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Quid quid latine dictum sit, altum videtur
Roughly:
”That which is said in Latin sounds profound”.
This is a demonstration of how a text can have
multiple; layers of communication, interpretations,
referents, etc.
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ABSTRACT

The topic of this thesis is learning through social interaction, consisting of experiments

that focus on word acquisition through imitation, and a formalism aiming to provide

stronger theoretical foundations. The formalism is designed to encompass essentially any

situation where a learner tries to figure out what a teacher wants it to do by interaction

or observation. It groups learners that are interpreting a broad range of information

sources under the same theoretical framework. A teachers demonstration, it’s eye gaze

during a reproduction attempt and a teacher speech comment are all treated as the same

type of information source. They can all tell the imitator what the demonstrator wants

it to do, and they need to be interpreted in some way. By including them all under the

same framework, the formalism can describe any agent that is trying to figure out what

a human wants it to do. This allows us to see parallels between existing research, and it

provides a framing that makes new avenues of research visible. The concept of informed

preferences is introduced to deal with cases such as ”the teacher would like the learner to

perform an action, but if it knew the consequences of that action, would prefer another

action” or ”the teacher is very happy with the end result after the learner has cleaned

the apartment, but if it knew that the cleaning produced a lot of noise that disturbed

the neighbors, it would not like the cleaning strategy”. The success of a learner is judged
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according to the informed teachers opinion of what would be best for the uninformed

version. A series of simplified setups are also introduced showing how a toy world setup

can be reduced to a crisply defined inference problem with a mathematically defined

success criteria (any learner architecture-setup pair has a numerical success value).

An example experiment is presented where a learner is concurrently estimating the task

and what the evaluative comments of a teacher means. This experiment shows how the

ideas of learning to interpret information sources can be used in practice.

The first of the learning from demonstration experiments presented investigates a learner,

specifically an imitator, that can learn an unknown number of tasks from unlabeled

demonstrations. The imitator has access to a set of demonstrations, but it must infer

the number of tasks and determine what demonstration is of what task (there are no

symbols or labels attached to the demonstrations). The demonstrator is attempting to

teach the imitator a rule where the task to perform is dependent on the 2D position of

an object. The objects 2D position is set at a random location within four different, well

separated, rectangles, each location indicating that a specific task should be performed.

Three different coordinate systems were available, and each task was defined in one of

them (for example ”move the hand to the object and then draw a circle around it”). To

deal with this setup, a local version of Gaussian Mixture Regression (GMR) was used

called Incremental Local Online Gaussian Mixture Regression (ILO-GMR). A small and

fixed number of gaussians are fitted to local data, informs policy, and then new local

points are gathered.

Three other experiments extends the types of contexts to include the actions of an-

other human, making the investigation of language learning possible (a word is learnt

by imitating how the demonstrator responds to someone uttering the word). The robot

is presented with a setup containing two humans, one demonstrator (who performs

hand movements), and an interactant (who might perform some form of communicative
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act). The interactants behavior is treated as part of the context and the demonstrators

behavior is assumed to be an appropriate response to this extended context. Two ex-

periments explore the simultaneous learning of linguistic and non linguistic tasks (one

demonstration could show the appropriate response to an interactant speech utterance

and another demonstration could show the appropriate response to an object position).

The imitator is not given access to any symbolic information about what word or hand

sign was spoken, and must infer how many words where spoken, how many times linguis-

tic information was present, and what demonstrations where responses to what word.

Another experiment explores more advanced types of linguistic conventions and demon-

strator actions (simple word order grammar in interactant communicative acts, and the

imitation of internal cognitive operations performed by the demonstrator as a response).

Since a single general imitation learning mechanism can deal with the acquisition of all

the different types of tasks, it opens up the possibility that there might not be a need for

a separate language acquisition system. Being able to learn a language is certainly very

useful when growing up in a linguistic community, but this selection pressure can not be

used to explain how the linguistic community arose in the first place. It will be argued

that a general imitation learning mechanism is both useful in the absence of language,

and will result in language given certain conditions such as shared intentionality and

the ability to infer the intentions and mental states of others (all of which can be useful

to develop in the absence of language). It will be argued that the general tendency

to adopt normative rules is a central ingredient for language (not sufficient, and not

necessary while adopting an already established language, but certainly very conducive

for a community establishing linguistic conventions).
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that particular task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
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5.7 This figure shows demonstrations of task 1 (move hand to object) in the
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5.8 This figure shows demonstrations (top left) and reproductions of task 2
(draw an S shape). We can see that, as we should expect, the reproduc-
tions look similar to the demonstrations in the framing of hand relative
to starting position (top right). A few of the reproductions does not com-
pletely replicate the task in the last turn but overall the reproductions
are similar to the demonstrations . . . . . . . . . . . . . . . . . . . . . . 92
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6.1 The learning situation investigated. A human interactant (to the right)
speaks or makes a gestures, and the demonstrator (to the left) moves the
hand of the robot to show him which movement to do. This movement
can depend on either/both the current object position, the interactant
speech and/or the interactant gestures. Some tasks are non-linguistic,
such as “touch the object when it is on the top left of the table”. Some
tasks are motor responses to a linguistic signal from the interactant, such
as “draw a square around the object when the interactant produces the
acoustic wave square”. Some tasks are quasi-linguistic responses to lin-
guistic signals, such as “draw a ”w” when the interactant gestures a spe-
cific sign”. The demonstrator and interactant provide no symbols to the
robot learner, which perceives each demonstration and context through
continuous low-level sensorimotor values. Moreover, different tasks are
movements defined in various coordinate systems (e.g. absolute versus
object centric vs hand centric coordinate system) called framings. The
robot has to learn how many tasks there are, which is the control policy
for each task and in what appropriate framing it is defined, as well as to
learn which tasks should be triggered depending on the current context. 106

6.2 Blue boxes show algorithms and green boxes show data structures. The
demonstrated hand trajectories are analyzed in batch mode off line. The
membership estimates created in step 2 are used later by the on line re-
production algorithm. Step 3 always creates estimates relating to framing
but the details vary between experiments. In experiments 1 and 2, each
movement type has one correct framing, and in those experiments, this
is what is estimated. In experiment 3, the framing is requested by the
interactant, and what is estimated in step 3 of experiment 3 is the syn-
tax of the interactants sign language. This syntax will help the imitator
determine what framing to adopt during reproduction (specifically, the
estimated syntax tells the imitator which hand sign to look at for the
purposes of determining framing). . . . . . . . . . . . . . . . . . . . . . . 109

6.3 The results of the learning algorithm is used during the reproduction.
In step 1, the contexts of the groups of the membership estimates is
compared to the current context. In step 2 the framing estimates and
the group selected in step 1 is used to get the data needed by the ILO-
GMR algorithm (reevant trajectories in the currently relevant framing). . 114
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Chapter 1

Introduction

This thesis investigates social learning, where a human or artificial learner is modifying
its behavior based on interactions with a teacher. This type of investigation can lead
to the building of useful artificial intellects, and can help us better understand social
learning in humans by building computational models. One example of social learning is
when a teacher performs an action, such as trying to shoot a basketball in a hoop, and a
learner watches what the teacher does, and then attempts to do the same thing. Another
example would be a learner modifying its behavior based on evaluative comments given
by a teacher. This type of teacher behavior will be referred to as instruction signals
or teaching signals. In this thesis they are considered as instances of the same type
of information source. Both the demonstration and the comments give information
about what the learner should do. And in both cases the learner must interpret the
information. If the teacher uses words that the learner have never heard before, the
amount of learning that can take place is severely limited1. If the teacher passes the
ball to another basketball player, the learner needs to interpret this situation in order to
properly imitate the teacher. Unless the learner finds itself in a situation that is exactly
identical, it will need to interpret the situation to figure out what which part of the
scene is important to the decision whether to pass the ball or not (whether to pass to a
player could depend on things such as the skill of that player, whether or not there are
any opponents between the learner and the player, whether the player is shouting“here”,
etc, etc). If the teacher often fails (perhaps missing the hoop on some occasions), then
the learner could learn much more if it could interpret the demonstrations and make a
guess about which ones were failures (for example by analyzing facial expressions, body
language or what the teacher says after the demonstration). One of the experiments
presented includes a learner that is estimating what the evaluative comments of a teacher
means, at the same time as estimating what the teacher wants it to do. This experiment
shows how learning of how to interpret the teacher concurrently with the task can
improve performance. It also demonstrates how the learner can improve performance
by actively acquiring more useful information.

1If the learner has several hypotheses of what the teacher wants it to achieve, some of those
hypotheses might predict that action A and B should be evaluated the same, while other hypotheses
predict that actions A and B should be evaluated very differently. Thus it is possible to make updates
simply by observing that actions A and B are evaluated the same way, but this is clearly not as
informative as it would be if the teacher used words that the learner is familiar with (and even this
update is dependent on interpreting the speech as an evaluation of the learners action).
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Social interaction is the medium of learning, but it can also be the task that is learnt.
The rules: “in certain situations, when a team member shouts “here” the ball should be
thrown to that player”, and “in certain situations (such as a the learner having a good
position, and a team player having the ball, etc) the learner should shout “here”” are
perfectly good examples of what a learner can acquire through social interactions. It can
for example be learnt by observing a teacher performing these actions, or by the learner
acting and listening to verbal feedback from a teacher, or from a learner interpreting an
evaluative scalar value produced by the teacher, or any number of other social learning
situations. Social learning can be done verbally or non verbally, and the tasks learnt
can be verbal or non verbal.

The term “it” will be used for both learner and teacher throughout the thesis due to the
generality of the term. As we make points that can refer to for example robots, humans,
animals, etc there is no reason to reduce generality by talking in terms of “he” or “she”
(there is in principle nothing that prevents us from dealing with a learner that is in no
sense a person, especially in the case of narrow range applications such as an autopilot
that learns from demonstrations, feedback, etc).

The thesis will present several experiments where the learner acquires multiple skills
from unlabeled demonstrations. Some of the skills will have a linguistic component
similar to the example above where the speech act of a team member should result in a
specific learner action, and other skills will have no linguistic component at all. The same
learning mechanism is used for both types of tasks, illustrating that language acquisition
might not require any new learning strategies. If a general type of imitation learning
is useful for learning group norms even in the absence of language, and is able to learn
language, then there is no need to posit any separate “language acquisition strategy”
beyond that already used to learn non linguistic tasks. If following group norms is
adaptive also in non linguistic groups, and the resulting norm adoption strategy results
in language, this could explain the evolutionary origins of language (the possibility of
secondary adaptations resulting from reliably being born into a linguistic community
is outside the scope of this thesis). New algorithms are introduced and experimentally
evaluated in a first step towards establishing the ability of the generalized norm adopting
mechanism to learn language.

The thesis also tries to give a solid theoretical foundation gathering all types of social
learning under the same formalism. Each information source is treated as the same kind
of thing, and a learner is seen as someone that interprets or learns to interpret these
information sources. It can often be useful for a scientific project to more clearly define
what constitutes success in various situations. If the learner finds a new way of getting
the ball into a hoop that the teacher is unable to do or never considered that the learner
might do, is it then a success (for example getting a chair to stand on, or jumping up to
the hoop)? The formalism attempts to turn this into an empirical question by defining
success in terms of what an informed teacher would think.

It also allows us to see what new types of learning situations could be explored. One
unexplored avenue is figuring out how to tell a failed demonstration from a successful
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demonstration, for example by watching facial expressions and body language. Even
without this skill, it can still be possible to confidently learn a task from observing many
demonstrations. When the task is known, the learner knows which demonstrations
where failures, and can find correlations between failures and facial expressions or body
language. Being able to interpret these self evaluation signals could be useful when
learning other tasks.

The formalism starts from imitation learning and generalizes it to include a general class
of information sources that the learner can interpret. If a teacher performs a demonstra-
tion, looks at a certain object while the learner is performing a reproduction attempt,
makes a speech comment during the reproduction and finally pushes an evaluative plus
or minus button, then we call them information sources. The presented formalism al-
lows us to treat them all in a unified manner as it avoids making assumptions regarding
the semantics of a source. Each can tell the learner what the teacher wants it to do, to
the extent that the information source can be interpreted. Looking at an object could
indicate that it was important, or that it was while interacting with this object that the
learner failed, etc. The plus and minus buttons could be pushed based on incremental
progress, or absolute performance, or sometimes it might be pushed by a teacher that
did not attend the reproduction attempt properly and might have missed something
(determining if the teacher rewards incremental progress or absolute performance is dif-
ficult to do at programming time as users are different, and in case of a small number
of feedback instances, the two hypotheses could lead to different policies). It is easy
to see that speech comments are more useful if they can be interpreted correctly, but
less obviously this also includes things such as determining whether the word “good”
rewards incremental or absolute progress (perhaps “good”, “nooo!” and “great” is well
modeled as evaluating incremental progress, while “perfect!!” is well modeled as evalu-
ating absolute performance), and, as with the buttons, it might be useful to estimate
how informed the teacher was when giving the feedback. The terms teacher and learner
will be used regardless of the types of behavior the agent is interpreting (for example
demonstrations, speech comments, facial expressions, the pushing of a reward button,
tone of voice, EEG readings, eye gaze, etc). The formalism provides a general frame-
work for describing any agent that is trying to figure out what a human wants it to do,
without making assumptions regarding the type of behaviors that is interpreted.

After introducing the formalism, an experiment is presented investigating how a learner
can learn an unknown number of tasks from unlabeled demonstrations. By extending
the traditional context of imitation learning to include speech, experiments become
possible where the learner acquires words through imitation using the same framework
as non linguistic imitation. Three related experiments are presented which investigates
a generalized imitation learning strategy that is able to deal with both linguistic and
non linguistic situations. This gives us three main sections:

A formalization of social learning: To say verbally that a robot should be able to
interpret various sources of information is ambiguous and should be made concrete and
formalized (human demonstrations, facial expressions, eye gaze, etc does not contain
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a crisply specified meaning that the learner can decode). To formalize the problem, a
success criterion must be introduced. First a success criterion is introduced in a series
of simplified worlds (presented in stages where some simplifications are removed at each
stage). Then learning algorithms operating in the real world are reinterpreted and a
success criterion is introduced in terms of the teachers informed preferences. Informed
preferences can be roughly described as what the teacher would want the learner to do
if it knew and understood everything it considers relevant to the learners action choice
(for example long term consequences the actual teacher is unable to predict, or side
effects it does not see).

In the simplified setup, the complexities of the world are reduced to the point where
it becomes an inference problem of a very well known form (so that a large amount
of existing ideas, insights, solutions and approximate algorithms can be used). Then
the simplifications are removed step by step in order to gradually approach the desired
setup containing an actual human teacher in an unstructured environment. At one
stage of removing assumptions/simplifications, the problem stops being a well defined
inference problem with a mathematically defined success criteria (there will be no way of
obtaining a number representing the level of success of a learner in a specific situation),
and we must fall back to the informed preferences of the teacher defined in the next
section.

The formalism for the real world setup starts by re describing existing learning algo-
rithms as a certain way to interpret an information source. The idea is introduced where
the way of interpreting an information source can be modified based on observations,
which means that any specific interpretation of a source is an hypothesis (for example
that an observable scalar value indicates absolute success, or that it indicates incremen-
tal progress). A learning algorithm is thus referred to as an interpretation hypothesis.
The concept of informed preferences of the teacher is defined and a learning algorithm is
now viewed as an hypothesis of how inputs (for example EEG signals, demonstrations,
eye gaze, facial expressions, etc) relate to the informed preferences of the teacher. The
problem is unfortunately no longer an inference problem of a well known form with
a mathematically defined numerical success value. This means that it is no possible
to define an optimal solution and thus no longer possible to describe an algorithm as
searching for an approximation to a well defined optimal solution2. The learner has some
rule for selecting actions, which we will refer to as a policy. In addition to suggesting
policy updates, the interpretation hypotheses make predictions regarding what will be
observed. Let’s take the example where a human teacher is given one button with a plus

2The initial set of interpretation hypotheses along with update algorithms operating on them can
be interpreted as forming a prior distribution over possible informed preferences of the teacher and
over ways in which those are connected to the learners inputs. If this is taken as an axiom, then the
problem becomes an inference problem again. Success is now however possibly separated from the
optimal solution to this problem since the initial assumptions built into system might be inaccurate.
This leaves us with an inference problem that can be approximated, but we still do not have access
to a number that is guaranteed to represent actual success (the learner can however in principle be
guaranteed to perform optimally given the information it has).
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sign on it, and one button with a minus sign on it (both including a “volume” control),
and is told that it can use these to give feedback to the robot. A learner can now have
several competing hypotheses regarding how to interpret this teacher signal. For exam-
ple that the buttons are pushed comparing the learners most recently performed action
to: (i) the best action the teacher has seen (ii) the optimal action (iii) the previous seven
actions performed by the learner (iv) the previous two actions performed, etc, etc. For
a limited data set, the suggested policy updates can be quite different. They also make
different predictions regarding what interaction histories will be observed (if the learner
performs the same action in the same context for example, then the different hypotheses
will predict different changes in evaluation, in general resulting in different probabilities
for a given interaction history). Thus, given an observed interaction history, it is pos-
sible to update the set of interpretation hypotheses (discarding, changing probabilities
or modifying parameters). If the learner has access to a few reliable task policies that
are learnt by interpreting some other information source, and the interaction history of
the time these tasks were learnt includes button push data, then these task models can
be very useful when the learner chooses between the different ways of interpreting the
reward button (both the correct action and the button pushing behavior is then known).
It is in general possible to use the interpretation of one information source to learn how
to interpret another source (if the well understood source can be used to learn a task
policy, then this task policy can be used when learning to interpret another information
source).

The concept of informed preferences is designed to deal with cases such as ”the teacher
would like the learner to perform an action, but if it knew the consequences of that
action, would prefer another action” or ”the teacher is very happy with the end result
after the learner has cleaned the apartment, but if it knew that the cleaning produced a
lot of noise that disturbed the neighbors, it would not like the cleaning strategy”. After
formally introducing the concept of an informed version of the teacher, a learner action
choice is judged according to the informed teachers opinion of what would be best for
the uninformed version.

This means that even if the teacher has a plus and a minus button, or gives feedback
in some other way (such as saying ”stop doing that”, ”be careful with the vase, it’s
expensive” or ”good robot”), the goal is not to accumulate as many plus button pushes
or as many ”good robot” utterances as possible (but instead to do what the teacher
would want it to do if it where properly informed). These things are instead imperfect
indicators that the learner did good. One big difference is when hiding a mistake will
lead to higher reward. Another is when consistently performing well will result in the
teacher deciding that the learner knows the task (and thus no longer see any point in
pushing the reward button in order to teach the learner what to do).

Learning an unknown number of tasks from unlabeled human demonstra-
tions: An experiment is presented where the robot has access to a set of demonstra-
tions, and knows that each demonstration is of some task that the human wants it to
perform. It does however not know the number of tasks, what demonstration is of what
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task, and it is not given access to any symbols or labels (there is no additional infor-
mation provided besides that which is contained in a set of demonstrated continuous
hand trajectories and the rest of the continuous context). The teacher is in this case a
demonstrator and is attempting to teach the learner (which is an imitator) a rule where
the task to perform is dependent on a feature of the context, specifically the 2D position
of an object. The objects 2D position is set at a random location within four different,
well separated, rectangles (one for each of the four tasks) during both demonstrations
and reproductions. The learner observed the position of its hand in three different co-
ordinate systems. A task can be defined in the robots hands position in a coordinate
system centered on the robots body, or centered on the starting position of the robots
hand, or centered on the object (for example ”move the hand to the object and then
draw a circle around it”, or ”make an ”S” shape where the top of the “S” shape is at
the position of the imitators hand at the start of the reproduction attempt”). To deal
with this setup, a local version of Gaussian Mixture Regression (GMR) was used called
Incremental Local Online Gaussian Mixture Regression (ILO-GMR), which was intro-
duced in [102] and [104]. A set of data points is selected based on similarity with the
current context, and then a small GMM is built using only this data. The local GMM
is used to generate output, which leads to a new position, a new set of local points and
a new local GMM. What context is the closest depends on what coordinate system one
is measuring distances in (in two different contexts the hand of the imitator could be
at the same place relative to the object but not relative to the robot for example). An
algorithm was proposed to deal with this by comparing different local GMMs created
with the data obtained using different framing assumptions.

Learning linguistic and non linguistic tasks using a generalized imitation
learning strategy: The teacher is again a demonstrator and the learner is again an
imitator. The imitator is presented with a setup containing two humans, one demon-
strator (who performs hand movements), and an interactant (who might perform some
form of communicative act). The interactants behavior is treated as part of the con-
text and the demonstrators behavior is assumed to be an appropriate response to this
extended context. Two experiments explore the simultaneous learning of linguistic and
non linguistic tasks (one demonstration could show the appropriate response to an inter-
actant speech utterance and another demonstration could show the appropriate response
to an object position). The imitator is not given access to any symbolic information
about what word or hand sign was spoken (these are instead represented as a point in a
low dimensional continuous space computed from the raw sensor data), and must infer
how many words where spoken, how many times linguistic information was present, and
what demonstrations where responses to what word. Another experiment explores more
advanced types of linguistic conventions and demonstrator actions (simple word order
grammar in interactant communicative acts, and the imitation of internal cognitive
operations performed by the demonstrator as a response).
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The topic of this thesis is agents trying to figure out what a human wants it to do. A
formalism of this setup is proposed that attempts to cover all agents trying to figure out
what a human wants it to do (referred to as learners), and it tries to avoid making as-
sumptions about the semantics of the information source that the learner uses to figure
this out. Experiments are also presented that focus on an agent that learns several dif-
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formalisms of related areas, all forms of social interaction where the agent investigated
can be described as trying to do what a teacher wants it to do, as well as literature on
language learning.
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2.1 Existing research on various types of learners

There are many ways to learn from social interactions, both in terms of what is learnt,
and in terms of what type of information is used to learn. It is for example possible
to learn by observing a teacher interacting with another human, and then imitate the
teacher as it reacts to the environment and to what another other human is doing or
saying. In this situation it is for example possible to learn normative rules for how
one should respond to various behaviors of other people, such as speech acts. Another
way to learn something is by the teacher taking the learners hand and moving it in a
trajectory, for example in a dance move, or to demonstrate how to handle an object. The
dance move and the tool use could for example also be learnt from observing a teacher
performing the same action, allowing a wider range of tasks but requiring the learner to
solve the correspondence problem [137]. Other ways of learning from social interactions
would be learning from speech comments, necessitating learning to understand those
comments (see [88] and [90]). If social learning is broadly construed, it could also
include the type of reinforcement learning where a teacher pushes an evaluative button.
This broad view of social learning comprises several research disciplines that can all
be viewed as a teacher performing some sort of behavior that can be referred to as
instruction or teaching signals, and a learner interpreting these signals and learning
from them.

An attempt is made in this thesis to formalize all these types of learning in a unified
manner, which means that related work will include all the types of research that is be-
ing formalized, as well as research related to the experiments presented. By its unified
representation of social learning, the formalism opens up many new possible avenues of
research, since viewing a research field in a new light can will often lead to new ideas of
how specific projects can be extended or combined. Perhaps the most prominent exam-
ple is a learner that is learning how various information sources should be interpreted
concurrently with learning to perform multiple tasks. These new research avenues are
a significant contribution of the thesis and will be discussed while covering the relevant
previous work. Learning from demonstration has focused mostly on learning single sen-
sorimotor skills, where what to do is determined by things such as the position of an
object. Linguistic learners have treated language and action learning as two different,
but highly interconnected, processes. This thesis presents experiments where language
and action learning are seen as two special instances of a single imitation learning system.
Research on the type of reinforcement learning where a human provides the reinforce-
ment signal can be re interpreted as a special case of social learning. The learner that
is trying to figure out what a human providing the reinforcement signal wants it to do
might have to re interpret the meaning of this signal, just as evaluative speech com-
ments needs to be learnt / interpreted. A learner might need to determine whether the
reinforcement signal indicates incremental progress or absolute performance (the two
models will in general make different predictions of what interaction histories are more
probable, and imply different policies, making it possible and useful to estimate which
one is correct). In a similar way it would be possible to estimate how informed the
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teacher was when the signal was provided (different hypotheses of when the teacher is
informed will in general predict different interaction histories, and for a limited amount
of observations two different hypotheses of teacher informedness can result in very differ-
ent policies). The learner is no longer maximizing the reinforcement signal, but instead
trying to interpret the signal. There is still however a strong connection between the
reinforcement learner and the learner presented in the proposed formalism.

The use of the word ”teaching signal” should not be taken to imply that the teacher is
necessarily transmitting some aspect of an established interaction protocol, and indeed
all models can be applied even if the teacher is unaware of the learners existence 1.

2.1.1 Imitation Learning/Learning from Demonstration

Research setups where one agent is trying to replicate the actions taken by another agent
is both related to the experiments presented and is at the core of what is covered by
the social learning formalism. This research is usually referred to as imitation learning,
programming by demonstration or learning from demonstration. In [95], an agent based
view of imitation learning is presented and five central questions are put forward. The
imitator must decide who, when, what and how to imitate, and someone must address
the question of what constitutes success (for example formalized by an experimenter
or the creator of an artificial imitator). The question of what constitutes success is
a central theme of this theses, and in the formalism presented, success of imitation is
evaluated according to the goal of the learning agent, roughly to try to figure out how
an informed version of a teacher would like it to act (specified further in section 3). If
the learner has access to several types of interaction, the question of when to imitate
is thus cast as a question of which type of interaction is most efficient for figuring out
what the teacher wants it to do (an alternative to requesting a demonstration could be
to perform an action and then try to interpret the teachers response to that action).
The thesis will also present experiments that mainly deal with the “what to imitate”
question. In [95], the question of what the imitator is trying to achieve is left open
(and depends on what type of animal the imitator is or what type of robot it is, etc).
If the imitator has a specific goal whose progress it can measure and that is unrelated
to the teacher/demonstrator, then the who and when questions can be answered with
respect to that goal (the formalism presented is different since the goal is dependent
on a teacher whose mind is not necessarily easy to read). We can take the example of
a robot that is trying to maximize the amount of states it can reach in a measurable
outcome space, and an animal that is trying to maximize food (for example given as
rewards for imitation by a human). Who to imitate is then a question of who gives the

1There is for example nothing problematic with having a child inferring normative rules or learning
how to use a tool by observing adult humans interacting with each other, even if they are unaware
that the child is watching. In the same way, there is nothing strange about having an artificial learner
acquiring linguistic conventions by looking at two humans interacting in a situation where they are not
even aware that they are being observed.
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most informative demonstrations relative to current skill levels (producing reproducible
action with outcomes it could not previously achieve) or a question of who gives it the
most food. When to imitate depends on how effective this is for learning relative to
other learning strategies or a question of whether imitation is the most effective way
of getting food. The how and what questions also becomes well formalized (imitation
of which parts of the demonstration results in food), meaning that the simultaneous
exploration of all four questions is a well formed problem. In [40] all four questions are
simultaneously addressed by an artificial imitator that is trying to expand the amount of
outcomes it can reach through strategic and active life long learning. But in general, the
setup where an imitator faces these four questions simultaneously is not well explored.

The field has mostly focused on the what and the how questions where two large tech-
nical issues that algorithms must take into consideration has been to maximize at
the same time genericity and accurate generalization. The goal has been to develop
techniques that may allow a robot to learn various context-dependant skills without
the need for tuning of parameters for each new skill: this implies that the dimen-
sions/variables that the robot can measure in demonstrations should be higher than the
number of dimensions that are relevant for determining the action to be done during
a (sub-part of) a skill. Indeed, different skills might be determined by different vari-
ables/dimensions/constraints. If a robot can to learn the “essence” of a skill, this will
allow it to reproduce demonstrations successfully in contexts which are not exactly the
same as those of the demonstration. If all details of demonstrations are considered then
the learner will never find itself in a situation that is similar to a demonstration, since
there is always something that is different, and if the wrong details or the wrong ab-
stractions are used, demonstrations might seem to have been made in similar situations
even if they are not. If the learner frames the demonstrations correctly (that is, attends
to the relevant details or abstracts the demonstration in the right way) it can find those
demonstrations that really are relevant to the current context. In [96] several learning
from demonstration projects are covered, classified according to how demonstrations are
gathered, and according to the type of algorithm used, as well as discussing some ways
of dealing with imperfect demonstrators. It also classifies inverse reinforcement learning
as an instance of learning from demonstration. In [64] research into robot programming
by demonstration is summarized and different types of algorithms and ways of encoding
tasks are presented.

In [137] the correspondence problem is discussed. When an imitator is observing a
demonstrator perform an action, it must decide how to map the actions of the demon-
strator into actions in its own action space. This problem becomes more difficult the
more the embodiments of the demonstrator and imitator differ. Imagine a child observ-
ing a much bigger adult demonstrator clap its hands. Should the hands of the imitator
be at the same height above the floor, or should the angles of the arms be the same?
Should the maximum distance between hands be the same, or should the angles be the
same? If the maximum distance should be smaller (so that arm angles can be mim-
icked), it is not physically possible to simultaneously mimic the speed of clapping, the
speed the hands hit each other and the relative speed curve of the hands (unless the
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angles are much larger, then the hands of the imitator can only impact each other at
the same speed as the adult, if it either increase the pace of clapping or take a pause at
some point during the movement). This simple, “clap your hands” example shows that
there are difficult questions to answer about what the essence of a movement is, even if
embodiment only differ in size, and the movement is only relative to the agent itself. In
[121] a framework is presented, mapping one or several parts of a demonstrators body
to one or several parts of an imitators body for example mapping the position of the
two hands of a human demonstrator to the nose of a dolphin imitator (so that imitation
means that the dolphin does the same thing with its nose as the human demonstrator
did with its two hands, for example “punch” a ball). In [122] a focus is instead on effects
on objects, and various examples are presented showing how the imitation differs as
different mappings are used.

One method that has been used to learn this mapping is presented in [116] where a robot
observes a human that is mimicking its motions. The robot learns the intended mapping
of the human since the human performs the movement that it considers to be best
corresponding to the movement of the robot. One common method of demonstration
that avoids dealing with the correspondence problem is to tele operate the robot, for
example using a joystick to remote control a robot helicopter [67], and the same effect
can be achieved by physically directing a robots body, as in for example [127].

One approach is to define a set of primitive behaviors or actions and segment the problem
into several different sub problems. The robot needs to learn how to reproduce the
individual behaviors, how to classify parts of a demonstration as a series of behaviors
and find an algorithm that can learn from a demonstration when described as a list of
behaviors (including how to generalize to new situations using this list). The task can be
encoded using possibly hierarchical, graph based models, for example a Hidden Markov
Model (HMM), with parameters set using machine learning algorithms. Examples of
this approach include [117] working with a wheeled robot and [118] and [119] which
proposes to use a hierarchical model to encode household tasks such as setting the
table. [120] encodes a demonstration using a set of pre defined postures, extracting task
rules in the space of these postures. [120] also explores the question of granularity as it
is necessary to decide if a given part of the task should be a primitive or composed of
more finely grained primitives.

Demonstrations can be encoded at the trajectory level. Instead of building a model
that operates on discrete primitive actions models are built that operates in continuous
spaces. These spaces could for example be in the joint space of the robot or in the
operational/task space, such as the position, speed or torque space of its hands, mapping
sensory inputs to motor outputs or desired hand velocities (which can be seen as different
levels of granularity). In the early work of [126] the set of acceptable trajectories is
spanned by the trajectories seen during the demonstrations, and [128] introduces a non
parametric regression technique based on natural vector splines to build a representation
of a trajectory either in cartesian (sometimes referred to as task space) or joint space,
from several demonstrations. In [129] a method inspired by dynamical systems and
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attractors is presented using recurrent neural networks to learn different motions and
switch between them. The mimesis model proposes to encode a trajectory as a HMM.
Reproduction is achieved using a stochastic algorithm on the transition probabilities of
the HMM.

A number of authors have proposed to encode sensorimotor policies as sub-symbolic
dynamical systems whose dynamical output is determined by both internal parameters
and an input context [64]. These dynamical systems can be implemented/modelled as
complex recurrent neural networks [48][7][49] or as more traditional statistical regression
techniques [77][87]. These are interesting as they in general do not make assumptions
regarding the type of outputs and inputs they are dealing with, making them suitable
for use when the context has been extended to include the communicative acts of an
interactant. In practice, output has typically been motor commands and input context
has been a compact encoding of the past sensorimotor flow [69][64][67] including poten-
tially internal variables that may encode simple things such as motivational states but
also predictions of the future or hypotheses about properties of the environment that
cannot be observed directly [80].

Calinon et al. showed, through a series of advanced robotic experiments [108, 101, 125,
69], that the Gaussian Mixture Regression technique, introduced in [130], could be very
successfully and easily used for encoding demonstrations through a GMM tuned with
an expectation-maximization algorithm [109], as well as for extracting their underlying
constraints and reproducing smooth generalized motor trajectories. This approach al-
leviates much of the work from the programmers, who only need to find the number of
gaussians for each task. Basically the same algorithm can be used for learning a wide
variety of tasks and it robustly reproduces smooth movements. Once the model is built,
and following for example the time-independant approach presented in [66], it can be
queried quickly with the current state giving the desired action (minimizing the needed
computation time once the model has been learnt). This is a very powerful method but
it does have some limitations, that prevent it from being directly used when one wants
a robot to learn incrementally and online new tasks (using a large number of gaussian
is computationally expensive, and specifying the number of gaussians must either be
done by hand or recomputed every time a new task might have been demonstrated).
This is especially true when the programmer does not know in advance the number and
the complexity of tasks, and when the demonstrator is not allowed to provide categori-
cal information about the demonstrations (such as “demonstration number 7 is of task
number 2”).

Recent and sophisticated statistical inference methods have been devised to learn these
context-dependant skills based on the direct modelling of the skill with such dynamical
systems. The learning is divided into several interacting parts: 1) given that the robot
typically observes much more variables than those that are relevant for the task, dimen-
sionality reduction techniques have to be used for finding the right projections/framing
of the full sensorimotor space history onto the dimensions which compactly describes
the relevant parts of the context [70][71] 2) the internal parameters of the model of
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the dynamical system (neural network or regression method), which given the context
representation determine the dynamical output, must also be learnt [65][7][49]. These
recent methods include techniques such as Locally Weighted Projection Regression [73]
Gaussian Process Regression [74][75][76] or Gaussian Mixture Regression [65] used in
conjounction with dimensionality reduction techniques such as principal component
analysis [70], independant component analysis [71] or other techniques like ISOMAP
[72].

In the case of a single task (so that the number of gaussians does not have to be changed
and there is no question of which task is demonstrated) a more incremental approach
has been proposed in [101], but it still requires re computation of the model and it
is not obvious how to extend it to the context of incorporating a demonstration of a
new task within this framework. Indeed, in this approach to GMR when a new task
is introduced, the number of gaussians should typically be increased manually by the
programmer. Even if this is done automatically one would have to somehow inform
the robot that the demonstration is of a new task and then wait for the entire model
to be rebuilt after automatically discovering the number of gaussians, which becomes
computationally exponentially more difficult as EM needs to tune the parameters of
more and more gaussians in the mixture. What we would like is to have a demonstrator
teach the robot a task and and that at any point he can start teaching the robot a
completely different task (perhaps because the robot does the current task well or if
the demonstrator does not think he is able to learn the current task), but avoiding any
additional programmer intervention or global/heavy recomputation of a model. In this
framework the robot needs to infer what task he is to perform based on the environment
only. If the demonstrator performs a number of tasks several times (not necessarily one
task several times followed by another task, etc), the imitator should be able to estimate
which demonstration is of what task without any programmer intervention or symbol
passing.

In [107] we can see another approach to studying imitation learning, in this case using
the parrot Alex. Alex is shown to be able to learn a large number of quite complex
tasks when trained in a very specific type of setup. Alex is motivated by food, but
the computational problems he must solve are similar to that of our artificial agents.
Specifically Alex can not use the simulation theory of mind to figure out what a human
wants it to do (he can not think “what would I have meant if I was doing that”), since
his cognitive architecture is so different from the humans it is learning from. This
is interesting for it‘s similarity with artificial learners that do not share the human
cognitive architecture (either due to the obvious technical difficulties in implementing
that, or because it is desirable to build a robot with a different type of mind). The
experiments with Alex thus show that it is possible to learn quite a bit of interesting
skills without using the simulation theory of mind.

This thesis will present experiments that moves beyond the usual setup with either
a single task or labeled demonstrations. Previous work that explores the same issue
includes [65], where two different tasks are learnt from unlabeled demonstrations (the
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starting position determines which of two different ping pong swings to perform). The
imitator is not told the number of tasks or what demonstrations is of whet task. The
problem of multiple tasks is also dealt with in[83] and [84] (this research is discussed at
greater length in the following section about related work in language learning).

It would also be nice if a new demonstration could immediately be incorporated online
and incrementally during the teaching process. To achieve these goals we use an In-
cremental, Local and Online formulation of Gaussian Mixture Regression (ILO-GMR),
which was introduced in [102] and [104]. The central idea of this technique is to build
online and on-demand local Gaussian Mixture Models of the task(s).

2.1.2 Learning from feedback

The idea to let the task model be complemented by feedback from the demonstrator
upon reproductions as well as by self-exploration actions done by the robot is presented
in [76][77], giving an example of how to combine multiple sources of information from
social interaction. In [67] an imitator learns to perform helicopter acrobatics and its
skill surpasses that of the teacher (this research exemplifies how important it is for a
formalization of social learning to allow a learner to become better than the teacher).

It has also been proposed that learning such context-dependant skills could be achieved
through inverse reinforcement learning (see [78] for some early work and [79] [91] for
recent overviews): instead of directly modelling the skill at the trajectory level with
a dynamical system, a first inference step is performed that consists in trying to infer
the reward/cost function, i.e. the constraints, that the observed demonstrations are
supposed to optimize. Such a function can for example be a numerical assessment of
how much food gets into the mouth of the doll in the case of a set of doll feeding
demonstrations, or how close the stone of Steve arrived to the rabbit if the inferred
intention of Steve was actually just to hit the rabbit with the stone. Thus, this is a
technical approach to learn directly the goal/intention of the demonstrator. When an
hypothesis of reward function has been generated, then the learning agent can search
for the adequately encoded dynamical system (including encoding of the context) that
allows it to maximize the corresponding rewards. The drawback of this approach is
that it is difficult to design a hypothesis space of reward functions which is at the same
time flexible enough to learn a variety of tasks and allows for efficient statistical search
and inference. The advantages of this approach is first that it allows potentially better
generalization by letting the robot self-explore alternative strategies to achieve the goal
that may be more efficient or more robust than those used by the demonstrator (e.g.
see [67]), and second it naturally makes it possible to take advantage of reinforcement
feedback from the demonstrator during the reproduction attempts of the robot. In [92]
three different drives is contrasted, following non social baseline preferences, emulation
and imitation. Imitation as defined in [92] refers to replication of the intentions of a
teacher, while emulation means to replicate the effects that the teachers actions had
on the world. Emulation is used to describe a sort of non shared intentionality type
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of imitation that takes place when the learner notices that doing the same thing as a
teacher will result in an effect that is interesting on its own.

2.1.3 Combinations and studies of biological systems

It has to be noted that these various approaches to learning by imitation can also nat-
urally be augmented by more complex interactions involving things such as the demon-
strator explicitly drawing the attention of the learner towards the relevant aspects of
the context using social cues (e.g. see [80]). Thus, this family of approaches adopt a
non-restrictive broad view of learning by imitation, by contrast to more restrictive def-
initions sometimes used and which have lead some researchers to argue that “learning
by imitation is limited because the observed action does not always reveals its meaning
[...] In order to understand an action, a learner will typically need to be provided with
additional observation given by a teacher who demonstrates what is crucial: the goal,
the means and - most importantly - the constraints of a task” [5] (for the same line of
thinking, see also [82] and [81]).

Combinations of evaluative feedback and demonstrations have been explored in several
different settings. In [98] the learner is provided with demonstrations, and the teacher
is able to provide evaluative feedback by indicating parts of a reproduction where the
learner did good or bad. While [99] does not explicitly say that it combines combining
different kinds of social learning feedback, if we view the motor primitives as a set of
demonstrations (or a set of demonstrated skills), then the reinforcement signal acts as
a second source of information.

Several studies have also investigated the actual behavior of non expert teachers, for
example in [124], where different interaction protocols is tested on non experts to see
how they perform in actual situations. In [89], it happens that teachers give rewards in
order to encourage a learner. Such a teacher would present an obvious problem for any
learner built on the assumption that rewards perfectly measure performance. In general,
the problem of learning how to interpret teachers is not very well explored. In [88] and
[90], the issue of how to learn the meaning of the teachers feedback is explored. The
learner must figure out what the task is, and at the same time refine its interpretation
of the teachers guidance and evaluation of its performance (a learner might for example
refine its interpretation of comments such as: “go right” or “bad robot”).

2.2 Related formalisms

Since a big part of this thesis consists in providing a formalism of social learning, we
offer a survey formalisms of sub sections of social learning.
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2.2.1 Formalisms of imitation learning

Formalisms of imitation learning have taken two main forms: classification of tasks and
mathematical formalisms.

In the classical work [123] an algebraic framework is specified and a success criteria is
defined for imitation learning. The set of imitator and environment states is referred
to as X, consisting of the states at each instance of a time series (where each time
instance contain for example: states internal to the imitator, the fact that it is holding
an apple, states in the environment, etc). The set of demonstrator and environment
states is referred to as Y . Both X and Y is contained in the state set Z. Finally success
is defined as minimizing a distance metric d : Z×Z → < (where 0 is optimal imitation).
There are three ways in which this is not suitable for the purposes of this thesis; (i) it is
not clear how such a distance metric should be obtained as demonstrator evaluation is
problematic, for example when a human demonstrator is not aware of everything that
happened, (ii) it does not include the possibility of other types of information sources
besides demonstrations (which is an important part of the presented formalism), and (iii)
it can not formalize the situation of non optimal demonstrations (even given a correct
framing and a perfect distance metric between imitator behavior and a demonstration,
the situation where a demonstrator simply failed at achieving the task perfectly can not
be handled properly). Imagine for example a demonstrator trying to shoot a basketball
in a hoop and failing most of the time (a situation an imitator can infer a goal from,
especially given complementary information sources). Even if the imitator has identical
embodiment, and is in an identical situation to a demonstration, it should not miss on
purpose if it knows what the goal was and is able to achieve it, even if the demonstrator
did miss in the same situation. But according to the formalism in [123], missing the
shot in this situation is always an optimal action, no matter what the demonstrator
thinks about this (as long as the shot is missed in the exact same way, it is optimal
per definition). [120] describes in a comprehensive way in which one could represent
correspondences where embodiments of demonstrator and imitator differ significantly. A
human demonstrator might punch a ball with both hands, and a dolphin imitator could
map the movement of the two hands to the movement of its nose or its tail, allowing it
to transform some demonstrations into desired movements of its own body.

The summary provided in [96] also offers a formalism for learning from demonstration.
The demonstrations are seen as generated from a function mapping inputs to outputs,
and the goal of the learner is defined as approximating that function. This leaves the
question on how to do better than the demonstrator (see for example [67] for an imitator
that outperforms the demonstrator). The question is discussed in [96] and one solution
offered are to either filter out bad demonstrations or smooth them over with regression
techniques. This diverges from the stated definition of success where the learner is to
approximate the function that generates the demonstrations, and it does not deal with
the case where the teacher is never able to achieve optimal performance (for example
attempting to teach a robot how to throw a ball as far as possible, where the robot
could in principle throw the ball much further than the teacher). The other approach
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presented is to seek feedback. This is strongly in line with the approach taken in this
thesis where multiple sources of information is used by a learner to figure out what a
teacher wants it to do, but it falls outside of the [96] formalism. In [97] for instance,
where reinforcement learning is used to improve on suboptimal demonstrations, the
success criteria of the reinforcement learning framework is used and the demonstrations
are useful to the extent that they speed up learning (a learner that is only interested in
maximizing a reward function could tackle the questions of who and when to imitate in
a way similar to [40].

In [138] an attempt to categorize imitation learning is made. The focus of this work is to
classify various imitation learning tasks in terms of what type of goal the demonstrator
would like the imitator to perform, for example replicating the exact movement, or
replicating the end state of an object manipulated. This focus is not the same as what
is attempted here, where defining success is an important aspect.

In [139], a formalism is presented for learning from demonstration. It deals with tele
operated robots in cases where the demonstrator has a clear understanding of its goal.
Besides the fact that it is not restricted to tele operated robots, the presented formalism
is also more general in that it covers other types of information sources (eye gaze,
a reward button, facial expressions, speech coments, EEG readings, etc) as well as
demonstrations. The information spaces and related ideas are however quite similar,
and the presented formalism can be seen as building on the ideas of [139].

2.2.2 Formalisms of feedback learning

Reward maximization [140] is a well formalized and well explored research area with
significant overlap. A special case of reward maximization is the setup where a teacher
is giving rewards to a reward maximizer, and the reward maximizer is trying to figure
out how to get the maximum amount of reward. If the best way of getting reward is
to do what the teacher wants it to do, the problem faced by the reward maximizer is
identical to the problem faced by the learner as specified in the formalism proposed
in this thesis. The learner wants to figure out what the teacher wants it to do since
doing what the teacher wants it to do is its primary goal, and in this case the reward
maximizer wants to figure out the same thing since it is the best way to get a reward.
One example of where the optimal behavior of the two formalisms diverge is when it is
possible to hide a probable mistake from the reward giver, and doing so will result in
higher expected reward. If making sure a teacher sees the probable mistake will result
in more informative feedback, this could very well be the optimal solution for a learner
(while the reward maximizer will always maximize the reward given).
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2.3 Related work in language learning

The adoption of linguistic convention can be seen as the adoption of normative rules
and therefor covered by the presented formalism. This research is also relevant due to
the link with presented experiments. Some of the experiments presented in this thesis
will involve an artificial learner that is observing one human teacher and one other
human, referred to as an interactant. The teacher responds to the current situation,
which will be referred to as the context, consisting of objects as well as actions of
the interactant (speech utterances and hand gestures). The learner will perceive the
context as the position of one or several objects, as well as the continuous, non symbolic,
representation of the interactants behavior. An interactant speech utterance or hand
gesture is transformed from the raw sensor readings into a point in a three dimensional
space, making them similar to the object positions from the learners point of view. The
part of the context that makes the teacher act could be an object position, a speech
utterance or hand gesture of the interactant. The learning of tasks that look linguistic
to an outside observer is here viewed as not different in kind from the learning of tasks
that depend only on object positions. Many of the methods for imitation learning
described above does not make assumptions regarding the type of inputs the imitator is
learning from, making them suitable for learning of skills involving speech or gestures.
The fact that we are now dealing with an imitator that is learning how to respond to
speech means that it is useful to contrast these experiments with various approaches in
language learning research, especially the approaches that involve both language and
action. The interaction of language and action has been studied both by examining
natural systems and by building artificial systems. The following survey of language
learning research is taken to a large degree from the article [103].

2.3.1 In natural systems

Even though language is no longer treated as an abstract symbolic system, autonomous
from its users and its use in a physical and social reality, it is still seen in the litterature as
a system separate from the action system. Even when the language system is grounded
in the action system, they are seen as separate. There is now an extensive literature
exploring the links between action and perception, founded on the central theoretical
hypothesis that sensorimotor skills/action, social interaction skills, and linguistic skills
develop in parallel and have a strong impact on each other [5][1]. As argued in [5],
a recent review paper establishing a research roadmap for this domain in the future,
a central challenge is the understanding of how language and action-perception learn-
ing and representations are integrated, both functionally and in their brain and social
substrates.

This theoretical approach is actively pursued in several cross-fertilizing domains [6][2][3][1].
First of all, neuroscience has highlighted the strong interactions and interdependances
of brain areas related to language and action-perception [4][6]. These brain interactions
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support corresponding theories in both developmental psychology and cognitive linguis-
tics about how language is grounded in action and perception [8] [9][10][100][14][15][12][13].
A central idea in this litterature is the argument that meanings are fundamentally rooted
in/represented in terms of sensorimotor affordances, i.e. the potential actions that are
associated to a given referent, even for abstract linguistic concepts [12][13][10][14][15].
This idea has been explored in particular to try to address the “symbol grounding prob-
lem” [16]. The difference with the approach proposed in this thesis is that there are still
symbols that needs to be grounded (in this case by being represented in terms of sen-
sorimotor affordances), instead of using a more general strategy that adopts linguistic
conventions in the same way as non linguistic conventions. The learner has a strategy
for adopting rules regarding how to respond to non linguistic contexts. It uses the same
strategy when it is adopting rules regarding how to respond to communicative con-
texts by doing physical actions, performing communicative acts or performing internal
operations. This dissolves rather than solves the symbol grounding problem.

In addition to the strong influences and constraints that action and embodiment im-
pose on language, the Whorf-Sapir hypothesis at the beginning of last century [17] has
proposed that perhaps language itself in turn can influence the way humans categorize
the sensorimotor world. Recent experimental results [18] has added to the long running
controversy related to these ideas.

Further than showing that language and action systems show strong interactions and
develop in parallel, some research results even show that there are strong similarities in
the very structure of the language and motor systems. Indeed, motor systems have been
shown to be highly modular and compositional, in addition to the obvious capability of
self-extension and learning [11][19][20][21]. These structural functional homologies are
also consistent with the homology between the F5 region in the monkey and Broca’s re-
gion in humans, pointing towards evolutionary linkages between the motor and language
systems [1].

There are also other important ways in which language and action interact, especially
as language acquisition happens mainly through social inter-action, where action and
embodiment, through for example pointing and gazing gestures for achieving joint atten-
tion [24][25][26], are essential for helping language learners to guess the meaning of new
words and constructions through the establishment of joint intentional understanding
[22][23][24][25].

2.3.2 The role of shared intentionality in language acquisition

Shared intentionality is postulated by Tomasello to be important for language acquisi-
tion [23]. Two or more individuals are engaged in a shared intentionality activity if the
goal of each individual is that the group succeeds, and this is common knowledge to each
individual (the goal, and the fact that everyone share this goal, is part of the common
ground). A simple example is two people jointly lifting a sofa and where both are certain
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that they are working towards the same goal (this situation is importantly different from
to two people, each holding an end of a sofa, and each having the same goal position
of the sofa, but neither one having any idea why the other is holding the sofa, or what
the other is trying to do). Shared intentionality facilitates language by reducing the
set of possible meanings of communication and as a motivator for helpfully informing
others. It is also interesting to note that some acts can be seen as somewhere in between
communicative and non communicative, for example one of the people starting to very
lightly tilt the sofa. In the case of shared intentionality this could be interpreted as “we
should hold the sofa in another way”.

The experimental setup of the language learning experiments presented in this thesis
adds a complimentary way in which shared intentionality facilitates language learn-
ing. The proposed imitator is attempting to figure out what it should be doing from the
actions of the demonstrator, which is fundamentally different from watching the demon-
strator for the purpose of building a world model. It needs to notice ”the demonstrator
follows rule x”, as opposed to discovering ”the tribe has a set of established norms and
acts in a way such that following rule x is beneficial”. It is easy to imagine how this could
be true in a human tribe when language is already established (for example since non
linguistic individuals may have trouble forming social relationships and or have practical
difficulties in cooperating). If it is beneficial for an individual to learn language, this can
be seen as an enforcement mechanism (the tribe will treat those that adopt normative
linguistic conventions better than those that do not). If an agent adopts normative
rules without needing to see a benefit, it needs “only” figure out what rule the others
are following. An agent that needs to see a benefit for it to adopt a normative rule
has an extra inference to make before seeing the point in adopting normative linguistic
conventions, and it needs to be born into a group that is already linguistic enough that
there is a benefit to adopting these rules. For this reason, the latter type of learning
is less conducive to language, both due to the extra inferences required, and due to
the fact that language can only be learnt when there is an enforcement mechanism al-
ready established. An agent that has no predisposition to adopt normative rules could
in principle discover that it is beneficial to it to adopt the local linguistic conventions
by observation (if it is born into a group that is already linguistic) but it undoubtedly
seems more likely that an agent that unquestioningly adopts normative rules will do so
(and it would do so even if only its parents and a small number of others have these
conventions). Let’s examine how an imitator might come to adopt the rule “when I find
berries I should say “berries” and point them out to people that do not know about
them” using either one of two types of imitation learning. If the learner is only using the
observations of the demonstrator to build a predictive model of the world, it would need
to observe not only other people doing this, but it would also need to observe instances
where this is not done, and the person not doing it was punished by others (or missed
out on a reward given to those that follow the rule). This requires not only that they
know that it was the berries that triggered the action (which is a common problem for all
types of imitators), but also that they figure out that the reward/punishment was due to
following/not following the rule (as opposed to all other things the punished individual
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did and did not do). It also requires that the rule is already so well entrenced that it has
a system of enforcement. An imitator that is using observations of the demonstrator to
figure out what it should do, “only” needs to know that it was the berries that triggered
the utterance. The behavior might be adopted without already being well established
and without any established enforcement mechanism (and there is no need to observe
any negative examples and figure out what triggered the punishment).

In the account of Tomasello, chimpanzees do not participate in activities of shared
intentionality, and this is proposed as the main factor explaining their lack of language.

Chimpanzees are capable of estimating others perception, knowledge and goals. For
example, when a chimpanzee wants an object that is controlled by a human they can
differentiate between the human not trying to give the object and the human trying but
failing [27] (they also understand that others make inferences [28] but not that others
can have false beliefs; see [29] for a comprehensive overview of how they model other
minds). To illustrate how the lack of shared intentionality hinders ape communicative
abilities we can look at [32] where a chimpanzee that is looking for food and knows that
the food is in one of three locations, will not favor the location pointed to by a human.
The chimpanzee follows the pointing to the location but does not assume that the human
is trying to help it, and thus the location the human is indicating is not assumed to be
more likely to contain the food than other locations (if the human appears to be looking
for food and tries but fails to reach the location, then the chimpanzee understands
the behavior and favors this location). To illustrate how motivation to communicate
helpfully can facilitate language learning, experiments have shown that an orangutang do
not point at a searched for tool unless the tool will be used by a human to get something
for the orangutang [33] (this significantly reduces the number of instances of attempted
communication compared to someone with a motivation for helpful communication).

Since chimpanzees does “action x gets me y” type imitation learning, their gestures
are instead learnt in the form “Chimp1 notices that when Chimp2 raises its arm, then
Chimp2 will initiate play (raising the arm is a preparation to play-hit), then Chimp2
notice that raising its arm induces Chimp1 to start playing” (this example is modified
from [23]). Now Chimp2 knows how to initiate play with Chimp1 using a gesture. This
type of learning obviously enables two chimpanzees to establish a linguistic convention,
but it does not seem to result in the propagation of a large set of diverse linguistic con-
ventions/normative rules within a population or across generations (learning to follow a
rule to avoid punishments will not work here since there is no established enforcement
mechanism, such that not starting to play when observing a raised hand results in pun-
ishments, and no clear path to the establishment of such an enforcement mechanism).
In contrast, a human child might observe and imitate the normative rules of the ”raised
arm” convention (and as it passes through generations its meaning could change and/or
become more general, simply due to imperfections in the rule adoption strategies used).

In [30], the strongly related concepts of “we-mode” versus “I-mode” and collective inten-
tionality are discussed (see also [31] for an early and highly related discussion of different
ways in which the meaning of a sentence is understood, for example due to an extensive
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common ground).

The account of Tomasello is focused on the speaker, while most of the experiments pre-
sented here deal with responding to requests. However, the second language learning
experiment shows how the proposed setup can be used to learn to produce communica-
tive acts as a response to the environment. The same algorithm is used to concurrently
learn to: (i) respond to speech, (ii) respond to hand signs, (iii) produce hand signs as
a response to the physical environment, and (iv) produce hand signs as a response to
speech. The speech of an interactant is not treated differently from the position of an
object, therefore these tasks can be learnt from a set of unlabeled demonstrations of an
initially unknown number of tasks. The linguistic/non linguistic distinction lies in the
eye of the beholder, and we shall argue that the experiments show that the distinction
is not actually a fundamental one.

2.3.3 In artificial cognitive systems

The multi-discplinary approach in neuroscience, psychology and cognitive linguistics
is strongly complemented by, and inspiring for, a flourishing landscape of computa-
tional modelling research projects [51][18][52][54][55][58][48][7][49][60]. Aiming at build-
ing computational and robotic models of the evolution and acquisition of language, most
of these projects have tried to address centrally the grounding of language into action
and perception, i.e. the symbol grounding problem (see [16] for Harnads original state-
ment of the problem and [38] for a more recent attempt to dissolve some of the confusion
that has arisen in the long debate about symbol grounding).

A central idea of research is now that: 1) symbols should be grounded in the sensorimotor
flow, and in particular: the meaning of symbols should be expressed in terms of sub-
symbolic affordances; 2) these associations and sensorimotor representations should be
learnt by an embodied and situated robot rather than pre-programmed by an external
human engineer [38][55].

Following this general approach, computational and robotic models presented in the lit-
terature focus on various aspects. For example, some models have primarily investigated
the question of how acoustic primitives in the flow of speech, i.e. phonemes, syllables
and words, can be discovered with little initial phonetic knowledge and associated with
simple - often symbolic - meanings [39][41][42][43][44]. [46] explores both how to extract
meaningful words as well as how word order syntax can be found. The syntax is found
by examining in what order various dimensions are more likely to be described. For
example the shape dimension would be seen as related more to nouns, while color would
be related to adjectives. The learner then deduce from data in what order words used
to describe color and words used to describe shape have (in english, ”red ball” is for
example more likely to be heard than “ball red”). In [47], the issue of how to detect
words from streams of phonemes are investigated by putting a robot in front of talking
humans, and have the robot produce first random babbling, then sounds biased towards
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the syllables it has found.

Some other models have assumed the existence of quasi-symbolic word representations,
and focused on understanding how neural networks could learn to associate these lin-
guistic labels with meanings expressed in terms of simple action sequences also encoded
by neural networks [48][7][49]. Yet another family of models investigated the Gavagai
problem [22] mentioned above i.e. the problem of how to guess the meaning of a new
word when many hypothesis can be formed (out of a pointing gesture for example)
and it is not possible to read the mind of the language teacher. Various approaches
were used, such as constructivist and discriminative approaches based on social align-
ment [51][18][52][54][55][58], pure statistical approaches through cross-situational learn-
ing [45][59] or more constrained statistical approaches [60]. It is interesting to note
that in most of these models focusing on the Gavagai problem, meanings were mostly
expressed in terms of perceptual categories (e.g. in terms of shape, color, position,
etc), and the exploration of complex action learning has so far not been well explored
(but see [52][7][49]). Still another family of models has focused on trying to understand
how basic learning of coupled linguistic and action compositionality can emerge out of
general neural networks using simple models of syntax [48][7][49]. In [53], the idea is
proposed that both linguistic conventions and other, more action centered, normative
rules might be adopted by first forming a highly simplified model based on holistically
analyzing observations. Then using this model to perform actions that are probably far
from perfect, but that may be close enough to good actions that they elicit useful cor-
rective feedback. Finally, some models have been assuming these capabilities to handle
basic compositionality and have explored how more complex grammatical constructions
and categories could be formed and still be grounded in sensorimotor representations
[58][45].

As mentioned before, all these approaches to links between language and action make
the assumption (in a more or less explicit manner) that language and sensorimotor
processes are two interacting but separate processes.

Indeed, this is what is implicitly implied from the start when a theory makes the hy-
pothesis that language and action developp “in parallel”, and sets its own target as
understanding how they are “integrated”. The very definition of the “symbol grounding
problem” also makes this assumption: there are on the one hand symbols of language,
and on the other hand sub-symbolic sensorimotor processes, and the question is how
to link these two apparently quite different spaces and associated processes. Similarly,
asking questions such as in [5]: “Why do language and action share such hierarchical and
compositional structure and properties? Is there a univocal relationship between them
[...] or do they affect each other in a reciprocal way?” implicitly states that there are
two separate processes whose linking is to be understood. This theoretical assumption is
directly reflected in the whole landscape of computational models of language evolution
and acquisition, where models typically start from cognitive architectures with two big
modules, a sensorimotor module that encodes sensorimotor experiences and a linguistic
module that encodes linguistic “symbols” (either directly with symbols [58] or through
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nearly equivalent numerical encodings [48][7][49]), and mechanisms are introduced for
allowing a robot/agent to learn the right associations between the (compositional) mean-
ings and their (compositional) linguistic symbols through adequate coordination of these
separate modules (even if they are sometimes implemented with nearly identically struc-
tured neural networks such as in [49]). Also, implementing such an assumption makes
it difficult to improve the understanding of how an organism can discover the use of
acoustic waves produced by the vocal tract, i.e. speech, (or some other form of input
like gestures, body language, facial expressions, eye gaze, written symbols, etc, etc, etc)
as a tool that can be used to direct the attention and action of others (and oneself),
hence how an organism can discover the very concept of language rather than simply the
associations between certain meanings and certain linguistic constructions. Remember
how chimpanzees can discover the ”raise your arm to initiate play” convention. This
rule can not be said to have originated as a symbol whose meaning was grounded. Even
if this would happen in a group of humans, and the rule would be imitated, general-
ized and transmitted through generations, it does not seem like the rule or the learning
mechanism would need to involve symbols at any stage (and this does not change even if
the convention changes significantly over time, or if the medium shifts to speech instead
of hand signs).

It is surprising that the idea of one single system has been overlooked so far, espe-
cially given the strong structural similarities of the language and action acquisition
and representation systems. Additionally, more and more theories have suggested, and
experimental results have indicated, that language acquisition in human children may
happen with very little (or even no) help from language specific innate neural circuitry
or language specific capabilities [14][23][61][62], which makes the idea of a single system
quite natural.

Thus, it seems like the central thesis of the language learning part of this thesis is original
in putting forward the idea that bootstrapping the acquisition of fundamental elements
of language might be a particular result of a more general mechanism for learning
complex context-dependant sensorimotor skills. For spoken language, the context would
simply include the acoustic waves produced by some agent in a particular situation
and the rule would dictate that this context should trigger a particular sensorimotor or
cognitive response (which can be a standard body movement, but also the production of
a replying relevant acoustic wave, manipulating an internal cognitive structure, changing
attention, etc, etc).

There are probably multiple reasons why such an approach has been overlooked so
far. First, researchers focusing on language acquisition have often considered only a
simplified view of sensorimotor learning and reversely researchers focusing on complex
sensorimotor/action learning usually do not consider language as a central object of
study. Also, the heritage of cognitivism and artificial intelligence, which considered
only symbols as their object of study, still imposes the concept of symbol as central to
language in most of research projects aiming at understanding how these symbols can
be grounded.
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As seen above, it is possible to formulate qualitatively the Gavagai problem of language
acquisition as a particular case of what we may call the sensorimotor Gavagai learning
problem. We have seen how this can be can be done more technically and formally,
starting with the methods discussed earlier in the context of learning multiple tasks
from unlabeled demonstrations.

2.3.4 Generalizing these computational approaches so that they
can deal with language as a special case

As mentioned, the research community that elaborated the techniques described in the
previous section have mostly been focusing on teaching “traditional” motor skills to a
robot, typically body movements contextually depending on the potentially dynamical
and absolute/relative properties of the body or objects around, and did not consider
language and linguistic skills as a central issue to be addressed.

For an exception to this rule, see [83] and [84] which deal with both the communicative
acts of another human as well as with multiple tasks and the problems of finding the
number of gestures of an interactant. It is perhaps the work that is most related to
the presented language learning experiments, and it further investigates how one could
segment a continuous stream of demonstrator behavior into discrete demonstrations
(something not handled by the experiments presented here). The three main technical
novelties of the work presented here as compared to the research in [83] and [84] is the
concurrent learning of linguistic and non linguistic tasks, the imitation of communicative
acts (as a response to the position of an object or as a response to other communicative
acts), and finally the imitation of unseen internal cognitive operations (minor novelties
are the introduction of speech in addition to gestures and the various new algorithms).
The conceptual novelty of the work presented in this thesis is the description of the link
between those techniques and the scientific debate around the relation between language
and action learning.

An agent using a single strategy for rule adoption can learn skills such as “look at the
rabbit when you hear the acoustic wave “rabbit””, but also skills where speech can be
generated as a response to another speech context, hence a form of primitive dialog,
such as “if you hear the acoustic wave “Where is the X?”, pronounce the acousitic wave
“X is at Y” where Y is the location of X”. Thus, in this view linguistic words are no
longer considered as symbols to be necessarily associated with meaning, but are just
acoustic waves which can modulate in a context-dependant manner (and potentially
compositionally) the dynamical system that drives the learning agent. When observing
and imitating such a linguistic exchange between a demonstrator and an interactant,
the imitator will need to infer how internal cognitive structures are changed by word
order etc, and then how those internal structures modify behavior in order to succeed in
novel situations. This dynamical system approach where linguistic symbols disappear is
close to the one proposed in [49], which has argued that at the same time this allowed
the symbol grounding problem to also disappear. Yet, our work goes further than
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[49] in several respects: 1) we do not consider a cognitive module/network for language
processing that is separate from the rest of sensorimotor processing; 2) we do not assume
that words are already encoded into crisp perceptual categories, but process low-level
uncategorized speech streams which are then considered as equal contextual dimensions,
just as any other sensorimotor dimension. In the first two experiments that we will
present, we also do not assume that the modality that the words are expressed in are
known (it can be acoustic waves or hand gestures). In the second experiment, the robot
learns several tasks at the same time where some are triggered by sign language and some
are triggered by speech input from an interactant. 3) we address the Gavagai problem
whereas [49] already manually encoded the dimensions that were relevant for the task
to be learnt. Our learner finds out whether or not the speech and gesture channels
are relevant for what task to be performed and finding out what should influence the
policy of the different tasks. However, as opposed to [49] who focused on the learning
of compositionality, we will only investigate a simple form of word order syntax (in the
third experiment).

Actually, while the connection between context-dependant motor learning and language
learning is largely missing in this litterature, intermediary steps in this direction have al-
ready been taken. Indeed, a few researchers have began to use these technical approaches
to learn interactive skills by imitation/demonstration. [50] investigates communication
and collaboration between a human and a robot with symbol like motor primitive rep-
resentation of both communicative and non communicative actions and using neural
networks. See also [85] and [86] which used the approach initially describred in [87]
and based on Gaussian Mixture regression for modelling the context-dependant senso-
rimotor policy to teach a robot how to jointly manipulate a large object with a human.
In this work, the context includes the properties of the behaviour of another human
interacting with the demonstrator. Further than encoding the external behaviour of an
interactant, [93] have presented a related approach (but based on discrete representa-
tions of policies and states) where the Leo robot watches a human and builds a model
of that humans world model. When the human is not attending to a box with chocolate
in it, the chocolate is removed and later when the human attempts to open the box, Leo
hands him some chocolate since this is what he was most likely to try to accomplish.
See also [94] for a related experiment involving buttons (some of them not visible to
the human). As will be illustrated with computational experiments, this setup can be
readily extended with a demonstrator that shows a skill consisting in interacting with
an interactant where the inferred mental state of the interactant determines the context
of the skill.
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Chapter 3

A formalism for the field of social
learning
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By describing research in several different fields within a single unified framework, the
formalism attempts to provide new ways of understanding existing research hopefully
leading to new ways of extending and combining them. The existing research that the
formalism attempts to cover includes any situation where a learner is trying to figure out
what a teacher wants it to do. The types of information sources the learner learns from
could for example include a teacher performing a demonstration, looking disappointed
with its own demonstration, looking at a certain object while the learner is performing
a reproduction attempt, making a speech comment during the reproduction or pushes
an evaluative plus or minus button. All these information sources are here seen as being
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of a similar type. Each can provide information to the learner about what the teacher
wants it to do, to the extent that the information source can be interpreted.

The typical learner that the formalism is aimed at is analyzing multiple sources of
information at the same time and is refining its understanding of some of them, based
on what it learnt from others. Let’s take the example of a learner that is able to
see, but not fully understand, demonstrations, speech comments, facial expressions, a
numerical value provided by the teacher, tone of voice, EEG readings of the teacher
and eye gaze. If at least one of these are reasonably well understood, in at least some
situations, it is possible to learn some types of tasks. If the learner is able to interpret
some types of demonstrations, it can learn a task by looking at only this modality.
Then it might be able to see from its history that some type of speech inputs are
related to performance, and that if the teacher is observing the learner, then some facial
expressions are often made right after the learner made a mistake during reproduction.
If there is not enough data to decide how to interpret some speech comments, it might
form multiple hypotheses. The ability to interpret facial expressions and speech can now
be tested and refined in a new task and if validated, they can be used to learn new tasks.
These new tasks might allow it to figure out that eye gaze at an object is correlated
with it being important. It could also learn that when the teacher has observed all
relevant aspects of the reproduction, the numerical value it provides is correlated with
the performance of the action that the learner has just taken (relative to the average
performance of a few of its most recent actions). New tasks allows new hypotheses of
how to interpret information sources to be formulated, validated and refined. This in
turn allows the learning of new tasks and perhaps the reinterpretation of old data. The
learner could for example re examine a large amount of old data in light of everything
it has learned, and discover that for some object it is very important to not bump
into them, and that when the learner does so, or is close to doing so, there will be a
certain type of EEG reading. It could also figure out that, for this particular teacher,
the numerical value is actually more related to policy similarity with good actions than
with absolute performance. The learner could now use this when learning new tasks,
and it could also actively test these new ideas by performing actions that it expects
to generate observations that will allow it to validate or invalidate them. The class of
agents described above is the archetype that the formalism is designed to deal with, and
it provides a general framework that is able to describe any agent that is trying to figure
out what a human wants it to do. The formalism also tries to make as few assumptions
as possible regarding the type of behaviors that is interpreted.

The formalism will be presented in a series of seven progressively more complex situa-
tions or setups. Some issues are easier to explain when other complexities are removed,
and hopefully the first steps will convey some fundamental insights that will make it
easier to describe the fully unsimplified setup. First, a mathematical definition is pro-
vided below for two simplified setups as well as a discussion of how they can be solved.
In the first one, the learner is assumed to know how to interpret the teachers behavior,
and the learner only needs to learn tasks while in the second setup this assumption is
relaxed. Then before continuing to relax simplifications, the unsimplified setup that we
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are aiming for is described in words to help describe what it is that is being simplified.
This is followed by five more setups where more simplifications are dropped step by
step. At each step, the formalism is modified to deal with the new complexity and new
solutions discussed. In the final seventh step, the learner is dealing with an unstructured
real world situation.

3.1 A formalism for step one: finding u?

In the most simple setup the learner is required to output a policy based on a given
data set of interactions. A learner is located in a perfectly visible world with exactly
one correct representation, known to the learner (we can say that the world has a single
correct ontology, known to the learner), and is perfectly observing the teaching signal.
The teacher is also known to perfectly observe the world, and it has direct access to a
utility function over world-action pairs, that takes everything into account (including
all future consequences). This utility function maps states in the learners action space
and the world states to a real valued number (the situation can be roughly described as
”the teacher knows what actions it wants the learner to take”).

The learner also knows the mapping from what the teacher wants and what the teacher
observes to states in a teaching signal space. A simple teacher giving demonstrations
could for example be of the form ”the teacher gives demonstrations which are perfect
with probability 0.8 and otherwise perform random actions” or ”the teacher rewards
incremental progress and gives a scalar value feedback equal to the utility of the cur-
rent action minus the average utility of the learners 6 previous actions”. Knowing this
mapping allows inference even if it is stochastic as each possible utility function results
in a probability or a probability density for the actually observed feedback. To be more
specific, it is necessary to first introduce some notation:

• World state s = (x1, x2, ..., xNS) ∈ Cs. An NS dimensional vector in (in <NS if it
is continuous and unbounded), describing the state of the world. Cs is the space
of possible world states. The learner has direct access to the world state in this
step.

• Action α = (y1, y2, ..., yNα) ∈ Cα. An Nα dimensional vector describing an imi-
tator action.

• Policy π ∈ Cπ : Cs → Cα. Since the world is fully visible, the imitators policy is
definable as a transform from world states to actions.

• Situation Ξ = {s, α} ∈ CΞ. A world state and a learner action. This is what the
teacher will respond to by giving a teaching signal.

• Teaching signal f = (z1, z2, ..., zNF ) ∈ Cf . An Nf dimensional vector describing
the teaching signal response to a setup Ξ, for example a demonstration of what
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action should have been performed, a speech comment on the imitators action, a
scalar value evaluation of the action, the eye gaze towards an important object,
etc.

• Interaction I = {Ξ, f} ∈ CI . A setup, and the feedback that was given in that
setup (a world state s, an imitator action α, and the feedback f that was produced
by the demonstrator as a response).

• Interaction history h = {I1, I2, ...} ∈ Ch is a set of interactions. To refer to an
element E in h of interaction number t, we use Et, for example: Ξt and ft (the
setup and response at interaction t). Note that the interaction history consists of
states in spaces that are observable to the learner.

• Learning algorithm Υ ∈ CΥ : Ch → Cπ. An interaction history to policy trans-
form. Since the learners job in this step is only to output a policy as a response
to data, a learner is defined by an Υ, a history h, and (in case Υ is stochastic)
a policy π (there is no possibility to choose actions in order to get informative
feedback). A learning algorithm/learner can be defined using an iterative update
rule, modifying a policy based on one interaction at a time (since this recursively
implies a unique Υ).

• Utility function u ∈ Cu : Cs × Cα → <. Mapping world state-action pairs to
a real number (expressing preferences over the action space, conditioned on the
current world state).

• Teachers utility function u? ∈ Cu : Cs × Cα → <. The teacher is assumed
to have access to a utility function u? that represents exactly what the teacher
would have wanted if it where fully informed (for example regarding future conse-
quences of the action). The sole evaluation criteria of the success of the learner is:
E[u?(π̂(sR))], where sR is a randomly generated world state (the expected utility
of its policy π̂ when the state of the world is not known). Finally, the learner is
assumed to know this fact (although it does not know u?).

• u? generating distribution: Du? : Θu? → <. The utility function u? is drawn
from a distribution known to the learner. A known function class has a parameter
space Θu? , and each possible state is assigned a probability, or probability den-
sity, by the known distribution Du? . This distribution could for example be over
discrete outcomes, or a density function over the continuous parameter space of a
function class, or a probability distribution consisting of a density function over a
continuous space as well as a set of dirac deltas for certain values in that space,
etc. We denote the utility function that parameter θu

?
generate as u(θu

?
).

• Teacher signal generating transform Ω ∈ CΩ : CΞ × Ch × Cu → Cf . A
stochastic transform1 from the current situation Ξ, the interaction history h, and

1This could denoted as Ω ∈ CΩ : CΞ × Ch × Cu × Cf → <, but to emphasize that the thing
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a utility function u into feedback f (the current world state, the current learner
action, a utility function and the interaction history determines what distribution
a state in the teaching signal space is drawn from). In this step the learner is
assumed to have access to this transform (the next section formalizes a setup
where this assumption is relaxed).

As the generating distribution Du? over possible u?s is given, what is needed to get
the posterior probabilities of possible u?s is the probability or the probability density
of the observed feedback conditioned on all the different u? hypotheses. Since Ω :
CΞ × Ch × Cu → Cf is known and the states in all the other input spaces are known,
the probability of the observed feedback is only dependent on u?. If the probability (or
probability density) of observing the feedback ft at interaction t is denoted pft , it is
possible to write the same equations for the two cases of (i) a density function over a
continuous Θu? space, and (ii) a probability distribution over a discrete Θu? space. If
Du? is a density function over a continuous Θu? space, then:

pft =

∫
θu?∈Θu?

Du?(θu
?

)D(ft|h(t),Ξt, u(θu
?

))dθu
?

(3.1)

If Du? is a probability distribution over a discrete space Θu? with Nu? number of hy-
potheses ui, and the prior probability that ui = u? is denoted pu

?

i , then:

pft =

Nu?∑
i=1

pu
?

i p(ft|h(t),Ξt, ui) (3.2)

Now, if the probability or probability density for observing ft is denoted p, the posterior
probability ppx of u? hypothesis number x being correct is simply ppx = ppap/p

ft , where
ppa is the a priori probability of u? hypothesis number x being correct. The update
factor p/pft basically measures how good the hypothesis was at predicting the observed
feedback compared to other plausible hypotheses.

Since Ω is a known mapping and the probability distribution over possible u?s is given,
finding the posterior distribution over possible u?s given a history h has thus been cast
as a textbook inference problem. Finding an optimal policy π given a finite history h
is now a matter of maximizing the expected utility function (the weighted sum of all u?

hypotheses, or the integral over u? space). See for example particle swarm optimization
[132] or various methods for approximate bayesian inference [131]. u? is defined in the
action space given the observable world state, so the exact expected utility (given the
known prior distribution over u?, and the fully observable history) of each action is
known to the learner. It could be that even if Ω is known, finding the optimal solution
is intractable, necessitating the need for approximate solutions. As simplifications are

generated is a teaching signal, the notation of a stochastic transform is used where a : b means that a
stochastically generates states in c according to a distribution that is dependent on states in b.
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dropped in later sections, intractability will become an increasing problem, and much
effort will be put into discussing approximate solutions.

Since the problem has been formalized in this way, standard ideas and principles of ap-
proximate optimization can be used to find approximate solutions. If Θu? is continuous
and high dimensional, and there is a large history, then one possibility is creating a num-
ber of discrete u? hypotheses, each with its own set of parameters. Then updating the
probability of these hypotheses, and their parameters iteratively on one interaction at a
time. The probability that an hypothesis is correct is modified in each iteration based
on how well it predicted the actual teaching signal, and the parameters is modified so
that it better predicts the observed history (and hypotheses that are very unsuccessful
at predicting teaching signals from unobserved interactions can be rejected, and new
ones constructed by doing alternate parameter modifications on good hypotheses, and
the parameters of each hypothesis takes the others into account to avoid crowding in
small areas and/or move towards regions that are good/highly populated).

The point is not that all problems within the framework can be solved, but instead that
they can be cast as an instance of a well studied type of problems, and that standard
ideas can be used to solve them (in the example above using the basic ideas of particle
swarm optimization).

3.2 A formalism for step two: finding Ω

In this step the learner must learn to interpret the feedback of the teacher. Specifically,
the Ω transform is no longer known, but it is drawn from a known distribution, and
must be learnt in a way that is similar to how u? was learnt in the previous step. Two
different Ω hypotheses will in general give different probabilities, or densities for an
observed interaction history, again reducing the problem to an inference problem of a
well studied form (so that ideas from proposed approximate solutions can be used). New
practical difficulties that arise, and new approximate strategies to deal with them will
be discussed below.

The parameters of a known stochastic function class is drawn from a known distribution.
Any parameter set results in a static (but not necessarily deterministic) mapping from
an interaction history, the utility function and a current world-action pair to an output
in a teaching signal space (for example ”if I demonstrate something, and then the learner
reproduces it wrong, I demonstrate again”, ”if the learner is doing better than usual, I
will press a plus button”or ”if the learner fails a lot and look like it needs encouragement,
I will push a plus button2”).

2Real humans do this, and the behavior is not caused by failure to observe the world or lack of
knowledge about what the correct action is. Therefore this possibility is still relevant to the setup
presented. A human learner is capable of noticing this type of teaching signal (for example tone of
voice in combination with a partial understanding of the task) and is able to take this into account
when making policy updates. Thus, an artificial learner should in principle be able to do the same
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As in the previous step, the learners job is to output a policy based on a given data set
(an interaction history of known length), meaning that it still does not have to deal with
the problem of choosing actions in a way that trades of the maximization of information
with actually performing the task. First some additional notation is needed:

• Ω generating distribution: D̂Θ̂Ω : Θ̂Ω → <. Ω is drawn from a distribution

known to the learner. A known function class has a parameter space Θ̂Ω, and
each possible state θ̂Ω ∈ Θ̂Ω is assigned a probability, or probability density by
the known distribution D̂Θ̂Ω . This distribution could for example be over discrete
outcomes, or a density function over the continuous parameter space of a func-
tion class, or a probability distribution consisting of an a density function over a
continuous space as well as a set of dirac deltas for certain values in that space,
etc.

• Ω estimate distribution DΩ. If the learner builds a model of Ω with parameters,
then distribution over this space is denoted DΩ (due to tractability issues, this does
not have to be the same as D̂Θ̂Ω). We denote the resulting Ω of parameter θΩ

k as
Ωk.

Just as in the previous step, the problem is to define an Υ, and success is measured in
how well the resulting policy optimizes u?. Since the prior probability of each possible
feedback generating transform is known, and the prior probability of each possible utility
function is known, for each interaction history h ∈ Ch there is at least one policy π such
that the expected utility is maximized. That is: there is at least one optimal policy
that, given the known information, will give maximum expected utility, and finding it is
a textbook inference problem. Below, two examples are presented, and then generalized
approximate solution strategies are discussed since intractability is a likely practical
problem. The problem of finding a u? from a partially known Ω is similar to finding u?

from a known stochastic Ω, as a set of stochastic Ω hypotheses (weighted by probability)
reduces to a single stochastic function. The practical difference is that in an approximate
solution, it is possible to update Ω hypotheses concurrently with u? hypotheses in an
EM inspired way.

An example with a discrete set of possible teachers

Θ̂Ω consists of N discrete possibilities, denoted θΩ
1 , θ

Ω
2 , ..., θ

Ω
N , where each θΩ

n results
in a unique transform Ωn. We denote the probability that Ωn = Ω as pΩ

n . Before

(by for example: (i) first failing at a task where the goal is known, (ii) then noticing that there is a
statistical pattern in tone of voice space correlated with ”failures getting positive feedback”, (iii) then
confirming the theory in a unrelated setting, (iv) building a detailed model of when this happens, and
with what probability, (v) and finally using this during learning in novel settings by keeping track of
the probability that a particular teaching signal instance was generated like this (and take that into
account during policy updates).
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observing the interaction history the learners estimate of Ω is in this case identical to the
generating distribution Θ̂Ω (if the generating distribution had been to difficult to handle
computationally, the learners initial estimate could have been something simpler). The
learner observes a single interaction I1 = {Ξ1, F 1}.

The learner also has M hypotheses of what u? looks like (also initialized with the
generating distribution), θu

?

1 , θ
u?

2 , ..., θ
u?

M , where each hypothesis is denoted u?m. Since
there is a discrete set of u? and Ω hypotheses as well as a single single interaction I1 =
{Ξ1, F 1}, the probabilities of the u? hypotheses can be updated with a simple equation.
The probability of observing the feedback F 1 given the history, setup, hypothesized u?

and hypothesized θΩ
n is denoted p(F 1|Ξ1, h, u?m,Ωn). We have M ×N possibilities, each

corresponding to a utility function-transform hypothesis pair. Each pair has a prior and
each assigns a probability to observing the actually observed feedback. This means that
each pair can be assigned a posterior probability. For transform hypothesis n and utility
function hypothesis m the posterior pair probability is pΩ

np
u?

m p(F
1|Ξ1, h, u?m,Ωn)

Thus the probability (after updating on the new observation F 1) of each utility function
hypothesis and transform hypothesis is given by simply summing the posterior pair
probabilities. We denote the probability at time step t as tpu

?

m so that the probability 2pu
?

m

is the probability that utility function hypothesis number m is correct, after updating
on observing F 1. 2pu

?

m is thus simply the sum:

2pu
?

m = pu
?

m

∑N
n=1 p

Ω
np

u?

m p(F
1|Ξ1, h, u?m,Ωn)∑M

m=1(pu?m
∑N

n=1 p
Ω
np

u?
m p(F

1|Ξ1, h, u?m,Ωn))
(3.3)

And in just the same way we have the new probability 2pΩ
n (the new probability that

transform hypothesis number n is correct, after updating on observing F 1) in the sum:

2pΩ
n = pΩ

n

∑M
m=1 p

Ω
np

u?

m p(F
1|Ξ1, h, u?m,Ωn)∑N

n=1(pΩ
n =

∑M
m=1 p

Ω
np

u?
m p(F

1|Ξ1, h, u?m,Ωn))
(3.4)

An example with a continuous space of Ω parameters

Now we take the exact same setup, but we have a continuous parameter space of possible
Ω transforms. The exact same reasoning applies when it comes to updating the discrete
set of 2pu

?

m , with the only difference being that integrals replaces sums, so that we get:

2pu
?

m = pu
?

m

∫
ΘΩ DθΩpu

?

mD(F 1|Ξ1, h, u?m, θ
Ω)dθΩ∑M

m=1 p
u?
m

∫
ΘΩ DθΩpu?mD(F 1|Ξ1, h, u?m, θ

Ω)dθΩ
(3.5)

If the parameter space of possible transforms is high dimensional (that is, there are
many ways in which the demonstrators feedback behavior could vary), this integral
might be completely intractable. But the problem has at least been reduced to a much
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more standard form, and it is clear what exactly an approximate solution is trying to
approximate.

One approximate solution is to create a set of hypotheses for how feedback is generated,
test them against data, and continuously modify them, discard them or create new
ones. We need a hypothesis generating algorithm, an algorithm that tests and modifies
or discards hypotheses and an iterative procedure for concurrently updating the u?

hypotheses and the Ω hypotheses. Let’s call such an Ω hypothesis an interpretation
hypothesis (as it is an hypothesis regarding how feedback should be interpreted) and
denote interpretation hypothesis number i as Πi.

To test the quality of an hypothesis in this example (with a single data point), we can
not do better than check how well the transform model predicts the observed behavior
(and of course look at the known density function of transform generators). Any test
will be strongly dependent on the current estimate of u?, since the feedback is dependent
on both u? and Ω.

Given a test that rates a Πi conditioned on the current best guess of the u?, we can
update our set of pu

?
probabilities based on the current set of Πs, concurrently with

updating our set of Πs based on the current set of pu
?
. This shows how the old ideas

behind various Expectation Maximization (EM) algorithms can be used when the imita-
tion learning problem has been reduced to this form. The basic idea that can be taken
from these algorithms is that when there are two unknowns, and knowing one helps
finding the other, updating both concurrently can lead to a functioning and tractable
algorithm. An example is when a set of points is known to be generated by a known
number of gaussian distributions of with unknown parameters. Knowing what genera-
tor generated what points help when estimating the parameters of the generators, and
knowing the parameters of the generators helps when estimating which points where
generated by what generator. See for example Dempster and Lairds 1977 paper [109]
presenting an EM algorithm.

An example with continuous parameter spaces and a large number of inter-
actions

To illustrate the problem faced by an learner in this step, a more specific setup and
solution strategy is introduced (this is just re using standard textbook ideas on the
formalized problem, but being specific could still help illustrate the basic concepts).

Consider a problem where the teacher is known to have been drawn from the large
dimensional, independent distributions DΩ and Du? , and where there is a large history
h to learn from. It is in principle possible to find the posterior Du? conditioned on the
a priori DΩ and the history, but let’s look at a class of tractable approximate solutions.
We need a bit of notation:

• Û = {û1, û2, ...}: The set of discrete hypotheses regarding u?.
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• Ω̂ = {Π1,Π2, ...}: The set of interpretation hypotheses.

• h(t) = {I1, I2, ..., It}: The history up until time t.

• Du? : The a priori density function over the possible utility functions that the
teacher might have.

• GenerateNew−Ω−Hypotheses(h(t), Ω̂, Û , DΩ). An algorithm that generates Ω
hypotheses. If the set of hypotheses Ω̂ has any empty slots (either due to not being
initialized or due to some Πs having been discarded), this function needs to create
hypotheses Π that makes a tradeoff between being probable according to the prior
probability DΩ, being consistent with the data h(t) (where the accuracy of the
consistency estimate is dependent on the current estimate Û of the teachers utility
function u?) and being well distributed in the space (these Πs will be modified as
a response to data, so several in the same small region could be wasteful as they
might converge to the same point).

• GenerateNew− u?−Hypotheses(h(t), Û , Ω̂, Du?). The tradeoffs are similar with
the situation detailed above, and in this case the accuracy of the consistency
estimate is dependent on the current estimate Ω̂ instead of Û .

• Discard − Ω − Hypotheses(It, Ω̂, Û). The Πs have been modified without any
access to the interaction It, so it is suitable to test them. If an hypothesis does
bad enough at predicting new observations compared to the others, it can be
eliminated. Another reason to eliminate an hypothesis is that the modification
process has made it to similar to another hypothesis. As before, the accuracy of
the consistency estimate is dependent on the quality of the current Û estimate.

• Discard− u?−Hypotheses(It, Û , Ω̂). The same types of concerns as above apply
in this step.

• Modify − Ω −Hypotheses(It, Ω̂, Û). This algorithm updates the set Ω̂ of inter-
pretation hypotheses based on the new interaction It and the current estimate Û
of the utility function. As the quality of the update is dependent on the accuracy
of the current Û estimate, it makes sense to update both estimates concurrently
a few times in an EM inspired way.

• Modify−u?−Hypotheses(It, Û , Ω̂). This is the other half of the above mentioned
EM pair.

With these functions we can build an iterative algorithm 1 that could hopefully approx-
imate the integrals, while remaining tractable.
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Algorithm 1 Approximate solution to example 3

Input: Du? , DΩ, T , h(T )
• Du?: The probability distribution that the teachers utility function u? is known to
be drawn from.
• DΩ: The distribution that the teachers feedback generating transform is known to
be drawn from.
• T : The number of interactions in the history.
• h(T ): The history of interactions.
Û ← GenerateNew − u? −Hypotheses(h(0), Û , Ω̂, Du?)
Ω̂← GenerateNew − Ω−Hypotheses(h(0), Ω̂, Û , DΩ)
for t = 1 to T do

Ω̂← Discard− Ω−Hypotheses(It, Ω̂, Û)
Û ← Discard− u? −Hypotheses(It, Û , Ω̂)
Ω̂← GenerateNew − Ω−Hypotheses(h(t), Ω̂, Û , DΩ)
Û ← GenerateNew − u? −Hypotheses(h(t), Û , Ω̂, Du?)
while Stopping criteria not met do
Û ←Modify − Ω−Hypotheses(It, Ω̂, Û)
Ω̂←Modify − u? −Hypotheses(It, Û , Ω̂)

end while
end for

An example solved by a multiple generator based algorithm

The teacher is approximated as having a number of different teaching signal generators
or interaction protocols denoted Γ. In each situation the teacher selects one based on
the interaction history and the current setup.

Ω is approximated as a combination of generators Γ : CΞ × Ch × Cu → Cf . Roughly
speaking the teacher is approximated as having several ways in which it can interact,
and as choosing which way of interacting (choosing which Γ will generate the teaching
signal). More precisely, each Γ has a probability to be activated that is state space
dependent, and is otherwise a stochastic transform of the same class as Ω, mapping the
same input spaces to the feedback space Cf . Γs are not hypotheses in the sense of the
Πs mentioned above since Ω is not hypothesized to be equal to any one Γ, Ω is instead
modeled as built up by a set of Γ transforms. The proposed algorithm concurrently
estimates how each generator will produce teaching signals, in what type of situations a
generator is used (encoded as a triggering region in situation space for each generator),
and what data was generated by what Γ. This is done in a way that is very similar to
old and well known Expectation Maximization (EM) methods (just as in the examples
discussed above). First some additional notation:

• Feedback generator number n. Γn :∈ CΓ : CΞ × Ch × Cu → Cf . Generator
number n that Π is built from.
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• Θn
Γ is the parameter space of Γ number n.

• Dt
ΘnΓ

is the probability density function over Θn
Γ at time t (the current estimate of

the parameters of Γn).

• DtΓ = (Dt
Θ1

Γ
, Dt

Θ2
Γ
, ..., Dt

ΘNΓ
) is a set of Γ parameter estimates.

• Generating tendency Gn : CΞ×Ch×Cu → <. The tendency of basis function
number n to generate the feedback. The probability that Γn will generate feedback
is NGn(Ξ,h)PN

m=1G
m(Ξ,h)

(the probability that a specific observed feedback was generated

by Γn depends on the type of feedback that Γn tends to generate and what the
generating tendency in the current state is).

• GΘn is the parameter space of Gn.

• Dt
GΘn is the probability density function over GΘn at time t (the current estimate

of the parameters of the generating tendency Gn).

• DtG = {Dt
GΘ1 , D

t
GΘ2 , ..., D

t
GΘN} is the estimate at time t of the generating tenden-

cies.

• Θu? is the parameter space of u?.

• Dt
Θu?

is the probability density function over Θu? at time t (the current estimate
of the parameters of u?).

• Generating probability ptn: The estimated probability that the feedback f t,
observed at time t, was generated by Γn.

• Generated feedback γn: The current estimate γn = {p1
n, p

2
n, p

3
n, ...} of what

feedback was generated by Γn.

• P tγ = {γ1, γ2, ..., γN}: the estimate at time t of what feedback was generated by
what Γ.

It is now possible to concurrently re-estimate: (i) The feedback behavior of the basis
functions, (ii) Their generating tendency (iii) The set of feedback instances that was
generated by each Γ, and (iv) The utility function u?. We can see this in algorithm 2,
which is in turn based on the sub algorithms:

• s+1P ← estimateGen(sP ,sDu? , h,sDΓ,sDG): Given the model at step s of u?

and the Γs, the estimate of which Γs generated which feedback is updated. The
previous step updated the feedback behavior sDΓ, the generating tendencies sDG
and the estimate Dt

Θu?
of u?. Given these new estimates, estimateGen must

approximate the probability that a given basis function was the one that generated
the feedback, under the new u? estimate. Which Γ generated the feedback is
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straightforwardly dependent on where that Γ is expected to generate feedback,
and on how probable a Γ is to generate the observed type of feedback (conditioned
on the new u? estimate).

• s+1Du? ← update − u? − estimates(sDu? ,s+1P ,sDΓ): The estimate of what Γ
generated the data and the feedback behavior of those Γs has been updated, which
means that the data can be re interpreted and used to update u?. Given a fixed
current model of Ω (consisting of a set of Γs), this reduces to a textbook supervised
learning problem with data that has a known noise structure (the uncertainty of
the Ω estimate and the stochastic nature of the various Γs). Again part of the
problem is reduced to a well studied type of subproblem.

• s+1DΓ ← update−Γ− estimates(sDΓ,
s+1P ,s+1 Du?): The estimates of what data

a given Γ has generated has been updated, but also in what situation it was
generated since u? has been updated. For example: a learner has observed a
“good robot” comment when shooting a basketball close to a hoop. If the learner
manages to figure out that the teacher only cares about whether or not a basketball
lands inside or outside a hoop, then it can re interpret the feedback generating
function. Specifically it can figure out that a failed attempt gets a “good robot”
comment if the outcome is closer to good outputs than previous attempts, instead
of for example rewarding incremental increase in performance (which would have
been more likely if the teacher had instead wanted something like ”shoot as close
as possible to the hoop”). Given the known world state, and taking the current
estimate of u? and the current estimate of what points where generated by what
Γ for granted, this reduces to a function approximation problem of a known form.
Each Γ can have its own type of parameter space but the basic idea is still that
of “freezing” all the other estimates and using them to update the generators (it’s
just not necessary to do the same type of update for each generator).

• s+1DG ← estGenTend(sDG,s+1P , h,s+1 Du?): Given the current best estimate of
which generator actually generated which point, this is a textbook supervised
learning problem with a labeled data set.

The algorithm rests on the same principle as building a Gaussian Mixture Model (GMM)
with an Expectation Maximization (EM) algorithm that concurrently estimates what
data points was generated by what gaussian (based on the current estimated properties
of the gaussians), and estimating the properties of that gaussian (based on the current
estimate of which points they generated). The algorithm illustrates how a vague problem
to ”do what the teacher intended the learner to do” has been formalized to the point
where the exact solution integrals can be set up, so that tractable approximation can
be found using standard techniques, see for example Dempster and Lairds paper [109]
from 1977, explaining an EM method based on a very similar idea3, and solving a very

3In both cases there is a data set which has been generated by a set of generators. The properties
of the generators are not known, but if they where known, it would be possible to estimate which
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Algorithm 2 A multiple generator algorithm to solve the problem in example 4

Input: DG0 , DΓ
0 , Du?

0 , h, S
• DG0 = {DG1

0 , DG2
0 , ..., DGN

0 } is the initial estimate of the generating tendencies (at
time 0).
• DΓ

0 = {DΓ1
0 , DΓ2

0 , ..., DΓN
0 } is the initial estimate of the feedback behaviors.

• Du?

0 is the initial estimate of u? (a probability distribution)
• h is the interaction history
• S is the number of update steps
for s = 1 to S do

s+1P ← estimateGen(sP ,sDu? , h,sDΓ,sDG)
s+1Du? ← update− u? − estimates(sDu? ,s+1P ,sDΓ)
s+1DΓ ← update− Γ− estimates(sDΓ,

s+1P ,s+1 Du?)
s+1DG ← estGenTend(sDG,s+1P , h,s+1Du?)

end for

similar problem. It is doing essentially the same thing as all the classical EM algorithms
(even though the Γs can have different parameter spaces). The purpose of presenting
this algorithm is not to present a general solution strategy to any imitation learning
problem, but simply to demonstrate that the problem has now been formalized to the
point where old standard ideas can be used. The question of solvability is now dependent
on factors similar to those that determine whether or not the classical EM algorithms
would find a solution (dimensionality, size and quality of the data set, etc).

Let’s give a few examples of generators that actual humans might be modeled as being
made up of:

• Demonstrating as a response to failed reproduction attempt Γ1:. The
triggering region G1 would be where a demonstration was followed by a failed re-
production attempt, and could have parameters relating to how badly the demon-
stration has to fail, or if the relevant distance is in policy space or outcome space
(a close basketball trow can be very close to optimal policy, but still have an out-
come that is no better than any other failed attempt, so that if a reproduction
needs to be far from optimal in policy space to elicit another demonstration, this
would not be within the triggering region). G1 could also contain an arbitrary
amount of other parameters, such as the behavior being more likely when the task
is easy for the teacher to perform, or when the teacher looks irritated directly
after a learner reproduction attempt, etc. The irritated facial expression could be
either a single value attached to the binary output of a fixed “irritated facial ex-
pression detector” (multiplying the triggering tendency with the parameter value

generator generated what data point. What generator generated what data point is also not known,
but if it where known, it would allow us to determine the properties of the generators. Both things
are given initial estimates, and then the estimates are updated concurrently (conditioned on the best
current other estimates).
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for instance) or it could include parameters regulating what counts as “irritated
facial expression” (or more technically “facial expression that is correlated with
triggering Γ1”). Θ1

Γ describes the feedback generating behavior, and could include
parameters of how many mistakes the teacher makes (it could for instance be that
the teacher does this only when irritated, which is correlated with tasks that are
simple for the teacher, which correlates with good performance (lower noise than
other demonstrations)).

• Verbally evaluating progress Γ2: Saying things like “good robot”,“No!”, or
“great!” based on how good performance the learner achieved relative to its re-
cent interaction history. Parameters could include the length and weighing of the
recent history, the strength of the different words (does “great!” indicate better
performance than “good robot”, and if so, how much better?), the parameters
of how to map speech input to a set of pre defined categories (with pre defined
interpretation), the parameters of a transform from speech space to evaluation
space, etc, etc. Γ2 could include parameters regarding how much more likely this
feedback behavior is in the case of eye contact, or in the case of a long interaction
history consisting of the same types of actions, etc, etc (speech in the case of eye
contact could for example be more likely to be relevant).

• Pushing a reward/punish button based on absolute and relative perfor-
mance Γ3: The reward button is pushed with a value based on: (i) how good the
outcome is in an absolute sense, (ii) how good the outcome is compared to recent
history, (iii) how close the action was in action space to good actions compared
to recent history. The triggering of this behavior could be dependent on anything
from the number of demonstrations made to the attitude (angry, happy, etc) of
the teacher, leading to a large number of possible parameters of G3. Θ3

Γ could
include a value defining what constitutes “recent history”, the relative weighting
of the different considerations, etc.

• Pushing a reward/punish button to punish the robot for breaking some-
thing Γ4: Maximal punishment and a surprised and angry facial expression in-
dicate that something was broken, which can help with credit assignment (the
problem was not that the basketball was far from the hoop, it was that the bas-
ketball went through the window).

• Pushing a reward button to encourage a robot that has failed a lot and
who looks sad Γ5: The generating tendency G5 can have parameters related to
teacher facial expressions and eye contact (for example a distribution encoding
something like: “Γ5 was not the generator if the immediate teacher response after
looking at the outcome of the learner action was a triumphant smile and a “great!”
speech utterance”). This type of feedback is actively harmful to the learners ability
to figure out what the teacher wants it to do, but it is still important for the
learner to understand this behavior so that it can classify feedback as having been
generated by Γ5 (If the feedback was likely to have been generated by Γ5, it can

41



for example be ignored, which is already a big improvement compared to updating
policy as if it indicated success).

• Looking at an object that the learner interacted with badly Γ6: When
the learner fails, and one particular object is important for that failure, the teacher
will tend to look at that object.

The idea behind the algorithm is also similar to Simultaneous Localization And Mapping
(SLAM) in that knowing what position a robot had at each time step will allow the
building of a good map, and knowing the map makes finding the positions much easier.
The analogy with a robot moving around and trying to build a map and at the same
time figuring out where it is within that map is useful as it makes the idea of active
information gathering obvious (the robot can move to different places, or just direct
its sensors as a way of testing competing hypotheses regarding both what the area
looks like, and where it is within that area). This solution strategy will be discussed
in simplification step three, where the data set is not fixed, and the learner must take
actions for the purpose of obtaining as useful data as possible. This will lead us to
another old field known as optimal experiment design. And as the resulting “expected
information gain integrals” will normally be intractable, we will be making contact
with various approximate methods for finding actions that result in good information,
for example using biological systems for inspiration, and described in terms such as
artificial curiosity. Intuitively, finding good strategies for gathering informative data
seems to be a central question at least as important as analyzing that data. Even
though this research area is very active and making progress, it is not close to finding
neat solutions applicable to any problem, meaning that one might have to dig into all
the messy details and integrate a specially designed solution to the active information
gathering problem into the full learner architecture from the beginning (as a neat, of
the shelf and fully general solution that can be plugged in as a separate module will
probably not be available).

3.3 A description of the unsimplified setup

As we remove simplifications step by step, it might be useful to stop and give a rough
verbal description of the situation being simplified and where we are trying to get to in
the end (a text based description of what the math based formalism is trying to capture).
This section describes the unsimplified situation before we move on to describing step
3 in the next section.

3.3.1 What situation is the formalism designed to deal with?

First a short and informal description of the unsimplified setup that the formalism
should deal with is presented. A robotic learner and a human teacher are situated
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in some unstructured environment. The human might have an idea of what it wants
the robot to do, for example ”remove dust”, but this idea could be very vague. The
teacher might also be uninformed in many different ways, for example about future
consequences of possible learner actions. The task of the robot is to do what an informed
version of the human would consider best for the uninformed version of the human.
Informed includes the understanding of concepts (such as what types of actions are
possible) and knowing about specific facts (such as long term consequences of actions,
or the contents of a box4). The robot is not trying to perform the actions that the
teacher would have performed, or the actions that would make the teacher say ”good
robot”, or the actions that would make the teacher push a reward button, or anything
similar to this. Finally, the learner does not have access to a sensor that tells it how
successful it was. And it does not have access to a function over its inputs that specify
how successful it was. This setup is interesting as real robots placed in unstructured
environments, with non expert humans will have to operate under these conditions.
Non expert humans in unstructured environments are not always well approximated as
flawless feedback givers whose feedback has an easily encoded meaning. How to interpret
the eye gaze or facial expression of a specific teacher will have to be learned just as how
to interpret a failed demonstration or a reward button pushed because the teacher
failed to notice something or in order to encourage the learner. A set of simplifications
is introduced in section 3.3.3 which reduces this setup into an inference problem with
a mathematically well defined success criteria. The section below deals with learning
algorithms operating in the above situation without simplifications and introduces a
new principled way of modifying and combining any set of learning algorithms that
modifies a policy based on the behavior of some human, trying to build a policy that
the human would approve of (for example learning from demonstration algorithms, or
reinforcement learning algorithms that maximize the value of a reward button pushed
by a human).

3.3.2 Informed preferences and a formal success criteria for
the learner

The concept of informed preferences is designed to deal with cases such as ”the teacher
would like the learner to perform an action, but if it knew the consequences of that
action, would prefer another action” or ”the teacher is very happy with the end result
after the learner has cleaned the apartment, but if it knew that the cleaning produced a
lot of noise that disturbed the neighbors, it would not like the cleaning strategy”. These
preferences are specified over the learners action choices, and the goal of the learner is
to execute preferred actions.

A teacher might lack knowledge about the world, fail to understand certain concepts, not

4The example of a box whose contents the teacher is misinformed about, and several other parts
of the formalism, are inspired by the work done by Cynthia Breazeal and Andrea Thomaz, especially
with the Leo robot [93]
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have imagined all possible strategies, be unaware of all consequences of an action, want
things due to a misunderstanding, etc. If the teacher would consider the knowledge
relevant to the learners action choice if it were made aware of it, then that piece of
knowledge is considered relevant. For the purposes of evaluating the relative desirability
of the actions that are available to a learner in a specific context, a subset of all knowledge
that the teacher is unaware of will be relevant. This subset will be denoted Σ (a set of
pieces of knowledge that the teacher would consider relevant to a specific learner action
choice, if it were made aware of it). If a version of the teacher that knew about a fact
would consider the fact relevant, it would be included in Σ, if a version of the teacher
that understood a concept would consider it relevant, the concept would be included in Σ
(and similarly with knowing about a possible strategy, or resolving a misunderstanding
that made it want something, etc). There are many ways to segment actions. The very
same learners actions can be evaluated by a preference ordering over states in its motor
output space, or they can be evaluated according to a preference ordering over sequences
of motor primitives. The correct segmentation is that would be preferred by the teacher
if it were informed. Anything considered relevant to its opinion about the segmentation
is also considered relevant to the relative desirability of actions, and thus in Σ. If all
things in Σ were acquired by the teacher (facts known, concepts understood, etc), then
the resulting person is referred to as the informed version of the teacher. If the informed
version of the teacher has an opinion about what would be best for the actually existing
uninformed version of the teacher, then this is defined as the informed preferences of the
teacher (a preference ordering over the learner actions that are available in the current
situation). If the learner faces the decision of whether or not to show the teacher what
is in a box, and the informed version of the teacher already knows what is in there,
then it might want different things for itself and the uninformed version of itself (since
the decision can be different, it matters that the decision is about what is best for the
uninformed version). The learner is now defined as a set of interpretation hypotheses
and success is judged according to the informed preferences of the teacher.

Let’s explore the case of a robotic learner providing security for a building using a
camera, a microphone and an alarm. It is also able to move around the building, send
video and microphone recordings over the internet to its teacher Steve, and receive
commands and feedback from Steve. Steve is expecting that Bill will break into the
building and has bought the robot as a way to get revenge on Bill (by showing video
recordings to the police of Bill committing a crime), and has provided the learner with
pictures of Bill, examples of what type of video would hold up in court, etc. The learner
further knows that it is very expensive and that if it is detected, it might get stolen.
The learner sees a truck drive through a wall driven by a single masked person. The
person gets out of the car and start taking things and putting them in the truck, and
this person is very clearly much taller than Bill. The learner hides, triggers the alarm
and starts sending a video feed to Steve. Steve is at home when he is alerted by the
alarm and immediately sends the command “get a picture of Bills face”, a huge negative
scalar feedback when he sees that the learner is hiding, and then the command “move
forward” (which would result in the learner and the robber seeing each other). In this
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case it is of course impossible to now for certain what will be in Σ or what Steve would
want if acquiring everything in Σ, but it is in principle an empirical question. It is
however possible to make a better than random educated guess even if the number of
things that (from the learners perspective) might potentially be in Σ is huge. If it is
someone other than Bill that is breaking in then they would take the expensive robot
if they saw it, and further video would be useless. If Steve would consider this relevant
in his decision of how the learner should respond to his commands, then these facts are
part of Σ. If there is nothing else that Steve would consider relevant to his decision, and
an informed version of Steve would think that the best thing for Steve would be that
the robot stay hidden despite his commands, then this is Steve’s informed preference.
That the best possible action can not be found with absolute certainty is abundantly
clear in this case since the set of facts about the world that might be true and might
change Steve‘s mind if he knew them is very big and some of them are very complex.

This is however not different in principle from a robot that maximizes the plus button
pushes and that operates in an unstructured environment where an action can result in
very bad rewards due to some impossible to predict effect (for example, some actions
might make a reward button pusher think that the robot actually knows what to do
but refuses to do it, and that it will start cooperating if it is punished enough with
the minus button). And the problem can be dealt with in the same way, by making
the best guess possible given the available information. It is easy to think of scenarios
where impossible to know things impacts Steve’s decision in impossible to predict ways,
but the problem is not fundamentally different from trying to fulfill any other success
criteria in an intractable and unstructured world. The basic strategy of building the
best probabilistic models possible given current ability, information and resources, con-
tinuously expanding them, continuously re-estimating what situation can be understood
and always attempting to stay in situations it can handle, is still viable. It is possible
that (i) the robber is Bills accomplice (ii) that Bill just walked in unmasked (and so,
moving forward would result in Bill being convicted of breaking into the building) (iii)
that if Steve understood some complex concepts of cognitive science regarding how his
brain works and why he wants revenge on Bill, then he would conclude that he should
not seek revenge after all (iv) that if Steve understood some complicated concepts re-
garding long term societal consequences of overcrowding in prisons, he would not want
to send Bill to prison (v) that if the robot moved forward, it would crush a butterfly
under its wheel, that (if the learner does not move) will distract Steve while driving his
car the next day, causing an accident that would kill him (and all versions of Steve agree
that this outcome would be bad). In case (v) the learner should move forward, but fully
understanding the situation is completely hopeless. It is however interesting to note
that the effect of the butterfly poses the exact same problem to any robot, regardless
of formalism (assuming the formalism is good enough that it classifies a dead Steve as
a bad thing). The enormous set of things that might influence a decision is expanded
to include a new category (consisting of things like how a teacher would modify what it
wants as a response to understanding complex concepts), some of which can be hypoth-
esized and be useful in a probabilistic model, but most of which will be just as unusable
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as hypotheses regarding the effects of crushing the butterfly (one can form as many such
hypotheses as one likes, in favor of any decision one likes, but they can not be tested
and doing this is not a useful strategy when searching for good decisions).

In a slightly different scenario where video of the learner is not routinely recorded for
some reason, then Steve might never discover that it was not Bill that broke into the
building unless the learner moves (Steve can record images sent to him after an alarm
has been triggered, so the basics of the scenario is the same). In this case the most
important thing for Steve might be that he learns that it was not Bill that broke into
the building. What is best for Steve is now different from what would have been best for
an informed version of Steve in the same situation since he already knows that it is not
Bill that is breaking in (and then the price of the robot would dominate the decision).
That is why the formal success criteria can not be to do what would have been best for
an informed version of Steve in the same situation (even correctly answering the question
“what action would Steve have preferred me to do if he were informed” will sometimes
result in incorrect actions since uninformed versions sometimes have different needs, for
example a need to know certain things that the informed version already knows). Doing
what would be best for the informed version of the demonstrator if it existed does not
seem to make any sense (the informed version is not present, and the informed version
has for example different informational needs than the uninformed version).

If a robot sweeps dust under a rug and a teacher that is unaware of this considers
its performance good, then the knowledge about the dust might be part of Σ. If the
teacher considers the task to be “make the apartment clean”, and would consider the
learners actions bad if it knew about the dust, then it is part of Σ. But if the teacher
considers the task to be “make the apartment look clean before the guests arrive”, the
information could be completely irrelevant, and thus not part of Σ. If the learner
spent a large amount of energy cleaning the apartment, and there exists other cleaning
strategies that would consume less energy, then this fact might be part of Σ. If the
less energy consuming strategies had unacceptable side effects, it might not be part of
Σ. If there are both unfamiliar concepts and unknown facts relating to societal effects
of limited resources, then he might prioritize energy efficiency differently. Again, these
possibilities are not different in principle from the possibility that a meteor will strike,
causing a blackout so that the learner can not re charge, and that the learners removable
batteries will actually be extremely important for some complicated reason. A robot
operating in unstructured environments will face these types of hypotheses regardless of
formalism, and they can be handled in a similar way. The difference is that there might
be a few hypotheses that can be tested and that does advocate different actions. In
this case the learner can wait until the teacher is watching to sweep the dust under the
rug. It acts different from a robot maximizing the additive output of a reward button
(which would wait until the teacher is not watching to sweep the dust, so as to avoid
risking negative reward) because in this situation it can actually test the two competing
hypotheses that (i) the teacher wants a clean apartment and (ii) the teacher wants a
presentable apartment (both of which seem like something a human might want and
they could both be viable given available demonstrations, feedback, etc).
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In the example where the cleaning robot is sweeping dust under the rug when Steve is
not looking, success is not very visible, even if the learner receives positive feedback,
since it does not know if Steve has an informed preference for this type of behavior.
This is basically always the case to some extent since for most possible teachers it
is not possible to know for certain what their fully informed preferences would be.
Observability of success is thus a matter of degree, and potential experimental setups
can be evaluated based on how observable the success is expected to be. And learners
can choose their actions partly based on how observable success will be (for example
waiting until Steve is looking before sweeping the dust under the rug).

A messy success criteria is needed because the real world is messy and intractable, which
means that all non messy success criteria are inaccurate, and thus only moves the messy
bit to deciding when the success criteria is useful5.

One strategy for dealing with an intractable problem in an uncontrolled environment
is to autonomously extend the situations it can handle reasonably well and the types
of teacher behavior it can interpret reasonably well, and constantly re-estimate the
boundaries of what it can handle and what it can interpret. This combines the nice
feature of a success criteria where a strategy that is successful in the formalism is
actually successful, with the possibility of a robot that can actually do things.

Extending the situations it knows how to act in can be done concurrently with extending
the types of teacher behaviors it can understand. For example, if it starts with an
interpretation hypothesis Πd that is able to learn from demonstrations reasonably well
(at least in some situations), then it can extend the types of teacher behaviors it can
understand by building a feedback interpretation hypothesis Πf (after learning a task,
it goes through the history of demonstrations and reproductions, and notice that what
the teacher said was actually related to how good it was performing). When learning a
new task it can check if Πf is accurate in this task as well, and later use Πf to extend the
types of tasks it can learn. Another example would be a learner that, given redundant
demonstrations, and redundant speech comments, can discover that demonstrations
followed by a disappointed facial expression (or a certain tone of voice, or the speech
utterance “Nooo!!”) is more likely to be failures. Similarly it can be discovered that the
speech utterance “good” is a much worse predictor of good performance than “yes”6.

5In the case of a non messy success criteria without any complicated or unobservable parts, it is
instead the suitability of the success criteria that is difficult to observe. It is sometimes obvious that the
success criteria was bad, such as when a dust minimizing robot burns down the building and thereby
clearly fails and simultaneously performs perfectly according to its non messy success criteria. But at
other times the suitability might be difficult to observe. The difference is that there is no formal way
to determine the suitability of a success criteria, and an agent that is optimizing a non suitable criteria
does not care that it is unsuitable, and will therefore not even try to fix the situation.

6Perhaps because the “good” and “bad” speech utterances are sometimes mixed up by a speech
to symbol transform, or because “yes” is uttered when the action is clearly successful, while “good”
is uttered when this is less clear. The statistical correlation can be discovered even if the underlying
reason is not clear to the learner, or even if the programmers did not consider the particular underlying
mechanism
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An analogy with this concurrent learning of tasks and interpretation hypotheses can be
made with trying to build a model of objects at the same time as trying to understand a
set of languages that is describing the object. The tasks are analogous to a set of unob-
servable objects, the interaction history is analogous to a set of descriptions of objects,
and the interpretation hypotheses are analogous to the models the languages that the
descriptions are written in. A flawed understanding of a language can be used to build
a good model of an object if there is enough redundant information about it (for exam-
ple a large number of separate detailed descriptions from many people, using different
vocabulary and describing it at different levels of abstraction, different level of detail
and from different complementary perspectives (for example its function, its shape, its
component materials, its durability, how it is manufactured, etc, etc)). If enough redun-
dant information is available to build a model that is known to be accurate with respect
to some aspects of an object, it is then possible to update the model of any language
describing the object. In practice, it might be convenient to concurrently update the
model of the object and the model of each language. It is not necessary to directly
observe the object being described, or have access to any description in a perfectly un-
derstood language. The objects can be modeled and the languages can be learned by
concurrently updating interconnected hypotheses. According to the same principle, it
is possible to refine an interpretation hypothesis without being able to directly observe
the informed preferences of the teacher, or having any flawless interpretation hypothe-
sis. In some sense, interpretation hypotheses are very similar to the different possible
world models of an agent with a specified utility function in the ontology of those world
models; if they suggest different actions it is useful to distinguish between them, and
if they predict different observations, it is possible to distinguish between them (the
“actions” being analogous to policy updates, and “what the world actually looks like” to
“what the teacher behavior actually means”).

3.3.3 What is the purpose of the simplified setups

The simplified setups are introduced so that some problems can be examined without
distraction and in order to make it possible to use more beautiful and crisp math. It can
also serve as a pedagogical tool since the formalism in the simplified setups are easier
to explain, and if the reader understands them it will be easier to explain the formalism
of the unsimplified setup.

Let’s take the example where the learner only has access to noisy sensor readings of
the world, and does not perfectly hear the speech comments that the teacher uses to
evaluate its performance, and needs to interpret two inconsistent evaluations (different
evaluations of the same action in the same world state). It is now natural to investigate
for example the possibilities that: (i) the evaluation was misheard, or (ii) the world
model was wrong (so that it was the same action in two different world states that was
evaluated), or (iii) the action was not the same in the dimensions that actually matters
(which can happen in the case of incorrect assumptions regarding what aspects of an
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action is relevant), (iv) the world is viewed in the wrong framing (i.e. the world model is
correct both times, but there is some relevant aspect of the world that is not captured by
the model), etc, etc. In a noisy world, one of these could very well be the problem, and
it makes a lot of sense to investigate all of these possibilities. But the danger is that one
overlooks other types of potential problems. Let’s say that the world state is observable
and given in a known ontology (the world is neatly divided into world states that is
shared by the learner and teacher), and that the teacher has access to a flawless policy,
only cares about things represented in the world state, and finally that the teacher is
giving a fully observable scalar value as feedback (instead of a noisy speech comment).
What can the learner do if it observes inconsistent behavior in such a setup? It is now
forced to investigate an entirely new class of possibilities, for example: (i) the teacher
can not see all relevant objects, or (ii) the teacher is giving rewards for incremental
progress, or (iii) the teacher is giving high rewards as encouragement since the robot
has failed a lot and looks sad (real humans do this), or (iv) the teacher did not observe
the entire action that it was evaluating7, or any number of similar possibilities.

A simplified setup makes it possible to investigate these types of problems rigorously
and without distractions. Inference problems can of course be intractable, and some are
impossible to solve perfectly, even in principle. For the intractable inference problems,
this formalism aims to provide a clear description of what it is that solutions are an
approximation of. In some setups the best course of action can be impossible to find even
in principle, and these are cast as an inference problem that contain a set of hypotheses
such that each one: (i) has non negligible probability, (ii) imply a different optimal
policy, (iii) make the same identical prediction in all observable spaces8.

Since these problems exists in a simple setup, it seems obvious that they are much
worse in more complex setups (at the very least they must be equally bad). As in
most problems, the types of solutions that are appropriate in a simple world are not
guaranteed to be appropriate in complex worlds. Thus the simplifications are removed
gradually so that more realistic setups can be investigated, leading to modifications of
both descriptions and solutions. A learner always contain a stochastic transform from
an interaction history space h ∈ Ch to a policy space π ∈ Cπ at each simplification
step. In the first steps, the interaction history is over observable world states and a
well separated feedback space, and later this is replaced by inputs. Cπ also at first
takes inputs in observable world states, but is later changed to have sensor reading type

7For example observing the full action sequence of a cleaning behavior in one instance, but only
the end result in the other instance. The evaluations could be different if it missed that the learner
swept the dust under the rug, or made a lot of noise while moving the furniture (which annoys the
neighbors), or damaged the floor under the sofa, etc, etc

8That is, there are a set of hypothesis pairs (a teacher informed preference hypothesis and an
interpretation hypothesis) that makes identical predictions regarding what feedback will be observed.
If the informed preferences are modeled by a utility function, the best that can be done is to collapse
them into a weighted sum, according to prior probabilities. This reduces the problem to the same type
of inference problem as before. Unless the learner is using very simple models, it is unlikely that it will
be able to divide its hypothesis space into groups of such sets, and collapse them into separate utility
functions.
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inputs. Thus a learner always contain the same type of stochastic transform : Ch → Cπ,
even though the relevant spaces are given a different interpretation in later steps, as
simplifications are removed.

In the first steps, the learner simply analyzes a fixed data set and outputs a policy,
so that this transform is a complete specification of a learner. Any update rule that
modifies a policy based on a single interaction and then forgets the information, is
recursively defining a stochastic transform, so this is also a way of fully specifying a
learner (even if this transform is unknown to the programmers and very difficult to find
or interpret, any iterative learning rule is still identical to a unique stochastic transform
Ch → Cπ). In later steps, the learner needs to perform information gathering actions
(meaning that an aditional element is needed to fully specify a learner).

3.4 Removing further simplifications

Step three to six removes simplifications and introduces new problems and solutions,
but leaves the formalism and the notation relatively intact, even though step three leads
to a new type of solutions.

3.4.1 Step three: allowing the learner to actively gather valu-
able data.

Let’s allow the learner to choose information gathering actions, allowing it to actively
gather the data that will allow the learner to distinguish between competing interpre-
tation hypotheses. For example, if one hypothesis is that the teacher is giving rewards
corresponding to performance, and another hypothesis is that it is giving rewards in
response to incremental improvements (similar to how one does when training a dog
for example), then repeating an action can help the learner distinguish between these
hypotheses (as they make different predictions in the observable reward space). Actions
can be chosen in order to understand the way feedback is generated, and/or to under-
stand what the teacher wants the learner to do, just as a SLAM robot can take actions
designed to build a map and/or find out where the SLAM robot is within that map. This
can hopefully make an intractable inference problem tractable by actively gathering the
information that will allow it to understand the world well enough to make reasonably
accurate simplifications. The teachers utility function u? is still defined in the same way,
and the success criteria is still judged only based on u? (choosing actions so that the
learner can best estimate the teacher signal generating transform Ω is however probably
a good strategy since u? is easier to find with a better Ω estimate).

We denote an interaction protocol as the stochastic transform ℘ : Ch × Cs → Cα. A ℘
is a strategy for generating an action based on the interaction history and the current
world state. A protocol can for example be defined by a rule for how to modify some
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data structure (for example a policy) at each interaction, and then select the next type
of interaction based only on the current state of this data structure. The data structure
update rule, and the rule for selecting interactions based on its current state together
implies a unique ℘.

In order to not complicate things, we keep the same success criteria, meaning that
the actions only serve to gather information that can be used to build a policy. This
sidesteps for the moment the issue of making tradeoffs between learning what should
be done, and actually doing what should be done (the learner simply tries to act in the
way that will lead to the best possible policy, not needing to worry about how good it is
performing tasks during the learning phase). We do not make any strong assumptions
regarding the interaction behavior of the teacher, meaning that it could stop giving
feedback at unknown times, possibly dependent on how the learner act (it could for
example stop interacting or start interacting in a less engaged way because the learner
is “not learning”, or “done learning”, or “boringly repeating the same actions”, etc).

Since the problem of building a policy based on a given data set was treated in sim-
plification step two, the only thing left to deal with from a theoretical point of view is
“how to select actions with the highest expected usefulness of information”. This is a
relatively easy step from the point of view of a formalism, but leads us to an active,
but basically open, research field when we look for tractable solutions. From a theoret-
ical point of view, we need to find the action that will result in the highest expected
amount of useful information. The teacher signal generating transform Ω includes all
feedback behavior, so there is no need to introduce any additional transform for the
”stop interacting in certain situations” or ”start giving less informed feedback if bored”
situations. The usefulness of an action is thus dependent on how useful feedback it will
generate immediately as well as how it will impact the future interaction behavior of the
teacher. The problem of determining the expected amount of immediate information
from an action is related to the field of optimal experiment design (tractability issues
are different, but the theoretical framework is the same).

The expected usefulness of a single action is simply the weighted sum of the expected
usefulness of the action according to all u? - Ω pairs (weighted by probability), or the
corresponding integrals in the case of continuous parameter spaces. For the hypothesized
stochastic Ωj, and a hypothesized u?i, the usefulness of a single action is the weighted
sum of the usefulness of the change in policy from the possible feedback responses. In
the continuous case, the sums turns into integrals. Determining the expected usefulness
of even a single discrete action, even given absolute knowledge of the world, is thus a
completely intractable triple integral. We therefore need to start looking at approxi-
mate solutions. For example, one could try to optimize the expected information gain
regarding what u? looks like. This is an approximation as discriminating between some
possible u?s can be completely useless, even when they are very different (they could re-
sult in identical policies, or policies that have identical utility according to u?). It would
also be possible to optimize the information gained about Ω, under the very reasonably
sounding approximation that learning to understand the teachers feedback will allow the

51



learner to do what the teacher wants it to do. It is also possible to make some even more
radical approximations and just maximize surprise, but then a TV showing static noise
(or any other situation providing completely unpredictable sensory information) would
become an attention trap. Luckily there is an entire field of research that is actively
exploring what types of approximations can be made, and when some of them leads to
traps of the type mentioned above. See [135] for early work and for example [134] and
[133] for more recent experiments. In the previously mentioned [40], these methods are
used for determining when and who to imitate. See also [136] for the optimal experiment
design framework from which some of the basic principles comes from. One common
setting is building a forwards model for robot control by selecting exploratory actions to
be as informative as possible, but the findings can be used without much modification.
Below we can see algorithm 3 that builds on the multiple generator algorithm discussed
previously. It is built on the extremely old and very basic idea that if an hypothesis
is formed based on a history, and then found to be good at predicting newly observed
data, it is probably good. Actions are selected so as to discriminate between competing
hypotheses. Hypotheses are discarded or modified based on the new observations, and
new hypotheses are created based on history. Just like in the previous multiple gener-
ator algorithm, it concurrently estimates u?, Γs, what points where generated by what
Γ, and what the generating regions are.

3.4.2 Step four: dealing with a world that is not perfectly
visible to the teacher

Let’s remove the perfect visibility of the teacher, and allow some world dynamics. u?

is now a mapping with the inputs expanded to include the teacher’s world model. The
teacher can now care about both the real world, and its own world model. The teacher
could for example want dust to be removed from an apartment, and/or want to believe
that the dust has been removed (a teacher could dislike a dusty apartment, and/or dislike
that the apartment looks dusty, leaving the learner to deal with the old “to sweep dust
under the rug, or to not sweep dust under the rug” question discussed earlier). The
output of u? is no longer directly visible to the teacher since the actual world state
is not directly visible (and must instead be modeled based on inputs). Success is still
defined in exactly the same way however. This changes little for the learner from a
theoretical point of view as it never had access to the outputs of u? anyway. From a
practical point of view it changes everything. Solution strategies such as “wait to sweep
the dust under the rug until the teacher is looking in order to improve usefulness of the
feedback” becomes central.

What the teacher sees, and what types of worlds/actions are easy for it to see/understand
will now have to be monitored, and actions will also have to be chosen so that future
world states are informative. The learner also has access to sensor readings of the
teacher, that might be informative regarding what is visible to it (for example a camera
image of the teacher, from which it can be estimated what it is looking at, and which
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Algorithm 3 Active multiple generator algorithm

Input: DG0 , DΓ
0 , Du?

0 , T ,h(T ),S
• DG0 = {DG1

0 , DG2
0 , ..., DGN

0 } is the initial estimate of the generating tendencies (at
time 0).
• DΓ

0 = {DΓ1
0 , DΓ2

0 , ..., DΓN
0 } is the initial estimate of the feedback behaviors.

• DΩ
0 is the initial estimate of u?

• S is the number of update steps done as a response to each interaction
while teacher still giving feedback do
αt ← determineAction(Pt, Du?

t ,DΓ
t ,DGt )

It ← {Ξ, observeDemAction(αt)}
DΓ
t discardΓHyptheses(It, h(t− 1),Pt, Du?

t ,DΓ
t ,DGt )

h(t)← {I1, I2, ..., It}
for s = 1 to S do

s+1Pt ← estimateGen(sPt,sDu?

t , h(t),sDΓ
t ,
sDGt )

s+1Du?

t ← update− u? − estimates(sDu?

t ,
s+1P t,sDtΓ)

s+1DΓ
t ← update− Γ− estimates(sDtΓ,s+1Pt,s+1Du?

t )
s+1DGt ← estGenTend(sDGt ,s+1Pt, h(t),s+1 Du?

t )
end for
Pt+1 ←S Pt
Du?

t+1 ←S Du?

t

DΓ
t+1 ←S DΓ

t

DGt+1 ←S DGt
t← t+ 1

end while

objects are in its line of sight). Ω now maps the teachers world model to feedback.
Given a data set, the learner can in principle build a composite transform consisting
of one transform from the actual world to the world model of the teacher, and then
simply use that world model instead of the world state as input to Ω. The teacher still
shares a given ontology with the learner in this step, meaning that its world model is
a point in the same space as the actual world state (but of course not necessarily the
same point). Again, it is easy to extend the formalism to include the analysis of a given
data set by simply giving the full transform including a learner created transform from
world state to teacher world model and Ω, and give this full transform the same place
in the equations as Ω had earlier. Let’s introduce some notation:

• teacher sensor readings: z ∈ Z. For example a camera whose images of the
teacher is observable to the learner, which can be used for example to indicate
which objects are visible to the teacher.

• teacher world model: w ∈ W : The best guess of the teacher concerning the
world state and the learner action.

• Estimated teacher world building apparatus: V : Z × S → W . Since the
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teachers feedback behavior is now based on its world model (not the actual world
state), it would be useful for the learner to estimate this transform.

• Changed inputs for Ω: Ω : W × Ch × Cu → Cf . The learner must now
estimate the teachers world model in order to interpret the feedback generated
from Ω.

• Changed inputs for the utility function: u? :W×Cs×Cα → <: Preferences
can now be defined in both actual world states and estimated states (the teacher
can want the apartment to be clean and/or want to avoid the sight of dirt).

Practical difficulty is increased, but it is still a well defined inference problem with an
analytical optimal solution (in terms of expected utility) for any finite data set and any
generating distributions (if the teachers world building apparatus is also drawn from a
known distribution). The problem was intractable even before, so not much has actually
changed in terms of needing approximate solutions to evaluating data. But new types
of information gathering strategies might be needed.

An obvious solution strategy would be to create the types of situations that is visible to
the teacher in order to get more informative feedback. For example: “make sure to sweep
the dust under the rug while it is looking, so that feedback will be more informative”.
The analogy for a map building room would be to find that estimates based on camera
images is less reliable in dark rooms so that it can take light conditions into account
when updating on data, and of course turn the light on whenever possible.

3.4.3 Step five: dealing with a world that is not perfectly vis-
ible to the learner

Let’s remove the perfect visibility of the learner, so that sensor reading and internal
states take the place of world states. The interpretation hypotheses become transforms
from teacher preferences to sensor readings, or states that are obtained by transforming
sensor readings. The inputs to interpretation hypotheses and policies are now either
input spaces or the results of transforms from input spaces. Very little actually changes
from a theoretical point of view. The world states were not visible to the teacher in the
previous step, so this space already functioned pretty much like sensor readings that are
used to estimate what the teacher was perceiving.

3.4.4 Step six: finding Ω without a known generating distri-
bution

Let’s remove the aspect of the learner knowing how likely each possible way to generate
the teacher signal is. In other words, the teacher signal generating transform Ω is no
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longer drawn from a known distribution. If the learner has a set of hypotheses regarding
the distribution from which the teachers Ω transform is drawn, this collapses (from the
learners point of view) into an equivalent problem. If the learner is able to investigate
interaction histories from multiple teachers, it could in principle revise its estimate of
each individual teachers Ω transform concurrently with estimating the distribution from
which Ω is drawn.

As the interpretation hypotheses are already defined over sensor readings, and outputs
policy changes, nothing changes from the point of view of the learner. The initial set of
hypotheses will imply a prior distribution, but finding it would be completely intractable
(and of no practical value to the learner). The success criteria has not changed at all.
We are now almost at the situation of the previous section, with the only remaining
difference being the existence of the teachers utility function u?. u? is however not
visible to anyone at this point, and it does not actually influence anything, so removing
it would not change anything dramatically from the point of view of the learner (the
task of interacting with a teacher in step six, is indistinguishable from interacting with
an actual human in an actual unstructured environment from the point of view of the
learner).

3.5 Step seven: viewing existing learning algorithms,

operating in the unsimplified setup, as testable

interpretation hypotheses

We finally remove the assumption of a u? in the head of the teacher. As pointed out
above, this will change nothing from the point of view of the learner, as u? was not
actually affecting anything. An interpretation hypothesis Π now maps sensor readings,
or states in more abstract spaces ultimately obtained from sensor readings, to policy
updates. This means that a Π is now identical to a learning algorithm, and existing
learning algorithms can be seen as interpretation hypotheses. Existing learning algo-
rithms will often only be an hypothesis of how some limited set of the input space should
be interpreted, making a set of learning algorithms with different types of inputs very
suitable for concurrent modifications. By viewing a learning algorithm in this way, we
see when and how one learning algorithm can be used to modify another learning al-
gorithm. This section will focus on how to denote this type of concurrent modification
of existing learning algorithms as concurrent updates of a set of hypotheses. The focus
will be on a graphical representation, and on sketching numerous examples.

A learning algorithm is now re interpreted as encoding assumptions about some infor-
mation source, such as “demonstrated actions are more likely than random to be good
actions”, or “a reward button is pushed by a teacher, that very accurately compares
the end result of an action with the 7 previous actions”. If these assumptions are made
explicit as well as modifiable and/or falsifiable, a more suitable name is interpretation
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hypothesis. It is for example possible to turn the number of previous actions that the
current action is compared to into a variable, that can then be updated based on obser-
vations (evaluating the current action compared to the previous 3 actions will lead to
different expected interaction histories than if it is compared to the 7 previous actions,
allowing us to update the respective probabilities/update the parameter). Perhaps the
most basic application would be to take two learning algorithms using the same set of
inputs. Then make their assumptions explicit so that it is possible to calculate what
types of interaction histories they predict, and finally use observations to determine
which one to use. Let’s first look closer at a two step algorithm that first estimates
the teachers goal by looking at how highly the teacher evaluates its actions, and then
learns how to achieve this goal. The hidden assumption is that the teacher evaluates the
performance of the learner. Then we can take another learning algorithm that changes
the policy to be closer to policies that get a higher evaluation. The hidden assumption
being that the teacher evaluates how close the policy is to good policies. The learner
uses one of these (or some other method, like interpreting demonstrations) to learn a
simple task. It can now go through its history and see how the various types of actions
were evaluated, and choose one interpretation hypothesis over the other (for example
checking how actions that are close to good action in policy space, but very bad in
outcome space, are evaluated).

Another example would be when there is a probability estimate of how often demon-
strated actions are better than random, and how far they are from optimal. With a
limited data set, improving these estimates will likely improve the policy updates. One
idea entailed by this way of viewing learning algorithms is to use multiple interpretation
hypotheses, each interpreting a different type of input, and each with a set of parameters
(such as history length of a reward button), to learn a task concurrently with changing
the parameters of the hypotheses, and estimating their usefulness. If the teacher push-
ing the reward button does not compare the current action to history, but instead to the
optimal action, then it should be possible to discard the interpretation hypothesis as no
parameter value will result in an accurate model. The ability to assess the usefulness of
an interpretation hypotheses becomes important if there are competing hypotheses on
how to interpret the same type of information, or if there are other information sources
that can be used instead. The ability to discard some sources of information means
that a learner can in theory learn how to deal with a real human in an unstructured
environment that provides a diverse and redundant amount of information, and where
some of the information is much harder to interpret than others, and where it is not
known at programing time what information sources will be most useful (which could
be heavily dependent on the type of teacher and the type of task). If a teacher is en-
countered that often uses a reward button to encourage a learner that looks sad after
failing, and the learner is unable to differentiate the two different types of reward button
uses, then it might be best to simply learn from other information sources when dealing
with this teacher. Similarly, if demonstrations often fail, and the learner is unable to
separate a failure from a success (for example by using facial expressions), then it might
be best to avoid requesting demonstrations, or to avoid wasting computational resources
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trying to learn something useful from them. The next step is to try to better describe
what exactly these hypotheses are models of. They are supposed to model “what the
information means”, but this has to be stated more exactly (see section 3.3.2 where the
concept of informed preferences are introduced).

Let’s look closer at one algorithm that translates demonstrations into policy changes,
and a second algorithm that translates a scalar value following a learner action into
policy changes. To make use of these information sources it is necessary to make some
sort of assumptions about them, at the very least it is necessary to assume something
along the lines of: ”demonstrations are more likely than random actions to be good”, or
that: ”good learner actions are more likely to be followed by high scalar values than bad
actions”. If a learner knows one of these facts, it is possible to infer the other one from
observations. If the learner correctly assumes that demonstrations are good actions, it
can learn what to do in some restricted circumstance and then notice that good actions
are more likely to be followed by high scalar values. And if it correctly assumes that
high scalar values indicate good actions, it can learn what to do in some situations and
then notice that demonstrated actions are more likely to be examples of good actions.
When the correlation has been noticed, it can be used when learning how to act in
new situations (learning how to learn by learning how to interpret the various types of
feedback given by the teacher). Active learning in this setting means seeking situations
and performing interactions that will result in the type of information that will allow it
to disambiguate between different hypotheses of how to interpret teacher behavior.

Knowing either the policy or the parameters of one interpretation hypothesis allows us
to find the other two (the policy allows us to find the parameters of both interpretation
hypotheses, and either interpretation hypothesis allows learning of the policy). The idea
is that learning the interpretation hypotheses will be good for learning other tasks, but
updating all three things concurrently can be useful even when only learning a single
task.

The setup now consists of a learner that can be represented by transforms and in-
put/output spaces, and an unstructured environment containing a human teacher. We
have removed the simplification that there exists a utility function somewhere in the
head of the teacher. The mathematical notation describing the teacher now only exists
as a model that exists fully inside the learner architecture. The setup of step seven
thus contain a real world human and an unstructured world, but all the notation is
now describing a computational system (the actual physical embodiment of the learner
is outside this computational system, even if obviously its model of its own embodi-
ment is part of the system). From the formalism point of view we will focus on this
learner architecture and we choose a graphical representation of it in order to get a
better overview. Using this representation, we will describe several different concrete
architectures, learning from various information sources.

57



αm αs

πj,o;m,s

Input space

ΦcΦj

Φo

fc;o

πj,o;m,s M2

Ψa

Ψc

Ψb

Π1
a

Π2
a

M1

M3

M4

Πa,c

gb;c

Interpretation hypotheses Π

Inputs ψ to Π’s
and transforms gi;j

A modification with index i

M i The contents of this grey box at
the end of the arrow is modified
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Policies π and their outputs:
the action spaces α

Inputs to policies φ
and transforms fi;j from
one φi to another φj

Fig. 3.1: In this setup, a policy πj,o;m,s is modified by three interpretation hypotheses; Π1
a,

Π2
a and Πa,e. Inputs to policies are denoted Φ and inputs to interpretation hypotheses

are denoted Ψ. The black arrows mark inputs and the grey arrows mark modifications.
The policy πj,o;m,s is used to modify the transform gb;c. If the policy πj,o;m,s can be
reasonably well learnt using only information in Ψa (for example a demonstration of
a task), then it can later be used to check if the state in another space Ψc contains
any useful information (for example, if one state is more frequent in the case where the
demonstration was a failure, then this can be detected using πj,o;m,s). The informedness
of states in a space Ψc can be judged using πj,o;m,s (for example how useful states in Ψc

is for separating failed demonstrations from successful ones) . It is now possible to use
πj,o;m,s to choose from two different parameter setting of gb;c (two different parameter
sets results in two different Ψc spaces, which πj,o;m,s can be used to choose between).
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3.5.1 Graphical representation

We introduce a way of depicting a system/learner architecture graphically in figure
3.1. Hopefully this representation will make it easier to see new extensions to existing
research as well as enable us to describe proposed setups more clearly and more quickly.
The top left rectangle contains the policies and the lower left contains the steps that lead
to the inputs of the policy (which can be described as feature selection, finding the task
space, finding the framing, etc). The top right rectangle is the interpretation hypotheses,
and the lower right rectangle contains the transforms that generate those inputs. The
black arrows depicts inputs or outputs and the grey arrows depict modifications.

Inputs can for example be: current sensor readings (internal sensors like battery or
external sensors like a camera), past sensor readings, predicted future sensor readings,
internal states (for example an estimated urgency of the current task), the estimated
position of an object at some previous time (where object position is calculated, not
present in sensor readings), the output of some opaque pre-processing step that the
learner has no access to, the estimated current common ground in a conversation9, etc,
etc.

Modifications of the M4 kind are uses a task in order to find a new input space for
an interpretation hypothesis. For example learning which teacher facial expressions
correspond to failed demonstrations (by using a known policy and the recorded history
of demonstrations and facial expressions). The reasonably well learnt policy πj,o;m,s can
be used to determine how good individual demonstrations were. When we have a set of
demonstrations with estimated quality, we can search for a way to predict this quality.
This enables us to evaluate a space Ψc in terms of how well states in Ψc enables us to
predict the quality of a new demonstration. The ability to evaluate a possible space
Ψc enables us to modify the transform gb;c that results in Ψc (we can choose between
two different parameter values of gb;c since we can choose between the two different
resulting spaces Ψc). In short: πj,o;m,s modifies gb;c (which is denoted by a grey arrow
from πj,o;m,s to gb;c, and given the M4 identifier for easy reference). From a technical
point of view this type of modification are not different in principle from the other types
of modifications, but the result is that the learner can be said to “learn how to learn”.

The states in Ψc could for example correspond to facial expressions of the teacher where
some facial expressions indicates failure and other facial expressions indicate success.
πj,o;m,s can help determine if states in Ψc is informative and so the “facial expression
classifier” gb;c can be modified. If the states in Ψc are informative in other situations,
this could speed up learning in many other tasks (the teacher might make similar types
of facial expressions no matter what task the learner is failing/succeeding at).

9What is appropriate to say and do is often dependent on the common ground, since an interlocutor
will interpret actions based on this. A learner that can change how the current common ground the
current common ground is updated will be denoted by a modifiable policy with an appropriate action
space (consisting of manipulations to its model of the current common ground).
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A learning from demonstration setup
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Fig. 3.2: A learning from demonstration setup where Πe,d modifies the policy πj,o;m,s.
The inputs to πj,o;m,s is in joint space Φj and estimated object position space Φo, and
the policy is able to set the states in the action spaces αm (motor outputs) and αs
(speech outputs). The policy is being modified by Πe,d based on an estimated teacher
evaluation of its own demonstration Ψe and a representation of the demonstration in Ψd.
The evaluation estimate Ψe is obtained by gf,t;e based on facial expression Ψf (obtained
by gc;f from camera input Ψc) and tone of voice (obtained by ga;t from audio input Ψa).

In this setup the learner learns from demonstrations, as well as an estimate of how
happy the teacher was with the demonstration it just performed (the teacher is not
always successful at performing the task and the learner is trying to predict if a new
demonstration was a failure, and use that during learning). A graphical overview can
be seen in figure 3.2. The input to Πe,d is teacher actions represented in Ψd (a set of low
dimensional context-action pairs) and an evaluation represented in Ψe, obtained by a
transform gf,t;e with inputs in facial expression space Ψf and tone of voice space Ψt. Ψf

is obtained from a camera input Ψc using gc;f and Ψt is obtained from an audio input
Ψa using ga;t. Ψd is given to the learner directly and the learner can not modify how it
is obtained (it is not a sensor reading but, since it can not be modified, it is an input
to the learner). Πe,d updates a policy πj,o;m,s with inputs in joint and estimated object
position space, and performing actions in speech and motor α spaces.

Πe,d is an exact implementation of an interpretation hypothesis that could be verbally
approximated as; “actions in Ψd are probably good for certain states in Ψe and probably
bad for other states in Ψe”, or even more crudely; “imitate the actions that the teacher
seems pleased with”. The update is denoted M1 and is dependent on the details of
the hypothesis, for example the assumed noise level of a favorable evaluation of some
specific type of demonstration (for learning from demonstration algorithms that assume
normally distributed noise, see the GMR based algorithms of [108, 101, 125, 69]). If
the update mechanism is static and ad hoc, only implicitly encoding assumptions about
noise levels, it is still referred to as an hypothesis (it is just an hypothesis whose details
are not easy to see and that is not updated based on observations). If the details of
this hypothesis is made explicit there are several ways in which it could be updated: (i)
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demonstrations that involve heavy objects can be given a higher expected noise rate10.
(ii) Adding a word recognizer that detects only the word “Nooo!” (giving a binary input
to Πe,d) and uses this instead of the state in Ψe when it is present but ignores it when
not present (the noise is of course dependent on the word recognizer and the usefulness
is dependent on how often the word is used after failed demonstrations). (iii) A “triadic
joint attention11 detector” could be added based on the finding that the noise level is
much lower when this is happening. The learner does not have to understand why the
noise is lower in some states of the “triadic joint attention detector”. The correlation
could be detected for example if: the teacher is putting some real effort into trying to
do a good demonstration, or if the facial expression estimator gc;f works better when it
has this type of input, or if the type of verbalizations made in this type of interaction
is easier to interpret by ga;t, or if the types of tasks that are demonstrated with triadic
joint attention is easier to learn, or if the types of behavior the teacher does in this type
of interaction is the types of behavior that the teacher would like the learner to adopt,
etc. The learner can benefit from this “triadic joint attention detector” without fully
understanding why it works.

A feedback learning setup

αm αs

Input space

Φc
Φj

Φo

fc;o

M2

Ψa2Ψa

Ψv

Ψc

Ψe2

M1

M3

πj,o;m,s

gc;v ga;e2

Πv,e2,a2

Fig. 3.3: This figure shows a learning from feedback setup where Πv,e2,a2 estimates how
highly its actions (represented in Ψa) were valued (estimated in Ψe2) and how informed
the teacher was Ψv, and uses this to choose whether or not to add the action (along
with the context it was performed in) to a list of such actions contained in the policy
πj,o;m,s.

We can see this setup in figure 3.3, where the policy πj,o;m,s has the same inputs and
outputs as before. πj,o;m,s contains of a list of previously performed actions (context and

10If the teacher is not very proficient at manipulating heavy objects, and furthermore states in Ψe

mainly captures how pleased it is with its own performance relative to the difficulty level of a task,
then it is perfectly possible that the same state in Ψe indicate a higher expected noise level in the case
of a type of Ψd that involves heavy objects. This can be utilized by a learner that simply notices that
certain types of states in Ψd correspond to higher noise levels (even given the state in Ψe).

11This is when the teacher is looking at the learner, as well as an object, and is following the learners
gaze to make sure they are both attending to the same object.
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output) where each action has two scores, one estimated evaluation and one estimate
of how informed the teacher was at the time of evaluation. It also consists of a rule for
how to select a subset from the list based on the current context, and finally a regression
algorithm that gives an output based on the subset of actions selected. If there are no
previous actions with contexts close to the current context, a fixed default π2

j,o;m,s is
executed (not shown in the figure).

πj,o;m,s is modified by Πv,e2,a2 based on the estimated visibility of the teacher Ψv (how
much of the scene does the teacher see when it gives the feedback), the estimated
evaluation Ψe2 and the action performed Ψa2 (the action that is assumed to be evaluated,
and the parts of the context that is assumed to be relevant for what action is to be
performed). There are three input spaces to Πv,e2,a2 that could be improved. Ψa2 is
the representation of actions and contexts, so any improvement of this would center
around re-estimating which part of the context was is relevant, or what part of the
action is relevant. In this example the focus is on re-estimating what evaluation the
teacher wanted to give, represented in Ψe2 , by modifying the transform ga;e2 . And also
on modifying the transform gc;v calculating how visible the scene was to the teacher at
the time of the evaluation (represented in Ψv). For the modification M1 to work, the
initial way of calculating Ψe2 must be at least approximately accurate. Even if the data
is noisy, it can still lead to an accurate estimate of πj,o;m,s (using a larger data set than
would have been needed if noise free data was available). A somewhat accurate πj,o;m,s
can then be used to create a data set that can be used to modify ga;e2 (denoted M2)
consisting of how correct the action was according to πj,o;m,s and the input in Ψa (the
noise level will be dependent on the accuracy of πj,o;m,s). One way of modifying ga;e2

would be to find a transform that, besides mapping audio input to the known word
categories, there is an alternate transform ga;e2 that also maps some audio input to a
category that correlate strongly with very large performance improvement (for example
corresponding to the teacher loudly saying “Great!”).

The modification M3 is done in a similar way. What is sought after is a space whose
states can be used to predict if the evaluations in Ψe2 is accurate. πj,o;m,s tells us
the accuracy of individual evaluations, which gives us a data set consisting of pairs of
(inputs in Ψc and this accuracy) and what we want is a transform gc;v such that states
in Ψv predict this accuracy. This problem is of a very well explored format (obtaining
a function based on input-output pairs) and its solvability is strongly influenced by the
accuracy of πj,o;m,s due to its influence on the noise level in the data set. One example
where this can succeed is if 90% evaluations are correct, and in the other 10%, the
teacher is unable to see an object. An accurate πj,o;m,s can be learnt (M1) with data of
this noise level, leading to a data set where the accuracy of the individual evaluations
are accurately estimated. Now this data set (that does not need to be noisy since πj,o;m,s
is accurate) can be used to find a gc;v that maximally well separates the 90% accurate
evaluations from the 10% inaccurate ones.

The interesting part of this setup is to improve gc;v and ga;e2 , which can hopefully be
used to learn similar tasks.
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Chapter 4

Experiments with concurrent
updating of a task model and an
interpretation hypothesis
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This chapter is based on [88]. The text is adapted for the thesis, but the text and the
figures are mostly done by Manuel Lopes. The programing of the experiments were
also performed by Manuel Lopes. The thesis author is the second author of [88] and
contributed to the design of the experimental setups and algorithms. A system to learn
task representations from ambiguous feedback. We consider an inverse reinforcement
learner that receives feedback from a teacher with an unknown and noisy protocol. The
system needs to estimate simultaneously what the task is (i.e. how to find a compact
representation of the task goal), and how the teacher is providing the feedback. This
is a good example of a learner that modifies an interpretation hypothesis based on
observations. A teacher uses words such as “good”, “bad” and “go left” and at the start,
the learner has a partial understanding of what this means, an imperfect interpretation
hypothesis. As the learner learns the task, it is able to update this interpretation
hypothesis. If for example has learnt that a particular action it performed was good, it
can update its hypotheses regarding what the word uttered means. The learner actively
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chooses actions and learn the task concurrently with re-estimating the interpretation
hypothesis.

The system to starts with a set of known signs and learn the meaning of new ones. We
present computational results that show that it is possible to learn the task under a
noisy and ambiguous feedback. The active learning is shown to reduce the length of the
training period.

Several studies discuss the different behaviors naive teachers use when instructing robots
[89, 141]. An important aspect is that, many times, the feedback is ambiguous and
deviates from the mathematical interpretation of a reward or a sample from a policy.
For instance, in the work of [89] the teachers frequently gave a reward to exploratory
actions even if the signal was used as a standard reward. Also, in some problems we
can define an optimal teaching sequence but humans do not behave according to those
strategies [141]. The system in [83] automatically learns different interaction protocols
for navigation tasks where the robot learns the actions it should make and which gestures
correspond to those actions.

In this work we consider a setting where the robot must learn a task description (in
the form of a reward function) from interacting with a teacher that provides feedback
signals. We extend previous approaches by learning simultaneously how the feedback is
being provided and what is the meaning of the teacher’s feedback signs. Note that we
will call what the teacher says/writes sign or feedback sign and the meaning of the sign
feedback. In a human-robot interaction setting we consider the case where the robot
tries an action and then receives a feedback signal from the teacher. Such feedback is
not restricted to a pre-defined protocol, with a pre-defined set of signs or words, but
should allow for new interaction types and instruction commands. The teachers will
also provide signals not expected by the robot. A simple case is when the teacher gives
synonyms of feedback words.

Our contributions are: a) a learning by demonstration system that learns a task descrip-
tion based on noisy feedback, b) an interactive learning system with a loosely defined
protocol in terms of accepted words and their use, and c) an online learning system that
estimates simultaneously the task, the feedback protocol and the sign-meaning relations.
We assume that the robot is initially equipped with a set of sensory-motor skills and
knowledge of some feedback signs. The state space is assumed to be continuous, the set
of actions and feedback meanings are finite and the feedback signs can grow infinitely.

The experimental protocol we used is the following. The robot samples a state and tries
an action on that state. The teacher has the possibility of providing the robot with a
feedback signal. Those signal can refer to the name of the correct action to be used or
by explicitly saying if an action is correct or wrong. Our framework is generic and the
signal provided by the teacher can refer to the uttered words, gestures, facial expression
or even the prosody of speech. By iteratively following this process, the system will learn
the task representation. This system is different from typical learning by demonstration
systems because the data is acquired in an interactive, and online, setting and not in
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batch. It is different from previous learning by interaction systems in that the feedback
signals received have a much looser protocol and might make use of unknown signs.

In the next Section we provide the details of the algorithm, including a summary of
Bayesian inverse reinforcement learning and an active learning extension. Finally we
present simulations of our system and conclusions.

4.1 Inverse Reinforcement Learning with Ambigu-

ous Feedback

In this section we present our learning algorithm. Our problem can be divided in three
smaller ones: a) learn the task representation; b) learn how the teacher provides the
feedback on the executed actions; and c) learn the meaning of novel feedback signals.
We remember that the feedback is what the teacher means and the sign or feedback sign
is what it “says/writes/gestures”.

4.1.1 Bayesian Inverse Reinforcement Learning

We consider a standard markov decision process (MDP) and follow the notation of [140].
An MDP is defined by a state and action space X and A respectively, a reward function
R and a state transition model P. A policy, π(x, a), is a function that attributes a
probability of selecting an action in each state and the function r(x, a) gives the reward
the agent receives when choosing the action a in state x. The goal of reinforcement
learning is to find the optimal policy π∗, that is defined as the ones that maximizes the
total discounted reward, i.e. R =

∑∞
t=0 γ

trt, with γ a discount factor and rt the reward
received at time t. We define the Qπ-function as the value of taking an action at a given

state when following policy π, i.e. Qπ(x, a) = Eπ

(
r(x, a) + γ

∑
y P

a
xy maxbQ

π(y, b)
)

,

where P a
xy = p(xt+1 = y|xt = x, at = a) is the probability of reaching state y when the

current state is x and the chosen action is a.

In our case we are not interested in learning a task by self-exploration but will use data
from a teacher to learn the representation of the task the teacher wants the learner to
acquire. In this situation we do not have a reward function from which we can get
samples but have instead samples from the policy, i.e. we do not have a reward but
have actions. This formalism is called the inverse reinforcement learning (IRL) problem
[142]. The goal is to find the reward function that the teacher is trying to maximize
and later on use it to select the best actions.

Using a Bayesian perspective, we follow the Bayesian IRL approach (BIRL)[143]. In
that setting we consider that, if the teacher is performing the task described by the
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reward function r, the samples of the demonstration are generated by:

p(x, a|r) =
eηQ(x,a)∑
b e

ηQ(x,b)

where η is a confidence parameter where high values correspond to the optimal policy
and lower values allow samples of non-optimal actions. We assume a uniform state sam-
pling. For numerical purposes it is convenient to rewrite that expression by considering
the summed probability of all the optimal actions (A∗) as:

p(x, a|r) =


P
a∈A∗ e

ηQ(x,a)P
b e
ηQ(x,b) if a ∈ A∗

eηQ(x,a)P
b e
ηQ(x,b) if a /∈ A∗

To have a normalized probability distribution we have to consider all optimal actions as
a single one. To learn the reward we compute the posterior distribution of the reward
function after observing a given data vector Dt = {A0:t, X0:t}:

p(Rt+1|A0:t, X0:t) ∝ p(At|Rt, Xt)p(Rt) (4.1)

for a suitable choice of prior distribution on R, see [143]. The process of computing this
posterior distribution is computationally intensive. We implement it with a filtering
perspective [144]. We consider that the reward function is a linear combination of basis
functions φ(x) in the following way R = wtφ(x). Then, we estimate not the posterior
of the parameter w of the mixture, but the posterior of the activation of each feature
vector. An intuitive way to see this is to assume that each sample point is generated
from a policy corresponding to a single feature vector. Under this perspective the mean
of the feature distribution is the best estimation for the reward function.

4.1.2 Feedback Model

Now, the learner must infer what the task representation is and how the feedback is
being provided. In this section we consider that the signs provided by the teacher have
a known relation with the feedback meaning, next subsection will relax this assumption.
The difference compared to the standard setting is that the demonstration is not given
as a sequence of state-action pairs but as feedback on those pairs. For a given state
action pair (x, a) we consider the probability of receiving a given feedback signal f .

If the robot performs the correct action, the teacher might say nothing, might verbalize
the correct action to reinforce it or acknowledge that it was the correct action. If
the learner performs the wrong action the teacher might say “error”, just verbalize the
correct action, or say nothing. In all circumstances the learner perceives the feedback
with noise and so it can even hear the wrong feedback. Table 4.1 shows all the possible
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feedback protocols that can range from a pure learning from demonstration behavior
(protocol 1) to a pure binary reinforcement one (protocol 8). Each protocol is defined
with the feedback that the teacher provides the learner when it does the correct action
and when it does the wrong action. The teacher might choose to say the correct action
(A), say nothing (∅), give a confirmation (O) or inform the learner that the selected
action is wrong (W). This protocol is ambiguous and the same feedback (∅) can either
mean correct or incorrect. If more than one correct action is available in a state then
the teacher provides, randomly, one of them. To model perceptual errors there is a
probability of receiving a random sign instead of the correct one. The only restriction
we have in the protocol is that a (W) message after a correct action is made or an
acknowledge (O) when a wrong action is executed are only given with low probability.
These assumptions model the perceptual noise of the learner and give a small bias that
improves the convergence of the algorithm by disambiguating the different protocols.
More general protocols could be considered, but for computational efficiency we reduced
to a small set that allows the implementation of an efficient filter.

Table 4.1: The 8 feedback protocols considered. Possible feedback instructions given by
the teacher when the learner does the correct or wrong action are: the action name
(A), nothing (∅), correct (O) or wrong (W).

ActionFeedback 1 2 3 4 5 6 7 8
Correct A A A ∅ ∅ O O O
Wrong A ∅ W A W A ∅ W

Each different teacher that will be modeled as a convex combination of these protocols.
For the teacher model we will consider a set of parameters M that describe the mixture
of protocols in Table 4.1. We do this to be able to explain more teacher behaviors than
just the predefined models, this is specially important when we do not know the level of
noise on each protocol. As an example, consider M = [0 0.8 0 0 0 0.2 0 0], the statistical
model for the feedback is as follows:

if A is optimal

{
p(F = A|A,M) = 0.8
p(F = O|A,M) = 0.2

if A is non-optimal

{
p(F = ∅|A,M) = 0.8
p(F = A|A,M) = 0.2

This combines 80% of the time a teacher that reinforces the behavior of the learner
when it is correct by providing the correct action and says nothing when the action is
wrong, and 20% of the time a teacher that confirms that the chosen action was correct
or provides it when the learner chooses it wrong.

We have to extend the model in Eq. 4.1 to include the ambiguous feedback. Our
posterior now depends not only on the demonstration but also on the feedback model.
By independence we can get the following factored model:
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p(Rt+1,Mt+1|A0:t, F0:t)

∝ p(Ft|At, Rt,Mt)p(Rt,Mt|At)
∝ p(Ft|At, Rt,Mt)p(At|Mt, Rt)p(Rt,Mt)

= p(Ft|At, Rt,Mt)p(At|Rt)p(Rt,Mt) (4.2)

4.1.3 Sign-Meaning Model

Another aspect of human-robot interaction systems is that the feedback is often given
using a natural interface such as gestures or speech. Most of the times there is an implicit
assumption that the vocal signs are assumed to have a known semantics for the learner.
Now, we will relax this assumption and allow the teacher to provide instructions to the
learner that are unknown. We will define the feedback as the instruction the teacher
wants to provide to the learner, as defined in Table 4.1, and the signs as the words
actually provided by the teacher. In this way it is possible for the learner to accept
new words and learn their meanings. As an example, the teacher might say “good”, or
“ok”, or “correct” and the learner should always understand it as a confirmation, i.e. the
different signs all correspond to the same feedback.

We have to extend the previous feedback model, in Equation 4.2, to include the uncer-
tainty in the signs received. We will consider a new relation that gives the probability of
having a feedback sign g when the teacher wants to provide a given feedback f , p(g|f, .).
As the feedback is no longer observed, we have to integrate it out from the observation
of the feedback. Finally, we get the following expression:

p(Gt+1|Dt) =
∑
g

p(Gt|Ft)p(g|Dt) (4.3)

This posterior distribution on the sign-meaning vector can also be implemented as a
particle filter.

4.1.4 Algorithm

The algorithm involves the estimation of three entities from data: the reward, the
feedback model and the meanings of the feedback signs. We will use a particle filter
to estimate all the variables of interest. To reduce the number of particles we will
not represent the full joint distribution but only an approximate of each marginal.
We update the weight of each particle taking into account the maximum a-posteriori
estimate of the other variables. Table 4.2 summarizes the algorithm.
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Feedback
Signs Meanings

7* K
n
ow

n

up ↑
down ↓
left ←
right →
∅ CORRECT/WRONG
ok CORRECT
error WRONG

3* U
n
k
n
ow

n

good ?
bad ?
... ?

Fig. 4.1: Relation between feedback signs and intended feedback meaning. There are
only Na + 3 feedback meanings, one corresponding to each available action and the
meanings of CORRECT and WRONG. They are fixed and known from the beginning.
We assume that there is at least one feedback signal with a known correspondence to
a feedback signal, there is the possibility of unknown feedback signs to exist and their
relation to the feedback must be learned. For instance the teacher might say good
instead of ok. The table shows an example when the agent has 4 available actions (up,
down, left and right).
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Table 4.2: Algorithm for the joint estimation of the task representation, feedback and
sign-meaning models. It combines three particle filters to approximate the posterior
distribution of the three variables.

• Select number of samples nr, ng and nm

• Sample nr reward vectors

• Sample ng sign-meaning parameters

• Sample nm protocol parameters

1. Sample state x

2. Choose and execute action a

3. Observe feedback sign gt

4. Sample feedback from ft ∼ p(f |gt)

5. Find best feedback parameters M = argmaxiw
(i)
f

6. w
(i)
r ← p(ft|At, Ri

t,M)p(At|Rt)w
(i)
r

7. Resample reward particles

8. Find best reward parameters r∗ = argmaxiw
(i)
r

9. w
(i)
f ← p(ft|At, r∗,Mt)p(At|r∗)w(i)

f

10. Resample feedback model

11. w
(i)
g ←

∑
i p(gt|ft)w

(i)
g

12. Resample sign-meaning model

13. goto 1
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4.1.5 Active Sampling

The previous algorithm keeps an approximation of the posterior distribution of the
reward function. We can use this information to allow the learner to ask the teacher
for more informative samples. We do not consider any intrinsic motivation on the
system [145] besides that of reducing uncertainty. From the reward distribution it is
difficult to decide what state, or action, provides more information. We can follow
the active learning extension for IRL as presented in [146], or alternatively [147], to
allow the learner to request the most informative samples. In that approach the policy
distribution is inferred from the distribution on the rewards. Then, for each state, a
measure of the uncertainty is made to select the state where the policy posterior has
higher variance. Intuitively, this state is the state where the rewards agree least.

The criteria used is, for each state, the variance of the weighted sum of all policies.

I(x) = variance

(∑
i

wirπ
i(x, a)

)

The most informative state will be the one where the previous criteria is smaller, meaning
that the policy distribution is flat. The action is selected randomly. We note that this
exploration strategy just takes into account the uncertainty on the reward. Creating an
exploration strategy based on the uncertainty of the sign-meaning estimation does not
provide a gain due to the probabilistic model we used. Other sampling criteria that we
are going to test is a counter based random sampling of states and actions, and random
states with actions sampled with the usual ε− greedy strategy.

4.2 Results

In this Section we present the results from our algorithm in a set of simulated environ-
ments.

4.2.1 Navigation Task

We consider a simulated environment with 5 different actions, the number of states in the
discretization grid varies in each problem. All results report averages of 20 executions of
the algorithm with different parameters. The true reward function to be found by the
learner is randomly generated at each experiment, the same occurs for the meaning and
feedback models. The reward in this abstract problem can be seen as corresponding to
a navigation task and so the reward is the goal location.

Figure 4.2 compares two situations, the first where the learner estimates the feedback
model of the teacher and the second where it does not estimate the feedback model.
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But, in both cases, considering that all feedback signs are known. We can see that
learning is faster and with a better quality if a model is estimated and so it shows the
importance of our approach. Some protocols are equivalent in terms of speed of learning
even without any particular assumption about it. But consider, for instance, what the
teacher means when it does not say anything. In some protocols that is equivalent to say
it is correct and in some others it means that the action is wrong. Only after knowing
this relation can the learner make use of that data to improve its estimation of the task
representation.

Fig. 4.2: Comparison of learning of the task model with or without learning the feedback
model. Number of states is 400. The figure shows the likelihood of the best estimate of
the reward function.

From Figure 4.3 we can see that the task can be learned even under a noisy feedback
signal, and that we can learn simultaneously the model of the feedback behavior. Around
10% of the feedback signals were noisy. The same figure also compares the different
sampling methods. We can see that the active exploration is able to learn faster, with
less variance and with a better asymptotic convergence. This situation happens even if
the active criteria was developed without taking the noise in the feedback into account.

We now present our full system where there are some feedback signs with unknown
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Fig. 4.3: Simultaneous acquisition of the task and the feedback models with three
different exploration methods for a problem with 225 states. The figures show the
likelihood of the best model for the reward and the feedback The top figure shows the
results for random exploration and the middle one for active exploration. The bottom
one compares both, and also one using ε-greedy exploration. Results are for 10 runs,
the mean are variance bars are shown. The active exploration method learns faster with
smaller variance and bias. 73



meanings. The system needs to learn the task, the feedback model and the map of new
signs to their meanings. We consider 7 feedback signs whose meanings are known, i.e.
the five actions plus O and W , and 7 new signs that can map to any of those meanings.
Figure 4.4 shows the results using 100 particles for the estimation of the sign-meaning
relations. The first conclusion is that the system can learn all the important variables
and, again, the active exploration method learns faster and with less variance than the
other methods. Not all the signs meanings are successfully estimated and this situation
is caused by a very asymmetrical sampling of the feedback signs. We can observe this
in Figure 4.5. For instance, a teacher that always gives the correct action will never use
the signs for correct and wrong and so their meanings will not be learned.

4.2.2 Collecting Objects

We now consider an environment where the learner can navigate and where there is a
probability of finding three different objects. The learner has to learn which objects
it should collect, or not, and for each of the object classes learn where they must be
delivered. The number of actions is now 7, the 5 navigation ones plus collect and release.
The number of feedback signs is now 10, again we assume that we have an initial known
set of signs and the teacher will provide 10 new synonyms.

Figures 4.6 and 4.7 give the results for a problem with three objects and 64 possible
locations. In each execution of the problem the system randomly selects the objects
that should be collected and their delivery locations. Results are qualitatively equal to
the previous problem.

4.3 Conclusions

This chapter showed how a learning system can learn a task description when the feed-
back it gets from the teacher does not follow a rigid protocol and is very noisy (10%
error in correctly recognizing the feedback signs). We showed that a learner can esti-
mate simultaneously the feedback protocol and the task representation in a reasonable
amount of time and computational complexity. This exemplified the idea of learning
how to learn that is central to the formalism. An imperfect learning algorithm (for ex-
ample one that does not have access to a complete understanding of the feedback words
of the teacher) can be used to learn a task or part of a task. A better task model can
be used to update the interpretation hypothesis, and a better interpretation hypothesis
can be used to update the task model. This is a perfect setup for concurrent updating,
and the chapter showed that this can work in practice.

By bootstrapping the systems with some known sign-meaning correspondences, the
system could successfully estimate the correspondences of new feedback signs. To further
improve the efficiency of the system we presented an active learning approach where the
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Fig. 4.4: Learning with 400 states (top) comparison between sampling methods, (bot-
tom) mean and variance for the active method.
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Fig. 4.5: Histogram of observed feedback signs. We can see that some signs are very
rarely used thus making it impossible to estimate their meanings.
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Fig. 4.6: Mean and variance for the active learning method in the “Object Collecting”
Task. The system is able to learn the task, the feedback system and new feedback signs.
Top - policy loss; Middle - likelihood of correct feedback model; Bottom - number of
correctly assigned signs.
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Fig. 4.7: Comparison between active and randomly sampling in the “Object Collecting”
Task. The system is able to learn the task, the feedback system and new feedback signs.
Top - policy loss; Middle - likelihood of correct feedback model; Bottom - number of
correctly assigned signs.
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learner asked the teacher for specific information in states where it is more uncertain.
This results in faster learning than with a simple random strategy with a smaller variance
and bias.

We tested our system in different problems and the qualitative results are consistent
among different domains and the system is able to learn all the entities. The results
degraded when the noise level increases. The improvement we get from active sampling
is dependent on the quality of the posterior estimation and thus it is important to have
features that can correctly describe the possible tasks. In terms of the number of signs,
in our system we had to assume that some correspondences are known to improve the
convergence.

This research can also be compared to language learning research, where we learn syn-
onyms for words labeling actions from a teacher already proficient with the language.
The information used to learn these synonyms is not traditionally used in language
learning research. It is often the case that a label is used to describe an object or prop-
erty of an object (and a difficulty often encountered is that it is unknown what property
the label refers to), see for example [55]. In our research a label is associated with a
desired action that is in fact never seen (the person that knows the language does not
perform demonstration of the actions but instead gives the label of the action). The
meaning of the label is instead found by building a model of what task the teacher is
trying to teach the learner, where a good model of the feedback helps learning a good
task model and vice versa (under a set of observations some feedback model task model
pairs typically becomes much more probable).
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Chapter 5

Unlabeled demonstrations of an
unknown number of tasks
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In this chapter and the next, several experiments are introduced which exemplify specific
learners as specified by the formalism. The focus will be on exploring new types of setups
rather than offering solutions to already explored setups. This is done by starting
with a learner that observes demonstrations. The new element in this chapter will
be to explore how a learner can solve the problem if a critical assumption of many
proposed interpretation hypotheses used in imitation learning is removed. Specifically
the assumption that the learner knows what task is being demonstrated. When this is
not the case, the learner have a whole new set of problems to solve. The research of this
chapter and the next chapter was performed while the formalism was being developed,
and while the experiments are certainly instances of the proposed formalism, they are
not the prototypical cases or the cases most suitable for exemplifying the formalism. In
this chapter the position of an object determines which task is being demonstrated by
the teacher/demonstrator or which task should be performed by the learner/imitator.
We can view this object as a teaching signal that is being interpreted. The learner does
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not start with the knowledge that it is the object position that determines what task
should be produced.

When the teacher, which in this case is a demonstrator, provides demonstrations of an
unknown number of tasks and the learner is not provided with symbolic labels indicating
what task is being performed several novel problems arise. The learner, who in this
case is an imitator, needs to figure out the number of separate tasks that has been
demonstrated (a set of demonstrations could constitute many demonstrations each of
two tasks, or a few demonstrations each of several tasks), which demonstrations where
of what task and finally when it should perform what task. The demonstrator may
alternate demonstrations corresponding to different tasks in an uncontrolled or even
random order. Yet, we assume that elements of the sensorimotor context can allow the
robot to statistically infer information that may allow it to accurately reproduce the
right task in a given sensorimotor context.

A mechanism is detailed and an experiment is presented showing that it is possible to
learn and reproduce several tasks even when the demonstrations are unlabeled. Each
tasks should be solved by a policy that takes inputs in a specific subset of the input
space, and we will call each such subset a framing. In this case there is no explicit
calculation of the number of tasks, and the framing is recalculated at each time step.

Gaussian Mixture Regression has been shown to be a powerful and easy-to-tune re-
gression technique for imitation learning of constrained motor tasks in robots[108, 101,
125, 69]. Yet, current formulations are not suited when one wants a robot to learn
incrementally and online a variety of new context-dependant tasks whose number and
complexity is not known at programming time, and when the demonstrator is not al-
lowed to tell the system when he introduces a new task (but rather the system should
infer this from the continuous sensorimotor context). As will be demonstrated with an
experiment, this limitation can be addressed by introducing an Incremental, Local and
Online variation of Gaussian Mixture Regression (ILO-GMR) which successfully allows
a simulated robot to learn incrementally and online new motor tasks through modelling
them locally as dynamical systems, and able to use the sensorimotor context to cope
with the absence of categorical information both during demonstrations and when a re-
production is asked to the system. Moreover, we integrate a complementary statistical
technique which allows the system to incrementally learn various tasks which can be
intrinsically defined in different frames of reference, which we call framings, without the
need to tell the system which particular framing should be used for each task: this is
inferred automatically by the system.

5.1 Algorithm

The algorithm used, Incremental, Local and Online formulation of Gaussian Mixture Re-
gression (ILO-GMR), does not rely on an explicit segmentation or clustering of demon-
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strations. This algorithm was introduced in [102] and its use for learning multiple tasks
from unlabeled demonstrations was introduced in [104].

ILO-GMR incrementally and locally models the set of all tasks as a single dynamical
system. Different tasks just correspond to different regions of the state space and the
thing that changes between different tasks is the part of the state that continuously
(as opposed to symbolically or categorically) models the sensorimotor context. The
central idea of this technique is to build online and on-demand local Gaussian Mixture
Regression regression models of the task(s).

During training in this approach, data points are stored incrementally in a data structure
which allows for very fast approximate nearest neighbors retrieval (e.g. such as in [115]).

Then, at prediction/reproduction time, the method looks at the points in the database
that are close to the current state of the system, including sensorimotor context infor-
mation, and a local GMR model is built online. As the model is very local, only a few
gaussians are needed (typically 2 or 3), and experimental results show that an EM and
GMR with 2 or 3 gaussians and around 100 points can be run in a few milliseconds on a
standard computer, which is enough for many real-time robot control setups. Thus, new
data points from a demonstration, either of a task already seen or of a new task, can
be exploited immediately without heavy recomputations and without any programmer
intervention (standard parameters of ILO-GMR experimentally work for large number
of tasks of varying complexity) giving us the advantages of a truly incremental and
online algorithm.

5.1.1 Gaussian Mixture Regression

The GMR approach [108] first builds a model (typically in task space, but models
in the joint space can also be used) using a Gaussian Mixture Model encoding the
covariance relations between different variables. If the correlations vary significantly
between regions then each local region of state space visited during the demonstrations
will need a few gaussians to encode this local dynamics. Given the number of gaussians,
the use of an Expectation Maximization (EM) algorithm finds the parameters of the
model.

A Gaussian probability density function consists of a mean µ and a covariance matrix
Σ. The probability density ρ of observing the output v from a gaussian with parameters
µ and Σ is:

ρ(v) =
1

2π
√
|Σ|

exp{−1

2
(v − µ)TΣ−1(v − µ)} (5.1)

To get the best guess of the desired output (e.g. speed in cartesian space of the hand in
the robot experiments below) v̂ given only the current state xq (e.g. position and speed
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of the hand in various referentials and position of an object construing the context, as
in the experiments below) we have:

v̂(xq) = E[v|x = xq] = µv + Σvx(Σxx)−1(xq − µx) (5.2)

Where Σvx is the covariance matrix describing the covariance relations between x and
v.

A single such density function can not encode non linear correlations between the dif-
ferent variables. To do this we can use more than one gaussian to form a Gaussian
Mixture Model defined by a parameter list λ = {λ1, λ2, · · · , λM}, where λi = (µi,Σi, αi)
and αi is the weight of gaussian i. To get the best guess v̂ conditioned on an observed
value xq we first need to know the probability hi(xq) that gaussian i produced xq. This
is simply the density of the gaussian i at xq divided by the sum of the other densities

at xq, hi(xq) = ρi(xq)PM
j=1 ρj(xq)

(where each density ρi(v) is calculated just as in (5.1), with

Σ replaced by Σxx
i , v with xq, etc). Writing out the whole computation we have:

hi(xq) =

αi√
|Σxxi |

exp{−1
2
(xq − µxi )T (Σxx

i )−1(xq − µxi )}∑M
j=1

αj√
|Σxxj |

exp{−1
2
(xq − µxj )T (Σxx

j )−1(xq − µxj )}
. (5.3)

Given the best guesses v̂i(xq) from (5.2), and the probabilities hi(xq) that gaussian i
generated the output, the best guess v̂(xq) is given by:

v̂(xq) =
M∑
i=1

hi(xq)v̂i(xq) (5.4)

The parameter list is found using an Expectation Maximization algorithm (EM) [109]
that takes as input the number of gaussians and a database.

5.1.2 Incremental Local Online Gaussian Mixture Regression
(ILO-GMR)

With ILO-GMR, the datapoints of all demonstrations, possibly including demonstra-
tions of different tasks, are stored in a full data structure D which allows later on for
very fast approximate nearest neighbors queries. The datastructure we use is a kd-tree-
like incremental variant of approximate nearest neighbors algorithm presented in [115]
and already shown to be very efficient in high-dimensional computer vision applications.
Then, during each iteration of the reproduction of a task the robot looks at his current
state xq and extracts a local database D(xq) consisting of the N points closest to xq
using the fast query algorithm. These points are now used as input to GMR as described
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above along with a number M of gaussians to use (typically equal to 2 or 3). N is the
first parameter of ILO-GMR and is typically slighlty superior to the second parameter
M multiplied by the dimensionality of the sensorimotor space. The EM algorithm builds
a GMM and then we get the best guess of the current desired speed v̂(xq, D(xq), N,M)
as described above. The local points are found online during reproduction and therefore
it allows the system to take advantage of information it has just acquired as easily as
old information available before task execution began.

The number of gaussians M and the number of local points N does not need to be
changed when a demonstration of a new task is introduced and the modeling is done
online. Thus we can add new demonstrations of old tasks or demonstrations of new tasks
incrementally to the system without tampering with model parameters or recomputing
a model. The pseudo-code of the algorithm is provided below.

Computational complexity and ease-of-tuning

An important difference between the standard GMR approach and ILO-GMR is that
in ILO-GMR an important part of processing is shifted from the training period to
online computation. Hopefully, since models in ILO-GMR are ”very local”, using only
2 or 3 gaussians will be enough for reaching high accuracy while allowing for very fast
EM and local GMR steps. As far as the incremental training is concerned, [115] has
shown that the datastructure for fast nearest neighbours retrieval could also be up-
dated very fast. In order to make an initial experiment to evaluate ILO-GMR both
in terms of accuracy for difficult robot-related regression tasks, as well as computa-
tional speed, we have compared the performance of ILO-GMR with other state-of-the-
art regression methods, including GMR, on the hard regression task defined in the
SARCOS dataset which has been used several times in the literature as a benchmark
for regression techniques in robotics. This dataset encodes the inverse dynamics of
the arm of the SARCOS robot, with 21 input dimensions (position, velocity and ac-
celeration of 7 DOFs) and 7 output dimensions (corresponding torques). It contains
44484 examplars in the training database and 4449 test examplars. It is available
at: http://www.gaussianprocess.org/gpml/data/). The regression methods to which
we compared performances on this dataset are: Gaussian Mixture Regression (GMR,
[108] and [130]), Gaussian Process Regression (GPR, [111]), Local Gaussian Process Re-
gression (LGP, [113]), support vector regression (v-SVR, [114]) and Locally Weighted
Projection Regression (LWPR, [112]). All those algorithms were tuned with reasonable
effort to obtain the best generalization results. For ILO-GMR, optimal tuning was done
with N=200 and m=2, but results degrade very slowly when moving away from these
parameters. Figure 5.1 shows the comparison of the performances of those algorithms
for predicting the torques of the first joint in the SARCOS database. We observe that
the performance of ILO-GMR matches nearly the best performance (GPR), is slightly
better than v-SVR, LGP and GMR, and clearly better than LWPR while being also
incremental but much easier to tune. Furthermore, in spite of the fact that our current

84



implementation of ILO-GMR was done in Matlab and is not optimized, it is already
able to make a single prediction and incorporate a new learning examplar in around 10
milliseconds on a standard laptop computer and when 44484 SARCOS data examples
are already in memory. Furthermore, we have measured experimentally the evolution
of training and prediction time per new examplar: it increases approximately linearly
with a small slope in the range 0-44484 learning examplars. Finally, it can be noted
that the parameters N and M can be chosen the same for the SARCOS database as for
the various motor tasks demonstrated in the experiments presented below, in spite of
the fact that they are defined in very different sensorimotor spaces: this illustrates the
ease-of-tune of ILO-GMR.

Fig. 5.1: Comparison of ILO-GMR with state-of-the-art regression algorithms for the
SARCOS dataset encoding the inverse dynamics of an arm with 21 input dimensions.
Here, only the nMSE for the regression of the torque of the first joint is displayed.

5.1.3 How do we pick local points

A potential problem with the use of ILO-GMR in a number of robot learning by demon-
stration applications is that for given tasks there may be irrelevant or redundant or badly
scaled variables defining the state xq that may cause problems for generalization through
the nearest neighbours search. We address these issues in this paragraph.

First, we do not want the importance of a dimension to be encoded in the size of its
values so we rescale all the data so that every dimension has the same variance and
mean zero. This rescaling uses the entire data set so adding new data means that the
rescaling constants should ideally be updated: this can however be done quickly and
incrementally. A global model is able to capture the relevant dimensions for every task
in every region of the state space given that the number of gaussians are appropriate and
that it has enough training data. We must make sure that this very important property
of the global GMR algorithm is not lost in ILO-GMR. The way in which local points are
selected correspond to an assumption about what dimensions are relevant to the task.
To pick the local points from a dataset D with K number of dimensions d1, d2, ..., dK ;
we must decide how we measure distance between two points p1 = (x11, x12, ..., x1K) and
p2 = (x21, x22, ..., x2K). If we define a subset of n dimensions dim1 = (di, ..., dj) as the
relevant dimensions the distance in this subset is the distance between the p1 and p2
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in this subspace distance(dim1, p1, p2) =
√

(x1i − x2i)2 + ...+ (x1j − x2j)2. Each subset
of dimensions define its own distance measure and thus each subset defines its own set
of local points. The local set of points is now uniquely defined by the full database
D, the current state xq and the set of dimensions diml. Let’s say that the task is
to move the robots hand in a 2-D “S” shape and that the task is demonstrated by
making “S” shapes in different locations, stored in D (this is one of the tasks that will
be used in the experiments). The relevant set of dimensions correspond to the position
of the hand relative to the starting position of the hand. If we pick local points from
the demonstrations based on hand positions in the body referential of the robot (i.e.
absolute referential) we will get local points from different parts of the task and maybe
none of these points will be from the correct part of the task. We call a subset of
dimensions one possible way of framing a task and the resulting local dataset D(xq) is
the current situation viewed in this framing. We can also use the set of dimensions of a
framing to view a demonstration, and will do so throughout the chapter.

For example, we look at demonstrations of the first part of the task to draw an S shape
in figure 5.2. Too the left the vectors are plotted in a space where the imitators hand
position is measured relative to the robots body, and to right they are plotted relative to
the starting position of the imitators hand (i.e. where the hand happened to be initially
when it was asked to observe/reproduce the task). The points are shown in a 4 D space
(2 dimensions determining the position of the vectors and 2 dimensions determining the
shape of the speed vectors). We can see that picking a set of points close to each other
will result in points from the same part of the task only in the framing of hand position
relative to starting position, and we say that this is the correct way to frame the task.
If instead the task is to move the hand to and then around an object the relevant set of
dimensions is the hand position relative to the object.

Since the robot does not have access to the relevant dimensions of the different tasks
it is to perform it needs a way to measure the quality of a framing by just looking at
the raw demonstration data. To determine the quality of the set of dimensions dimf we
find the subset Df consisting of the N points of the full data set that are closest to the
current state xq when measuring distance in the dimensions dimf . We use this database
to build a GMM, using the EM algorithm to set the parameters λf . For each point Pfn,
with n=1,2,...,N in Df we have a state xfn and a desired velocity yfn. We now do GMR,
as described above, on each of the states xfn and get N number of predictions ŷfn(xfn).
We now determine the relative weights of the recommendations ŷf (xq) by comparing
training error of angles. The GMR is presented the full dataset in all the dimensions,
the framing only affects which points is used as input. The full algorithm is presented
in pseudo code in algorithm 4 (the time variable t is not visible to the robot). We are
forced to use training error since a true validation set would have to consist of points
from an entire demonstration not seen before (the demonstrations are not labeled so
this data is not available).
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Fig. 5.2: This shows five demonstrations of one of the tasks learned in the experiments
presented below (specifically task 2, which is to draw an S shape starting from the hands
starting position). In the left plot we see the vectors in the framing of hand positions
relative to the robot. And in the right plot relative to the starting position of the robot
imitators hand. Points that are close to each other in the figure to the left are sometimes
from different parts of the task, because the position relative to the robot is not relevant
to the task.

5.2 Experiment

In this section, we present an experiment in a simulated robotic setup which shows how
ILO-GMR can be used for learning incrementally four context-dependant motor tasks,
defined in different frames of reference, without specifying in advance the number of
tasks, without programmer intervention at demonstration time, and without providing
categorical labels for the different demonstrations of the tasks.

The world consists of a 2D simulated robot hand and one object (we assume we have a
2D multi-link arm with a precise inverse kinematics model which allows to directly work
in the operational space of the hand). During demonstrations a demonstrator takes the
simulated hand of the robot and moves it (using the mouse), hence we set ourselves in
the kinesthetics demonstration framework, as in [108]. The state space of the system
is 8 dimensional and includes the 2-D position of the robot hand in 3 different frames
of reference, as can be seen if figure 5.3. One coordinate system is centered on the
starting position (xs,ys), one is centered on the robot (xr,yr) and one is centered on
the object (xo,yo). We write the position of the hand in these three coordinate systems
as (Hxs ,Hys), (Hxr ,Hyr) and (Hxo ,Hyo). We write the position of the object in the
coordinate system of the robot as (Oxr ,Oyr). From this set of 8 dimensions we define 3
different subsets:

• Framing 1: Hxs , Hys , Oxr and Oyr

• Framing 2: Hxr , Hyr , Oxr and Oyr

• Framing 3: Hxo , Hyo , Oxr and Oyr

Finally, the action space of the robot is 2 dimensional and consists in setting the speed
vector of its hand. The speed is the same in all the 3 coordinate systems since they all
have the same orientation.
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Algorithm 4 Outline of the pseudo-code for reproducing context-dependant motor
tasks with ILO-GMR

Input: D, M , N , xq0
• D is the full database encoded in an incremental kd-tree like structure for fast
approximate nearest neighbours search;
• xq0 is the initial current state;
• N is the number of local points;
• M is the number of gaussians in the GMM
• λ = (λ1, · · · , λM) is the GMM parameter list;
• Df (xqt) is the local database consisting of N points retrieved given the current state
xqt and using framing f, for f=1,2,3
repeat

for f = 1 to 3 do
i) Given the current state xqt at iteration nr t; find the local database Df (xqt, N)
for framing f with fast approximate nearest neighbours search.
ii) Initialize a GMM parameter list λ0f ← k-mean(Df (xqt),M).
iii) Compute the GMM parameter list using EM, λxqtf ← EM(Df (xqt), λ0f )
for i = 1 to M do

iv) Compute hi(xqt) using (5.3)
end for
v) Predict the desired vector v̂f (xqt) using (5.4)
vi) Get the total training angle error Ef of Df (xqt) and the weight of framing f
as wf = 1/(0.001 + Ef )

end for
vii) Now we have v̂ =

∑
(v̂f (xqt) ∗ wf )/

∑
wf

viii) Use v̂ to update the position and get the new state xq(t+1) = xq(t) + v̂ ∗τ , where
τ is a time constant

until Reproduction done

There are 4 different tasks with 5 demonstrations for each task, and the element of
context which characterizes each task is the location of the object. The first task is
”move hand to object”, which is demonstrated/should be reproduced when the object is
in the upper left corner (but with varying precise positions). The second task is ”draw
an S from your starting position”, which is associated to a position of the object in the
upper right corner (again at varying precise positions). The third task is ”encircle the
object”, associated to the object in the lower left corner, and the fourth task is ”move
your hand in a big cyclic rounded edges squared shape relative to you” and is associated
to the object in the lower right corner. The relevant dimensions (not told to the robot)
are hand relative to object in the first and third task, hand relative to starting position
in the second task and hand relative to robot in the fourth task.

The demonstrations are made using a mouse movement capturing function in Matlab.
The starting position and object position is assigned randomly within a square of the
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Fig. 5.3: Here we see the 3 coordinate systems of the experiment. In the text we will
write xstart as xs, xrobot as xr etc, for short. The 8 dimensional state space consists
of the hand position in all 3 coordinate systems plus the position of the object in the
coordinate system of the robot.

figure (the starting position in a square centered on the middle and the object is placed
somewhere in a square centered in a corner) and plotted in a figure. The demonstrator
then clicks a mouse button once and drags the mouse performing the demonstration
and clicks again when the demonstration is completed. The positions of the mouse is
registered and used to calculate the speed and the relative positions. We can see the
tasks demonstrated in figure 5.4. We can see 5 demonstrations of each of the 4 different
tasks in figure 5.5.

Fig. 5.4: This figure shows 3 individual demonstrations of the 4 different tasks. The top
task will be referred to as task 1 in the text, the second highest as task 2, etc. The red
cross is the position of the object and the blue cross is the starting position of the hand.
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Fig. 5.5: This figure shows 5 different demonstrations for each of the 4 different tasks.
The blue figures to the left shows the demonstrations in the framing of hand position
relative to the robot, the red figures in the middle show hand positions relative to the
object and the green figures to the right show hand positions relative to the starting
position. We can see that the demonstrations are more similar if viewed in the correct
framing for that particular task.

5.2.1 Reproduction while introducing additional tasks

To make sure that our algorithm can handle new tasks being added we show reproduc-
tions of the 4 different tasks in figure 5.6, to the left we see the tasks reproduced with
only data of demonstrations of that particular task. The second column shows repro-
ductions after the demonstrations of one more task has been added, the third column
shows reproductions after demonstrations of 2 additional tasks have been added and
the 4th column furthest to the right show reproductions when all the demonstrations
of all the tasks have been made available to the agent. We can see no general trend of
task degradation as demonstrations of more tasks are added. In the remainder of this
chapter all reproductions shown are of agents that have been shown demonstrations of
all tasks (but again, without categorical information).

5.2.2 Reproductions outside normal starting positions

We test the reproduction ability when starting positions are chosen outside the area
where the demonstrations started from, and see the results in figures 5.7 to 5.10, for
tasks 1 to 4 respectively. In all figures the demonstrations are shown in the correct
framing of the task to the top left and then the reproductions are shown in the 3
different framings, all with hand-starting position to the top right, hand-robot to the
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Fig. 5.6: This figure shows that the tasks are successfully reproduced after demonstrated
and that adding demonstrations of additional tasks does not destroy performance (one
additional task in the second column, 2 in the third and all the other 3 in the fourth).

bottom left and hand-object to the bottom right. The full data of all tasks is available
to the agent.

5.2.3 Do the framings make a difference?

In order to determine if the framings are necessary we compare the performance for
motor task 2 with the algorithm presented above with the performance of an algorithm
that picks only one set of local point where distance is measured in all available di-
mensions (other than the way the local points are picked the algorithm is identical).
In order to make a better comparison we start all demonstrations at the starting posi-
tion (0.03, 0.03) (relative to the robot). The difficulty of this task is dependent on the
starting position so assigning different random starting positions to the two algorithms
would just add noise. In figure 5.11 we see 10 reproductions using the algorithm with-
out framing in the top two rows and 10 reproductions using the proposed algorithm in
the bottom two rows. We see that the algorithm presented have some problems but in
general outperforms the algorithm not using framings. We also see that it is the second
part of the task that is the most problematic for both versions.

5.2.4 How many demonstrations are needed?

In order to find the relevant dimensions the demonstrations has to be similar in the
relevant dimensions and different in the irrelevant dimensions. We can see in figure
5.12 that indeed the important aspect of the demonstrations is if they contain enough
information for the robot to determine what the relevant dimensions are. This means
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Fig. 5.7: This figure shows demonstrations of task 1 (move hand to object) in the framing
relative to the object to the top right and the reproductions in the framing relative to
the starting position to the top right, where we can see that the reproductions look
very different due to the different starting positions. To the bottom left we see that
despite starting at different locations the hand moves to the top left corner (the object
is always somewhere in the top left corner). Finally we can see to the bottom right
the reproductions in the correct hand-object framing. There are some odd behavior at
times but in general the task is achieved even when starting outside the area that the
demonstrations started within.

Fig. 5.8: This figure shows demonstrations (top left) and reproductions of task 2 (draw
an S shape). We can see that, as we should expect, the reproductions look similar to the
demonstrations in the framing of hand relative to starting position (top right). A few
of the reproductions does not completely replicate the task in the last turn but overall
the reproductions are similar to the demonstrations
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Fig. 5.9: This figure shows the demonstrations and reproductions of task 3 (move hand
in circle around object).

Fig. 5.10: This figure shows demonstrations (top left) and reproductions of task 4 (make
a big cyclic square movement). The task is largely reproduced as demonstrated.
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Fig. 5.11: This figure shows at the top two rows in black 10 reproductions made while
picking only one set of local points using distance in the full state space. The bottom
two rows shows the results using framings. we can see that on average the S shape is
better in the bottom two rows, especially the later half of the movement (the second
”turn”).

that the amount of demonstration needed is such that for each incorrect framing f there
is at least one pair of demonstrations which are different from each other when viewed in
f. This requirement can be alleviated if the agent is given the correct framing or have well
calibrated prior probabilities from learning other tasks. If a human is demonstrated a
task where the demonstrator moves his hand around a coffee mug, the subject is unlikely
to assume that the task consists of moving the hand in a circle 50 centimeters to the
right of the computer (if the robot is to be able to learn this autonomously it will need
to extract relevant rules from previously learned tasks; unless this is done the coffee mug
will have to be moved and another demonstration made so that the agent sees that the
demonstrations look the same if focusing on the relative position of the hand and the
coffee mug but not if focusing on the relative positions of the hand and the computer)

5.2.5 Comparison with GMR

The ILO-GMR was used instead of the standard GMR algorithm as it was argued that
GMR is not suited for the multi task, multi framing setup explored. It makes sense to
complement these arguments with experiments using GMR on the same data as the ILO-
GMR experiments were conducted on. The experiment is performed by simply fitting
a GMM to the full data set of all demonstrations, and then generating reproductions
in the same manner as in the experiments above (with the only difference that, at each
iteration, the pre computed GMM is consulted instead of the local GMMs). The issue
of finding the appropriate number of gaussians was solved by gradually increasing the

94



Fig. 5.12: This figure shows at the top row demonstrations nr 1 and 5 in first framing 2
(blue), then framing 3 (red), then framing 1 (green) and finally 5 reproduction attempts
in framing 1 (the correct one for task 2) of an agent able to see all demonstrations of
the other tasks and demonstrations 1 and 5 of task 2. The bottom row is exactly the
same but with demonstrations 3 and 5 instead. The demonstrations at the top look the
same in two different framings and as a result the agent will not know what framing is
the correct one and the reproduction attempts suffer as a result. The demonstrations
at the bottom are different in the two incorrect framings but similar in the correct one
giving the agent a chance to find the correct framing and as a result these reproductions
(bottom right) is superior to the other reproductions (top right).

Fig. 5.13: Displaying results in the same way as in figure 5.6, we can see that tasks 1
and 3 are well reproduced, but that tasks 2 and 4 are not.
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Fig. 5.14: Displaying results in the same way as in figure 5.6, we can see that task 2 is
now identical to task 4, meaning a degradation in performance (since the reproduction
still held some resemblance to the demonstrations with 7 gaussians as seen in figure
5.13).

Fig. 5.15: Displaying results in the same way as in figure 5.6, we can see that Using 30
gaussians does not lead to any new behavior, compared with that exhibited in figure
5.13.
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number until reproduction behavior stopped changing.

In figure 5.13 we can see the performance of GMR (using 7 gaussians) on the same data
as the ILO-GMR algorithm was evaluated on above. Tasks 1 and 3 are reproduced well,
but tasks 2 and 4 are not. In figure 5.14 we can see an additional error from the reduction
in gaussians, and in 5.15 we can see that the behavior remains identical with 30 gaussians
(the algorithm returns several gaussians with priors 0, and several others with very low
priors). The two tasks that are reproduced properly are both defined in the coordinate
system relative to the object. The starting position varies greatly between tasks in this
coordinate system (since the object position is greatly varied), and the location of the
demonstrations of tasks 1 and 3 does not overlap in this coordinate system. Task 2
does resemble the ”S” shape to some degree. It starts by moving to the left, then down
and then to the right. The dimensions are however completely wrong as can be seen if
inspecting the axis (the GMR imitator moves many times further to the left than the
demonstrator did during demonstrations), and instead of turning down, and then left
again, it turns up and stops. The spiral of task 4 also resemble the demonstrations to
some degree. It is moving counter clockwise in an expanding circle instead of moving
counter clockwise in a fixed size rectangle.

5.3 Discussion

We have shown that the ILO-GMR approach allows a robot to learn to reproduce several
different context-dependant tasks at the same time and incrementally without the need
to change any parameters as new tasks are added, and without categorical information
associated to each demonstration.
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Chapter 6

Bootstrapping language acquisition
as imitation learning of
sensorimotor tasks in multimodal
contexts
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In this chapter which is largely based on the article [103], we explore how simple forms
of language can be learnt from unlabeled data, concurrently with learning non linguistic
tasks. The learner/imitator observes several interactions between two humans. There
is one interactant that might perform some form of communicative behavior, and one
demonstrator that shows what the appropriate response is to the current context (where
the behavior of the interactant is treated as part of the context). The inputs and outputs
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are all continuous and the interactions are not labeled, meaning that the imitator does
not know how many words are expressed in a given set of interactions (it could be two
words spoken many times each, or several words spoken a few times each, and some
interactions might contain no relevant linguistic information at all). A single imitation
learning strategy is proposed for dealing with all tasks in this context, that does not
need to be told which demonstrations are of linguistic tasks. Using a single imitation
learning strategy for both non linguistic and linguistic tasks, that does not rely on labels
or symbolic input, allows us to avoid/disolve the “symbol grounding problem” (there is
no symbolic language learning system whose symbols need to be grounded in a separate
action learning system). To give an evolutionary account for language, it would now
only be necessary to show that this general imitation learning strategy was useful for
an individual even in a non linguistic environment, and finally that this strategy can
learn language (the latter being the goal of this chapter). The group benefit that a tribe
of linguistic individuals derive from an already established set of linguistic conventions
is not needed as an evolutionary force (the group selection hypothesis is not disproved,
but an alternate account does show that we have no need for it).

6.1 Introduction

As shown by a growing number of experimental results and theories, language acquisi-
tion is a process that is strongly interacting with and grounded in action and perception
[1][2][3][4]. This point has also been explored within the robotics and cognitive modeling
communities, see for example [5] and [7] for an overview. Many researchers have put for-
ward the idea that language and action develop in parallel, feeding each other through
exploration and interaction with the physical and social environment. In this chapter,
through the presentation and experimental validation of computational models, we pro-
pose to go one step further by considering that language and general action-perception
learning shall not be regarded as two interacting but separate processes, but rather that
there could be a single general process.

The proposal is put forward to model language acquisition as a single instantiation
of a general imitation learning system, using the same strategy for handling linguistic
skills and non linguistic sensorimotor skills. The system starts from standard principles
of imitation learning systems [67][87][64] that observe a demonstrator performing non
discrete actions as a response to a non discrete context. These classical approaches to
action learning by imitation are then extended in two directions. First, the context is
extended to include the communicative acts of another human, called an interactant,
who is part of the context in the same way as a physical object or any other aspect of
the environment. Second, instead of the traditional setting where only one task is to be
learnt[67][87], the imitator learns several tasks without any external and/or symbolic
information provided about how many tasks there are or about how the demonstrations
should be segmented into groups. Some of the tasks are best described as verb learning
(the interactant requests a particular type of hand movement as a response to an acoustic
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wave or a gesture he produces), but the types of actions that can be learnt also include
communicative responses (when an object is to the imitators left/right, it draws an
“L”/“R” shape), and yet others are best described as internal cognitive operations.

The behavior of the demonstrator can be influenced by communicative acts of the in-
teractant in the same way as it can be influenced by for example the position of an
object. In other words, there is no need for one action system and another separate
linguistic system, and therefore also no need to find out how they can interact with each
other. Since the thesis is that a single sub-symbolic system or strategy can learn how to
respond to both non linguistic and to linguistic contexts, the problem of grounding the
symbols of a linguistic system simply does not arise1. How to appropriately respond to
a physical situation, such as the property or position of an object, is learnt in the same
way as how to appropriately respond to communicative acts.

In the experiments presented in this chapter, only single words, or simple two-word word
order syntax is learnt, which is not as advanced as in many other models of language
learning, but on the other hand it does have the advantage of not suffering from a symbol
grounding problem. We shall argue that the context could, in principle, include very
complex internal cognitive structures and that the action space could in principle include
communicative responses and/or complex operations on the internal structures. This
indicates that the type of language that can in principle be learnt is much broader than
what is presented here. The actions that are appropriate responses to a linguistic context
could also themselves be linguistic. There are of course practical issues, and it is of course
possible that the approach will not be the most practical way of achieving certain types
of advanced linguistic behavior, but the symbol grounding problem have proven difficult
to deal with, suggesting that an approach that does not need to deal with it is valuable.
Instead of using discrete (or symbolic) inputs and outputs, the context (including the
communicative acts and behavior of the interactant), the demonstrators actions and the
imitators actions are all continuous. This means that the imitator does not know what
part of the multi modal context might be “words”, or how many different words it is
observing, or how many different types of demonstrated behaviors it has seen. Indeed,
each instance of the same behavior or communicative act is different: the imitator will
have to infer from the data which specific communicative acts - speech waves or hand
gestures - are instances of the same word and which specific demonstrator actions are
instances of the same behavior. In spite of these ambiguities, we will show that some
general imitation learning strategies can allow the system to learn the invariants and
the appropriate skills.

To exemplify the approach, three experiments are presented where a robotic imitator
observes interactions between a human demonstrator and a human interactant (some
of them being linguistic), builds a model of how to act based on how the demonstrator

1Instead of proposing a new way of achieving this grounding, the proposed system never has the
need to ground discrete symbols of a separate system since there are no symbols and no separate
systems. Avoiding this need is a property stemming from the fundamental aspects of the architecture
in combination with the learning setup.
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acts in response to the interactant, and finally itself responds directly to the interactant
(and the rest of the context), attempting to imitate the demonstrator:

• The first experiment illustrates the concept with simulatenous imitation learning
of skills consisting in achieving an action in response to a speech act and of skills
where no form of communication is involved (learning how to act in a traditional
context). The context is extended to include a continuous speech input of an
interactant, and the demonstrator’s behavior is sometimes influenced by a word
(i.e. an acoustic wave) that the interactant pronounced.

• The second experiment introduces hand signs in addition to speech, and exem-
plifies how the system can deal with two possible channels of communication.
Now the demonstrator might be responding to a hand sign or a speech utterance
from the interactant or to some aspect of the traditional context (e.g. position
of an object). The demonstrator also teaches the imitator to perform something
that might look like a communicative act to an outside observer (as opposed to
only respond to communicative acts of an interactant), specifically: describing the
position of an object with a gesture.

• The third experiment extends the type of words that can be learnt to include more
than simple action commands. Some words of a simple sign language requests a
specific attentional focus on an object (i e. an internal cognitive operation on the
attentional system) and other words request the imitator to perform a certain type
of action. The imitator learns the words requesting the internal operation of object
focus by inferring what unseen cognitive operation the demonstrator performed
(which is possible as the state of the internal attention state has a consistent effect
on behavior as actions are performed relative to the object focused on).

6.2 The motor gavagai problem

To illustrate the similarity of the problems faced by an imitator adopting normative
rules for how to respond to some non communicative context on the one hand and the
problem faced by a language learner on the other hand, we will look at the well known
gavagai problem [22] from linguistics. Quine gave an example with a man pointing at a
rabbit and saying “gavagai” to someone that does not speak the language. The “gavagai
problem” is to find out what the word means from this type of interactions (it could
mean rabbit but might also mean “dinner” or “look, my pet has escaped”). A similar
type of ambiguity can be said to exist when interpreting physical actions. In the words
of [63]: ”the exact same physical movement may be seen as giving an object, sharing it,
loaning it, moving it, getting rid of it, returning it, trading it, selling it, and on and on
depending on the goals and intentions of the actor.”

Imagine a demonstrator, that we will call Steve, trying to teach you something new.
Steve and you are both looking at a rabbit just in front of the trees of a forest. Steve
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takes a stone just on his right, and throws it towards the rabbit with a parabolic-shaped
trajectory. The stone arrives one meter to the left of the rabbit, just below a tree with
blue flowers. Now Steve asks you to try to reproduce what he did. In the meantime, the
rabbit moved 10 meters away, a cat has arrived next to the tree, and there are no more
stones on your right or on the right of Steve, but a stone on your left and a knife on your
right. What should you do? Would you take the stone or the knife? Would you throw
it in any direction, trying to reproduce a parabolic trajectory? Or would you throw it
towards the left of the rabbit? Or onto the rabbit? Or to the (left of the) cat? Or try
to throw it just below a tree with blue flowers? Did Steve intend to throw something
at the rabbit but missed it? Or at the closest animal? Did he use the stone just as
a way to bring your attention to this beautiful rabbit, using the stone as a pointing
gesture? Did he intend to kill the animal? In that case, maybe instead of throwing
something, it is more efficient to reproduce what Steve tried to do by first catching
the rabbit by hand? Did Steve want to just frighten the rabbit? In this case, maybe
you can reproduce what he did by shouting very loudly? Or maybe Steve wanted to
show you that the action “throwing a stone with a parabolic trajectory” is an arbitrary
action that should be associated/triggered with/by the concept/observation of “rabbit”
(and maybe the next demonstration will show you that the concept of a “cat” should
be associated with the action “throwing a stone with a straight trajectory2”), and you
should reproduce it whenever you see a rabbit and want to convey this information to
someone else?

Through this very simple situation, we can easily recognize a variation of the above men-
tioned gavagai problem used by Quine [22] as an illustration of one of the fundamental
issues posed by language acquisition. The main difference with the original scenario is
that here Steve throws a stone instead of pointing towards the rabbit and pronoucing
the “Gavagai” word. But it is not difficult to see that this difference between what
we may call the “motor Gavagai problem” and the “language Gavagai problem” is not
a fundamental difference, since pronouncing an acoustic wave with peculiar properties
and pointing in a certain way at the same time is not very different from launching
a stone in a particular way towards a particular direction (even though grown up lin-
guistic humans will have different intuitions about these scenarios). Actually, several of
the potential interpretations of the “stone parabolic throwing action in the context of
a rabbit being present” demonstration are exactly the same as those of the “pronounc-
ing the word Gavagai in the context of a rabbit being present”: the “stone parabolic
throwing” could here be described by an external observer as an arbitrary linguistic
(visual/gestural) “word” that is associated to the meaning “rabbit”. As in the case of
the more classical language Gavagai problem, the only way to learn the right interpre-
tation/reproduction/generalization of the demonstration/naming is to use constraints

2If this is what Steve intended it also relates to the question of finding an appropriate framing.
Is the task to throw the stone at the same spot but with a faster starting speed and a lower angle
than before, or is it to throw it in a more straight trajectory (Steve may not have considered this
explicitly, and his ability to judge a failure from a success may not give a definite answer under non
exotic circumstances).
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(which do not need to be specific to language, as we will illustrate in the experiments
below) putting assymetric priors on the probabilities of different hypotheses, and of
course to engage in further interactions for refining statistical inference, collecting new
demonstrations and obtaining various forms of feedback from reproductions. It does not
seem like there is a need for two different systems for dealing with these two problems.

As we pointed out, most of the techniques discussed above make no assumptions re-
garding the semantics of the output and contextual input. They can very well be used
to address the motor Gavagai example with Steve throwing a stone as described above,
and are theoretically powerful enough to be able to learn non-trivial interpretations of
Steve’s demonstration such as “The skill consists in making the rabbit run away what-
ever the means”, “The skill consists in hitting the closest animal”, or even “The skill
consists in throwing a stone with a parabolic trajectory in whatever direction when
you see a rabbit”, as long as the hypothesis space provided to the robot includes the
corresponding relevant dimensions/variables and powerful enough statistical inference
methods are used to identify the right framing/compact projection of the full context
space. These techniques can be used if Steve produces the “Gavagai” acoustic wave
and possibly points at the same time towards the rabbit, without adding any language
specific additional assumptions (since they do not make assumptions regarding inputs).

From this, it can be seen that the link to language learning bootstraping may be achieved
by using these architectures to teach a robot skills where arbitrary gestures produced
by an interactant should trigger particular context-dependant actions (thus we would
have here something like a signed language), where the context can be the combina-
tion of the gesture with some other aspects of the scene (including the inferred mental
state of the interactant). In such a system the meaning of gestures/words consists in
a dynamic internal processing, itself generating context-dependant behavior, and being
a sub-symbolic equivalent to more symbolic approaches of “meaning as dynamical pro-
grams” [38][58][55]. Then, to get to spoken language, it appears that one only needs to
include sensorimotor dimensions related to the perception and production of acoustic
waves (in a non specific way that does not make them a priori qualitatively different
from other dimensions). In [56] and [57] experiments are presented modeling how the
hypothesis space for a word like “gavagai” is reduced due to the way an adult structures
an interaction with an infant. Experiments show that infant directed speech does indeed
provide redundant information and added structure via synchrony (compared to adult
directed interaction).

Through three experiments, a technical proof-of-concept is provided of this general view
regarding the integration of action and language learning. This is achieved by showing
experimentally that the general techniques for context-dependant sensorimotor learning
can be used to learn seamlessly, and simultaneously, traditional motor skills as well as
(what an external observer might call) “socially interactive linguistic skills” in a system
that has no components such that we need to use the word ”symbol” to describe the
system.

The first experiment will extend the traditional context of imitation learning exper-
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iments to include speech input from an interactant. To solve this problem we will
start from the approaches which try to model the context-dependant skill directly as
a context-dependant dynamical system, more precisely the work done with Gaussian
Mixture Regression in [68][87][101]. The problem of finding which demonstrator trajec-
tories are instances of the same movement is first solved and then a local version of the
GMR regression method, called ILO-GMR, is used to reproduce the movement during
reproduction [104, 102].

In the second experiment the imitator is presented with a context that includes speech,
hand signs and an object position. Each task is triggered when an initially unknown
“command” is expressed using one of these channels.

Finally, in the third experiment, the imitator will learn more advanced types of words,
specifically where the meaning consists of requests to perform a“focus on object”internal
cognitive operation. To imitate this internal operation the imitator must infer what
internal operations was performed by the demonstrator.

Then we discuss how the method also naturally extends to involve the rules of social
interaction themselves as “when an interactant looks at something; focus attention on
it”, something that is very little explored (but see [84] and [83]). Other such examples
are learning how to respond to facial expressions, body language and tone of voice
(and anything else that is not easily transformed by a pre-processing step into symbolic
input3). It also naturally extends to compositional tasks; a demonstration could be
described as executing other tasks in sequence or the context of one task could be a
combination of: the task(s) recently executed by the imitator, by an interactant, the
linguistic input, and other more conventional things such as the position of an object.

6.3 Learning situation

In the following, we will study an experimental setup involving a simulated robot, a
human demonstrator, and a human interactant (see figure 6.1). The robot’s goal is to
learn a repertoire of tasks by observing task demonstrations from the human demon-
strator. The robot consists here of an arm, and tasks consists in producing movements
of the hand which dynamically depend on the context, and are represented as closed
loop policies. The context consists here of the position of a physical object on a table
(represented in several -absolute and egocentric- coordinate systems called framings) as
well as speech sounds and movements of the hand produced by the human interactant.
The human demonstrator demonstrates a task to the robot by kinesthetically moving its
hand: it takes the hand of the robot, and shows it what movement should be achieved

3Researchers that are determined to handle such things using a pre processor into a symbolic
representation can take the work presented here as suggesting one way of building this pre processor.
The reaction of the demonstrator to events in a continuous space can be used to determine how this
space should be segmented into discrete regions (i.e it can be used to determine the boundaries between
regions, where each region in the continuous facial expression space results in some specific symbol).
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depending on the current object position as well as on the speech or gestures produced
by the human interactant. Examples of tasks will be of the type: draw a square around
the object when the interactant produces the acoustic wave “square”; touch the object
when it is on the top left of the table; draw a “R” when the object is on the right;
draw a circle in the centre of the table when the interactant produces a gesture of a
certain shape; draw a square around the green object when the interactant produces
the acoustic wave “square green”, etc. The division of teacher behavior into separate
distinct tasks is an approximation, that corresponds to a learner modeling the teacher as
doing “several different things” or “achieving several different goals”. This is a standard
approximation in learning from demonstration, but it is usually not made explicit due
to the learner only learning a single task at a time. The approximation is accurate to
the degree by which the teacher considers itself to be performing distinct tasks, and
it is useful to the degree that it allows the learner to find a policy that replicates the
teachers behavior in novel situations.

The number of tasks to be learnt, as well as the association of each demonstration
with a task category, is not provided to the robot learner. Indeed, neither the human
demonstrator or the human interactant provide symbolic labels: which tasks should be
achieved depends on the continuous context, and the robot has to learn these invari-
ances. What the robot perceives in a demonstration is only continuous stimuli: hand
movements are sequences of two-dimensional position on the table (in several framings),
the direction the hand was moved in from that position, speech words produced by the
interactant are raw trajectories of MFCC features projected in a low-dimensional contin-
uous space, gestures of the interactant are raw trajectories of its hand also projected in
a low-dimensional continuous space. Thus, from the point of view of the learner, the ob-
ject position and the interactant speech and gestures are equally considered as features
of the multimodal context. As we will see, speech and gestures of the interactant will
sometimes appear linguistic from the point of view of an external observer, and while
the learner does not have a specific treatment for “linguistic signals” (he does not even
know which channel are for what the external observer would call “communication”), it
will learn to respond to the interactant linguistic signal in a sensible way.

The imitator robot is here simulated and is able to move its hand on a 2D plane (for
easy visualization) in any direction it wants which, if a physical robot is to be used,
would require an inverse kinematics model that translates the current state and desired
hand directions to motor outputs. The simulated imitator was more flexible to perform
experiments with and since the focus of the presented experiment is about learning what
should be done rather than how to do things, it was used in place of a physical robot
(in the language of [95], the “what to imitate” instead of the “how to imitate” question
is the focus of the presented experiment). There are obviously limits to what types of
behaviors a robot can learn to do in simulation before this starts to become a serious
simplification, and if more advanced physical manipulations are to be investigated, a
physical robot will have to be used. Yet, here the demonstrations are provided by a
real human demonstrator (using a mouse to drive the simulated robot hand), and real
speech waves and hand gestures are also recorded from a human.
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Fig. 6.1: The learning situation investigated. A human interactant (to the right) speaks
or makes a gestures, and the demonstrator (to the left) moves the hand of the robot
to show him which movement to do. This movement can depend on either/both the
current object position, the interactant speech and/or the interactant gestures. Some
tasks are non-linguistic, such as “touch the object when it is on the top left of the
table”. Some tasks are motor responses to a linguistic signal from the interactant,
such as “draw a square around the object when the interactant produces the acoustic
wave square”. Some tasks are quasi-linguistic responses to linguistic signals, such as
“draw a ”w” when the interactant gestures a specific sign”. The demonstrator and
interactant provide no symbols to the robot learner, which perceives each demonstration
and context through continuous low-level sensorimotor values. Moreover, different tasks
are movements defined in various coordinate systems (e.g. absolute versus object centric
vs hand centric coordinate system) called framings. The robot has to learn how many
tasks there are, which is the control policy for each task and in what appropriate framing
it is defined, as well as to learn which tasks should be triggered depending on the current
context.
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6.3.1 Data capture and representation

Physical objects are represented by its absolute 2D position on the table. Hand move-
ments of the demonstrated tasks are represented as sequences of 2D positions and di-
rections in several coordinates systems (for example: absolute, object relative, relative
to starting position). The acoustic speech waves produced by the interactant, as well
has his hand gestures, are projected onto a lower-dimensional (and fixed dimensional)
space so as to facilitate the statistical inference process described below.

Hand trajectories

The demonstrator uses a mouse to generate the hand trajectories of the demonstrations.
At each time step the position (one for each framing/coordinate system) and the hand
direction is stored. All of these pairs constitute a hand trajectory. The direction angle of
the hand at a given point of the observed or reproduced trajectory is encoded using two
dimensions. The directional angle is measured in its rescaled x and y components (under
the constraint that x2 + y2 = 1) which resolves difficulties with linear regression over
a periodic variable (the fact that the angles θ = −π and θ = π are identical outputs
makes the raw θ unsuitable for the ILO-GMR linear regression method). Then the
amplitude of local displacement are computed as averaged over the 7 nearest (in time)
data points since the raw captured data is not of very good quality (sometimes smooth
mouse movements will results in strange angles of the type; pt=1 = π/2, pt=2 = 0, pt=3 =
π/2, pt=4 = π/2, pt=5 = 0, ... and this type of data causes problems, for example in the
policy similarity comparisons of the grouping algorithm).

Interactant speech and sign language

Actual speech recording of a single speaker pronouncing the relevant word was used
(recorded in an ordinary office environment without anyone talking in the background).
To transform speech into a low-dimensional vector, here with 3 dimensions, an utter-
ance was first encoded using Mel-Frequency Cepstral Coefficients (MFCCs). Each such
high-dimensional MFCC trajectory is then compared, using a dynamic time warping
similarity measure, to three fixed acoustic wave prototypes which are different enough
for the vector of these similarity measures to result in a 3D projection which keeps
enough differentiation between the different words produced by the interactant. A way
to choose these prototypes is by conducting a K-means clustering of ambient utterances
(and the dimensionality K=3 was found to be efficient enough for the proof-of-concept
experiments we study below).

The hand sign trajectories was also compared to three prototypes to generate a 3D point
(also here using a dynamic time warping similarity measure).

For each demonstration and each reproduction of a task where speech was irrelevant, a
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unique random point in the 3D speech space was generated. The same was done with
hand sign space.

6.4 Algorithms

The algorithm is divided into a learning algorithm doing off line analysis of the data,
and a reproduction algorithm that uses the results of this analysis for data driven on
line regression. During reproduction, the imitator is alone with the interactant and the
on line reproduction algorithm uses the estimates produced by the learning algorithm
to generate behaviour.

6.4.1 Representation of the tasks

The tasks to be learnt by the robot are closed-loop control policies generating a move-
ment that depends dynamically on the context (as opposed to open-loop movement).
Hence, learnt tasks are represented by a mapping (posHf , posO, S,G)→ speedH where
posf is the current position of the hand in framing f , posO is the current position of
the object, S is the low-dimensional representation of the acoustic wave perceived by
the robot, G is the low-dimensional representation of potential gestures perceived by
the robot, and speedH is the direction that the hand should currently have. In what
follows, this mapping will be computed dynamically and online based on adequately
selected examplars of demonstrations and based on the current context.

6.4.2 Learning algorithm

The learning algorithm takes the demonstrated hand trajectories and the contexts (lin-
guistic and non linguistic context) as input, and create estimates of what demonstrations
are instances of the same task, and what the correct framing is for each such task, that
are later used by the reproduction algorithm. Figure 6.2 shows an overview where we
can see the inputs and outputs of the different algorithm components. Each of the three
algorithmic steps are explained below. Further details of the grouping algorithm used
in experiment 3 are given in appendix ??.

Similarity estimation

The similarity estimate uses the assumption that each demonstration is of a single
task and there is one correct framing, valid during the entire demonstration. This
assumption, which we think is reasonable, allows us to considerably improve the system
if leveraged appropriately. Of course, several demonstrations might correspond to the
same task and the same framing, and different tasks might have the same framing
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Fig. 6.2: Blue boxes show algorithms and green boxes show data structures. The demon-
strated hand trajectories are analyzed in batch mode off line. The membership estimates
created in step 2 are used later by the on line reproduction algorithm. Step 3 always
creates estimates relating to framing but the details vary between experiments. In exper-
iments 1 and 2, each movement type has one correct framing, and in those experiments,
this is what is estimated. In experiment 3, the framing is requested by the interactant,
and what is estimated in step 3 of experiment 3 is the syntax of the interactants sign
language. This syntax will help the imitator determine what framing to adopt during
reproduction (specifically, the estimated syntax tells the imitator which hand sign to
look at for the purposes of determining framing).

and vice-versa, but we exclude here demonstrations which are for example unsegmented
sequences of motor primitives/tasks. A second assumption that we make in the following
(but this is less crucial and might be possible to remove by some modifications of the
algorithm not presented here) is that there is a finite number of pre-given available
framings.

The goal of the similarity estimation is to assign high similarity to two trajectories where
the same hand states (hand position) result in the same hand movements. Since the
closeness of inputs is dependent on framing, the similarity is also dependent on framing.

The similarity is dependent on framing assumptions which are treated different in the
three experiments. In experiments 1 and 2, each movement has exactly one correct
framing, but in experiment 3, the framing is requested by the interactant.

In each case, a number of points are selected from demonstration m and for each of
these points the closest point in demonstration n is selected (the distance is measured
relative to an hypothesized framing, making the set of closest points dependent on
framing assumptions). Then we have ∆mn =

∑
δ2
i , where δi is the difference in output

between point i of demonstration m and the point of demonstration n closest to it.
The similarity is then the inverse of the distance. Each framing assumption thus give a
different similarity between two trajectories. Given D possible framings, experiment 1
and 2 have D number of framing assumptions, while experiment 3 has DxD number of
framing assumptions.

109



Trajectory distance ∆t;k;i;j

To determine which trajectories are instances of the same movement it is necessary
to define some measure of distance between two trajectories. In each demonstration
the three objects and the starting position is different. For each movement type, the
policy of the demonstrator is determined by the hand position in the coordinate system
centered on the object focused on. What object is focused on is not observable to
the imitator, but two trajectories that are instances of the “circle” movement will only
look similar if each is viewed in the coordinate system of the object that is focused on
(the object encircled). For this reason the distance between two trajectories is defined
relative to two coordinate systems; one used for trajectory 1 and the other one used
for trajectory 2. Thus ∆A;B;1;3 is the distance between trajectory A seen in coordinate
system 1 and trajectory B seen in coordinate system 3. If trajectory A is a circle around
0, 0 in coordinate system 1 and trajectory B is a circle around 0, 0 in coordinate system 3
they will probably look similar (trajectory A viewed in another coordinate system would
still be a circle, but not around 0, 0, and the two trajectories will not look similar).

For each of the N points in trajectory number t the closest points in trajectory k is
selected (with distance measured using the respective coordinate systems). For each
point p of trajectory number t, the closest point of trajectory number k is found, using
the positions in the coordinate systems i and j respectively4. δp is defined as the angular

difference in output of the two points. Then we have Dt;k;i;j =
∑N

p=1 δ
2
p/N . Finally we

have ∆t;k;i;j = min(Dt;k;i;j, Dt;k;i;j).

There are many possible ways of measuring similarity between two trajectories, given
the coordinate systems to view them in and no claims of the optimality of the specific
similarity measure introduced is made. Like many other parts of the algorithm the
important part is not how the specific part is implemented but instead how it is combined
with the rest of the algorithm, with the details included only for completeness.

Grouping algorithm

The grouping algorithm takes the estimated similarities as inputs and outputs an es-
timated set of groups (for N trajectories, this is an NxN matrix P where pit is the
probability that trajectory number i is an instance of task group number t).

There is a lot of information available and many reasonable biases that can inform the
sorting of demonstrations into groups that are supposed to contain demonstrations of
the same task. The main assumption used in all grouping algorithms is that trajectories
with high similarity is more likely to be instances of the same movement. The details
of the grouping algorithm used in experiment 3 can bee seen in appendix ??, with
experiments 1 and 2 using similar, and earlier versions of the same algorithm.

4So that if i=1, j=3, and point number p’s position in coordinate system 1 is (0,0.4) then the point
of trajectory k that is closest to (0,0.4) in coordinate system 3 is chosen (so that a point above the red
object in trajectory t is compared to a point above the blue object in trajectory k).
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The grouping algorithm is not a major contribution, no claims of optimality is made,
and it is chosen in place of standard clustering algorithms due to its suitability for task
specific extensions. The details of the algorithm is presented for the sake of completeness.

The grouping algorithm is a batch computation and, if not modified, would have to be re
run for every new demonstration observed. It is however well suited for an incremental
version (with current data it takes only a few seconds on a modern laptop but with larger
number of tasks, demonstrations and number of possible framings, time could become
a problem). When the algorithm has grouped all the observed demonstrations and
found the corresponding framings, it can use this information when new demonstrations
are added. If a new demonstration is similar to one of the established groups, when
viewed in that groups preferred framing, then it can simply be added. Otherwise the
membership values already found can be re used so that what is left to determine how
to group the new demonstrations.

Technical details:

The current estimate of the probability that trajectory number t is an instance of move-
ment number m is denoted mm;t. The suitable value of mm;t is completely determined by
what movements the other trajectories are estimated to be instances of. The only thing
that matters is that trajectories that are instances of the same movement are grouped
together. Since the number of movements is unknown there are as many movements as
trajectories (so that M is a NxN matrix for N demonstrations).

Given the similarity between trajectories there are many possible ways to divide them
into subgroups and the iterative algorithm proposed is not claimed to be optimal (the
reader that is not interested in exactly how similarities between trajectories is used
to form groups whose members have high similarity can skip this section). The basic
principle of the grouping algorithm is that if two trajectories A and C are more similar
to each other than other trajectories likely to be instances of movement x, then mx;A

and mx;C will increase. If A and C are less similar than average, then mx;A and mx;C

will decrease, and the magnitude of the change depends oh how much the similarity
deviates from the other likely members.

The algorithm is described using pseudocode in 5. In order to save space, several
variables (either used in the pseudocode or used to define other variables that are used
in the in the pseudocode) are defined and explained below rather than in the pseudocode,
such as: maximum trajectory similarity γt;k, joint memberships: ωt;k, weighted mean
similarity $t and push strength ξt;k.
Maximum trajectory similarity γt;k. γt;k;i;j is the inverse of the distance ∆t;k;i;j and
γt;k is the maximum similarity between trajectories t and k, γt;k = maxi;j(γt;k;i;j) (for
example, if trajectories A and C have the highest similarity when A is in coordinate
system 1 and C is in coordinate system 2, γA;C = γA;C;1;2, which is likely to be the case
if trajectory A is a circle around the red object and trajectory C is a circle around the
green object).
Joint memberships ωt;k is a measure of how probable it is that trajectories t and k are
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instances of the same movement according to the current state of the membership matrix
M . It is calculated as: ωt;k = (maxm(mm;t ∗mm;k))/(

∑N
τ=1 maxm;τ (mm;t ∗mm;τ )).

Weighted mean similarity $t is a measure of the weighted average similarity to
trajectory t of trajectories that are likely to be instances of the same movement. $t =∑N

k=1 ωt;k ∗ γt;k.
Push strength ξt;k is the strength with which trajectory t will affect the memberships
of trajectory k in the movement groups that they are both probable members of. If it is
positive the presence of trajectory k in a movement group will increase the membership
of trajectory t and decrease it if it is negative. It is calculated as: ξt;k = e((γt;k/$t)−1),
and we can for example see that ξt;k = 1 if the similarity between t and k is exactly the
same as the average weighted similarity between t and the other trajectories that has
high joint memberships with t. If the similarity γt;k is bigger than the weighted average
$t, the we will get a push strength ξt;k > 1 (and if the similarity γt;k is smaller than the
weighted average $t, we will get ξt;k < 1).

Estimation of framings and syntax

In experiment 1 and 2, each group created is assigned a task framing. ∆mnf is the
distance when inputs distances are measured in framing number f . For task t, the
framing f for which the sum

∑N
m=1

∑
n 6=1 ∆mnfpmtpnt is minimized is selected (where

pmt is the probability that trajectory m is an instance of task t). This selects the
framing for task t in which demonstrated trajectories of that task look the most similar
(i.e where the sum of distances between trajectories is the smallest, weighted according
to probability that both trajectories are instances of task t). In experiment 3, a sign
language word order syntax, which is used to find framings, is estimated in this step
(detailed in the algorithm section of experiment 3).

6.4.3 Reproduction algorithm

After the learning algorithm is done, the imitator interacts with the interactant and
performs a reproduction. In each reproduction, the imitator must decide what to do
based on a current context consisting of low-dimensional representations of the inter-
actants speech utterance and/or hand sign(s) (or the low-dimensional representation of
noise in case of a non linguistic task), the 2D position of object(s), and its current hand
position (in the different framings/coordinate systems). The object position(s) and the
starting position of the imitators hand is randomized at the start of the reproduction.

Figure 6.3 shows an overview of the on line reproduction algorithm where we see how
the estimates that was created by the learning algorithm are used. Specifically they are
used to decide which demonstrations in memory are relevant to the current context and
what coordinate system to use in the current situation (so that the regression algorithm
is able to work with only relevant data, represented in the correct framing). It is a data
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Algorithm 5 Overview of the iterative grouping algorithm
Input: M1, S, N
• M1 is the initial membership probabilities
• S is the number of steps (S=50 is used in the experiment presented below)
• N is the number of demonstrations
for s = 1 to S do
Mmod ←Ms (mm;t refers to Mmod)
Mold ←Ms (mm;t;old refers to Mold)
for m = 1 to N do

for t = 1 to N do
for k = 1 to N , k 6= t do
mm;t ← mm;k;oldξk;t + (1−mm;k;old)mm;t

end for
end for

end for
Rescale
Preferring hypotheses with few movement types:
∀ : 1 < m < N, 1 < t < N :
mm;t ← mm;t × (

∑N
τ=1 mm;τ )

1/4

Rescale
mm;t ← mm;t + 0.0001
Rescale
Ms+1 ←Mmod

end for
note that if the push factor ξt;k is positive mm;t will increase and if it is negative it will
decrease in the central update step. Remember that a positive ξt;k indicates that the
policy similarity between t and k is higher than the weighted average. The rescaling
makes the memberships of a single demonstration sum to 1

driven on line algorithm where the estimates of the learning algorithm helps select what
data to attend to, and what framing to use.

Group selection

The membership estimates calculated by the learning algorithm gives us groups of con-
texts (the contexts of those demonstrations whose trajectories were estimated to be
instances of the same movement). These groups of contexts are to be compared to the
current context.

Since speech utterances and sign language gestures are represented in the same way
as the physical context (in this case the position of an object) the distance between
contexts can be computed. Therefore a single algorithm can deal with tasks where the
linguistic input is important for what to do as well as tasks where the linguistic input
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Fig. 6.3: The results of the learning algorithm is used during the reproduction. In step
1, the contexts of the groups of the membership estimates is compared to the current
context. In step 2 the framing estimates and the group selected in step 1 is used to
get the data needed by the ILO-GMR algorithm (reevant trajectories in the currently
relevant framing).

is completely irrelevant (both for execution and triggering).

Experiment 1 and 2 compares the full contexts, while experiment 3 uses an additional
assumption and the estimated syntax to decide how to compare contexts.

Trajectory selection

What the regression algorithm needs is examplar trajectories of the task to be performed,
represented in the currently relevant framing. In all experiments, the trajectories of the
selected group is used and in experiments 1 and 2, the framing of that group is used. In
experiment 3, the estimated syntax determines which hand sign to use for finding the
framing.

Regression algorithm

Incremental Local Online Gaussian Mixture Regression (ILO-GMR), introduced in [104,
102], was used in experiments 1 and 2. ILO-GMR is a variation of the Gaussian Mixture
Regression method (GMR) [101] [65] which allows for fast incremental learning and
online reproduction without meta parameters that needs to be tuned by hand (the two
meta parameters that needs to be set is kept the same for all tasks). Experiment 3 uses
a simpler regression algorithm (detailed later).
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6.5 Experiments

Each of the three experiments are described separately, followed by a general discussion
of the combined results. They all share the basic properties of what is described above,
but the individual differences in setup and algorithms need to be detailed. The perfor-
mance of the imitator is evaluated by (i) comparing the estimated task groupings of the
learning algorithm with the actual task identities of the demonstrations (ii) comparing
the estimated framings or the estimated syntax with the actual framings/syntax (iii)
comparing the task group selected with the intended task when confronted with the
interactant during the reproduction phase (iv) comparing the estimated framing with
the actual framing, and finally (v) by comparing the reproduced hand movements with
the task description and the corresponding demonstrations.

6.5.1 Experiment 1: Extending the context to include speech

The first experiment exemplifies that the context of an imitator can be extended to
include the speech of an interactant, without introducing any discrete representations
(where sometimes the speech is a communicative act, while other times it is completely
irrelevant to what the imitator should do). The scientific novelty of this experiment
consists in making an utterance of a second human part of the context, and learning an
unknown number of tasks from unlabeled demonstrations.

Modeling the utterance as symbols would only leave the problem of finding the link
between the utterance symbols and the behavior symbols, as well as finding the appro-
priate motor commands, given the correct behavior symbol. As described earlier fully
continuous communicative acts and behaviors are investigated, meaning that the robot
does not know how many different words it has observed or how many different tasks
there are (or how many of the tasks are linguistic).

Algorithm

The robot can encode sensorimotor policies using one of three framings. Framing 1
encodes the position and speed of its hand in an absolute fixed reference frame (in
addition to the absolute position of the object and the speech sound). Framing 2
encodes the position and speed of its hand in the object centered referential (all other
dimensions being equal). Framing 3 includes both the absolute and relative position
and speeds of the hand (this is never the correct framing, and during the reproductions,
it is also never the estimated framing).

For the 3 linguistic tasks (tasks a, b and c, see below) the same object position dis-
tribution was used (uniformly distributed over the intervals: −1 < x < 1, 1 < y < 2)
and for the 2 non linguistic tasks the object y positions were drawn from the uniform
distribution −1.25 < y < −0.5 and the x positions were drawn from −1 < x < −0.25
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for task d and .25 < x < 2 for task e. The starting hand position (demonstration and
reproduction) is always drawn from −0.25 < x < 0.25,−1.5 < y < −1.25

An earlier, but very similar, version of the grouping algorithm described below is used.

During reproduction, it is necessary to know what task should be performed. Given state
S in the extended context (in this case: the speech utterance of the interactant and the
object position) the next step is to find the group of demonstrations that was performed
in this situation. For each group of demonstrations the mean µdt and variance σ2

dt of the
data in dimension d is calculated for each dimension (this always consists of 3 speech
dimensions and 2 object position dimensions). To determine what task is to be executed
in the current state S, each task grouping gets a relevance score Rt = p1t×p2t× ...×pDt,
where pdt is the probability density of a gaussian distribution with mean µdt and variance
σ2
dt in the current state S. The task with the highest relevance score Rt is selected and

the data of that group (seen in the framing of that group) is used to build local models
during the entire reproduction. The relevance score of a task is designed to be higher if
the current state is similar to the data of that task.

The regression step uses the ILO-GMR algorithm detailed previously.

Tasks

Five different tasks are learnt at the same time. Three tasks should respectively be
triggered by three keywords, and two tasks should be triggered by the objects position
being in a certain region. What looks like communicative behavior to an outside observer
is treated exactly the same as any other part of the context by the imitator. The fact
that a single algorithm can learn both how to respond to a traditional context and how
to respond to a communicative act (without being told which is which and not even
knowing if there is just communicative tasks, just non communicative tasks or a mix)
illustrates the point that a single imitation strategy can be used for language and other
sensorimotor learning. We do not explore the situation where a keyword for one task
is spoken at the same time as a the objects position is in a region that should trigger
another task. The imitator has no way of knowing how to resolve the conflict and would
need to see the demonstrator respond in such a situation in order to know what to do.
The algorithm would pick one task based on which context is most ”task typical” and
execute that task as usual (the algorithm contains the relative match for the different
tasks, so the information that the imitator is not certain of what to do is available, but
it is not currently used).

• Task a) When the word ”flower” is spoken: encircle the object counter clockwise
(task defined in framing 2).

• Task b) When the word ”triangle” is spoken: draw a triangle clockwise to the left
of the robot (task defined in framing 1).
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• Task c) When the word ”point” is spoken: draw a big square clockwise (task
defined in framing 1).

• Task d) When the object is close to the robot and to the right: draw a small
square counter clockwise with the bottom right corner at the object (no matter
what the speech input is) (task defined in framing 2).

• Task e) When the object is close to the robot and to the left: Encircle counter
clockwise the point (0,0) in the fixed reference frame no matter what the speech
input is (task defined in framing 1). The policy in this task is identical to the
one in task a) in that it is to encircle the point (0,0), with the only difference
that the reference frame is different (besides different relative starting positions
the demonstrations of task a in framing 2 looks just like the demonstrations of
task e in framing 1).

Four demonstrations of each task were provided and presented to the robot unlabeled.

Results

In figure 6.4 we can see the results of the grouping algorithm. The demonstrations have
been sorted into 5 groups with 4 demonstrations each. We can also see what framing
was estimated for each group (marked with a * in the figure). We can see that each
group contains hand trajectories that correspond the one of the tasks descriptions (which
task the trajectories correspond to is indicated to the left in the figure). As figure 6.4
contains all the demonstrations, we do not include a separate data input figure. Each
of the estimated task groups has four speech points and four object positions shown in
the two columns to the right.

In figure 6.5 we can see each of the 20 reproductions individually, with the imitators
estimate of the currently appropriate framing seen in the top left of each reproduction.
In two of the reproductions of task c, the imitator completes a few correct laps around
the triangle, but then starts drifting into the middle. Otherwise we can see that the tasks
are reproduced adequately if we compare the reproductions with the task descriptions
and the demonstrations shown in figure 6.4.

Discussion

We have demonstrated that it is possible for a robotic imitator to autonomously group
unlabelled demonstrations into separate tasks and to find the correct framing for these
task even if the number of tasks is not provided. We have also shown that language can
be included as the context in a task and that the imitator can determine for what tasks
the linguistic input is relevant. This means that an imitation learning system evolved
for non linguistic reasons can generate language (any potential subsequent adaptations
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Fig. 6.4: This shows the result of the grouping algorithm applied to the data in experi-
ment 1. The five task groups that where found are shown in framing 1 to the left and
in framing 2 to the right. We can see that each group found does correspond to one of
the tasks described in the task descriptions, and we can also see that the correct fram-
ings were found (also notice that the demonstrations look more coherent when viewed
in the correct framing). The ordering of the tasks are random and will be different
each time (this time it is e,b,a,d,c) but each time the same set of region-framing-data
tuples are found. In order to avoid duplication, this figure also serves to show what was
demonstrated (since each of the task groups found consists of the demonstrations of one
task, the only difference of showing the task demonstrations separately would be in the
ordering).
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Fig. 6.5: This shows 4 reproductions each for the five reproduced tasks of experiment 1 in
the absolute reference frame (the f1 or f2 indicates what framing the imitator estimated
during the reproductions; each time the framing found is correct). Comparing to the
demonstrations and the task descriptions, we can see that the reproduced trajectories
correspond reasonably well with what the imitator was supposed to do. We see that the
triangle task (task b) has a tendency to sometimes go into the middle of the triangle
and circulate in a deformed trajectory after having completed a few correct laps. This
problem is not due to the grouping algorithm and demonstrates a shortcoming of the
ILO-GMR algorithm that is presented with only relevant data in the correct framing
(and it is presented with all the relevant data).
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happening as a response to language being a predictable part of the environment is
outside the scope of this thesis).

6.5.2 Experiment 2: Relaxing the assumption of a single chan-
nel of communication

The context of this experiment includes interactant speech, interactant hand gestures/signs,
the position of an object and the starting position of the robots hand. There are tasks
that are to executed in case of events in each of these 4 domains (when the object is
to the left of the robot task 1 should be performed and when speech include “circle”,
task 4 is to be performed, etc.). Those tasks that are triggered by speech or hand signs
of the interactant can be seen as linguistic while the other tasks are ordinary sensori-
motor tasks. From the point of view of the robot, there is however no difference as it
in all cases notices that certain states in a low dimensional space should trigger certain
behavior. The tasks are also chosen in a way that demonstrates the possibility for recip-
rocal communication. For example the correct response to the object being to the left
is to draw a “L” shape, and the correct response to the utterance “dubleve” is to draw
a “w” shape (other times the task is a non communicative response to the interactants
communicative act, such as when the interactant makes a “s” shaped hand sign and the
correct response is for the imitator to move its hand in a square). The imitator thus
performs acts that an outside observer might consider communicative (mixed with other
responses). From the perspective of the demonstrator, the “L” shape has a communica-
tive meaning (in this case that an object is to the left from the robots point of view), but
from the point of view of the robot it is just a hand movement similar to the “encircle
the object” movement. It has learned a normative rule that a certain context should
trigger a certain response, and the “linguistic” nature of its response comes from the
fact that the demonstrator is a linguistic human that tried to demonstrate a linguistic
convention. This is possible since the type of imitation performed is not “if I do x in
world state y, then z will happen” but in the shared intentionality sense of “I should do
x in word state y”. This is similar in principle to learning that the correct response to
seeing berries is to shout “berries” simply because a demonstrator is doing this (and not
as a response to observing benefits of shouting “berries” due to some tribal enforcement
mechanism).

Setup

The setup is similar to the previous experiment, with the addition that the interactant
not only produces speech utterances, but can also perform hand movements/signs. The
hand signs are also projected into a three dimensional space (as described earlier).
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Tasks

There are 7 tasks defined and the demonstrations of them can be seen in figure 6.6.
Two of the tasks are to be performed as a response to a specific object position, two
tasks as a response to a speech command, two as a response to a gesture and one should
be triggered when the robot hand starting position is in a certain zone. Just as in
experiment one, it never occurs, neither during demonstration or reproductions, that
the context contains two such conditions.

• task 1) When the object is to the left, task 1 is to be performed: drawing an L
shape.

• task 2) When the object is to the right task 2 is to be performed: drawing an R
shape. Tasks 1 and 2 are meant to demonstrate that it is possible to learn to give
a sign as a response to a world state (something that might look like a description
of the world to an external observer).

• task 3) When the word ”dubleve” (french for w) is uttered by the interactant task
3 is to be performed: drawing a w shape.

• task 4) When the word ”circle” is uttered by the interactant task 4 is to be
performed: going around in a circle around the point 0,0 in the reference frame of
the robot. Tasks 3 and 4 shows that verbal commands can be used either to draw
a shape or do an action.

• task 5) When an “S” shape is made by the interactant task 5 is to be performed:
go around in a square with the lower left corner of the square coinciding with the
object.

• task 6) When the interactant makes a “P” shape with its hand, task 6 is to be
performed: push the object. Tasks 5 and 6 tasks shows that it is possible for the
architecture to handle different forms of symbolic communication; a sign can also
be used to command an action. In these two tasks the approximate shape of the
gesture determines what to do so it might look symbolic; as long as the shape is
similar to “S” the square task is performed, and the exact shape have no influence
on how it is performed. The position of the object also affect the task execution
but here it smoothly modifies the policy.

• task 7) When the starting position of the robot hand is far away task 7 should
be performed: go to the point 0,0 in the robots reference frame. This task was
not correctly handled by the grouping algorithm (the reasons for the failure are
discussed further below), but was meant to demonstrate a traditional sensorimo-
tor task without any for of communication (the interactant is ignored and the
demonstrator does not view its behavior as communicative).
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Together these tasks show descriptions of the environment (the “R” and “L” gestures) as
well as responses to both the environment and interactant actions (speech and gestures).
This setup was simulated in the same manner as in experiment one.

Results

The results of the grouping algorithm can be seen in figure 6.7. In order to make view-
ing of the results easier the first four demonstration (1 to 4) are of the first task, the
next four demonstrations (5 to 8) are of the second task, and so on. The fact that
they are demonstrated in this pattern has no impact on the algorithm but makes it
possible to immediately determine visually if the algorithm was successful. The demon-
strations of task 7 is not identified as a task, which is a failure of the algorithm, but the
demonstrations of the other 6 tasks is grouped correctly.

Why task 7 is not grouped correctly

The 4 demonstrations of task 7 can be seen in figure 6.8 in different colors. The green
demonstration might look similar to the other demonstrations from a human observers
point of view, however to the policy similarity measure defined it is actually quite dif-
ferent from the red and blue demonstrations (the red demonstration is actually more
similar to the demonstrations of task 1 than to the green demonstration). Remember
that the similarity measure relies on the policy (the direction) being similar in points
close to each other in the same task, this is however not true for these demonstrations.
The framing for this task is the coordinate system relative to the robot (framing 1) and
this input is indeed all that is needed to define a consistent policy. For the grouping
algorithm to see the policies as similar it would however be necessary to view the output
in terms of speed towards the point posHxr = 0, posHyr = 0, or movement in a coordi-
nate system with one axis intersecting the starting position and the point posHxr = 0,
posHyr = 0 as suggested in [105]. If there are intermediate demonstrations the grouping
algorithm can succeed anyway according to the principle A is similar to B and C, B is
similar to A,C and D, C is similar to A,B,D, and E and D is similar to B,C E and F,
E is similar to C,D and F. The starting positions are generated randomly and often the
demonstrations will be similar enough to be grouped together. With these 4 specific
demonstrations it sometimes happens that demonstrations 1, 2 and 3 or demonstrations
1 and 2 are grouped together to form a task. The proper way to fix this problem would
be to either provide a framing where the demonstrations look the same or to give the
imitator the ability to find such a framing by itself.

Finding back the correct task and the correct framing from the current state

.
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Fig. 6.6: The 7 tasks demonstrated in experiment 2. In the column to the left, in blue,
the data is presented in framing 1 (relative to the robot). In the middle, in red, the
data is presented in framing 2 (relative to the object). And finally in the column to
the right, in green, the data is presented in framing 3 (relative to the starting position).
The demonstrations of a task will look like several instances of a consistent policy in
the correct framing but might look incoherent in the other framings. Task 1 and 2 (“L”
and “R”) is to be executed as a responce to the object being to the left (task 1) and
right (task 2). Task 3 and 4 is to be executed as a response to specific speech acts
(“dubleve” and “circle” respectively). Task 5 and 6 is to be executed as a response to
hand signs (and “S” and a “P” respectively) and task 7 is to be executed in case of a
starting position far away from the robot (roughly “when the arm is extended; move
close to body”).
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Fig. 6.7: The memberships found in experiment 2. The height of a pillar show the
membership value of demonstration nr indicated on the left axis of the task indicated on
the right axis. The 6 groups of 4 high pillars show tasks 1 to 6. There are several values
on the right task axis that have no high values and those correspond to empty groups.
For values 25 to 28 on the left demonstration axis we can see that the demonstrations
of task 7 is not grouped together. The demonstrations of task number 7 has not been
correctly grouped and when utilizing a cutoff value of 50% there are 6 groups formed
(all of them with the correct data associated to them) but the demonstrations of task
7 are discarded (meaning that reproduction attempts of task 7 results in some other
task being selected). In some runs demonstrations 1, 2 and 3 or demonstrations 1 and
2 of task 7 are grouped together as a 7th task (which also represent a failure since while
reproducing task 7, the algorithm does not have access to all the relevant information).
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Fig. 6.8: Here we can see why task 7 of experiment 2 has not been correctly grouped.
The similarity measure will simply not classify the red and the green demonstration as
similar in any of the three framing available (they never move in the same direction,
no matter how you pick points from the demonstrations). A framing that considers
positions in a coordinate frame where one axis goes between the point Hxr = 0, Hyr = 0
and the starting point would work since the demonstrations would look the same plotted
in this framing.
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For the 6 tasks that are correctly grouped, the reproductions are successful except for
around 5% failure rate for task 45. The 6 tasks that were found all have the correct
framing attached to them so when the correct task is found during reproduction the
correct framing is also found. During each of the reproductions of the 6 tasks found by
the grouping algorithm, the ILO-GMR algorithm was supplied by the grouping algo-
rithm with only relevant data in only the correct framing and, as can be seen in figure
6.9, generally performs well. Sometimes the imitator acts ”twitchy” at the top of task
4 during the second time around the circle if it gets too high (this is hard to see in the
figure but is apparent when watching the simulated hand move during a reproduction).
The push task stops slightly to the left of the object and drifts a bit when this point is
reached even if the speed is greatly reduced. The path to the object in task 6 is also not
completely straight (its not straight in the demonstrations but an optimal algorithm
should average the directions and smooth out these differences). The reproductions of
the three tasks where framing fs (hand position relative to the starting position) is the
relevant one looks very similar since the relevant part of the starting conditions are
always the same (the relevant state is position relative to the starting position so even
if starting position and object position differ each time, everything that affects policy
stays the same).

Discussion

The main contribution of this experiment was to show that the channel of communi-
cation does not have to be known initially to the imitator or be confined to a single
channel, but can be estimated. It also demonstrated that the actions of the imitator
can be communicative acts. It also showed a situation in which the proposed similarity
measure can fail if provided with only a small number of demonstrations.

5If looking only at the speech part of the context the task is correctly identified, but since we
look at the entire context (we do not know that speech is the relevant thing to look at in the current
context) sometimes the other parts of the context simply correspond better to task 3 that it outweighs
the information from the speech part of the context. For tasks 3 and 4 the other parts of the contexts
are drawn from the exact same distribution but since there are only 4 demonstrations each there is still
some regularities (if, during reproductions, the starting position happens to be more similar to those
in task to 3 than those in the demonstrations of task 4 this will tilt in favor of task 3. The speech is
not different enough to always offset this). The problem would decrease with more demonstrations (as
the demonstrations increase the estimated regions of the tasks would look more and more the same in
those dimensions from which the starting position is drawn from the same distribution). However the
problem would get worse as more irrelevant dimensions are added as each new irrelevant dimension
adds a noise term in a random direction and increasing the expected distortion (although growing
sub-linearly in the number of irrelevant dimensions)
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Fig. 6.9: Here we can see the reproduction of the 6 tasks that was correctly found by the
grouping algorithm in experiment 2 (Task 7 was not found by the grouping algorithm,
and due to this, no reproduction attempts of this task where made). Each task is
reproduced four times with different starting conditions (the reproductions of each task
is viewed in the inferred framing indicated to the top right of each subfigure). Tasks
1,2 and 3 are defined in the framing relative to the starting position of the imitators
hand, meaning that in this framing the starting position is always at 0,0 (the imitator
always start at 0,0 relative to the starting position), resulting in more homogenous
reproductions. Comparing the reproduced trajectories with the task descriptions and
the demonstrations we can see that they match fairly well and comparing the inferred
framings with the framings of the task descriptions we can see that all framings where
inferred successfully.
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6.5.3 Experiment 3: Extending the types of word meanings
that can be understood and learning simple word order
syntax

This experiment explores more advanced types of words than direct action requests.
Words corresponding to requests for attention to be on a specific object (i.e words that
explicitly expresses framing), and thus corresponding to requests of internal cognitive
operations, are learnt along with action request words. To imitate the response to the
focus requesting words, this focusing operation must first be inferred in each demon-
stration, so that the problem reduces to finding a general policy from a set of known
context-action pairs. Inferring this internal “focus on object” cognitive operation is done
without introducing assumptions about how specifically an object focus will influence
policy. The change in object focus is here viewed as any other action, like a hand move-
ment or a speech utterance. This type of action is however not visible, and the change
is only to internal cognitive structures of the teacher (the imitator uses a theory of how
the internal structures of teachers mind works in order to imitate this action). The only
assumption that is made about the internal structure is that a specific state will have
a consistent influence on the hand movements of the demonstrator. This means that,
while not directly observable, internal states are completely defined by the demonstra-
tors behavior (instead of starting with a definition of how an internal state influences
actions, and then infer what words leads to what state). An internal state that does
not have a consistent influence on policy could not be imitated even if some context
consistently resulted in this state.

Setup

In this experiment, the interactant uses a sign language with a simple 2-gesture syntax
that has to be learnt by the robot. The syntax is as follows: the first gesture requests the
internal operation of a specific object focus; a gesture drawing a “1” requests focus on
the red object (i.e. the movement in the task should be defined in the coordinate system
of the red object), a gesture drawing a “2” requests focus on the green and a “3” the
blue object. The second sign requests a specific type of movement, defined in relation to
whatever object is focused on6; a “4” requests performing the “triangle up” movement,
a “5” the “triangle down” movement and a “6” requests the “circle” movement. For the
imitator to find this word order, it needs to infer the internal operations performed and
it needs to know what trajectories are instances of the same movement. Each gesture
(“1”, “2”, “3”, ...) is transformed into a low-dimensional (3D) point as described above.

The robot knows that each of the two hand signs have some meaning, and that there
exist some form of word order syntax. This is an additional assumption that was not
present in experiment 1 and 2 where the relevance of speech (or gestures, or object

6The policy maps hand positions in a coordinate system with (0,0) at the center of the object
focused on to outputs.
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positions) had to be determined. Since the robot here knows that the hand signs are
communicative we have not simultaneously solved the two problems of: (i) finding out
that the demonstrator is communicating and how (hand signs or speech) and (ii) the
problem of finding word order syntax and imitating internal cognitive operations. The
fact that the algorithm of experiment 3 makes use of this assumption that hand signs
are communicative means that it can not be used to solve (i) and (ii) simultaneously
without modification. The number of words is however still initially unknown to the
imitator as well as which specific hand gestures are instances of the same hand sign (as
before; a set of hand gestures can be 2 hand signs done many times each, or several
hand sign done only a few times each).

Algorithm

When the grouping algorithm is successful we know what demonstrations are instances
of the same movements. The new step is to find out what object was focused on during
a movement. If we know that two demonstrations are instances of the same movement,
for example a circle around the focused on object, we also know that conditioned on the
correct object focus assumption, they will (on average) look similar.

The coordinate system in which a trajectory is the most similar to the other trajectories
of the same movement is set as the coordinate system of that demonstration. For
example; let’s say that trajectories #1 and #3 are known to be instances of the same
movement, and that they get the highest similarity score under the assumptions that the
object focus during demonstration #1 was the blue object and the object focus during
demonstration #3 was the green object. Then it is estimated that these were indeed
the actual objects focused on (but taking into account comparisons with all instances
of the same movement).

To find the word order we use the assumption that both hand signs are communicative
acts and meaningful for the task. The within group distances of the first signs and
the second signs are compared and the one that has the smallest distance is assumed to
request a movement type, meaning that the one that has the biggest distance is assumed
to designate the coordinate system (both are known to be meaningful, so if one of them
requests a movement type, then the other must request an object focus). If the grouping
algorithm is successful then each group consists of trajectories that are instances of the
same movement. This in turn means that for each group, the same movement was
requested but not the same object focus. Thus, the interactants hand signs which
requests movements should be similar within each group (each group contains several
instances of the same “request movement sign”, but instances of different “request object
focus” signs). If the movement is requested in the second of the two signs then, for each
group, the within group distance of those signs will be smaller (since they are all the
same sign) but the within group distance of the first signs will be bigger (since they are
not all the same signs, requesting different object focus). If this is successful the imitator
knows which of the signs designates the coordinate system and which one designates
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the movement.

To determine what object focus, and what movement was requested during reproduc-
tion, the interactant hand sign that has been found to trigger a movement response is
compared to the corresponding signs of all demonstrations and the group of the demon-
strations whose sign is closest is assumed to be demonstrations of the correct movement.
This results in a smaller dataset that is used for the rest of the reproduction.

The same is done to find the object focus: The interactant hand sign that has been
found to trigger an object focus response is compared to the corresponding signs of
all demonstrations and the object focus of the demonstration whose sign is closest is
assumed to be the correct coordinate system.

A simple regression algorithm is used that, at each timestep during the reproduction,
finds the 50 points that are closest to the current state (using the estimated framing)
in the reduced dataset found earlier (consisting of only the relevant trajectories). The
average of the output of these points is used.

Results

In figure 6.10 the 12 demonstrations are shown relative to the three different objects.
The appropriate response to six of the total nine possible combinations of communicative
inputs are demonstrated. The algorithm finds the number of movements and correctly
infers all the internal actions as well as the word order. In figure 6.11 we can see that
the imitator successfully reproduces in all nine combinations, which shows it has learnt
to master the combinatorial structure of the sign language of the interactant.

A total of 36 successful reproductions, where the top left, middle middle and bottom
right each show 4 correct reproductions of an unseen task (an unseen combination of
hand signs). The edges of the triangles are not as sharp as they should be and, when
the starting position in the circle movement is far to the right of the object, the imitator
initially makes a too big semi circle before falling into the correct small circle movement
(more sophisticated methods for the reproduction could be used on the data obtained,
but that is not the focus of the current experiments and the reproduction ability was
enough for our purposes).

Discussion

We have shown that it is possible to simultaneously learn never before encountered
communicative signs and never before encountered movements, without using labeled
data, and at the same time learn new compositional associations between movements
and signs. We have also shown that the meanings of the signs learnt can include requests
to perform unseen internal operations (focus on object) of a demonstrator under a set of
conditions. First, it is neccesary that the unseen operation is performed as a predictable
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Fig. 6.10: Here we see the 12 demonstrations relative to the three objects of experiment
3. The demonstrator observes the first sign, the second sign and then performs the
hand movement presented under. Each of the trajectories are shown relative to the
three objects. The rows marked “red”, “blue” and “green” respectively show the same
trajectory, but each row show the trajectory in the a coordinate system centered on the
respective object.
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Fig. 6.11: Here we can see the 36 reproduction attempts. The rows indicate movement
and the columns indicate coordinate system. In each case the signs given to the imitator
led to correctly finding the correct data and the correct coordinate system. Comparing
the reproduced trajectories with the task descriptions and the demonstrations, we can
see that the corners of the triangles are a bit to round and that in some of the circle
task reproductions there is some odd behavior before settling into the correct circular
movement, but that overall the reproductions where reasonably accurate. There is
also no apparent degradation in performance in the three combinations that were not
demonstrated, showing the ability to generalize.
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response to a part of the context visible to the imitator. Second, it is also necessary
that the operation resulted in a state that had a consistent influence on a policy of the
demonstrator which determined actions that were observable by the imitator. We have
further shown how imitating these internal operations resulted in a policy that is able
to generalize correctly and results in successful reproductions in situations where there
are no demonstrations.

6.5.4 Further investigation of the grouping algorithm

To examine the main aspect of the grouping algorithm, we generate simulated data
and examine under what conditions the algorithm will work. Data is generated with
randomized similarity for each trajectory pair. Then the similarity of those pairs that
are instances of the same task is multiplied by a constant k. The performance of the
algorithm is then checked as a function of k.

Setup

For each trajectory pair, 200 values are generated and summed, each drawn from a
uniform distribution between 0 and 1. If the trajectories are instances of the same task,
the sum is multiplied by k. The membership matrix is initialized as usual and then the
algorithm step where similarity is used to update the membership matrix is performed
200 times.

The experiments are performed on 28 trajectories, consisting of 4 trajectories that are
not instances of any task and 6 groups of 4 trajectories each.

Performance is measured in two values: the proportion of correctly classified tasks, and
the proportion of correctly classified non task trajectories. If all the trajectories of a
task has membership values higher than 0.5 in the same group, and no other trajectory
has a membership value higher than 0.5 of that group, the task is considered correctly
classified (and otherwise a failure). If a trajectory that is not an instance of any task
has any membership value higher than 0.5 then it is considered a failure, otherwise a
success (if it is not a member of an actual task group, the algorithm will create a false
task group that might get reproduced, and if it is a member of an actual task group, it
will introduce corrupted data during reproduction. Each case would be a failure).

13 different k values are tested: 1,1.05,1.1,1.15, ..., 1.6. Each value is tested 100 times
(new randomized similarities are generated for each run).

Result

Of 1300 runs, two instances of incorrectly grouped non task trajectories occurred, one
misclassified non task trajectory at k = 1.2 and one at k = 1.25, meaning that the

133



grouping algorithm very rarely considers a non task trajectory as being an instance of
a task.

In figure 6.12 we see task success as a function of similarity, with the bars indicating
variance. When the similarity between two points is 15% higher for trajectory pairs
that are of the same task, the algorithm starts to correctly classify a few tasks correctly,
and at 50%, all tasks are consistently correctly classified.

Fig. 6.12: Here we can see what level of similarity between trajectory pairs of the same
task is needed for the grouping algorithm to succeed. The explanation for the low
variance can be seen in figures 6.13 and 6.14 (correctly grouping one task makes it more
difficult to correctly group the remaining tasks, which leads to the oddly low variance).

The very low variance needs to be explained. In figure 6.13 we see the success of each
of the 1300 individual runs, showing that there are essentially no outliers. Each run
correctly classifies a number of tasks in a narrow band, something that we would not
expect to see if each task group had a certain percentage of being correctly classified,
dependent on k, but independent on how the other tasks are classified. If that were the
case we would expect to see a much higher number of outliers. This strongly suggests
that correctly classifying one task group makes it more difficult to correctly classify
another task group. Investigating the membership values directly in figure 6.14 we can
see why this is. The trajectories of the same task have a strong tendency to form several
identical groups, each with memberships values of lower than 0.5, a situation classified
as a failure. Each time a task is correctly grouped, those trajectories disappear from
all but one group, and it becomes easier for the other tasks to form multiple groups.
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Fig. 6.13: Here we can see the results of each individual run. The success is color
coded from low success at dark blue to high success at red. There are only 7 possible
values corresponding to 0 correct groupings, 1 correct, etc. We can see that there are no
outliers. For example at k = 1.35 there are 95 runs with 5 correct groupings and 5 runs
with 4 correct groupings, and not a single run with 3 correct, or 6 correct groupings.
At k = 1.3 all are either 3,4 or 5 correct groupings, with no run outside this band (and
for each instance, all runs are within a narrow band, with the highest variation being
at k = 1.15 where each run is between 0 and 3). This strongly suggest that the success
of two task groups are not independent of each other. In figure 6.14 we can see why the
difficulty of grouping a task is increased every time another task is correctly grouped.
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Fig. 6.14: Here we can see the memberships of one run with k = 1.25. The y axis indicate
trajectory number and the x axis indicate group number. For visual convenience, task
1 consists of the first 4 trajectories (at the top), task 2 of the following 4, etc, and the
non task trajectories are the last 4 (at the bottom). Red indicates a membership value
of 1 and dark blue indicate a membership value of 0. For example, the light blue square
in the bottom right corner indicates that trajectory 28 have fairly high membership in
group 28, and the dark blue square to the left of this indicate that it has no membership
in group 27. And from the red rectangle at the top middle of the figure, we can see that
trajectories 1 to 4 all have membership value 1 in task group number 15. In general we
can see that trajectories of the same task tend to either be correctly classified, or form
several identical groups (trajectories 5 to 8 of task 2, trajectories 9 to 12 of task 3 and
trajectories 25 to 28 of task 6).
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Unassigned demonstrations “crowd” the existing tasks groups, making the formation
of multiple identical groups more difficult to maintain. In the figure, tasks 2,3 and 6
compete for the same space.

6.6 Overall discussion

The first experiment of this chapter showed that the imitation learning context can
indeed be extended to include a social partner who produces communicative acts. It
was further shown that the appropriate way to respond to communicative acts can be
learnt without discrete behaviors or discrete words, by treating them as any other part
of the multimodal context. Treating the communicative acts as any other part of the
context means that the imitator does not need to be told specifically that it is being
talked to or given a special predefined “channel of communication”. This is then further
exemplified in experiment 2 were the interactant is sometimes communicating using
hand signs, and sometimes using speech (and sometimes not communicating at all, in
which case the demonstrator reacts to the more traditional parts of the context). The
last experiment showed that the types of actions imitated does not need to be direct
physical responses, but can be cognitive operations instead. If the internal cognitive
operations of the demonstrator are the predictable result of a part of the environment
that is visible to the imitator, and the operations have a consistent impact on observable
teacher behavior, then the imitator can infer when to perform the operation (and the
operation can be represented in terms of the behavioral changes that it induces).
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Chapter 7

Conclusion

A formalism was proposed that makes clear what a successful learner behavior is, and
that can be used to re interpret existing learning algorithms. New research avenues was
made obvious by this reinterpretation, focusing on how several learning algorithms, that
each learn from different types of input, can modify each other based on observations. An
experiment then showed one way in which multiple tasks can be learned from unlabeled
demonstrations. Finally, three experiments where presented where the context was
extended to include another agent, allowing the exploration of language learning within
the imitation learning framework and showing that the symbol grounding problem might
be better dissolved then solved. Finding optimal solutions to the problem formalized is
essentially impossible, and so is finding a way to be completely certain of how successful
the learner is. This is however due to inherent difficulties in the setup where an agent is
trying to figure out what a human wants it to do in an unstructured environment, and
there is good hope of finding approximate solutions.

A very illustrative example is to wait to sweep the dust under the rug when the teacher
is looking, so that the feedback is more informative (if the learner has two hypotheses
saying that the teacher likes a clean apartment/a clean looking apartment, then the
feedback can help distinguish between them iff the teacher is aware of the dust being
swept under the rug). The full problem of modeling an informed version of a human
teacher in an unstructured environment is completely intractable, but it is still possi-
ble to come up with simple solutions that improves performance over naive strategies
maximizing a simplified measure (that is known to be unsuitable in some situations).
The informedness of the teacher that is performing a demonstration or giving feedback
can be treated in the same way as the lighting conditions of a map building robot (that
moves around some environment, directs its sensors in different directions and that has
access to some algorithm translating sensor readings into walls, doors, etc). If it knows
that the estimates is more uncertain in bad lighting conditions, it can take that into
account when making updates, just like an learner can estimate how informed a teacher
was when giving feedback, and take that into account. The map building robot could
also turn on the light switch whenever possible to improve the accuracy of its estimates,
just like an learner can wait until the teacher is looking to sweep dust under the rug.
The map building robot might never be able to get a perfect map, an might never be
certain of how successful it was (it might never be able to be sure of how accurate its
maps are), but it can still do better than a map building robot that simply ignores light-
ing conditions (building a perfect map might be impossible, but it can still outperform
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a naive robot since updating under the assumption that the estimates are flawless will
reduce performance).

One can use the formalism as inspiration to extend existing research either by com-
bining and introducing parameters to a certain class of existing learning algorithms or
by solving increasingly realistic inference problems (starting from algorithms dealing
with more simplified success criteria, and drawing inspiration from a large existing lit-
erature). An example experiment was presented where a the learner started with an
incomplete understanding of how to interpret the teachers evaluative comments. This
limited interpretation ability was however enough to start building a task model. A task
model allows the re-estimation of the learners interpretation hypothesis, and a better
interpretation hypothesis allows for a faster learning of the task model. This situation is
suitable for concurrently learning both elements (concurrent updates are suitable when
each element makes learning the others easier). As could be expected, it was shown
experimentally that the concurrent updates made learning of the task faster. Active
learning was also applied and shown to improve performance.

The formalism offers a principled way of taking any learning algorithm that is trying to
find out what a human wants an agent to do, and reinterpreting it as an interpretation
hypothesis. For any such learning algorithm there must be an hypothesis, even if it is
implicit, of how the inputs of the algorithm is related to what the human wants the
agent to do. The formalism has offered a principled way of quantifying these types of
hypotheses and to check their validity. The check of validity can be done since differ-
ent hypotheses make different predictions regarding interaction histories (an hypothesis
that a reward button is a very accurate evaluation of how successful the learner was
will predict certain interaction histories, and another hypothesis that the reward button
is a very noisy comparison between the success of the most recent learner action and
the three previous learner actions will predict very different interaction histories). Two
competing interpretation hypotheses regarding the same inputs can thus be tested, and
one can be discarded in favor of the other (or it could be found that one hypothesis
is good for certain types of tasks or in certain types of situations, and that other hy-
potheses are good in other situations). If some of the uncertainty of an hypothesis can
be described as parameters, then the validity test can be used to determine which of
two parameter values are better, and thus allows a parameter search. If there are sev-
eral different interpretation hypotheses over different types of inputs, then finding out
which one is the most accurate can be useful even if no updates are made since this
can allow the learner to choose which types of interaction are the most useful (asking
for feedback, or asking for another demonstration or just performing reproductions and
observing facial expressions).

The simplified setup was reduced to an inference problem, opening up a whole new set of
research avenues. One can for example start from any reinforcement learning algorithm
and adapt it to suit a case where the rewards are not necessarily accurate, and where it
is possible to for example to figure out how accurate they are, when they are accurate,
and how to make them more accurate. The rewards are treated similar to inaccurate
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sensor readings, allowing the learner to disregard certain signals (for example if the
teacher missed something important) and to improve the informedness of the signals.
One can also adapt the basic ideas behind existing methods such as particle swarm
optimization (where each particle can for example be an interpretation hypothesis mov-
ing in an internal hypothesis parameter space and where the direction in that space is
based on prediction quality on new data and the position of other particles, performing
a reasonably effective search of the parameter space). Even if optimal solutions to the
least simplified versions of the problem is far from possible, this approach is still suitable
for guiding incremental extensions of existing work. Good solutions can be modified to
problems that are slightly less simplified than what they are currently solving, and stan-
dard ideas can be adapted to find better and better approximate solutions to the most
difficult problems. The central key to finding reasonably good solutions might very well
be in allowing the learner to perform actions designed to gather information, which is
already an active research area. This makes optimal solutions basically impossible to
find (even if optimal is defined in terms of “optimal according to priors and informa-
tion”), but makes reasonably functional solutions easier to find (it allows the learner to
actively search for forms of interactions and those types of tasks that is possible to build
reasonable models of given the current situation and type of teacher).

Experiments showed that it is possible to extend the usual learning from demonstra-
tion setup to explore new types of learning situations. The first experiment conducted
showed that symbolic information labeling demonstrations is not needed. By using ILO-
GMR, an incremental and local version of Gaussian Mixture Regression, it was possible
to learn several different tasks from demonstration even when there was no symbolic
information attached to them (the learner was not told how many tasks the teacher was
demonstrating, and was not told which demonstration was of what task).

Experiments which included another agent showed that linguistic and non linguistic
skills can be learnt using a single imitation learning system. Adopting normative rules
from observations of others can result in rules for how one should react to inanimate
objects and other non communicative parts of the context as well as how one should react
to someone saying something or making a hand gesture/sign. The appropriate actions
learnt (as a response to for example: seeing a blueberry, hearing a speech utterance or
seeing a facial expression) can be both communicative or non communicative from the
point of view of an external observer (for example drawing an “L” shape when an object
is to the left). All this suggest that it is possible to investigate language acquisition
without encountering anything resembling symbols that are in need of grounding.

Any learner of the type described here must obviously have a will to imitate (a moti-
vation to adopt normative rules as opposed to only using observations of a teacher to
update a world model). Another assumption made in experiment 3 is that the learner
has a theory of mind, the learner is assumed to understand that the teacher is a special
type of thing that can have internal states.

The presented approach can be seen as related to the hypothesis of Corballis that
language evolved from the ability to use tools [100]. However, instead of language
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evolving from an ability to use tools, language learning and learning to use tools results
from a general sensorimotor imitation system in our account. Tool use is also not
necessary for our account, and the selection pressure in favor of a normative imitation
learning system could for example come from adopting rules regarding things such as:
who to back in a fight, when to back down if challenged, when to start a fight, how to
build social alliances/relationships in general1.

This imitation system allows each generation to understand a big part of the practices of
the previous generation, and either through invention or through non intentional gener-
alization modify those practices. For example, assuming that some statistically common
word order is a normative rule might result in such a rule being actually adopted. Once
established, later generations can use it to reduce cognitive load when parsing sentence
(and the benefit comes from being able to assume that everyone uses the same syntax,
not the details of which specific syntax happened to be common/was adopted as a nor-
mative rule). As pointed out previously, our position is that capabilities and motives
of shared intentionality is absolutely central to this general imitation learning system,
making our system very compatible with Tomasello’s view of shared intentionality as
important to language. The learner would be a shared intentionality learner that adopts
normative rules of how it should behave (as opposed to exclusively using imitation to
learn predictive models of the physical world and other minds), and does so regardless of
the types of contexts that should trigger a behavior (ignoring our judgement of whether
the context makes the skill communicative or not).

The evolutionary accounts of language offered by Tomasello and Corballis centers on a
gradual shift from action/gesture skills into a more sophisticated linguistic system (that
at some point shifts to speech). This resonates well with the idea presented here of a
single strategy/system used for all learning (this single learning strategy would simply
be used on a gradually expanding set of contexts).

The difference between completely non communicative skills (for example how to ma-
nipulate an inanimate object by yourself for the purpose of getting food) and language
skills is not only continuous. We further propose that each region on the spectrum has
plenty of interesting skills. Close on the spectrum to manipulating inanimate objects
are how to catch prey or avoiding a predator (by yourself). This introduces another
agent in the context (the prey or the predator) and makes the correct actions depen-
dent on the actions of another mind (as well as what that mind sees and hears, etc).
Taking another step in this direction would be the skill of hunting an animal at the
same time as a collaborator is hunting it. The correct actions are now also dependent
on your collaborators movements (who will in turn take your actions into account). At

1If following the same set of rules as everyone else is more important than the content of the rules
(and those rules are not always the same), then this creates a selection pressure for an imitation learning
system that adopts the normative rules of the adults it encounters. When being born into a linguistic
community is a predictable part of the environment, this could of course lead to further adaptations,
something that this reasoning says nothing about either way (we are concerned with how a linguistic
community could become a predictable part of the environment in the first place, not what secondary
effects such an environment might have had).
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the next level we have social skills where body language, facial expressions and eye gaze
determine whether to take food openly as opposed to to stealing it or leaving it alone,
or when to give away food as opposed to fight for it, or how to react when two other
individuals are fighting. Overgeneralizing imitation learning by a new generation could
now lead to a “linguistic” hand gesture for “go away / leave me alone / give it to me”
as opposed to the “mere body language of someone involved in social conflict” in the
previous generation.

Imitating internal cognitive operations and extending the context to include states in
internal cognitive structures of the learner (or alternatively: estimated states of the
teacher/interactant) can be useful in many types of settings and opens up entirely new
types of tasks to imitation learning. A non specialized learner learning to drive a car
(non specialized in the sense that the programmer had no idea this would be imitated)
could learn how to follow the speed limit using this approach. It is of course possible to
find complete visual histories and map them to driving behavior (since those histories
will include the speed limit signs, at each instant it is possible to use them to determine
the current speed limit). A more natural way of imitating a teacher that is following the
speed limit would be to assume that there is some sort of internal cognitive structure
that the teacher performs an operation on as a response to a speed limit sign. Then, at
each moment, the current speed is a result of the current visible context as well as this
internal structure.

If the learner is to drive in a country where rain can change the speed limit it will not
be possible to learn this by experimenters defining some channel of communication and
linking symbolic input in that channel to changes in internal states. What would be
needed is a learner that is capable of treating rain, a traffic sign or a passenger saying
“the speed limit here is 90” in the same way (and that is capable of discovering that
states in these spaces apparently should influence the state of the “current speed limit”
structure). The number of internal states, or the impact it has on driving, does not have
to be known since it can be inferred from observation (given that the it is possible to
detect that there are X number of influences on behavior coming from internal states).
One language system that learns how to respond to the speech of the passenger and
one separate action system that learns how to respond to the rain would be awkward
(how to deal with the speed limit sign would depend on how the programmers chose
to divide work between the two systems, and nicely exemplifies how arbitrary such a
division becomes).

All these situations involve some aspect of the extended context that should result in an
operation on an internal cognitive structure, whose state then should influence driving
speed.

In the case of an learner learning to pick blueberries, all the following contexts would
be treated the same way

• Directly observing blueberries.
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• Observing another human bending down, picking something up, and then eating
a blueberry (if there is one there are many).

• Observing another human bending down, picking up, and then holding up a blue-
berry.

• Observing another human shouting “blueberries!”.

• Observing another human holding up a blueberry and pointing towards the lake.

• Observing another human saying “blueberries” and pointing towards the lake.

• Observing another human holding up a blueberry and saying “from the lake”.

• Observing another human saying “there are blueberries at the lake”.

When analyzing the teachers behavior (in each case: go and pick up the blueberries)
it would make sense to assume that some internal state is triggered by each of these
situations. Then that internal state has the same influence on behavior, no matter what
caused the state in the first place. It does not seem necessary to build a learner with
one separate language system, and one separate action system.

The same can be said about ownership, where a teacher might get the same “now Bill
owns the apple” internal state from either of these situations:

• Bill finds and picks an apple.

• Steve owns an apple and Bill takes the apple from Steve when Steve is not looking.

• Steve hands the apple to Bill.

• Steve tells Bill “you can have that apple”.

• Steve is holding an apple and Bill tells him “thats mine” and Steve says “Ok”.

• Bill says “I will get you two apples tomorrow if I can have that now” and Steve
says “Ok”.

It is again reasonable to think of the teacher as having one internal state and there being
many different contexts that might cause this state. It might be useful to approximate
the teacher as having a“ownership state space”where many different types of observable
contexts results the same states in this space and where the state in this space has a
consistent influence on policy (where the influence is not dependent on what type of
context caused it). A general ownership concept is useful for modeling many people if a
significant subset have similar rules for when the state is triggered, and it has a similar
influence on policy.
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To exemplify how communicative goals can be described as different action requests, we
can look at three different pointing behaviors; (i) “give me that”, (ii) “notice that” (iii),
and “share my attitude about that”. The first type is a traditional action request, and
the second is straightforwardly described as a request to change the state of knowledge
about the world (make a change to a world model). The third type of pointing can
be analyzed as requesting that a certain attitude is adopted towards the object. When
this attitude is visibly adopted, the common ground can be changed to encode this
shared attitude as an objective property about the object, which greatly facilitates
communication2. To imitate the adoption of some specific attitude towards an object
as a response to a communicative act is not different in principle from imitating the
adoption of an attitude as a response to other aspects of the environment (some types
of big heavy objects that suddenly start moving fast towards you should trigger one state
while small things that look at you with two oversized eyes should trigger another state
). The practical problems are the same no matter what triggers the internal operation;
the part of the context that determines the internal operation must be isolated, the
effects on behavior of the different possible internal states must be inferred, etc. In [24],
experiments are presented and it is argued that the first and second type is present
in one year old humans and in [25] the same is done for the second and third type of
pointing.

It would also be possible to modify the setup to investigate the effect of shared inten-
tionality on common ground and in restricting the hypothesis space of possible meaning
of utterances. In the presented experiments there is no explicitly modeled common goal
of the interactant and the teacher, and the teacher only performs one behavior as a
response to a communicative act. If the learner assumes shared intentionality of the
interactant and a teacher that performs several behaviors it can use this assumption
to estimate what behaviors was requested. Even though the full hypothesis space of
every combination of goals and requested behavior is probably impossible to work with
it could concurrently: (i) use the current best estimate of the requested behaviors to
build an explicit model of the common goal and (ii) use the current best estimate of the
common goal to find the requested behaviors (preferring those that are relevant to that
goal).

One of the limitations of the model is that it deals exclusively with a learner observing
two interacting humans, while human infants can learn from interactions with a single
human. The problem that is avoided by imitating one out of two interacting humans
is that it is easier to divide what has been observed into context and response. If a

2Instead of requiring that the state of knowledge and the opinions of the other interlocutors are
modeled explicitly one can simply talk and think as if the object has some additional properties (perhaps
the huge positive effects of this type of communication and thinking can explain why humans tend to
do this even when it does not really apply. It is perhaps such a good heuristic that the benefits of
instinctively and without thinking using this strategy outweighs the problems that arise in the few
cases where it fails). This is yet another aspect of the point made in [23] that sharing intentionality,
perspective, attention, attitude, opinion, etc, etc will facilitate communication if this alignment is
common knowledge (everyone is aware that everyone else is aware, etc).
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single human says “throw” and then throws an object, it is not certain what is the
context and what is the response, possible rules are: (i) “If I happen to be throwing an
object, I should say “throw” first” (compare to saying “fore!”, before taking a golf swing),
(ii) “if I happen to say “throw”, I should throw something”, (iii) “if another person is
about to throw something I should say “throw” first”, (iv) “if someone says “throw” I
should throw something”, etc. A robot would have to learn a lot or use extensive hand
coded rules in order to disambiguate this (this is true even if the hand coded rules are
not explicitly stated, but instead built into the setup). This ambiguity is apparently
also difficult for parrots which is why Alex learns by observing two humans instead of
learning from interactions with a single human. As mentioned earlier,[107] deals with
parrots imitating humans, and it offers an explanation of the setup used here and a
motivation for why it is needed in the case of parrots. This motivation works equally
well for an artificial mind since it, just like the parrot Alex, is so different from a human
teacher that it can not use the simulation theory of mind (it cannot determine what the
teacher means by asking itself “what would I mean if I did that”). A complete model
of language acquisition must include some method for estimating what behavior should
be imitated and what is the context when both are performed by a single individual,
making this setup a limitation (it removes complexities that a human child is able to
deal with).

Another limitation is that the linguistic behavior is not very complex. Yet, we believe
the models presented here are still interesting even though more complex linguistic
behavior have already been investigated. One main interesting feature is that some
abilities that are usually assumed is here explicitly modeled, for example finding the
number of different utterances as opposed to symbolic input. The other interesting
feature is that since there is no need to solve a symbol grounding problem, the behaviors
that can be learnt becomes essentially open ended.

The symbol grounding problem can be avoided since there is no separate linguistic
system whose symbols needs to be grounded. It will have to learn how and when to
perform operations on internal cognitive structures, and how the state of those internal
structures should influence policy, but this is learnt in a way that treats those operations
as any other action, and that treats those states as any other part of the context.

The types of internal operations that can be learned this way thus becomes open ended.
The practical problems become more severe when the requested operations become more
complicated and do not effect behavior immediately. This is however a feature of the
problem and can not be solved by other approaches either, unless the language learner
starts with a hand coded version of the rule set. The imitation learning approach
suggested does offer a general strategy for teaching a robot how to perform a more
complex internal operation as a response to communicative acts. The learner’s current
linguistic level, current theory of mind and current ability to observe the non linguistic
parts of the situation defines what contexts can be observed. This will include “now
Steve is focusing on the blue object” at one level of linguistic competence, but not at a
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lower level3. The observable actions are also to some extent dependent on the current
linguistic competence of the learner4, and together this defines how the language can be
extended. When the learner can predict an internal state from the currently observable
context, this state can be inferred and now becomes part of the observable context. The
noise is in principle not more problematic than other sources of noise, and might in
fact be easier to remedy (as the noise to a degree comes from imperfect models of the
teacher, a set of demonstrations that are to noisy to learn from can be made more clear
by improving the models of the teacher that produced the data5).

Consider the rule “when getting an apple that belongs to Bill, taking it must be done
silently and when Bill is not looking”. If “that apple belongs to Bill” is already repre-
sentable as a state in some internal structure from an earlier interaction and similarly
“Bill being aware of what happens to the apple” as well as the fact that sound levels
might be an important value to pay attention to, a demonstration of the task can be
seen as mapping states in a simple context space to actions in a simple output space.
If the learner does not already know about these internal structures, the task will look
completely different and learning the policy will be a completely different type of prob-
lem. It would require a larger amount of training examples, a longer interaction history
(to establish what it was that made the apple belong to Bill), and a larger amount of
computation to find the relevant spaces. If the internal structures are known, learn-
ing this task can modify them: the effect of the “ownership” structure on behavior can
be modified (for example be made dependent on who is observing), the way in which
ownership is changed can be extended, the estimate of when “Bill being aware of what
happens to the apple” can be modified, the types of context in which being silent is
important can be modified, etc.

The use of non symbolic input also opens up different ways the interactant can use to
communicate (for example: facial expressions, body language, tone of voice, traffic signs
and written symbols), which is now limited only by the learners ability to transform its
raw sensory experience into a low dimensional space, and that the learner has enough
computational resources to pay attention to them (requiring good prior information
of what is important or the time required to figure out what parts of the context is
important6). The low dimensional space is a simple way of transforming data into a

3If the learner is observing Steve, and an interactant says “look at the blue object”, then a linguis-
tically competent learner can conclude that Steve is now focusing on the blue object. This can now
be used as any other part of the context, such as “The interactant says “give me”, the blue box is not
heavy, Steve is focusing on the blue box”

4Steve shaking his head might be seen as a relevant action at one level of linguistic competence,
but not at a lower level.

5If the relevant part of the context of a set of demonstrations are internal cognitive states, and the
data is to noisy too learn from, the learner might gather more of the type of data that was used to
build that model in the first place, or perhaps do more expensive calculations, etc

6If the learner has access to rich sensors and is able to generate large numbers of possible transforms
from this rich input space to low dimensional spaces, it can use this method as an evaluation criteria
(if the observed states in the resulting spaces predict what task was performed, it is possible that the
evaluated transform is indeed capturing something about the interactant that the teacher considers
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format where standard techniques can be used to what group a new point belongs to
(in these experiments the observed teacher behavior is used to find groups and the
position in the low dimensional space is used to find the group of a new point during
reproduction).

Hopefully this thesis have exemplified the approach of systematically making assump-
tions explicit, and thereby finding new avenues of research by various ways of relaxing
them. This has been attempted by theoretical contributions as well as by use of illus-
trative experiments dropping the assumption of task labels, dropping the assumption
of a separate language learning faculty and by dropping the assumption of a known
interaction protocol for feedback. There are many ways in which this research can be
extended and hopefully this research has opened up new ways of looking at existing
research in addition to illustrating new paths.

important). The limiting factor would not be in demonstrations (as we have shown that relatively
few demonstrations is enough to evaluate channels of communication) but is instead limited by off-
line computational resources (after observing demonstrations, the learner would be able to search for
transforms without the help of a teacher, even if the hypotheses that is generated might at some point
need to be verified in new demonstrations).
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