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Abstract

This thesis introduces the work of certifying a part of a C/C++ program called
SimSoC (Simulation of System on Chip), which simulates the behavior of architectures
based on a processor such as ARM, PowerPC, MIPS or SH4.

A system on chip simulator can be used for software development of a specific
embedded system, to shorten the development and test phases, especially when, as is the
case for SimSoC, it offers a realistic simulation speed (about 100 Millions of instructions
per second per individual core). Simulation makes it possible to reduce development
time and development cost, allowing for co-design engineering, and possibility for the
software engineers to run fast iterative cycles without requiring a hardware development
board.

SimSoC is a complex software, including about 60,000 lines of C++ code, many
complex features from SystemC library, and optimizations to achieve high simulation
speed. The subset of SimSoC dedicated to the ARM processor, one of the most popu-
lar processor design, somehow translates in C++ the contents of the ARM reference
manual, which is 1138 pages long. Mistakes are then unavoidable for such a complex
application. Indeed, some bugs were observed even after the previous version of SimSoC,
for ARMv5, was able to boot linux.

Then a critical issue is : does the simulator actually simulate the real hardware ? In
our work, we aim at proving a significant part of the correctness of SimSoC in order to
support the claim that the implementation of the simulator and the real system will
exhibit the same behavior. Then a SimSoC user can trust the simulator, especially in
very critical uses.

We focused our efforts on a critical part of SimSoC : the instruction set simulator
of the ARMv6 architecture, which is considered in the current version of SimSoC.
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Abstract

Approaches based on axiomatic semantics (typically, Hoare logic) are the most
popular for proving the correctness of imperative programs. However, we prefered to
try a less usual but more direct approach, based on operational semantics : this was
made possible in theory since the development of an operational semantics for the
C language formalized in Coq in the CompCert project, and allowed us to use the
comfortable logic of Coq, of much help for managing the complexity of the specification.
Up to our knowledge, this is the first development of formal correctness proofs based
on operational semantics, at least at this scale.

We provide a formalized representation of the ARM instruction set and addressing
modes in Coq, using an automatic code generator from the instruction pseudo-code in
the ARM reference manual. We also generate a Coq representation of a corresponding
simulator in C, called Simlight, using the abstract syntax defined in CompCert.

From these two Coq representations, we can then state and prove the correctness
of Simlight, using the operational semantics of C provided by CompCert. Currently,
proofs are available for at least one instruction in each category of the ARM instruction
set.

During this work, we improved the technology available in Coq for performing
inversions, a kind of proof steps which heavily occurs in our setting.

4



Résumé

Cette thèse expose nos travaux de certification d’une partie d’un programme C/C++
nommé SimSoC (Simulation of System on Chip), qui simule le comportement d’archi-
tectures basées sur des processeurs tels que ARM, PowerPC, MIPS ou SH4.

Un simulateur de System on Chip peut être utilisé pour developper le logiciel d’un
système embarqué spécifique, afin de raccourcir les phases des développement et de
test, en particulier quand la vitesse de simulation est réaliste (environ 100 millions
d’instructions par seconde par cœur dans le cas de SimSoC). Les réductions de temps et
de coût de développement obtenues se traduisent par des cycles de conception interactifs
et rapides, en évitant la lourdeur d’un système de développement matériel.

SimSoC est un logiciel complexe, comprenant environ 60 000 de C++, intégrant des
parties écrites en SystemC et des optimisations non triviales pour atteindre une grande
vitesse de simulation. La partie de SimSoC dédiée au processeur ARM, l’un des plus
répandus dans le domaine des SoC, transcrit les informations contenues dans un manuel
épais de plus de 1000 pages. Les erreurs sont inévitables à ce niveau de complexité, et
certaines sont passées au travers des tests intensifs effectués sur la version précédente
de SimSoC pour l’ARMv5, qui réussissait tout de même à simuler l’amorçage complet
de linux.

Un problème critique se pose alors : le simulateur simule-t-il effectivement le matériel
réel ? Pour apporter des éléments de réponse positifs à cette question, notre travail vise
à prouver la correction d’une partie significative de SimSoC, de sorte à augmenter la
confiance de l’utilisateur en ce similateur notamment pour des systèmes critiques.

Nous avons concentré nos efforts sur un composant particulièrement sensible de
SimSoC : le simulateur du jeu d’instructions de l’ARMv6, faisant partie de la version
actuelle de SimSoC.
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Résumé

Les approches basées sur une sémantique axiomatique (logique de Hoare par exemple)
sont les plus répandues en preuve de programmes impératifs. Cependant, nous avons
préféré essayer une approche moins classique mais plus directe, basée sur la sémantique
opérationnelle de C : cela était rendu possible en théorie depuis la formalisation en Coq
d’une telle sémantique au sein du projet CompCert et mettait à notre disposition toute
la puissance de Coq pour gérer la complexitité de la spécification. À notre connaissance,
au delà de la certification d’un simulateur, il s’agit de la première expérience de preuve
de correction de programmes C à cette échelle basée sur la sémantique opérationnelle.

Nous définissons une représentation du jeu d’instruction ARM et de ses modes
d’adressage formalisée en Coq, grâce à un générateur automatique prenant en entrée le
pseudo-code des instructions issu du manuel de référence ARM. Nous générons égale-
ment l’arbre syntaxique abstrait CompCert du code C simulant les mêmes instructions
au sein de Simlight, une version allégée de SimSoC.

À partir de ces deux représentations Coq, nous pouvons énoncer et démontrer la
correction de Simlight, en nous appuyant sur la sémantique opérationnelle définie dans
CompCert. Cette méthodologie a été appliquée à au moins une instruction de chaque
catégorie du jeu d’instruction de l’ARM.

Au passage, nous avons amélioré la technologie disponible en Coq pour effectuer des
inversions, une forme de raisonnement utilisée intensivement dans ce type de situation.

6



Chapter 1

Introduction

1.1 Certification of SimSoC

This thesis describes the work that consists in certifying a part of a C/C++ program
called SimSoC (Simulation of System on Chip) (22), which simulates the behavior of
embedded systems architectures based on processors such as ARM, PowerPC, MIPS
or SH4.

A system on chip simulator can be used for software development of a specific
embedded system, to shorten the development and test phases, especially when, as is the
case for SimSoC, it offers a realistic simulation speed (about 100 Millions of instructions
per second per individual core). Simulation makes it possible to reduce development
time and development cost, allowing for co-design engineering, and possibility for the
software engineers to run fast iterative cycles without requiring a hardware development
board.

Then a critical issue is: does the simulator actually simulate the real hardware? In
our work, we aim at proving a significant part of the correctness of SimSoC in order to
support the claim that the implementation of the simulator and the real system will
exhibit the same behavior. Then a SimSoC user can trust the simulator, especially in
very critical uses.

Considering only one module in SimSoC, namely the ARM simulator, it somehow
encodes the 1138 pages of the ARM reference manual in C++. The whole simulator,
which simulate ARM and PowerPC architecture, includes about 60,000 lines of C++
code. The software is very large and complicated with many complex features from

7



1. INTRODUCTION

SystemC library, and optimizations to achieve high simulation speed. The first im-
plementation of SimSoC ARM simulator was manually coded. Then, mistakes in the
hand written code are unavoidable and difficult to find due to the complexity. Not
only speed, but also accuracy is highly required. All simulated instructions must be-
have exactly like what is described in the specification (assuming the real hardware is
conformant to the specification). From the experiments performed on SimSoC, bugs
bringing a wrong behavior were observed from time to time but it was hard to reveal
where they were. Using intensive tests can cover most of the instructions, but still left
some untested rare cases of instructions, which lead to potential problems.

Therefore, a better approach is required to gain confidence in the correctness of the
simulator. Our proposal is to certify the simulator SimSoC using formal methods.

In this thesis, we consider one of the modules in SimSoC: the ARM architecture
simulator. ARM architecture is one of the most popular processor design in the em-
bedded systems market, in particular mobile phones and tablets. As reported by ARM
Holding company, 6.1 billion ARM-based processors have been brought to the market
in year 2010 and 95% is used in the smart phone market.

As mentioned, the simulator is a large amount of software. And the specification
itself is rather complex due to the rich architecture of ARM that consists of many com-
ponents (to be detailed in Chapter 3). Before taking all features of the ARM simulator
into account, we decided to focus on the basic parts, which are the most important and
sensitive: the CPU part of the ARM architecture (such as used by the ARM11 proces-
sor family). At the time we started our work, the ARM simulator module implemented
in SimSoC was the ARM Version 5 (ARMv5) architecture. Instead of applying certifi-
cation for this old architecture, we decided to anticipate the evolution of SimSoC and
to work on the next version: ARM Version 6 (ARMv6). For reasons explained be-
low, related to the availability of proof technologies for C (especially CompCert), it was
more convenient to have this module written in the C language rather than in C++.
This module called Simlight (6) can run standalone, or as a component integrated in
SimSoC. It is a simplified executable version of ARMv6 simulator.

More than 60% of the development size of SimSoC is in the CPU part, see Figure 1.1,
the remaining parts consists in memory management (virtual memory and paging)
interrupt handling and communications with peripherals. In summary, the complexity
of the target could be reduced, but it still represents more than 10,000 lines of C code

8



1.1 Certification of SimSoC

Figure 1.1: Development size of SimSoC

to be certified. Moreover, the complexity of the specification is invariant, as it is given
by a heavy document, the ARM Version 6 Architecture reference manual.

Hence the issue at stake is how to certify a program of this size in relation to a
rather complex specification.

Let us first recall that program certification is always based on a formal model of the
program under study. Such a formal model is itself derived from a formal semantics
of the programming language. For imperative programming languages such as C, a
popular approach is to consider tools based on axiomatic semantics (Hoare logic), like
Frama-C (12), a framework for a set of interoperable program analyzers for C. Most of
the modules integrated inside rely on ACSL (ANSI/ISO C Specification Language), a
specification language based on an axiomatic semantics for C. ACSL is powerful enough
to express axiomatizations directly at the level of the C program. State labels can be
defined to denote a program control point, and can then be used in logic functions and
predicates. Frama-C is already quite a mature platform for C program static analysis
and automatic deductive verification. An advantage of Frama-C or similar tools is that
it is supported by automatic proof technologies, which save manpower consumption
and make this approach quite convenient for the user. It was successfully applied to
complex and tricky programs, e.g., Schorr-Waite algorithm, which deals with linked
data structures.

Frama-C is able to perform:
– Analyzing the value of variables: Frama-C is able to compute and predict the

range of numerical variables.
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1. INTRODUCTION

– Passing the proof obligations, (called Verification Conditions, VC for short) gen-
erated by Why (7) to automatic or interactive theorem provers.

– Slicing C program into shorter ones which preserve some properties.
– Navigating in C program.

However, in general, high automation tends to weaken the claims for certification, as
automatic provers are themselves complex, then error-prone programs. In theory, such
programs could produce certificates which could be checked by a reliable (e.g., LCF-
based) proof assistant. But currently it is still far from being the case. An additional
issue lies in the gap between the axiomatic semantics used and the real implementation,
unless the VC generator is itself certified. This issue was considered recently, see below
related work by Paolo Herms on WhyCert 1.4 – which was not available at the time we
started to work on the certification of SimSoC.

Another important issue is that automation is possible only on theories or logics
with limited expressive power. It can make it difficult to express specifications and
expected properties at the right abstraction level, especially in a framework where the
specification is very complex. Currently, Frama-C implements a superset of first order
logic. An important current limitation for us is that ACSL is not able to describe
pointer casting. On the contrary, the operational semantics defined for CompCert C (to
be introduced below) is able to deal with any type casting.

The Why software is one of the most important components of Frama-C It is an
implementation of Dijkstra’s calculus of weakest preconditions. Why is the basis of the
Jessie front-end, a plug-in of Frama-C which compiles ACSL annotated C code into
the Jessie intermediate language. The result is given as input to the VC (Verification
Conditions) generator of Why. Why then produces formulas to be sent to both automatic
provers or interactive provers like Coq.

Why version 3 is a new and completely redesigned version of Why. It does not yet have
its own front-end for C. It has become a standard library of logical theories (integer and
real arithmetic, Boolean operations, sets and maps, etc.) and basic programming data
structures (arrays, queues, hash tables, etc.). In order to transmit ACSL annotated
C code to the Why 3 VC generator, Jessie generates an intermediate code in WhyML,
which is a rich language for specification and imperative programming. In the new
architecture, the specification language is enriched in order to support additional au-
tomatic provers. Furthermore, a formal interface is provided to facilitate the addition
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1.2 SimSoC

of new external provers. Therefore, choosing Why or Why 3 in our case would make us
depend on the transformation chain provided by Jessie and Why together, from ACSL
annotated C code to verification conditions for Coq.

In the case of SimSoC, we need to deal both with a very large specification includ-
ing tricky features of the C language, such as type casting, which are used in tough
functions related to memory management. In other words, we need a framework that
is rich enough to make the specification manageable, using abstraction mechanisms for
instance, in which an accurate definition of enough features of C is available. For the
reasons explained above, it was unclear that Frama-C would satisfy those requirements,
even with Coq as a back-end. Automated computations of weakest preconditions and
range of variation are not relevant in our case. We need to verify more specific prop-
erties referring to a formal version of ARMv6 architecture. This specification is quite
complex, for instance regarding the major data type to express the processor state (to
be defined in Section 4.1).

In order to get the required flexibility and accuracy, we wanted to experiment a
more direct approach based on a general proof assistant such as Coq. Fortunately, an
operational semantics formalized in Coq of a large enough subset of the C language
happened to be available from the CompCert project. We then decided to base our
correctness proofs on this technology. Up to our knowledge, this is the first development
of formal correctness proofs based on operational semantics, at least at this scale.

1.2 SimSoC

In this section, we introduce our certification target, SimSoC, a Simulator of System-
on-Chip that can simulate various processors at a realistic speed. As a simulator of
System-on-Chip, its objects are embedded system processors used in modern devices
such as consumer electronics or industrial systems (e.g. ARM, PowerPC, MIPS). It is
a so called full system simulator because it can simulate the entire hardware platform
and run the embedded software “as is”, including the operating system. Such kind
of simulator plays an important role in embedded systems development, because the
embedded software can be tested and developed on the simulator. In order to have
software and hardware ready for the market at the same time, the software must by
developed sometimes before the hardware is available. Then a executable model of the
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1. INTRODUCTION

SoC is required. A simulator also provides additional advantages combining simulation
with usage of formal methods such as model checking or trace analysis to discover
hardware or software bugs.

Our simulator, SimSoC, works at the low-level of the system. It takes real binary
code as input and requires simulation models of the complete board: processor, memory
units, bus, network controller, etc. It can emulate the behavior of instruction execu-
tions, exceptions, and peripheral interrupts. Other than software development, it may
be used also for hardware design. When there are additional components provided by
a third party, the software developers can test them in the full simulation environment
with modularity.

SimSoC is developed in SystemC, which is itself a C++ library, and uses transaction
level modeling (TLM) to model communications between the simulation modules. In
order to simulate processors with a reasonably high speed, the instruction set simulation
uses a technique named dynamic translation, which translates the binary input into an
intermediate representation that is itself compiled into host code. Since SimSoC is a
rather large and complex framework that influences the development of both hardware
and software, we have to understand the most significant parts in order to be able to
decide the certification object.

1.2.1 Instruction Set Simulation

A full system simulator must include the instruction set simulator, which reads
the instructions of the program and exactly emulates the behavior of the target pro-
cessor. In order to illustrate our certification target, we detail here the techniques to
implement an instruction set simulator. There are three kinds of techniques imple-
mented for SimSoC instruction simulation, that make trade-offs between accuracy and
efficiency. They are: interpretive simulation, dynamic translation with no specializa-
tion, and dynamic translation with specialization. The interpretive simulation is the
classical method, it includes the three stages: fetching, decoding and executing instruc-
tions. Although it is slow because of multiple redundant decoding phases, it is simple
to implement and reliable. It is also used as the reference of performance for the other
two techniques. The second and the third methods are based on dynamic translation,
which uses an intermediate representation as the decoding result. Such intermediate
representations of decoded instructions are stored into a cache and are re-used when
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the same instructions are to be re-executed. The last method dynamic translation with
specialization combines dynamic translation with partial evaluation. Partial evaluation
specialization is a well known technique to optimize compilation of programs. The idea
is to translate a program P which applies on data d into a faster specific program Pd.
One can use partial evaluation in simulation to specialize one instruction into a simpler
instruction, based on data known at decoding time. The SimSoC decoder implements
partial evaluation. At decoding time, the dynamic translation maps the binary instruc-
tions to their partial evaluation specializations. Although specialization of instructions
results into more memory usage, it is reasonable small compared to the memory size
available on host machines nowadays.

The technologies used in SimSoC instruction set simulation are detailed in (23).

1.2.2 Performances

The ARM module of SimSoC used to implement the ISS of ARMv5 architecture
was manually coded. The simulator is able to simulate the commercial System-on-Chip
SPEAr Plus600 circuit from ST Microelectronics which is a dual core system based on
over forty additional components, as well as the Texas Instruments AM1705 circuit. The
simulator is able to emulate the interrupt controller, the memory controller, the serial
memory controller, the Ethernet controller, and all peripherals which are necessary to
boot Linux. Therefore, running the Linux kernel on the SPEAr Plus simulator module is
a way of testing and debugging the simulator. First it reads the compressed Linux kernel
binary from serial memory, uncompresses it, then starts Linux. The booting process
takes only several seconds. The Ethernet controller can connect several simulators of
the same SoC running on the same machine or not, through TCP/IP protocol. In
SimSoC, a mature simulator for the ARMv5 architecture has been completed before
starting our project, and two instruction set simulators for PowerPC and MIPS were
also developed.

1.2.3 From ARMv5 to ARMv6

For this thesis, we decided to consider the next version (ARMv6) of the ARM
architecture, which represented a step up in performance from ARMv5 cores. ARMv6
is essentially backward compatible with ARMv5. Here are the new features of ARMv6
architecture.
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– The instruction set has been enlarged with extra instructions in six areas: me-

dia instruction, multiply instruction, control and DSP instruction, load/store in-

struction, architecture undefined instruction, and unconditional instruction. For-

tunately, all ARMv5 mandatory instructions are ARMv6 mandatory instructions

too. For simulator users, application code compiled with compilers for ARMv5

can be run over the ARMv6 simulator. If application users want to benefit from

the new V6 instructions, they need to re-compile the code in the new environment.

– The Thumb mode has changed. Thumb instructions of ARMv5 are not portable

to Thumb2 (ARMv6+), nor completely backwards compatible.

1.3 Outline

In summary, our goal is to certify (a part of) SimSoC, a system on chip simulator,

using a framework based on the operational semantics of C formalized in Coq, and Coq

itself. This thesis explains our achievements in this respect. Subsection 1.4 discusses

relevant projects which use formal methods in the area of hardware processors, and why

we need a new approach in our experiment. The contributions of our work are outlined

in Subsection 1.5. Next, Chapter 2 provides the background on the main technologies

used in our project, including a brief introduction to operational semantics, to Coq,

and to the CompCert project. Our certification basis is the formal model of the ARMv6

instruction set simulator, which is described in Chapter 3. Then the certification target,

a C program for simulating the ARMv6, is introduced in Chapter 4. The next chapter

explains how repetitive and potentially error-prone tasks in the production of the two

previous models are automated (Chapter 5). Chapter 6 describes how correctness

proofs are carried out. In order to improve the performance and the management of

the proofs, we had to develop a key proof technique for the “inversion” of assumptions

related to the operational semantics of C expressions, which is described in Chapter 7.

Chapter 8 is dedicated to an additional work using exhaustive testing for checking the

coverage and correctness of the simulator decoder. Then we conclude in Chapter 9 and

outline future research prospects.
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1.4 Related work

1.4 Related work

The main difference between SimSoC-Cert (the certification of SimSoC) and the
following projects is that we aim at proving the correctness of a hardware simulation
whereas the target of the others is a certified hardware. The common point is that we
need a formal specification of the instruction set of a specific processor architecture.
Different proof assistants have been used to perform the certification on the formal
model itself: Coq in our case; ACL2, HOL, etc. in other experiments. In our project,
the formalization of the real chip ARMv6 is used as a reference for the behavior of an
ARMv6 simulator written in C.

Using ACL2 for embedded systems

Researchers from Computational Logic, Inc., used ACL2 (A Computational Logic
for Applicative Common Lisp) or Nqthm (Boyer-Moore Theorem Prover) (8) to specify
and prove properties of several commercial processors as summarized in (10). ACL2
is a software system consisting of a programming language, an extensible theory in a
first-order logic, and a mechanical theorem prover. It can act as both an automatic
theorem prover and an interactive proof assistant. It supports automated reasoning in
inductive logical theories, which is convenient for both software and hardware verifica-
tion. Its programming language is a side-effect free extension of Common Lisp. And it
is untyped. The base theory of ACL2 axiomatizes its programming language semantics
and its built-in functions. User definitions in ACL2 programming language that satisfy
a definitional principle extend the theory in a way that maintains the theory’s logical
consistency. The core of ACL2’s theorem prover is based on term rewriting, and it is
extensible in the following way: theorems discovered by the user can be used as ad-hoc
proof techniques for subsequent conjectures.

Nqthm is a theorem prover sometimes referred to as the Boyer–Moore theorem
prover. ACL2 system is essentially a re-implemented extension of Nqthm. We consider
projects based on them together.

ACL2 and Nqthm are used to deal with different processor models in several
projects. Among them, the work for Motorola’s MC68020 is very close to ours (9).
A large part of the user programming model of the MC68020 microprocessor is formal-
ized as an abstract machine and its instruction operation as state transitions according
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to its user’s manual, which is similar to what we did for ARMv6. But the specification
in Nqthm is formalized by hand; no automatic generator is used. The formal specifica-
tion of the instruction set is defined in a functional way, as in our case. The target is
the object code itself, considering that industrial strength compilers are not completely
reliable; indeed, a certified compiler generating a machine code which is strictly equiva-
lent to a high-level code was not available at that time. To keep the formalized system
deterministic, they abandoned the instructions which may cause an undefined effect on
the machine state. Comparing to this, we formalized our ARMv6 processor state differ-
ently in order to consider all the ARM instructions, including those instructions which
produce an undefined state (see Section 3.2.1). The specification is written in the logic
of Nqthm and proofs are obtained using the Nqthm fully automatic theorem prover,
which cannot interact with the user once it is started. This is totally different from the
Coq proof assistant we used, where proofs are designed in constant interaction with
the user. The main theorems state that the execution of object code terminates and
the returned machine state is considered normal, that all registers are set to the right
location and that the effect of the execution is only on the relevant memory blocks.

The use of fully automatic theorem provers like Nqthm requires less man-power
on theorem proving but much work on the specification. Once the formalization and
the stated theorems are put in Nqthm logic system, we expect the automatic prover
to do the rest. With this technique the object code produced by GNU C compiler for
hundreds lines of C could be mechanically verified.

Still, the gap between C and the GNU C produced object code is not solved, because
the GNU C compiler can not be considered fully trusted. So this method cannot be
used for providing results which would be meaningful (and conveniently expressed) at
the level of a C program.

Another project used ACL2 on the object processor CAP from Motorola company.
The full ALU and I/O system of CAP is formalized in ACL2. The CAP implementation
is a three-stage instruction pipeline; an appropriate correspondence between the CAP
model with pipe-line and a simpler pipeline-free one is proven. Also the implemented
DSP algorithm FIR (Finite Impulse Response) is proved to be equivalent to the formal
specification. Moreover, the basic library for ACL2 on data structure was enriched, for
example with array, list, record, bit vector, etc. New modules on modular arithmetic,
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integers, hardware operations, and so on were built. These developments are reusable
by other projects because the definitions are not specific to the CAP model.

A very recent work used ACL2 for developing a significant subset of X86 instruction
set (19). The formal model of the X86 processor is executable and can run some
binary programs. Some small binary programs are automatically verified under ACL2’s
interactive theorem proving environment using a symbolic execution technique.

Formalized x86 in Coq

In a recent work done in a cooperation between Harvard University, Lehigh Uni-
versity, NSF, and Google, a model of x86 has been formalized in Coq (41). The whole
project is called Native Client (NaCl). It is a platform allowing Google’s Chrome
browser users to execute native code on the browser. A sandbox policy is used to
ensure several properties. The most important ones are to ensure that read/write
operation on arbitrary memory blocks are only caused by trusted code, instructions
related to system calls are avoided, and communication can only happen within well-
defined entry points. These properties of the sandbox policy protect the system from
bugs or concurrent access to memory. The aim of this work is to obtain a highly trusted
assurance checker for the sandbox policy. A checker for a 32-bit x86 (IA32) processor
without floating-point instructions, RockSalt was built. This new achievement is better
than the original version provided by Google in three aspects: it is faster, lighter, and
more flexible.

This project has some similarities with ours: the core of RockSalt was automatically
generated from the Coq formal specification using extraction to OCaml code; then it
was manually translated in C language in order to have an implementation for NaCl. A
new Coq model for x86 was defined. In the future, it is expected to support reasoning
about the behavior of x86 machine code using a verified compiler such as CompCert.
RockSalt relies only on a DFA (Deterministic Finite-state Automaton) encoding table
and some trusted C code. The checker is extremely fast: 1M instructions can be
checked within one second. Also, it has a small run-time trusted computing base and
can be integrated into NaCl runtime easily. The formal model of x86 ISS (Instruction
Set Simulator) has the same architecture as a translator: a decoder from binary code
to an abstract syntax, a compiler from this abstract syntax to RTL instructions; and
an interpreter for RTL instructions. Because no predefined formal model could be
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considered as a trust-base, tests were created for this complex model, in order to gain
confidence.

For validation, an executable OCaml model is extracted from the Coq specification,
and the behavior of the OCaml model is compared with the real x86. More than ten
million binary instructions could be simulated in around sixty hours on Intel Xeon.
Moreover, fuzz tests are used to cover problems that cannot be considered by the
previous tests. Fuzz test can cover all forms of one kind of instruction, and all of
them can be exercised. The Coq processor model in this project is essentially an
intermediate specification which is used to obtain more secure C code. However the
manual translation from extracted OCaml code to C is not explained in (41). Tests
are only used at the level of OCaml code. Altogether, it is unclear that the resulting
C code has the same behavior as the Coq specification.

An instruction set generator for an ideal processor

A German project describes in (28) an Instruction Set Simulator generation tech-
nique which aims at generating an efficient ISS from the RTL (Register Transfer Level)
description. The ITL (Iterative Temporal Logic) language is used to design the ISS
at the RTL level, then C++ code is generated from it. The interval temporal logic is
a combination of temporal logic and first-order logic able to deal with sequential and
parallel composition. It includes a notion of finite sequences. First order interval logic
was first designed for formalizing and verifying hardware protocols. It is sufficient for
specifying computer-based systems, both hardware and software. Some of the standard
operations of VHDL or Verilog language can be expressed as temporal logic expressions
to describe the behavior of a synchronous sequential system.

The verification of safety properties is performed using a technique called IPC (Inter-
val Property Checking) which is designed to check if a model satisfies a set of properties
written in a dedicated verification language, ITL in this case. The main idea followed
here is to use an arbitrary initial state instead of the initial state of BMC (Bounded
Model Checking). Any property that holds from an arbitrary initial state also holds
from any reachable state. Conversely, false negatives can occur in IPC. These false
negatives need to be removed by adding invariants in order to restrict the set of initial
states. In order to gain speed for simulation, optimizations are performed on the C++
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code generation like in any other state-of-the-art simulators by the following two meth-
ods: first, arithmetic and simple logic operation are mapped to corresponding native
C++ operations; second, additional variables are used to store temporary results and
to cache intermediate results of computations. The formal verification aims at proving
the equivalence between RTL and ISA models. The main idea of the equivalence proof
is very similar to ours (see Chapter 6): it is based on a mapping from the RTL state
representing CPU to the corresponding ISA state in C, and on next-state transitions
for both the RTL model and the ISA model of the C program. Proving that the inter-
face signals of the design is correctly implemented is also performed in the same way.
For code generation, the input source is specified in VHDL. The first experiment was
achieved on an invented ideal simplified CPU model. It contains eight 16-bit registers
and a special register used as interrupt return vector. There are only seven instruc-
tions for logic, arithmetic, memory accessing, and jump. For the second experiment, an
industrial processor design was chosen. It contains 64 32-bits registers and 88 instruc-
tions based on the DLX instruction set architecture and a memory model with simple
interface. This corresponds to 10,000 lines of VHDL code, reformulated into a 2000
lines ITL specification to be used as the source of the C++ code generator. Compared
to SimSoC, the size of the formal specification is smaller and with ITL specifications,
less properties can be expressed and proved than with Coq.

A trustworthy monadic formalization of ARMv7 instruction set archi-
tecture

The computer laboratory in Cambridge University used HOL4 to formalize the in-
struction set architecture of ARMv7 (17). The target here was to verify an implementa-
tion of this architecture with logical gates, whereas for SimSoC, we consider a simulation
written in C. Reusing the work done at Cambridge was considered for SimSoC. However,
as our approach is based on CompCert, which is itself written in Coq instead of HOL4,
it was more convenient to write our own specification. The achievements obtained at
the Cambridge projects are:

– A model of the ARM instruction set architecture in the HOL language. Other
than ARMv7 instruction set which is backward compatible with previous versions,
the model considered here has the full support for the Thumb-2 instruction set,
too.
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– Additional software for simulation, an assembler, and a disassembler in ML.
– Automatic extraction of single step theorems from a monadic representation of a

single ARM instruction, for evaluation.
– Besides the tools and specifications formalized or derived inside HOL logic, some

other tools that are outside HOL logic: the assembly code parser, the disassem-
bler, and the encoder. They are considered not completely reliable.

– The formalized model can operate on machine code level.
– The execution results are used for comparison with the real hardware in order to

validate the model.

The instructions have been grouped together with related ones. This reduces greatly
the specification size. But the HOL 4 model is a little too precise. For example,
it specifies the resource accessing order when updating the PC. But this order is not
specified in the reference manual. During validation, three boards are used to assess the
execution results. And the tests are generated randomly by a test generator. Additional
confidence in this development was achieved by observing the behavior of verified code,
and running the model on ARM code that calculates a non-trivial known function.
Some weaknesses are: storing instructions are not completed; problems happen when
updating on registers PC or SP occur; exceptions are not well handled; tests do not cover
unpredictable and undefined instruction, which have been filtered in test generation; the
model does not include the privileged mode, nor the instruction changing the current
processor mode; implementation dependence or system features cannot be fully tested.

WhyCert: A certified implementation of VC generator

Paolo Herms’s Ph.D thesis (24) (25) provides a certified verification condition gen-
erator for several provers, called WhyCert. The work is also based on CompCert C
operational semantics. Using a VC generator is another way of ensuring the safety re-
quirements of programs written in high-level programming languages, as mentioned in
Section 1.1, as well as the importance of certifying a VC generator. In WhyCert, the VC
generator was implemented and proved sound in Coq, then extracted to an executable
OCaml program. As suggested by the name WhyCert, this work is inspired by Why

(16), a platform for deductive program verification. To make it usable with arbitrary
theorem provers as back-ends, it is generic with respect to a logical context, containing
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arbitrary abstract data types and axiomatisations. This is suitable to formalized mem-
ory models needed to design front-ends for mainstream programming language, as it is
done for C by VCC above Boogie or by Frama-C/Jessie above Why. The inputs are
imperative programs written in a core language which operates on mutable variables
which are typed in the logical context. The output is made of logic formulas which are
built upon the same logical context.

The seL4 project

The NICTA company provides a secured microkernel seL4 (27), a member of L4
microkernel family. The formal verification is based on the interactive theorem prover
Isabelle/HOL. The correctness proofs are established according to a correspondence
between an abstract and a concrete representations of the seL4 system. The concrete
model is the C implementation, which is translated to Isabelle using a intermediate
language called com, which has an operational semantics like CompCert C. However
this language handles a smaller subset of C than CompCert C. Unsupported features of
com that are supported in CompCert C include:

– pointers to automatic storage
– float, function pointer, union
– switch, goto, break, continue

Note that for SimSoC, we need function pointer, switch, break.

1.5 Contributions

In this work we developed a correctness proof of a part of the hardware simulator
SimSoC. This is not only an attempt to certify a simulator, but also a new experiment
on the certification of non-trivial programs written in C. In our approach, we do not
use the popular axiomatic semantics, but the C operational semantics defined by the
CompCert project.

We provide a formalized representation of the ARM instruction set and addressing
modes in Coq, using an automatic code generator from the instruction pseudo-code in
the ARM reference manual. We also generate a Coq representation of a corresponding
simulator in C, called Simlight, using the abstract syntax defined in CompCert. The
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text version of Simlight was previously developed as a component of SimSoC by C.
Helmstetter (6).

From these two Coq representations, we can then state and prove the correctness
of Simlight, using the operational semantics of C provided by CompCert. Our first
achievement in this direction was described in (50). Currently, proofs are available for
at least one instruction in each category of the ARM instruction set.

During this work, we improved the technology available in Coq for performing
inversions, a kind of proof steps which heavily occurs in our setting (40).

Additional contributions include a generator of a decoder for ARM instructions,
also based on the analysis of the ARM reference manual, and a test generator for the
instruction decoder, which can generate massive tests covering all ARM instructions.
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Chapter 2

Background

This chapter provides a short introduction to the scientific background of our work:
operational semantics, to define the meaning of programs; the Coq proof assistant,
which is used to define the formal model of ARMv6 architecture and to perform correct-
ness proofs; finally CompCert, which contains an operational semantics of C formalized
in Coq, and is then the basis of the formal model that we use for the instruction set
simulator Simlight. We pay a particular attention on underspecified behaviours: this
happens when different compilation strategies may provide different behaviours for the
same program, as is the case for C. Such issues are illustrated on a very simple toy
language, ese.

Résumé

Ce chapitre contient une courte introduction au cadre scientifique dans lequel notre
travail a été developpé. On commence par quelques notions de sémantique opération-
nelle, permettant de définir la signification des programmes. On présente ensuite l’as-
sistant à la preuve Coq, que nous avons utilisé pour définir notre modèle formel de
l’architecture ARMv6 et d’effectuer des preuves de correction. Nous terminons par
CompCert, qui fournit notamment une sémantique opérationnelle de C formalisée en
Coq – c’est l’ingrédient essentiel que nous utilisons pour produire un modèle formel du
simulateur d’instructions Simlight.

Une attention particulière est portée aux comportement sous-spécifiés : cela se pro-
duit lorsque différentes stratégies de compilation peuvent aboutir à des comportements
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différents pour un même programme, ce qui est le cas avec le langage C. Pour illustrer ce
genre de problèmes, nous introduisons un langage jouet, ese, contenant des expressions
avec effet de bord.

2.1 Operational Semantics

In computer science, there are three traditional ways to express how programs
perform computations: axiomatic semantics, denotational semantics, and operational
semantics. Formal semantics are important because it can give an abstract, mathemat-
ical, and standard interpretation of a programming language. It helps to understand
what a program written in this language does and to verify what we expect from the
program. In a few words:

– Denotational semantics constructs mathematical objects which describe the mean-
ing of expressions of the language using stateless partial functions. All observably
distinct programs have distinct denotations.

– Operational semantics is more concrete because it is based on states. However,
in contrast with a low-level implementation, operational semantics considers ab-
stract states. The behavior of a piece of program corresponds to a transition
between abstract states. This transition relation allows us to define the execu-
tion of programs by a mathematical computation relation. This approach is quite
convenient for proving the correctness of compilers, using operational semantics
for the source and target languages (and, possibly intermediate languages). Op-
erational semantics is used in CompCert to define the execution of C programs, or
more precisely programs in the subset of C considered by the CompCert project.
The work presented in this thesis is based on this approach.

– Axiomatic semantics describes the effect of programs by assertions. A well-known
example is Hoare logic. It is one of the most popular approaches for proving the
correctness of programs.

A good tutorial on programming language semantics is Benjamin C. Pierce’s Soft-
ware Foundation 1. It is mainly dedicated to operational semantics and it contains an
introduction to Hoare Logic. The material presented in this tutorial is formalized in

1. http://www.cis.upenn.edu/ bcpierce/sf/
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the Coq proof assistant. Another interesting introduction can be found in (42). It is
more detailed than Software Foundation, but it is not supported by a proof assistant.

Operational semantics can be used to reliably prove results on a programming
language. Operational semantics can be presented in two styles. Small-step semantics,
often known as structural operational semantics, is used to describe how the single steps
of computations evaluate. The other is big-step semantics, or natural semantics, which
returns the final results of an execution in one big step. The corresponding transition
relation is defined by rules, according to the syntactic constructs of the language, in a
style which is inspired by natural deduction.

The book (42) explains that the choice between small-step semantics and big-step
semantics depends on the objective. They sometimes can be equivalent. But in general,
they provide different views of the same language and we have to choose an appropriate
one for a particular usage. Moreover, some language constructs can be hard or even
impossible to define with one of these semantics whereas it is easy with the other style.
In general, when big-step semantics can be used, it is simpler to manage than small-step
semantics.

In order to illustrate some issues on operational semantics and its different flavors
which are important for us, let us consider a simple language called ese, for expressions
with side-effects. This language allows us to present some typical issues of C language,
related to the the evaluation order of expressions and statements. The ISO-C standard
that mentions the evaluation order of expressions with side-effect on the same object
is undefined, for example:

i = ++i + 1;
a[i++] = i;

Several orders are allowed for each of the previous assignments, because they include
two side effects on variable i – according to ISO-C standard, there are two “sequence
points” in them.

Other examples are given by Brian Campbell in the CerCo project (11), in order to
show that the evaluation order constraints in C are very lax and not uniform.

x = i++ && i++;
x = i++ & i++;
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Our toy language ese is designed to illustrate similar issues. The constructs of ese
are: constants C n, where n is a natural number, a unique variable V , the addition
P ese ese of two arguments of type ese, and the assignment of the variable with a value
expressed by an ese. Its abstract syntax is as follows.

ese ::= C n | V |P ese ese | A ese

Figure 2.1: Syntax of toy language ese

The semantics in big-step style is inductively defined using the following rules. The
parameter state of type natural number is introduced here to store the current value of
V . After an evaluation, a new state is returned. The evaluation takes an initial state
and an expression to compute, and returns a new state and a natural number which is
the evaluation result. The notation bs−−→ means “evaluates to”.

st, C n
bs−−→ st′, n

(2.1)

st, V
bs−−→ st, st

(2.2)

st, e1
bs−−→ st′, n1 st′, e2

bs−−→ st′′, n2

st, P e1 e2
bs−−→ st′′, (n1 + n2)

(2.3)

st, e
bs−−→ st′, n1 n1, V

bs−−→ st′′, n2

st, A e
bs−−→ st′′, n2

(2.4)

Figure 2.2: Big-step operational semantics of the toy language ese

Rule 2.4 is for assignment. A simpler and equivalent version is:

st, e
bs−−→ st′, n

st, A e
bs−−→ n, n

(2.5)

The version given in rule 2.4 is closer to the small-step semantics to be presented later,
which exposes an explicit evaluation order. To this effect, the assignment is split into
two parts: evaluating the right-hand side then putting the result into the left-hand
side.

For instance, from the state where V contains 0, the expression in C syntax
V + ((V = 1) + (V = 2))
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evaluates to 3, with a final state where V contains 2. This expression is formalized by
the term P V (P (A (C 1)) (A (C 2))), and the previous statement is formalized by:

0, P V (P (A (C 1)) (A (C 2))) bs−−→ 2, 3.

This statement is proved by systematic applications of the rules given in Figure 2.2.
The proof is driven by the shape of the expression. Each constructor (C, V , P , A)
is handled by a specific rule and leads to premises with smaller expressions (in this
language), which means that the execution will terminate for any expression. More-
over, the semantics defined here is deterministic; the evaluation order is leftmost and
innermost. This is expressed by the following lemma:

Lemma 2.1. If st, t bs−−→ st′ v, and st, t bs−−→ st′′ v′, then v = v′ and st = st′′.

Using big-step semantics, we can also describe a non-deterministic system by adding
one rule for right to left evaluation to offer another evaluation order:

st, e2
bs−−→ st′, n2 st′, e1

bs−−→ st′′, n1

st, P e1 e2
bs−−→ st′′, (n1 + n2)

(2.6)

Then the output of the evaluation cannot be predicted: the same expression can
return different states and results. For instance, we have

0, P V (P (A (C 1)) (A (C 2))) bs−−→ 2, 3
0, P V (P (A (C 1)) (A (C 2))) bs−−→ 1, 3
0, P V (P (A (C 1)) (A (C 2))) bs−−→ 2, 5
0, P V (P (A (C 1)) (A (C 2))) bs−−→ 1, 4

Next, the following description gives the small-step operational semantics rules of
the same toy language. This time, the small-step rules take an expression of type ese
and the initial state which stores the current value of variable V , and return the reduced
expression and the new state. The symbol ss−−→ means “reduces to in one small step”.

In small-step semantics, two rules ((2.9) and (2.10)) are needed to define the leftmost
and innermost evaluation order. And there is no rule for reducing a single constant.
From the number of rules, we see that the definition of deterministic computations with
a given evaluation order is more complex with small-step operational semantics than
with big-step semantics.
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V, st
ss−−→ (C st), st

(2.7)

(P (C n1) (C n2)), st ss−−→ (C (n1 + n2)), st
(2.8)

e1, st
ss−−→ e′1, st

′

(P e1 e2), st ss−−→ (P e′1 e2), st′
(2.9)

e2, st
ss−−→ e′2, st

′

(P (C n1) e2), st ss−−→ (P (C n1) e′2), st′
(2.10)

(A (C n)), st ss−−→ V, n
(2.11)

e, st
ss−−→ e′, st′

(A e), st ss−−→ (A e′), st′
(2.12)

Figure 2.3: Small-step operational semantics of the toy language ese

We can also have a non-deterministic small-step semantics by modifying one of the
rules of the plus operation to remove the leftmost and innermost order: changing rule
(2.10) in Figure 2.3 into:

e2, st
ss−−→ e′2, st

′

(P e1 e2), st ss−−→ (P e′1 e2), st′
(2.13)

Considering the set of possible executions allowed by the non-deterministic seman-
tics, we have more results by using small-step semantics than using big-step semantics.
Taking the same example P V (P (A (C 1)) (A (C 2))) as above, the possible execu-
tions in small-step semantics are:

0, P V (P (A (C 1)) (A (C 2))) ss−−→ 3, 1
0, P V (P (A (C 1)) (A (C 2))) ss−−→ 3, 2
0, P V (P (A (C 1)) (A (C 2))) ss−−→ 4, 1
0, P V (P (A (C 1)) (A (C 2))) ss−−→ 5, 2
0, P V (P (A (C 1)) (A (C 2))) ss−−→ 6, 2

The last result is obtained by performing the assignment A (C 1), then the assign-
ment A (C 2); at this point, the value stored in the state equals 2. Next, performing
plus in any order will compute the result of 6 and the state still stores 2. On the other
hand, the big-step semantics fails to express that 6 can be returned.
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In contrast with big-step semantics, the sequence corresponding to an assignment
(evaluation the right-hand side, then putting the result into the left-hand side) can
actually be interrupted when we consider small-step semantics, and the evaluation of
another sub-expression can then occur.

In general, big-step semantics is not the right approach for dealing with non-
deterministic executions or under-specified semantics, because it is not able to cover all
the possible execution cases.

Note that CompCert includes a big-step deterministic semantics and a small-step
non-deterministic semantics for CompCert C.

2.2 Coq

2.2.1 Short introduction

Coq(5) is an interactive theorem prover, implemented in OCaml. It allows the
expression of mathematical assertions, mechanically checks proofs of these assertions,
helps to find formal proofs, and extracts a certified program from the constructive proof
of its formal specification. Coq can also be presented as a dependently typed λ-calculus
(or functional language). Here we just illustrate the syntax on simple examples. For a
detailed presentation, the reader can consult (13) or (5).

– fun (n : nat) ⇒ n is the identity function on natural numbers; its type is
written as nat → nat. Function application is not written as f(x) but f x,
or (f x) if grouping is needed. With several arguments, the syntax is f x y or
(f x y) instead of f(x, y).

– We can write definitions as follows:

Definition idn := fun (n : nat) ⇒ n.

An equivalent and more common syntax for this definition is:

Definition idn (n : nat) := n.

For instance, the application of idn to 3 is written (idn3) and this term reduces
to 3.
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– fun (X : Type) (n : X) ⇒ n is the polymorphic identity function on an
arbitrary type X; its type is written ∀ X : Type, X → X.

Definition id (X : Type) (n : X) := n.

Note that it expects 2 arguments, for instance, we can write (id nat 3). Like
most of functional programming languages, Coq can also perform type inference.
If we define id as following:

Definition id {X : Type} (n : X) := n.

The application can be just written as id 3. Coq can get the explicit X from the
type of 3.

– A dependent type is a type that depends on a value. It is very flexible to use, as
to refine the type of a function without including the whole specification. A very
simple example is to define a predecessor with only the rule for case 0:

∀ n : nat, n > 0 → nat

– Coq also includes inductive types, as explained in the next subsection.

A proof term of type ∀ n : nat, P n → Qn is fun (n : nat), P n → Q n is a
function which takes a natural number n and a proof of P n as arguments and returns
Q n. In general, proofs are functions and checking the correctness of a proof boils down
to type-checking.

Coq is not an automated theorem prover: the logic supported by Coq (CiC 1) in-
cludes arithmetic; therefore it is too rich to be decidable. However, type-checking (in
particular, checking the correctness of a proof) is decidable. As full automation is not
possible for finding proofs, human interaction is essential. The latter is realized by
scripts, which are sequences of commands for building a proof step by step. Coq also
provides built-in tactics implementing various decision procedures for suitable frag-
ments of CiC and a language called Ltac which can be used for automating the search
of proofs and shortening scripts.

1. Calculus of Inductive Constructions.
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2.2.2 Inductive definitions

To make a better illustration, we use the same toy language ese 2.1 as in the previous
section. Here we show how to inductively define its syntax and its big-step operational
semantics:

Inductive tm : Type :=
| C : nat -> tm (* constant *)
| V : tm (* the unique variable *)
| P : tm -> tm -> tm (* plus *)
| A : tm -> tm (* assignment *)

An inductive definition can handle recursive specifications of types; it defines how it
is constructed. The type tm is the type of the toy language ese which can be a constant
(constructor C associated with a natural number of type nat), a (unique) variable
(constructor V), or one of the following two operations: plus (two expressions of type
tm connected by the constructor P) or assignment (constructor A with an expression of
type tm as input)

Then the inductive definition below gives the annotated inductive type to describe
the deterministic evaluation relation of the corresponding ese in big-step style. The type
of the evaluation eval is a relation, describing the transition from an input expression
tm and a state to a new state and an evaluation result of type nat, a natural number.
Each clause is defined according to a rule in Figure 2.2.

Inductive eval : state -> tm -> state -> nat -> Prop :=
| E_Const : forall s n,

eval s (C n) s n
| E_Var : forall s,

eval s V s s
| E_Plus : forall s t1 n1 s’ t2 n2 s’’,

eval s t1 s’ n1 ->
eval s’ t2 s’’ n2 ->
eval s (P t1 t2) s’’ (n1 + n2)

| E_Assign : forall s s’ s’’ t n1 n2,
eval s t s’ n1 ->
eval n1 V s’’ n2 ->
eval s (A t) s’’ n2.
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2.2.3 Proofs and tactics

In order to show a concrete proof using Coq proof assistant, we recall Lemma 2.1
which claims the big-step operational semantics of ese is deterministic. we first formal-
ize the corresponding statement as follows:

Lemma eval_deterministic:
forall st t st’ st’’ v v’,
eval st t st’ v ->
eval st t st’’ v’ ->
(v = v’) ∧ (st’ = st’’).

It states that, with the same initial state st and expression t, evaluating the big-
step semantics defined in Figure 2.2 will return the same results and the same new
states. Then we use Coq in an interactive way to verify this statement. The general
idea is to make an induction on eval st t st’ v, name as hypothesis ev1. According
to the rules in the inductive definition of eval, there are four cases to consider. Under
each case of ev1, we also have to consider the corresponding derivation of hypothesis
ev2 of type eval st t st” v’. The proof script contains a sequence of tactics to lead
Coq to perform all these steps, checking the correctness of the claims we made. Here
is a short explanation on some basic and frequently used tactics:

– intros moves the quantifiers and hypotheses from the goal to the context of
assumptions.

– induction does case analysis for inductively defined types. Induction hypotheses
are automatically put into context.

– inversion derives the constraints on variables according to the inductive defini-
tion corresponding to the hypothesis that is inverted.

– reflexivity checks that the left-hand side and the right-hand side of an equa-
tional goal are convertible.

– rewrite performs replacement according to an equational hypothesis.
The following code from Proof to Qed provides a formal proof of the determinism

of big-step semantics of ese stated above.

Proof.
intros until v’; intros ev1 ev2.
generalize dependent v’.
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generalize dependent st’’.
induction ev1.

(*Case "C"*)
intros;
inversion ev2; subst; split; try reflexivity.
(*Case "V"*)
intros;
inversion ev2; subst; split; try reflexivity.
(*Case "P"*)
intros;
inversion ev2; subst; split;
apply IHev1_1 in H2; destruct H2 as [Heqn1 Heqst1];
rewrite Heqst1 in IHev1_2;
apply IHev1_2 in H5; destruct H5 as [Heqn2 Heqst2];
[rewrite Heqn1; rewrite Heqn2; reflexivity | exact Heqst2].
(*Case "A"*)
intros;
inversion ev2; subst;
apply IHev1 in H1;
destruct H1; rewrite H; split; reflexivity.

Qed.

2.2.4 Interactive proof assistant vs automated theorem prover

An interactive proof assistant, such as Coq, requires man-machine collaboration to
develop a formal proof. Human input is needed to create appropriate auxiliary defin-
tions, choose the right inductive property and, more generally, to define the architecture
of the proof. Automation is used for non-creative proof steps and checking the correc-
ntess of the resulting formal proof. A rich logic can be handled in an interactive proof
assistant for a variety of problems.

On the other hand, fully automated theorem provers were developed. They can
perform the proof tasks automatically, that is, without additional human input. Au-
tomated theorem prover can be efficient in some cases. But problems appear to be
inevitable: if we are able to automatically prove a formula, it means that it belongs to
a decidable (or at least semi-decidable) class of problems. It is well-known that decid-
able logics are much less powerful, expressive and convenient than higher-order logic.
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Then the range of problems we can model with an automated theorem prover is smaller
than with an interactive proof assistant. In practice, both approaches are important
in the fields of computer science and mathematical logic. Here in our project, a rich
logical system is needed, in order to manage the complexity of the specification and of
the proofs.

2.2.5 Applications

Georges Gonthier (of Microsoft Research, in Cambridge, England) and Benjamin
Werner (of INRIA) used Coq to create a surveyable proof of the four color theorem,
which was completed in September, 2004 (20) Based on this work, a significant ex-
tension to Coq was developed, which is called Ssreflect (which stands for “small scale
reflection”). Despite the name, most of the new features added to Coq by Ssreflect are
general purpose features, which is useful not merely for the computational reflection
style of proof.

The same technology was then used for the formal verification of an important
result from finite group theory, the “odd theorem”. A simplified proof has been pub-
lished in two books: (Bender & Glauberman 1995), which covers everything except the
character theory, and (Peterfalvi 2000, part I) which covers the character theory. This
revised proof is still very hard, and is longer than the original proof, but is written in
a more leisurely style. A fully formal proof, checked with the Coq proof assistant, was
announced in September, 2012 by Georges Gonthier and fellow researchers at Microsoft
Research and INRIA.(21)

CompCert (31) is a formally verified optimizing compiler for a subset of the C pro-
gramming language which currently targets PowerPC, ARM and 32-bit x86 architec-
tures. The compiler is specified, programmed, and proved in Coq. It aims to be used
for programming embedded systems requiring reliability. The performance of its gen-
erated code is often close to that of gcc (version 3) at optimization level O1, and is
always better than that of gcc without optimizations.

2.3 CompCert

In a previous section (Sec 6.1), we mentioned that we use results of the CompCert

project in order to link the formal representation of ARMv6 architecture with the C
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representation of this architecture in Simlight. Now we introduce CompCert in more
detail. CompCert is a verified compiler for the C programming language provided by
INRIA (31). It has a long translation chain of eleven steps, from C source code into
assembly code. Every internal representation has its own syntax and semantics defined
in Coq. It is formally verified in the following sense: the produced assembly code is
proved to behave exactly the same as the input C program, according to a formally
defined operational semantics of these languages.

The 2 first languages considered in the CompCert translation chain, CompCert C
and Clight, are actually subsets of the C language. Like C, CompCert C is non-
deterministic: for some expressions cause side-effect and have more than one evaluation
order. On the other hand, all expressions of Clight are pure. Assignments and function
calls in Clight are treated not as statements but as expressions. The reason why we
choose CompCert C rather than Clight to represent Simlight is that it is much more
user-friendly and convenient. Indeed, as Clight expressions are pure and deterministic,
a number of auxiliary variables have to be introduced in order to manage intermediate
states.

Here we present a small example of a C program to illustrate the last point. The
original C code is as:

void main(int x, int y)
{
int a;
int b;
int v;
a = f(f1(v, f2(x, y)), f3(a, 1), f4(b, 3));

}

All the function calls (fx) are side-effect free operations. Then using CompCert compiler,
we are able to generate the CompCert C and Clight representations. The CompCert

representation is exactly the same as the original C code in this case. But the Clight

representation is quite different, with the introduction of additional temporary variables
(which are different from local variables, they do not reside in memory).

void main(int x, int y)
{
int a;
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int b;
int v;
register int $5;
register int $4;
register int $3;
register int $2;
register int $1;
$1 = f2(x, y);
$2 = f1(v, $1);
$3 = f3(a, 1);
$4 = f4(b, 3);
$5 = f($2, $3, $4);
a = $5;

}

The proof based on these two representations can be expected to have the same com-
plexity, because the complexity of the proof work is caused by the C memory model.
Using either of them will face the same memory model (this will be detailed in Chap-
ter 6). The transition corresponding to the evaluation of a given high-level expression
(as the one given above) will anyway be decomposed in smaller transitions, either if we
use the more complicated semantics of CompCert C on the original shorter expression,
or if we use the simpler semantics of Clight on the corresponding longer Clight ex-
pression. Therefore, we don’t expect a real gain in using Clight rather than CompCert

C at the proof stage, while we would lose readability and convenience in the C code.
In SimSoC-Cert, we use two parts of CompCert C. The first is the CompCert basic

library. It defines data types for words, half-words, bytes etc., and bitwise operations
and lemmas to describe their properties. In our Coq model, we also use these low level
representations and operations to describe the ISS (Instruction Set Simulator) model.
The second is the CompCert C language (its syntax and semantics), from which we
get a formal model of Simlight. In our correctness proofs, wa can then analyze its
behaviour step by step and compare it with our Coq model of ARM.

2.3.1 CompCert library

In CompCert, a reusable basic library on machine integers (type int) and bitwise
operations is formally defined in Coq. The type int is based on type Z from the Coq
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standard library, with a proof to guarantee that the range of the value is between 0 and
the modulus. Parameterized by wordsize of type nat (natural number), the integer
module can be instantiated to byte, int64, and so on. This module also supports the
conversion between the types int, Z, and nat.

Applicative finite maps are the main data structure used in the memory state and
the global/local environment descriptions. There are two basic types, a Tree and a
Map, from which a number of maps and trees can be derived. The difference between
the two is: for Tree the result of the 〈get〉 operation is an option type: if there is no
data associated with the key, None is returned. For type Map, 〈get〉 always returns a
data. If there is no data associated, a default value will be returned, which is given
at initialization time. These two data structures are based on the abstract signature
radix-2 search tree. And the derived trees and maps are named by their keys which
can be integer or positive. The Tree is used to define the global and the local envi-
ronments, which gather memory information, and map the reference identifier to data
information. Since the environment corresponds to a memory contents, no information
can be obtained if a nonexistent address is given. On the contrary, the memory con-
tents is represented by a Map indexed by an integer. If a block in memory has not been
allocated, it should return a default value Undefined by any visit.

2.3.2 CompCert C semantics

CompCert C is a large subset of C language. Here are some limitations in this subset.
– Types: most of the types in C90 (1) are supported, except the following points.

1. Unprototyped function type (intf()) and function type with variable number
of arguments (intf(...)). But it is possible to declare (not define) an external
function of the latter.

2. A structure can not have an unknown sized array type as the last element.
The size information must be known.

– Wide char and wide string.
– Type cast does not support pointer to float.
– Specify bit fields in unions are not supported.
– For the switch statement, case and default must appear. And the default

must occur at last.
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G,E ` rf M t1==⇒ rf ′,M1 G,E ` rarg∗ M1 t2==⇒ rarg′∗,M2
G,E `M2 rf ′ ⇒ vf find funct (G, vf) = bfdc

`M2 fd varg∗ t3==⇒ vres,M3

G,E `M 〈Call〉 t1∗∗t2∗∗t3======⇒ vres,M3
(2.14)

G,E ` l M t1==⇒ l′,M1 G,E ` r M1 t2==⇒ r′,M2
G,E ` l′ M2⇒ (b, ofs) G,E ` r′ M2⇒ v

cast(v, typeof(l), typeof(r)) = bv′c
store(G, typeof(l), M2, (b, ofs), v) = bM3c

G,E ` (l = r) M t1∗∗t2∗∗t3======⇒ v′,M3
(2.15)

Figure 2.4: Some rules for CompCert C operational semantics

– The only available external functions are printf, malloc, free, builtin annot

and bultin annot val. The other external functions can be declared but not
implemented. One external function will generate an event trace. It says the re-
sult of the external function is computed by operating system, not the CompCert
C code.

– Every program must have a main function declared.

CompCert provides two operational semantics for CompCert C: one is non-deterministic,
in small-step style; the other is detailed, in big-step style. In our case, the big-step se-
mantics is enough for correctness proofs

The formal operational semantics is described as a transition system on memory
states written as follows:

G,E ` 〈expression〉, M t==⇒ v, M ′.

Here G represents the global environment of the whole program; E is the local envi-
ronment; M and M ′ are memory states and t is a trace of I/O events; v is a returned
value.

In CompCert C, expressions can be categorized into 15 cases, 13 of them are used
in our correctness proofs. Some of them are similar to the ones for Clight and are
already listed in CompCert papers (33). Inference rules that are different from Clight

are presented in Fig. 2.4.
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The first rule in Fig 2.4 is for evaluating a function call. The evaluation is quite
different from the rule for Clight. Not only that Clight expressions are side-effect
free, but CompCert C separates memory state transformation from evaluating simple
expressions in order to preserve memory state. A function call can be evaluated in three
steps: evaluating the function referenced by identifier rf to get where it is stored; eval-
uating the function arguments rargs to get their values; finding the function definition
fd in the environment; then evaluating the function call using eval funcall.

The second rule in Fig 2.4 is the evaluation of an assignment. In Clight, an
assignment is not an expression but a statement because Clight expressions are pure.

In Simlight, the interpretation uses a subset of C features which is as simple as
possible. This is not only to satisfy to CompCert C restrictions, but also to avoid
ambiguous situations where an expression could have different behaviours. This way,
the bigstep semantics of CompCert C is sufficient. However, some features outside
of CompCert C occur in the current version of Simlight: external functions, which
are used in many places to perform I/O subsystem communications. Currently, those
external functions are represented by axioms. As a future improvement, it will be
better to use internal functions instead.
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Chapter 3

Formal model of ARMv6

In the beginning of this chapter, we present a short introduction of the ARMv6
reference manual, with an emphasis on the parts we have to specify in our model. Next
we present our formal Coq model of ARMv6: the main types, how instructions are
formalized, and the ARM instruction decoder.

Résumé

Ce chapitre commence par une introduction au manuel de référence de l’ARMv6,
qui sert de point de départ de notre travail. Nous insistons plus particulièrement sur les
parties que nous avons formalisé en Coq. Nous présentons ensuite notre modèle formel
Coq de l’ARMv6 : les types principaux permettant de décrire l’état du processeur, la
façon dont les instructions sont formalisées, et enfin le décodeur. Nous terminons par
quelques remarques sur nos tentatives d’utilisation de ce modèle comme spécification
exécutable.

3.1 The ARM reference manual

In order to certify the ARMv6 simulator, first we need to have a formal model that
can be referred to. In an ideal world, the ARM company would provide a formal model
of their processors, but it is not the case... In fact, the only basis we can depend upon
to obtain an ARMv6 formal model is their reference manual (2). Similarly, CompCert
project (31) designed their CompCert C language and Asm language according to the
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informal ISO C 90 standard document (1) and relevant parts of the reference manuals
for PowerPC, ARM, and IA32.

The ARMv6 reference manual is structured in four main parts, CPU architec-
ture, Memory and system architecture, Vector floating-point architecture
and Debug architecture. The useful contents for us to build our formal model is
taken in the CPU architecture part. There is another important section at the end
of the document, the Glossary, which gives the detailed explanation of key words
appearing in the document using formulas and English.

The CPU architecture part introduces the ARM programmers’ model, the ARM
instruction set, the ARM addressing modes, and the Thumb instruction set. The
contents of the programmers’ model helps to formalize a state representing the structure
of the ARMv6 processor. Most of the contents are written in English. The ARM
processor state can be illustrated as in Figure 3.1 .

stateproc =


general-purpose registers ×
status registers ×
exceptions ×
processor modes

statescc = registers × memory
stateARMv6 = stateproc × statescc

Figure 3.1: ARM processor state

The ARM main processor contains thirty-one 32-bit general-purpose registers in-
cluding the program counter, and six 32-bit status registers. A particularity of ARM
architecture is that the program counter, register 15, can be used as any other general-
purpose registers (e.g one can XOR the program counter with another register...) But
it has many instruction-specific effects on instruction execution. If the program counter
is used in a way that does not obey specified restrictions, the instruction will yield to an
UNPREDICTABLE state. When UNPREDICTABLE state is reached, the instruction results
cannot be relied upon, but the system will not halt or raise exception: UNPREDICTABLE
is part of the system.

Access to the registers is decided by the current processor mode. The processor
mode is encoded in 5 bits of the Current Program Status Register (CPSR), which is
accessible in all processor modes (user mode, FIQ mode, IRQ mode, supervisor mode,
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abort mode, undefined mode, system mode), see Figure 3.2. Other than CPSR, the
other five status registers are the Saved Program Status Registers (SPSR) correspond-
ing to each mode. When internal or external sources generate exceptions, the processor
will react as follows. The processor status in CPSR will first be preserved into an SPSR
according to the type of the exception. The processor mode is switched to the associ-
ated exception mode, the bits representing the processor mode in CPSR then change
to the corresponding exception mode. Thus each type of exception proceeds under the
specific exception mode. Eventually, the processor will return to the normal user mode
and the CPSR will be restored from the saved value.

exn mode = fiq | irq | svc | abt | und

proc mode = usr | exc mode | sys

Figure 3.2: ARM processor modes

In our work, we only consider a simplified memory model without the memory
management unit (MMU) described in part Memory and system architecture, in
which only read and write functions are kept. In the ARM model, memory is controlled
by the System Control Co-processor (CP15). So we describe the memory model as a
part of System Control Co-processor (SCC), together with registers of SCC. The state
of SCC and the state of the main processor are together to form the state of ARMv6.

The next part of CPU architecture is for the ARM instructions set. This is
where we spent most of our efforts. For ARMv6 architecture, there are 147 kinds of
instructions and five kinds of addressing modes; with the different combinations of 15
condition modes, 11 operands, and two post-operation modes; the combination of which
represents tens of thousands of instruction instances to consider.

The reference manual describes the ARM instructions in a well-structured way by
providing their syntax and usage. Each instruction is specified by:

– The instruction encoding table
– The instruction syntax
– The validation under different versions of ARM architecture
– The exceptions that may occur
– The pseudo-code explaining the instruction operation
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– The usage or notes.
The description of instructions plays a very important role in our project. As an

example, let us take the instruction ADC from the data-processing instruction set. This
instruction performs an add with carry. It adds (with carry) the value of a register
with either the value of another register or an immediate value. Its encoding table is
shown in Figure 3.3 .

31 . . . 28 27 26 25 24 . . 21 20 19 . . . 16 15 . . . 12 11 . . . . . . . . . . . . 0
cond 0 0 I 0 1 0 1 S Rn Rd shifter operand

Figure 3.3: ADC instruction encoding table

The bits [31 : 28] encode the conditions (cond), under which the instruction is going
to be executed.

cond = EQ | NE | CS | CC | MI | PL | VS | VC | HI |
LS | GE | LT | GT | LE | AL

When the condition is not satisfied, the instruction has no effect on the processor
state, acting like a No-Op instruction, and the program counter moves up to the next
instruction. Most ARM instructions are conditional, only a small number can be ex-
ecuted unconditionally, although in practice many instructions bear the always code,
which indicates that the instruction is always executed. The four bits of the condition
code are related to the condition flags in the Status Register, so that an instruction
can be executed only when the condition code matches.

The bits [24 : 21] form what is called the opcode, which specifies the operation.
Here it contains the code for “add with carry”. These bits are first checked by the
decoder to recognize the instruction kind.

The I bit is an identifier which distinguishes the immediate shifter operand from the
register-based shifter operand, and the S bit indicates whether the instruction updates
the flags in CPSR.

Rn is the first source operand. According to the addressing mode encoded by bits
I,7 and 4 (explained below in this section), the second operand is one of the following
basic cases:

– An immediate operand, formed by rotating bits [7 : 0] with a even value decided
by the four bits [11 : 8].
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– A register operand, which refers to the bits [3 : 0].
– A shifted register operand, which is a shifted or rotated value of a register. The
register is of bits [3 : 0], and the five types of shift is indicated by the bits [11 : 7].

However, because the ARM encoding is very dense, the same instruction with a spe-
cial combination of the three bits I, 7, and 4, is no longer a data-processing instruction,
but it becomes an extension of the Load/Store instruction...

In the assembly language description for each instruction, parameters wrapped by
< > refer to corresponding bit fields in the encoding table. For example in Figure 3.4,
the value of the parameters in the assembler syntax of ADC , cond, S, Rd, Rn, and
shifter operand must be encoded precisely by the bit fields from the ADC encoding
table as Figure 3.3.

ADC {<cond>}{S} <Rd>, <Rn>, <shifter operand>

Figure 3.4: ADC assembler syntax

The binary decoder in the simulator must extract the bit fields from the binary
instruction and initialize C variables or data structures with the appropriate value of
the parameters, which sometimes requires an additional operation like sign extension.

The C like code in Figure 3.5 is the piece of pseudo-code given in the document to
describe what the instruction ADC does. It first checks if it is conditionally executed.
If not, the execution will finish. If so, it assigns the result of adding the contents
in register Rn, the value of shifter operand and the carry (C flag in CPSR). Then,
considering whether the S bit is set or not, the CPSR is updated or not. If the S

bit is set and register Rd is the program counter, it means that the ARM processor is
currently running under exception mode and the status in SPSR needs to be restored
in CPSR. Before writing to the CPSR, a check is performed to determine if the current
mode is an exception mode, because only such a mode possesses an SPSR. Otherwise
the instruction returns UNPREDICTABLE . If the register Rn is some other general-purpose
register and the S bit is set, CPSR has to be updated according to the result of the
addition and the presence of a carry.

There are some pitfalls related to the different meaning of symbols in the pseudo-
code. The same notation on different sides of ’=’ can be different. For example, let us
consider the assignment “Rd = Rn + shifter operand + C Flag”. On the left-hand
side of ’=’, the meaning of Rd is the address of Rd (the result will be assigned to
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if ConditionPassed(cond) then
Rd = Rn + shifter_operand + C Flag
if S == 1 and Rd == R15 then

if CurrentModeHasSPSR() then
CPSR = SPSR

else UNPREDICTABLE
else if S == 1 then

N Flag = Rd[31]
Z Flag = if Rd == 0 then 1 else 0
C Flag = CarryFrom(Rn + shifter_operand + C Flag)
V Flag = OverflowFrom(Rn + shifter_operand + C Flag)

Figure 3.5: ADC instruction operation Pseudo-code

address of Rd ). On the other hand, the same Rd on the right-hand side, e.g., in
“N Flag = Rd[31]”, means the content of register Rd . More subtle, the meaning of
Rd is different from the meaning of Rn – so such names are more like keywords than
identifiers: on the right-hand side of an equation, Rn represents the original contents
of Rn , whereas Rd represents the current contents of Rd . And when Rd and Rn

happen to be the same register, the value of Rn on the right hand-side must stick to
the original contents, not to the updated result.

As we explained for instruction ADC , the second operand is encoded by addressing
mode 1 – data-processing operand. There are five groups of addressing mode:

– Addressing mode 1 – Data-processing operand
– Addressing mode 2 – Load and store word or unsigned byte
– Addressing mode 3 – Miscellaneous loads and stores
– Addressing mode 4 – Load and store multiple
– Addressing mode 5 – Load and store coprocessor.
Each of them contains several formats used to calculate the value used in the in-

struction operation. For example, in addressing mode 1, there are eleven formats to
encode the shift operand, and in addressing mode 2, there are nine. The reference
manual gives for each format an encoding table and an assembler syntax, and its oper-
ation in pseudo-code, which are similar to the description of ARM instructions. With
the usage and notes of each instruction, we are able to match the instruction with its
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own addressing mode.

3.2 Formalization in Coq

We want the formal specification to be as close as possible to the reference manual.
We also want it to be as simple as possible. In this way, our formal model can be
reliable and simple enough to reason about.

Our formal model contains the basic library for integer representation and binary
operations, a memory model, the main processor, the system control co-processor,
the instruction set, the simulation loop, and a description of the initial configuration.
The bit vector definition and operations reuse the integer module from CompCert,
instantiated to 32-bit words, 4-bit words for register numbers and 30-bit integers for
memory addresses.

The core part of the ARM processor is the ARM instruction set. Its formalization
is a rather heavy piece of work. In particular, the pseudo-code of each instruction
given by the ARM reference manual has to be formalized. As a result, we get a formal
semantics for ARMv6 instructions.

According to the structure presented in Figure 3.1, we formalize a Record type
state by composing the state of the main processor and the state of the system
control coprocessor:

Record state : Type := mk_state {
(* Current program status register *)
cpsr : word;
(* Saved program status registers *)
spsr : exn_mode -> word;
(* Registers *)
reg : register -> word;
(* Raised exceptions *)
exns : list exception;
(* Processor mode *)
mode : proc_mode

}.

Record state : Type := mk_state {
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(* registers *)
reg : regnum -> word;
(* memory *)
mem : address -> word

}.

Record state : Type := mk_state {
(* Processor *)
proc : Arm6_Proc.state;
(* System control coprocessor *)
scc : Arm6_SCC.state

}.

Considering the whole simulation system, we need another state representing not
only the processor but also the execution status. We introduce a new type named
semstate to distinguish it from the state for processors. The specification follows the
monadic style (49) to represent calculations on the ARM processor states.

This style takes the sequentiality of transformations on the state into account. In
the state monad, functions take a state as input and return a value combined with a
new state. Beyond the state, two other pieces of information are handled: loc, which
represents local variables of the operation, and bo, a Boolean indicating whether the
program counter should be incremented or not; they are registered in the following
record which is used for defining our monad.

Record semstate := mk semstate { loc : local ; bo : bool ; st : state }.

Inductive result {A} : Type :=
| Ok ( : A) ( : semstate) | Ko (m : message) | Todo (m : message).

Definition semfun A := semstate -> @result A.

Note that in most cases, functions will return an Ok value. The value Ko is used
for UNPREDICTABLE states and is implicitly propagated with our monadic constructors
for exceptions. The value Todo is used in a similar way for unimplemented operations
– currently, it is still the case for coprocessor instructions.
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The simulation fetches the binary code at a given address; decodes it to correspond-
ing assembly instruction; invokes the operation in library and executes it; and at last
includes the computation of the address of the next instruction. The ARMv6 behavior
semantics is described by functional rather than relational definitions. This means our
specification is consistent and deterministic. The two main components of a processor
simulator are then:

– The decoder, which decodes a given binary word, retrieves the name of an op-
eration and its potential arguments in assembly code. In Section 3.2.2 we will
explain how it is generated from the reference manual.

– The precise description of transitions is the operation of instruction. The defi-
nition contains operations on processor registers and memory; thereby, the pro-
cessor state is changed. In the ARMv6 reference manual, these algorithms are
written in a “pseudo-code” syntax which calls low-level primitives. For example,
some code indicates setting a range of bits of a register by a given value. And
some operations might lead to unspecified or forbidden results. In ARM proces-
sor, this is called UNPREDICTABLE . When the simulator meets these result, it then
returns a Ko or Todo state with a message specific to the situation.

3.2.1 Running an instruction

Each instruction operation (O) from the reference manual, for example in Figure 3.5,
gives a semi-formal description on how a instruction evaluates. Here we show how to
specify it in by a corresponding Coq function (O coq).

Taking the instruction ADC as an example, its formalization in Coq is showed in the
following function ADC step, which operates on the parameter st of type state. Other
parameters are found by searching for unspecified variables in the pseudo-code. Not all
variables are declared globally. Variables which are assigned during the execution are
local variables except the output registers, for example, Rd . The body of the function is
kept as close as possible to the pseudo-code by using notations, like <st>, as explained
below:

(* A4.1.2 ADC *)
Definition ADC_step (S : bool) (cond : opcode) (d : regnum) (n : regnum)

(shifter_operand : word) : semfun _ := <s0>
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if_then (ConditionPassed s0 cond)
([ <st> set_reg d (add (add (reg_content s0 n) shifter_operand)

((cpsr s0)[Cbit]))
; If (andb (zeq S 1) (zeq d 15))

then (<st> if_CurrentModeHasSPSR (fun em =>
(<st> set_cpsr (spsr st em))))

else (if_then (zeq S 1)
([ <st> set_cpsr_bit Nbit ((reg_content st d)[n31])
; <st> set_cpsr_bit Zbit

(if zeq (reg_content st d) 0
then repr 1
else repr 0)

; <st> set_cpsr_bit Cbit
(CarryFrom_add3 (reg_content s0 n)

shifter_operand ((cpsr s0)[Cbit]))
; <st> set_cpsr_bit Vbit

(OverflowFrom_add3 (reg_content s0 n)
shifter_operand ((cpsr s0)[Cbit])) ])) ]).

For most of the ARMv6 instructions, executions are conditional. These condition-
ally executed instructions must first check if the current condition (argument cond)
fits the required condition. Otherwise, the following operations will be skipped, and
then go to the next instruction. The S bit argument indicates the instruction must
update the status register CPSR. If the argument Rd refers to the program counter
(R15), the updating of CPSR is going to preserve the value of SPSR when the current
processor mode is one of the exception mode. If Rd is one of the other general-purpose
register, updating of CPSR is done by updating the significant flags in CPSR. The values
are calculated by operations on argument Rn which contains the first operand, and
shift operand which specifies the second operand.

Here we explain the notation <st>. It is the notation for function get st, a
monadic function that provides access to the current state st at any place of the
operation sequences:

Definition bind {A B} (m : semfun A) (f : A -> semfun B) : semfun B :=
fun lbs0 =>
match m lbs0 with

| Ok a lbs1 => f a lbs1
| Ko m => Ko m
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| Todo m => Todo m
end.

Definition bind_s {A} fs B (m : semfun unit) (f : A -> semfun B) :
semfun B :=
bind m (fun _ lbs1 => f (fs lbs1) lbs1).

Definition _get_st {A} := bind_s st A (Ok tt).

Notation "’<’ st ’>’ A" := ( get st (fun st => A))
(at level 200, A at level 100, st ident).

In general, every operation function terminates with Ok state. However, errors are

implicitly propagated with our monadic constructors: Ko and Todo.

The other notations to keep the formalization well structured are the case state-

ments If, then, else, and if then, also the sequence statement denoted by brackets

and semicolons:

Definition if_then_else {A} (c : bool) (f1 f2 : semfun A) : semfun A :=
if c then f1 else f2.

Notation "’If’ A ’then’ B ’else’ C" := (if_then_else A B C)
(at level 200).

Definition if_then (c : bool) (f : semfun unit) : semfun unit :=
if_then_else c f (Ok tt).

Definition _set_bo b lbs := ok_semstate tt (loc lbs) b (st lbs).
Definition block (l : list (semfun unit)) : semfun unit :=

let next_bo f1 f2 := next f1 (_get_bo f2) in
List.fold_left (fun f1 f2 =>
next_bo f1 (fun b1 =>
next_bo f2 (fun b2 => _set_bo (andb b1 b2))) ) l (Ok tt).

Notation "[ a ; .. ; b ]" := (block (a :: .. (b :: nil) ..)).
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3.2.2 Decoder

Now we consider the formalization of decoding instructions. An instruction encod-
ing table, e.g. like in Figure 3.3, summarizes all possibilities for this instruction in
32-bits representation. All the others will be decoded into UNPREDICTABLE or unde-
fined. Then we can build an ARM instruction decoder for the ARMv6 architecture
using all of the instruction encoding tables.

The main body of the decoder is a big pattern matching program. Each constructor
is represented by 32 bits, either implicit or explicit. The Coq code in Figure 3.6 shows
a thumbnail of the formal decoder, for the constructor corresponding to ADC .

Definition decode_conditional (w : word) : decoder_result inst :=
match w28_of_word w with
...

(*4.1.2 - ADC*)
| word28 0 0 I_ 0 1 0 1 S_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
=>
decode_cond_mode decode_addr_mode1 w

(fun add_mode condition =>
ADC add_mode S_ condition (regnum_from_bit n12 w)

(regnum_from_bit n16 w))
...
end.

Figure 3.6: Formalized decoder of conditional executed instructions

The decoding of ARM instructions is difficult because some bit configurations are
ambiguous at first sight: they could be interpreted as different kind of operations.
Such ambiguities are solved in the reference manual, which specifies a precedence order
between the interpretations. In our formalization, this precedence order is implemented
by the order used for the different bit patterns, in the global pattern-matching construct.
In Coq, the pattern matching is considered from top to bottom: a value belongs to the
ith constructor if and only if it could not match any previous pattern; a pattern covered
by previous patterns is considered as redundant by the Coq type checker.

The 147 instructions are first partitioned into two groups, conditional and uncondi-
tional instructions. For ARM instructions, the condition field cond [31 : 28] indicates

52



3.2 Formalization in Coq

the conditional execution of ARM instruction. These instructions will be checked first
by matching the first four bits with 0b1111 representing an unconditional execution.
The others are grouped by ARM instruction categories. Instructions belonging to the
same category do not conflict with each other by the wild-card mechanism. We also
define 5 levels for grouping conditional instructions.

– All multiply instructions without accumulator. They can be covered by similar
multiply instruction with an accumulator. Instructions without accumulator fill
the bits [15 : 12] with 0b1111, whereas instructions with an accumulator using
them refer to the register for accumulator operand.

– Some instructions from ARMv5 architecture use the notion SBO or SBZ to express
that the instruction bit is read as one/zero whatever the value of the bit is and it
cannot be rewritten. These instructions need to be checked then, otherwise they
could be hidden by some of the new ARMv6 instructions.

– A few load/store instructions work under the privileged mode. Two significant
bits P and W are assigned to a special combination of values to indicate this
kind of instructions. We have to put them in higher priority, before the similar
instructions working for the other processor modes.

– Instructions load/store from memory with a format other than word have a shape
similar to the load/store with word, but the four bits [7 : 4] are used to refer to
the load/store length – indicating whether it is a half, double word, or a signed
byte.

– The last group contains all the operations with addressing modes. For decoding
this kind of instructions, the decoder for addressing mode has to be called first.
The addressing mode decoders are introduced below.

In Section 3.1 we mentioned that the ARM instruction set admits five kinds of ad-
dressing mode. They are used to encode the specific values appearing in the instruction
pseudo-code. The encoding tables for addressing mode are in the same form as the ones
for ARM instructions, the formalization of addressing mode decoders are similar to the
instruction decoder. The following definition shows one clause of the decoder for the
addressing mode 1 – Data-processing operands, to indicate that the shift operand is
calculated by an immediate logical shift left.

Definition decode_addr_mode1 (w : word) : decoder_result mode1:=
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match w28_of_word w with
...
(*5.1.5 - Data processing operands - Logical shift left by immediate*)
| word28 0 0 0 _ _ _ _ S_ _ _ _ _ _ _ _ _ _ _ _ _ _ 0 0 0 _ _ _ _ =>
DecInst _ (M1_Logical_shift_left_by_immediate

(regnum_from_bit n0 w) w[n11#n7])
...
end.

3.3 Experimentations

Altogether, we get an executable formal model of ARMv6 architecture, which can
be translated to OCaml code by extraction of Coq code. However, for the executable
version of the formal simulator, we could not integrate this extracted OCaml code
because the extraction mechanism translates a Coq pattern, which matches more than
one terms, into many OCaml patterns, which mention all possibilities one by one.

More precisely, from the Coq model of ARMv6, it is possible to extract OCaml code
and compile it to an executable simulator and perform some tests. The arm-elf-gcc

compiler is already used in our group to compile C tests into ELF files to be used in
Simlight. These tests could be translated to a Coq representation, then extracted
to OCaml. Running a simple direct sum test takes around five minutes. A sorting
program would then need one day to be completed.

Directly simulating the ARM in Coq would even be worse. However, execution
speed is not a concern in formal proofs, as far as no heavy computations steps are
involved.
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Simulation of ARMv6 in C

Here we introduce Simlight, our certification target. Simlight is a light version of
the simulator SimSoC, which includes only the ARMv6 instruction set simulator with
a simplified memory model.

We also give a brief description of Simlight 2, which includes several optimizations
from SimSoC to obtain a higher simulation speed. The extension to the optimized
version 2 will be discussed as future work in conclusion Chapter 9.

Résumé

Ce chapitre est consacré à Simlight, la cible que nous cherchons à certifier. Simlight
est une version allégée du simulateur SimSoC, qui ne contient que le simulateur de jeu
d’instructions, avec un moèle mémoire simplifié.

Nous donnons aussi une brève description de Simlight 2, qui intègre plusieurs
optimisations utilisées dans SimSoC afin d’accélérer la simulation. L’extension de notre
travail de certification à la version 2 optimisée est considérée en perspective dans la
conclusion, au chapitre 9.

4.1 Simlight

Similarly to the Coq formal model, Simlight contains a data structure in C to
represent the ARMv6 processor. As the structure of the processor did not change
between ARMv5 and ARMv6, this data structure was copied from the previous version
of SimSoC for ARMv5. It was designed to optimize execution, which makes it rather
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struct SLv6_Processor {
struct SLv6_MMU *mmu_ptr;
struct SLv6_StatusRegister cpsr;
struct SLv6_StatusRegister spsrs[5];
struct SLv6_SystemCoproc cp15;
size_t id;
uint32_t user_regs[16];
uint32_t fiq_regs[7];
uint32_t irq_regs[2];
uint32_t svc_regs[2];
uint32_t abt_regs[2];
uint32_t und_regs[2];
uint32_t *pc; /* = &user_regs[15] */
bool jump;

};

Figure 4.1: ARM Processor state in C

different from the formalization in Coq that keeps things as simple as possible, and as
close as possible to the reference manual.

The C definition of the processor state is given in Figure 4.1.

Similarly, the data structure SLv6 Processor contains the most important com-
ponents of the ARM processor: a pointer to the location of the structure representing
the Memory Management Unit (MMU), a status register structure for CPSR, an array
for the status register structure of SPSR, a structure for CP15 (SCC), a field for the
processor id (useful when there is more than one core), six arrays for registers of each
processor mode, one field for PC, and a boolean field jump which indicates whether the
instruction modifies the PC or not.

For a better illustration, the C definition of the status register structure is given in
Figure 4.2.

In order to gain high speed for the simulator, the processor type has been designed
to have several redundant fields; for example, the PC field is a pointer to the 15th
register in user register array. Indeed, the PC field is significant as it allows to judge
whether the execution is branched or not, so that the running program can be split
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struct SLv6_StatusRegister {
bool N_flag; /* bit 31 */
bool Z_flag;
bool C_flag;
bool V_flag; /* bit 28 */
bool Q_flag; /* bit 27 */
bool J_flag; /* bit 24 */
bool GE0; /* bit 16 */
bool GE1;
bool GE2;
bool GE3; /* bit 19 */
bool E_flag; /* bit 9 */
bool A_flag;
bool I_flag;
bool F_flag;
bool T_flag; /* bit 5 */
SLv6_Mode mode;
uint32_t background; /* reserved bits */

};

Figure 4.2: ARM status register structure in C
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into code blocks. And the PC field is referred to many times during execution. There
is another important optimization method in SimSoC simulation 1.2. In order to
optimize execution time, the data structures used to represent the processor state do
not reflect the hardware structure. For example, whereas a bit is used in hardware
to store a flag, a boolean variable is used to represent that bit in the C code. For
example the 4 bits in the status register that indicate the traditional N, Z, C, V flags
(Negative, Zero, Carry and oVerflow) for condition code, are represented by 4 booleans
variables. Similarly, an array of status registers is used to represent the status in the
different modes, indexed by the current mode. It means that the pseudo-instructions
code that manipulate these data structures must be translated by appropriate C code
that accesses the corresponding data,

As a result, the C code of the semantics functions has a structure close to the
pseudo-code in the reference manual but with additional access functions to access the
data in an optimized implementation. Below is the example of the ADC instruction:

/* ADC */
void ADC(struct SLv6_Processor *proc,

const bool S,
const SLv6_Condition cond,
const uint8_t d,
const uint8_t n,
const uint32_t shifter_operand)

{
const uint32_t old_Rn = reg(proc,n);
const uint32_t old_CPSR = proc->cpsr;
if (ConditionPassed(&proc->cpsr, cond)) {
set_reg_or_pc(proc,d,((old_Rn + shifter_operand) + old_CPSR.C_flag));
if (((S == 1) && (d == 15))) {
if (CurrentModeHasSPSR(proc))
copy_StatusRegister(&proc->cpsr, spsr(proc));

else
unpredictable();

} else {
if ((S == 1)) {
proc->cpsr.N_flag = get_bit(reg(proc,d),31);
proc->cpsr.Z_flag = ((reg(proc,d) == 0)? 1: 0);
proc->cpsr.C_flag = CarryFrom_add3
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(old_Rn,shifter_operand,old_CPSR.C_flag);
proc->cpsr.V_flag = OverflowFrom_add3

(old_Rn,shifter_operand,old_CPSR.C_flag);
}

}
}

}

As the C language accepted by Compcert is a subset of the full ISO C language,
the generator has been constructed such that it only generates C code in the subset
accepted by the compcert compiler.

Nonetheless it can be compiled with other C compilers such as GCC to obtain better
performance. Even though in this case, the resulting machine code is not guaranteed
to be correct (there are well known GCC optimization bugs...), at least the original C
code has been proven by our technique to be conformant with the ARM semantics.

The ARM V6 code generator not only generates the semantics functions, it also
generates the decoder of binary instructions supported in V6 architectures. This de-
coder is obtained by compiling the opcodes information. The generated decoder is
probably not optimal in performance, but as SimSoC uses a cache to store the decoded
instructions, the performance penalty is marginal.

4.2 Optimization on Simlight version 2

In this section, we introduce the second version of Simlight, that include opti-
mizations to reduce simulation time. The optimization methods can be categorized as
follows:

– flattening is used in Simlight version 2, in order to merge some instructions with
their addressing mode. The result of flattening can improve the simulation speed.
How to perform instructions flattening is introduced in Section 5.4.

– Partitioning the semantics function into hot and cold ones. C compilers now
supports the hot and cold attributes on functions. When a function is declared
hot, the compiler generates code that minimizes execution time. When it is cold,
it minimizes code size. It also generates directives for the linker to group the
hot and cold functions together to increase program locality. The temperature
information (i.e. hot or cold) is obtained by running the program on sample
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input to generate profiling data, such as obtained with the GPROF profiling
tool. Based on profiling data, the SimSoC generator can partition the functions
between cold and hot in order to benefit from these compiler optimizations.

– Specialize the instruction of boolean parameter values.
– Remove the instructions about coprocessor because the coprocessor is not sup-

ported yet. It can save time in encoding and decoding phases.
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Chapter 5

Designing the generation chain

An important part of the specification of the ARMv6 instruction set (the behavior
of 147 instructions and 24 addressing modes) is defined in the ARMv6 reference manual
using a pseudo-code notation. As explained in the previous chapters, the Coq formal
model of ARM instructions and their C representation for Simlight are systematically
derived from this pseudo-code. Most instructions are described using more than 10
lines of pseudo-code. Manually translating them one by one would be a repetitive
and error-prone task. We then built a automatic generator, which takes the pseudo-
code of instructions as input and returns their representations in Coq and in C. The
corresponding generation chain is presented in this chapter.

Résumé

Une partie importante de la spécification du jeu d’instructions de l’ARMv6 (le
comportement des 147 instructions et des 24 modes d’adressage) est définie dans le
manuel de référence de l’ARMv6 au moyen d’une notation en pseudo-code. Ainsi qu’on
l’a expliqué dans les chapitres précédents, le modèle formel Coq des instructions ARM
et leur représentation en C pour Simlight sont systématiquement dérivés à partir de
ce pseudo-code. Pour la plupart des instructions, la description en pseudo-code fait
plus de 10 lignes. Leur traduction à la main serait une tâche répétitive et sujette à
erreurs. Nous avons donc construit un générateur automatique, prenant en entrée le
pseudo-code des instructions et retournant leur réprésentation en Coq et en C, et la
chaîne de génération correspondante fait l’objet de ce chapitre.
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Figure 5.1: Overall generation chain

5.1 Architecture

The overall architecture of the automatic generator is given in figure 5.1.
The figure shows there are three data flows coming from manual. Two are going

to be formalized manually; the other one part is going be interpreted and merged
automatically.

More specifically, we can see the data flow from ARMv6 Reference Manual to the
Coq model and to the simulation code. Some patches are needed from the textual
version of the reference manual because the latter contains some minor bugs (see below).

Three kinds of information are extracted for each ARM operation: its binary en-
coding format, the corresponding assembly syntax, and its body, which is an algorithm
operating on various data structures representing the state of an ARM: registers, mem-
ory, etc., according to the fields of the operation considered. This algorithm may call
general purpose functions defined elsewhere in the manual, for which we provide a
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CompCert C library to be used by the simulator and a Coq library defining their se-
mantics. The latter relies on Integers.v and Coqlib.v from the CompCert library which
allows us, for instance, to manipulate 32-bits representations of words. The result is a
set of abstract syntax trees (ASTs) and binary coding tables. These ASTs follow the
structure of the (not formally defined) pseudo-code.

In the end, three files are generated: a Coq file specifying the behavior of all opera-
tions (using the aforementioned Coq library), a CompCert C file to be linked with other
components of SimSoC (each instruction can also be executed in stand-alone mode, for
test purposes for instance) and a Coq files representing each instructions in CompCert

C AST to be used for correctness proof.

5.2 Analysis of the ARM reference manual

The whole process starts with the ARMv6 reference manual ARM DDI 0100I (2). The
relevant chapters for us are:

– Programmer’s Model introduces the main features in ARMv6 architecture, the
data types, registers, exceptions, etc;

– The ARM Instruction Set explains the instruction encoding in general and puts
the instructions in categories;

– ARM Instructions lists all the ARM instructions in ARMv6 architecture in al-
phabetical order and ARM Addressing modes gives all the five kinds of addressing
modes;

– Glossary gives all the definitions of key words in ARMv6. We use it as a reference
to define manually the common functions.

There are 147 ARM instructions in the ARMv6 architecture. For each instruction,
the manual gives its encoding table, its syntax, a piece of pseudo-code explaining its
own operation, its exceptions, usage, and notes. Except the semi-formal pseudo-code,
everything else is written in nature language.

The first step is extraction and patching. We extract three files from the reference
manual: a 2100 lines file containing the pseudo-code, a 800 lines file containing the
binary encoding tables, and a 500 lines file containing the ASM syntax. Other than
these three extracted files, there are still useful information left in the document which
cannot be automatically extracted. This is the case for the arithmetic functions given
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in chapter Glossary, and for the validity constraints information required by the de-
coder generator. The corresponding information is manually translated into a 300 lines
OCaml file.

Before extraction, a patch is necessary for the main text file. This patch is obtained
from reading the manual or feedback from the generation result. The patch fixes
the mistakes in the original document, such as misspelling function names, unclosed
parenthesis, missing line, etc. Most of these bugs were found by running the generator
or testing the generated simulator. The differences are kept in a diff file, so that they
could be submitted to the ARM company and confirmed.

Then each extracted file is parsed with the corresponding parser. The one to parse
pseudo-code is more complicated. Two preliminary phases solve issues related to line
breaks and indentation, given that indentation defines the blocks in Python-like way.

Then, a classical lexer parser combination builds the abstract syntax trees (ASTs).
We have built our own ASTs for intermediate representation which contains the ele-
ments representing both instructions and their addressing mode.

5.3 Intermediate representation

The abstract syntax of the intermediate representation expressions is given in Fig-
ure 5.2. The corresponding OCaml definition is an inductive data type. The type of
expression supports numbers in different bases, conditional expressions, function calls,
binary operations, ranges (e.g. Rn[31:0] indicate the range of bits 0 to 31 of register Rn),
and the particular expression of ARM registers (e.g. CPSR, SPSR, and Reg), memory
and coprocessor. Additionally, two key words are included: Unaffected which indicates
the item is not changed by an operation, and Unpredictable exp which represents an
unreliable instructions result. The evaluation of expression Unpredicatable exp and
Coproc exp can bring side-effect.

Figure 5.3 defines the abstract syntax of instruction statements, which is defined
in type inst. The C-style structural statements are supported: blocks, assignments,
conditional statements, loops (while loop and for loop), assert, case, and return. Special
function calls related to processor and coprocessor are presented individually. Within
statements, Unpredictable appears again. In pseudo-code, UNPREDICTABLE is used as
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exp ::= num
| bin
| hex
| float
| if exp then exp else exp
| fun (exp list )
| exp binop exp
| CPSR
| SPSR mode option
| Reg mode option
| var
| exp of range
| Unaffected
| Unpredictable exp
| Memory size
| Coproc exp exp list

mode ::= Fiq | Irq | Svc | Abt | Und | Usr | Sys
range ::= bit | flag | index
size ::= byte | half | word

Figure 5.2: The abstract syntax of intermediate representation expressions
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inst ::= block inst list
| let fun (args ) = inst list
| Unpredictable
| exp = exp
| if (exp ) inst inst option
| Proc_function exp list
| while (exp ) inst
| assert exp
| for (string) inst
| Coproc_function exp list
| case (exp ) inst list
| return exp

Figure 5.3: The abstract syntax of intermediate representation statements

the expression of right value in the assignment (e.g. data = UNPREDICTABLE), or as
the statement of call to the function (e.g. if...then...else UNPREDICTABLE).

5.4 Code generation

On the formal specification side (left side of the generation chain in Figure 5.1), we
directly use the ASTs for generating Coq code.

For the generation of C source code, we can make an easy optimization to generated
the second version of Simlight, in order to improve the simulation speed: as we men-
tioned in Section 4.2, flattening is one way of improving the simulation performance.
We flatten some instructions with their addressing mode When an instruction A can
be used in an addressing mode B, the generation provides a combined instruction AB.
This simple optimization can make the generation steps shorter and the generated code
faster. And after flattening, the notions of addressing modes disappear.

This flattening step is achieved by four operations:
– Inlining the addressing mode to instruction operation code;
– Appending the validity constraint information;
– Merging the encoding table of the instruction and addressing mode case (example

in figure 5.4)
– Merging the ASM syntax of the instruction and addressing mode case
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(a) binary encoding of the ADC instruction
31 . . . 28 27 26 25 24 . . .21 20 19 . . . 16 15 . . . 12 11 . . . . . . . . . . . . . . . . . . . . . . . . 0
cond 0 0 I 0 1 0 1 S Rn Rd shifter operand

(b) binary encoding of the “logical shift left by immediate” operand
31 . . . 28 27 26 25 24 . . .21 20 19 . . . 16 15 . . . 12 11 . . . . . . 7 6 . . . 4 3 . . . 0
cond 0 0 0 opcode S Rn Rd shift imm 0 0 0 Rm

(a+b) resulting binary encoding of the flattened instruction
31 . . . 28 27 26 25 24 . . .21 20 19 . . . 16 15 . . . 12 11 . . . . . . 7 6 . . . 4 3 . . . 0
cond 0 0 0 0 1 0 1 S Rn Rd shift imm 0 0 0 Rm

Figure 5.4: Flattening the ADC instruction with the shift left by immediate operand

There are some specific points for the pre-processing phase:
– We can have a base register write-back specification, saying that the base register
which is used in address calculation will be modified. We have this case when Rd

== Rn. The result is UNPREDICTABLE if the base register is PC. The base register
write-back is disabled in M2, M3, M4 addressing modes.

– Some functions are reshaped depending on the number of arguments and the
operation performed on them. For example, CarryFrom(a + b) is replaced by
CarryFrom add2(a, b), which indicates that the carry is calculated from the
“add” of two arguments.

– Some if or nested if expressions concern occur when there is at least one UNPREDICTABLE
in the branches. They are merged by pre-processing in order to remove repetitive
branches, so that we get at most one UNPREDICTABLE in a then-branch.

5.5 Formats for C code

To detail the generation of C implementations, we present a new Figure 5.5. In
the first line, the C source code is generated directly from the optimized intermediate
representation, and then go through the C parser provided by CompCert and a C to
CompCert C interpretation. Both instructions and library are parsed into CompCert C
ASTs. This result is integrated into the ARM simulator in SimSoC. The second line
translates the intermediate representation AST into CompCert C AST, and then pretty
print into Coq representation and C code too. From the AST translation, only the
instructions are obtained. The result in Coq representation is used in the correctness
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Figure 5.5: Generating C code

proofs. By comparison, the pretty printed C code and the CompCert code obtained

from the C parser are identical to each other. Parsing to CompCert C does not lose any

information, which means the subset of C, CompCert C, is large enough to be fulfill the

requirement of ARM instructions.

Proofs are to be performed on CompCert C ASTs, so the more direct way such ASTs

are obtained, the better, is in order to avoid possible mistaken auxiliary tranformations

as far as we can (no proofs have been performed on parsers and pretty-printers for

CompCert C). But it makes sense only for automatically generated C programs: writing

ASTs by hand would be much too heavy and tedious. Therefore, we have two cases

to consider. C libraries are written in textual format and parsed by the CompCert C

front-end, while C instructions automatically derived from the pseudo-code are basically

CompCert C ASTs and pretty-printed for a manual double-check in a readable form.

As a result, for proofs, the CompCert C parser is in the trusted code base (TCB) for

libraries, not for automatically derived code. If we execute the corresponding programs

using the CompCert C compiler, the TCB is the same. If we execute the corresponding

programs using another compiler, the TCB includes the pretty-printer and this compiler

as well.

As a final remark on the reliability of the CompCert C parser and the pretty-printer,

we also checked that, for all the generated code, parsing then pretty-printing yields the

original code.
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5.6 Mistakes in the ARM reference manual

While building the generators described in this chapter, we discovered several bugs
in reference manual.

– Important lines were missing in instructions pseudo-code. In the operation of
many conditional instructions, the condition checking was ignored. This leads
to a fatal error when the execution condition is not satisfied. Also for some of
load/store instruction, reading the base address is missing, which should be the
content of register Rn. Without initialization, it is impossible to give address a
value to start with.

– The case sensitivity gave the same spelling different meanings. For example, in
the formal model, the binary operation and applies to type Boolean, but operation
AND in capital is of type word → word → word. Mixing two of them will lead
to a type mismatch.

– Information was lacking in keywords. For example, in general, SignExtend

propagates the sign bit of its argument to 32 bits, but for instruction BLX(1),
SignExtend is for the 24-bit signed to 30 bits.

– Mismatched parenthesis.
– Wrong order of expressions in some operations.
– In assembly syntax, the expression of register content Rx had to be replaced by
<Rx>.

These bugs have been reported to ARM group. The feedback was that all these
bugs are fixed in ARMv7 reference manual.

69



5. DESIGNING THE GENERATION CHAIN

70



Chapter 6

Correctness proofs

In this chapter we introduce the correctness proofs we have performed for the
ARMv6 instruction set simulator Simlight by using the operational semantics of
CompCert C. This work can be also considered as a significant experiment on prov-
ing C programs by using a formalized operational semantics of C.

Résumé

Ce chapitre est consacré aux preuves de correction que nous avons effectuées pour
Simlight, le simulateur de jeu d’instructions de l’ARMv6 de notre projet, en utilisant
la sémantique opérationnelle de CompCert C. Ce travail peut également être considéré
comme une expérience significative de preuves de programmes C selon une approche
basée sur la sémantique opérationnelle.

Essentiellement, nous avons à établir qu’un programme C représentant l’ARMv6 se
comporte conformément au modèle Coq attendu, qui est un système de transitions sur
un état abstrait directment défini en Coq. Le programme C, via la sémantique opéra-
tionnelle définie dans CompCert, est lui même modélisé par un système de transitions
sur un état en un sens plus concret, qui est un modèle de la mémoire C (telle qu’elle
est formalisée dans CompCert), habitée par des structures de données indiquées dans
le programme Simlight. Bien que le programme C et le modèle Coq soient dérivés
à partir des mêmes données du manuel de référence, et que la chaîne de génération
de ces deux objets soit en partie partagée, on voit que ces objets sont de nature très
différente. Le modèle Coq abstrait reste aussi simple que possible de façon à respecter
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visiblement ce qui est énoncé dans le manuel de référence. En revanche, l’état concret
pour Simlight prend non seulement en compte le modèle mémoire de CompCert C,
mais des structures de données C complexifiées par un souci d’optimisation.

Afin de comparer le comportement du système de transition abstrait dans le modèle
Coq et celui du système de transition concret correspondant à Simlight, nous commen-
çons par définir une projection de l’état concret verts l’état abstrait. Nous pouvons alors
énoncer, pour chaque instruction ARM, un théorème principal schématise en figure 6.1
(une version plus exacte est donnée plus loin en figure 6.2).

Le preuves s’effectuent alors en itérant l’analyse des hypothèses représentant des
transitions entre états mémoire concrets, selon une relation appropriée de la sémantique
opérationnelle à grand pas de CompCert C. La transition correspondant dans le modèle
abstrait est représentée plus simplement par calcul, car dans le modèle Coq de l’ARMv6,
les instructions sont représentées par des fonctions.

6.1 General idea

For the ARMv6 Instruction Set Simulator Simlight, we have to compare a Coq
model with a C implementation (see Section 5.1).

In order to formally reason on the correctness of the second with relation to the
first in the Coq setting, we need a formal model in Coq of the C implementation. It is
provided by CompCert, which defines a operational semantics of C formalized in Coq.
The two Coq models to be compared are state transition systems.

Note that a large part of these two models is automatically derived from the same
source, that is, an AST representation of the pseudo-code for instructions taken in the
ARMv6 manual. However, even for this part, it is far from obvious that the two models
behave the same. They are actually quite different from each other.

Basically, the Coq specification follows exactly ARMv6 reference manual, and keeps
everything as simple as possible. whereas the C program has more objectives to achieve
because it is aimed to be a high speed simulator. In particular, states in the model
of the C implementation are much more complex not only because the memory model
defined in CompCert is taken into account, but also because of optimizations and design
decisions in Simlight targetting efficiency. In more detail:
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Figure 6.1: Main theorem for a given ARM instruction

– The C implementation uses a big struct to express the ARM processor state. The
model of the state is a complex Coq record type, including not only data fields
but also proofs to guaranteed access permission, next block pointer, etc. This is
detailed in Section 6.3.

– In the Coq specification, transitions are defined in a functional style, whereas in
the model of the C implementation, a relational style is used. In general, the
relational style is more flexible but functional definitions have some advantages:
reasoning steps can be replaced by computations; existence and unicity of the
result are automatically ensured. However, the functional style is not always
convenient or even possible. It is the case here, where the transitions defined by
the C implementation are relations which happen to be functions. This comes
first from the operational semantics, which needs to be relation for the sake
of generality. Furthermore in our case, the kind of record type mentioned in
the previous item is too complex to execute calculation with it, so it is more
convenient to describe the state transformation for memory with a relation.

– The two semantics operates on very different states. For the Coq specification,
reading or changing the value of the processor state or other related variables is
easy to express. In the model of the program, the state is based on a complex
memory model and load and store functions are used for read/write operations

For a given operation, we state and proof a main theorem which can be displayed
by the diagram in Figure 6.1. On both sides, the execution of an instruction is de-
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scribed by a state transition. For the two ISS representations, “State” refers to the full
description of the system. We start from a C memory state corresponding to a more
abstract state described by the Coq specification. This correspondance is expressed by
a projection relating the two models of the state. Then, executing the same instruction
on two sides will produce a pair of new processor states which are related by the same
correspondance. Informally, executing the same instruction on a pair equivalent states
will produce a pair of equivalent states.

6.2 The ARMv6 model in CompCert C

A CompCert C program a list of functions, including the program entry point called
main, with global variables as parameters. The transformation from pseudo-code AST
to CompCert C AST produces a standalone program for each ARMv6 instruction. Then
each has its own correctness proof separately. In the generated CompCert C file, program
contains only one function which is the instruction operation. Other invoked functions
are not included because the instruction pseudo-code AST has nothing but a reference
name. Their bodies are then manually included.

Every function is composed by its return type, function parameters, local variables,
and the function body. The function body is a sequence of statements made of ex-
pressions. In CompCert ASTs, constructs are very detailed. Each expression and each
statement is annotated with its own type. In a program, the same type may appear
several times. In the raw output of an AST, large and repeated expressions for types
occur everywhere, making CompCert ASTs much more verbose and space consuming
than necessary and very hard to read. In order to solve this issue and, more generally,
get a readable code, the pretty printer for ASTs introduces auxiliary names for types –
common subtypes are then shared – and also uses special notations for most constructs
expression. The implementation of this part was contributed by Frédéric Blanqui and
Frédéric Tuong.

As a result, the code for CompCert C ASTs of instructions becomes reasonably
readable, as illustrated on the following example (the instruction BL, “Branch and
Link”).

Definition fun_internal_B :=
{|
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fn_return := void;
fn_params := [
proc -: ‘*‘ typ_SLv6_Processor;
L -: int8;
cond -: int32;
signed_immed_24 -: uint32];

fn_vars := [];
fn_body :=
‘if (call (ConditionPassed‘:T1) E[&((‘*(proc‘:T2)‘:T3)|cpsr‘:T4)‘:T5;cond‘:T6] T7)
then ‘if ((L‘:T7)==(#1‘:T6)‘:T6)
then (call (set_reg‘:T8)

E[proc‘:T2; #14‘:T6;
(call (address_of_next_instruction‘:T9) E[proc‘:T2] T10)]

T11)
else skip;;
(call (set_pc_raw‘:T12)

E[proc‘:T2;
(call (reg‘:T13) E[proc‘:T2; #15‘:T6] T10)+
((call (SignExtend_30‘:T14) E[signed_immed_24‘:T10] T10)<<(#2‘:T6)‘:T10)‘:T10]

T11)

else skip

|}.

The textual version of this CompCert C code would be:

void B(struct SLv6_Processor *proc,
const bool L,
const SLv6_Condition cond,
const uint32_t signed_immed_24)

{
if (ConditionPassed(&proc->cpsr, cond)) {
if ((L == 1))
set_reg(proc,14,address_of_next_instruction(proc));

set_pc_raw(proc,(reg(proc,15) + (SignExtend_30(signed_immed_24) << 2)));
}

}

Another issue about the generated code is that the identifiers of variables, function
names, and so on, have their own numerical values. These identifiers are important for
referencing memory blocks. But for the same identifier, we may have different values in
different CompCert C programs as in the current version, each instruction corresponds
to one standalone program. This makes it difficult to share lemmas on common library
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Figure 6.2: More accurate theorem statement for a given ARM instruction

functions used in several instructions. Our solution to this issue is discussed below in
Section 6.4.3.

6.3 The projection

The state of the ARMv6 is defined in our Coq model in Figure 3.1. For convenience
we will call this state the abstract state. On the other hand, the same state is represented
in the Coq model of Simlight by the CompCert memory model applied to the data
structure displayed in Figure 4.1. For convenience we will call this state the concrete
state. In order to state correctness theorems on Simlight, we need to relate these
two Coq models. To this effect, we define a projection from the concrete state to the
abstract state.

Our theorems are then more accurately schematized by Figure 6.2 than in Figure 6.1
above.

Recall that our Coq model keeps everything as simple as possible and exactly cor-
responds to the ARMv6 reference manual, whereas the C representation is designed
for high simulation speed. Moreover, additional complexity is introduced because a
suitable memory model is required.

In the CompCert C model, variables are stored in the memory model. This CompCert
C memory model is detailed enough to describe the real memory properties, but it is
too complicated to use for computation. CompCert handles another auxiliary parameter
env, the local environment. It maps each variable identifier to its location and its type,
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and its value is stored in the associated memory block. The value associated to a C
variable or a parameter of a C function is obtained by applying load to the suitable
reference block in memory. However, this makes sense only after variable are allocated
and initialized – these two operations are performed when a function is called, building
a local environment e and an initialized memory state m. Similarly, our projection
makes sense only at this stage, i.e., parameters representing the processor state are
stored in memory. Our Coq model of ARMv6 is of course much simpler and computing
the value of a component can be performed directly.

The abstract state of the processor in our Coq model is a record. It contains
two records: one represents the main processor; the other has the system control co-
processor(SCC) and a simple ARMv6 memory altogether. In the main processor record,
the field CPSR (Current Program Status Register) is defined as a word; SPSR (Saved
Program Status Register) is a word depending on current processor mode; reg maps
the register to its value as a word; exn is a list of possible exceptions, which is not
in use yet. mode is a numeration type for all processor modes. In SCC, there are only
two elements, reg and mem: reg is the register owned by SCC, which maps the register
identical number to its word value; mem is the ARMv6 memory model, which is a
simple mapping from address to word value. We only have a trivial MMU (Memory
Management Unit) for the moment.

The ARMv6 Processor data structure in C is given in Figure 4.1. It is a struct with
thirteen fields, which in turn contains three struct: SLv6 MMU, SLv6 StatusRegister

for cpsr, and SLv6 SystemCoproc, an array of struct SLv6 StatusRegister for spsrs,
and six arrays for registers under each processor mode. The other three are: an identifier
id, which is used when an embedded system has a multi-core architecture; a pointer
pc, which points to the fifteenth of register array under user mode; and a boolean jump

for expressing that the last instruction modifies the pc, to be cleared after each cycle.
The struct SLv6 StatusRegister describes the status register, with bits represented
as byte fields, plus one field to identify the current processor mode. The datatypes
CPSR and SPSRS use this type. The difference is that not every processor mode has
SPSRS. So an array for SPSR is used under every possible processor mode.

The top definition of the projection is shown below. Each sub projection refers to
the link between an concrete element and its abstract version, in red color in Figure 6.3.
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Definition proc_proj (m:Mem.mem) (e:env):Arm6_State.state:=
Arm6_State.mk_state
(Arm6_Proc.mk_state

(cpsr_proj m e)
(spsr_proj m e)
(regs_proj m e)
nil
(mode_proj m e))

(Arm6_SCC.mk_state
(screg_proj m e)
(mem_proj m e)).

For example, the projection for registers owned by the main processor is called
regs proj, which takes the C memory state m and the local environment e as arguments
and return register -> word. The definition is as follow:

Definition regs_proj (m:Mem.mem) (e:env): register -> word :=
let load_reg id n m e:=
match find_reg m e id with

| Some(Vptr b ofs)=>
load_val (Mem.loadv Mint32 m (Vptr b (add ofs (repr n))))

| _ =>Int.zero
end in
fun r =>

match r with
| R k => load_reg user_regs k m e
| R_svc k _=> load_reg svc_regs k m e
| R_abt k _=> load_reg abt_regs k m e
| R_und k _=> load_reg und_regs k m e
| R_irq k _=> load_reg irq_regs k m e
| R_fiq k _=> load_reg fiq_regs k m e

end.

Using the name of the register group as index to find the associated memory block,
from which the value is loaded. Loading from memory state requires also the chunk
information of its type, size and signedness, and the offset. In this case, the chunk of

78



6.3 The projection

register is Mint32 which means it is 32-bit integer. If the corresponding register is not

found in memory state, it returns zero. Initially, the value stored in register is zero.

According to the type of the argument on the right hand side of the projection, the

definitions of projections are quite different. For example, the projection of a register

given above performs a case analysis on a value of type register, whereas the projec-

tion of SPSR depends on the type of exception modes. We define a specific projection

for each type. Coq is rich enough to allow us to define a general projection for all types

of elements, using dependent types. However the gain in clarity of the specification is

unclear, and it would anyway be just a wrapper around specific projections, so we did

not build general protection for parameters. For improving readability of the state-

ment, we even chose to define a projection relation for each instance. For example, the

projection relation of register Rn is :

Definition rn_related (m:Mem.mem) (e:env) (rn:regnum):Prop :=
reg_proj m e n = rn.
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Figure 6.3: Projection
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In another project in our group called CCCBIP, another way is used to express the
projection. The eval expression is reused to link the memory state and the variable
value:

G,E ` eval expression (Ederef(Evalof(Evarx))) M ⇒M, v.

The value of x in the formal model is v and the CompCert C expression
Ederef(Evalof(Evarx)) is used to dereference the variable x from the memory con-
tents. In this case the memory state remains the same because this evaluation only
reads from memory. This technique can be used there because the type of values are
very simple (integers). On the contrary, the types in SimSoC-Cert are much more
complex: we have structure pointers inside structures, or arrays of structures inside
structures, etc. Simply dereferencing with Ederef as in CCCBIP would raise issues
in our case. Manually writing such expression would become error-prone. Even more,
this method results in more inverting tactics during proving, which makes the proof
script harder to follow. And after inverting, the function load value of type (or
deref loc), which loads from memory, will be added to hypotheses as the premise of
evaluating the right value of expression Evalof. And it is just the same as the load

function with premises on memory access mode predicate and type volatile judgment.
But these premises would then be redundant with the existing hypotheses obtained
during analyzing the evaluation of the expression where the corresponding variable is
mentioned.

6.4 Proofs

6.4.1 Proofs for an ARM instruction

The correctness proof is based on the semantics of the formal model and the
CompCert C representation. The semantics in the formalization is explained in Sec-
tion 3.2.1. CompCert designed a semantics for CompCert C in both small-step and
big-step. The big-step inductive type for evaluating expression is enough for our proof.
The semantics is defined as a relation between an initial expression and an output
expression after evaluation.

As mentioned before, the semantics of CompCert C considers two environments. The
global environment genv maps global function identifiers, global variables identifiers to
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their blocks in memory, and function pointers to a function definition body. The local
environment env maps local variables of a function to their memory blocks reference.
When the program starts its execution, genv is built. On the other hand, env is built
when the associated function starts to allocate its variables.

To state the correctness theorem, we compare a CompCert C function corresponding
to an ARM instruction with its formal definition in Coq. For such functions, it is enough
to focus on the part of the concrete state which is defined by the local environment.
We then consider a projection from the local environment to the abstract state defined
as follows.

Inductive proc_state_related : Mem.mem -> env -> @result unit -> Prop :=
| proc_state_related_ok :

forall m e l b, proc_state_related m e
(Ok tt (mk_semstate l b (proc_proj m e)))

| state_not_ok: forall e m mes, proc_state_related m e (Ko mes)
| state_todo: forall e m mes, proc_state_related m e (Todo mes).

The shape of the main theorem of an instruction is then:

Theorem correctness instr:
∀ e m0 m1 m2 mfin vargs st other params out,
alloc variables empty env m0 (fun internal B.(fn params) ++

fun internal B.(fn vars)) e m1 ->
bind parameters e m1 fun internal B.(fn params) vargs m2 ->
(forall m ch b ofs, Mem.valid access m ch b ofs Readable) ->
proc state related m2 e (Ok tt (mk semstate nil true st)) ->
other params related m2 e other params ->
exec stmt (Genv.globalenv prog bl) e m2 fun internal B.(fn body)

Events.E0 mfin out ->
proc state related mfin e (S.instr step other_params

(mk semstate nil true st)).

Let us explain it in more detail.
– In order to get the projection of the pair of original states, we need the following
data: the initial memory state, the local environment, and the formal initial pro-
cessor state. Recall that the projection is meaningful only after the C memory
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state is well prepared for evaluating the current function body. In the abstract
Coq model, we directly use the processor state st. But on the C side, the mem-
ory state must provide the contents of every parameter, especially the processor
state. We also need to observe the modification of certain blocks of memory cor-
responding to local variables. Therefore, on CompCert C side, a memory state
and a local environment is prepared using following two steps.
– Allocating function variables: from an empty local environment, all function
parameters and local variables ara allocated into the memory state m0, yielding
a new memory state m1 and the local environment e.

– Initializing function parameters: using bind parameters to initialize parame-
ters with a list of argument values vargs, a new memory state m2 is created.

– Now we have all elements for the projection to make sense are ready. As the most
important parameter of instruction operation, the projection is first applied to
m2, and we expect to get the initial abstract processor state st.

– The projection is also used on the other instruction parameters.
– Then the body of the function is executed. On the CompCert C side, this is

performed using a call to exec stmt, yeilding a new memory state mfin. On the
abstract side, the new processor state is obtained using instr step.

– Finally, we claim that the projection from the concrete state mfin should provide
the latter abstract state. Note that all projections are performed using the same
local environment e.

The proof is performed in a top-down manner. It follows the definition of the
instruction, analyzing the expression step by step. The function body is split into
statements and then into expressions.

When evaluating an expression, we search for two kinds of information. One is how
the memory state changes on CompCert C side; the other is whether the results on the
abstract and the concrete model are related by the projection. To this effect, we use
six kind of lemmas.

1. Evaluating a CompCert expression with no modification on the memory state.
Such a lemma only discusses the expression evaluation on CompCert C side, in-
volving with the C memory state changing issue. Saying a memory state is not
modified has two aspects: one is that the memory contents are not modified; the
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other is that the memory access permission is not changed. For example, evalu-
ating the binary expression Sbit == 1 returns an unchanged memory state.

if G,E ` eval binopc (Sbit == 1), M ε==⇒ vres, M ′

then M = M ′.

In Coq syntax, the relation in premise is expressed with eval binop, a companion
predicate of exec stmt above, devoted to binary operations. In this lemma and
the following, E is the local environment, G is the global environment and M is
the memory state; ε is the empty event (Events.E0 in Coq syntax); usually t is
used to represent a series of system events; vres is the result.

Here, vres is not important. The evaluation is performed under environments G
and E. Before evaluation, we are in memory state M . With no event occurring,
we get the next memory state M ′. The proof is easy. According to the definition
of eval binop, an internal memory state will be introduced.

G,E ` a1,M ⇒M ′ G,E ` a2,M
′ ⇒M ′′

G,E ` (a1 binop a2),M ⇒ M ′′

Now, in our example, expression a1 is the value of Sbit and a2 is the constant
value 1. By inverting the hypothesis of type eval binop, we obtain several new
hypotheses, including on the evaluation of the two subexpressions and the intro-
duction of an intermediate memory state M ′′. Evaluating them has no change on
the C memory state. Then we have M = M ′′ = M ′.

In more detail, from the CompCert C semantics definition, we know that, eval-
uation of an expression will change the memory state if the evaluation contains
uses of store value of type (in CompCert versions before 1.11), which stores
the value in memory at a given block reference and memory chunk. In CompCert-
1.11, the basic store function on memory is represented by an inductive type
assign loc instead of store value of type. Since CompCert version 1.11 in-
troduces volatile memory access, we have to determine whether the object type
is volatile before storage, and also type size in addition of the access mode.

2. Result of the evaluation of an expression with no modification on the memory.
Continuing the example above, we now discuss the result of evaluating the binary
operation Sbit == 1 both in the abstract and the concrete model. At the end
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of evaluation, a boolean value true or false should be returned. in CompCert C
model and Coq model, using the projection definition we introduced in 6.3.

if Sbit related M Sbit,

and G,E ` eval rvalue binopc (Sbit == 1),M ⇒ v,

then v = (Sbit == 1)coq

Intuitively, if the projection corresponding to the parameter sbit in the C pro-
gram yields the right information from the abstract state, then the evaluation
will return the same value both in the abstract and in the concrete model. Here,
the expression is a so-called “simple expression” that always terminates in a de-
terministic way, and preserves the memory state.

To evaluate the value of simple expressions, CompCert provides two other big-step
relations eval simple rvalue and eval simple lvalue for evaluating respec-
tively their left and right values. The rules have the following shape:

G,E ` a1,M ⇒ v1 G,E ` a2,M ⇒ v2
sem binary operation(op, v1, v2,M) = v

G,E ` (a1 op a2),M ⇒ v

In order to evaluate the binary expression a1 op a2, the sub-expressions a1 and
a2 are first evaluated, and their respective results v1 and v2 are used to compute
the final result v.

3. Memory state changed by storage operation.
As mentioned before, evaluating some expressions such as eval assign can mod-
ify the memory state. Then we need lemmas stating that corresponding variables
in the abstract and in the concrete model will evolve consistently. For exam-
ple, this is stated as follows for an assignment on register Rn. Here we use the
projection relation register related.

if rn related M rn

and G,E ` eval assignc (rn := rx),M ⇒ M ′, v

then rn related M ′ rn
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4. Evaluating expressions with modification on the memory.
This is similar to the previous case.

5. Internal function call.
Internal functions are described in an informal manner in the ARMv6 reference
manual. No pseudo-code is available for them, which means that the correspond-
ing library functions, both in the abstract Coq model and in Simlight, are written
by hand. In order to get a suitable CompCert C AST to reason about, we use
the parser provided in CompCert. When combining the simulation code of an in-
struction with the code of library functions, we need to take care of the memory
allocation problem. In CompCert C representation, identifiers are unique positive
numbers which indicate the memory block where corresponding variables are al-
located. Currently, the extra identifiers introduced by library functions are added
manually and assigned with fresh block numbers.

if proc state related M st

and G,E ` eval funcallc (copy StatusRegister)c,M ⇒ v, M ′

and st′ = (copy StatusRegister)coq st

then proc state related M ′ st′.

After an internal function is called, a new stack of blocks is allocated in memory.
After the evaluation of the function is performed, these blocks will be freed.
Unfortunately, this cannot bring the memory back to the previous state: the
memory contents may stay the same, but the nextblock pointer will skip these
just freed blocks and point to the followed block. For lemmas on evaluation of
internal functions, we can observe the returned result on variables and compare
it with the corresponding evaluation in the formal specification. For example, the
lemma above is about the processor state after evaluating an internal function
call copy StatusRegister which reads the value of CPSR and then assigns it to
SPSR. The evaluation of copy StatusRegister should be protected by a check
on the current processor mode. If it is neither system mode nor user mode, the
function copy StatusRegister can be called. Otherwise, Simlight will return
“unpredictable” with an empty message.
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Then we have to reason on the newly returned states, which should still be related
by the projection. This step is easy to prove by calculation, simplifying on two
representations of the processor state.

6. External function call.
The CompCert C AST of an external function call contains the types of input
arguments and of the returned value, and an empty body. CompCert provides the
expected properties of a few built-in external functions such as printf, malloc
and free. We proceed similarly for the external functions of Simlight.

In Simlight, some functions are defined as external ones – something which is
needed even is this simplified version of SimSoC. They could be changed into
internal functions in the future but in the current version, they are left external.

The general expected properties of an external call are as follows.
– The call returns an result, which has to be related to the abstract.
– The number of arguments must agree with the signature.
– After the call, no memory blocks are invalidated.
– The call does not increase the max access permission of any valid block.
– The memory state can be modified only when the access permission of the call
is the maximal.

For Simlight, the result of an external call is written in a variable such as vres
in the next example. A typical axiom for stating that the external function ef c

returns a result specified by the Coq expression ef coq is:

Axiom res_extcall :
forall m ef_c targs tres vargs t m’ vres,

eval_funcall m (External ef_c targs tres) vargs t m’ vres ->
vres = ef_coq.

6.4.2 Proof design

As usual, repetitive steps in proofs are dealt with using auxiliary lemmas and ded-
icated tactic definitions. In our case, most of them are related to the semantics of
CompCert C. Indeed, since the abstract Coq model is defined in a functional style,
many proof steps are just reductions using, e.g., simpl or unfold. In contrast, the ex-
ecution of a C program is provided by a inductively defined relations, the operational

86



6.4 Proofs

semantics. Decomposing this execution step by step amounts to perform so-called in-
versions on hypotheses relating concrete memory states according to the operational
semantics. In practice, a large amount (several dozens) of inversions are performed,
bringing serious issues on space-time consumption and maintenability. We studied a
general solution to this problem, to be introduced in Chapter 7.

More specifically, back to the design of proofs, here are the main issues and how
they are dealt with.

Getting a usable local environment. We often need to consider whether a variable
exists in C memory or not, and to get the corresponding location in memory. To
this effect, the concrete contents of the local environment e is required. To achieve
this, inversions are systematically performed on alloc variables hypotheses. Then
e becomes a closed (and reduced) mapping indexed by variable identifiers (before, e is
just a variable having the type of a mapping).

Finding a variable location in memory from its identifier. This is simply solved
by applying the get operation provided by CompCert on the local environment e. This
computation can actually be performed when e is closed.

Finding a function location in memory. Two kinds of functions exist in C. In-
ternal functions are in the local environment e, whereas external functions are in the
global environment g. When a function reference is met, a get operation is invoked on
e, then on g in case of failure.

Evaluating memory states. CompCert C semantics operates on memory states.
Observing them is essential, in particular to compare the concrete state with the ex-
pected abstract state. The memory state stays unchanged, except when a store occurs
during evaluation. In the inductive relation eval expr, this only happens for an as-
signment (eval assign), an assignment with arithmetic operation (eval assignop)
or a post-increment operation (eval postincr). Whatever the expression, it has to
be analyzed and recursively decomposed in order to get closed (then usable) memory
states. Again, this is performed using inversions on eval expr hypotheses. The induc-
tive type eval expr is big and expressions in Simlight are complex, raising serious
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issues with the Coq standard tactic inversion. We then decided to write our own
inversion tactic. We go back to this in Section 7.1.

Analysing values in a memory block. The CompCert memory model includes four
kinds of operations: load, store, alloc, and free. They operate on a memory chunk
at a given address. For these four operations, several properties are provided. We use
them to determine which block or memory chunk is affected by one of these operations,
and which part of the memory is left unchanged.

6.4.3 Proofs for shared library functions

Every ARMv6 instruction contains one or more calls to internal or external func-
tions. For the moment, the external functions are not taken into account, for a reason
explained in 2.3.2. As mentioned in Section 6.2, functions called in an instruction need
to be added manually. Most of these functions are used in different instructions. As
the properties expected from them are always the same, we want to state and proof
corresponding lemmas once for all.

One issue from the CompCert compiler is that identifiers (positive numbers indicat-
ing a location in memory) cannot be repeated:these memory locations are settled once
a program is evaluated, and the global environment and local environment will be filled
with allocation information. The insertion of functions in a program is performed by
the assignment of new blocks to the corresponding identifiers. The issue is that the
same function in different program will be represented by different identifiers. We solve
this issue using Coq sections. A section is defined for each function with its associated
lemmas. Its variables are defined abstractly by just giving their types. Integrating
such a function into the CompCert code of an instruction consists in importing the file
containing the corresponding section, instantiating additionally assumed variables with
appropriate values, then performing memory allocation.

Proofs on library functions are performed in the same way as for instructions, see
Subsection 6.4.1.

6.4.4 Proofs on tricky operations on words

We also have lemmas for checking that different ways of computing a function
actually provide the same result. An example is the function for getting the bit at a
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given position in a word represented by a binary integer. The equality to be proved is,
after simplification:

and (shru x (repr (Z of nat n))) (repr 1) = x [n].

It means that the definition of get bit used in Simlight can be (efficiently) computed
by a combination of binary operations and and shru (logical shift right) on the integer x
and the bit number n. On the right hand side, the formal specification uses a bit mask
on the object integer x to get the nth bit. The comparison is quite complicated due
to the range of the result in type integer. We have to take a restriction into account,
saying that n should be greater than 0 and less than the word size, and to add specific
lemmas on other arithmetic definitions.

6.5 Tactics

Coq provides the Ltac language to allow the user to define her/his own tactics.
LTac expressions can be used in the proof script of a given theorem, or in a top-
level Ltac definition. The most useful construct of Ltac is the pattern matching on a
proof goal, which analyzes the current goal and binds names to useful informations.
This is used for our inversion hc inversion described in Section 7.1. We also defined
tactics dedicated to our specific needs, representing systematic reasoning schemes on
the CompCert C semantics. Most of them deal with the C memory model and with
operational semantics rules.

6.5.1 Load/store operations

Many reasoning steps are about the effect of a load/store operation on memory.
Such operations are always constrained by low and high bounds of the memory blocks.
In order to know whether the memory block we focus on remains the same or has been
changed to a new contents, we have to determine the range of blocks targetted by oper-
ations on memory. We also need to check that a given block do not overlap with other
blocks. The position of every variable and function is given during allocation. In order
to find the value of blocks, we then have to analyze the appropriate allocation hypoth-
esis, providing information on how the environment is initialized. This is performed
using a series of inversions because the allocation operation is inductively defined. The
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number of inversion steps is equal to the number of variables in the function. This
yields the same number of new hypotheses indicating the position where each variable
is allocated. The definition of the initialization of a function ensures that the blocks
allocated are pairwise different from each other, and that the pointer to the next block
always points to a block which has a greater position number. After a number of
reasoning steps on the “less than” relation between block position numbers, we apply
a suitable lemma provided by CompCert, load store other or load store same, to
determine whether the memory state changes after a load/store operation.

6.5.2 Outcome of a statement

The execution of a statement produces an “outcome”, indicating how the execu-
tion terminates: either normally or prematurely through the execution of a [break],
[continue] [return] statement. Sdo is a very common statement in CompCert C pro-
grams. It can be used as a wrapper of a single statement. Executing a Sdo statement
always returns Normal whatever the contents is. And similarly for statement Sskip: it
is the same as a Sdo with no contents. In order to manage such situations, we provide
a tactic based on the inversion of the semantics of statements.

6.5.3 Function calls

We also have a tactic dedicated to function calls. It is used in all instructions, since
every instruction has one or more internal function calls. This tactic aims at finding
the block containing the body of the called function. Indeed, the local environment
does not contain functions but only their name.

To find the function, we have to go through the global environment. The global
environment is also defined using the PTree data structure, which maps a reference to
the corresponding place in memory, or a function pointer to a function definition, or a
variable pointer to the associated contents.

By analyzing the hypothesis for evaluating the function identifier we aim at, we
get a hypothesis G ` find symbol id = bbc, saying that the global environment G
contains a block b for the symbol id. Next, we invert the appropriate eval funcall

hypothesis: according to rule (2.14) recalled in Subsection 2.3.2, we get an hypothesis
G ` find funct ptr b = bfc, saying that in the same global environment G, using
the block b, then we are able to find the function pointer. Then we use the set and get
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operations to explore the global environment, until we find the matching block. These
proof steps are automatically performed in LTac using pattern matching on goals.

6.6 Dealing with version changes of CompCert

During the development of our correctness proofs, three versions of CompCert were
released, bringing new features and better performances. The change of version from
CompCert-1.8.1 to CompCert-1.9 did not cause much trouble on SimSoC-Cert. We
discuss here the impact of the next two releases on our project.

6.6.1 Changes from CompCert-1.9 to 1.10

An important fact on version 1.9 is that it turned the CompCert C reduction seman-
tics into a reference interpreter. Handling of annotation statements has been improved
to separate where has one integer argument and where has arbitrarily many arguments.
And efforts have been done for handling external function and compiler built-ins. The
built-in external function for memory operation “copy” is now fully specified as well as
other changes which we do not care. We only care about the semantics and part of the
low level definitions. So, SimSoC-Cert only needs to be changed for some small point
as the semantic cast is no longer a inductive type but a pattern-matching function. The
way to apply such cast definition needs to follow the version. At that time, we have
not begun the correctness proof involving the external functions. Then the changes
due to this part can be ignored. But the version change of CompCert-1.9 to CompCert-
1.10 brought backward incompatibility to SimSoC-Cert. Not only because many things
have been changed in the newer version 1.10, but also our SimSoC-Cert project becomes
richer and more stuff depends on CompCert, especially in the correctness proof scripts.

Next, we introduce the main changes between the two versions and explain the
impact to our project.

6.6.1.1 Volatile types

CompCert C now natively supports volatile types. Its semantics fully specifies the
meaning of accesses to volatile memory, and the translation of volatile accesses to
built-in function invocations is proved correct.
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In order to prepare future evolutions of CompCert, most constructors of the Coq
type type for CompCert C types expect a record called attr (for attributes), which is
introduced in CompCert-1.10. Volatility of memory is specified by a Boolean field in
this record. Our generator had to be then changed to take this field into account. Since
the introduction of volatile memory access, the way to compute the value of a given
data is changed.

Introducing the volatile type also changed the definition of the projection from the
concrete to the abstract representation of the ARMv6 processor, because of the use of
the load operation in this projection.

Simlight currently includes no volatile variable. Then we can directly use the
normal load without considering the volatile attribute. But our correctness proofs are
modified, because the semantics of load/store is no longer given by a functional defini-
tion but by an inductive type, which is used to express additional concerns about the
volatility of load/store. The main impact is on proofs related to assignment expressions.

6.6.1.2 Booleans

From this version, CompCert C provides Booleans. This could be used in SimSoC,
where Boolean values are represented as unsigned 8-bit ints. However C Booleans are
currently not considered.

6.6.2 Changes from CompCert-1.10 to 1.11

6.6.2.1 Memory model

The most important change here is the memory model: a more precise model of
memory and permissions is defined in CompCert-1.11, reusing the existing module ZMap
(a mapping from block to memval indexed by offset) for memory state definition,
instead of using a function of type block → Z → memval. The main operations
on ZMap are set and get. Note that get always returns a data: if there is no data
associated with the an index given as input, a default value is returned. This default
value is set when the map is initialized. For memory, the default value to be returned
is “undefined”. Thanks to the use of ZMap for memory state type, memory bounds can
be dismissed.
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6.6.2.2 Permission guard

Another major change is the addition of a maximal permission guard for a block,
other than the one which indicates the current permission guard of a block. The
maximal permission which must be stronger than the current permission, and can
decrease only by freeing a block, dropping a permission of a block or performing an
external function call. The corresponding field in the memory structure describing
permission is then optimized.

In our development, the statement of properties of library functions mentionning
the equivalence of two memory states of type mem needed to be changed to fit the new
structure of mem.
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Chapter 7

Designing our own inversion

In correctness proofs of ARM instructions, which involve the large-size inductively
defined relation coming from CompCert C semantics, many steps require inverting a
hypothesis to perform a case analysis and extract all useful constraints from the hy-
pothesis. The Coq built-in tactic inversion is usually considered to be the right
choice in such situations. But using it made us suffering from severe controllability,
maintenance and efficiency issues. To circumvent these issues, we propose an inversion
technique based on the combination of an antidiagonal argument and the impredicative
encoding of inductive data-structures, which we are going to introduce in this chapter.
Part of the material presented of this chapter has been published in (40).

Résumé

Dans les preuves de correction des instructions ARM, qui reposent sur des relations
définies inductivement de grande taille, issues de la sémantique de CompCert C, de
nombreuses étapes consistent à inverser une hypothèse pour effectuer une analyse de
cas et extraire toutes les contraintes utiles contenues dans cette hypothèse. La tactique
Coq standard inversion est généralement considérée comme étant le bon choix dans
de telles situations. Cependant son utilisation nous a posé de graves problèmes de
contrôlabilité, de maintenance et d’efficacité. Pour les résoudre, nous proposons une
technique d’inversion basée sur la combinaison d’un argument antidiagonal et d’un
codage imprédicatif des structures de données inductives, qui fait l’objet de ce chapitre.
Le matériel présenté ici a été partiellement publié dans (40).
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7.1 Why a new inversion

7.1.1 Inversion tactic in Coq

During the development of a proof, if a hypothesis is an instance of an inductive
predicate and we want to derive the consequences of this hypothesis, the general logical
principle to be used is called inversion. To this effect, the Coq proof assistant provides
a useful tactic called inversion (13) which is available in several variants.

An inversion is a kind of forward reasoning step that allows for users to extract
all useful information contained in a hypothesis. It is a case analysis over a given
hypothesis according to its specific arguments, that removes absurd cases, introduces
relevant premises in the environment and performs suitable substitutions in the whole
goal. The practical need for automating inversion has been identified many years ago
and most proof assistants (Isabelle, Coq, Matita,...) provide an appropriate mechanism.

7.1.2 Issue from CompCert C semantics

CompCert C semantics is a quite big and complex inductive relation. Each con-
structor describes the memory state transformation of an expression, statement, or
function. In the theorems we aim at proving, ARM instructions are represented by C
functions containing a sequence of statements which can be decomposed into compli-
cated expressions. As soon as we want to discover the relation between memory states
before and after evaluating an expression, we have to invert hypotheses of operational
semantics to follow the clue given by its definition. To perform such inverting we can
use inversion. But each use of inversion will go one step only.

For illustration, we present here a small excerpt from an old proof script in SimSoC-Cert

using inversion, which belongs to the ADC instruction. It sets the CPSR with the
value of SPSR. The pseudo-code from the ARM reference manual is just CPSR = SPSR.
The corresponding C code is a call to function copy StatusRegister, which sets CPSR
field by field by the values from SPSR. Lemma same cp SR states that the C memory
state of the simulator and the corresponding formal representation of ARM processor
state evolve consistently during this assignment.

Lemma same_copy_SR :
forall e m l b s t m’ v em,
proc_state_related m e (Ok tt (mk_semstate l b s)) ->
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eval_expression (Genv.globalenv prog_adc) e m expr_cp_SR t m’ v ->
forall l b,
proc_state_related m’ e
(Ok tt

(mk_semstate l b (Arm6_State.set_cpsr s (Arm6_State.spsr s em)))).
).

After a couple of introductions and other administrative steps, we get the following
goal, where cp SR is unfolded in hypothesis H. cp SR is the identifier of CompCert

C representation, which calls to the function copy StatusRegister with arguments
CPSR as setting destination and SPSR as source.

l’ : local
b’ : bool
a’ : expr
H : eval_expr (Genv.globalenv prog_adc) e m RV

(Ecall (Evalof (Evar copy_StatusRegister T14) T14)
(Econs

(Eaddrof
(Efield (Ederef (Evalof (Evar proc T3) T3) T6)

adc_compcert.cpsr T7) T8)
(Econs

(Ecall (Evalof (Evar spsr T15) T15)
(Econs (Evalof (Evar proc T3) T3) Enil) T8) Enil))

T12) t m’ a’
============================
proc_state_related m’ e st’

Then we have to invert H and similar generated hypotheses until all constructors
used in its type are exhausted. Here 18 consecutive inversions are needed. Using inv

tactic invented by CompCert, which performs standard inversion, clearing the inverted
hypothesis, and rewriting of all auxiliary equations, the sequel of the script started as
follows:

inv H. inv H4. inv H9. inv H5. inv H4. inv H5.
inv H15. inv H4. inv H5. inv H14. inv H4. inv H3.
inv H15. inv H5. inv H4. inv H5. inv H21. inv H13.
...
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The old proof script includes a lot of code in this style, which makes the size of the
code huge and hard to manage.

Another problem is the management of names. A single inversion will derive
a dozen of variables and hypotheses according to the corresponding constructor in
CompCert C formal semantics. With Coq built-in inversion, their names are automat-
ically generated using consecutive numbers. This makes proof scripts highly dependent
on such names. Such a feature is already not very good when writing the proof, because
of the heavy use of inversions and the large number of new names generated each time.
More importantly, the maintenance of proof scripts becomes a terribly awful task: each
use of those uncontrolled names has to be revisited either when the formal definition of
the CompCert-C semantics changes (upgrading from CompCert 1.8 to 1.9 for instance)
or when the algorithm of Coq for name generation is changed (this happened from
Coq 8.3 to 8.4). To provide an idea of the burden, in our first experience using Coq
built-in inversion, the complete correctness proof on instruction ADC resulted in a
file containing 2500 lines of proof scripts. Moreover, designing (and maintaining) the
scripts was made uncomfortable by the compilation time of this file more than one
minute most of the time was spend on inversion. Given that there are more than one
hundred instructions in ARMv6 ISS, we considered it as urgent to find a replacement
for Coq built-in inversion.

7.2 Design of hc inversion

Here hc inversion stands for hand-crafted inversion.

7.2.1 General design concept and example

Small inversion is a proof trick introduced in (39). It is able to perform the same
as tactic inversion in some cases.

>From the idea of small inversion(39), we have built a more powerful inversion
through several improvements and validated it to realistic applications. The following
examples introduce our development step by step. To make it easy to understand,
we choose a well known example about even defined for Peano’s natural number. Its
inductive definition is :
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Inductive even_i : nat -> Prop :=
| E0 : even_i 0
| E2 : forall n, even_i n -> even_i (S (S n)).

As explained in (39), the main idea is to build the corresponding auxiliary diago-
nalization function.

First, the inductive predicate even i is a dependent data type.
Using primitive tactics case or destruct is powerful enough to perform dependent

pattern matching on an assumption of type even i n when the conclusion of the current
goal shares the same arguments as the hypothesis to be case analyzed. If not so, one
cannot return the desired new goal with the converted arguments by using only case

or destruct
Assume there are two proof terms t0 and t2 for constructors E0 and E2. The two

proof terms have different types. The type of t0 is P 0, the type of t2 is P (S (S

n)). Therefore, the syntax of the match construct contains a return clause with the
expected type of the result P n as an argument; moreover, there is also an in clause
for the type of H which binds n:

match H in even_i n return P n with
| E0 => t0
| E2 e ex => t2

end

Assuming a hypothesis H of type even i n and a conclusion of type P n, both
sharing variable n, then applying a case analysis on H will build a proof term in the
same form as the code above and generate two new sub-goals P 0 and P (S (S x))

with the additional assumption even i x.
Sometimes, there is no obvious relation between the hypothesis and conclusion. For

example, consider the following lemma: even i 1→ 3 = 4, where the conclusion (3 = 4)
is not related to the argument of even i (1). As mentioned before, our interactive
destruct works only if the hypothesis we want to destruct and the conclusion share the
same argument. In order to fix this, we have to convert the conclusion of the current
goal into a function of 1. We define a diagonalization function diag which matches the
key parameter and returns the conclusion of the current goal:
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let diag x :=
match x with
| 1 => 3 = 4
| _ => True

end in
match H in even_i n return diag n with
| E0 => I
| E2 _ _ => I

end

Then a case analysis on H will return two sub-goals: diag 0, and diag (S (S y))

ending up with a proof term for True.
However, the technique explained in the previous section has to be extended in

order to cover more general situations.
The first improvement we have to provide is to make the diagonalization function

independent from specific conclusion if we want it to be used for any possible goal. We
use ∀X : Prop instead of a specific conclusion to hook the current conclusion. Then
the previous diagonalization function will be replaced. Then together with the previous
proof term of type ∀X,X, it is able to apply any conclusion:

let diag x :=
match x with
| 1 => forall X : Prop, X
| _ => True

end in
match H in even_i n return diag n with
| E0 => I
| E2 _ _ => I

end

The second is to consider a positive case. Let us consider the following theorem as
an example,

∀n m, even i n→ even i (n+m)→ even i m.

The proof is led by induction on even i n. According to the constructor of inductive
type even i, induction generates two sub-goals: even i (0 + m) and even i (S (S
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(n + m)). The first is easy to solve. Then an induction hypothesis will be added to
the local context: even i (n+m)→ even i m. If we want to continue, we need a link
from S (S (n + m)) to n + m, and it is exactly the second constructor E2 of inductive
type even i. So we expect our technique could also express the premise of the focused
constructor. We propose a new diag function and proof term defined as follows:

let diag x :=
match x with
| S (S y) => forall X: Prop, (even_i y -> X) -> X
| _ => True

end in
match H in even_i n return diag n with

| E2 p e => fun X k => k e
| _ => I

end

Then, applying the new technique in current hypothesis H : even i(S(S(n + m)))
yields a function in continuation passing style. The type parameter X identified to the
conclusion even i m; then y binds to n + m, and the goal converts to even i (n+m)→
even i m. That is exactly what we expected. Our inversion function can be seen
as inversion lemmas, but their type is the dependent type expressed by their own
diag. The difference between our diagonalization function and the Coq built-in Derive

Inversion will be introduced at the end of this section.
To summarize this new diagonalization function, when there is an inductive type

I(t), where t is the parameter of type T, and Ci is a constructor of I depending on
parameter ti of type T, pi is the premise in constructor Ci, P consists of a constructor
of type T, we want to filter. Then a constructor of the inductive type I(t) containing
P can be expressed like Ci : ∀ pi, I P. And HI is the hypothesis of type I(t) we
want to invert. In the general case, we have to consider if there are more than one
possible constructors containing P, like constructor Ci, Cj , etc. The inverting lemma
corresponding to AP is:

let diag x :=
match x with
| P => forall X: Prop, (forall pi, X) ... (forall pj, X) -> X
| _ => True
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end in
match HI in I t return diag t with
| Ci ei => fun X ki => ki ei
...
| Cj ej => fun X kj => kj ej
| _ => I

end

Remark the close relationship with the impredicative encoding of data types in sys-
tem F.

Next, we consider more than one parameter in an inductive type. The difference
when we have more parameters is that using the previous inverting strategy, the iden-
tifiers for the same variable in premise and conclusion cannot be related. This problem
was discovered when applying our inverting technique to the SimSoC-Cert project. Let
us introduce a new example in order to explain the problem properly. Here is a toy
language that accepts two operations: tm const and tm plus. The output type val is
a natural number or a Boolean. The evaluation (eval) takes an argument of type tm

and returns a value of type val. The Coq code is as follows:

Inductive tm : Type :=
| tm_const : nat -> tm
| tm_plus : tm -> tm -> tm.

Inductive val : Type :=
| nval : nat -> val
| bval : bool -> val.

Inductive eval : tm -> val -> Prop :=
| E_Const : forall n,

eval (tm_const n) (nval n)
| E_Plus : forall t1 t2 n1 n2,

eval t1 (nval n1) ->
eval t2 (nval n2) ->
eval (tm_plus t1 t2) (nval (plus n1 n2)).

In the inductive type eval, the constructor E Plus has four variables: t1, t2, n1,
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and n2. The premises and the conclusion share these variables. Without special care
we lose the information of relationship of sharing.

Let us consider a theorem,

∀v, eval(tm plus(tm const 1) (tm const 0)) v → v = nval 1.

The diagonalization function corresponding to the previous method is:

match x with
| tm_plus tc1 tc2 =>

forall X: Prop,
(forall n1 n2, eval tc1 (nval n1) -> eval tc2 (nval n2) -> X) -> X

| _ => True
end

But then, the fact that v should be nval (plus n1 n2) is not recorded. The solution
is to add a parameter to X to keep this identification after evaluation. The modified
diagonalization function for the constructor E Plus is:

match x with
| tm_plus tc1 tc2 =>

forall X: tm -> Prop,
(∀ n1 n2, eval tc1 (nval n1) ->

eval tc2 (nval n2) -> X (nval (plus n1 n2))) -> X v
| _ => True

end

This example also introduces another problem we had not foreseen: a constructor
may have more than one diagonalization function. Considering the same theorem as
above, after inverting E Plus, the current proof goal is:

n1 : nat
n2 : nat
e1 : eval (tm_const 0) (nval n1)
e2 : eval (tm_const 1) (nval n2)
============================
nval (n1 + n2) = nval 1

We expect inverting e1 and e2 can give us the nat value of n1 and n2. Without any
consideration, we defined the diagonalization function for E Const like this,
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match t with
| tm_const n => forall (X: val -> Prop), X (nval n) -> v
| _ => True

end

It chooses to keep the value for type val. Then we notice in current conclusion there is
no nval n1 or nval n2 but nval (n1 + n2). The previous diagonalization function
is not able to get the value of n1 or n2. The diagonalization function should focus on
a variable of type nat instead of val. The pattern matching should match both input
and output parameters of eval.

match t, v with
| tm_const tc, nval n => forall (X: nat -> Prop), X tc -> n
| _, _ => True

end

In summary, the diagonalization function is defined depending upon what conclu-
sion we have. When we have a conclusion like in this example, we choose the second
diagonalization function. If the conclusion contains only nval n, we can choose the
first one.

7.2.2 Using our hand-crafted inversion in SimSoC-Cert

We use the new inversion to define a new inversion tactic inv [expr] for inductive
type eval expr in CompCert. The semantics of CompCert C tells us how the memory
state is transformed by evaluating expressions (Section 2.3.2). Like explained in the
previous subsection, an auxiliary function has to be defined for each constructor of
eval expr.

First, we define the diagonal-based function for each constructor of eval expr, fol-
lowing the lines given in the previous section. For example, the evaluation of a field is
defined in CompCert by the following rule.

Inductive eval_expr :
env -> mem -> kind -> expr -> trace -> mem -> expr -> Prop :=
...
| eval_field : ∀ e m a t m’ a’ f ty,

eval_expr e m RV a t m’ a’ ->
eval_expr e m LV (Efield a f ty) t m’ (Efield a’ f ty)
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We then define (observe that 2 variables and 1 hypothesis will be generated):

Definition inv_field g e m ex t m’ ex’
(ee:eval_expr g e m LV ex t m’ ex’) :=
let diag e ex ex’ m m’ :=
match ex with
| Efield a b c =>
∀ (X:expr->Prop),
(∀ t a’, eval_expr g e m RV a t m’ a’ -> X (Efield a’ b c)) -> X ex’

| _ => True
end in
match ee in (eval_expr _ e m _ ex _ m’ ex’)

return diag e ex ex’ m m’ with
| eval_field _ _ _ t _ a’ _ _ H1 => fun X k => k t a’ H1
| _ => I

end.

Every instruction contains a quite complex expression. If we want to find the
relation between the memory states affected by these expressions, we have to invert
many times even if we use the new hc inversion. These steps are repetitive, applying
the right diagonal-based functions with the same pair of memory states as parameters
to the focused hypothesis.

Using the match goal construct of LTac, we can define a high-level tactic for each
inductive type, gathering all the functions defined for its constructors. For example,
the inversion tactic for eval expr contains:

Ltac inv_eval_expr m m’ :=
...
let t1_:=fresh "t" in
let v1_:=fresh "v" in
let ev_ex1 := fresh "ev_ex" in
...
match goal with
...
| [ee: eval_expr ?ge ?e m LV (Efield ?a ?f ?ty) ?t m’ ?a’ |- ?cl] =>
apply (inv_field ee); clear ee; intros t1_ a1_ ev_ex1; intros;
inv_eval_expr m m’
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This tactic has two arguments m and m’, corresponding to C memory states. The
first intros introduces the 3 generated components with names respectively prefixed
by t, v and ev ex. The second intros is related to previously reverted hypotheses,
their names are correctly managed by Coq. The tactic proceeds as follows:

– it automatically finds the hypothesis we want to invert by matching the targetted
memory states;

– related hypotheses are reverted;
– the right auxiliary function is called (all auxiliary functions are gathered in the

tactic);
– meaningful names are given to derived variables and hypotheses;
– all other related hypotheses are updated according to the new names and new

values;
– useless variables and hypotheses are cleaned up ;
– the steps above are repeated until all transitions between the two targetted mem-

ory states are discovered.
We name this tactic inv eval expr; all inversions on hypotheses of type eval expr

are replaced by inv eval expr. For example, 18 standard inv were used in the old
proof script of lemma same copy SR. With the high-level tactic, the 18 inv can be
replaced by one step: inv eval expr m m’.

Inverting a hypothesis of type eval expr may introduce new hypotheses on internal
memory states according to the premises in the definition of the constructor. The
automatic naming scheme in our tactic provides useful clues which are helpful in the
script of a proof. Sometimes, inverting a hypothesis will identify two memory states
mi1 and mi2. Then mi1 is automatically replaced by mi2. Such replacements trouble the
automatic process in our tactic, because the first memory state mi1 is used for finding
the next hypothesis to be inverted. This issue is solved by inverting hypotheses in
backward order.

Our hc inversion makes it possible to have a convenient automatic naming algo-
rithm because the arguments that need to be named are fixed and are known directly
from the inductive type definition itself. It does not work with standard inversion be-
cause, other than the arguments and premise of the inductive definition itself, extra
equalities may be introduced and hypotheses may be reordered in a way which is not
under our control.
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7.2.3 Comparing hc inversion with Coq built-in inversions

There are three Coq built-in tactics that can achieve inverting the hypothesis of cur-
rent proof goal. They are the standard inversion, Derive Inversion, and dependent

induction/destruction. We already discussed the tactic inversion. The tactic
Derive Inversion allows the user to first automatically generate an inversion princi-
ple according to an inductive type and then to apply it to inverting target. The tactics
dependent induction and dependent destruction are another option for inverting
inductive predicate instances and potentially doing induction at the same time. They
are based on BasicElim of Conor McBride (37) and work by abstracting each argument
of an inductive instance by a variable and constraining it by suitable equalities. The
usual induction and destruct tactics can then be applied to the abstracted instance and
after rewriting of the equalities, we get the expected goals.

Ease of use. If we compare these three options, without considering the issues on
name control, Derive Inversion is the most inconvenient one. It finds the clues
according to type definition of inverted hypothesis, without telling which one it matches
and the returned premises are not introduced. CompCert defines inv as a combination
of the standard inversion with substitution and clearing. So for a basic usage, it is
not complicate to use. We think BasicElim is easier to use than the two other built-in
tactics. New equalities hypotheses will be rewritten and existing premises of equation
can be kept by a block. It handles the recursive type definition.

If we take name control issues into account, both Derive Inversion and BasicElim

are hard to use. Names have to be provided for all cases given by the constructors. For
example, we have to consider 16 cases for eval expr. Even if we just use a wild-card
in impossible cases, 15 wild-cards are still needed for them, as well as extra tactics for
concluding.

The price we have to pay for gaining controllability and accurate management of
names is that hc inversion has to be updated with each release of CompCert. This
requires some work. But as expected, proof scripts themselves are robust, changes
occur only in the definitions related to hc inversion. In our developments, after
hc inversion became available, proof scripts could also be improved much more easily,
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Table 7.1: Time costs (in seconds)

standard inversion Derive Inversion BasicElim our inversion
Full example 1.628 0.976 1.428 0.312
Ecall 0.132 0.076 0.112 0.028
Evalof 0.132 0.072 0.092 0.020
Evar 0.128 0.064 0.084 0.024
Eaddrof 0.140 0.076 0.104 0.020

Table 7.2: Size of compilation results (in KBytes)

standard inversion Derive Inversion BasicElim our inversion
Full example 191 460 171 37

achieving a good separation of concerns between the design of proofs and technical issues
on inversion.

Performance. Another clear advantage for our hc inversion is efficiency. Proof
terms generated by hc inversion are much smaller than by the three built-in tactics,
as shown on examples taken in SimSoC-Cert, see Tables 7.1 and 7.2). The comparison
is performed on a lemma taken from the correctness proof of instruction ADC. This
lemma discusses how the memory state changes during the evaluation of expressions
including Econdition, Ebinop, Evalof, Eval, and Evar. We compare the time used
for performing each inversion in Table 7.1, and the size of output object files (.vo) in
Table 7.2.

We see that hc inversion consumes 4 to 5 times less space than inversion and
BasicElim, and 10 times less than Derive Inversion clear. Consistently, and more
importantly for the user who heavily uses inversions, hc inversion reacts much faster
(3 to 6 times). Note that, in our experiments, Derive Inversion has a better response
time among the three built-in inversion tactics, but it generates the biggest .vo files.

Inversions out of reach of built-in tactics. Let us now consider a predicate
defined on a dependent type. We take intervals [1...n], formalized as t in the standard
library Fin, and then we restrict them to have an odd length.

Inductive t : nat -> Set :=
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| F1 : forall n, t (S n)
| FS : forall n, t n -> t (S n).

Inductive odd : forall n : nat, t n -> Prop :=
| odd 1 : forall n, odd (S n) F1
| odd SS : forall n i, odd n i -> odd (FS (FS i)).

Finding the premises for the second constructor is a function similar to the one provided
for E2 above:

Definition premises odd SS n i: t n (of: odd n i) :=
let diag n i :=
match i with
| FS (FS y) => forall (X: Prop), (odd y -> X) -> X
| => True

end in
match of in odd n i return diag n i with

| odd SS n i o => fun X k => k o
| => I

end.

In particular we can easily prove:

Lemma odd_SS_inv: forall n i, odd _ (FS (FS i)) -> odd n i.
Proof.
intros n i o. apply (premises_odd_SS o). trivial.

Qed.

Standard inversion happens to fail here. Note that BasicElim may work (we actually
could not succeed) but would need an additional axiom related to John Major equality.
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Chapter 8

Tests generator for the decoder

Currently we do not have a correctness proof of our ARM instruction decoder.
Instead, we have built a decoder tests generator, which can help to check the coverage
and correctness of the generated C decoder.

Résumé

Actuellement, nous n’avaons pas développé de preuve de correction pour notre dé-
codeur d’instructions ARM intégré à Simlight. À la place, nous avons construit un
générateur de tests pour ce décodeur, permettant de tester sa couverture et de vérifier
qu’il produit des résultats corrects.

In order to validate the generated C decoder, we have built an automatic test
generator that generates all possible instructions excluding undefined and unpredictable
ones. We generate two kind of files. The first file contains the test instructions binary

(a) binary encoding of the ADC instruction
31 . . . 28 27 26 25 24 . . . 21 20 19 . . . 16 15 . . . 12 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 0
cond 0 0 I 0 1 0 1 S Rn Rd shifter operand

(b) binary encoding of the “logical shift left by immediate” operand
31 . . . 28 27 26 25 24 . . . 21 20 19 . . . 16 15 . . . 12 11 . . . . . . . 7 6 . . . 4 3 . . . 0
cond 0 0 0 opcode S Rn Rd shift imm 0 0 0 Rm

(a+b) resulting binary encoding of the flattened instruction
31 . . . 28 27 26 25 24 . . . 21 20 19 . . . 16 15 . . . 12 11 . . . . . . . 7 6 . . . 4 3 . . . 0
cond 0 0 0 0 1 0 1 S Rn Rd shift imm 0 0 0 Rm
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encoding in the ELF format. The second file contains the same instructions in the same
order in assembly code.

The decoder has been included in a program that generates, for each instruction
from the binary file, the assembly language of that decoded instruction. The second
generated file can then be compared with that decoding result: the two files should be
identical.

The parameter values are chosen with respect to the validity constraints to ensure
that the instruction is defined and predictable. For example, the parameters of the ADC

instruction (see Fig. 5.4) are Rd, Rn, and shift imm. Binary instructions are produced
with different combinations of values for them. From reading the Syntax and Usage

part of each instruction, we know there are several validity constraints for some instruc-
tions. Some validity constraints are dealt with during the parameter generation. For
example, register Rn in instruction LDRBT cannot be PC (R15). Hence the test chooses
directly values between 0 and 14 to be assigned to Rn. Some other validity constraints
involve two or more parameters at the same time. Continuing the example of LDRBT,
another constraint states that Rd and Rn must be different: the generator must pro-
duce two different values and assign them to Rd and Rn. Similarly, we generate the
corresponding assembly code. Under each encoding table in the reference manual, the
Syntax part explains the syntax of the instruction, the instruction identifier, and the
same parameters as in the encoding table. The contents of the generated files are shown
in Figure 8.1. The left column is a group of binary test in hexadecimal format, which
are legal instantiation of ADC instruction. The right column is their corresponding
assembler code according to the syntax:

ADC{<cond>}{S} <Rd>, <Rn>, <shifter operand>

They represent one group of ADC with under different combination of condition of
execution and the value of the S bit.

We use the generated binary instruction as input for our decoder. It outputs the
result in assembly code. Then using the Unix command diff, we can compare the
decoder results and the assembly tests. Several minor issues have been detected and
fixed in this way.

112



binary tests asm tests
52a063ac ADCLE R6, R0, #0xb0000002
80ab3000 ADCHI R3, R11, R0
80b0dd8f ADCHIS SP, R0, PC, LSL #27
b0b30618 ADCLTS R0, R3, R8, LSL R6
80bb0da0 ADCHIS R0, R11, R0, LSR #27
c0bedd31 ADCGTS SP, LR, R1, LSR SP
00a157ca ADCEQ R5, R1, R10, ASR #15
80b05251 ADCHIS R5, R0, R1, ASR R2
c0ad3268 ADCGT R3, SP, R8, ROR #4
00b55574 ADCEQS R5, R5, R4, ROR R5
a0ad806e ADCGE R8, SP, LR, RRX

Table 8.1: Generated tests for C decoder
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Chapter 9

Discussion and conclusion

We developed the certification of a part of an ARM instruction set simulator called
Simlight, using the operational semantics of the C language provided by the CompCert
project. Correctness proofs were performed under the interactive proof assistant Coq. A
large part of the Coq specification and of the model of the simulator were automatically
produced from the pseudo-code available in the ARM reference manual. A Coq proof
technique for performing inversions was introduced in order to solve cumbersome proof
steps in our work in a better way than Coq built-in tactics. Moreover, the size of
proof terms generated by our our hc inversion is much lower than with built-in Coq
inversion, making Coq type checking and compilation more efficient. Additionally, we
have built a test generator for the ARM instruction decoder, which generates massive
tests covering all ARM instructions.

The following sections contains an assessment on the usage of operational semantics
in proving the correctness of Simlight and the feasibility of using this new approach
for proving general C programs, the overall development size of SimSoC-Cert and the
TCB. We conclude with prospects of future work.

9.1 Using operational semantics for proving C programs

The certification technique we applied for Simlight is based on the C operational
semantics provided by CompCert. The Coq formal representation of the C programs of
each ARM instruction can be obtained from the instruction pseudo-code intermediate
representation AST in two ways: either by translating it to CompCert C AST, or by
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translating it to a textual C program, then parsing it to CompCert C AST using the
CompCert C parser. In our experiments, no difference could be observed between the
two approaches – no information was lost using CompCert C parser. CompCert C sup-
ports a C subset which is rich enough to describe the operations of ARM instructions.

Correctness proofs were performed using the Coq proof assistant. In this approach
to the certification of C programs, the Coq proof steps in Coq are not simple. How-
ever, we were actually able to consider C programs having a large size and complex
specification, using the full expressive power of Coq. Our work assesses the feasibility
of using operational semantics for certifying C programs.

Proof steps related to the CompCert C semantics can be simplified a lot by defining
Coq tactics with Ltac (the tactics language). Our initial first proof script for ADC in-
struction contained thousands of lines of code. Then, we identified repetitive sequences
and started to define our own proof tactics in the Ltac language, resulting into much
shorter proof scripts. The second version for ADC correctness proof was approximately
three times smaller than the first one. In the design of these tactics, we did not seek
for generality. However, since ARM instructions within the same category often have
very similar statements and expressions, our tactics can actually be reused.

In Section 6.5, we have introduced more general tactics implemented in SimSoC-
Cert, like finding functions in the C memory model, reusing load/store operations,
etc. Those tactics are not specific to Simlight, they only deal with CompCert C
semantics and memory operations. The same holds for our inversion technique: it
was implemented for the needs of SimSoC-Cert as a tactic hc inversion dedicated to
the inductive relations defined in CompCert (see Section 7.2.2). However, these tactics
can be reused in other projects using the same approach to the correctness proof of
CompCert C programs, e.g. the CCCBIP project which recently started in our group
and aims at building a certifying compiler from a high-level component-based language
dedicated to embedded systems (BIP), with CompCert C as its target.

9.2 Hand-crafted inversion

Our hand-crafted inversion presented in Chapter 7 was experimented on large proofs
relying on big inductive relations independently defined in the CompCert project. It
played a key role for the success of this approach to correctness proofs of C programs,
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and the extra flexibility provided by hc inversion inversions could be exploited to
produce smaller, more robust and manageable proofs.

It is not yet a fully automatic tactic, like the original inversion. We think that
automation could be realized by interacting with the internals of Coq. This would be
done for efficiency concerns and would not harm in the cases where the proof can be
automatically completed, or is followed by tactics which do not refer to names produced
by inversion.

But in a project with a big size specification like SimSoC-Cert, where proofs require
fine tuning, interactions between the human and the proof assistant cannot be avoided.
In general, in such situations, statements involve arbitrarily complex definitions, so we
cannot make the assumption that decision procedures can be used. The issue is then
to provide appropriate mechanisms, so that writing proof scripts and interacting with
the proof assistant is made easy. We think that our hand-crafted inversion technique
is a good tool in this respect: it is flexible enough for the user, practical situations can
be managed with a full control on the script and valuable improvements of the script
are easier to design.

Let us mention another possible application of the technique. Inversion is some-
times needed to write a function whose properties will be established later (as opposed
to providing a monolithic and exhaustive Hoare-style specification and along with a
VC generator such as Program). In this context, simply using the proof engine and
the inversion tactic tends to generate unmanageably large terms. We can expect our
technique to be very helpful in such situations.

9.3 Development size

Table 9.1 shows the size of our development. The size of the generator is almost the
same as the total number of lines of the generated part for ARMv6. But note that this
is the version redesigned by F. Tuong in order to be more general, so that it could be
reused with other specific processors. Currently, besides ARM, it is applied to the SH4
reference manual where, instead of a specific pseudo-code, instructions are described
using a C syntax.

One can note also that the generated code for the ISS takes 50 % of the Coq formal
model, and almost 70 % of the C simulator. Although the gain may be considered as
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Original ARM ref man (txt) 49655
ARM Parsing to an OCaml AST 1068
Generator (Simgen) for ARM 10675
Generator specifications for SH4 737
General C libraries on ARM 1852
General Coq libraries on ARM 1569
Generated C code for Simlight ARM operations 6681
Generated Coq code for ARM operations 2068
Generated Coq code for ARM decoding 592
Projection 857
Proof script for ADC (2011) 3171
Proof script for ADC (2012) 1204
Definition of hc inversion 551
Definition of other user-defined tactics 185
Proof script for auxiliary functions 856
Proof script for BL (2012) 437
Proof script for LDRB (2012) 170
Proof script for MRS (2012) 322

Table 9.1: Sizes (in number of lines)

not that large, we think that it was worth taking this approach, given the repetitive

nature of instructions.

About the proof efforts, the first experiment on the correctness of ADC costed one

month. The number of Coq lines for the proof script is quite large (about 3200 for the

first version), especially if we compare with the 11 lines of the corresponding pseudo-

code in the reference manual. At this stage, we did not develop user-defined tactics.

Now, using hc inversion and other user-defined tactics, not only maintenability is

much improved, but the development time for a proof is much lower. Less than one

week is needed for an instruction as complicated as ADC. Until now, 11 instructions

were proved correct, one from each instruction category. They are given in Table 9.2.
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Category Instruction name
branch BL
data processing ADC
multiply MUL
parallel arithmetic addition and subtraction QADD16
extended instruction UXTAB16
miscellaneous arithmetic CLZ
status register access MRS
load and store LDR
load and store multiple LDM
semaphore SWP

Table 9.2: ARM instructions having a correctness proof

9.4 Trusted Code Base

Our proofs depend on several tools developed elsewhere: the Coq proof assistant,

the OCaml compiler and the CompCert C certified compiler. The TCB of these external

tools have to be considered independently. Regarding Coq, the TCB is essentially its

kernel.

Next, the TCB includes the formal version of the ARM reference manual on which

proofs are carried on: hand-written and automatically produced Coq definitions, as

described in Figure 5.1. Alternatively, automatically produced Coq definitions could

be replaced by the textual reference manual (patched by our bug fixes) and Coq code

generators. The TCB also includes the Coq projections from the CompCert C AST

representation of Simlight code to our abstract Coq model.

9.5 Future work

The next step would be to extend the work done on ADC and other operations

given in Table 9.2 to the full ISS. We are confident that the corresponding work on the

remaining ARM instructions can then be done much faster. In particular, a number of

lemmas on 14 library functions are already available. 71 library functions remain to be

done.
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The hand written library functions in CompCert C ASTs are obtained using the
CompCert C parser. Currently, they are merged with instructions by hand, and iden-
tifiers used in these functions are added manually, in order to solve a technical issue
stated on page 85. It would be better to build a “hook” which automatically finds
the called functions in the parsed ASTs and generates unused block numbers for the
corresponding identifiers.

We also attempted to write a Coq (functional) version of the decoder, but strong
improvements are required to make it usable. The current version is based on a huge
pattern-matching, which considers the 32 bits of a binary instruction in a carefully
designed order. We started to design a better version of this decoder, considering
the semantics of bit fields. Then, proofs for the decoder could be considered as well
– automatic extraction tools from the ARM reference manual are already available.
Finally, the simulation loop (basically, repeat decoding and running operations) can be
be proven.

In another direction, our methodology can be reused on other processors, such as
SH4.

In the future, Simlight 2 could be considered as well. Simlight 2 has adopted
several optimization methods for a higher simulation speed. The most important dif-
ference is the “flattening” method applied to the instruction set (see Subsection 5.4).
Some instructions are merged with their addressing mode, and the Simlight 2 decoder
decodes the instruction and its addressing mode at the same time. Then the C def-
inition is simpler than in Simlight with less function calls. We expect the proof for
this Simlight 2 decoder to be less difficult than Simlight. Instruction operations in
Simlight 2 are essentially the same as for Simlight. The main optimization used
in Simlight 2 is to specialize some of the parameters according to actually used val-
ues. Therefore, one ARM instruction operation is implemented by several functions
in Simlight 2, instead of just one function in Simlight; but the code of these func-
tions is essentially the same, so there is good hope that existing correctness lemmas for
Simlight could be restated and generalized in such a way that instances of them would
just be the expected correctness lemmas for the corresponding functions in Simlight

2.
Our group recently started another project aiming at the implementation of certified

software written in BIP, a high-level component-based language dedicated to embedded
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systems, with CompCert C as an intermediate target. We expect the work presented
is this thesis to be reused there. More generally, our implementation hc inversion

dedicated to CompCert can be re-used in any application of CompCert operational se-
mantics for proving C programs. However, it has to be updated accordingly to the new
releases of CompCert.
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Introduction

Certification de SimSoC

Cette thèse expose nos travaux de certification d’une partie d’un programme C/C++
nommé SimSoC (Simulation of System on Chip), qui simule le comportement d’archi-
tectures basées sur des processeurs tels que ARM, PowerPC, MIPS ou SH4.

Un simulateur de System on Chip peut être utilisé pour développer le logiciel d’un
système embarqué spécifique, afin de raccourcir les phases des développement et de
test, en particulier quand la vitesse de simulation est réaliste (environ 100 millions
d’instructions par seconde par cœur dans le cas de SimSoC). Les réductions de temps et
de coût de développement obtenues se traduisent par des cycles de conception interactifs
et rapides, en évitant la lourdeur d’un système de développement matériel.

Un problème critique se pose alors : le simulateur simule-t-il effectivement le matériel
réel ? Pour apporter des éléments de réponse positifs à cette question, notre travail vise
à prouver la correction d’une partie significative de SimSoC, de sorte à augmenter la
confiance de l’utilisateur en ce simulateur notamment pour des systèmes critiques.

SimSoC est un logiciel complexe, comprenant environ 60 000 de C++, intégrant
des parties écrites en SystemC et des optimisations non triviales pour atteindre une
grande vitesse de simulation. La partie de SimSoC dédiée au processeur ARM, l’un des
plus répandus dans le domaine des SoC, transcrit les informations contenues dans un
manuel épais de 1138 pages. La première version du simulateur ARM de SimSoC a été
codée à la main. Les erreurs sont inévitables à ce niveau de complexité, et certaines
sont passées au travers des tests intensifs effectués sur la version précédente de SimSoC
pour l’ARMv5, qui réussissait tout de même à simuler l’amorçage complet de Linux.
Au delà des objectifs de vitesse, la précision est nécessaire. Toutes les instructions
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doivent être simulées exactement comme décrit dans la spécification (en supposant que
le matériel en fait de même). Dans les expériences effectuées avec SimSoC, des erreurs
de comportement sont apparues de temps à autre mais il était très difficile d’en détecter
l’origine. Des tests intensifs peuvent couvrir la plupart des instructions mais certains
cas rares restent inexplorés, laissant la voie ouverte à des problèmes potentiels.

Une meilleure approche est alors nécessaire pour atteindre un degré de confiance plus
élevé dans le simulateur. Nous proposons de certifier SimSoC par l’emploi de méthodes
formelles.

Dans cette thèse, nous considérons l’un des modules de SimSoC : le simulateur
d’architecture ARM. L’architecture ARM est l’une des plus répandues sur le marché
des systèmes embarqués, en particulier les téléphones mobiles et les tablettes. Selon la
compagnie ARM, 6,1 milliards processeurs ARM ont été mis sur le marché en 2010, et
95 % d’entre eux sont utilisés dans des smart phones.

Comme indiqué plus haut, le simulateur représente un gros volume de logiciel. Et
sa spécification elle-même est assez complexe, du fait de l’architecture sophistiquée de
l’ARM, qui comporte de nombreux composants. Avant de considérer l’ensemble de l’ar-
chitecture ARM, nous avons décidé de concentrer nos efforts sur les parties essentielles,
qui sont à la fois les plus importantes et les plus sensibles : celles qui concernent le CPU
(dans la famille de processeurs ARM11). Au moment où notre travail a démarré, le mo-
dule de simulation de l’ARM réalisé dans SimSoC correspondait à la version 5 (ARMv5).
Plutôt que de certifier cette architecture bientôt dépassée, nous avons décidé d’anticiper
l’évolution de SimSoC et de travailler sur la version suivante : ARM Version 6 (ARMv6).
Pour des raisons expliquées plus bas, liées aux technologies de vérification disponibles
pour C (en particulier CompCert), il était nécessaire de travailler sur un module écrit
en C plutôt qu’en C++. Ce module, appelé Simlight, peut s’exécuter soit seul, soit
en tant que composant intégré dans SimSoC.

Plus de 60 % du développement de SimSoC est constitué de la partie CPU (voir
figure 1.1 page 9). Les parties restantes comprennent la gestion mémoire (mémoire
virtuelle et pagination), la gestion des interruptions et les communications avec les
périphériques. En résumé, la complexité de la cible a ainsi pu être réduite mais cela
représente encore 10 000 lignes de code C à certifier. En outre la spécification reste très
complexe, étant décrite dans un gros document, le manuel de référence de l’architecture
ARM Version 6.
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L’enjeu est donc ici de certifier un programme de cette taille par rapport à une
spécification assez complexe.

Rappelons tout d’abord que la certification de programme s’appuie toujours sur
un modèle formel du programme étudié. Un tel modèle formel est lui-même dérivé
d’une sémantique formelle du langage de programmation utilisé. Pour des langages de
programmation impératifs comme C, on considère souvent des outils basés sur une
sémantique axiomatique (à la Hoare) comme Frama-C (12), qui intègre un ensemble
d’outils d’analyse de programmes pour C. La plupart de ces outils reposent sur ACSL
(ANSI/ISO C Specification Language), un langage de spécification basé sur une sé-
mantique axiomatique de C. ACSL est assez puissant pour exprimer des propriétés
directement au niveau du programme C. Des étiquettes d’état peuvent être insérées
pour dénoter un point de de contrôle du programme, et peuvent être utilisées dans
des fonctions logiques ou des prédicats. Frama-C est déjà une plate-forme assez mûre
pour effectuer des analyses statiques et de la vérification déductive automatique sur des
programmes C. Un avantage de Frama-C et des outils similaires est qu’il est supporté
par des technologies de preuve automatique, qui permettent une importante économie
d’efforts de la part de l’utilisateur. Des succès ont été obtenues sur des programmes
complexes et astucieux, par exemple l’algorithme de Schorr-Waite qui manipule des
structures chaînées.

Cependant, d’une manière générale, un haut degré d’automatisation tend à affaiblir
le niveau de la certification du fait que les prouveurs automatiques sont eux-mêmes
des programmes complexes et sujets à erreurs. En théorie, de tels programmes peuvent
produire des certificats pouvant être contrôlés par un assistant à la preuve fiable (par
exemple basé sur une architecture LCF). Mais actuellement c’est encore loin d’être le
cas en pratique. Un problème supplémentaire se trouve dans la distance qui sépare la
sémantique axiomatique de l’implantation effective, à moins que le générateur de VC
soit lui-même certifié. Cette question a été examinée récemment, notamment dans le
travail de Paolo Herms sur WhyCert 1.4 – et qui n’était pas disponible au moment où
nous avons commencé de travailler sur la certification de SimSoC.

Un autre problème important est que l’automatisation n’est possible que sur des
théories ou logiques offrant un pouvoir d’expression limité. Cela peut compliquer l’ex-
pression des spécifications et des propriétés attendues au bon niveau d’abstraction, no-
tamment dans un contexte où la spécification est très complexe. Actuellement, Frama-C
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implémente un sur-ensemble de la logique du premier ordre. Une autre limitation im-
portante pour nous est que ACSL ne permet pas de décrire les changements de type
de pointeurs (cast). En revanche, la sémantique opérationnelle définie pour CompCert
C (voir ci-dessous) est capable de gérer les casts sur des pointeurs.

Le logiciel Why est l’un des composants les plus importants de Frama-C. Il effectue
un calcul de plus faible pré-condition dans le calcul de Dijkstra. Why constitue la base de
Jessie, un plugin de Frama-C qui compile du code C annoté en ACSL vers le langage
intermédiaire de Jessie. Le résultat est donné en entrée au générateur de conditions de
vérification (VC) de Why, qui à son tour produit des formules destinées à des prouveurs
automatiques ou interactifs comme Coq.

La version 3 de Why correspond à à changement de conception en profondeur de
Why. Il n’y a pas encore de frontal pour le langage C. Il s’agit d’une bibliothèque
standard de théories logiques (arithmétique entière et réelle, opérations booléennes,
ensembles, etc.) ou portant sur des structures de données de programmation (tableaux,
files, tables à adressage dispersé, etc.). La transmission de code C annoté en ACSL vers
le générateur de VC de Why 3 s’effectue par Jessie via un code intermédiaire en WhyML,
un langage de spécification pour la spécification et la programmation impérative. Dans
la nouvelle architecture, le langage de spécification est enrichi de façon à supporter
davantage de prouveurs automatiques. En outre, une interface formelle est définie pour
faciliter l’accès à de nouveaux prouveurs externes. Ainsi, choisir Why ou Why 3 dans notre
cas impliquerait une dépendance vis-à-vis de la chaîne de transformation constituée de
Jessie et Why, pour aller de code C annoté en ACSL jusqu’aux conditions de vérification
pour Coq.

Dans le cas de SimSoC, nous avons besoin de prendre en compte simultanément
une très grosse spécification et des astuces disponibles en C, comme le forçage de type,
qui sont utilisées dans des fonctions délicates liées à la gestion de la mémoire. En
d’autres termes, nous avons besoin d’un cadre de travail qui d’une part soit assez riche
en mécanismes d’abstraction pour nous permettre de gérer une telle spécification, et
d’autre part comporte une définition précise de suffisamment de mécanismes du langage
C. Pour les raisons exposées ci-dessus, il n’était pas clair que Frama-C puisse satisfaire
ces exigences, même avec Coq en sortie. Le calcul automatique de plus faibles pré-
conditions ou de domaines de variation est peu approprié à notre cas. Nous avons besoin
de vérifier des propriétés plus spécifiques relatives à la version formelle de l’architecture
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ARMv6. Cette spécification est assez complexe, par exemple en ce qui concerne le
principal type de données défini pour exprimer l’état du processeur.

Nous avons donc préféré essayer une approche moins classique mais plus directe,
basée sur la sémantique opérationnelle de C : cela était heureusement rendu possible
en théorie depuis la formalisation en Coq d’une telle sémantique au sein du projet
CompCert. À notre connaissance, il s’agit de la première expérience de preuve de cor-
rection de programmes C à cette échelle basée sur la sémantique opérationnelle.

SimSoC

Dans cette section, nous introduisons notre cible de certification : SimSoC, un si-
mulateur de System-on-Chip (SoC) capable de simuler divers processeurs à une vitesse
réaliste. En tant que simulateur de System-on-Chip, les objets simulés sont des pro-
cesseurs de systèmes embarqués utilisés dans des équipements modernes d’électronique
grand public ou de systèmes industriels (par exemple ARM, PowerPC, MIPS). Il entre
dans la catégorie des simulateurs de système complets car il peut simuler la plate-forme
matérielle complète et exécuter le logiciel embarqué “tel quel”, y compris le système
d’exploitation. Ce genre de simulateur joue un rôle important dans le développement
des systèmes embarqués, car le logiciel embarqué peut être testé et développé sur le
simulateur. Si l’on veut que le logiciel et le matériel soient prêts à aller sur le marché
en même temps, le logiciel doit parfois être développé avant que le matériel soit dispo-
nible. Un modèle exécutable du SoC est alors nécessaire. Un simulateur procure d’autres
avantages, permettant de combiner la simulation avec des méthodes formelles comme
le model-checking ou l’analyse de traces pour découvrir des anomalies matérielles ou
logicielles.

Notre simulateur, SimSoC, travaille au bas niveau du système. Il prend du code
binaire réel en entrée ainsi qu’un modèle de simulation de la carte complète : proces-
seur, unités mémoire, bus, contrôleur réseau, etc. Il peut émuler le comportement de
l’exécution des instructions, des exceptions et des interruptions des périphériques.

En dehors du développement de logiciel, le simulateur peut aussi être utilisé pour
la conception de matériel. En présence de composants supplémentaires fournis par
une tierce partie, les développeurs peuvent tester modulairement ces derniers dans
l’environnement complet de simulation.
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SimSoC est développé en SystemC, une bibliothèque C++, et utilise TLM (transac-
tion level modelling) pour modéliser les communications entre les modèles de simulation.
Afin de simuler les processeurs à une vitesse raisonnable, la simulation du jeu d’ins-
tructions utilise une technique appelée traduction dynamique (dynamic translation),
qui traduit l’entrée binaire en une représentation intermédiaire elle-même compilée en
code de la machine hôte. SimSoC étant un environnement assez gros et complexe qui
influence de développement à la fois de logiciel et de matériel, il est important de com-
prendre quelles sont les parties les plus significatives afin de pouvoir déterminer la cible
de la certification.

Simulation du jeu d’instructions

Un simulateur de systèmes complets doit inclure un simulateur de jeu d’instructions,
qui lit les instructions du programme et émule le comportement du processeur cible.
Pour illustrer notre cible de certification, nous détaillons ici les techniques de réalisation
d’un simulateur de jeu d’instructions. Il y a trois sortes de techniques implantées pour
la simulation d’instructions dans SimSoC, correspondant à différents compromis entre
précision et efficacité. Ce sont : la simulation par interprétation, la traduction dyna-
mique sans spécialisation et la traduction dynamique avec spécialisation. La simulation
par interprétation est la méthode classique, qui comprend trois étapes : récupération de
l’instruction en mémoire, décodage et exécution. Bien que cette technique soit handi-
capée par le décodage répété des mêmes instructions, elle est simple à réaliser et fiable.
Elle sert également d’étalon de performance pour les autres techniques. La seconde et la
troisième technique sont basées sur la traduction dynamique, qui utilise une représen-
tation intermédiaire pour le résultat du décodage. Les représentations intermédiaires
des instructions décodées sont stockées dans un cache et réutilisées quand les mêmes
instructions doivent être ré-exécutées. La dernière méthode traduction dynamique avec
spécialisation combine traduction dynamique et évaluation partielle. Cette dernière est
une technique bien connue en compilation optimisante. L’idée est de traduire un pro-
gramme P appliqué à une donnée spécifique d en un programme spécifique plus rapide
Pd. On peut utiliser l’évaluation partielle en simulation pour spécialiser une instruction
en une instruction plus simple, à partir des données connues au moment du décodage.
Le décodeur de SimSoC implémente l’évaluation partielle. Au moment du décodage,
la traduction dynamique établit une correspondance entre les instructions binaires et
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leurs spécialisations partiellement évaluées. Bien que la spécialisation des instructions
induise un surcroît de consommation mémoire, ce dernier reste raisonnable rapporté
aux tailles mémoire disponibles sur les serveurs actuels.

Les technologies utilisées dans le simulateur de jeu d’instructions de SimSoC sont
détaillées dans (23).

Performances

Le module ARM de SimSoC réalisant le jeu d’instruction de l’architecture ARMv5
a été écrit à la main. Le simulateur peut simuler le circuit commercial SPEAr Plus600,
un SoC réalisé par ST Microelectronics comportant un système à double cœur et plus
de 40 composants supplémentaires, ainsi que le circuit AM1705 de Texas Instruments.
Le simulateur peut émuler le contrôleur d’interruptions, le contrôleur de mémoire, le
contrôleur de mémoire série, le contrôleur Ethernet, et tous les périphériques nécessaires
pour amorcer Linux. Exécuter le noyau Linux sur le simulateur de SPEAr Plus est un
moyen de tester et mettre au point le simulateur. Tout d’abord le binaire du noyau
Linux compressé est lu sur la mémoire série, décompressé, puis Linux est démarré. La
simulation de ce processus ne prend que quelques secondes. Le contrôleur Ethernet
peut connecter à travers le protocole TCP/IP plusieurs simulateurs du même SoC
s’exécutant ou non sur la même machine. Ce simulateur mature pour l’architecture
ARMv5 était terminé avant le début de notre projet de certification, et deux autres
simulateurs de jeu d’instruction pour PowerPC et MIPS étaient également développés.

De l’ARMv5 à l’ARMv6

Pour cette thèse nous avons décidé de considérer la version suivante (ARMv6)
de l’architecture ARM, qui représente une montée en performances depuis les cœurs
ARMv5. Pour l’essentiel, ARMv6 est compatible en arrière avec ARMv5. Voici les
nouveautés apparues dans l’architecture ARMv6.

– Le jeu d’instructions a été étendu par de nouvelles instructions dans six do-
maines : des instructions média, des instructions de multiplication, des instruc-
tions de contrôle et DSP, des instructions de chargement et stockage en mémoire,
des instructions indéfinies et des instructions inconditionnelles. Heureusement,
toutes les instructions ARMv5 obligatoires sont également instructions ARMv6
obligatoires. Pour les utilisateurs du simulateur, un code applicatif compilé pour
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l’ARMv5 s’exécute également sur l’ARMv6. Si un utilisateur souhaite bénéficier
des nouvelles instructions V6, il doit recompiler son programme dans le nouvel
environnement.

– Le mode Thumb (instructions sur 16 bits) a changé. Les instructions Thumb de
l’ARMv5 ne sont pas portables vers Thumb2 (ARMv6+), la compatibilité arrière
n’est pas complètement assurée.

Contributions

Dans ce travail nous avons développé une preuve de correction d’une partie du
simulateur SimSoC. Au delà de la certification d’un simulateur, il s’agit d’une nouvelle
expérience en certification de programmes non triviaux écrits en C. Contrairement
aux approches répandues, nous n’utilisons pas une sémantique axiomatique mais une
sémantique opérationnelle, en l’occurrence celle définie dans le projet CompCert.

Nous définissons une représentation du jeu d’instruction ARM et de ses modes
d’adressage formalisée en Coq, grâce à un générateur automatique prenant en entrée le
pseudo-code des instructions issu du manuel de référence ARM. Nous générons égale-
ment l’arbre syntaxique abstrait CompCert du code C simulant les mêmes instructions
au sein de Simlight, une version allégée de SimSoC. Une version textuelle de Simlight,
avait été auparavant développée comme un composant de SimSoC par C. Helmstet-
ter (6).

À partir de ces deux représentations Coq, nous pouvons énoncer et démontrer la
correction de Simlight, en nous appuyant sur la sémantique opérationnelle définie dans
CompCert. Nos premiers résultats dans cette direction sont décrits dans (50). Cette
méthodologie a ensuite été appliquée à au moins une instruction de chaque catégorie
du jeu d’instruction de l’ARM.

Au passage, nous avons amélioré la technologie disponible en Coq pour effectuer
des inversions, une forme de raisonnement utilisée intensivement dans ce type de situa-
tion (40).

Nos contributions supplémentaires comprennent un générateur de décodeur pour
les instructions ARM, également basé sur l’analyse du manuel de référence de l’ARM,
et un générateur de tests pour le décodeur d’instructions, qui peut générer des tests
massifs couvrant toutes les instructions ARM.
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Conclusion

Nous avons développé la certification d’une partie de Simlight, un simulateur du
jeu d’instructions ARM, en utilisant la sémantique opérationnelle du langage C fournie
par le projet CompCert. Les preuves de correction ont été effectuées à l’aide de l’assistant
à la preuve Coq. Une grande partie de la spécification Coq et du modèle du simulateur
ont été produits automatiquement à partir du pseudo-code disponible dans le manuel
de référence ARM. Une technique de preuve Coq pour effectuer des inversions a été
introduite pour résoudre des étapes de preuve administratives de manière plus satisfai-
sante que par les tactiques standard de Coq comme inversion. Les termes de preuve
engendrés par notre hc inversion ont par ailleurs une taille bien plus petite qu’avec
inversion, ce qui améliore la compilation Coq et fluidifie l’interaction avec Coq lors de
la mise au point des scripts. Par ailleurs, nous avons construit un générateur de tests
pour le décodeur d’instructions ARM, qui génère des tests massifs couvrant toutes les
instructions ARM.

Dans la suite nous tirons quelques enseignements de notre usage de la sémantique
opérationnelle pour démontrer la correction de Simlight, quant à la faisabilité de cette
approche pour la preuve de programmes C en général. Nous donnons quelques éléments
chiffrés sur le développement de SimSoC-Cert et précisons la base de confiance de ce
projet. Nous terminons par quelques prospectives.

L’approche sémantique opérationnelle en preuve de programmes C

La technique de certification employée pour Simlight est basée sur la sémantique
opérationnelle de C fournie par CompCert. La représentation formelle des programmes
C pour chaque instruction ARM peut être obtenue à partir de l’AST représentant le
pseudo-code de deux façons : soit en le traduisant en un AST CompCert C, soit en
le traduisant en une forme textuelle C, qui est ensuite donnée en entrée à l’analyseur
syntaxique de CompCert C. Dans nos expériences, les deux approches donnaient des
résultats équivalents. CompCert C supporte un sous-ensemble de C qui est suffisamment
riche pour programmer la simulation des instructions de l’ARM dans Simlight.

Les preuves de correction ont été effectuées dans l’assistant à la preuve Coq. Dans
cette approche à la certification de programmes C, les étapes de preuve Coq ne sont
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pas simples. Cependant nous avons pu considérer des programmes C ayant une spéci-
fication complexe et de grande taille, utilisant le pouvoir expressif de Coq. À partir de
notre travail, nous pouvons conclure que l’approche par sémantique opérationnelle est
utilisable.

Les étapes de preuve liées à la sémantique de CompCert C peuvent être consi-
dérablement simplifiées par la définition de tactiques dans le langage Ltac de Coq.
Notre premier script de preuve pour l’instruction ADC était long de plusieurs milliers
de lignes. Nous avons lors identifié les séquences répétées et commencé à définir nos
propres tactiques en Ltac, ce qui a permis de raccourcir considérablement les scripts
de preuve. La seconde version du script pour la preuve de correction de ADC était
environ trois fois plus petite que la première. Dans la conception de ces tactiques, nous
n’avons pas recherché la généralité. Cependant, comme beaucoup d’instructions ARM
d’une même catégorie se ressemblent, nos tactiques peuvent en fait être réutilisées.

Dans la section 6.5, nous avons également introduit des tactiques générales pour
SimSoC-Cert, notamment pour trouver des fonctions dans le modèle mémoire de C,
réutiliser des opérations de load/store, etc. Ces tactiques ne sont pas spécifiques à
Simlight, elles sont seulement relatives à la sémantique que CompCert C et aux opé-
rations en mémoire. Il en va de même pour notre technique d’inversion : elle a été
instanciée pour les besoins de SimSoC-Cert comme une tactique hc inversion dédiée
aux relations inductives définies dans CompCert (voir la section 7.2.2). Cependant ces
tactiques peuvent être réutilisées dans d’autres projets suivant la même approche pour
démontrer la correction de programmes CompCert C, par exemple le projet CCCBIP qui
a démarré récemment dans note groupe et vise à construire une compilateur certifiant
prenant en entrée un langage de haut niveau à base de composants pour les systèmes
embarqués (BIP), avec CompCert C comme cible intermédiaire.

Inversion sur mesure

Notre inversion “sur mesure” (hand crafted) présentée au chapitre 7 a été expéri-
mentée sur des preuves de grande taille reposant sur de grosses relations inductives
définies indépendamment dans le projet CompCert. Cela a joué un rôle crucial pour
le succès de cette approche aux preuves correction de programmes C, et le gain en
flexibilité obtenu par hc inversion a été exploité pour produire des preuves bien plus
petites, robustes et faciles à gérer.
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En l’état, ce n’est pas une tactique complètement automatique comme la tactique
originale inversion. Nous pensons qu’une telle automatisation pourrait être réalisée en
interagissant avec les mécanismes internes de Coq. Cela pourrait être effectué pour des
raisons d’efficacité et serait appréciable notamment dans les cas où les sous-buts engen-
drés pourraient être résolus automatiquement, ou sans qu’il soit besoin de référencer
les noms produits par l’inversion.

Mais dans un projet comme SimSoC-Cert, qui comporte une spécification de grande
taille et où les preuves nécessitent des mises au point fines, les interactions entre l’uti-
lisateur et l’assistant à la preuve ne peuvent pas être évitées. En général, dans de telles
situations, les énoncés mettent en œuvre des définitions arbitrairement complexes, et
on ne peut faire l’hypothèse que des procédures de décision pourront tout résoudre.
Le problème est alors de fournir des mécanismes appropriés, de sorte à faciliter l’écri-
ture des scripts de preuve et l’interaction avec l’assistant de preuve. Nous pensons que
notre technique d’inversion sur mesure est un bon outil de ce point de vue : elle est
suffisamment souple pour l’utilisateur, les situations pratiques peuvent être gérées en
contrôlant totalement les scripts et des améliorations intéressantes des scripts sont plus
faciles à concevoir.

Mentionnons une autre application possible de cette technique. Des inversions sont
parfois nécessaires dans l’écriture d’une fonction dont les propriétés seront établies ulté-
rieurement (à l’opposé du style où l’on fournit une spécification à la Hoare monolithique
et exhaustive et un générateur de VC comme Program). Dans ce contexte, une utilisa-
tion simple du moteur de preuve et de la tactique inversion a tendance à générer des
termes extrêmement gros et compliqués à gérer. Notre technique devrait s’avérer très
utile dans ce genre de situation.

Taille du développement

La table F.1 indique la taille de notre développement. La taille du générateur atteint
presque le nombre total de lignes des parties générées pour l’ARMv6. Mais il faut noter
qu’il s’agit ici de la version courante refaite par F. Tuong pour généraliser le procédé
à d’autres processeurs. Actuellement, en dehors de l’ARM, cette chaîne de génération
est également appliquée au manuel de référence du processeur SH4 où, à la place d’un
pseudo-code spécifique, les instruction sont décrites dans la syntaxe du langage C.
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Manuel de référence ARM original (txt) 49655
Analyseur ARM vers AST OCaml 1068
Générateur (Simgen) pour l’ARM 10675
Générateur de spécifications pour SH4 737
Bibliothèques générales C sur l’ARM 1852
Bibliothèques générales Coq sur l’ARM 1569
Code C généré pour les opérations ARM Simlight 6681
Code Coq généré pour les opérations ARM 2068
Code Coq généré pour le décodeur ARM 592
Projection 857
Script de preuve pour ADC (2011) 3171
Script de preuve pour ADC (2012) 1204
Définition de hc inversion 551
Autres tactiques 185
Script de preuve pour fonctions auxiliaires 856
Script de preuve pour BL (2012) 437
Script de preuve pour LDRB (2012) 170
Script de preuve pour MRS (2012) 322

Table F.1: Tailles (en nombre de lignes)

On peut également noter que le code généré pour le simulateur de jeu d’instructions
occupe 50 % du modèle formel Coq, et presque 70 % du simulateur C.

Bien que le gain en volume puisse être considéré comme relativement faible, nous
pensons que cette approche est néanmoins valable étant donnée la nature répétitive des
instructions.

En ce qui concerne l’effort de preuve, la première expérience a porté sur la correction
de l’instruction ADC et cela nous a pris un mois. Le nombre de lignes Coq pour le script
de preuve était alors assez grand, environ 3200 pour cette première version (surtout si
l’on compare aux 11 lignes du pseudo-code correspondant dans le manuel de référence).
À ce stade nous n’avions pas encore développé de tactiques utilisateur. Ensuite, en
utilisant hc inversion et nos autres tactiques spécifiques, en dehors des gains en taille
et en maintenabilité, le temps de développement pour la preuve d’une instruction est
bien plus faible, moins d’une semaine pour une instruction du même degré de complexité
que ADC. A présent, nous avons une preuve de correction pour 11 instructions, une dans
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chaque catégorie d’instructions pour l’ARM. Elles sont présentées dans la table F.2.

Catégorie Nom de l’instruction
branchement BL
calcul ADC
multiplication MUL
addition et soustraction en arithmétique parallèle QADD16
instruction étendue UXTAB16
arithmétique divers CLZ
accès au registre de status MRS
chargement et stockage LDR
chargement et stockage multiple LDM
sémaphore SWP

Table F.2: Instructions ARM avec une preuve de correction

Base de confiance du code

Nos preuves dépendent de plusieurs outils développés ailleurs : l’assistant à la preuve
Coq, le compilateur OCaml et le compilateur certifié CompCert C. La base de confiance
de ces outils doit être considérée indépendamment. En ce qui concerne Coq, il s’agit
essentiellement du noyau.

Ensuite, la base de confiance comprend la version formelle du manuel de référence
servant à formuler les théorèmes de correction : il s’agit de définitions Coq produites
manuellement et automatiquement, selon le procédé décrit en figure 5.1. Une alternative
pourrait être de remplacer les définitions Coq produites automatiquement par le manuel
de référence textuel (corrigé par nos soins) et la chaîne de génération de code Coq.

La base de confiance comprend enfin les projections définies en Coq entre la repré-
sentation du code de Simlight sous forme d’AST CompCert C et notre modèle Coq
abstrait.

Travaux futurs

La prochaine étape serait d’étendre le travail effectué sur ADC et les autres opérations
données dans la table F.2 au jeu d’instruction entier. Nous somme confiants dans le
fait que le travail correspondant peut être effectué beaucoup plus vite. En particulier,
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des lemmes portant sur 14 fonctions de la bibliothèque sont déjà disponibles. Il reste
71 fonctions semblables dans la librairie.

Les AST des fonctions de la bibliothèque sont obtenus au moyen de l’analyseur
syntaxique pour CompCert C. Ces AST sont actuellement regroupés à la main avec
les AST des instructions, pour résoudre le problème technique mentionné page 85. Il
serait préférable d’introduire un mécanisme permettant de trouver automatiquement
les fonctions appelées dans les AST produits par l’analyse syntaxique et de générer des
numéros de blocs inutilisés pour les identificateurs correspondants.

Nous avons également tenté d’écrire une version Coq (fonctionnelle) du décodeur,
mais des améliorations importantes sont nécessaires pour le rendre utilisable. La version
courante est basée sur un filtrage géant, qui considère les 32 bits d’une instruction
binaire dans un ordre soigneusement mis au point. Nous avons commencé à concevoir
une meilleure version de ce décodeur, en considérant la sémantique des champs de bits.
Cela fait, des preuves sur le décodeur pourront également être considérées. Les outils
d’extraction automatique du codage des instructions décrit dans le manuel de référence
sont déjà disponibles. Enfin, la correction de la boucle de simulation (essentiellement :
répéter le décodage et l’exécution des opérations) pourra être prouvée.

Dans une autre direction, notre méthodologie peut être réutilisée sur d’autres pro-
cesseurs, comme le SH4.

Par la suite, on pourra également considérer Simlight 2, qui comporte plusieurs
optimisations en vue d’accélérer la simulation. La différence la plus importante est
l’application d’une méthode de flattening (voir § 5.4) consistant à fusionner le code
des modes d’adressage dans certaines instructions. Le décodeur de Simlight 2 décode
alors simultanément une instruction et son mode d’adressage. Cela rend la définition en
C plus simple que dans Simlight et produit moins d’appels de fonctions. Les preuves
correspondantes pour le décodeur devraient donc êtr plus simples pour Simlight 2 que
pour Simlight. Le corps des instructions est essentiellement le même dans Simlight
2 que dans Simlight. La principale optimisation effectuée dans Simlight 2 consiste à
spécialiser certains paramètres aux valeurs effectives utilisées. Ainsi, l’opération d’une
instruction ARM est implémentée par plusieurs fonctions dans Simlight 2, là où il n’y
a qu’une seule fonction dans Simlight ; mais le code de ces fonctions est essentiellement
le même, ce qui donne bon espoir à la possibilité de réutiliser les lemmes de correction
existants pour Simlight, en les reformulant et généralisant de manière adéquate, de
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sorte que par instanciation on retrouve les lemmes de correction attendus pour les
fonctions correspondantes dans Simlight 2.

Notre équipe a récemment démarré un autre projet visant l’implantation de logiciel
certifié écrit en BIP, un langage de haut niveau à base de composants dédié aux systèmes
embarqués, avec CompCert C comme langage intermédiaire. Nous avons bon espoir
que le travail présenté dans cette thèse pourra être réutilisé. Plus généralement, notre
réalisation de hc inversion pour CompCert peut être réutilisée dans toute application
visant à prouver la correction de programmes C à partir de la sémantique opérationnelle
définie dans CompCert. Cependant, cette tactique doit évoluer en fonction des nouvelles
versions de CompCert.
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Appendix A

Example: the complete ADC
instruction in Simlight

Here is the complete CompCert C code for simulating the ADC instruction (Add with
Carry) in Simlight. This program contains a pretty-printed version of the CompCert

C AST which was automatically derived from the pseudo-code for ADC given in the
ARMv6 reference manual, using the generator described in Chapter 5. together with
library functions, which were written by hand according to specifications in the ARMv6
reference manual.
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A. EXAMPLE: THE COMPLETE ADC INSTRUCTION IN SIMLIGHT

struct SLv6_MMU;
struct SLv6_Processor ;
struct SLv6_StatusRegister ;
struct SLv6_SystemCoproc ;

struct SLv6_MMU {
unsigned int begin ;
unsigned int s i z e ;
unsigned int end ;
unsigned char ∗mem;

} ;

struct SLv6_Processor {
struct SLv6_MMU ∗mmu_ptr ;
struct SLv6_StatusRegister cpsr ;
struct SLv6_StatusRegister s p s r s [ 5 ] ;
struct SLv6_SystemCoproc cp15 ;
unsigned int id ;
unsigned int user_regs [ 1 6 ] ;
unsigned int f i q_reg s [ 7 ] ;
unsigned int i rq_regs [ 2 ] ;
unsigned int svc_regs [ 2 ] ;
unsigned int abt_regs [ 2 ] ;
unsigned int und_regs [ 2 ] ;
unsigned int ∗pc ;
unsigned char jump ;

} ;

struct SLv6_StatusRegister {
unsigned char N_flag ;
unsigned char Z_flag ;
unsigned char C_flag ;
unsigned char V_flag ;
unsigned char Q_flag ;
unsigned char J_flag ;
unsigned char GE0;
unsigned char GE1;
unsigned char GE2;
unsigned char GE3;
unsigned char E_flag ;
unsigned char A_flag ;
unsigned char I_ f l ag ;
unsigned char F_flag ;
unsigned char T_flag ;
int mode ;
unsigned int background ;

} ;

struct SLv6_SystemCoproc {
unsigned char ee_bit ;
unsigned char u_bit ;
unsigned char v_bit ;

} ;

unsigned char const __str ing l i t_6 [ 7 1 ] = "ERROR: s imu la t ing something
unpred i c tab l e ( . . / arm6/ s i m l i g h t /adc . c :%d) \012 " ;

unsigned char const __str ing l i t_3 [ 4 9 ] = " ! ( new_pc&( i n s t _ s i z e ( proc ) −1) ) &&
\042 pc misa l i gned \042 " ;

unsigned char const __str ing l i t_2 [ 1 1 ] = " reg_id !=15 " ;
unsigned char const __str ing l i t_4 [ 1 4 ] = " pc misa l i gned " ;
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unsigned char const __str ing l i t_5 [ 8 1 ] = "ERROR: Current mode does not
have a SPSR ( . . / arm6/ s i m l i g h t / s lv6_proce s so r . h:%d) \012 " ;

unsigned char const __str ing l i t_1 [ 3 4 ] =
" . . / arm6/ s i m l i g h t / s lv6_proce s so r . h " ;

extern unsigned char Condit ionPassed ( struct SLv6_StatusRegister ∗ , int ) ;
extern void copy_StatusRegister ( struct SLv6_StatusRegister ∗ , struct

SLv6_StatusRegister ∗) ;
extern unsigned int ∗addr_of_reg_m ( struct SLv6_Processor ∗ , unsigned

char , int ) ;

unsigned int reg_m( struct SLv6_Processor ∗proc , unsigned char reg_id , int
m)

{
return ∗addr_of_reg_m ( proc , reg_id , m) ;

}

void set_reg_m ( struct SLv6_Processor ∗proc , unsigned char reg_id , int m,
unsigned int data )

{
∗addr_of_reg_m ( proc , reg_id , m) = data ;

}

unsigned int reg ( struct SLv6_Processor ∗proc , unsigned char reg_id )
{

return reg_m( proc , reg_id , (∗ proc ) . cpsr . mode) ;
}

void set_reg ( struct SLv6_Processor ∗proc , unsigned char reg_id , unsigned
int data )

{
reg_id != 15 ? ( void ) 0

: __assert_fa i l ( __str ingl it_2 , __str ingl it_1 , 58 , ( unsigned char ∗)
0) ;

set_reg_m ( proc , reg_id , (∗ proc ) . cpsr . mode , data ) ;
}

unsigned int i n s t _ s i z e ( struct SLv6_Processor ∗ proc )
{

return (∗ proc ) . cpsr . T_flag ? 2 : 4 ;
}

void set_pc_raw ( struct SLv6_Processor ∗proc , unsigned int new_pc)
{

( ! ( new_pc & i n s t _ s i z e ( proc ) − 1) ? ( __str ing l i t_4 ? 1 : 0) : 0) ?
( void ) 0

: __assert_fa i l ( __str ingl it_3 , __str ingl it_1 , 68 , ( unsigned char ∗)
0) ;

(∗ proc ) . jump = 1 ;
∗(∗ proc ) . pc = new_pc + 2 ∗ i n s t _ s i z e ( proc ) ;

}

void set_reg_or_pc ( struct SLv6_Processor ∗proc , unsigned char reg_id ,
unsigned int data )

{
i f ( reg_id == 15) {

set_pc_raw ( proc , data ) ;
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A. EXAMPLE: THE COMPLETE ADC INSTRUCTION IN SIMLIGHT

} else {
set_reg ( proc , reg_id , data ) ;

}
}

unsigned char CurrentModeHasSPSR ( struct SLv6_Processor ∗ proc )
{

return (∗ proc ) . cpsr . mode < 5 ;
}

struct SLv6_StatusRegister ∗ sp s r ( struct SLv6_Processor ∗ proc )
{

i f ( CurrentModeHasSPSR ( proc ) ) {
return &∗((∗ proc ) . s p s r s + (∗ proc ) . cpsr . mode) ;

} else
ERROR( " Current mode does not have a SPSR" ) ;

abort ( ) ;
}

unsigned char CarryFrom_add2 ( unsigned int a , unsigned int b)
{

return a + b < a ;
}

unsigned char CarryFrom_add3 ( unsigned int a , unsigned int b , unsigned int
c )

{
return CarryFrom_add2 ( a , b) ? 1 : ( CarryFrom_add2 ( a + b , c ) ? 1 : 0) ;

}

unsigned char OverflowFrom_add2 ( unsigned int a , unsigned int b)
{

unsigned int r ;
r = a + b ;
return ( ( a ^ ~b) & ( a ^ r ) ) >> 31 ;

}

unsigned char OverflowFrom_add3 ( unsigned int a , unsigned int b , unsigned
char c )

{
return OverflowFrom_add2 ( a , b) | | OverflowFrom_add2 ( a + b , c ) ;

}

unsigned char get_bit ( unsigned int x , unsigned int n)
{

return x >> n & 1 ;
}
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void ADC( struct SLv6_Processor ∗proc , unsigned char S , int cond , unsigned
char d , unsigned char n , unsigned int sh i f t e r_operand )

{
unsigned int old_Rn ;
unsigned int old_CPSR ;
old_Rn = reg ( proc , n ) ;
old_CPSR = (∗ proc ) . cpsr ;
i f ( Condit ionPassed (&(∗ proc ) . cpsr , cond ) ) {

set_reg_or_pc ( proc , d , old_Rn + sh i f t e r_operand + old_CPSR . C_flag ) ;
i f (S == 1 ? (d == 15 ? 1 : 0) : 0) {

i f ( CurrentModeHasSPSR ( proc ) ) {
copy_StatusRegister (&(∗ proc ) . cpsr , sp s r ( proc ) ) ;

} else
unpred i c tab l e ( ) ;

} else {
i f (S == 1) {

(∗ proc ) . cpsr . N_flag = get_bit ( reg ( proc , d ) , 31) ;
(∗ proc ) . cpsr . Z_flag = reg ( proc , d) == 0 ? 1 : 0 ;
(∗ proc ) . cpsr . C_flag =

CarryFrom_add3 (old_Rn , sh i f ter_operand , old_CPSR . C_flag ) ;
(∗ proc ) . cpsr . V_flag =

OverflowFrom_add3 (old_Rn , sh i f ter_operand , old_CPSR . C_flag ) ;
}

}
}

}
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Appendix B

Example: the proof script related
to instruction ADC

Here we present Coq code on the main theorem stated for ARM instruction ADC.
There are 3 memory state transitions for the concrete model. First, from m0 to m1, the
parameters of ADC is allocated. Second, from m1 to m2, the parameters are initialized.
From this memory state m2, we are able to build the projection to the abstract model
for processor state proc and other parameters. Then, from m2 to mfin, the statement of
ADC function body is executed. The new abstract state is S.ADC step sbit cond d

n so (mk semstate nil true s). It is expected to be related to mfin in the concrete
model.

Theorem related_aft_ADC: forall e m0 m1 m2 mfin vargs s out sbit cond d n so,
alloc_variables empty_env m0 (fun_internal_ADC.(fn_params) ++

fun_internal_ADC.(fn_vars)) e m1 ->
bind_parameters e m1 fun_internal_ADC.(fn_params) vargs m2 ->
(forall m ch b ofs, Mem.valid_access m ch b ofs Readable) ->
proc_state_related proc m2 e (Ok tt (mk_semstate nil true s)) ->
sbit_func_related m2 e sbit ->
cond_func_related m2 e cond ->
d_func_related m2 e d ->
n_func_related m2 e n ->
so_func_related m2 e so ->
exec_stmt (Genv.globalenv prog_adc) e m2 fun_internal_ADC.(fn_body)

147
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ADC

Events.E0 mfin out ->
proc_state_related proc mfin e

(S.ADC_step sbit cond d n so (mk_semstate nil true s)).

The proof script for theorem related aft ADC is too long to be present here (∼ 600
loc). Instead of showing the whole script, we choose one of the lemmas used to support
the proof of related aft ADC: same copy SR.

Before stating a lemma, in order to shorten the proof script and its readability, we
give a name to the expression we focus on for the lemma.

The name cp SR is given to the ASTs of C expression:

copy_StatusRegister(&proc->cpsr, spsr(proc))

In this expression, we have two function calls to spsr and copy StatusRegister.

Definition cp_SR :=
(Ecall
(Evalof (Evar copy_StatusRegister T32) T32)
(Econs

(Eaddrof
(Efield

(Evalof
(Ederef

(Evalof (Evar proc T2) T2) T8)
T8) cpsr T9) T25)

(Econs
(Ecall (Evalof (Evar spsr T33) T33)

(Econs (Evalof (Evar proc T2) T2)
Enil) T25) Enil)) T10).

The Lemma states that the evaluation results of expression cp SR in the abstract
model and the concrete model are equivalent.

Lemma same_copy_SR :
forall e m l b s t m’ v em,
proc_state_related m e (Ok tt (mk_semstate l b s)) ->
eval_expression (Genv.globalenv prog_adc) e m cp_SR t m’ v ->
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proc_state_related m’ e
(Ok tt (mk_semstate l b
(Arm6_State.set_cpsr s (Arm6_State.spsr s em)))).

Proof.
intros until em. intros psrel cpsr.
inversion cpsr. subst. rename H into ee,H0 into esrv. unfold cp_SR in ee.
inv_eval_expr m m’.
(* Function spsr, get spsr from the current state *)
apply (same_spsr e l b s vf0 fd0 m vargs0 t10 m3 vres0 l b s)

in psrel; [idtac|exact Heqff0|exact ev_funcall].
(* Function copy_StatusRegister, copy the current spsr to cpsr*)
apply (same_copy e l b s vf fd m3 vargs t2 m’ vres l b

(Arm6_State.set_cpsr s (Arm6_State.spsr s em))) in psrel;
[idtac|exact Heqff|exact ev_funcall0].
exact psrel.

Qed.
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