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Abstract

This thesis aims at proposing all the possible enhancements for the Multi-

Resolution Frequency-Domain ParFlow (MR-FDPF) model. As a deter-

ministic radio propagation model, the MR-FDPF model possesses the prop-

erty of a high level of accuracy, but it also suffers from some common

limitations of deterministic models. For instance, realistic radio channels

are not deterministic but a kind of random processes due to, e.g. moving

people or moving objects, thus they can not be completely described by a

purely deterministic model. In this thesis, a semi-deterministic model is

proposed based on the deterministic MR-FDPF model which introduces a

stochastic part to take into account the randomness of realistic radio chan-

nels. The deterministic part of the semi-deterministic model is the mean

path loss, and the stochastic part comes from the shadow fading and the

small scale fading.

Besides, many radio propagation simulators provide only the mean power

predictions. However, only mean power is not enough to fully describe the

behavior of radio channels. It has been shown that fading has also an im-

portant impact on the radio system performance. Thus, a fine radio propa-

gation simulator should also be able to provide the fading information, and

then an accurate Bit Error Rate (BER) prediction can be achieved. In this

thesis, the fading information is extracted based on the MR-FDPF model

and then a realistic BER is predicted. Finally, the realistic prediction of

the BER allows the implementation of the adaptive modulation scheme.

This has been done in the thesis for three systems, the Single-Input Single-

Output (SISO) systems, the Maximum Ratio Combining (MRC) diversity

systems and the wideband Orthogonal Frequency-Division Multiplexing

(OFDM) systems.
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Résumé

Cette thèse a pour but de proposer toutes les avancées possibles dans

l’utilisation du modèle de propagation Multi-Resolution Frequency-Domain

ParFlow (MR-FDPF). Etant un modèle de propagation radio déterministe,

le modèle MR-FDPF possède un haut niveau de précision, mais souffre des

limitations communes à tous les modèle déterministes. Par exemple, un

canal radio réel n’est pas déterministe, mais un processus aléatoire à cause

par exemple des personnes ou objets mobiles, et ne peut donc être décrit

fidèlement par un modèle purement déterministe. Dans cette thèse, un

modèle semi-déterministe est proposé, basé sur le modèle MR-FDPF, qui

introduit une part stochastique pour tenir compte des aspects aléatoires

du canal radio réaliste. La partie déterministe du modèle est composée

du path loss (atténuation d’espace), et la partie stochastique venant du

shadow fading (masquage) et du small scale fading (évanouissement).

De même, de nombreux simulateurs de propagation radio ne proposent que

la prédiction de la puissance moyenne. Mais pour une simulation précise de

la propagation radio il convient de prédire également des informations de

fading permettant dès lors une prédiction précise du taux d’erreur binaire

(BER) potentiel. Dans cette thèse, l’information de fading est déduite

des simulations MR-FDPF et par la suite des valeurs réalistes de BER

sont données. Enfin, ces données réalistes de BER permettent d’évaluer

l’impact de schémas de modulation adaptatifs. Des résultats sont présentés

dans trois configurations : systèmes SISO (mono-antenne à l’émission et à

la réception), systèmes à diversité de type MRC, et systèmes large bande

de type OFDM.
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Chapter 1

Introduction

1.1 Context and motivation

In the past two decades, wireless telecommunications have experienced an explo-

sive growth. On the one hand, a wide variety of advanced wireless telecommu-

nication technologies have greatly facilitated our daily lives and thus stimulated

an increasing demand for smart mobile devices, such as laptops, smart phones,

tablets etc. On the other hand, the popularity of these smart mobile devices has,

in turn, inspired the rapid development of wireless telecommunications.

However, the increasing demand for various smart mobile devices has led

to an exponential growth of mobile traffic which has set a formidable challenge

to the wireless system capacity. Due to the fact that there is a capacity limit

of conventional macro-cellular systems, the concept of heterogeneous networks

has been proposed so that a part of traffic can be offloaded to smaller cells.

Heterogeneous networks aim at increasing the system capacity by e.g. dense

frequency reuse over space. The main idea of heterogeneous networks is to overlay

the conventional single-tier macro-cellular networks with one or more tiers of low

power and low cost devices, e.g. base stations or access points in Microcells,

Picocells, and Femtocells to increase local capacity at capacity-demanding areas

[1].

In cellular networks, the term Macrocells is used to describe the cellular net-

works with the largest range of cell sizes. Normally, the cell sizes of Macrocells

range from 1 km to 20 km [2]. Macrocells are usually used to provide radio

1



1.1 Context and motivation

coverage for rural or suburban areas. For urban areas which are more capacity-

demanding than rural and suburban areas, the radio coverage is usually provided

by Microcells. Microcells typically have the cell sizes ranging from 500 m to

2 km. Unlike Macrocells and Microcells which provide radio coverage for wide

areas, Picocells and Femtocells, by contrast, provide radio coverage for small ar-

eas. Picocells are usually used to increase local capacity of networks for small

areas with very dense mobile users, for instance, shopping malls and train sta-

tions. Picocells extend radio coverage to indoor areas where outdoor signals from

Macrocells or Microcells are not strong enough to provide the required quality of

radio links after wall penetration. At last, Femtocells are designed for providing

radio coverage in home or small offices.

By shrinking the service range and dense spatial reuse of the frequency spec-

trum, smaller cells (e.g. Femtocells, Picocells, Microcells compared to Macrocells)

can achieve significant improvement in radio link quality and system capacity. It

is believed that heterogeneous network architecture is one of the most promising

low-cost approaches to increase the system capacity and improve the Quality of

Service (QoS).

It is reported that about 2/3 of calls and 90% of data services occur indoors

[3]. A good radio coverage is the basis to guarantee the required quality of

services, thus it is extremely significant to investigate the radio propagation in

indoor environments.

In the initial stages of cellular networks, the indoor radio coverage was usually

provided by the outdoor signals penetrating from Macrocells or Microcells. With

the development of wireless cellular networks, nowadays, the indoor radio cover-

age is normally provided by the indoor base stations or access points, e.g. pico

base stations (PBSs) and femto access points (FAPs). Thus, the indoor radio

coverage should be reinvestigated from a new perspective.

In wireless telecommunications, the term “path loss”, in decibel (dB), is de-

fined as the transmitted power minus the received power. Thus, path loss rep-

resents the signal attenuation introduced by the propagation channels [4]. It is

always a positive quantity. Due to the complexity of radio propagation environ-

ments and various propagation mechanisms, in reality, the instantaneous path

2
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Figure 1.1: The instantaneous path loss.

loss is a combination of the mean path loss, the large scale fading and the small

scale fading as shown in Fig. 1.1. Among these, the mean path loss is considered

to be deterministic while the large scale fading, i.e. the shadow fading, and the

small scale fading are usually described statistically. The channel models which

tackle the relationship between the mean path loss and the Tx-Rx (Transmitter

and Receiver) separation distances are called the path loss models. Those which

tackle the large scale fading and the small scale fading are called the large scale

fading models and the small scale fading models, respectively.

Although the basic propagation principle in indoor environments is similar to

that of outdoor environments, the indoor radio propagation has its specificity as

follows:

1. More reflections, diffractions and refractions are possible to oc-

cur in indoor radio propagation due to the rich presence of obstacles,

such as walls and furniture etc. Hence, radio propagation tools whose com-

putational efforts are independent of the number of reflections and diffractions

are advantageous over those whose computational efforts are strongly dependent

on the complexity of scenarios, like ray-optical tools.

2. The sizes of indoor scenarios are normally smaller than those of outdoor

3
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scenarios. Thus a relatively higher computational effort per spatial unit

can be afforded by radio propagation tools in order to obtain a higher

level of accuracy.

3. Unlike outdoor environments which are full of high speed moving objects

and mobile users, indoor environments are usually full of low speed moving people.

Hence, the Doppler shift in indoor environments is negligible [5].

The commonly used radio propagation modeling methods for indoor environ-

ments can be mainly categorized into the following four types (more details will

be provided in Chapter 2):

1. Empirical models: Empirical models are usually extracted from channel

measurements conducted at some typical places. They are extracted by fitting

the measurement data with some simplified mathematical formulas or distribu-

tion functions. Thus, empirical models are normally very easy to implement and

with very low computational load. However, since empirical models are extracted

from measurements conducted only at some typical places, they retain some gen-

eral channel characteristics without taking into account the specific propagation

environments. For a specific propagation scenario, empirical models usually suffer

from a low level of accuracy. The widely used empirical models for indoor envi-

ronments include, for instance, the one-slope model, wall and floor factor models,

COST231 multi-wall model and linear attenuation model etc.

2. Stochastic models : Stochastic models are usually used to model the

random aspects of radio channels with random variables, e.g. fading character-

istics of radio channels. Stochastic models require very little information of the

propagation environments. For radio propagation channels, there exist two typi-

cal types of fadings: the large scale fading and the small scale fading. The large

scale fading characterizes the signal strength variation over large distances [4].

On the contrary, the small scale fading characterizes the rapid fluctuations of

the received signal strength over very short travel distances (usually a few wave-

lengths). The large scale fading and the small scale fading are usually modeled

with stochastic models. For instance, the large scale fading, i.e. the shadow fad-

ing, is usually modeled to be the Log-normal fading, and the small scale fading

is widely modeled to be either the Rayleigh, Rice or Nakagami-m fading etc.
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3. Deterministic models: Deterministic models simulate the real physical

propagation phenomenon of radio waves. Deterministic models are based on the

Maxwell’s equations describing the behavior of electromagnetic field and take

into account the specific propagation environments. Thus they usually possess a

high level of accuracy. Since deterministic models take into account the specific

propagation environments, they are also called site-specific models. The predicted

results provided by the deterministic models are deterministic, i.e. the predicted

results are always the same no matter how many times you rerun it if there

is nothing changed in the simulated scenarios. Although deterministic models

have the advantage of high accuracy, they have also the disadvantage of heavy

computational load. Moreover, the high accuracy of deterministic models depends

strongly on the accuracy of databases of the simulated scenarios. Ray-optical

models and Finite-Difference Time-Domain (FDTD) models are the two widely

used deterministic propagation models.

4. Semi-deterministic models : Semi-deterministic models are the combi-

nations of deterministic models and stochastic models or empirical models. Thus,

semi-deterministic models benefit from both deterministic models and stochastic

models or empirical models. For instance, semi-deterministic models usually re-

quire less computational time and lower computational load than deterministic

models, but possess a higher level of accuracy than stochastic models or empirical

models. The existing semi-deterministic models include for example, the Domi-

nant path model, the Motif model and the Geometry-based Stochastic Channel

Models (GSCMs) etc.

1.2 Objective of the thesis

This thesis was supported by the EU-FP7 iPLAN project whose main objective

was to develop an automatic indoor radio network planning and optimization tool.

The iPLAN project was a collaboration between INSA-Lyon, France, University

of Bedfordshire, UK, and Ranplan Wireless Network Design Ltd., UK. I spent

the first year of my PhD period at INSA-Lyon, France, and then the second and

the third year in Ranplan Wireless Network Design Ltd. in UK.
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A FDTD-like model, Multi-Resolution Frequency Domain ParFlow (MR-

FDPF) model, was proposed by Gorce et al. in [6][7][8]. The MR-FDPF model

falls into the deterministic models which is based on the lattice wave automata

theory [9]. Since it is a deterministic model including all the radio propagation

phenomena in a natural way, the MR-FDPF model possesses a high level of ac-

curacy. Although an effort of computational efficiency has been made to the

MR-FDPF model by introducing the Multi-resolution structure, which makes it

more computationally efficient compared to the conventional ParFlow model [10],

the MR-FDPF model is still more suitable for radio coverage prediction in in-

door environments due to its high computational load. It is more suitable for

indoor radio coverage prediction also because in indoor environments, the MR-

FDPF mode is advantageous over the widely used ray-optical models [11] since

its computational load is independent of the complexity of scenarios.

The MR-FDPF model has been proven to be fast and efficient in predicting

the mean power [6][7]. However, it is known that only mean power is not enough

to describe the behavior of radio channels, even not enough for determining the

radio link quality. Therefore, the objective of this thesis is to propose all the

possible enhancements of the MR-FDPF model so that it can provide as much as

possible the knowledge of the radio channels. These can be detailed as follows:

1. As already mentioned, the MR-FDPF model is a deterministic model,

which means the predicted results by the MR-FDPF model are deterministic.

However, in reality, radio channels are a sort of random processes and present fad-

ing due to e.g. movements of surrounding objects. Thus, realistic radio channels

can not be completely represented by a purely deterministic result. Therefore,

the first objective of this thesis is to improve the MR-FDPF model

so that it can take into account the nature of randomness of realistic

radio channels .

2. The MR-FDPF model can provide a coverage map for the simulated sce-

narios, but this coverage map mixes the large scale fading and the small scale

fading. In order to get a better insight and understanding of the radio propaga-

tion environments, we prefer to know separately the pathloss model, i.e. pathloss

relationship with the transmitter (Tx) and receiver (Rx) distance, the standard

deviation of the lognormal distributed shadow fading, and the distribution of the
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small scale fading. Moreover, for system level simulators, what they really need

are the separated pathloss models, shadow fading models and small scale fading

models. Hence, the second objective of this thesis is to separate the

large scale pathloss, shadow fading and the small scale fading .

3. Since only the mean power of the received signal is not enough to deter-

mine the radio link quality and describe the behavior of radio links, the third

objective of this thesis is thus to provide a complete radio link quality

prediction, e.g. the fading severity parameters, the Bit Error Rate

(BER), and the achievable data rate .

1.3 Organization and contribution of the thesis

The rest of this thesis is organized as follows:

Chapter 2 starts with an introduction of the basic propagation principles and

radio propagation phenomena, and then a state-of-the-art review of the indoor

radio propagation models is presented. This includes a detailed description of

the widely used empirical models, stochastic models, deterministic models and

semi-deterministic models.

Chapter 3 introduces first the characterization of deterministic channels. How-

ever, realistic radio channels are a kind of random processes which can not be

completely described by deterministic channels. Thus, randomly time-variant

linear channels are introduced in the second part of this chapter. After that, a

number of parameters for radio link quality are listed and described which will

be used in the latter chapters.

Chapter 4 introduces detailedly in the first section the principle of the MR-

FDPF model and its level of accuracy. Then in the second section, the large scale

propagation characteristics are described followed by how to extract the large

scale propagation characteristics and how to separate the deterministic path loss

and shadow fading based on the MR-FDPF model. In the third section, the

small scale fading statistics are extracted by introducing the Stochastic Local

Area Channel (SLAC) model. The parameters of the SLAC model corresponding

to a specific position are estimated by the well-known Space-Alternating Gener-

alized Expectation maximization algorithm (SAGE). The estimated parameters
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of the SLAC model allow determining a number of small scale fading statistics,

namely, the Power Delay Profile (PDP), the envelope Probability Density Func-

tion (PDF), the Frequency Correlation Function (FCF), the Rice K factor, the

mean delay, and the root mean square delay etc. Finally, based on the extraction

of the large scale propagation characteristics and the small scale fading statis-

tics above, a semi-deterministic channel model is proposed which is based on the

deterministic MR-FDPF model, but introduces a stochastic part to take into ac-

count the random aspect of the realistic radio channels. The results of the large

scale propagation characteristics have been included in [12] and those of the small

scale fading statistics in [13].

Chapter 5 is about the realistic prediction of the BER based on the MR-FDPF

model. Two systems are tackled in this chapter: the SISO systems and the MRC

diversity systems. The predicted BER is realistic because it takes into account

the impact of the fading severity. Especially, for the MRC diversity systems, the

correlations among diversity branches are also taken into account. This work for

the prediction of the BER for the SISO systems and the MRC diversity systems

has been separately published in [14][15].

Chapter 6 is about the wideband simulations based on the MR-FDPF model.

Two approaches of the wideband simulations are given in the first part of this

chapter. One is the straightforward repetition of the MR-FDPF simulations at

multiple frequencies and the other one is an approximation approach based on the

Neumann series expansion. The second part of this chapter is about the wideband

multipath fast fading characteristics. By comparisons, the simulated wideband

multipath fast fading characteristics from the MR-FDPF model and those from

the measurements fit each other statistically. In the last part, the block adaptive

modulation scheme based on the simulated multipath fast fading characteristics

is implemented and the obtained average aggregate data rate and the data rate

gain are verified by comparisons to the measurements. These results in Chapter

6 have been presented in [16] and [17].

Finally, conclusion and future work are given in Chapter 7.
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Chapter 2

Background and state of the art

In this chapter, we first give a brief introduction of the basic radio propagation

mechanisms, and then make a state-of-the-art survey of the indoor radio propa-

gation models, mainly on the pathloss models and fading models. The existing

indoor radio propagation models can be mainly categorized into four groups: em-

pirical models, stochastic models, deterministic models and semi-deterministic

models. After a detailed description of these radio propagation models, a clear

understanding of their advantages and disadvantages will be had. This chapter

provides the background knowledge for the following chapters.

2.1 Radio propagation mechanisms

The basic radio propagation mechanisms include reflection, refraction and diffrac-

tion.

From the radio propagation perspective, the effect of a medium can be deter-

mined by three parameters: conductivity σ, permittivity ε and permeability µ.

These three parameters are known as the constitutive parameters of the medium

[18].

In lossless media, when a plain wave propagates from a medium with per-

mittivity ε1 and permeability µ1 to another medium with different permittivity

ε2 and permeability µ2, reflection and refraction will happen at the boundary of

these two media (see Fig. 2.1). The two produced reflection and refraction waves

have exactly the same frequency as the incident wave. The directions of the two
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Figure 2.1: Reflection and refraction.

waves follow the Snell’s law of reflection (Eq. 2.1) and the Snell’s law of refraction

(Eq. 2.2), respectively, as follows

θr = θi (2.1)

sin θt
sin θi

=
n1

n2

(2.2)

where θi, θr and θt are the incident angle, reflection angle and refraction angle, re-

spectively. The parameter n is the refractive index which depends on the relative

permittivity εr and relative permeability µr of media according to

n =
√
εrµr (2.3)

The εr and µr are the medium’s permittivity and permeability expressed relative

to those of vacuum.

Above, we have assumed the boundary or surface between the two media is

a perfectly smooth surface. The reflection in this case is usually termed specular

reflection. When the surface is getting rougher, there will be also an amount

of scattered waves around the main reflection wave. Scattering is a special case

of reflection, which describes the phenomenon that radio waves are reflected in

many directions by irregular objects or rough surfaces.
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2.2 State of the art of indoor radio propagation models

Diffraction is typically described as the phenomenon that radio waves bend

around small obstacles or spread out past small openings. Diffraction explains the

field leakage in the shadow region behind obstacles. Diffraction can be explained

by Huygens’ principle [19] which states that every element in the wavefront can

be a source of a spherical wavelet and the envelope of all these wavelets forms

another secondary wavefront in the subsequent time. Radio waves do propagate

into the shadow region of an obstacle. But how much is the field strength of

the diffraction waves behind the obstacle? It is very complicated depending on

the specific situations in reality. How to accurately model diffractions is one of

the most difficult task in radio propagation modeling. The easiest model is the

single knife-edge model which considers only one perfect absorbing plane existing

between the transmitter and receiver [18]. Although the single knife-edge model

provides an acceptable prediction of diffractions for some cases and gives us an

insight to how the position of the knife-edge impacts the diffraction waves, in

reality, there are other cases where it is necessary to take into account more

details of the obstacles, e.g. the shape and the property of the materials. Thus

Geometrical Theory of Diffraction (GTD) was proposed in the 1950s by Joseph

Keller [20] and it can be implemented by the well known ray-optical methods [11].

In the 1970s, GTD was improved and extended to the Uniform GTD (UTD) [21]

in order to overcome the false prediction of GTD in the transition region (region

close to the shadow boundary).

2.2 State of the art of indoor radio propagation

models

There exist many kinds of radio propagation models [4][18][22][23][24][25]. For

instance, from the bandwidth’s prospective, we have narrowband models and

wideband models. Narrowband models can be further divided into the path loss

models, large scale fading models and small scale fading models etc. Similarly,

wideband models can also be further divided into the Tapped delay line mod-

els, models for the Power Delay profile, and models for the Arrival Times of Rays

and Clusters etc [23]. From the modeling methods’ prospective, we have empirical

13



2.2 State of the art of indoor radio propagation models

models, stochastic models, deterministic models and semi-deterministic models.

From the application scenarios’ perspective, we have indoor radio propagation

models and outdoor radio propagation models. Here in this chapter, we mainly

focus on the indoor narrowband radio propagation models. In the following sec-

tion, we will start with the free space propagation model, and then introduce the

empirical models, stochastic models, deterministic models and semi-deterministic

models for indoor environments successively.

2.2.1 Free space propagation model

The simplest radio propagation scenario is the free space propagation, which

means there is absolutely no any obstacle between the transmitter and the re-

ceiver. According to the Friis’ law (Friis free space equation), the received power

by a receiver antenna which is separated from the transmitter by a distance d is

[23]

Pr(d) = Pt ·Gt ·Gr ·
(

λ

4πd

)2

(2.4)

where Pr(d) is the received power at the Tx-Rx separation distance d, Pt is the

transmitter power, Gt and Gr are the transmitter and receiver antenna gains,

respectively. λ is the wavelength.

If we write it in the logarithmic scale, it is then

Pr|dBm(d) = Pt|dBm +Gt|dBi +Gr|dBi + 20 log

(
λ

4πd

)
(2.5)

where |dBm and |dBi mean in dBm and dBi, respectively, and log(·) represents the

base 10 logarithm.

When antenna gains are excluded, the free space path loss model is thus

PL(d) = 20 log

(
4πd

λ

)
= 20 log

(
4π

λ

)
+ 20 log (d) (2.6)

The term 20 log (d) indicates that the free space path loss increases at a rate of

20 dB per decade (one decade means ten times’ increase in the distance between

the transmitter and the receiver).
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Inspired by the free space path loss formula above, a number of empirical path

loss models are constructed in the similar form of

PL(d) = a+ 10 · n · log(d) (2.7)

where a is a constant path loss at a reference distance, and n is called the path loss

exponent which depends strongly on the propagation environments. For the free

space propagation, the path loss exponent is 2. It is reported that the path loss

exponent can usually range from 1.6 to 6.5 [26]. For instance, urban Macrocells

normally have a big path loss exponent, whereas indoor office buildings usually

have a low value where wave guide effect can possibly happen.

2.2.2 Empirical models

Empirical models [18][24][27][28][29][30][31] are constructed either based on sim-

plifying assumptions concerning the physical geometry of the propagation envi-

ronments or based on a best fit to extensive measurement data conducted in a

typical environment. Empirical models usually consider the path loss as func-

tion of some meaningful parameters like distance, frequency, antenna heights.

Empirical models characterize radio channels by their average behavior. Since

some simplifications have been made more or less during the establishing of em-

pirical models, they usually require very low computation effort and are very

easy to implement. However, they have the disadvantage of low accuracy for a

specific scenario because they do not take the specific propagation environment

into account. Empirical model are widely used in network design due to the low

computational time and computation load.

2.2.2.1 One-slope model

The one-slope model [24][30] assumes that the path loss in dB is linearly depen-

dent on the logarithmic Tx-Rx distance

PL(d) = L0 + 10 · n · log(d) (2.8)

where L0 is the path loss at the Tx-Rx distance of 1 meter and n is the path loss

exponent. Obviously, this model is based on the form of the free space model and

15



2.2 State of the art of indoor radio propagation models

aims at including all the losses due to various propagation mechanisms by the path

loss exponent. This model is very easy to implement, but it can sometimes lead

to large errors because, in indoor environments, a large variability in propagation

mechanisms is possible among different offices and buildings.

2.2.2.2 Wall and floor factor models

The wall and floor factor models [31] are based on the free space path loss. They

assume that the indoor path loss is the free space path loss plus an additional

loss related to the number of floors nf and the number of walls nw intersected

with the straight line between the transmitter and the receiver.

PL(d) = L1 + 20 log(d) + nfLf + nwLw (2.9)

where L1 is the path loss at the Tx-Rx distance d of 1 meter, Lf and Lw are the

penetration losses caused per floor and per wall, respectively. The term 20 log(d)

is the free space path loss factor.

The wall and floor factor models perform better than the one-slope model

since they provides more degrees of freedom than the latter.

2.2.2.3 COST231 multi-wall model

The COST231 multi-wall model [18][24] is a further improved version of the wall

and floor factor models. It takes into account the fact that overall penetration

loss has a nonlinear dependence with the number of penetrated floors [18][30][32].

The COST231 multi-wall model can be expressed as follows

PL(d) = LFS + LC +
W∑
i=1

Lwinwi + Lfnf
(
nf+2

nf+1
−b)

(2.10)

where LFS is the free space path loss for the straight-line path between the

transmitter and receiver, Lwi is the penetration loss for a wall of type i, nwi is

the number of walls of type i, W is the number of wall types, nf is the number

of floors, Lf is the penetration loss per floor, b and LC are constants which are

determined empirically.

For practical reasons, the number of different wall types should not be too

large in order to avoid to be too complicated.
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2.2.2.4 Linear attenuation model

Unlike the one-slope model, the linear attenuation model assumes that the path

loss in dB is linearly dependent on the Tx-Rx distance (in meter)

PL(d) = LFS + αn · d (2.11)

where αn (dB/m) is the attenuation coefficient. In some studies, additional wall

loss terms are added to this model in order to improve the performance [24][33].

The four empirical models above just give the forms of the models, the pa-

rameters there should be optimized based on the measurement data. An example

of these parameter values could be found in [24].

2.2.3 Stochastic models

Stochastic models are those whose results are random each time, but their sta-

tistical characteristics, e.g. Probability Density Function (PDF) follow a certain

law. In general, stochastic models use one or more random variables to model the

random aspects of radio channels. Stochastic models are usually used to model

all kinds of fadings, e.g. the large scale fading and the small scale fading, since

fadings are with the nature of randomness. For instance, the small scale fading

was reported to follow Rayleigh distributions for Non-Line-Of-Sight (NLOS) sce-

narios and Rice distributions for Line-Of-Sight (LOS) scenarios [4][25]. The large

scale fading was observed to follow log-normal distributions [24].

The small scale fading, also named the multipath fading, is due to the con-

structive and destructive combinations of multipath signals with random ampli-

tudes and phases. Thus, the small scale fading is the rapid fluctuations of the

received signal amplitude over usually a few wavelengths. Moreover, the mean of

the small scale fading is also a random process due to the shadowing from obsta-

cles existing between the transmitters and receivers. The variation of the mean

of the small scale fading is called the large scale fading, or the shadow fading.

Therefore, the large scale fading models tackle the variation of the mean of the

received signal averaged over a few wavelength (remove the small scale fading).
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The widely used small scale fading models include the Rayleigh fading model,

the Rice fading model and the Nakagami-m fading model etc. The large scale

fading models include the Log-normal fading model etc.

2.2.3.1 Rayleigh fading model

The Rayleigh fading model is widely used to model multipath fading when there

is no LOS path. In NLOS scenarios, the received signal amplitude α is distributed

according to the Rayleigh distribution

Pα(α) =
2α

Ω
exp(−α

2

Ω
), α ≥ 0 (2.12)

where Ω = α2 is the average power of the fading.

2.2.3.2 Rice fading model

The Rice distribution is also known as the Nakagami-n distribution. Unlike the

Rayleigh fading model, the Rice fading model is usually used to model the mul-

tipath fading when there is a direct LOS path. In LOS scenarios, the received

signal amplitude α is distributed according to the Rice distribution

Pα(α) =
2(1 + n2)e−n

2
α

Ω
exp(−(1 + n2)α2

Ω
)I0(2nα

√
1 + n2

Ω
), α ≥ 0 (2.13)

where n is the Nakagami-n fading parameter ranging from 0 to ∞. This param-

eter n is related to the well-known Rice K factor by K = n2 which is defined

as the ratio of the power of the LOS component to all the NLOS compenents

(usually called diffuse components). It is of importance to note that in the ex-

treme case when the LOS component tends to 0, e.g. K and n → 0, the Rice

distribution reduces to the Rayleigh distribution. And when K and n →∞, the

Rice distribution approaches to the Gaussian distribution.

2.2.3.3 Nakagami-m fading model

The Nakagami-m fading distribution is given as follows [34]

Pα(α) =
2mmα2m−1

ΩmΓ(m)
exp(−mα

2

Ω
), α ≥ 0 (2.14)
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where m is called the m parameter of the Nakagami-m fading and Γ(·) is the

gamma function. The Nakagami-m fading model has been received extensive at-

tention since it gives the best fit to many measurement data, such as, land-mobile

and indoor-mobile multipath propagation [25][35]. The parameter m varies from
1
2

to ∞ indicating the severity of the fading. The smaller the m value is, the

severer the fading becomes. The Nakagami-m distribution includes the Rayleigh

distribution when m = 1 and the one-sided Gaussian distribution when m = 1
2

as special cases. When m → ∞, the Nakagami-m fading channel approaches to

a nonfading Additive White Gaussian Noise (AWGN) channel. When m > 1, we

have a one-to-one mapping between the Nakagami-m distribution and the Rice

distribution by their parameters

m =
(1 +K)2

1 + 2K
, K ≥ 0 (2.15)

where K is the Rice K factor. Hence, the Nakagami-m fading model can describe

a very wide range of multipath fading.

2.2.3.4 Log-normal fading model

Measurements reveal that the shadow fading can be modeled by the Log-normal

fading model both for outdoor and indoor environments [36][37]. That is the

distribution of the mean received signal power in dBW ψdBW = 10logE[α2] follows

PψdBW
(ψdBW ) =

1√
2πσψdBW

exp

(
−(ψdBW − µψdBW

)2

2σ2
ψdBW

)
(2.16)

or the distribution of the mean received signal power in linear scale ψ = E[α2]

follows

Pψ(ψ) =
ξ√

2πψσψdBW

exp

(
−(10logψ − µψdBW

)2

2σ2
ψdBW

)
, ψ > 0 (2.17)

where ξ = 10/ln 10, µψdBW
and σψdBW

are the mean and the standard deviation

of ψdBW , respectively. Normally, the µψdBW
can be determined from the mean

path loss, i.e. the path loss models.
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2.2 State of the art of indoor radio propagation models

2.2.4 Deterministic models

Deterministic models simulate radio wave propagation based on the Maxwell’s

equations and take the radio propagation environments into account. They sim-

ulate the physical phenomenons of radio waves, e.g. reflections, refractions and

diffractions. Deterministic models usually possess a high level of accuracy even if

their high accuracy is only achieved when the databases of the simulated scenarios

are firstly accurate. Deterministic models can usually yield both the narrowband

and wideband information of radio channels.

There are two main types of deterministic models: Ray-optical models and

Finite-difference time-domain (FDTD) like models. Moreover, Ray-optical modes

can be further divided into two subtypes: the ray launching model and the ray

tracing model. FDTD-like models also have some subtypes such as, the conven-

tional FDTD model, the time domain ParFlow model and the frequency domain

ParFlow model.

2.2.4.1 Ray launching model

The ray launching model [38] is based on the Geometrical Optics (GO) which

simulates the radio wave propagation according to the physical phenomenons,

such as reflections, refractions and diffractions. The ray launching model actively

launches a number of rays from the transmitter end. These rays are separated

by a small angle, so each of them is with a different transmit direction. After

launched, the rays interact with the objects in the propagation environments

according to the reflection, refraction and diffraction theory (see Fig. 2.2). The

propagation of a ray is terminated either when its power falls below a predefined

threshold or when its number of interactions with objects reaches a predefined

number or the receiver is reached. The ray launching model has an inherent

disadvantage that distant objects may be missed by rays even if the separation

angle between rays is very small at the transmitter (see Fig. 2.3). Ray launching

is usually called the ‘brute force’ method since it has to launch many rays at very

similar angles [37].
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Tx jD

Figure 2.2: Ray launching.

Tx

Figure 2.3: Distant objects may be missed by rays.

2.2.4.2 Ray tracing model

Unlike the ray launching model which traces rays forwards, the ray tracing model

traces rays backwards. The ray tracing [37] model is an image-based model which

assumes all objects in the propagation environments are potential reflectors. In

implementations, the ray tracing model uses the images of the transmitter rel-

ative to all the reflectors, i.e. all the objects in the propagation environments

to determine the directions of the reflected rays. Compared to the ray launch-

ing model, the ray tracing model has some advantages. For the ray launching,

it has to launch a large amount of rays from the transmitter, but for a specific

receiver, only few of them may finally reach the receiver and most of these rays

would be a waste. Hence, for the point-to-point prediction, ray launching is not

efficient. However, in the opposite, ray tracing considers only the paths which

really exist between the transmitter and the receiver. Therefore, ray tracing often

requires much less computation time than ray launching. But ray tracing has the

disadvantage that its computational time grows exponentially with the order of
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Figure 2.4: Ray tracing.

calculated reflections.

Both in the ray launching and ray tracing models, the strengths of reflected

rays and refracted rays are computed according to the geometrical optics. The

diffracted rays are computed according to e.g. UTD theory. For ray launching

and ray tracing, the complexity of the propagation environments has a strong

impact on their computational load since more obstacles lead to more reflections

and diffractions etc.

2.2.4.3 FDTD model

Here, the FDTD model means the conventional FDTD model. The FDTD model

[39][40][41][42] is a numerical solution of Maxwell’s equations.

Since Maxwell’s equations were first published in 1861 [43], they have been

considered as the most accurate and elegant description about how electric field

and magnetic field interact with each other and how electromagnetic waves prop-

agate. However, Maxwell’s equations are a set of partial differential equations

which are very difficult to solve. In 1966, Yee proposed to approximately solve

them based on a space-time grid [39] (see Fig. 2.5). The idea is that we replace

the set of partial differential equations of Maxwell’s equations by a set of finite-

difference equations and then this set of finite-difference equations can be solved

iteratively based on the space-time grid. This space-time grid is thus named the
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Figure 2.5: Yee grid.

Yee grid. In the 1980s, this method was further developed by Taflove and he

coined the term of FDTD [40].

Since the FDTD model approximately solves the Maxwell’s equations, the

nature of high accuracy is its main advantage. Moreover, since in the iterative

process, the finite-difference equations have already taken into account the con-

stitutive parameters (i.e. conductivity σ, permittivity ε and permeability µ) of

objects, all the effects of objects or obstacles in the propagation environments

have been included by the FDTD model in a natural way. Hence, the complexity

of the propagation environments (e.g. the number of obstacles existing in the

propagation environments) will not impact the computational load of the FDTD

model, which is a very useful property for complicated propagation environments,

e.g. indoor environments. The main disadvantage of FDTD model is its high com-

putational load. As we know, in the FDTD model, Maxwell’s equations are solved

on a space-time grid. In order to avoid the problem of numerical unstability [44],

the size of this grid step should not be too large relative to the wavelength (i.e.

should satisfy the Courant-Friedrichs-Lewy (CFL) stability condition [45]), which
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makes the required computational load high.

2.2.4.4 ParFlow model

Here, the ParFlow model means the conventional time domain parFlow model.

An intuitive interpretation of ParFlow models is the discrete form of Huygens

principle which states that every point of a wavefront may be considered as the

source of secondary wavelets. The ParFlow model can be viewed as a discrete

solution of Maxwell’s equations which determines its nature of high accuracy.

The ParFlow model is based on the cellular automata formalism [46][47]. In

this model, simulated scenarios should be first discretized into a 2D grid-based

structure and the scalar electrical field strength at a grid point r is supposed to

be the sum of the fictitious flows traveling along the connection lines between the

grid point r and its neighbor four grid points. From the discrete time instance

n∆t to (n + 1)∆t (where ∆t is the time step), the fictitious flows can travel to

their neighbor grid points, such as the flows {fE, fW , fS, fN} or remain at rest as

the stationary flow (also called the inner flow)
^

f 0 in Fig. 2.6. The flows coming

into the grid point are called the inward flows, whereas the flows leaving it are

called the outward flows. Noted that the inward flows of a grid point r are the

outward flows of its neighbor grid points and vice versa. That is

←
f d(r + ∆r, t) = ~fd(r, t−∆t), d ∈ E,W, S,N (2.18)

where ∆r is the space step between any two neighbor grid points. The space step

∆r satisfies the following conditions

∆r = c0

√
2∆t, ∆r � λ (2.19)

where c0 is the speed of electromagnetic wave in the propagation medium and λ

is the wavelength.

The discrete time evolution of the flows should obey the following local scat-

tering equation so that it satisfies the Maxwell’s equations

~F (r, t) = Σ(r)
←
F (r, t−∆t) + ~S(r, t) (2.20)
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Figure 2.6: Inward and outward flows

where the inward flows vector
←
F (r, t), the outward flows vector ~F (r, t), and the

source flows vector ~S(r, t) are defined, respectively, as follows

←
F (r, t) = [

←
fE(r, t)

←
fW (r, t)

←
fS(r, t)

←
fN(r, t)

^

f 0(r, t)]T

~F (r, t) = [~fE(r, t) ~fW (r, t) ~fS(r, t) ~fN(r, t)
^

f 0(r, t)]T

~S(r, t) = [~sE(r, t) ~sW (r, t) ~sS(r, t) ~sN(r, t) 0]T
(2.21)

The operator [·]T signifies the matrix transposition. The stationary flow
^

f 0(r, t)

models the dielectric media with the relative permittivities εr 6= 1. The local

scattering matrix Σ(r) in Eq. 2.20 is

Σ(r) =
1

2n2
r


1 αr 1 1 Yr
αr 1 1 1 Yr
1 1 1 αr Yr
1 1 αr 1 Yr
1 1 1 1 βr

 (2.22)

where nr is the refraction index and αr = 1− 2n2
r; βr = 2n2

r − 4; Yr = 4n2
r − 4.

In addition, according to the Luthi’s proposal [9], the local scattering ma-

trix should be adapted to introduce the effect of absorption, thus the final local

scattering matrix should be

Σa(r) = ar · Σ(r) (2.23)

where ar is the normalized absorption coefficient.
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The local scattering equation can be efficiently solved by a cellular automaton

and then the electric field is given by

Ψ(r, t) =
1

n2
r

( ∑
d=E,W,S,N

←
f d(r, t) + Yr

^

f 0

)
(2.24)

2.2.4.5 Multi-Resolution Frequency Domain ParFlow model

The MR-FDPF model was proposed by Gorce et al. in [6][7] and represents the

frequency-domain version of the ParFlow model. The ParFlow model is trans-

ferred into the frequency domain by the Fourier transform because it has several

advantages in the frequency domain ( more details will be stated in Chapter 4 ):

1. In the frequency domain, the inner flow can be removed from the formula-

tion, thus only operating with the border flows (i.e. the inward flows and outward

flows) is enough.

2. In the frequency domain, the local scattering equation becomes a linear

equation after taking advantage of the relationship between the inward flows and

outward flows and properly combining the local scattering matrix.

3. The further optimization can be performed to reduce the high computa-

tional load, e.g. by introducing the Multi-Resolution (MR) structure.

In the frequency domain, after appropriate processes of the border flows and

the local scattering matrix, the final linear local scattering equation can be ex-

pressed as
←
F (v) = Σ̃ · e−j2πv∆t

←
F (v) +

←
S(v) (2.25)

where v denotes the frequency and
←
F (v),

←
S(v), Σ̃ are the global inward flow

vector, the global source inward flow vector, and the global scattering matrix,

respectively.

Thus in the frequency domain, the field strength prediction becomes a linear

matrix inversion problem

←
F (v) =

(
I − Σ̃ · e−j2πv∆t

)−1←
S(v) (2.26)

where I is the identity matrix.

Due to the huge size of the matrix corresponding to the discretization of

simulated scenarios, the direct matrix inversion is usually unbearable. Therefore,
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a MR structure is proposed to provide a computationally efficient way to solve this

problem in the MR-FDPF model. The MR structure is based on the binary tree of

the simulated scenarios obtained from the preprocessing stage. The MR structure

allows the MR-FDPF model to exploit recursively the relationship between the

stationary flows, the inward flows and the outward flows associated with each MR

node and thus the matrix inversion problem can be indirectly solved. Besides, the

preprocessing also greatly accelerates the MR-FDPF model. The preprocessing

gathers the main computational load of the MR-FDPF model, but it just needs

to be run once even if there are multiple signal sources.

Both the ParFlow model and the MR-FDPF model take into account all the

radio propagation effects, e.g. reflections, diffractions and refractions, and the

computational load does not depend on the number of reflections. However,

it is shown that the space discretization step ∆r should be at least six times

smaller than the wavelength in order to get a good propagation prediction [9].

The smaller the space discretization step is, the higher the computational load

becomes. Therefore, the main drawback of the ParFlow models is the high com-

putational time and load, which can be partly addressed by using a lower fake

frequency [9][46].

2.2.5 Semi-deterministic models

Semi-deterministic models are the combinations of deterministic models and

stochastic models or empirical models. They are aiming at improving the ef-

ficiency of purely deterministic models. For instance, one example of semi-

deterministic models can be to calculate the main signal paths by a deterministic

model, but to take into account other diffuse paths by an empirical model or

stochastic model. This way, the computational load and time from the determin-

istic model is reduced.

2.2.5.1 Dominant path model

The dominant path model was proposed by Wölfle et al. in [32][48][49][50]. It

was proposed based on the fact that in most cases, 90% of the signal energy

is contributed by one propagation path. The dominant path model overcomes
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the disadvantage of ray-optical models that ray-optical models need to trace and

compute a large number of rays (most of the rays contribute very little) and

their accuracy has a strong dependence on the accuracy of building databases.

For dominant path model, the dominant path is not a really existing physical

path, but an equivalent path representing a group of similar paths optimized

either by neural networks or by empirical regression [48]. So the inaccuracy of

building databases has very little influence on the accuracy of the prediction.

The dominant path model can usually achieve or even exceed the accuracy of

ray-optical models with a much less computational time.

2.2.5.2 Motif model

The Motif model [51][52][53] was first proposed by Pechac̆ et al. as a combination

of deterministic models and empirical models. It is a modified version of the ray

launching model. The Motif model introduces a probability radiation pattern to

control the subsequent directions of the rays impinging on obstacles. This prob-

ability radiation pattern is determined by three probabilistic parameters: the

probability of absorption, the probability of reflection and the probability of dif-

fuse scattering, which take into account the three basic propagation phenomenons:

absorption, reflection and diffuse scattering. These probabilistic parameters are

optimized by measurements. Since the Motif model does not require to know the

electrical properties of materials and avoid the Fresnel equations and any other

complex computations, the required computational time and load are reduced

compared to a conventional ray launching model.

2.2.5.3 Geometry-based Stochastic Channel Models

Geometry-based channel models calculate the received signal based on the lo-

cations of scatterers in the propagation environments. Unlike deterministic

geometry-based models, e.g. ray tracing, whose locations of scatters are pre-

scribed according to the specific propagation environment, the Geometry-based

Stochastic Channel Models (GSCMs) choose their locations of scatters and clus-

ters (a collection of scatterers) in a stochastic way [22][54][55][56]. For instance,

the GSCMs choose the locations of the scatters and clusters, or even the number
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of the scatterers and clusters according to a certain distribution function. Each

realization provides a different propagation channel. Therefore, the advantage of

the GSCMs is that they can simulate a wide variety of radio channels, and for

a specific radio propagation scenario, the GSCMs take into account of the na-

ture of randomness. But on the other hand, for a specific propagation scenario,

how to find the correct parameters associated to the specific scenario, e.g. the

distribution function of the locations of the scatters, is the most difficult task.

The GSCMs are widely used by the European Cooperation in Science and

Technology (COST) community, the Wireless World Initiative New Radio (WIN-

NER) partners and the 3rd Generation Partnership Project (3GPP).

2.3 Chapter summary

In this chapter, we first introduced the three basic propagation mechanisms:

reflection, refraction and diffraction. And then the free space propagation was

described which is the ideal and simplest propagation case, but it provides us an

insight of how signal is attenuated with the Tx-Rx distances. The form of the

free space path loss model is thus popularly adopted by empirical models.

For the indoor radio propagation models, we categorized them mainly into

four groups: empirical models, stochastic models, deterministic models and semi-

deterministic models. Empirical models usually consider the path loss as function

of some meaningful parameters such as distance, frequency, antenna heights etc.

The parameters in empirical models are optimized according to a best fit to

measurement data. Since empirical models are just functions of distance and

frequency etc, they are usually very easy to implement and require very low

computational load. However, they have the disadvantage of low accuracy for a

specific scenario because they do not take the specific propagation environment

into account. Stochastic models are those which use random variables to model

the random aspects of radio channels. The PDFs of the random variables follow

a certain law according to the observations from intensive measurements. Like

empirical models, the stochastic models are also easy to implement and have a

low level of accuracy for a specific scenario. Deterministic models simulate radio

wave propagation based on the Maxwell’s equations and they take the specific
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radio propagation environments into account. Thus, deterministic models usually

possess a high level of accuracy for a specific scenario and most of them, e.g.

ray launching and FDTD, can provide a coverage map for the whole simulated

area, i.e. not just a point-to-point prediction. But their main disadvantages

are firstly the high computational load and secondly the strong dependence of

the prediction accuracy on the accuracy of the building databases. The semi-

deterministic models are the combinations of deterministic models and stochastic

models or empirical models which aim at either improving the computational

efficiency of purely deterministic models or introducing a stochastic part to model

the randomness of realistic radio channels since realistic radio channels are a kind

of random processes due to moving objects.

This chapter provides a clear understanding of the existing indoor radio prop-

agation models. The understanding of the characteristics associated to each radio

propagation model allows an easy understanding of the following chapters, espe-

cially Chapter 4.
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Chapter 3

Radio link quality evaluation

After a state-of-the-art survey of the existing indoor radio propagation models

in Chapter 2, this chapter mainly talks about the characterization of determin-

istic channels and randomly time-variant linear channels and then a number of

parameters used to evaluate the radio link quality will be introduced. These pa-

rameters include such as the mean received signal power, the SNR, the SINR, the

Probability Density Function (PDF), the outage probability, the level-crossing

rate, the average fade duration, the BER and the throughput. Most of these

parameters will be extracted based on the deterministic MR-FDPF model in the

latter chapters.

3.1 Characterization of deterministic channels

The radio propagation channel can be considered as a time-variant linear filter

which transforms input signals into output signals. Since the input signal and

output signal can be described in both the time and frequency domain, there exist

totally four system functions to describe the behavior of the channel, i.e., the time-

variant impulse response, the time-variant transfer function, the Doppler-variant

impulse response and the Doppler-variant transfer function [23].

Time-variant impulse response

Mathematically, the radio propagation channel can be represented by a time-

variant impulse response h(t, τ) as shown in Fig. 3.1 and the received signal
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h(t, )τ
x(t) y(t)

Figure 3.1: Radio propagation channels.

y(t) can be obtained by convolving the transmit signal x(t) with the time-variant

impulse response h(t, τ)

y(t) =

∫ ∞
−∞

x(t− τ)h(t, τ)dτ (3.1)

Time-variant transfer function

Applying the Fourier transform to the time-variant impulse response h(t, τ)

with respect to the variable τ leads to the time-variant transfer function H(t, f)

H(t, f) =

∫ ∞
−∞

h(t, τ) exp(−j2πfτ)dτ (3.2)

The relationship between the transmit signal x(t) and the received signal y(t)

is given by

y(t) =

∫ ∞
−∞

X(f)H(t, f) exp(j2πft)df (3.3)

Doppler-variant impulse response

Similarly, applying the Fourier transform to the time-variant impulse response

h(t, τ) with respect to the variable t leads to the Doppler-variant impulse response

s(v, τ)

s(v, τ) =

∫ ∞
−∞

h(t, τ) exp(−j2πvt)dt (3.4)

The Doppler-variant impulse response s(v, τ) describes the spreading effect of

the radio channel to the transmit signal in both the delay and Doppler domains.

Doppler-variant transfer function

Finally, applying the Fourier transform to the Doppler-variant impulse re-

sponse s(v, τ) with respect to τ leads to the Doppler-variant transfer function
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Figure 3.2: Interrelations among the four system functions for deterministic chan-

nels.

B(v, f)

B(v, f) =

∫ ∞
−∞

s(v, τ) exp(−j2πfτ)dτ (3.5)

The interrelations among the above four system functions are shown in Fig.

3.2, where the symbols F and F−1 denote the Fourier transform and the inverse

Fourier transform, respectively.

3.2 Characterization of randomly time-variant

linear channels

As mentioned previously, radio channels have the nature of randomness in reality.

We thus interpret them as randomly time-variant linear systems [41]. A complete

description of such radio channels requires a joint multidimensional PDF of all

the system functions which is in practice too complicated to obtain. Hence, a

less accurate but more realistic approach which is frequently used is based on

a second-order description, i.e. the autocorrelation function of various system

functions [23][37].

Here, we still use the h(t, τ), H(t, f), s(v, τ) and B(v, f) to represent the ran-

domly time-variant impulse response, the randomly time-variant transfer func-

tion, the randomly Doppler-variant impulse response and the randomly Doppler-
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variant transfer function, respectively, for notational simplicity. The autocorre-

lation functions of the four system functions for the randomly time-variant linear

systems are defined as follows:

Rh(t, t
′, τ, τ ′) = E {h∗(t, τ)h(t′, τ ′)} (3.6)

RH(t, t′, f, f ′) = E {H∗(t, f)H(t′, f ′)} (3.7)

Rs(v, v
′, τ, τ ′) = E {s∗(v, τ)s(v′, τ ′)} (3.8)

RB(v, v′, f, f ′) = E {B∗(v, f)B(v′, f ′)} (3.9)

The autocorrelation functions depend on four variables, which are still rather

complicated. Hence, the Wide-Sense Stationary Uncorrelated Scattering (WS-

SUS) assumption is usually made to further simplify the autocorrelation func-

tions. Under the assumption of the WSSUS, the autocorrelation functions of the

four system functions satisfy the following relationships:

Rh(t, t+ ∆t, τ, τ ′) = Ph(∆t, τ)δ(τ − τ ′) (3.10)

RH(t, t+ ∆t, f, f + ∆f) = RH(∆t,∆f) (3.11)

Rs(v, v
′, τ, τ ′) = Ps(v, τ)δ(v − v′)δ(τ − τ ′) (3.12)

RB(v, v′, f, f + ∆f) = PB(v,∆f)δ(v − v′) (3.13)

Now the P-functions depend only on two variables, which greatly simplifies the

analysis. The Ph(∆t, τ) is called the delay cross power spectral density ; The

RH(∆t,∆f) is called the time frequency correlation function ; The Ps(v, τ)

is called the scattering function and the PB(v,∆f) is called the Doppler

cross power spectral density . They are connected to each other by the

Fourier transform. Their interrelations are shown in Fig. 3.3
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3.2 Characterization of randomly time-variant linear channels

1−F

F

F

1−F

hP ( t, )τΔ

BP (v, f)Δ

HR ( t, f)Δ ΔsP (v, )τ

Figure 3.3: Interrelations among P-functions for WSSUS channels.

With the autocorrelation functions of the system functions in randomly time-

variant linear channels, it is possible to obtain the autocorrelation function of

the received signal y(t) given the autocorrelation function of the transmit signal

x(t). In the following part, we will show how the autocorrelation function of the

received signal are related to those of the system functions. Here, we just take the

randomly time-variant impulse response h(t, τ) system function as an example.

For other system functions, they can be derived in a similar way.

From Eq. 3.1, we know that the autocorrelation function of the received signal

y(t) can be expressed as Ry(t, t
′)

Ry(t, t
′) = E {y∗(t)y(t)}

= E

{∫ +∞

−∞

∫ +∞

−∞
x∗(t− τ)x(t′ − τ ′)h∗(t− τ)h(t′ − τ ′)dτdτ ′

}
=

∫ +∞

−∞

∫ +∞

−∞
x∗(t− τ)x(t′ − τ ′)E {h∗(t− τ)h(t′ − τ ′)} dτdτ ′

=

∫ +∞

−∞

∫ +∞

−∞
x∗(t− τ)x(t′ − τ ′)Rh(t, t

′, τ, τ ′)dτdτ ′

(3.14)

This shows that the autocorrelation function of the received signal can be de-

termined by the autocorrelated functions of the system functions of radio chan-

nels. For WSSUS channels, we have Rh(t, t
′, τ, τ ′) = Ph(∆t, τ)δ(τ − τ ′), where
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3.3 Radio link quality parameters

∆t = t′ − t. So Eq. 3.14 becomes

Ry(t, t+ ∆t) =

∫ +∞

−∞

∫ +∞

−∞
x∗(t− τ)x(t+ ∆t− τ ′)Ph(∆t, τ)δ(τ − τ ′)dτdτ ′

=

∫ +∞

−∞
x∗(t− τ)x(t+ ∆t− τ)Ph(∆t, τ)dτ

(3.15)

For the case ∆t = 0, it becomes

Ry(t, t) =

∫ +∞

−∞
|x(t− τ)|2Ph(τ)dτ (3.16)

where Ph(τ) = Ph(0, τ) is known as the Power Delay Profile (PDP). The Eq.

3.16 means that for WSSUS channels, the autocorrelation function of the received

signal is determined by the Power Delay Profile Ph(τ) of the radio channels.

If ergodicity holds, the PDP can be obtained from the time-variant impulse

response according to

Ph(τ) = lim
T→∞

1

2T

∫ T

−T
|h(t, τ)|2dt (3.17)

3.3 Radio link quality parameters

This thesis focuses mainly on the indoor radio propagation, where the Doppler

shift is negligible, so we are more interested in two of the autocorrelation functions

of the system functions for randomly time-variant linear channels: the delay

cross power spectral density Ph(∆t, τ) and the time frequency correlation function

RH(∆t,∆f).

For the time frequency correlation function RH(∆t,∆f), when ∆t = 0,

RH(0,∆f) = RH(∆f) (3.18)

The RH(∆f) is called the Frequency Correlation Function (FCF). When

∆f = 0,

RH(∆t, 0) = RH(∆t) (3.19)
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3.3 Radio link quality parameters

The RH(∆t) is called the Time Correlation Function (TCF). From Fig.

3.3, it is easy to know that the PDP Ph(τ) and the FCF RH(∆f) are a Fourier

transform pair.

Two useful statistical parameters associated to Ph(τ) are the mean delay

τm and the root mean square delay τrms:

τm =

∫∞
0
τPh(τ)dτ∫∞

0
Ph(τ)dτ

(3.20)

τrms =

√∫∞
0

(τ − τm)2Ph(τ)dτ∫∞
0
Ph(τ)dτ

(3.21)

The root mean square delay τrms is of special importance because it has been

shown that the error probability induced by the delay dispersion is proportional

to the root mean square delay, but has no obvious relationships with the shape

of the PDP [23]. This means it is not necessary to know about the actual shape

of the PDP, but only the root mean square delay.

For the time frequency correlation function RH(∆t,∆f), there are also two

statistical parameters associated to it: the coherence bandwidth Bc and the

coherence time Tc. The coherence bandwidth Bc is the minimum value of

∆f for which RH(∆f) equals some predefined values, e.g. 0.5 or 0.9. It is a

parameter used to indicate how large the bandwidth is over which the signals are

still strongly correlated. Similarly, the coherence time Tc is the minimum value

of ∆t for which RH(∆t) equals some predefined values. It is a measure of how

long the time is over which the signals are still strongly correlated.

3.3.1 First-order fading statistics

In radio propagation channels, the received signal power fluctuates as a function

of the time, space and frequency. To quantify the impacts of fading channels

on the system performance, a wireless network designer must quantify first the

distribution of the received signal power or voltage envelope.

Mean received signal power, SNR and SINR

Among all the first-order fading statistics, the mean received signal power

is maybe the most common parameter since it is the most intuitive measure of the
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3.3 Radio link quality parameters

radio link quality. According to the Shannon’s Theorem, the achievable channel

capacity C is a function of the available bandwidth B and the Signal-to-Noise

Ratio (SNR) as follows

C = B · log 2(1 + S/N) (3.22)

where S and N are the mean received signal power and the the mean noise power,

respectively. The Ratio S/N is the SNR.

In AWGN channels, the SNR has an explicit relationship with the BER of

radio channels. The bigger the SNR, the smaller the BER (i.e. the better the

radio channels). In fading channels, since the instantaneous SNR is random, we

use the mean SNR instead of the instantaneous SNR as a measure of the radio

link quality. The mean SNR is computed as follows for fading channels

γ̄ =

∫ ∞
0

γPγ(γ)dγ (3.23)

where γ and γ̄ denotes the instantaneous SNR and the mean SNR, respectively,

and Pγ(γ) denotes the PDF of the instantaneous SNR.

For the radio communication scenario where multiple base stations or users

exist, the received signal powers from any other irrelevant transmitters act like

a kind of noise for a dedicated base station or user (called interference). There-

fore, the concept of the Signal to Interference plus Noise Ratio (SINR) is

introduced and it is defined as follows

SINR =
S

I +N
(3.24)

where I denotes the power of the interference. From the definition above, it is

known that the meaning of the SINR is the same as the SNR except that the

SINR takes the interference into account as a kind of noise.

It is of importance to note that for those radio propagation models which

provide a separate coverage map for each transmitter, the SINR is very easy to

compute since the interference is just the sum of the received powers from other

irrelevant transmitters.

Probability Density Function
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3.3 Radio link quality parameters

Mean received power is just one aspect of the first-order behavior of radio

channels [57]. In order to have a better understanding of the first-order behavior

of radio channels, the received signal power or envelope Probability Density

Function (PDF) is necessary.

Since power P is just the square of envelope α, the power PDF and the

envelope PDF can be interconverted according to:

fP (P ) =
1

2
√
P
fα(
√
P ) (3.25)

fα(α) = 2αfP (α2) (3.26)

According to [57], the envelope PDF fα(α) and the characteristic function

ΦXY (v) are a Fourier-Bessel transform pair as follows:

fα(α) = α

∫ ∞
0

ΦXY (v)J0(vα)vdv (3.27)

ΦXY (v) =

∫ ∞
0

fα(α)J0(vα)dα (3.28)

Besides, the envelope PDF fα(α) has also a relationship with the well-known

Moment Generating Function (MGF) Mγ(s) which is defined by [25]

Mγ(s) =

∫ ∞
0

Pγ(γ) · esγdγ (3.29)

Here let’s take the Rayleigh fading as an example whose PDF is in Eq. 2.12.

Typically, after attenuated by the fading channel, the signal will be also perturbed

by Additive White Gaussian Noise (AWGN) which is normally independent of the

fading amplitude [25]. If we assume that the energy per symbol of the transmitted

signal is Es and the one-sided power spectral density of AWGN is N0, then the

instantaneous SNR per symbol will be γ = α2Es/N0.

The PDF of the instantaneous SNR per symbol can be obtained by introducing

a change of variables in the fading envelope PDF α

Pγ(γ) = Pα(

√
Ωγ

γ̄
)

/
2

√
γγ̄

Ω

=
1

γ̄
exp(−γ

γ̄
), γ ≥ 0 (3.30)
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3.3 Radio link quality parameters

where γ̄ = ΩEs/N0 denotes the average SNR per symbol.

Combining the definition of the MGF in Eq. 3.29, we can then easily obtain

the MGF of the Rayleigh fading

Mγ(s) = (1− sγ̄)−1 (3.31)

Similarly, we can obtain the MGF of the Rice fading and the Nakagami-m

fading. The MGF of the Rice fading is

Mγ(s) =
(1 + n2)

(1 + n2)− sγ̄
exp(

n2sγ̄

(1 + n2)− sγ̄
) (3.32)

If substituting the Rice K factor for the n2 in Eq. 3.32, we can then obtain the

MGF of the Rice fading as a function of the Rice K factor

Mγ(s) =
(1 +K)

(1 +K)− sγ̄
exp(

Ksγ̄

(1 +K)− sγ̄
) (3.33)

The MGF of the Nakagami-m fading is

Mγ(s) =
(

1− sγ̄

m

)−m
(3.34)

3.3.2 Second-order fading statistics

Although the first-order fading statistics are useful, they do not tell us how of-

ten the signal falls below a threshold and how long the signal stays below this

threshold. Such kind of fading statistics are important for the performance of

error-correction coding and spatial diversity etc.

Outage probability

The outage probability is defined as the probability that the instantaneous

BER exceeds a threshold or equivalently the instantaneous SNR falls below a

corresponding threshold [25]

Poutage =

∫ γth

0

Pγ(γ)dγ (3.35)

where Pγ(γ) is the PDF of the SNR and γth is the corresponding threshold of the

SNR.
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3.3 Radio link quality parameters

An interesting property of the Poutage is that the Poutage is related to the MGF

of the SNR as follows [25]

Poutage =
1

2πj

∫ σ+j∞

σ−j∞

Mγ(−s)
s

esγthds (3.36)

This relationship to the MGF can be easily derived according the definition of

the MGF in Eq. 3.29. This relationship is very useful to compute the Poutage in

practice since the MGF of many fading models are already available.

Level-crossing rate

The level-crossing rate N(γth) is defined as the average number of crossings

per second that the signal falls below a threshold

N(γth) =

∫ ∞
0

γ′fγ,γ′(γth, γ
′)dγ′ (3.37)

where fγ,γ′(γth, γ
′) is the joint PDF of γ and its time derivative γ′.

Average fade duration

The average fade duration is the amount of time that the signal stays below

a threshold once it has crossed that threshold. The average fade duration T (γth)

can be calculated as the ratio of the outage probability to the level-crossing rate:

T (γth) =
Poutage
N(γth)

(3.38)

3.3.3 Bit error rate and bit error probability

The Bit Error Rate (BER) is a key parameter for measuring the quality of radio

links. It is defined as the ratio of the number of error bits to the total number of

transferred bits

BER =
Nerror

Ntotal

(3.39)

where Nerror and Ntotal are the number of error bits and the number of transferred

bits, respectively. The BER provides an end-to-end measure of radio links. Unlike

other parameters stated above which reflects radio link quality indirectly, the BER

measures the link quality directly, i.e. the SNR, the average fade duration etc
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3.4 Chapter summary

reflect the radio link quality through their impacts on the BER. Hence, the BER

is the fundamental parameter for radio link quality and it has been widely used.

Another relevant parameter is the Bit Error Probability (BEP). The BER

can be considered as the estimate of the BEP. The larger the total number of the

transferred bits is, the more accurate the estimate becomes.

3.3.4 Throughput

The throughput is a higher layer concept to measure the link quality. The

throughput is defined as the sum of data rates delivered to all terminals in a

network

Throughput =
N∑
i=1

Ri (3.40)

where Ri is the data rate for the i-th terminal and N is the total number of

terminals in the network. The throughput is usually measured in bits per second,

i.e. bps. High throughput is the basis for a system to provide all kinds of high

quality services.

3.4 Chapter summary

This chapter was dedicated to the radio link quality evaluation. We started with

the characterization of deterministic channels whose behavior can be determined

by any one of their four system functions. However, a realistic radio channel is a

kind of random process whose characteristics can not be completely determined in

a deterministic manner. The better way is to describe them statistically. Thus,

the autocorrelation functions of the four system functions are introduced and

they are widely used in describing the behavior of randomly time-variant linear

channels. The last part of this chapter listed a number of fading parameters

which will be used in the latter chapters to evaluate the radio link quality.
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Chapter 4

Extraction of fading statistics

based on the MR-FDPF model

As stated in Chapter 2, the MR-FDPF model falls into the category of determin-

istic models. Deterministic models can usually provide an accurate radio coverage

prediction. In reality, radio channels have the nature of randomness due to e.g.

moving people or objects. Thus, they can not be rigorously simulated by a purely

deterministic model. However, it is believed that some fading statistics can be

extracted from deterministic models and these statistics can be used to describe

radio channels in reality.

In this chapter, the large scale and small scale fading statistics are extracted

based on the MR-FDPF model after a detailed introduction of the MR-FDPF

model in Section 4.1. The extraction performance is verified by comparisons with

measurements. These extracted large scale and small scale fading statistics can

be very useful for system level simulators. At the end, a semi-deterministic model

is proposed based on the the extracted large scale propagation characteristic and

the small scale fading statistics. The proposed semi-deterministic model is based

on the deterministic MR-FDPF model but introduces a stochastic part to take

into account the random aspect of the realistic channels.
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4.1 The MR-FDPF model

4.1 The MR-FDPF model

This section gives a more detailed description of the MR-FDPF model which has

been briefly introduced in Chapter 2.

4.1.1 The FDPF model

We start with the Frequency-Domain ParFlow model (FDPF) model. When

applying the Fourier transform on both sides of the local scattering equation

(Eq. 2.20) in the ParFlow model, we obtain the local scattering equation for the

FDPF model as follows

~F (r, v) = Σf (r, v) ·
←
F (r, v) + ~S(r, v) (4.1)

where Σf (r, v) = Σa(r)·e−j2πvdt. Now we show how the inner flow can be removed

from the FDPF model and only the border flows, i.e. the inward flows and

outward flows are enough for the electric field prediction. Let’s define the border

outward flow vector, the border inward flow vector and the inner flow vector in

the frequency domain as follows:

~Fb(r) =


~fE(r)
~fW (r)
~fS(r)
~fN(r)

 ;
←
F b(r) =


←
fE(r)
←
fW (r)
←
fS(r)
←
fN(r)

 (4.2)

^

F (r) =
(

^

f 0(r)
)

(4.3)

If the Σf (r, v) in Eq. 4.1 is written in the form of

Σf (r, v) =

(
Σee(r) Σei(r)
Σie(r) Σii(r)

)
(4.4)

then according to Eq. 2.22, it is easy to obtain that

Σee(r) = σ0 ·


1 αr 1 1
αr 1 1 1
1 1 1 αr
1 1 αr 1

 Σei(r) = σ0 ·


Yr
Yr
Yr
Yr


Σie(r) = σ0 ·

(
1 1 1 1

)
Σii(r) = σ0 · βr

(4.5)
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4.1 The MR-FDPF model

where σ0 = ar
2nr

2 e
−j2πvdt. The border flow vector of a source is

~Sb(r) =


~sE(r)
~sW (r)
~sS(r)
~sN(r)

 (4.6)

For a real source node, i.e. not an equivalent source node discussed later, the
^
s0(r) = 0 since it has no inner flow. Now the local scattering equation (Eq. 4.1)

can be expressed as(
~Fb(r)
^

f o(r)

)
=

(
Σee(r) Σei(r)
Σie(r) Σii(r)

)
·

( ←
F b(r)
^

f o(r)

)
+

(
~Sb(r)

0

)
(4.7)

Solving this equation with respect to
^

f o(r), we obtain

^

f o(r) = (I − Σii(r))
−1 ·

(
Σie(r) ·

←
F b(r)

)
(4.8)

~Fb(r) = Σb(r) ·
←
F b(r) + ~Sb(r) (4.9)

where

Σb(r) = Σee(r) + Σei(r) · (I − Σii(r))
−1 · Σie(r) (4.10)

After substituting the Σee(r), Σei(r), Σie(r) and Σii(r) with their corresponding

matrix in Eq. 4.5, the Σb(r) can be expressed as follows

Σb(r) = σ0 ·


σ1 σ2 σ1 σ1

σ2 σ1 σ1 σ1

σ1 σ1 σ1 σ2

σ1 σ1 σ2 σ1

 (4.11)

where σ1 = 1 + Yr · kr, σ2 = αr + Yr · kr and kr = σ0
1−σ0·βr .

Finally, the electric field can be computed only with the inward flows as follows

Ψ(r, v) =
1 + Yr · kr

nr2
·

∑
d=E,W,S,N

←
f d(r, v) (4.12)
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4.1.2 The MR approach

The Eq. 4.9 is the local scattering equation for the FDPF model which contains

only the border flows. When written in the global form, the local scattering

matrix will be huge even if the inner flow has already been removed. Thus the

direct matrix inversion is still unbearable for most of scenarios.

In [6][58], Gorce et al. proposed a Multi-Resolution (MR) decomposition of

this problem which avoids the direct matrix inversion. It is based on the binary

tree decomposition of the simulated scenarios and the concept of the MR nodes.

This approach is thus called the MR approach.

The binary tree decomposition of the simulated scenarios is conducted as

follows: First, the simulated scenario, i.e. the head node, is divided into two

child nodes along its main discontinuity line. Second, each of the two child nodes

is further divided into another two child nodes, and so on as shown in Fig. 4.1.

Finally, the division is terminated when the smallest predefined nodes are reached,

e.g. the usual ParFlow pixels or the homogeneous nodes.

All the nodes in the binary tree of the simulated scenarios are called the MR

nodes. One MR node is a rectangular aggregate of usual ParFlow pixels whose

sides are associated with inward or outward flows as shown in Fig. 4.2. The

property of the MR nodes is exactly the same as usual ParFlow pixels except

that the MR nodes usually contain a set of ParFlow pixels. For instance, the

outward flows and inward flows associated to the MR nodes are also bound by

the local scattering equation. The MR node which is immediately on the top

of another two smaller nodes is called the father node of the two smaller nodes.

Meanwhile, the two smaller nodes are called the child nodes of their top father

node. From the binary tree, it is obvious that except the head node and the pixel

nodes, all the father nodes can be the child nodes of their top father nodes and

all the child nodes can be also the father nodes of their underneath child nodes.

For the head node, it only has the child nodes. For the pixel nodes, they only

have the father nodes.

In the following, we explain that the local scattering matrix of a father node

can be derived from those of its two child nodes. The derivation depends on

the direction of gathering of the child nodes, i.e., the horizontal gathering or the

46



4.1 The MR-FDPF model

Source nodePixel node

Homogeneous node

Head node

Figure 4.1: The binary tree of the simulated scenario and the MR nodes
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Figure 4.2: The usual ParFlow pixel and the MR node
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Figure 4.3: The upward and downward phase

vertical gathering. Here, we take the horizontal gathering as an illustration, but

the vertical gathering can be derived in the similar way.

Assume that the child nodes i and j are at level l in the binary tree (see Fig.

4.3) with the border outward flow vector ~Fb(b
l
i) and ~Fb(b

l
j) respectively as follows

~Fb(b
l
i) =


~fE(bli)
~fW (bli)
~fS(bli)
~fN(bli)

 ; ~Fb(b
l
j) =


~fE(blj)
~fW (blj)
~fS(blj)
~fN(blj)

 (4.13)

From the previous knowledge (e.g. Eq. 4.9), we know that the border outward

flow vector can be obtained from the border inward flow vector through the local

scattering equation involving only the border flows. Thus, for the child node i,
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4.1 The MR-FDPF model

we have
~Fb(b

l
i) = Σb(b

l
i) ·

←
F b(b

l
i) + ~Sb(b

l
i) (4.14)

where

Σb(b
l
i) = Σee(b

l
i) + Σei(b

l
i) · (I − Σii(b

l
i))
−1 · Σie(b

l
i) (4.15)

Whatever, we can write the Σb(b
l
i) into the following form

Σb(b
l
i) =


σbEE(bli) σbEW (bli) σbES(bli) σbEN(bli)
σbWE(bli) σbWW (bli) σbWS(bli) σbWN(bli)
σbSE(bli) σbSW (bli) σbSS(bli) σbSN(bli)
σbNE(bli) σbNW (bli) σbNS(bli) σbNN(bli)

 (4.16)

where σbWE(bli) for example means the coefficient for the east inward flow propa-

gating to the west outward flow. For the child node j, we have the same results

by just replacing the subscript i with j.

Now, we move to the father node k at the top level l+ 1. From Fig. 4.3, it is

straightforward that

~fE(bl+1
k ) = ~fE(blj);

~fW (bl+1
k ) = ~fW (bli)

~fS(bl+1
k ) =

(
~fS(bli)
~fS(blj)

)
; ~fN(bl+1

k ) =

(
~fN(bli)
~fN(blj)

)
(4.17)

←
fE(bl+1

k ) =
←
fE(bli);

←
fW (bl+1

k ) =
←
fW (blj)

←
fS(bl+1

k ) =

( ←
fS(bli)
←
fS(blj)

)
;

←
fN(bl+1

k ) =

( ←
fN(bli)
←
fN(blj)

)
(4.18)

^

f 0(bl+1
k ) =

( ←
fW (bli)
←
fE(blj)

)
=

(
~fW (blj)
~fE(bli)

)
(4.19)

Then, the outward flow vector and inward flow vector of the father node k can

be expanded as

~F (bl+1
k ) =


~fE(bl+1

k )
~fW (bl+1

k )
~fS(bl+1

k )
~fN(bl+1

k )
^

f 0(bl+1
k )

 =



~fE(blj)
~fW (bli)
~fS(bli)
~fS(blj)
~fN(bli)
~fN(blj)
~fW (blj)
~fE(bli)


(4.20)
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←
F (bl+1

k ) =



←
fE(bl+1

k )
←
fW (bl+1

k )
←
fS(bl+1

k )
←
fN(bl+1

k )
^

f 0(bl+1
k )

 =



←
fE(bli)
←
fW (blj)
←
fS(bli)
←
fS(blj)
←
fN(bli)
←
fN(blj)
←
fW (bli)
←
fE(blj)


(4.21)

Therefore, the local scattering matrix of the father node k is

Σf (b
l+1
k ) =

[0] σbEW (blj) [0] σbES(blj) [0] σbEN(blj) [0] σbEE(blj)
σbWE(bli) [0] σbWS(bli) [0] σbWN(bli) [0] σbWW (bli) [0]
σbSE(bli) [0] σbSS(bli) [0] σbSN(bli) [0] σbSW (bli) [0]

[0] σbSW (blj) [0] σbSS(blj) [0] σbSN(blj) [0] σbSE(blj)
σbNE(bli) [0] σbNS(bli) [0] σbNN(bli) [0] σbNW (bli) [0]

[0] σbNW (blj) [0] σbNS(blj) [0] σbNN(blj) [0] σbNE(blj)
[0] σbWW (blj) [0] σbWS(blj) [0] σbWN(blj) [0] σbWE(blj)

σbEE(bli) [0] σbES(bli) [0] σbEN(bli) [0] σbEW (bli) [0]


(4.22)

which is totally determined by the local scattering matrices of its child nodes i

and j. Then

Σee(b
l+1
k ) =


[0] σbEW (blj) [0] σbES(blj) [0] σbEN(blj)

σbWE(bli) [0] σbWS(bli) [0] σbWN(bli) [0]
σbSE(bli) [0] σbSS(bli) [0] σbSN(bli) [0]

[0] σbSW (blj) [0] σbSS(blj) [0] σbSN(blj)
σbNE(bli) [0] σbNS(bli) [0] σbNN(bli) [0]

[0] σbNW (blj) [0] σbNS(blj) [0] σbNN(blj)


(4.23)

Σei(b
l+1
k ) =


[0] σbEE(blj)

σbWW (bli) [0]
σbSW (bli) [0]

[0] σbSE(blj)
σbNW (bli) [0]

[0] σbNE(blj)

 (4.24)
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Σie(b
l+1
k ) =

(
[0] σbWW (blj) [0] σbWS(blj) [0] σbWN(blj)

σbEE(bli) [0] σbES(bli) [0] σbEN(bli) [0]

)
(4.25)

Σii(b
l+1
k ) =

(
[0] σbWE(blj)

σbEW (bli) [0]

)
(4.26)

Since there is a relationship between the local scattering matrix of the father

node and those of its two child nodes, this relationship can be used to facilitate

us in solving the electric field prediction problem. Actually this is what the MR

approach does. The MR approach aims at solving the problem in two steps. The

first step is to compute the equivalent source of the father nodes which contain

a real or an equivalent child source node in the binary tree, e.g. along the red

dashed line in Fig. 4.1. This process starts from the pixel level and ends at the

head node level. The equivalent source is computed by setting the inward flows

to 0. The second step is to propagate the equivalent source obtained in the first

step to the pixel level. This step starts from the head node level with the initial

inward flows
←
F b(b

L
0 ) set to 0 according to the boundary conditions.

This is clear if we analyze the local scattering equation as follows(
~Fb(b

l+1
k )

^

F 0(bl+1
k )

)
=

(
Σee(b

l+1
k ) Σei(b

l+1
k )

Σie(b
l+1
k ) Σii(b

l+1
k )

)
·

( ←
F b(b

l+1
k )

^

F 0(bl+1
k )

)
+

(
~Sb(b

l+1
k )

^

S0(bl+1
k )

)
(4.27)

Solving this equation with respect to the
^

F 0(bl+1
k ) leads to

^

F 0(bl+1
k ) = (I − Σii(b

l+1
k ))−1 · Σie(b

l+1
k ) ·

←
F b(b

l+1
k ) + (I − Σii(b

l+1
k ))−1 ·

^

S0(bl+1
k )

(4.28)

And the local scattering equation involving only the border flows is obtained

~Fb(b
l+1
k ) = Σb(b

l+1
k ) ·

←
F b(b

l+1
k ) + ~Seq(b

l+1
k ) (4.29)

where

Σb(b
l+1
k ) = Σei(b

l+1
k ) · (I − Σii(b

l+1
k ))−1 · Σie(b

l+1
k ) + Σee(b

l+1
k ) (4.30)

~Seq(b
l+1
k ) = ~Sb(b

l+1
k ) + Σei(b

l+1
k ) · (I − Σii(b

l+1
k ))−1 ·

^

S0(bl+1
k ) (4.31)
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Figure 4.4: Computation of the equivalent source of the father node

To transform a father node into a source node, the outward flows of the father

node ~Fb(b
l+1
k ) should be determined. The outward flows are only driven by the

child source flows, i.e. the inward flows
←
F b(b

l+1
k ) = 0. Thus, according to Eq.

4.29,

~Fb(b
l+1
k ) = ~Seq(b

l+1
k ) (4.32)

= ~Sb(b
l+1
k ) + Σei(b

l+1
k ) · (I − Σii(b

l+1
k ))−1 ·

^

S0(bl+1
k ) (4.33)

where
^

S0(bl+1
k ) and ~Sb(b

l+1
k ) depend on which child node is the source and the

direction of gathering. For instance, for an horizontal gathering and the case

that the left child i is the source as show in Fig. 4.4:

^

S0(bl+1
k ) =

(
0

~sE(bli)

)
(4.34)

and

~Sb(b
l+1
k ) =


~sE(bl+1

k )
~sW (bl+1

k )
~sS(bl+1

k )
~sN(bl+1

k )

 =


0

~sW (bli)
~sS(bli)

0
~sN(bli)

0

 (4.35)

After obtaining the equivalent source of the head node in the first step, the

second step must propagate the equivalent source to the pixel level, i.e. computes

the inward flows of the child nodes from the head node (see Fig. 4.5). According
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Figure 4.5: Computation of the inward flows of the child nodes

to Eq. 4.20, it is known that the inward flows of the child nodes can be obtained

if we have known the inward flows and the inner flow of the father nodes. For the

inward flows, they are started by setting to 0 for the head node because no energy

is supposed to come from the outside according to the boundary conditions. For

the inner flow, it can be computed according to Eq. 4.28.

4.1.3 The MR-FDPF model

According to the description of the MR approach above, the final implementation

of the MR-FDPF model can be divided into the following four steps:

1. Discretize the simulated scenario and construct the binary tree .

2. Preprocessing phase : In this phase, three matrices associated with each

MR nodes are computed and stored because the computation of them does not

require any information of the sources. The tree matrices are the upward matrix,

the downward matrix and the inner matrix:

U(bl+1
k ) = Σei(b

l+1
k ) (4.36)

D(bl+1
k ) = Σie(b

l+1
k ) (4.37)

I(bl+1
k ) = (I − Σii(b

l+1
k ))−1 (4.38)
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These matrices will be used in the upward and downward phases.

3. The upward phase : The upward phase is only executed along the source

MR nodes, i.e. along the red dashed line in Fig. 4.1 from the pixel level to the

head node level. First, the upward phase computes and stores the steady-state

inner flows (driven by the source) according to

^

F
S

0 (bl+1
k ) = I(bl+1

k ) ·
^

S0(bl+1
k ) (4.39)

which will be used in the downward phase to compute the inner flow of the father

nodes. Second, the upward phase computes the equivalent source of the father

MR nodes according to

~Seq(b
l+1
k ) = ~Sb(b

l+1
k ) + U(bl+1

k ) ·
^

F
S

0 (bl+1
k ) (4.40)

4. The downward phase : Unlike the upward phase which is only executed

along the source MR nodes, the downward phase should be executed along all

the branches in the binary tree. The downward phase mainly computes the inner

flows of the father nodes and thus the inward flows of the child nodes can be

easily obtained. The inner flows of the father nodes can be computed according

to Eq. 4.28. More specifically, for the MR nodes which are not the equivalent

source nodes, it is

^

F 0(bl+1
k ) = I(bl+1

k ) ·D(bl+1
k ) ·

←
F b(b

l+1
k ) (4.41)

For the MR nodes which are the equivalent source nodes, it is

^

F 0(bl+1
k ) = I(bl+1

k ) ·D(bl+1
k ) ·

←
F b(b

l+1
k ) +

^

F
S

0 (bl+1
k ) (4.42)

For the inward flows, it is initiated with
←
F b(b

L
0 ) = 0 for the head node. Then the

inward flows of the child nodes can be obtained iteratively until the pixel level

is reached. At the end of the iterations, the frequency domain ParFlow linear

system is solved exactly, with no approximations.
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4.1.4 Calibration

A calibration process is usually considered to be imperative for any radio wave

propagation model since the properties of materials in the simulated scenarios

are never known exactly. According to Eq. 4.1 and Eq. 4.5, we know that in the

simulated scenarios, the effect of objects to the electromagnetic waves depends on

two parameters: the refraction index nr and the normalized absorption coefficient

ar. Hence, the two parameters of the objects in the simulated scenarios need to

be calibrated in the calibration process. It is noted that the absorption coefficient

of the air aair is also relaxed in the calibration process. It is based on the fact

that for a pure 2D model, its free space path loss is proportional to the Tx-Rx

separation distance d, i.e., PL(d) ∝ d. However, for a realistic 3D propagation,

its free space path loss is: PL(d) ∝ d2. Therefore, an attenuation coefficient aair

is introduced in the local scattering matrix for the air-filled pixels, modifying the

path loss model to

PL(d) ∝ d · a−d/∆r
air (4.43)

where ∆r is the discretization space step. This modified path loss model can fit

the realistic 3D propagation model over a finite range after an appropriate choice

of the aair [8].

The calibration process is done in two steps. The first step is to estimate the

constant offset as follows

∆Ψ =
1

m

m∑
k=0

(Ψmes (k)−Ψsim (k)) (4.44)

where Ψmes (k) and Ψsim (k) are the mean powers from measurements and sim-

ulations, respectively, and m is the total number of samples. A constant offset

always exists because of the numerical sources used in the MR-FDPF model,

compared to the real transmitters in reality. The second step of the calibration

process is to estimate the aair and (nmat, amat) by minimizing the cost-function

Q defined by the root mean square error (RMSE) between measurements and

predictions

Q = RMSE =

√√√√ 1

m

m∑
k=0

‖Ψmes (k)−Ψpred (k)‖2 (4.45)
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where

Ψpred (k) = Ψsim (k) + ∆Ψ (4.46)

are the mean powers from predictions. The minimization process is solved by

the direct search algorithm “DIRECT” by Jones et Al. in [59]. A more detailed

description about the calibration process of the MR-FDPF model can be found

in [60].

It is noted that it is not neccessary to perform the calibration process with

too many measurement points. Usually, only a few measurement points, e.g. a

subset of all the measurement points, already allow obtaining a relatively good

prediction results, e.g. the RMSE less than or around 8 dB.

4.1.5 Accuracy

In this subsection, we want to show which level of accuracy the MR-FDPF model

can normally achieve. Since currently, two groups of measurement data are avail-

able, we use them here to demonstrate the accuracy of the MR-FDPF model. The

first group of measurements is from Stanford University which was conducted by

Dr. Nicolai Czink in 2008 [61]. The second group was done in the CITI labora-

tory, INSA-Lyon, France.

4.1.5.1 Calibration with the measurements from Stanford University

The measurement data we use here to perform the calibration process corresponds

to the “I2I stationary” scenario measurement.

The office scenario

The scenario was a typical 16m x 34 m office environment made of 30 cubicles

and 7 small separated rooms. 8 transmitters and 8 receivers were distributed in

the office as illustrated in Fig. 4.6. All of them were equipped with omnidirec-

tional antennas and were fixed in their locations during the measurement. Four

materials were mainly used in the office, i.e., concrete for the main walls, plaster

for the internal walls, glass for the external glass wall and wood for the cubicles

located in the central part of the office.

Measurement setup
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Figure 4.6: The measurement scenario.

Table 4.1: Parameter values of materials optimized from the calibration

air absorbant wood plaster concrete glass

nmat 1.0 1.0 4.002058 1.5 5.4 2.1042523

amat 0.9999335 0.96879673 0.9999999 0.9999999 0.9999999 0.9999999

8 x 8 Multiple-Input Multiple-Output (MIMO) channels at a center fre-

quency of 2.45 GHz were measured simultaneously with a RUSK MEDAV chan-

nel sounder [62]. In the measurement, 120 time blocks covering a total time of

32 seconds and 220 frequency bins covering a total bandwidth of 70 MHz were

recorded.

Calibration with the measurements between all Txs and all Rxs

This calibration is performed with the measurement data from 64 links, i.e.,

the links between all the 8 Txs and all the 8 Rxs. The measurement data used

to perform the calibration are taken only from the center frequency of 2.45 GHz,

but are averaged along the time axis, i.e., averaged over the 120 time blocks.

The obtained parameter values of materials are listed in Table. 4.1. These

parameter values are configured to run the MR-FDPF simulation at 2.45 GHz

with 0 dBm transmit power. The discretization step is λ/6 ≈ 2 cm. The radio
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Figure 4.7: Radio coverage map of Tx3 simulated with the MR-FDPF model at

2.45 GHz plotted in dBm.

coverage map of Tx3 simulated with the MR-FDPF model is shown in Fig. 4.7

as an example.

The offset and the RMSE computed from the 64 links compared to the mea-

surements are: offset = -60.3912 dB; RMSE = 4.6618 dB;

Calibration with the measurements between Tx1 and all Rxs

This calibration is performed with the measurement data from 8 links, i.e., the

links between the Tx1 and all the 8 Rxs. The same as above, the measurement

data used to perform the calibration are taken only from the center frequency of

2.45 GHz, but are averaged over the 120 time blocks.

The obtained parameter values of materials are listed in Table. 4.2.

Table 4.2: Parameter values of materials optimized from the calibration

air absorbant wood plaster concrete

nmat 1.0 0.75 1.5917009 2.2833333 3.0013716

amat 0.9999492 1.0 1.0 1.0 1.0

These parameters are configured to run the MR-FDPF simulatoins at totally

23 frequency bins covering the whole bandwidth of 70 MHz, i.e., a frequency

spacing of 3.125 MHz and the 12-th frequency bin is centered at 2.45 GHz. This

is a kind of wideband simulations which will be detailed in Chapter 6. Here, we
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Figure 4.8: Comparison of the wideband fast fading characteristics of the link

Tx7-Rx3 from the simulation and measurement

just present the wideband fast fading characteristics of the link Tx7-Rx3 in Fig.

4.8 as an example.

Thus, we can compute the offset and the RMSE between the simulations and

measurements for the following three cases. The offset and the RMSE computed

only from the 8 links are: offset = -33.7677 dB; RMSE = 2.9488 dB; The offset

and the RMSE computed from all the 64 links are: offset = -30.8306 dB; RMSE

= 7.8923 dB; The offset and the RMSE computed from all the 64 links and all

the 23 frequency bins are: offset = -30.6846 dB; RMSE = 8.7830 dB;

From the above results, it is obvious that we get the minimum RMSE when

all the simulated points are calibrated with the measurements. The less the

simulated points are calibrated with the measurements, the larger the RMSE is.

4.1.5.2 Calibration with the measurements from the CITI laboratory

The measurements were done in the CITI laboratory, INSA-Lyon, France.

The scenario
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Figure 4.9: The CITI measurement scenario

The scenario is the CITI lab building at INSA-Lyon, France. The location of

the transmitter is marked by “Tx” in Fig. 4.9. The numbers in Fig. 4.9 indicate

the locations of the receivers. There are totally 70 numbers marked in Fig. 4.9,

but the point 41 was not measured due to the closure of the office door. Hence,

we finally have 69 measurement points.

Measurement setup

The measurements were done at 3.4 GHz. The transmitter included the ar-

bitrary waveform generator (ESG4438C by Agilent Technology) and the 6 dBi

omnidirectional antenna ECO6-3500. The equivalent isotropically radiated power

(EIRP) was 20 dBm. The mean powers at the 69 points above were measured

with the Handheld Spectrum Analyzer ROHDE & SCHWARZ FSH8 equipped

with the omnidirectional antenna ECO6-3500 (see Fig. 4.10). The parameters of

the FSH8 were configured as follows: F0 = 3.4 GHz; SPAN = 4.5 MHz; RBW =

300 KHz; SWT = 50 ms, where RBW and SWT denote the resolution bandwidth
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16 
 

Bandwidth=3MHz, Ref=-34dBm, Attenuation Att=0dBm, Sweep time SWT=20ms.  The EC06 3500 antenna 

was connected to the PORT1  RF input 50Ω. 

 

Figure 3.1.6. Spectrum Analyzer with the omnidirectional antenna 

 

3.2. SISO SOUNDER : THE MATLAB CODE 
In this experience, a time domain method is used. Using the properties of PN sequences to delay spread the 

channel and the correlation. 

For data input a PN sequence is transmitted. This sequence is the data reference and it is correlated with 

the received signal. 

Input parameters 

In this channel sounder the input parameters are: 

 The input data that is the type of PN (pseudo noise) sequence: it must be 11 or 15. 

 The  carrier frequency: 3.5GHz in this case. 

 The symbol rate: 46.081 MHz 

 The Span: 36MHz  

 The number of measures: 1 as default. If the measure is more then 1, the name of the measure file 

must be “name (n).mat”; n is a integer number which represents the number of measures. For 

example if there are 3 measures, they must be called “mes (1).mat, mes (2).mat, mes (3).mat”. So 

in the input “Nom de mesure” you must write: “mes”. In “Nombre de mesures” you write: “3”. For 

number of measure “1” it is necessary to write all the name of the file without “.mat”. 

 The dynamic range or threshold: Due to the low signal levels caused by shadow fading and the 

presence of multipath, a discriminative interval must be defined to take in consideration the paths 

with power level above a defined threshold. Only delayed signal within XdB (the dynamic range) of 

the peak value in the PDP were counted as significant for the RMS delay spread computation. It can 

be chosen by the user. 30dB as default. 

Figure 4.10: The Spectrum Analyzer FSH8 and the omnidirectional antenna

ECO6-3500

Table 4.3: Parameter values of materials optimized from the calibration

air absorbant concrete plaster wood glass

nmat 1.0 1.0 5.4444447 1.9444444 1.1666666 1.4166667

amat 0.9996667 0.9688 1.0 1.0 1.0 1.0

and the sweep time, respectively.

Calibration

The calibration is performed with 12 measurement points: 1, 5, 7, 11, 15,

20, 24, 27, 28, 32, 35, 40. The parameter values of materials optimized from the

calibration process are listed in Table. 4.3

The obtained parameter values are configured to run the MR-FDPF simula-

tions at both 3.4 GHz and 3.5 GHz. And then the offset and the RMSE can

be computed from all the 69 measurement points. Fig. 4.11 shows the radio

coverage map predicted at 3.5 GHz with the MR-FDPF model as an example.

The offset and the RMSE computed from the 3.4 GHz MR-FDPF simulation

are: offset = -43.0176 dB; RMSE = 8.4617 dB; The offset and the RMSE com-
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puted from the 3.5 GHz MR-FDPF simulation are: offset = -41.7559 dB; RMSE

= 8.5568 dB.

From the above results, we know that it is better to calibrate the simulations

at the exact frequency as you want to simulate because the RMSE will be larger

if you use the parameter values calibrated at a different frequency to perform the

simulations.
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Figure 4.11: The coverage map predicted with the MR-FDPF model.

4.2 Extraction of the large scale propagation

characteristics

In this section, we present the extraction of the large scale propagation charac-

teristics, namely, the mean path loss and the shadow fading. First, the large scale

propagation characteristics are described. Then whether or not the MR-FDPF

model is capable of simulating the shadow fading phenomenon is checked. At

last, how to extract the large scale propagation characteristics is addressed.
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4.2.1 Large scale propagation characteristics

When expressed in dB, the instantaneous path loss can be considered as the sum

of the mean path loss, shadow fading and small scale fading as follows [23]

PL(d) = L(d) +Xσ + F (4.47)

where PL(d), L(d), Xσ and F denote the instantaneous path loss, the mean path

loss, shadow fading and small scale fading associated with the Tx-Rx separation

distance d, respectively. Unlike the small scale fading which characterizes the

rapid fluctuations of the received signal strength over very short travel distances

(a few wavelengths), the large scale fading, i.e., shadow fading, characterizes

signal strength variation over large distances [4].

Typically, the mean path loss L(d) is deterministic and is log dependent on

the Tx-Rx separation distance d according to the one-slope model as follows

L(d) = L0 + 10n · log10(d) (4.48)

where L0 is a constant which accounts for system losses and n is the path loss

exponent depending on the specific propagation environment. For instance, in

free space propagation, n = 2.

The shadow fading Xσ is a zero-mean Gaussian distributed random variable

(in dB) with the standard deviation σ.

The small scale fading is typically described by the Rayleigh distribution for

the NLOS propagation or the Rice distribution for the LOS propagation [4].

The large scale propagation characteristics are very useful for determining

the coverage area or evaluating system performance. For instance, with the large

scale propagation characteristics, system designers can determine how large the

coverage area of a transmitter is and how much fade margin is required to achieve

a certain level of edge reliability.

4.2.2 The measurements and the MR-FDPF simulation

In order to extract the large scale propagation characteristics based on the MR-

FDPF model, the MR-FDPF simulation is the first step. Moreover, in order
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4.2 Extraction of the large scale propagation characteristics

to verify the extraction results from the MR-FDPF model, measurements are

necessary.

We use here the “I2I moving receivers” scenario measurements from Stanford

University [61] to verify our simulation results. Everything in the “I2I moving

receivers” scenario measurements was the same as in the “I2I stationary” scenario

measurements stated above except that the 8 receivers were randomly moved

inside their cubicles when conducting the measurements. For the large scale

fading study, narrowband measurements are sufficient, hence the measurement

data are restricted to the center frequency of 2.45 GHz. And note that the

averaging over the 120 time blocks implies the averaging over space since the

receivers were moving when recording.

The MR-FDPF model is configured with the parameter values of materials

given in Table. 4.1 optimized from the “I2I stationary” scenario measurements.

The MR-FDPF simulation is performed at 2.45 GHz with 0 dBm transmit power.

The discretization step is λ/6 ≈ 2 cm. An example of the radio coverage map

can be referred to Fig. 4.7.

4.2.3 Capability of simulating shadow fading phenomenon

From a theoretical point of view, the small scale fading and shadow fading can

be averaged out over an area, e.g. a square area of a proper size. In other

words, neither the small scale fading nor the shadow fading can be observed if

the averaging area is large enough. The obtained path loss curve after averaging

over a large enough area will be very smooth because it only contains the mean

path loss.

If the MR-FDPF model is capable of simulating the fading characteristics,

it should show the averaging effect described above. Therefore, we investigate

this by performing averaging over square areas of different sizes, from 5λ× 5λ to

50λ × 50λ, with a step of 5λ, where λ denotes the wavelength. The averaging

effect from the MR-FDPF model is shown in Fig. 4.12. In this figure, a shadowing

effect is evidenced over 5λ×5λ area, and 10λ×10λ area too, but there is a trend:

the larger the size of the averaging area is, the less the shadowing effect can be

observed. When the size of the area is about 40λ × 40λ, the shadowing effect
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Figure 4.12: The averaging effect over areas of different sizes.

almost can not be observed, which means that the shadowing has been averaged

out. Fig. 4.12 demonstrates that the MR-FDPF model is capable of simulating

the shadow fading.

4.2.4 Extraction of the large scale propagation character-

istics

In order to get the large scale propagation characteristics, first we should average

out the small scale fading. The obtained path loss after averaging out the small

scale fading is usually called the local mean path loss. The most critical point

for averaging out the small scale fading is the determination of the size of the

averaging area.

According to [18][37], if the samples are expressed in dB, the number of sam-

ples associated with 90% confidence interval is N = 85. Provided that for the

MR-FDPF model, a square area can be chosen, the number of samples asso-

ciated with each side of the square is thus
√
N . In addition, for a Rayleigh

distributed signal envelope, the uncorrelated distance for two adjacent samples
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Figure 4.13: The obtained local mean path loss, mean path loss and shadowing

from the MR-FDPF model.

is 0.38λ [37]. Finally, we obtain the minimum length of the side of the square is

0.38λ ×
√
N ≈ 3.8λ. On the other side, if it is a LOS propagation scenario, the

received signal envelope may be Rice distributed rather than Rayleigh, then in

this case a smaller sample size may be sufficient [37].

According to the description above, the local mean path loss averaged over

an area of 3.8λ× 3.8λ is obtained, shown in Fig. 4.13 by the red stars.

The local mean path loss includes both the mean path loss and the shadow

fading. Since the mean path loss depends on the log distance shown in Eq. 4.48,

we choose to get the L0 and n by using the curve fitting tool of Matlab such that

the difference between the local mean path loss and the estimated mean path loss

is minimized in a mean square error sense. Substituting the estimated L0 = 50.26

and n = 1.592 into Eq. 4.48, we obtain the mean path loss

L(d) = 50.26 + 10× 1.592 · log10(d) (4.49)

Here n = 1.592 indicates that there exists a waveguide effect in the propagation.

The obtained mean path loss is shown by the black continuous curve in Fig. 4.13.

Finally, the shadow fading can be obtained by just subtracting the mean path
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Figure 4.14: CDF comparison between the extracted shadow fading from the

MR-FDPF model and normal distribution.

loss from the local mean path loss, which is denoted by the blue circles in Fig.

4.13.

In order to validate the shadow fading we have extracted, we compare its

Cumulative Distribution Function (CDF) with that of a normal distribution.

The comparison result is shown in Fig. 4.14. From the figure, we can see that

the extracted shadow fading and the theoretical result are very similar.

Moreover, we also compute the standard deviation of the extracted shadow

fading. It is 5.87 dB.

4.2.5 Experimental evaluation

Here, we extract the large scale propagation characteristics from the measure-

ments. First of all, we obtain the local mean power by averaging over the 120

time blocks, which is shown by the red stars in Fig. 4.15. In the same way as in

the simulation, the deterministic mean path loss is obtained by curve fitting

L(d) = 47.25 + 10× 1.442 · log10(d) (4.50)
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Figure 4.15: The obtained local mean path loss, mean path loss and shadowing

from the measurements.

The mean path loss is shown in Fig. 4.15 by the black continuous curve. Once we

get the mean path loss, the shadow fading is obtained by subtracting the mean

path loss from the local mean path loss, which is denoted by the blue circles in

Fig. 4.15.

The CDF comparison between the extracted shadow fading and normal dis-

tribution is shown in Fig. 4.16. This good match demonstrates that the proposed

approach for extracting the shadow fading is effective. The standard deviation of

the extracted shadow fading from the measurement is 7.66 dB.

Finally, by comparing the parameters extracted from the MR-FDPF model

and the measurements in Table. 4.4, we can see that they fit each other very well.

The path loss exponents n from both the MR-FDPF model and measurements

are smaller than 2, which indicates that there exists a waveguide effect in the

propagation. The standard deviation of shadowing from simulation is slightly

lower than that from the measurements. We suggest that this is due to the

unmodeled furniture which would contribute more to fading. The match between

the simulation and measurements demonstrates that the MR-FDPF model is

capable of simulating the large scale propagation characteristics.
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Figure 4.16: CDF comparison of the extracted shadowing and normal distribution

from the measurements.

Table 4.4: Comparison between the simulation and the measurements

n The standard deviation σ

MR-FDPF 1.59 5.87 dB

Measurement 1.44 7.66 dB

4.3 Extraction of the small scale fading statis-

tics

In this section, we describe how the small scale fading statistics can be extracted

from the electric field strength predicted by the MR-FDPF model. The extraction

performance is verified by comparisons with the measurement results.

4.3.1 Extraction of the small scale fading statistics

Since Doppler effects can normally be ignored in indoor scenarios, we assume

that the indoor radio channels are time-invariant. Thus, the general time-variant
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4.3 Extraction of the small scale fading statistics

impulse response h(t, τ) becomes h(τ). For different positions in a radio cover-

age, the impulse responses are different, which means the impulse responses are

functions of position
⇀
r . Here, we use the vector position

⇀
r because the relative

positions of neighbor pixels will be used and the wavevector
⇀

k will be estimated.

Transform the impulse response h(τ,
⇀
r) into the frequency domain by the Fourier

transform, we get the transfer function H(f,
⇀
r).

For the MR-FDPF model, since the transmitted signal is always known, the

electric field strength predicted with the MR-FDPF model at the position
⇀
r

can be equivalently described in terms of the transfer function H(f,
⇀
r) of the

propagation channel between the transmitting antenna and a virtual receiving

antenna located at the position
⇀
r .

At every position
⇀
r , the electric field strength and, consequently, the radio

channel transfer function H(f,
⇀
r) satisfies the wave equation [9]. Thus, the trans-

fer function H(f,
⇀
r) can be legitimately represented by the Stochastic Local Area

Channel (SLAC) model [57] defined as follows

H(f,
⇀
r) =

N∑
l=1

αl exp(j[Φl −
⇀

k l ·
⇀
r − 2πfτl]) + w(f,

⇀
r) (4.51)

Each plane wave in Eq. 4.51 is characterized by the constant amplitude αl, the

wavevector
⇀

k l, the time delay τl, and the phase Φl which is a realization of the

random variable following the uniform distribution over the interval [0, 2π]. The

term w(f,
⇀
r) in Eq. 4.51 corresponds to the diffuse wave component [57].

Implicitly, in Eq. 4.51, we assume that the transfer function H(f,
⇀
r) as well as

the electric field strength predicted by the MR-FDPF model is a realization of the

corresponding stochastic process. This assumption can be justified by observing

that multiple uncertainties are inherent in modeling any complex propagation

scenario. For example, adjustments (corrections) made to the model geographical

database would result in a new realization of the predicted transfer function

H(f,
⇀
r).

We also presume that the diffuse wave component w(f,
⇀
r) in Eq. 4.51 is a

realization of a random zero-mean complex Gaussian process uncorrelated with

respect to the frequency f and the spatial position
⇀
r .
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4.3 Extraction of the small scale fading statistics

The parameters
{
αl, τl,

⇀

k l

}N
l=1

of the SLAC model in Eq. 4.51 are then de-

termined by using the well-known Space-Alternating Generalized Expectation-

maximization algorithm (SAGE) [63]. Note that under assumptions made above,

the estimates

{
α̂l, τ̂l,

⇀̂

k

}N
l=1

obtained by the SAGE algorithm asymptotically ap-

proach the Maximum-Likelihood (ML) estimates.

The estimated parameters

{
α̂l, τ̂l,

⇀̂

k

}N
l=1

of the SLAC model in Eq. 4.51 allow

determining the statistical properties of the radio channel corresponding to the

link between the transmitter and receiver positions. The statistical properties,

namely the Power Delay Profile (PDP) P̂h(τ̂l), the envelope Probability Density

Function (PDF) f̂R(ρ), the Frequency Correlation Function (FCF) R̂H(∆f), the

Rice factor K̂, the mean delay τ̂m, and the root mean square delay τ̂rms are

calculated as follows [64]:

P̂h(τ̂l) =
N∑
l=1

|α̂l|2δ (τ − τ̂l) (4.52)

f̂R(ρ) = ρ

∫ ∞
0

J0(υρ)[
N∏
l=1

J0(α̂lυ)]υdυ (4.53)

R̂H(∆f) =
N∑
l=1

|α̂l|2 exp(−j2πτ̂l∆f) (4.54)

K̂ =
max

(
(α̂l)

2)
N∑
l=1

(α̂l)
2 −max

(
(α̂l)

2) (4.55)

τ̂m =

N∑
l=1

τ̂lα̂
2
l

N∑
l=1

α̂2
l

(4.56)

τ̂rms =

√√√√√√√√
N∑
l=1

(τ̂l − τ̂m)2α̂2
l

N∑
l=1

α̂2
l

(4.57)
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4.3 Extraction of the small scale fading statistics

Furthermore, multiple realizations of the transfer function H(f,
⇀
r) can be

obtained by substituting the estimated parameters

{
α̂l, τ̂l,

⇀̂

k l

}N
l=1

into the SLAC

model in Eq. 4.51.

4.3.2 Experimental evaluation

In order to verify the proposed method, we conduct both simulations and mea-

surements.

4.3.2.1 Simulation scenario

In the simulation, CITI lab has been chosen as the indoor propagation scenario

where the MR-FDPF model is used. An example of the radio coverage map

of the CITI lab predicted with the MR-FDPF model is given in Fig. 4.11. In

order to extract the fading statistics, the simulations have been performed at

41 frequencies, at the range from 3.477 GHz to 3.523 GHz, with the frequency

step of 1.152 MHz. The discretization step of the MR-FDPF model is λ/6 = 1.4

cm. The locations of the transmitter and the virtual receiver are indicated by

Tx and Rx, respectively, in Fig. 4.11. The Rx is a virtual rectangular antenna

array consisting of 7 × 7 = 49 equidistant elements (see Fig. 4.17) with spacing

equal to 1.4 cm, i.e., the discretization step. The transmitter power is 17 dBm.

The SAGE algorithm is applied to the predicted channel transfer function. The

number of multiple paths is assumed to be 15.

1.4cm

Figure 4.17: The virtual rectangular antenna array of Rx.
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4.3 Extraction of the small scale fading statistics

4.3.2.2 Measurement setup

The measurement is conducted at the same position in CITI lab as shown in Fig.

4.11. The transmitter includes the arbitrary waveform generator (ESG4438C

by Agilent Technology) and the directional horn antenna (3164-08 by ETS-

Lindgren). The vector signal analyser (VSA 89641 by Agilent Technology) is

equipped with a 3.5 GHz, 6 dBi, omnidirectional antenna ECO6-3500. The 0.2

dB bandwidth of the VSA is 20 MHz. Fourteen measurements corresponding

to different time instances have been conducted. For each measurement, 9 posi-

tions, i.e., 3×3 rectangular antenna array with spacing equal to λ/2 = 4.2cm (see

Fig. 4.18) are measured around the Rx in Fig. 4.11. For each referred receiving

position, 4608080 samples are collected during 100 ms.

Figure 4.18: The 3× 3 rectangular antenna positions.

4.3.2.3 Results

In order to evaluate the proposed approach, we compare the simulation and mea-

surement results. Fig. 4.19 presents the comparison of channel impulse responses

of the SLAC model and that obtained directly by the MR-FDPF model. We can

see that they have a good match of each other. The envelope PDFs of the SLAC
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Figure 4.19: The comparison of the impulse response.

model estimated by the proposed approach has also been compared to the his-

togram of channel transfer function in Fig. 4.20. The histogram of the envelope

of the measured channel transfer function is depicted in Fig. 4.21. The Rayleigh

PDF curve is also plotted for comparison reasons. From Fig. 4.20 we see that

the PDF of the SLAC model fits very well the PDF of the MR-FDPF model.

Furthermore, both of them match the PDF obtained from the measurements and

shown in Fig. 4.21.

The angular power spectrum of the SLAC model is given in Fig. 4.22. The

relative position of the transmitter and the receiver is also shown in Fig. 4.22.

As can be seen from Fig. 4.22, the estimated angles are grouped near 180 and

0/360 degrees. The group around 180 degrees includes the line-of-sight (LOS)

direction, which is approximately equal to 160 degrees. The second group, i.e.,

the waves with the angles near 0/360 degrees are mainly due to the reflection by

the walls behind the Rx.

By the proposed approach, we can also obtain the estimated Rice factor, mean

delay, and root mean square delay from the predictions provided by the MR-

FDPF model. The results are presented in the Table 4.5. The 95% confidence

intervals calculated using Chebyshev’s inequality are also given in Table 4.5. It
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Figure 4.21: The histogram PDF of measurements.
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Figure 4.22: The estimated channel angular power spectrum.

Table 4.5: Comparison of the estimated values from the SLAC model and mea-

surements

Parameters

From the

SLAC

model

Mean Values

from

Measurements

Confidence

Intervals

K̂ 1.3979 1.4705 [0, 4.9432]

τ̂rms 3.178× 10−8s 5.2711× 10−8s [0, 1.4158× 10−7s]

τ̂m 5.7568× 10−8s

can be seen that the simulation results are well located in the 95% confidence

intervals of the measurements.

In Fig. 4.23, we show the comparison of the estimated FCF obtained from

the SLAC model and the measurements data.

The angular spectrum and the mean delay estimated by the proposed ap-

proach have not been compared with the characteristics estimated from the mea-

surements as the measurements taken at different time instances can not be syn-

chronized on the VSA 89641.

From what we can compare and what we have compared, we know that basi-

cally the MR-FDPF model is capable of providing the small scale fading and the

proposed approach is efficient in extracting the small scale fading statistics.
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Figure 4.23: The comparison of FCFs obtained from the SLAC model and mea-

surements.

4.4 A semi-deterministic model

Based on the extracted large scale propagation characteristics and the small scale

fading statistics in the previous two sections, we propose here a semi-deterministic

channel model which is based on the deterministic MR-FDPF model, but intro-

duces a stochastic part to take into account the random aspect of the realistic

channels.

This semi-deterministic channel model has the form of Eq. 4.47 in dB

PL(d) = L(d) +Xσ + F (4.58)

The parameters in this model can be determined as follows:

1. The deterministic path loss L(d) can be determined by the extraction

approach of the large scale propagation characteristics based on the MR-FDPF

simulations stated in Section 4.2.

2. The second term Xσ is a zero-mean Gaussian distributed random variable

whose standard deviation can be determined by the extraction approach also in

Section 4.2.
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3. The third term F is the small scale fading random variable whose envelope

PDF can be determined either by the estimated PDF in Eq. 4.53 or by the

estimated Rice K factor in Eq. 4.55 stated in Section 4.3.

4.5 Chapter summary

This chapter first gave a detailed introduction of the MR-FDPF model. Then

the large scale propagation characteristics were described and extracted based on

the MR-FDPF model. After that, the small scale fading statistics were extracted

by using the SAGE algorithm based on the simulated electric field provided by

the MR-FDPF model. The extracted large scale and small scale fading statistics

have been verified by comparisons with the measurements. Finally, based on the

extraction of the large scale propagation characteristics and the small scale fading

statistics, a semi-deterministic model was proposed which introduces a stochastic

part to take into account the random aspect of the realistic channels.
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Chapter 5

Realistic prediction of BER for

adaptive modulation

The Bit Error Rate (BER) is an important parameter for evaluating the perfor-

mance of wireless networks. Many wireless applications, such as, adaptive mod-

ulation and coding (AMC) scheme, or optimal power allocation, use the BER to

dynamically adapt their schemes. Hence, a realistic and accurate prediction of

BER is crucial for these higher-layer protocols and applications.

Moreover, from the channel modeling perspective, many radio propagation

simulators provide the mean power prediction. However, only mean power is not

enough to fully describe the behavior of radio channels. Realistic radio channels

are random processes and present fading due to e.g. movements of surrounding

objects. A fine radio propagation simulator should also be able to provide the

fading information, and thus an accurate BER prediction can be achieved. Ac-

tually, the BER statistics is indeed the input needed by network simulators, e.g.

NS-3, to perform realistic simulations.

In this chapter, a realistic BER for indoor wireless transmissions is predicted.

It can be divided into two parts. The first part is for Single-Input Single-Output

(SISO) systems, whereas the second part is for the Maximum Ratio Combin-

ing (MRC) diversity systems. With the predicted BER, adaptive modulation is

implemented for both systems at the end.
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5.1 Theoretical BER analysis

5.1 Theoretical BER analysis

Theoretically, the average BER over fading channels can be obtained by averaging

the corresponding BER of Additive White Gaussian Noise (AWGN) channels over

the PDF of the instantaneous SNR which depends on the fading [25]. That is

Pb:fading(E) =

∫ ∞
0

Pb:AWGN(E; γ)Pγ(γ)dγ (5.1)

where γ
∆
= α2Eb/N0 denotes the instantaneous SNR per bit, α is the fading ampli-

tude, Eb is the signal energy per bit, N0 is the noise power spectral density, Pγ(γ)

is the PDF of the instantaneous SNR depending on the fading, Pb:fading(E) is the

BER over fading channels and Pb:AWGN(E; γ) is the BER over AWGN channels

conditioned on the fading. The Pb:AWGN(E; γ) can be obtained by substituting

γ for Eb/N0 in the BER over AWGN channels Pb:AWGN(E).

Normally, the Pb:AWGN(E) is a Gaussian Q-function for the ideal coherent

detection and the desired form of the Gaussian Q-function is

Q(x) =
1

π

∫ π/2

0

exp(− x2

2sin2θ
)dθ (5.2)

Making use of the definition of the MGF in Eq. 3.29, we come to a unified

and simplest way for computing the Pb:fading(E) since the MGFs of a number

of fading models are already available. Then typically, the Pb:fading(E) is just a

single integral with finite limits and integrand containing the MGF of the fading.

One point we should emphasize is that the Pb:AWGN(E) here which is used to

compute the Pb:fading(E) should not be the commonly used approximate AWGN

BER obtained from the approximate relationship between the BER Pb(E) and

Symbol Error Rate (SER) Ps(E) as follows

Pb(E) ∼=
Ps(E)

log2M
(5.3)

because this approximation is only valid for large symbol SNR, but the limits of

the integral in equation (5.1) are from zero to infinity (i.e. γ can vary from zero

to infinity over fading channels). The Pb:AWGN(E) used here should be either the

exact AWGN BER or the approximate AWGN BER which is accurate at both

low and high SNR.
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5.2 Estimation of the fading parameters

Here, we adopt the approximate AWGN BER of Lu et al. [65] as the

Pb:AWGN(E) to compute the Pb:fading(E) since it is very accurate at both low

and high SNR and it is much simpler than the exact AWGN BER [66][67][68][69].

Thus, for M-PSK modulations, we have

Pb:AWGN(E) ∼=
2

max(log2M, 2)
·

max(M
4
,1)∑

i=1

Q

(√
2Eblog2M

N0

sin
(2i− 1)π

M

)
(5.4)

where M is the modulation order, e.g. M = 2 for BPSK, M = 4 for QPSK.

For M-QAM modulations, we have

Pb:AWGN(E) ∼=
4

log2M
(1− 1√

M
) ·

√
M/2∑
i=1

Q

(
(2i− 1)

√
3Eblog2M

N0(M − 1)

)
(5.5)

Therefore, for the BER for the M-PSK modulations over fading channels, we

have

Pb:fading(E) ∼=
2

max(log2M, 2)
·

max(M
4
,1)∑

i=1

1

π

∫ π/2

0

Mγ

(
− log2M

sin2θ
sin2 (2i− 1)π

M

)
dθ

(5.6)

For the BER for the M-QAM modulations over fading channels, we have

Pb:fading(E) ∼=
4

log2M
(1− 1√

M
) ·

√
M/2∑
i=1

1

π

∫ π/2

0

Mγ

(
−(2i− 1)2 · 3 · log2M

2sin2θ · (M − 1)

)
dθ

(5.7)

From above, it is noticed that the BER over fading channels depends exactly

on the MGF of fading channels. Recall the MGF of fading channels provided in

Chapter 3, we know that the MGF of fading channels is usually related to the

fading parameters and the average SNR. Therefore, in the following section, we

introduce the methods for estimating the fading parameters, namely, the Rice K

factor and the m parameter of the Nakagami-m fading.

5.2 Estimation of the fading parameters

The widely used multipath fading channels are Rayleigh, Rice or Nakagami-m

fading channels. Rayleigh fading has no fading parameters, so there are totally
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two fading parameters to be estimated: the Rice K factor for the Rice fading and

the m parameter for the Nakagami-m fading.

5.2.1 Estimation of the Rice K factor

The Rice K factor is defined as the ratio of the power of the LOS component to

the NLOS components (usually called diffuse components):

K =
A2

2σ2
(5.8)

where A is the amplitude of the LOS component and 2σ2 is the variance of

the diffuse components. Over the past few decades, the estimation of the Rice

K factor has attracted great interest [70][71][72] since the Rice K factor is an

indicator of the radio link quality.

The most commonly used method for estimating the Rice K factor is the

moment-based method [70] because of its simplicity compared to other methods,

such as the ML method [71][72]. However, the moment-based method has its lim-

itation: when the Rice K factor values are small, the moment-based method can

provide sometimes physically meaningless results [71][72][73]. In other words, the

moment-based method only works well for large Rice K factor values. However,

for the indoor scenarios, the Rice K factor is usually small at most of positions

due to the rich presence of the walls and furniture. Furthermore, we would like

to provide a Rice K factor map of the whole building, so we hope the applicable

range of the estimation method can be as large as possible. Thus, we decide not

to use the traditional moment-based method, but the RICEFIT method devel-

oped by Ridgway in Matlab [74]. We choose the RICEFIT method also because

it estimates the A and σ separately. This is important for the goodness of fit

tests in the following subsection where a fully specified CDF is needed, since only

a Rice K factor can not completely determine the CDF of a Rice distribution.

5.2.2 Estimation of the m parameter

There exist a number of methods for estimating the m parameter of the

Nakagami-m fading [75][76][77][78][79]. From the Eq. 2.15, we know that the
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m parameter can be estimated by estimating the Rice K factor first, and then

map it to the m parameter. On the other hand, we can also estimate the m

parameter by the Greenwood’s method [78] since it outperforms other estimators

[76]. The Greenwood’s method is stated briefly as follows [76]

m̂ =

{
0.5000876+0.1648852y−0.0544274y2

y
, 0 < y ≤ 0.5772

8.898919+9.059950y+0.9775373y2

y(17.79728+11.968477y+y2)
, 0.5772 < y < 17

(5.9)

where y = ln(µ̂2/G), ln(·) denotes the natural logarithm operator, µ̂2 is the

arithmetic mean of sample power, i.e. µ̂2 = 1
N

N∑
n=1

x2
n, and G is the geometric

mean of sample power G =
(∏N

n=1 x
2
n

)1/N

.

5.2.3 Remarks of goodness of fit tests

The Kolmogorov-Smirnov test [80] is one of the most well-known goodness of fit

tests which is based on the maximum absolute vertical difference between the

empirical distribution function (EDF) Fn(x) and the hypothetical distribution

function F (x). The Kolmogorov-Smirnov test has the advantage of no assump-

tions made about the distribution of the data. However, the classic Kolmogorov-

Smirnov test with the standard table of critical values is only valid when the

F (x) is fully specified. If the distribution is not fully specified and one or more

parameters need to be estimated from the data, the results will be conservative

[81]. The requirement of a fully specified distribution is a serious limitation be-

cause in reality, most of the time we don’t know exactly the distribution. We

usually need to estimate parameters from the data. Therefore, some authors

have developed the modified versions of the Kolmogorov-Smirnov test so that

they can be suitable for the cases where a fully-specified distribution can not be

provided. For example, Lilliefors has adapted the Kolmogorov-Smirnov test for

normal distribution with unknown mean and variance in [82], and exponential

distribution with unknown mean in [83], respectively. As a modification of the

Kolmogorov-Smirnov test, the Anderson-Darling test [84] has been improved by

Stephens to test the following distributions with unknown parameters, such as,

normal, exponential, Weibull, extreme value, gamma, logistic, etc [80].
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What we plan to test here is the Rice distribution with unknown parameters,

which is unfortunately, to the best of our knowledge, available neither from the

Anderson-Darling test and Lillierfors test nor from any other available goodness

of fit tests. This is because the Rice distribution is not even a member of dis-

tributions in the location-scale family in which case the distribution of the test

statistics will not depend on the true values of the unknown parameters [80].

Since the goodness of fit test is not the main purpose of this work, we decide to

still use the Kolmogorov-Smirnov statistic to perform the goodness of fit test but

just keep in mind that the results are conservative. For example, when the sample

size is 144, the critical value 0.112 in the standard table corresponds to the 5%

significance level, but if we estimate any parameters of the Rice distribution from

the data, this 0.112 actually corresponds to a significance level less than 5%.

5.3 Realistic prediction of BER in SISO systems

for adaptive modulation

As we have already known, a realistic prediction of BER can be achieved if the

fading parameters and the average SNR are provided. The fading parameters and

the average SNR can be estimated based on the MR-FDPF model. Actually, the

MR-FDPF model provides us a coverage map at the pixel level as shown in Fig.

4.11. This coverage map can be partitioned into lots of rectangular local areas

which contain a certain number of pixels. Then the fading parameters and the

SNR can be estimated over these local areas. Each local area leads to a fading

parameter and a SNR and thus a BER. Hence at the end, each of them forms a

new map at the local-area level.

Here, the CITI building of INSA-Lyon is still chosen as the indoor propagation

scenario simulated with the MR-FDPF model. The simulation is performed at

the frequency of 3.5 GHz with the discretization step of 2 cm. The location of the

Tx is inside a small office which is indicated by Tx in Fig. 5.1. The Equivalent

Isotropically Radiated Power (EIRP) of the Tx is 23 dBm.
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K map with goodness of fit test
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Figure 5.1: K map with goodness of fit test.

5.3.1 Rice K factor map

As discussed above, here we use the RICEFIT method to estimate the Rice K

factor. In Fig. 5.1, the Rice K factor map extracted from the MR-FDPF model

is shown in dB. Each K factor in Fig. 5.1 is estimated over a local area with

23× 23 pixels, but only 12× 12 = 144 of them taken according to an alternating

pattern are used to perform the estimation since only uncorrelated samples are

expected. According to [37], the uncorrelated distance of two samples is about

0.38λ = 3.26 cm, and on the other hand, the distance between two pixels in the

simulation is 2 cm, so each pixel will be uncorrelated with its second neighbor.

5.3.2 Performance evaluation of the estimation of the

Rice K factor

In order to evaluate the performance of the estimated Rice K factor, we perform

the goodness of fit test. As discussed previously, the Kolmogorov-Smirnov test is

chosen and is performed at the 5% significance level although the actual signif-

icance level will be less than 5%. The grey points in Fig. 5.1 are the locations
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where the estimated Rice K factor has failed the Kolmogorov-Smirnov test. It

is observed that most of the failed Rice K factors are located at the top right

corner and outside the building. It is suggested that this is because the envelop

distribution there does not retain very strong Rice characteristics [85]. For the

failed locations, we don’t consider them in the following BER and modulation

maps since the estimated Rice K factors there are not reliable. They will be left

in grey as well.

5.3.3 Prediction of BER and AMC

It has been shown that the Rice K factor has an important impact on the capacity

and performance of wireless communication systems [86]. For instance, the BER

characteristics of wireless communication systems depend not only on the SNR,

but also on the Rice K factor. Therefore, the prediction of BER with considering

the Rice K factor will be more accurate.

In Fig. 5.2, we show the BER map for the QPSK modulation with considering

the Rice K factor. The BER is calculated from the value of the Rice K factor

and the SNR, considering the thermal noise over a bandwidth of 3.5 MHz. We

can also show the BER maps for AWGN channels. However, because the impact

of the Rice K factor on the BER is equivalent to that on modulation maps of

adaptive modulation schemes, we decide to only show here the modulation maps

for AWGN channels.

In order to simplify the study, we consider only the uncoded BER of 10−3 as

the threshold to adapt the modulation schemes. The possible modulations are:

BPSK, QPSK, 16QAM and 64QAM. In Fig. 5.3 and Fig. 5.4, the modulation

maps are obtained under the Rice and AWGN channels, respectively. In these

two figures, the numbers in the colorbar denote the modulation schemes: 1, 2, 3

and 4 denote the BPSK, QPSK, 16QAM and 64QAM, respectively, and 0 denotes

none of these four modulation schemes can satisfy the target BER. From Fig. 5.3

and Fig. 5.4, we can see that modulation maps under Rice channels and AWGN

channels are very different which illustrates that the widely used mean power

approach can lead to a completely false prediction.
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BER for Rice QPSK
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Figure 5.2: BER map for QPSK modulation under Rice channels.

Modulation map for Rice channels
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Figure 5.3: Modulation map under Rice channels.
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Modulation map for AWGN channels
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Figure 5.4: Modulation map under AWGN channels.

5.4 Realistic prediction of BER in MRC diver-

sity systems for adaptive modulation

For the cases where the MRC diversity is used, the computation of the Pb:fading(E)

depends on the MGF of the combined SNR PDF. Since we want the BER to

have a high level of accuracy, we try to make as less assumptions as possible.

Thus, here we consider the diversity reception with D nonidentically distributed

branches with arbitrary correlation. More specifically, we assume that the di-

versity branches share the same Nakagami-m fading parameter m, but they can

each have their own average SNR γ̄d (d = 1, 2, · · · , D). The envelope correlation

coefficient between any channel pairs (d, d′) (d, d′ = 1, 2, · · · , D) is denoted by

ρdd′ . Then, the MGF of the combined SNR PDF over the Nakagami-m fading
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channels is given by [87],

Md(s) =
D∏
d=1

(
1− sγ̄d

m

)−m
·∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



1
√
ρ12

(
1− m

sγ̄2

)−1

· · · √ρ1D

(
1− m

sγ̄D

)−1

√
ρ12

(
1− m

sγ̄1

)−1

1 · · · √ρ2D

(
1− m

sγ̄D

)−1

· · · ·
· · · ·
· · · ·

√
ρ1D

(
1− m

sγ̄1

)−1 √
ρ2D

(
1− m

sγ̄2

)−1

· · · 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−m

(5.10)

where |[M ]|D×D stands for the determinant of the D ×D matrix M . Substituting

the Eq. 5.10 into the Eq. 5.6 and Eq. 5.7, we can easily obtain the Pb:fading(E)

for the M-PSK and M-QAM modulations.

For the MRC diversity systems, we consider the Nakagami-m fading. There-

fore, in order to compute the BER, the m parameter of the Nakagami-m fading,

the average SNR for each diversity branch γ̄d and the envelope correlation coef-

ficient ρdd′ should be provided.

5.4.1 The m parameter map of the Nakagami-m fading

channels

As stated in Section 5.2, there exist a number of estimation methods for the m

parameter of the Nakagami-m fading, but here we adopt two methods: One is

the Rice K factor mapping method since we have already estimated the Rice K

factor in the previous section. The other one is the Greenwood’s method since it

outperforms others. The m parameter maps extracted from the MR-FDPF model

by the two methods are given in dB in Fig. 5.5 and Fig. 5.6, respectively. In

the two figures, each m parameter is obtained over a local area with dimensions

23 × 23 pixels, but only half of them taken based on an alternating pattern are

chosen to implement the estimations since only uncorrelated samples are needed.

The space discretization step of the MR-FDPF simulation is 2 cm.
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m map by Rice K factor mapping method with goodness of fit test
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Figure 5.5: The m parameter map by the Rice K factor mapping method with

goodness of fit test.

m map by Greenwood's method with goodness of fit test

 

 

20 40 60 80 100 120

10

20

30

40

50

60

70

80

90
-20 dB

-15 dB

-10 dB

-5 dB

0 dB

5 dB

10 dB

15 dB

20 dB

Tx

Figure 5.6: The m parameter map by the Greenwood’s method with goodness of

fit test.
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5.4.2 Performance evaluation of the estimation of the m

parameter of the Nakagami-m fading

We conduct the goodness of fit test to evaluate the estimation performance of the

m parameter of the Nakagami-m fading by the two above-mentioned methods.

The Kolmogorov-Smirnov test is adopted and performed at the 5% significance

level. The grey points in Fig. 5.5 and Fig. 5.6 denote the locations where

the estimated m parameter has failed the Kolmogorov-Smirnov test. From the

Fig. 5.5, we see that most of the estimated m values by the Rice K factor

mapping method have passed the Kolmogorov-Smirnov test, which validates that

the RICEFIT method developed by Ridgway [74] works well in estimating the

Rice K factor. Especially, the locations of the failed m values are basically in

accordance with those of the failed Rice K values where the envelope distributions

there are supposed to not retain very strong Rice characteristics [14]. At the

end, it is observed in Fig. 5.6 that the locations of the failed m values are

very few, which further proves that the Greenwood’s method is among the best

available methods for estimating the m parameter of the Nakagami-m fading.

Therefore, here we use the Greenwood’s method to estimate the m parameter for

the following BER prediction.

Moreover, the mean and the variance of the estimated m parameter by the

Greenwood’s method is 1.2854 and 0.4778, respectively. The mean value of 1.2854

indicates that the propagation environment under investigation is a Rayleigh-like

environment.

5.4.3 Prediction of BER and AMC with MRC diversity

The BER performance of the real-life diversity systems depends not only on the

SNR, but also on the fading parameters and the correlations among diversity

branches. Since it is possible to estimate the fading parameters and compute

the correlations among diversity branches based on the MR-FDPF model, the

predicted BER from the MR-FDPF model should be realistic and accurate. The

correlations among branches are computed based on the signal envelope of the

space samples around the corresponding antennas from the MR-FDPF model.

We compute the BER for the BPSK, QPSK, 16QAM and 64QAM modulation
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BER for QPSK with 1x3 Diversity
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Figure 5.7: The BER map for the QPSK with 1x3 Diversity.

schemes according to Eq. 5.6 and Eq. 5.7. Here taking the QPSK modulation

for example, we show the BER maps for the QPSK modulation with the 1x3

diversity, 1x2 diversity and SISO system in Fig. 5.7, Fig. 5.8 and Fig. 5.9,

respectively. In these three figures, the BER is computed based on the thermal

noise of 3.5 MHz bandwidth. It is observed that the BER difference between the

1x2 diversity and SISO system is larger than that between the 1x3 diversity and

1x2 diversity. This is reasonable because for diversity systems, the BER decreases

negative exponentially with the number of diversity branches.

For the AMC, we consider only the target uncoded BER of 10−3 to adapt the

modulation schemes. Fig. 5.10, Fig. 5.11 and Fig. 5.12 show the modulation

maps with the 1x3 diversity, 1x2 diversity and SISO system, respectively. The

numbers in the three figures: 1, 2, 3 and 4 denote the BPSK, QPSK, 16QAM and

64QAM, respectively. The number 0 denotes none of these modulation schemes

above can achieve the target BER. From the Fig. 5.7 - Fig. 5.12, we can see how

much the diversity can improve the system performance.
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BER for QPSK with 1x2 Diversity
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Figure 5.8: The BER map for the QPSK with 1x2 Diversity.

BER for QPSK with SISO
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Figure 5.9: The BER map for the QPSK with SISO systems.
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Modulation map with 1x3 Diversity
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Figure 5.10: The modulation map with 1x3 diversity with the BER threshold of

10−3.

Modulation map with 1x2 Diversity
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Figure 5.11: The modulation map with 1x2 diversity with the BER threshold of

10−3.
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Modulation map with SISO
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Figure 5.12: The modulation map with SISO with the BER threshold of 10−3.

5.5 Chapter summary

In this chapter, we presented how a realistic BER can be predicted based on

the MR-FDPF model. Actually, the BER maps for the simulated scenarios were

provided. Two systems were tackled in this chapter. The first one is the SISO

systems and the second one is the MRC diversity systems. For the BER of the

MRC diversity systems, the correlations among diversity branches were also taken

into account. The realistic prediction of the BER can be useful for many higher

layer applications. And finally, the adaptive modulation was implemented based

on the predicted BER for the both systems.
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Chapter 6

Wideband simulations

A great need of high data rate services has stimulated the development of the

wideband wireless communications. One of the facts that the wideband wireless

communications should face is that the wideband wireless channels usually suffer

from the frequency selective fading. Therefore, the radio channel models which

characterize large bandwidths are useful for the wideband wireless communication

systems to study their performance.

This chapter starts with two wideband simulation approaches based on the

MR-FDPF model. Then the wideband simulations are performed and the perfor-

mance of simulating the wideband multipath fast fading is verified by comparisons

with the measurements. At the end, the wideband block adaptive modulation for

Orthogonal Frequency-Division Multiplexing (OFDM) systems is implemented

based on the realistic prediction of the BER of each block of subcarriers.

6.1 Wideband simulation approaches

The wideband simulation can be achieved in two approaches based on the MR-

FDPF model. The first approach is the straightforward repetition of the MR-

FDPF model at multiple frequencies. The simulated frequency response has a

high level of accuracy since it is the exact solution of Maxwell’s equations at

each simulated frequency sample within the bandwidth. However, this accuracy

is achieved at the cost of high computational load. For instance, if the simulated
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bandwidth is 50 MHz and you want to simulate N frequencies within this band-

width, then the computational load is exactly N times of that of the narrowband

simulation. The finer the frequency response, the larger the computational load.

The second approach is proposed to significantly reduce the computational

load at the cost of acceptable degradation of the accuracy [88][89]. It is based

on the Neumann series expansion. According to the MR-FDPF model, the field

strength prediction at the frequency v0 ∈ B (B denotes the bandwidth) is the

solution of
←
F (v0) =

(
I − Σ̃(v0)

)−1←
S (6.1)

where Σ̃(v0) = Σ̃ · e−j2πv0∆t. Similarly, the field strength prediction at the fre-

quency v0 + ∆v ∈ B is the solution of

←
F (v0 + ∆v) =

(
I − Σ̃(v0 + ∆v)

)−1←
S (6.2)

Note that Σ̃(v0 + ∆v) = e−j2π∆v∆t · Σ̃(v0). Thus

←
F (v0 + ∆v) =

[
I − Σ̃(v0) + Σ̃(v0)− e−j2π∆v∆t · Σ̃(v0)

]−1←
S

=

[(
I − Σ̃(v0)

)(
I −

(
I − Σ̃(v0)

)−1

· Σ̃(v0) ·
(
e−j2π∆v∆t − 1

))]−1
←
S

=
(
I − Σ̃(v0)

)−1

·
[
I −

(
I − Σ̃(v0)

)−1

· Σ̃∆v

]−1
←
S

=

[
I −

(
I − Σ̃(v0)

)−1

· Σ̃∆v

]−1

·
←
F (v0)

(6.3)

where Σ̃∆v = Σ̃(v0) ·
(
e−j2π∆v∆t − 1

)
. Using the Neumann series expansion [90],

←
F (v0 + ∆v) can be written into the form of

←
F (v0 + ∆v) =

(
∞∑
n=0

[(
I − Σ̃(v0)

)−1

· Σ̃∆v

]n)
·
←
F (v0) (6.4)

Thus, the N-order approximation of
←
F (v0 + ∆v) is given by

←
F (v0 + ∆v) ≈

←
F (v0) +

←
F

(1)

(∆v) + · · ·+
←
F

(N)

(∆v) (6.5)
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where
←
F

(1)

(∆v) =
(
I − Σ̃(v0)

)−1

· Σ̃∆v ·
←
F (v0) (6.6)

and
←
F

(n+1)

(∆v) =
(
I − Σ̃(v0)

)−1

· Σ̃∆v ·
←
F

(n)

(v0) (6.7)

It is of importance to note that the similarity of Eq. 6.7 to Eq. 6.1 implies

that the (n + 1)-th order of
←
F

(n+1)

(∆v) can be solved by the MR-FDPF model

when setting the Σ̃∆v ·
←
F

(n)

(v0) as the source. This is very promising because it

means that the upward matrix, downward matrix and inner matrix obtained in

the preprocessing phase can be directly used to predict the electric field of its

neighbor frequencies, otherwise, the preprocessing should be redone. Actually,

the computational load of the preprocessing phase is the main computational

load of the MR-FDPF model.

6.2 Wideband multipath fast fading character-

istics

Radio waves can experience fast fading in the time domain, frequency domain and

space domain. Here, we focus mainly on the fast fading in the frequency domain.

Fig. 6.1 shows an example of the measured time frequency response of stationary

channels where only the fast fading in the frequency domain is obvious. The fast

fading in the time domain is minor here due to the stationary scenario, e.g. the

static transmitters and receivers. The fast fading in the frequency domain can be

explained by the constructive or destructive addition of multipath signals with

different phases. The multipath fast fading varies with frequencies since different

frequencies can lead to different arriving phases even the radio waves undergo the

same paths, thus the results of the multipath addition can be different. Moreover,

materials in the propagation scenarios behave differently at different frequencies.

Generally speaking, multipath fast fading is very sensitive and depends highly on

the scenarios.

Since the multipath fast fading is so sensitive, we believe that the MR-FDPF

model is advantageous in simulating it over the well-known Ray optical models
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6.2 Wideband multipath fast fading characteristics

Figure 6.1: Example of measured time frequency response of stationary channels.

due to its very fine accuracy. Moreover, its requirement of using a small dis-

cretization step compared to the wavelength allows identifying very accurately

all the different paths.

In order to show the ability of the MR-FDPF model in simulating the wide-

band multipath fast fading, the MR-FDPF simulations are performed at a whole

bandwidth of 70 MHz centered at 2.45 GHz. Totally, 23 frequency bins are

simulated which are evenly distributed in the bandwidth of 70 MHz. The wide-

band simulations here are done by the second wideband simulation approach of

the MR-FDPF model described in Section 6.1 since we are more interested in

the accuracy than the computational load. The scenario is the office scenario

in Stanford University where 8 transmitters and 8 receivers are distributed in

the office (See Fig. 4.6). The measurements which will be used to verify the

simulated wideband fast fading characteristics are the “I2I stationary” scenario

measurements. More details about the scenario and measurements can be found

in Chapter 4.

By the wideband simulations of the MR-FDPF model, we obtain the wideband

multipath fast fading characteristics. The simulated wideband fast fading results

are calibrated with the measurements between the Tx1 and all the 8 Rxs at only
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Figure 6.2: The comparisons of the wideband fast fading characteristics of the

links between the Tx7 and the Rx1-4.

the center frequency of 2.45 GHz, i.e. calibrated with 8 measurements. The

calibrated parameter values of materials are configured to run the MR-FDPF

simulations at all the 23 frequencies. The obtained offset and RMSE compared

to the measurements computed from all the 8 × 8 = 64 links and all the 23

frequency bins are: offset = −30.6846 dB; RMSE = 8.7830 dB;

Here, we present for example the wideband fast fading characteristics of the

links between 2 transmitters (Tx7 and Tx8) and 8 receivers from the simulations

and measurements in Fig. 6.2-6.5. In these figures, the receiving powers are

plotted in dBm and the horizontal ordinate is the frequency covering 70 MHz

centered at 2.45 GHz. The blue dash lines are the fading characteristics of the

simulations and the red solid lines are those of the measurements. From these

figures, we see that the wideband multipath fast fading from the simulations does

not fit exactly that from the measurements. As stated above, this is due to the

high sensitivity of the multipath fast fading.

In order to have a feeling of how sensitive the wideband multipath fast fading
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Figure 6.3: The comparisons of the wideband fast fading characteristics of the

links between the Tx7 and the Rx5-8.
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Figure 6.4: The comparisons of the wideband fast fading characteristics of the

links between the Tx8 and the Rx1-4.
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is, we investigate the fading variations by the MR-FDPF simulations when moving

the Rxs with one pixel distance, i.e., 2 cm in Fig. 6.6-6.7. These two figures show

that the fast fading characteristics can be very different even when moving 2 cm.

Therefore, we know that the fast fading characteristics is very sensitive and it is

not possible to get exactly the same fast fading characteristics at a given point

with the measurements. For instance, the positions of Txs and Rxs are not known

at such an accuracy level in both the simulations and measurements. And in our

simulations we did not include furniture which also modifies slightly the directions

and amplitudes of the different paths. Moreover, another important reason is that

for the wideband multipath fast fading characteristics, the simulation results are

only calibrated with 8 links at only one frequency bin, i.e. the center frequency

of 2.45 GHz. That is why the wideband multipath fast fading curves from the

simulations and the measurements in Fig. 6.2-6.5 fit best only at the center

frequency.

Since the fast fading characteristics are so sensitive and have a high level of

variations, it is very difficult to verify the fast fading characteristics obtained

from the simulations by the measurements. However, in reality we are much

more interested in how severe the channel fading is than how the channel fades.

Therefore, the simulations and measurements are not expected to have the same

fading curves, but have a comparable Fading Depth (FD).

6.2.1 Fading depth analysis

FD is an important parameter since it affects a lot the system performance. An

accurate knowledge of FD is very useful for the design of reliable communication

systems. It represents how severe the channel fading is. Here we define the FD

as:

FD = P̄i −min (Pi) (6.8)

where Pi are the received powers in dB, ·̄ and min (·) denote the mean and mini-

mum value of its variable, respectively. Here, we are mainly focusing on the FD

in the frequency domain since generally the indoor radio channels do not suffer

from large temporal variations.
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Figure 6.5: The comparisons of the wideband fast fading characteristics of the

links between the Tx8 and the Rx5-8.
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Figure 6.6: The comparisons of the wideband fast fading characteristics of the

links between the Tx7 and the Rx1-4 when moving the Rxs with 2cm.
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Figure 6.7: The comparisons of the wideband fast fading characteristics of the

links between the Tx7 and the Rx5-8 when moving the Rxs with 2cm.

In the table 6.1, we compare the mean FD of the total 8 × 8 = 64 links

from the measurements and the simulations. This table shows that the mean

FD from the simulations are very closed to that from the measurements, which

means that the MR-FDPF model is capable of simulating the wideband fast

fading characteristics.

Table 6.1: Comparison of the FD from the measurements and simulations

Measurements Simulations

Mean values of the FD 12.6762 14.4655

6.3 Wideband block adaptive modulation

For the wideband wireless communications, subcarriers in the whole bandwidth

under investigation can have very different SNRs and fading severities due to

the wideband multipath fast fading. Therefore, in order to achieve a higher
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data rate, the subcarrier adaptive modulation or the block adaptive modulation

techniques can be implemented for OFDM systems [91][92]. In the block adaptive

modulation technique, all the subcarriers of the OFDM systems are first divided

into a number of blocks and then all the subcarriers within a block employ the

same modulation scheme. In this way, the signaling overhead is reduced compared

to the subcarrier adaptive modulation. The modulation scheme for each block of

subcarriers is determined by the target BER. The highest order of modulation

scheme which can satisfy the target BER is chosen as the modulation scheme for

the block.

As we have already known, the MR-FDPF model provides a coverage map

for the whole simulated area, which means that the received signal power for any

position in the simulated area is known. If we consider only the thermal noise,

then we can easily obtain the SNR according to

SNR =
S

N0 ·B
(6.9)

where S is the received signal power, N0 is the thermal noise spectral density

and B is the bandwidth. For the block adaptive modulation, the signal powers

of the blocks S can be obtained from the MR-FDPF model by the wideband

simulations, and the B is bandwidth of the blocks.

As is known, not only the SNR, but also the fading parameters have a big

influence on the BER [14][25] since fading parameters indicate the fading severity

of wireless channels. Wireless channels with a severer fading condition have a

worse BER even with the same average SNR. Thus, the prediction of BER will

be accurate and realistic if we take into account the fading parameters.

Here, we model the fading as the Nakagami-m fading and thus the m pa-

rameter needs to be estimated. The estimation of the m parameter and the

computation of the BER can be done as in Chapter 5.

6.3.1 The scenario and measurements

In order to verify our block adaptive modulation results from the MR-FDPF

simulations, both the “I2I stationary” and the “I2I moving receivers” scenario
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measurements of the Stanford measurements are chosen. More details about the

measurements can be found in Chapter 4 or in [61].

In the “I2I stationary” measurements, only minor variations over the time

domain can be observed due to the stationary transmitters and receivers, and

the observed large variations (up to 20 dB) over the frequency domain are due

to the wideband multipath fast fading (see Fig. 6.1). However, in the “I2I

moving receivers” measurements, large variations can be observed both over the

time domain and frequency domain since the receivers are moving during the

recording (see Fig. 6.8).

The above measurements corresponding to the two scenarios are chosen for

the following purposes. The “I2I stationary” measurements are chosen for ob-

taining a stable frequency response characteristic (averaged over time) so that

the block adaptive modulation can be implemented. The “I2I moving receivers”

measurements are chosen for estimating the m parameter of the Nakagami-m

fading.

Here, we only use the middle 50 MHz measurement data and consider the

OFDM system with 128 subcarriers. The transmit power for each subcarrier is

−30 dBm, which implies that we don’t consider the adaptive power allocation.

6.3.2 Wideband multipath fast fading characteristics

The simulations of the MR-FDPF model are performed at 32 frequency bins

distributed evenly within the 50 MHz bandwidth centered at 2.45 GHz. The

discretization step is 2 cm. Since the OFDM system is with 128 subcarriers, each

simulated frequency bin represents 4 subcarriers which are grouped as a block for

the block adaptive modulation.

In Fig. 6.9, we present the wideband multipath fast fading comparison of the

link Tx4-Rx5 between the MR-FDPF model and measurements as an illustration.

For more results about the wideband multipath fast fading characteristics, please

refer to Section 6.2. From Fig. 6.9, we observe that although the wideband multi-

path fast fading characteristics from the MR-FDPF model and the measurements

do not fit each other exactly, they show a comparable fading depth.
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Figure 6.8: Example of measured time frequency response of moving receiver

channels.
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Figure 6.9: Wideband multipath fast fading comparison of the link Tx4-Rx5

between the MR-FDPF model and measurement.
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6.3.3 Realistic prediction of BER and block adaptive

modulation for OFDM systems

For the MR-FDPF model, the average SNR for each of the 32 subcarrier blocks

is computed according to Eq. 6.9. The m parameter of the Nakagami-m fading is

estimated over a 23 x 23 pixel square area according to Eq. 5.9. For the measure-

ments, the average SNR for each of the 32 subcarrier blocks is computed from

the averaged frequency response of the “I2I stationary” measurements. The m

parameter is estimated from the 120 time slots data of the “I2I moving receivers”

measurements at each of these 32 frequency bins.
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Figure 6.10: Modulation schemes for adaptive OFDM systems.

The predicted BER is used to determine the modulation scheme of each block

of subcarriers at the threshold of 10−3. Totally, four modulation schemes: BPSK,

QPSK, 16QAM and 64QAM are chosen to perform the block adaptive modula-

tion technique. Fig. 6.10 shows the modulation schemes of the block adaptive

modulation from both the MR-FDPF model and measurements. In Fig. 6.10,

the numbers: 1, 2, 3, 4 denote the BPSK, QPSK, 16QAM, 64QAM modulation

schemes, respectively, and 0 denotes none of the four modulations can satisfy the

target BER.
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Table 6.2: Comparison of the average aggregate data rate and data rate gain

MR-FDPF model Measurements

Average aggregate data rate 1 173.66 Mbps 146.00 Mbps

Average aggregate data rate 2 127.34 Mbps 108.69 Mbps

Average data rate gain 1.42 1.40

6.3.4 Average aggregate date rate and data rate gain of

block adaptive modulation

Another way to check whether the MR-FDPF model and the measurements fit

each other statistically is to compute the average aggregate data rate per link

from the block adaptive modulation and the average data rate gain of the block

adaptive modulation over the non-adaptive modulation. There are 8 transmitters

and 8 receivers, i.e. 8× 8 = 64 links, so the average aggregate data rate per link

is computed by the total aggregate data rate of the 64 links divided by 64.

The aggregate data rate is computed according to [92]

R =
Number of bits per OFDM symbol

T ime duration of OFDM symbol
(6.10)

The data rate gain is defined as [92]

Gain =
Data rate from adaptive modulation

Data rate from nonadaptive modulation
(6.11)

Here, we use the maximum data rate from the BPSK, QPSK, 16QAM 64QAM

non-adaptive modulations as the data rate from non-adaptive modulation to com-

pute the data rate gain in Eq. 6.11. Therefore, the obtained data rate gain is

conservative compared to practical systems since we use the maximum data rate

as the data rate from non-adaptive modulation.

Table. 6.2 gives the obtained average aggregate data rate per link from the

block adaptive modulation, i.e., average aggregate data rate 1 and that from

the non-adaptive modulation, i.e., average aggregate data rate 2 and the average

data rate gain from the MR-FDPF model and that from the measurements. From

Table. 6.2, we can see that the MR-FDPF model and the measurements fit each

other statistically very well.
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6.4 Chapter summary

This chapter first presented two approaches of the wideband simulations based

on the MR-FDPF model. The first approach was the straightforward repetition

of the MR-FDPF simulations at multiple frequencies. The second approach was

an approximation one based on the Neumann series expansion. For this chap-

ter, the first approach was finally chosen as the wideband simulation approach

since we were more interested in the accuracy than the computational load here.

The simulated wideband multipath fast fading characteristics by the MR-FDPF

model were compared to those from the measurements and they fitted each other

statistically. Finally, the simulated wideband multipath fast fading characteris-

tics were used to implement the block adaptive modulation scheme for OFDM

systems. The obtained average aggregate data rate and the data rate gain from

the block adaptive modulation were verified by the measurements.
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Chapter 7

Conclusion and future work

7.1 Conclusion

In radio propagation models, deterministic ones usually possess a high level of ac-

curacy since they take the specific propagation environments into account. How-

ever, in reality, radio channels are a kind of random processes due to e.g. the

moving people or moving objects around. Thus, realistic radio channels can not

be completely determined by purely deterministic models. Based on the deter-

ministic MR-FDPF model, this thesis proposed a semi-deterministic model which

introduced a stochastic part to take into account the random aspect of the realis-

tic radio channels. Besides, many radio propagation simulators provide only the

mean power prediction, but it has been shown that fading has also an important

impact on the system performance. Hence, the fading information was extracted

based on the MR-FDPF model and then an accurate prediction of the BER was

achieved. The prediction of the BER has been tackled for three systems: the

SISO systems, the MRC diversity systems and the wideband OFDM systems.

Finally, the predicted BER has been used to implement the adaptive modulation

scheme.

This thesis started with the background and the state-of-the-art survey of

indoor radio propagation models in Chapter 2. And then in Chapter 3, the char-

acterization of deterministic channels and randomly time-variant linear channels

were provided. Randomly time-variant linear channels are introduced to take

the randomness of the realistic channels into account. In order to simplify the
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analysis, the assumption of the WSSUS is made and then the autocorrelation

functions of the system functions are simplified to the P-functions which depend

only on two variables. Moreover, a number of parameters for radio link quality

were also described which were used in the latter chapters.

The main purpose of Chapter 4 was to extract the large scale propagation

characteristics and the small scale fading statistics based on the MR-FDPF model.

Hence, the principle of the MR-FDPF model was provided first, followed by the

model calibration and the accuracy analysis. The reason why we wanted to

separate the large scale propagation characteristics and the small scale fading

was that we believe although the final effects of the realistic radio channels are

random, there is still something deterministic inside. We consider the mean path

loss to be deterministic, but the shadow fading and the small scale fading to be

random. Thus, the mean path loss can be described deterministically, but the

shadow fading and the small scale fading should be described statistically. In this

way, a semi-deterministic model was finally proposed based on the deterministic

MR-FDPF model which took the randomness of the realistic radio channels into

account.

Chapter 5 was about the realistic prediction of the BER and the adaptive

modulation scheme. As is known, the BER depends not only on the mean power,

but also on the fading severity, even also on the correlations among diversity

branches for diversity systems. Thus, this chapter first introduced the theoretical

results of the BER which was based on well-known MGF. Then the estimation

of the fading parameters were discussed for the Rice and the Nakagami-m fading

channels. The Kolmogorov-Smirnov goodness of fit test was performed to verify

the performance of the estimations. The BER was predicted for two systems: the

SISO systems and the MRC diversity systems. With the realistic prediction of

the BER, the adaptive modulation scheme was finally implemented.

The wideband simulations were presented in Chapter 6. Two wideband sim-

ulation approaches based on the MR-FDPF model were given in the first part

of this chapter. Then the wideband multipath fast fading characteristics were

obtained by the wideband simulations of the MR-FDPF model and they were

verified by comparisons to the measurements. In the last part of this chapter, the

114



7.2 Future work

realistic BER was predicted for the wideband OFDM systems based on the simu-

lated wideband multipath fast fading characteristics and thus the block adaptive

modulation was implemented. The obtained average aggregate data rate and the

data rate gain were verified by the measurements

7.2 Future work

Although the work in this thesis improves the MR-FDPF model from several

aspects above, there are still some interesting research directions which are worth

exploring:

1. Since we have already predicted a realistic BER and implemented the

adaptive modulation scheme for the SISO systems, the MRC diversity systems

and the wideband OFDM systems, it can be really interesting to do so for the

Multiple-Input Single-Output (MISO) and MIMO systems. For the simulations

of the mulitple-input systems, it is easy and convenient for the MR-FDPF model

because the antenna array has already been implemented in the MR-FDPF model

to synthesize the particular radiation patterns [93].

2. The results in Chapter 5 have not been verified by the measurements

although the estimation performance of the fading parameters has been verified

by the goodness of fit test. Thus, it is worth performing some measurements

and processing the measurement data to verify the predicted BER and adaptive

modulation scheme for both the SISO and the MRC diversity systems.

3. In chapter 4, we analyzed the accuracy of the MR-FDPF model. For

instance, for a calibrated MR-FDPF simulation result, we can obtain the RMSE

when compare the simulation to the measurement. This RMSE can be considered

as the error introduced by the MR-FDPF model due to e.g. the inaccurate

modeling of the simulated scenarios. This error can be modeled to follow a certain

kind of distributions, e.g. the Gaussian distribution, and then the confidence

interval can be computed. This idea can be applied to the prediction of both the

path loss and the BER.

4. Since a modulation map can already be provided for the simulated scenar-

ios by our previous work, a throughput can be predicted for the wireless systems.
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For instance, mobile users can be first allocated randomly in the simulated sce-

nario, and then choose a certain kind of the Media Access Control (MAC) layer

protocols. Finally, the throughput for the systems can be computed.
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