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Introduction

The prepayment option

This PhD thesis investigates the pricing of a corporate loan according to the
credit risk, the liquidity cost and the embedded prepayment option. When a
firm needs money it can turn to its bank which lends it against e.g., periodic
payments in a form of a loan. A loan contract issued by a bank for its cor-
porate clients is a financial agreement that often comes with more flexibility
than a retail loan contract. These options are designed to meet clients’ expec-
tations and can include e.g., a prepayment option (which entitles the client,
if he desires so, to pay all or a fraction of its loan earlier than the maturity),
a multi-currency option, a multi-index option, etc. On the other hand, there
are also some mechanisms to protect the lender from the deterioration of the
borrower’s credit quality e.g., a pricing grid based on the borrower rating or
protecting guarantees. The main option remains however the prepayment
option and it will be the subject of this entire thesis.

In order to decide whether the exercise of the option is worthwhile the
borrower compares the remaining payments (discounted at the interest rate
he can obtain at that time) with the nominal value (outstanding amount of
the loan) . If the remaining payments exceed the nominal value then it is
optimal for the borrower to refinance his debt at a lower rate.

For a bank, the prepayment option is essentially a reinvestment risk i.e.,
the risk that the borrower decides to repay earlier his/her loan and that the
bank can not reinvest his/her excess of cash in a new loan with same charac-
teristics. So the longer the maturity of the loan, the riskier the prepayment
option. Therefore, it is worthwhile to study long-term loans, some that are
set for more than three years and can run for more than twenty years in
structured finance. The valuation problem of the prepayment option can be
modelled as an embedded compound American option on a risky debt owned
by the borrower. We choose in this thesis to price a loan and its prepayment
option by resolving the associated PDE instead of binomial trees or Monte
Carlo techniques. Indeed, Monte-Carlo simulations are slow to converge to
assess accurately the continuation value of the option during the life of the
loan and binomial tree techniques are time-consuming for long-term loans.
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Liquidity

When valuing financial products with medium to long maturity the robust-
ness with respect to shocks and other exogenous variables is important.
Among problems that have to be treated is the liquidity and its variabil-
ity. Liquidity is a crucial ingredient towards the systemic stability of the
financial sphere and can cause banks’ failures if systemic liquidity squeezes
appear. Historical events prove that banks hold significant liquidity risk in
their balance sheets. Even if liquidity problems have a very low probability
to occur, a liquidity crisis can have a severe impact on a bank’s funding costs,
its market access (reputation risk) and short-term funding capabilities.

Probably the most prominent characteristic of the liquidity is that it os-
cillates between distinct regimes following the state of the economic environ-
ment. Between two crisis, investors are confident and banks find it easier to
launch their long term refinancing programs through regular bonds issuances.
Thus the liquidity market is stable. Contrariwise, during crisis, liquidity be-
comes scarce, pushing the liquidity curve to very high levels which can only
decrease if confidence returns to the market. The transition between these
two distinct behaviours is rarely smooth and often sudden.

In order to model the presence of distinct liquidity behaviours we will
simulate the liquidity cost by a continuous time discrete state Markov chain
that can have a finite set of possible values, one for each liquidity regime.

From a technical point of view this paper addresses a non-standard sit-
uation: although the goal is to value an American option the payoff of the
option is highly non-standard and is close to a compound option in spirit. As
a consequence the characterization of the exercise region is not at all stan-
dard and technical conditions have to be met. Furthermore our focus here is
on a specific type of dynamics (of CIR type) with even more specific interest
on the situation when several regimes are present.

Thesis outline

The thesis is split in five parts :
The Part I delineates the banking environment: we start in Section 1

with the context and notions of corporate loan market, related works and
the interest of the banking world for a better estimate of the loan price; then
we present in Section 2 the description of the main financial risks with a
focus on the credit risk; we explain in Section 3 the CIR process to model
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the dynamics of the default intensity and its calibration in Section 4; we
continue in Section 5 the description of the liquidity component and we
define the term structure of the liquidity in this model.

The Part II presents sufficient theoretical results concerning the prepay-
ment option of perpetual corporate loans in a one-dimensional framework
with constant interest rates. Numerical results that implement the findings
are also presented and are completely consistent with the theory.

The Part III presents verification results that allows to certify the geome-
try of the exercise region and compute the price of the perpetual prepayment
option in a two-dimensional setting with the short interest rate following a
CIR dynamics. Moreover we show that the price is the solution of a con-
strained minimization problem and propose a numerical algorithm building
on this result. The algorithm is implemented in a two-dimensional code and
several examples are considered.

The Part IV presents an accurate pricing method of a corporate loan
and its prepayment option in a finite horizon (non perpetual) multi-regime
situation.

The Part V presents perspectives and conclusions.
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Part I

Introduction to corporate loans
and corresponding mathematical
models
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1 Market of corporate loans
In this section, we start by providing the context of the corporate loans that
are more flexible than bonds to manage the funding needs of companies.

1.1 Notions and context

1.1.1 Corporate loan

A loan granted by a bank to a large company is a financial agreement gener-
ally having a better flexibility than the loans granted to the retail customers.
Indeed, there exist many options to fulfil the expectations of corporate cus-
tomers, for example:

• the prepayment option which gives to the customer the right to refund
all or part of its loan before its term,

• the utilization option in multi-currency,

• the utilization option in multi index,

• the extension option of a loan in terms of authorized amount or matu-
rity...

These various options may be valued in a qualitative way according to
the borrower, in particular under a relational angle, and the practices of
the market. On the other hand, there also exist mechanisms protecting
the lender from a deterioration of the quality of the borrower in the form
of financial guarantees or grids of invoicing showed that the rating of the
borrower evolves.

A loan is either bilateral, i.e. an over-the-counter contract between one
borrower and one bank, or syndicated, i.e. a contract between one borrower
and a group of banks administrated by one arranger. Bilateral loans are
confidential and only information on syndicated loans is available on the
market. The opacity of the corporate loan’s market can explain the lack of
research on the subject of loans and options pricing. Moreover, unlike the
market of mortgage loans, the granularity and the available history of the
corporate loans are too low to be able to make a statistical analysis such as a
Poisson regression, explanatory variables could be at the same time specific
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to the borrower (area, country, industry, EBITDA...) and to the economy
(rate curve, curves liquidity, exchange rate, GDP...).

That is why another approach for the pricing of the prepayment option
was chosen. In this thesis, we assume that the present value of a loan and the
cost of its prepayment option are defined according to the intensity of default
of the borrower, the short interest rate and the liquidity cost. Moreover, we
model the prepayment option in order to give an accurate price of the loan.
Indeed, the price of a loan will be defined as the present value of the remaining
payments minus the cost of the prepayment option.

1.1.2 Reference rates: LIBOR and EURIBOR

The London Interbank Offered Rate (LIBOR) and Euro Interbank Offered
Rate (EURIBOR) are daily reference rates based on the average interest
rates at which banks can borrow funds from other banks respectively in the
London money market and Euro money market. The LIBOR and EURIBOR
are fixed on a daily basis and they are also calculated for several tenors from
overnight to one year.

In the banking world, the interest rate of a loan is a constant commercial
margin or more generally a constant commercial margin indexed on a short-
term interest rate (eg. EURIBOR or LIBOR) as the bond programs used
by the banks to finance themselves. Therefore the banks are hedged against
the short-term interest rate risk. Traditionally portfolio managers considered
that the LIBOR or the EURIBOR (according to the currency of the loan)
was the funding cost of the loan. Following the 2007-2008 liquidity crisis, it
became clear that a short-interest rate cannot be a long-term funding cost
for a loan because of the maturity mismatch.

1.1.3 Funding needs of a bank

The liquidity crisis of 2007-2008 highlighted the gaps in the current methods
of assessment of the loans. Indeed, most banks tended to quantify only the
credit risk of the counterparty whereas the commercial margin of a loan
should also take into account:

• the liquidity cost which is the internal cost of a bank invoiced on its
assets (e.g. a loan) to pay for its liabilities (e.g. a bond),

• the market price of the options associated with the loan.

15



The liquidity is the key of the stability of the financial system and can
cause the bankruptcy of banks if a systemic liquidity crisis appears in the
market. Historical events like the Asian crisis of 1997; the Russian crisis
of 1998; the default of Hedge Funds such as LTCM; the bankruptcies of
Enron, Worldcom and Lehman Brothers, the current crisis of the sovereigns,
prove that the banks have a significant liquidity risk in their balance sheets.
Indeed, even if a global liquidity crisis has a small probability of occurring,
it can have a violent impact on the financing costs of all the banking system
by contagion. Thus, a large number of banks could lose their market access
(reputation risk) and the capacity to be financed in the short term. The
liquidity risk of a bank is managed at the same time by the Asset Liabilities
Management (ALM) department for the long-term funding and the Treasury
department for the short-term funding. We will be interested here in the
cost of the long-term liquidity, which is invoiced internally in each financing
métiers of the bank. It is evaluated according to several specificities:

• the financing cost of the bank which comes from the interbank market
for the short-term and the bond programmes for the long run. These
costs depend not only on the economic state of the market but also on
the credit quality and the notoriety of the banking institution.

• the level of deposit can allow, some borrowers having abundant funds,
to reduce the liquidity cost invoiced. Therefore, a bank could offer a
preferential liquidity cost to its clients on the local currency of its mar-
ket. For example, a growing concern appeared in 2011 on the difficulty
for French banks to fund their positions in dollar.

• the currency can also justify a different liquidity cost according to the
bond issue price. Otherwise, a bank can use cross currency swaps rate
to finance loans in foreign currencies without having to issue a bond.

• the types of commitments are multiple to fulfil the need of the borrower.
There exist two main categories:

– credit facility with a general corporate purpose or working capital
uses (e.g. term loan, revolving credit facility, bridge to loan, bridge
to equity...),

– liquidity line that is an undrawn back-up facility put in place to
refinance the debt of a customer when he/she is unable to obtain
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his/her ordinary course of business funding requirements in the
financial market.

We will be interested here in the term loans, which are loans with a
predetermined amount and a specified repayment schedule.

• the maturity of the commitment.

1.1.4 Prepayment option

The prepayment option is analysed in detail in order to fully determine the
specific risks of this option. A customer, who owns a loan from a bank, has
the possibility of refunding or prepaying the amount of the remaining debt of
his/her loan before the end of the contract. This prepayment option, which
can be total or partial, has an impact on the Banking Book of the bank which
it is important to estimate.

There exist two types of prepayment:

1. Financial or rational: prepayment related to the market (arbitrage),

2. Statistical: prepayment independent of the market (credit rating agen-
cies penalize companies with too much short-term debts)

In most contracts, the borrower doesn’t pay any premium or penalty to
prepay his/her loan. In order to decide if it is optimal or not to exercise the
prepayment option at a given moment before contractual maturity date, the
borrower will compare the present value of the remaining cash flows (interests
and principal) with the par value of the loan. If the payments exceed the par
value then it is optimal for the borrower to prepay his/her debt at a lower
rate. For a bank, this option is primarily a risk of reinvestment i.e., the risk
that the borrower decides to prepay his/her loan and that the bank cannot
reinvest its excess of liquidity in a new loan with the revenues. So, the longer
the maturity, the higher the reinvestment risk.

The research on the loan pricing was thus focused on the assessment of
liquidity costs and the prepayment cost option.

1.2 Bibliography

In the case of a term loan without option, the main risk present for the lender
is the credit risk. Currently, this risk is well-taken into consideration by the
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banks and there exist many internal tools allowing them to accurately assess
the revenues adjusted of the risk on such a loan. These decision tools are
essential to grant a new credit application to a large company. There also
exist external ratings of the credit quality of a company present on the bond
market which are provided by the credit rating agencies (S&P, Moody’s,
Fitch...).

1.2.1 Liquidity risk

We refer to the work of L. Matz and P. Neu [46] to a thorough presentation of
the various processes to identify, measure, supervise and control the liquidity
risk. It became essential for the banking institutions to prove that they
have a strong position of liquidity to maintain the confidence of investors,
credit rating agencies and regulators. Indeed, the liquidity risk became an
integral part of the requirements of Basel III. A bank is mainly vulnerable
to the liquidity risk when the long-term assets are funded with short-term
liabilities coming from Money Markets considered to be very volatile; and
when a bank grants authorization amount solely to increase its income. These
new liquidity topics did not find a consensus within the academic world yet,
and in particular, the behavioural analyses of corporate borrowers are not
yet well defined. However there exist some new references on the matter eg.,
Leonard Matz and Peter Neu [46]; and the work of Alexandre Adam [7]. The
liquidity cost has also been studied in papers focusing on simple financial
assets in presence of default risk, see Morini and Prampolini [44], see also
Castagna [18]. Recently, a new side of the liquidity has been considered in
an article by Brigo [4], to include funding costs into a risk-neutral pricing
framework for counterparty credit risk.

The liquidity became recently a major subject for the banking world.
In the past, the banks have financed their long-term assets with short-term
liabilities provided by the Interbank lending market. The confidence and
liquidity crisis of 2007-2008 compelled them to lengthen the maturity of their
liabilities to reduce their liquidity risk and thus to regain the confidence of
the investors. The absence of reference and technical documents is one of
the main difficulties in the modelling of the evolution of the liquidity costs.
In addition, it is difficult to assess these costs in a very incomplete market:
indeed a few banks in difficulty continue to invoice their customers below
their own financing costs.

18



1.2.2 Loan pricing and prepayment option: academic works

There exist few articles (e.g., works by D. Cossin et al. [24]) on the loan pre-
payment option but a related subject, the prepayment option in fixed-rate
mortgage loan, has been widely covered in several papers by J.E. Hilliard
and J.B. Kau [34] and more recent works by Chen et al. [21]. To approxi-
mate the PDE satisfied by the value of the prepayment option, they defined
two state variables (interest rate and house price). Their approach is based
on a bivariate binomial option pricing technique with a stochastic interest
rate and a stochastic house value. Another contribution by D. Cossin et
al. [24] applies the binomial tree technique to corporate loans but of course
it is time-consuming for long-term loans due to the nature of binomial trees.
They consider a prepayment option with a 1 Year-loan discretized on a quar-
terly step but it is difficult to have an accurate assessment of the option price
for a 10 Year-loan. There also exist mortgage prepayment decision models
based on Poisson regression approach for mortgage loans. See, for example,
E.S. Schwartz and W.N. Torous [52]. Unfortunately, the volume and his-
tory of data are very weak in the corporate loan market. Due to the form
of their approach, these papers did not have to consider the geometry of
the exercise region because it is explicitly given by the numerical algorithm.
This is not the case for us and our problem requires that particular care be
taken when stating the optimality of the solution. Furthermore, to the best
of our knowledge, none of these approaches explored the circumstance when
several regimes exist. The analysis of Markov-modulated regimes has been
investigated in the literature when the underlying(s) follow the Black& Sc-
holes dynamics with drift and volatility having Markov jumps; several works
are of interest in this area: Guo and Zhang [57] have derived the closed-
form solutions for vanilla American put; Guo [32] analyses in Russian (i.e.,
perpetual look-back) options and is able to derive explicit solutions for the
optimal stopping time; Mamon and Rodrigo [45] find explicit solutions to
vanilla European options. Buffington and Elliott [16] study European and
American options and obtain equations for the price. A distinct approach
(Hopf factorization) is used by Jobert and Rogers [38] to derive very good
approximations of the option prices for, among others, American puts. Other
contributions include [56, 54], etc. Works involving Markov switched regimes
and CIR dynamics appears in [30] where the bond valuation problem is con-
sidered (but not in the form of an American option; their approach is relevant
to the computation of the payoff of our American option although in their
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model only the mean reverting level is subject to Markov jumps) and in [58]
where the term structure of the interest rates is analysed. On the other hand
numerical methods are proposed in [35] where it is found that a fixed point
policy iteration coupled with a direct control formulation seems to perform
best. Finally, we refer to [36] for theoretical results concerning the pricing of
American option in general.

1.2.3 Financial institution research on corporate loans

At the end of 2011, Markit and Euroclear Bank decided to bind together
to create a platform to help the financial institutions to monitor and price
the syndicated loans as collateral in financial transactions. Moreover, this
partnership should develop tools to allow a better transparency and stability
of the secondary market of the syndicated loans. Many descriptive studies
on the evolution and volume of this market measurement should thus be
published soon. We also expect some behavioural studies on the universe
of the corporate loan such as the prepayments. Currently, only Bloomberg
provides studies on the market of the syndicated loans eg., Bloomberg [1].
However, they restrict the access to quotations of the secondary market.
Indeed, a bank analyst will only be able to have access to internally shared
quotations and not to all of them.

1.3 Impact on the banking world

A more accurate corporate assessment of the loans, according to their various
natures and options, is interesting for multiple reasons, both at the account-
ing level and the management level. It will make it possible to facilitate:

• the application of Pillar II of the regulation Basle II concerning the liq-
uidity, and implying a modelling of every funding asset (commitments
of the bank to supply liquidity to a borrower, optional or not),

• the assessment of new applications for credit according to their nature
and their options,

• the estimation of the fair value of the assets in the Banking Book,

• the estimation and negotiation on the primary and secondary market
of the loans,
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• the implementation of hedging techniques in agreement with IAS39
norm (accounting standards IFRS ).

1.3.1 Secondary market of the corporate loan

The French banks turn more and more to the secondary market to sell some
of their corporate loans. The secondary loan market is an over-the-counter
(OTC) market, therefore it is not organized and doesn’t have a clearing house.
That implies a considerable counterparty risk and an absence of information
and pricing on treated volumes. However this market is not very active,
firstly due to the limited number of players, essentially financial institutions,
and secondly due to the complexity of the loans. In France, the financial
institutions, like hedge funds and insurance companies cannot buy loans.
A loan has an assignment clause which restricts the conditions of sale to
another bank; generally this clause implies that only a bank having a certain
level of rating (in general investment grade) is authorized to buy out a loan.
Moreover, this clause contains a condition called consent required, which
often implies that the borrower has a veto right on the sales of his/her loan,
subject to valid reasons. The loans are very specific financial instruments,
unlike bonds; they are OTC agreements with very complex contractual rules.
Besides the options attached to the loan which make its specificity, it is also
necessary to take into account the nature of the loan, the fact that it is
syndicated with several banks involved or bilateral. This lack of liquidity is
the main difficulty that we encountered because the market does not make it
possible to calibrate or backtest models of assessment. Since very few loans
are exchanged on the secondary market and a majority of them are kept in
Banking Book, loans are often defined as Buy & Hold assets.

1.3.2 IFRS Norms (IAS 39) and Accounting mismatch

Most companies and financial institutions need to cover as well as possible
the specific risks underlying to their own activities. With regard to the finan-
cial risks (interest rate risk, foreign exchange risk, credit risk, counterparty
risk...), the hedging requires the use of derivative instruments that unfor-
tunately create an accounting mismatch in the balance sheets of the bank.
In credit, the discordance takes place between the assessment in fair value
of the loan and its hedge, the Credit Default Swap (CDS), which poten-
tially creates a strong volatility of the Income statement (Profit and Loss
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statement). It is possible to limit it by estimating the loan price in Mark-
to-Market (MtM),i.e. the Fair Value of the loan, and then the difference
between the market variations of the loan value and of its hedge will be tiny.
Fair Value is the price at which an asset can be issued or a liability can be
reimbursed in an arms length transaction between two counterparties with
the same level of counterparty and in normal competitive conditions

Before 1973, the requirements for the financial statements were issued
according to local norms that differ from one country to the other, there did
not exist an international accounting reference framework. The divergences
between the local accounting standards made difficult the comparison be-
tween the financial statements of companies. This lead to the creation of
the authority in charge of the establishment, the issue and the promotion of
accounting standards named IASC in 1973, and then renamed IASB in 2001.
IASB thus allowed the harmonization of the financial statements facilitating
the comparability between the competitors and a better transparency of the
financial information for the investors. Norms IAS/IFRS relate to the listed
companies of the European Union or the companies which has outstanding
bond issues in the market.

We keep up the positioning of the various departments of loan portfolio
management on this subject. Today, the majority of these banks completed
the transition towards IFRS. One of the most difficult norms to understand
and apply is the IAS 39 "Financial Instruments Recognition and Measure-
ment". The IAS 39 requires taking into account derivative instruments in
Mark-to-market. This can involve an accounting mismatch i.e., the bank
loans are classified as "Loans and receivables" and assessed at the historical
cost while the hedging instruments, such as CDS, are classified in "Trading"
(Mark-to-market) and assessed in "Fair Value". The accounting mismatch
between the loan and the CDS potentially creates a strong volatility of the
Profit and Loss account (P&L). In order to reduce this discordance and a
fortiori this volatility, two possibilities can be considered:

• Approach in Fair Value Option,

• Approach in Hedge Accounting.

Both approaches have pros and cons, so it is still currently in debate.
However, it seems that the approach in Fair Value Option is the most widely
used among the various credit portfolio managers. This topic is confidential
and internal to each bank and as such there is no public documentation
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Figure 1: IAS 39 Algorithm of Fair Value

detailing their choice. The Fair Value Option Approach, defined in the IAS
39 norm, involves assessing, at the time of acquisition or issuance, assets and
liabilities at fair value, see Figure 1.3.2.

A market is active if it possesses the 3 following conditions:

• Its prices are public,

• Supply and offer meet continuously,

• Traded assets must be homogeneous,

Currently, the transaction price of a loan is mainly based on credit risk, so
it is far from the fair value. According to the previous diagram and the loan
market attributes, it is therefore necessary to develop a pricing model for
the Fair Value of each loan. The Fair Value approach is even more difficult
to apply in a market where there is a competition bias, e.g. a French bank
is at a disadvantage compared to US banks in the US dollar loan market
since it does not have access to the US dollar funding at the same cost as its
competitors.

The Hedge Accounting approach involves covering one of the risk compo-
nents of the loan (credit risk, interest rate risk, counterparty risk...). For a
term loan that has only credit risk, the hedging will be perfect. This process
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can replace the usual accounting treatment relating to derivatives (fair value
in the income statement) or adjust the book value of assets or liabilities. But
companies will be allowed to use the Hedge Accounting approach if they meet
the numerous and complex conditions set out in IAS 39. It includes a clear
and accurate demonstration of the effectiveness of the hedging instrument on
the underlying asset. This approach can only hedge the market component
of the loan and cannot be applied on the different existing options such as
the prepayment.

With the aim of greater transparency and understanding of risks, it is ap-
propriate to apply a global management of credit risk. Unfortunately, IFRS
norms allow only sporadic actions and the restrictions produce volatility in
the P&L which, in some circumstances, can be counterproductive strategies
for risk management. One application of the thesis was to obtain an ac-
counting approach of hedging instruments and their underlying assets more
closely aligned with risk management. We searched for a procedure to better
reflect the financial statements of a bank but among the various proposals
under consideration to reduce the risk in accounting mismatch, none of the
solutions was satisfactory. Even assessing the Fair Value of all components of
risk of an underlying asset such as a loan would not reflect our risk manage-
ment and would produce a mismatch between the hedging instrument and
the underlying components (as they are not directly related to the market
risk).

1.3.3 Asset & Liability Management

As seen previously, the prepayment option involves a refinancing risk for the
bank. Indeed, the prepayment risk is the risk that a borrower decides to
prepay all or part of the outstanding amount. Unlike the retail banking,
there is generally no penalty for prepayment and it is a free option granted
to the borrower.

The financial impact of prepayment is outlined by two main factors:

• Exogenous factor: that is the time decay impact through the life of the
loan. According to the slope of the margin curve, the impact can be
positive or negative for the bank.

• Endogenous Factor: during a crisis, the liquidity costs and credit mar-
gins are very high. Once the crisis is over the prepayment risk is at the
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highest level because a lot of loans could be prepaid. Indeed the corpo-
rate borrowers will be able to refinance their debts at a lower interest
rate as soon as the crisis is over.

In the case of the prepayment, a reduction in the margin costs can cause
a loss during the reallocation of this excess of cash. For the bank, the risk
of prepayment is then a reinvestment risk and the longer the maturity, the
higher the reinvestment risk.

According to different scenarii, the P&L impact sensitivity can be ei-
ther positive or negative. P&L is sensitive to variations of liquidity costs
and prepayment behaviour. Intuitively, we expect a decrease (increase) of
prepayments if costs increase (decrease).

	  

Cost	  

Prepayment	  

very	  low	  
probability	  

very	  low	  
probability	  

1. Scenario 1 : Liquidity costs are constant in time.
If the liquidity costs are stable, there is a weak reinvestment risk. Gen-
erally, the liquidity curve increases with the maturity. Following the
prepayment occurrences, we can have two situations:

• Less prepayment than expected implies a profit. We need cash at
a lower maturity than at issuance, so at a lower price.

• More prepayment than expected. We have an excess of cash but
it can be reinvested in the new production. There is only a risk if
the volume of the new stock is inferior to the excess of cash.

2. Scenario 2 : Liquidity costs increase
If the liquidity costs increase, we assume that it will result in a decrease
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of prepayment. We need cash at a lower maturity than at issuance, but
according to the slope of the term structure, the price is not necessarily
lower.

3. Scenario 3 : Liquidity costs decrease
If the liquidity costs decrease, we assume that it will result in an in-
crease of prepayment. We have an excess of cash and the new stock can
not compensate because of the decrease of liquidity cost. This scenario
is the worst and the more difficult to forecast. We have two unknown
variables:

• minimum liquidity cost: it was not really invoiced before the crisis
due to a maturity mismatch between the assets and liabilities of
the bank, therefore we assume liquidity costs can not reach the
previous level.

• borrower behaviour : borrowers prepay less when liquidity costs
increase significantly but what happens when cost will decrease?
What is the maximum possible prepayment rate?
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2 Financial risks and Credit risk
To understand what is the credit risk for a financial institution, it is essential
to start by defining the principal financial risks. We develop the credit risk
by introducing the default probability with an application to bond market.

2.1 The different types of financial risks

2.1.1 The market risk

It is the risk of losses in positions taken ("long" for purchase or "short"
for sale) on financial instruments arising from fluctuations in market data
(market price, credit spread, interest rate term structure, etc.). A financial
instrument is a tradable asset categorized as a cash instrument (bonds, loans,
stocks, etc.) or a derivative instrument (option on bond futures, equity
futures, credit default swap, interest rate swap, ect.)

2.1.2 The operational risk

It is defined by the norms Basle II as the risk of loss resulting from inadequate
or failed internal processes (information systems, human errors, frauds and
ill will), people and systems, or from external events (accidents, fires, floods).

2.1.3 The liquidity risk

It is the risk that a financial institution doesn’t have enough liquidity to re-
spect its commitments towards its customers.
It is crucial not to confuse liquidity with liquidation.
The liquidity risk represents a dominating part of financial risks since the
2007 crisis. Therefore, it became essential for the banking institutions to
prove that they have a strong position of liquidity to maintain the confi-
dence of investors, credit rating agencies and regulators. As a result, the
liquidity risk became an integral part of the requirements of Basle III with
the integration of two liquidity ratios: a short-term ratio LCR (Liquidity
Coverage Ratio) and a long-term ratio NSFR (Net Stable Funding Ratio).
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2.1.4 The liquidation risk

This risk is very different from the previous one. Well known since many
decades, this risk occurs when a buyer or seller is no more able to convert
his/her assets into cash to pay off all his/her obligations. It appears when,
at the time of a transaction, the number of buyer and the number of seller
diverge. So the range of "bid/offer" quotation increases.

2.1.5 The credit risk

Credit Risk associated to an obligor results from the combination of the
obligor’s default risk with the risk linked to the recovery in the event of
default and to the unknown exposure at default. Default risk is the default
probability of a given obligor on its overall obligations, over a determined
time horizon. The recovery reflects, for each exposure, the expected recovery
value of the facility in the event of default. The exposure at default represents
the outstanding amount owed by the obligor at default, as anticipated at the
time of assessment.

2.2 Definition of the different events of default

It is important to understand the different triggers involving the default of
an obligor. Indeed, it can occur upon one of the following events:

• A probable or undoubted risk of payment default, likely to generate
a partial or total non-recovery of the exposure (any amount due by
the counterparty on a loan (principal, interest or fee), a market trans-
action or a contingent liability), without taking into account any of
the potential recoveries resulting from the enforcement of collaterals
or guarantees received. Furthermore, a probable or undoubted risk of
payment default is identified in the following situations:

– A result of a credit event, the Bank accelerates the repayment of
a loan (in case, for example of a cross-default event) or activates
the early termination of a market transaction.

– The Bank sells all or a part of its exposure at a significant "Eco-
nomic Loss" resulting from deterioration in the creditworthiness
of the counterparty. This haircut must not only be due to a dete-
rioration of the general market conditions.
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– The Bank is forced to a "Distressed Restructuring" of its exposure
because of a payment default risk on the counterparty, where this
is likely to result in an "Economic Loss" caused by a significant
haircut or a postponement of a significant part of the exposure.
The counterparty is not considered in default if the Bank consid-
ers that the counterparty is likely to pay its financial obligations
in full. A "non-distressed" restructuring consists for instance in
re-negotiating the financial conditions with the intention of pro-
tecting business interests; or the restructuring does not result in
a significant economic loss for the Bank, eg. when the reschedul-
ing is done at the prevailing market conditions applicable to this
counterparty.

• The existence of any uncured, missed or delayed payment (principal,
interest, fees in the case of loans) outstanding for more than 90 or 180
days, according to the Basel II regulation, depending on the type of
receivables.

• Any judicial, administrative or other proceedings (such as bankruptcy,
insolvency, receivership, ect).

• Any protection from creditors which is sought or commenced against
the counterparty (whoever requested it) and which might avoid, sus-
pend, differ or reduce the counterparty’s payment obligation (such as
Chapter 9, Chapter 11, etc).

2.3 Definition of the default probability

In credit risk modelling, the most delicate part is assessing the default prob-
ability for various time horizons. These can be based on actuarial models or
market prices of traded assets whose value is affected by default. There exist
actuarial models that forecast default probabilities by analysing explanatory
factors based on historical default rates. The most famous model is the
Z-score by Altman (1968). It predicts the probability of bankruptcy using
various accounting variables. Another, more sophisticated approach is that
of credit-rating agencies, which classify issuers by credit ratings. The agency
ratings traditionally reflect the obligors’ default risk alone ("Issuer Rating")
and the risk related to debt issues (obligor’s default risk and expected recov-
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ery). These ratings are an assessment of the default risk of a counterparty
based on its stand-alone credit standing following several rating criteria:

• Business risk: it reflects the country environment of the obligor (politi-
cal, economic and social environment); the business sector and position
of the counterparty within the sector and a management appraisal.

• Financial risk: it reflects the repayment capacity and the financing
sources of the obligor.

To relate each rating to an actual default rate, credit rating agencies
(S&P, Moody’s, Fitch...) have calculated 20 year historical default rates and
standard deviations for various time horizons. The classification, in Figure 2,
is ranged from AAA for the best obligors to C for the riskiest one. A borrower
with initial rating of BBB, for example, had an average 0.24 percent default
rate over the next year and 4.88 percent over the next 10 years. Indeed, the
speculative grade borrowers (from BB to C) have higher default rates than
the investment grade ones (from AAA to BBB). Thus, it is possible to use
this information as estimates of default probabilities for a given rating.

Even if the credit-rating agencies such as S&P, Fitch or Moody’s are
popular indicators to the investors, these ratings apply a Trough The Cycle
approach, which smooth the extreme variations of the cycles (growth and/or
recession). Thus it does not reflect the default risk on the market at a specific
point in time.

Credit risk can also be calculated implicitly from the price of traded
assets. Indeed the present value of these cash flows is impacted by default
probabilities. This includes bonds, credit default swaps, and equities for the
reference entity. Because the prices are set in freely functioning financial
markets, they incorporate the expectations of traders about potential losses
owing to default.

2.4 Application to the Bond market

2.4.1 Definition of the bond market

The bond market, although with less media exposure, is as important as
equity market in term of volumes (mainly because of the important part of
sovereign bonds). It represents the medium term and long term of the inter-
est rate curve in the market. Contrary to an equity, a bond does not offer
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Figure 2: We illustrate here the S&P classification ranged from AAA for
the best obligors to C for the riskiest one where each rating is related to a
historical default rate.
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an ownership stake in the company but a part of the debt of the concerned
issuer. A company having important financing needs can choose among sev-
eral funding sources, either on the capital market (through capital increase
or an initial public offering) or by debt financing. In this second possibility,
the company will be able to either raise a loan from a bank or issue a new
debt in the bond market. Through bond issuances, the company remains
independent with respect to the banks and allows other types of investors
to invest in the company. The bond market is a funding source used by
companies, sovereigns, local governments and organizations.

2.4.2 Bond market-based model

The level of the credit spread of a bond at issuance is function of:

• Characteristics of the bond (amount, duration, currency, and options),

• Characteristics of the issuer (rating, sector of industry and nationality),

• Market data: interest rate curve and foreign exchange rates,

• Economic environment: the general climate of the economy has an ef-
fect on the relation established between the investor’s risk aversion and
the bond market, and consequently on the coupon required. More-
over, financial crisis can trigger a flight of the investors towards the
safest investments and cause a liquidity crisis meaning an increase of
the coupon rate.

For instance, consider the price of a zero coupon bond that has a signif-
icant probability of default. The figure 2.4.2 describes a simplified default
process for this bond over one period in order to explain the static probability
of default. At maturity, the bond can be either in default or not. The bond
will pay recovery value R × 100 if a default occurs and the nominal value
100 otherwise. Let π be the cumulative default rate from now to maturity T
under risk-neutral valuation (for more on risk-neutral valuation see Section
2.1. [29]). The risk-neutral probability π is defined by the property that the
price of any financial instrument, here a zero coupon, is the actualisation of
the average of its terminal value (the nominal value 100 or the recovery value
R× 100). Note that the risk-neutral probability may not always exist or be
unique.
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Figure 3: ZC bond over one period with two terminal scenarii: No default
and Default

If bond prices carry no risk premium, the current price is simply the ex-
pected value of the two possible outcomes discounted at the risk-free interest
rate. Define y∗ and y as the yields on the zero coupon bond and on an
identical risk-free bond respectively. Hence,

P ∗ =
100

(1 + y∗)T
= (1− π)

100

(1 + y)T
+ π

R× 100

(1 + y)T
(1)

The risky bonds are subjected to the credit risk besides the interest rate
risk. In addition, the liquidation risk is also very important. Let’s assume
that there exist some firm on the bond market whose credit risk is null. The
excess return of a risky bond compared to a risk-free bond, called credit
spread, represents the premium required by the market to take into account
the counterpart risk and the liquidation risk inherent to the instrument.
Less liquid bonds, trading at a wider bid-ask spread, are less attractive to
investors. Defaults happen more often when the economy is doing badly. As
a result, a risky bond has some systemic risk, for which investors require an
additional compensation or risk premium.

Expressed in basis points, the spread is defined more precisely as the
difference between the yield to maturity of the bond and the reference rate
of a" benchmark".

Two types of benchmarks were mainly used on the market:

• The reference rate of the government bonds (OAT, Bund), considered
as risk free. Before the crisis, investors considered that the government
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bonds of the developed countries were a good proxy for the liquid-
ity. Indeed, these bonds issued by the states, primarily in their own
currency, were most liquid because they represented the main part of
bond’s transactions.

• The EURIBOR and LIBOR swap rates are still traditionally used as
proxies for risk-free rates. John Hull and Alan White [37] maintained
that since the 2007-2008 crisis, this practice has been called into ques-
tion. They explain that many banks now discount collateralized port-
folios with overnight indexed swap (OIS) rate and, EURIBOR and
LIBOR swap rates otherwise.

To simplify, let us drop second-order terms and assume that T = 1,
hence the risk-neutral default probability π can be defined simply by the
credit spread y∗ − y and the loss given default (1−R).

π =
y∗ − y
1−R

(2)

Therefore, it’s straightforward to find the default probability π from the
term structure of the bond yields and with some assumption about the re-
covery rate R. However this approach has some critical biases:

• it is difficult to assess the credit spread y∗ − y. This risk premium is
the excess return on a risky bond relative to a theoretical return on
a risk-free asset. Unfortunately, a risk-free asset doesn’t exist because
all financial assets carry some degree of risk. In the past, we used to
consider treasury-bills as risk-free assets but it’s now less obvious with
the downgrade of the U.S.

• the bond has to be liquid enough on the public market to have a credit
spread representative of the risk.

Instead of the bond market, we can use default-risk models based on eq-
uity market. This market has the advantage of generally proposing more
liquid stocks and derivatives on a larger number of companies. The Fig-
ure 2.4.2 describes a basic Merton method [47]. In this model, the value of
the firm’s assets is assumed to obey a Log-normal diffusion process with a
constant volatility. The firm has issued two classes of securities: equity and
debt. Assuming, the equity receives no dividends and the debt is a pure
discount bond where a payment is promised at time T .
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Figure 4: According to the Merton model, the value of the firm V is split
up into debt D and equity E. D is an obligation that has to be repaid at a
fixed price in the future at time T .

We can split up the value of the firm V into debt D and equity E. The
debt is an obligation that has to be repaid at a fixed price in the future at
time T . If the value of the firm is insufficient to repay this debt, the firm is
in default. In theory, the stock price then goes to zero.

Merton has shown that the firm’s equity can be viewed as a call option
on the value of the assets of the firm, with an exercise price given by the face
value of the debt. Hence,

ET = max [VT −D, 0] (3)

The current stock price therefore embodies a forecast of default probabil-
ity in the same way that an option embodies a forecast of being exercised.

These kinds of models, which are based on the capital structure of the
company, are called structural models. In particular KMV Moody’s uses this
approach to sell estimated default frequencies (EDF) for a large number of
firms. The approach based on bond price yields is called a reduced-form
model because it models the default probability directly.

Another alternative is to turn to default-risk models based on credit
derivatives. We will develop this approach in Section 4.
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3 Models of default intensity
Before developing a valuation model for a loan and its prepayment option, it
is important to define the types of stochastic process of the default intensity
of the borrower. The article of F.A. Longstaff and E.S. Schwartz [43] high-
lights some major empirical properties allowing for spreads to be stationary
and mean-reverting according to a historical data of credit spreads. In this
Section, we discuss several process incorporating these properties to decide
which one will give the more realistic pricing.

3.1 Intensity model

Let (Ω,H, {Ht}t≥0,P) be, a filtered probability space. We introduce the
right continuous increasing process Nt = 1τ<t adapted to the filtration Ht =
σ(Ns, s 6 t) where τ is the stopping time that occurs at the instance of
default of the borrower (for more details see Section 21.1.1 [15]).

Moreover Nt is a submartingale and N0 = 0.

E[Nt|Hs] > Ns, ∀s < t (4)

Therefore, according to Doob Meyer theorem, there exists a unique, in-
creasing, predictable process At with A0 = 0 such that Mt = Nt − At is a
uniformly integrable martingale. We assume that At is defined as follows,

At =

∫ t

0

λsds (5)

with a discrete-time process λt predictable with respect to the filtration Hs

as well.
As Mt is a martingale,

E[Mt+dt −Mt|Ht] = 0 (6)

Thus,

P(t < τ < t+ dt) = E[Nt+dt −Nt|Ht] = E[

∫ t+dt

t

λs|Ht] = λtdt (7)

So, λt is called the default intensity and multiplied by dt represents a first
order approximation of the probability that the borrower default between t
and t+ dt.

According to this new definition, the equations of the premium leg 17 and
default leg 18 can be defined in function of λt.
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3.2 Vasicek Model

The empirical analysis in the article [43] shows that the logarithm of the
credit spread has:

• a significant stability in a narrow range around zero,

• a constant variability.

Moreover, a regression analysis based on a historical data of credit spreads
also allows to show a negative slope coefficient. This indicate that the process
of diffusion is mean-reverting.

A first theoretical model that has been proposed and that includes mean-
reversion is the Vasicek model [3]. It is a one-factor model i.e., driven by
only one source of market risk. With respect to a risk-neutral framework,
the dynamics is:

dλt = γ(θ − λt)ds+ σdWt, γ, θ, σ > 0, λ0 = λ0, (8)

where

• θ is the long term mean value of the process,

• γ is the reversion factor that characterizes the speed at which the pro-
cess tends to θ,

• σ is the volatility of the process,

• Wt is a Wiener process under the risk neutral probability,

• λ0 is the initial condition.

This model is consistent with the historical behaviour of credit spreads
because it implies:

• a mean-reverting and homoscedastic diffusion i.e., an homogeneity of
the variance,

• credit spreads are positive and conditionally log-normally distributed.

This model has later been used for credit markets by Brigo and Mercurio,
(cf. Section 21.1.1 [15]).
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3.3 Cox Ingersoll Ross Model - CIR

Another well-known one factor model is the Cox-Ingersoll-Ross model. It
is an extension of the Vasicek model and has been introduced by John C.
Cox, Jonathan E. Ingersoll and Stephen A. Ross in 1985 (see [17, 8, 40] for
theoretical and numerical aspects of CIR processes and the situations where
the CIR process has been used in finance). The risk-neutral dynamics is:

dλt = γ(θ − λt)dt+ σ
√
λtdWt, γ, θ, σ > 0, λ0 = λ0, (9)

where Wt is a Wiener process under the risk neutral framework modelling
the random market risk factor.

The drift factor, γ(θ − λt), is exactly the same as in the Vasicek model.
It ensures the mean reversion of the intensity towards the long term mean
value θ, with reversion factor γ. The difference lies in the standard deviation
factor, σ

√
λt which prevents the possibility of negative value. Moreover, the

intensity is strictly positive if the condition 2γθ > σ2 is met.

3.4 Extension - CIR++

There exists an extension of the CIR model which replaces the coefficients by
time varying functions in order to make it consistent with the market term
structure of the credit spread of the borrower. The most tractable approach
is defined in an article of Alfonsi and Brigo [14] where the process follows a
CIR process plus a deterministic time-dependent function to be consistent
with the term structure. This model is called CIR++ and its risk-neutral
dynamics is:{

λt = yt + ψ(t)
dyt = γ(θ − yt)dt+ σ

√
ytdWt, γ, θ, σ > 0, y0 = y0

(10)

where Wt is a Wiener process under the risk neutral framework modelling
the random market risk factor.

The deterministic function ψ allows to match the CIR process calibrated
on a historical data of credit spread and the market term structure of the
credit spreads at a given time t.
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3.5 CIR model applied to Risky Zero Coupon Bond
pricing

3.5.1 Definition and notations

A Zero Coupon (ZC) Bond is a financial product that pays at maturity a
unique cash flow equal to the nominal value, here we put the nominal value
at 1. Let P (t, T ) be, the bond price at time t with a maturity T .

Since the dynamics is risk-neutral, the risk-free ZC bond price is the
present value of the cash flow discounted at the risk-free short term interest
rate rs,

BT−t = E[e−
∫ T
t rsds] (11)

And the risky ZC bond price is the present value of the cash flow dis-
counted to the risky rate rs + λs,

P (t, T ) = E[e−
∫ T
t (rs+λs)ds] (12)

where λs is the default intensity of the borrower.
Assuming the independence between rt and λt, the risky ZC bond price

can be defined as a risk-free ZC bond price times the survival probability
from t to T ,

P (t, T ) = BT−tE[e−
∫ T
t λsds] = BT−tP

CIR(t, T ) (13)

3.5.2 Analytic formula

We assume that λ is defined by the CIR process,

dλt = γ(θ − λt)dt+ σ
√
λtdWt, γ, θ, σ > 0, λ0 = λ0 (14)

We remind that the CIR process ensure an intensity strictly positive if
2γθ ≥ σ2.

Analytic formulas of PCIR(t, T ) are available, see Lando [41] page 292.
The intensity is following a CIR dynamic so the characteristic function of the
χ2 distribution allows to give for general t, T :

PCIR(t, T ) = α(t, T )e−β(t,T )λ, (15)
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where, 
α(t, T ) =

(
2h e(γ+h)T−t2

2h+(γ+h)(e(T−t)h−1)

) 2γθ

σ2

β(t, T ) = 2(e(T−t)h−1)

2h+(γ+h)(e(T−t)h−1)
,

h =
√
γ2 + 2σ2.

(16)

where γ and σ are the parameters of the CIR process of the intensity in
Equation (14).

4 CIR model calibration
The calibration of the coefficients γ, θ and σ can be based on bond prices or
on CDS spreads. A bond is a funded asset, we thus prefer to use a historical
data of CDS spread to avoid the bias of the funding cost. Indeed, the CDS
is a pure credit instrument assuming it is liquid enough and its market is not
in a disturbing cycle.

4.1 Credit derivative market

4.1.1 Definitions and notions

Credit derivatives are over-the-counter (OTC) financial instruments that en-
able financial institutions, corporate and institutional investors to protect
themselves against credit risk or to express a view on a particular credit risk
by way of bilateral agreements.

In the credit derivative market, the most widely used instrument is the
Credit Default Swap (CDS) contract. A CDS is a bilateral OTC agreement,
which transfers a defined credit risk from the protection buyer to the protec-
tion seller:

• the buyer pays a periodic and fixed premium (usually on a quarterly
basis) to the seller in return for protection against a credit event of a
reference entity. The protection buyer stops paying the regular pre-
mium in case of a credit event.

• the seller makes a payment to the buyer if a credit event occurs. Typ-
ically this payment takes the form of a physical exchange of the asset
between the buyer and the seller. The net loss to the seller is therefore
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Figure 5: Different cash flows occurred between the buyer and the seller
according to the reference entity default and the type of settlement (physical
or cash).

par less the recovery value on the delivered obligation. If no credit
event occurs during the life of the swap, these premium payments are
the only cash flows.

It is important to notice that there is no exchange of underlying principal,
alike the other financial swaps.

The Figure 4.1.1 describes physical settlement or cash settlement. Even if
single-name CDSs are often physically settled, CDS indices and tranches are
cash settled to simplify the recovery process in case of credit event. In such
cases, the protection seller would provide a single cash payment reflecting
the mark-to-market loss of the underlying debt obligation of the reference
entity. The settlement value for index and tranche defaults is determined via
auctions in the 90 days following the default.

CDS contracts can refer to single credits (bond or loan) or portfolios, such
as indices or synthetic Collateralized Debt Obligations (CDOs) and usually
have a term between one and ten years. The most liquid maturity term for
CDS contracts is 5 years. Contracts are documented under International
Swap and Derivatives Association Inc. (ISDA) swap documentation and the
2003 ISDA Credit Derivative Definitions as amended by various supplements.
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Even if CDSs are OTC instruments, the majority of transactions in the
market are quite standardized. CDS contracts typically have coupons on a
quarterly basis, at the following dates: 20th March, 20th June, 20th Septem-
ber and 20th December. That is why these dates are often used as maturity
date for the contracts. This standardization increases the liquidity of CDS
contracts and it allows the clearing of the CDS position. The clearing in-
volved a third party, a clearing house, which purpose is to reduce the set-
tlement risk between buyer and seller by matching buy and sell orders of a
same reference entity on the market.

In the economy, banks have regulatory and economic capital constraints
to reduce and manage their credit exposures and to take positive or negative
credit positions.

Credit derivatives enable users to:

• hedge or mitigate credit exposure,

• manage and transfer credit risk,

• generate leverage or yield enhancement,

• decompose and separate risks embedded in securities (such as in con-
vertible bond arbitrage),

• manage regulatory capital ratios.

Credit derivatives are much more flexible and have a wider range of appli-
cation than traditional credit instruments (loans or bonds). One of the most
important structural characteristic of credit derivatives is that they separate
credit risk from funding: a seller can invest in the debt of a reference entity
without paying a nominal amount (or fair value) as the purchase of a bond
or a loan in the primary or secondary markets.

The largest participants in the market are banks, insurance companies
and hedge funds. Banks are the major buyers due to their protection needs
on their credit portfolio.

4.1.2 Default probability model

This model calculates the implied default probability of the reference entity
from the discounted cash flows in the credit default swap. In the CDS market,
the unsecured recovery rate of a senior debt is assumed at 40%. A time-series
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Figure 6: We illustrate here the cash flows of a default swap with a premium
of c paid on a quarterly basis and a fixed recovery R.

of survival probabilities is assessed by a bootstrap method from the term
structure of the CDS spread.

A CDS consists of two legs:

• The fixed leg or premium leg represents the fixed premium transferred
from the protection buyer to the protection seller until the earlier of a
credit event or maturity of the contract.

• The floating leg or default leg represents the difference between the no-
tional amount and the recovery amount of the underlying debt trans-
ferred from the protection seller to the protection buyer if a credit event
occur during the contract.

These cash flows are shown in Figure 4.1.2 for a CDS contract with a fixed
premium c paid, for example on a quarterly basis, and a recovery R. The
occurrence of the future cash flows will depend on the survival probability of
the reference entity.

The premium leg is the sum of the n payment of the premium c made by
the protection buyer on a quarterly basis at time ti, i = {0, .., n}, discounted
by the risk-free and by the survival probabilities (τ is the stopping time
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representing the instant of default):

PL0 =
n∑
i=1

E
[ c

4
Bti1{τ>ti} + c(τ − ti−1)Bτ1{ti−1<τ<ti}

]
(17)

The default leg is the loss, i.e. the difference between the nominal amount
and the recovery value, discounted by the risk-free and by the default prob-
ability.

DL0 = (1−R)E
[
Bτ1{τ<tn}

]
(18)

Under no arbitrage constraint, the present value of the fixed leg is equal
the present value of the floating leg at the inception of the contract,

n∑
i=1

E
[ c

4
Bti1{τ>ti} + c(τ − ti−1)Bτ1{ti−1<τ<ti}

]
= (1−R)E

[
Bτ1{τ<tn}

]
(19)

we can solve for the premium:

c =
(1−R)E

[
Bτ1{τ<tn}

]∑n
i=1 E

[
1
4
Bti1{τ>ti} + (τ − ti−1)Bτ1{ti−1<τ<ti}

] (20)

4.2 Maximum Likelihood Estimation (MLE)

The most familiar method to provide estimates for the model’s parameters
is the maximum likelihood estimation. We chose to use historical data of the
1Y CDS spreads. Unfortunately, there doesn’t exist an instantaneous CDS
spread so we have to assume the intensity λ[0−1] is constant during the first
year. Assuming a 1Y CDS pays only one coupon S1Y per year at maturity,
the loss 1 − R in case of default is also paid at maturity and r is constant,
we can approximate the CDS pricing formula 19 as follows,

S1Y e
−λ[0−1]

e−r = (1−R)(1− e−λ[0−1]

)e−r (21)

Thus we obtain a historical intensity λ[0−1] form the CDS spread S1Y ,

λ[0−1] = log(
S1Y + 1−R

1−R
) (22)

We define the n+ 1 observations at discrete time points λ0,λδ,λ2δ,...,λnδ.
Here δ is the sampling interval and can be either fixed or very small corre-
sponding to high-frequency data.
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According to the parameters of the CIR process defined in the Equa-
tion 14, let c = 4γσ−2(1− e−γδ)−1, the transitional distribution of cλt given
λt−1 is non-central χ2

κ(ν) with the degree of freedom κ = 4γθσ−2 and the
non-central component ν = cλt−1e

−γδ. The conditional mean and variance
of λt given λt−1 are

E(λt|λt−1) = λt−1e
−γδ + θ(1− e−γδ) (23)

V ar(λt|λt−1) =
1

2
θσ2γ−1(1− e−γδ)2 + λt−1σ

2γ−1(e−γδ − e−2γδ)(24)

Unfortunately, there doesn’t exist explicit formulas of the MLEs for our
parameters because the non-central χ2-density function is an infinite series
involving central χ2 densities. But we can consider pseudo-likelihood esti-
mators, see Nowman [50], which give close form formulas of the parameters
from an approximation of the CIR process obtained by a Bergstrom method.

We obtain the following pseudo-MLEs (with and without a bias),

γ̂with bias = − log(α̂1)

δ
, (25)

γ̂ = γ̂with bias −

(
4 +

2
2γ̂with biasα̂2

σ̂2
with bias

− 1

)
(nδ)−1, (26)

θ̂ = α̂2, (27)

σ̂2
with bias =

2γ̂with biasα̂3

1− α̂2

, (28)

σ̂2 = σ̂2
with bias −

σ̂2
with bias(1− e−γ̂with biasδ)

2(2γ̂with biasα̂2

σ̂2
with bias

− 1)
. (29)

where,

α̂1 =
n−2

∑n
i=1 λiδ

∑n
i=1 λ

−1
(i−1)δ − n−1

∑n
i=1 λiδλ(i−1)δ

n−2
∑n

i=1 λiδ
∑n

i=1 λ
−1
(i−1)δ − 1

(30)

α̂2 =
n−1

∑n
i=1 λiδλ

−1
(i−1)δ − α̂1

(1− α̂1)n−1
∑n

i=1 λ
−1
(i−1)δ

(31)

α̂3 = n−1

n∑
i=1

{λiδ − λ(i−1)δα̂1 − α̂2(1− α̂1)} (32)
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4.3 Term structure calibration

As it is difficult to provide relevant coefficients in a disturbing market, we
decided to propose another method based on a direct calibration of the term
structure. It means that the parameters minimize the errors between the
market default probability F (t) and the CIR model default probability 1 −
PCIR(0, t).

Let F (t) be the market cumulative distribution function of τ ,

F (t) = P(τ < t) (33)

Assuming the market default intensity is deterministic and even a piece-
wise constant function λmarket(t). The F (t) function is obtained by an it-
erative bootstrapping method of the CDS curve. In the credit market, we
denote q maturities of CDS Ti: T1 = 1 year, T2 = 2 years, T3 = 3 years,
T4 = 5 years, T5 = 7 years and T6 = 10 years. So the function λmarket(t) is
a piecewise constant function defined by six constant values: λ[0−1], λ[1−2],
λ[2−3], λ[3−5], λ[5−7] and λ[7−10].

The algorithm is as follows:

1. We start at T = 1, the market CDS spread S1Y is known, so by inverting
the simplified CDS pricing formula,

S1Y =
(1−R)β1(1− e−λ[0−1])

β1e
−λ[0−1]

(34)

We obtain λ[0−1],

λ[0−1] = log(
S1Y + 1−R

1−R
) (35)

2. We continue with T = 2, the market CDS spread S2Y is known, so by
inverting the simplified CDS pricing formula,

S2Y =
(1−R)[β1(1− e−λ[0−1]) + β2(e−λ[0−1] − e−λ[0−1]−λ[1−2])]

β1e
−λ[0−1] + β2e

−λ[0−1]−λ[1−2]
(36)

We obtain λ[1−2],
λ[1−2] = ... (37)

3. We repeat this process until λ[7−10].
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4. At the end, when each values λ[0−1], λ[1−2], λ[2−3], λ[3−5], λ[5−7] and
λ[7−10] are known, we can define the market cumulative distribution
function F (t), ∀t ∈ [0, 10],

F (t) = 1− e−
∑q
i=1 λ

market(t)(Ti−Ti−1)1{Ti<t}−
∑q
i=1 λ

market(t)(t−Ti−1)1{Ti−1<t6Ti}

(38)

Remark 1 For the CIR++ extension, there exists a closed formula of the
shift function ψ(t), see Brigo and Mercurio [15], depending on the market
term structure of the CDS spread.By bootstrapping the CDS curve, we obtain
F (t), so we look for ψ(t) such,

P(τ > t) = E[e−
∫ t
0 ψ(s)ds−

∫ t
0 λsds] = 1− F (t) (39)

Thus, ∫ t

0

ψ(s)ds = log

(
PCIR(0, t)

1− F (t)

)
(40)

Thus the shift term is,

ψ(t) = fmarket(0, t)− fCIR(0, t) (41)

where,

fmarket(0, t) = −∂log(1− F (t))

∂t
(42)

fCIR(0, t) = −∂log(PCIR(t))

∂t
(43)

By Lebesgue derivation, we obtain,

fmarket(0, t) =

q∑
1

λmarket(t)1{Tj−16t6Tj} (44)

And Brigo and Mercurio [15] provide,

fCIR(0, t) =
2γθ(eht − 1)

2h+ (γ + h)(eht − 1)
+ λ0

4h2eht

(2h+ (γ + h)(eht − 1))2
(45)

where h =
√
γ2 + 2σ2.
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Remark 2 We still have some doubt about the CDS as best indicators. In-
deed since 2008, the markets of the CDS are particularly stressed and the
implicit probability of default of the CDS does not reflect the probability of
default specified by the ratings of the rating agencies or ratings of a bank.
These ratings are used by the banks in the calculation of their reserves and
their requirements in Tier 1 common capital. They are thus used to define
the commercial margins. This asymmetry of credit risk is problematic be-
cause it creates an asymmetry of price between the price based on an rating
model and a market model. On the other hand, the credit risk implied by the
CDS allows removing the volatility of the Mark-to-market in Hedge Account-
ing because the hedging instrument and the underlying asset are defined on
the same indicator of credit risk. The credit risk can also be evaluated from
bond or EDF (indicator of default of Moody’s).
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5 Liquidity cost
To finish, we introduce the notion of the liquidity in terms of funding cost and
regulatory constraint. We propose a regime switching approach to simulate
the diffusion process of the liquidity cots.

5.1 Liquidity risk

It is interesting to carry out a study on the long-term funding costs of var-
ious banks, like BNP Paribas, based on their bond programs. A study of
utilization amounts of the credit lines and deposits has been made to pre-
vent liquidity risk on the commitments of BNP Paribas with its corporate
customers. However it will not be presented in this thesis for reasons of con-
fidentiality. The pricing will then primarily concern Term loans i.e., 100%
utilized. Moreover we will assume that the liquidity cost specific to the loans
is equal to the funding cost of the bank on the bond market. For a finan-
cial institution, the liquidity risk represents the risk that it doesn’t have
enough liquidity to respect its commitments towards its customers. This risk
is strongly linked to the reputational risk of the bank.

There exist three categories of liquidity risk. The structural liquidity risk
is due to an asymmetry in the structure of the balance sheet of the bank
at some point according to modifications in the schedule of the repayments
on individual positions, resulting from contractual flows or unexpected flows
of the treasury. We will not be interested in this category of risk which
is an exclusive topic of the Asset Liability Management (ALM). Moreover,
it is necessary to have access to the balance sheet of the bank in minute
detail. The contingent liquidity risk is due to an unexpected request for
short-term liquidity eg., utilization of the lines of commitment by lenders,
withdrawals of the deposits... This risk has been the object of a study on the
rates of utilization of the lines of commitment and a study on the stability
of the deposits. The statistical behaviour of the corporate customers of the
bank showed that the utilization rate and withdrawals of the deposits were
strongly correlated with the economic environment. The customers of the
bank tend to use their credit lines and liquidity lines when the other funding
sources become too expensive, eg. issue of bonds. Studies highlighted the
correlation between the volume of bond issuances and the volume of loans.
We also observed an outflow of deposits in time of liquidity crisis. The market
liquidity risk is due to a reduction in the confidence of the investors, then
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Figure 7: Euro market funding costs of BNP Paribas by maturity buckets

causing difficulties accessing to the funding on the market and difficulties
selling assets at their fair value. To avoid the common amalgam between
these two market risks, we will define the second as a liquidation risk. A study
of the impact of the market on the long-term funding costs was made on the
levels of funding of the main banks based on their bond issuances. We thus
studied the history of the levels of the discount margin of floating rate notes
and the asset-swap spread of fixed rate bond according to various maturities
and various currencies. The year 2011 is an example of very explicit crisis
of liquidity. Indeed the crisis of the European sovereign national debt has
caused a crisis of confidence within the investors. The systemic risk inherent
to the banks and their strong exposures to this kind of debt created a rise in
the funding costs, see hereunder the evolution of the margin on the secondary
bond market.

Before the beginning of the crisis of the sovereigns in August 2011, the
funding costs of BNP Paribas in Euro were very stable. Indeed, the volatility
was very low during the 1st semester. On the 2nd semester, the costs have
sharply increased. There were three jumps of strong amplitude in August,
September and November. Moreover, it is interesting to notice that the fall
initiated at the beginning of the year 2012 is definitely more progressive, this
can be justified by a much slower return of the confidence of the investors.
The finding is the same for the evolution of the funding costs in US dollar
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Figure 8: US Dollar market funding costs of BNP Paribas by maturity buck-
ets

over the year 2011.
These first results underline the significance of the liquidity cost to assess

the price of the loans with a refinancing risk related to the prepayment.

5.2 Basel III: Liquidity ratios

The Basel Committee on Banking Supervision (BCBS) in Basel, Switzer-
land, has published a set of guidelines since 1988 with three main updates in
response to the financial evolution and crises, see Figure 5.2.

• Basel I is the 1988 Basel Accord and it is primarily focused on credit
risk,

• Basel II was published in June 2004 to create an international standard
for banking regulators to control the level of regulatory capital of banks
to hedge the financial risks and the operational risks.

• Basel III is the latest update and aims at addressing the lessons of the
2007 crisis. To prevent future crises, 5 key actions are considered:

– a better quality, more consistency and transparency of the capital
base,
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Figure 9: Basel Committee milestones

– to strengthen the capital requirements against counterparty risk
and raise the risk weight on exposure to financial sector,

– to set up 2 minimum liquidity ratios: a short-term Liquidity Cov-
erage Ratio (LCR) and a longer-term Net Stable Funding Ratio
(NSFR), and a set of monitoring tools for banks and regulators,

– to promote a very simple leverage ratio based on gross exposures,

– to reduce procyclicality and promote capital buffers by implement-
ing a dynamic provisioning based on expected loss (EL).

Among the banking sector, each bank’s situation is different from the
other, all major European banks have adopted Basel 2 rules but American
banks are still under Basel 1 rules.

This part focuses mainly on the new liquidity ratios (cf. the Basel’s pub-
lication [23]). During the financial crisis, many banks struggle to maintain
adequate liquidity so the key strength for a global Corporate and Investment
Banking (CIB) bank is now to have a better understanding of these new reg-
ulatory ratios. In the liquidity aspect, the main objective of the regulators is
to require more and longer term funding from banks with the implementa-
tion of an international and uniform quantitative framework to measure and
monitor liquidity risk.

Two measures of liquidity considered as new minimum requirements have
been developed to achieve complementary objectives on short-term and long-
term funding needs:

• Liquidity Coverage Ratio: to ensure sufficient high quality and liquid
resources to survive a 1-month stress scenario,
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• Net Stable Funding Ratio: promote longer term stability, capture fund-
ing instabilities over a 1-year period.

5.2.1 Liquidity Coverage Ratio (LCR)

The LCR is a stress-test ratio to assess the basic ability to survive of a bank
within a 1-month horizon if trades with other banks are frozen and depositors
start withdrawing their funds. It means the expected net cash outflows have
to be fully covered by high quality liquid assets. For the assets with a lower
quality, a haircut is applied by the regulators, i.e. the value of the asset is
reduced by a certain percentage.

LCR =
High Quality Liquid Assets

Net Cash Outflows over 1 month
> 100% (46)

High Quality Liquid Assets are defined by the regulators as follows:

• AAA-securities (supranationals, sovereign/government bonds under
strict conditions),

• A- or above corporate and covered bonds with a haircut from 20%-to-
40%.

Net Cash Outflows are defined as follows:

• deposits with maturity or call option of less than 1-month with a run-off
factor,

• Other liability cashflows with expected drawings on off-balance sheet
items,

• Other asset cashflows with potential drawings on contingent liabilities.

The implementation deadline of the LCR is the 1st January 2015.

5.2.2 Net Stable Funding Ratio (NSFR)

The NSFR allows to curb the reliance to short-term interbank funding on
middle and long-term commitments. It aims at ensuring that available stable
funding fully covers required stable funding needs over a 1-year horizon.

NSFR =
Available Stable Funding
Required Stable Funding

> 100% (47)

Available Stable Funding is defined by the regulators as follows:
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• medium-term and long-term liabilities (public, private and term de-
posits),

• short-term resources considered as stable with a haircut from 10%-to-
50%.

Required Stable Funding is defined as follows:

• stable assets with residual maturity above one year,

• liquidity unencumbered assets with residual maturity above one year
with a haircut from 35%-to-95%..

• short-term assets considered as stable with a haircut from 15%-to-50%,

• credit line and liquidity lines not used with a 95% haircut.

The implementation deadline of the NSFR is the 1st January 2018, but
it is still in discussion.

5.2.3 Consequences for the banks

The first consequence will be a rise in the funding costs. Indeed, short-
term assets are expected to get rolled over to fund medium-term or long-
term. Moreover a narrow definition of highly liquid assets does not allow
easy building of a large liquidity buffer book.

On the other hand, the reliability to "standard monetary cycle" is denied:
assets’ eligibility to central banks monetary programs is only a "nice to have".
Relationship with imperfect correlation across all financial institutions are
denied, even within a same group (from financial captive arm of corporate
groups to long-only investors) and the consistency with other regulation, as
Solvency, II is questionable.

To conclude, the liquidity ratios embrace a hedging philosophy already
existing in most jurisdictions, but they cover assumptions which are harsher
than previously experienced during the crisis and sometimes unrealistic: eg.
clients draw on their lines and withdraw their deposits at the same time.
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5.3 Regime switching models

The liquidity cost invoiced to the lender is defined as the specific cost of a
bank to access the cash on the market and it is assumed equivalent to the
funding cost of the bank. Following the study made on the funding costs,
we could notice variations in the form of jumps and irregular volatilities. It
was thus difficult to model the liquidity cost with a model such as Markovian
models Heath-Jarrow-Morton (HJM) (cf. Chapter 5 [15]). On the contrary, a
multi-regime approach seems particularly appropriate to the liquidity costs.
According to the state of the economic environment, the liquidity cost can
be defined by various trends. Between two crises, the banks are trusted by
the investors and have access easily to the liquidity on the market through
programs of long-term bonds. However, when a crisis occurs, the liquidity
is rare and it creates an abrupt and sudden rise of the liquidity costs. It
will then be necessary to expect the progressive return of the confidence of
the investors to observe a reduction in the costs. To model these distinct
behaviours, we model the liquidity costs by a Markov chain with a finite set
of possible values, one for each liquidity regime. Therefore, the assessment
of the loan value and the prepayment option can be written as a system of
coupled partial differential equations, one for each liquidity regime.

The economic state of the market is described by the Markov chain X =
{Xt, t ≥ 0}. X takes values in a finite set of unit vectors E = {e1, e2, ..., eN}.
We can suppose, without loss of generality, that ei = (0, ..., 0, 1, 0, ..., 0)T ∈
RN . Here T is the transposition operator.
Assuming the process Xt is homogeneous in time and has a rate matrix A,
then if pt = E[Xt] ∈ RN ,

dpt
dt

= Apt (48)

Denote by ak,j the entry on the line k and the column j of the N ×N matrix
A with ak,j ≥ 0 for j 6= k and

∑N
j=1 ak,j = 0 for any k.

We define the process Xt as follows,

Xt = X0 +

∫ t

0

AXudu+Mt, (49)

where M = {Mt, t ≥ 0} is a martingale with respect to the filtration gener-
ated by X. In differential form

dXt = AXtdt+ dMt, X0 = X0. (50)

55



We assume that the instantaneous liquidity cost of the bank depends on the
state X of the economy, so that

lt = 〈l, Xt〉 (51)

We choose here a simple model with no diffusion process. Our purpose is to
illustrate the systemic risk on liquidity. It is possible to use a CIR process
with coefficients γ, θ, σ depending on the regime X but in this case, there is
no analytic formula for ξ and we need to compute it from its PDE.
The default intensity λt is defined by a Cox-Ingersoll-Ross process, cf.
Section3.3, with parameters depending on the regime Xt:

dλt = γλ(Xt)(θλ(Xt)− λt)dt+ σλ(Xt)
√
λtdWt, λ0 = λ0, (52)

γλ(Xt), θλ(Xt), σλ(Xt) > 0. (53)

5.4 Term-structure of the liquidity cost

In each regime lk, k = 1, .., N , we can build a term-structure of the liquidity
cost that refers to the cost at different tenors. In the more stressful regime,
the curve will be inverted. It is the rarest type of curve and indicates an
economic recession (see Figure 30). The liquidity cost Lkt,T for a contractual
maturity T at time t is defined by the following equality:

e−L
k
t,T (T−t) = E

[
e−

∫ T
t ludu

∣∣Xt =< X, ek >
]
. (54)

Therefore,

Lkt,T = − ln (fk(T − t))
T − t

(55)
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Part II

Perpetual corporate loans:
One-Dimension space model

Abstract

This part presents an work that has been published in the jour-
nal: Abstract and Applied Analysis [2]. We investigate in this paper
a perpetual prepayment option related to a corporate loan. The val-
uation problem has been modelled as an American call option on a
risky debt owned by the borrower. The default intensity of the firm
is supposed to follow a CIR process. We assume the contractual mar-
gin of a loan is defined by the credit quality of the borrower and the
liquidity cost that reflects the funding cost of the bank. Two frame-
works are discussed: firstly a loan margin without liquidity cost and
secondly a multi-regime framework with a liquidity cost dependent on
the regime. The prepayment option needs specific attention as the
payoff itself is an implicit function of the parameters of the problem
and of the dynamics. In the unique regime case, we establish quasi
analytic formulas for the payoff of the option; in both cases we give a
verification result that allows to compute the price of the option. Nu-
merical results that implement the findings are also presented and are
completely consistent with the theory; it is seen that when liquidity
parameters are very different (i.e., when a liquidity crisis occur) in the
high liquidity cost regime the exercise domain may entirely disappear,
meaning that it is not optimal for the borrower to prepay during such
a liquidity crisis. The method allows to quantify and interpret these
findings.
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6 Introduction
When a firm needs money it can turn to its bank which lends it against e.g.,
periodic payments in a form of a loan. In almost every loan contract, the
borrower has the option to prepay a portion or all the nominal at any time
without penalties. Even if the technicalities are, as it will be seen in the
following, different, the concept of this option is very close to the embedded
option of a callable bond. When its credit spread has gone down, the issuer of
the bond can buy back his debt at a defined call price before the bond reaches
its maturity date. It allows the issuer to refinance its debt at a cheaper rate.

The interest rate of a loan is the sum of a constant interest rate (eg.
LIBOR or EURIBOR) and a margin defined according to the credit quality
of the borrower and a liquidity cost that reflects the funding costs of the
lender, the bank. We assume in this model that the interest rate is constant
and known. The liquidity cost dynamics will be described later.

In order to decide whether the exercise of the option is worthwhile the bor-
rower compares the remaining payments (actualized by the interest rate he
can obtain at that time) with the nominal value. If the remaining payments
exceed the nominal value then it is optimal for the borrower to refinance his
debt at a lower rate.

When the interest rates are not constant or the borrower is subject to de-
fault, the computation of the actualization is less straightforward. It starts
with considering all possible scenarios of evolution for interest rate and de-
fault intensity in a risk-neutral framework and compute the average value of
the remaining payments (including the final payment of the principal if ap-
plicable); this quantity will be called ”PV RP ”(denoted ξ) and is the present
value of the remaining payments i.e., the cash amount equivalent, both for
borrower and lender in this model of the set of remaining payments. The
PV RP is compared with the nominal : if the PV RP value is larger than the
nominal then the borrower should prepay, otherwise not. Recall that at the
initial time the payments correspond to a rate, the sum of the interest rate
and a contractual margin ρ0, which is precisely making the two quantities
equal. Note that in order to compute the price of the embedded prepayment
option the lender also uses the PV RP as it will be seen below.

For a bank, the prepayment option is essentially a reinvestment risk i.e.,
the risk that the borrower decides to repay earlier his/her loan and that the
bank can not reinvest its excess of cash in a new loan. So the longer the
maturity of the loan, the riskier the prepayment option. Therefore, it is
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interesting to study long-term loans that are set for more than three years
and can run for more than twenty years. The valuation problem of the
prepayment option can be modelled as an American embedded option on a
risky debt owned by the borrower. As Monte-Carlo simulations are slow to
converge to assess accurately the continuation value of the option during the
life of the loan and that the binomial tree techniques are time-consuming for
long-term loans (cf. works by D. Cossin et al. [24]), we decided to focus, in
this paper, on the prepayment option for perpetual loan.

When valuing financial products with long maturity, the robustness with
respect to shocks and other exogenous variabilities is important. Among
problems that have to be treated is the liquidity and its variability. Liquid-
ity is the key of the stability of the entire financial system and can cause
banks’ failures if systemic liquidity squeezes appear in the financial industry.
Historical events like the Asian crisis of 1997 [31]; the Russian financial crisis
of 1998 [9]; the defaults of hedge funds and investment firms like LTCM,
Enron, Worldcom and Lehman Brothers defaults, sovereign debts crisis of
2010-11 and so on prove that banks hold significant liquidity risk in their
balance sheets. Even if liquidity problems have a very low probability to
occur, a liquidity crisis can have a severe impact on a bank’s funding costs,
its market access (reputation risk) and short-term funding capabilities.

Following the state of the economic environment, the liquidity can be
defined by distinct states. Between two crises, investors are confident and
banks find it easier to launch their long term refinancing programs through
regular bonds issuances. Thus the liquidity market is stable. Unfortunately,
during crisis, liquidity become scarce, pushing the liquidity curve to very
high levels which can only decrease if confidence returns to the market. The
transition between these two distinct behaviours is rarely smooth but rather
sudden.

In order to model the presence of distinct liquidity behaviours we will
simulate the liquidity cost by a continuous time Markov chain that can have
a discrete set of possible values, one for each regime that is encountered in
the liquidity evolution.

From a technical point of view this paper faces several non-standard con-
ditions: although the goal is to value a perpetual American option the payoff
of the option is highly non-standard (is dependent on the PV RP ). As a
consequence, the characterization of the exercise region is not standard and
technical conditions have to be met. Furthermore, our focus here is on a
specific type of dynamics (of CIR type) with even more specific interest on
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the situation when several regimes are present.
The balance of the paper is as follows: in the remainder of this section

(Sub-Section 6.1) we review the related existing literature; in Section 7, we
consider that the liquidity cost is negligible and that the borrower credit
risk is defined by his/her default intensity (called in the following simply
”intensity”) which follows a CIR stochastic process. In this situation, we
are able to obtain a quasi-analytic formula for the prepayment option price.
In Section 8 we explore the situation when the liquidity cost, defined as
the cost of the lender to access the cash on the market, has several distinct
regimes that we model by a Markov chain. We write the pricing formulas and
theoretically support an algorithm to identify the boundary of the exercise
region; final numerical examples close the paper.

6.1 Related literature

There exist few articles (e.g., works by D. Cossin et al. [24]) on the loan pre-
payment option but a close subject, the prepayment option in a fixed-rate
mortgage loan, has been widely covered in several papers by J.E. Hilliard and
J.B. Kau [34] and more recent works by Chen et al. [21]. To approximate
the PDE satisfied by the prepayment option, they define two state variables
(interest rate and house price). Their approach is based on a bivariate bino-
mial option pricing technique with a stochastic interest rate and a stochastic
house value.

Another contribution by D. Cossin et al. [24] applies the binomial tree
technique (but of course it is time-consuming for long-term loans due to the
nature of binomial trees) to corporate loans. They consider a prepayment
option with a 1 year loan with a quarterly step but it is difficult to have an
accurate assessment of the option price for a 10 years loan.

There also exist mortgage prepayment decision models based on Poisson
regression approach for mortgage loans. See, for example, E.S. Schwartz and
W.N. Torous [52]. Unfortunately, the volume and history of data are very
weak in the corporate loan market.

Due to the form of their approach, these papers did not have to consider
the geometry of the exercise region because it is explicitly given by the nu-
merical algorithm. This is not the case for us and requires that particular care
be taken when stating the optimality of the solution. Furthermore, to the
best of our knowledge, none of these approaches explored the circumstance
when several regimes exist.
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The analysis of Markov-modulated regimes has been investigated in the
literature when the underlying(s) follow the Black& Scholes dynamics with
drift and volatility having Markov jumps; several works are of interest in this
area: Guo and Zhang [57] have derived the closed-form solutions for vanilla
American put; Guo analyses in [32] Russian (i.e., perpetual look-back) op-
tions and is able to derive explicit solutions for the optimal stopping time;
in [55] Y. Xu and Y. Wu analyse the situation of a two-asset perpetual Amer-
ican option where the payoff function is a homogeneous function of degree
one; Mamon and Rodrigo [45] find explicit solutions to vanilla European
options. Buffington and Elliott [16] study European and American options
and obtain equations for the price. A distinct approach (Hopf factorization)
is used by Jobert and Rogers [38] to derive very good approximations of
the option prices for, among others, American puts. Other contributions
include [56, 54], etc.

Works involving Markov switched regimes and CIR dynamics appears
in [30] where the bond valuation problem is considered (but not in the form
of an American option; their approach will be relevant to the computation of
the payoff of our American option although in their model only the mean re-
verting level is subject to Markov jumps) and in [58] where the term structure
of the interest rates is analysed.

On the other hand numerical methods are proposed in [35] where it is
found that a fixed point policy iteration coupled with a direct control formu-
lation seems to perform best.

Finally, we refer to [36] for theoretical results concerning the pricing of
American options in general.

7 Perpetual prepayment option with a stochas-
tic intensity CIR model

We assume throughout the paper that the interest rate r is constant. There-
fore, the price of the prepayment option only depends on the intensity evo-
lution over time. We model the intensity dynamics by a Cox-Ingersoll-Ross
process (see [17, 8, 40] for theoretical and numerical aspects of CIR processes
and the situations where the CIR process has been used in finance):

dλs = γ(θ − λs)ds+ σ
√
λsdWs, γ, θ, σ > 0, λ0 = λ0 (56)
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It is known that if 2γθ ≥ σ2 then CIR process ensures an intensity strictly
positive. Fortunately, as it will be seen in the following, the PVRP is given
by an analytic formula.

7.1 Analytical formulas for the PVRP

Assume a loan with a fixed coupon defined by the interest rate r and an ini-
tial contractual margin ρ0. Here ρ0 don’t take into account any commercial
margin, see Remark (22). Let ξ(t, T, λ) be, the present value of the remain-
ing payments at time t of a corporate loan with initial contractual margin
ρ0 (depending on λ0), intensity at time t, λt, following the risk-neutral equa-
tion (56) with λt = λ, has nominal amount K and contractual maturity T .
Here the assignment λt = λ means that the dynamic of λt starts at time t
from the numerical value λ. All random variables will be conditional by this
event, see eg. Equation (58).

Therefore the loan value LV (t, T, λ) is equal to the present value of the
remaining payments ξ(t, T, λ) minus the prepayment option value P (t, T, λ).

LV (t, T, λ) = ξ(t, T, λ)− P (t, T, λ) (57)

The present value of the cash flows discounted at the (instantaneous)
risky rate r + λt, is denoted by ξ. The infinitesimal cash flow at time t is
K(r + ρ0) and the final payment of the principal K. Then:

ξ(t, T, λ) = E
[
K · (r + ρ0)

∫ T

t

e−
∫ t̃
t (r+λu)dudt̃+Ke−

∫ T
t r+λudu

∣∣∣λt = λ
]

(58)

For a perpetual loan the maturity T = +∞. Since λt is always positive
r + λt > 0 and thus the last term tend to zero when T → ∞. A second
remark is that since γ, θ and σ independent of time, ξ is independent of the
starting time t :

ξ(t, λ) = E
[
K · (r + ρ0)

∫ +∞

t

e−
∫ t̃
t r+λududt̃

∣∣∣λt = λ

]
(59)

= E
[
K · (r + ρ0)

∫ +∞

0

e−
∫ t̃
0 r+λududt̃

∣∣∣λ0 = λ

]
=: ξ(λ), (60)

where the last equality is a definition. For a CIR stochastic process, we
obtain (see [17, 40]),

ξ(λ) = K · (r + ρ0)

∫ +∞

0

e−rt̃B(0, t̃, λ)dt̃ (61)
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where for general t, t̃ we use the notation:

B(t, t̃, λ) = E
[
e−

∫ t̃
t λudu

∣∣∣λt = λ
]
. (62)

Note that B(t, t̃, λ) is a familiar quantity and analytic formulas are available
for Equation 62, see Lando [41] page 292. The intensity is following a CIR
dynamic therefore, for general t, t̃:

B(t, t̃, λ) = α(t, t̃)e−β(t,t̃)λ, (63)

with,

α(t, t̃) =

(
2h e(γ+h) t̃−t

2

2h+ (γ + h)(e(t̃−t)h − 1)

) 2γθ

σ2

β(t, t̃) =
2(e(t̃−t)h − 1)

2h+ (γ + h)(e(t̃−t)h − 1)
, where h =

√
γ2 + 2σ2. (64)

where γ and σ are the parameters of the CIR process of the intensity in
Equation (56). Obviously B(0, t, λ) is monotonic with respect to λ, thus the
same holds for ξ.

The margin ρ0 is the solution of the following equilibrium equation:

ξ(λ0) = K (65)

which can be interpreted as the fact that the present value of the cash flows
(according to the probability of survival) is equal to the nominal K:

ρ0 =
1∫ +∞

0
e−rt̃B(0, t̃, λ0)dt̃

− r. (66)

Note that we assume no additional commercial margin.

Remark 3 If an additional commercial margin µ0 is considered then ρ0 is
first computed as above and then replaced by ρ0 = ρ0 + µ0 in Equation (61).
Equations (65) and (66) will not be verified as such but will still hold with
some λ0 instead of λ0; for instance we will have

ρ0 =
1∫ +∞

0
e−rt̃B(0, t̃, λ0)dt̃

− r. (67)

With these changes all results in the paper are valid, except that when com-
puting for operational purposes once the price of the prepayment option is
computed for all λ one will use λ = λ0 as price relevant to practice.
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Remark 4 Some banks allow (per year) a certain percentage of the prepaid
amount without penalty and the rest with a penalty. This circumstance could
be incorporated into the model by changing the definition of the payoff by
subtracting the penalty. This will impact the formula 69.

From definition (62) of B(t, t̃, λ) it follows that B(t, t̃, λ) < 1 thus

e−rt̃B(0, t̃, λ0) < e−rt̃

and as a consequence∫ +∞

0

e−rt̃B(0, t̃, λ0)dt̃ <

∫ +∞

0

e−rt̃dt̃ = 1/r (68)

which implies that ρ0 > 0.

7.2 Valuation of the prepayment option

The valuation problem of the prepayment option can be modelled as an
American call option on a risky debt owned by the borrower. Here the
prepayment option allows borrower to buy back and refinance his/her debt
according to the current contractual margin at any time during the life of the
option. As the perpetual loan, the option value will be assumed independent
of the time t.

As discussed above, the prepayment exercise results in a payoff
(ξ(t, T, λ) − K)+ for the borrower. The option is therefore an American
call option on the risky asset ξ(t, T, λt) and the principal K (the amount to
be reimbursed) being the strike. Otherwise we can see it as an American
option on the risky λt with payoff,

χ(t, λ) := (ξ(t, λ)−K)+ (69)

or, for our perpetual option:

χ(λ) := (ξ(λ)−K)+. (70)

We will denote by A the characteristic operator (cf. [59, Chapter 7.5]) of
the CIR process i.e. the operator that acts on any C2 class function v by

(Av)(λ) = γ(θ − λ)∂λv(λ) +
1

2
σ2λ∂λλv(λ). (71)
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Denote for a, b ∈ R and x ≥ 0 by U(a, b, x) the solution to the confluent
hypergeometric differential (also known as the Kummer) equation [5]:

xz′′(x) + (b− x)z′(x)− az(x) = 0 (72)

that increase at most polynomially at infinity and is finite (not null) at the
origin. Recall also that this function is proportional to the the confluent
hypergeometric function of the second kind U(a, b, x) (also known as the
Kummer’s function of the second kind, Tricomi function, or Gordon func-
tion); for a, x > 0 the function U(a, b, x) is given by the formula:

U(a, b, x) =
1

Γ(a)

∫ +∞

0

e−xtta−1(1 + t)b−a−1dt. (73)

When a ≤ 0 one uses other representations (see the cited references;
for instance one can use a direct computation or the recurrence formula
U(a, b, x) = (2a− b+ z− 2)U(a+ 1, b, x)− (a+ 1)(a− b+ 2)U(a+ 2, b, x)); it
is known that U(a, b, x) behaves as x−a at infinity. Also introduce for x ≥ 0:

W (x) = ex
γ−h
σ2 x

σ2−2γθ

σ2 U

(
−−rσ

2 − σ2h+ γ2θ + γhθ

σ2h
, 2− 2γθ

σ2
,
2h

σ2
x

)
, (74)

where h =
√
γ2 + 2σ2.

Theorem 5 1. Introduce for Λ > 0 the family of functions: PΛ(λ) such
that:

PΛ(λ) = χ(λ) ∀λ ∈ [0,Λ] (75)
(APΛ)(λ)− (r + λ)PΛ(λ) = 0, ∀λ > Λ (76)
lim
λ→Λ

PΛ(λ) = χ(Λ), (77)

lim
λ→∞

PΛ(λ) = 0. (78)

Then

PΛ(λ) =

{
χ(λ) ∀λ ∈ [0,Λ]

χ(Λ)
W (Λ)

W (λ) ∀λ ≥ Λ.
(79)

2. Suppose now a Λ∗ ∈]0, ρ0 ∧ λ0[ exists such that:

dPΛ∗(λ)

dλ

∣∣∣
λ=(Λ∗)+

=
dχ(λ)

dλ

∣∣∣
λ=(Λ∗)−

. (80)

Then the price of the prepayment option is P (λ) = PΛ∗(λ).
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Proof. We start with the first item: it is possible to obtain a general solution
of (76) in an analytic form. We recall that z(X) = U(a, b,X) is the solution of
the Kummer equation (72). A cumbersome but straightforward computation
shows that the general solution vanishing at infinity of the PDE (76) isW (λ)
thus

PΛ(λ) = CΛW (λ) ∀λ > Λ (81)

with some CΛ > 0 to be determined. Now use the boundary conditions. If
λ = Λ by continuity χ(Λ) = PΛ(Λ) = CΛW (Λ). Thus, CΛ = χ(Λ)

W (Λ)
. Division

by W is legitimate because by definition, W (x) > 0 for all x > 0.
We now continue with the second part of the theorem. The valuation

problem of an American option goes through several steps: first one intro-
duces the admissible trading and consumptions strategies cf. [48, Chapter
5]; then one realizes using results in cited reference (also see [49, 40]) that
the price P (λ) of the prepayment option involves computing a stopping time
associated to the payoff. Denote by T the ensemble of (positive) stopping
times; we conclude that:

P (λ) = sup
τ∈T

E(e−
∫ τ
0 r+λuduχ(λτ )|λ0 = λ). (82)

Further results derived for the situation of a perpetual (standard) Amer-
ican put options [36, 11] show that the stopping time has a simple structure:
a critical level exists that split the positive axis into two regions: to the left
the exercise region where it is optimal to exercise and where the price equals
the payoff and a continuation region (to the right) where the price satisfies
a partial differential equation similar to Black-Scholes equation. We refer
to [22] for how to adapt the theoretical arguments for the situation when the
dynamics is not Black-Scholes like but a CIR process.

The result builds heavily on the fact that the discounted payoff of the
standard situation of an American put e−rt(S − K)−, is a submartingale.
For us the discounted payoff is

e−
∫ t
0 r+λuduχ(λt) = e−

∫ t
0 r+λudu(ξ(λt)−K)+ (83)

and checking this condition requires here more careful examination which is
the object of Lemma 7.2. It is now possible to apply Thm. 10.4.1 [59, Section
10.4 page 227] (see also [22] for specific treatment of the CIR process) which
will show that P (λ) is the true option price if the following conditions are
satisfied:
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1. on ]0,Λ∗[ we have P (λ) = χ(λ) = (ξ(λ) − K)+ and the relation (89)
holds;

2. the solution candidate P (λ) satisfies the relation

(AP )(λ)− (r + λ)P (λ) = 0, ∀λ > Λ∗. (84)

3. the function P (λ) is C1 everywhere, continuous at the origin and C2

on each sub-interval ]0,Λ∗[ and ]Λ∗,∞[.

The theorem also says that the borrower exercises his option on the ex-
ercise region [0,Λ∗] while on the continuation region ]Λ∗,∞[ the borrower
keeps the option because it is worth more non-exercised.

We now show that PΛ∗ verifies all conditions above which will allow to
conclude that P = PΛ∗ . The requirement 1 is proved in Lemma 7.2; the
requirement 3 amounts at asking that the optimal frontier value Λ∗ be chosen
such that:

dPΛ∗(λ)

dλ

∣∣∣
λ=(Λ∗)+

=
dχ(λ)

dλ

∣∣∣
λ=(Λ∗)−

. (85)

The requirement 2 implies that in the continuation region the price is the
solution of the following PDE:

(AP )(λ)− (r + λ)P (λ) = 0, ∀λ > Λ∗. (86)

For this PDE we need boundary conditions. The condition at λ = Λ∗ is

P (λ)
∣∣∣
λ=Λ∗

= χ(λ)
∣∣∣
λ=Λ∗

. (87)

When λ = +∞ the default intensity is infinite thus the time to failure is zero
thus the borrower has failed ; in this case the option is worthless i.e.

lim
λ→∞

P (λ) = 0. (88)

These conditions give exactly the definition of PΛ∗ , q.e.d.
Lemma. The following inequality holds:

(Aχ)(λ)− (r + λ)χ(λ) < 0, ∀λ < ρ0 ∧ λ0. (89)

Proof. Recall that χ(λ) = (ξ(λ) −K)+; the definition (60) of ξ implies
(cf. [59, Section 8.2 and exercise 9.12 p 203]) that ξ is solution of the following
PDE:

(Aξ)(λ)− (r + λ)ξ(λ) + (r + ρ0)K = 0, ∀λ > 0. (90)
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For λ < λ0 we have ξ(λ) > K = ξ(λ0) thus(
A(ξ(·)−K)+

)
(λ)− (r + λ)(ξ(λ)−K)+ (91)

=
(
A(ξ(·)−K)

)
(λ)− (r + λ)

(
ξ(λ)−K

)
(92)

= (Aξ)(λ)− (r + λ)ξ(λ) + (r + λ)K (93)
= −(r + ρ0)K + (r + λ)K = (λ− ρ0)K < 0 ∀λ < ρ0 ∧ λ0. (94)

Note that the Theorem 5 is only a sufficient result (a so-called "verifica-
tion" result) ; under the assumption that a Λ∗ fulfilling the hypotheses of the
Theorem exist the question is how to find it.

Two approaches can be considered; first, it is enough to find a zero of
the following function Λ 7→ Υ(Λ) :=

(
∂PΛ(λ)
∂λ

∣∣∣
λ=Λ+

− ∂χ(λ)
∂λ

∣∣∣
λ=Λ−

)
(the last

equality is a definition). Of course ∂χ(λ)
∂λ

∣∣∣
λ=λ0+ε

= 0 and
∂Pλ0+ε(λ)

∂λ

∣∣∣
λ=λ0+ε

< 0

thus Υ(λ0 + ε) < 0 for any ε > 0 hence Υ(λ0) ≤ 0. Thus it is natural not
to look for Λ∗ outside the interval [0, λ0]. The theorem asks furthermore to
restrict the search to the interval [0, λ0 ∧ ρ0].

A different convenient procedure to find the critical Λ∗ is to consider the
dependence Λ 7→ PΛ(λ0). Let us consider the stopping time τΛ that stops
upon entering the domain [0,Λ]. We remark that by a Feynman-Kac formula
(cf. [59, p 203])

PΛ(λ) = E(e−
∫ τΛ
0 r+λuduχ(λτΛ)|λ0 = λ). (95)

From (82) P (λ) ≥ PΛ(λ) for any λ thus Λ∗ is the value that maximizes (with
respect to Λ) the function Λ 7→ PΛ(λ0). To comply with the theorem the
maximization is performed in the interval [0, λ0 ∧ ρ0].

7.3 Numerical Application

We consider a perpetual loan (T = +∞) with a nominal amount K = 1 and
the borrower default intensity λt follows a CIR dynamics with parameters:
initial intensity λ0 = 300 bps, volatility σ = 0.05, average intensity θ = 200
bps, reversion coefficient γ = 0.5. We assume a constant interest rate r =
300bps i.e., r = 3%. Recall that a basis point, denoted "1 bps" equals 10−4.
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Λ

Figure 11: We illustrate here the dependence of PΛ(λ0) as a function of Λ;
this allows to find the optimal value Λ∗ that maximize the option price. For
the numerical example described here we obtain Λ∗ = 123 bps.

In order to find the initial contractual margin we use equation (66) and
find ρ0 = 208 bps.

At inception, the present value of cash flows is at par, so ξ(λ0) = 1. The
prepayment option price is P (+∞, λ0) = 0.0232 i.e., P (λ0) = 2.32% · K.
Therefore the loan value equals ξ(λ0)− P (λ0) = 0, 9768.

The value Λ∗ = 123 bps is obtained by maximizing PΛ(λ0) as indicated in
the Remarks above; the dependence of PΛ(λ0) with respect to Λ is illustrated
in Figure 11. The loan value will equal to par if the intensity decreases until
the exercise region (λ < Λ∗) see Figures 12. The continuation and exercise
regions are depicted in Figure 13. We postpone to Section 8.5 the description
of the numerical method to solve (76).

8 Perpetual prepayment option with a switch-
ing regime

In this second part, the perpetual prepayment option is still an option on
the credit risk, intensity, but now also the liquidity cost. The liquidity cost
is defined as the specific cost of a bank to access the cash on the market.
This cost will be modelled with a switching regime with a Markov chain of
finite states of the economy. The interest rate r is still assumed constant.
Therefore, the assessment of the loan value and its prepayment option is a
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λ

Figure 12: Loan value as a function of the intensity. The loan value is
decreasing when there is a degradation of the credit quality (i.e., λ increases)
and converges to 0.

λ

Figure 13: Prepayment option price P (λ) (solid line) and payoff χ(λ) (dashed
line) as a function of the intensity λ. Two regions appear : the continuation
region λ > Λ∗ and the exercise region λ ≤ Λ∗.
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N -dimensional problem. The intensity is still defined by a Cox-Ingersoll-Ross
process with 2kθ ≥ σ2:

dλt = γ(θ − λt)dt+ σ
√
λtdWt, λ0 = λ0. (96)

8.1 Theoretical regime switching framework

We assume the economic state of the market is described by a finite state
Markov chain X = {Xt, t ≥ 0}. The state space X can be taken to be,
without loss of generality, the set of unit vectors E = {e1, e2, ..., eN},
ei = (0, ..., 0, 1, 0, ..., 0)T ∈ RN . Here T is the transposition operator.

Assuming the process Xt is homogeneous in time and has a rate matrix
A, then if pt = E[Xt] ∈ RN ,

dpt
dt

= Apt (97)

and,

Xt = X0 +

∫ t

0

AXudu+Mt, (98)

where M = {Mt, t ≥ 0} is a martingale with respect to the filtration gener-
ated by X. In differential form

dXt = AXtdt+ dMt, X0 = X0. (99)

We assume the instantaneous liquidity cost of the bank depends on the state
X of the economy, so that

lt = 〈l, Xt〉 (100)

Denote by ak,j the entry on the line k and the column j of the N ×N matrix
A with ak,j ≥ 0 for j 6= k and

∑N
j=1 ak,j = 0 for any k.

8.2 Analytical formulas for the PVRP

Assume a loan has a fixed coupon defined by the constant interest rate r and
an initial contractual margin ρ0 calculated at the inception for a par value of
the loan. Let ξ(t, T, λt, Xt) be, the present value of the remaining payments
at time t of a corporate loan where: λt is the intensity at time t; T is the
contractual maturity; K is the nominal amount and Xt is the state of the
economy at time t.
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The loan value LV (t, T, λ) is still equal to the present value of the re-
maining payments ξ(t, T, λ) minus the prepayment option value P (t, T, λ).

LV (t, T, λ) = ξ(t, T, λ)− P (t, T, λ) (101)

The PVRP ξ is the present value of the cash flows discounted at the
risky rate, where the risky rate at time t is the constant risk-free rate r plus
the liquidity cost lt and the intensity λt. Similar to the discussion in the
Subsection 7.1, ξ is not depending on time when T = +∞ (perpetual loan).
So we denote,

ξ(λ,X) := K (r + ρ0)E
[∫ +∞

0

e−
∫ t̃
0 r+lu+λududt̃∣∣∣λ0 = λ,X0 = X

]
(102)

We consider that there is no correlation between the credit risk, i.e., the
intensity λt, of the borrower and the cost to access the cash on the market,
i.e. the liquidity cost lt, of the lender. Therefore, we have,

ξ(λ,X) = K (r + ρ0)

∫ +∞

0

e−rt̃E
[
e−

∫ t̃
0 λudu

∣∣∣λ0 = λ
]

×E
[
e−

∫ t̃
0 ludu

∣∣∣X0 = X
]
dt̃ (103)

Remark 6 The crucial information here is that the coefficients γ, θ, σ of
the CIR process are not depending on the regime X thus we can separate the
CIR dynamics and the Markov dynamics at this level. A different approach
can extend this result by using the properties of the PVRP as explained in
the next section.

Note that (cf. Subsection 7.1 equation (62))

E
[
e−

∫ t
0 λudu

∣∣∣λ0 = λ
]

= B(0, t, λ) (104)

and B(0, t, λ) is evaluated using equations (63) - (66). In order to compute

E
[
e−

∫ t̃
0 ludu

∣∣∣X0 = X
]
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let fk(t) be defined by:

fk(t) = E
[
e−

∫ t
0 ludu

∣∣∣X0 = ek

]
. (105)

Let τ , the time of the first jump from X0 =< X, ek > to some other state.
We know (cf. Lando [41] paragraph 7.7 p 211) that τ is a random variable
following an exponential distribution of parameter αk with,

αk =
∑
j 6=k

ak,j (106)

We also know that conditional to the fact that a jump has occurred at time
τ the probability that the jump is from state ek to state ej is pk,j, where

pk,j =
ak,j
αk

(107)

Thus,

fk(t) = P(τ > t)e−lkt + P(τ ≤ t)e−lkτ
∑

j 6=k P(lτ = lj)E
[
e−

∫ t
τ ludu

∣∣∣Xτ =< X, ej >
]

= e−(lk+αk)t + αk
∫ t

0
e−(lk+αk)τ

∑
j 6=k pk,jfj(t− τ)dτ

Then,

e(lk+αk)tfk(t) = 1 + αk
∫ t

0
e(lk+αk)(t−τ)

∑
j 6=k pk,jfj(t− τ)dτ

= 1 + αk
∫ t

0
e(lk+αk)s

∑
j 6=k pk,jfj(s)ds

By differentiation with respect to t:

d

dt

[
e(lk+αk)tfk(t)

]
= αke

(lk+αk)t
∑
j 6=k

pk,jfj(t)

Then
dfk(t)

dt
+ (lk + αk)fk(t) = αk

∑
j 6=k

pk,jfj(t)

Thus,
dfk(t)

dt
=

[∑
j 6=k

αkpk,jfj(t)

]
− (lk + αk)fk(t) (108)
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Denote F (t) = (f1(t), f2(t), ..., fN(t))T and introduce the N ×N matrix B,

Bi,j =

{
αipi,j if i 6= j

−(αi + li) if i = j
(109)

From equation (108) we obtain,

dF (t)

dt
= BF (t) thus F (t) = eBtF (0) (110)

with the initial condition,

F (0) =
(
fk(0)

)N
k=1

= (1, 1, ..., 1)T ∈ RN . (111)

We have therefore analytical formulas for the PVRP ξ(λ,X). We refer the
reader to [30] for similar considerations on a related CIR switched dynamics.

Remark 7 When all liquidity parameters lk are equal (to some quantity l)
then B = A − l · Id and then we obtain (after some computations) that
fk(t) = e−lt thus the payoff is equal to that of a one-regime dynamics with
interest rate r + l, which is consistent with intuitive image we may have.
Another limiting case is when the switching is very fast, see also Remark 26
item 5 for further details.

The margin ρ0 is set to satisfy the equilibrium equation

ξ(λ0, X0) = K. (112)

Similar arguments to that in previous section show that ρ0 > mink lk > 0.
See Remark 22 for the situation when a additional commercial margin is to
be considered.

We will also need to introduce for any k = 1, ..., N the value Λ
0

k such that

ξ(Λ
0

k, ek) = K. (113)

Of course, Λ
0

X0
= λ0. Recall that ξ(λ, ek) is decreasing with respect to λ;

when ξ(0, ek) < K there is no solution to eqn. (112) and we will choose by
convention Λ

0

k = 0.
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8.3 Further properties of the PVRP ξ

It is useful for the following to introduce a PDE formulation for ξ. To ease
the notations we introduce the operator AR that acts on functions v(λ,X)
as follows:

(ARv)(λ, ek) = (Av)(λ, ek)−(r+lk+λ)v(λ, ek)+
N∑
j=1

ak,j

(
v(λ, ej)−v(λ, ek)

)
.

(114)
Having defined the dynamics (96) and (99) one can use an adapted

version of the Feynman-Kac formula in order to conclude that PVRP defined
by (102) satisfies the equation:

(ARξ) + (r + ρ0)K = 0. (115)

Remark 8 When the dynamics involves different coefficients of the CIR pro-
cess for different regimes (cf. also Remark 19) the Equation (115) changes
in that it will involve, for ξ(·, ek), the operator

Ak(v)(λ) = γk(θk − λ)∂λv(λ) +
1

2
σ2
kλ∂λλv(λ). (116)

instead of A.

8.4 Valuation of the prepayment option

The valuation problem of the prepayment option can be modelled as an
American call option on a risky debt owned by the borrower with payoff:

χ(λ,X) = (ξ(λ,X)−K)+. (117)

Here the prepayment option allows borrower to buy back and refinance
his/her debt according to the current contractual margin at any time during
the life of the option.

Theorem 9 For any N-tuple Λ = (Λk)
N
k=1 ∈ (R+)N introduce the function

PΛ(λ,X) such that:

PΛ(λ, ek) = χ(λ, ek) ∀λ ∈ [0,Λk] (118)
(ARPΛ)(λ, ek) = 0, ∀λ > Λk, k = 1, ..., N (119)
lim
λ→Λk

PΛ(λ, ek) = χ(Λk, ek), k = 1, ..., N (120)

lim
λ→∞

PΛ(λ, ek) = 0, k = 1, ..., N. (121)
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Suppose a Λ∗ ∈
∏N

k=1[0, (ρ0 − lk)+ ∧ Λ
0

k] exists such that for all k = 1, ..., N :

PΛ∗(λ,X) ≥ χ(λ,X) ∀λ,X (122)
∂PΛ∗(λ, ek)

∂λ

∣∣∣
λ=(Λ∗k)+

=
∂χ(λ, ek)

∂λ

∣∣∣
λ=(Λ∗k)−

if Λ∗k > 0 (123)

N∑
j=1

ak,j

(
PΛ∗(λ, ej)− χ(λ, ej)

)
+K(λ+ lk − ρ0) ≤ 0 ∀λ ∈] min

j
Λ∗j ,Λ

∗
k[.(124)

Then P = PΛ∗.

Proof. Similar arguments as in the proof of Thm. 5 lead to consider the
American option price in the form

P (λ,X) = sup
τ∈T

E
[
e−

∫ τ
0 r+lu+λuduχ(λτ , Xτ )

∣∣∣λ0 = λ,X0 = X
]
.

We note that for Λ ∈ (R∗+)N if τΛ is the stopping time that stops upon exiting
the domain λ > Λk when X = ek then

PΛ(λ,X) = E
[
e−

∫ τΛ
0 r+lu+λuduχ(λτΛ , XτΛ)

∣∣∣λ0 = λ,X0 = X
]
.

Remark that for Λ ∈ (R∗+)N the stopping time τΛ is finite a.e. Thus for
any Λ ∈ (R∗+)N we have P ≥ PΛ; when Λ has some null coordinates the
continuity (ensured among others by the boundary condition (118)) shows
that we still have P ≥ PΛ. In particular for Λ∗ we obtain P ≥ PΛ∗ ; all that
remains to be proved is the reverse inequality i.e. P ≤ PΛ∗ .

To this end we use a similar technique as in Thm. 10.4.1 [59, Section 10.4
page 227] (see also [57] for similar considerations). First one can invoke the
same arguments as in cited reference (cf. Appendix D for technicalities) and
work as if PΛ∗ is C2 (not only C1 as the hypothesis ensures).

Denote DΛ∗ = {(λ, ek)|λ ∈ [0,Λ∗k], k = 1, ..., N} (which will be the exer-
cise region) and CΛ∗ its complementary with respect to R+ × E (which will
be the continuation region).

The Lemma 18.5 shows that ARPΛ∗ is non-positive everywhere (and is
null on CΛ∗). The Îto formula shows that

d
(
e−

∫ t
0 r+ls+λsdsPΛ∗(λt, Xt))

)
= e−

∫ t
0 r+ls+λsds(ARPΛ∗)(λt, Xt))dt+d(martingale)

(125)
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Taking averages and integrating from 0 to some stopping time τ it follows
from ARPΛ∗ ≤ 0 that

PΛ∗(λ,X) ≥ E
[
e−

∫ τ
0 r+lu+λuduPΛ∗(λτ , Xτ )

∣∣∣λ0 = λ,X0 = X
]

≥ E
[
e−

∫ τ
0 r+lu+λuduχ(λτ , Xτ )

∣∣∣λ0 = λ,X0 = X
]
.

Since this is true for any stopping time τ the conclusion follows.
Lemma. Under the hypothesis of the Thm. 24 the following inequality

holds (strongly except for the values (λ,X) = (Λ∗j , ek) and everywhere in a
weak sense):

(ARPΛ∗)(λ,X) ≤ 0, ∀λ > 0,∀X. (126)

Proof. The non-trivial part of this lemma comes from the fact that if for
fixed k we have for λ in a neighbourhood of some λ1: PΛ∗(λ, ek) = χ(λ, ek)
this does not necessarily imply (ARPΛ∗)(λ1, ek) = (ARχ)(λ1, ek) because AR
depends on other values PΛ∗(λ, ej) with j 6= k.

From (119) the conclusion is trivially verified for X = ek for any λ ∈
]Λ∗k,∞[.

We now analyse the situation when λ < minj Λ∗j ; this means in particular
that 0 ≤ λ < minj Λ∗j ≤ Λ

0

` for any ` thus Λ
0

` > 0. Note that Λ∗k < Λ
0

k implies
ξ(Λ∗k, ek) ≥ ξ(Λ

0

k, ek) = K for any k = 1, ..., N thus χ(λ, ek) = ξ(λ, ek) −K
for any λ ∈ [0,Λ∗k] and any k. Furthermore since λ < minj Λ∗j we have
PΛ∗(λ, ek) = χ(λ, ek) = ξ(λ, ek)−K for any k. Fix X = ek; then

(ARPΛ∗)(λ, ek) = (ARχ)(λ, ek) = (AR(ξ −K))(λ, ek) = (ARξ)(λ, ek)−AR(K)

= −(r + ρ0)K − (r + lk + λ)K = K(lk + λ− ρ0) ≤ K(lk + Λ∗k − ρ0) ≤ 0 (127)

the last inequality being true by hypothesis.
A last situation is when λ ∈] minj Λ∗j ,Λ

∗
k[; there PΛ∗(λ, ek) = χ(λ, ek) but

some terms PΛ∗(λ, ej) for j 6= k may differ from χ(λ, ej). More involved
arguments are invoked in this case. This point is specific to the fact that the
payoff χ itself has a complex structure and as such was not emphasized in
previous works (e.g., [57], etc.).
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Recalling the properties of ξ one obtains (and since PΛ∗(λ, ek) = χ(λ, ek)):

(ARPΛ∗)(λ, ek) = (Aχ)(λ, ek)− (r + lk + λ)χ(λ, ek) +
N∑
j=1

ak,j

(
PΛ∗(λ, ej)− χ(λ, ek)

)
= (ARχ)(λ, ek) +

N∑
j=1

ak,j

(
PΛ∗(λ, ej)− χ(λ, ej)

)
= (ARξ)(λ, ek)−AR(K) +

N∑
j=1

ak,j

(
PΛ∗(λ, ej)− χ(λ, ej)

)
= −K(r + ρ0) + (r + lk + λ)K +

N∑
j=1

ak,j

(
PΛ∗(λ, ej)− χ(λ, ej)

)
≤ 0, (128)

where for the last inequality we use hypothesis (124). Finally, since we proved
that (ARPΛ∗)(λ,X) ≤ 0 strongly except for the values (λ,X) = (Λ∗j , ek) and
since PΛ∗ is of C1 class we obtain the conclusion (the weak formulation only
uses the first derivative of PΛ∗).

Remark 10 Several remarks are in order at this point:

1. when only one regime is present i.e., N = 1 the hypothesis of the Theo-
rem are identical to that of Thm. 5 since (124) is automatically satisfied.

2. when N > 1 checking (124) does not involve any computation of deriva-
tives and is straightforward.

3. as mentioned in the previous section, the Theorem is a verification
result i.e., only gives sufficient conditions for a candidate to be the
option price. Two possible partial converse results are possible: a first
one to prove that the optimal price is indeed an element of the family
PΛ. A second converse result is to prove that supposing P = PΛ∗ then
Λ∗ ∈

∏N
k=1[0, (ρ0 − lk)+ ∧ Λ

0

k] and (122)-(124) are satisfied.

4. the search for the candidate Λ∗ can be done either by looking for a zero

of the function Λ 7→ Υ(Λ) :=
(
∂PΛ∗ (λ,ek)

∂λ

∣∣∣
λ=(Λ∗k)+

− ∂χ(λ,ek)
∂λ

∣∣∣
λ=(Λ∗k)−

)N
k=1

or by maximizing on
∏N

k=1]0, (ρ0−lk)∧Λ
0

k[ the function Λ 7→ PΛ(λ0, X0).
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5. if the optimization of PΛ(λ0, X0) is difficult to perform, one can use a
continuation argument with respect to the coupling matrix A. Denote
by Λ∗(A) the optimal value of Λ∗ as function of A. When A = 0 each
Λ∗k is found as in Section 7 (the problem separates into N independent
i.e., no coupled, valuation problems, each of which requiring to solve
a one dimensional optimization) and we construct thus Λ∗(0). When
considering µA with µ → ∞ at the limit the optimal Λ∗(∞A) has
all entries equal to Λ∗mean where Λ∗mean is the optimal value for a one-
regime (N = 1) dynamics with riskless interest rate r being replaced by
r+

∑N
k=1 lk/αk∑N
k=1 1/αk

. Having established the two extremal points the candidate
Λ∗(A) is searched within the N-dimensional segment [Λ∗(0),Λ∗(∞A)].

8.5 Numerical Application

The numerical solution of the partial differential equation (119) is required.
We use a finite difference method. The first derivative is approximated by
the finite difference formula:

∂

∂λ
PΛ(λ,X) =

PΛ(λ+ δλ,X)− PΛ(λ− δλ,X)

2δλ
+O(δλ2) (129)

while the second derivative is approximated by:

∂2

∂λ2
PΛ(λ,X) =

PΛ(λ+ δλ,X)− 2PΛ(λ+ δλ,X) + PΛ(λ− δλ,X)

δλ2
+O(δλ2)

(130)
To avoid working with an infinite domain a well-known approach is

to define an artificial boundary λmax. Then a boundary condition is im-
posed on λmax which leads to a numerical problem in the finite domain
∪Nk=1[Λ∗k, λmax]. In this numerical application, λmax = 400 bps. We dis-
cretise [Λ∗, λmax] with a grid such that δλ = 1bps. Two approaches have
been considered for imposing a boundary value at λmax: either consider that
PΛ(λmax, ek) = 0, ∀k = 1, ..., N (homogenous Dirichlet boundary condition)
or that ∂

∂λ
PΛ(λmax, ek) = 0, ∀k = 1, ..., N (homogeneous Neuman boundary

condition). Both are correct in the limit λmax → ∞. We tested the preci-
sion of the results by comparing with numerical results obtained on a much
larger grid (10 times larger) while using same δλ. The Neumann boundary
condition gives much better results for the situations we considered and as
such was always chosen (see also Figure 16).
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We consider a perpetual loan with a nominal amount K = 1 and the
borrower default intensity λt follows a CIR dynamics with parameters: initial
intensity λ0 = 300bps, volatility σ = 0.05, average intensity θ = 200bps,
reversion coefficient γ = 0.5. We assume a constant interest rate r = 1%
and a liquidity cost defined by a Markov chain of two states l1 = 150bps and
l2 = 200bps. For N = 2 the rate A matrix is completely defined by α1 = 1/3,
α2 = 1.

In order to find the initial contractual margin we use equation (66) and
find ρ0 = 331 bps in the state 1. The contractual margin takes into account
the credit risk (default intensity) and the liquidity cost. We have thus Λ

0

1 =

λ0; we obtain then Λ
0

2 = 260bps.
The optimal value Λ∗ is obtained by maximizing PΛ(λ0, X0) and turns out

to be (Λ∗1,Λ
∗
2) = (122bps, 64bps), see Figure 14. To be accepted, this numer-

ical solution has to verify all conditions of the Theorem 24. The hypothesis
(122) and (124) are satisfied (see Figure 16) and the hypothesis (124) is ac-
cepted after calculation. Moreover Λ∗1 ≤ (ρ0 − l1) ∧ Λ

0

1 and the analogous
holds for Λ∗2.

In the state X0 = 1, the present value of cash flows is at par, so
ξ(λ0, X0) = 1. The prepayment option price is P (λ0, X0) = 0.0240. There-
fore the loan value equals ξ(λ0, X0)− P (λ0, X0) = 0.9760.

The loan value will equal to the nominal if the intensity decreases until
the exercise region λ ≤ Λ∗ see Figure 15. The continuation and exercise
regions are depicted in Figure 16.

8.6 Regimes when is never optimal to exercise

When the liquidity parameters corresponding to given regimes are very dif-
ferent it may happen that the optimization of PΛ(λ0, X0) over Λ gives an
optimum value Λ∗ with some null coordinates Λki , i = 1, .... This may hint
to the fact that in this situation it is never optimal to exercise during the
regimes eki , i = 1, .... This is not surprising in itself (remember that this is
the case of an American call option) but needs more care when dealing with.
Of course when in addition Λ

0

ki
= 0 the payoff being null it is intuitive that

the option should not be exercised.

Remark 11 Further examination of the Theorem 5 calls for the following
remarks:
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ΛΛ

Figure 14: We illustrate here the dependence of PΛ(λ0, X0) as a function of
Λ; this allows to find the optimal (Λ∗

1 = 122bps,Λ∗
2 = 64bps) that maximizes

the option price.

λ

λ

Figure 15: Loan value as a function of the intensity. Top: regime X = e1;
bottom: regime X = e2. The loan value is decreasing when there is a
degradation of the credit quality (i.e. when λ increases) and converges to 0.
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λ

λ

Figure 16: The price of the prepayment option PΛ∗(λ) (solid line) and the
payoff χ(λ) (dashed line) as function of the intensity λ. Top: regime X =
e1; bottom: regime X = e2. For each regime two regions appear : the
continuation region λ > Λ∗

i and the exercise region λ ≤ Λ∗
i .

1. the boundary value set in eqn. (118) for some regime ek with Λ∗
k = 0

deserves an interpretation. The boundary value does not serve to en-
force continuity of λ → PΛ(λ) because there is no exercise region in
this regime thus any value will do. Moreover when 2γθ ≥ σ2 the in-
tensity λu does not touch 0 thus the stopping time τΛ∗ is infinite in
the regime ek (thus the boundary value in 0 can be set to any arbi-
trary number since it is never used). The real meaning of the value
PΛ∗(0, ek) comes from arbitrage considerations: when one proves in the
demonstration of the Theorem that P ≥ PΛ∗ one uses continuity of PΛ

with respect to the parameter Λ; in order to still have this conclusion
one has to set PΛ∗(0, ek) ≤ limΛ∈(R∗

+)N→Λ∗ PΛ(0, ek) = χ(0, ek). On the
contrary, in order to have P ≤ PΛ∗, since P ≥ χ is it required that
PΛ∗(0, ek) ≥ P (0, ek) ≥ χ(0, ek). Thus only PΛ∗(0, ek) = χ(0, ek) can
prevent arbitrage.

2. it is interesting to know when such a situation can occur and how can
one interpret it. Let us take a two-regime case (N = 2): l1 a ”normal”
regime and l2 the ”crisis” regime (l2 ≥ l1); when the agent contemplates
prepayment the more severe the crisis (i.e. larger l2 − l1 ) less he/she
is likely to prepay during the crisis the cash is expensive (high liquidity
cost). We will most likely see that for l1 = l2 some exercise region
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exists while starting from some large l2 the exercise region will disappear
in regime e2. This is completely consistent with the numerical results
reported in this paper.

8.7 Numerical Application

We consider the same situation as in Section 8.7 except that l1 = 50bps
and l2 = 250 bps. In order to find the initial contractual margin we use
equation (66) and find ρ0 = 305 bps in the state 1. The contractual margin
takes into account the credit risk (default intensity) and the liquidity cost.
As before Λ

0

1 = λ0 but here we obtain Λ
0

2 = 221bps.
The couple (Λ∗1 = 121bps,Λ∗2 = 0) (see Figure 17) maximizes PΛ(λ0, X0).

There does not exist a exercise boundary in the state 2. The loan value will
equal the par if the intensity decreases until the exercise region λ ≤ Λ∗ see
Figure 18. The continuation and exercise regions are depicted in Figure 19.

To be accepted as true price the numerical solution PΛ∗ has to verify all
hypothesis and conditions of the Theorem 24. In the regime X = e1, the
hypothesis (122) and (123) are verified numerically (see also Figure 19) and
the hypothesis (124) is accepted after calculation. Moreover Λ∗k ≤ (ρ0− lk)∧
Λ

0

k for k = 1, 2.
In the state X = e1, the present value of cash flows is at par, so

ξ(λ0, X0) = K = 1. The prepayment option price is P (λ0) = 0.0245. There-
fore the loan value LV equals ξ(λ0)− P (λ0) = 0.9755.

9 Concluding remarks
We proved in this paper two sufficient theoretical results concerning the pre-
payment option of corporate loans. In our model the interest rate is constant,
the default intensity follows a CIR process and the liquidity cost follows a dis-
crete space Markov jump process. The theoretical results were implemented
numerically and show that the prepayment option cost is not negligible and
should be taken into account in the asset liability management of the bank.
Moreover it is seen that when liquidity parameters are very different (i.e.,
when a liquidity crisis occur) in the high liquidity cost regime the exercise
domain may entirely disappear, meaning that it is not optimal for the bor-
rower to prepay during such a liquidity crisis.
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ΛΛ

Figure 17: We illustrate here the dependence of PΛ(λ0, X0) as a function of
the exercise boundary Λ; this allows to find the optimal (Λ∗

1 = 121bps,Λ∗
2 =

0) that maximizes the option price.

λ

λ

Figure 18: Loan value as a function of the intensity. Top: regime X = e1;
bottom: regime X = e2. The loan value is decreasing when there is a
degradation of the credit quality (i.e. when λ increases) and converges to 0.
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λ

λ

Figure 19: The price of the prepayment option PΛ∗(λ) (solid line) and the
payoff χ(λ) (dashed line) as function of the intensity λ. Top: regime X = e1;
bottom: regime X = e2. Two regions appear : the continuation region
λ > Λ∗

1 and the exercise region λ ≤ Λ∗
1. For the second regime there is no

exercise region.
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Part III

Perpetual corporate loans:
Two-dimensional space-time
model

Abstract

We investigate in this part a perpetual prepayment option related
to a corporate loan. Now, we assume that the short interest rate and
default intensity of the firm are supposed to follow CIR processes. A
liquidity term that represents the funding costs of the bank is intro-
duced and modelled as a continuous time discrete state Markov chain.
The prepayment option needs specific attention as the payoff itself is a
derivative product and thus an implicit function of the parameters of
the problem and of the dynamics. We prove verification results that
allows to certify the geometry of the exercise region and compute the
price of the option. We show moreover that the price is the solution
of a constrained minimization problem and propose a numerical al-
gorithm building on this result. The algorithm is implemented in a
two-dimensional code and several examples are considered. It is found
that the impact of the prepayment option on the loan value is not to
be neglected and should be used to assess the risks related to client
prepayment. Moreover the Markov chain liquidity model is seen to
describe more accurately clients’ prepayment behaviour than a model
with constant liquidity.
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10 Introduction
When a company needs money it can turn to its bank which lends it against
e.g., periodic payments in the form of a loan. A loan contract issued by a
bank for its corporate clients is a financial agreement that often comes with
more flexibility than a retail loan contract. These options are designed to
meet clients’ expectations and can include e.g., a prepayment option (which
entitles the client, if he desires so, to pay all or a fraction of its loan earlier
than the maturity), a multi-currency option, a multi-index option, etc. On
the other hand, there are also some mechanisms to protect the lender from
the deterioration of the borrower’s credit quality e.g., a pricing grid based on
the borrower’s rating or protecting guaranties.

The main option remains however the prepayment option and is the sub-
ject of this work. The company can prepay a fraction or 100% of the nominal
and it will do so when its credit profile improves so that it can refinance its
debt at a cheaper rate.

In order to decide whether the exercise of the option is worthwhile the
borrower compares the remaining payments (actualized by the interest rate
he can obtain at that time) with the nominal value K. If the remaining
payments exceed the nominal value then it is optimal for the borrower to
prepay.

When the interest rates are not constant or the borrower is subject to
default the computation of the actualization is less straightforward. It starts
with considering all possible scenarios of evolution for interest rate and de-
fault intensity in a risk-neutral framework in order to compute the average
value of remaining payments (including the final payment of the principal
if applicable); this quantity will be called ”PV RP ”(denoted ξ) and is the
present value of the remaining payments i.e., the cash amount equivalent,
both for borrower and lender, of the value of remaining payments. Then ξ is
compared with the nominal K : if ξ ≥ K then the borrower should prepay,
otherwise not. Recall that at the initial time the payments correspond to a
rate, the sum of the (variable) short term interest rate (e.g., LIBOR or EU-
RIBOR) and a contractual margin ρ0 chosen such that ξ = K at origination.
Note that in order to compute the price of the embedded prepayment option
the lender also uses the PV RP as it will be seen below.

The bank that proposes the loan finances it through a bond program
(possibly mutualized for several loans) at some spread depending on its own
credit profile and market conditions. In order for the corporate loan to be
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profitable the rate of the bond, that is also indexed on LIBOR or EURIBOR,
has to be lower than the rate of the loan. This condition is easy to check at
the origination of both contracts and is always enforced by the bank. However
if the client prepays the bank finds itself in a non-symmetric situation: the
periodic interest payments from client is terminated but the bank still has
to pay the interests and principal of its own bond; the bond does not have a
prepayment option or such an option is costly. The risk is that the amount
K received from the client at prepayment time cannot be invested in another
product with interest rate superior to that of the bond.

Thus a first question is how should the bank fund its corporate loans and
handle the prepayment risk. This is a valuation problem.

An even more important question is to know whether it is possible that
many clients decide to prepay at the same time. This circumstance can
happen e.g., when a crisis is over and clients can again borrow at ’normal’,
lower, rates. We address this question by introducing liquidity regimes to
model funding costs.

Liquidity is the key of the stability of the entire financial system and can
cause banks’ failures if systemic liquidity squeezes appear in the financial
industry. Historical events like the Asian crisis of 1997; the Russian financial
crisis of 1998; the defaults of hedge funds and investment firms like LTCM,
Enron, Worldcom and Lehman Brothers; sovereign debts crisis of 2010-11, ...
etc., prove that banks hold significant liquidity risk in their balance sheets.
Even if liquidity problems have a very low probability to occur, a liquidity
crisis can have a severe impact on a bank’s funding costs, its market access
(reputation risk) and short-term funding capabilities.

Following the state of the economic environment, the liquidity can be
defined by distinct states. Between two crises, investors are confident and
banks find it easy to launch their long term refinancing programs through
regular bonds issuances. Thus the liquidity market is stable. On the contrary,
during crisis liquidity becomes scarce, pushing the liquidity curve to very high
levels; the transition between these two distinct regimes is often sudden.

In order to model the presence of distinct liquidity regimes we will sim-
ulate the liquidity cost by a continuous time observable Markov chain that
can have a discrete set of possible values, one for each regime. It is seen
(cf. Section 13.5) that considering several liquidity regimes explains better
clients’ prepayment behaviour than a constant liquidity model.

In practice it is interesting to study long-term loans that are set for more
than three years and can run for more than twenty years. Note that the
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longest the maturity of the loan, the riskier the prepayment option. The
perpetual options (i.e., with infinite time to maturity) are the object of this
paper and provide a conservative estimation of the prepayment risk of any
loan.

From a technical point of view this paper faces several non-standard con-
ditions: although the goal is to value a perpetual American option the payoff
of the option is highly non-standard (is dependent on the PV RP which is
itself a derivative product). As a consequence the characterization of the
exercise region is not standard and technical conditions have to be met. Fur-
thermore our focus here is on a specific type of dynamics (of CIR type) with
even more specific interest on the situation when several funding regimes are
present.

The balance of the paper is as follows: in the remainder of this section
(Sub-Section 10.1) we review the related existing literature; in Section 11 we
prove a first theoretical result that allows to identify the exercise region. In
Section 12 we show that the price is the solution to some constraint opti-
mization problem which allows to construct a numerical algorithm. A 2D
numerical implementation of the algorithm is the object of the Section 13
and several examples are presented.

10.1 Related literature

There exist few articles (e.g., works by Cossin et al. [24]) on the loan pre-
payment option but a close subject, the prepayment option in a fixed-rate
mortgage loan, has been covered in several papers by Hilliard and Kau [34]
and more recent works by Chen et al. [21]. To approximate the PDE satis-
fied by the prepayment option, they define two state variables (interest rate
and house price). Their approach is based on a bivariate binomial option
pricing technique with a stochastic interest rate and a stochastic house value
(CIR processes). Although the trinomial tree may also be computationally
interesting and relevant for this problem so far no numerical implementations
were proposed, to the best of our knowledge, for this specific problem.

Another contribution by Cossin et al. [24] applies the binomial tree tech-
nique (but of course it is time-consuming for long-term loans due to the
nature of binomial trees) to corporate loans. They consider a prepayment
option associated to a 1 year loan with a quarterly step but it is computa-
tionally difficult to have an accurate assessment of the option price for a 10
years loan.
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There also exist mortgage prepayment decision models based on Poisson
regression approach for mortgage loans. See, for example, Schwartz and
Torous [52]. Unfortunately, the volume and history of data are very weak in
the corporate loan market to obtain reliable results.

Due to the structure of their approach, these papers did not have to
consider the geometry of the exercise region because it is explicitly given by
the numerical algorithm which is supposed to converge. This is not the case
for us and requires that particular care be taken when stating the optimality
of the solution. Furthermore, to the best of our knowledge, none of these
approaches explored the circumstance when several regimes exist.

The analysis of Markov-modulated regimes has been investigated in the
literature when the underlying(s) follow the Black& Scholes dynamics with
drift and volatility having Markov jumps; several works are of interest in
this area: Guo and Zhang [57] have derived the closed-form solutions for
vanilla American put; Guo analyses in [32] Russian (i.e., perpetual look-back)
options and is able to derive explicit solutions for the optimal stopping time;
in [55] Xu and Wu analyse the situation of a two-asset perpetual American
option where the pay-off function is a homogeneous function of degree one;
Mamon and Rodrigo [45] find explicit solutions to vanilla European options.
Buffington and Elliott [16] study European and American options and obtain
equations for the price. A distinct approach (Hopf factorization) is used by
Jobert and Rogers [38] to derive very good approximations of the option
prices for, among others, American puts. Other contributions include [56, 54]
etc.

A different class of contributions discuss the liquidity; among them several
contributions point out that the liquidity displays ”regimes” i.e. a finite list
of distinctive macro-economic circumstances, see for instance [27, 42] and
references within. Our situation corresponds precisely to this view as it will
be seen in Section 11.

Works involving Markov switched regimes and CIR dynamics appears
in [30] where the bond valuation problem is considered (but not in the form
of an American option; their approach will be relevant to the computation
of the payoff of our American option although in their model only the mean
reverting level is subject to Markov jumps) and in [58] where the term struc-
ture of the interest rates is analysed. A relevant connected work is [53]
where the bond price is obtained when the short rate process is governed by
a Markovian regime-switching jump-diffusion version of the Vasicek model;
the authors provide in addition the suitable mathematical arguments to study
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piecewise Vasicek dynamics (here the dynamics is still piecewise but CIR).
On the other hand numerical methods are proposed in [35] where it is

found that a fixed point policy iteration coupled with a direct control formu-
lation seems to perform best.

Finally, we refer to [36] for theoretical results concerning the pricing of
American options in general.

11 Perpetual prepayment option: the geome-
try of the exercise region

11.1 The risk neutral dynamics

The prepayment option depends on three distinct dynamics:

• the (short) interest rate rt, which follows a piecewise CIR (Cox-
Ingersoll-Ross) process (see [17, 8, 40, 41, 12] for theoretical and numer-
ical aspects of CIR processes and the situations where the CIR process
has been used in finance);

• the default intensity λt which also follows a piecewise CIR process

• the liquidity lt which depends on the economic environment and jumps
among a finite list of states; it is described by a finite state Markov
chain X = {Xt, t ≥ 0}. The state space X can be taken to be, without
loss of generality, the set of unit vectors E = {e1, e2, ..., eN}, ei =
(0, ..., 0, 1, 0, ..., 0)T ∈ RN . Here T is the transposition operator.

Assuming the process Xt is homogeneous in time and has a rate matrix
A, then

Xt = X0 +

∫ t

0

AXudu+Mt, X0 = X0, (131)

where M = {Mt, t ≥ 0} is a martingale with respect to the filtration gener-
ated by X. In differential form

dXt = AXtdt+ dMt, X0 = X0. (132)

We assume the instantaneous liquidity cost of the bank lt is positive and
depends on the state Xt of the economy, so that

lt = 〈l, Xt〉 , (133)
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for some constant vector l that collects the numerical values of liquidity for
all regimes ek ∈ E.

Denote by ak,j the entry on the line k and the column j of the N × N
matrix A with ak,j ≥ 0 for j 6= k and

∑N
j=1 ak,j = 0 for any k.

We model the intensity dynamics by a CIR process with parameters de-
pending on the regime Xt:

dλt = γλ(Xt)(θλ(Xt)− λt)dt+ σλ(Xt)
√
λtdWt, λ0 = λ0, (134)

γλ(Xt), θλ(Xt), σλ(Xt) > 0. (135)

The short rate r also follows a CIR process with parameters depending
on the regime Xt:

drt = γr(Xt)(θr(Xt)− rt)dt+ σr(Xt)
√
rtdZt, r0 = r0, (136)

γr(Xt), θr(Xt), σr(Xt) > 0. (137)

In order to ease the notations we may sometimes write γλ,k instead of
γλ(ek) and similar notations for σλ(ek), θλ(ek), γr(ek), σr(ek) and θr(ek) for
k = 1, ..., N .

It is known that if

2γλ,kθλ,k ≥ σ2
λ,k, ∀k = 1, ..., N, (138)

then the intensity λt is strictly positive at all times. We assume that the
condition (138) is satisfied. Same hypothesis is assumed for the short rate
dynamics:

2γr,kθr,k ≥ σ2
r,k, ∀k = 1, ..., N. (139)

Here Wt and Zt are two Brownian motions independent of the filtration
generated by X. Their correlation is possibly non-null but constant i.e., with
usual notations

〈Wt, Zt〉 = ρt, |ρ| ≤ 1. (140)

We obtain thus the following joint dynamics which is supposed to be the
relevant risk-neutral dynamics for the valuation of the prepayment option:

d

Xt

λt
rt

 =

 AXt

γλ(Xt)(θλ(Xt)− λt)
γr(Xt)(θr(Xt)− rt)

 dt+

 dMt

σλ(Xt)
√
λtdWt

σr(Xt)
√
rtdZt

 ,

X0

λ0

r0

 =

X0

λ0

r0

 .

(141)
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Remark 12 The selection of a risk-neutral dynamics (or equivalently of a
pricing measure) is not a trivial task in general and even less for incomplete
markets (see [19] for further details).

11.2 The PVRP

Consider a loan with an initial contractual margin ρ0 calculated at the orig-
ination to match the par value K of the loan. At time t the client firm pays
interests at rate rt + ρ0. Let ξ(t, T, rt, λt, Xt) be the present value of the
remaining payments at time t of the corporate loan with contractual matu-
rity T (the interested reader can consult [41, 12] and references within for
additional information related to ξ).

A quantity that is meaningful for the bank is the "loan value"
LV (t, T, r, λ,X) defined as ξ(t, T, r, λ,X) minus the prepayment option value
P (t, T, r, λ,X).

LV (t, T, r, λ,X) = ξ(t, T, r, λ,X)− P (t, T, r, λ,X). (142)

The PVRP ξ is the present value of the cash flows discounted at the
instantaneous risky rate, where the instantaneous risky rate at time t is the
short rate rt plus the liquidity cost lt plus the intensity λt. We obtain for
r > 0, λ > 0 that the PV RP is :

KE
[∫ T

t

(rs + ρ0)e−
∫ s
t ru+lu+λududs+ e−

∫ T
t rs+ls+λsds

∣∣∣∣ rt = r, λt = λ,Xt = X

]
.

(143)
For a perpetual loan T = +∞ and since rt > 0, λt > 0 we obtain that

the last term vanishes at the limit. Moreover since in the risk-neutral dy-
namics (141) all coefficients in the matrix A and CIR processes are time
independent we conclude that ξ does not depend on t. We will define:

ξ(r, λ,X) := KE
[∫ ∞

0

(rs + ρ0)e−
∫ s
0 ru+lu+λududs

∣∣∣∣ r0 = r, λ0 = λ,X0 = X

]
..(144)

Note that this implies that ξ(r, λ, ek) is C∞ in the neighbourhood of any
(r, λ), r > 0, λ > 0 and for any k = 1, ..., N , see Section 15 for details.

The margin ρ0 is set to satisfy the equilibrium equation

ξ(r0, λ0, X0) = K, (145)
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or equivalently

ρ0 =
1− E

[∫∞
0
rse
−

∫ s
0 ru+lu+λududs

∣∣ r0 = r0, λ0 = λ0, X0 = X0

]
E
[∫∞

0
e−

∫ s
0 ru+lu+λududs

∣∣ r0 = r0, λ0 = λ0, X0 = X0

] > 0. (146)

The last inequality is obtained from:

E
[∫ ∞

0

rse
−

∫ s
0 ru+lu+λududs

∣∣∣∣ r0 = r0, λ0 = λ0, X0 = X0

]
< E

[∫ ∞
0

rse
−

∫ s
0 rududs

∣∣∣∣ r0 = r0, λ0 = λ0, X0 = X0

]
= 1. (147)

Similar arguments show that (see Section 15)

ξ(r, λ,X) ∈]0, K(1 + ρ0)], ∀r > 0, λ > 0, X ∈ E, (148)
lim

‖(r,λ)‖→∞
ξ(r, λ, ek) = 0, ∀k = 1, ..., N. (149)

The above results and the regularity of ξ show that ξ can be extended by
continuity when r = 0 or λ = 0.

Remark 13 If an additional commercial margin ν0 is considered then ρ0 is
first computed as above and then replaced by ρ0 = ρ0 + ν0 in Equation (144).
With these changes all results of the paper remain valid.

We also introduce for technical reasons the curves Γ
0

k, k = 1, ..., N :

Γ
0

k = {(r, λ)|r ≥ 0, λ ≥ 0, ξ(r, λ, ek) = K}. (150)

Of course, (r0, λ0) ∈ Γ
0

X0
. We also define the domains:

Ωξ−
k = {(r, λ)|r ≥ 0, λ ≥ 0, ξ(r, λ, ek) < K},

Ωξ+
k = {(r, λ)|r ≥ 0, λ ≥ 0, ξ(r, λ, ek) > K}. (151)

11.3 Further properties of the PVRP ξ

It is useful for the following to introduce a PDE formulation for ξ. To ease
the notations we introduce the operator AR that acts on regular functions
v(r, λ,X) as follows:

(ARv)(r, λ, ek) = (Akv)(r, λ, ek)−(r+lk+λ)v(r, λ, ek)+
N∑
j=1

ak,j

(
v(r, λ, ej)−v(r, λ, ek)

)
,

(152)
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where Ak is the characteristic operator (cf. [59, Chapter 7.5]) of the CIR
processes of r and λ in X = ek, i.e., the operator that acts on any C2 class
function v(r, λ) by

Ak(v)(r, λ) = γλ,k(θλ,k − λ)∂λv(r, λ) +
1

2
σ2
λ,kλ∂λλv(r, λ)

+γr,k(θr,k − r)∂rv(r, λ) +
1

2
σ2
r,kr∂rrv(r, λ)

+ρ
√
rλσλ,kσr,k∂rλv(r, λ). (153)

Since ξ is regular one can use an adapted version of the Feynman-Kac
formula in order to conclude that ξ defined by (144) satisfies the equation:

(ARξ)(r, λ,X) + (r + ρ0)K = 0, ∀r > 0, λ > 0,∀X ∈ E. (154)

11.4 Valuation of the prepayment option

The valuation problem of the prepayment option can be modelled as an
American call option (on a risky debt owned by the borrower) with payoff:

χ(r, λ,X) = (ξ(r, λ,X)−K)+. (155)

Here the prepayment option allows borrower to buy back and refinance its
debt according to the current contractual margin at any time during the life
of the option. We denote by P the price of the prepayment option.

General results that have been derived for the pricing of a perpetual
(vanilla) American put option [36, 11] show that the stopping time has a
simple structure: a critical frontier splits the domain into two regions: the
exercise region where it is optimal to exercise and where the price equals the
payoff and a continuation region where the price satisfies a partial differential
equation similar to the Black-Scholes PDE. We refer to [22] for how to adapt
the theoretical arguments for the situation when the dynamics is not Black-
Scholes but a CIR process.

The result builds heavily on the geometric properties (convexity, etc.) of
the payoff, which are not available in this setting; a direct proof is there-
fore needed. Note that for general payoff examples are available (see for
instance [26]) where several (connected) exercise and / or continuation re-
gions exist. It is therefore not clear a priori what is the geometry of the
exercise regions. We prove here a result that allows to certify that, under
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some technical assumptions given below, for the prepayment option at most
one connected exercise region and at most one connected continuation region
exist in any regime.

Theorem 14 Let Ω := (Ωk)
N
k=1 be a N-tuple of connected open sets Ωk ⊂

(R+)2 with piecewise Lipschitz frontiers. Denote by Ωc
k the interior of

(R+)2 \Ωk and Γk the common frontier of Ωc
k and Ωk. Introduce the function

PΩ(r, λ,X) defined by:

PΩ(r, λ, ek) = χ(r, λ, ek) ∀(r, λ) ∈ Ωk, k = 1, ..., N (156)
(ARPΩ)(r, λ, ek) = 0, ∀(r, λ) ∈ Ωc

k, k = 1, ..., N (157)
PΩ(r, λ, ek) = χ(r, λ, ek), on Γk, k = 1, ..., N (158)

lim
‖(r,λ)‖→∞

PΩ(r, λ, ek) = 0, k = 1, ..., N. (159)

Suppose Ω∗ := (Ω∗k)
N
k=1 exists such that for all k = 1, ..., N the frontier of Ω∗k

is piecewise Lipschitz and:

Ω∗k ⊂ Ωξ+
k (160)

PΩ∗(r, λ,X) ≥ χ(r, λ,X) ∀r, λ,X (161)
PΩ∗(r, λ, ek) is of C1 class on (R+)2, k = 1, ..., N (162)
N∑
j=1

ak,j

(
PΩ∗(r, λ, ej)− χ(r, λ, ej)

)
+K(λ+ lk − ρ0) ≤ 0 ∀(r, λ) ∈ Ω∗k.(163)

Then P = PΩ∗.

Proof. Denote by T the ensemble of (positive) stopping times; then for
all k = 1, ..., N :

P (r, λ, ek) = sup
τ∈T

E
[
e−

∫ τ
0 ru+lu+λuduχ(rτ , λτ , Xτ )

∣∣∣r0 = r, λ0 = λ,X0 = ek

]
.

(164)
We note that if τΩ is the stopping time that stops upon exiting the domain
Ωc
k when X = ek then for all ` = 1, ..., N :

PΩ(r, λ, e`) = E
[
e−

∫ τΩ
0 ru+lu+λuduχ(rτΩ , λτΩ , XτΩ)

∣∣∣r0 = r, λ0 = λ,X0 = e`

]
.

Note that the stopping time τΩ is finite a.e. and PΩ(·, ·, ek) is C2 except
possibly the negligible set ∪Nk=1∂Ωk. Thus P ≥ PΩ; when Ω touches one of
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the axis r = 0 or λ = 0 the continuity with respect to Ω ensured by the
boundary condition (156) shows that we still have P ≥ PΩ. In particular for
Ω∗ we obtain P ≥ PΩ∗ ; all that remains to be proved is the reverse inequality
i.e. P ≤ PΩ∗ .

To this end we use a similar technique as in Theorem 10.4.1 [59, Section
10.4 page 227] (see also [57] for similar considerations). First one can invoke
the same arguments as in cited reference (cf. Appendix D for technicalities)
and work as if PΩ∗ is C2 (not only C1 as the hypothesis ensures).

The Lemma 18.5 below shows that ARPΩ∗ ≤ 0 pointwise almost every-
where and is null on Ω∗,ck when X = ek. The Îto formula gives

d
(
e−

∫ t
0 rs+ls+λsdsPΩ∗(rt, λt, Xt))

)
= e−

∫ t
0 rs+ls+λsds(ARPΩ∗)(rt, λt, Xt))dt

+d(martingale) (165)

Taking averages and integrating from 0 to some stopping time τ it follows
from ARPΩ∗ ≤ 0 that

PΩ∗(r, λ,X) ≥ E
[
e−

∫ τ
0 ru+lu+λuduPΩ∗(rτ , λτ , Xτ )

∣∣∣r0 = r, λ0 = λ,X0 = X
]

≥ E
[
e−

∫ τ
0 ru+lu+λuduχ(rτ , λτ , Xτ )

∣∣∣r0 = r, λ0 = λ,X0 = X
]
.

Since this is true for any stopping time τ the conclusion follows.
Lemma. Under the hypothesis of the Theorem 24 the following inequal-

ity holds pointwise almost everywhere on R2
+:

(ARPΩ∗)(r, λ,X) ≤ 0, ∀r, λ > 0,∀X. (166)

Proof. From (157) the conclusion is trivially verified for X = ek for any
(r, λ) ∈ Ω∗ck .

The non-trivial part of this lemma comes from the fact that if for fixed
k, r1 > 0, λ1 > 0

PΩ∗(r, λ, ek) = χ(r, λ, ek)

for any (r, λ) in some the neighbourhood of (r1, λ1) this does not necessarily
imply

(ARPΩ∗)(r1, λ1, ek) = (ARχ)(r1, λ1, ek)

because AR depends on other values PΩ∗(r, λ, ej) with j 6= k.
Suppose now (r, λ) ∈ ∩Nj=1Ω∗j ; this means in particular that Ω∗k 6= ∅ and

from hypothesis (160) also Ωξ+
k 6= ∅ and moreover ξ(r, λ, ek) > K for any
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k = 1, ..., N ; thus χ(r, λ, ek) = ξ(r, λ, ek) −K for any k. Furthermore since
(r, λ) ∈ ∩Nj=1Ω∗j we have PΩ∗(r, λ, ek) = χ(r, λ, ek) = ξ(r, λ, ek) − K for any
k. Fix X = ek; then

(ARPΩ∗)(r, λ, ek) = (ARχ)(r, λ, ek) = (AR(ξ −K))(r, λ, ek) = (ARξ)(r, λ, ek)
−AR(K) = −(r + ρ0)K + (r + lk + λ)K = K(lk + λ− ρ0) ≤ 0, (167)

the last inequality being true by hypothesis.
A last situation is when λ ∈ Ω∗k \ ∩Nj=1Ω∗j ; there PΩ∗(r, λ, ek) = χ(r, λ, ek)

but some terms PΩ∗(r, λ, ej) for j 6= k may differ from χ(r, λ, ej). The com-
putation is more technical in this case. This point is specific to the fact that
the payoff χ itself has a complex structure and as such was not emphasized
in previous works (e.g., [57], etc.).

Recalling the properties of ξ one obtains using PΩ∗(r, λ, ek) = χ(r, λ, ek):

(ARPΩ∗)(r, λ, ek) = (Akχ)(r, λ, ek)− (r + lk + λ)χ(r, λ, ek)

+
N∑
j=1

ak,j

(
PΩ∗(r, λ, ej)− χ(r, λ, ek)

)
= (ARχ)(r, λ, ek) +

N∑
j=1

ak,j

(
PΩ∗(r, λ, ej)− χ(r, λ, ej)

)
= (ARξ)(r, λ, ek)−AR(K) +

N∑
j=1

ak,j

(
PΩ∗(r, λ, ej)− χ(r, λ, ej)

)
= −K(r + ρ0) + (r + lk + λ)K +

N∑
j=1

ak,j

(
PΩ∗(r, λ, ej)− χ(r, λ, ej)

)
≤ 0,(168)

where for the last inequality we use hypothesis (163). Finally, since we proved
that (ARPΩ∗)(r, λ,X) ≤ 0 strongly except for some values depending on the
frontiers of Ω∗k and since PΩ∗ is of C1 class we obtain the conclusion.

Remark 15 Several remarks are in order at this point:

1. when N > 1 checking (163) does not involve any computation of deriva-
tives and is straightforward.

2. as mentioned in the previous section, the Theorem is a verification
result i.e., only gives sufficient conditions for a candidate to be the
option price.
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3. the candidate solution Ω∗ can be found either by maximizing the func-
tion Ω 7→ PΩ(r0, λ0, X0) with respect to all admissible Ω (which is diffi-
cult for 2-dimensional domains) or by solving a constraint optimization
problem as seen below.

12 A minimization problem and the numerical
algorithm

The Theorem 24 is a verification result. Its utility is to guarantee that a
candidate Ω∗ is solution once such a candidate is found. But the Theorem
does not say how to find Ω∗. To this end we rewrite our problem in a different
framework, that of a minimization problem based on a variational inequal-
ity as explained below. It is worth mentioning that variational inequalities
are naturally associated to an American option but the non-standard payoff
here does not allow to obtain information on the geometry of the exercise
and continuation regions directly from classic approaches to such variational
inequalities. We refer the reader to [39] for further information on the math-
ematical objects involved.

The results of this Section are proved under the assumption that the
Markov chain Xt has a stationary distribution. This assumption is not re-
strictive in practice. In conjunction with the existence of a stationary distri-
bution for each CIR process it allows to consider the joint stationary distri-
bution of the dynamics (rt, λt, Xt), whose density is denoted µ(r, λ,X). To
ease notations when there is no ambiguity we write µk or µk(r, λ) instead
of µ(r, λ, ek). Note that since µ represents a probability density it is always
(strictly) positive. Moreover, see Section 16, one can prove that µk is C∞
and all moments are finite.

Introduce for functions u, v : R+×R+×E → R (with uk := u(·, ·, ek) and
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same for v) the notation:

〈u, v〉? =
N∑
k=1

∫∫
(R+)2

{
σ2
λ,k

2
λ∂λuk∂λvk +

σ2
r,k

2
r∂ruk∂rvk +

ρσr,kσλ,k
√
rλ
∂ruk∂λvk + ∂rvk∂λuk

2
+ ukvk(r + λ+ lk)

}
µkdrdλ

+

∫ ∞
0

(
γλ,kθλ,k −

σ2
λ,k

2

)
uk(r, 0)vk(r, 0)

2
µk(r, 0)dr

+

∫ ∞
0

(
γr,kθr,k −

σ2
r,k

2

)
uk(0, λ)vk(0, λ)

2
µk(0, λ)dλ+

+
∑

1≤j<k≤N

∫∫
(R+)2

(aj,kµj + ak,jµk)(uk − uj)(vk − vj)
2

drdλ, (169)

and denote by H? the space:

H? = {u : R+ × R+ × E → R|〈u, u〉? <∞}. (170)

Define also for smooth functions the bilinear form

a?(u, v) =
N∑
k=1

∫∫
(R+)2

(−AR(u))(r, λ, ek)v(r, λ, ek)µkdrdλ. (171)

Theorem 16 Suppose that the Markov chain with transition matrix A ad-
mits a stationary distribution. Then

1. The space H? is a Hilbert space with scalar product 〈·, ·〉?. We will
denote by ‖ · ‖? its norm.

2. The form a? admits a unique continuous extension to H?×H? (denoted
still a?), χ ∈ H? and the problem

min{a?(u, u− χ)|u ∈ H?, u ≥ χ, a?(u, v) ≥ 0, ∀v ∈ H?, v ≥ 0}, (172)

is well posed and admits a unique solution U?.

3. Consider Ω∗ that satisfies the hypothesis of the Theorem 24. Then
P = U?.
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Proof.
1/ We first prove that 〈·, ·〉? is a scalar product. The property to prove is

the strict positivity. But since |ρ| ≤ 1 by Cauchy-Schwartz:∫∫
(R+)2

{
σ2
λ,k

2
λ(∂λuk)

2 +
σ2
r,k

2
r(∂ruk)

2 + ρσr,kσλ,k
√
rλ∂ruk∂λuk

}
drdλ ≥ 0.

(173)
Under hypotheses (138)-(139) the other terms are also positive; moreover the
sum of all terms is strictly positive as soon as the function u is non-null.

2/ We prove that for regular enough functions

a?(u, v) = 〈u, v〉? + b?(u, v), (174)

where b? : H? × H? → R is a continuous, antisymmetric (i.e., b?(u, v) +
b?(v, u) = 0) bilinear form.

To this end one has to integrate by parts all terms appearing in the
definition of the form a?. We take for instance the correlation term and
compute for regular functions f, g, h with exponential decay at infinity (see
Section 15 for details):∫∫

(R+)2

∂rλfg
√
rλhdrdλ = −

∫∫
(R+)2

∂λf∂r
√
rλhdrdλ+

∫∫
(R+)2

fg∂λr(
√
rλh)

2
drdλ

+

∫∫
(R+)2

f∂λg − g∂λf
2

∂r(
√
rλh))drdλ. (175)

The first term enters in the definition of the scalar product and is symmetric;
last term is antisymmetric. The middle term will be seen to simplify latter
on. This identity will be used for f = uk, g = vk, h = µk for all k. Similar
identities are found for terms involving derivatives. We obtain by summation
that a?(u, v) is the sum of :

- 〈u, v〉? except the last term,
- an antisymmetric continuous bilinear form
- the quantity:

∑N
k=1

∫∫
(R+)2

ukvk
2

(−A∗k(µk))−
∑N

j=1 ak,j(uj−uk)vkµkdrdλ.
Here A∗k is the adjoin of A∗k and acts on regular functions w by:

A∗k(w) = −∂λ(γλ,k(θλ,k − λ)w) +
σ2
λ,k

2
∂λλ(λw)− ∂r(γr,k(θr,k − r)w) +

σ2
r,k

2
∂rr(rw)

+ρσλ,kσr,k∂rλ(
√
rλw). (176)
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Note that µ is solution to the following PDE (of Fokker-Plank / forward
Kolmogorov type):

(A∗k(µ))(r, λ, ek) +
N∑
j=1

aj,kµj − ak,jµk = 0. (177)

Thus
N∑
k=1

∫∫
(R+)2

ukvk
2

(−A∗k(µk))−
N∑
j=1

ak,j(uj − uk)vkµkdrdλ

=
N∑

k,l=1

∫∫
(R+)2

ukvk
2

(aj,kµj − ak,jµk)− ak,j(uj − uk)vkµkdrdλ

=
∑

1≤j<k≤N

∫∫
(R+)2

ukvk
2

(aj,kµj − ak,jµk)− ak,j(uj − uk)vkµkdrdλ

=
∑

1≤j<k≤N

∫∫
(R+)2

(aj,kµj + ak,jµk)(uk − uj)(vk − vj)
2

+
ak,jµk(ujvk − ukvj)

2
,

which provides the last term in the scalar product part and also the con-
tinuous antisymmetric bilinear form

∑
1≤j<k≤N

∫∫
(R+)2

ak,jµk(ujvk−ukvj)
2

. This
concludes the proof of (174).

Since b? is continuous 〈u, v〉? + b?(u, v) is a continuous bilinear form on
H? ×H?. Moreover this form equals a? on a dense subset, thus a? admits a
unique continuous extension to H? ×H? given by 〈u, v〉? + b?(u, v). We still
denote by a? this extension.

We prove in Section 15 that ξ, χ, P ∈ H?.
Since a?(·, χ) is a continuous linear form on H? one can represent it as

〈·, ζ〉? for some ζ ∈ H?. Then

a?(u, u− χ) = a?(u, u)− a?(u, χ) = 〈u, u− ζ〉?. (178)

Consider (un)n∈N a minimizing sequence for the problem. There exists
M > 0 such that a?(un, un − χ) = 〈un, un − ζ〉?. ≤M for all n. Thus

‖un‖2
? = 〈un, un〉? ≤M + 〈un, ζ〉? ≤M +

‖un‖2
? + ‖ζ‖2

?

2
, (179)

which shows that ‖un‖2
? is bounded. Up to extracting a subsequence one can

assume that (un)n is weakly convergent to some U?. Taking into account the
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norm of the space, the convergence is strong L2
loc. In particular from un ≥ χ

it follows U? ≥ χ.
Consider now v ∈ H? with v ≥ 0. Then from 0 ≤ a?(un, v) and (by weak

convergence) limn→∞ a?(un, v) = a?(U?, v) one concludes that a?(U?, v) ≥ 0
i.e., U? is admissible.

Note also that weak convergence implies

a?(U?, U?) = ‖U?‖2
? ≤ lim inf

n→∞
‖un‖2

? = lim inf
n→∞

a?(un, un). (180)

Since limn→∞ a?(un, χ) = a?(U?, χ) one obtains

a?(U?, U? − χ) ≤ lim inf
n→∞

a?(un, un − χ), (181)

thus U? is a minimizer and U? ∈ H?.
Suppose now that there exist two minimizers U1

? and U2
? . Denote

m = a?(U
1
? , U

1
? − χ) = a?(U

2
? , U

2
? − χ). (182)

Then one notes that U1
?+U2

?

2
is an admissible point. Moreover, from minimality

m ≤ a?(
U1
? + U2

?

2
,
U1
? + U2

?

2
− χ) =

∥∥∥∥U1
? + U2

?

2

∥∥∥∥2

?

− a?(
U1
? + U2

?

2
, χ)

=

∥∥∥∥U1
? + U2

?

2

∥∥∥∥2

?

− ‖U
1
?‖

2
? + ‖U2

?‖
2
?

2
+m = m−

∥∥∥∥U1
? − U2

?

2

∥∥∥∥2

?

, (183)

which implies U1
? = U2

? .
3/ We proved that −ARP ≥ 0 (except possibly a null measure set).

Thus when one multiplies by any positive, sufficiently smooth, function v
one obtains after integration

N∑
k=1

∫∫
(R+)2×{ek}

(−ARP )vµk ≥ 0, (184)

i.e., a?(P, v) ≥ 0. By density the result will be true for any positive v ∈ H?.
Recalling that P ≥ χ one obtains that P is an admissible function for the
minimization (172). Moreover a?(P, P − χ) = 0 ≤ a?(u, u − χ) for any
admissible u (take v = u− χ), hence the conclusion.
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Remark 17 1. The result above is constructive in the sense that the nu-
merical implementation is more straightforward than that directly re-
lated to the Theorem 24; the solution can be obtained by solving a linear
constrained quadratic optimization problem with strictly positive Hes-
sian that is obtained from suitable discretization of the bi-linear form
a?. However the reader should not be mislead by the conceptually "sim-
ple" framework of a quadratic optimization problem under convex con-
straints: convex optimization problems may be numerically very time
consuming when the number of constraints is high, as is the situation
here. Numerical algorithms that address this problem are however avail-
able, cf. [13].

2. Once a candidate is found it has to satisfy all hypothesis of Theorem 24,
in particular the hypothesis (162). Note that since the candidate is
C2 on domains Ω∗k and Ω∗ck only the conditions on the frontier Γ∗k is
to be satisfied. The continuity is straightforward to check. For the
continuity of the derivatives one notes that only the continuity of the
normal derivative (the normal is with respect to the frontier Γ∗k) is to
be verified: for all other directions the derivative will be continuous
because is the trace on Γ∗k of the derivative of a C2 function.

13 Numerical Application
Several partial differential equations involving operators AR and A∗k are to
be solved. We use two different numerical implementations and both give
similar results.

One implementation uses a finite difference method (written in
MATLAB c©) based on a grid with the time step ∆r and space step ∆λ
and look for an approximation Pn,`,k of PΩ∗(n∆r, `∆λ, ek). The domain is
truncated at λmax and rmax.

The first and second derivatives are approximated by (centered) finite
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difference formula. We obtain for instance the discretization of AR(P ):

γr,k(θr,k − (n∆r))
Pn+1,`,k − Pn−1,`,k

2∆r
+
σ2
r,k

2
(n∆r)

Pn+1,`,k − 2Pn,`,k + Pn−1,`,k

∆r2

+γλ,k(θλ,k − (`∆r))
Pn,`+1,k − Pn,`−1,k

2∆λ
+
σ2
λ,k

2
(`∆λ)

Pn,`+1,k − 2Pn,`,k + Pn,`−1,k

∆λ2

+ρσr,kσλ,k
√
n∆r · `∆λ(Pn+1,`+1,k − Pn−1,`+1,k)− (Pn+1,`−1,k − Pn−1,`−1,k)

(2∆r)(2∆λ)

−((n∆r) + lk + (`∆λ))Pn,`,k +
N∑
j=1

ak,j [Pn,`,j − Pn,`,k] .

Since the PDEs are degenerate at the boundaries r = 0,∞, λ = 0,∞
there is no need to impose boundary conditions at these points. In practice,
in order to obtain as many equations as unknowns, for the last point before
boundary, e.g., P1,`,k we use de-centred finite differences.

A second implementation used the FreeFem++ software (see [33] for de-
tails). This code is very efficient and implements a finite element method.
Freefem++ was used to discretize the operators and obtain the matrices
in the Galerkin basis. Then the optimization was performed with Octave
(see [28]).

In this numerical application, λmax = 400bps, rmax = 5%, ∆λ = 10bps
and ∆r = 10bps. Recall that a basis point, denoted "1 bps" equals 10−4.

13.1 Application 1 : 1 regime

We consider a perpetual loan with a nominal K = 1 and one regime (N = 1).
We omit in the following the variableX assigned to the regime. The borrower
default intensity λt follows a CIR process with parameters: initial intensity
λ0 = 100bps, volatility σλ = 0.1, average intensity θλ = 220bps, reversion
coefficient γλ = 0.1. On the interbank market, the CIR process of the LIBOR
has the following parameters: initial LIBOR r0 = 4%, volatility σr = 0.1,
average intensity θr = 4.6%, reversion coefficient γr = 0.8. We assume a
unique and constant liquidity cost l1 = 50bps.

In order to find the initial contractual margin we use equation (145)
and find ρ0 = 196bps. Therefore, we can represent ξ(r, λ) according to the
current intensity λ and LIBOR r, see Figure 21. We illustrate the dependence
of ξ(r, λ) around (r0, λ0) separately with respect to both variables r, λ in
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λ

Figure 20: PVRP value as a function of the intensity (left: ξ(r0, λ) ) and
LIBOR (right: ξ(r, λ0)) for the inputs in Section 13.1.

λ

Figure 21: ξ(r, λ) for the inputs in Section 13.1. ξ is decreasing when there
is a degradation of the credit quality (i.e., λ increases) and converges to 0 at
infinity.

the Figure 20. Note that ξ(r0, λ) is very sensitive to the borrower’s credit
quality and it decreases when λ rises; on the contrary ξ(r, λ0) exhibits a low
sensitivity to LIBOR variations.

The price P and the optimal frontier Γ∗ are obtained with the algorithm in
Section 12 and are validated by checking the hypothesis of the Theorem 24;
the optimal frontier defines the exercise region (below the curve) and the
continuation region (above the curve), see Figure 22. At origination, the
present value of cash flows is at par, so ξ(r0, λ0) = 1. The prepayment
option price is P (r0, λ0) = 0.0347 = 3.61% ·K, see Figure 23. We illustrate
the dependence of the option P (r, λ) with respect to both variables (r, λ)
around (r0, λ0) in the Figure 24. Note that P (r0, λ) is very sensitive to the
borrower’s credit quality λ and it decreases when λ rises. On the contrary
P (r, λ0) exhibits a low sensitivity with respect to LIBOR variations.

Therefore the loan value equals ξ(r0, λ0)−P (r0, λ0) = 0, 9653. If the bank
decides to include the prepayment option in the initial contractual margin ρ0
(cf. Remark 22) then ρ0 = 346bps. Note that ρ0 is significantly higher than
ρ0.
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Figure 22: The optimal boundary function Γ∗ as function of the LIBOR r
for the inputs in Section 13.1. Two regions appear : the continuation region
(above the curve) and the exercise region (below the curve).

λ

Figure 23: The price P (r, λ) for the inputs in Section 13.1.

λ

Figure 24: Prepayment option value as a function of the intensity (left :
P (r0, λ)) and LIBOR (right : P (r, λ0)) for the inputs in Section 13.1.
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13.2 Application 2 : 2 regimes

Consider a loan with a nominal K = 1 in an environment with two economic
states: state e1 corresponds to economic expansion and state e2 to a recession.
The borrower default intensity λt follows a CIR process with different param-
eters according to the economic state: initial intensity λ0 = 212bps, volatil-
ity (σλ,1, σλ,2) = (0.1, 0.2), average intensity (θλ,1, θλ,2) = (220bps, 1680bps),
reversion coefficient (γλ,1, γλ,2) = (0.1, 0.2). The default intensity process
reflects a higher credit risk in state e2.

The CIR process of the LIBOR is defined with the following parameters:
initial LIBOR r0 = 4%, volatility (σr,1, σr,2) = (0.1, 0.01), average intensity
(θr,1, θr,2) = (4.6%, 0.3%), reversion coefficient (γr,1, γr,2) = (0.8, 0.3). We
take the correlation ρ to be null. The LIBOR is linked to the Central Bank
rates: during a state of economic expansion, the Central Bank rises the
rates to avoid inflation and during a recession, the Central Bank decreases
the rates to help economic growth. Of course the mathematical model can
accommodate any other Central Bank policy.

We assume a liquidity cost defined by a Markov chain of two states l1 =
0bps and l2 = 290bps. For N = 2 the rate A matrix is completely defined by
α1,2 = 1/5, α2,1 = 1/5.

In order to find the initial contractual margin we use equation (145) and
find ρ0 = 851bps in the state e2. The contractual margin takes into account
the credit risk (default intensity) and the liquidity cost. In this situation
ξ(r, λ, e1) is higher than ξ(r, λ, e2) according to the degradation of the credit
quality, through the intensity process parameters, and the degradation of
the access to money market involving an increase of the funding costs lk, see
Figures 25.

The optimal frontiers Γ∗1 and Γ∗2 are obtained with the algorithm in Sec-
tion 12 and are validated by checking the hypothesis of the Theorem 24; we
obtain (r0, 340bps) ∈ Γ∗1, (r0, 0) ∈ Γ∗2, see Figure 26. Both frontiers delimit
the exercise region (below the curve) and the continuation region (above the
curve). In state e2, the optimal frontier is at 0 for all r, because in this
particular case it is never optimal to prepay.

We illustrate the dependence of the option P (r, λ,X0) with respect to
both variables (r, λ) in the Figures 27. P (r, λ, e1) is higher than P (r, λ, e2).

In the state e2, the present value of cash flows is at par, so ξ(r0, λ0, X0) =
1. The prepayment option price is P (r0, λ0, X0) = 0.1033. Therefore the
loan value equals ξ(r0, λ0, X0) − P (r0, λ0, X0) = 0.8967. If the bank decides
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λ λ

Figure 25: ξ(r, λ,X) as a function of the intensity and the LIBOR for the
inputs in Section 13.2. Left: regimeX = e1; Right: regimeX = e2. ξ(r, λ, e1)
is higher than ξ(r, λ, e2) according to the degradation of the credit quality
(λ parameters) and the degradation of the access to money market (funding
issues). It converges to 0 at infinity.

Figure 26: The optimal boundary: Γ∗
1 in regime X = e1 (solid line) and Γ∗

2

in regime X = e2 (asterisk line) as function of the LIBOR r for the inputs in
Section 13.2. Recall that the continuation region is above the boundary and
the exercise region below the boundary. For regime e1 two regions appear :
the continuation region and the exercise region while for regime e2 only the
continuation region is present. The borrower will only prepay in regime e1
after the crisis is over.

to include the prepayment option in the initial contractual margin ρ0 (cf.
Remark 22) the loan value will equal par for ρ0 = 1199bps in the state e2,
significantly higher than ρ0.

Remark 18 In all examples the sensitivity with respect to r is less critical
than the sensitivity with respect to λ.
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λ λ

Figure 27: The price of the prepayment option P (r, λ,X) as function of the
intensity and LIBOR for the inputs in Section 13.2. Left: regime X = e1;
Right: regime X = e2.

13.3 Application 3 : N = 2 regimes with a non-zero
correlation ρ

Consider a loan with the same parameters as in Section 13.2 and assume a
non-zero correlation between the dynamics of the intensity and the instanta-
neous interest rate.

The initial contractual margin is found to be ρ0 = 854bps for X0 = e2.
Even with a substantial ρ = −50% correlation, there is only a 4bps increase
with respect to example in Section 13.2 (that had null correlation). Likewise,
the optimal boundaries are the same in both applications, as illustrated in
Figure 28. The prepayment option price is P (r0, λ0, X0) = 0.1026. Therefore
the loan value equals ξ(r0, λ0, X0)− P (r0, λ0, X0) = 0.8974.

13.4 Application 4 : impact of the end of a recession

In the Section 13.2 we considered that the loan originates in a state of reces-
sion but the bank uses a multi-regime model. We consider in this section a
simpler case with a unique regime (N = 1) which is a recession regime. All
parameters are the parameters of Section 13.2 for X = e2.

The initial contractual margin is found to be ρ0 = 1, 204bps which is a
sharp increase with respect to 851bps found in Section 13.2. On the other
hand the prepayment option price is lower: P (r0, λ0) = 0.01855 and the loan
value equals ξ(r0, λ0)− P (r0, λ0) = 0.98145.

Numerical results, not shown here, indicate that the optimal frontier is
not null and the domain is divided in a continuation region and an exercise
region, as illustrated in Figure 29.
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Figure 28: The optimal boundary: Γ∗1 in regime X = e1 (solid line) and Γ∗2
in regime X = e2 (asterisk line) as function of the LIBOR r for the inputs
in Section 13.3. Recall that the continuation region is above the boundary
and the exercise region below the boundary. The results are similar to the
situation with no correlation.
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Figure 29: The optimal boundary: Γ∗ as function of the LIBOR r for the
inputs in Section 13.4. Recall that the continuation region is above the
boundary and the exercise region below the boundary.
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13.5 Discussion and interpretation of the numerical re-
sults

Several conclusions can be drawn from the examples above. First of all, the
prepayment option has a non-negligible impact on the loan value and as such
it should be taken into account and its risk assessed.

Secondly, the presence of a multi-regime dynamics can change dramat-
ically the exercise and continuation regions: while a single-regime reces-
sion (Section 13.4) will display a exercise region, a two-regime model (Sec-
tion 13.2) displays an exercise region only in the ”normal” regime and none
during recession time. This is completely consistent with actual banking
practice : clients seldom prepay during recessions. Thus the conclusions of
the single-regime model are misleading regarding the (optimal) behaviour of
the clients.

On the contrary, it is probable that some clients will exercise their prepay-
ment option when the economy recovers. The model proposes a quantitative
framework to explain when this may happen as a function of the credit spread
λt of the client and of the short rate rt.

Finally, the value rt and the correlation ρ between the CIR dynamics of rt
and λt play a secondary role in the qualitative properties of the prepayment
option.
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14 Details of the computations in equa-
tion (175)

We integrate by parts:∫∫
(R+)2

∂rλfg
√
rλhdrdλ =

∫
R+

∂λfg
√
rλh

∣∣∣∣r=∞
r=0

dλ−
∫∫

(R+)2

∂λf∂r(g
√
rλh)drdλ

= 0−
∫∫

(R+)2

∂λf∂rg
√
rλhdrdλ+ ∂λfg∂r(

√
rλh)drdλ

= −
∫∫

(R+)2

∂λf∂rg
√
rλhdrdλ−

∫
R+

fg∂r(
√
rλh)

∣∣∣∣λ=∞

λ=0

dr

+

∫∫
(R+)2

f∂λ(g∂r(
√
rλh))drdλ = −

∫∫
(R+)2

∂λf∂rg
√
rλhdrdλ

+

∫∫
(R+)2

fg∂λr(
√
rλh)drdλ+

∫∫
(R+)2

f∂λg∂r(
√
rλh))drdλ. (185)

The first two terms are already in convenient form. For the last one we write:∫∫
(R+)2

f∂λg∂r(
√
rλh))drdλ =

∫
R+

fg∂r(
√
rλh)

∣∣∣∣λ=∞

λ=0

dr

−
∫∫

(R+)2

g∂λ(f∂r(
√
rλh)))drdλ = 0−

∫∫
(R+)2

g∂λf∂r(
√
rλh))drdλ

−
∫∫

(R+)2

gf∂λr(
√
rλh)drdλ. (186)

One adds now the term
∫∫

(R+)2 f∂λg∂r(
√
rλh))drdλ to each member of this

identity to write:∫∫
(R+)2

f∂λg∂r(
√
rλh))drdλ

=

∫∫
(R+)2

f∂λg − g∂λf
2

∂r(
√
rλh))drdλ−

∫∫
(R+)2

fg∂λr(
√
rλh)

2
drdλ.(187)

We obtain thus (175).
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15 Regularity properties for ξ, χ, PΩ∗

15.1 Regularity for ξ

Recall first equation (148) that gives an uniform (in r, λ,X) L∞ bound for
ξ. Also note that equation (154) is pointwise satisfied for all r > 0, λ > 0,
X ∈ E.

In order to prove further regularity properties for ξ two distinct ways are
possible: the probabilistic interpretation or the PDE. We will prefer the PDE
version in order to be more close to the results required in Section 12.

Let us first fix X = ek and some r > 0, λ > 0. Then equation (154) is
true in some open ball B around r > 0, λ > 0 of radius min{r, λ}/2. It can
be written, with convention ξk(r, λ) = ξk(r, λ, ek), as:

−Akξk + (r + λ+ lk)ξk = Fk,∀r, λ ∈ B (188)

ξk(r, λ)
∣∣∣
∂B

= Gk. (189)

where Fk, Gk are functions (depending on ξ) bounded in L∞ by a given,
known, constant M .

From the definition of the ball B the operator Ak is strictly coercive on
B. Thus ξk is solution of a strictly elliptic problem. Standard PDE results
imply that ξk(r, λ) ∈ W 2,∞(B) i.e., the space of functions that have two L∞
derivatives. But then, as Fk and Gk are defined in terms of ξk they are also in
W 2,∞. The process is then bootstrapped to obtain, together with standard
Sobolev embeddings that ξk is C∞ at (r, λ). An alternative proof is to use
the tangent process (see [51] Theorem 39 chapter V) to obtains bounds for
the derivatives with respect to r and λ.

Let us now compute, since ξ is regular locally, a?(ξ, ξ) according to its
definition in equation (171)

〈ξ, ξ〉? = a?(ξ, ξ)− b?(ξ, ξ) = a?(ξ, ξ)− 0 (190)

=
N∑
k=1

∫∫
(R+)2

(−AR(ξ))(r, λ, ek)ξ(r, λ, ek)µkdrdλ (191)

=
N∑
k=1

∫∫
(R+)2

(r + ρ0)Kξ(r, λ, ek)µkdrdλ < C

N∑
k=1

∫∫
(R+)2

(r + 1)µkdrdλ,(192)

for some constant C. If suffices now to recall that the first order moment
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of µk is finite i.e.,
∑N

k=1

∫∫
(R+)2 rµkdrdλ < ∞ (see Section 16); we conclude

that ξ ∈ H?.

15.2 Regularity for χ

Note that χ = 1ξ>K . Moreover the derivatives of ξ and χ coincide on the
set {ξ > K} and elsewhere the derivatives are zero. Finally, on {ξ > K},
ξ > χ ≥ 0. Thus 〈χ, χ〉? ≤ 〈ξ, ξ〉? <∞ thus χ ∈ H?.

15.3 Regularity for PΩ∗

From (164) one obtains that

P (r, λ,X) ≤ K(1 + ρ0), ∀r, λ,X. (193)

Note that PΩ∗ = PΩ∗1PΩ∗>χ + PΩ∗1PΩ∗=χ and recall that on {PΩ∗ > χ}
we have ARPΩ∗ = 0; thus

a?(PΩ∗ , PΩ∗) = a?(PΩ∗1PΩ∗>χ + PΩ∗1PΩ∗=χ, PΩ∗) = 0 + a?(PΩ∗1PΩ∗=χ, PΩ∗)

= a?(χ1PΩ∗=χ, χ1PΩ∗=χ) = 〈χ1PΩ∗=χ, χ1PΩ∗=χ〉? ≤ 〈χ, χ〉? <∞. (194)

Hence PΩ∗ ∈ H?.

16 Some properties of µ
Similar techniques as in previous sections allow to prove that µk is C∞. We
will only prove that the first order moment with respect to r is finite, all
others follow the same lines of proof. Recall that since µ is a stationary
distribution, by ergodicity :

N∑
k=1

∫∫
(R+)2

rµkdrdλ = lim
T→∞

∫ T
0
E(rt)dt

T
. (195)

The equation is true irrespective of the starting point r0, λ0, X0. Denote
mt = E(rt). An application of the Îto formula gives that

d

dt
mt = Eγr(Xt)(θr(Xt)− rt),m0 = r0. (196)
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Of course mt ≥ 0,∀t. The process Xt is piecewise constant. In particular
θr(Xt) takes a finite number of values, let us denoteM− = mink θr(ek)γr(ek),
M+ = maxk θr(ek)γr(ek), γr,max = maxk γr(ek), γr,min = mink γr(ek). Then
for all t :

∀t ≥ 0 :
d

dt
mt ∈

[
γr,max

(
M−

γr,max
−mt

)
, γr,min

(
M+

γr,min
−mt

)]
,m0 = r0.

(197)
Then the distance from mt to the interval

[
M−

γr,max
, M+

γr,min

]
is decreasing hence

mt is bounded by some constant C. Therefore limT→∞

∫ T
0 E(rt)dt

T
≤ C < ∞

which gives the conclusion.
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Part IV

Finite horizon corporate loans:
One-Dimension space model

Abstract

We investigate in this part a prepayment option related to a finite
horizon corporate loan. The default intensity of the firm is supposed
to follow a CIR process and the short interest rate is assumed constant
according to the previous results. The liquidity cost follows a discrete
space Markov jump process. The prepayment option needs specific
attention as the payoff itself is an implicit function of the parameters
of the problem and of the dynamics. We give a verification result
that allows to compute the price of the option. Numerical results are
also presented and are completely consistent with the theory; it is seen
that when liquidity parameters are very different (i.e., when a liquidity
crisis occur) in the high liquidity cost regime the exercise domain may
entirely disappear meaning that it is not optimal for the borrower to
prepay during such a liquidity crisis. The method allows to quantify
and interpret these findings.
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17 Introduction
A loan contract issued by a bank for its corporate clients is a financial agree-
ment that often comes with more flexibility than a retail loan contract. These
options are designed to meet clients’ expectations and can include e.g., a
prepayment option which entitles the client, if he so desires, to pay all or a
fraction of its loan earlier than the maturity. Although the technical part
is different, the principle of such an option is very close to the embedded
option of a callable bond. When market interest rates are low the issuer of
the bond can buy back his debt at a defined price before the bond reaches
its maturity. It allows the issuer to refinance its debt at a cheaper rate.

In order to decide whether the exercise of the option is worthwhile the
borrower compares the remaining payments (discounted at the interest rate
he can obtain at that time) with the nominal value (outstanding amount of
the loan) . If the remaining payments exceed the nominal value then it is
optimal for the borrower to refinance his debt at a lower rate.

When the interest rates are not constant or borrower is subject to de-
fault, the computation of the actualization is less straightforward. It starts
with considering all remaining payments discounted and weighted with the
suitable probability of default, including the final payment of the principal if
applicable. In event of default, we define the recovery rate δ as the percentage
of nominal value K repaid. The present value of the remaining payments will
be called ”PV RP ” and denoted ξ. To continue with evaluating the prepay-
ment option, the PV RP is compared with the nominal value: if the PV RP
is larger than the nominal value then the borrower should prepay, otherwise
not. Recall that at the initial time, the payments correspond to the sum of
the interest rate and the contractual margin ρ0, which is precisely making
the two quantities equal.

Note that in order to compute the price of the embedded prepayment
option the lender also has to compute the PV RP as it will be seen below.

For a bank, the prepayment option is essentially a reinvestment risk i.e.,
the risk that the borrower decides to repay earlier his/her loan and that the
bank can not reinvest his/her excess of cash in a new loan with same charac-
teristics. So the longest the maturity of the loan, the riskier the prepayment
option. Therefore, it is worthwhile to study long-term loans, some that are
set for more than three years and can run for more than twenty years in
structured finance. The valuation problem of the prepayment option can be
modelled as an embedded compound American option on a risky debt owned
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by the borrower. As Monte-Carlo simulations are slow to converge to assess
accurately the continuation value of the option during the life of the loan and
that the binomial tree techniques are time-consuming for long-term loans (cf.
works by D. Cossin et al. [24]), we decided to focus, in this paper, on PDE
version instead of binomial trees or Monte Carlo techniques.

When valuing financial products with medium to long maturity the ro-
bustness with respect to shocks and other exogenous variabilities is impor-
tant. Among problems that have to be treated is the liquidity and its vari-
ability. Liquidity is a crucial ingredient towards the systemic stability of the
financial sphere and can cause banks’ failures if systemic liquidity squeezes
appear. Historical data back to the Asian crisis of 1997; the Russian financial
crisis of 1998; the defaults of hedge funds and investment firms like LTCM,
Enron, Worldcom and Lehman Brothers defaults, sovereign debts crisis of
2010-11 and so on prove that banks hold significant liquidity risk in their
balance sheets. Even if liquidity problems have a very low probability to
occur, a liquidity crisis can have a severe impact on a bank’s funding costs,
its market access (reputation risk) and short-term funding capabilities.

Probably the most characteristic of the liquidity is that it oscillates be-
tween distinct regimes following the state of the economic environment. Be-
tween two crisis, investors are confident and banks find it easier to launch
their long term refinancing programs through regular bonds issuances. Thus
the liquidity market is stable. Contrariwise, during crisis, liquidity becomes
scarce, pushing the liquidity curve to very high levels which can only de-
crease if confidence returns to the market. The transition between these two
distinct behaviours is rarely smooth and often sudden.

In order to model the presence of distinct liquidity behaviours we will
simulate the liquidity cost by a continuous time discrete state Markov chain
that can have a finite set of possible values, one for each liquidity regime.

From a technical point of view this paper addresses a non-standard sit-
uation: although the goal is to value an American option the payoff of the
option is highly non-standard (is dependent on the PV RP ) and is close to a
compound option in spirit (although not exactly so). As a consequence the
characterization of the exercise region is not at all standard and technical
conditions have to be met. Furthermore our focus here is on a specific type
of dynamics (of CIR type) with even more specific interest on the situation
when several regimes are present.

The crucial variable throughout the paper is the borrower credit risk de-
fined by his/her default intensity (called in the following simply ”intensity”);
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it follows a CIR stochastic process and the liquidity cost of the bank, de-
fined as the cost of the lender to access the cash on the market, has several
distinct regimes that we model by a Markov chain. We prove the pricing
formulas and theoretically support an algorithm to identify the boundary of
the exercise region; final numerical examples close the paper.

The plan of the paper is as follows: we discuss in Section 17.1 related
works; then we start in Section 18.1 the mathematical description of the
model followed in Sections 18.2 and 18.3 by some technical properties of the
PV RP . Next the Section 18.4 explains the term structure of the liquidity
in this model. The theoretical result concerning the price of the prepayment
option is given in Section 18.5 and the numerical results in Section 19.

17.1 Related literature

There exist few articles (e.g., works by D. Cossin et al. [24]) on the corpo-
rate loan prepayment option but a related topic, the prepayment option of a
fixed-rate mortgage loan, has been covered in several papers by J.E. Hilliard
and J.B. Kau [34] and more recent works by Chen et al. [21]. To approximate
the PDE satisfied by the prepayment option, they define two state variables
(interest rate and house price). Their approach is based on a bivariate bino-
mial option pricing technique with a stochastic interest rate and a stochastic
house value.

Another contribution by D. Cossin et al. [24] applies the binomial tree
technique (but of course it is time-consuming for long-term loans due to the
nature of binomial trees) to corporate loans. They consider a prepayment
option with a 1 year loan with a quarterly step but it is difficult to have an
accurate assessment of the option price for a 10 years loan.

There also exist mortgage prepayment decision models based on Poisson
regression approach for mortgage loans. See, for example, E.S. Schwartz and
W.N. Torous [52]. Unfortunately, the volume and history of data are very
weak in the corporate loan market.

Due to the form of their approach, these papers did not have to consider
the geometry of the exercise region because it is explicitly given by the nu-
merical algorithm. This is not the case for us and we have to take it into
account when addressing the optimality of the solution. Furthermore, to the
best of our knowledge, none of these approaches explored the circumstance
when several regimes exist.

The analysis of Markov-modulated regimes has been investigated in the
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literature when the underlying(s) follow the Black& Scholes dynamics with
drift and volatility having Markov jumps; several works are relevant in this
area: Guo and Zhang [57] have derived the closed-form solutions for vanilla
American put; Guo analyses in [32] Russian (i.e., perpetual look-back) op-
tions and is able to derive explicit solutions for the optimal stopping time;
Mamon and Rodrigo [45] find explicit solutions to vanilla European options.
Buffington and Elliott [16] study European and American options and ob-
tain equations for the price. A distinct approach (Hopf factorization) is used
by Jobert and Rogers [38] to derive very good approximations of the option
prices for, among others, American puts. Other contributions include [56, 54]
etc.

Works involving Markov switched regimes and CIR dynamics appears
in [30] where the bond valuation problem is considered (but not in the form
of an American option; their approach will be relevant to the computation of
the payoff of our American option although in their model only the mean re-
verting level is subject to Markov jumps) and in [58] where the term structure
of the interest rates is analysed.

On the other hand numerical methods are proposed in [35] where it is
found that a fixed point policy iteration coupled with a direct control formu-
lation seems to perform best.

The prepayment option has been considered in a perpetual setting in the
previous part. This paper is specific in that it addresses the finite horizon
case, more close to the practice. We also discuss the term structure of liquid-
ity costs which is not relevant for the perpetual setting. Also, the numerical
search for the exercise frontier is much easier in the time-independent setting
where one point per regime is to be found (as opposed to here a curve for
any regime).

Finally, we refer to [36] for theoretical results concerning the pricing of
American options in general.
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18 Prepayment option: the time dependency
of the exercise region

18.1 Default intensity and theoretical regime switching
framework

The prepayment option is an option on the credit risk, intensity and the
liquidity cost. The liquidity cost is defined as the specific cost of a bank to
access the cash on the market. This cost will be modelled with a switching
regime with a Markov chain of finite states of the economy. We assume an
interbank offered rate IBOR r to be constant. Therefore, the assessment of
the loan value and its prepayment option is a N -dimensional problem. The
intensity is still defined by a Cox-Ingersoll-Ross process (see [17, 8, 40] for
theoretical and numerical aspects of CIR processes and the situations where
the CIR process has been used in finance):

dλt = γ(θ − λt)dt+ σ
√
λtdWt, λ0 = λ0. (198)

It is known that if 2γθ ≥ σ2 then CIR process ensure an intensity strictly
positive. Fortunately, as it will be seen in the following, the PVRP is given
by an analytic formula.

We will denote by A the characteristic operator (cf. [59, Chapter 7.5]) of
the CIR process i.e. the operator that acts on any C2 class function v by

(Av)(t, λ) = ∂tv(t, λ) + γ(θ − λ)∂λv(t, λ) +
1

2
σ2λ∂λλv(t, λ). (199)

We assume the economic state of the market is described by a finite
state Markov chain X = {Xt, t ≥ 0}. The state space X can be taken to
be, without loss of generality, the set of unit vectors E = {e1, e2, ..., eN},
ei = (0, ..., 0, 1, 0, ..., 0)T ∈ RN . Here T is the transposition operator.

Assuming the process Xt is homogeneous in time and has a rate matrix
A, then if pt = E[Xt] ∈ RN ,

dpt
dt

= Apt (200)

and,

Xt = X0 +

∫ t

0

AXudu+Mt, (201)

126



where M = {Mt, t ≥ 0} is a martingale with respect to the filtration gener-
ated by X. In differential form

dXt = AXtdt+ dMt, X0 = X0. (202)

We assume the instantaneous liquidity cost of the bank depends on the state
X of the economy, so that

lt = 〈l, Xt〉 (203)

Denote by ak,j the entry on the line k and the column j of the N ×N matrix
A with ak,j ≥ 0 for j 6= k and

∑N
j=1 ak,j = 0 for any k.

18.2 Analytical formulas for the PVRP

Assume a loan has a fixed coupon defined by the interest rate r and an initial
contractual margin ρ0 calculated at the inception for a par value of the loan.
Let ξ(t, λ,X) be, the present value of the remaining payments at time t of
a corporate loan where: λ is the intensity at time t; T is the contractual
maturity; K is the nominal amount; δ is the recovery rate and X is the state
of the economy at time t. The K, δ and T are fixed, we will omit them from
all subsequent notations.

The loan value LV (t, λ,X) is still equal to the present value of the re-
maining payments ξ(t, λ,X), minus the prepayment option value P (t, λ,X).

LV (t, λ,X) = ξ(t, λ,X)− P (t, λ,X) (204)

The PVRP ξ is the present value of the cash flows discounted at the risky
rate, where the risky rate at time t is the constant risk-free rate r plus the
liquidity cost lt and the intensity λt. Here, we describe the cash flows in a
term loan: the continuous coupon between t and t+∆t, K(r+ρ0)∆t+O(∆t);
the nominal K reimbursed at the end if no default occurred and otherwise
the portion of nominal recovered δ ·K. It is defined by:

ξ(t, λ,X) := E
[∫ T

t

(K (r + ρ0) + δ ·Kλt̃) e−
∫ t̃
t r+lu+λududt̃+Ke−

∫ T
t r+lu+λudu∣∣∣λt = λ,Xt = X

]
(205)

We consider that there is no correlation between the credit risk, i.e., the
intensity λt, of the borrower and the cost to access the cash on the market,
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i.e. the liquidity cost lt, of the lender. Therefore, we have,

ξ(t, λ,X) = K (r + ρ0)

∫ T

t

e−r(t̃−t)E
[
e−

∫ t̃
t λudu

∣∣∣λt = λ
]
E
[
e−

∫ t̃
t ludu

∣∣∣Xt = X
]
dt̃

+δ ·K
∫ T

t

e−r(t̃−t)E
[
λt̃e
−

∫ t̃
t λudu

∣∣∣λt = λ
]
E
[
e−

∫ t̃
t ludu

∣∣∣Xt = X
]
dt̃

+Ke−r(T−t)E
[
e−

∫ T
t λudu

∣∣∣λt = λ
]
E
[
e−

∫ T
t ludu

∣∣∣Xt = X
]

(206)

Remark 19 The crucial information here is that the coefficients γ, θ, σ of
the CIR process are not depending on the regime X thus we can separate the
CIR dynamics and the Markov dynamics at this level. A different approach
can extend this result by using the properties of the PVRP as explained in
the next section.

For a CIR stochastic process, we obtain (see [17, 40]),

ξ(t, λ,X) = K (r + ρ0)

∫ T

t

e−r(t̃−t)B(t, t̃, λ)E
[
e−

∫ t̃
t ludu

∣∣∣Xt = X
]
dt̃

−δ ·K
∫ T

t

e−r(t̃−t)∂t̃B(t, t̃, λ)E
[
e−

∫ t̃
t ludu

∣∣∣Xt = X
]
dt̃

+Ke−r(T−t)B(t, T, λ)E
[
e−

∫ T
t ludu

∣∣∣Xt = X
]

(207)

where for general t, t̃ we use the notation:

B(t, t̃, λ) = E
[
e−

∫ t̃
t λudu

∣∣∣λt = λ
]
. (208)

Note that B(t, t̃, λ) is a familiar quantity: it is formally the same formula as
the price of a zero-coupon where the interest rates follow a CIR dynamics.
Of course here the interest rate is constant and the intensity is following a
CIR dynamics nevertheless the same formula applies for general t, t̃:

B(t, t̃, λ) = α(t, t̃)e−β(t,t̃)λ, (209)

with,

α(t, t̃) =

(
2h e(γ+h) t̃−t

2

2h+ (γ + h)(e(t̃−t)h − 1)

) 2γθ

σ2

β(t, t̃) =
2(e(t̃−t)h − 1)

2h+ (γ + h)(e(t̃−t)h − 1)
, where h =

√
γ2 + 2σ2. (210)
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Obviously B(t, t̃, λ) is monotonic with respect to λ.

In order to compute,

E
[
e−

∫ t̃
t ludu

∣∣∣Xt = X
]
, (211)

and as the Markov chain is homogeneous in time,

E
[
e−

∫ t
0 ludu

∣∣∣X0 =< X, ek >
]

= E
[
e−

∫ t
t̃ ludu

∣∣∣Xt̃ =< X, ek >
]

(212)

let fk(t) be defined by:

fk(t) = E
[
e−

∫ t
0 ludu

∣∣∣X0 =< X, ek >
]
. (213)

Therefore we obtain,

ξ(t, λ, ek) = K (r + ρ0)

∫ T

t

e−r(t̃−t)B(t, t̃, λ)fk(t̃− t)dt̃

−δ ·K
∫ T

t

e−r(t̃−t)∂tB(t, t̃, λ)fk(t̃− t)dt̃

+Ke−r(T−t)B(t, T, λ)fk(T − t) (214)

Let τ , the time of the first jump from X0 =< X, ek > to some other state.
We know (cf. Lando [41] paragraph 7.7 p 211) that τ is a random variable
following an exponential distribution of parameter αk with,

αk =
∑
j 6=k

ak,j (215)

We also know that conditional to the fact that a jump has occurred at time
τ the probability that the jump is from state ek to state ej is pk,j, where

pk,j =
ak,j
αk

(216)

Thus,

fk(t) = P(τ > t)e−lkt + P(τ ≤ t)e−lkτ
∑

j 6=k P(lτ = lj)E
[
e−

∫ t
τ ludu

∣∣∣Xτ =< X, ej >
]

= e−(lk+αk)t + αk
∫ t

0
e−(lk+αk)τ

∑
j 6=k pk,jfj(t− τ)dτ
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Then,

e(lk+αk)tfk(t) = 1 + αk
∫ t

0
e(lk+αk)(t−τ)

∑
j 6=k pk,jfj(t− τ)dτ

= 1 + αk
∫ t

0
e(lk+αk)s

∑
j 6=k pk,jfj(s)ds

By differentiation with respect to t:

d

dt

[
e(lk+αk)tfk(t)

]
= αke

(lk+αk)t
∑
j 6=k

pk,jfj(t)

Then
dfk(t)

dt
+ (lk + αk)fk(t) = αk

∑
j 6=k

pk,jfj(t)

Thus,
dfk(t)

dt
=

[∑
j 6=k

αkpk,jfj(t)

]
− (lk + αk)fk(t) (217)

Denote F (t) = (f1(t), f2(t), ..., fN(t))T and introduce the N ×N matrix B,

Bi,j =

{
αipi,j if i 6= j

−(αi + li) if i = j
(218)

From equation (217) we obtain,

dF (t)

dt
= BF (t) thus F (t) = eBtF (0) (219)

with the initial condition,

F (0) =
(
fk(0)

)N
k=1

= (1, 1, ..., 1)T ∈ RN . (220)

We have therefore analytical formulas for the PVRP ξ(t, λ,X). We re-
fer the reader to [30] for similar considerations on a related CIR switched
dynamics.

Remark 20 When all liquidity parameters lk are equal (to some quantity
l) then B = A − l · Id and then we obtain (after some computations) that
fk(t) = e−lt thus the payoff is equal to that of a one-regime dynamics with
interest rate r + l, which is consistent with intuitive image we may have.
Another limiting case is when the switching is very fast.
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The margin ρ0 is set to satisfy the equilibrium equation

ξ(0, λ0, X0) = K. (221)

which can be interpreted as the fact that the present value of the cash flows
(according to the probability of survival) is equal to the nominal K. There-
fore according to (214) and ek0 such that X0 =< X, ek0 >,

ρ0 =
1 + δ

∫ T
t
e−r(t̃−t)∂t̃B(t, t̃, λ)fk0(t̃− t)dt̃− e−r(T−t)B(t, T, λ)fk0(T − t)∫ T

t
e−r(t̃−t)B(t, t̃, λ)fk0(t̃− t)dt̃

−r.

(222)

Remark 21 λT is not defined because ∀λ ∈ R+,

ξ(T, λ,X0) = K (223)

Note that we assume no additional commercial margin.

Remark 22 If an additional commercial margin µ0 is considered then ρ0 is
first computed as above and then replaced by ρ0 = ρ0 +µ0 in Equation (205).
Equation (221) will not be verified as such but will still hold with some λ0

instead of λ0.
With these changes all results in the paper are valid, except that when

computing for operational purposes once the price of the prepayment option
is computed for all λ one will use λ = λ0 as price relevant to practice.

We will also need to introduce for any k = 1, ..., N the function Λ
0

k(t)
such that

ξ(t,Λ
0

k(t), ek) = K, ∀t ∈ [0, T [. (224)

Of course, Λ
0

X0
(0) = λ0. Recall that ∀t ∈ [0, T ], ξ(t, λ, ek) is decreasing with

respect to λ; when ξ(t, 0, ek) < K there is no solution to eqn. (221) and we
will chose by convention Λ

0

k(t) = 0.

18.3 Further properties of the PVRP ξ

It is useful for the following to introduce a PDE formulation for ξ. To ease
the notations we introduce the operator AR that acts on functions v(t, λ,X)
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as follows:

(ARv)(t, λ, ek) = (Av)(t, λ, ek)−(r+lk+λ)v(t, λ, ek)+
N∑
j=1

ak,j

(
v(t, λ, ej)−v(t, λ, ek)

)
.

(225)
Having defined the dynamics (198) and (202) one can use an adapted

version of the Feynman-Kac formula in order to conclude that PVRP defined
by (205) satisfies the equation:{

(ARξ)(t, λ, ek) + (δ · λ+ r + ρ0)K = 0,
ξ(T, λ, ek) = K, ∀λ > 0 and ∀ek ∈ E.

(226)

Remark 23 When the dynamics involves different coefficients of the CIR
process for different regimes (cf. also Remark 19) the Equation (226) changes
in that it will involve, for ξ(·, ·, ek), the operator

Ak(v)(t, λ) = ∂tv(t, λ) + γk(θk − λ)∂λv(t, λ) +
1

2
σ2
kλ∂λλv(t, λ). (227)

instead of A.

18.4 Term-structure of the liquidity cost

The continuous time Markov chain allows to define the liquidity cost of the
bank to access the cash on the market according to several distinct regimes.
Therefore, in each regime, we can build a term-structure of the liquidity cost
that refers to the cost at different term. In the more stressful regime, the
curve will be inverted. It is the rarest type of curve and indicates an economic
recession (see Figure 30). The liquidity cost Lt,T for a contractual maturity
T at time t is defined by the following equality:

e−Lt,T (T−t) = E
[
e−

∫ T
t ludu

∣∣Xt =< X, ek >
]
. (228)

Therefore,

Lt,T = − ln (fk(T − t))
T − t

(229)
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Figure 30: We illustrate here the term-structure of the liquidity cost in bps in
3 several regimes : recession (dashed), stable(solid) and expansion(dotted).
L0,T = − 1

T
ln (fk(T ))
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18.5 Valuation of the prepayment option

The valuation problem of the prepayment option can be modelled as an
American call option on a risky debt owned by the borrower. It is not a
standard option but rather a compound product because the payoff is itself
a contingent claim. The prepayment option allows borrower to buy back and
refinance his/her debt according to the current contractual margin at any
time during the life of the option.

As discussed above, the prepayment exercise results in a pay-off (ξ(t, λ)−
K)+ for the borrower. The option is therefore an American option on the
risky λ with pay-off:

χ(t, λ,X) = (ξ(t, λ,X)−K)+. (230)

The following result allows to compute the price of the prepayment option.

Theorem 24 Consider the vector function Λ : [0, T ] → (R+)N which is C2

on [0, T [ and such that the domain {(t, λ)|t ∈]0, T [, λ > Λk(t)} is locally
Lipschitz for any k = 1, ..., N ; define the function PΛ(t, λ,X) such that:

PΛ(t, λ, ek) = χ(t, λ, ek), ∀λ ∈ [0,Λk(t)], t ∈ [0, T ] (231)
(ARPΛ)(t, λ, ek) = 0, ∀λ > Λk(t), t ∈]0, T [ k = 1, ..., N (232)

lim
λ→Λk(t)

PΛ(t, λ, ek) = χ(t,Λk(t), ek), k = 1, ..., N, if Λk(t) > 0, t ∈]0, T [(233)

lim
λ→∞

PΛ(t, λ, ek) = 0, k = 1, ..., N, t ∈ [0, T ] (234)

PΛ(T, λ, ek) = 0, k = 1, ..., N and ∀λ > 0. (235)

Suppose a vector function Λ∗ : [0, T ] → (R+)N (satisfying same hypotheses
as above) exists such that Λ∗(t) ∈

∏N
k=1[0, (ρ0 − lk)

+ ∧ Λ
0

k(t)] and for all
k = 1, ..., N and ∀t ∈]0, T [:

PΛ∗(t, λ,X) ≥ χ(t, λ,X) ∀t, λ,X (236)
∂PΛ∗(t, λ, ek)

∂λ

∣∣∣
λ=(Λ∗k(t))+

=
∂χ(t, λ, ek)

∂λ

∣∣∣
λ=(Λ∗k(t))−

if Λ∗k(t) > 0 (237)

N∑
j=1

ak,j

(
PΛ∗(t, λ, ej)− χ(t, λ, ej)

)
+K(lk + λ(1− δ)− ρ0) ≤ 0,(238)

∀λ ∈] min
j

Λ∗j(t),Λ
∗
k(t)[.

Then P = PΛ∗.
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Remark 25 A particular treatment is to be given to the situation when some
Λk(t) = 0. In this situation the elliptic part of the evolution PDE (232) is
degenerate at λ = 0; then the solution is given a meaning in the sense of
viscosity solutions, see [25] for an introduction, [10] for a treatment of de-
generate PDEs and [6] for an explanation of how the introduction of weighted
Sobolev spaces can also help to give a meaning to this equation. In this case
no boundary conditions are needed at λ = 0 as the solution will select by itself
the right value. Another way to see the solution is to consider it as the limit
of Cauchy problems with homogeneous Dirichlet boundary conditions set on
the domain

⋃N
k=1{(t, λ)|λ > Λk(t) + ε} and let ε→ 0.

Proof. The valuation problem of an American option goes through sev-
eral steps: first one introduces the admissible trading and consumptions
strategies cf. [48, Chapter 5]; then one realizes using results in cited refer-
ence (also see [49, 40]) that the price P (t, λ,X) of the prepayment option
involves computing a stopping time associated to the pay-off. Denote by Tt,T
the ensemble of stopping times between t and T , we conclude that:

P (t, λ,X) = sup
τ∈Tt,T

E
[
e−

∫ τ
t r+lu+λuduχ(t, λτ , Xτ )

∣∣∣λt = λ,Xt = X
]
.

We note that for a given Λ if τΛ is the stopping time that stops upon exiting
the domain

⋃N
k=1

{
(t, λ)

∣∣λ > Λk(t), t ≤ T
}
then

PΛ(t, λ,X) = E
[
e−

∫ τΛ
0 r+lu+λuduχ(t, λτΛ , XτΛ)

∣∣∣λt = λ,Xt = X
]
.

Thus for any Λ we have P ≥ PΛ; when Λ has some null coordinates the
continuity (ensured among others by the Remark 25) shows that we still
have P ≥ PΛ. In particular for Λ∗ we obtain P ≥ PΛ∗ ; all that remains to
be proved is the reverse inequality i.e. P ≤ PΛ∗ .

To this end we use a similar technique as in Thm. 10.4.1 [59, Section 10.4
page 227] (see also [57] for similar considerations). First one can invoke the
same arguments as in cited reference (cf. Appendix D for technicalities) and
work as if PΛ∗ is C2 (not only C1 as the hypothesis ensures).

Denote DΛ∗ =
⋃N
k=1

{
(t, λ)

∣∣λ ∈ [0,Λ∗k(t)]
}
(which will be the exercise re-

gion) and CΛ∗ its complementary with respect to R2
+ × E (which will be the

continuation region).
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The Lemma 18.5 shows that ARPΛ∗ is non-positive everywhere (and is
null on CΛ∗). The Îto formula shows that

d
(
e−

∫ t
0 r+ls+λsdsPΛ∗(t, λt, Xt))

)
= e−

∫ t
0 r+ls+λsds(ARPΛ∗)(t, λt, Xt))dt+d(martingale)

(239)
Taking averages and integrating from 0 to some stopping time τ it follows
from ARPΛ∗ ≤ 0 that

PΛ∗(t, λ,X) ≥ E
[
e−

∫ τ
0 r+lu+λuduPΛ∗(t, λτ , Xτ )

∣∣∣λ0 = λ,X0 = X
]

≥ E
[
e−

∫ τ
0 r+lu+λuduχ(t, λτ , Xτ )

∣∣∣λ0 = λ,X0 = X
]
.

Since this is true for any stopping time τ the conclusion follows.
Lemma. Under the hypothesis of the Thm. 24 the following inequality

holds (strongly except for the values (t, λ,X) = (t,Λ∗j , ek) and everywhere in
a weak sense):

(ARPΛ∗)(t, λ,X) ≤ 0, ∀λ > 0,∀X. (240)

Proof. The non-trivial part of this lemma comes from the fact that if for
fixed k we have for λ in a neighbourhood of some λ1: PΛ∗(t, λ, ek) = χ(t, λ, ek)
this does not necessarily imply (ARPΛ∗)(t, λ1, ek) = (ARχ)(t, λ1, ek) because
AR depends on other values PΛ∗(t, λ, ej) with j 6= k.

From (232) the conclusion is trivially verified for X = ek for any λ ∈
]Λ∗k(t),∞[.

We now analyse the situation when λ < minj Λ∗j(t); this means in partic-
ular that 0 ≤ λ < minj Λ∗j(t) ≤ Λ

0

`(t) for any ` thus Λ
0

`(t) > 0. Note that
Λ∗k(t) < Λ

0

k(t) implies ξ(t,Λ∗k(t), ek) ≥ ξ(t,Λ
0

k(t), ek) = K for any k = 1, ..., N
thus χ(t, λ, ek) = ξ(t, λ, ek)−K for any λ ∈ [0,Λ∗k(t)] and any k. Furthermore
since λ < minj Λ∗j(t) we have PΛ∗(t, λ, ek) = χ(t, λ, ek) = ξ(t, λ, ek) −K for
any k. Fix X = ek; then

(ARPΛ∗)(t, λ, ek) = (ARχ)(t, λ, ek)

= (AR(ξ −K))(t, λ, ek)

= (ARξ)(t, λ, ek)−AR(K)

= −(δ · λ+ r + ρ0)K + (r + lk + λ)K

= K(lk + (1− δ)λ− ρ0)

≤ K(lk + (1− δ)Λ∗k(t)− ρ0) ≤ 0 (241)
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the last inequality being true by hypothesis.
A last situation is when λ ∈] minj Λ∗j(t),Λ

∗
k(t)[; there PΛ∗(t, λ, ek) =

χ(t, λ, ek) but some terms PΛ∗(t, λ, ej) for j 6= k may differ from χ(t, λ, ej).
The computation is more subtle is this case. This point is specific to the
fact that the payoff χ itself has a complex structure and as such was not
emphasized in previous works (e.g., [57], etc.).

Recalling the properties of ξ one obtains (and since PΛ∗(t, λ, ek) =
χ(t, λ, ek)):

(ARPΛ∗)(t, λ, ek) = (Aχ)(t, λ, ek)− (r + lk + λ)χ(t, λ, ek) +
N∑
j=1

ak,j

(
PΛ∗(t, λ, ej)− χ(t, λ, ek)

)
= (ARχ)(t, λ, ek) +

N∑
j=1

ak,j

(
PΛ∗(t, λ, ej)− χ(t, λ, ej)

)
= (ARξ)(t, λ, ek)−AR(K) +

N∑
j=1

ak,j

(
PΛ∗(t, λ, ej)− χ(t, λ, ej)

)
= −K(δ · λ+ r + ρ0) + (r + lk + λ)K +

N∑
j=1

ak,j

(
PΛ∗(t, λ, ej)− χ(t, λ, ej)

)
≤ 0, (242)

where for the last inequality we use hypothesis (238). Finally, since we
proved that (ARPΛ∗)(t, λ,X) ≤ 0 strongly except for the values (t, λ,X) =
(t,Λ∗j(t), ek) and since PΛ∗ is of C1 class we obtain the conclusion (the weak
formulation only uses the first derivative of PΛ∗).

Remark 26 Several remarks are in order at this point:

1. when N > 1 checking (238) does not involve any computation of deriva-
tives and is straightforward.

2. as mentioned in the previous section, the Theorem is a verification
result i.e., only gives sufficient conditions for a candidate to be the
option price. In particular we do not have to prove that a boundary
Λ∗ does exist and satisfies the hypothesis of the Theorem; however see
results in the literature ( [20] and references within) that indicate that
the boundary will probably be even more regular, C∞ on [0, T [. The
behaviour near final time T is not expected to be singular with respect
to λ (because there is no singularity in the payoff function there) but
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we do not exclude that limt↑T
dΛ∗k(t)

dt
=∞ which is equivalent to say that

the derivative with respect to λ of the inverse of t 7→ Λ∗k(t) is null.

19 Numerical Application
The numerical solution of the partial differential equation (232) is required.
We detail below the use of a finite difference method as discretization choice,
but some cases may require different treatment.

To avoid working with an infinite domain we truncate at λmax. Then a
boundary condition is imposed on λmax which leads to a numerical problem
in the finite domain ∪Nk=1{(t, λ)

∣∣λ ∈ [Λk(t), λmax]}.
We introduce the time step ∆t and space step ∆λ and look for an ap-

proximation P n
`,k of PΛ(n∆t, `∆λ, ek). The first and second derivative are

approximated by (centred) finite difference formula and the time propaga-
tion by a Crank-Nicholson scheme:

P n+1
`,k − P n

`,k

∆t
+
γ(θ − (`∆λ))

2

[
P n+1
`+1,k − P

n+1
`−1,k

2∆λ
+
P n
`+1,k − P n

`−1,k

2∆λ

]

+
σ2

4
(`∆λ)

[
P n+1
`+1,k − 2P n+1

`,k + P n+1
`−1,k

∆λ2
+
P n
`+1,k − 2P n

`,k + P n
`−1,k

∆λ2

]

−(r + lk + (`∆λ))
P n+1
`,k + P n

`,k

2
+

N∑
j=1

ak,j

[
P n+1
`,j − P

n+1
`,k

2
+
P n
`,j − P n

`,k

2

]
= 0

A standard computation shows that the truncation error of this scheme
is O(∆t2 + ∆λ2).

See also Remark 25 for the situation when some Λk(t) is null: there the
PDE for regime ek is defined over the full semi-axis λ > 0 i.e., it is never opti-
mal to exercise in this regime. The PDE is defined with homogeneous bound-
ary conditions at λmax (or Neuman, see below) and without any boundary
conditions at λ = 0. To ensure the same number of equations and unknowns
the equation is discretized at λ = 0 too but the second order derivative is
null there. Only first order terms and a first order derivative remain. The
first order derivative is discretized with a lateral second order finite difference
formula that involves only the function values at λ = 0,∆λ, 2∆λ using the
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identity:

f ′(x) =
−3

2
f(x) + 2f(x+ h)− 1

2
f(x+ 2h)

h
+O(h2). (243)

We consider a numerical application with λmax = 1000 bps, ∆λ = 1/5 bps
and ∆t = 1/12. Two approaches have been considered for imposing a bound-
ary value at λmax: either consider that PΛ(0, λmax, ek) = 0, ∀k = 1, ..., N
(homogeneous Dirichlet boundary condition) or that ∂

∂λ
PΛ(0, λmax, ek) = 0,

∀k = 1, ..., N (homogeneous Neuman boundary condition). Both are correct
in the limit λmax → ∞. We tested the precision of the results by compar-
ing with numerical results obtained on a much larger grid (10 times larger)
while using same ∆λ. The Neumann boundary condition gives much better
results for the situations we considered and as such was always chosen (see
also Figure 35).

We consider a loan with a contractual maturity T = 5 years, a nominal
amount K = 1, a recovery rate δ = 40% and the borrower default intensity
λt follows a CIR dynamics with parameters: initial intensity λ0 = 150 bps,
volatility σ = 0.1, average intensity θ = 150 bps, reversion coefficient γ = 0.5.
We assume a constant interest rate r = 1% and a liquidity cost defined by a
Markov chain of three states l1 = 15 bps, l2 = 30 bps and l2 = 250 bps. For
N = 3 the rate 3× 3 matrix A is defined as following,

A =

−1
2

1
2

0
1 −2 1
0 1

10
− 1

10

 . (244)

So we obtain a term-structure for each state (see also Figure 31). At incep-
tion, we assume the liquidity cost is in the state 1, so X0 = e1. Recall that
a basis point, denoted "1 bp" equals 10−4.

In order to find the initial contractual margin we use equation (222) and
find ρ0 = 228 bps at inception in the state 2. For information, the contractual
margin would be ρ0 = 175 bps in the lowest state 1 and it should be ρ0 = 313
bps in the highest state 3. For reminder, the contractual margin takes into
account the credit risk (default intensity) and the liquidity cost.

The function Λ∗k(t) is obtained by maximizing PΛ(t, λ,X0) backward for
all t ∈ [0, T [ and each state k. To accelerate the optimization process, for
the initial guess at step at t = T − ∆t we note that there is little time to
switch from the current regime to an other. Therefore, we use the optimal
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Figure 31: For the numerical application in Section 19 we illustrate the
term-structure of the liquidity cost in bps in the regime X = e1 (dotted), the
regime X = e2 (solid) and the regime X = e3 (dotted).

boundary for each regime independently (one-regime model), see Figure 32
as initial guess. Let Υ∗k(T − ∆t) be the optimal boundary for the constant
one-regime X = ek option. We propose as initial guess for Λ∗(T − ∆t) the
vector (Υ∗k(T−∆t))Nk=1. This initial guess is validated by computing the value
PΛ(t, λ0, X0) for all neighbours around (Υ∗k(T −∆t))Nk=1 in the N-dimensional
space where Λ belongs.

Then for each time t < T − ∆t, we search the optimal boundary in the
neighbourhood of the previous optimal boundary obtained at t+ ∆t.

To be accepted, this numerical solution has to verify all conditions of
the Theorem 24. The hypothesis (236) and (238) are satisfied (see Fig-
ure 35) and the hypothesis (238) is accepted after calculation. Moreover
∀t ∈ [0, T [,Λ∗1(t) ≤ (ρ0 − l1) ∧ Λ

0

1(t) and the analogous holds for Λ∗2(t).
In the state X0 = 1 and at inception, the present value of cash flows is

at par, so ξ(0, λ0, X0) = 1. The prepayment option price is P (0, λ0, X0) =
0.0136. Therefore the loan value equals ξ(0, λ0, X0)− P (0, λ0, X0) = 0.9864.

The loan value will equal to the nominal if the intensity decreases until
the exercise region λ ≤ Λ∗ see Figure 34. The continuation and exercise
regions are depicted in Figure 35.
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Figure 32: For the numerical application in Section 19 we search for the
exercise boundary Λ∗k(T − dt) that maximize the option price in the state
X = e1 (top) and in the state X = e2 (middle) and in the state X = e3

(bottom). We obtain Λ∗1(T − dt) = 339 bps, Λ∗2(T − dt) = 301 bps and
Λ∗2(T − dt) = 0 bps. Remark: The state X = e3 is a particular case where
there exist no exercise boundary since the pay-off is null for all λT−dt > 0.
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Figure 33: For the numerical application in Section 19 we plot the evolution
of the exercise boundary Λ∗k(t) (solid) that maximize the option price and
the par boundary Λ

0

k(t) (dashed) where ξ(t, λ,X) verifies the equation (224),
for all t ∈ [0, T [ in the state X = e1 (top), the state X = e2 (middle) and the
state X = e3 (bottom). For example described here we obtain Λ∗1(0) = 178
bps, Λ∗2(0) = 0 and Λ∗3(0) = 0 bps. The x axis is λ and the y-axis is the time.
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Figure 34: For the numerical application in Section 19 we plot the loan value
(at t = 0) as a function of the intensity λ in the state X = e1 (top), the
state X = e2 (middle) and the state X = e3 (bottom). The loan value is
decreasing when there is a degradation of the credit quality (ie. λ increase)
and converges to 0.
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Figure 35: For the numerical application in Section 19 we plot the prepay-
ment option price in bps at inception P (0, λ,X) (solid) and pay-off χ(0, λ,X)
(dashed) as a function of the intensity λ in the state X = e1 (top), the state
X = e2 (middle) and the state X = e3 (bottom). Two regions appear: the
continuation λ > Λ∗k(0) and the exercise region region λ <= Λ∗k(0) except in
the third state where there is no exercise region.
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Figure 36: For the numerical application in Section 19 we illustrate here the
prepayment option price as a function of the time (the x-axis) in the state
X = e2. As expected the option price converges to 0 when the residual
maturity of the loan tends to 0.
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Part V

Perspectives and conclusions
This PhD thesis investigates the pricing of a corporate loan according to
the credit risk, the liquidity cost and the embedded prepayment option. We
propose different models to assess the loan price and its sensitivities to sev-
eral variables: default intensity, liquidity cost, short-interest rate. For each
model, numerical results are presented to show that they are completely
consistent with the theory.

Conclusions

The first model concerns the prepayment option of perpetual corporate loans
in a one-dimensional (infinite horizon) framework with constant interest
rates. When a unique regime case is considered we establish quasi analytic
formulas for the payoff of the option. We give a verification result that allows
to compute the price of the option for one-regime case and multi-regime case.
The numerical results show that the prepayment option cost is not negligible
and should be taken into account in the asset liability management of the
bank. Moreover it is seen that when liquidity parameters are very differ-
ent (i.e., when a liquidity crisis occur) in the high liquidity cost regime the
exercise domain may entirely disappear, meaning that it is not optimal for
the borrower to prepay during such a liquidity crisis. This finding is con-
sistent with the banking practice and confirms the validity and qualitative
properties of the model.

The second model improves the pricing of the perpetual prepayment op-
tion by considering a two-dimensional setting with the short interest rate
following a CIR dynamics. The verification results allow to certify the geom-
etry of the exercise region. Moreover we show that the price is the solution
of a constrained minimization problem and propose a numerical algorithm
in a two-dimensional code. The numerical results show that the sensitivity
of the loan price to the short-interest rate is negligible in several situations,
so we can assume that the short interest rate is constant.

The third model presents an accurate pricing method of a corporate loan
and its prepayment option in a non-perpetual (finite horizon) multi-regime
situation. Unlike the previous models, this model is not perpetual but has
a finite maturity (horizon), which allows to price term loans in the market.
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This setting allows to define the term structure of the liquidity cost, which
was not possible in the perpetual case. Moreover, the numerical search for
the exercise frontier is much more difficult than in the time-independent
setting where one point per regime is to be found. We propose a backward
numerical algorithm to calculate a curve representing the exercise frontier for
any regime. The numerical results show that the prepayment option and its
exercise frontier depend on the time.

Perspectives

Our work on the loan prepayment and the loan pricing enables us to under-
stand the different risks related to a loan and to propose a pricing model.
This subject is innovative and complex, and several topics have still to be
addressed in an academic and financial fields.

It would be interesting to study the following academic questions:

• implement an algorithm with more than three regimes.

• define an instantaneous liquidity cost of the bank with a stochastic
process whose parameters depend on the state of the economy.

• quantify whether it is necessary to use a stochastic short-term interest
rate in the finite horizon case as we did in the two-dimensional model
of the infinite horizon case. On a numerical level, we would need to
define an algorithm combining the optimisation in a two-dimensional
region and a time continuity.

• improve the technical assumption of the uniqueness quantification of
the exercise and continuation regions (necessary albeit not sufficient
condition).

• assess the existence and uniqueness of the risk-neutral measure"; if non-
uniqueness how to chose among the several prepayment option prices
?

• investigate if the Markov chain is the best approach for the regimes or
if an effective model of jump diffusion would more realistic even though
more complex.
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• extend the process of diffusion of the default intensity to other models
like CIR++ for example. It is also important to test if these models
are consistent with the current theory.

• study the convergence of the finite horizon model towards the infinite
horizon model.

It would also be interesting to study the following financial questions in
the future:

• introduce a discrete payment of the cash-flows (e.g. quarterly basis).

• extend the pricing to the revolving credit facility, which is a loan with
variable and unknown cash-flows depending on the drawn amount. So
we need to take into consideration a drawing probability on the com-
mitted credit line.

• account for the option cost in the margin calculation. This will change
the pay-off of the option.
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