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Résumé

Cette thèse expose nos travaux de certification d'une partie d'un programme C/C++ nommé SimSoC (Simulation of System on Chip), qui simule le comportement d'architectures basées sur des processeurs tels que ARM, PowerPC, MIPS ou SH4.

Un simulateur de System on Chip peut être utilisé pour developper le logiciel d'un système embarqué spécifique, afin de raccourcir les phases des développement et de test, en particulier quand la vitesse de simulation est réaliste (environ 100 millions d'instructions par seconde par coeur dans le cas de SimSoC). Les réductions de temps et de coût de développement obtenues se traduisent par des cycles de conception interactifs et rapides, en évitant la lourdeur d'un système de développement matériel.

SimSoC est un logiciel complexe, comprenant environ 60 000 de C++, intégrant des parties écrites en SystemC et des optimisations non triviales pour atteindre une grande vitesse de simulation. La partie de SimSoC dédiée au processeur ARM, l'un des plus répandus dans le domaine des SoC, transcrit les informations contenues dans un manuel épais de plus de 1000 pages. Les erreurs sont inévitables à ce niveau de complexité, et certaines sont passées au travers des tests intensifs effectués sur la version précédente de SimSoC pour l'ARMv5, qui réussissait tout de même à simuler l'amorçage complet de linux.

Un problème critique se pose alors : le simulateur simule-t-il effectivement le matériel réel ? Pour apporter des éléments de réponse positifs à cette question, notre travail vise à prouver la correction d'une partie significative de SimSoC, de sorte à augmenter la confiance de l'utilisateur en ce similateur notamment pour des systèmes critiques.

Nous avons concentré nos efforts sur un composant particulièrement sensible de

SimSoC : le simulateur du jeu d'instructions de l'ARMv6, faisant partie de la version actuelle de SimSoC.

Résumé

Les approches basées sur une sémantique axiomatique (logique de Hoare par exemple) sont les plus répandues en preuve de programmes impératifs. Cependant, nous avons préféré essayer une approche moins classique mais plus directe, basée sur la sémantique opérationnelle de C : cela était rendu possible en théorie depuis la formalisation en Coq d'une telle sémantique au sein du projet CompCert et mettait à notre disposition toute la puissance de Coq pour gérer la complexitité de la spécification. À notre connaissance, au delà de la certification d'un simulateur, il s'agit de la première expérience de preuve de correction de programmes C à cette échelle basée sur la sémantique opérationnelle.

Nous définissons une représentation du jeu d'instruction ARM et de ses modes d'adressage formalisée en Coq, grâce à un générateur automatique prenant en entrée le pseudo-code des instructions issu du manuel de référence ARM. Nous générons également l'arbre syntaxique abstrait CompCert du code C simulant les mêmes instructions au sein de Simlight, une version allégée de SimSoC.

À partir de ces deux représentations Coq, nous pouvons énoncer et démontrer la correction de Simlight, en nous appuyant sur la sémantique opérationnelle définie dans CompCert. Cette méthodologie a été appliquée à au moins une instruction de chaque catégorie du jeu d'instruction de l'ARM.

Au passage, nous avons amélioré la technologie disponible en Coq pour effectuer des inversions, une forme de raisonnement utilisée intensivement dans ce type de situation.

Chapter 1 Introduction 1.1 Certification of SimSoC

This thesis describes the work that consists in certifying a part of a C/C++ program called SimSoC (Simulation of System on Chip) [START_REF] Helmstetter | Simsoc: A systemc tlm integrated iss for full system simulation[END_REF], which simulates the behavior of embedded systems architectures based on processors such as ARM, PowerPC, MIPS or SH4.

A system on chip simulator can be used for software development of a specific embedded system, to shorten the development and test phases, especially when, as is the case for SimSoC, it offers a realistic simulation speed (about 100 Millions of instructions per second per individual core). Simulation makes it possible to reduce development time and development cost, allowing for co-design engineering, and possibility for the software engineers to run fast iterative cycles without requiring a hardware development board.

Then a critical issue is: does the simulator actually simulate the real hardware? In our work, we aim at proving a significant part of the correctness of SimSoC in order to support the claim that the implementation of the simulator and the real system will exhibit the same behavior. Then a SimSoC user can trust the simulator, especially in very critical uses.

Considering only one module in SimSoC, namely the ARM simulator, it somehow encodes the 1138 pages of the ARM reference manual in C++. The whole simulator, which simulate ARM and PowerPC architecture, includes about 60,000 lines of C++ code. The software is very large and complicated with many complex features from
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SystemC library, and optimizations to achieve high simulation speed. The first implementation of SimSoC ARM simulator was manually coded. Then, mistakes in the hand written code are unavoidable and difficult to find due to the complexity. Not only speed, but also accuracy is highly required. All simulated instructions must behave exactly like what is described in the specification (assuming the real hardware is conformant to the specification). From the experiments performed on SimSoC, bugs bringing a wrong behavior were observed from time to time but it was hard to reveal where they were. Using intensive tests can cover most of the instructions, but still left some untested rare cases of instructions, which lead to potential problems. Therefore, a better approach is required to gain confidence in the correctness of the simulator. Our proposal is to certify the simulator SimSoC using formal methods.

In this thesis, we consider one of the modules in SimSoC: the ARM architecture simulator. ARM architecture is one of the most popular processor design in the embedded systems market, in particular mobile phones and tablets. As reported by ARM Holding company, 6.1 billion ARM-based processors have been brought to the market in year 2010 and 95% is used in the smart phone market.

As mentioned, the simulator is a large amount of software. And the specification itself is rather complex due to the rich architecture of ARM that consists of many components (to be detailed in Chapter 3). Before taking all features of the ARM simulator into account, we decided to focus on the basic parts, which are the most important and sensitive: the CPU part of the ARM architecture (such as used by the ARM11 processor family). At the time we started our work, the ARM simulator module implemented in SimSoC was the ARM Version 5 (ARMv5) architecture. Instead of applying certification for this old architecture, we decided to anticipate the evolution of SimSoC and to work on the next version: ARM Version 6 (ARMv6). For reasons explained below, related to the availability of proof technologies for C (especially CompCert), it was more convenient to have this module written in the C language rather than in C++. This module called Simlight (6) can run standalone, or as a component integrated in SimSoC. It is a simplified executable version of ARMv6 simulator.

More than 60% of the development size of SimSoC is in the CPU part, see Figure 1.1, the remaining parts consists in memory management (virtual memory and paging) interrupt handling and communications with peripherals. In summary, the complexity of the target could be reduced, but it still represents more than 10,000 lines of C code to be certified. Moreover, the complexity of the specification is invariant, as it is given by a heavy document, the ARM Version 6 Architecture reference manual.

Hence the issue at stake is how to certify a program of this size in relation to a rather complex specification.

Let us first recall that program certification is always based on a formal model of the program under study. Such a formal model is itself derived from a formal semantics of the programming language. For imperative programming languages such as C, a popular approach is to consider tools based on axiomatic semantics (Hoare logic), like

Frama-C (13), a framework for a set of interoperable program analyzers for C. Most of the modules integrated inside rely on ACSL (ANSI/ISO C Specification Language), a specification language based on an axiomatic semantics for C. ACSL is powerful enough to express axiomatizations directly at the level of the C program. State labels can be defined to denote a program control point, and can then be used in logic functions and predicates. Frama-C is already quite a mature platform for C program static analysis and automatic deductive verification. An advantage of Frama-C or similar tools is that it is supported by automatic proof technologies, which save manpower consumption and make this approach quite convenient for the user. It was successfully applied to complex and tricky programs, e.g., Schorr-Waite algorithm, which deals with linked data structures.

Frama-C is able to perform:

-Analyzing the value of variables: Frama-C is able to compute and predict the range of numerical variables.
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-Passing the proof obligations, (called Verification Conditions, VC for short) generated by Why [START_REF] Bobot | Why3: Shepherd your herd of provers[END_REF] to automatic or interactive theorem provers.

-Slicing C program into shorter ones which preserve some properties.

-Navigating in C program.

However, in general, high automation tends to weaken the claims for certification, as automatic provers are themselves complex, then error-prone programs. In theory, such programs could produce certificates which could be checked by a reliable (e.g., LCFbased) proof assistant. But currently it is still far from being the case. An additional issue lies in the gap between the axiomatic semantics used and the real implementation, unless the VC generator is itself certified. This issue was considered recently, see below related work by Paolo Herms on WhyCert 1.4 -which was not available at the time we started to work on the certification of SimSoC.

Another important issue is that automation is possible only on theories or logics with limited expressive power. It can make it difficult to express specifications and expected properties at the right abstraction level, especially in a framework where the specification is very complex. Currently, Frama-C implements a superset of first order logic. An important current limitation for us is that ACSL is not able to describe pointer casting. On the contrary, the operational semantics defined for CompCert C (to be introduced below) is able to deal with any type casting.

The Why software is one of the most important components of Frama-C It is an implementation of Dijkstra's calculus of weakest preconditions. Why is the basis of the Jessie front-end, a plug-in of Frama-C which compiles ACSL annotated C code into the Jessie intermediate language. The result is given as input to the VC (Verification Conditions) generator of Why. Why then produces formulas to be sent to both automatic provers or interactive provers like Coq.

Why version 3 is a new and completely redesigned version of Why. It does not yet have its own front-end for C. It has become a standard library of logical theories (integer and real arithmetic, Boolean operations, sets and maps, etc.) and basic programming data structures (arrays, queues, hash tables, etc.). In order to transmit ACSL annotated C code to the Why 3 VC generator, Jessie generates an intermediate code in WhyML, which is a rich language for specification and imperative programming. In the new architecture, the specification language is enriched in order to support additional automatic provers. Furthermore, a formal interface is provided to facilitate the addition 1.2 SimSoC of new external provers. Therefore, choosing Why or Why 3 in our case would make us depend on the transformation chain provided by Jessie and Why together, from ACSL annotated C code to verification conditions for Coq.

In the case of SimSoC, we need to deal both with a very large specification including tricky features of the C language, such as type casting, which are used in tough functions related to memory management. In other words, we need a framework that is rich enough to make the specification manageable, using abstraction mechanisms for instance, in which an accurate definition of enough features of C is available. For the reasons explained above, it was unclear that Frama-C would satisfy those requirements, even with Coq as a back-end. Automated computations of weakest preconditions and range of variation are not relevant in our case. We need to verify more specific properties referring to a formal version of ARMv6 architecture. This specification is quite complex, for instance regarding the major data type to express the processor state (to be defined in Section 4.1).

In order to get the required flexibility and accuracy, we wanted to experiment a more direct approach based on a general proof assistant such as Coq. Fortunately, an operational semantics formalized in Coq of a large enough subset of the C language happened to be available from the CompCert project. We then decided to base our correctness proofs on this technology. Up to our knowledge, this is the first development of formal correctness proofs based on operational semantics, at least at this scale.

SimSoC

In this section, we introduce our certification target, SimSoC, a Simulator of Systemon-Chip that can simulate various processors at a realistic speed. As a simulator of System-on-Chip, its objects are embedded system processors used in modern devices such as consumer electronics or industrial systems (e.g. ARM, PowerPC, MIPS). It is a so called full system simulator because it can simulate the entire hardware platform and run the embedded software "as is", including the operating system. Such kind of simulator plays an important role in embedded systems development, because the embedded software can be tested and developed on the simulator. In order to have software and hardware ready for the market at the same time, the software must by developed sometimes before the hardware is available. Then a executable model of the
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SoC is required. A simulator also provides additional advantages combining simulation with usage of formal methods such as model checking or trace analysis to discover hardware or software bugs.

Our simulator, SimSoC, works at the low-level of the system. It takes real binary code as input and requires simulation models of the complete board: processor, memory units, bus, network controller, etc. It can emulate the behavior of instruction executions, exceptions, and peripheral interrupts. Other than software development, it may be used also for hardware design. When there are additional components provided by a third party, the software developers can test them in the full simulation environment with modularity.

SimSoC is developed in SystemC, which is itself a C++ library, and uses transaction level modeling (TLM) to model communications between the simulation modules. In order to simulate processors with a reasonably high speed, the instruction set simulation uses a technique named dynamic translation, which translates the binary input into an intermediate representation that is itself compiled into host code. Since SimSoC is a rather large and complex framework that influences the development of both hardware and software, we have to understand the most significant parts in order to be able to decide the certification object.

Instruction Set Simulation

A full system simulator must include the instruction set simulator, which reads the instructions of the program and exactly emulates the behavior of the target processor. In order to illustrate our certification target, we detail here the techniques to implement an instruction set simulator. There are three kinds of techniques implemented for SimSoC instruction simulation, that make trade-offs between accuracy and efficiency. They are: interpretive simulation, dynamic translation with no specialization, and dynamic translation with specialization. The interpretive simulation is the classical method, it includes the three stages: fetching, decoding and executing instructions. Although it is slow because of multiple redundant decoding phases, it is simple to implement and reliable. It is also used as the reference of performance for the other two techniques. The second and the third methods are based on dynamic translation, which uses an intermediate representation as the decoding result. Such intermediate representations of decoded instructions are stored into a cache and are re-used when 1.2 SimSoC the same instructions are to be re-executed. The last method dynamic translation with specialization combines dynamic translation with partial evaluation. Partial evaluation specialization is a well known technique to optimize compilation of programs. The idea is to translate a program P which applies on data d into a faster specific program Pd.

One can use partial evaluation in simulation to specialize one instruction into a simpler instruction, based on data known at decoding time. The SimSoC decoder implements partial evaluation. At decoding time, the dynamic translation maps the binary instructions to their partial evaluation specializations. Although specialization of instructions results into more memory usage, it is reasonable small compared to the memory size available on host machines nowadays.

The technologies used in SimSoC instruction set simulation are detailed in [START_REF] Helmstetter | SimSoC: A full system simulation software for embedded systems[END_REF].

Performances

The ARM module of SimSoC used to implement the ISS of ARMv5 architecture was manually coded. The simulator is able to simulate the commercial System-on-Chip SPEAr Plus600 circuit from ST Microelectronics which is a dual core system based on over forty additional components, as well as the Texas Instruments AM1705 circuit. The simulator is able to emulate the interrupt controller, the memory controller, the serial memory controller, the Ethernet controller, and all peripherals which are necessary to boot Linux. Therefore, running the Linux kernel on the SPEAr Plus simulator module is a way of testing and debugging the simulator. First it reads the compressed Linux kernel binary from serial memory, uncompresses it, then starts Linux. The booting process takes only several seconds. The Ethernet controller can connect several simulators of the same SoC running on the same machine or not, through TCP/IP protocol. In SimSoC, a mature simulator for the ARMv5 architecture has been completed before starting our project, and two instruction set simulators for PowerPC and MIPS were also developed.

From ARMv5 to ARMv6

For this thesis, we decided to consider the next version (ARMv6) of the ARM architecture, which represented a step up in performance from ARMv5 cores. ARMv6 is essentially backward compatible with ARMv5. Here are the new features of ARMv6 architecture.
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-The instruction set has been enlarged with extra instructions in six areas: media instruction, multiply instruction, control and DSP instruction, load/store instruction, architecture undefined instruction, and unconditional instruction. Fortunately, all ARMv5 mandatory instructions are ARMv6 mandatory instructions too. For simulator users, application code compiled with compilers for ARMv5 can be run over the ARMv6 simulator. If application users want to benefit from the new V6 instructions, they need to re-compile the code in the new environment.

-The Thumb mode has changed. Thumb instructions of ARMv5 are not portable to Thumb2 (ARMv6+), nor completely backwards compatible.

Outline

In summary, our goal is to certify (a part of) SimSoC, a system on chip simulator, using a framework based on the operational semantics of C formalized in Coq, and Coq itself. This thesis explains our achievements in this respect. Subsection 1.4 discusses relevant projects which use formal methods in the area of hardware processors, and why we need a new approach in our experiment. The contributions of our work are outlined in Subsection 1.5. Next, Chapter 2 provides the background on the main technologies used in our project, including a brief introduction to operational semantics, to Coq, and to the CompCert project. Our certification basis is the formal model of the ARMv6 instruction set simulator, which is described in Chapter 3. Then the certification target, a C program for simulating the ARMv6, is introduced in Chapter 4. The next chapter explains how repetitive and potentially error-prone tasks in the production of the two previous models are automated (Chapter 5). Chapter 6 describes how correctness proofs are carried out. In order to improve the performance and the management of the proofs, we had to develop a key proof technique for the "inversion" of assumptions related to the operational semantics of C expressions, which is described in Chapter 7.

Chapter 8 is dedicated to an additional work using exhaustive testing for checking the coverage and correctness of the simulator decoder. Then we conclude in Chapter 9 and outline future research prospects.

Related work

Related work

The main difference between SimSoC-Cert (the certification of SimSoC) and the following projects is that we aim at proving the correctness of a hardware simulation whereas the target of the others is a certified hardware. The common point is that we need a formal specification of the instruction set of a specific processor architecture.

Different proof assistants have been used to perform the certification on the formal model itself: Coq in our case; ACL2, HOL, etc. in other experiments. In our project, the formalization of the real chip ARMv6 is used as a reference for the behavior of an ARMv6 simulator written in C.

Using ACL2 for embedded systems

Researchers from Computational Logic, Inc., used ACL2 (A Computational Logic for Applicative Common Lisp) or Nqthm (Boyer-Moore Theorem Prover) (8) to specify and prove properties of several commercial processors as summarized in [START_REF] Brock | Acl2 theorems about commercial microprocessors[END_REF]. ACL2 is a software system consisting of a programming language, an extensible theory in a first-order logic, and a mechanical theorem prover. It can act as both an automatic theorem prover and an interactive proof assistant. It supports automated reasoning in inductive logical theories, which is convenient for both software and hardware verification. Its programming language is a side-effect free extension of Common Lisp. And it is untyped. The base theory of ACL2 axiomatizes its programming language semantics and its built-in functions. User definitions in ACL2 programming language that satisfy a definitional principle extend the theory in a way that maintains the theory's logical consistency. The core of ACL2's theorem prover is based on term rewriting, and it is extensible in the following way: theorems discovered by the user can be used as ad-hoc proof techniques for subsequent conjectures.

Nqthm is a theorem prover sometimes referred to as the Boyer-Moore theorem prover. ACL2 system is essentially a re-implemented extension of Nqthm. We consider projects based on them together.

ACL2 and Nqthm are used to deal with different processor models in several projects. Among them, the work for Motorola's MC68020 is very close to ours [START_REF] Boyer | Automated proofs of object code for a widely used microprocessor[END_REF].

A large part of the user programming model of the MC68020 microprocessor is formalized as an abstract machine and its instruction operation as state transitions according
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to its user's manual, which is similar to what we did for ARMv6. But the specification in Nqthm is formalized by hand; no automatic generator is used. The formal specification of the instruction set is defined in a functional way, as in our case. The target is the object code itself, considering that industrial strength compilers are not completely reliable; indeed, a certified compiler generating a machine code which is strictly equivalent to a high-level code was not available at that time. To keep the formalized system deterministic, they abandoned the instructions which may cause an undefined effect on the machine state. Comparing to this, we formalized our ARMv6 processor state differently in order to consider all the ARM instructions, including those instructions which produce an undefined state (see Section 3.2.1). The specification is written in the logic of Nqthm and proofs are obtained using the Nqthm fully automatic theorem prover, which cannot interact with the user once it is started. This is totally different from the Coq proof assistant we used, where proofs are designed in constant interaction with the user. The main theorems state that the execution of object code terminates and the returned machine state is considered normal, that all registers are set to the right location and that the effect of the execution is only on the relevant memory blocks.

The use of fully automatic theorem provers like Nqthm requires less man-power on theorem proving but much work on the specification. Once the formalization and the stated theorems are put in Nqthm logic system, we expect the automatic prover to do the rest. With this technique the object code produced by GNU C compiler for hundreds lines of C could be mechanically verified.

Still, the gap between C and the GNU C produced object code is not solved, because the GNU C compiler can not be considered fully trusted. So this method cannot be used for providing results which would be meaningful (and conveniently expressed) at the level of a C program.

Another project used ACL2 on the object processor CAP from Motorola company.

The full ALU and I/O system of CAP is formalized in ACL2. The CAP implementation is a three-stage instruction pipeline; an appropriate correspondence between the CAP model with pipe-line and a simpler pipeline-free one is proven. Also the implemented DSP algorithm FIR (Finite Impulse Response) is proved to be equivalent to the formal specification. Moreover, the basic library for ACL2 on data structure was enriched, for example with array, list, record, bit vector, etc. New modules on modular arithmetic,

Related work

integers, hardware operations, and so on were built. These developments are reusable by other projects because the definitions are not specific to the CAP model.

A very recent work used ACL2 for developing a significant subset of X86 instruction set [START_REF] Goel | Automated code proofs on a formal model of the x86[END_REF]. The formal model of the X86 processor is executable and can run some binary programs. Some small binary programs are automatically verified under ACL2's interactive theorem proving environment using a symbolic execution technique.

Formalized x86 in Coq

In a recent work done in a cooperation between Harvard University, Lehigh University, NSF, and Google, a model of x86 has been formalized in Coq [START_REF] Morrisett | Rocksalt: Better, faster, stronger sfi for the x86[END_REF]. The whole project is called Native Client (NaCl). It is a platform allowing Google's Chrome browser users to execute native code on the browser. A sandbox policy is used to ensure several properties. The most important ones are to ensure that read/write operation on arbitrary memory blocks are only caused by trusted code, instructions related to system calls are avoided, and communication can only happen within welldefined entry points. These properties of the sandbox policy protect the system from bugs or concurrent access to memory. The aim of this work is to obtain a highly trusted assurance checker for the sandbox policy. A checker for a 32-bit x86 (IA32) processor without floating-point instructions, RockSalt was built. This new achievement is better than the original version provided by Google in three aspects: it is faster, lighter, and more flexible. This project has some similarities with ours: the core of RockSalt was automatically generated from the Coq formal specification using extraction to OCaml code; then it was manually translated in C language in order to have an implementation for NaCl. A new Coq model for x86 was defined. In the future, it is expected to support reasoning about the behavior of x86 machine code using a verified compiler such as CompCert.

RockSalt relies only on a DFA (Deterministic Finite-state Automaton) encoding table and some trusted C code. The checker is extremely fast: 1M instructions can be checked within one second. Also, it has a small run-time trusted computing base and can be integrated into NaCl runtime easily. The formal model of x86 ISS (Instruction Set Simulator) has the same architecture as a translator: a decoder from binary code to an abstract syntax, a compiler from this abstract syntax to RTL instructions; and an interpreter for RTL instructions. Because no predefined formal model could be
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considered as a trust-base, tests were created for this complex model, in order to gain confidence.

For validation, an executable OCaml model is extracted from the Coq specification, and the behavior of the OCaml model is compared with the real x86. More than ten million binary instructions could be simulated in around sixty hours on Intel Xeon.

Moreover, fuzz tests are used to cover problems that cannot be considered by the previous tests. Fuzz test can cover all forms of one kind of instruction, and all of them can be exercised. The Coq processor model in this project is essentially an intermediate specification which is used to obtain more secure C code. However the manual translation from extracted OCaml code to C is not explained in [START_REF] Morrisett | Rocksalt: Better, faster, stronger sfi for the x86[END_REF]. Tests are only used at the level of OCaml code. Altogether, it is unclear that the resulting C code has the same behavior as the Coq specification.

An instruction set generator for an ideal processor

A German project describes in [START_REF] Kuhne | Generating an efficient instruction set simulator from a complete property suite[END_REF] an Instruction Set Simulator generation technique which aims at generating an efficient ISS from the RTL (Register Transfer Level) description. The ITL (Iterative Temporal Logic) language is used to design the ISS at the RTL level, then C++ code is generated from it. The interval temporal logic is a combination of temporal logic and first-order logic able to deal with sequential and parallel composition. It includes a notion of finite sequences. First order interval logic was first designed for formalizing and verifying hardware protocols. It is sufficient for specifying computer-based systems, both hardware and software. Some of the standard operations of VHDL or Verilog language can be expressed as temporal logic expressions to describe the behavior of a synchronous sequential system.

The verification of safety properties is performed using a technique called IPC (Interval Property Checking) which is designed to check if a model satisfies a set of properties written in a dedicated verification language, ITL in this case. The main idea followed here is to use an arbitrary initial state instead of the initial state of BMC (Bounded Model Checking). Any property that holds from an arbitrary initial state also holds from any reachable state. Conversely, false negatives can occur in IPC. These false negatives need to be removed by adding invariants in order to restrict the set of initial states. In order to gain speed for simulation, optimizations are performed on the C++ 

A trustworthy monadic formalization of ARMv7 instruction set architecture

The computer laboratory in Cambridge University used HOL4 to formalize the instruction set architecture of ARMv7 [START_REF] Fox | A Trustworthy Monadic Formalization of the ARMv7 Instruction Set Architecture[END_REF]. The target here was to verify an implementation of this architecture with logical gates, whereas for SimSoC, we consider a simulation written in C. Reusing the work done at Cambridge was considered for SimSoC. However, as our approach is based on CompCert, which is itself written in Coq instead of HOL4, it was more convenient to write our own specification. The achievements obtained at the Cambridge projects are:

-A model of the ARM instruction set architecture in the HOL language. Other than ARMv7 instruction set which is backward compatible with previous versions, the model considered here has the full support for the Thumb-2 instruction set, too.
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-Additional software for simulation, an assembler, and a disassembler in ML.

-Automatic extraction of single step theorems from a monadic representation of a single ARM instruction, for evaluation.

-Besides the tools and specifications formalized or derived inside HOL logic, some other tools that are outside HOL logic: the assembly code parser, the disassembler, and the encoder. They are considered not completely reliable.

-The formalized model can operate on machine code level.

-The execution results are used for comparison with the real hardware in order to validate the model.

The instructions have been grouped together with related ones. This reduces greatly the specification size. But the HOL 4 model is a little too precise. For example, it specifies the resource accessing order when updating the PC. But this order is not specified in the reference manual. During validation, three boards are used to assess the execution results. And the tests are generated randomly by a test generator. Additional confidence in this development was achieved by observing the behavior of verified code, and running the model on ARM code that calculates a non-trivial known function. Some weaknesses are: storing instructions are not completed; problems happen when updating on registers PC or SP occur; exceptions are not well handled; tests do not cover unpredictable and undefined instruction, which have been filtered in test generation; the model does not include the privileged mode, nor the instruction changing the current processor mode; implementation dependence or system features cannot be fully tested.

WhyCert: A certified implementation of VC generator

Paolo Herms's Ph.D thesis (28) (29) provides a certified verification condition generator for several provers, called WhyCert. The work is also based on CompCert C operational semantics. Using a VC generator is another way of ensuring the safety requirements of programs written in high-level programming languages, as mentioned in Section 1.1, as well as the importance of certifying a VC generator. In WhyCert, the VC generator was implemented and proved sound in Coq, then extracted to an executable OCaml program. As suggested by the name WhyCert, this work is inspired by Why (20), a platform for deductive program verification. To make it usable with arbitrary theorem provers as back-ends, it is generic with respect to a logical context, containing
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arbitrary abstract data types and axiomatisations. This is suitable to formalized memory models needed to design front-ends for mainstream programming language, as it is done for C by VCC above Boogie or by Frama-C/Jessie above Why. The inputs are imperative programs written in a core language which operates on mutable variables which are typed in the logical context. The output is made of logic formulas which are built upon the same logical context.

The seL4 project

The NICTA company provides a secured microkernel seL4 [START_REF] Klein | sel4: Formal verification of an os kernel[END_REF], a member of L4 microkernel family. The formal verification is based on the interactive theorem prover Isabelle/HOL. The correctness proofs are established according to a correspondence between an abstract and a concrete representations of the seL4 system. The concrete model is the C implementation, which is translated to Isabelle using a intermediate language called com, which has an operational semantics like CompCert C. However this language handles a smaller subset of C than CompCert C. Unsupported features of com that are supported in CompCert C include:

-pointers to automatic storage -float, function pointer, union -switch, goto, break, continue Note that for SimSoC, we need function pointer, switch, break.

Contributions

In this work we developed a correctness proof of a part of the hardware simulator SimSoC. This is not only an attempt to certify a simulator, but also a new experiment on the certification of non-trivial programs written in C. In our approach, we do not use the popular axiomatic semantics, but the C operational semantics defined by the CompCert project. We provide a formalized representation of the ARM instruction set and addressing modes in Coq, using an automatic code generator from the instruction pseudo-code in the ARM reference manual. We also generate a Coq representation of a corresponding simulator in C, called Simlight, using the abstract syntax defined in CompCert. The Helmstetter [START_REF] Blanqui | Designing a CPU model: from a pseudo-formal document to fast code[END_REF].

From these two Coq representations, we can then state and prove the correctness of Simlight, using the operational semantics of C provided by CompCert. Our first achievement in this direction was described in [START_REF] Shi | First Steps Towards the Certification of an ARM Simulator Using Compcert[END_REF] The work presented in this thesis is based on this approach.

-Axiomatic semantics describes the effect of programs by assertions. A well-known example is Hoare logic. It is one of the most popular approaches for proving the correctness of programs.

A good tutorial on programming language semantics is Benjamin C. Pierce's Software Foundation1 . It is mainly dedicated to operational semantics and it contains an introduction to Hoare Logic. The material presented in this tutorial is formalized in
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the Coq proof assistant. Another interesting introduction can be found in [START_REF] Nielson | Semantics with applications: a formal introduction[END_REF]. It is more detailed than Software Foundation, but it is not supported by a proof assistant.

Operational semantics can be used to reliably prove results on a programming language. Operational semantics can be presented in two styles. Small-step semantics, often known as structural operational semantics, is used to describe how the single steps of computations evaluate. The other is big-step semantics, or natural semantics, which returns the final results of an execution in one big step. The corresponding transition relation is defined by rules, according to the syntactic constructs of the language, in a style which is inspired by natural deduction.

The book [START_REF] Nielson | Semantics with applications: a formal introduction[END_REF] explains that the choice between small-step semantics and big-step semantics depends on the objective. They sometimes can be equivalent. But in general, they provide different views of the same language and we have to choose an appropriate one for a particular usage. Moreover, some language constructs can be hard or even impossible to define with one of these semantics whereas it is easy with the other style.

In general, when big-step semantics can be used, it is simpler to manage than small-step semantics.

In order to illustrate some issues on operational semantics and its different flavors which are important for us, let us consider a simple language called ese, for expressions with side-effects. This language allows us to present some typical issues of C language, related to the the evaluation order of expressions and statements. The ISO-C standard that mentions the evaluation order of expressions with side-effect on the same object is undefined, for example:

i = ++i + 1; a[i++] = i;
Several orders are allowed for each of the previous assignments, because they include two side effects on variable i -according to ISO-C standard, there are two "sequence points" in them.

Other examples are given by Brian Campbell in the CerCo project [START_REF] Campbell | An executable semantics for compcert c[END_REF], in order to show that the evaluation order constraints in C are very lax and not uniform.

x = i++ && i++; x = i++ & i++;
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Our toy language ese is designed to illustrate similar issues. The constructs of ese are: constants C n, where n is a natural number, a unique variable V , the addition P ese ese of two arguments of type ese, and the assignment of the variable with a value expressed by an ese. Its abstract syntax is as follows.

ese The semantics in big-step style is inductively defined using the following rules. The version given in rule 2.4 is closer to the small-step semantics to be presented later, which exposes an explicit evaluation order. To this effect, the assignment is split into two parts: evaluating the right-hand side then putting the result into the left-hand side.

::= C n | V |P ese ese | A ese
For instance, from the state where V contains 0, the expression in C syntax

V + ((V = 1) + (V = 2))
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evaluates to 3, with a final state where V contains 2. This expression is formalized by the term P V (P (A (C 1)) (A (C 2))), and the previous statement is formalized by:

0, P V (P (A (C 1)) (A (C 2))) bs --→ 2, 3.
This statement is proved by systematic applications of the rules given in Figure 2.2.

The proof is driven by the shape of the expression. Each constructor (C, V , P , A)

is handled by a specific rule and leads to premises with smaller expressions (in this language), which means that the execution will terminate for any expression. Moreover, the semantics defined here is deterministic; the evaluation order is leftmost and innermost. This is expressed by the following lemma:

Lemma 2.1. If st, t bs --→ st ′ v, and st, t bs --→ st ′′ v ′ , then v = v ′ and st = st ′′ .
Using big-step semantics, we can also describe a non-deterministic system by adding one rule for right to left evaluation to offer another evaluation order:

st, e Then the output of the evaluation cannot be predicted: the same expression can return different states and results. For instance, we have

0, P V (P (A (C 1)) (A (C 2))) bs --→ 2, 3 0, P V (P (A (C 1)) (A (C 2))) bs --→ 1, 3 0, P V (P (A (C 1)) (A (C 2))) bs --→ 2, 5 0, P V (P (A (C 1)) (A (C 2))) bs --→ 1, 4
Next, the following description gives the small-step operational semantics rules of the same toy language. This time, the small-step rules take an expression of type ese and the initial state which stores the current value of variable V , and return the reduced expression and the new state. The symbol ss --→ means "reduces to in one small step".

In small-step semantics, two rules ((2.9) and (2.10)) are needed to define the leftmost and innermost evaluation order. And there is no rule for reducing a single constant.

From the number of rules, we see that the definition of deterministic computations with a given evaluation order is more complex with small-step operational semantics than with big-step semantics. Considering the set of possible executions allowed by the non-deterministic semantics, we have more results by using small-step semantics than using big-step semantics.
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Taking the same example P V (P (A (C 1)) (A (C 2))) as above, the possible executions in small-step semantics are:

0, P V (P (A (C 1)) (A (C 2))) ss --→ 3, 1 0, P V (P (A (C 1)) (A (C 2))) ss --→ 3, 2 0, P V (P (A (C 1)) (A (C 2))) ss --→ 4, 1 0, P V (P (A (C 1)) (A (C 2))) ss --→ 5, 2 0, P V (P (A (C 1)) (A (C 2))) ss --→ 6, 2
The last result is obtained by performing the assignment A (C 1), then the assignment A (C 2); at this point, the value stored in the state equals 2. Next, performing plus in any order will compute the result of 6 and the state still stores 2. On the other hand, the big-step semantics fails to express that 6 can be returned.

Coq

In contrast with big-step semantics, the sequence corresponding to an assignment (evaluation the right-hand side, then putting the result into the left-hand side) can actually be interrupted when we consider small-step semantics, and the evaluation of another sub-expression can then occur.

In general, big-step semantics is not the right approach for dealing with nondeterministic executions or under-specified semantics, because it is not able to cover all the possible execution cases.

Note that CompCert includes a big-step deterministic semantics and a small-step non-deterministic semantics for CompCert C.

Coq

Short introduction

Coq( 5) is an interactive theorem prover, implemented in OCaml. It allows the expression of mathematical assertions, mechanically checks proofs of these assertions, helps to find formal proofs, and extracts a certified program from the constructive proof of its formal specification. Coq can also be presented as a dependently typed λ-calculus (or functional language). Here we just illustrate the syntax on simple examples. For a detailed presentation, the reader can consult [START_REF]The Coq Reference Manual[END_REF] or [START_REF] Bertot | Interactive Theorem Proving and Program Development. Coq'Art: The Calculus of Inductive Constructions[END_REF].

f un (n : nat) ⇒ n is the identity function on natural numbers; its type is written as nat → nat. Function application is not written as f (x) but f x, or (f x) if grouping is needed. With several arguments, the syntax is f x y or (f x y) instead of f (x, y).

-We can write definitions as follows:

Definition idn := fun (n : nat) ⇒ n.
An equivalent and more common syntax for this definition is:

Definition idn (n : nat) := n.
For instance, the application of idn to 3 is written (idn3) and this term reduces to 3.
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f un (X : T ype) (n : X) ⇒ n is the polymorphic identity function on an arbitrary type X; its type is written ∀ X : T ype, X → X.

Definition id (X : Type) (n : X) := n.

Note that it expects 2 arguments, for instance, we can write (id nat 3). Like most of functional programming languages, Coq can also perform type inference.

If we define id as following:

Definition id {X : Type} (n : X) := n.
The application can be just written as id 3. Coq can get the explicit X from the type of 3.

-A dependent type is a type that depends on a value. It is very flexible to use, as to refine the type of a function without including the whole specification. A very simple example is to define a predecessor with only the rule for case 0:

∀ n : nat, n > 0 → nat -Coq also includes inductive types, as explained in the next subsection.

A proof term of type ∀ n : nat, P n → Q n is f un (n : nat), P n → Q n is a function which takes a natural number n and a proof of P n as arguments and returns Q n. In general, proofs are functions and checking the correctness of a proof boils down to type-checking.

Coq is not an automated theorem prover: the logic supported by Coq (CiC 1 ) includes arithmetic; therefore it is too rich to be decidable. However, type-checking (in particular, checking the correctness of a proof) is decidable. As full automation is not possible for finding proofs, human interaction is essential. The latter is realized by scripts, which are sequences of commands for building a proof step by step. Coq also provides built-in tactics implementing various decision procedures for suitable fragments of CiC and a language called Ltac which can be used for automating the search of proofs and shortening scripts.

1. Calculus of Inductive Constructions.

Coq

Inductive definitions

To make a better illustration, we use the same toy language ese 2.1 as in the previous section. Here we show how to inductively define its syntax and its big-step operational semantics: 

Inductive
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Proofs and tactics

In order to show a concrete proof using Coq proof assistant, we recall Lemma 2.1 which claims the big-step operational semantics of ese is deterministic. we first formalize the corresponding statement as follows:

Lemma eval_deterministic:

forall st t st' st'' v v', eval st t st' v -> eval st t st'' v' -> (v = v') ∧ (st' = st'').
It states that, with the same initial state st and expression t, evaluating the bigstep semantics defined in Figure 2.2 will return the same results and the same new states. Then we use Coq in an interactive way to verify this statement. The general idea is to make an induction on eval st t st' v, name as hypothesis ev1. According to the rules in the inductive definition of eval, there are four cases to consider. Under each case of ev1, we also have to consider the corresponding derivation of hypothesis ev2 of type eval st t st" v'. The proof script contains a sequence of tactics to lead Coq to perform all these steps, checking the correctness of the claims we made. Here is a short explanation on some basic and frequently used tactics:

intros moves the quantifiers and hypotheses from the goal to the context of assumptions.

induction does case analysis for inductively defined types. Induction hypotheses are automatically put into context.

inversion derives the constraints on variables according to the inductive definition corresponding to the hypothesis that is inverted.

reflexivity checks that the left-hand side and the right-hand side of an equational goal are convertible.

rewrite performs replacement according to an equational hypothesis.

The following code from Proof to Qed provides a formal proof of the determinism of big-step semantics of ese stated above.

Proof. intros until v'; intros ev1 ev2. generalize dependent v'. 

Interactive proof assistant vs automated theorem prover

An interactive proof assistant, such as Coq, requires man-machine collaboration to develop a formal proof. Human input is needed to create appropriate auxiliary defintions, choose the right inductive property and, more generally, to define the architecture of the proof. Automation is used for non-creative proof steps and checking the correcntess of the resulting formal proof. A rich logic can be handled in an interactive proof assistant for a variety of problems.

On the other hand, fully automated theorem provers were developed. They can perform the proof tasks automatically, that is, without additional human input. Automated theorem prover can be efficient in some cases. But problems appear to be inevitable: if we are able to automatically prove a formula, it means that it belongs to a decidable (or at least semi-decidable) class of problems. It is well-known that decidable logics are much less powerful, expressive and convenient than higher-order logic.
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Then the range of problems we can model with an automated theorem prover is smaller than with an interactive proof assistant. In practice, both approaches are important in the fields of computer science and mathematical logic. Here in our project, a rich logical system is needed, in order to manage the complexity of the specification and of the proofs.

Applications

Georges Gonthier (of Microsoft Research, in Cambridge, England) and Benjamin Werner (of INRIA) used Coq to create a surveyable proof of the four color theorem, which was completed in September, 2004 [START_REF] Gonthier | Formal proof-the four-color theorem[END_REF] Based on this work, a significant extension to Coq was developed, which is called Ssreflect (which stands for "small scale reflection"). Despite the name, most of the new features added to Coq by Ssreflect are general purpose features, which is useful not merely for the computational reflection style of proof.

The same technology was then used for the formal verification of an important result from finite group theory, the "odd theorem". A simplified proof has been published in two books: (Bender & Glauberman 1995), which covers everything except the character theory, and (Peterfalvi 2000, part I) which covers the character theory. This revised proof is still very hard, and is longer than the original proof, but is written in a more leisurely style. A fully formal proof, checked with the Coq proof assistant, was announced in September, 2012 by Georges Gonthier and fellow researchers at Microsoft

Research and INRIA.(25)

CompCert (35) is a formally verified optimizing compiler for a subset of the C programming language which currently targets PowerPC, ARM and 32-bit x86 architectures. The compiler is specified, programmed, and proved in Coq. It aims to be used for programming embedded systems requiring reliability. The performance of its generated code is often close to that of gcc (version 3) at optimization level O1, and is always better than that of gcc without optimizations.

CompCert

In a previous section (Sec 6.1), we mentioned that we use results of the CompCert project in order to link the formal representation of ARMv6 architecture with the C Using either of them will face the same memory model (this will be detailed in Chapter 6). The transition corresponding to the evaluation of a given high-level expression (as the one given above) will anyway be decomposed in smaller transitions, either if we use the more complicated semantics of CompCert C on the original shorter expression, or if we use the simpler semantics of Clight on the corresponding longer Clight expression. Therefore, we don't expect a real gain in using Clight rather than CompCert C at the proof stage, while we would lose readability and convenience in the C code.

In SimSoC-Cert, we use two parts of CompCert C. The first is the CompCert basic library. It defines data types for words, half-words, bytes etc., and bitwise operations and lemmas to describe their properties. In our Coq model, we also use these low level representations and operations to describe the ISS (Instruction Set Simulator) model.

The second is the CompCert C language (its syntax and semantics), from which we get a formal model of Simlight. In our correctness proofs, wa can then analyze its behaviour step by step and compare it with our Coq model of ARM.

CompCert library

In CompCert, a reusable basic library on machine integers (type int) and bitwise operations is formally defined in Coq. The type int is based on type Z from the Coq
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standard library, with a proof to guarantee that the range of the value is between 0 and the modulus. Parameterized by wordsize of type nat (natural number), the integer module can be instantiated to byte, int64, and so on. This module also supports the conversion between the types int, Z, and nat.

Applicative finite maps are the main data structure used in the memory state and the global/local environment descriptions. There are two basic types, a Tree and a Map, from which a number of maps and trees can be derived. The difference between the two is: for Tree the result of the get operation is an option type: if there is no data associated with the key, None is returned. For type Map, get always returns a data. If there is no data associated, a default value will be returned, which is given at initialization time. These two data structures are based on the abstract signature radix-2 search tree. And the derived trees and maps are named by their keys which can be integer or positive. The Tree is used to define the global and the local environments, which gather memory information, and map the reference identifier to data information. Since the environment corresponds to a memory contents, no information can be obtained if a nonexistent address is given. On the contrary, the memory contents is represented by a Map indexed by an integer. If a block in memory has not been allocated, it should return a default value Undefined by any visit.

CompCert C semantics

CompCert C is a large subset of C language. Here are some limitations in this subset.

-Types: most of the types in C90 (1) are supported, except the following points.

Unprototyped function type (intf ()) and function type with variable number

of arguments (intf (...)). But it is possible to declare (not define) an external function of the latter.

A structure can not have an unknown sized array type as the last element.

The size information must be known.

-Wide char and wide string.

-Type cast does not support pointer to float.

-Specify bit fields in unions are not supported.

-For the switch statement, case and default must appear. And the default must occur at last. -Every program must have a main function declared.
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G, E ⊢ rf M t1 = =⇒ rf ′ , M 1 G, E ⊢ rarg * M 1 t2 = =⇒ rarg ′ * , M 2 G, E ⊢ M 2 rf ′ ⇒ vf find funct (G, vf ) = ⌊f d⌋ ⊢ M 2 f d varg * t3 = =⇒ vres, M 3 G, E ⊢ M Call t1 * * t2 * * t3 ======⇒ vres, M 3 (2.14) G, E ⊢ l M t1 = =⇒ l ′ , M 1 G, E ⊢ r M 1 t2 = =⇒ r ′ , M 2 G, E ⊢ l ′ M 2 ⇒ (b, of s) G, E ⊢ r ′ M 2 ⇒ v cast(v, typeof (l), typeof (r)) = ⌊v ′ ⌋ store(G, typeof (l), M 2, (b, of s), v) = ⌊M 3⌋ G, E ⊢ (l = r) M t1 * * t2 * * t3 ======⇒ v ′ , M 3 (2.15)
CompCert provides two operational semantics for CompCert C: one is non-deterministic, in small-step style; the other is detailed, in big-step style. In our case, the big-step semantics is enough for correctness proofs

The formal operational semantics is described as a transition system on memory states written as follows:

G, E ⊢ expression , M t = =⇒ v, M ′ .
Here G represents the global environment of the whole program; E is the local environment; M and M ′ are memory states and t is a trace of I/O events; v is a returned value.

In CompCert C, expressions can be categorized into 15 cases, 13 of them are used in our correctness proofs. Some of them are similar to the ones for Clight and are already listed in CompCert papers [START_REF] Leroy | Formal Verification of a C-like Memory Model and Its Uses for Verifying Program Transformations[END_REF]. Inference rules that are different from Clight are presented in Fig. 2.4.

CompCert

The first rule in Chapter 3

Formal model of ARMv6

In the beginning of this chapter, we present a short introduction of the ARMv6 reference manual, with an emphasis on the parts we have to specify in our model. Next we present our formal Coq model of ARMv6: the main types, how instructions are formalized, and the ARM instruction decoder.

Résumé

Ce chapitre commence par une introduction au manuel de référence de l'ARMv6, qui sert de point de départ de notre travail. Nous insistons plus particulièrement sur les parties que nous avons formalisé en Coq. Nous présentons ensuite notre modèle formel Coq de l'ARMv6 : les types principaux permettant de décrire l'état du processeur, la façon dont les instructions sont formalisées, et enfin le décodeur. Nous terminons par quelques remarques sur nos tentatives d'utilisation de ce modèle comme spécification exécutable.

The ARM reference manual

In order to certify the ARMv6 simulator, first we need to have a formal model that can be referred to. In an ideal world, the ARM company would provide a formal model of their processors, but it is not the case... In fact, the only basis we can depend upon to obtain an ARMv6 formal model is their reference manual (2). Similarly, CompCert project [START_REF] Leroy | The CompCert C verified compiler. Documentation and user's manual[END_REF] designed their CompCert C language and Asm language according to the
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informal ISO C 90 standard document (1) and relevant parts of the reference manuals for PowerPC, ARM, and IA32.

The ARMv6 reference manual is structured in four main parts, CPU architecture, Memory and system architecture, Vector floating-point architecture and Debug architecture. The useful contents for us to build our formal model is taken in the CPU architecture part. There is another important section at the end of the document, the Glossary, which gives the detailed explanation of key words appearing in the document using formulas and English.

The CPU architecture part introduces the ARM programmers' model, the ARM instruction set, the ARM addressing modes, and the Thumb instruction set. The contents of the programmers' model helps to formalize a state representing the structure of the ARMv6 processor. Most of the contents are written in English. The ARM processor state can be illustrated as in Figure 3.1 . The ARM main processor contains thirty-one 32-bit general-purpose registers including the program counter, and six 32-bit status registers. A particularity of ARM architecture is that the program counter, register 15, can be used as any other generalpurpose registers (e.g one can XOR the program counter with another register...) But it has many instruction-specific effects on instruction execution. If the program counter is used in a way that does not obey specified restrictions, the instruction will yield to an UNPREDICTABLE state. When UNPREDICTABLE state is reached, the instruction results cannot be relied upon, but the system will not halt or raise exception: UNPREDICTABLE is part of the system.

state proc =              general-
Access to the registers is decided by the current processor mode. The processor mode is encoded in 5 bits of the Current Program Status Register (CPSR), which is accessible in all processor modes (user mode, FIQ mode, IRQ mode, supervisor mode,
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abort mode, undefined mode, system mode), see Figure 3.2. Other than CPSR, the other five status registers are the Saved Program Status Registers (SPSR) corresponding to each mode. When internal or external sources generate exceptions, the processor will react as follows. The processor status in CPSR will first be preserved into an SPSR according to the type of the exception. The processor mode is switched to the associated exception mode, the bits representing the processor mode in CPSR then change to the corresponding exception mode. Thus each type of exception proceeds under the specific exception mode. Eventually, the processor will return to the normal user mode and the CPSR will be restored from the saved value. The bits [31 : 28] encode the conditions (cond), under which the instruction is going to be executed.

exn mode = f iq | irq | svc | abt | und proc mode = usr | exc mode | sys
cond = EQ | NE | CS | CC | MI | PL | VS | VC | HI | LS | GE | LT | GT | LE | AL
When the condition is not satisfied, the instruction has no effect on the processor state, acting like a No-Op instruction, and the program counter moves up to the next instruction. Most ARM instructions are conditional, only a small number can be executed unconditionally, although in practice many instructions bear the always code, which indicates that the instruction is always executed. The four bits of the condition code are related to the condition flags in the Status Register, so that an instruction can be executed only when the condition code matches.

The bits [24 : 21] form what is called the opcode, which specifies the operation.

Here it contains the code for "add with carry". These bits are first checked by the decoder to recognize the instruction kind.

The I bit is an identifier which distinguishes the immediate shifter operand from the register-based shifter operand, and the S bit indicates whether the instruction updates the flags in CPSR.

Rn is the first source operand. According to the addressing mode encoded by bits I,7 and 4 (explained below in this section), the second operand is one of the following basic cases:

-An immediate operand, formed by rotating bits [7 : 0] with a even value decided by the four bits [11 : 8].
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-A register operand, which refers to the bits [3 : 0].

-A shifted register operand, which is a shifted or rotated value of a register. The register is of bits [3 : 0], and the five types of shift is indicated by the bits [11 : 7].

However, because the ARM encoding is very dense, the same instruction with a special combination of the three bits I, 7, and 4, is no longer a data-processing instruction, but it becomes an extension of the Load/Store instruction...

In the assembly language description for each instruction, parameters wrapped by < > refer to corresponding bit fields in the encoding table. For example in Figure 3.4, the value of the parameters in the assembler syntax of ADC , cond, S, Rd, Rn, and shifter operand must be encoded precisely by the bit fields from the ADC encoding table as Figure 3.3. If not, the execution will finish. If so, it assigns the result of adding the contents in register Rn, the value of shifter operand and the carry (C flag in CPSR). Then, considering whether the S bit is set or not, the CPSR is updated or not. If the S bit is set and register Rd is the program counter, it means that the ARM processor is currently running under exception mode and the status in SPSR needs to be restored in CPSR. Before writing to the CPSR, a check is performed to determine if the current mode is an exception mode, because only such a mode possesses an SPSR. Otherwise the instruction returns UNPREDICTABLE . If the register Rn is some other general-purpose register and the S bit is set, CPSR has to be updated according to the result of the addition and the presence of a carry.

ADC {<cond>}{S} <Rd>, <Rn>, <shifter operand>

There are some pitfalls related to the different meaning of symbols in the pseudocode. The same notation on different sides of '=' can be different. For example, let us consider the assignment "Rd = Rn + shifter operand + C Flag". On the left-hand side of '=', the meaning of Rd is the address of Rd (the result will be assigned to Each of them contains several formats used to calculate the value used in the instruction operation. For example, in addressing mode 1, there are eleven formats to encode the shift operand, and in addressing mode 2, there are nine. The reference manual gives for each format an encoding table and an assembler syntax, and its operation in pseudo-code, which are similar to the description of ARM instructions. With the usage and notes of each instruction, we are able to match the instruction with its

Formalization in Coq

own addressing mode.

Formalization in Coq

We want the formal specification to be as close as possible to the reference manual.

We also want it to be as simple as possible. In this way, our formal model can be reliable and simple enough to reason about.

Our formal model contains the basic library for integer representation and binary operations, a memory model, the main processor, the system control co-processor, the instruction set, the simulation loop, and a description of the initial configuration.

The bit vector definition and operations reuse the integer module from CompCert, instantiated to 32-bit words, 4-bit words for register numbers and 30-bit integers for memory addresses.

The core part of the ARM processor is the ARM instruction set. Its formalization is a rather heavy piece of work. In particular, the pseudo-code of each instruction given by the ARM reference manual has to be formalized. As a result, we get a formal semantics for ARMv6 instructions.

According to the structure presented in Figure 3. Considering the whole simulation system, we need another state representing not only the processor but also the execution status. We introduce a new type named semstate to distinguish it from the state for processors. The specification follows the monadic style [START_REF] Schrijvers | Monadic constraint programming[END_REF] to represent calculations on the ARM processor states. This style takes the sequentiality of transformations on the state into account. In the state monad, functions take a state as input and return a value combined with a new state. Beyond the state, two other pieces of information are handled: loc, which represents local variables of the operation, and bo, a Boolean indicating whether the program counter should be incremented or not; they are registered in the following record which is used for defining our monad. Definition semfun A := semstate -> @result A.

Note that in most cases, functions will return an Ok value. The value Ko is used for UNPREDICTABLE states and is implicitly propagated with our monadic constructors for exceptions. The value Todo is used in a similar way for unimplemented operations -currently, it is still the case for coprocessor instructions.

Formalization in Coq

The simulation fetches the binary code at a given address; decodes it to corresponding assembly instruction; invokes the operation in library and executes it; and at last includes the computation of the address of the next instruction. The ARMv6 behavior semantics is described by functional rather than relational definitions. This means our specification is consistent and deterministic. The two main components of a processor simulator are then:

-The decoder, which decodes a given binary word, retrieves the name of an operation and its potential arguments in assembly code. In Section 3.2.2 we will explain how it is generated from the reference manual.

-The precise description of transitions is the operation of instruction. The definition contains operations on processor registers and memory; thereby, the processor state is changed. In the ARMv6 reference manual, these algorithms are written in a "pseudo-code" syntax which calls low-level primitives. For example, some code indicates setting a range of bits of a register by a given value. And some operations might lead to unspecified or forbidden results. In ARM processor, this is called UNPREDICTABLE . When the simulator meets these result, it then returns a Ko or Todo state with a message specific to the situation.

Running an instruction

Each instruction operation (O) from the reference manual, for example in 

[Cbit])) ])) ]).
For most of the ARMv6 instructions, executions are conditional. These conditionally executed instructions must first check if the current condition (argument cond) fits the required condition. Otherwise, the following operations will be skipped Notation "[ a ; .. ; b ]" := (block (a :: .. (b :: nil) ..)).

Decoder

Now we consider the formalization of decoding instructions. An instruction encoding table, e.g. like in Figure 3.3, summarizes all possibilities for this instruction in 32-bits representation. All the others will be decoded into UNPREDICTABLE or undefined. Then we can build an ARM instruction decoder for the ARMv6 architecture using all of the instruction encoding tables.

The main body of the decoder is a big pattern matching program. Each constructor is represented by 32 bits, either implicit or explicit. The Coq code in Figure 3.6 shows a thumbnail of the formal decoder, for the constructor corresponding to ADC .

Definition decode_conditional (w : word) : decoder_result inst := match w28_of_word w with ... The decoding of ARM instructions is difficult because some bit configurations are ambiguous at first sight: they could be interpreted as different kind of operations.

(*4.1.2 -ADC*) | word28 0 0 I_ 0 1 0 1 S_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ => decode_cond_mode
Such ambiguities are solved in the reference manual, which specifies a precedence order between the interpretations. In our formalization, this precedence order is implemented by the order used for the different bit patterns, in the global pattern-matching construct.

In Coq, the pattern matching is considered from top to bottom: a value belongs to the ith constructor if and only if it could not match any previous pattern; a pattern covered by previous patterns is considered as redundant by the Coq type checker.

The 147 instructions are first partitioned into two groups, conditional and unconditional instructions. For ARM instructions, the condition field cond [31 : 28] indicates
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the conditional execution of ARM instruction. These instructions will be checked first by matching the first four bits with 0b1111 representing an unconditional execution.

The others are grouped by ARM instruction categories. Instructions belonging to the same category do not conflict with each other by the wild-card mechanism. We also define 5 levels for grouping conditional instructions.

-All multiply instructions without accumulator. They can be covered by similar multiply instruction with an accumulator. Instructions without accumulator fill the bits [15 : 12] with 0b1111, whereas instructions with an accumulator using them refer to the register for accumulator operand.

-Some instructions from ARMv5 architecture use the notion SBO or SBZ to express that the instruction bit is read as one/zero whatever the value of the bit is and it cannot be rewritten. These instructions need to be checked then, otherwise they could be hidden by some of the new ARMv6 instructions.

-A few load/store instructions work under the privileged mode. Two significant bits P and W are assigned to a special combination of values to indicate this kind of instructions. We have to put them in higher priority, before the similar instructions working for the other processor modes.

-Instructions load/store from memory with a format other than word have a shape similar to the load/store with word, but the four bits [7 : 4] are used to refer to the load/store length -indicating whether it is a half, double word, or a signed byte.

-The last group contains all the operations with addressing modes. For decoding this kind of instructions, the decoder for addressing mode has to be called first. 

_ _ _ _ S_ _ _ _ _ _ _ _ _ _ _ _ _ _ 0 0 0 _ _ _ _ => DecInst _ (M1_Logical_shift_left_by_immediate (regnum_from_bit n0 w) w[n11#n7]) ... end.

Experimentations

Simlight

Similarly to the Coq formal model, Simlight contains a data structure in C to represent the ARMv6 processor. As the structure of the processor did not change between ARMv5 and ARMv6, this data structure was copied from the previous version of SimSoC for ARMv5. It was designed to optimize execution, which makes it rather Similarly, the data structure SLv6 Processor contains the most important components of the ARM processor: a pointer to the location of the structure representing the Memory Management Unit (MMU), a status register structure for CPSR, an array for the status register structure of SPSR, a structure for CP15 (SCC), a field for the processor id (useful when there is more than one core), six arrays for registers of each processor mode, one field for PC, and a boolean field jump which indicates whether the instruction modifies the PC or not.

For a better illustration, the C definition of the status register structure is given in In order to gain high speed for the simulator, the processor type has been designed to have several redundant fields; for example, the PC field is a pointer to the 15th register in user register array. Indeed, the PC field is significant as it allows to judge whether the execution is branched or not, so that the running program can be split 

Architecture

The overall architecture of the automatic generator is given in figure 5.1.

The figure shows there are three data flows coming from manual. Two are going to be formalized manually; the other one part is going be interpreted and merged automatically.

More specifically, we can see the data flow from ARMv6 Reference Manual to the Coq model and to the simulation code. Some patches are needed from the textual version of the reference manual because the latter contains some minor bugs (see below).

Three kinds of information are extracted for each ARM operation: its binary encoding format, the corresponding assembly syntax, and its body, which is an algorithm operating on various data structures representing the state of an ARM: registers, memory, etc., according to the fields of the operation considered. This algorithm may call general purpose functions defined elsewhere in the manual, for which we provide a
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CompCert C library to be used by the simulator and a Coq library defining their semantics. The latter relies on Integers.v and Coqlib.v from the CompCert library which allows us, for instance, to manipulate 32-bits representations of words. The result is a set of abstract syntax trees (ASTs) and binary coding tables. These ASTs follow the structure of the (not formally defined) pseudo-code.

In the end, three files are generated: a Coq file specifying the behavior of all operations (using the aforementioned Coq library), a CompCert C file to be linked with other components of SimSoC (each instruction can also be executed in stand-alone mode, for test purposes for instance) and a Coq files representing each instructions in CompCert C AST to be used for correctness proof.

Analysis of the ARM reference manual

The whole process starts with the ARMv6 reference manual ARM DDI 0100I [START_REF] Arm | ARM Architecture Reference Manual DDI 0100I[END_REF]. The -Glossary gives all the definitions of key words in ARMv6. We use it as a reference to define manually the common functions.

There are 147 ARM instructions in the ARMv6 architecture. For each instruction, the manual gives its encoding table, its syntax, a piece of pseudo-code explaining its own operation, its exceptions, usage, and notes. Except the semi-formal pseudo-code, everything else is written in nature language.

The first step is extraction and patching. We extract three files from the reference manual: a 2100 lines file containing the pseudo-code, a 800 lines file containing the binary encoding tables, and a 500 lines file containing the ASM syntax. Other than these three extracted files, there are still useful information left in the document which cannot be automatically extracted. This is the case for the arithmetic functions given
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in chapter Glossary, and for the validity constraints information required by the decoder generator. The corresponding information is manually translated into a 300 lines OCaml file.

Before extraction, a patch is necessary for the main text file. This patch is obtained from reading the manual or feedback from the generation result. The patch fixes the mistakes in the original document, such as misspelling function names, unclosed parenthesis, missing line, etc. Most of these bugs were found by running the generator or testing the generated simulator. The differences are kept in a diff file, so that they could be submitted to the ARM company and confirmed.

Then each extracted file is parsed with the corresponding parser. The one to parse pseudo-code is more complicated. Two preliminary phases solve issues related to line breaks and indentation, given that indentation defines the blocks in Python-like way.

Then, a classical lexer parser combination builds the abstract syntax trees (ASTs).

We have built our own ASTs for intermediate representation which contains the elements representing both instructions and their addressing mode.

Intermediate representation

The abstract syntax of the intermediate representation expressions is given in Fig- 

Code generation

On the formal specification side (left side of the generation chain in Figure 5.1), we directly use the ASTs for generating Coq code.

For the generation of C source code, we can make an easy optimization to generated the second version of Simlight, in order to improve the simulation speed: as we mentioned in Section 4.2, flattening is one way of improving the simulation performance.

We flatten some instructions with their addressing mode When an instruction A can be used in an addressing mode B, the generation provides a combined instruction AB.

This simple optimization can make the generation steps shorter and the generated code faster. And after flattening, the notions of addressing modes disappear.

This flattening step is achieved by four operations:

-Inlining the addressing mode to instruction operation code;

-Appending the validity constraint information;

-Merging the encoding table of the instruction and addressing mode case (example in figure 5.4)

-Merging the ASM syntax of the instruction and addressing mode case There are some specific points for the pre-processing phase:

-We can have a base register write-back specification, saying that the base register which is used in address calculation will be modified. We have this case when Rd == Rn. The result is UNPREDICTABLE if the base register is PC. The base register write-back is disabled in M2, M3, M4 addressing modes.

-Some functions are reshaped depending on the number of arguments and the operation performed on them. For example, CarryFrom(a + b) is replaced by CarryFrom add2(a, b), which indicates that the carry is calculated from the "add" of two arguments.

-Some if or nested if expressions concern occur when there is at least one UNPREDICTABLE in the branches. They are merged by pre-processing in order to remove repetitive branches, so that we get at most one UNPREDICTABLE in a then-branch.

Formats for C code

To detail the generation of C implementations, we present a new Proofs are to be performed on CompCert C ASTs, so the more direct way such ASTs are obtained, the better, is in order to avoid possible mistaken auxiliary tranformations as far as we can (no proofs have been performed on parsers and pretty-printers for CompCert C). But it makes sense only for automatically generated C programs: writing ASTs by hand would be much too heavy and tedious. Therefore, we have two cases to consider. C libraries are written in textual format and parsed by the CompCert C front-end, while C instructions automatically derived from the pseudo-code are basically

CompCert C ASTs and pretty-printed for a manual double-check in a readable form. As a result, for proofs, the CompCert C parser is in the trusted code base (TCB) for libraries, not for automatically derived code. If we execute the corresponding programs using the CompCert C compiler, the TCB is the same. If we execute the corresponding programs using another compiler, the TCB includes the pretty-printer and this compiler as well.

As a final remark on the reliability of the CompCert C parser and the pretty-printer, we also checked that, for all the generated code, parsing then pretty-printing yields the original code.

Mistakes in the ARM reference manual

Mistakes in the ARM reference manual

While building the generators described in this chapter, we discovered several bugs in reference manual.

-Important lines were missing in instructions pseudo-code. In the operation of many conditional instructions, the condition checking was ignored. This leads to a fatal error when the execution condition is not satisfied. Also for some of load/store instruction, reading the base address is missing, which should be the content of register Rn. Without initialization, it is impossible to give address a value to start with.

-The case sensitivity gave the same spelling different meanings. For example, in the formal model, the binary operation and applies to type Boolean, but operation AND in capital is of type word → word → word. Mixing two of them will lead to a type mismatch.

-Information was lacking in keywords. For example, in general, SignExtend

propagates the sign bit of its argument to 32 bits, but for instruction BLX(1),

SignExtend is for the 24-bit signed to 30 bits. -Mismatched parenthesis.

-Wrong order of expressions in some operations.

-In assembly syntax, the expression of register content Rx had to be replaced by <Rx>. These bugs have been reported to ARM group. The feedback was that all these bugs are fixed in ARMv7 reference manual.

Chapter 6

Correctness proofs

In this chapter we introduce the correctness proofs we have performed for the ARMv6 instruction set simulator Simlight by using the operational semantics of CompCert C. This work can be also considered as a significant experiment on proving C programs by using a formalized operational semantics of C. 

Résumé

General idea

For the ARMv6 Instruction Set Simulator Simlight, we have to compare a Coq model with a C implementation (see Section 5.1).

In order to formally reason on the correctness of the second with relation to the first in the Coq setting, we need a formal model in Coq of the C implementation. It is provided by CompCert, which defines a operational semantics of C formalized in Coq.

The two Coq models to be compared are state transition systems.

Note that a large part of these two models is automatically derived from the same source, that is, an AST representation of the pseudo-code for instructions taken in the ARMv6 manual. However, even for this part, it is far from obvious that the two models behave the same. They are actually quite different from each other.

Basically, the Coq specification follows exactly ARMv6 reference manual, and keeps everything as simple as possible. whereas the C program has more objectives to achieve because it is aimed to be a high speed simulator. In particular, states in the model of the C implementation are much more complex not only because the memory model defined in CompCert is taken into account, but also because of optimizations and design decisions in Simlight targetting efficiency. In more detail: -The C implementation uses a big struct to express the ARM processor state. The model of the state is a complex Coq record type, including not only data fields but also proofs to guaranteed access permission, next block pointer, etc. This is detailed in Section 6.3.

-In the Coq specification, transitions are defined in a functional style, whereas in the model of the C implementation, a relational style is used. In general, the relational style is more flexible but functional definitions have some advantages:

reasoning steps can be replaced by computations; existence and unicity of the result are automatically ensured. However, the functional style is not always convenient or even possible. It is the case here, where the transitions defined by the C implementation are relations which happen to be functions. This comes first from the operational semantics, which needs to be relation for the sake of generality. Furthermore in our case, the kind of record type mentioned in the previous item is too complex to execute calculation with it, so it is more convenient to describe the state transformation for memory with a relation.

-The two semantics operates on very different states. For the Coq specification, reading or changing the value of the processor state or other related variables is easy to express. In the model of the program, the state is based on a complex memory model and load and store functions are used for read/write operations For a given operation, we state and proof a main theorem which can be displayed by the diagram in Figure 6.1. On both sides, the execution of an instruction is de-
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scribed by a state transition. For the two ISS representations, "State" refers to the full description of the system. We start from a C memory state corresponding to a more abstract state described by the Coq specification. This correspondance is expressed by a projection relating the two models of the state. Then, executing the same instruction on two sides will produce a pair of new processor states which are related by the same correspondance. Informally, executing the same instruction on a pair equivalent states will produce a pair of equivalent states. statement is annotated with its own type. In a program, the same type may appear several times. In the raw output of an AST, large and repeated expressions for types occur everywhere, making CompCert ASTs much more verbose and space consuming than necessary and very hard to read. In order to solve this issue and, more generally, get a readable code, the pretty printer for ASTs introduces auxiliary names for typescommon subtypes are then shared -and also uses special notations for most constructs expression. The implementation of this part was contributed by Frédéric Blanqui and Frédéric Tuong.

The ARMv6 model in

As a result, the code for CompCert C ASTs of instructions becomes reasonably readable, as illustrated on the following example (the instruction BL, "Branch and Link").

Definition fun_internal_B := {| 

The projection

The state of the ARMv6 is defined in our Coq model in Figure 3.1. For convenience we will call this state the abstract state. On the other hand, the same state is represented in the Coq model of Simlight by the CompCert memory model applied to the data structure displayed in Figure 4.1. For convenience we will call this state the concrete state. In order to state correctness theorems on Simlight, we need to relate these two Coq models. To this effect, we define a projection from the concrete state to the abstract state.

Our theorems are then more accurately schematized by Figure 6.2 than in Figure 6.1 above.

Recall that our Coq model keeps everything as simple as possible and exactly corresponds to the ARMv6 reference manual, whereas the C representation is designed for high simulation speed. Moreover, additional complexity is introduced because a suitable memory model is required.

In the CompCert C model, variables are stored in the memory model. This CompCert C memory model is detailed enough to describe the real memory properties, but it is too complicated to use for computation. CompCert handles another auxiliary parameter env, the local environment. It maps each variable identifier to its location and its type,

The projection

and its value is stored in the associated memory block. The value associated to a C variable or a parameter of a C function is obtained by applying load to the suitable reference block in memory. However, this makes sense only after variable are allocated and initialized -these two operations are performed when a function is called, building a local environment e and an initialized memory state m. Similarly, our projection makes sense only at this stage, i.e., parameters representing the processor state are stored in memory. Our Coq model of ARMv6 is of course much simpler and computing the value of a component can be performed directly.

The abstract state of the processor in our Coq model is a record. It contains two records: one represents the main processor; the other has the system control coprocessor(SCC) and a simple ARMv6 memory altogether. In the main processor record, the field CPSR (Current Program Status Register) is defined as a word; SPSR (Saved Program Status Register) is a word depending on current processor mode; reg maps the register to its value as a word; exn is a list of possible exceptions, which is not in use yet. mode is a numeration type for all processor modes. In SCC, there are only two elements, reg and mem: reg is the register owned by SCC, which maps the register identical number to its word value; mem is the ARMv6 memory model, which is a simple mapping from address to word value. We only have a trivial MMU (Memory Management Unit) for the moment.

The ARMv6 Processor data structure in C is given in Figure 4.1. It is a struct with thirteen fields, which in turn contains three struct: SLv6 MMU, SLv6 StatusRegister for cpsr, and SLv6 SystemCoproc, an array of struct SLv6 StatusRegister for spsrs, and six arrays for registers under each processor mode. The other three are: an identifier id, which is used when an embedded system has a multi-core architecture; a pointer pc, which points to the fifteenth of register array under user mode; and a boolean jump for expressing that the last instruction modifies the pc, to be cleared after each cycle.

The struct SLv6 StatusRegister describes the status register, with bits represented as byte fields, plus one field to identify the current processor mode. The datatypes CPSR and SPSRS use this type. The difference is that not every processor mode has SPSRS. So an array for SPSR is used under every possible processor mode.

The top definition of the projection is shown below. Each sub projection refers to the link between an concrete element and its abstract version, in red color in Figure 6.3. Using the name of the register group as index to find the associated memory block, from which the value is loaded. Loading from memory state requires also the chunk information of its type, size and signedness, and the offset. In this case, the chunk of
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The projection

register is Mint32 which means it is 32-bit integer. If the corresponding register is not found in memory state, it returns zero. Initially, the value stored in register is zero.

According to the type of the argument on the right hand side of the projection, the definitions of projections are quite different. For example, the projection of a register given above performs a case analysis on a value of type register, whereas the projection of SPSR depends on the type of exception modes. We define a specific projection for each type. Coq is rich enough to allow us to define a general projection for all types of elements, using dependent types. However the gain in clarity of the specification is unclear, and it would anyway be just a wrapper around specific projections, so we did not build general protection for parameters. For improving readability of the statement, we even chose to define a projection relation for each instance. 

CORRECTNESS PROOFS

In another project in our group called CCCBIP, another way is used to express the projection. The eval expression is reused to link the memory state and the variable value:

G, E ⊢ eval expression (Ederef (Evalof (Evarx))) M ⇒ M, v.
The value of x in the formal model is v and the CompCert C expression Ederef (Evalof (Evarx)) is used to dereference the variable x from the memory contents. In this case the memory state remains the same because this evaluation only reads from memory. This technique can be used there because the type of values are very simple (integers). On the contrary, the types in SimSoC-Cert are much more complex: we have structure pointers inside structures, or arrays of structures inside structures, etc. Simply dereferencing with Ederef as in CCCBIP would raise issues in our case. Manually writing such expression would become error-prone. Even more, this method results in more inverting tactics during proving, which makes the proof script harder to follow. And after inverting, the function load value of type (or deref loc), which loads from memory, will be added to hypotheses as the premise of evaluating the right value of expression Evalof. And it is just the same as the load function with premises on memory access mode predicate and type volatile judgment.

But these premises would then be redundant with the existing hypotheses obtained during analyzing the evaluation of the expression where the corresponding variable is mentioned.

Proofs

Proofs for an ARM instruction

The correctness proof is based on the semantics of the formal model and the When the program starts its execution, genv is built. On the other hand, env is built when the associated function starts to allocate its variables.

To state the correctness theorem, we compare a CompCert C function corresponding to an ARM instruction with its formal definition in Coq. For such functions, it is enough to focus on the part of the concrete state which is defined by the local environment.

We then consider a projection from the local environment to the abstract state defined as follows. Events.E0 mfin out -> proc state related mfin e (S.instr step other_params (mk semstate nil true st)).

Let us explain it in more detail.

-In order to get the projection of the pair of original states, we need the following data: the initial memory state, the local environment, and the formal initial processor state. Recall that the projection is meaningful only after the C memory -Initializing function parameters: using bind parameters to initialize parameters with a list of argument values vargs, a new memory state m2 is created.

-Now we have all elements for the projection to make sense are ready. As the most important parameter of instruction operation, the projection is first applied to m2, and we expect to get the initial abstract processor state st. -The projection is also used on the other instruction parameters.

-Then the body of the function is executed. On the CompCert C side, this is performed using a call to exec stmt, yeilding a new memory state mfin. On the abstract side, the new processor state is obtained using instr step.

-Finally, we claim that the projection from the concrete state mfin should provide the latter abstract state. Note that all projections are performed using the same local environment e.

The proof is performed in a top-down manner. It follows the definition of the instruction, analyzing the expression step by step. The function body is split into statements and then into expressions.

When evaluating an expression, we search for two kinds of information. One is how the memory state changes on CompCert C side; the other is whether the results on the abstract and the concrete model are related by the projection. To this effect, we use six kind of lemmas.

Evaluating a CompCert expression with no modification on the memory state.

Such a lemma only discusses the expression evaluation on CompCert C side, involving with the C memory state changing issue. Saying a memory state is not modified has two aspects: one is that the memory contents are not modified; the
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other is that the memory access permission is not changed. For example, evaluating the binary expression Sbit == 1 returns an unchanged memory state.

if G, E ⊢ eval binop c (Sbit == 1), M ε = =⇒ vres, M ′ then M = M ′ .
In Coq syntax, the relation in premise is expressed with eval binop, a companion predicate of exec stmt above, devoted to binary operations. In this lemma and the following, E is the local environment, G is the global environment and M is the memory state; ε is the empty event (Events.E0 in Coq syntax); usually t is used to represent a series of system events; vres is the result.

Here, vres is not important. The evaluation is performed under environments G and E. Before evaluation, we are in memory state M . With no event occurring, we get the next memory state M ′ . The proof is easy. According to the definition of eval binop, an internal memory state will be introduced. In more detail, from the CompCert C semantics definition, we know that, evaluation of an expression will change the memory state if the evaluation contains uses of store value of type (in CompCert versions before 1.11), which stores the value in memory at a given block reference and memory chunk. In CompCert-1.11, the basic store function on memory is represented by an inductive type assign loc instead of store value of type. Since CompCert version 1.11 introduces volatile memory access, we have to determine whether the object type is volatile before storage, and also type size in addition of the access mode.

G, E ⊢ a 1 , M ⇒ M ′ G, E ⊢ a 2 , M ′ ⇒ M ′′ G, E ⊢ (a 1 binop a 2 ), M ⇒ M ′′ Now,

Result of the evaluation of an expression with no modification on the memory.

Continuing the example above, we now discuss the result of evaluating the binary operation Sbit == 1 both in the abstract and the concrete model. At the end Intuitively, if the projection corresponding to the parameter sbit in the C program yields the right information from the abstract state, then the evaluation will return the same value both in the abstract and in the concrete model. Here, the expression is a so-called "simple expression" that always terminates in a deterministic way, and preserves the memory state.

To evaluate the value of simple expressions, CompCert provides two other big-step relations eval simple rvalue and eval simple lvalue for evaluating respectively their left and right values. The rules have the following shape:

G, E ⊢ a 1 , M ⇒ v 1 G, E ⊢ a 2 , M ⇒ v 2 sem binary operation(op, v 1 , v 2 , M ) = v G, E ⊢ (a 1 op a 2 ), M ⇒ v
In order to evaluate the binary expression a 1 op a 2 , the sub-expressions a 1 and a 2 are first evaluated, and their respective results v 1 and v 2 are used to compute the final result v.

Memory state changed by storage operation.

As mentioned before, evaluating some expressions such as eval assign can modify the memory state. Then we need lemmas stating that corresponding variables in the abstract and in the concrete model will evolve consistently. After an internal function is called, a new stack of blocks is allocated in memory.

After the evaluation of the function is performed, these blocks will be freed.

Unfortunately, this cannot bring the memory back to the previous state: the memory contents may stay the same, but the nextblock pointer will skip these just freed blocks and point to the followed block. For lemmas on evaluation of internal functions, we can observe the returned result on variables and compare it with the corresponding evaluation in the formal specification. For example, the lemma above is about the processor state after evaluating an internal function call copy StatusRegister which reads the value of CPSR and then assigns it to SPSR. The evaluation of copy StatusRegister should be protected by a check on the current processor mode. If it is neither system mode nor user mode, the function copy StatusRegister can be called. Otherwise, Simlight will return "unpredictable" with an empty message.
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Then we have to reason on the newly returned states, which should still be related by the projection. This step is easy to prove by calculation, simplifying on two representations of the processor state.

External function call.

The CompCert C AST of an external function call contains the types of input arguments and of the returned value, and an empty body. CompCert provides the expected properties of a few built-in external functions such as printf, malloc and free. We proceed similarly for the external functions of Simlight.

In Simlight, some functions are defined as external ones -something which is needed even is this simplified version of SimSoC. They could be changed into internal functions in the future but in the current version, they are left external.

The general expected properties of an external call are as follows.

-The call returns an result, which has to be related to the abstract.

-The number of arguments must agree with the signature.

-After the call, no memory blocks are invalidated.

-The call does not increase the max access permission of any valid block.

-The memory state can be modified only when the access permission of the call is the maximal.

For Simlight, the result of an external call is written in a variable such as vres in the next example. A typical axiom for stating that the external function ef c returns a result specified by the Coq expression ef coq is:

Axiom res_extcall : forall m ef_c targs tres vargs t m' vres, eval_funcall m (External ef_c targs tres) vargs t m' vres -> vres = ef_coq.

Proof design

As usual, repetitive steps in proofs are dealt with using auxiliary lemmas and dedicated tactic definitions. In our case, most of them are related to the semantics of CompCert C. Indeed, since the abstract Coq model is defined in a functional style, many proof steps are just reductions using, e.g., simpl or unfold. In contrast, the execution of a C program is provided by a inductively defined relations, the operational
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semantics. Decomposing this execution step by step amounts to perform so-called inversions on hypotheses relating concrete memory states according to the operational semantics. In practice, a large amount (several dozens) of inversions are performed, bringing serious issues on space-time consumption and maintenability. We studied a general solution to this problem, to be introduced in Chapter 7.

More specifically, back to the design of proofs, here are the main issues and how they are dealt with.

Getting a usable local environment. We often need to consider whether a variable exists in C memory or not, and to get the corresponding location in memory. To this effect, the concrete contents of the local environment e is required. To achieve this, inversions are systematically performed on alloc variables hypotheses. Then e becomes a closed (and reduced) mapping indexed by variable identifiers (before, e is just a variable having the type of a mapping).

Finding a variable location in memory from its identifier. This is simply solved by applying the get operation provided by CompCert on the local environment e. This computation can actually be performed when e is closed. Observing them is essential, in particular to compare the concrete state with the expected abstract state. The memory state stays unchanged, except when a store occurs during evaluation. In the inductive relation eval expr, this only happens for an assignment (eval assign), an assignment with arithmetic operation (eval assignop)

or a post-increment operation (eval postincr). Whatever the expression, it has to be analyzed and recursively decomposed in order to get closed (then usable) memory states. Again, this is performed using inversions on eval expr hypotheses. The inductive type eval expr is big and expressions in Simlight are complex, raising serious
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issues with the Coq standard tactic inversion. We then decided to write our own inversion tactic. We go back to this in Section 7.1.

Analysing values in a memory block. The CompCert memory model includes four kinds of operations: load, store, alloc, and free. They operate on a memory chunk at a given address. For these four operations, several properties are provided. We use them to determine which block or memory chunk is affected by one of these operations, and which part of the memory is left unchanged.

Proofs for shared library functions

Every ARMv6 instruction contains one or more calls to internal or external functions. For the moment, the external functions are not taken into account, for a reason explained in 2.3.2. As mentioned in Section 6.2, functions called in an instruction need to be added manually. Most of these functions are used in different instructions. As the properties expected from them are always the same, we want to state and proof corresponding lemmas once for all.

One issue from the CompCert compiler is that identifiers (positive numbers indicating a location in memory) cannot be repeated:these memory locations are settled once a program is evaluated, and the global environment and local environment will be filled with allocation information. The insertion of functions in a program is performed by the assignment of new blocks to the corresponding identifiers. The issue is that the same function in different program will be represented by different identifiers. We solve this issue using Coq sections. A section is defined for each function with its associated lemmas. Its variables are defined abstractly by just giving their types. Integrating such a function into the CompCert code of an instruction consists in importing the file containing the corresponding section, instantiating additionally assumed variables with appropriate values, then performing memory allocation.

Proofs on library functions are performed in the same way as for instructions, see Subsection 6.4.1.

Proofs on tricky operations on words

We also have lemmas for checking that different ways of computing a function actually provide the same result. An example is the function for getting the bit at a
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given position in a word represented by a binary integer. The equality to be proved is, after simplification:

and (shru x (repr (Z of nat n))) (repr 1) = x [n].
It means that the definition of get bit used in Simlight can be (efficiently) computed by a combination of binary operations and and shru (logical shift right) on the integer x and the bit number n. On the right hand side, the formal specification uses a bit mask on the object integer x to get the n th bit. The comparison is quite complicated due to the range of the result in type integer. We have to take a restriction into account, saying that n should be greater than 0 and less than the word size, and to add specific lemmas on other arithmetic definitions.

Tactics

Coq provides the Ltac language to allow the user to define her/his own tactics.

LTac expressions can be used in the proof script of a given theorem, or in a toplevel Ltac definition. The most useful construct of Ltac is the pattern matching on a proof goal, which analyzes the current goal and binds names to useful informations. This is used for our inversion hc inversion described in Section 7.1. We also defined tactics dedicated to our specific needs, representing systematic reasoning schemes on the CompCert C semantics. Most of them deal with the C memory model and with operational semantics rules.

Load/store operations

Many reasoning steps are about the effect of a load/store operation on memory.

Such operations are always constrained by low and high bounds of the memory blocks.

In order to know whether the memory block we focus on remains the same or has been changed to a new contents, we have to determine the range of blocks targetted by operations on memory. We also need to check that a given block do not overlap with other blocks. The position of every variable and function is given during allocation. In order to find the value of blocks, we then have to analyze the appropriate allocation hypothesis, providing information on how the environment is initialized. This is performed using a series of inversions because the allocation operation is inductively defined. The
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number of inversion steps is equal to the number of variables in the function. This yields the same number of new hypotheses indicating the position where each variable is allocated. The definition of the initialization of a function ensures that the blocks allocated are pairwise different from each other, and that the pointer to the next block always points to a block which has a greater position number. After a number of reasoning steps on the "less than" relation between block position numbers, we apply a suitable lemma provided by CompCert, load store other or load store same, to determine whether the memory state changes after a load/store operation.

Outcome of a statement

The execution of a statement produces an "outcome", indicating how the execution terminates: either normally or prematurely through the execution of a [break],

[continue] [return] statement. Sdo is a very common statement in CompCert C programs. It can be used as a wrapper of a single statement. Executing a Sdo statement always returns Normal whatever the contents is. And similarly for statement Sskip: it is the same as a Sdo with no contents. In order to manage such situations, we provide a tactic based on the inversion of the semantics of statements.

Function calls

We also have a tactic dedicated to function calls. It is used in all instructions, since every instruction has one or more internal function calls. This tactic aims at finding the block containing the body of the called function. Indeed, the local environment does not contain functions but only their name.

To find the function, we have to go through the global environment. The global environment is also defined using the PTree data structure, which maps a reference to the corresponding place in memory, or a function pointer to a function definition, or a variable pointer to the associated contents.

By analyzing the hypothesis for evaluating the function identifier we aim at, we get a hypothesis G ⊢ find symbol id = ⌊b⌋, saying that the global environment G contains a block b for the symbol id. Next, we invert the appropriate eval funcall hypothesis: according to rule (2.14) recalled in Subsection 2.3.2, we get an hypothesis G ⊢ find funct ptr b = ⌊f ⌋, saying that in the same global environment G, using the block b, then we are able to find the function pointer. Then we use the set and get

Dealing with version changes of CompCert

operations to explore the global environment, until we find the matching block. These proof steps are automatically performed in LTac using pattern matching on goals.

Dealing with version changes of CompCert

During the development of our correctness proofs, three versions of CompCert were released, bringing new features and better performances. The change of version from

CompCert-1.8.1 to CompCert-1.9 did not cause much trouble on SimSoC-Cert. We discuss here the impact of the next two releases on our project.

Changes from

CompCert-1.9 to 1.10

An important fact on version 1.9 is that it turned the CompCert C reduction semantics into a reference interpreter. Handling of annotation statements has been improved

to separate where has one integer argument and where has arbitrarily many arguments.

And efforts have been done for handling external function and compiler built-ins. The built-in external function for memory operation "copy" is now fully specified as well as other changes which we do not care. We only care about the semantics and part of the low level definitions. So, SimSoC-Cert only needs to be changed for some small point as the semantic cast is no longer a inductive type but a pattern-matching function. The way to apply such cast definition needs to follow the version. At that time, we have not begun the correctness proof involving the external functions. Then the changes due to this part can be ignored. But the version change of CompCert-1.9 to CompCert-1.10 brought backward incompatibility to SimSoC-Cert. Not only because many things have been changed in the newer version 1.10, but also our SimSoC-Cert project becomes richer and more stuff depends on CompCert, especially in the correctness proof scripts.

Next, we introduce the main changes between the two versions and explain the impact to our project.

Volatile types

CompCert C now natively supports volatile types. Its semantics fully specifies the meaning of accesses to volatile memory, and the translation of volatile accesses to built-in function invocations is proved correct.
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In order to prepare future evolutions of CompCert, most constructors of the Coq type type for CompCert C types expect a record called attr (for attributes), which is introduced in CompCert-1.10. Volatility of memory is specified by a Boolean field in this record. Our generator had to be then changed to take this field into account. Since the introduction of volatile memory access, the way to compute the value of a given data is changed.

Introducing the volatile type also changed the definition of the projection from the concrete to the abstract representation of the ARMv6 processor, because of the use of the load operation in this projection.

Simlight currently includes no volatile variable. Then we can directly use the normal load without considering the volatile attribute. But our correctness proofs are modified, because the semantics of load/store is no longer given by a functional definition but by an inductive type, which is used to express additional concerns about the volatility of load/store. The main impact is on proofs related to assignment expressions.

Booleans

From this version, CompCert C provides Booleans. This could be used in SimSoC, where Boolean values are represented as unsigned 8-bit ints. However C Booleans are currently not considered.

Changes from

CompCert-1.10 to 1.11

Memory model

The most important change here is the memory model: a more precise model of memory and permissions is defined in CompCert-1.11, reusing the existing module ZMap (a mapping from block to memval indexed by offset) for memory state definition, instead of using a function of type block → Z → memval. The main operations on ZMap are set and get. Note that get always returns a data: if there is no data associated with the an index given as input, a default value is returned. This default value is set when the map is initialized. For memory, the default value to be returned is "undefined". Thanks to the use of ZMap for memory state type, memory bounds can be dismissed.

Dealing with version changes of CompCert

Permission guard

Another major change is the addition of a maximal permission guard for a block, other than the one which indicates the current permission guard of a block. The maximal permission which must be stronger than the current permission, and can decrease only by freeing a block, dropping a permission of a block or performing an external function call. The corresponding field in the memory structure describing permission is then optimized.

In our development, the statement of properties of library functions mentionning the equivalence of two memory states of type mem needed to be changed to fit the new structure of mem.

Chapter 7

Designing our own inversion

In correctness proofs of ARM instructions, which involve the large-size inductively defined relation coming from CompCert C semantics, many steps require inverting a hypothesis to perform a case analysis and extract all useful constraints from the hypothesis. The Coq built-in tactic inversion is usually considered to be the right choice in such situations. But using it made us suffering from severe controllability, maintenance and efficiency issues. To circumvent these issues, we propose an inversion technique based on the combination of an antidiagonal argument and the impredicative encoding of inductive data-structures, which we are going to introduce in this chapter.

Part of the material presented of this chapter has been published in [START_REF] Monin | Handcrafted Inversions Made Operational on Operational Semantics[END_REF].

Résumé

Dans les preuves de correction des instructions ARM, qui reposent sur des relations définies inductivement de grande taille, issues de la sémantique de CompCert C, de nombreuses étapes consistent à inverser une hypothèse pour effectuer une analyse de Le matériel présenté ici a été partiellement publié dans [START_REF] Monin | Handcrafted Inversions Made Operational on Operational Semantics[END_REF].

DESIGNING OUR OWN INVERSION

Why a new inversion

Inversion tactic in Coq

During the development of a proof, if a hypothesis is an instance of an inductive predicate and we want to derive the consequences of this hypothesis, the general logical principle to be used is called inversion. To this effect, the Coq proof assistant provides a useful tactic called inversion (15) which is available in several variants.

An inversion is a kind of forward reasoning step that allows for users to extract all useful information contained in a hypothesis. It is a case analysis over a given hypothesis according to its specific arguments, that removes absurd cases, introduces relevant premises in the environment and performs suitable substitutions in the whole goal. The practical need for automating inversion has been identified many years ago and most proof assistants (Isabelle, Coq, Matita,...) provide an appropriate mechanism.

Issue from CompCert C semantics

CompCert C semantics is a quite big and complex inductive relation. Each constructor describes the memory state transformation of an expression, statement, or function. In the theorems we aim at proving, ARM instructions are represented by C functions containing a sequence of statements which can be decomposed into complicated expressions. As soon as we want to discover the relation between memory states before and after evaluating an expression, we have to invert hypotheses of operational semantics to follow the clue given by its definition. To perform such inverting we can use inversion. But each use of inversion will go one step only.

For illustration, we present here a small excerpt from an old proof script in SimSoC-Cert using inversion, which belongs to the ADC instruction. It sets the CPSR with the value of SPSR. The pseudo-code from the ARM reference manual is just CPSR = SPSR. inv H. inv H4. inv H9. inv H5. inv H4. inv H5. inv H15. inv H4. inv H5. inv H14. inv H4. inv H3. inv H15. inv H5. inv H4. inv H5. inv H21. inv H13. ...
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The old proof script includes a lot of code in this style, which makes the size of the code huge and hard to manage.

Another problem is the management of names. A single inversion will derive a dozen of variables and hypotheses according to the corresponding constructor in CompCert C formal semantics. With Coq built-in inversion, their names are automatically generated using consecutive numbers. This makes proof scripts highly dependent on such names. Such a feature is already not very good when writing the proof, because of the heavy use of inversions and the large number of new names generated each time.

More importantly, the maintenance of proof scripts becomes a terribly awful task: each use of those uncontrolled names has to be revisited either when the formal definition of the CompCert-C semantics changes (upgrading from CompCert 1.8 to 1.9 for instance) or when the algorithm of Coq for name generation is changed (this happened from Coq 8.3 to 8.4). To provide an idea of the burden, in our first experience using Coq built-in inversion, the complete correctness proof on instruction ADC resulted in a file containing 2500 lines of proof scripts. Moreover, designing (and maintaining) the scripts was made uncomfortable by the compilation time of this file more than one minute most of the time was spend on inversion. Given that there are more than one hundred instructions in ARMv6 ISS, we considered it as urgent to find a replacement for Coq built-in inversion.

Design of hc inversion

Here hc inversion stands for hand-crafted inversion.

General design concept and example

Small inversion is a proof trick introduced in [START_REF] Monin | Proof trick: Small inversions[END_REF]. It is able to perform the same as tactic inversion in some cases. >From the idea of small inversion(45), we have built a more powerful inversion through several improvements and validated it to realistic applications. The following examples introduce our development step by step. To make it easy to understand, we choose a well known example about even defined for Peano's natural number. Its inductive definition is :

Design of hc inversion

Inductive even_i : nat -> Prop := | E0 : even_i 0 | E2 : forall n, even_i n -> even_i (S (S n)).

As explained in [START_REF] Monin | Proof trick: Small inversions[END_REF], the main idea is to build the corresponding auxiliary diagonalization function.

First, the inductive predicate even i is a dependent data type.

Using primitive tactics case or destruct is powerful enough to perform dependent pattern matching on an assumption of type even i n when the conclusion of the current goal shares the same arguments as the hypothesis to be case analyzed. If not so, one cannot return the desired new goal with the converted arguments by using only case or destruct

Assume there are two proof terms t0 and t2 for constructors E0 and E2. The two proof terms have different types. The type of t0 is P 0, the type of t2 is P (S (S n)). Therefore, the syntax of the match construct contains a return clause with the expected type of the result P n as an argument; moreover, there is also an in clause for the type of H which binds n: match H in even_i n return P n with | E0 => t0 | E2 e ex => t2 end Assuming a hypothesis H of type even i n and a conclusion of type P n, both sharing variable n, then applying a case analysis on H will build a proof term in the same form as the code above and generate two new sub-goals P 0 and P (S (S x)) with the additional assumption even i x.

Sometimes, there is no obvious relation between the hypothesis and conclusion. For example, consider the following lemma: even i 1 → 3 = 4, where the conclusion (3 = 4) is not related to the argument of even i (1). As mentioned before, our interactive destruct works only if the hypothesis we want to destruct and the conclusion share the same argument. In order to fix this, we have to convert the conclusion of the current goal into a function of 1. We define a diagonalization function diag which matches the key parameter and returns the conclusion of the current goal: Then a case analysis on H will return two sub-goals: diag 0, and diag (S (S y))

ending up with a proof term for True.

However, the technique explained in the previous section has to be extended in order to cover more general situations.

The first improvement we have to provide is to make the diagonalization function independent from specific conclusion if we want it to be used for any possible goal. We use ∀X : P rop instead of a specific conclusion to hook the current conclusion. Then the previous diagonalization function will be replaced. Then together with the previous proof term of type ∀X, X, it is able to apply any conclusion:

let diag x := match x with | 1 => forall X : Prop, X | _ => True end in match H in even_i n return diag n with | E0 => I | E2 _ _ => I end
The second is to consider a positive case. Let us consider the following theorem as an example, ∀n m, even i n → even i (n+m) → even i m.

The proof is led by induction on even i n. According to the constructor of inductive type even i, induction generates two sub-goals: even i (0 + m) and even i (S (S
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(n + m)). The first is easy to solve. Then an induction hypothesis will be added to the local context: even i (n + m) → even i m. If we want to continue, we need a link from S (S (n + m)) to n + m, and it is exactly the second constructor E2 of inductive type even i. So we expect our technique could also express the premise of the focused constructor. We propose a new diag function and proof term defined as follows: yields a function in continuation passing style. The type parameter X identified to the conclusion even i m; then y binds to n + m, and the goal converts to even i (n+m) → even i m. That is exactly what we expected. Our inversion function can be seen as inversion lemmas, but their type is the dependent type expressed by their own diag. The difference between our diagonalization function and the Coq built-in Derive Inversion will be introduced at the end of this section.

To summarize this new diagonalization function, when there is an inductive type Next, we consider more than one parameter in an inductive type. The difference when we have more parameters is that using the previous inverting strategy, the identifiers for the same variable in premise and conclusion cannot be related. This problem was discovered when applying our inverting technique to the SimSoC-Cert project. Let us introduce a new example in order to explain the problem properly. Here is a toy language that accepts two operations: tm const and tm plus. Inductive eval : tm -> val -> Prop := | E_Const : forall n, eval (tm_const n) (nval n) | E_Plus : forall t1 t2 n1 n2, eval t1 (nval n1) -> eval t2 (nval n2) -> eval (tm_plus t1 t2) (nval (plus n1 n2)).

I(t
In the inductive type eval, the constructor E Plus has four variables: t1, t2, n1, 

Using our hand-crafted inversion in SimSoC-Cert

We use the new inversion to define a new inversion tactic inv [expr] for inductive type eval expr in CompCert. The semantics of CompCert C tells us how the memory state is transformed by evaluating expressions (Section 2.3.2). Like explained in the previous subsection, an auxiliary function has to be defined for each constructor of eval expr.

First, we define the diagonal-based function for each constructor of eval expr, following the lines given in the previous section. For example, the evaluation of a field is defined in CompCert by the following rule.

Inductive eval_expr : env -> mem -> kind -> expr -> trace -> mem -> expr -> Prop := ... | eval_field : ∀ e m a t m' a' f ty, eval_expr e m RV a t m' a' -> eval_expr e m LV (Efield a f ty) t m' (Efield a' f ty)

Design of hc inversion

We then define (observe that 2 variables and 1 hypothesis will be generated): Every instruction contains a quite complex expression. If we want to find the relation between the memory states affected by these expressions, we have to invert many times even if we use the new hc inversion. These steps are repetitive, applying the right diagonal-based functions with the same pair of memory states as parameters to the focused hypothesis.

Definition
Using the match goal construct of LTac, we can define a high-level tactic for each inductive type, gathering all the functions defined for its constructors. For example, the inversion tactic for eval expr contains:

Ltac inv_eval_expr m m' := ... let t1_:=fresh "t" in let v1_:=fresh "v" in let ev_ex1 := fresh "ev_ex" in ... match goal with ... | [ee: eval_expr ?ge ?e m LV (Efield ?a ?f ?ty) ?t m' ?a' |-?cl] => apply (inv_field ee); clear ee; intros t1_ a1_ ev_ex1; intros; inv_eval_expr m m'
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This tactic has two arguments m and m', corresponding to C memory states. The first intros introduces the 3 generated components with names respectively prefixed by t, v and ev ex. The second intros is related to previously reverted hypotheses, their names are correctly managed by Coq. The tactic proceeds as follows:

-it automatically finds the hypothesis we want to invert by matching the targetted memory states;

-related hypotheses are reverted;

-the right auxiliary function is called (all auxiliary functions are gathered in the tactic);

-meaningful names are given to derived variables and hypotheses; -all other related hypotheses are updated according to the new names and new values;

-useless variables and hypotheses are cleaned up ;

-the steps above are repeated until all transitions between the two targetted memory states are discovered.

We name this tactic inv eval expr; all inversions on hypotheses of type eval expr are replaced by inv eval expr. For example, 18 standard inv were used in the old proof script of lemma same copy SR. With the high-level tactic, the 18 inv can be replaced by one step: inv eval expr m m'.

Inverting a hypothesis of type eval expr may introduce new hypotheses on internal memory states according to the premises in the definition of the constructor. The automatic naming scheme in our tactic provides useful clues which are helpful in the script of a proof. Sometimes, inverting a hypothesis will identify two memory states m i1 and m i2 . Then m i1 is automatically replaced by m i2 . Such replacements trouble the automatic process in our tactic, because the first memory state m i1 is used for finding the next hypothesis to be inverted. This issue is solved by inverting hypotheses in backward order.

Our hc inversion makes it possible to have a convenient automatic naming algorithm because the arguments that need to be named are fixed and are known directly from the inductive type definition itself. It does not work with standard inversion because, other than the arguments and premise of the inductive definition itself, extra equalities may be introduced and hypotheses may be reordered in a way which is not under our control.

Design of hc inversion

Comparing hc inversion with Coq built-in inversions

There are three Coq built-in tactics that can achieve inverting the hypothesis of current proof goal. They are the standard inversion, Derive Inversion, and dependent induction/destruction. We already discussed the tactic inversion. The price we have to pay for gaining controllability and accurate management of names is that hc inversion has to be updated with each release of CompCert. This requires some work. But as expected, proof scripts themselves are robust, changes occur only in the definitions related to hc inversion. In our developments, after hc inversion became available, proof scripts could also be improved much more easily, Correctness proofs were performed using the Coq proof assistant. In this approach to the certification of C programs, the Coq proof steps in Coq are not simple. However, we were actually able to consider C programs having a large size and complex specification, using the full expressive power of Coq. Our work assesses the feasibility of using operational semantics for certifying C programs.

DESIGNING OUR OWN INVERSION

Proof steps related to the CompCert C semantics can be simplified a lot by defining Coq tactics with Ltac (the tactics language). Our initial first proof script for ADC instruction contained thousands of lines of code. Then, we identified repetitive sequences and started to define our own proof tactics in the Ltac language, resulting into much shorter proof scripts. The second version for ADC correctness proof was approximately three times smaller than the first one. In the design of these tactics, we did not seek for generality. However, since ARM instructions within the same category often have very similar statements and expressions, our tactics can actually be reused.

In Section 6.5, we have introduced more general tactics implemented in SimSoC-Cert, like finding functions in the C memory model, reusing load/store operations, etc. Those tactics are not specific to Simlight, they only deal with CompCert C semantics and memory operations. The same holds for our inversion technique: it was implemented for the needs of SimSoC-Cert as a tactic hc inversion dedicated to the inductive relations defined in CompCert (see Section 7.2.2). However, these tactics can be reused in other projects using the same approach to the correctness proof of CompCert C programs, e.g. the CCCBIP project which recently started in our group and aims at building a certifying compiler from a high-level component-based language dedicated to embedded systems (BIP), with CompCert C as its target.

Hand-crafted inversion

Our hand-crafted inversion presented in Chapter 7 was experimented on large proofs relying on big inductive relations independently defined in the CompCert project. It played a key role for the success of this approach to correctness proofs of C programs,
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and the extra flexibility provided by hc inversion inversions could be exploited to produce smaller, more robust and manageable proofs.

It is not yet a fully automatic tactic, like the original inversion. We think that automation could be realized by interacting with the internals of Coq. This would be done for efficiency concerns and would not harm in the cases where the proof can be automatically completed, or is followed by tactics which do not refer to names produced by inversion.

But in a project with a big size specification like SimSoC-Cert, where proofs require fine tuning, interactions between the human and the proof assistant cannot be avoided.

In general, in such situations, statements involve arbitrarily complex definitions, so we cannot make the assumption that decision procedures can be used. The issue is then to provide appropriate mechanisms, so that writing proof scripts and interacting with the proof assistant is made easy. We think that our hand-crafted inversion technique is a good tool in this respect: it is flexible enough for the user, practical situations can be managed with a full control on the script and valuable improvements of the script are easier to design.

Let us mention another possible application of the technique. Inversion is sometimes needed to write a function whose properties will be established later (as opposed to providing a monolithic and exhaustive Hoare-style specification and along with a VC generator such as Program). In this context, simply using the proof engine and the inversion tactic tends to generate unmanageably large terms. We can expect our technique to be very helpful in such situations. 
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Future work

The next step would be to extend the work done on ADC and other operations given in Table 9.2 to the full ISS. We are confident that the corresponding work on the remaining ARM instructions can then be done much faster. In particular, a number of lemmas on 14 library functions are already available. 71 library functions remain to be done.

DISCUSSION AND CONCLUSION

The hand written library functions in CompCert C ASTs are obtained using the CompCert C parser. Currently, they are merged with instructions by hand, and identifiers used in these functions are added manually, in order to solve a technical issue stated on page 85. It would be better to build a "hook" which automatically finds the called functions in the parsed ASTs and generates unused block numbers for the corresponding identifiers.

We also attempted to write a Coq (functional) version of the decoder, but strong improvements are required to make it usable. The current version is based on a huge pattern-matching, which considers the 32 bits of a binary instruction in a carefully designed order. We started to design a better version of this decoder, considering the semantics of bit fields. Then, proofs for the decoder could be considered as well -automatic extraction tools from the ARM reference manual are already available.

Finally, the simulation loop (basically, repeat decoding and running operations) can be be proven.

In another direction, our methodology can be reused on other processors, such as SH4.

In the future, Simlight 2 could be considered as well. Simlight 2 has adopted several optimization methods for a higher simulation speed. The most important difference is the "flattening" method applied to the instruction set (see Subsection 5.4).

Some instructions are merged with their addressing mode, and the Simlight 2 decoder decodes the instruction and its addressing mode at the same time. Then the C definition is simpler than in Simlight with less function calls. We expect the proof for this Simlight 2 decoder to be less difficult than Simlight. Instruction operations in Simlight 2 are essentially the same as for Simlight. The main optimization used in Simlight 2 is to specialize some of the parameters according to actually used values. Therefore, one ARM instruction operation is implemented by several functions in Simlight 2, instead of just one function in Simlight; but the code of these functions is essentially the same, so there is good hope that existing correctness lemmas for Simlight could be restated and generalized in such a way that instances of them would just be the expected correctness lemmas for the corresponding functions in Simlight 2.

Our group recently started another project aiming at the implementation of certified software written in BIP, a high-level component-based language dedicated to embedded 

Taille du développement

La table F.1 indique la taille de notre développement. La taille du générateur atteint presque le nombre total de lignes des parties générées pour l'ARMv6. Mais il faut noter qu'il s'agit ici de la version courante refaite par F. Tuong pour généraliser le procédé à d'autres processeurs. Actuellement, en dehors de l'ARM, cette chaîne de génération est également appliquée au manuel de référence du processeur SH4 où, à la place d'un pseudo-code spécifique, les instruction sont décrites dans la syntaxe du langage C. 
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 4 Related work code generation like in any other state-of-the-art simulators by the following two methods: first, arithmetic and simple logic operation are mapped to corresponding native C++ operations; second, additional variables are used to store temporary results and to cache intermediate results of computations. The formal verification aims at proving the equivalence between RTL and ISA models. The main idea of the equivalence proof is very similar to ours (see Chapter 6): it is based on a mapping from the RTL state representing CPU to the corresponding ISA state in C, and on next-state transitions for both the RTL model and the ISA model of the C program. Proving that the interface signals of the design is correctly implemented is also performed in the same way. For code generation, the input source is specified in VHDL. The first experiment was achieved on an invented ideal simplified CPU model. It contains eight 16-bit registers and a special register used as interrupt return vector. There are only seven instructions for logic, arithmetic, memory accessing, and jump. For the second experiment, an industrial processor design was chosen. It contains 64 32-bits registers and 88 instructions based on the DLX instruction set architecture and a memory model with simple interface. This corresponds to 10,000 lines of VHDL code, reformulated into a 2000 lines ITL specification to be used as the source of the C++ code generator. Compared to SimSoC, the size of the formal specification is smaller and with ITL specifications, less properties can be expressed and proved than with Coq.

  Simlight was previously developed as a component of SimSoC by C.
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 3 CompCert representation of this architecture in Simlight. Now we introduce CompCert in more detail. CompCert is a verified compiler for the C programming language provided by INRIA (35). It has a long translation chain of eleven steps, from C source code into assembly code. Every internal representation has its own syntax and semantics defined in Coq. It is formally verified in the following sense: the produced assembly code is proved to behave exactly the same as the input C program, according to a formally defined operational semantics of these languages. The 2 first languages considered in the CompCert translation chain, CompCert C and Clight, are actually subsets of the C language. Like C, CompCert C is nondeterministic: for some expressions cause side-effect and have more than one evaluation order. On the other hand, all expressions of Clight are pure. Assignments and function calls in Clight are treated not as statements but as expressions. The reason why we choose CompCert C rather than Clight to represent Simlight is that it is much more user-friendly and convenient. Indeed, as Clight expressions are pure and deterministic, a number of auxiliary variables have to be introduced in order to manage intermediate states. Here we present a small example of a C program to illustrate the last point. The original C code is as: void main(int x, int y) { int a; int b; int v; a = f(f1(v, f2(x, y)), f3(a, 1), f4(b, 3)); } All the function calls (fx) are side-effect free operations. Then using CompCert compiler, we are able to generate the CompCert C and Clight representations. The CompCert representation is exactly the same as the original C code in this case. But the Clight representation is quite different, with the introduction of additional temporary variables (which are different from local variables, they do not reside in memory). void main(int x, int y) { int a; f3(a, 1); $4 = f4(b, 3); $5 = f($2, $3, $4); a = $5; } The proof based on these two representations can be expected to have the same complexity, because the complexity of the proof work is caused by the C memory model.

Figure 2 . 4 :

 24 Figure 2.4: Some rules for CompCert C operational semantics

  Fig 2.4 is for evaluating a function call. The evaluation is quite different from the rule for Clight. Not only that Clight expressions are side-effect free, but CompCert C separates memory state transformation from evaluating simple expressions in order to preserve memory state. A function call can be evaluated in three steps: evaluating the function referenced by identifier rf to get where it is stored; evaluating the function arguments rargs to get their values; finding the function definition fd in the environment; then evaluating the function call using eval funcall. The second rule in Fig 2.4 is the evaluation of an assignment. In Clight, an assignment is not an expression but a statement because Clight expressions are pure. In Simlight, the interpretation uses a subset of C features which is as simple as possible. This is not only to satisfy to CompCert C restrictions, but also to avoid ambiguous situations where an expression could have different behaviours. This way, the bigstep semantics of CompCert C is sufficient. However, some features outside of CompCert C occur in the current version of Simlight: external functions, which are used in many places to perform I/O subsystem communications. Currently, those external functions are represented by axioms. As a future improvement, it will be better to use internal functions instead.
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 31 Figure 3.1: ARM processor state
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 3233 Figure 3.2: ARM processor modes
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 34 Figure 3.4: ADC assembler syntax
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 35 Figure 3.5: ADC instruction operation Pseudo-code

  Record semstate := mk semstate { loc : local ; bo : bool ; st : state }. Inductive result {A} : Type := | Ok ( : A) ( : semstate) | Ko (m : message) | Todo (m : message).

Figure 3 . 5 ,

 35 gives a semi-formal description on how a instruction evaluates. Here we show how to specify it in by a corresponding Coq function (O coq). Taking the instruction ADC as an example, its formalization in Coq is showed in the following function ADC step, which operates on the parameter st of type state. Other parameters are found by searching for unspecified variables in the pseudo-code. Not all variables are declared globally. Variables which are assigned during the execution are local variables except the output registers, for example, Rd . The body of the function is kept as close as possible to the pseudo-code by using notations, like <st>, as explained below: (* A4.1.2 ADC *) Definition ADC_step (S : bool) (cond : opcode) (d : regnum) (n : regnum) (shifter_operand : word) : semfun _ := <s0>

  , and then go to the next instruction. The S bit argument indicates the instruction must update the status register CPSR. If the argument Rd refers to the program counter (R15), the updating of CPSR is going to preserve the value of SPSR when the current processor mode is one of the exception mode. If Rd is one of the other general-purpose register, updating of CPSR is done by updating the significant flags in CPSR. The values are calculated by operations on argument Rn which contains the first operand, and shift operand which specifies the second operand. Here we explain the notation <st>. It is the notation for function get st, a monadic function that provides access to the current state st at any place of the operation sequences: Definition bind {A B} (m : semfun A) (f : A -> semfun B) : semfun B := fun lbs0 => match m lbs0 with | Ok a lbs1 => f a lbs1 | Ko m => Ko m 3.2 Formalization in Coq | Todo m => Todo m end. Definition bind_s {A} fs B (m : semfun unit) (f : A -> semfun B) : semfun B := bind m (fun _ lbs1 => f (fs lbs1) lbs1).Definition _get_st {A} := bind_s st A (Ok tt).Notation "'<' st '>' A" := ( get st (fun st => A)) (at level 200, A at level 100, st ident).In general, every operation function terminates with Ok state. However, errors are implicitly propagated with our monadic constructors: Ko and Todo.The other notations to keep the formalization well structured are the case statements If, then, else, and if then, also the sequence statement denoted by brackets and semicolons: Definition if_then_else {A} (c : bool) (f1 f2 : semfun A) : semfun A := if c then f1 else f2. Notation "'If' A 'then' B 'else' C" := (if_then_else A B C) (at level 200). Definition if_then (c : bool) (f : semfun unit) : semfun unit := if_then_else c f (Ok tt). Definition _set_bo b lbs := ok_semstate tt (loc lbs) b (st lbs). Definition block (l : list (semfun unit)) : semfun unit := let next_bo f1 f2 := next f1 (_get_bo f2) in List.fold_left (fun f1 f2 => next_bo f1 (fun b1 => next_bo f2 (fun b2 => _set_bo (andb b1 b2))) ) l (Ok tt).
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 36 Figure 3.6: Formalized decoder of conditional executed instructions

  The addressing mode decoders are introduced below.In Section 3.1 we mentioned that the ARM instruction set admits five kinds of addressing mode. They are used to encode the specific values appearing in the instruction pseudo-code. The encoding tables for addressing mode are in the same form as the ones for ARM instructions, the formalization of addressing mode decoders are similar to the instruction decoder. The following definition shows one clause of the decoder for the addressing mode 1 -Data-processing operands, to indicate that the shift operand is calculated by an immediate logical shift left. Definition decode_addr_mode1 (w : word) : decoder_result mode1:= 3. FORMAL MODEL OF ARMV6 match w28_of_word w with ... (*5.1.5 -Data processing operands -Logical shift left by immediate*) | word28 0 0 0

  Altogether, we get an executable formal model of ARMv6 architecture, which can be translated to OCaml code by extraction of Coq code. However, for the executable version of the formal simulator, we could not integrate this extracted OCaml code because the extraction mechanism translates a Coq pattern, which matches more than one terms, into many OCaml patterns, which mention all possibilities one by one.More precisely, from the Coq model of ARMv6, it is possible to extract OCaml code and compile it to an executable simulator and perform some tests. The arm-elf-gcc compiler is already used in our group to compile C tests into ELF files to be used in Simlight. These tests could be translated to a Coq representation, then extracted to OCaml. Running a simple direct sum test takes around five minutes. A sorting program would then need one day to be completed.Directly simulating the ARM in Coq would even be worse. However, execution speed is not a concern in formal proofs, as far as no heavy computations steps are involved.Here we introduce Simlight, our certification target. Simlight is a light version of the simulator SimSoC, which includes only the ARMv6 instruction set simulator with a simplified memory model.We also give a brief description of Simlight 2, which includes several optimizations from SimSoC to obtain a higher simulation speed. The extension to the optimized version 2 will be discussed as future work in conclusion Chapter 9.RésuméCe chapitre est consacré à Simlight, la cible que nous cherchons à certifier. Simlight est une version allégée du simulateur SimSoC, qui ne contient que le simulateur de jeu d'instructions, avec un moèle mémoire simplifié. Nous donnons aussi une brève description de Simlight 2, qui intègre plusieurs optimisations utilisées dans SimSoC afin d'accélérer la simulation. L'extension de notre travail de certification à la version 2 optimisée est considérée en perspective dans la conclusion, au chapitre 9.
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 42551 Figure 4.2: ARM status register structure in C

  relevant chapters for us are: -Programmer's Model introduces the main features in ARMv6 architecture, the data types, registers, exceptions, etc; -The ARM Instruction Set explains the instruction encoding in general and puts the instructions in categories; -ARM Instructions lists all the ARM instructions in ARMv6 architecture in alphabetical order and ARM Addressing modes gives all the five kinds of addressing modes;
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 52 The corresponding OCaml definition is an inductive data type. The type of expression supports numbers in different bases, conditional expressions, function calls, binary operations, ranges (e.g. Rn[31:0] indicate the range of bits 0 to 31 of register Rn), and the particular expression of ARM registers (e.g. CPSR, SPSR, and Reg), memory and coprocessor. Additionally, two key words are included: Unaffected which indicates the item is not changed by an operation, and Unpredictable exp which represents an unreliable instructions result. The evaluation of expression Unpredicatable exp and Coproc exp can bring side-effect.
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 553 3 defines the abstract syntax of instruction statements, which is defined in type inst. The C-style structural statements are supported: blocks, assignments, conditional statements, loops (while loop and for loop), assert, case, and return. Special function calls related to processor and coprocessor are presented individually. Within statements, Unpredictable appears again. In pseudo-code, UNPREDICTABLE is used as Intermediate representation exp ::= num | bin | hex | float | if exp then exp else exp | fun (exp list ) | exp binop exp | CPSR | SPSR mode option | Reg mode option | var | exp of range | Unaffected | Unpredictable exp | Memory size | Coproc exp exp list mode ::= Fiq | Irq | Svc | Abt | Und | Usr | Sys range ::= bit | flag | index size ::= byte | half | word
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 5253 Figure 5.2: The abstract syntax of intermediate representation expressions
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 554 Figure 5.4: Flattening the ADC instruction with the shift left by immediate operand
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 5555 Figure 5.5: Generating C code
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 1 Ce chapitre est consacré aux preuves de correction que nous avons effectuées pour Simlight, le simulateur de jeu d'instructions de l'ARMv6 de notre projet, en utilisant la sémantique opérationnelle de CompCert C. Ce travail peut également être considéré comme une expérience significative de preuves de programmes C selon une approche basée sur la sémantique opérationnelle. Essentiellement, nous avons à établir qu'un programme C représentant l'ARMv6 se comporte conformément au modèle Coq attendu, qui est un système de transitions sur un état abstrait directment défini en Coq. Le programme C, via la sémantique opérationnelle définie dans CompCert, est lui même modélisé par un système de transitions sur un état en un sens plus concret, qui est un modèle de la mémoire C (telle qu'elle est formalisée dans CompCert), habitée par des structures de données indiquées dans le programme Simlight. Bien que le programme C et le modèle Coq soient dérivés à partir des mêmes données du manuel de référence, et que la chaîne de génération de ces deux objets soit en partie partagée, on voit que ces objets sont de nature très différente. Le modèle Coq abstrait reste aussi simple que possible de façon à respecter 6. CORRECTNESS PROOFS visiblement ce qui est énoncé dans le manuel de référence. En revanche, l'état concret pour Simlight prend non seulement en compte le modèle mémoire de CompCert C, mais des structures de données C complexifiées par un souci d'optimisation. Afin de comparer le comportement du système de transition abstrait dans le modèle Coq et celui du système de transition concret correspondant à Simlight, nous commençons par définir une projection de l'état concret verts l'état abstrait. Nous pouvons alors énoncer, pour chaque instruction ARM, un théorème principal schématise en figure 6.une version plus exacte est donnée plus loin en figure 6.2). Le preuves s'effectuent alors en itérant l'analyse des hypothèses représentant des transitions entre états mémoire concrets, selon une relation appropriée de la sémantique opérationnelle à grand pas de CompCert C. La transition correspondant dans le modèle abstrait est représentée plus simplement par calcul, car dans le modèle Coq de l'ARMv6, les instructions sont représentées par des fonctions.
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 61 Figure 6.1: Main theorem for a given ARM instruction

CompCert CA

  CompCert C program a list of functions, including the program entry point called main, with global variables as parameters. The transformation from pseudo-code AST to CompCert C AST produces a standalone program for each ARMv6 instruction. Then each has its own correctness proof separately. In the generated CompCert C file, program contains only one function which is the instruction operation. Other invoked functions are not included because the instruction pseudo-code AST has nothing but a reference name. Their bodies are then manually included. Every function is composed by its return type, function parameters, local variables, and the function body. The function body is a sequence of statements made of expressions. In CompCert ASTs, constructs are very detailed. Each expression and each
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 62 Figure 6.2: More accurate theorem statement for a given ARM instruction

  For example, the projection for registers owned by the main processor is called regs proj, which takes the C memory state m and the local environment e as arguments and return register -> word. The definition is as follow: Definition regs_proj (m:Mem.mem) (e:env): register -> word := let load_reg id n m e:= match find_reg m e id with | Some(Vptr b ofs)=> load_val (Mem.loadv Mint32 m (Vptr b (add ofs (repr n)))) | _ =>Int.zero end in fun r => match r with | R k => load_reg user_regs k m e | R_svc k _=> load_reg svc_regs k m e | R_abt k _=> load_reg abt_regs k m e | R_und k _=> load_reg und_regs k m e | R_irq k _=> load_reg irq_regs k m e | R_fiq k _=> load_reg fiq_regs k m e end.
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 63 Figure 6.3: Projection

CompCert 4

 4 C representation. The semantics in the formalization is explained in Section 3.2.1. CompCert designed a semantics for CompCert C in both small-step and big-step. The big-step inductive type for evaluating expression is enough for our proof. The semantics is defined as a relation between an initial expression and an output expression after evaluation. As mentioned before, the semantics of CompCert C considers two environments. The global environment genv maps global function identifiers, global variables identifiers to 6.Proofs their blocks in memory, and function pointers to a function definition body. The local environment env maps local variables of a function to their memory blocks reference.

  Inductive proc_state_related : Mem.mem -> env -> @result unit -> Prop := | proc_state_related_ok : forall m e l b, proc_state_related m e (Ok tt (mk_semstate l b (proc_proj m e))) | state_not_ok: forall e m mes, proc_state_related m e (Ko mes) | state_todo: forall e m mes, proc_state_related m e (Todo mes). The shape of the main theorem of an instruction is then: Theorem correctness instr: ∀ e m0 m1 m2 mfin vargs st other params out, alloc variables empty env m0 (fun internal B.(fn params) ++ fun internal B.(fn vars)) e m1 -> bind parameters e m1 fun internal B.(fn params) vargs m2 -> (forall m ch b ofs, Mem.valid access m ch b ofs Readable) -> proc state related m2 e (Ok tt (mk semstate nil true st)) -> other params related m2 e other params -> exec stmt (Genv.globalenv prog bl) e m2 fun internal B.(fn body)

  in our example, expression a 1 is the value of Sbit and a 2 is the constant value 1. By inverting the hypothesis of type eval binop, we obtain several new hypotheses, including on the evaluation of the two subexpressions and the introduction of an intermediate memory state M ′′ . Evaluating them has no change on the C memory state. Then we have M = M ′′ = M ′ .

  of evaluation, a boolean value true or f alse should be returned. in CompCert C model and Coq model, using the projection definition we introduced in 6.3. if Sbit related M Sbit, and G, E ⊢ eval rvalue binop c (Sbit == 1), M ⇒ v, then v = (Sbit == 1) coq

4 Proofs 4 . 5 .

 445 For example, this is stated as follows for an assignment on register Rn. Here we use the projection relation register related. if rn related M rn and G, E ⊢ eval assign c (rn := rx), M ⇒ M ′ , v then rn related M ′ rn 6.Evaluating expressions with modification on the memory. This is similar to the previous case. Internal function call. Internal functions are described in an informal manner in the ARMv6 reference manual. No pseudo-code is available for them, which means that the corresponding library functions, both in the abstract Coq model and in Simlight, are written by hand. In order to get a suitable CompCert C AST to reason about, we use the parser provided in CompCert. When combining the simulation code of an instruction with the code of library functions, we need to take care of the memory allocation problem. In CompCert C representation, identifiers are unique positive numbers which indicate the memory block where corresponding variables are allocated. Currently, the extra identifiers introduced by library functions are added manually and assigned with fresh block numbers. if proc state related M st and G, E ⊢ eval funcall c (copy StatusRegister) c , M ⇒ v, M ′ and st ′ = (copy StatusRegister) coq st then proc state related M ′ st ′ .

Finding a function location

  in memory. Two kinds of functions exist in C. Internal functions are in the local environment e, whereas external functions are in the global environment g. When a function reference is met, a get operation is invoked on e, then on g in case of failure. Evaluating memory states. CompCert C semantics operates on memory states.

  cas et extraire toutes les contraintes utiles contenues dans cette hypothèse. La tactique Coq standard inversion est généralement considérée comme étant le bon choix dans de telles situations. Cependant son utilisation nous a posé de graves problèmes de contrôlabilité, de maintenance et d'efficacité. Pour les résoudre, nous proposons une technique d'inversion basée sur la combinaison d'un argument antidiagonal et d'un codage imprédicatif des structures de données inductives, qui fait l'objet de ce chapitre.
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 71 The corresponding C code is a call to function copy StatusRegister, which sets CPSR field by field by the values from SPSR. Lemma same cp SR states that the C memory state of the simulator and the corresponding formal representation of ARM processor state evolve consistently during this assignment. Lemma same_copy_SR : forall e m l b s t m' v em, proc_state_related m e (Ok tt (mk_semstate l b s)) -> Why a new inversion eval_expression (Genv.globalenv prog_adc) e m expr_cp_SR t m' v -> forall l b, proc_state_related m' e (Ok tt (mk_semstate l b (Arm6_State.set_cpsr s (Arm6_State.spsr s em)))). ). After a couple of introductions and other administrative steps, we get the following goal, where cp SR is unfolded in hypothesis H. cp SR is the identifier of CompCert C representation, which calls to the function copy StatusRegister with arguments CPSR as setting destination and SPSR as source. l' : local b' : bool a' : expr H : eval_expr (Genv.globalenv prog_adc) e m RV (Ecall (Evalof (Evar copy_StatusRegister T14) T14) (Econs (Eaddrof (Efield (Ederef (Evalof (Evar proc T3) T3) T6) adc_compcert.cpsr T7) T8) (Econs (Ecall (Evalof (Evar spsr T15) T15) (Econs (Evalof (Evar proc T3) T3) Enil) T8) Enil)) T12) t m' a' ============================ proc_state_related m' e st' Then we have to invert H and similar generated hypotheses until all constructors used in its type are exhausted. Here 18 consecutive inversions are needed. Using inv tactic invented by CompCert, which performs standard inversion, clearing the inverted hypothesis, and rewriting of all auxiliary equations, the sequel of the script started as follows:

  let diag x := match x with | S (S y) => forall X: Prop, (even_i y -> X) -> X | _ => True end in match H in even_i n return diag n with | E2 p e => fun X k => k e | _ => I end Then, applying the new technique in current hypothesis H : even i(S(S(n + m)))

  The output type val is a natural number or a Boolean. The evaluation (eval) takes an argument of type tm and returns a value of type val. The Coq code is as follows: Inductive tm : Type := | tm_const : nat -> tm | tm_plus : tm -> tm -> tm. Inductive val : Type := | nval : nat -> val | bval : bool -> val.
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 2 Design of hc inversionand n2. The premises and the conclusion share these variables. Without special care we lose the information of relationship of sharing.Let us consider a theorem, ∀v, eval(tm plus(tm const 1)(tm const 0)) v → v = nval 1.The diagonalization function corresponding to the previous method is:match x with| tm_plus tc1 tc2 => forall X: Prop, (forall n1 n2, eval tc1 (nval n1) -> eval tc2 (nval n2) -> X) -> X | _ => True end But then, the fact that v should be nval (plus n1 n2) is not recorded. The solution is to add a parameter to X to keep this identification after evaluation. The modified diagonalization function for the constructor E Plus is:match x with | tm_plus tc1 tc2 => forall X: tm -> Prop, (∀ n1 n2, eval tc1 (nval n1) -> eval tc2 (nval n2) -> X (nval (plus n1 n2))) -> X v | _ => True endThis example also introduces another problem we had not foreseen: a constructor may have more than one diagonalization function. Considering the same theorem as above, after inverting E Plus, the current proof goal is:n1 : nat n2 : nat e1 : eval (tm_const 0) (nval n1) e2 : eval (tm_const 1) (nval n2) ============================ nval (n1 + n2) = nval 1We expect inverting e1 and e2 can give us the nat value of n1 and n2. Without any consideration, we defined the diagonalization function for E Const like this, 7. DESIGNING OUR OWN INVERSION match t with | tm_const n => forall (X: val -> Prop), X (nval n) -> v | _ => True end It chooses to keep the value for type val. Then we notice in current conclusion there is no nval n1 or nval n2 but nval (n1 + n2). The previous diagonalization function is not able to get the value of n1 or n2. The diagonalization function should focus on a variable of type nat instead of val. The pattern matching should match both input and output parameters of eval. match t, v with | tm_const tc, nval n => forall (X: nat -> Prop), X tc -> n | _, _ => True end In summary, the diagonalization function is defined depending upon what conclusion we have. When we have a conclusion like in this example, we choose the second diagonalization function. If the conclusion contains only nval n, we can choose the first one.

  inv_field g e m ex t m' ex' (ee:eval_expr g e m LV ex t m' ex') := let diag e ex ex' m m' := match ex with | Efield a b c => ∀ (X:expr->Prop), (∀ t a', eval_expr g e m RV a t m' a' -> X (Efield a' b c)) -> X ex' | _ => True end in match ee in (eval_expr _ e m _ ex _ m' ex') return diag e ex ex' m m' with | eval_field _ _ _ t _ a' _ _ H1 => fun X k => k t a' H1 | _ => I end.
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 4 Trusted Code BaseOur proofs depend on several tools developed elsewhere: the Coq proof assistant, the OCaml compiler and the CompCert C certified compiler. The TCB of these external tools have to be considered independently. Regarding Coq, the TCB is essentially its kernel.Next, the TCB includes the formal version of the ARM reference manual on which proofs are carried on: hand-written and automatically produced Coq definitions, as described in Figure5.1. Alternatively, automatically produced Coq definitions could be replaced by the textual reference manual (patched by our bug fixes) and Coq code generators. The TCB also includes the Coq projections from the CompCert C AST representation of Simlight code to our abstract Coq model.
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 5 figure 1.1 page 9). Les parties restantes comprennent la gestion mémoire (mémoire virtuelle et pagination), la gestion des interruptions et les communications avec les périphériques. En résumé, la complexité de la cible a ainsi pu être réduite mais cela représente encore 10 000 lignes de code C à certifier. En outre la spécification reste très complexe, étant décrite dans un gros document, le manuel de référence de l'architecture ARM Version 6.

Base de confiance du code

  Nos preuves dépendent de plusieurs outils développés ailleurs : l'assistant à la preuve Coq, le compilateur OCaml et le compilateur certifié CompCert C. La base de confiance de ces outils doit être considérée indépendamment. En ce qui concerne Coq, il s'agit essentiellement du noyau. Ensuite, la base de confiance comprend la version formelle du manuel de référence servant à formuler les théorèmes de correction : il s'agit de définitions Coq produites manuellement et automatiquement, selon le procédé décrit en figure 5.1. Une alternative pourrait être de remplacer les définitions Coq produites automatiquement par le manuel de référence textuel (corrigé par nos soins) et la chaîne de génération de code Coq. La base de confiance comprend enfin les projections définies en Coq entre la représentation du code de Simlight sous forme d'AST CompCert C et notre modèle Coq abstrait. Travaux futurs La prochaine étape serait d'étendre le travail effectué sur ADC et les autres opérations données dans la table F.2 au jeu d'instruction entier. Nous somme confiants dans le fait que le travail correspondant peut être effectué beaucoup plus vite. En particulier, Version française des lemmes portant sur 14 fonctions de la bibliothèque sont déjà disponibles. Il reste 71 fonctions semblables dans la librairie. Les AST des fonctions de la bibliothèque sont obtenus au moyen de l'analyseur syntaxique pour CompCert C. Ces AST sont actuellement regroupés à la main avec les AST des instructions, pour résoudre le problème technique mentionné page 85. Il serait préférable d'introduire un mécanisme permettant de trouver automatiquement les fonctions appelées dans les AST produits par l'analyse syntaxique et de générer des numéros de blocs inutilisés pour les identificateurs correspondants. Nous avons également tenté d'écrire une version Coq (fonctionnelle) du décodeur, mais des améliorations importantes sont nécessaires pour le rendre utilisable. La version courante est basée sur un filtrage géant, qui considère les 32 bits d'une instruction binaire dans un ordre soigneusement mis au point. Nous avons commencé à concevoir une meilleure version de ce décodeur, en considérant la sémantique des champs de bits. Cela fait, des preuves sur le décodeur pourront également être considérées. Les outils d'extraction automatique du codage des instructions décrit dans le manuel de référence sont déjà disponibles. Enfin, la correction de la boucle de simulation (essentiellement : répéter le décodage et l'exécution des opérations) pourra être prouvée. Dans une autre direction, notre méthodologie peut être réutilisée sur d'autres processeurs, comme le SH4. Par la suite, on pourra également considérer Simlight 2, qui comporte plusieurs optimisations en vue d'accélérer la simulation. La différence la plus importante est l'application d'une méthode de flattening (voir § 5.4) consistant à fusionner le code des modes d'adressage dans certaines instructions. Le décodeur de Simlight 2 décode alors simultanément une instruction et son mode d'adressage. Cela rend la définition en C plus simple que dans Simlight et produit moins d'appels de fonctions. Les preuves correspondantes pour le décodeur devraient donc êtr plus simples pour Simlight 2 que pour Simlight. Le corps des instructions est essentiellement le même dans Simlight 2 que dans Simlight. La principale optimisation effectuée dans Simlight 2 consiste à spécialiser certains paramètres aux valeurs effectives utilisées. Ainsi, l'opération d'une instruction ARM est implémentée par plusieurs fonctions dans Simlight 2, là où il n'y a qu'une seule fonction dans Simlight ; mais le code de ces fonctions est essentiellement le même, ce qui donne bon espoir à la possibilité de réutiliser les lemmes de correction existants pour Simlight, en les reformulant et généralisant de manière adéquate, de sorte que par instanciation on retrouve les lemmes de correction attendus pour les fonctions correspondantes dans Simlight 2. Notre équipe a récemment démarré un autre projet visant l'implantation de logiciel certifié écrit en BIP, un langage de haut niveau à base de composants dédié aux systèmes embarqués, avec CompCert C comme langage intermédiaire. Nous avons bon espoir que le travail présenté dans cette thèse pourra être réutilisé. Plus généralement, notre réalisation de hc inversion pour CompCert peut être réutilisée dans toute application visant à prouver la correction de programmes C à partir de la sémantique opérationnelle définie dans CompCert. Cependant, cette tactique doit évoluer en fonction des nouvelles versions de CompCert.

Figure 2.2: Big-step operational semantics of the toy language ese

  

					The
	parameter state of type natural number is introduced here to store the current value of
	V . After an evaluation, a new state is returned. The evaluation takes an initial state
	and an expression to compute, and returns a new state and a natural number which is
	the evaluation result. The notation	bs --→ means "evaluates to".
		st, C n	--→ st ′ , n bs	(2.1)
		st, V	--→ st, st bs	(2.2)
	st, e 1 st, P e 1 e 2 bs --→ st ′ , n 1 bs --→ st ′′ , (n 1 + n 2 ) st ′ , e 2 bs --→ st ′′ , n 2	(2.3)
	st, e	bs --→ st ′ , n 1 st, A e	n 1 , V --→ st ′′ , n 2 --→ st ′′ , n 2 bs bs	(2.4)
	Rule 2.4 is for assignment. A simpler and equivalent version is:
		st, e st, A e --→ st ′ , n bs --→ n, n bs	(2.5)

4. SIMULATION OF ARMV6 IN C

  

	struct SLv6_Processor {
	struct SLv6_MMU *mmu_ptr;
	struct SLv6_StatusRegister cpsr;
	struct SLv6_StatusRegister spsrs[5];
	struct SLv6_SystemCoproc cp15;
	size_t id;
	uint32_t user_regs[16];
	uint32_t fiq_regs[7];
	uint32_t irq_regs[2];
	uint32_t svc_regs[2];
	uint32_t abt_regs[2];
	uint32_t und_regs[2];
	uint32_t *pc; /* = &user_regs[15] */
	bool jump;
	};

  ), where t is the parameter of type T, and C i is a constructor of I depending on parameter t i of type T, pi is the premise in constructor C i , P consists of a constructor of type T, we want to filter. Then a constructor of the inductive type I(t) containing P can be expressed like C i : ∀ p i , I P. And HI is the hypothesis of type I(t) we want to invert. In the general case, we have to consider if there are more than one possible constructors containing P, like constructor C i , C j , etc. The inverting lemma

	7. DESIGNING OUR OWN INVERSION
	end in
	match HI in I t return diag t with
	| Ci ei => fun X ki => ki ei
	...
	| Cj ej => fun X kj => kj ej
	| _ => I
	end
	Remark the close relationship with the impredicative encoding of data types in sys-
	tem F.
	corresponding to AP is:
	let diag x :=
	match x with
	| P => forall X: Prop, (forall pi, X) ... (forall pj, X) -> X
	| _ => True

  The tacticDerive Inversion allows the user to first automatically generate an inversion principle according to an inductive type and then to apply it to inverting target. The tactics dependent induction and dependent destruction are another option for inverting inductive predicate instances and potentially doing induction at the same time. They are based on BasicElim of Conor McBride[START_REF] Mcbride | Inverting inductively defined relations in lego[END_REF] and work by abstracting each argument of an inductive instance by a variable and constraining it by suitable equalities. The usual induction and destruct tactics can then be applied to the abstracted instance and after rewriting of the equalities, we get the expected goals. If we compare these three options, without considering the issues on name control, Derive Inversion is the most inconvenient one. It finds the clues according to type definition of inverted hypothesis, without telling which one it matches and the returned premises are not introduced. CompCert defines inv as a combination of the standard inversion with substitution and clearing. So for a basic usage, it is not complicate to use. We think BasicElim is easier to use than the two other built-in tactics. New equalities hypotheses will be rewritten and existing premises of equation can be kept by a block. It handles the recursive type definition.If we take name control issues into account, both Derive Inversion and BasicElim are hard to use. Names have to be provided for all cases given by the constructors. For example, we have to consider 16 cases for eval expr. Even if we just use a wild-card in impossible cases, 15 wild-cards are still needed for them, as well as extra tactics for concluding.

	Ease of use.

Table 7 .

 7 Another clear advantage for our hc inversion is efficiency. Proof terms generated by hc inversion are much smaller than by the three built-in tactics, as shown on examples taken in SimSoC-Cert, see Tables 7.1 and 7.2). The comparison is performed on a lemma taken from the correctness proof of instruction ADC. This lemma discusses how the memory state changes during the evaluation of expressions including Econdition, Ebinop, Evalof, Eval, and Evar. We compare the time used for performing each inversion in Table7.1, and the size of output object files (.vo) in

			1: Time costs (in seconds)		
		standard inversion Derive Inversion BasicElim our inversion
	Full example	1.628	0.976	1.428	0.312
	Ecall	0.132	0.076	0.112	0.028
	Evalof	0.132	0.072	0.092	0.020
	Evar	0.128	0.064	0.084	0.024
	Eaddrof	0.140	0.076	0.104	0.020
		Table 7.2: Size of compilation results (in KBytes)	
		standard inversion Derive Inversion BasicElim our inversion
	Full example	191	460	171	37
	achieving a good separation of concerns between the design of proofs and technical issues
	on inversion.				
	Performance.				

Table 7 . 2 .

 72 We see that hc inversion consumes 4 to 5 times less space than inversion and BasicElim, and 10 times less than Derive Inversion clear. Consistently, and more importantly for the user who heavily uses inversions, hc inversion reacts much faster (3 to 6 times). Note that, in our experiments, Derive Inversion has a better response time among the three built-in inversion tactics, but it generates the biggest .vo files.Currently we do not have a correctness proof of our ARM instruction decoder.Instead, we have built a decoder tests generator, which can help to check the coverage and correctness of the generated C decoder. We generate two kind of files. The first file contains the test instructions binary (a) binary encoding of the ADC instruction 31 . . . 28 27 26 25 24 . . . 21 20 19 . . . 16 15 . . . 12 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . 28 27 26 25 24 . . . 21 20 19 . . . 16 15 . . . 12 11 . . . . . . . 7 6 . . . 4 3 . . . 0 . . . 28 27 26 25 24 . . . 21 20 19 . . . 16 15 . . . 12 11 . . . . . . . 7 6 . . . 4 3 . . . 0

	Inversions out of reach of built-in tactics. Let us now consider a predicate
	defined on a dependent type. We take intervals [1...n], formalized as t in the standard
	library Fin, and then we restrict them to have an odd length.
	Inductive t : nat -> Set :=

31 31

Table 8 .1: Generated tests for C decoder 9. DISCUSSION AND CONCLUSION translating

 8 it to a textual C program, then parsing it to CompCert C AST using the CompCert C parser. In our experiments, no difference could be observed between the two approaches -no information was lost using CompCert C parser. CompCert C supports a C subset which is rich enough to describe the operations of ARM instructions.

Table 9 .

 9 [START_REF]Programming language-C[END_REF] shows the size of our development. The size of the generator is almost the same as the total number of lines of the generated part for ARMv6. But note that this is the version redesigned by F. Tuong in order to be more general, so that it could be

	reused with other specific processors. Currently, besides ARM, it is applied to the SH4
	reference manual where, instead of a specific pseudo-code, instructions are described
	using a C syntax.

One can note also that the generated code for the ISS takes 50 % of the Coq formal model, and almost 70 % of the C simulator. Although the gain may be considered as 9.

4 Trusted Code Base

  

	Category	Instruction name
	branch	BL
	data processing	ADC
	multiply	MUL
	parallel arithmetic addition and subtraction QADD16
	extended instruction	UXTAB16
	miscellaneous arithmetic	CLZ
	status register access	MRS
	load and store	LDR
	load and store multiple	LDM
	semaphore	SWP

Table 9 . 2 :

 92 ARM instructions having a correctness proof

  chaque catégorie d'instructions pour l'ARM. Elles sont présentées dans la table F.2.

	Catégorie	Nom de l'instruction
	branchement	BL
	calcul	ADC
	multiplication	MUL
	addition et soustraction en arithmétique parallèle QADD16
	instruction étendue	UXTAB16
	arithmétique divers	CLZ
	accès au registre de status	MRS
	chargement et stockage	LDR
	chargement et stockage multiple	LDM
	sémaphore	SWP

Table F.2: Instructions ARM avec une preuve de correction

http://www.cis.upenn.edu/ bcpierce/sf/

BACKGROUND

SimSoCDans cette section, nous introduisons notre cible de certification : SimSoC, un simulateur de System-on-Chip (SoC) capable de simuler divers processeurs à une vitesse réaliste. En tant que simulateur de System-on-Chip, les objets simulés sont des processeurs de systèmes embarqués utilisés dans des équipements modernes d'électronique grand public ou de systèmes industriels (par exemple ARM, PowerPC, MIPS). Il entre dans la catégorie des simulateurs de système complets car il peut simuler la plate-forme matérielle complète et exécuter le logiciel embarqué "tel quel", y compris le système d'exploitation. Ce genre de simulateur joue un rôle important dans le développement des systèmes embarqués, car le logiciel embarqué peut être testé et développé sur le simulateur. Si l'on veut que le logiciel et le matériel soient prêts à aller sur le marché en même temps, le logiciel doit parfois être développé avant que le matériel soit disponible. Un modèle exécutable du SoC est alors nécessaire. Un simulateur procure d'autres avantages, permettant de combiner la simulation avec des méthodes formelles comme le model-checking ou l'analyse de traces pour découvrir des anomalies matérielles ou logicielles.Notre simulateur, SimSoC, travaille au bas niveau du système. Il prend du code binaire réel en entrée ainsi qu'un modèle de simulation de la carte complète : processeur, unités mémoire, bus, contrôleur réseau, etc. Il peut émuler le comportement de l'exécution des instructions, des exceptions et des interruptions des périphériques.En dehors du développement de logiciel, le simulateur peut aussi être utilisé pour la conception de matériel. En présence de composants supplémentaires fournis par une tierce partie, les développeurs peuvent tester modulairement ces derniers dans l'environnement complet de simulation.

Table F.1: Tailles (en nombre de lignes) On peut également noter que le code généré pour le simulateur de jeu d'instructions occupe 50 % du modèle formel Coq, et presque 70 % du simulateur C. Bien que le gain en volume puisse être considéré comme relativement faible, nous pensons que cette approche est néanmoins valable étant donnée la nature répétitive des instructions.En ce qui concerne l'effort de preuve, la première expérience a porté sur la correction de l'instruction ADC et cela nous a pris un mois. Le nombre de lignes Coq pour le script de preuve était alors assez grand, environ 3200 pour cette première version (surtout si l'on compare aux 11 lignes du pseudo-code correspondant dans le manuel de référence).À ce stade nous n'avions pas encore développé de tactiques utilisateur. Ensuite, en utilisant hc inversion et nos autres tactiques spécifiques, en dehors des gains en taille et en maintenabilité, le temps de développement pour la preuve d'une instruction est bien plus faible, moins d'une semaine pour une instruction du même degré de complexité que ADC. A présent, nous avons une preuve de correction pour 11 instructions, une dans
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Optimization on Simlight version 2

(old_Rn,shifter_operand,old_CPSR.C_flag); proc->cpsr.V_flag = OverflowFrom_add3 (old_Rn,shifter_operand,old_CPSR.C_flag); } } } }

As the C language accepted by Compcert is a subset of the full ISO C language, the generator has been constructed such that it only generates C code in the subset accepted by the compcert compiler.

Nonetheless it can be compiled with other C compilers such as GCC to obtain better performance. Even though in this case, the resulting machine code is not guaranteed to be correct (there are well known GCC optimization bugs...), at least the original C code has been proven by our technique to be conformant with the ARM semantics.

The ARM V6 code generator not only generates the semantics functions, it also generates the decoder of binary instructions supported in V6 architectures. This decoder is obtained by compiling the opcodes information. The generated decoder is probably not optimal in performance, but as SimSoC uses a cache to store the decoded instructions, the performance penalty is marginal.

Optimization on Simlight version 2

In this section, we introduce the second version of Simlight, that include optimizations to reduce simulation time. The optimization methods can be categorized as follows:

flattening is used in Simlight version 2, in order to merge some instructions with their addressing mode. The result of flattening can improve the simulation speed.

How to perform instructions flattening is introduced in Section 5.4.

-Partitioning the semantics function into hot and cold ones. C compilers now supports the hot and cold attributes on functions. When a function is declared hot, the compiler generates code that minimizes execution time. When it is cold, it minimizes code size. It also generates directives for the linker to group the hot and cold functions together to increase program locality. The temperature information (i.e. hot or cold) is obtained by running the program on sample input to generate profiling data, such as obtained with the GPROF profiling tool. Based on profiling data, the SimSoC generator can partition the functions between cold and hot in order to benefit from these compiler optimizations.

-Specialize the instruction of boolean parameter values.

-Remove the instructions about coprocessor because the coprocessor is not supported yet. It can save time in encoding and decoding phases. The textual version of this CompCert C code would be: In particular we can easily prove: Lemma odd_SS_inv: forall n i, odd _ (FS (FS i)) -> odd n i. Proof.

The ARMv6 model in

intros n i o. apply (premises_odd_SS o). trivial. Qed.

Standard inversion happens to fail here. Note that BasicElim may work (we actually could not succeed) but would need an additional axiom related to John Major equality.

TESTS GENERATOR FOR THE DECODER

encoding in the ELF format. The second file contains the same instructions in the same order in assembly code.

The decoder has been included in a program that generates, for each instruction from the binary file, the assembly language of that decoded instruction. The second generated file can then be compared with that decoding result: the two files should be identical.

The parameter values are chosen with respect to the validity constraints to ensure that the instruction is defined and predictable. For example, the parameters of the ADC instruction (see Fig. 5.4) are Rd, Rn, and shift imm. Binary instructions are produced with different combinations of values for them. From reading the Syntax and Usage part of each instruction, we know there are several validity constraints for some instructions. Some validity constraints are dealt with during the parameter generation. For example, register Rn in instruction LDRBT cannot be PC (R15). Hence the test chooses directly values between 0 and 14 to be assigned to Rn. Some other validity constraints involve two or more parameters at the same time. Continuing the example of LDRBT, another constraint states that Rd and Rn must be different: the generator must produce two different values and assign them to Rd and Rn. Similarly, we generate the corresponding assembly code. Under each encoding table in the reference manual, the Syntax part explains the syntax of the instruction, the instruction identifier, and the same parameters as in the encoding table. The contents of the generated files are shown in Figure 8.1. The left column is a group of binary test in hexadecimal format, which are legal instantiation of ADC instruction. The right column is their corresponding assembler code according to the syntax:

ADC{<cond>}{S} <Rd>, <Rn>, <shifter operand>

They represent one group of ADC with under different combination of condition of execution and the value of the S bit.

We use the generated binary instruction as input for our decoder. It outputs the result in assembly code. Then using the Unix command diff, we can compare the decoder results and the assembly tests. Several minor issues have been detected and fixed in this way.

Chapter 9

Discussion and conclusion

We developed the certification of a part of an ARM instruction set simulator called Simlight, using the operational semantics of the C language provided by the CompCert project. Correctness proofs were performed under the interactive proof assistant Coq. A large part of the Coq specification and of the model of the simulator were automatically produced from the pseudo-code available in the ARM reference manual. A Coq proof technique for performing inversions was introduced in order to solve cumbersome proof steps in our work in a better way than Coq built-in tactics. Moreover, the size of proof terms generated by our our hc inversion is much lower than with built-in Coq inversion, making Coq type checking and compilation more efficient. Additionally, we have built a test generator for the ARM instruction decoder, which generates massive tests covering all ARM instructions.

The following sections contains an assessment on the usage of operational semantics in proving the correctness of Simlight and the feasibility of using this new approach for proving general C programs, the overall development size of SimSoC-Cert and the TCB. We conclude with prospects of future work. not that large, we think that it was worth taking this approach, given the repetitive nature of instructions. About the proof efforts, the first experiment on the correctness of ADC costed one month. The number of Coq lines for the proof script is quite large (about 3200 for the first version), especially if we compare with the 11 lines of the corresponding pseudocode in the reference manual. At this stage, we did not develop user-defined tactics. Now, using hc inversion and other user-defined tactics, not only maintenability is much improved, but the development time for a proof is much lower. Less than one week is needed for an instruction as complicated as ADC. Until now, 11 instructions were proved correct, one from each instruction category. They are given in Table 9. 

Using operational semantics for proving C programs

Example: the complete ADC instruction in Simlight

Here is the complete CompCert C code for simulating the ADC instruction (Add with Carry) in Simlight. This program contains a pretty-printed version of the CompCert C AST which was automatically derived from the pseudo-code for ADC given in the ARMv6 reference manual, using the generator described in Chapter 5. together with library functions, which were written by hand according to specifications in the ARMv6 reference manual. ; unsigned i n t f i q _ r e g s [START_REF] Bobot | Why3: Shepherd your herd of provers[END_REF] ; unsigned i n t i r q _ r e g s [START_REF] Arm | ARM Architecture Reference Manual DDI 0100I[END_REF] ; unsigned i n t s v c _ r e g s [START_REF] Arm | ARM Architecture Reference Manual DDI 0100I[END_REF] ; unsigned i n t abt_r e gs [START_REF] Arm | ARM Architecture Reference Manual DDI 0100I[END_REF] ; unsigned i n t und_regs [START_REF] Arm | ARM Architecture Reference Manual DDI 0100I[END_REF] ; unsigned char const _ _ s t r i n g l i t _ 6 [ 7 1 ] = "ERROR: s i m u l a t i n g something u n p r e d i c t a b l e ( . . / arm6/ s i m l i g h t / adc . c :%d ) \012 " ; unsigned char const _ _ s t r i n g l i t _ 3 [ 4 9 ] = " ! ( new_pc&( i n s t _ s i z e ( p r o c ) -1) ) && \042 pc m i s a l i g n e d \042 " ; unsigned char const _ _ s t r i n g l i t _ 2 [ 1 1 ] = " r e g_i d !=15 " ; unsigned char const _ _ s t r i n g l i t _ 4 [ 1 4 ] = " pc m i s a l i g n e d " ; unsigned char const _ _ s t r i n g l i t _ 5 [ 8 1 ] = "ERROR: Current mode d o e s not have a SPSR ( . . / arm6/ s i m l i g h t / s l v 6 _ p r o c e s s o r . h:%d ) \012 " ; unsigned char const _ _ s t r i n g l i t _ 1 [ 3 4 ] = " . . / arm6/ s i m l i g h t / s l v 6 _ p r o c e s s o r . h " ; extern unsigned char C o n d i t i o n P a s s e d ( struct S L v 6 _ S t a t u s R e g i s t e r * , i n t ) ; extern void c o p y _ S t a t u s R e g i s t e r ( struct S L v 6 _ S t a t u s R e g i s t e r * , struct S L v 6 _ S t a t u s R e g i s t e r * ) ; extern unsigned i n t * addr_of_reg_m ( struct SLv6_Processor * , unsigned char , i n t ) ; unsigned i n t reg_m ( struct SLv6_Processor * proc , unsigned char reg_id , i n t m) { return * addr_of_reg_m ( proc , reg_id , m) ; } void set_reg_m ( struct SLv6_Processor * proc , unsigned char reg_id , i n t m, unsigned i n t data ) { * addr_of_reg_m ( proc , reg_id , m) = data ; } unsigned i n t r e g ( struct SLv6_Processor * proc , unsigned char r e g_i d ) { return reg_m ( proc , reg_id , ( * p r o c ) . c p s r . mode ) ; } void s e t _ r e g ( struct SLv6_Processor * proc , unsigned char reg_id , unsigned i n t data ) { r e g_i d != 15 ? ( void ) 0 : _ _ a s s e r t _ f a i l ( _ _ s t r i n g l i t _ 2 , _ _ s t r i n g l i t _ 1 , 5 8 , ( unsigned char * ) 0 ) ; set_reg_m ( proc , reg_id , ( * p r o c ) . c p s r . mode , data ) ; } unsigned i n t i n s t _ s i z e ( struct SLv6_Processor * p r o c ) { return ( * p r o c ) . c p s r . T_flag ? 2 : 4 ; } void set_pc_raw ( struct SLv6_Processor * proc , unsigned i n t new_pc ) { ( ! ( new_pc & i n s t _ s i z e ( p r o c ) -1 ) ? ( _ _ s t r i n g l i t _ 4 ? 1 : 0 ) : 0 ) ? ( void ) 0 : _ _ a s s e r t _ f a i l ( _ _ s t r i n g l i t _ 3 , _ _ s t r i n g l i t _ 1 , [START_REF] Blanqui | Designing a CPU model: from a pseudo-formal document to fast code[END_REF] There are 3 memory state transitions for the concrete model. First, from m0 to m1, the parameters of ADC is allocated. Second, from m1 to m2, the parameters are initialized.

A. EXAMPLE: THE COMPLETE ADC INSTRUCTION IN SIMLIGHT

From this memory state m2, we are able to build the projection to the abstract model for processor state proc and other parameters. Then, from m2 to mfin, the statement of ADC function body is executed. The new abstract state is S.ADC step sbit cond d n so (mk semstate nil true s). It is expected to be related to mfin in the concrete model. 

B. EXAMPLE: THE PROOF SCRIPT RELATED TO INSTRUCTION ADC

Events.E0 mfin out -> proc_state_related proc mfin e (S.ADC_step sbit cond d n so (mk_semstate nil true s)).

The proof script for theorem related aft ADC is too long to be present here (∼ 600 loc). Instead of showing the whole script, we choose one of the lemmas used to support the proof of related aft ADC: same copy SR.

Before stating a lemma, in order to shorten the proof script and its readability, we give a name to the expression we focus on for the lemma.

The name cp SR is given to the ASTs of C expression:

copy_StatusRegister(&proc->cpsr, spsr(proc))

In this expression, we have two function calls to spsr and copy StatusRegister.