattern is:

1

2
Im(ε+ + ε−) = −1

2
Im(Σ0) < 0. (5.23)

Otherwise, the imaginary frequency of the mode associated to max(Im(ε+), Im(ε−)) would
be positive and hence the mode would be unstable.
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Chapter 5. Stability and nature of azimuthal modes in annular combustion chambers

If the chosen pattern results in a degenerate doublet with ε+ = ε−, then Eq. (5.23)
constitutes a necessary and su�cient condition for stability. On the other hand, when the
asymmetry pattern splits the degenerate doublet into two singlets (S0 6= 0), Eq. (5.23) is
not enough to ensure the stability of the mode (see Fig. 5.10).

(Necessary condition)

G
ro

w
th

 ra
te

Im(�±)

−1

2
Im(Σ0) = Im(�DD) < 0

����
1

2
Im(S0)

����

Figure 5.10: When the chosen asymmetry pattern is such that S0 6= 0, the condition 1
2Im(Σ0) < 0

(Eq. (5.23)) is not enough to ensure the stability of the mode, since one of the nearly-degenerate
singlets may have a positive growth rate and thus be unstable.

5.5 E�ect of symmetry breaking on stability and mode

nature

The BC con�guration with N = 24 burners described in sec. 5.2 is used now to study the
e�ect of symmetry breaking on the stability and the modes nature with AVSP. The results
obtained with AVSP are compared to those obtained with ATACAMAC (sec. 5.3).

The stability of the �rst mode of the annular chamber is �rst analyzed using the same
FTF (N1i, τi) for all burners (symmetric case) as a function of the time delay τ . The value
of the interaction index N1 is taken equal to 1 (knowing that typical values for N1 are
around T2

T1
− 1 = 1.57 here) while the time delay τ varies between 0 and the period of the

�rst azimuthal mode T 0
1 = 1/f 0

1 = 2Lc

c0
' 11 ms. The frequency and growth rate of the �rst

azimuthal mode (p=1), obtained with ATACAMAC (analytical and numerical solution of
the dispersion relation) and AVSP are plotted in Fig. 5.11. The agreement between the
analytical (low coupling assumption) and numerical solutions given by ATACAMAC and
AVSP is very good.

To perform symmetry breaking two di�erent burners are used, characterized by di�erent
time-delays, τ1 and τ2 (Fig. 5.11). The time delay τ1 = 3.25 ms corresponds approximately
to the most unstable burner (Im(fAV SP ) = 2.98 s−1, which is assimilated here to the
unstable baseline case in [12, 71], a burner without CBO (◦ in Tab. 5.4). As explained
in [12, 71], a CBO device can be mounted on some of the burners to stabilize the chamber.
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Figure 5.11: Stability map depending on τ of the �rst azimuthal mode (p = 1) of the symmetric
BC con�guration with N = 24 burners. T1 is the period of the (unperturbed) �rst azimuthal mode
T1 = 1/f0

1 = 2Lc
pc0
' 11ms.

The length of the cylinder is such that the time lag from the injection port to the �ame front
is increased by approximately a quarter of an acoustic period. In our case it is equivalent
to consider τ2 = τ1 + 1

4f01
' 6ms. Fig. 5.11 shows that the value τ2 = 6 ms corresponds

indeed to a stable burner with Im(fAV SP ) = −1.01 s−1 (• in Tab. 5.4). Note that using 20
burners with τ2 = 6 ms and 4 burners with τ1 = 3.25 ms respects the necessary condition
given by Eq. (5.23) to get stable modes ( represented by −1

2
Im(ΣC20

0 ) in Fig. 5.12). The
stability of the four patterns proposed in Tab. 5.4 is studied using ATACAMAC and AVSP.
The results are plotted in Figs. 5.12 (growth rates) and 5.13 (frequencies).

The agreement between AVSP and ATACAMAC is very good in all cases:

• B24_C0: This con�guration corresponds to the unstable baseline case: the neces-
sary condition (Eq. (5.23)) is not satis�ed. Some burners have to be changed in order
to get a stable combustor.

• B24_C20_P2: 20 CBOs devices have been mounted in the hope to stabilize the
mode. The necessary condition (Eq. (5.23)) is now satis�ed. However this pattern has
a large splitting strength S0. Consequently it splits azimuthal modes into two singlets
with di�erent growth rates making one of them unstable. This case is an excellent
example of how, for asymmetric circumferential patterns, one can use stable burners
that match the condition −1

2
Im (Σ0) < 0 and yet, due to the asymmetry term S0,

have an unstable mode as shown in Fig. 5.10.

• B24_C20_P4: This pattern has a lower splitting strength S0 than the previous
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Name N CBO Asymmetry pattern

B24_C0 24 0 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
B24_C20_P1 24 20 • • • • • • • • ◦ ◦ • • • • ◦ ◦ • • • • • • • •
B24_C20_P2 24 20 • • • • • • • • • • ◦ ◦ ◦ ◦ • • • • • • • • • •
B24_C20_P3 24 20 • • • • • ◦ • • • • • ◦ • • • • • ◦ • • • • • ◦
B24_C20_P4 24 20 • • • • • ◦ • • • • ◦ • • • • • • ◦ • • • • • ◦
B24_C24 24 24 • • • • • • • • • • • • • • • • • • • • • • • •

Table 5.4: BC con�gurations investigated with both the 3D Helmholtz solver AVSP and the
analytical approach ATACAMAC. ◦ � Burner without CBO (τ1 in Fig. 5.11); • � Burner with
CBO (τ2 in Fig. 5.11)
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Figure 5.12: Growth rate of the �rst azimuthal mode (p = 1) for various asymmetric combina-
tion of burners with and without CBO: B24_C0 (24 noCBO burner, perfectly symmetric case),
B24_C24 (24 CBO burners, perfectly symmetric case) and the four patterns B24_C20 (non-
symmetric cases). : Values of −1

2Im (Σ0) (necessary condition, Eq. (5.23)) depending on the
con�guration (C0, C20 and C24).

one and both singlets remain stable in this case.

• B24_C20_P1 and B24_C20_P3: These patterns have a null splitting strength
S0 (analytical solution of ATACAMAC), leading to a stable degenerate doublet. In
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Figure 5.13: Frequencies of the �rst azimuthal mode (p = 1) for various asymmetry combination
of burners with and without CBO: B24_C0 (24 noCBO burners), B24_C24 (24 CBO burners)
and the four patterns B24_C20. DD: Degenerate Doublets.

these cases, Eq. (5.23) becomes a necessary and su�cient condition for stability.

• B24_C24: Using 24 stable burners obviously respects the necessary condition
(Eq. (5.23)) and results in a stable degenerate doublet.

Considering the dashed-lines (−1
2
Im(Σ0)) in Fig. 5.12, it is interesting to notice that,

independently of the asymmetry patterns, combining 20 CBOs and 4 noCBOs burners
give potentially less stable modes than using 24 CBOs showing that breaking symmetry
has a limited interest here compared to adding CBOs on all burners. Nevertheless, if
for any reason (ignition, pollution, construction, etc.) one must keep the two types of
burners, the present analytical model o�ers an easy way to optimize the circumferential
distribution of the burners by minimizing the imaginary part of the splitting strength
Im(S0) to stabilize the pth mode. In the present study, if one must keep 4 unstable burners,
patterns B24_C20_P1 and B24_C20_P3 are the best options since they have null splitting
strength (S0 = 0).

The other key point of symmetry breaking is that it can also modify the dynamic nature
of the acoustic modes. The modulus (noted Abs_press) and phase (noted Arg_press) of the
acoustic pressure of the �rst azimuthal mode obtained with AVSP are plotted in Fig. 5.14
for the four studied patterns, showing two distinct behaviors:
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• Patterns P1 and P3: as expected, asymmetry patterns leading to degenerate doublets
can be either spinning, standing or mixed. In this case, P1 gives mixed waves, while
P3 gives purely spinning ones. For these patterns, the two waves V ± have the same
frequency and they can be seen as the waves q+ and q− that are combined to obtain
either a spinning, a standing or a mixed azimuthal mode.

• Patterns P2 and P4 give two standing modes. The two eigenmodes V ± oscillate in
opposite phase with di�erent (yet very close) frequencies (e.g. 90.3 and 91.3 Hz for
the P2 pattern). As shown in Fig. 5.12, for the P2 pattern, one mode is ampli�ed
whereas the other one is damped, resulting in an unstable standing mode.
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Figure 5.14: Structure of the two eigenmodes V ± ( and ) corresponding to the �rst
azimuthal mode (p = 1) for the four patterns of Tab. 5.4, obtained with AVSP.

5.6 Concluding remarks

The e�ect of symmetry breaking on the stability of azimuthal modes has been investigated
using an academic annular chamber with 24 burners. The results obtained with AVSP
are compared with analytical results from ATACAMAC, showing a very good agreement
for all cases. In [12, 71], the authors suggest that breaking the circumferential annular
of the combustor improves the stability of the system, mixing two types of burners (with
and without CBO) with di�erent time-delay τ . The results obtained here, suggest that
the stabilization of the system is rather due to the use of burners with CBO and that
the symmetry breaking obtained by mixing the two burners has a limited e�ect. In other
words, if a burner that gives stable modes is available, it must be used for all sectors of
the annular combustor, since any other azimuthal combination resulting of mixing it with
another burner will be potentially less stable.

If one must keep a certain number of burners without CBO, then the analytical approach
ATACAMAC allows to obtain easily the optimal azimuthal pattern with the lowest splitting
strength, closest to the most possible stable doublet given by the condition −1

2
Im(Σ0) < 0.
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Moreover, the nature of the azimuthal modes (standing, spinning or mixed) has been shown
to be a�ected by the employed staging pattern.

The ATACAMAC analytical tool provides interesting results for a simple annular geom-
etry, but it can not be used for the study of real complex industrial con�gurations where
the geometry becomes important and complicated. AVSP is used in Chapter 6 to study
the stability of azimuthal modes in an industrial gas turbine combustion chamber. How-
ever, ATACAMAC has proved to be an excellent tool to analyze the stability of annular
combustors, allowing a cross validation with AVSP in the present simple case of Fig. 5.5
and revealing physical information which would have been impossible to obtain with AVSP
only.
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In this chapter AVSP is used to study the thermoacoustic modes of an industrial gas
turbine combustor taking into account all geometry details. Thanks to the e�ciency of
the algorithms described and studied in Chapters 3 and 4, respectively, the 360◦ geometry
can be simulated with AVSP without considering any additional hypothesis or geometry
simpli�cations, which allows to take into account all the complexity of the real combustor.

First, the modes with passive �ame are computed to establish a classi�cation of the
numerous low-frequency modes (between 0 and 200Hz). Longitudinal and azimuthal modes
are found, and this allows to establish a �rst classi�cation. Di�erent zones of the combustion
chambers are involved in azimuthal modes, showing an important longitudinal coupling
between them.

Flame Transfer Functions (FTF) obtained from LES of a single sector during the PhD
of S. Hermeth [53] are used in AVSP (thanks to the ISAAC assumption of Chapter 2) to
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obtain the stability of the modes. The acoustic coupling of longitudinal modes in axial
combustion chambers has been studied in [143]. Nevertheless the coupling between cavities
that exhibit azimuthal modes has not been investigated in the literature to the best of our
knowledge. In [10] (see Appendix), two annular cavities linked by N cylindrical burners
has been studied analytical and numerically. Here, the coupling between cavities a�ecting
azimuthal modes in a real combustor is further investigated, using an energetic approach
based on the acoustic �uxes between cavities.

The in�uence of the FTF parameters, the interaction index n and the time-delay τ , is
investigated using constant �elds of n and τ . This allows to know how the modes change
(structure, frequency, growth rate) when the interaction index n increases. The stability of
azimuthal modes is also investigated as a function of the time-delay τ , showing that this
parameter plays an important role in the coupling between cavities.

Finally, the study of symmetry breaking performed in Chapter 5 for an academic annular
combustion chamber, is extended to the industrial con�guration treated in this chapter,
revealing similarities and discrepancies between both con�gurations.

Some data concerning FTF time-delay, physical dimension and/or frequencies are not
speci�ed due to con�dentiality reasons.

6.1 Description of the con�guration

x 24

Inlet 
(from the compressor)

Outlet 
(to the turbine)

Figure 6.1: 360◦ view of the power generator combustor with 24 circumferentially-arranged
burners (left). Geometry of a single sector, showing the inlet to the casing and the outlet of the
combustion chamber.

The con�guration studied in this chapter corresponds to a full annular power generator
combustor formed by 24 identical sectors (Fig. 6.1). The diameter of the con�guration is
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Figure 6.2: Longitudinal cut of one sector, showing the burner geometry (left). Division of the
combustor into four zones (right).

about 4 meters, which is much bigger than a typical aeronautical combustion chamber. It
means that one can expect to �nd a larger number of modes at very low frequencies than
in typical aeronautical combustors. Each sector is composed of a casing and a chamber,
connected through both a diagonal and an axial swirler (Fig. 6.2). The cold �ow coming
from the compressor enters the casing, which feeds the combustion chamber through an
axial and a diagonal swirler. Burnt gases exhaust the combustion chamber through a
choked nozzle.

x 24

Figure 6.3: 360◦ mesh obtained from a single sector mesh used for AVSP simulations: 1,782,384
nodes and 9,527,472 cells.

The mesh is composed of 1,782,384 nodes and 9,527,472 cells. It allows to to capture all
the geometrical details of the con�guration. It is obtained from a single vector mesh, which
is rotated and multiplied 23 times to obtain the 360 geometry, along with the sound speed
�eld obtained from a single-sector time-averaged compressible LES1.

1LES performed by S. Hermeth at CERFACS [53]
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In order to establish a classi�cation of the modes, the sector that generates the annular
combustor is divided into four parts (Fig. 6.2): the Chamber (Ch), the Front Plenum (FP),
the Back Plenum (BP) and the inner Plenum (inP). This division is intended to give an
unequivocal name to each azimuthal mode, depending on which part(s) of the con�guration
present(s) the highest level of acoustic pressure and on the azimuthal order. Since the
combustor is composed of many cavities connected to each other (Fig. 6.2), a longitudinal
coupling between them can be expected regardless of the azimuthal nature of the mode.
Thus certain azimuthal modes cannot be attributed to a clear zone of the combustor and
the name of the concerned zones are used in these cases to identify the mode.

On the other hand, purely longitudinal modes for which there does not exist any az-
imuthal coordinate dependency can be studied using only one sector. They are designated
by a number that indicates their order of appearance (from lower to higher frequencies)
followed by the letters GL (Global Longitudinal).

6.2 Acoustic modes with passive �ame

Given the complexity of the current con�guration, a �rst step consists in computing the
acoustic modes without active �ame (by setting nlocal = 0 in Eq. (2.34)). The e�ect of the
combustion on the gas temperature is retained however by taking into account a realistic
sound speed �eld (Fig. 6.4) issued from a single sector time-averaged reactive compressible
LES, for the operation point speci�ed in Tab. 6.1. Alternatively, a simple description of
the sound speed (522 m/s in the fresh gases and 829 m/s in the burnt gases) can also be
used, leading to almost identical results.

T p Air �ow rate φ

690K 17.5 bar ?? Kg/s ??

Table 6.1: Combustor operating point.

Boundary conditions are set to rigid walls (u1 = 0) everywhere, including the inlet
and the outlet. The frequencies obtained with these boundary conditions and the sound
speed �eld of Fig. 6.4 are displayed in Fig. 6.5, giving in each case an unequivocal name
indicating their nature, order and the zones of the combustor associated with the modes.
It is interesting to observe how certain modes are very close in frequency and yet, their
structures are completely di�erent (Fig. 6.6).

The analytical frequency of the pth azimuthal mode of a simple annular cavity with a
mean radius R and a mean sound speed c0 is given by:

f 0
p =

pc0

2πR
. (6.1)

It is possible to choose an equivalent mean radius R and a mean sound speed c0 for each
zone of the combustor. Tab. 6.2 summarizes these values for the four zones of Fig. 6.2.
If each zone was decoupled from each other, then the frequencies provided by Eq. 6.1,
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6.2. Acoustic modes with passive �ame

Figure 6.4: Longitudinal cut: sound speed c0(~x) �eld obtained from a LES time-average solution
used for AVSP simulations.
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Figure 6.5: Frequencies corresponding to the �rst 15 modes (lowest frequency) of the annular
combustor with passive �ame: squares are azimuthal modes and circles are pure longitudinal
modes.

would be very close to the ones computed by AVSP for azimuthal modes. This is not
the case and the mode structures computed with AVSP show that the di�erent cavities
are coupled. Nevertheless, if the coupling is weak and only one cavity presents important
acoustic activity, the frequency obtained using Eq. 6.1 for that cavity and the frequency
computed by AVSP for the corresponding mode must be close.

Among azimuthal modes of Fig. 6.6, it is possible to distinguish the following families:
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2A_FP 1A_inP 4A_BP 2A_Ch_inP 3A_FP
p1

58.7Hz

1A_BP 1A_FP 2A_BP 1A_Ch_inP 1A_FP_inP 3A_BP

89.1Hz 101.8Hz 114.1Hz 142.5Hz 145.9Hz

150.6Hz 189.2Hz 190.4Hz 192.2Hz 203.1Hz

Figure 6.6: Back and front view of the combustor: structure of azimuthal modes (p1(~x)) of
Fig. 6.5.

p1

+     0      -

1GL 2GL 3GL 4GL

52Hz 68Hz 116Hz 165Hz

Figure 6.7: Longitudinal modes: the arrow goes through the cavities a�ected by the longitudinal
modes, with the extrema at the maximum/minimum pressure levels.

• Front Plenum modes: 1A_FP, 2A_FP and 3A_FP are modes for which
the front plenum zone presents the highest level of acoustic pressure. Nevertheless,
a certain level of coupling with the back plenum (which can be appreciated e.g. for
the mode 1_FP in Fig. 6.6) and with the chamber can be observed. The maximum
pressure level in the Chamber and in the Back Plenum normalized by the maximum
pressure amplitude in the Front Plenum, are plotted in Fig. 6.8, showing that the
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6.2. Acoustic modes with passive �ame

Back Plenum Front Plenum Chamber Inner Plenum

(BP) (FP) (Ch) (inP)

R (m) ?? ?? ?? ??

c0 (m/s) 522 522 829 522

Table 6.2: Approximated equivalent mean radius and sound speed for the four zones of the
combustor used to computed analytical frequencies using Eq. (6.1).

coupling between these cavities seems to disappear for high order modes.
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Figure 6.8: Front Plenum modes. The coupling between front plenum, back plenum and chamber
diminishes drastically when the mode order p increases.

Tab. 6.3 displays the frequencies of the Front Plenum modes computed with AVSP
as well as the frequencies computed with Eq. (6.1) for the Front Plenum cavity (as if
it was completely decoupled from the rest). These results show that the frequencies
of a simple annular cavity are good approximations of the actual frequencies (AVSP)
when the mode order p increases, which con�rms the progressive decoupling of the
Front Plenum cavity from the other cavities observed in Fig. 6.8.

Tab. 6.3 shows a very important result: for example for a mode like 3A_FP at 203Hz,
the frequency is dictated by the resonant azimuthal mode of the Front Plenum only
(f 0

3 = 207.7Hz) and although an azimuthal mode is also present in the Chamber
(see Fig. 6.9), the geometry (the mean radius) and sound speed �eld of the Chamber
plays almost no role. Actually, for the Chamber, 203Hz would correspond more
to the 2nd azimuthal mode (Eq. (6.1) gives f 0

2 = 188.5Hz for the Chamber only),
showing that the cavity that imposes the mode is the Front Plenum. It also means
that for the 3A_FP mode, the combustion chamber exhibits a strange structure: it
has the structure of an azimuthal mode of order p = 3 at a frequency matching a
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Mode order p = 1 p = 2 p = 3

1A_FP 2A_FP 3A_FP

AVSP freq. (Hz) 89.1 150.6 203.1

FP analytical freq. (Hz) 69.2 138.5 207.7

Table 6.3: Front Plenum mode frequencies computed by AVSP and using Eq. (6.1) (analytical)
for the Front Plenum cavity.

p = 2 azimuthal mode. This implies that the mode structure in the Chamber is not
imposed by azimuthal acoustic waves in the Chamber. Information in the Chamber is
controlled by the acoustic �eld in the Front Plenum which propagates to the Chamber
through the burners. this is also an important statement experimentally: in this
combustor, azimuthal modes can be observed in the Chamber at frequencies which
do not correspond to azimuthal modes of the Chamber alone.

2 0 2
1

0.5

0

0.5

1

Azimuthal coordinate (rad)

p 1

FP

Ch

Figure 6.9: 3A_BP mode: acoustic pressure (p1) in the Front Plenum and Chamber cavities
corresponding to an azimuthal mode of order p = 3.

• Back Plenum modes: 1A_BP, 2A_BP, 3A_BP and 4A_BP are modes that
can be mainly associated to the Back Plenum cavity. However, as is the case for the
Front Plenum modes, the chamber and the front plenum are coupled with the Back
Plenum (as seen e.g. for the mode 1A_BP in Fig. 6.6). Fig. 6.10 plots the maximum
pressure level in the Chamber and in the Front Plenum normalized by the maximum
pressure amplitude in the Back Plenum, showing again an important reduction of the
coupling between cavities for high order modes. In Tab. 6.4 appear the frequencies
of the Back Plenum modes computed with AVSP as well as the frequencies computed
with Eq. (6.1) for the Back Plenum cavity (as if it was completely decoupled from
the rest). As for the Front Plenum modes, these results show that the frequencies
of the Back Plenum alone (Eq. (6.1)) are good approximations of the frequencies
computed with AVSP, especially when the mode order p increases, which con�rms
the decoupling of the Back Plenum cavity from the other ones for high order modes
observed in Fig. 6.10.

• Chamber/inner Plenum modes: 1A_Ch_inP and 2A_Ch_inP modes
present important acoustic pressure level in both the inner Plenum and the Cham-
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6.2. Acoustic modes with passive �ame
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Figure 6.10: Back plenum modes. The coupling between back plenum, front plenum and chamber
diminishes drastically when the mode order p increases. For p = 4 the back plenum is practically
the only cavity with acoustic activity.

Mode order p = 1 p = 2 p = 3 p = 4

1A_BP 2A_BP 3A_BP 4A_BP

AVSP freq. (Hz) 58.7 101.8 145.9 190.4

BP analytical freq. (Hz) 48.3 96.6 144.9 193.2

Table 6.4: Back Plenum modes frequencies computed by AVSP and using Eq. (6.1) (analytical)
for the Back Plenum cavity.

ber cavities (Fig. 6.11). This can be explained by the fact that the di�erences of
mean radius R and sound speed c0 between both cavities compensate to give similar
analytical frequencies (Tab. (6.5)) and thus the resonant modes of both cavities are
expected to appear at similar frequencies. The frequencies displayed in Tab. 6.5 show
a very good agreement for the 2nd azimuthal mode between the AVSP frequency and
the analytical ones. The frequency of the the 2A_Ch_inP mode is imposed by the
resonant frequencies of the Chamber and of the inner Plenum cavities. For this mode,
the Front Plenum and the Back Plenum cavities exhibit a second azimuthal mode at
a frequency (191.7Hz) which is not the frequency that corresponds to a 2nd azimuthal
mode in these cavities. Therefore, the mode structure in the Front Plenum and Back
Plenum is imposed by the Chamber and the inner Plenum.

The remaining modes of Fig. 6.6, i.e., 1A_FP_inP and 1A_inP modes, are azimuthal
modes with a large longitudinal variation of the acoustic pressure in the Front Plenum and
in the inner Plenum. This longitudinal component can explain why their AVSP frequencies
are very di�erent from the analytical frequencies provided by Eq. (6.1) (which does not
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Figure 6.11: Chamber/inner Plenum modes: acoustic pressure (p1) in the di�erent zones of the
combustor corresponding to an azimuthal mode of order p = 1 and p = 2. Although the highest
pressure levels are in the Chamber and in the inner Plenum, the Front Plenum and Back Plenum
cavities also exhibit azimuthal modes.

Mode order p = 1 p = 2

1A_Ch_inP 2A_Ch_inP

AVSP freq. (Hz) 114.1 192.2

Ch analytical freq. (Hz) 94.2 188.4

inP analytical freq. (Hz) 96.6 193.2

Table 6.5: Chamber/inner Plenum modes frequencies computed by AVSP and using Eq. (6.1)
(analytical) for the Chamber and the inner Plenum cavities.

take into account longitudinal variations of the pressure in the equivalent annular cavity)
for these cavities.

6.3 Acoustic modes with active �ame

In order to compute modes with active �ame, according to the �ame model described in
Chapter 2, the local �elds of the Flame Transfer Function (FTF) parameters nlocal(~x) and
τlocal(~x) are required. These quantities can be obtained either numerically [97], analyti-
cally [109] or experimentally [38, 56, 82]. In the present case, S. Hermeth performed forced
reactive LES of a single sector [53], which has allowed to obtain directly the required local
�elds of nlocal(~x), τlocal(~x), as well as the corresponding adimensional global values N3, τ
(see Tab. 2.2 in Chapter 2), for several frequencies. Since the FTF parameters depend on
frequency, ideally, the local �elds of nlocal and τlocal should be known for a continuous range
of frequencies, choosing the convenient one for each frequency. In practice, the high cost of
LES computations makes this impossible, and the present procedure consists in choosing,
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6.3. Acoustic modes with active �ame

among the available local nlocal, τlocal �elds, the ones closest to the frequency of interest.
Nevertheless, as shown in [53], for the present case, the dependency of the global parame-
ters N3 and τ3 is smooth, so that no big di�erences with respect to the ideal procedure are
expected from using this frequency-interpolation technique.

6.3.1 Acoustic modes with FTF from LES

Re[n(�x)eiωτ(�x)]f = 90Hz f = 120Hz f = 170Hz

Figure 6.12: Real part of nlocal(~x)eiωτlocal(~x) obtained from LES for three di�erent pulsation
frequencies [53].

The nlocal, τlocal �elds of Fig. 6.12 are used in AVSP, along with the sound speed �eld of
Fig. 6.4, with rigid boundary condition (u1 = 0) everywhere, in order to solve:

∇ · c2
0(~x)∇p̂(~x) + ω2p̂(~x) =

(γ − 1)

ρ0(~x)
nlocal(~x, ω)eiωτlocal(~x,ω)∇p̂(~xref ) · ~nref . (6.2)

Fig. 6.13 displays the frequencies and corresponding growth rates of the modes obtained
with AVSP using the FTFs obtained from LES (red circles), whereas blue crosses correspond
to the modes with passive �ame (which are neutral). The arrows indicate the correspon-
dence between modes with active �ame and those with passive �ame, according to a quali-
tative mode-structure identi�cation, but they do not represent actual trajectories. How the
frequencies with passive and with active �ame change is not trivial, and some modes can
even disappear with active �ame (e.g. 1A_Ch_inP and 2GL modes). In Sec. 6.4.2, the
evolution of frequencies will be further studied using a continuation method: starting from
n = 0 (passive �ame), the interaction index n value is increased, tracking down the modes
for each value of n, which allows to establish the actual frequency trajectories.

It is possible to relate modes with active �ame to the ones with passive �ame by compar-
ing mode structures, but there are important di�erences between both families of modes.
The structures of the modes with passive and with active �ame are compared in Fig. 6.15,
using unrolled cylindrical cuts (Fig. 6.14).

The comparison of modes with passive and active �ame (Fig. 6.15) shows that, in general,
the coupling with the Chamber is increased by the active �ame, leading to higher levels of
acoustic pressure in this cavity. Indeed, the level of acoustic pressure in the Chamber in
higher for all active �ame modes displayed in Fig. 6.15, except for the 2A_Ch_inP mode.
Another di�erence between modes with passive and active �ame is that, while for passive
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Figure 6.13: Frequencies and growth rates of acoustic modes with active �ame (red circles) and
modes with passive �ame (blue crosses). Arrows indicate the evolution of modes from passive to
active �ame.

Back Plenum
Chamber

Front Plenum

Inner Plenum

Figure 6.14: Cylindrical cuts performed through the di�erent cavities that allow to see the
structures of the acoustic mode at each zone.

�ame modes the pressure in the cavities is perfectly either in or out-of-phase (i.e. nodes
and/or anti-nodes occurs at the same azimuthal locations), the active �ame introduces a
phase-shift between the di�erent cavities.

This can be seen in Fig. 6.16, where the acoustic pressure p1 in the BP, FP and Ch
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Figure 6.16: Acoustic pressure in the BP, FP and Ch, taken over the unrolled surfaces for the
3A_BP mode with and without active �ame.
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Figure 6.17: Acoustic pressure in the BP, FP and Ch, taken over the unrolled surfaces for the
3A_BP mode with and without active �ame.

cavities is plotted for the 3A_BP mode, with and without active �ame. It allows to see
that the pressure amplitude in the Chamber and in the Front Plenum are much higher with
active �ame compared to the respective levels with passive �ame. The phase-shift between
the pressure waves in each cavity can be seen clearly in Fig. 6.17, where the phase of the
pressure p1 is plotted in each cavity. The phase-shift between the cavities is coherent with
the fact that they are connected in a certain order: the pressure in the Back Plenum is
followed by the pressure in the Front Plenum and the pressure in the Chamber follows the
one in the Front Plenum. This behavior becomes clearer for higher order modes. In sec. 6.4
the phase-shift observed between cavities will be analyzed as a function of the time delay
τ .

6.3.2 Energetic analysis of azimuthal modes with cavities longitu-
dinally coupled

A name for each mode has been chosen as a function of the level of acoustic pressure in
each cavity of the combustor. When the coupling diminishes for high order modes without
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Figure 6.18: Surfaces that separate the di�erent zones of the combustor used for computing the
acoustic �ux between the cavities, according to their normal directions.

active �ame (see Sec. 6.2), it is easy to identify the cavity that imposes the frequency and
the structure of the mode (and the name of the mode is chosen accordingly). Nevertheless,
when the acoustic coupling between cavities is important (which is the case of modes with
active �ame, even for high order modes) it is di�cult to establish which cavity (or cavities)
is mainly responsible for the mode.

In the following, a quantitative analysis of the coupling between cavities is proposed,
based on acoustic energy �uxes between cavities. The idea is to evaluate the variation of
acoustic energy over a period in the whole combustor and then, compute the fraction of this
total acoustic energy variation corresponding to each cavity. The cavity with the largest
fraction of acoustic energy variation can be assimilated to the cavity driving the mode,
since the growth rate of the mode is mainly imposed by it. On the other hand, a cavity
whose acoustic energy does not vary in a period (or does little) does not contribute to the
growth rate of the mode and thus it does not contribute to the mode.

Three surfaces are chosen at the interface between the zones previously de�ned (see
Fig. 6.2): Back Plenum, Front, Plenum, Chamber and inner Plenum. The acoustic �ux
through these surfaces is computed over a period, according to their normals (Fig. 6.18).
Since non-dissipative boundary conditions have been used (u′ = 0), no energy gain or losses
can exist due to acoustic �uxes through boundaries. The only eventual acoustic energy gain
or dissipation in the system is necessarily due to the volumic term R1 of Eq. (6.3), which
is associated to the �ame (see Chapter 2):

d

dt
E1(t) = R1 =

∫

Ω

γ − 1

γp0

p1(~x, t)q1(~x, t)dV. (6.3)

Eq. (6.3) is, in this case, equivalent to the Rayleigh criterion: if the coupling between
combustion (q1) and acoustics (p1) yields R1 > 0, then the system gains energy in time and
so it is unstable; if, at contrary R1 < 0, then the system energy decreases over time and
hence it is stable.

In the present case, since q1 6= 0 only in the Chamber cavity (Ch), and there are no
acoustic losses at boundaries, all the acoustic energy is either produced or dissipated in
the Chamber. Studying the acoustic �uxes over a period through the surfaces de�ned
in Fig. 6.18 allows to know how the energy produced or dissipated in the Chamber is
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distributed over (or provided by) the rest of the cavities. In other words, it is possible
to establish the fraction of acoustic energy variation over a period corresponding to each
cavity. For resonant modes involving many coupled cavities, the study of their acoustic
energy variation over a period allows to establish which cavities impose the mode: cavities
with largest fractions of acoustic energy variation drive the mode and viceversa, a cavity
that presents a very low fraction of energy variation does not contribute to the mode. It is
possible to distinguish two cases (see Fig. 6.21):

• The mode is unstable: acoustic energy is generated in the Chamber, which contributes
to the increment of acoustic energy of the di�erent cavities of the combustor. A net
acoustic �ux exits the Chamber to the Front Plenum (FP2Ch �ux), which feeds the
Back Plenum (FP2BP �ux) and the inner Plenum (inP2FP �ux) (see Fig. 6.19). The
energy generated in the chamber increases the acoustic energy in the combustor. The
cavity (or cavities) that presents the largest positive acoustic energy variation (i.e.
the cavity that receives the most part of the energy produced in the Chamber) is the
one that contribute the most to the mode.

Chamber
(Ch)

Ac. energy is produced 
in the chamber due to 
the volumic term R1 
and the ac. energy 

increases in the whole 
combustor

Front
Plenum

(FP)
FP receives

 ac. energy from the 
Ch and gives a part 

to the BP and the inP

Front
Plenum

(inP)

Back
Plenum

(BP)
BP gains ac. energy 
due to a net entering 
ac. flux from the FP

inP gains ac. energy 
due to a net entering 
ac. flux form the FP

Figure 6.19: Unstable mode: the acoustic energy produced in the Chamber contributes to the
increment of acoustic energy in the rest of cavities. Arrows indicate the direction of the acoustic
�uxes between cavities.

• The mode is stable: the acoustic energy over a period diminishes in the whole com-
bustor, although it can be dissipated only in the Chamber. Consequently, acoustic
�uxes exit the di�erent cavities towards the Chamber, which yields a negative acous-
tic energy variation in each cavity. Starting from the inner Plenum and the Back
Plenum, the exiting acoustic �uxes from these cavities are collected by the Forward
Plenum, which feeds the Chamber (see Fig. 6.20). In this case, the cavity (or cavities)
that drives the stability of the mode is the one that presents the largest fraction of
negative acoustic energy variation.

Integrating Eq. (6.3) over a period T we have:

E1(T )− E1(0) = E1T =

∫

T

R1dt =

∫

T

∫

Ω

γ − 1

γp0

p1(~x, t)q1(~x, t)dV dt,
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match the ac. energy 
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Figure 6.20: Stable mode: the acoustic energy dissipated in the Chamber is provided by the
di�erent cavities. Arrows indicate the direction of the acoustic �uxes between cavities.

BP

FP

Ch

inP

Unstable mode Stable mode

BP

FP

Ch

inP

Figure 6.21: Direction of the acoustic �uxes depending on whether the chamber is an energy
source (left) or and energy sink (right).

which corresponds to the net variation of acoustic energy in the combustor over a period T
(E1T > 0 if the mode is unstable and E1T < 0 if the mode is stable). On the other hand,
the �uxes through the surfaces during a period T are computed as

F1 =

∫

T

∫

S

p1(~x, t)u1(~x, t) · ~n dS dt,

where ~n is the surface normal. Then, the fraction (in hundred percent with respect to the
total energy variation E1T ) of acoustic energy variation during a period T in each cavity, is
computed as follows (the �uxes are already considered with the sign imposed by the chosen
normal directions):
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ECh(%) =
E1T + F FP2Ch

1

|E1T |
× 100 (6.4)

EFP (%) =
−F FP2Ch

1 − F FP2BP
1 + F inP2FP

1

|E1T |
× 100 (6.5)

EBP (%) =
F FP2BP

1

|E1T |
× 100 (6.6)

EinP (%) =
−F inP2FP

1

|E1T |
× 100 (6.7)

Obviously, the sum of these terms is one (100% of the total acoustic energy variation
E1T ). Each of them measures the fraction by which each cavity contributes to the growth
rate of the mode (positive or negative). Note that this analysis can be used only when the
growth rate of the mode is not zero. The acoustic energy for neutral modes does not change
with time, so that E1T = 0 and the present procedure can not be applied.

Fig. 6.22 displays azimuthal modes (with a non zero associated growth rate), showing in
each case the fraction of the total acoustic energy variation E1T associated to each cavity
(Eqs. (6.4-6.7)). The `+' sign preceding the fraction of acoustic energy variation in the case
of unstable modes indicates that the cavity gains acoustic energy. On the contrary the `−'
sign precedes the fraction of energy variation for stable modes, indicating that the acoustic
energy in the cavity decreases with time. Results displayed in Fig. 6.22 are a quantitative
measure of the longitudinal coupling between cavities for azimuthal modes: if all cavities
present similar fractions of acoustic energy variation then they all contribute to the mode;
whereas if one cavity has a very large fraction of the acoustic energy variation compared to
the rest, then this cavity drives the mode and can be considered decoupled from the rest.
For the Back Plenum and Front Plenum modes, the Chamber presents, in general, large
values of |ECh|, which con�rms the increase of coupling with the Chamber for active �ame
modes compared with passive �ame modes.

For example, the 1A_BP mode presents similar fractions of acoustic energy variation
in the Back Plenum (EBP = −36.11%), Front Plenum (EFP = −22.70%) and Chamber
(ECh = −37.9%), while acoustic energy in the inner Plenum varies very little (EinP =
−3.29%). It means that the three cavities (BP, FB and Ch) are strongly coupled in this
mode, and the three cavities contribute to the growth rate of the mode. Of course, only the
Chamber feeds energy into the mode but the resonance also involves the Back and Front
plenums mainly and not the inner Plenum. This is coherent with the high level of acoustic
pressure in these cavities (see e.g. Fig. 6.15). However, this is not necessarily true for the
�nal value of the frequency, which is mainly imposed by the Back Plenum cavity. Indeed,
the frequency of the mode computed by AVSP is about 52Hz, while for a p = 1 mode
Eq. (6.1) gives 48.3Hz for the Back Plenum, 69.2Hz for the Front Plenum and 94.2Hz for
the Chamber. This means that the structure of the pressure in the Front Plenum and the
Chamber is imposed by the Back Plenum due to the coupling between these cavities.

The 4A_BP mode is a good example of a mode for which the growth rate is imposed
mainly by one cavity: the fraction of acoustic energy variation in the Back plenum (EBP =
−84.63%) corresponds almost entirely to the total variation of acoustic energy in the whole
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Figure 6.22: Percentage of acoustic energy produced or dissipated over a period in each one of
the four cavities for azimuthal modes.

combustor. In this case, the Back Plenum cavity is decoupled from the rest (which is also
coherent with the very low level of acoustic pressure in the other cavities) and the structure
and frequency of the mode is imposed by this cavity: the mode computed by AVSP has a
frequency about 190Hz and the frequency provided by Eq. (6.1) for the Back Plenum for
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p = 4 is 193.2Hz, which is a very good approximation.

This methodology provides interesting information about the cavities responsible for the
growth rate of the mode. From the point of view of control of combustion instabilities, this
is an useful information since it tells us which cavity plays the most important role in the
mode stability.

6.4 Stability study with constant n− τ �elds

6.4.1 Local and global FTF

It is useful to investigate the combustor stability by supposing scenarios where the �ame
delay τ would be modi�ed to change stability. This is the procedure used in practice:
engineers modify fuel staging or swirl in injectors to obtain stable regimes. In companies
like Siemens or Ansaldo, they mix burners with di�erent characteristics to have di�erent
τ . All these strategies can be investigated in AVSP. In Sec. 6.3, this has not been done
because there is not a single time delay τ which can be varied but a �eld of time delay τ(~x).
One possible scenario is to assume that the �ame is compact and thus use a single global
delay τ for the whole �ame, which allows to study stability as a function of τ . To do this
we drop the local �elds (nlocal(~x), τlocal(~x)) obtained from LES and constant �elds of these
parameters are used instead. Constant values of the interaction index nlocal(~x) = nlocal and
time-delay τlocal(~x) = τlocal are imposed over a volume which is representative of the actual
�ame (from a time-average LES solution). The �ame volume is chosen here according to
the heat release �eld provided by the time-average LES solution: points with a heat release
value greater than a given threshold, are considered to be in the �ame, which allows to
de�ne a certain �ame zone with a volume Vf . The constant values of nlocal and τlocal are
then chosen in such way that when they are integrated over the �ame volume Vf , the global
values N2 and τ obtained from the volumic integration of the LES �elds (nlocal(~x), τlocal(~x)),
are retrieved. The computation of the constant values (nlocal, τlocal) is performed as follows:

1. Integrate the FTF from LES in order to obtain the global FTF parameters (N2, τ):
∫

V

nlocal(~x)eiωτlocal(~x)dV = N2e
iωτ . (6.8)

2. Distribute the global FTF parameters (N2, τ) over the �ame volume Vf de�ned from
the heat release, so that the the constant local values are nlocal = N2/Vf and τlocal = τ .

In the case of compact �ames, local and global descriptions of the �ame are equivalent:
using a realistic distribution (nlocal(~x), τlocal(~x)) or constant values (nlocal, τlocal) in AVPS
leads to the same results, provided that the global values (N2, τ) obtained by integrating
both �elds are the same. In the present case, the FTF obtained from LES occupies prac-
tically all the Chamber (see Fig. 6.12) and it can not be considered as compact. Using
constant FTF parameters (nlocal, τlocal) or realistic distributions (nlocal(~x), τlocal(~x)) does
not yield exactly the same results, even if the integration of both �elds leads to the same
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global values. To illustrate this, the longitudinal mode around 100Hz (3GL) is computed
using constant FTF parameters for di�erent �ame volumes Vf (see Fig. 6.23), which are
de�ned by the points where the mean volumic heat release (HR) is greater than a chosen
threshold. In all cases, the integration of the constant values nlocal, τlocal over the �ame
volume Vf , leads to the same global values (N2, τ), which have been obtained from the
integration of the nlocal(~x), τlocal(~x) values corresponding to the FTF obtained from LES
for 90Hz2.

Vf = 1.39e-2 m3

(HR > 1e9 W/m3)
Vf = 4.08e-2 m3

(HR > 1e7 W/m3)

Vf = 0.11 m3

(HR > 1e3 W/m3)
Vf = 0.16 m3

(HR > 10 W/m3)

Figure 6.23: Di�erent �ame zones where nlocal 6= 0 and τlocal 6= 0 de�ned from the volumic heat
release (HR) distribution of a time-average LES solution. The value of the constant time delay
τlocal is the same for all �ames, while the constant interaction index nlocal = N2/Vf changes for
each �ame volume.

The frequencies and growth rates obtained for each �ame volume Vf are displayed in
Fig. 6.24. The reference case (� �) corresponds to the frequency and growth rate computed
with the FTF obtained from LES. The results obtained with constant n− τ �elds are not
very di�erent from the reference case, so that using a single constant interaction index nlocal
and a constant single single delay τlocal does not constitute a major simpli�cation: it can
be used now in this section, where we want to perform a parametric study as a function
of the parameters N2, τ . The �ame volume Vf obtained considering that points with a
volumic heat release greater than 107W/m3 are in the �ame zone (Fig. 6.23) is retained for
the computations presented in the rest of the chapter.

2The integration of the local FTF at ??Hz as in Eq. (6.8) leads to the values N2 = 32073483 J/m and
τ =? ? ms.
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Figure 6.24: Frequencies and growth rates corresponding to the mode 3GL obtained using the
FTFs of Fig. 6.23. (� �) correspond to the results obtained using the FTF issued from LES for
90Hz (Fig. 6.12).

6.4.2 From passive to active �ame: modes trajectories

In sec. 6.3 the modes computed with active �ame are related to those with passive �ame,
according to a mode structure identi�cation. In many cases, the frequencies of correspond-
ing modes are however quite di�erent with and without active �ame. This sections shows
how a continuation method can be used to study how the modes (frequency, growth rate
and structure) change when the interaction index N1 increases from zero (passive �ame)
to a certain value, following the frequencies trajectories. For this study, the time-delay τ
is �xed to 3ms, while the interaction index N1 varies. The Crocco's coe�cient N1 (see
Chapter 2) is used in what follows in order to express the value of the FTF interaction
index in a more convenient fashion3.

Longitudinal and azimuthal modes are studied separately. Fig. 6.25 plots the frequency
and growth rate of the longitudinal modes for di�erent values of N1 going from 0 (passive
�ame) to 6. Although the 1GL and 4GL modes are not very dependent from N1, when
N1 starts to grow they become unstable and then, for higher values of N1 they become
nearly neutral again, while their frequencies change. On the other hand, the frequencies
of the 2GL and 3GL modes change rapidly with N1: the 3GL mode gets unstable at �rst
(N1 = 0 − −0.2) and when N1 keeps growing, its growth rate decreases again while its
frequency gets smaller. Finally the 2GL mode becomes very unstable when N1 begins to
grow and then disappears for values of N1 greater than 0.2.

The structure of the longitudinal modes is displayed in Fig. 6.26 for several values of N1.
Although their shape does not change signi�cantly for di�erent values of N1, one can see
small changes of the pressure amplitude in the Chamber.

The evolution of the �rst 5 azimuthal modes is also investigated when the interaction
index N1 grows from zero. Fig. 6.27 shows the trajectories of the modes, in a frequency-
growth rate diagram. The behavior of the 1A_BP, 2A_BP and 1A_FP_inP modes is quite

3Integrating the FTF issued from LES corresponding to 120Hz, the equivalent global value N1 = 1.83
is retrieved, using Sref = 1m2, γ = 1.27 and p0 = 17bar in the Crocco's �ame model.
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Figure 6.25: Trajectories of the globally longitudinal modes for increasing values of the interaction
index N1 (τ = 3ms is �xed).

similar to the one of longitudinal modes, describing a canon-bullet trajectory: initially
neutral for N1 = 0, the absolute value of their growth rate increases at �rst and then,
for larger N1 values, the absolute value of the growth rates decreases again, while their
frequencies decrease monotonically with signi�cant variations. The 1A_FP mode does not
change with N1. The 1A_Ch_inP mode becomes very unstable and then it disappears for
values of N1 larger than 0.2, as the longitudinal 2GL mode does.

The structure of the azimuthal modes is displayed in Fig. 6.28 for di�erent values of
N1. The 1A_FP mode does not change with N1, which is in agreement with the fact that
its frequency do not change either. The structure of the 1A_Ch_inP mode, on the other
hand, strongly depends on the value of N1, getting very perturbed for N1 = 0.2 before
disappearing. For the 1A_BP and 2A_BP modes one can see how the pressure level in
the Chamber becomes higher for larger values of N1, which explains also their frequency
variation. The structure of the 1A_FP_inP mode does not change much. It is possible to
see though that the pressure in the Front Plenum decreases while the pressure level in the
front part of the inner Plenum and the Chamber increases.

Although the FTF used in this section are di�erent from those coming from LES, the
results (frequency trajectories and mode structures) for longitudinal and azimuthal modes
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Figure 6.26: Structure of the longitudinal modes for increasing values of N1
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(τ = 3ms).
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Figure 6.28: Structure of the azimuthal modes for increasing values of N1.

are in agreement with the modes identi�cation established in Fig. 6.13 between modes with
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passive �ame and modes with active �ame. The active �ame can modify the frequency,
stability and structure of modes signi�cantly, showing that a good acoustic solver must take
it into account.

6.4.3 Stability maps and symmetry breaking

6.4.3.1 Global stability map

Keeping a value for the interaction index N1 = 1.83, the stability of the azimuthal modes
studied in Sec. 6.4.2 is investigated now as a function of the time-delay τ , which varies from
zero to the period T of the corresponding mode. The results are plotted in Fig. 6.294.
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Figure 6.29: Frequency and growth rate of azimuthal modes as function of the time delay τ .
(�): AVSP (�): interpolating spline

Despite the complexity of the present case, with several coupled cavities, the stability
curves of Fig. 6.29 are classic and not very di�erent from those of a simple annular cavity
withN burners (see e.g. [111]): the growth rate roughly looks like a sinus while the frequency
curve is similar to a cosinus. For τ = 0 all modes are neutral, which is in agreement with
the Rayleigh criterion and the need for a certain delay between between the pressure p1

and the heat release q1 to instabilities to arise, and their stability changes at τ ≈ T/2.

When τ starts to grow from zero, the 1A_BP and 2A_BP modes are stable until τ ≈ T/2
(being T the period of the corresponding mode) and then they switch to unstable for larger

4In Sec. 6.4.2 the �rst 5 azimuthal modes are studied: 1A_BP, 1A_FP, 2A_BP, 1A_Ch_inP and
1A_FP_inP modes. However, the 1A_FP mode is neutral for any value of tau and the 1A_Ch_inP mode
disappears for N1 > 0.2. Consequently, only the stability of the three remaining modes is studied here as
a function of τ .
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values of τ , before becoming neutral again for values of τ ≈ T . On the contrary, the
1A_FP_inP mode is unstable at �rst (for τ < T/2) and then stable (for T/2 < τ < T ).
This behavior is controlled by the phase between the acoustic pressure and the acoustic
velocity, which depends on the boundary impedances. In the present case, since u1 = 0
for all boundaries, it is the impedance at the entry of the chamber which controls whether
the mode is stable or unstable for low values of τ . This can be a problem if one decides
to control, for example, an instability associated to the 1A_BP or 2A_BP modes, by
reducing the time-delay τ . A small value of τ , will indeed damp the instability associated
to these modes, according to the stability curves of Fig. 6.29. Nevertheless a value of τ
which is too low could trigger a new instability associated to the 1A_FP_inP mode, which
is unstable for small values of τ . In Fig. 6.30 the stability of the three modes as a function
of τ is displayed, showing the range of time delay τ for which the three modes are stable
simultaneously. This range is quite small: from 4 to 5 ms. For all other values of τ , an
unstable mode will be triggered.
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Figure 6.30: Stability map of the 1A_BP, 2A_BP and 1A_FP_inP modes as a function of τ .
The only values of τ that ensures the simultaneous stability of the three modes are between 4 and
5 ms approximately.

6.4.3.2 Coupling and time-delay τ

The coupling between the Chamber and the Back Plenum for the 2A_BP mode is inves-
tigated for di�erent values of the time delay τ , keeping constant the interaction index N1.
The azimuthal pressure p1 (acoustic pressure along the azimuthal coordinate θ taken over
the unrolled surfaces) in the Chamber and in the Back Plenum is plotted in Fig. 6.31 for
increasing values of the time-delay τ . The acoustic pressure p1 levels are normalized by
max(p1) in the Back plenum, so that the relative level between both cavities the Chamber
and the Back Plenum are conserved.

As discussed in Sec. 6.2, it is interesting to see that, due to the coupling, an azimuthal
mode of the same order (p = 2) takes place in two cavities (the Back Plenum and the
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Chapter 6. Thermoacoustic analysis of an industrial gas turbine combustion chamber

Chamber) with very di�erent values of the sound speed (c0 = 522 m/s in the BP and
c0 = 829 m/s in the Ch). The frequency computed by AVSP for this mode is about 98Hz.
Using Eq. 6.1 for p = 2, we obtain a frequency of 96.6Hz for the Back Plenum cavity and
188.4Hz for the Chamber. Therefore, the frequency and structure of the mode is clearly
imposed by the Back Plenum cavity and the geometry and sound speed in the Chamber do
not play any role. The information in the Back Plenum travels to the Chamber through
the burners and results in an azimuthal mode of order p = 2 in it at a frequency which
corresponds rather to a mode or order p = 1 in the Chamber.
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Figure 6.31: 2A_BP mode: acoustic pressure (p1) in the Back Plenum (�) and in the Chamber
(� �) along the azimuthal coordinate, showing a strong coupling both cavities.

Two facts arise from the results displayed in Fig. 6.31:

• The coupling between the Back Plenum and the Chamber depends on the FTF time-
delay τ : while the amplitude of p1 remains the same in the Back Plenum (max(p1) =
1), in the Chamber it gets larger for values of 0 < τ < T/2 and then it decreases again
for T/2 < τ < T . This is shown quantitatively in Fig. 6.32, where the amplitude of
the acoustic pressure max(p1) in the Chamber is plotted as a function of τ . It is
worth noticing how the amplitude of p1 grows from ≈ 0.45 for τ = 0ms to ≈ 0.7 for
τ = 5ms and then decreases again, describing a curve similar to a cosinus, as does
the frequency of the mode (see Fig. 6.29).
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Figure 6.32: Amplitude of the acoustic pressure p1 in the Chamber normalized by the amplitude
in the back Plenum as a function of the time delay τ for the 2A_BP mode. (�): AVSP (�):
interpolating spline

• The phase-shift of the azimuthal pressure p1 between the Chamber and the Back
Plenum changes with τ . In Fig. 6.33 the di�erence between the phase of p1 in the
Chamber and the in the Back Plenum (noted as ∆θ) is plotted as a function of τ .
According to Fig. 6.33, the phase-lag between the cavities seems to be proportional
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Figure 6.33: Di�erence of pressure phase (∆θ (rad)) between the Chamber and the Back Plenum
for the 2A_BP mode as a function of the FTF time-delay τ . (�): AVSP (�): interpolating spline

to the growth rate of the mode (see Fig. 6.29 for the mode 2A_BP). This phase-
shift between cavities has been already observed in an helicopter annular combustion
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Chapter 6. Thermoacoustic analysis of an industrial gas turbine combustion chamber

chamber in [144], and it has been capture as well by a compressible reactive LES as
well in [153]. Whether the phase-lag between cavities is important or not from the
point of view of stability is not clear, but it is worth noticing that there is a link
between the time delay τ and the pressure phase-shift between the cavities.

6.4.3.3 Symmetry breaking and stability

The e�ect of using azimuthal staging patterns on stability and modes nature was studied in
Chapter 5 for a simple annular cavity connected to 24 cylindrical burners. The azimuthal
patterns used in Chapter 5 (which are recalled in Tab. 6.6) have stable (noted with •)
and unstable burners (noted with ◦). Their e�ect on the azimuthal modes stability is
investigated now in the present industrial con�guration. For a given azimuthal mode, a
burner is considered stable if it has associated a time-delay τ such that when it is used for
the 24 �ames the mode is stable, and viceversa. The notation is the same as in Chapter 5.

Name N Stable burners Asymmetry pattern

B24_C0 24 0 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
B24_C20_P1 24 20 • • • • • • • • ◦ ◦ • • • • ◦ ◦ • • • • • • • •
B24_C20_P2 24 20 • • • • • • • • • • ◦ ◦ ◦ ◦ • • • • • • • • • •
B24_C20_P3 24 20 • • • • • ◦ • • • • • ◦ • • • • • ◦ • • • • • ◦
B24_C20_P4 24 20 • • • • • ◦ • • • • ◦ • • • • • • ◦ • • • • • ◦
B24_C24 24 24 • • • • • • • • • • • • • • • • • • • • • • • •

Table 6.6: Staging patterns con�gurations investigated AVSP. ◦ � Unstable burner (τ1 in
Fig. 5.11); • � Stable burner (τ2 in Fig. 5.11)
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Figure 6.34: Stability of the 1A_FP_inP mode and time-delays τ1 (◦) and τ2 (•) used for the
patterns of Tab. 6.6.
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The stability and modes nature of the azimuthal 1A_FP_inP mode of order p = 1,
are studied for the four patterns of Tab. 6.6. The obtained results are compared with the
results obtained for the simple annular cavity in Chapter 5. The two values of τ1 and τ2

that characterize the unstable (◦) and the stable (•) burners appear over the stability curve
of the 1A_FP_inP mode in Fig. 6.34.

0 1 2 3 4 5 6 7
0.6

0.4

0.2

0

0.2

0.4

B24
_C

0
B24

_C
24

B24
_C

20
_P

1
B24

_C
20

_P
2

B24
_C

20
_P

3
B24

_C
20

_P
4

G
ro

w
th

 ra
te

 (s
-1

)

0 1 2 3 4 5 6 7
130.4

130.5

130.6

130.7

130.8

130.9

B24
_C

0
B24

_C
24

B24
_C

20
_P

1
B24

_C
20

_P
2

B24
_C

20
_P

3
B24

_C
20

_P
4

Fr
eq

ue
nc

y 
(H

z)

DD

DD

DD

DD

Figure 6.35: Growth rate (top) and frequencies (bottom) of the 1A_FP_inP mode for the
patterns of Tab. 6.6. 'DD' indicates the patterns that result in degenerate doublets.

Results (growth rates and frequencies) for the di�erent patterns are displayed in Fig. 6.35.
The degenerate doublets (DD) present small di�erences between the growth rates of their
two waves q+ and q−, especially for the pattern P1. This is probably due to the fact that
the FTF are not azimuthally symmetric. The frequencies of both waves (q+ and q−) are
though practically identical. There are similarities and discrepancies with respect to the
results obtained in Chapter 5. On one hand, the split of the imaginary frequency due to
the patterns is very similar to the behavior found for a simple annular cavity: the pattern
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P2 is the one that splits the more, while patterns P1 and P3 give degenerate doublets and
P4 splits slightly. Nevertheless, regarding the real part of the frequency, the pattern P4
splits more than the pattern P2, which does not happen for the academic con�guration.
On the other hand, for the academic annular chamber of Chapter 5, the analytical model
ATACAMAC as well as AVSP have shown that the sum of the frequencies and the sum of
the growth rates associated to the waves q+ and q− are constant for the four patterns, i.e.
all the patterns split around the same frequency and growth rate values (see Sec. 5.5). This
is not so for the present case: as shown in Fig. 6.35, the sum of the frequencies and the sum
of the growth rates are di�erent for each pattern. Moreover, the frequencies of the modes
obtained for the four patterns are not included between the frequencies of the B24_C0 and
B24_C24 modes.
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Figure 6.36: Structure of the 1A_FP_inP mode for the four patterns of Tab. 6.6.
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The discrepancies observed between the industrial and the academic con�gurations can
be due to the fact that many hypothesis considered for the academic case may not be
respected here: 3D e�ects, compact �ames, many coupled cavities, low coupling assumption,
etc. The low-coupling assumption seems to be respected since the stability curve (Fig. 6.34)
does not show nonlinear behavior. The coupling between cavities is strong though, and it
appear as the most likely explanation for the discrepancies found between the academic
and the industrial con�gurations: while for the academic chamber using 24 stable burners
is clearly the best option in terms of stability, in the present case, the patterns P3 and
P4 give modes which are practically as stable as the one obtained using 24 stable burners
(B24_C24). This result suggests that, for the present case, using staging patterns can be
an interesting passive control technique [12, 71].
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Figure 6.37: Nature of the 1A_FP_inP mode obtained for the four patterns (Tab. 6.6). Both
waves q+ and q− are displayed.

The structure and the nature of the modes obtained for the di�erent patterns appear in
Fig. 6.36 and Fig. 6.37, respectively. There are no big di�erences in terms of mode structure
between the four patterns, although it can be seen that, for the pattern P1, the azimuthal
pressure p1 in certain cavities has not exactly a sinus shape. The nature (standing, spinning
or mixed) depends on the patterns:

• Patterns P1 and P3: the two patterns exhibit an azimuthal mode which is formed
by two mixed waves q+ and q−. They can be combined to give either a standing,
spinning or mixed azimuthal mode, since the azimuthal symmetry of these patterns
do not impose any particular kind of mode of order p = 1.

• Patterns P2 and P4: these patterns split the degenerate doublet into two standing
modes with di�erent frequencies and growth rates associated. Each wave q+ and q−

must be seen as two di�erent standing modes since they are associated to di�erent
frequencies. Therefore, these two patterns lead to two standing modes with di�erent
frequencies and with di�erent growth rates.

Concerning the nature of the modes, the results of Fig. 6.37 are very similar to the ones
obtained for a simple annular chamber in Chapter 5, showing that using staging patterns in
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annular combustion chambers, has a well determined e�ect on the modes nature: when the
symmetry breaking leads to the split of a degenerate doublet into two singlets, the resulting
modes are expected to be standing.
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Conclusions and perspectives

Modern pollutant emission regulation has led to the use of lean premixed combustion in gas
turbine combustors, which are prone to develop thermoacoustic instabilities. In this work,
combustion instabilities are studied using a Helmholtz equation with a reactive term, which
is obtained from the linearized Euler equations within the context of linear acoustics. The
discretization of the Helmholtz equation on unstructured meshes leads to a large sparse non-
symmetric complex nonlinear eigenvalue problem, whose solution provides the frequencies
and growth rates (complex eigenvalues) and the structure (eigenvectors) of the resonant
modes of the system (Chapter 2).

One of the objectives of this work is to study and implement algorithms for the solution
of the nonlinear eigenproblem. Thermoacoustic instabilities arise at low frequencies, which
means that the eigenproblem must be solved to obtain a few smallest magnitude eigenvalues.
The nonlinear eigenproblem is linearized using a Fixed Point method: nonlinear eigenvalues
and eigenvectors corresponding to the acoustic modes of the system are computed by solving
a sequence of linear eigenproblems. The following algorithms (see Chapter 3) for the solution
of linear eigenproblems have been investigated during this work:

• Implicitly Restarted Arnoldi algorithm: the ARPACK parallel library that imple-
ments this method was already available in AVSP. Its study has allowed an optimal
use within the numerical frame of AVSP.

• Krylov-Schur algorithm: a parallel version of this algorithm has been developed for
AVSP, showing very good numerical performances and o�ering a solid alternative to
ARPACK.

• Harmonic Krylov-Schur algorithm: the harmonic version of the Krylov-Schur algo-
rithm has also been implemented in AVSP.

• Block Krylov-Schur algorithm: a block version of th Krylov-Schur algorithm has been
developed during this work. To the best of our knowledge, a block version of this
block algorithm for general complex non-symmetric matrices was not available. This
work has contributed with the description of a block Krylov-Schur algorithm.

• Jacobi-Davidson algorithm: a parallel implementation of the Jacobi-Davidson style
QR algorithm has been developed for AVSP as well, improving the performance of
the previous Jacobi-Davidson solver present in AVSP.
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• Subspace Iteration algorithm with Chebyshev acceleration: the pertinence of this
algorithm to recycle solutions previously computed has been investigated, showing
that it might be an interesting alternative within a numerical context di�erent from
the one of AVSP.

Moreover, several strategies aiming at accelerating each �xed point iteration have been
proposed (Chapter 4). Among them, the strategies which has been shown to be well adapted
for AVSP have been included in the code, leading to important computational resources
savings.

Thanks to the achieved numerical improvements, the study of industrial con�gurations
has become possible in short scales of time. Today, most modern gas turbine combustors are
annular, and the combustion instabilities take the form of azimuthal modes. These modes
are characterized by a variation of the pressure with the azimuthal coordinate, and they can
be either spinning, standing or mixed. Azimuthal modes have been studied in this work,
contributing to the publication of [111] in the international journal Combustion and Flame.
In the Appendix are included two other papers to which the present work has contributed:
the �rst of them [10] is under revision for its publication in Combustion and Flame and the
second one (�Analytical and numerical study of symmetry breaking in annular combustors to
control azimuthal thermo-acoustic oscillations�) will be shortly submitted. In these works,
analytical models are developed and used to predict azimuthal modes in academic annular
con�gurations. AVSP has been used to perform a cross validation of these models, showing
a very good agreement in all cases.

An industrial power generator gas turbine combustor has been studied with AVSP (Chap-
ter 6), revealing important acoustic coupling between the di�erent cavities forming the
combustor, making the analysis of the resonant modes di�cult. Flame Transfer Functions
(FTF) obtained from single sector Large Eddy Simulations (from the PhD. of S. Her-
meth [53]) have been used to compute the modes of the complete annular combustor. The
in�uence of the FTF parameters (the interaction index n and the time delay τ) on the
system stability and on the coupling between cavities has been investigated as well. The
study of symmetry breaking performed with the analytical tool ATACAMAC [10, 111] for
an academic annular combustion chamber (Chapter 5), is extended to the industrial com-
bustor using AVSP. The nature of the azimuthal modes (spinning, standing or mixed) can
be predicted by AVSP, depending on the symmetry of the con�guration. Discrepancies be-
tween the results obtained for the academic annular chamber and for the industrial annular
combustor are found, which are probably due to the acoustic coupling in the last case.

Perspectives and future work

Concerning the numerical aspects treated in this work, potential improvements might in-
clude:

• The modi�cation of the numerical routines that compute the operator associated to
the eigenproblem in AVSP. Today, the matrix is not known explicitly, and only the
result of applying it to an input vector is available. Building the matrix explicitly
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would allow to perform matrix-matrix products, which are numerically more e�cient
than matrix-vector products and would improve the use of block methods. Moreover,
knowing the operator explicitly, would allow to consider explicit preconditioning tech-
niques, e.g., within the context of shift-and-invert transformations or for accelerating
the solution of the correction equation when using the Jacobi.Davidson algorithm.
The use of implicit preconditioning techniques (such as FGMRES) are though possi-
ble and their study would be of interest.

• The development of e�cient nonlinear eigensolvers could lead to new algorithms for
a faster and robust solution of the nonlinear eigenproblem in AVSP.

The considered hypotheses to obtain the Helmholtz equation include a strong assump-
tion: the Mach number is assumed null. Inclusion of the Mach number e�ect in the
modelization of thermoacoustic-instabilitis constitutes an important improvement in the
physical model of AVSP. Currently, analytical models including Mach number e�ects are
being developed at CERFACS.

The computations of the industrial annular combustor acoustic modes (Chapter 6)
have been performed considering simple boundary conditions (perfectly re�ecting acous-
tic walls). More realistic boundaries conditions, including complex impedances, multi-
perforated plates, etc. should be considered in future works.
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Abstract

This study describes an analytical method to compute azimuthal modes
due to flame/acoustics coupling in annular combustors. It is based on a one-
dimensional zero-Mach number formulation where N burners are connected
to an upstream annular plenum and a downstream chamber. Flames are sup-
posed to be compact and are modeled using identical Flame Transfer Func-
tion for all burners, characterized by an amplitude and a phase shift. Manip-
ulation of the corresponding acoustic equations leads to a simple methodol-
ogy called ANR (Annular Network Reduction). It allows to retain only the
useful information related to the azimuthal modes of the annular cavities.
It yields a simple dispersion relation which can be solved numerically and
allows to construct coupling factors between the different cavities of the com-
bustor. A fully analytical resolution can be performed in specific situations
where coupling factors are small (weak coupling). A bifurcation appears at
high coupling factors leading to a frequency lock-in of the two annular cav-
ities (strong coupling). This tool is applied to an academic case where four
burners connect an annular plenum to a chamber. For this configuration, an-
alytical results are compared to a full three-dimensional Helmholtz solver to
validate the analytical model in both weak and strong coupling regimes. Re-
sults show that this simple analytical tool allows to predict modes in annular
combustors and investigate strategies to control them.
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1. Introduction

Describing the unstable acoustic modes which appear in annular gas tur-
bine combustion chambers and finding methods to control them is the topic of
multiple present research activities [1, 2, 3, 4, 5]. The complexity of these phe-
nomena and the difficulty of performing simple laboratory-scale experiments
explain why progress in this field has been slow for a long time. Recently,
the development of smaller annular chambers in laboratories has opened the
path to new descriptions of azimuthal instability modes in annular chambers
and new investigation methods [4, 6]. At the same time, theoretical and
numerical approaches have progressed in three directions: (1) full 3D LES
of annular chambers have been developed [7, 8], (2) 3D acoustic tools have
been adapted to annular chambers [9, 10] and (3) analytical approaches have
been proposed to avoid the costs of 3D formulations and allow to investi-
gate the stability and control of modes at low cost [5, 11]. This last class
of approach is especially interesting to elucidate mechanisms because they
can provide explicit solutions for the frequency and the growth rate of all
modes. The difficulty in these methods is to be able to construct a model
which can be handled by simple analytical approaches while retaining most
of the important physical phenomena and geometrical specificities of annular
chambers.

One interesting issue in studies of instabilities in annular chambers is
to classify them. For example, standing and turning modes are both ob-
served [1, 5, 8, 12] but predicting which mode type will appear in practice
and whether they can be studied and controlled with the same method re-
mains difficult. Similarly, most large scale annular chambers exhibit multiple
acoustic modes in the frequency range of interest (typically 10 to 30 acoustic
modes can be identified in a large scale industrial chamber between 0 and
300 Hz) and classifying them into categories is the first step to control them.
These categories are typically ’longitudinal vs azimuthal modes’ or ’modes
involving only a part of the chamber (decoupled modes) vs modes involving
the whole system (coupled modes)’. Knowing that a given unstable mode
is controlled only by a certain part of the combustor is an obvious asset for
any control strategy. In the case of combustors including an annular plenum,
burners and an annular chamber, such a classification is useful for example to
understand how azimuthal modes in the plenum and in the chamber (which
have a different radius and sound speed and therefore different frequencies)
can interact or live independently. Unfortunately determining whether cer-
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tain parts of a chamber can be ’decoupled’ from the rest of the chamber is
a task for which there is no clear strategy. ’Decoupling’ factors have been
derived for longitudinal modes in academic burners where all modes are lon-
gitudinal [13]. Extending these approaches to annular systems requires first
to derive analytical solutions allowing to isolate the effect of parameters on
the modes structure. This is one of the objectives of this paper.

Parmentier et al [11] have derived an analytical method called ATACA-
MAC (for Analytical Tool to Analyze and Control Azimuthal Modes in An-
nular Chambers) for a configuration called BC (N Burners + Chamber)
(Fig.1 left). By describing acoustic wave propagation and flame action in
a network of ducts representing the BC configuration and introducing a re-
duction method for the overall system corresponding to wave propagation
in this network, they were able to predict the frequencies and growth rate
of azimuthal and longitudinal modes, to identify their nature and predict
their response to passive control methods such as symmetry breaking. This
study in BC geometries did not correspond exactly to real annular chambers
where the N burners are connected not only downstream (to the combustion
chamber) but also upstream to the plenum which feeds them. The present
paper extends the methodology of Parmentier et al [11] to a PBC (Plenum
+ N Burner + Chamber) (Fig.1 right) configuration. In most network ap-
proaches for combustion instabilities, a very large matrix is built to describe
the acoustics of the system [13, 14, 15]. Here, we introduce a significantly
simpler methodology called ANR (Annular Network Reduction) which allows
to reduce the size of the acoustic problem in an annular system to a simple
4-by-4 matrix containing all information of the combustor resonant modes.
This method allows to obtain explicit dispersion relations for PBC configura-
tions and to exhibit the exact forms of the coupling parameters for azimuthal
modes between the plenum and the burners on one hand and between the
burners and the chamber on the other hand.

The paper is organized as follows: Section 2 describes the principle of
the ANR (Annular Network Reduction) methodology and the submodels to
account for active flames. The decomposition of the network into H-shaped
connectors and azimuthal propagators allows to build an explicit dispersion
relation giving the frequency, growth rate and structure of all modes. In
Section 3, thermoacoustic regimes (from fully decoupled to strongly coupled)
are defined depending on the analytical coupling parameters conducted in
Section 2. Finally, this analytical model is validated using the model annular
chamber described in Section 4 with simplistic shapes to construct coupling
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Figure 1: Configurations to study unstable modes in annular chambers

factors and study azimuthal modes for a case where a plenum is connected to
a chamber by four similar burners (N = 4). First the weakly coupled regime
(Section 5) and then the strongly coupled regime (Section 6) are investigated.
The bifurcation [16] from weakly to strongly coupled situations is triggered
by increasing the flame interaction index controlling the flame response to the
acoustic flow. Results show that ATACAMAC allows to predict azimuthal
turning and standing modes in a PBC configuration and performs as well as
a 3D Helmholtz solver for all three regimes while a simple BC model is not
able to capture the bifurcation from weakly to strongly coupled regimes.

2. A network model for PCB (Plenum+Burners+Chamber) con-
figurations

2.1. Model description

The model is based on a network view of the annular chamber fed by
burners connected to an annular plenum (Fig. 2). This model is limited to
situations where pressure fluctuations depend on the angle θ (or x) but not
on z in the chamber and the plenum (they depend on the coordinate z only
in the N burners). This case can be observed in combustors terminating
in choked nozzles which behave almost like a rigid wall (i.e. u� = 0 under
the low upstream Mach number assumption [17]). Note however that this
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restriction prevents the present model to represent academical combustors
where the combustion chamber is opened to the atmosphere [4, 6].

Since the chamber inlet is also close to a velocity node, modes which
have no variation along z can develop in the chamber, as shown by recent
LES [18]. Radial modes (where p� depends on r) are neglected because often
occurring at high frequency. Gas dynamics are described using standard
linearized acoustics for perfect gases in the low Mach number approximation.
The mean flow induced by swirlers remains slow [18] and azimuthal waves
propagate at the sound speed which is different in the plenum (fresh gas at
sound speed c0

u) and the chamber (burnt gas at sound speed c0).

z
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z
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0

z
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L i

z
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z f,
i

Sp Sc
Si

Sp ScRp Rc

Figure 2: Network representation of the plenum, burners and chamber (PBC configuration)

In the initial ATACAMAC study of Parmentier et al. [11], a BC (Burn-
ers+Chamber) configuration was considered: an annular chamber is fed by
N burners without taking into account the existence of a plenum ; the
impedance imposed at the inlet of the N burners corresponded to a closed
end (u� = 0) and flames were located at the burners extremity (zf,i � Li

5



where Li is the length of the ith burner). This section describes how this BC
case is extended to PBC (Plenum+Burners+Chamber) configurations where
an annular plenum feeds N ducts (”burners”) which are all connected to an
annular chamber. Most annular gas turbine chambers can be modeled using
this scheme (Fig. 2).

Mean density in the annular chamber is noted ρ0 (ρ0
u in the plenum).

The subscript u stands for unburnt gases. The perimeter and the section
of the annular plenum are noted 2Lp = 2πRp and Sp respectively while Li

and Si stand for the length and cross section area of the ith burner. The
perimeter and the section of the annular chamber are noted 2Lc = 2πRc

and Sc respectively. The position along the annular plenum and chamber is
given by the angle θ defining abscissa xp = Rpθ for the plenum and xc = Rcθ
for the chamber. The location of the flames in the burners is given by the
normalized abscissa α = zf,i/Li (Fig. 2).

2.2. Acoustic waves description and ANR methodology

To reduce the size of the system, a new methodology called ANR (An-
nular Network Reduction) is proposed to extract only useful information of
azimuthal modes of the resonant combustor. First, the combustor is decom-
posed into N sectors (Fig. 3) by assuming that every sector can be studied
separately and that no flame-to-flame interaction occurs between neighboring
sectors, a question which is still open today [19, 20]. Staffelbach et al. [18]
have shown that this was the case in LES of azimuthal modes. Worth and
Dawson [4, 21] have also demonstrated experimentally that this assumption
in annular combustor is valid when the distance between burners is large
enough to avoid flames merging.

For each individual sector, the acoustic problem may be split into two
parts: propagation (Section 2.2.1) and H-shaped connector (Section 2.2.2)
(Fig. 4). The angle θ and the coordinates of the plenum xp and chamber
xc take their origin at the burner i. The end of the sector i is located at
xp = 2Lp

N
and xc = 2Lc

N
(thus assuming that burners are evenly located

around the annular combustor).

2.2.1. Propagation

Assuming linear acoustics, the pressure and velocity perturbations inside
the ith sector of the annular chamber (denoted via the subscript c, i) can be
written as:
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p�c,i(xc, t) = (Aicos(kxc) + Bisin(kxc))e
−jωt (1)

ρ0c0u�
c,i(xc, t) = j(Aisin(kxc)− Bicos(kxc))e

−jωt (2)

where j2 = −1, k = ω/c0 is the wavenumber, Ai and Bi are complex con-
stants.

From Eqs. (1) and (2), pressure and velocity perturbations at two posi-

7



tions in the chamber xc0 and xc0 + ∆xc are linked by:

�
p�c,i

1
j
ρ0c0u�

c,i

�

(xc0+∆xc,t)

=

�
cos(k∆xc) −sin(k∆xc)
sin(k∆xc) cos(k∆xc)

�

� �� �
R(k∆xc)

�
p�c,i

1
j
ρ0c0u�

c,i

�

(xc0,t)

(3)

The matrix R(k∆xc) is a 2D rotation matrix of angle k∆xc. In the
case where N burners are equally distributed over the annular chamber, the
propagation in the chamber between each burner is fully described by the
transfer matrix R(k 2Lc

N
) where 2Lc is the chamber perimeter.

Wave propagation in the ith sector of the plenum satisfies the same equa-
tion than in the chamber Eq. (3) if the sound speed in fresh gases c0

u is
used:
�

p�p,i
1
j
ρ0

uc
0
uu

�
p,i

�

(x0+∆xp,t)

=

�
cos(ku∆xp) −sin(ku∆xp)
sin(ku∆xp) cos(ku∆xp)

�

� �� �
R(ku∆xp)

�
p�p,i

1
j
ρ0

uc
0
uu

�
p,i

�

(x0,t)

(4)

where ku = ω/c0
u.

Propagation in the ith burner from the plenum (z = 0) to the flame
(z = αLi) and from z = αLi to z = Li (Fig. 5) can be described in the same
way considering propagation in fresh gases for the first part (0 < z < αLi)
and hot gases in the second part (αLi < z < Li):

Therefore, equations for the wave propagation in the ith burner are:

�
p�i

1
j
ρ0

uc
0
uw

�
i

�

(αLi,t)

= R(kuαLi)

�
p�i

1
j
ρ0

uc
0
uw

�
i

�

(0,t)

(5)

and

�
p�i

1
j
ρ0c0w�

i

�

(Li,t)

= R(k(1− α)Li)

�
p�i

1
j
ρ0c0w�

i

�

(αLi,t)

(6)

2.2.2. H-shaped connector

The physical parameters at the entrance (located at the end of the i− 1th

sector corresponding to θ = 2π
N

and consequently xp = 2Lp

N
and xc = 2Lc

N
) must

be linked to the output parameters (corresponding to the beginning of the
ith sector located at θ = 0 and consequently xp = xc = 0) as shown in Fig. 6.
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Figure 6: H-shaped overview in the ANR method

Jump conditions are first written along the x direction at z = 0 and
z = Li: at low Mach number [2], they correspond to the continuity of pressure
and volume rate through the interface. At z = Li:
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p�c,i−1(xc =
2Lc

N
, t) = p�c,i(xc = 0, t) = p�i(z = Li) (7)

Scu
�
c,i−1(xc =

2Lc

N
, t) + Siw

�
i(z = Li) = Scu

�
c,i(xc = 0, t) (8)

and at z = 0:

p�p,i−1(xp =
2Lp

N
, t) = p�p,i(xp = 0, t) = p�i(z = 0) (9)

Spu
�
p,i−1(xp =

2Lp

N
, t) = Siw

�
i(z = 0) + Spu

�
p,i(xp = 0, t) (10)

Jump conditions are also required in the burners through the flames lo-
cated at z = zf,i. They are assumed to be planar and compact: their thick-
ness is negligible compared to the acoustic wavelength. Flames are located
at z = z+

f,i = z−f,i � αLi where superscripts + and − denote the downstream

and upstream positions of the ith flame. At low Mach number, jump condi-
tions through the flame imply equality of pressure and flow rate discontinuity
due to an extra volume source term related to unsteady combustion [2]:

p�i(z
+
f,i) = p�i(z

−
f,i) (11)

Siw
�
i(z

+
f,i) = Siw

�
i(z

−
f,i) +

γu − 1

γuP 0
Ω̇�

T,i (12)

where P 0 is the mean pressure and γu is the heat capacity ratio of fresh
gases. The unsteady heat release Ω̇�

T,i is expressed using the FTF model
(Flame Transfer Function) [22]:

γu − 1

γuP 0
Ω̇�

T,i = Sinie
jωτiw�

i(z
−
f,i) (13)

where the interaction index ni
1 and the time-delay τi are input data (depend-

ing on frequency) describing the interaction of the ith flame with acoustics.
Therefore, the jump condition in Eq. (12) is recast using Eq. (13):

Siw
�
i(z

+
f,i) = Si(1 + nie

jωτi)w�
i(z

−
f,i) (14)

1Typical values of the interaction index ni can reach Tb/Tu − 1 at low frequency.
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Thanks to Eqs. (7 - 14), a transfer matrix Ti of the H-shaped connector
of Fig. 6 is defined as:




p�p(xp=0,t)
1
j
ρ0

uc
0
uu

�
p(xp=0,t)

p�c(xc=0,t)
1
j
ρ0c0u�

c(xc=0,t)




i

= Ti




p�p(xp=
2Lp
N

,t)
1
j
ρ0

uc
0
uu

�
p(xp=

2Lp
N

,t)

p�c(xc=
2Lc
N

,t)
1
j
ρ0c0u�

c(xc=
2Lc
N

,t)




i−1

(15)

where the transfer matrix Ti is:

Ti = Id + 2




0 0 0 0
−Γi,1 0 Γi,2 0

0 0 0 0
Γi,3 0 −Γi,4 0


 (16)

and the coefficients Γi,k, k = 1 to 4 are:

Γi,1 =
1

2

Si

Sp

cos(k(1− α)Li) cos(kuαLi)− F sin(k(1− α)Li) sin(kuαLi)

cos(k(1− α)Li) sin(kuαLi) + F sin(k(1− α)Li) cos(kuαLi)
(17)

Γi,2 =
1

2

Si

Sp

1

cos(k(1− α)Li) sin(kuαLi) + F sin(k(1− α)Li) cos(kuαLi)
(18)

Γi,3 =
1

2

Si

Sc

F
cos(k(1− α)Li) sin(kuαLi) + F sin(k(1− α)Li) cos(kuαLi)

(19)

Γi,4 =
1

2

Si

Sc

F cos(k(1− α)Li) cos(kuαLi)− sin(k(1− α)Li) sin(kuαLi)

cos(k(1− α)Li) sin(kuαLi) + F sin(k(1− α)Li) cos(kuαLi)
(20)

with the flame parameter F:

F =
ρ0c0

ρ0
uc

0
u

(1 + nejωτ ) (21)

These coefficients are the coupling parameters for PBC configurations.
Γi,1 and Γi,2 are linked to the plenum/burner junction (depending on Si/Sp

which measures the ratio between the burner section Si and the plenum
section Sp) while Γi,3 and Γi,4 are linked to the chamber/burner junction
(depending on Si/Sc which measures the ratio of the burner section to the
chamber section (Fig. 2)).
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2.3. Dispersion relation calculation given by the ANR method

In previous sections, the overall problem has been split into smaller parts
and now has to be reconstructed in order to obtain the dispersion relation
for the whole system. First, the pressure and velocity fluctuations at the end
of the i − 1th sector are linked to those at the end of the ith sector using
Eqs. (3), (4) and (15).




p�p(xp=
2Lp
N

,t)
1
j
ρ0

uc
0
uu

�
p(xp=

2Lp
N

,t)

p�c(xc=
2Lc
N

,t)
1
j
ρ0c0u�

c(xc=
2Lc
N

,t)




i

= Ri




p�p(xp=0,t)
1
j
ρ0

uc
0
uu

�
p(xp=0,t)

p�c(xc=0,t)
1
j
ρ0c0u�

c(xc=0,t)




i

= RiTi




p�p(xp=
2Lp
N

,t)
1
j
ρ0

uc
0
uu

�
p(xp=

2Lp
N

,t)

p�c(xc=
2Lc
N

,t)
1
j
ρ0c0u�

c(xc=
2Lc
N

,t)




i−1

(22)

where Ti is the matrix defined in Eq. (16) and Ri is the propagation matrix
inside the plenum and chamber in the ith sector defined by:

Ri =




R(ku
2Lp

N
)

0 0
0 0

0 0
0 0

R(k 2Lc

N
)


 (23)

where R(ku
2Lp

N
) and R(k 2Lc

N
) are 2-by-2 matrices defined in Eqs. (3) and (4)

Then, Eq. (22) can be repeated through the N sectors and periodicity
imposes that:




p�p(xp=
2Lp
N

,t)
1
j
ρ0

uc
0
uu

�
p(xp=

2Lp
N

,t)

p�c(xc=
2Lc
N

,t)
1
j
ρ0c0u�

c(xc=
2Lc
N

,t)




i=1

=

�
1�

i=N

RiTi

�



p�p(xp=
2Lp
N

,t)
1
j
ρ0

uc
0
uu

�
p(xp=

2Lp
N

,t)

p�c(xc=
2Lc
N

,t)
1
j
ρ0c0u�

c(xc=
2Lc
N

,t)




i=1

(24)

System Eq. (24) leads to non-null solutions if and only if its determinant
is null:

det

�
1�

i=N

RiTi − Id

�
= 0 (25)

where Id is the 4-by-4 identity matrix and the matrix M =
�1

i=N RiTi is the
transfer matrix of the overall system. Eq. (25) provides an implicit equation
for the pulsation ω and gives the stability limits and the frequency of unstable
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modes. Note that Eq. (25) given by the ANR methodology only involves a
4-by-4 determinant2 irrespective of the number of burners N.

3. Analytical procedure and coupling limits

Due to significant non linearities, Eq. (25) cannot be solved analytically
in the general case. However different situations (Fig. 7) can be exhibited
where Eq. (25) can be solved depending on values taken by the coupling
parameters ℘p,i and ℘c,i:

℘p,i = max(|Γi,1|, |Γi,2|) (26)

and

℘c,i = max(|Γi,3|, |Γi,4|) (27)

The parameters ℘p,i and ℘c,i measure the coupling effect of the plenum/burner
junction and the chamber/burner junction respectively for the ith sector.
They depend only on the geometry (section ratios Si/Sp and Si/Sc as well as
the burners length Li) and the flame (the flame interaction factor F and the
flame position α). Longitudinal modes in the burners can be obtained with
this model but only purely azimuthal modes will be studied in this paper
(Fig. 7).

3.1. Fully decoupled situations (FDPp and FDCp)

If the coupling parameters have vanishing small values (℘p,i = 0 and
℘c,i = 0), the coupling matrices of each sector (Ti in Eq. (25)) are the identity
matrix. As a consequence, the dispersion relation (Eq. (25)) reduces to:

det

�
1�

i=N

Ri − Id

�
= 0 (28)

2The ANR methodology retains only useful information related to azimuthal modes of
the annular cavities. Knowing that these modes are a combination of two characteristic
waves, the minimum size of the matrix system is 2C-by-2C where C is the number of
annular cavities (here C = 2: plenum + chamber)
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Figure 7: The four coupling situations depending on the parameters ℘p and ℘c

The matrices Ri being block matrices of 2-by-2 rotation matrices which
satisfy R(θ1)R(θ2) = R(θ1 + θ2), Eq. (28) becomes:

det

�
1�

i=N

Ri − Id

�
= det







R(2kuLp)− Id
0 0
0 0

0 0
0 0

R(2kLc − Id)







= det (R(2kuLp)− Id) det(R(2kLc)− Id) = 0 (29)

Solutions of Eq. (29) are kuLp = pπ and kLc = pπ where p is an integer.
They correspond to two families of modes which live separately (case A in
Fig. 7):

• FDPp - Fully Decoupled Plenum mode of order p: they satisfy
the relation kuLp = pπ and correspond to the azimuthal modes of the
annular plenum alone (Fig. 7).

• FDCp - Fully Decoupled Chamber mode of order p: they satisfy
the relation kLc = pπ and correspond to the azimuthal modes of the
annular chamber alone (Fig. 7).
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3.2. Chamber or plenum decoupled situations (PBp and BCp)

These situations correspond to cases where either the plenum or the cham-
ber are fully decoupled from the burners, i.e. respectively ℘p = 0 or ℘c = 0
(cases B and C in Fig. 7). The transfer matrices of each sector are block-
triangular leading to a simple relation for the determinant and consequently
for the dispersion relation (Eq. 25) without assumption on the non-null pa-
rameter ℘p or ℘c. As for the fully decoupled situations, two families of modes
can be exhibited (cases B and C in Fig. 7):

• PBp - Plenum/Burners mode of order p: in this situation, ℘c =
0. The annular chamber is fully decoupled from the system (burn-
ers+plenum) and the dispersion relation Eq. (25) reduces to two equa-
tions:

det(R(2kLc)− 1) = 0 (30)

det

�
1�

i=N

R

�
2kuLp

N

��
1 0
−Γi,1 1

�
− Id

�
= 0 (31)

Eq. (30) corresponds to the dispersion relation of a FDCp mode while
Eq. (31) is the dispersion relation of a PB (Plenum + Burners) config-
uration where an impedance Z = 0 is imposed at the downstream end
of the burner simulating the large chamber decoupled from the system
(case B in Fig. 7). This latter mode is referred to as ”PBp” standing
for Plenum/Burners mode of order p. These situations are, however,
unrealistic because they neglect all interactions between the annular
plenum and chamber: the only solution to obtain ℘c → 0 in a PBC
configuration is an infinite cross section of the chamber (Sc → ∞ in
Eqs. (19 - 20)). Therefore, this paper will focus on other situations
(e.g. cases D and E in Fig. 7) which are more representative of real
engines by including the interaction between annular cavities.

• BCp - Burners/Chamber mode of order p: in this situation,
℘p = 0 so that the annular plenum is fully decoupled from the rest of the
system and the dispersion relation Eq. (25) reduces to two equations:

det(R(2kuLp)− 1) = 0 (32)
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det

�
1�

i=N

R

�
2kLc

N

��
1 0
−Γi,4 1

�
− Id

�
= 0 (33)

The first equation (Eq. (32)) is the dispersion relation of a FDPp mode
while Eq. (33) is the dispersion relation of a BC (Burners + Cham-
ber) configuration where a pressure node (Z = 0) is imposed at the
upstream end of the burner modeling the large plenum decoupled from
the burners and the annular chamber (case C in Fig. 7). This latter
mode is called ”BCp” for Burners/Chamber mode of order p and was
already studied by Parmentier et al. [11].

3.3. Weakly coupled situations (WCPp and WCCp)

When ℘p and ℘c are both non zero, both azimuthal modes of the plenum
and the chamber can exist and interact through the burners. If ℘p and ℘c

remain small (Eq. (34)), an asymptotic solution can be constructed.

∀i, 0 < ℘p,i << 1 and 0 < ℘c,i << 1 (34)

The parameters ℘p,i (Eq. 26) and ℘c,i (Eq. 27) measure the strength of
the coupling effect of the plenum/burner junction and the chamber/burner
junction respectively for the ith sector. If they are small, the transfer matrices
of each sector (TiRi in Eq. (25)) are close to the rotation matrix Ri defined
in Eq. (4) so that the eigenfrequencies of the system will be close to a FDPp
or a FDCp mode. Consequently, as for fully decoupled modes, two families
of modes can be exhibited (case D in Fig. 7):

• WCPp - Weakly Coupled Plenum mode of order p: this mode
is close to a FDPp mode and the solution for the wavenumber ku can
be searched as an expansion around this case:

kuLp = pπ + �p (35)

where �p � pπ

• WCCp - Weakly Coupled Chamber mode of order p: this mode
is close to a FDCp mode and the solution for the wavenumber k can
be searched as an expansion around this case:

kLc = pπ + �c (36)
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where �c � pπ

For both WCPp and WCCp modes, this low coupling assumption allows a
Taylor expansion of the dispersion relation (Eq. 25) which can be truncated
and solved providing analytical solutions for �c and �p. This expansion is
case-dependent: the N = 4 case will be detailed in Section. 5. Basically,
results show that azimuthal modes will be either Chamber or Plenum modes
slightly modified by their interaction with the rest of the combustor.

Note that the low coupling assumption (℘p,i � 1 and ℘c,i � 1) does not
imply low thermo-acoustic coupling (ni � 1) because surface ratios between
burner and plenum or chamber are usually small (Si/Sc � 1 and Si/Sp � 1).

In the specific configuration where the flames are located at the end of
the burner (α = zf,i/Li = 1 in Fig. 2), however, the coupling parameters
simplify as:

Γi,1 =
1

2

Si

Sp

cotan(kuLi) (37)

Γi,2 =
1

2

Si

Sp

1

sin(kuLi)
(38)

Γi,3 =
1

2

Si

Sc

F
sin(kuLi)

(39)

Γi,4 =
1

2

Si

Sc

F cotan(kuLi) (40)

where F is the flame parameter defined in Eq. (21). Eq. (37) to (40) corre-
spond to an extension of the coupling parameters proposed by Palies and
Schuller [13] for longitudinal instabilities and Parmentier et al. [11] for
azimuthal instabilities in a BC configuration. They show that decoupling
(℘p,i � 1 and ℘c,i � 1) can be expected in this case for small sections ratios
Si/Sp << 1 and Si/Sc << 1, when the flame parameter F (Eq. (21)) is small
too.

3.4. Strongly coupled situations (SCp)

The low coupling assumption (℘p,i � 1 and ℘c,i � 1) is not valid at high

flame interaction factor (F = ρ0c0

ρ0
uc0u

(1 + nejωτ )) or high surface ratios (Si/Sp

or Si/Sc). In these situations (case E in Fig. 7), a numerical resolution of
the analytical dispersion relation (Eq. (25)) is required. It can be achieved
by a non-linear solver based on the Newton-Raphson algorithm.

17



No rule already exists to distinguish a weakly or strongly coupled situa-
tion for real engines (characterized by an unknown critical parameter ℘crit,
Fig. 7). Moreover, classifying modes in two families as it is the case for
fully decoupled situations (FDPp and FDCp modes), plenum or chamber de-
coupled situations (PBp and BCp modes) and weakly decoupled situations
(WCPp and WCCp modes) is not possible anymore due to the interaction
between all parts of the system. A first attempt to identify key parameters
and rules to differentiate weakly and strongly coupled situations is described
in Section 6.

In the remaining of the paper, the weakly and strongly coupled situations
(Fig.7) will be studied on the PBC configuration with four burners (N = 4)
described in Section 4. The transition from weakly (Section 5) to strongly
coupled (Section 6) regimes is controlled by a critical coupling limit factor
℘crit. The transition occurs when max(℘p, ℘c) > ℘crit. The geometry being
fixed (Table 1) and the coupling parameters (℘p and ℘c) depending only on
the geometry and the flame, the transition will be triggered by increasing
the flame interaction index ni of the flames from ni = 1.57 (weak coupling)
to ni = 8.0 (strong coupling).

4. Validation in a simplified model chamber

Eigenfrequencies and mode structures of the analytical resolution of the
dispersion relation under the low coupling factors assumption (Fig. 7, all
modes except SCp) are first compared to a full 3D acoustic code and to the
direct resolution of Eq. (25) in the case of a simplified 3D PBC configuration
which is used as a toy-model for ATACAMAC and corresponds to a typical
industrial gas turbine.

4.1. Description of the simplified PBC configuration

The 3D geometry (Fig. 8) corresponds to a PBC setup with N = 4 burners
similar to Fig. 2 (characteristics defined in Tab. 1). The mean radii Rp and
Rc of the cylindrical chamber and plenum are derived from the half perime-
ter Lp and Lc of the analytical model. Boundary conditions correspond to
impermeable walls everywhere.

4.2. Description of the 3D acoustic code

To validate the assumptions used in ATACAMAC formulation, it is in-
teresting to compare its results to the output of a full 3D acoustic solver.
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Chamber
Half perimeter Lc 6.59 m
Section Sc 0.6 m2

Plenum
Half perimeter Lp 6.59 m
Section Sp 0.6 m2

Burner
Length L0

i 0.6 m
Section Si 0.03 m2

Fresh gases
Mean pressure p0 2 · 106 Pa
Mean temperature T 0

u 700 K
Mean density ρ0

u 9.79 kg/m3

Mean sound speed c0
u 743 m/s

Burnt gases
Mean pressure p0 2 · 106 Pa
Mean temperature T 0 1800 K
Mean density ρ0 3.81 kg/m3

Mean sound speed c0 1191 m/s
Flame parameters
Interaction index ni variable −
Time-delay τi variable s
Thickness efl 0.03 m

Table 1: Parameters used for numerical applications. They correspond to a typical large
scale industrial gas turbine.

Here, AVSP was used: AVSP is a parallel 3D code devoted to the resolu-
tion of acoustic modes of industrial combustion chambers [23]. It solves the
eigenvalues problem issued from a discretization on unstructured meshes of
the Helmholtz equation with a source term due to the flames. The mesh
used here (Fig. 8, left) is composed of 230,000 cells which ensures grid inde-
pendence. The flame-acoustic interaction is taken into account via the FTF
model [22] similar to the expression used in Eq. (13). The local reaction term
is expressed in burner i as:

.
ωi= nu,i e

jωτi w�(xref,i) (41)
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Figure 8: 3D toy-model to validate the ATACAMAC methodology. Perfect annular cham-
ber and plenum connected by four burners (N = 4). : line in the plenum (PL) and
in the chamber (CL) along which absolute pressure and phase will be plotted

The local interaction index nu,i describes the local flame-acoustic inter-
actions. The values of nu,i are assumed to be constant in the flame zone i
(Fig. 8) and are chosen to recover the global value of interaction index ni of
the infinitely thin flame when integrated over the flame zone i [23]. They
are also assumed to be independent on frequency for simplicity. Heat release
fluctuations in each flame zone are driven by the velocity fluctuations at the
reference points xref ,i located in the corresponding burner. In the infinitely
thin flame model these reference points are the same as the flame locations
zf . In AVSP, the reference points were placed a few millimeters upstream of
the flames (Fig. 8) in order to avoid numerical issues. This was proved to
have only a marginal effect on the computed frequency [23, 24].

4.3. Modeling procedure for ATACAMAC

A one-dimensional model of a simplified PBC configuration described in
Section 4.1 is obtained using characteristics defined in Tab. 1. Even though
the present model is one-dimensional, simple corrections can be incorporated
to capture 3D effects.

First, the burners considered in Fig. 8 are long narrow tubes for which
end effects modify acoustic modes. In the low frequency range, this can be
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accounted for [25] and a standard length correction for a flanged tube [26] is
applied at the two burner’s ends. The corrected length Li for the burners is:

Li = L0
i + 2× 0.4

�
4Si/π (42)

where L0
i is the ith burner length without correction and Si is the surface of

the ith burner.
Second, the position of the compact flames is defined via the parameter

α = zf,i/Li where Li is the corrected burner length and zf,i is the position
of the center of the flame. In Sections 5 and 6, the flame position parameter
is set to α = 0.88, a location chosen because it is far away from all pressure
nodes.

5. Mode analysis of a weakly coupled PBC configuration with four
burners (N = 4)

Under the weak coupling factors assumption (0 < ℘p,i � 1 and 0 <
℘c,i � 1) frequencies of the whole system can be analyzed considering small
perturbations around the chamber alone (FDCp mode at k0Lc = pπ) or
plenum alone (FDPp mode at k0

uLp = pπ) wave numbers leading to two
families of modes which appear separately (Section 3.3):

kLc = pπ + �c (WCCp) (43)

or

kuLp = pπ + �p (WCPp) (44)

where p is the mode order, �c << pπ and �p << pπ. Since the two families
of modes behave in the same manner (only radius, density and sound speed
are changed), only WCCp modes will be detailed in this Section.

Due to symmetry considerations of the case N = 4, odd-order modes
(p = 2q + 1, q ∈ N) and even-order modes (p = 2q, q ∈ N) will not behave
in the same manner and are analyzed in Section 5.1 and 5.2 respectively.

5.1. Odd-order weakly coupled modes of the PBC configuration with four
burners (N = 4)

Considering odd order modes (p = 2q + 1, q ∈ N) with the low coupling
limit assumption (0 < ℘p,i � 1 and 0 < ℘c,i � 1) leads to the expansion
kLc = pπ + �c (for a WCCp mode). A Taylor expansion can therefore be
used to obtained a simplified analytical expression of the transfer matrix of
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the ith sector and consequently of the dispersion relation (Eq. (25)). This
approach is fully detailed in Appendix A for the WCC1 mode on a single
burner case (N = 1) for simplicity. The same approach for WCCp modes
and four burners (N = 4) leads to (see Tab. A.2):

sin(pπβ)2[�2c − 4�cΓ
0
4 + 4Γ0

4] + o(�2c) = 0 (45)

where β = c0Lp

c0uLc
and Γ0

4 is the value of Γ4 when kLc = pπ. Note that all the
burners share the same length and cross section in this configuration so that
the index i of Eq. (20) was removed for simplicity.

The β parameter can be viewed as a tuning parameter between cavities: it
compares the period of the azimuthal modes in the plenum alone (τ 0

p = 2Lp

pc0u
)

and in the chamber alone (τ 0
c = 2Lc

pc0
). In general, the two annular volumes are

not tuned and the periods τ 0
p and τ 0

c of the azimuthal modes of the plenum
and the chamber do not match, i.e. β = τ 0

p /τ 0
c �= l, l ∈ N (for example for

the first chamber and plenum modes (p = 1) of Table 1 where β � 1.60) so
that the only solution to satisfy Eq. (45) is:

�2c − 4�cΓ
0
4 + 4Γ0

4 + o(�2c) = 0 (46)

This quadratic equation has a double root 3 :

�c = 2Γ0
4 (47)

where Γ0
4 is the value of Γ4 (Eq. (20)) at ω = ω0 = pπc0/Lc

Real and imaginary parts of the frequency obtained in Eq. (47) are com-
pared to the exact numerical resolution of the dispersion relation Eq. (25)
and to AVSP results in Fig. 9. A very good agreement is found showing that
the asymptotic expression of Eq. (47) is correct.

From Eq. (47), a simple analytical stability criterion can be derived as

3This approach can be extended at higher orders to unveil plenum/chamber interac-
tions. From a third-order truncation of the dispersion relation (Eq. 25), a second-order
correction on eigenfrequencies found in Eq. (47) is obtained for WCCp modes:

�c = 2Γ0
4 −H(β)Γ0

2Γ
0
3 (WCCp modes)

where H(β) = 4 tan(pπβ/2).
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Figure 9: Eigenfrequency of the WCC1 mode for four burners (N = 4) with ni = 1.57
as a function of τ/τ0

c . : Numerical resolution of the dispersion relation Eq. (25),
�: Analytical model prediction Eq. (47), ×: AVSP results

explained in Appendix B for WCCp modes (Eq. (B.3)):

sin

�
2π

τ

τ 0
c

�

� �� �
effect of τ

sin

�
2pπ

αLic
0

Lcc0
u

�

� �� �
effect of α

< 0 (WCCp modes) (48)

where τ 0
c = 2c0

pLc

Time-delay τ of the FTF and flame position α have an effect on the
stability and can be studied separately:

• Time-delay - From Eq. (48), a critical time-delay controlling the tran-
sition from stable to unstable regimes can be obtained: τcrit = τ 0

c /2 =
Lc

pc0
for WCCp modes. This result being also valid for WCPp modes

(see Eq. (B.4) leading to the critical time-delay τ 0
p /2 = Lp

pc0u
), stability

ranges of the two first azimuthal modes WCC1 and WCP1 can be dis-
played simultaneously (Fig. 10). It shows that the region where both
the WCC1 and WCP1 modes are stable is smaller than the stability
ranges of modes taken separately: stabilizing one mode of the system
cannot ensure the stability of the whole system. Of course, this re-
sult does not include any dissipation or acoustic fluxes through the
boundaries [27] which would increase stability regions.
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Figure 10: Stability maps (Eq. (48)) of the two first azimuthal modes (p = 1) for a flame
located at α � 0.88: WCP1 (top), WCC1 (middle) and both WCP1 and WCC1 (bottom)

• Flame position - Similarly to longitudinal modes in the Rijke tube
[13, 2, 28], the flame position (defined by α) also controls the stability
(Eq. (48)). Appendix C demonstrates an analytical expression of the
critical flame position for weakly couple modes (Eq. (C.2)) at which
the stability change occurs. These expressions are close to the solution
found in Rijke tubes (Eq. (C.1)) and have been validated for several
weakly coupled modes (Tab. C.4 and Fig. C.20).

5.2. Even-order modes of the PBC configuration with four burners (N = 4)

Considering even-order WCCp modes (p = 2q, q ∈ N) and using Eq. (25)
with the low coupling limit assumption (0 < ℘p,i � 1 and 0 < ℘c,i � 1), the
dispersion relation (Eq. (25)) becomes (Tab. A.2):

sin(pπβ/2)2[�2c − 4�cΓ
0
4] + o(�2c) = 0 (49)

where β = kuLp

kLc
and Γ0

4 is the value of Γ4 when kLc = pπ.
When chamber and plenum frequencies do not match, i.e. β �= 1 (for

example for the WCC2 mode of Table 1 where β � 1.60), the only solution
to satisfy Eq. (49) is to have:

�2c − 4�cΓ
0
4 + o(�2c) = 0 (50)
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This quadratic equation has two distinct roots:

�c = 0 and �c = 4Γ0
4 (51)

The first solution (�c = 0) of Eq. (51) corresponds to modes which are
not affected by the flames: the symmetry of the four burners case (N = 4)
allows even-order modes to impose a pressure node at each burner location
suppressing the flame effect on these modes which become neutral.

The second solution of Eq. (51) (�c = 4Γ0
4) correspond to modes which are

modes strongly affected by the flame because it imposes a pressure anti-node
(maximum pressure) downstream of each burner.

Real and imaginary parts of the frequency obtained from Eq. (51) are
compared to the numerical solutions of the dispersion relation Eq. (25) and
to AVSP results in Fig. 11. A very good agreement is found and the non-
perturbed mode (�c = 0) is correctly captured (straight lines).
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Figure 11: Eigenfrequency of the WCC2 mode for four burners (N = 4) with ni = 1.57
as a function of τ/τ0

c . : Numerical resolution of the dispersion relation Eq. (25),
�: Analytical model prediction Eq. (51), ×: AVSP results

From Eq. (51) and using Appendix B, a simple stability criterion can
also be derived for WCCp even-order modes (Eq. (B.3)):

sin(2πτ/τ 0
c ) sin

�
2pπ

αLic
0

Lcc0
u

�
< 0 (WCCp modes) (52)

This result being also valid for WCPp modes (Eq. (B.4)) and using the
results from Section 5.1, stability maps of the WCC1, WCC2, WCP1 and
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WCP2 modes can be plotted together (Fig. 12) highlighting the difficulty to
get a stable system in the absence of dissipation as supposed here: considering
only these four modes, no stable region is found for time-delays lower than
19.1ms in the case described in Tab. 1 (Fig. 12).
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Figure 12: Stability maps of the WCC1, WCC2, WCP1 and WCP2 modes

5.3. Mode structure of weakly coupled modes

In weakly coupled situations, acoustic activity is present only in one an-
nular cavity and in the burners as shown in Fig. 13 for the WCC1 mode (the
same mode with the opposite rotation direction is also captured by AVSP
but not shown here). Fig. 14 shows that this mode is purely rotating in
the chamber while it is mixed in the plenum. Therefore, the combination of
the two WCC1 modes with the clockwise rotation (show in Fig. 14) and the
anti-clockwise rotation (not shown) enable to have purely rotating or purely
standing modes but not necessarily in the two annular cavities at the same
time.

5.4. Stability map of weakly coupled situations

Sections 5.1 and 5.2 focused on weakly coupled situations where the low
coupling factor assumption (℘p � 1 and ℘c � 1) is valid. Stability maps
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Figure 13: Pressure mode structures (p� = |p�|cos(arg(p�))) obtained with AVSP with
pressure isolines (left) and pressure along the azimuthal direction in the annular chamber
( ) and annular plenum ( ) for the WCC1 mode of a PBC configuration with four
burners (N = 4) and ni = 1.57 at the time-delay: τ/τ0
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Figure 14: Pressure phase of the WCC1 mode obtained with AVSP at ni = 1.57 along
the azimuthal direction in the annular chamber ( ) and the annular plenum ( ) for
time-delay: τ/τ0

c = 0

of perturbed modes (i.e. � �= 0) in the complex plane [Re(f), Im(f)] are well
suited to show differences between the several regimes - weakly coupled and
strongly coupled situations. These maps are oriented circles ( (WCP1)
and (WCC1) in Fig.15) centered at the frequency f(ni = 0) � f0

which corresponds to a passive flame mode (ni = 0: × in Fig.15) and is

approximately the frequency of the cavity alone (f0 = pc0

2L
). The radius is

proportional to the coupling factor which can be increased via the surface
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ratios (Si/Sp and Si/Sc) or the flame interaction index ni. In the weakly
coupled regime, WCCp and WCPp modes do not strongly interact as shown
in Fig. 15: WCP1 and WCC1 live separately.
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Figure 15: Eigenfrequencies of both WCP1 and WCC1 modes (top) and zoom on WCP1
(bottom left) and WCC1 (bottom right) when the flame delay changes for PBC config-
uration with four burners (N = 4) with ni = 0.2, 0.4, 0.6 and 0.8, ×: Passive flame
(ni = 0), : WCP1 mode, : WCC1 mode, �: τ/τ0

p = 0 or τ/τ0
c = 0 oriented in

the increasing τ direction, �: τ/τ0
p = 1/2 or τ/τ0

c = 1/2

6. Mode analysis of a strongly coupled PBC configuration with
four burners (N = 4)

For weakly coupled cases (Section 5), the frequencies of the azimuthal
modes in the plenum and in the chamber are only marginally affected by the
flame (Figs. 9 and 11) so that they can never match (Fig. 15). However, if
the flame interaction index (ni) is larger, the frequencies of the azimuthal
modes of the annular plenum and the annular chamber change more and
the possibility of having there two frequencies match opens an interesting
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situation where the whole system can resonate. This corresponds to the
strongly coupled modes of order p (referred as ”SCp” modes) studied in this
section.

Figure 16 shows the stability maps of the WCC1 ( ) and WCP1 ( )
modes obtained with low flame interaction index (ni = 5.0 and 6.0) as well as
the SC1 (◦) and SC2 modes (•) obtained for higher flame interaction index
(ni = 7.0 and 8.04 at the zero frequency limit). Three points in the SC2
trajectory with ni = 8.0 corresponding to several time-delays (τ/τ 0

c = 0 (A),
τ/τ 0

c = 0.54 (B) and τ/τ 0
c = 0.9 (C)) are displayed in Fig. 16 and will be

used as typical cases to show pressure structures in the annular plenum and
chamber.
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Figure 16: Eigenfrequencies on the complex plane for a PBC configuration with four
burners (N = 4), : WCP1 mode (ni = 5.0 and 6.0), : WCC1 mode (ni = 5.0 and
6.0), ◦: SC1 mode (ni = 7.0 and 8.0), •: SC2 mode (ni = 7.0 and 8.0), �: τ/τ0

p = 0 or
τ/τ0

c = 0 oriented in the increasing τ direction and �: τ/τ0
p = 1/2 or τ/τ0

c = 1/2

4Note that the typical order of magnitude of the interaction index ni is Tb/Tu − 1
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For low flame interaction index (ni = 5.0 and 6.0), the first two modes
always have different frequencies and can be identified as plenum (WCPp:

) or chamber modes (WCCp: ) as studied in Section 5.
However, for higher flame interaction indices (ni = 7.0 and 8.0) a bifurca-

tion occurs: frequencies of the annular plenum, burners and annular chamber
can match leading to strongly coupled modes where the whole system res-
onates. The trajectory of the first strongly coupled mode (SC1: ◦) goes from
the WCP1 mode (for small time-delays τ < τ 0

p /2) to a longitudinal mode
(not presented here around 40Hz, for large time-delays τ > τ 0

p /2). A second
strongly coupled mode (SC2: •) has a trajectory in the complex plane com-
ing from the WCC1 mode (for small time-delays τ < τ 0

c /2) and going to the
WCP1 mode (for large time-delays τ > τ 0

c /2).
The stability map of the SC2 mode (•) at ni = 8.0 has been validated

against the 3D finite element solver AVSP (Fig. 17). A good agreement be-
tween AVSP (×) and the numerical resolution of Eq. (25) ( ) is found.
The growth rate is slightly underestimated but the global trend is well cap-
tured: the mode is fully unstable for all time-delays which corresponds to a
new behavior compared to the weakly coupled modes (WCPp and WCCp).
The analytical approach developed in Section 5 for the weakly coupled regime
(� in Fig. 17) is not able to capture this new highly non-linear behavior.
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Figure 17: Eigenfrequency of the first order chamber mode (p = 1) for four burners
(N = 4) as a function of τ/τ0

c with ni = 8.0. : Numerical resolution of Eq. (25),
�: Analytical model prediction for weakly coupled situations (Eq. (47)), ×: AVSP results

When the flame interaction index is sufficiently large (ni > 7.0), i.e. when
the flame is sufficiently intense, the modes of plenum and chamber lock-in

30



and become unstable for all time delays.
Pressure structures (p� = |p�|cos(arg(p�))) along the azimuthal direction

in the plenum (PL line in Fig. 8) and in the chamber (CL line in Fig. 8)
obtained with AVSP for the SC2 mode are displayed in Fig. 18 for a high
flame interaction index (ni = 8.0) and several time-delays (A: τ/τ 0

c = 0,
B: τ/τ 0

c = 0.54 and C: τ/τ 0
c = 0.9 from Fig. 16). For null time-delays (A

in Fig. 16), acoustic activity is only present in the chamber ( ) and the
frequency is close to the WCC1 mode. The acoustic activity in the second
annular cavity (i.e. the plenum: ) grows with the time-delay τ . For
τ/τ 0

c = 0.54ms (B in Fig. 16) a strong interaction with the burners appears
leading to higher growth rates. Surprisingly, this case corresponds only to
a moderate acoustic activity in the second annular cavity (i.e. the annular
plenum: ). For τ/τ 0

c = 0.9 (C in Fig. 16) a first order mode is present in
both annular cavities highlighting a strongly coupled situation. This strong
interaction between plenum and chamber revealed by the presence of acoustic
activity in both annular cavities leads, however, to a marginally unstable
mode.

Fig. 19 shows the pressure phase in the annular plenum ( ) and in the
annular chamber ( ) for several time-delays. The same mode with opposite
direction is also found with AVSP but not shown here. For small time-delay
(τ/τ 0

c = 0 for case A and τ/τ 0
c = 0.54 for case B of Fig. 16), pressures

in the plenum and in the chamber have different natures: purely spinning
mode in the chamber (linear phase) and a mixed mode in the plenum (wave
shape of the phase). The combination of clockwise and anti-clockwise mode
can generate purely spinning or purely standing mode but not necessarily in
both annular cavities at the same time. However, higher time-delays cases
(as for case C where τ/τ 0

c = 0.9) correspond to strongly coupled situations
where both annular cavities lock-in (Fig. 18 C). In such a case, pressure in
the chamber and plenum exhibit the same nature: purely spinning in both
cavities in Fig. 19 C (the same mode with the opposite rotating direction is
also found by AVSP but not shown here). The combination of the purely
spinning modes (clockwise and anti-clockise) can also lead to standing modes
in both annular cavities at the same time: this is a specific behavior only
encountered in locked-in modes as case C.

Finally, it demonstrates that a highly unstable mode does not necessarily
exhibit strong acoustic activity in both annular cavities (as for case B) and
that a mode where acoustic activity appears in the whole system can be only
marginally unstable (as for case C). Moreover, the phase-lag between pressure
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Figure 18: Pressure structures and isolines (p� = |p�|cos(arg(p�))) obtained with AVSP
(left) and pressure along the azimuthal direction in the annular chamber ( ) and
annular plenum ( ) for the SC2 mode of a PBC configuration with four burners (N = 4)
and ni = 8.0 at several time-delay: τ/τ0

c = 0 (top), 0.54 (middle) and 0.9 (bottom). The
configuration corresponds to fFDP1 = 56 Hz and fFDC1 = 90 Hz

in the annular cavity and the annular chamber as well as the nature of the
mode (spinning, standing or mixed) changes when acoustic activity is present
in both annular cavities, a property which could be checked experimentally.
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A) First chamber mode - ni = 8.0, τ/τ0
c = 0

B) First chamber mode - ni = 8.0, τ/τ0
c = 0.54
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Figure 19: Pressure phase obtained with AVSP for the SC2 mode at ni = 8.0 along the
azimuthal direction in the annular chamber ( ) and the annular plenum ( ) for
several time-delays: τ/τ0

c = 0 (top), 0.54 (middle) and 0.9 (bottom).

7. Conclusion

To complement expensive Large Eddy Simulation [29] and Helmholtz [23]
3D codes used to study azimuthal modes in annular combustors, simple tools
are required to understand the physics of these modes and create pre-designs
of industrial combustors. This paper describes a simple analytical theory to

33



compute the azimuthal modes appearing in these combustors. It is based
on a one-dimensional acoustic network where N burners are connected to an
annular plenum and chamber. A manipulation of the corresponding acoustic
equations in this configuration leads to a simple analytical dispersion relation
which can be solved numerically. This method allows to exhibit coupling fac-
tors between plenum, burners and chamber which depend on area ratios and
flame transfer function (FTF). For N = 4, a fully analytical resolution can
be performed in specific situations where coupling factors of the FTF [11, 13]
are small and simple stability criteria can be proposed. For higher coupling
factors, a bifurcation occurs yielding a strongly coupled regime where acous-
tic activity is present in both annular cavities. The nature of such a mode
(standing, spinning or mixed) changes with the time-delay. Purely spinning
or purely standing modes in the annular plenum and in the chamber were
found simultaneously only when a strongly coupled situation occurs (Fig. 19
C). For strongly coupled cases, a PBC configuration where two annular cav-
ities are connected to N burners is required to predict correctly eigenmodes
and stability maps. This analytical tool has been compared systematically
to the predictions of a full three-dimensional Helmholtz solver. A very good
agreement is found showing that the present asymptotic resolution is correct.
These results show that a simple analytical formulation to study azimuthal
modes in annular combustors is an interesting tool which can be used as a
pre-design tool or as an help to post-process acoustic or LES simulations.

Appendix A. Analytical dispersion relation of a PBC configura-
tion with a single burner (N = 1)

The analytical dispersion relation (Eq. (25)) is obtained for a general
PBC configuration with N burners. To explain the ATACAMAC approach
leading to the analytical eigenfrequencies of the system, the case of a single
burner (N = 1) will be detailed.

Considering only one burner, the transfer matrix M = R1T1 − Id of the
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whole system is:

M =




cos(2kuLp)− 1 −sin(2kuLp)
sin(2kuLp)− 2cos(2kuLp)Γ1 2sin(2kuLp)Γ1 + cos(2kuLp)− 1

0 0
2cos(kuLp)Γ3 −2sin(2kuLp)Γ3

...

...

0 0
2cos(2kLc)Γ2 −2sin(2kLc)Γ2

cos(2kLc)− 1 −sin(2kLc)
sin(2kLc)− 2cos(2kLc)Γ4 2sin(2kLc)Γ4 + cos(2kLc)− 1


 (A.1)

In the general case with N burners, a Taylor expansion of this matrix has
to be performed as a first simplification. Here, the matrix is simple enough to
compute analytically the determinant leading to the exact dispersion relation:

+ (Γ1Γ4 − Γ2Γ3)sin(2kLc)sin(2kuLp)

− 2Γ1[1− cos(2kLc)]sin(2kuLp)

− 2Γ4[1− cos(2kuLp)]sin(2kLc)

+ 4[1− cos(2kLc)][1− cos(2kuLp)] = 0 (A.2)

The dispersion relation Eq. (A.2) is non-linear. The idea is to use a
Taylor expansion at the second (or third) order and to solve it analytically.
The expansion has to be done around a FDCp (i.e. kLc = pπ + �c) or FDPp
(i.e. kuLp = pπ + �p) mode (see Section 3.3 for details). For instance, in the
case of the WCC1 mode (kLc = π + � which implies kuLp = β(π + �c) where

β = c0Lp

c0uLc
), the dispersion relation Eq. (A.2) becomes:

[cos(2πβ)− 1][�cΓ
0
4 − �2c + o(�2c)] = 0 (A.3)

where Γ0
4 is the value of Γ4 evaluated at kLc = pπ

Note that solutions of Eq. (A.3) being �c = Γ0
4, it justifies that the term

�cΓ
0
4 is of the same order of magnitude than �2c and therefore has to be kept

in the analytical dispersion relation Eq. A.2.
Analytical dispersion relations for N > 1 are more complex to derive but

follow a similar procedure. When N = 4, the dispersion relation of Tab. (A.2)
are obtained:
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Type Odd/Even Second-order dispersion relation (o(�2))

WCC
Odd sin(pπβ)[�2 − 4�Γ0

4 + 4Γ0
4] = 0

Even sin(pπβ/2)[�2 − 4�Γ0
4] = 0

WCP
Odd sin(pπ/β)[�2 − 4�Γ0

1 + 4Γ0
1] = 0

Even sin(pπ/(2β))[�2 − 4�Γ0
1] = 0

Table A.2: Analytical expressions of wave number perturbation for WCCp and WCPp
azimuthal modes

Appendix B. Stability criterion of weakly coupled modes for a
four burners configuration (N = 4)

A mode is stable if the imaginary part of the wave number is negative.
Table B.3 shows analytical expressions of the wave number perturbation �
for WCPp and WCCp modes:

Type Odd/Even Wave number perturbation (�)

WCC
Odd 2Γ0

4 −H(β)Γ0
2Γ

0
3

Even 2Γ0
4 −G(β)Γ0

2Γ
0
3

WCP
Odd 2Γ0

1 −H(1/β)Γ0
2Γ

0
3

Even 2Γ0
1 −G(1/β)Γ0

2Γ
0
3

Table B.3: Analytical expressions of wave number perturbation � for WCCp and WCPp

modes where H(x) = 4tan(pπx/2) and G(x) = 4 sin(pπx/2)
cos(pπx/2)−(−1)p/2 have real values.

Analytical stability criteria can be derived by calculating the sign of
Im(Γ0

1), Im(Γ0
4) and Im(Γ0

2Γ
0
3) using the following definitions: F∗ is the

complex conjugate of the flame parameter F = ρ0c0

ρ0
uc0u

�
1 + n.ejω0τ

�
, θ0 =

ω0(1 − α)Li/c
0 ∈ R and θ0

u = ω0αLi/c
0
u ∈ R. The notation D refers to

D = |cos(θ0) sin(θ0
u) + F sin(θ0) cos(θ0

u)|2
With these notations, the sign of the imaginary part of these coupling

parameters are:

Im(Γ0
1) = − Si

4SpD
sin(2θ0)Im(F) (B.1)
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Im(Γ0
4) =

Si

4ScD
sin(2θ0

u)Im(F) (B.2)

Eqs. (B.1 - B.2) lead to simple analytical stability criteria for WCCp and
WCPp modes:

sin(2πτ/τ 0
c ) sin

�
2pπ

αLic
0

Lcc0
u

�
< 0 for WCCp modes (B.3)

sin(2πτ/τ 0
p ) sin

�
2pπ

(1− α)Lic
0
u

Lpc0

�
> 0 for WCPp modes (B.4)

Appendix C. Flame position effect on annular combustors stabil-
ity

Similarly to longitudinal modes in the Rijke tube [13, 2, 28], the flame
position (defined by α) also controls the stability (Eq. (48)). In a quasi-
isothermal Rijke tube, for common (small) values of the FTF time-delay τ ,
stability of the first longitudinal mode is obtained only when the flame is
located in the upper half of the tubes [30, 31], i.e. α > 1/2, which can be
extended for the p-th longitudinal mode:

2m + 1

2p
< α <

2(m + 1)

2p
, ∀m ∈ N (Rijke tube) (C.1)

Eq. (48) highlights a similar behavior for azimuthal modes in a PBC
configuration: for a WCCp mode with small values of the time-delay τ <
τ 0
c /2, sin(2π τ

τ0
c
) is positive and Eq. (48) leads to:

2m + 1

2p

Lcc
0
u

Lic0
< α <

2(m + 1)

2p

Lcc
0
u

Lic0
, ∀m ∈ N (WCCp modes) (C.2)

Usually, the critical flame position αcrit = Lcc0u
2pLic0

is larger than unity
because the half-perimeter of the annular cavity is much longer than the
burner length (Lc � Li). Since the range of the normalized flame position α
is [0−1], the flame position may affect the stability only for high-order modes
(i.e. p large enough to get αcrit < 1). For instance, in the case described
in Table 1 with the corrected burner length Li � 0.76 m, the critical flame
positions αcrit and the stability ranges (Eq. (C.2)) are shown in Tab. C.4.

The change of stability with the flame position α for small time-delays
predicted in Tab. C.4 has been validated using the numerical resolution of
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Mode order (p) p = 1 p = 3 p = 5 p = 7

αcrit = Lcc0u
2pLic0

2.70 0.9 0.54 0.39

α satisfying Eq. (C.2) none [0.9 - 1] [0.54− 1] [0.39− 0.78]

Table C.4: Critical flame positions αcrit and flame positions satisfying Eq. (C.2) for WCCp
odd-order modes of the case described in Table 1

the dispersion relation (Eq. (25)) in Fig. C.20. The critical flame positions
obtained in Tab. C.4 are well captured for all modes. A situation where the
plenum/chamber interaction is not negligible is shown for the WCC1 mode
with α = 0.3 (i.e. the flame is close the pressure node imposed by the large
annular plenum).
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Figure C.20: Growth rate for several flame positions α of the WCC1 (α = 0.3, 0.6, 1.0 -
left), WCC3 (α = 0.5, 0.8, 0.85, 0.9, 1.0 - middle) and WCC5 (α = 0.5, 0.55, 0.6 - right)
modes for small time delays (τ/τ0

c < 1/2) using the numerical resolution of the dispersion
relation (Eq. (25)) with ni = 1.57
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Abstract

This study presents an analytical method to study azimuthal modes in
annular combustors where N burners are connected to an annular cham-
ber. Flames in each burner are supposed to be compact and are modeled
using a Flame Transfer Function (FTF) characterized by a coupling factor
and a phase-lag which can differ from burner to burner to analyze the effect
of asymmetry on combustion instabilities. When coupling factors are small
(weak coupling) a fully analytical resolution is presented, allowing to include
non-symmetric situations with an arbitrary number of burners N . First, a
symmetric configuration with N = 3 identical burners is studied. Only two
mode behaviors are observed: 1) The two components of the azimuthal mode
have the same frequency and are spinning (degenerate doublets) 2) They are
standing and have different frequencies (non-degenerate singlets), the latter
being rarely encountered in real engines. For non-symmetric cases, results
show that azimuthal modes (doublets) can degenerate into non-degenerate
pairs (singlets) if the system’s symmetry is changed in a particular way, as
mentioned in the literature and recent Helmholtz simulations. A splitting
strength measuring the effects of asymmetry is shown to control the degen-
eracy of the modes. Finally, the effect of symmetry breaking is investigated
in a N = 24 burners case, representative of industrial gas turbines. Results
are compared to experimental observations using CBO (Cylindrical Burner
Outlet) which are added to the burners to control combustion instabilities in
certain gas turbines by changing the coupling factor and the phase-lag of cer-
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tain burners. A simple criterion is derived to provide a necessary condition
to stabilize an annular combustor. Results show that symmetry breaking can
change the mode behavior but has no real impact on the control of combus-
tion instabilities in the weakly coupled regime.

Keywords: azimuthal modes, analytical, combustion instabilities,
symmetry, control

1. Introduction

Combustion instabilities remain a severe problem in the development of
modern gas turbines. Lean premixed combustors, designed to reduce signifi-
cantly nitric oxides emissions are especially prone to these oscillations which
can lead to vibrations and structural damage [1, 2, 3].

These unsteady phenomena come from the interaction between acous-
tics and heat release fluctuations which act as a volume acoustic source [4].
In annular combustion chambers, these instabilities often take the form of
azimuthal modes in the annular cavity perturbed by burners and flames
[2, 3, 5, 6, 7, 8].

Industrial engines often have identical burners. Therefore, perfectly ax-
isymmetric configurations have been intensively investigated using theoret-
ical, acoustic and LES tools and more rarely experiments [5, 6, 7, 8, 9, 10,
11, 12]. Annular chambers exhibit specific azimuthal modes. These modes
can by standing or spinning in the azimuthal direction [13, 14]. Azimuthal
modes are often ”degenerate”: two modes are found at the same frequency
(two counter-rotating spinning modes for example). This property can be
affected strongly by symmetry modification and it has a direct effect on the
unsteady activity as shown by studies of sound produce by bells [15] where
non-degenerate but very close azimuthal modes (also called ”non-degenerate
singlets”) lead to ”warble”, an undesired modulation due to the coupling of
two modes with different but very close frequencies.

The effect of asymmetry on the eigenfrequencies and nature of azimuthal
modes in annular chambers is still an open question. Earlier work of Oe-
felein and Yang [16] focused on symmetry breaking using baffles to prevent
combustion instabilities in the F-1 rocket engines. They suggested that asym-
metry could add degrees of freedom in the system in order to control unstable
modes using passive techniques. Stow and Dowling [17] applied azimuthal
variations using Helmholtz resonators on an annular academical test bench.
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Similarly, Berenbrink and Hoffmann [18] and Krueger et al. [19] (reviewed
by Culick et al. in [20]) broke the symmetry of an annular engine by using
CBOs (Cylindrical Burner Outlet, Fig. 1-a) to modify the time-delay τi of
some of the 24 flames and limit instabilities in a N = 24 burners industrial
combustor. They varied the number of CBOs installed among the 24 burners
showing that adding CBOs always improves stability (Fig. 1-b). However, it
was not clear if the stabilization was due to the CBO devices rather than, as
argued by the authors to, symmetry breaking in this particular case. Lately,
Moeck et al. [21] and Gelbert et al. [22] carried out an annular Rijke experi-
ment with heating grids acting like flames. They introduced circumferential
variations through asymmetric power distributions of the grids to modify the
azimuthal modes behavior. They noticed that the staging pattern can split
degenerate azimuthal modes (doublets) into non-degenerate pairs (singlets)
as suggested in [15] for bells if the system’s symmetry is changed.

a) b)

Figure 1: a) Addition of the cylindrical burner outlet (CBO) to the Siemens Hybrid
Burner. b) Stability limits for different CBO configurations on a N = 24 burners annular
gas turbine (Berenbrink and Hoffmann [18])

Recently, theories have been proposed to study the effect of asymmetry on
the existence and nature of azimuthal modes (standing, spinning or mixed).
In [23], Schuermans et al. suggest that standing modes are observed for low
amplitudes but that, at higher amplitudes, one of the two rotating modes
eventually dominates. However, Sensiau et al. [14] have shown that even in
the linear regime, any change in symmetry can lead to the appearance of
one rotating mode dominating the other one: when the rotational symmetry
of the configuration is broken, the standing azimuthal mode is changed into
two counter-rotating azimuthal modes with different growth rates so that
one of them dominates the other. Finally, Noiray et al. [24] have proved that
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the 2pth Fourier coefficient of the heat release, temperature or even acoustic
losses azimuthal distribution (where p is the order of the azimuthal mode
considered) strongly impacts the frequency as well as the mode nature on an
annular rig. Dawson et al. [7, 8] have also shown that the modes nature can
result from the interaction with the mean flow by breaking symmetry thanks
to clockwise/anti-clockwise swirlers: they observed a strong correlation be-
tween the bulk swirl direction and the direction of spin.

Noiray et al. [24] studied analytically asymmetry on a annular rig with a
circumferential distribution of heat release, temperature and acoustic losses.
However for the sake of simplicity, this annular rig was simplified and con-
tained no burner at all: no study has been conducted on annular chambers
connected to burners, a configuration which is more realistic of real gas tur-
bine but more difficult to formulate analytically.

The present paper describes an analytical approach to investigate the
effects of symmetry breaking on azimuthal modes in an annular chamber
fed by N identical or non-identical burners called BC (Burner+Chamber,
Fig. 2). This configuration allows the investigation of asymmetry’s effect on
eigenfrequencies and nature of circumferential modes. The model is based
on a network view of the combustion chamber [5].

This paper is organized as follows: Section 2 briefly describes the princi-
ple of the acoustic network model called ATACAMAC (”Analytical Tool to
Analyze and Control Azimuthal Modes in Annular Combustors”) and how an
analytical dispersion relation can be obtained in such a configuration (more
details can be found in [5]). In Section 3, analytical calculations of eigenfre-
quencies are presented for both an unperturbed case (annular cavity alone)
and for a general non-symmetric BC configuration (Fig. 2). Section 4 de-
scribes the test cases as well as the 3D Helmholtz solver used to validate the
ATACAMAC results. Two validation cases are presented : a chamber with
N = 3 burners and a second one with N = 24 burners. In Section 5, AT-
ACAMAC is applied to the BC configuration with N = 3 identical burners
(Section 5.1) and then N = 3 different burners (Section 5.2), highlighting
the effect of circumferential patterns on eigenfrequencies and modes nature.
The ATACAMAC results are systematically compared to those provided by
the 3D acoustic code. Finally, in Section 6, the effects of asymmetry on
instabilities are investigated in a N = 24 burners configuration typical of
real engines. Results are compared to observations made in real gas turbine
engines [18, 19].
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Figure 2: BC configuration to study unstable modes in annular chambers

2. A network model for a BC (Burner+Chamber) non-symmetric
configuration

2.1. Model description

This study focuses on a BC (Burners+Chamber) configuration where an
annular chamber is fed by N burners (Fig. 2). An impedance Z is imposed
at the upstream end of each burner. Mean density and sound speed in the
annular chamber are noted ρ0 and c0. Mean density and sound speed of the
unburnt mixture in the burners are noted ρ0

u and c0
u. The perimeter and the

section of the annular chamber are noted 2Lc = 2πRc and Sc respectively.
The length and section of the ith burner are Li and Si. The position along
the annular cavity is given by the angle θ defining an abscissa xc = Rcθ. The
location of the flames is similar in all burners and is given by the normalized
abscissa α = zf,i/Li (Fig. 2)

This model is limited to situations where pressure fluctuations depend
on the angle θ (or x) but not on the axial direction z in the chamber (they
depend on the coordinate z only in the burners). This case can be observed in
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combustors terminating in choked nozzles which behave almost like a rigid
wall (i.e. u′ = 0 under the low upstream Mach number assumption [25]).
Since the chamber inlet is also close to a velocity node, modes which have
no variation along z can develop in the chamber, as shown by recent LES in
real engines [26].

Parmentier et al. [5] have introduced a simple analytical methodology
called ATACAMAC (for Analytical Tool to Analyze and Control Azimuthal
Modes in Annular Combustors) to predict the frequency and the structure
of modes in such a configuration for a specific mode (i.e. for a given mode
order p, asymmetry and number of burners N). No general background on
stability for asymmetric BC configuration can be found in the literature. This
paper proposes to demonstrate the analytical expression of eigenfrequencies
for a general asymmetric case for any mode order p and any number of
burnersN in order to obtain general rules on stability for annular combustors.
Results on structure and nature of azimuthal modes (spinning, standing or
mixed) will be derived using this analytical study to show how asymmetry can
promote specific modes and modify instabilities as described in the literature
[7, 8, 21, 22, 24].

2.2. ANR methodology to obtain the analytical dispersion relation of asym-
metric annular combustors

To reduce the size of the system, the ANR (Annular Network Reduction)
methodology proposed in [6] is applied: the full annular combustor is split
into N sectors which differ only via the burner/chamber junction (Figs. 3
and 4). Between each sector, a free propagation of azimuthal waves occurs
and can be modeled by a transfer matrix Ri as proposed in [5] (Fig. 4,
propagation):

[
Ri

]
=

[
w 0
0 1

w

]
(1)

where w = e2jkLc/N .
The area where acoustic interaction between the ith burner and the annu-

lar chamber occurs ( in Fig. 3, top right) was investigated by O’Connor
et al. [27, 28, 29] and can be assumed compact. As shown in Fig. 5, us-
ing the equations of acoustic propagation in the cold (0 < z < αLi) and hot
(αLi < z < Li) parts of the burner as well as the jump conditions through the
ith flame (z = αLi), the effect of the whole ith burner on the annular chamber
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can be reduced to a translated impedance Ztr(Z, α, Li, ni, τi) =
p′b,i(z=Li)

ρ0c0u′b,i(z=Li)

[6, 30]:

Ztr =
FSk1−α[jCku

α − Skuα Z] + Ck
1−α[Cku

α Z + jSkuα ]

FCk
1−α[jSkuα Z + Cku

α ] + Sk1−α[jCku
α Z − Skuα ]

(2)

where F = c0ρ0

c0uρ
0
u
(1 + nie

jωτi), Cy
x = cos(xyLi), S

y
x = sin(xyLi), k = ω/c0 and

ku = ω/c0
u.

(p0b,i(z = Li), w
0
b,i(z = Li))

(p0b,i(z = 0), w0
b,i(z = 0))

Z

i-­‐th	
  burner	
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L
i

↵
L

i

i-­‐th	
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Figure 5: Equivalent impedance of the whole i-th burner (which includes the ith active
flame) near the burner/chamber interaction zone (Fig. 4). The translated impedance Ztr
takes into account the upstream impedance Z, the propagation in the cold (0 < z < αLi)
and hot (αLi < z < Li) part of the burner as well as the active flame via the Flame
Transfer Function (ni, τi)

The jump conditions at the burner/chamber junction at null Mach num-
ber read [31, 32]:

p′
i+ 1

2
= p′i+1 = p′b,i(z = Li) (3)
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u′
i+ 1

2
Sc + u′b,i(z = Li)︸ ︷︷ ︸

=

p′
i+1

2
ρ0c0Ztr

Si = u′i+1Sc (4)

Consequently, a transfer matrix T ∗i for the interaction part of Fig. 4 can
be deduced:

[
p′

ρ0c0u′

]

i+1

=
[
T ∗i
] [ p′

ρ0c0u′

]

i+ 1
2

=

[
1 0

2jΓi 1

] [
p′

ρ0c0u′

]

i+ 1
2

(5)

where the coupling parameter Γi [5, 6, 33, 34] (Fig. 4, burner/chamber inter-
action) is directly linked to the equivalent admittance of the whole ith burner
(Ytr = 1/Ztr):

Γi = −j
2

Si
Sc
Ytr(Z, α, Li, ni, τi) (6)

When a velocity node (Z = ∞) or a pressure node (Z = 0) is im-
posed at the upstream end of each burner and flames are located at the
burner/chamber junction (α = 1), these coupling parameters reduce to (from
[5] or using Eqs. (2) and (6)):

Γi =
1

2

Siρ
0c0

Scρ0
uc

0
u

tan(kuLi)
(
1 + nie

jωτi
)

(Z =∞) (7)

Γi = −1

2

Siρ
0c0

Scρ0
uc

0
u

cotan(kuLi)
(
1 + nie

jωτi
)

(Z = 0) (8)

where ku = ω
cu

and (ni, τi) are the interaction index and the time-delay of

the FTF for the ith flame [35].
Finally, in Eq. (5) the transfer matrix T ∗i is recast to use characteristic

waves q± = p′ ± ρ0c0u′ instead of the primitive variables p′ and u′ and leads
to the definition of the matrix Ti:

[
Ti
]

=

[
1 + jΓi jΓi
−jΓi 1− jΓi

]
(9)

From Fig. 4 and [5], the transfer matrix of the ith sector Mi is:

[
q+

q−

]

i+1

=
[
Ti
] [
Ri

]
︸ ︷︷ ︸

Mi

[
q+

q−

]

i

(10)
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Using the periodicity of the system (i.e.

[
q+

q−

]

N+1

=

[
q+

q−

]

1

) and the

equation of one sector (Eq. (10)) leads to:
(

1∏

i=N

Mi

)[
q+

q−

]

1

=

[
q+

q−

]

1

(11)

The system defined by Eq. (11) has non-trivial solutions only if its de-
terminant is null. Therefore, the ANR methodology provides an implicit an-
alytical dispersion relation for the pulsation ω for a general non-symmetric
BC configuration:

det

(
1∏

i=N

Mi − Id
)

= 0 (12)

where Id is the 2-by-2 identity matrix.

3. Analytical calculation of eigenfrequencies and mode structures
in several annular configurations

The analytical dispersion relation (Eq. 12) allows to study symmetry
breaking by investigating the effects of the burners responses (measured by
the N parameters Γi, i ∈ [1, N ]) on the growth rate and the nature of az-
imuthal modes. Several configurations are investigated (Fig. 6) to understand
the effect of symmetry breaking on combustion instabilities.

3.1. Analytical calculation of eigenfrequencies and modes nature in an un-
perturbed annular cavity (without burners and flames)

First, an annular chamber with no burner (i.e. Γi = 0, ∀i ∈ [1, N ])
is studied (Fig. 6, top left). The transfer matrix of each sector (Eq. (10))
reduces to Mi = Ri (Ti = Id): only azimuthal propagation occurs. Conse-
quently Eq. (11) reduces to:

[
wN 0
0 1

wN

] [
q+

q−

]

1

=

[
q+

q−

]

1

(13)

The dispersion relation is therefore wN = 1 where w = e2jkLc/N . Solutions
of Eq. (13) are roots of unity w0 = e2jpπ/N and leads to real eigenfrequencies
of the unperturbed problem:

kLc = pπ so that f =
pc0

2Lc
, ∀p ∈ N (14)
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Figure 6: Typical configurations: Unperturbed (top left), symmetric with identical burners
(top right), pseudo-symmetric configuration (bottom left) and the general non-symmetric
configuration (bottom right)

The equation of the system (Eq. (13)) also provides analytical eigenvec-
tors V associated to the eigenfrequencies f (Eq. (14)). In this situation,
the generated eigenspace {V } is two-dimensional: all azimuthal modes are
degenerated and can be either standing, spinning or mixed. All modes are
neutral (zero growth rate: Im(f)=0).

3.2. Analytical calculation of eigenfrequencies in a symmetric BC configura-
tion with actives flames in the low-coupling limit

Real engines often have identical sectors with the same burners and flame
dynamics (i.e. the same FTF parameters (ni, τi)) and therefore the coupling
parameters Γi and the transfer matrices Mi are the same.

In such a configuration, Parmentier et al. [5] have solved the problem for
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N = 1, N = 2 and N = 4 burners assuming low coupling parameters:

Γi � 1, ∀i ∈ [1, N ] (15)

Under this low coupling assumption, the system is supposed to be close
to the unperturbed problem (Section 3.1) and an asymptotic solution can be
obtained for the wavenumber perturbations ε+ and ε−:1

w± = (1 + E±)w0 + o(E±) i.e. kLc = pπ + ε± (16)

where w± = e2j(pπ+ε±)/N and w0 = e2jpπ/N is the solution of the unperturbed
problem and corresponds to kLc = pπ where p is the mode order, E± = 2j ε

±
N

and j2 = −1.
For instance, Parmentier et al. [5] proved that the two eigenwaves V +

and V − of the first order azimuthal mode (p = 1) in the annular chamber
with N = 4 identical burners share the same frequency and growth rate (i.e.
the mode is degenerated (f+ = f−) and the growth rate corresponds to the
imaginary part of the complex frequency f±):

ε± = −2Γ0 so that Im(f±) = − c0

πLc
Im(Γ0) ∝ n sin(ω0τ) (17)

where Γ0 is the value of Γ±i when ω± = ω0 = pc0π
Lc

and (n, τ) are the FTF
parameters, identical for all burners.

3.3. Analytical calculation of eigenfrequencies in a non-symmetric BC con-
figuration with active flames in the low-coupling limit

Using a symmetric combustor with non-identical burners is a promis-
ing approach for controlling azimuthal modes. This study proposes the full
analytical resolution of all eigenfrequencies of a non-symmetric configura-
tion (Fig. 6, bottom right) using the implicit analytical dispersion relation
(Eq. (12)). Since all burners can be different, all coupling parameters Γi
(Eq. (6)) can be different.

1The two components V + and V − of the azimuthal mode have not necessarily the
same wavenumber perturbation ε±. Therefore the notation w± is used since the azimuthal
propagation of waves w depends on the wavenumber perturbation ε±.
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Assuming small coupling parameters (Eq. (15)), a Taylor expansion of
the transfer matrix of the whole system (M =

∏1
i=N TiRi) at the second

order is performed2:

M =

[
wN [1 + jS −Q(1)] +Q(w) + o(Γ2

i ) j
∑N

i=1 Γi
(

1
w

)N−2i+2
+ o(Γi)

−j∑N
i=1 Γiw

N−2i+2 + o(Γi)
1
wN

[1− jS −Q(1)] +Q( 1
w

) + o(Γ2
i )

]

(18)
where {

S =
∑N

i=1 Γi

Q(x) =
∑N−1

i=1

∑N
j=i+1 ΓiΓjx

N−2(j−i) (19)

From Eq. (18), the dispersion relation at second order is:

det (M − Id) = −w
2N − 2wN + 1

wN
− jS(w2N − 1)

wN

+
N−1∑

i=1

N∑

j=i+1

ΓiΓj[w
2N − wN−2(j−i) − w2(j−i) + 1] + o(Γ2

i ) (20)

Under the low coupling assumption (Eq. (15): Γi � 1,∀i ∈ [1, N ]), the
system is supposed to be close to the unperturbed problem [5]: kLc = pπ+ε±

or w± = (1 + E±)w0 where E± = 2j ε
±
N

and w0 = e2jpπ/N (Eq. (16)). The
coupling parameters Γ±i also depend on the frequency and therefore on ε±

and can be approximated by:

Γ±i (ω) = Γ±i (ω = ω0)︸ ︷︷ ︸
Γ0
i

+
2jε±ω0

N

(
∂Γ±i
∂ω

)

ω=ω0︸ ︷︷ ︸
Γ1
i

+o(ε) (21)

where ω0 = pπc0

Lc
corresponds to the angular frequency of the unperturbed

BC configuration (Section 3.1).
Consequently, a Taylor expansion at second order (o(ε2) knowing that

Γ0
i ' ε±)3 of Eq. (20) is performed:

2A first-order Taylor expansion of extra-diagonal terms which have no zero order term
is sufficient to compute a second-order dispersion relation det(M − Id). The Landau
notation o(x) called ”little-o” is used to designate any quantity negligible compared to x.

3The analytical resolution of the dispersion relation will lead to the solution ε± ∝ Γ0
i

which proves that Γ0
i is a first order term and Γ0

iΓ
0
j or Γ0

i ε
± are second order terms.
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A− 4Bε± + 4Cε±
2

= 0 (22)

where




A = −
[
w2N

0 − 2wN0 + 1
]
− jΣ0

[
w2N

0 − 1
]

+
∑N−1

i=1

∑N
j=i+1 Γ0

iΓ
0
j

[
w2N

0 − wN−2(j−i)
0 − w2(j−i)

0 + 1
]

B = j
2
[w2N

0 − 1]
[
1 + Σ1

N

]
− Σ0

2
[w2N

0 + 1]

C = 1
N2

[(
N
N−2

)
w2N

0 +
(
N+1
N−1

)]
(23)

where Σ0 =
∑N

i=1 Γ0
i and Σ1 =

∑N
i=1 Γ1

i , knowing that Γ±i (ω) ' Γ0
i + 2jε±

N
Γ1
i

(see Eq. (21)).
Eigenfrequencies are deduced from the quadratic equation Eq. (22):

ε± =
B ±

√
B2 − AC
2C

(24)

From Section 3.1, wN0 = 1 which leads to simplifications of coefficients A,
B and C:





A = 4
N−1∑

i=1

N∑

j=i+1

Γ0
iΓ

0
j

[
sin

(
2pπ

N
(j − i)

)]2

B = −Σ0

C = 1

(25)

Finally, a simple expression of the wavenumber perturbations is obtained
for a general non-symmetric BC configuration from Eq. (24):

ε± = −1

2

(
Σ0 ±

√
Σ2

0 − A
)

(26)

where Σ0 =
∑N

i=1 Γ0
i and A is the non-symmetric part defined in Eq. (25)

depending on the number of burners N and the mode order p.
A splitting strength S0 =

√
Σ2

0 − A appears in Eq. (26) which can be
recast for simplification:

S2
0 = Σ2

0 − A =
N∑

i,j=1

Γ0
iΓ

0
jcos

(
4pπ

N
(j − i)

)
(27)
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Eq. (26) is a generalization of Parmentier et al. [5] results (Tab. 1). It
shows that the splitting strength S0 controls the nature of the modes: if
S0 = 0 modes are degenerate (i.e. ε+ = ε− leading to ε± = −1

2
Σ0 as obtained

for a symmetric combustor (Γi = Γ, Section 3.2)) and if S0 6= 0, they are
not.

Sym/Asym Order p Pattern Solution

N = 1 burner
Symmetric 1, 2 (Γ1) ε− = 0 and ε+ = −Γ0

1

N = 2 burners
Symmetric 1, 2 (Γ1,Γ1) ε− = 0 and ε+ = −2Γ0

1

Asymmetric 1, 2 (Γ1,Γ2) ε− = 0 and ε+ = −Γ0
1 − Γ0

2

N = 4 burners
Symmetric 1 (Γ1,Γ1,Γ1,Γ1) ε± = −2Γ0

1 (DD)
Asymmetric A 1 (Γ1,Γ2,Γ1,Γ2) ε− = −2Γ0

1 and ε+ = −2Γ0
2

Asymmetric B 1 (Γ1,Γ1,Γ2,Γ2) ε± = −Γ0
1 − Γ0

2 (DD)

Table 1: Results from Parmentier et al. [5] on frequencies of a symmetric and non-
symmetric BC configurations with several numbers of burners N . (DD) refers as De-
generate Doublet (i.e. eigenwaves V ± have the same wavenumber perturbation ε).

A summary of this analytical method providing the stability map of the
pth azimuthal mode in a chamber with N burners is given in Appendix A.

4. Validation in a simplified multi-burner annular chamber

Analytical expressions of eigenfrequencies (Eq. (26)) of azimuthal modes
are compared here to results obtained with AVSP [36], a full 3D Helmholtz
solver for the case of a simplified 3D BC configuration with N = 3 burners
(Section 5). A N = 24 burners configuration (Section 6), more representa-
tive of real engines, is also considered to investigate the effect of symmetry
breaking on instabilities.

4.1. Description of the academic BC configurations

The 3D geometries correspond to a BC setup with N = 3 or N = 24
burners (Fig. 7) similar to Fig. 2 (physical and geometrical parameters are
defined in Tab. 2). The burner/chamber interfaces are placed at z = 0
and the flames are on the burner side. The flame width is equal to 2 mm
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Figure 7: Toy-model to validate the ATACAMAC methodology. (a) Perfect annular cham-
ber with N = 3, (b) N = 24 cylindrical burners, (c) burner/chamber configuration

which guarantees its compacity with respect to the acoustic waves length.
Boundary conditions correspond to impermeable walls everywhere except at
the upstream end of burners where an impedance Z = 0 (i.e. p′ = 0) is
imposed to mimic a connection to a large plenum. For the N = 3 burners
configuration, two cases are investigated (Tab. 3): first with identical burners
and then with two types of burners with different time-delays τ1 and τ2. The
interaction index of flames is set to the same value n = 1.0 (knowing that
typical values for n are around T 0

T 0
u
− 1 ' 1.57 here) in every burner.

For the N = 24 configuration (Fig. 7), two types of burners with differ-
ent time-delays are mixed to mimic the CBO/noCBO burners (Cylindrical
Burner Outlet) [18, 19]. Tab. 3 displays the circumferential patterns (• for
CBO buners and ◦ for burners without CBO) which are considered.
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Chamber
Half perimeter Lc 6.59 m

Section Sc 0.6 m2

Burner
Number N 3 or 24 −
Length L0

i 0.6 m
Section Si 0.01 m2

Fresh gases
Mean temperature T 0

u 700 K
Mean density ρ0

u 9.79 kg/m3

Mean sound speed c0
u 743 m/s

Burnt gases
Mean temperature T 0 1800 K

Mean density ρ0 3.81 kg/m3

Mean sound speed c0 1191 m/s
Flame parameters

Interaction index ni 1.0 −
Time-delay τi variable s

Table 2: Parameters used for numerical applications. They correspond to a typical large
scale industrial gas turbine.

4.2. Description of the 3D acoustic code

Assumptions and results made in ATACAMAC formulation can be vali-
dated using a full 3D acoustic solver called AVSP which solves the Helmholtz
equation in a reactive flow without the assumptions used in ATACAMAC
[36]. AVSP takes into account the interaction between combustion and acous-
tics in an active way. It solves the eigenvalue problem issued from the dis-
cretization on unstructured meshes of the Helmholtz equation. Meshes are
composed of approximately 2 millions cells for both the N = 3 and N = 24
configurations which is sufficient considering the simplicity of the geometry
and the wavelength of the modes considered her. Source terms due to the
flames are added and modeled here using Flame Transfer Functions (FTF)
[35]. The local heat release fluctuations are expressed in the burner i as:

q′i = nu,i e
jωτi ~u′(xref,i) · ~nref,i. (28)

The local interaction index nu,i describes the local flame-acoustic inter-
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Name N CBO Asymmetry pattern

B3 C0 3 0 ◦ ◦ ◦
B3 C1 3 1 ◦ • ◦
B24 C0 24 0 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

B24 C20 P1 24 20 • • • • • • • • ◦ ◦ • • • • ◦ ◦ • • • • • • • •
B24 C20 P2 24 20 • • • • • • • • • • ◦ ◦ ◦ ◦ • • • • • • • • • •
B24 C20 P3 24 20 • • • • • ◦ • • • • • ◦ • • • • • ◦ • • • • • ◦
B24 C20 P4 24 20 • • • • • ◦ • • • • ◦ • • • • • • ◦ • • • • • ◦

B24 C24 24 24 • • • • • • • • • • • • • • • • • • • • • • • •
Table 3: BC configurations investigated with both the 3D Helmholtz solver AVSP and the
analytical approach ATACAMAC. ◦: Burner without CBO •: Burner with CBO

actions. The values of nu,i are assumed to be constant in the flame zone i
(Fig. 7) and are chosen to recover the global value of the interaction index
ni corresponding to the infinitely thin flame when integrated over the flame
zone i [36]. For the sake of simplicity, they are assumed to be independent
of frequency.

In annular configurations with multiple burners, heat release fluctuations
in the burner i are supposed to be driven by the velocity fluctuations at the
reference point xref ,i. This assumption, called ISAAC (Independence Sector
Assumption in Annular Combustor) in [14] was validated by an LES of a full
annular combustor [11] and is used in the present study. In the infinitely
thin flame model used in ATACAMAC the reference points are chosen at the
flame locations zf,i. The normalized abscissa of the flame is set to α ' 0.91 to
take into account corrections on burner’s length. Indeed, in the low frequency
range, 3D effects near the burner/chamber junctions can be accounted for
[37] with a standard length correction for a flanged tube [38] which is applied
at the downstream burner’s end (∆Li = 0.4

√
4Si/π). In AVSP, the reference

points are placed a few millimeters upstream of the flames (Fig. 7).

5. Comparison of symmetric and non-symmetric BC configurations
with N = 3 burners

Analytical expressions of frequency of azimuthal modes (Eq. (26)) have
been obtained for a general annular BC configuration with N burners. First,
the symmetric case (Fig. 8, left) with N = 3 identical burners will be studied
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(Section 5.1). Then, the effect of circumferential variations on combustion
instabilities will be investigated (Section 5.2) and validated on an asymmetric
BC configuration with N = 3 different burners (Fig. 8, right).

�1

NON#SYMMETRIC,BC,

�1 �2

�1

SYMMETRIC,BC,

�1 �1

Figure 8: Schematic view of the BC configuration with N = 3 burners for the validation
of numerical and analytical resolutions of Eq. (12): symmetric case (left, all interactions
terms Γi (Eq. (6)) are equal) and asymmetric case (right, two identical burners with the
same Γ1 and one burner with Γ2)

5.1. Analysis of the symmetric case and application to a combustor with
N = 3 identical burners

In an axisymmetric configuration where burners are the same for all sec-
tors (i.e. Γi = Γ,∀i ∈ [1, N ]), only two different behaviors exist. Indeed, the
splitting strength S0 in Eq. (27) simplifies depending on the mode order p
and the number of burners N :{

If p = mN
2

= 3m
2
, ∀m ∈ N : S0 = NΓ0 = 3Γ0

For any other mode of order p : S0 = 0
(29)

Consequently, only two different classes of modes can develop in annular
BC configurations with N = 3 identical burners:

• Non-degenerate singlets: If p = mN
2

= 3m
2
, ∀m ∈ N (only p = mN

exists in BC cases with odd number of burners N like this case with
N = 3) the splitting strength is not null (S0 = Σ0 = 3Γ0, Eq. (27))
and the azimuthal mode is split into two components V − and V + with
different wavenumber perturbations and frequencies:

{
ε− = 0

ε+ = −NΓ0 = −3Γ0
(30)
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Consequently, due to symmetry considerations, these modes (e.g. p=3)
can lock on burners (N = 3). The first wave V − is standing and imposes
a pressure node at every burner: therefore it is unperturbed by them
(ε− = 0); the wave is neutral. The second wave V + is also standing but
imposing a velocity node (i.e. a pressure anti-node) at every burner
(ε+ = −3Γ0): the mode is highly perturbed by burners.

• Degenerate doublets: All other azimuthal modes (p 6= mN
2

=
3m
2
, ∀m ∈ N) are composed of two eigenwaves V ± which have the same

frequencies (degenerate modes) because S0 = 0:
{
ε− = −N

2
Γ0 = −3

2
Γ0

ε+ = −N
2

Γ0 = −3
2
Γ0

(31)

In this configuration, the transfer matrix of the whole system (M de-
fined in Eq. (18)) is equivalent to the null matrix. The mode nature
is undetermined as pointed out in [24]: a standing, spinning or mixed
mode can develop. Noiray et al. [24] have shown that non-linearities
on the FTF can however promote one of these natures, a phenomenon
which cannot be described by ATACAMAC with classical FTFs.

A validation of this symmetric case is displayed in Fig. 9 (waves de-
noted A± where τ1 = τ2 = 2.5 ms) and Fig. 10 (waves denoted E± where
τ1 = τ2 = 7.5 ms). A good agreement of the frequencies f+ and f− of the
first azimuthal mode (p = 1) is obtained between the acoustic code (AVSP)
and ATACAMAC. Note that this symmetric case always corresponds to max-
imum absolute values of the growth rate: Im(f) ' +0.40 s−1 (waves A±,
Fig. 9) and Im(f) ' −0.39 s−1 (waves E±, Fig. 10)

5.2. Analysis of the asymmetric case and application to a combustor with
N = 3 different burners

This section discusses the behavior of azimuthal modes when one of the
three burners has a different FTF (different value of Γ0

i , see Fig. 8 right).
Especially, the observation made in [15, 14] will be investigated: circum-
ferential variations with specific patterns could split nominally degenerate
doublets into non-degenerate singlets. For instance, a standing azimuthal
mode can be changed into two counter rotating spinning modes with differ-
ent growth rates [14]. If two burners have a coupling factor Γ0

1 and the third
one Γ0

2, Eq. (26) can be solved with N = 3 and gives the following solution:
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• Non-degenerate singlets: Azimuthal modes with p = mN
2

=
3m
2
, ∀m ∈ N are non-degenerate singlets characterized by S0 = Σ0 =

2Γ0
1 + Γ0

2 (Eq. (27)) with wavenumber perturbations:

{
ε− = 0

ε+ = −Σ0 = −2Γ0
1 − Γ0

2

(32)

where Σ0 =
∑N

i=1 Γ0
i .

These modes, as in the symmetric cases, impose a pressure node or
pressure anti-node at each burner location leading to an unperturbed
standing wave (ε− = 0) or a highly perturbed standing wave (ε+ =
−Σ0 = −2Γ0

1 − Γ0
2).

• Nearly degenerate singlets: For other azimuthal modes (p 6= mN
2

=
3m
2
, ∀m ∈ N), Eq. (26) leads to nearly degenerate singlets [15]: the

degenerate doublet encountered in symmetric configurations (denoted
DD with εDD = −1

2
Σ0 = −Γ0

1 − 1
2
Γ0

2, Eq. (31)) is split depending on
the splitting strength S0 = Γ0

1 − Γ0
2 (Eq. (27) for the N = 3 case with

the pattern 121 (◦ • ◦, Tab. 3)):

ε± = −1

2
Σ0

︸ ︷︷ ︸
εDD

± 1

2
S0

︸︷︷︸
Splitting

(33)

ε− = −1

2

(
Γ0

1 + 2Γ0
2

)
and ε+ = −3

2
Γ0

1 (34)

The non-symmetric case is validated (Figs. 9 and 10) on the first az-
imuthal mode (p = 1) of the configuration B3 C1 with the pattern 121
(◦ • ◦, Tab. 3) where coupling parameters are defined by Eq. (8)4.

When S0 6= 0, the nominally doublet (here εDD = −1
2
(2Γ1 + Γ2) repre-

sented by in Figs. 9 and 10) is split into two dissimilar azimuthal waves
(e.g. waves denoted B+ and B− in Fig. 9 where τ1 = 6 ms and τ2 = 2.5 ms)
with close frequencies and different growth rates as mentioned in [15, 14].
The term S0 = Γ0

1 − Γ0
2 for the pattern 121 (• ◦ •) measures the degree of

4Analytical expressions of coupling parameters are known for α other than one but

have been used here for simplicity: Γ0
i = − 1

2
Siρ

0c0

Scρ0uc
0
u

(
1 + nie

jω0τi
)
cotan(k0uLi)
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degeneracy of the azimuthal mode5 which is controlled by the difference of
coupling factors Γ0

1 − Γ0
2 introduced by changing one burner out of three.
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Figure 9: Real and imaginary part of the frequency f+ and f− of the two components of
the first mode (p = 1) in the B3 C1 configuration with the pattern 121 (◦ • ◦) and a fixed
τ2 = 2.5 ms. : Atacamac (numerical resolution of Eq. (12)), �: Atacamac (analytical
formula Eq. (34)), ×: AVSP, : The necessary condition for stability Eq. (35). τ0c
corresponds to 1

f0
' 11 ms.

Fig. 11 displays the associated mode structure of the symmetric mode
(A±) composed of two counter-rotating spinning waves ( and ◦ in Fig. 11)
and the splitted mode of the non-symmetric case (waves B+ and B−) com-
posed of two standing waves (• and in Fig. 11): the asymmetry has a
clear impact on the azimuthal modes nature.

5.3. Conclusion on symmetry breaking in the N = 3 case

Results of Sections 5.1 and 5.2 show that a necessary condition for stabil-
ity independent from the symmetry pattern has to be satisfied: knowing that
max(Im(ε+), Im(ε−)) > 1

2
Im(ε+ + ε−), the necessary condition to stabilize

a mode, which does not depend on the asymmetry pattern, becomes:

1

2
Im(ε+ + ε−) = −1

2
Im (Σ0) < 0 (35)

5Note that some asymmetry could still give degenerate doublets (i.e. S0 = 0): for
instance, the first order mode (p = 1) of a N = 6 burners BC configuration with the
pattern (• ◦ • ◦ •◦) or (• • • ◦ ◦◦) is a doublet with ε = − 3

2 (Γ0
1 + Γ0

2).
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Figure 10: Real and imaginary part of the frequency f+ and f− of the two components of
the first mode (p = 1) in the B3 C1 configuration with the pattern 121 (◦ • ◦) and a fixed
τ2 = 7.5 ms. : Atacamac (numerical resolution of Eq. (12)), �: Atacamac (analytical
formula Eq. (34)), ×: AVSP, : The necessary condition for stability Eq. (35). τ0c
corresponds to 1

f0
' 11 ms.

If this condition is not fulfilled (Fig. 12, left), there is no hope of stabilizing
the mode since at least one wave (V + or V −) will remain unstable (e.g. A±

and B+ in Fig. 9). A remedy is to use a different type of burners, for instance
using CBO devices, to change the time-delay τ of the burners and to satisfy
the necessary condition (Eq. (35)).

For a symmetric case, Eq. (35) is a necessary and sufficient condition to
have a stable mode. However, when symmetry is broken, satisfying condi-
tion (35) cannot guarantee stability (Fig. 12, middle and right). In this case,
the necessary and sufficient condition becomes:

max(Im(ε+), Im(ε−)) < 0 (36)

Indeed, the splitting introduced by symmetry breaking measured by the
splitting strength S0 (which is equal to Γ0

1 − Γ0
2 for the case N = 3 with

the pattern • ◦ •) has to be taken into account. For weak splitting (Fig. 12,
middle) the two waves V + and V − remain stable (e.g. eigenwaves D± in
Fig. 10) but for higher splitting (Fig. 12, right) one wave can become unstable
(e.g. wave C+ in Fig. 10).
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Figure 11: 3D and isolines of pressure modulus (left) and modulus and phase of acoustic
pressure (right) of the first azimuthal modes (p = 1) of the asymmetric case B3 C1 with
the pattern 121 (◦ • ◦, Tab. 3) in two situations: mode A (τ1 = τ2 = 2.5 ms) and mode B
(τ1 = 2.5 ms and τ2 = 6.0 ms). : A+, ◦: A−, •: B+, : B−

6. Effect of asymmetry on the control of azimuthal combustion
instabilities in a N = 24 burners BC configuration

Conclusions of Section 5.3 obtained withN = 3 burners suggest a strategy
to stabilize the pth mode which is described in Fig. 13 for a general N burners
configuration.

According to Fig. 13, axisymmetric configurations have only one degree
of freedom to stabilize the pth mode which is the time-delay τ1: if τ1 satisfies
condition Eq. (35), then the configuration is stable.

However, for non-symmetric configurations, satisfying Eq. (35) does not
guarantee the stabilization of the configuration. In this case, the asymmetry
pattern becomes an additional degree of freedom and one has two options to
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Figure 12: Several situations depending on the condition Eq. (35) and the splitting strength
1
2Im (S0). ×: ε− and �: ε+

ensure the stability of the pth azimuthal mode:

• Symmetrize the configuration (Option 1): if condition (35) is
satisfied, at least one kind of injector satisfies −Im(Γ0

i ) < 0: this
kind of burner can be used for all sectors which leads to the mode’s
stabilization. This option is the most efficient method to stabilize an
azimuthal mode since no splitting occurs in a symmetrized annular
combustor.

• Reduce the asymmetry effect (Option 2): An other solution is to
keep the same kind of burners (Γ0

1, ...,Γ
0
N) but rearrange them to reduce

the splitting of the azimuthal mode and stabilize it. Optimization can
be performed to find the best pattern, which leads to the smallest value
of the splitting strength S0.
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Figure 13: Strategy to stabilize an axisymmetric or non-symmetric annular combustor.
Two solutions are highlighted for non-symmetric combustors

In order to further develop the ideas of Section 5.3 and the strategy
presented in Fig. 13, symmetry breaking is studied on a N = 24 burners
configuration [18, 19] representative of real industrial gas turbines. First, the
stability of the first azimuthal mode (p = 1) of the symmetric configuration
is studied as a function of the time-delay τ , with the interaction index n =
1.0. Results (Fig. 14), show a very good agreement between the numerical
and analytical solutions given by ATACAMAC and the 3D Helmholtz solver
AVSP.

To break symmetry two different burners are mixed, characterized by
different time-delays, τ1 and τ2 (Fig. 14). A time delay τ1 = 3.25 ms corre-
sponds approximately to the most unstable burner (Im(fAV SP ) = 2.98 s−1,
in Fig. 14 right), which is assimilated here to the baseline case, a burner
without CBO (◦ in Tab. 3). As explained in [18, 19], a CBO (Cylindrical
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Figure 14: Stability map depending on τ of the first azimuthal mode (p = 1) of the
symmetric BC configuration with 24 burners. τ0c is the period of the first azimuthal mode
τ0c = 1/f0 = 2Lc

pc0 ' 11ms

Burner Outlet) device can be mounted on some of the burners to stabilize
the chamber. The length of the cylinder is such that the time lag τ2 from
the injection port to the flame front is increased by approximately a quarter
of an acoustic period: τ2 = τ1 + 1

4f0
' 6ms (since the first azimuthal mode

has a frequency f 0 ' 90Hz): it corresponds indeed to a stable burner where
Im(fAV SP ) = −1.01 s−1 in Fig. 14 (• in Tab. 3). Note that using 20 burners
with τ2 = 6 ms and 4 burners with τ1 = 3.25 ms respects the necessary con-
dition given by Eq. (35) to get stable modes ( for the configuration C20

in Fig. 15). The stability of the four patterns proposed in Tab. 3 is studied
using ATACAMAC and AVSP. Results are plotted in Figs. 15 (growth rates)
and 16 (frequencies).

• B24 C0: This configuration corresponds to the unstable baseline
case: the necessary condition (Eq. (35)) is not satisfied. Some burners
have to be changed in order to get a stable combustor.

• B24 C20 P2: 20 CBOs devices have been mounted in the hope to
stabilize the mode. The necessary condition (Eq. (35)) is satisfied.
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Figure 15: Growth rate of the first azimuthal mode (p = 1) for various asymmetry combi-
nation of burners with and without CBO: B24 C0 (24 noCBO burner), B24 C24 (24 CBO
burners) and the four patterns B24 C20. : Values of − 1

2Im (Σ0) depending on the
configuration (C0, C20 and C24)

However this pattern has a large splitting strength S0. Consequently
it splits azimuthal modes into two singlets with different growth rates
making the first azimuthal mode unstable. This case is an excellent
example of how, for asymmetric circumferential patterns, one can use
stable burners that match the condition −1

2
Im (Σ0) < 0 and yet, due

to the asymmetry term S0, have an unstable mode as shown in Fig. 12
(right).

• B24 C20 P4: As suggested by the strategy developed in Fig. 13,
a solution to stabilize the mode is to find asymmetry patterns like
B24 C20 P4 with a lower splitting strength S0 for which both singlets
remain stable as mentioned in Fig. 12 (middle).

• B24 C20 P1 and B24 C20 P3: The pattern B24 C20 P4 induces
a low splitting strength and stabilizes the mode. However, optimal
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Figure 16: Frequencies of the first azimuthal mode (p = 1) for various asymmetry com-
bination of burners with and without CBO: B24 C0 (24 noCBO burners), B24 C24 (24
CBO burners) and the four patterns B24 C20. DD: Degenerate Doublets.

asymmetry patterns can be found which lead to no or very low splitting
and therefore ensure the mode stabilization. Patterns B24 C20 P1
and B24 C20 P3 are such patterns giving stable degenerate doublets.
In these cases, S0 = 0 and therefore Eq. (35) becomes a necessary
and sufficient condition for stability. The mode is stable: Im(f±) '
−0.25 s−1

• B24 C24: As explained in Fig. 13, the most efficient option to stabi-
lize a mode is to symmetrize the annular combustor with burners which
satisfy the necessary condition (Eq. (35)), i.e. 24 burners with a CBO.
The mode is very stable: Im(f±) ' −1.0 s−1 (Fig. 15).

Considering the dashed-lines (−1
2
Im(Σ0)) in Fig. 15, it is interesting to

notice that, independently of the asymmetry patterns, combining 20 CBOs
and 4 noCBOs burners give potentially less stable modes than using 24 CBOs
showing that breaking symmetry has a limited interest here compared to
adding CBOs on all burners. Nevertheless, if for any reason (ignition, pollu-
tion, construction, etc.) one must keep the two types of burner, the present
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analytical model offers an easy way to optimize the circumferential distribu-
tion of the burners by minimizing the imaginary part of the splitting strength
Im(S0) to stabilize the pth mode. To illustrate this idea, Figs. 17 and 18 dis-
play the effect of several asymmetry patterns on the splitting strength (S0)
using a configuration with 20 CB0 - 4 noCBO burners. It is proved analyt-
ically that using two kinds of burners (with coupling parameters Γ0

1 and Γ0
2

respectively) yields a splitting strength of the form:

S0 =

Imposed by the pattern︷︸︸︷
2K

(
Γ0

1 − Γ0
2

)
︸ ︷︷ ︸

Imposed by the difference between burner types 1 and 2

(37)

where the reduced splitting strength K depends only on the asymmetry pat-
tern (see Tab. 4 for the analytical expression of K for the four patterns
studied). In Eq. (37), Γ0

1 and Γ0
2 are fixed by the burner characteristics so

that minimizing S0 to increase stability is equivalent to minimizing K.

Name Asymmetry pattern K
P1 • • • • • • • • ◦ ◦ • • • • ◦ ◦ • • • • • • • • 0

P2 • • • • • • • • • • ◦ ◦ ◦ ◦ • • • • • • • • • • 1
2

√
3
√

3 + 6 ' 1.67
P3 • • • • • ◦ • • • • • ◦ • • • • • ◦ • • • • • ◦ 0

P4 • • • • • ◦ • • • • ◦ • • • • • • ◦ • • • • • ◦ 1
2

√
2−
√

3 ' 0.26

Table 4: Analytical expressions of the reduced splitting strength K for the four patterns
described in Tab. 3

Consequently, an optimization process appears as a promising approach
to find patterns with the minimal value of the reduced splitting strength K
which leads to a null or very low splitting and therefore ensure the stability
of the pth azimuthal mode. This also highlights the potential of low-order
models such as ATACAMAC to perform optimization processes at very-low
costs.

In addition to their stability, symmetry breaking can also modify the
dynamic nature of the acoustic modes. The modulus and phase of acoustic
pressure of the first azimuthal mode (p = 1) 6 are plotted in Fig. 19 for the
four studied patterns (Tab. 3), showing two distinct behaviors.

6Only one of the two components of a given azimuthal mode is shown in Fig. 19
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Figure 18: The reduced splitting strength (K) for several patterns where two noCBO
burners are kept together at the same place and the two other noCBO burner’s places are
changed azimuthally. The splitting is then strongly affected by the asymmetry pattern.

• Patterns P1 and P3: As expected, asymmetry patterns leading to
degenerate doublets can be either spinning, standing or mixed. In this
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case, P1 gives a mixed mode ( in Fig. 19) while P3 gives a purely
spinning mode ( in Fig. 19). For these patterns, the two eigenwaves
(V + and V −) have the same frequency so that they can be combined
to obtain either a spinning, a standing or a mixed mode.

• Patterns P2 and P4: On the other hand, patterns P2 and P4 give
two standing modes (• and ◦ respectively in Fig. 19) which are not
degenerate (S0 6= 0). The two eigenwaves V + and V − oscillate in
opposite phase with different (yet very close) frequencies (e.g. 90.3 Hz
and 91.3 Hz for the pattern P2). As shown in Fig. 15, for the pattern
P2, one wave is amplified whereas the other one is damped, resulting
in an unstable standing mode.
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Figure 19: Effect of the asymmetry pattern on the azimuthal mode nature. 3D and isolines
of the pressure modulus (left) and modulus and phase of the acoustic pressure over the
circumference (right). : Pattern P1, •: Pattern P2, : Pattern P3, ◦: Pattern P4
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7. Conclusion

The present work investigates analytically and numerically the effect
of staging patterns on the nature and the stability of azimuthal modes in
annular combustion chambers. The analytical model is based on a one-
dimensional zero-Mach number formulation where N burners are connected
to a downstream annular chamber. Flames are supposed to be compact and
are modeled using a Flame Transfer Function, characterized by a coupling
factor and a phase shift. Manipulation of the corresponding acoustic equa-
tions yields a simple dispersion relation which can be solved analytically in
specific situations where coupling factors are small (weak coupling).

First, a symmetric configuration with N identical burners with null in-
let impedances (i.e. p′ = 0) is studied. Only two mode behaviors are ob-
served: the degenerate doublets and the non-degenerate singlets, the latter
being capable of generating warbles (low frequency oscillations due to a non-
degenerate mode [15]). Then, a non-symmetric case was studied and symme-
try breaking was proved to modify the azimuthal modes behavior in a simple
case with only three burners in an annular chamber. The staging patterns can
split nominally degenerate azimuthal modes (doublets) into non-degenerate
pairs (singlets), a situation already mentioned in the literature and observed
in recent Helmholtz simulations.

Finally, the effect of the asymmetry pattern was investigated in a N = 24
burners case representative of industrial gas turbines. A very good agreement
is found for all cases between analytical and numerical results, obtained with
a 3D Helmholtz solver. Results are compared to observations made in exper-
iment where CBOs (Cylindrical Burner Outlet) are added to certain burners
to control combustion instabilities. A simple criterion is derived to provide
a necessary condition to stabilize an annular combustor. Since the asym-
metry pattern does not appear in this criterion, it implies that symmetry
breaking can modify the mode nature but has no real impact on controlling
combustion instabilities in annular chambers. The best method to control a
chamber with N = 24 sectors is to use 24 burners with FTF leading to stable
azimuthal modes. However if keeping only one type of burner is not possible,
a strategy to stabilize the mode is proposed: find an optimal pattern which
leads to a low splitting of the corresponding azimuthal mode. The general
character of this conclusion is limited by the low coupling assumption which
implies no interaction between burners. Maybe strongly coupled situations
where burners interfere [6, 7] would lead to an effect of the asymmetry pat-
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tern on the overall stabilization of the annular engines. A second limit might
be the use of an infinite impedance at the outlet (i.e. u′ = 0), leading to
purely azimuthal modes. Introducing mixed azimuthal/longitudinal modes
in the chamber should be an interesting extension of the present study.
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Appendix A. Summary of the analytical method providing the
stability map of the pth azimuthal mode

This Section summarizes the analytical method to provide the stability
map of the pth azimuthal mode of a chamber with N burners.

• 1) Compute the coupling factors of each burner:

Γ0
i = −j

2

Si
Sc

F0Ck0

1−α[jS
k0u
α Z + C

k0u
α ] + Sk

0

1−α[jC
k0u
α Z − Sk

0
u
α ]

F0Sk
0

1−α[jC
k0u
α − Sk

0
u
α Z] + Ck0

1−α[C
k0u
α Z + jS

k0u
α ]

(A.1)

where F0 = c0ρ0

c0uρ
0
u
(1 + nie

jω0τi), Cy
x = cos(xyLi), S

y
x = sin(xyLi), k

0 =

ω0/c0, k0
u = ω0/c0

u, Z is the upstream impedance and ω0 = pπc0

Lc
.

• 2) Compute the mean coupling factor 1
N

Σ0 where Σ0 =
∑N

i=1 Γ0
i .

• 3) Compute the splitting strength S0:

S0 =

√√√√
N∑

i,j=1

Γ0
iΓ

0
jcos

(
4pπ

N
(j − i)

)
(A.2)

• 4) The pth azimuthal mode is composed of two waves V + and V − which
have a wavenumber perturbation ε± given by:

ε+ = −1

2
(Σ0 + S0) and ε− = −1

2
(Σ0 − S0) (A.3)

• 5) Then compute the complex frequency of the system from the defini-

tion of the wavenumber perturbation (k±Lc = 2πf±

c0
Lc = pπ + ε±) and

Eq. (A.3):

f± =
pc0

2Lc
− c0 (Σ0 ± S0)

4πLc
(A.4)

• 6) Finally, the two waves composing the pth azimuthal mode can have
different frequencies (f+ 6= f−, non-degenerate singlets) if S0 6= 0 or
the same frequencies (f+ = f−, degenerate doublets) if S0 = 0. The
growth rate of each wave is obtained from the imaginary part of the
complex frequency obtained in Eq. (A.4):

Growth rate± = Im(f±) = − c0

4πLc
Im (Σ0 ± S0) (A.5)
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