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Abstract

Mobile devices are increasingly becoming the primary device to access the Internet. De-
spite this thriving popularity, the current mobile ecosystem is largely opaque because of
the vested monetary interests of its key players: mobile OS providers, creators of mobile
applications, stores for mobile applications and media content, and ISPs. This problem
of opaqueness is further aggravated by the limited control end-users have over the infor-
mation exchanged by their mobile devices. To address this problem of opaqueness and
lack of control, we designed a user-centric platform, Meddle, that uses traffic indirection
to diagnose mobile devices. Compared to an on-device solution, Meddle uses two well-
known technologies, VPNs and middleboxes, and combines them to provide a solution that
is agnostic to OS, ISP, and access technology. We use Meddle for controlled experiments
and an IRB approved study, and observed that popular iOS and Android applications leak
personally identifiable information in the clear and also over SSL. We then use Meddle to
prevent further leaks using a DNS based packet filter. We also use our platform to detail
the network characteristics of video streaming services, the most popular Web-service in
the current Internet. We observe that the network traffic characteristics vary vastly with
the device (mobile or desktop), application (native applications and also between individ-
ual desktop browsers), and container (HTML5 and Flash). This observation is important
because the increased adoption of one application or streaming service, for example, an
increase in the usage of mobile devices to stream videos, could have a significant impact
on the network traffic.



Résume

Les terminaux mobiles (smartphones et tablettes) sont devenus les terminaux les plus pop-
ulaires pour accéder a Internet. Cependant, I’écosysteme incluant les terminaux mobiles
est maintenu opaque a cause des intéréts financiers des différents acteurs : les concep-
teurs des systemes d’exploitation et des applications, les opérateurs des “stores”, et les
FAI. Cette opacité est renforcée par le peu de controle qu’ont les utilisateurs sur les infor-
mations échangées par leur terminal.

Pour résoudre ce probleme d’opacité et de manque de contréle, on a créé une plate-
forme, Meddle, qui utilise la redirection de trafic des terminaux mobiles pour analyser et
modifier ce trafic. Contrairement aux solutions qui nécessitent d’étre implémentées sur le
terminal, Meddle combine les techniques de VPN et de “middlebox” pour offrir une solution
indépendante de 1’'OS, du FAI et de ’accés radio.

On a utilisé Meddle pour des expérimentations controlées et pour une étude utilisateurs
approvée par un IRB. On a observé que des applications populaires sous iOS et Android
exposaient des informations personnelles dans le traffic réseau en clair et chiffré. On a
ensuite exploité Meddle pour prévenir ces fuites d’informations privées.

On a également utilisé Meddle pour étudier les caractéristiques réseaux du trafic vidéo
sur Internet. On a trouvé que ce trafic dépend fortement du type de terminal, de I’application
utilisée pour regarder la vidéo (application native ou navigateur Web) et du contenant
(HTML5, Flash, Silverlight). Ce résultat montre qu’'un changement dans le terminal,
I’application ou le contenant peut avoir un impact important sur le réseau.

ii
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1 Introduction

Freedom is Slavery; Ignorance is Strength. These two contradictions summarize our rights
over our mobile devices: devices which we increasingly use to manage our every day life;
devices that have gained seamless access to a wealth of our private information. These
two phrases are part of the famous slogan—War is Peace; Freedom is Slavery; Ignorance
is Strength—used to rule the Orwellian hell of Oceania [115]. Like Oceania, the rulers
of the ecosystem inhabited by our mobile devices not only offer us limited control over
our devices but also violate our privacy. And like Oceania, these rulers use security and
protection against external threats as the pretext for opaqueness and lack of control.

It is important to secure and protect the data we manage with our mobile devices. This
data is sensitive because mobile devices have evolved from the replacement of telephones

1" This evolution has transformed our mobile

to the replacement of personal computers.
devices into the primary gateway to stay connected with the world we live in—friends,
family, and colleagues. As a consequence, a wealth of our private information such as
contacts, emails, and photographs, is now stored on our mobile devices and managed by
mobile applications. The importance of our data, and the desire to protect it, persuades us
to be easily subdued by the ones who offer to secure and protect this data. This offer is
currently made by the key players of the mobile ecosystem: the mobile operating system
(OS) providers, the app developers, the stores for software and media distribution, and the
Internet Service Providers (ISPs).

Freedom is Slavery. Mobile applications, henceforth referred to as apps, and the cloud
based services that serve these apps, facilitate an on-demand access to our data. However,
this flexibility comes at a cost of relinquishing control over this data to the key players
that offer these services. On the one hand, mobile OSes allows apps access to our private
information through coarse grained permissions, and on the other hand, these OSes im-
pose stringent restrictions on installing customized services to protect the devices and the
data from potential misbehaving apps and services. Furthermore, the warranty of mobile
devices turns void if users install customized services to audit and control the flow of data
in their mobile devices [82, 83, 96]. Similarly, we have limited control over the data apps
exchange with the cloud based services that serve these apps, and how these cloud based
services use our data. Thus, relinquishing control of our data to these players is slowly
enslaving us; we are being subdued to be ruled under the slogan Freedom is Slavery.

Ignorance is Strength. The key players of the mobile ecosystem do not work in isolation
and are connected by a web of interdependence. This interdependence exists primarily to
maximize the control that each player has over this ecosystem, control that comes with its
share of profits. For example, organizations responsible for mobile OSes also control the
software and media distribution platforms. These platforms influence the set of apps that
manage our data. Furthermore, to support apps that generate revenue from advertise-
ments, mobile OSes support libraries that allow apps to negotiate with advertisers. These

'Though a hazy line separates tablets from laptops, mobile devices in the context of this dissertation is
limited to smartphones and tablets.
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ad libraries typically negotiate with advertisers using services provided by the organiza-
tions responsible for mobile OSes. For example, Apple’s iOS supports iAd while Google’s
Android supports admob [60] and adsense [63]. Intuitively, the most appealing advertise-
ments are the ones that match our likes and dislikes. To maximize our engagement with
advertisements, apps leverage on our private data to send relevant advertisements. Each
byte of data we store on our mobile device comes with potential monetary value for the
players that rely on advertisements for generating revenue; our ignorance on the abuse of
private data is important to maximize revenue for these players. Similarly, an increase in
the traffic volume generated by apps can be used by ISPs to convince users to switch to
plans offering higher quotas; ISPs can profit from our ignorance on the traffic characteris-
tics of apps. Thus, our ignorance on how our data is managed and how apps interact with
other devices in the Internet allows us to be ruled under the slogan, Ignorance is Strength.

Mobile devices will continue to be an integral part of everyday life. We will not part
with our mobile devices, our gateway to stay connected to the Internet based services and
the world we live in. Furthermore, billions in developing countries are expected to make
a mobile device their first and only gateway to the Internet. This vision is supported in
the recent International Telecommunication Union (ITU) report: “in developing countries,
mobile-broadband services cost considerably less than fixed-broadband services” [128].
We cannot afford to revert to a disconnected life, and we do not wish to be ruled by the
slogans Freedom is Slavery; Ignorance is Strength. We must therefore try to improve the
transparency and regain control over how our data is managed by our devices. This is the
goal of this dissertation.

1.1 The Mobile Ecosystem

Mobile devices are in an ecosystem whose evolution is driven by a few key players: 1)
mobile OSes, 2) apps, 3) the stores for software and media content distribution, and 4)
Internet service providers (ISP). These players are tied by commercial agreements among
them and by their revenue models. This interdependence is the primary cause for the
opaqueness and lack of end-user control that prevails in the mobile ecosystem. We address
the problem of opaqueness and lack of end-user control in this dissertation.

In the following, we focus on the role of these players, their incentive to participate
in this ecosystem, and the differences between their counterparts in the ecosystem of
traditional personal computers.

1.1.1 The Mobile Operating System

The mobile OSes manage the various hardware resources on our mobile devices. Unlike
personal computers, the hardware resources on mobile devices are limited. For example,
the battery size on our mobile devices is significantly smaller that batteries that drive lap-
tops. Furthermore, the mobile OSes need to support a large number of sensors such as
accelerometers, GPS, and proximity sensors, that are not present with desktop devices.
Mobile OSes are therefore fine-tuned by their developers and device manufacturers to op-
timize the device performance, a key difference between mobile and desktop OSes. Three
mobile OSes—Android, i0OS, and Window Mobile—currently dominate the current mobile
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ecosystem [61]; the other OSes include Blackberry, Nokia Asha, Bada and the new entrants
Firefox OS and Ubuntu.

The limited resources on mobile devices demands a close coordination between OS
providers and device manufacturers. This close coordination is essential to support device
specific sensors, and to optimize the performance according to the hardware chosen by the
manufacturers. A result of this close coordination is that OS services running on mobile
devices depend on the OS providers and device manufacturers. In this dissertation, we
focus on mobile OSes and use them to abstract the impact of device manufacturers on the
opaqueness and lack of control in the mobile ecosystem.

Mobile OSes provide APIs to expose the resources on mobile devices. The incentive for
mobile OSes to provide APIs is that they can rely on the talent of independent developers
to target a wider audience of customers. Indeed, app developers have over time used these
APIs to transform mobile devices from a replacement of telephones to a digital Swiss-Knife.
APIs thus open mobile OSes to support a wide range of apps.

Mobile OSes enforce strict policies on the API to restrict access to the limited resources
on mobile devices. Due to the critical nature of resources such as battery and sensors, the
apps running on the devices need to be isolated and monitored by OS services to prevent
misbehavior [6, 42]. For example, iOS limits the activities of background processes to
improve battery life and user’s experience with the foreground apps [6]. Furthermore, to
prevent users and app developers from modifying the OS, the warranty of mobile devices
becomes void if users modify the OS running on their devices.

In summary, mobile OSes are walled gardens built in close coordination between cre-
ators of mobile OSes and device manufacturers. The creators of mobile OSes provide APIs
to expose the wide range of sensors and resources on mobile devices to application devel-
opers. To limit misbehavior and ensure optimal resource usage, these OSes rely on strict
policies.

1.1.2 The Mobile Applications (Apps)

The mobile applications (apps) make the mobile ecosystem lively and dynamic. Along with
apps that are a portal to Web services, such as Facebook or Twitter, app developers have
used their creativity to come up with innovative uses of the wide array of sensors available
on our mobile devices.

Apps are inherently different from their counterparts running on traditional personal
computers because mobile OSes restrict their activity for reasons previously discussed.
Mobile devices are currently shipped with a wide array of sensors including cameras, ac-
celerometers, gyroscopes, proximity sensors, and GPS. These sensors, and the enhanced
user experiences offered by apps that use these sensors, make apps superior to their desk-
top counterparts in many ways. For example, apps use the motion sensors to determine
the best layout, portrait or landscape, while rendering content. Games also use motion
sensors as an input for user actions, interactions that were previously not possible. Simi-
larly, the proximity sensor is used to determine when the device is close to a user’s face,
for example, during a phone call. To limit the abuse of these sensors and other resources,
mobile OSes impose restrictions on their usage. These restrictions mandate that apps ex-
plicitly demand authorization from end-users to use these sensors. These OS restrictions
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and heavy dependence on sensors implies that the behavior of apps depends on the devices
on which they are running.

Many apps act as a gateway to cloud based services. Such apps are a portal to so-
cial networks such as Facebook, Twitter, and Google Plus, and navigation services such as
Google Maps, Apple Maps, and Bing Maps. Apps for social networks typically have access
to the data we use to socialize with other people, including our contacts, photos, music,
and videos. For example, users can automatically back-up pictures taken by their mobile
devices on social networking sites such as Google Plus, a service that is much more seam-
less and smooth than the photo back-up services offered for desktop computers. These
apps also run as background services to receive updates on the activities of our contacts
on these social networks. Such background services are not available for desktop-users
who rely on Web-browsers to access these services. Thus, apps have enhanced the overall
experience of network intensive services.

In summary, apps use sensors on mobile devices to enhance user experience with the
aim to increase user engagement. The innovative uses of the sensors makes these apps
superior to their desktop counterparts.

1.1.3 The Stores for Software and Media Content Distribution

Users can purchase apps and media content—movies, songs, and books—from online stores
customized for mobile devices. However, these stores influence the choice of apps and the
media content. Indeed, organizations that run the stores earn money by selling apps and
media content [20].

The App Store from Apple, the Google Play Store from Google, and the Windows Phone
Store from Microsoft, are the default stores for mobile devices running on Apple’s iOS,
Google’s Android, and Microsoft’s Windows Phone OS respectively. Furthermore, mobile
OSes are shipped with an app which is a portal to the default store for that OS. For example,
Android devices are shipped with a Google Play app while iOS devices are shipped with
an App Store app. This app is responsible for the purchase, installation, upgrade, and
uninstallation of other apps running on the mobile device. The mobile OS providers use
this app to influence the set of apps that run on mobile devices.

The stores also perform security and performance tests on apps before making them
publicly available. Such tests are performed to raise confidence on the quality of apps
and media content available for download. For example, Google Play claims to use a tool
called Bouncer that checks apps for malware before the apps are made available for pur-
chase [111]. Therefore, it might be argued that these stores work towards improving the
end-users experience.

However, stores restrict the availability of content on their stores based on country-
specific copyright laws and code licenses. For example, the Apple App Store does not sell
GPL licensed apps [132]. Furthermore, copyright laws restrict the availability of apps and
media content to specific regions. For example, the Netflix app is not available in the App
Store in France; similarly, songs available in France may not be available in the US due to
copyright restrictions.

In summary, mobile users can purchase apps and media content on stores managed by
OS providers, whose portal is installed by default on mobile devices. These stores influence
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the purchases made in order to maximize their profits.

1.1.4 The Internet Service Providers

The Internet service providers (ISP) enable the apps and OS services running on mobile
devices to exchange data with other devices in the Internet. The network-intensive nature
of mobile devices makes the ISPs a vital player in the mobile ecosystem.

Mobile devices exchange data using their wireless interfaces. Each mobile device typ-
ically come with two interfaces: one for the cellular connectivity, and one for wireless
LAN (Wi-Fi); tablets that do not offer cellular connectivity are an exception to this rule.
Along with these two primary communication interfaces, mobile devices may also support
wireless interfaces to communicate with devices in their vicinity. Bluetooth and Near field
Communication (NFC) are two such interfaces that have a limited communication range.
The ISPs only serve traffic coming from the Wi-Fi and cellular interfaces of mobile devices.

A mobile device can be served by multiple ISPs. The ISP serving Wi-Fi traffic depends
on device location and the Wi-Fi gateway used by the device, while the cellular interface
is typically served by one ISP. The role of cellular ISP is to offer the latest wireless tech-
nologies and maximize the geographic coverage to ensure that end-users have the best
Internet connectivity at all times. Unlike cellular ISPs, users are not restricted to a specific
ISP when using Wi-Fi. For example, the Wi-Fi gateway at home and the Wi-Fi gateway at
work can be served by different ISPs.

1.1.5 The Web of Interdependence

The mobile OS providers, the app developers, the stores for software and media content
distribution, and the ISPs are the key players of the mobile ecosystem. These players
depend on each other for their survival in this ecosystem, and their revenue models along
with the commercial agreements between them keeps them interdependent.

The key sources of revenue in this ecosystem are as follows.

1. Sale of mobile devices.
Mobile devices can be purchased from device manufacturers, and from ISPs that bun-
dle these devices with cellular data plans. The distribution of profits depends on who
sold the device. For example, when a device is sold by an ISP, the commercial agree-
ments between the mobile OS provider, the device manufacturer, and an ISP decide the
distribution of profits [107].

2. Sale of apps and media content (music, videos, books, and magazines).
Though the sale take place in the stores, the revenue is shared by app developers,
sellers of media content, and the organizations managing the stores. For example,
the Google Play store charges a transaction fee of 30% of the application price; the
developer receives the remaining 70% [20].

3. Subscription charges for network connectivity.
The ISPs charge end-users for Internet connectivity, however, this revenue might be
shared with device manufacturers if the device and network charges were bundled
during the sale of the device [107].
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4. User engagement with advertisements displayed on mobile devices.
The revenue from mobile ads is shared by the app developers and the ad broker re-
sponsible for the ads. For example, developers earn 70% of the net revenue generated
from iAd advertisements [21]. Some of the popular ad brokers are typically managed
by creators of mobile OSes. For example, iAd and admob are two popular ad brokers
managed by Apple and Google respectively.

These various sources of revenue make mobile devices a hen that lays golden eggs for
these players. Each mobile device is an entry point to the sale of other products purchased
using that device. Mobile devices are therefore shipped with a default set of apps and
services tailored to maximize the revenue for players behind the sale of that device. This
default set of apps includes the app for the store from which users can buy other apps and
media content. Thus, the players selling mobile devices leverage their influence on other
purchases made in the mobile ecosystem.

The stores influence the apps we choose to install on our mobile devices and the media
content we purchase. Indeed, these stores monitor our purchases to recommend new apps
and media content. The incentive to influence purchases is high for the app stores because
their revenue depends on purchases made on the app store; the sales-volume depends on
the recommendations made when responding to queries end-users make on these stores.
Access to our private data is therefore important for the success of these stores.

Private information is also important for mobile apps because they generate revenue
from targeted advertisements. The advertisement market is dominated by a few players
such as iAd [64], admob [60], and adsense [63]; each player in turn has a large market
share [73] that allows it to collect a lot of information on end-users for building fine grain
profiles. Therefore, private information become a product that generates a lot of revenue
for the app stores, the apps developers, and the ad brokers.

The key players are tightly bound in the mobile ecosystem by commercial agreements.
To run these agreements, the players keep control on the mobile devices at the expense
of end-users, resulting in opacity and lack of end-user control. We develop this problem of
opacity and lack of end-user control in the next section.

1.2 The Problem: Lack of Transparency and Control

The mobile ecosystem suffers from a lack of transparency and end-user control. While
end-users should be free to monitor and control their privacy leaks, the key players of
the mobile ecosystem foster opacity and lack of control, following the slogan: Freedom is
Slavery; Ignorance is Strength.

In this section, we first define what we mean by transparency and control. We then
motivate the need for transparency and control, and describe how the key players of the
mobile ecosystem compel us to compromise this demand. Finally, we have a look at the
shortcomings of existing solution with a focus on how constraints by the key players make
these solutions impractical.
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1.2.1 Our Definition for Transparency and Control

Transparency is the awareness on what our mobile devices do with our information, with
whom our mobile devices communicate, how our mobile devices interact with other devices
on the Internet, and the impact of these interactions. While transparency enables the
auditing, control empowers us to make our devices work according to our needs. In this
dissertation, we focus on mobile devices because they are the only entity that end-users
can monitor and control. We will now see how the closed nature of the mobile ecosystem

prevents transparency and end-user control.

1.2.2 The Need for Transparency and Control

Due to the large amount of private information on mobile devices, we argue that it is
fundamental to offer transparency and control on the privacy leakage to end-users. Our
mobile devices act as a gateway to Internet based services. Further, cloud based services
that help manage our private information periodically receive our private information such
as contact details, pictures, places visited, and current location. Apps can also use the
various sensors on mobile devices to monitor and manage everyday activities. For example,
the marketing slogan for the Google Now application is: Stay on top of what’s happening
in your life every day, including what you need to do, where you need to go, and how to
get around [19]. Sensitive apps like Google Now use coarse grained permissions to access
private information. The effectiveness of such coarse grained permissions is questionable
because a significant number of apps and libraries used by these apps are known to abuse
their privileges and leak information without user’s consent [68, 73, 82, 83, 96, 139].

The increasing usage of our mobile devices tests the limits to which the resources on
these devices can be used. The ever-increasing reliance on mobile devices to manage ev-
eryday activities has resulted in an increase in the network consumption and the amount of
computation performed on these devices [87, 124, 137]. The increase in network consump-
tion stretches cellular data consumption towards the limits offered by carriers. Similarly,
the increase in computation increases the power consumption which in turn decreases
the battery life. Battery life and network quotas affect the availability of mobile devices.
We expect mobile OS services and the apps to maximize the availability of the limited re-
sources on mobile devices. However, we have limited knowledge on how apps use these
resources [87, 137].

In summary, the importance of mobile devices and the private data managed by these
devices justifies the need to monitor and control our mobile devices.

1.2.3 The Compromise We Are Compelled to Make

The key players use the argument of security and data protection to justify the opaque-
ness and lack of end-user control, but this argument is only partially valid. Indeed, these
players have taken steps to secure and protect not only the sensitive data stored but also
the limited resources available on mobile devices. For example, mobile OSes rightfully
isolate apps and restrict the activities that apps can perform when running as background
processes [6, 42]. Such isolation is important to increase battery life and restrict access to
private data and sensors. Similarly, the stores perform security tests on apps before they



1.2. THE PROBLEM: LACK OF TRANSPARENCY AND CONTROL 8

This app needs access to:

Storage
Modify or delete the contents of your USB storage

Your location
Precise (GPS) location

Phone calls
Read phone status and identity

Metwork communication
Full network access

Hardware controls
Record audio, take pictures and video

Your personal information

Read your contacts, read call log, read your credit report,
read your personal journal that you hide under the dresser,
read your deepest private thoughts and peer into the dark
twisted recesses of your psyche and compile a profile of you
that will allow us to predict with 95% accuracy your future
behavior including but not limited to your dining habits,
weekend activities, and your masturbation schedule

as wa silently judge you
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Well, | just wanted a
flashlight app,
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<
v

The greedy apps always take it one permission too far.

2 e

Figure 1.1: Plight of end-users portrayed in the Abstruse Goose comic strip.
This image is protected under the following Creative Commons license: http://
creativecommons.org/licenses/by-nc/3.0/us/.
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are available for purchase [111]. However, the absence of public information on these tools
raises questions on their effectiveness.

We argue that though security is a valid reason to thwart misbehaving apps, it should
not be the reason to stop users from installing apps that audit the behavior of OS ser-
vices and apps. However, the current terms claim that such tools violate either the device
warranty, the service warranty, or both.

The opaqueness prevails in the mobile ecosystem because opaqueness gives the key
players a share of control over the mobile ecosystem. Increasing transparency decreases
the control of the player. For example, apps that rely on advertisements would not be in
favor of auditing the private information in their possession; opaqueness empowers them
to build user profiles that can be sold to advertisers. Similarly, opaqueness on resource
usage makes it difficult to compare not only the different devices but also the apps and
services running on these devices. For example, some Android devices use this opacity to
fake their performance for apps used in benchmarking tests [44].

In summary, we are compelled to blindly trust the mobile ecosystem and offer seamless
control of our devices to the key players of this ecosystem — a compromise we make to stay
connected with our friends, family, and colleagues.

1.3 Discussion on Related Work

Existing approaches, that tilt the balance of the transparency and control in favor of end-
users, are impractical because of the constraints imposed by the key players of the mobile
ecosystem. For this dissertation, we consider an approach to be practical when it can be
used by off-the shelf devices regardless of the ISPs that serve these devices. Specifically,
a practical approach must not violate the device warranty and should be agnostic to the
mobile OSes, the ISPs, and the stores that are used to purchase apps and media content.
A practical approach is desirable because it can scale to a large number of end-users, thus
making the research work coming out of this approach meaningful for end-users. Existing
solutions are focused on academic analysis and are not targeted for end-users. In spite
of being useful for researchers, these solutions are impractical for end-users because the
closed nature of the mobile ecosystem limit them to a single mobile OS, installed apps, or
ISP. We are the first to propose a solution for real users. We now summarize the existing
solutions based on their limitations.

1.3.1 Constrained to a Single Mobile OS

Instrumenting mobile OSes, and tracking the low level system calls, can be used to mon-
itor and control the flow of information in our mobile devices. The seminal work in this
area is Taintdroid [83], a realtime information monitoring system that sheds light on the
violation of end-user privacy by instrumenting Android. In their paper, Enck et al. [83]
report on 68 instances of potential misuse of users’ private information across 20 apps
and mention that 15 Android apps send users’ location information to remote advertise-
ment or analytics servers without the users’ consent. To regain control over such leaks,
the creators of AppFence [96] instrument Android to implement privacy controls. These
privacy controls not only substitute shadow data in place of private data but also block



1.3. DISCUSSION ON RELATED WORK 10

network transmissions of data that the user made available for on-device use only. Simi-
larly, Pathak et al. [116] instrument the Android and the Window Phone OS to build Eprof,
an energy profiler. With the help of Eprof, Pathak et al. show that the third-party adver-
tisement and analytics modules consume up to 75% of the energy consumed by free apps.
Such energy wastage severely affects the usability of the mobile devices.

However, Taintdroid, AppFence, and Eprof void the device warranty because of the
stringent control exercised by the key players of the mobile ecosystem. Furthermore,
instrumenting mobile OSes makes the solution specific to a given OS and cannot be applied
to other OSes suffering similar issues. Instrumenting OSes thus voids the device warranty
and has a scope that is limited to a subset of popular mobile OSes.

1.3.2 Constrained to Apps

App binaries can be instrumented for static and dynamic analysis to study the informa-
tion flow through apps. Egele et al. [82], instrumented the binaries of 1400 iPhone apps
and observed that more than half of these apps send the unique ID of the device to third-
party sites; the third-party sites can used this information to create detailed user profiles.
Similarly, AppInsight [124] instruments apps to perform dynamic analysis with the aim of
identifying critical paths when the apps are in use. Such analysis sheds lights on the inner
workings of apps, however, their scope is limited to the specific version of the instrumented
apps and the stores from which these instrumented apps are made available. Furthermore,
as in the case of OS instrumentation, the results are limited to OSes on which the instru-
mented apps run. For example, the different APIs available to developers on Android and
iOS makes the Facebook app running on iOS to behave differently from the Facebook app
on Android; this app is just one of the nearly million iOS and Android apps currently avail-
able [57, 73].

Static and dynamic analysis can also be performed without instrumenting apps. Indeed,
droidbox [134] uses a combination of static and dynamic analysis to identify malware.
Similarly, androguard [80] uses static analysis to identify malware and compare Android
applications. However, like Taintdroid [83] and AppFence [96], droidbox and androguard
cannot accurately trace native code (for example, code written in C) because its access is
limited to the java code executed by Android’s Dalvik virtual machine. This implies that
these techniques provide an incomplete picture on app behavior.

To summarize, while static and dynamic analysis by instrumenting apps cannot scale,
static and dynamic analysis without instrumenting apps cannot provide a complete picture
on the behavior of apps.

1.3.3 Constrained by Access Technology

Monitoring network traffic at the gateways used by mobile devices improves transparency.
However, the various access technologies—cellular and Wi-Fi—available on mobile devices
create a high barrier to entry because these access technologies can be served by different
ISPs. For example, though an end-user may have a cellular plan with one ISP, they are
free to use another service provider for home Wi-Fi, and to use Wi-Fi services in cafes and
other public places. As a consequence, measurement studies offer a limited perspective
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on the network usage of mobile devices when they are based on Wi-Fi traffic measured at
institution gateways [76] or traffic traces obtained by service providers [135].

1.3.4 Positioning of Our Contributions with Related Work

The constraints imposed by the key players limit the usefulness of existing solutions aimed
at improving the transparency and control in the mobile ecosystem. The approaches of
instrumenting the OS and application binaries, and analyzing traffic traces from service
providers cannot scale to a large user participation. Such approaches are also not suitable
for longitudinal studies because mobile OSes and apps can have fast release cycles [105].
Instrumenting the OS results in warranty voiding the devices, and instrumenting apps
cannot scale to the vast number of apps and obsoletes the effort when new versions of
the apps are released. Similarly, traffic traces from service providers do not provide a
comprehensive coverage of the network usage of mobile devices. The need for a practical
solution is important to ensure that users can reap the benefits of transparency and control
regardless of the mobile OS, installed apps, app store, ISP, and access technologies.

The capability to monitor and control the mobile Internet traffic has the potential to
improve the transparency and end-user control of the mobile ecosystem. Access to mobile
Internet traffic offers a perspective that is focused on the network activity of mobile de-
vices. Indeed, this network perspective has promising prospects because popular mobile
apps are network intensive [87, 113, 135], and misbehaving apps are known to use the
Internet to leak personal information [73, 82, 96, 83]. We use the network perspective on
the activity of mobile devices and test the limits to which it can improve the transparency
and end-user control in the mobile ecosystem.

Redirecting all the Internet traffic of a mobile device through software defined mid-
dleboxes offers the network perspective on the activity of mobile devices. A Middlebox
is defined as “any intermediary device performing functions other than the normal, stan-
dard functions of an IP router on the datagram path between a source host and destination
host” [75]. Software-defined Middleboxes come with a variety of software tools and pack-
ages to perform the desired Middlebox activities such as Firewalls, Proxies, Caches, and
Packet classifiers [131]. Such Software-defined Middleboxes can be tuned to regain control
over the mobile network traffic for performing activities such as monitoring the traffic and
manipulating privacy invasive traffic. Offloading traffic monitoring and manipulation ac-
tivities to Software-defined Middleboxes makes it possible to design and operate solutions
that are independent of the mobile OSes and ISPs.

Software-defined Middleboxes can access all mobile data traffic, however this traffic
can be encoded, obfuscated, or encrypted by the applications. Indeed, apps are free to
transform data before transmission. This transformation includes encoding data to for-
mats such as Base64 [101], or encrypting the data before sending it using HTTPS [126].
Therefore, the middleboxes processing data traffic are exposed to data whose encoding
details are available only with the mobile application and remote hosts with whom these
application communicate. For any meaningful analysis, our Software-defined Middlebox
should be able to decode such traffic.

In this dissertation, we posit that proxying to redirect mobile Internet traffic through
Software-defined Middleboxes can improve the transparency and end-user control in the
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mobile ecosystem. Specifically, we rely on VPN based proxying to tunnel mobile Internet
traffic through our Software-defined Middleboxes that interpose on this traffic. Mobile de-
vices are shipped with VPN support primarily to satisfy their enterprise clients. The native
support for VPNs implies that traffic redirection does not require instrumenting the operat-
ing system and application binaries. Our approach therefore has the potential for practical
improvement of transparency and end-user control. We now present our hypothesis and
summarize our contributions based on this approach.

1.4 Summary of Contributions

The hypothesis of this dissertation is the following: “The mobile Internet traffic accessed by
traffic redirection can be leveraged to improve the transparency and control for end-users
in the mobile ecosystem.”

We validate this hypothesis by the following contributions.

e Platform to improve transparency and end-user control in mobile networks.
We first demonstrate that it is feasible to redirect mobile Internet traffic through soft-
ware defined middleboxes for the purpose of analysis and interposition, a solution we
call Meddle. The key advantages of Meddle is that it works out of the box for An-
droid and iOS, the two most popular mobile OSes. Meddle is also agnostic to ISP and
access technology (e.g., cellular or Wi-Fi), and users can enable and disable Meddle
according to their convenience. Furthermore, we show that Meddle can be used to
monitor and manipulate all Internet traffic, including SSL traffic, from real users. We
show empirically that the overheads in terms of latency, power, and data consumption
are reasonable for users to adopt Meddle. Thus, Meddle offers a unique vantage point
allowing real users to participate in research activities without voiding their device
and service warranty. We envision two scenarios in which Meddle can be deployed:
1) a single-user deployment on a user’s home-gateways or personal servers, or 2) a
multiple-user deployment on hosted servers such as Amazon EC2. Meddle is currently
deployed using the later in private beta version and is serving users in the US, France
and China. Users can sign-up for an IRB approved study through http://meddle.mobi,
and this private beta version has served more than a 100 users.

o Diagnosing Mobile Apps.
We then show that Meddle can be used to diagnose mobile applications and services.
First, we use Meddle to perform controlled experiments to obtain a ground truth in-
formation on network flows generated by apps and OS services. We then extract sig-
natures of apps and Web services from the protocol headers in the network flows, and
used these signatures to map network flows to the apps and services that generate
them. We also use our experiments to identify leaks of personally identifiable informa-
tion (PII). In particular, we use Meddle’s ability to monitor SSL traffic to observe that
misbehaving apps collude with ads and analytics libraries, and use HTTP and SSL to
leak PIIs. Second, we use our technique to identify apps and web services on traffic
traces that we collected in our IRB approved in-the-wild measurement study. Our study
involved traffic traces from 117 devices belonging to users spread across US, France,
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and China. We use these traces to compare the device usage and improve the classifi-
cation technique we built. Finally, we use our results to build a tool that allows users
to visualize and block PII leaks. Meddle manipulates DNS responses for sites that leak
PIls, which makes it effective even for SSL traffic because DNS requests occur out of
band from secure connections. To summarize, we use the research work coming from
Meddle to create incentives to recruit users to participate in future research activities.

e Characterizing YouTube Traffic.

We then characterize YouTube traffic, one of the most dominant sources of Internet
traffic by volume. We present the two different streaming strategies that we identified
during our measurements, synthesize the main characteristics of those strategies, and
discuss their advantages and disadvantages. We show that the traffic patterns observed
during streaming sessions are completely different from those observed during typical
file transfers. The difference in traffic patterns is because the client side applications
and the YouTube servers that stream videos explicitly control the data transfer rate.
Furthermore, we observe that the traffic patterns observed when streaming YouTube
videos depend on the client side application (desktop browser or mobile app) and con-
tainer (Flash or HTML5). With the help of the datasets which we collected in 2011
and 2013, we show that the traffic patterns observed in 2013 are completely differ-
ent from those observed in 2011. In particular, we observe that Internet Explorer is
more aggressive in 2013 compared to 2011 when streaming HTML5 videos This im-
plies that upgrading to Internet Explorer 10 can potentially waste a larger amount of
bytes and network resources when users interrupt playback of HTML5 videos. Fur-
thermore, we observe that streaming videos to mobile devices produce traffic patterns
that are completely different from those observed when using desktop browsers, and
that these traffic patterns change when mobile devices use Wi-Fi instead of cellular
networks. This observation implies that a large scale migration from one application to
another (browser to mobile app) or from Flash to HTML5 can completely change the
traffic patterns observed in the backbone links. Considering the very fast changes in
trends this is a real possibility, the most likely being a change from Flash over PCs to
HTMLS5 over mobile devices.

We detail these contributions in Chapter 2, Chapter 3, and Chapter 4 respectively. We

discuss the detailed related work for each of these contributions when presenting the con-

tribution. We finally conclude by discussing some open problems in Chapter 5.



2 Meddle Architecture

We now present Meddle, our platform that combines VPNs and middleboxes in unintended
ways to diagnose mobile devices using traffic indirection.

Meddle was built to improve the transparency and end-user control over mobile Inter-
net traffic. This problem is not new, previous works (see Section 1.3) have attempted to
address this problem for a limited set of devices or networks. We seek to avoid such limita-
tions because these works are not suitable for large-scale deployments serving real users,
and because real users cannot use existing solutions that require to either void the war-
ranty of devices [96, 83, 116, 122], or are limited to a specific set of applications [82, 124]
or ISPs [135, 123, 122, 137, 138].

In this chapter, we present Meddle, our user-centric approach to address this prob-
lem. First, in Section 2.1, we define our goal and detail the sub-goals that we plan to
achieve with Meddle. Then, we detail Meddle’s architecture and how we achieve each of
our sub-goals in Section 2.2. In Section 2.3, we present our results from controlled exper-
iments to demonstrate that Meddle is practical and has minimal impact on performance
and measurement fidelity. We then discuss some legal issues that need to be addressed in
practical deployments in Section 2.4. Finally, we summarize the salient features of Meddle
in Section 2.5.

2.1 Goal

The main goal of Meddle is to enable all mobile Internet users to monitor and control their
Internet traffic. We use the following sub-goals to scope out our goal.

1. Agnostic to OS, apps, ISP, and access technology. Meddle must work regardless
of the OS and apps installed on the mobile device. Furthermore, Meddle must monitor
and interpose on traffic without explicit support from ISPs, and should work regardless
of the access technology used by the device.

2. Deployable. Meddle must be easy to install, use, and configure, a feature important
to support a large user-base. This sub-goal rules out OS instrumentation and similar
warranty voiding techniques that are not easy to deploy.

3. On-demand. Once installed, users must be able to enable and disable Meddle on-the-
fly. This ensures easy opt-in and easy opt-out, a feature essential for ease-of-use.

4. Always-On. Once enabled by the user, Meddle must automatically support switching
between networks. In particular, it must not demand inputs from end-users on network
state changes when users are on-the-move.

5. Scalable. Meddle must be able to scale to support a large user-base, a feature essen-
tial to ensure statistical significance for the research work based on Meddle.

6. Traffic Agnostic Interposition. Meddle must be able to manipulate and control all
the Internet traffic to suit the needs of end-users, a feature required to ensure that Med-

14
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dle is both a passive monitoring and an experimental platform. Meddle must achieve
this control for encrypted and plain-text traffic.

These sub-goals are to make Meddle user-friendly.

Indeed, there exists a trade-off between a user-friendly solution and a solution that of-
fers a fine-grained control over mobile devices and the traffic they generate. Existing solu-
tions that rely on instrumenting OSes and apps offer a fine grain control over mobile OSes
and apps. This fine grained control is useful for academic research, however, the costs
associated with this level of control includes warranty voiding the device or restricting to
a specific set of apps, a cost that is too high for end-users. Unlike existing approaches, we
take the path of building a user-friendly solution and test the limits of its usefulness. Specif-
ically, we relinquish OS-level controls to focus on the Internet traffic generated by mobile
devices and try to use this perspective to diagnose mobile applications, OS services, and
the ISPs that serve these devices. We now detail how each of the above sub-goals governed
Meddle’s architecture.

2.2 Architecture

To reach our goal, we observe that nearly all mobile devices support network traffic indi-
rection via virtual private networks (VPNs). Therefore, we can build a system redirecting a
device’s Internet traffic through a middlebox that can interpose on this traffic. Importantly,
we observe that this can be achieved without any additional support from OSes or ISPs.
The key idea behind Meddle is to combine software middleboxes with VPNs to monitor and
interpose on mobile Internet traffic.

We designed and implemented the architecture presented in Figure 2.1. We envision
two scenarios in which Meddle can be deployed: 1) a single user deployment on a users’
home-gateway or personal server, or 2) a multiple user deployment on hosted servers such
as Amazon EC2 (shown in Figure 2.1).

We describe in the following, Meddle’s architecture. The devices, configured to use
Meddle, tunnel all their Internet traffic through one of potentially many Meddle servers.
Meddle maintains a per-device profile to determine the set of services that interpose on the
tunneled network traffic. Users can enable and disable these services through a web-based
interface. These device-specific policies are stored in the Data Store. The Policy Manager
refers to these policies to manage the traffic that flows through its Meddle server. For
example, a user may wish to only monitor mobile Internet traffic. In this scenario, the
Policy Manager routes the traffic only through the Traffic Monitor but bypasses the Traffic
Manipulator.

Though intuitive, this architecture leads to challenges that must be overcome to achieve
our sub-goals. Specifically, the VPN infrastructure raises three important questions:

1. How ubiquitous is the VPN technology on mobile devices?
2. How to monitor all the Internet traffic flowing through Meddle?
3. How to modify traffic using Meddle?

Now, we present our answer to each of these questions.
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Figure 2.1: Meddle’s Architecture. Devices use VPN connections to tunnel all
traffic to one of the potentially many Meddle servers. Each Meddle server uses a
device-specific profile to determine the set of services that operate on the network
traffic.

2.2.1 How ubiquitous is the VPN technology on mobile devices?

Mobile OSes and ISPs support VPNs primarily to satisfy their enterprise clients. Native
support for VPNs is available on Android, BlackBerry, and iOS, three mobile OSes that rep-
resent more than 86% of the mobile devices [61]. In this dissertation, we focus on the two
most popular mobile OSes: iOS and Android. These two OSes support VPN connectivity for
Wi-Fi and cellular traffic—so long as the network supports IPv4. VPN tunnels on Android
and iOS are transparent to the applications because traffic redirection to the VPN server
is performed by the underlying OS. Thus, Meddle leverages on VPNs for being agnostic to
mobile OSes, ISPs, access technologies, and applications used by the mobile device.

We now describe how we build on existing features provided by iOS and Android to
provide a deployable system that is available on-demand and remains always-on when
enabled.

Meddle on iOS Devices

All i0S devices (version 3.0 and above) support a feature called VPN On-Demand, which
forces traffic for a specified set of domains to use VPN tunnels. This feature allows enter-
prises to ensure that employee’s devices always use VPN tunnels when contacting specific
domains, particularly those owned by the enterprise. VPN On-Demand uses suffix match-
ing to determine which domains require a VPN connection [48]. We use each alphanumeric
character (a-z, 0-9, one character per domain) as the set of domains that require a VPN
connection.! This ensures that VPN tunnels are established before any network activity.

'We are currently working on a solution to support Internationalized domain names.
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Configuring Meddle on iOS devices requires the user to install a single configuration
file. This file contains the configurations required to drive the key exchange algorithms to
establish VPN tunnels, and the patterns for the domains that require VPN tunnels. After
this configuration file is installed, the iOS device uses VPN tunnels for all the Internet
traffic. The user can disable Meddle by simply disabling the VPN On-Demand feature, an
option exposed by iOS in the device settings screen.

The VPN On-Demand feature of iOS is available only for VPN tunnels that use IPsec [104]
and the IKEv1 [94] key exchange protocol. This limits the options for VPN servers, for ex-
ample, Meddle cannot use OpenVPN [35].

Meddle on Android Devices

Android version 4.0 and above support VPNs, and Android version 4.2 and above support
an Always-On VPN connection that provides the same functionality as VPN On-Demand for
iOS. To provide the Always ON feature for devices running Android version 4.0 and 4.1,
we use the Android API that allows applications to manage VPN tunnels. We modified the
strongSwan implementation of a VPN client [40] to ensure that the VPN reconnects each
time the preferred network changes, e.g., when a device switches from cellular to Wi-Fi.

To configure a VPN on Android, a user needs to fill five fields. These fields are required
to setup the faster IKEv2 [103] based authentication. Disabling VPN tunnels requires the
users to turn off the automatic reconnect, a feature we provide in our extension to the
strongSwan mobile application; a similar feature exists for Always-On VPN tunnels estab-
lished on devices running Android 4.2 and above.

In summary, by building on the existing features provided by iOS and Android, we are
able to ensure that Meddle is deployable, available on-demand to its clients, and always-on
when enabled.

2.2.2 How to monitor all the Internet traffic flowing through Meddle?

We now show how to implement a VPN proxy that supports traffic monitoring, provides
an entry point to interpose on this traffic, and can be deployed on a single machine. This
criteria of running on a single machine allows users the flexibility of deploying Meddle on
their personal servers and home gateways.

At first glance, capturing all traffic traversing a VPN server should be as simple as
running a tap on the network interface, e.g., using tcpdump. While the high-level design
for capturing network traffic from mobile devices is straightforward, the implementation
is not. In particular, the interactions between IPsec and NAT complicate our ability to
map bidirectional flows to individual devices. The following paragraphs describe these
challenges and how we addressed them.

A VPN Proxy, apart from serving VPN tunnels, relies on NAT to proxy Internet traffic.
When a mobile device establishes a VPN tunnel, the VPN server assigns it a private IP
address. The mobile device therefore has two IP addresses, a private address assigned by
the VPN server, and a public IP address assigned by its ISP. The VPN server maintains the
mapping between the private IP address assigned to a device, its public IP address, and
the unique device identifier (VPN login) in the VPN address (VPNA) table. When the VPN
tunnels are established, the public IP address is used only to communicate with the VPN
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Figure 2.2: Configuring Meddle’s VPN proxy to monitor IP traffic.
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server while all other communication uses the private IP address. Therefore, all the traffic
that would have used the public IP address when the VPN tunnel was not present, now
uses the private IP address. The packets that use this private IP address are encapsulated
and encrypted using IPsec and sent to the VPN server. The VPN server first decapsulates
these packets and then forwards them. To forward these packets, the VPN server performs
address translation because these private IP addresses cannot be used in the Internet.

We now use Figure 2.2 to show that the interactions between IPsec and NAT complicate
traffic monitoring. We assume that a mobile device of public IP address d is trying to access
a remote service that is located at IP address w. The packets exchanged between d and
w flow through the Meddle server that has an IP address m. The Meddle server assigns
a private address v to the device when the device creates the VPN tunnel, and stores this
information in the VPN address (VPNA) table. This VPN address (VPNA) table maintains a
mapping between the private IP address v assigned to the device and its public IP address
m. In the following, we denote a packet from source s to destination d as s — d.

Outbound Path: Ability to Associate a Device with its Flows

We begin with mapping flows in the forward direction (m — d). Figure 2.2(a) shows the
path that packets take through Meddle. At steps (1), (2), and (3), the encrypted datagram
(in gray, d — m) is passed to the IPsec module that decrypts and processes the encapsu-
lated IP datagram (v — w). After decapsulation, the kernel sees that the packet needs to
be forwarded because neither the source nor the destination of the packet is its IP address,
m. Forwarding decisions are taken at the IP layer, the kernel therefore sends the packet
back to the IP layer, step (4). Because Meddle assigns private addresses to its clients, it
must use NAT in step (5) to convert the private IP address v to the public IP address m.
After the NAT operation, step (6), the packet is forwarded to the Internet, step (7) and step
(8).

We now describe how running tcpdump and tracking the VPN address (VPNA) table is
sufficient to sift packets based on their devices for flows in the forward direction. As shown
in Figure 2.2(a), running tcpdump on the Ethernet interface captures packets at step (2),
(4), and (7). The packet (v — w) available at step (4), and the VPNA table (that contains the
mapping between v and the device), are sufficient to associate the packets in the forward
direction to the device from which these packets originate.

Inbound Path: The Reverse Path Mapping Problem

We now show that it is not possible to associate a mobile device with its packets in the
inbound path, i.e., for packets that flow to the mobile device. We refer to Figure 2.2(b),
where we continue to dump packets from the Ethernet device. At step (2), with the help
of tcpdump, we can capture the packet sent by the destination at address w to the Meddle
server. This packet undergoes a NAT operation, step (3) and step(4), followed by IPsec
encapsulation, step (5) and step (6). The packet is next seen by tcpdump at step (7), i.e.,
after encapsulation. The packets captured by tcpdump are thus w — m (step (2)), and
m — d (step (7)). If the Meddle server is serving more than one mobile device, then we
have no way to associate a packet with a device. We need to dump the packet at step (4),
but we have no access to it via the standard Linux networking stack.
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To summarize, because of the complex interaction between IPsec and NAT, packets cap-
tured in the inbound path do not provide sufficient information to distinguish bidirectional
flows and map them to individual devices.

Our Solution: Looping Through Tun Interface

A straightforward solution to the reverse path mapping problem is to forward traffic to a
separate NAT device and dump traffic there, a solution that demands for additional hard-
ware/VMs. This approach significantly affects scalability and limits deployability. Further-
more, users shall not be able deploy Meddle on their home gateways. We address this
problem by virtualizing an additional network interface and routing traffic through it.

Namely, we use a Linux Tun interface and loop all packets through it. A Tun inter-
face is a software-only interface, and unlike other network interfaces, it does not have a
corresponding physical hardware component. Instead of sending traffic to the hardware
components, a packet arriving at a Tun interface is sent to a userspace program that is
responsible for that interface. This user-space program has complete access to the traffic
flowing through the tun interface. Thus, on each Meddle server, we loop packets through a
Tun interface for the purpose of monitoring and interposing on the network traffic flowing
through the Meddle server.

We perform a simple NAT operation to ensure that packets do not loop indefinitely
through this interface. For each mobile device, along with its private address v, Meddle
assigns it another address v’ that is internally used to loop the devices’ packets through the
Tun interface. For example, in the current deployment, the devices are assigned private
IP addresses v from the pool 10.11.0.0/16; the v' addresses are assigned by replacing the
2nd octet in the address from 11 to 101, i.e, a device with a private address v of 10.11.11.3
shall be assigned the address 10.101.11.2 as v/, a trick that avoids the need to keep another
table in memory. We then use these four routing rules to enable packet forwarding through
the Tun interface.?

1. Packets with source v are forwarded to the Tun interface after IPsec decapsulation
(step(5) in Figure 2.2(c)).

2. Packets with source v’ undergo NAT and are then forwarded to the Ethernet interface
(step(6) to step (9) in Figure 2.2(c)).

3. Packets with destination v’ are forwarded to the Tun interface (step (5) in Figure 2.2(d)).

4. Packets with destination v are forwarded to the Ethernet interface after IPsec encap-
sulation (step (6) to step (9) in Figure 2.2(d)).

The first two rules take care of forwarding in the outbound path (v — w) while the last two
rules rules take care of forwarding in the inbound path (w — v).

When an inbound packet arrives at the Tun interface, our process that manages the
Tun interface changes the destination address from v’ to v and sends the packet to the
IP layer, step (6) in Figure 2.2(d). Similarly, when an outbound packet arrives at the Tun
interface, our process changes the source from v to v’. Performing tcpdump on the Tun
interface allows us to monitor the packets v — w and w — v, step (5) in Figure 2.2(c)

2Rather than IP addresses v and v, the rules contains the pool of addresses from which v and v’ are chosen.
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Figure 2.3: Meddle intercepting SSL traffic. Meddle can be used to perform con-
trolled experiments that use man-in-the-middle attacks to analyze and interpose
on SSL flows. During these experiments, mobile applications use the certificates
issued by Meddle while Meddle uses the certificates issued by Web services.

and Figure 2.2(d). Thus, the packets captured at step (5) and the VPNA Table (mapping
between v and the device) enables us to distinguish bi-directional flows and map them to
individual devices.

In summary, the Tun interface provides us with an ideal vantage point to monitor and
interpose on the traffic being proxied by our VPN server. The Tun interface also makes it
possible to monitor and manipulate mobile Internet traffic from a single machine. In our
current implementation, the Policy Manager in Figure 2.1 is implemented in the process
managing the Tun interface. By using the Tun interface, Meddle can achieve its sub-goal
of deployability, scalability, and capability to interpose on the traffic.

2.2.3 How to modify traffic using Meddle?

One of the key advantages of Meddle is that it allows interposing on the traffic flowing
through its Meddle servers. As an example, we currently provide two kinds of traffic

manipulation with Meddle.
1. Analyze the contents of SSL flows generated by mobile devices.

2. Packet filtering to block privacy invasive traffic.

Analyze SSL flows

Existing approaches that rely on ISP traces, and traffic traces collected on gateways, do not
analyze the payloads of encrypted (SSL) traffic. As increasing amounts of Web traffic flows
over HTTPS, we lose the ability to understand how to optimize such traffic and evaluate
what private information is leaked over such encrypted tunnels. This has implications both
for performance (for example, page speed optimizations) and privacy (for example, leaks
of personally identifiable information (PII) over secure channels). We now describe how
Meddle allows us to perform controlled experiments to analyze the contents of SSL flows
generated by mobile devices.

First, we note that our VPN proxy, like all VPN proxies, uses a self-generated root certifi-
cate that is used to sign all subsequent certificates issued to participating mobile devices.
This allows us to perform SSL traffic decryption using the Squid proxy’s SSL bumping [38]
feature, which is essentially a man-in-the-middle operation on the secure connection.® As
shown in Figure 2.3, when the mobile device connects to a service supporting SSL, the
proxy masquerades as the service using a forged certificate signed with the Meddle root

3Note that for privacy reasons we use this only for controlled experiments in the lab setting.
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certificate. Then the proxy establishes an SSL connection with the intended target, im-
personating a mobile device. Using the traffic dumped by the tcpdump process and the
private key generated by the squid proxy to communicate with the mobile device, we can
decrypt all SSL traffic. The proxy simply forwards all non SSL traffic.

This approach fails for apps that do not trust certificates signed by unknown root au-
thorities, a technique called pinning [5, 10]. Surprisingly, this is rarely the case. In our
controlled experiments (presented in the next chapter), we observe that the Twitter and
Firefox apps prevent SSL bumping by validating root certificates, while Google Chrome,
Safari, Facebook, Google+, and the default mail clients and advertisement services, do not
check the validity of the root certificate. This enables our approach to provide visibility
into secure channels established by a wide range of popular mobile applications.

Filter Personally Identifiable Information (PII) Leaks

Meddle makes it easy to implement an efficient device-wide packet-filter. We would like to
point out that there exist a wide number of applications and browser plugins that offer sim-
ilar filters [17, 25, 28]. However, the scope of these filters is limited to specific applications
such as Web-browsers. The restrictive nature of mobile OSes require warranty voiding of
the device to install device-wide traffic filters [51, 96].

Meddle currently uses a DNS-based packet filter to prevent PII leaks. Our filter builds
on the past results that report on domains and services that leak PII information [96, 82,
135]. We update this list of domains based on our measurements and controlled experi-
ments which we discuss in the next chapter. A key feature of our solution is that it works
even for SSL traffic because DNS requests occur out of band from secure connections.
Further, our response for the DNS request is an IP address corresponding to localhost,
meaning that devices will generate no external network traffic when failing to resolve the
ad servers. Thus, our DNS based packet filter is capable of blocking device-wide PII leaks
before the information leaves the device.

Filtering misbehavior is an ongoing cat-and-mouse game, mishehaving applications and
libraries that leak PII information are likely to find ways to avoid packet filters. We do
not claim to have a silver-bullet to win this game, but we argue that we can follow the
footsteps of ad blocking services in the desktop environment, a service that has a wide
success [2, 17].

2.2.4 Architecture Summary

In this section, we showed how Meddle achieves the sub-goals defined in Section 2.1. To
tunnel all the Internet traffic, Meddle uses existing features of native VPN implementations
on Android and iOS to access the network perspective of mobile devices. Meddle servers
can be deployed on a single machine, thus users have two options to deploy it: a) deploy on
home-gateways, and have complete control and flexibility over personal devices, or b) use
Meddle deployments made by researchers who can offer custom network based services.

Meddle provides a new point of control over mobile network traffic. This enables re-
searchers to investigate what-if scenarios for the impact of new middleboxes as if they
were deployed in carrier networks. Importantly, researchers and users can take advantage
of these features without the support of ISPs or installing OS-specific applications.
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In summary, Meddle provides an ideal vantage point to perform mobile traffic measure-
ments and deploy network based services.

2.3 Discussion on Feasibility

In this section, we discuss several issues that can impact the coverage and deployability
of Meddle. We would like to point out that these issues have a small impact on Meddle’s
ability to monitor and interpose on mobile Internet traffic.

2.3.1 Limitations of VPN Based Traffic Redirection

Meddle relies on VPNs to redirect all Internet traffic through software defined middle-
boxes. The heavy reliance on VPNs implies that the restrictions imposed on VPNs affect
the capabilities of Meddle.

1. One Tunnel. Currently, iOS and Android support exactly one VPN connection at a time.
This allows Meddle to measure traffic over either the WiFi interface or the cellular
interfaces, but not both at once. The vast majority of IP traffic uses only one of these
interfaces, and that interface uses the VPN. An exception to this behavior is Multipath
TCP (MPTCP) [70] traffic that uses more than one interface simultaneously. The iOS
version 7.0 reportedly uses MPTCP to communicate with Apple servers for its SIRI
service [72]. Due to the restrictions imposed by native VPN restrictions, Meddle cannot
diagnose such traffic.

2. Data over Voice Channels. Meddle may miss some data traffic for apps and services
that rely on circuit-switched channel. For example, we found evidence that iOS push
notifications were being received even when IP connectivity was disabled, suggesting
the use of circuit switched channel. We believe the volume of such traffic is small;
however, it remains to be seen how this holds generally and over time.

3. Proxy Location. When traffic traverses the Meddle proxy, destinations will see the
IP address of a Meddle server instead of the device’s IP address. This might impact
services that customize (or block access to) content according to an IP address (e.g.,
in case of localization). A local deployment of a Meddle server by an end-user will not
have this issue.

4. ISP Support. We note that the incentive to allow VPN traffic is to support enter-
prise clients. However, ISPs might block VPN traffic, which prevents access to our
current Meddle implementation. During our measurements, we came across only one
ISP (situated in France) that blocked VPN access for mobile devices. Many ISPs deploy
in-network middleboxes for traffic engineering purposes. For example, performance
enhancing proxies deployed by ISPs are known to interact with TCP flows [74]. Such
boxes lose the ability to implement policies of their ISP and could potentially cause
mobile devices to perform sub-optimally when Meddle is being used.

5. Limited ISP Characterization. Due to its use of encrypted channels, Meddle can-
not detect traffic differentiation or any other techniques that ISPs use to interpose on
network traffic using deep packet inspection (e.g., advertisement insertion [125]) or
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Location Access Android ioSs
Technology | median (s) | max. (s) | median (s) | max. (s)

Location 1 Wifi 0.628 0.766 1.603 2.005
Cellular (3G) 0.815 1.593 1.837 2.180

Location 2 Wifi 0.621 0.809 1.364 1.480
Cellular (3G) 0.792 1.551 1.657 1.871

Table 2.1: Time required to establish VPN tunnels. The median and maximum
values reported in this table are from performed experiments where the VPN tun-
nel was created 50 times from each location. The iOS devices require more time
to establish the tunnel because they rely on the slower IKEv1 protocol while the
Android devices use the faster IKEv2 protocol.

optimization (e.g., downsampling content [15]). We are working on extending meddle
to address this limitation, this extension is discussed in Section 5.2

6. IPv6. Currently, Meddle cannot be used on IPv6 networks, because mobile devices
do not fully support IPv6. Indeed, we observe that though iOS and Android devices
support IPv6, they currently do not support IPv6 traffic through VPN tunnels.

7. Encoded Traffic. Mobile apps and Web services are free to encode data before trans-
mission, for example applications can exchange data using Base64 [101] encoding.
Therefore, Meddle is exposed to data whose encoding details are available only with
the mobile apps and remote hosts with whom these apps communicate. Decoding such
traffic requires reverse engineering of these services. Though Meddle provides a van-
tage point to monitor and manipulate such flows, we do no automatically decode flows
that use custom encoding.

2.3.2 System Overheads

Meddle uses standard and freely available software to serve mobile devices, one of its key
advantages that makes it free. However, a key question is whether the system is sufficiently
efficient to minimize its impact on controlled and in-the-wild experiments, and at the same
time on the services offered to end-users.

We show empirically that the overheads in terms of latency, power, and data consump-

tion are reasonable for users to adopt our systems.

Establishment delay

Mobile devices need to be authenticated by the VPN server before their traffic flows
through the Meddle servers. This authentication is driven by the key exchange proto-
cols of IPsec. The iOS devices use IKEv1 to manage the VPN tunnels while Android devices
support both IKEv1 and IKEv2. To establish the VPN tunnel, IKEv1 requires up to 16 pack-
ets to be exchanged between the mobile device and the VPN server while IKEv2 requires 4
packets; the number of packets may vary with deployments because it depends on the en-
cryption suites supported by the devices and the VPN server. Meddle uses the faster IKEv2
for Android devices while it is forced to use the slower IKEv1 for iOS devices because iOS
does not support IKEv2.

To further quantify this delay, we performed controlled experiments using one Android
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device (Galaxy Nexus running Android 4.2) and an iPhone 5 (running iOS 6.1). We per-
formed our experiments from two different locations based in the same city in which our
Meddle server was deployed. For these experiments, VPN tunnels were established for a
total of 50 times during a time interval of two weeks. We present the results of our exper-
iments in Table 2.1. The cellular experiments were performed when each device used the
3G services offered by its ISP; the same ISP served our Android device and iOS device. As
expected, the iOS device requires a longer time to establish the tunnels compared to the
Android device.

These results provide an insight on the delays that end-users might expect when using
Meddle. Though not comprehensive, it can be used to give an estimate on the lower bound
on the delay. The tunnel establishment delay can impact the performance of latency sensi-
tive applications, however we expect the amortized cost of connecting to be small because
each VPN session supports many flows.

Increased Network Latency

Redirecting the traffic through a Meddle server may require additional hops in the path
between the mobile device and the desired Web services. We performed a simple experi-
ment to quantify the increased latency when using a deployment such as PlanetLab. For
this experiment, we used data from 10 mobile phones located throughout the US and is-
sued traceroutes from the devices to targets in Google and Facebook’s networks. We then
used the first non-private IP address seen from the mobile device on the path to a server.
We assume that this corresponds to the first router adjacent to the mobile carrier’s public
Internet egress point. Note that we could not simply ping the device IP because mobile
carriers filter inbound ping requests. Using this set of egress adjacencies, we determined
the round-trip time from each PlanetLab site, then took the average of the nearest five sites
to represent the case where a host at the nearest site is unavailable due to load or other
issues. The average latency to each router was between 3ms and 13 ms, with a median of
Sms.

We also measured the latency in actual Meddle deployments, and observed a median
latency of less than 1 second between Meddle servers and the mobile devices. In Fig-
ure 2.4, we present the network latency observed in Meddle deployments in USA, France,
and China.* As shown in Figure 2.4(a), the network latency is computed as the time be-
tween the SYN/ACK and the ACK packets observed in the TCP handshakes. In our two
datasets, mobiWest and mobiEast, we observe that the median latency between the Med-
dle servers and the mobile device is less than 1 second. Furthermore, we also observe
that the network latency in cellular networks is larger than the network latency observed
in Wi-Fi networks.®> The increase in latency observed in cellular networks has various rea-
sons which includes delays due to Radio Resource Controllers and middleboxes present in
cellular networks [97, 123, 133, 136]. Thus, the network latency presented in Figure 2.4(b)
and Figure 2.4(c) overestimates the redirection overhead.

In summary, when compared to RTTs of 10s or 100s of milliseconds that exist in mobile
networks [97, 133], we expect a small additional latency from traversing Meddle servers.

“The two datasets, mobiWest and mobiEast, are detailed in Section 3.1.
>We estimate the access technology using the AS information of the prefixes. The details of our technique
to estimate access technology is presented in Appendix Section A.1
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Figure 2.4: Network latency to Meddle servers. The network latency between
Meddle servers and the devices is measured as the time between the SYN/ACK and
ACK packet of a TCP three way handshake. We observe a median latency of less
than 1 second across majority of prefixes through which devices tunneled their
traffic.

Power Consumption

Mobile devices expend additional power to establish, maintain and encrypt data for a VPN
tunnel. To evaluate the impact on battery, we used a power meter to measure the draw from
a Galaxy Nexus running Android 4.2. We run 10-minute experiments with and without the
VPN enabled. For each experiment, we used an activity script that included Web and map
searches, Facebook interaction, e-mail and video streaming. We observed an average of
10% overhead during these 10-minute experiments. For iOS devices, where we cannot
attach a power meter directly to the battery, we conducted an experiment using video
streaming to drain a fully charged battery with and without the VPN enabled. We again
found approximately 10% power overhead.

These experiments cannot capture the worst case overheads one might observe, how-
ever they do give an insight o