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Abstract

Adequate error-handling code is essential to the reliability of any systems software. On an er-
ror, such code is responsible for releasing acquired resources to restore the system to a viable state.
Omitting such operations leads not only to memory leaks, but also to system crashes and deadlocks.

The C language does not provide any abstractions for exception handling or other forms of error
handling, leaving programmers to devise their own conventions for detecting and handling errors. The
Linux coding style guidelines suggest placing error handling code at the end of each function, where
it can be reached by gotos whenever an error is detected. This coding style has the advantage of
putting all of the error-handling code in one place, which eases understanding and maintenance, and
reduces code duplication. Nevertheless, this coding style is not always applied. In the first part of
the thesis, we propose an automatic program transformation that transforms error-handling code into
this style. We have implemented this algorithm as a tool and have applied this tool to five directories
(drivers, fs, net, arch, and sound) in Linux 3.6 kernel source code as well as to five widely
used open-source systems software projects: PostgreSQL, Apache, Wine, Python, and PHP. This tool
successfully converts 22% of the conditionals containing state-restoring error-handling code that have
the scope to merge code into one, from the basic strategy to the goto-based strategy.

Even when error handling code is structured according to the Linux coding style guidelines, the
management of the releasing of allocated resources remains a continual problem in ensuring the ro-
bustness of systems software. Finding such faults is very challenging due to the difficulty of system-
atically reproducing system errors and the diversity of system resources and their associated resource
release operations. To address these issues, over 10 years of research has focused on macroscopic
approaches that globally scan a code base for common resource-release operations. Such approaches
are notorious for their high rates of false positives, while at the same time, in practice, they leave many
faults undetected.

In the second part of the thesis, we propose a novel microscopic approach to finding resource-
release faults in systems software, taking into account such software’s diversity of resource types and
resource-release operations. Rather than generalizing from the results of a complete scan of the source
code, our approach achieves precision and scalability by focusing on the error-handling code of each
function. Using a tool, Hector, that we have developed based on this approach, we have found 485
faults in 19 different C systems software projects, including Linux, Python, and Apache, with a false
positive rate of 23%, well below the 30% that has been reported to be acceptable to developers. Some
of these faults are exploitable by an unprivileged malicious user, making it possible to crash the entire
system.
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Chapter 1
Introduction

Contents
1.1 Refactoring Programming Code . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Improving the Quality of Error-Handling Code . . . . . . . . . . . . . . . . . . 4
1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Any computing system may encounter errors, such as inappropriate requests from supported ap-
plications, or unexpected behavior from malfunctioning or misconfigured hardware. If the system’s
software, such as its operating system, programming-language runtime, or web server, does not re-
cover from these errors correctly, they may lead to more serious failures such as a crash or a vulner-
ability to an attack by a malicious user. Therefore, correct error recovery is essential when a system
supports long-running or critical services. Indeed, the ability to recover from errors has long been
viewed as a cornerstone of system reliability [55], and much of systems code is concerned with error
detection and handling. For example, 48% of Linux 2.6.34 driver code is found in functions that
handle at least one error.1

Systems code is written in C, which unlike more modern programming languages such as Java,
does not provide any specific abstractions for resource management or error-handling code. Error
handling code is responsible for detecting the failure of an operation, releasing allocated resources
to restore the system to a consistent state, and returning an appropriate error indicator to the calling
function. Any operation that may fail must thus be followed by a conditional statement that checks
for an error value and performs the appropriate operations.

Figure 5.3 shows a typical example of error handling code. At the beginning of the code excerpt,
there are three conditional statements on lines 5, 9 and 14 that check different conditions. In each
case, if an error is detected, the conditional branch first calls unlock_kernel and then returns an
error indicator. The error-handling operations free data structures of various complexity, and omitting
any of this code when constructing any new error-handling code that becomes needed as the function
evolves will lead to memory leaks.

1Linux 2.6.34 was released in 2010. We focus on a version from a few years ago to prevent our contributions to the
Linux kernel from the early stages of our development of Hector from interfering with our results.
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1 {
2 ...
3 lock kernel();
4 ...
5 if (!autofs oz mode(sbi)) {
6 unlock kernel();
7 return −EACCES;
8 }
9 if (autofs hash lookup(dh, &dentry−>d name)) {

10 unlock kernel();
11 return −EEXIST;
12 }
13 n = find first zero bit(sbi−>symlink bitmap,AUTOFS MAX SYMLINKS);
14 if (n >= AUTOFS MAX SYMLINKS) {
15 unlock kernel();
16 return −ENOSPC;
17 }
18 ...
19 d instantiate(dentry, inode);
20 unlock kernel();
21 return 0;
22 }

Figure 1.1: Error handling code (Linux-2.6.34/fs/autofs/root.c)

1.1 Refactoring Programming Code

A typical strategy for implementing error handling code in systems software is as shown in Figure
5.3. The strategy is to follow each operation that may encounter an error by a conditional that checks
for an error result and, if one is found, performs the appropriate cleanup operations before returning
from the function. We refer to this strategy as the basic strategy. The basic strategy, however, is
error-prone, as it is easy to overlook some cleanup operations that are required, and to forget to update
some existing error handling code when the function is extended with new operations that need to be
undone in an error case. Furthermore, there may be substantial code duplication, as the same error
handling code may be needed at many places within a function definition.

To illustrate the these issues, consider again Figure 5.3. All three error-handling conditional
call the same function, unlock_kernel. If the protocol for using this function changes, then the
code has to be adjusted in each case. Moreover, neglecting to call unlock_kernel is some error-
handling code will potentially lead to a deadlock if the corresponding error occurs. If other resource
allocations are added to the function and the error-handling code is not updated properly, there will be
other kinds of resource leaks.

One style of programming that can somewhat alleviate these difficulties is to move the state-
restoring operations from the individual error handling conditionals to a single labelled sequence of
state-restoring operations at the end of the function. We refer to this style of programming as the
goto-based strategy. In the goto-based strategy, each error-handling conditional only performs the
operations that are specific to the identified error condition, such as printing a log message or recording
an error indicator in a local variable. It then performs a goto that jumps to the correct position within
a sequence of stat-restoring operations at the end of the function This approach localizes all of the
state-restoring operations into one easily identifiable place. If the function definition is extended in
a way that there are new possible error conditions, the associated error handling code only needs to
jump to the right place within this sequence. If new state-changing operations are added within the
function definition, the corresponding state-restoring operations only need to be added at one place
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within this sequence. And finally, the duplication of code is mostly limited to the introduction of the
goto, regardless of the complexity of the error handling process.

We consider how this code would be written if it used the goto-based strategy. In Figure 5.3,
we observe that all of the error-handling code calls the same function, unlock_kernel. We also
observe that there is another call of function, unlock_kernel on line 20 at the end of the function.
Thus, the programmer can use this call instead of writing the same call in each block of error-handling
code, by adding a label just before line 20 and a jump from each block of error-handling code to the
label. This transformation, however, is not sufficient to obtain a correct implementation. One of
the difficulties of converting the code in Figure 5.3 to use the goto-based strategy is that all three
blocks of error-handling code return different error indicators. Therefore, it is also necessary to assign
all error indicators to a single variable. Then, it becomes possible to merge all the blocks of error-
handling code into one.

The improved version of the example in Figure 5.3 is shown in Figure 5.4. This version declares
a variable ret on line 3 at the beginning of the function. Then, it uses this variable to store the error
indicators on lines 7, 11 and 16, in each block of error-handling code. The example also uses this
variable ret to store the function return value 0, in the non error case, on line 20. A new label out
is added on line 22 and gotos are added within the blocks of error-handling code to jump to the new
label. Finally, the the variable ret is returned on line 24.

1 {
2 ...
3 int ret;
4 lock kernel();
5 ...
6 if (!autofs oz mode(sbi)) {
7 ret = −EACCES;
8 goto out;
9 }

10 if (autofs hash lookup(dh, &dentry−>d name)) {
11 ret = −EEXIST;
12 goto out;
13 }
14 n = find first zero bit(sbi−>symlink bitmap,AUTOFS MAX SYMLINKS);
15 if (n >= AUTOFS MAX SYMLINKS) {
16 ret = −ENOSPC;
17 goto out;
18 }
19 ...
20 ret = 0;
21 d instantiate(dentry, inode);
22 out:
23 unlock kernel();
24 return ret;
25 }

Figure 1.2: Improved version of Example 5.3

Currently, many functions in systems software use the goto-based strategy. This strategy is also
recommended by the Linux kernel documentation.2 Nevertheless, a large number of functions still use
the basic strategy, and a number of bugs have been found in such code. For example, in the bug-fixing
patches applied to Linux 2.6.20 after its release, we have found that in around a third (12/32) of those
whose only effect is to add a call to kfree or to an unlocking function such as spin_unlock, the

2Linux-2.6.34/Documentation/CodingStyle, Chapter 7.
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bug is in code that uses the basic strategy. Most other 32 bugs were not in error-handling code. We
found similar results (6/20) in the set of patches contributing to Linux 2.6.34.3 Such bugs can persist
undetected for a long time, when the handled error only rarely occurs.

To improve the structure of error handling code in system software, our first contribution is an
algorithm to transform error handling code implemented according to the basic strategy so that it
follows the goto-based strategy. This algorithm merges the state-restoring code found in each con-
ditional into a sequence of state-restoring operations at the end of the function. We have implemented
this algorithm as a tool and have applied this tool to five directories (drivers, fs, net, arch, and
sound) in Linux 3.6 kernel source code as well as to five widely used open-source systems software
projects: PostgreSQL, Apache, Wine, Python, and PHP. This tool successfully converts 22% of the
conditionals containing state-restoring error-handling code from the basic strategy to the goto-based
strategy.

1.2 Improving the Quality of Error-Handling Code

Even when error handling code is structured according to the Linux coding style guidelines, the man-
agement of the releasing of allocated resources remains a continual problem in ensuring the robustness
of systems software [67].

A critical part of recovering from an error is to release any resources that the error has made
incoherent or unnecessary. Omitting a needed resource release can lead to crashes, deadlocks, and
resource leaks. Resource-release omission faults are a particular instance of the general problem
of checking that API usage protocols are respected, that has received substantial attention [19, 43,
67, 83]. A challenge, however, is to identify the resource-release operations that are required. Indeed,
systems code manipulates many different types of resources, each associated with their own dedicated
operations, making it difficult for any given developer to be familiar with all of them. Furthermore,
the protocol for releasing a given type of resource can vary from one subsystem to another, and can
even vary within a single function, depending on the resource’s state.

In the context of the general problem of checking API usage, a number of works have proposed to
complement fault-finding tools with a preliminary phase of specification mining to find sets of opera-
tions that should occur together in the code [8, 27, 31, 43, 46, 49, 62, 82, 84, 90]. These approaches
follow a macroscopic strategy, identifying common sets of operations by a global scan of the entire
code base or a sufficiently large execution history. In practice, however, such global scans result in
many false positives [44], which in turn lead to many false positives among the found faults. To reduce
the rate of false positives, specification-mining approaches typically limit the reported results to the
most frequently occurring operations. The resulting specifications, however, are insufficient to find
resource-release omission faults involving rarely used functions, which are typical of systems code.

Specification mining approaches detect sets or sequences of functions that are commonly used
together and that are expected to represent the required protocol for carrying out a particular task.
Such approaches typically suffer from a high rate of false positives [44], and thus use some form of
pruning and ranking to make the most likely specifications the most apparent to the user. Common
metrics include support and confidence, or variants thereof [49, 62, 82, 84, 90], such as the z-ranking
used by Engler et al. [27]. Support is the number of times the protocol is followed across the code

3Linux 2.6.20 patches obtained from git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-2.6.20.y.git using the com-
mand “git log -p v2.6.20..”. Linux 2.6.34 patches obtained from git://git.kernel.org/pub/scm/linux/kernel/git/next/linux-
next.git using the command “git log -p v2.6.33..v2.6.34”.
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Figure 1.3: Support and confidence of the identified protocols

base, while confidence is the percentage of occurrences of a portion of the protocol that satisfy the
complete protocol. The specification-mining tool PR-Miner, for example, which has been applied
to Linux code [46], has been evaluated with thresholds causing it to prune fault reports where the
associated protocol does not have support of at least 15 and confidence of at least 90%.

Using the heuristics that we will present in Chapter 4 for identifying related resource acquisition
and release functions, we identify 2747 potential protocols in Linux, and 1051 in the other considered
software (Wine, PostgreSQL, Appache, Python, and PHP). Figure. 5.5 shows the support and confi-
dence of each, as determined by an intraprocedural analysis. Each dot or × in this figure represents
one or more protocols with the same support and confidence values. For Linux, only 3% of the proto-
cols have both support of 15 or more and confidence of 90% or more. 88% have support below 15 and
58% have confidence below 90%. For the other software, only 3% of the protocols have both support
of 15 or more and confidence of 90% or more. 81% have support below 15 and 68% have confidence
below 90%. The distributions are thus quite similar at both the kernel and user level. Faults in the
usage of almost all of these protocols would be overlooked in a specification mining approach using
these thresholds. Lowering the thresholds could significantly increase the number of false positives.
There is thus a need for a fault-detection approach that can find faults in the usage of protocols having
lower support and confidence.

In this thesis, we propose an alternative approach that targets specifically the properties of error-



6 Chapter 1 – Introduction

handling code (EHC) in C systems software. We observe that when one block of error-handling code
needs a given resource release operation, nearby error-handling code typically needs the same oper-
ation. Based on this observation, we propose a microscopic resource-release omission fault finding
algorithm, based on a mostly intraprocedural, flow and path-sensitive analysis, that targets and ex-
ploits the properties of error-handling code. Our algorithm is resistant to false positives in the set
of resource acquisition and release operations, resulting in a low rate of false positives in the fault
reports, and is highly scalable. It finds resource-release omission faults irrespective of the number of
times the associated acquisition and release operations are used together across the code base, and is
independent of the strategy for identifying them. It focuses on whether a resource release is needed,
based on information found in the same function, and is not led astray by information derived from
other parts of the system. As a proof of concept, we provide an implementation, Hector,4 that uses
heuristics and mostly intraprocedural analysis to identify resource-related operations. Hector does not
require any fixed or user-provided list of resource-release operations and does not depend on the most
frequent results obtained by a global scan, but still achieves a low rate of false positives.

The main contributions of our work are:

• We highlight the fact that resource-release omission faults in error-handling code are an impor-
tant problem, that may lead to crashes, resource unavailability, and memory exhaustion. Much
error-handling code is rarely executed, making faults hard to find by testing.

• We show that existing tools for finding faults in systems code are unlikely to find many of these
faults due to these tools’ reliance on the frequency of function uses to reduce the number of
false positives.

• We propose a resource-release omission fault detecting algorithm based on the observation that
patterns of code found within a single function can provide insight into the requirements on the
rest of the code within the same function. The applicability of the approach is illustrated by the
fact that in the considered systems software, up to 43% of the code is in functions that contain
multiple blocks of error-handling code.

• Using Hector, we find 485 resource-release omission faults in 19 systems software, with a false
positive rate of only 23%.

• Among 485 faults, 371 resource-release omission faults in the widely used systems software
Linux, PHP, Python, Apache, Wine, and PostgreSQL. 52% of the found 371 faults involve pairs
of resource acquisitions and releases that are used together in the code fewer than 15 times,
making the associated faults unlikely to be detected by previous specification-mining based
approaches. We have submitted patches based on many of our results to the developers of the
concerned software, and these patches have been accepted or are awaiting evaluation.

• We find that 257 of the 285 faults found in Linux cause memory leaks, while 9 can lead to
deadlocks.

• Many of the faults in Linux we find are in initialization code, affecting e.g., the installation of
a hotpluggable device or the mounting of a file system. Others are found in more frequently
executed functions, such as IOCTL functions or read/write functions. The faults detected by
Hector in error-handling code can in practice cause system crashes and device unavailability,

4The first three letters of “Hector” are a permutation of “EHC.”
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when the system has an inconsistent view of the state of a resource. They can also lead to
deadlocks and to memory leaks, which can cause the system to completely run out of memory,
if the faulty code can be iterated. These conditions can make the system vulnerable to malicious
attacks.

1.3 Outline of the thesis

The overall goal of this dissertation is to improve error handling in systems code. We have divided the
work into two parts. The first part focuses on improving the structure of error handling code with the
goal of helping to reduce the number of faults that may occur in error handling code in future. The
second part focuses on finding existing faults in the error handling code of systems software.
This manuscript is organized as follows:

• Chapter 2: Background. This chapter is composed of several sections. First, it briefly de-
scribes different types of bugs and our targeted bugs. Second, it describes several terminologies
that are used in our approaches. Third, it briefly describes of the systems software that we use
in evaluating our proposed tools, and then assesses the current status of the error handling code
in the considered software in the fourth section. Fifth section describes the state of the art and
compares the state of the art with our work. The final section also describes my contributions
to a paper on surveying the Faults in Linux that was published in [ASPLOS11].

• Chapter 3: Improving Structure of Error Handling Code. This chapter first presents an al-
gorithm to improving the structure of error handling code in system software and then describes
the implementation of that algorithm. This work was published in [LCTES11].

• Chapter 4: Finding Faults in Error-Handling Code. This chapter presents an algorithm
to find resource-release omission faults in error-handling code and the implementation of this
algorithm in the tool Hector. A preliminary version of this work was published in [PLOS11,
Operating System Review (OSR’11)]. This work was published in [DSN13].

• Chapter 5: Conclusion and Future Work. To conclude the thesis, we provide an overview
of the lessons learned from our work. We also provide some directions for future work in this
area.
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The goal of this chapter is to give some background related to the thesis including the state of
the art. First, we describe the types of bugs that occur in systems software and the kind of bugs that
we target. We have used different programming analysis terminologies in our approaches. We briefly
describe those terminologies. Third, we present a brief description of the systems software that we use
in evaluating our tools, and then assess the amount of error handling code in the considered software,
over a number of versions. Finally, we present the state of the art and compare the state of the art with
our work.

2.1 Bugs in Systems Software

Bugs are a major cause of system failures. Indeed, more than 40% of system failures have been found
to be caused by software bugs [52], making detecting bugs one of the most important research areas.
Lu et al. [50] classify software bugs into three categories, based on the different challenges the bugs
expose to detection tools:
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• Memory-related bugs, caused by improper handling of memory objects. Malicious attackers
often exploit this kind of bugs to launch security attacks. There are several types of memory-
related bugs, such as

– Buffer overflows, that crosses the buffer’s boundary and overwrites adjacent memory,
– Stack smashings, that overwrites the function return address,
– Memory leaks, occur when memory is allocated but can never be freed
– Uninitialized reads, occur when a memory is read before initialization and
– Double frees, occur when there is an attempt to free the same memory location twice.

• Concurrency bugs, caused by ill-synchronized operations from multiple threads. Concurrency
bugs can be further divided into following categories:

– Data-races, occur when two different threads in a given program can simultaneously ac-
cess a shared variable, with at least one of the accesses being a write operation,

– Atomicity violations, occur when programmer fail to enclose memory accesses that should
be performed atomically inside the same critical region and

– Deadlocks, occur when two or more processes each wait for the others to finish, and thus
none of them ever does.

• Semantic bugs, that are inconsistent with the original design and the programmers’ intention.

Semantic bugs are particularly difficult to detect because they violate the program semantics, rather
than the language semantics. Thus, in order to detect this kind of bug, a tool needs to understand
the program’s behavior. A general-purpose bug detecting tool is thus unlikely to be able to find many
semantic bugs in a system. One common type of semantic bug is a resource-release omission bug, i.e.,
a bug that is related to resources that are allocated but not released before returning from a function.
These semantic bugs are often found in error-handling code. We have targeted this type of bugs in this
thesis.

2.2 Terminology

This section provides overview of some programming analysis terminology that is used in presenting
work to improve the error-handling code in systems software.

Data-flow analysis Data-flow analysis is a technique to compute values at program points in a
control flow graph and gather all program analysis information from paths in the graph. Data-flow
analysis can be forward or backward. Forward analysis propagates information from the beginning
of a given path towards the end of the path, while backward data-flow analysis is opposite, starting at
end of a path and propagating information backwards towards the starting point of the path.

Intraprocedural and Interprocedural analysis Intraprocedural data-flow analysis computes some
information based on the code of a single procedure. Interprocedural data-flow analysis uses calling
relationships among the procedures to pass information from one procedure to another, taking into
account the whole control flow graph of a program. Interprocedural analysis gives more precise
compute values than intraprocedural analysis. However, Interprocedural analysis is complex in a
large system.
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Reaching definition Reaching definitions is a data-flow analysis which statically determines that
definitions may reach a given point in the code. A reaching definition of a variable x is d at a given
program point p iff the path between program point at definition, d of variable x and the program
point p does not have any intervening assignment that can change the value of x. Therefore, the
variable is known to have the same value at both points. Reaching definition analysis is a forward
data-flow analysis.

Live variable analysis A variable is considered as live if it holds a value that may be required for
subsequent operation. Live variable analysis (or simply liveness analysis) is a backward data-flow
analysis. The variable x is live at the point p, if the value of x at p could be used along some path in
the control flow graph, starting at p; otherwise, x is dead at p.

Flow-sensitivity and Flow-insensitivity A flow-sensitive analysis takes into account the control-
flow graph of a procedure in order to compute values at each point of a procedure. Such an analysis
considers the order of statements in a procedure and gives precise values for each statement. In
contrast, a flow-insensitive analysis determines a single value for the whole procedure. For example,
a flow-insensitive pointer alias analysis may determine that "variables x and y may refer to the same
location", while a flow-sensitive analysis may determine "after statement s1, variables x and y may
refer to the same location".

Path-sensitivity and Path-insensitivity A path-sensitive analysis considers the values of condition
expressions when analyzing conditional statements and loops to compute precise values at each path
of the control-flow graph. For instance, if a branch contains a condition x>0, then on the fall-through
path, the analysis would assume that x<=0 and on the target of the branch it would assume that x>0
indeed holds.

Constant Propagation Constant propagation analysis is to substituting the values of variables at
each point of a procedure. Reaching definition analysis result is used to implement constant propaga-
tion. If a variable’s all reaching definitions are the same assignment which assigns a same constant to
the variable, then the variable has a constant value and can be replaced with the constant.

Alias analysis Alias analysis is an analysis that determines whether a storage location can be ac-
cessed in more that one way. Two pointers are said to be aliased if they point to the same location.

2.3 Considered Software

In order to evaluate our approach we consider a variety of open source software projects. Specifically,
we consider three kinds of software, to enable answering of the following three questions:

• Do the approaches scale to very large systems?

• Are the approaches effective on different type of systems, such as programming languages,
operating systems and web servers?

• Are the approaches generic enough to be applicable to any software written in the C language?
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To answer the first question we choose Linux kernel, one of the largest free and open source
software projects. Specifically, we focus on the Linux directories are listed in Table 2.1 (1 to 4)
which have been found to be the most fault prone [27, 67]. To answer the second question we then
choose several widely used applications, Table 2.1 (number 5 to 10), to evaluate how our approaches
work on different type of applications. Finally, to answer the third question, we select 13 software
projects from the Debian Linux distribution, focusing on large software projects written in C, Table
2.1 (number 11 to 23).

Our second contribution only detects faults when a function contains multiple blocks of error-
handling code, at least one of which contains a resource-release operation. We refer to such functions
as analyzable. The projects selected from Debian all contain at least 1500 C functions, of which at
least 10% are analyzable. We give a brief description of each systems software and summarize of all
of them in Table 2.1.

Table 2.1: Considered software
Project (Lines of code) Version Description

1 Linux drivers (4.6MLoC) 2.6.34 Linux device drivers
2 Linux sound (0.4MLoC) 2.6.34 Linux sound drivers
3 Linux net (0.4MLoC) 2.6.34 Linux networking
4 Linux fs (0.7MLoC) 2.6.34 Linux file systems
5 Wine (2.1MLoC) 1.5.0 Windows emulator
6 PostgreSQL (0.6MLoC) 9.1.3 Database
7 Apache httpd (0.1MLoC) 2.4.1 HTTP server
8 Python (0.4MLoC) 2.7.3 Python runtime
9 Python (0.3MLoC) 3.2.3 Python runtime
10 PHP (0.6MLoC) 5.4.0 PHP runtime
11 Samba4 (496KLoC) 4.0.0 implements the SMB protocol
12 ALSA-driver (474KLoC) 1.0.23 Sound drivers
13 wise (276KLoC) 2.4.1 installation packages for Windows
14 libvirt (224KLoC) 0.9.4 Toolkit for interacting with Linux virtualization
15 GlusterFS (193KLoC) 3.2.3 NAS file system
16 QuteCom (188KLoC) 2.2.1 Softphone
17 wpa_supplicant (160KLoC) 0.7.3 IEEE 802.11i authentification
18 RedHat (151KLoC) 3.0.12 High availability clustering
19 hostapd (134KLoC) 0.7.3 IEEE 802.11i authentification
20 LibEtPan (94KLoC) 1.0 A mail library
21 FreeRADIUS (82KLoC) 2.1.10 A RADIUS server
22 ALSA-lib (76KLoC) 1.0.24.1 ALSA user-level sound library
23 IPsec (62KLoC) 0.8.0 Internet protocol security library

Both considered versions of Python are in current use.

Linux The Linux kernel represents one of the most prominent examples of free and open-source
software collaboration. Linux is widely used in numerous domains, from small devices to large sys-
tems and is becoming dominant on server platforms.

Wine Wine allows applications that are designed for Microsoft Windows to run on Unix operat-
ing systems. A survey in 2007 shows that 31.5% Linux desktop users use Wine to run Windows
applications [1].

PostgreSQL PostgreSQL is an object-relational database management system. It is available in
many well-known platforms including Linux, Microsoft Windows and Max OS X. Hundreds of com-
panies have built products, solutions, web sites and tools using PostgreSQL, which is one of the
world’s most advanced open source database systems.
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Apache httpd The Apache HTTP Server is open source web server. It is the most popular HTTP
server today, used by 54.98% of all active websites [2]. Apache httpd is available for a wide variety
of operating systems, including Linux, Microsoft Windows and Max OS X.

Python Python is an interpreted high-level programming language. Many large organizations like
Google, Yahoo and NASA use this language.

PHP PHP is a general-purpose scripting language that is well suited for server-side web develop-
ment. It is the most-used open source software in enterprises [4]. Many well-known web applications
such as Drupal, Joomla, MediaWiki, Facebook and Wordpress use PHP.

Samba Samba is a re-implementation of the SMB/CIFS networking protocol. It allows file sharing
between computers running on different platforms, like Windows and Unix. It is used in most Unix
and Unix-like systems, such as Linux, Solaris, AIX and BSD variants.

ALSA-drivers Advanced Linux Sound Architecture (ALSA) drivers is a collection of Linux kernel
modules implementing sound drivers. It was designed to use some features that are not supported by
the Open Sound System [6].

Wise Wise one of the most widely used installation packages for Windows [6].

libvirt Libvirt is daemon and management tool for managing platform virtualization. It supports
many virtualization technologies, including Linux KVM, Xen, and VMware ESX. Libvirt is widely
used to implement the Hypervisor in a cloud-based infrastructure.

GlusterFS GlusterFS is a NAS (Network-attached storage) file system. GlusterFS is available in a
variety of applications including for cloud computing, streaming media services, and content delivery
networks.

QuteCom QuteCom is a open source softphone. It can be used cross-platform (Windows, Linux,
Mac OS X) and integrates voice and video calls and instant messaging.

wpa_supplicant wpa_supplicant is a free software implementation of an IEEE 802.11i supplicant
for Linux, FreeBSD, NetBSD and Microsoft Windows, with support for WPA and WPA2. It is suitable
for both desktop/laptop computers and embedded systems.

RedHat Cluster RedHat cluster is high availability cluster that ensures service availability by mon-
itoring other nodes of the cluster. Red Hat cluster also supports load balancing.

hostapd Hostapd is a user space daemon for wireless access point and authentication servers. There
are three implementations: Jouni Malinen’s hostapd, OpenBSD’s hostapd and Devicescape’s hostapd
[6]. We use Jouni Malinen’s hostapd in this thesis.
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LibEtPan LibEtPab is a mail library. It provides portable and efficient framework for different
kinds of mail access [6].

FreeRADIUS FreeRADIUS is the most widely deployed RADIUS server in the world. FreeRA-
DIUS supports all the common authentication protocols [6].

ALSA-lib ALSA-lib is used by applications to access the ALSA sound interface.

IPsec Internet Protocol Security (IPsec) is a protocol suite. It has been used for securing Internet
Protocol communications. It mainly implemented in the kernel.

2.4 Error handling in Systems Software

To better understand the current state of error handling code in systems software code we have an-
alyzed the source code of the Linux kernel, Python and Wine, over a number of previous versions.
Figure 2.1 shows that overall, the number of functions with error handling code is increasing in all of
these software projects. Figure 2.2 shows number of functions with error-handling code per line of
source code in the systems software.

We have selected 10 Linux versions between Linux-2.0, released in 1996 and the latest version,
Linux-3.6, released in 2012. Figure 2.1(a) shows that in most directories the number of functions
with error-handling code is increasing steadily, while in the drivers directory, the number of such
functions is increasing dramatically. In Linux 2.0 there were only around 1500 such functions in the
drivers directory, in Linux 2.6.0 there were fewer than 12 000 such functions, and in Linux 3.6
there were almost 55 000. This represents an increase of almost 8 times from Linux 2.0 to Linux 2.6.0,
during which time the code size increased by only 7 times,1 and of over 4 times from Linux 2.6.0 to
Linux 3.6, during which time the code size increased by only 3 times. Furthermore, in the case of fs,
the number of error handling functions increased by almost 5 times from Linux 2.0 to Linux 2.6.0 and
the code size by 7 times, from Linux 2.6.0 to Linux 2.3.6, the number of error-handling functions grew
by more than 2.5 times, while the code size grew by only 2 times. Figure 2.2(a) shows the number
of error-handling code per line of code in drivers directory is increasing while that number in fs and
net directories are gradually increasing. The number of error-handling code per line of code in other
directories is about constant over the last few versions.

To understand the error-handling code in other systems software we have selected 10 Python
versions. The two separate lines in Figure 2.1(b) represents two series of Python versions. We have
selected versions between Python-0.9.1, released in 1991 and the latest version of first series, Python
2.7.3, released in 2012 and the latest version of second series, Python 3.3.0, released in 2012. Figure
2.1(b) shows that the number of functions with error handling code has grown 23 times for the first
series and 12 times for the second series in Python in the last 21 years. Figure 2.2(b) shows the number
of error-handling code per line of code is about constant in different versions of Python.

Figure 2.1(c) shows the number of functions with error handling code in 10 versions of Wine,
between version Wine-0.9.22, released in 2006 and the latest version, Wine-1.5.14, released in 2012.
The figure shows that the number of functions with error-handling code was around 7000 in Wine-
0.9.22. Over the next 6 years, the number if such functions in Wine has doubled. Nevertheless, since

1The code size was measured using SLOCCount [87].
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the released of Wine-1.3.28 in 2011, the increase has mostly leveled off. Figure 2.2(c) shows the
number of error-handling code per line of code is about constant in different versions of Wine.

These figures suggest an overall increasing diligence in detecting and handling error conditions,
which has probably been facilitated by the increasing use of defect-finding tools [67].
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2.5 State of the Art

The goal of our work is to improve error handling code in systems software by improving the structure
of error-handling code and by finding faults in error-handling code. This section briefly describes
some existing work related to refactoring C code or to finding faults in systems code.

2.5.1 Refactoring C Code

Our first contribution, the transformation algorithm proposed in Chapter 3, can be considered to be
a form of refactoring, since it changes the structure, but not the semantics of the code [30]. Fowler
studied how refactoring can make object-oriented code simpler and easier to maintain. The refactoring
process may involve moving objects from one class to another, reducing or merging code within a
method, pushing some code up or down in an inheritance hierarchy, etc. Few tools, however, support
refactoring of C code. Eclipse provides the CDT development environment for C and C++ code, but
the support for refactoring seems to be incomplete [16].

Aspect-oriented programming is a paradigm for writing programs in a modularized way [81]. This
programming paradigm breaks down the program logic into distinct aspects that are used to enhance
the behavior of certain kinds of operations of a base program. Aspects enable the modularization
of concerns such as transaction management that cut across multiple types and objects. Filho et al.
present a technique to transform the exception handling code of a Java program into an aspect [29],
providing modularity and reuse. Lippert et al. also present an approach to transform code related to
exception handling in Java into an aspect to reduce the amount of code related to exception handling
[47]. Their studies show that the use of aspect-oriented programming provides better support for
incremental development, increases the reusability of the components and better support for different
configurations of exceptional behaviors of the systems. Their approach can drastically reduce the code
related to exception handling, by a factor of 4. Mortensen and Ghosh apply aspects to convert code
that uses return codes, as done in Linux, to use C++ exception handling abstractions, to ensure that
all exceptions are handled [57]. Bruntink performs a similar study on C code, using hypothetical try
and catch constructs [13]. C does not provide any such abstractions.

McCloskey and Brewer propose the tool Asfact for refactoring C code [54]. As part of this work,
they observe that the use of C preprocessor code (CPP) in C programs makes the code difficult to
analyze and is often error-prone. The misuse of CPP may furthermore introduce bugs in a program.
They have studied a number of bugs related to CPP, including (1) Unparenthesized body, which may
trigger precedence errors that could cause the code generated by the macro to be interpreted improp-
erly, (2) Unparenthesized formal, which likewise occurs when formal arguments are not surrounded
by parentheses, (3) Multiple formal uses, which can duplicate computation and (4) Dangling semi-
colon. CPP code cannot be parsed with a standard parser. Therefore, to replace the CPP macro
language, they define a new syntactic macro language that addresses the most important deficiencies
of preprocessors and that eliminates many of the errors that the use of the macro language may in-
troduce. They then provide an approach that automatically translates CPP macros, include directives,
and conditional directives into semantically equivalent declarations in the proposed language. Their
approach thus completely eliminates the C preprocessor from the refactoring process. It permits com-
plex transformations to be applied directly to source code, without an initial preprocessing step. They
have evaluated their approach on open-source software packages such as OpenSSH and Linux. They
have also applied Asfact to the program gzip to evaluate the refactoring process. Gzip contains several
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known overflows involving the strcpy function. Asfact found the buffer overflow vulnerabilities in
Gzip and transformed all such occurrences of strcpy to use of strlcpy, a safer version.

Our approach to refactoring error-handling code, presented in Chapter 3, does not provide any
alternative approach to writing error-handling code nor does it propose new programming language
features. Our work addresses the issues of readability and uniformity, which the above studies have
identified as critical. The proposed improvement to exception handling stays within the constructs
available in C. It uses the widely recommended goto-based strategy to improve the structure of error-
handling code.

There is some contention in the developer community about the benefit of using gotos. The
Motor Industry Software Reliability Association (MISRA) is an organization that produces guidelines
for the software developed for electronic components used in the Automotive Industry. They have
published guidelines for the C programming language [56]. The use of the goto-based strategy to
write error handling code is not allowed in MISRA C. Indeed, the use of gotos is considered to
indicate badly constructed and incomprehensible logic, making testing difficult. Despite this, the use
of goto has several benefits, as we describe in Chapter 3. Moreover, the Linux coding style guidelines
suggest placing error handling code at the end of each function, where it can be reached by gotos
whenever an error is detected.

2.5.2 Finding Faults in Source Code

In this section, we describe several approaches to identify faults in systems source code. First, we
describe some static analysis based works that identify specifications in a large system and then use
those specifications to find bugs in the systems source code. Second, we describe few dynamic anal-
ysis based approaches that find faults at the runtime of the program. Finally, we briefly describe the
works that inject faults either into the systems source code or into the systems binary code to expose
the faults in the systems source code.

2.5.2.1 Static Analysis

Static analysis is an analysis that is performed at compile time. The advantage of static analysis is that
it analyzes all possible execution paths and variable values.

Numerous approaches have been proposed to detect the omission of certain operations in systems
code. One well known technique is to use some form of data mining to extract implicit programming
rules from the software source code and then to use static analysis to detect faults based on those
programing rules. Engler et al.. [27] and Li et al. [46] both propose variations of this approach. Ra-
manathan et al. [69] integrate mining within a path-sensitive dataflow framework to define potential
preconditions of a procedure. Le Goues and Weimer [44] integrate extra information about nonfunc-
tional code characteristics, such as churn and author expertise. We present a few of the variations of
this approach that have been proposed [27, 46, 51, 62, 69, 44, 88].

Engler et al. [27] use static analysis to automatically extract programming rules from source code
without prior knowledge of the system. They infer program rules using hypotheses such as a derefer-
ence of a pointer, p, implies a belief that p is non-null or a call to "unlock(l)" implies that l was locked.
They then use a statistical analysis to rank each error by its confidence from most to least likely. Es-
sentially, the highest ranked errors will be those detected by rules with the most examples and fewest
counter-examples. They consider, for example, that if a particular programming pattern is observed
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in 999 out of 1000 cases, then it is a probably a valid rule, while if the pattern happens only once, it
is probably a coincidence. They write six checker templates according to the extracted programing
rules. They then use those templates to find contradictions of the inferred rules in the source code.
Any contradiction implies the existence of a possible error in the code. Ranking calculated in terms
of support and confidence is used to highlight the most probable rules. The support of a rule is the
number of times the protocol is followed across the code base, while confidence is the percentage of
occurrences of a portion of the protocol that satisfy the complete protocol. The approach can also use
“must beliefs” derived from the user’s knowledge of the semantics of the code, rather than statistics.
They find hundreds of bugs in real systems such as Linux and OpenBSD. Moreover, they have used
one of the checkers on Linux and OpenBSD to find security errors and found 35 security holes. Such
security holes can give a malicious party control of the system.

Li et al. [46] propose a method called PR-Miner that uses a data mining technique called frequent
itemset mining to efficiently extract implicit programming rules from the source code of large soft-
ware. Frequent itemset mining is a technique to find frequently occurring subsets of the set of items
in a large database. To use frequent itemset mining on code, PR-Miner hashes each program element
found in a function definition into number, and then writes the set of these numbers as a row into
the itemset database. Benefiting from frequent itemset mining, PR-Miner can extract programming
rules in general forms without being constrained by any fixed rule templates and thus it can find rules
that can contain program elements of various types, such as functions, variables and data types. Like
the work of Engler et al. [27], the hypothesis behind PR-Miner is that the programming rules usu-
ally hold for most cases and violations happen only occasionally. Based on the found programming
rules, PR-Miner can find bugs by detecting violations to these rules. PR-Miner then prunes the false
violations using inter-procedural analysis. PR-Miner may result in false positives if the elements in a
programming rule span across multiple functions. After PR-Miner detects rule violations and prunes
false positives, it ranks all remaining violations based on the support and confidence of the rules and
reports them to the user. They have evaluated their approach by applying it to large systems software
such as Linux, PostgreSQL and Apache, and have extracted thousands of rules from the source code
of those systems. T For example, the rules may involve correlations between variables or correlations
between variables and functions. They have used the extracted programming rules to find many vio-
lations in the evaluated software. PR-Miner ranked the violations according to their confidence. The
authors have manually inspected only the top 60 violations for each application. They found 16 bugs
in Linux, 6 bugs in PostgreSQL and 1 bug in Apache.

To reduce the rate of false positives, Le Goues and Weimer [44] consider extra information about
nonfunctional code characteristics such as churn and author expertise during specification. They rely
on a number of hypotheses, including (1) frequently modified code is less likely to adhere to speci-
fications, (2) duplicated code does not represent an independent correctness argument on the part of
the developer; if printf follows iter in 10 duplicated code fragments, it is not 10 times as likely that
(iter,printf) is a real specification, (3) more readable code is also more likely to adhere to specifica-
tions, and (4) infeasible paths suggest pairs that are not specifications; if in some code, the programmer
has made it impossible for b to follow a along a path, (a , b) is unlikely to be required. Using these
hypotheses, they present an approach that automatically infers partial correctness specifications by
giving less priority to duplicate code, infrequently-tested code, and code that exhibits high turnover
in the version control system. Based on these criteria, they automatically identify the code that is
likely to associated to program specifications in code base. They have evaluated their approach by
applying it to over 800,000 lines of code, and explicitly compare it to two previous approaches. They
evaluated two versions of their approach: normal miner and precise miner. They give more relaxed
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threshold values for mining specifications in normal miner while they put more precise threshold val-
ues in precise miner. Their normal miner finds specifications as well as improves on the false positive
rates of previous approaches by 20% for specification mining. Their precise miner finds fewer valid
specifications, but it gives only a 5% false positive rate for specification mining. They were able to
extract more specification than previous approaches, reducing the number of false positives by a factor
of 5. This approach, however, also reduced the number of found faults. Furthermore, statistics are
still used, so rarely used resource-release functions may be overlooked.

Ramanathan et al. integrate mining within a path-sensitive dataflow framework to identify po-
tential preconditions for invocation of a function [69]. Their work also reduces false positives, by
using path-sensitivity, which takes into account both control flow and data flow analysis. The path-
sensitivity of the analysis considers the values of condition expressions when analyzing conditional
statements and loops to compute precise values at each path of the control-flow graph. The path-
sensitivity ensures the precedence relations among procedure calls. A precedence relation is a binary
relation between procedures a and b, which specifies that a call to b is always preceded by a call to a
that means all paths leading to b have a call to a. Their inter-procedural path-sensitive static analysis
performs several steps to extract potential precedence relations among function calls. They first gen-
erate the control-flow graph for each function in the program and then simplify the graph by removing
the nodes that do not correspond to function calls. The simplified graphs are given to a relation builder
that builds relations among the function calls. They apply a simple graph walking strategy to build
the relations between function calls on the simplified control-flow graph. The results of the relation
builder are given to a sequence miner to mine the common sequences. The output of the sequence
miner and the associated violations are ranked by a set of metrics. They have extracted programing
rules and identified associated violations from five applications. They found 16 violations in Apache,
133 in Gimp, 105 in Linux, 31 in Openssh and 277 in PostgreSQL.

CP-Miner have also used another variation of mining strategies, called frequent subsequence min-
ing, to extract copy-pasted code and identify bugs in such code in large software, including operating
systems [45]. Copy-pasted code leads to bugs when programmers forget to modify terms (variables,
functions, type, etc.) consistently throughout the pasted code. Moreover, copy-pasting a segment of
code that contains bugs can introduce more bugs in the source code of the system. CP-Miner parses
the given source code and stores sequences of code in a database. CP-Miner then uses a frequent
sequence mining algorithm called CloSpan [?] to find frequent sequences in the sequence database.
CP-Miner considers a sequence as a frequent when it appear in at least a specified number of times.
CP-Miner uses several pruning techniques to prune false positives in extracted copy-pasted code such
as (1) pruning unmappable segments, (2) pruning tiny segments, (3) pruning overlapped segments and
(4) pruning segments with large gaps. CP-Miner then uses a bug detection method to find bugs in the
copy-pasted code. The hypothesis behind the bug detection method is that if a programmer changes an
identifier in most places of pasted code but forgets to change it in a few places, the unchanged identi-
fier is likely to be a bug. CP-Miner was evaluated on Linux, FreeBSD, Apache and PostgreSQL. It has
detected 28 copy-paste related bugs in the Linux, 23 in FreeBSD, 5 in Apache and 2 in PostgreSQL.

A program may have many inherently correlated variables, that must be accessed and updated
together to avoid inconsistency in the program. Inconsistency in the values of the correlated variables
can lead to a crash or other program misbehavior. Although the consistency of correlated variables is
very important, little attention has been paid to this issue in previous work. Moreover, many correlated
variables are just semantically correlated and do not necessarily have data dependencies, implying that
traditional compilers cannot identify the relationship between them. To address these issues, MUVI
detects semantic bugs and concurrency bugs by identifying multi-variable inconsistent updates, in
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which only one variable is updated and other correlated variables remain unchanged [51]. MUVI
automatically infers common multi-variable access correlations through static program analysis and
data mining techniques. Based on the inferred multi-variable correlations, MUVI applies code analy-
sis to detect semantic bugs, in which correlated variables are not updated in a consistent way. Then, in
order to detect multi-variable related data races, MUVI extends the two classic race detection meth-
ods lock-set and happens-before [25, 60, 72]. The traditional race detectors are all designed to detect
single variable races. MUVI’s multi-variable extensions to data race detection methods allow it to
correctly identify the root causes of previously known bugs as well as to detect new bugs. MUVI
automatically identified 6449 multi-variable access correlations with an accuracy of around 83% in
four real-world applications: Linux, Mozilla, MySQL, and PostgreSQL. Furthermore, MUVI found
39 new multi-variable inconsistent update bugs in these applications. Almost all of the detected bugs
are semantic bugs and cannot be detected by existing memory bug detection tools. MUVI was shown
to enable previous data-race detectors to identify correct root causes of four previously known bugs
and detected four new multi-variable concurrency bugs in Mozilla. None of these eight bugs can be
correctly identified by the original race detectors without MUVI’s multi-variable extensions.

GrouMiner [62] presents new approach for mining the usage patterns of objects and classes in
a code base. The approach first constructs a directed acyclic graph (DAG) describing the uses of
objects and classes. In a graph, nodes represent objects’ constructor calls, method calls, field access,
and the branching points of control structures, and edges represent temporal usage orders and data
dependencies among them. A usage pattern is considered to be a subgraph that frequently appears in
the object usage graphs. GrouMiner uses a graph-based algorithm for mining the frequently appearing
subgraphs in a graph dataset. In order to provide developers with coding examples, the extracted
subgraphs are translated into user-friendly code skeletons. The extracted patterns can also be used to
detect usage anomalies. A portion of code is considered to violate a pattern P if the corresponding
object usage graph contains only an instance of strict sub-pattern of P, i.e, not all properties of P are
satisfied. There are thus two main differences between GrouMiner and previous mining approaches.
First, the mined patterns and code skeletons provide more information to assist developers by making
apparent the usage flows among objects, including control structures (e.g., conditions, loops, etc).
Second, GrouMiner updates the graph datasets of detected patterns and then can find the anomalies in
the new version of the system.

Wu et al. identify resource acquisition and release operations in Java code by analysis of method
definitions [88]. They combine a number of features, such as the frequency of NULL assignments
within a method definition and a method’s calls to known resource-release methods, to characterize
probable acquisition and release functions. The analysis is interprocedural. Their approach takes into
account both the source code and API documentation of the library to extract the specifications. In
their work, they address three main issues while mining resource-releasing specifications from API
libraries. First, relying on propagation based on method-calling relationships (starting from known
basic specifications concerning low-level resources) alone is not sufficient to mine precise specifi-
cations. For example, a method definition may have several resource-releasing operations but the
method might do acquisition actually. Second, information embedded in API method definitions may
help to identify the resource-acquiring/releasing operation. For example, comments in API meth-
ods may contain important information, so comment analysis might be helpful to identify resource-
acquiring/releasing operation. Third, resource-releasing operations exhibit some common features,
such as following some naming convention. However, they have found that resource-acquiring oper-
ations are unlikely to exhibit any common features. They have applied their tool to eight open source
libraries to mine specifications from them. They achieve a high degree of precision and recall, but
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report only one fault based on these results.

icomment [77] automatically analyzes comments in source code to extract program rules. The
extracted rules are then used to find inconsistencies between the source code and the comments,
indicating either bad comments or bugs in the source code. icomment uses several techniques to
perform the task, including natural language processing (NPL), machine learning, statistics analysis
and program analysis. They use natural language processing to tag each word as "verb", "noun", etc.
in comments, and NPL is also used to parse a comment into main clauses, sub-clauses, etc. Statistics
techniques are then used to find frequently appearing correlated words in the comments. Machine
learning techniques are then used to generate a model from a subset of the comments in one software
codebase and then to use that model to analyze other comments in the software. The interesting part of
this work is that a model trained using the comments in one software can be used for another software.
Finally, program analysis is used to detect inconsistencies between code and comments, rank rules and
prune false positives. They evaluated icomment on Linux, Mozilla, Wine and Apache. They extracted
1832 rules from comments with 90.8-100% accuracy and detect 60 inconsistencies between code and
comment. Among the 60 inconsistencies, 33 are new bugs and 27 are bad comments. The overall
false positive rate of icomment is 38.8%.

Kremenek et al. present Annotation Factor Grapps (AFGs), a group of probabilistic graphical
models for mining resource acquisition/releasing functions in code base [42]. They gather all program
analysis information and incorporate into AFG. They have evaluated their approach effectiveness on
five code bases: SDL, OpenSSH, GIMP, and the OS kernels for Linux and Mac OS X (XNU). Lawall
et al. propose a declarative approach to find API protocols and bugs in Linux [43].

Our tool, Hector, presented in Chapter 4, does not rely on a separate specification mining phase.
Instead, it finds faults based on inconsistent local information, rather than a global analysis of the
software. Hector can find faults in the use of protocols that occur rarely and thus are likely to be pruned
or given a low rank by other approaches. Moreover, Hector does not require any known resource-
release functions; this is a particular advantage for Linux, which manages a very wide range of types
of resources and which does not rely on standard libraries. The analyses required are furthermore less
costly, as interprocedural analysis is limited to a single file.

2.5.2.2 Dynamic Analysis

Dynamic analysis is an analysis that is performed by executing the targeted program. In order to anal-
ysis the program behavior the program need to be fed by sufficient number of test inputs. Although
the dynamic analysis reveals subtle defect or vulnerabilities whose cause is too complex to be discov-
ered by static analysis, it is often difficult to find test inputs that are sufficient to take into account all
possible execution paths.

Dynamic binary analysis (DBA) tools analyze programs at runtime at the level of machine code.
DBA tools are often implemented using dynamic binary instrumentation (DBI), whereby the analysis
code is added to the original code of the client program at run-time. Valgrind [59] is a DBI framework
that only reports on faults in code that is actually executed. Valgrind loads the client program to
recompile the client’s machine code. The core disassembles the code block into an intermediate
representation (IR). IR then is instrumented with the analysis code and the whole code converted
back into machine code by the core. The translated code is stored in a code cache to be returned as
necessary. The translated code then can be executed to find faults in them.

Purify [34] is a dynamic tool that finds memory access errors at run-time. It inserts a function
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call, CATCH_ME instruction, on which the programmer can set a breakpoint, into the object code
of a program, before every load and store, to trap every memory access that a program makes. The
function called, in conjunction with malloc and free, maintains a table that keeps the possible
states for each byte in the heap and stack. Three states are possible : (1) Unallocated (unwritable and
unreadable), (2) Allocated but uninitialized (writable but unreadable) and (3) Allocated and initial-
ized (writable and readable). Purify catches array bounds violations by allocating a red-zone at the
beginning and end of each block returned by malloc. Purify records the bytes in the red-zone as
unallocated (unwritable and unreadable) , and thus any access of these bytes would be treated as an
array bound error by Purify. In order to catch reads of uninitialized automatic variables, Purify sets the
state of the stack frame to the allocated-but-uninitialized state after a function entry. Any inconsistent
access of memory causes a diagnostic message to be printed and the function to be called, on which
the programmer can set a breakpoint. There are two parts of a garbage collector: a garbage detector
and a garbage reclaimer. Purify makes an novel change in garbage detector to achieve some of the
benefits of garbage collector. Here, the garbage detector is a subroutine library that can help to iden-
tify and fix memory leaks during development. Purify calls garbage detector instead of providing an
automatic garbage detector, to identify memory leaks. In order to marks all blocks that are referenced
by a particular data, Purify recursively follows potential pointers from the data and stack segments
into the heap. Purify then steps through the heap and reports allocated blocks that no longer seem
to be referenced by the program. However, Purify and most other dynamic analysis tools incur high
run-time overhead. These tools can slow down a program by up to 20 times [93]. Therefore, it is not
possible to use this kind of dynamic tool during production runs.

SafeMem [68] proposes a low overhead dynamic analysis tool. It detects buffer overflows and
accesses to freed memory, which lead to memory corruption. It uses existing ECC (Error-Correcting
Code) protection in a novel way to detect memory corruption. ECC protection is used for error
detection and correction when hardware memory errors occur. SafeMem uses padding at both ends
of each buffer and ECC protection is used to guard these paddings. Any access to the padding is
reported as a buffer overflow bug. SafeMem also detect memory leaks on-the-fly during production
runs. In order to develop an approach to detect such kind of bugs the author studied about the life
time of Memory object, the period from the allocation of a memory object to its deallocation. Their
study shows that most dynamic memory objects conform to some expected lifetime. If any memory
objects whose lifetime exceeds the expected maximal lifetime then SafeMem considers the situation
as memory leak. Their detection process of memory leaks has three steps: (1) Dynamically analyze
the memory usage behavior of the program. The step collects lifetime informations and memory usage
information including the number of current live objects, the last allocation time, and the total memory
space currently occupied by this memory object group. (2) Detect potential memory leaks based on
observed usage characteristics. For example, SafeMem compares current time and the allocation time
of a memory to check whether the memory usage is dynamically growing. (3) Use ECC protection to
prune false positives. In order to detect accesses to freed memory, SafeMem also uses ECC protection
to monitor all free memory buffers and its its lifetime using ECC protections. SafeMem is evaluated
on seven applications that contain memory leaks and memory corruption bugs. It detected all tested
bugs with low overhead (1.6% - 14.4%).

Baratloo et al. propose approach to detect and handle buffer overflow vulnerabilities, more specifi-
cally stack smashing attack at run-time [11]. A stack smashing attack occur when a malicious attacker
is able to overwrite the return address of a function call. Their approach estimates the the maximum
buffer size by realizing that such local buffers cannot extend beyond the end of the current stack frame.
The measuring of the buffer maximum size is performed at run-time after the start of the function in
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which the buffer is accessed. The maximum size of the buffer limits the buffer writes within the es-
timated buffer size. Thus, the return address of any function call on the stack can not be overwritten.
Their approach also verifies the return address of a function call on the stack before use. They have
evaluated their approach by applying on the Linux and found several known attacks. The performance
overhead of these libraries range from negligible to 15%.

CRED (C Range Error Detector) is a dynamic buffer overflow detector [71]. CRED first checks
the bounds of a pointer, if the address is out-of-bounds (a violation of the ANSI C standard) CRED
creates a special OOB (out-of-bounds) object in the heap by calling special malloc. CRED replaces
all out-of-bounds pointer value with the address of the OOB object and stores the actual pointer value
and the information of referent object that the pointer is intended to reference in the OOB object. The
OOB object is not recorded as a regular object in the object table, but its address is entered into the
OOB hash table. When a pointer is dereferenced, CRED checks if it points to an object in the object
table to an unchecked object. If neither is the case, it is an illegal reference and the error message is
printed. If a pointer is used in an arithmetic and comparison operation, CRED first checks if it points
to an object in the object table or to an uncheck object. If neither is the case, CRED checks the OOB
hash table to determine if is an out-of-bounds value. CRED then performs the desired operation on the
actual out-of-bound value retrieved from OOB. CRED was evaluated by integrating it into the Jones
and Kelly checker that identify any out-of-bounds address for gcc 3.3.1 [38]. CRED was evaluated
on over 20 open-source programs, comprising over 1.2 million lines of code. CRED is reported to be
effected against a tested of 20 different buffer overflows attacks.

Most dynamic checkers suffer from two limitations [93]. First, they incur high run-time overhead
because of their large instrumentation cost. Moreover, dynamic tools do not have accurate information
where the code needs to be instrumented. Therefore they may instrument more places than necessary
that leads to false positives. Second, most dynamic tools rely on compilers and pre-processing tools to
insert instrumentation. Some accesses to a monitored location may be missed by the instrumentation
tool due to imperfect variable disambiguation that leads to false negatives. In order to overcome these
limitations, Zhou et al. propose a a low overhead dynamic tool, iWatcher for software debugging
[93]. It provides two system calls: one to start monitoring a memory location and another one to
stop monitoring. These calls can be inserted automatically by an instrumentation tool or manually
by a programmer. Therefore, iWatcher can associate monitoring function with memory locations.
The monitoring function can be program-specific. When an such location is accessed, the associ-
ated monitoring function is automatically executed. iWatcher is implemented using a combination
of hardware and software support, in particular by changing the architectural support. For example,
iWatcher augments L1 and L2 cache lines with flags. There are two flags bits per word in the line.
These flags specify what types of accesses to this memory region should be monitored: READONLY,
WRITEONLY, or READWRITE. If the read (write)-monitoring bit is set for a word, all loads (stores)
to this word automatically trigger the corresponding monitoring function. At a triggering access,
the hardware automatically initiates the monitoring function associated with this memory location.
iWatcher leverages Thread-Level Speculation (TLS) to reduce overhead for programs with substantial
monitoring. TLS is an architectural technique for speculative parallelization of sequential programs.
It speeds-up execution by running monitoring-function microthreads in parallel with each other and
with the main program. iWatcher is evaluated on applications with various bugs. While the observed
overhead is up to 80%, in some cases iWatcher can find bugs with only a 4% overhead
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2.5.2.3 Fault Injection

Fault injection is a testing process to cover some particular error-handling code paths by introducing
faults that least to the paths. Fault injection can be performed at compile time as well as runtime. The
challenging part of this technique is to generate the faults to inject.

Injecting into Source Code In order to inject faults at compile time, the program instruction need
to be modified before the program image is loaded and executed. The idea behind this method is
to inject errors into the source code or assembly code of the target program to emulate the effect of
hardware, software, and transient faults. In this section, we describe few works that inject faults into
source code.

A Linux kernel oops occurs when the kernel detects that it an erroneous state. Linux then logs
the error and continues its operation with compromised reliability. Yoshimura et al. studied the scope
of error propagation in the Linux after a kernel oops has occurred [91]. They have classified error
propagation into two scopes: (1) process-local, if the effect of the error is restricted to the process
context that activated it. (1) kernel-global, if the error affects the contexts of other processes or global
data structures. According to their study, the kernel can recover from error that is process-local while
recovery is difficult when the error propagation is kernel-global, as in this case, corrupted global data
structures must be stored. They find that the scope of error propagation is mostly process-local, and in
case of kernel-global propagation, non-faulty process do not access the inconsistent data. They have
used a fault injector [61] on the Linux kernel source code to analyze the scope of error propagation.
They have injected 6738 faults into Linux and find that a kernel oops occurs 134 times.

Gu et al. used fault injection experiments to study how the Linux kernel responds to transient
errors [32]. To generate appropriate workloads, they used UnixBench [5], a benchmark suite to ap-
ply workloads to the Linux kernel. Using UnixBench, they were able to profile kernel behavior
and identify the most frequently used functions, representing 95% of kernel usage in Linux. Three
types of error injection campaigns were conducted on the identified functions: (1) random errors in-
jected in non-branch instructions, (2) random errors injected in conditional branch instructions, and
(3) injections to reverse the logic of conditional branches instructions (valid but incorrect conditional
branches). More than 35,000 errors were injected into the identified kernel functions within four sub-
systems: architecture-dependent code (arch), virtual file system interface (fs), the kernel itself, and
memory management (mm). Their study show that 95% of system crashes occur because of four ma-
jor reasons: (1) unable to handle kernel NULL pointers, (2) unable to handle kernel paging requests,
(3) invalid opcodes, and (4) general protection faults, e.g., exceeding the segment limit, writing to a
read-only code or data segment, or loading a selector with a system descriptor. The overall percentage
of error propagation is small (less that 10%). Approximately, 90% of the crashes occur inside the
subsystem into which the error was injected. 40% of the crashes occur are within 10 cycles after the
injection point. In addition, they studied the severity of crashes. The three categorized level of crashes
are: (1) more severe: the system needs rebooting and the file system must be completely reformatted,
(2) severe: the system has to be rebooted and user needs to run a tool to recover the partially corrupted
file system, (3) normal: the system reboots automatically and the rebooting usually takes less than 4
minutes, depending on the type of machine and the configuration of Linux.

Injecting into Binary Code A fault can be injected into binary code. This technique is more appro-
priate for users, since it makes it possible to perform Software Fault Injection even when the source
code is not available. A important issue concerning injection at binary level is to correctly identify the



2.5 – State of the Art 27

programming constructs in a binary program. For example, a function call in the source code may be
inlined (i.e. the function call is replaced by the body of called function) by a compiler. In that case,
fault injection would not be able to identify the function call, and thus would not be able to inject a
missing function call fault in that location. One of the most popular Software Fault Injection (SFI)
technique for binary code is Generic Software Fault Injection Technique (G-SWFIT) [26].

Cotrineo et al. studied the accuracy of fault injection into binary level code [22]. In order to
achieve this goal, they have performed two types of fault injection campaigns, one on binary and one
on source code and they then compare the results from both campaign for each injection. They have
evaluated G-SWIFT by injecting 12 thousand errors into binary code and 18 thousand errors into the
corresponding source code. They found three types of results: (1) Correctly injected faults, correct
faults found in both binary and source code, (2) Omitted faults, source code has the fault but not the
binary code, and (3) Spurious faults, that exists in the binary code but not in the source code. The
study shows that several omitted and spurious faults are due to the lack of high-level information in the
binary code. In addition their study shows that G-SWIFT can achieve an improved degree of accuracy
if the pitfalls are avoided.

LFI (Library Fault Injector) [53] is an automatic tool to generates injection scenarios. and to
process of fault scenario preparation and to inject faults LFI does not need library source code and it
can work on binary level code. Moreover, LFI presents a simple language to express fault scenarios.
The goal of this tool is to make the testing based fault injection technique faster and less human-
intensive. LFI has two parts: (1) a profiler, that statically analyzes the binary code of the targeted
libraries to extract the link information between libraries and the application. For each library, it
determines the exported functions, and for each exported function it determines the possible return
values. This information is considered as a fault profile. LFI obtains profiles automatically, so testers
do not need to be familiar with the internals of the libraries. However, if they have information prior
to the generating profiles, they can alter the generate profiles to obtain faster, more accurate results
(e.g., by removing functions or faults that are not of interest). Profiler also generats fault injection
scenarios. A fault injection scenario describes a sequence of faults to be injected. (2) a controller
uses the profile information to combine fault profiles with a fault scenario specification to drive the
fault injection at the boundary between shared libraries and applications. LFI was evaluated on Linux,
Windows and Solaris.

Symbolic execution [15] coupled with fault injection [53], attempts to address these problems by
making it possible to activate all execution paths. However, such techniques remain time-consuming,
and no form of specification inference is provided. The developer still needs prior knowledge of the
various pairs of resource acquisition and release operations.

2.5.3 Improving Error-handling Code

Error-handling is a primary requirement in systems software. Therefore, a language like C that is
widely used in systems software must provide fault-free error-handling mechanisms. In this chap-
ter, we first describe some alternative approaches that help to avoid having faults in error-handling
mechanism. We then describe few works that find faults in error-handling code.

2.5.3.1 Proposing New Features

Several works propose features to avoid faults in error-handling code. Bruntink et al. introduce macros
in the exception handling mechanism that help to avoid making mistakes by developers [14]. Weimer
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and Necula propose a programming language feature [85]. AMA proposes an approach to pre-allocate
the necessary amount of memory for the subsystem before the actual allocation operations are called
[75].

Bruntink et al. study properties of exception handling in a large industrial C code base [14]. They
focus on the error-proneness of exception-handling based on the return code idiom, in which a func-
tion returns an error code when exception occurs. They showed that this idiom is omnipresent as
well as highly tangled and requires focused and well-thought programming. At first, they studied the
different components of the return code idiom to identify which are the most error-prone. The major
components are: (1) Exception Representation, that defines how an exception is represented, (2) Ex-
ception Raising, that notifies the raising of an exception, (3) Handler Determination, that identifies
the exception and determine the associated handler, (4) Resource cleanup, that is used to keep the
system consistent by releasing allocated resources, and (5) Exception Interface, that explicitly speci-
fies the exceptions to raise. According to their study, the most error-prone components are Exception
Raising and Handler Determination. They then built a static analysis tool that detects faults related
to those components. They applied their tool to 5 components written in C, developed by ASML, a
Dutch company. They found 154 incorrect uses of the return code idiom with a false positive rate of
16%. Their tool found different kinds of faults: (1) function does not return, (2) wrong error variable
returned, (3) assigned and logged value mismatch, and (4) unsafe assignment that overwrites the error
code in an error variable. Finally, they provided an alternative approach to the return code idiom by
introducing macros in the exception handling mechanism that hide some of the implementation de-
tails. Using these macros, developers need not write assignments to the error variables explicitly. The
macros also help avoid mismatches between the assigned and logged values.

Weimer and Necula present a static data-flow analysis of code including exception-handling code
for finding defects in how programs deal with important resources in the presence of exceptional
situations [85]. To find defects in they formalize some initial specifications of how a program should
acquire and release resources. To find defects in exceptional situations they define a particular fault
model to describe what exceptional situations could arise. Their flow-sensitive analysis found over
1300 defects in over 5 million lines of Java code. Their results suggest that improper management of
error handling code introduces bugs in a system. They propose a programming language feature, the
compensation stack, that keeps track of obligations at run time and ensures that these obligations are
discharged. The goal is to help programmers avoid such mistakes.

AMA (Anticipatory Memory Allocation) [75] is an approach to avoid memory allocation failures
through a novel combination of static and dynamic techniques. In order to achieve this goal, AMA
performs three steps. First, it analyzes all code paths in a Linux kernel subsystem to determine the
amount of memory required. Second, based on the results of the first step, the authors manually
augmented the kernel code with a call to pre-allocate the necessary amount of memory for the subsys-
tem. Third, AMA redirects all allocation requests to use pre-allocated memory during run-time. This
approach ensures that when a memory allocation takes place in the kernel subsystem, it will never
fail. AMA was evaluated on the Linux ext2 file system, and for which it was able to avoid memory
allocation failures successfully while incurring little space or time overhead.

2.5.3.2 Finding Faults in Error-Handling code

Different types of analysis have been used to detect faults in error-handling code. Some work has
focused on error detection and propagation [39, 70], i.e., the correctness of tests and return values,
and on fault-injection prioritization with the goal of exercising error recovery code [10].
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Static Analysis The return code idiom may require some kind of analysis to find faults in them.
Static analysis is one of them. This analysis can examine the code such as error-handling code, that
are rarely executed at runtime.

Gunawi et al. [33] have studied faults in the detection and propagation of error codes in the context
of the return code idiom. They propose Error Detection and Propagation (EDP), a static analysis
approach that analyzes the flow information of error codes across a code base. EDP creates a function-
call graph and does a dataflow analysis on this graph to gather information about propagation of error
codes through return values and function parameters. The have detected two types of violations:
unsaved and unchecked error codes. An unsaved error code is found when a callee propagates an
error code via the return value, but the caller does not save the return value, while an unchecked
error code is found when a variable that may contain an error code is neither checked nor used in
the future. Gunawi et al. have applied EDP to the source code of all file systems and to 3 major
storage device drivers (SCSI, IDE, and Software RAID) in Linux. EDP found that 13% of function
calls have inconsistently propagated error codes. Rubio-González et al. [70] later studied the same
problem and proposed a static source code analysis to identify unchecked errors. They categorized the
various aspects of the error propagation dataflow problem. First, each failure has its own response. For
example an input/output (I/O) error produces an EIO error code while an out of memory error produces
an ENOMEM error code. Second, error codes arise in the lower layers of an operating system and
propagate upwards through the file system. Third, overwriting a variable that contains an error code
before checking the variable’s value is a bug. The goal of their work is to detect those instances of
an error code that vanish before proper checking is performed. They applied their approach to six file
systems and uncover 312 error propagation bugs. Our work is complementary, in that we focus on the
contents of blocks of error-handling code, while they focus only on the return values.

Weimer and Necula observed that faults in error-handling code are common in Java and pro-
posed a static analysis, based on a user-provided safety policy, to identify resource-release omission
faults [83]. Subsequently, they proposed a specification mining approach that gives more weight to
specifications derived from error-handling code [84]. While they found many faults, the specification-
mining process has a high rate of false positives.

Fault Injection Banabic and Candea propose a strategy for fault-injection prioritisation to perform
run-time checking of error-handling code [10]. The main challenge for the fault injection system is
to decide what to inject, where to inject and when to inject. Their technique performs the whole fault
injection process automatically, choosing faults, and categorizing the results. Their proposed approach
presents a parallel testing system that selects faults to inject by observing the effect of previously
injected faults. The process of selecting faults and injecting them continues until a specific target is
reached, such as a given level of code coverage, or a time limit. In order to maximize the number
of detected bugs in a fixed amount of time they have used a feedback-based algorithm to search for
high-impact faults. The main contributions of their work are 1) an algorithm to find high impact
faults and 2) techniques for automatic categorization and ranking of faults. They report a handful of
faults in MySQL, Apache, and some basic Unix utilities. The reported faults involve omitted tests and
duplicated releases.

Error detection and propagation, however, are not enough; a function detecting an error must also
undo any of its previous operations that could leave system resources in an inconsistent state. Any
omission of a resource-release operation in such error-handling code can lead to crashes, deadlocks,
and resource leaks. Our approach, presented in Chapter 4, is concerned with find omission of a
resource-release operation.
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2.6 Survey on Faults in Linux

At the beginning of my PhD, I contributed to the paper Faults in Linux: Ten Years Later [67], which
was published at ASPLOS 2011. The main goal of this work was to study the different kinds of faults
in the latest version of the Linux kernel source code. This work focused on the current quality of
the kernel source code. In this work I have contributed to study the different types detected faults
and analyze the generated reports to identify the actual faults. My thesis work, Improving the Quality
of Error-Handling Code in Systems Software using Function-Local Information is motivated by this
survey on the quality of Linux source code.

Faults in Linux: Ten Years Later Almost 10 years ago, in 2001, Chou et al. published a study of
the distribution and lifetime of certain kinds of faults2 in OS code, focusing mostly on the x86 code
in the Linux kernel [19], in versions up to 2.4.1. A major result of their work was that the drivers
directory contained up to 7 times more of certain kinds of faults than other directories. The ability to
collect fault information automatically from such a large code base was revolutionary at the time, and
this work has been highly influential. Indeed, their study has been cited over 360 times, according
to Google Scholar, and has been followed by the development of a whole series of strategies for
automatically finding faults in systems code [7, 46, 74, 78, 86]. The statistics reported by Chou et al.
have been used for a variety of purposes, including providing evidence that driver code is unreliable
[35, 76], and evidence that certain OS subsystems are more reliable than others [24].

Linux, however, has changed substantially since 2001, and thus it is worth examining the contin-
ued relevance of Chou et al.’s results. In 2001, Linux was a relatively young OS, having first been
released only 10 years earlier, and was primarily used by specialists. Today, well-supported Linux dis-
tributions are available, targeting servers, embedded systems, and the general public [28, 80]. Linux
code is changing rapidly, and only 30% of the Linux 2.6.33 code is more than five years old [20, 21].
Linux now supports 23 architectures, up from 13 in Linux 2001, and the developer base has grown
commensurately. The development model has also changed substantially. Until Linux 2.6.0, which
was released at the end of 2003, Linux releases were split into stable versions, which were installed by
users, and development versions, which accommodated new features. Since Linux 2.6.0 this distinc-
tion has disappeared; releases in the 2.6 series occur every three months, and new features are made
available whenever they are ready. Finally, a number of fault finding tools have been developed that
target Linux code. Patches are regularly submitted for faults found using checkpatch [17], Coccinelle
[64], Coverity [23], smatch [78] and sparse [73].

In this work, we transported the experiments of Chou et al. to the versions of Linux 2.6, in order to
reevaluate their results in the context of the current state of Linux development. Because Chou et al.’s
fault finding tool and checkers were not released, and their results were released on a local web site
but are no longer available, it is impossible to exactly reproduce their results on recent versions of the
Linux kernel.3 To provide a baseline that can be more easily updated as new versions are released, we
proposed an experimental protocol based on the open source tools Coccinelle [64], for automatically
finding faults in source code, and Herodotos [65], for tracking these faults across multiple versions
of a software project. We validated this protocol by replicating Chou et al.’s experiments as closely

2 Chou et al. used the terminology “errors.” In the software dependability literature [37], however, this term is reserved for incorrect
states that occur during execution, rather than faults in the source code, as were investigated by Chou et al. and are investigated here.

3Chou et al.’s work did lead to the development of the commercial tool Coverity, but using it requires signing an agreement not to
publish information about its results (http://scan.coverity.com/policy.html#license).



2.6 – Survey on Faults in Linux 31

as possible on Linux 2.4.1 and then applied our protocol to all versions of Linux 2.6. To ensure the
perenity of our work, our tools and results are available in a public archival repository [66].

The contributions of our work are as follows:

• We provided a repeatable methodology for finding faults in Linux code, based on open source
tools, and a publicly available archive containing our complete results.

• We showed that the faults kinds considered 10 years ago by Chou et al. are still relevant, because
such faults are still being introduced and fixed, in both new and existing files. These fault kinds
vary in their impact, but we have seen many patches for all of these kinds of faults submitted to
the Linux kernel mailing list [48] and have not seen any receive the response that the fault was
too trivial to fix.

• We showed that while the rate of introduction of such faults continues to rise, the rate of their
elimination is rising slightly faster, resulting in a kernel that is becoming more reliable with
respect to these kinds of faults. This is in contrast with previous results for earlier versions of
Linux which found that the number of faults was rising with the code size.

• We showed that the rate of the considered fault kinds is falling in the drivers directory, which
suggests that the work of Chou et al. and others has succeeded in directing attention to driver
code. The directories arch (HAL) and fs (file systems) now show a higher fault rate, and thus
it may be worthwhile to direct research efforts to the problems of such code.

• We showed that the lifespan of faults in Linux 2.6 is comparable to that observed for previous
versions, at slightly under 2 years. Nevertheless, we found that fault kinds that are more likely
to have a visible impact during execution have a much shorter average lifespan, of as little as
one year.

• Although fault-finding tools are now being used regularly in Linux development, they seem
to have only had a small impact on the kinds of faults we consider. Research is thus needed
on how such tools can be better integrated into the development process. Our experimental
protocol exploited previously collected information about false positives, reducing one of the
burdens of tool use, but we proposed that approaches are also needed to automate the fixing of
faults, and not just the fault finding process.

• Our study has identified 736 faults in Linux 2.6.33, including RCU faults, some of which have
not yet been corrected in the current developer snapshot, linux-next. We have submitted a
number of patches based on our results.
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Chapter 3
Improving Structure of Error Handling
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3.1 Summary

The C language does not provide any abstractions for exception handling or other forms of error
handling, leaving programmers to devise their own conventions for detecting and handling errors. A
typical strategy is to follow each operation that may encounter an error by a conditional that checks
for an error result and, if one is found, performs the appropriate cleanup operations before returning



from the function. We refer to this strategy as the basic strategy. The basic strategy, however, is
error-prone, as it is easy to overlook some cleanup operations that are required, and to forget to update
some existing error handling code when the function is extended with new operations that need to be
undone in an error case. The error-handling operations free data structures of various complexity, and
omitting any of this code when constructing any new error-handling code that becomes needed as the
function evolves will lead to memory leaks. Furthermore, there may be substantial code duplication,
as the same error handling code may be needed at many places within a function definition.

The Linux coding style guidelines suggest placing error handling code at the end of each function,
where it can be reached by gotos whenever an error is detected. This coding style has the advantage
of putting all of the error-handling code in one place, which eases understanding and maintenance,
and reduces code duplication. Nevertheless, this coding style is not always applied. In this chapter,
we propose an automatic program transformation that transforms error-handling code into this style.
We have applied our transformation to Linux and 6 different C infrastructure software projects, on
which it reorganizes the error handling code of over 3000 functions.

3.2 Motivation and Background

In this section, we first illustrate the basic error handling strategy and the goto-based error handling
strategy, using examples from the Linux kernel source code and Python. We then analyze the fre-
quency of the use of these error-handling strategies in three different systems software projects over a
number of versions.

3.2.1 Motivating Examples

Figure 3.1 shows a typical example of error handling code following the basic strategy. Three if
statements are shown (lines 5, 12, and 21), each checking for a different condition. In each case,
if the condition is satisfied, there is a sequence of error handling operations. In two cases (lines 12
and 21), these error handling operations begin by printing a log message specific to the error. This
is followed by some new operations, which are then followed by the error handling code from the
previous if, if any. Each if concludes by returning an error indicator that is specific to the error that
has occurred (lines 8, 17, and 27). Overall, there is substantial duplication of code. Indeed, the final
call to DPRINT_EXIT found in each if also appears at the normal exit from the function.

Figure 3.2 illustrates a possible reimplementation of this function, using the goto-based strategy.
The largest sequence of error-handling operations, from the third if, has been moved to the end of
the function. The if branches have each been transformed to perform the operations specific to the
given error, namely printing the log message and storing the error indicator in the variable ret. Each
if branch then ends in a goto that jumps to the appropriate point in the sequence of error handling
operations at the end of the function. This sequence in turn uses goto to jump to the original end of
the function, to take advantage of the call to DPRINT_EXIT that is already available there. The error
handling code within the function body is now limited to what is specific to each error case.

To illustrate the full scope of the problem, we next consider an example of error-handling code
that is implemented using the basic strategy and that contains memory leaks. The analysis in this
chapter does not detect the memory leak. That is addressed in the next chapter but that we argue that
the memory leak is less likely to be introduced when the goto-based strategy is used.
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1 static int storvsc probe(struct device *device) {
2 int ret;
3 ...
4 host device ctx−>request pool = kmem cache create(...);
5 if (!host device ctx−>request pool) { /* 1 */
6 scsi host put(host);
7 DPRINT EXIT(STORVSC DRV);
8 return −ENOMEM;
9 }

10 device info.PortNumber = host−>host no;
11 ret = storvsc drv obj−>Base.OnDeviceAdd(...);
12 if (ret != 0) { /* 2 */
13 DPRINT ERR(STORVSC DRV, "unable to add ...");
14 kmem cache destroy(host device ctx−>request pool);
15 scsi host put(host);
16 DPRINT EXIT(STORVSC DRV);
17 return −1;
18 }
19 ...
20 ret = scsi add host(host, device);
21 if (ret != 0) { /* 3 */
22 DPRINT ERR(STORVSC DRV, "unable to add ...");
23 storvsc drv obj−>Base.OnDeviceRemove(device obj);
24 kmem cache destroy(host device ctx−>request pool);
25 scsi host put(host);
26 DPRINT EXIT(STORVSC DRV);
27 return −1;
28 }
29 scsi scan host(host);
30 DPRINT EXIT(STORVSC DRV);
31 return ret;
32 }

Figure 3.1: Example of the basic error handling strategy
(Linux-2.6.34/drivers/staging/hv/storvsc_drv.c)

Figure 3.3 contains an extract of a function from the implementation of Python. This code contains
seven blocks of error-handling code, starting on lines 9, 12, 17, 21, 31, 40, and 44. There are two
memory leaks among these blocks: release of the resource it is omitted in the block on line 18, and
release of the resource bytearray_obj is omitted in the block on line 45. Both of these bugs have
been confirmed by the Python developers.1 We consider how this code would be written if it used the
goto-based strategy.

In Figure 3.3, we may observe that the function allocates three resources, it (line 8),
bytearray_obj (line 16), and item (line 20), are allocated in the function. These resources
are deallocated at different stages in the function. The decref of item on line 28, the decref
of it on line 39 and the decref of bytearray_obj on line 46. Therefore, some of the subse-
quent error-handling blocks do not need to have deallocation operations for some of the resources.
To apply the strategy illustrated in Figure 3.2, we should ideally simply add gotos that jump to new
labels within this error handling code. However, it is also necessary to invert the freeing of it and
bytearray_obj in the blocks of error-handling code, starting on lines 21 and 31, so that we can
create a label that only frees it before exiting the function. Fortunately the two freeing operations
access disjoint data, and so exchanging them is possible. The resulting code, shown in Figure 3.4 has
no memory leaks and is resilient to further changes.

1http://bugs.python.org/issue13019
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1 static int storvsc probe(struct device *device) {
2 int ret;
3 ...
4 host device ctx−>request pool = kmem cache create(...);
5 if (!host device ctx−>request pool) {
6 ret = −ENOMEM;
7 goto out3;
8 }
9 device info.PortNumber = host−>host no;

10 ret = storvsc drv obj−>Base.OnDeviceAdd(...);
11 if (ret != 0) {
12 DPRINT ERR(STORVSC DRV, "unable to add ...");
13 ret = −1;
14 goto out2;
15 }
16 ...
17 ret = scsi add host(host, device);
18 if (ret != 0) {
19 DPRINT ERR(STORVSC DRV, "unable to add ...");
20 ret = −1;
21 goto out;
22 }
23 scsi scan host(host);
24 out1: DPRINT EXIT(STORVSC DRV);
25 return ret;
26 out: storvsc drv obj−>Base.OnDeviceRemove(device obj);
27 out2: kmem cache destroy(host device ctx−>request pool);
28 out3: scsi host put(host);
29 goto out1;
30 }

Figure 3.2: Improved version of Figure 3.1

Programmers often extend the definition of functions in the development of a project. Extension
may involve allocating new resources and writing new error-handling code. Using the goto-based
strategy, implementing new error handling code requires simply writing a goto to the correct line in
this sequence. Adding a new resource allocation requires only adding the corresponding deallocation
operation at the correct position in this sequence. In either case, the rest of the function remains
correct automatically.

3.2.2 Analysis

To better understand the current state of the error-handling code using basic and goto-based strategy
in systems software code, we have analyzed the source code of the Linux kernel, which suggests the
goto-based strategy in its coding style guidelines, and two other kinds of systems software, Python
and Wine, which do not provide any suggestions about error-handling code. We have analyzed all
three projects over a number of versions. Figure 3.5 shows the number of functions that contain error
handling code that use either the basic strategy (red striped bar), the goto-based strategy (green/light
grey bar), or a mixture of both (blue/dark grey bar). All three figures show that overall, the number
of functions that contain error-handling code using the basic, the goto-based strategy, and the mix of
both strategies is increasing in all of these software projects. Figure 3.6 shows number of functions
using different strategies per line of source code in the software projects. Our main concern is those
functions, to facilitate their conversion from the basic strategy to the goto-based strategy.

We have selected ten Linux versions between Linux-2.0, released in 1996, and a recent version,
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1 /* python3.2-3.2.2˜rc1/Objects/bytearrayobject.c */
2 static PyObject *
3 bytearray extend(PyByteArrayObject *self, PyObject *arg) {
4 PyObject *it, *item, *bytearray obj;
5 Py ssize t buf size = 0, len = 0;
6 int value; char *buf;
7 ...
8 it = PyObject GetIter(arg);
9 if (it == NULL)

10 return NULL;
11 buf size = PyObject LengthHint(arg, 32);
12 if (buf size == −1) {
13 Py DECREF(it);
14 return NULL;
15 }
16 bytearray obj = PyByteArray FromStringAndSize(NULL, buf size);
17 if (bytearray obj == NULL)
18 return NULL; /* Omission fault */
19 buf = PyByteArray AS STRING(bytearray obj);
20 while ((item = PyIter Next(it)) != NULL) {
21 if (! getbytevalue(item, &value)) {
22 Py DECREF(item);
23 Py DECREF(it);
24 Py DECREF(bytearray obj);
25 return NULL;
26 }
27 buf[len++] = value;
28 Py DECREF(item);
29 if (len >= buf size) {
30 buf size = len + (len >> 1) + 1;
31 if (PyByteArray Resize((PyObject *)bytearray obj, buf size) < 0) {
32 Py DECREF(it);
33 Py DECREF(bytearray obj);
34 return NULL;
35 }
36 buf = PyByteArray AS STRING(bytearray obj);
37 }
38 }
39 Py DECREF(it);
40 if (PyByteArray Resize((PyObject *)bytearray obj, len) < 0) {
41 Py DECREF(bytearray obj);
42 return NULL;
43 }
44 if (bytearray setslice(self, ..., bytearray obj) == −1)
45 return NULL; /* Omission fault */
46 Py DECREF(bytearray obj);
47 Py RETURN NONE;
48 }

Figure 3.3: Python implementation code containing memory leaks

Linux-3.6, released in 2012. Figure 3.5(a) shows that the number of functions using the basic strategy
is increasing more rapidly than the number of functions using the goto-based strategy. The number
of functions using the goto-based strategy or a combination of strategies is increasing gradually.
Figure 3.6(a) shows that the number of functions per line of code using the basic strategy is increasing
slightly more rapidly then the number of functions per line of code using goto-based strategy or the
number of functions per line of code using a mix of both strategies in Linux. These figures show the
importance of improving the structure of this kind of code.

To understand the design of error-handling code in other kinds of systems software, we have
selected ten Python versions between Python-0.9.1, released in 1991 and the latest version, Python
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1 /* python3.2-3.2.2˜rc1/Objects/bytearrayobject.c */
2 static PyObject *
3 bytearray extend(PyByteArrayObject *self, PyObject *arg) {
4 PyObject *it, *item, *bytearray obj;
5 Py ssize t buf size = 0, len = 0;
6 int value; char *buf;
7 ...
8 it = PyObject GetIter(arg);
9 if (it == NULL)

10 return NULL;
11 buf size = PyObject LengthHint(arg, 32);
12 if (buf size == −1)
13 goto out1;
14 bytearray obj = PyByteArray FromStringAndSize(...);
15 if (bytearray obj == NULL)
16 goto out1;
17 buf = PyByteArray AS STRING(bytearray obj);
18 while ((item = PyIter Next(it)) != NULL) {
19 if (! getbytevalue(item, &value))
20 goto out2;
21 buf[len++] = value;
22 Py DECREF(item);
23 if (len >= buf size) {
24 buf size = len + (len >> 1) + 1;
25 if (PyByteArray Resize(...) < 0)
26 goto out3;
27
28 buf = PyByteArray AS STRING(bytearray obj);
29 }
30 }
31 Py DECREF(it);
32 if (PyByteArray Resize((PyObject *)bytearray obj, len) < 0)
33 goto out4;
34
35 if (bytearray setslice(self, ..., bytearray obj) == −1)
36 goto out4;
37
38 Py DECREF(bytearray obj);
39 Py RETURN NONE;
40
41 out2:
42 Py DECREF(item);
43 out3:
44 Py DECREF(bytearray obj);
45 out1:
46 Py DECREF(it);
47
48 out:
49 return NULL;
50 out4:
51 Py DECREF(bytearray obj);
52 goto out;
53 }

Figure 3.4: Improved version of Figure 3.3

3.3.0, released in 2012. We have then selected ten versions of Wine, from version Wine-0.9.22,
released in 2006 to the latest version, Wine-1.5.14, released in 2012. Figure 3.5(b) and 3.5(c) show
that the error-handling code status in the other systems software is almost same as in the Linux. Python
and Wine software has a very large number of functions using the basic strategy and these numbers
are increasing rapidly. The number of functions using the goto-based strategy and the mix of both
strategies are increasing very slowly in Python and the increase of these numbers has mostly leveled
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off in Wine. In Figure 3.5(b), there is a discontinuity in the graph for Python, because Python 3.0
represents a major revision of the Python language and version 2 and version 3 are being maintained
concurrently. Figure 3.6(b) shows that the number of functions per line of code using basic strategy
is increasing rapidly in the both series of Python while the number of functions per line of code using
the other strategies are always nearly zero. Figure 3.6(c) shows that the number of functions per line
of code with different strategies are constant in Wine.

Finally, Figure 3.7 breaks down the above results by subdirectory for Linux-3.6. Most directories
have more functions using the basic strategy than the goto-based strategy.

3.3 Transformation Algorithm

Our goal is to merge the sequence of statements in each block of error-handling code following the ba-
sic strategy, typically a conditional branch ending in a return, into a shared sequence of statements
at the end of the function, and to replace each error-handling code by a goto into this sequence. The
algorithm considers one function at a time. The main steps are 1) identify the complete set of error-
handling operations found within a given function and collect some other information that is useful
in the transformation process, 2) identify operations in this error handling code that can be shared in
a sequence at the end of the function, and 3) transform the function definition to move error handling
code to the end of the function and insert appropriate gotos into this error handling code. These steps
are described below, both formally and in terms of examples.

We describe the analysis and transformation rules with respect to a small language, defined ac-
cording to the grammar shown below. The small language considers the only statements that are
assignments, void function calls, conditionals, and return. The actual implementation, however,
treats the full C language.

Statement t ::= exp = exp; | f(exp); | if (exp) [t] (else [t])?

Statements [t] ::= t . . . t (return exp;)?

Program P ::= [t] (l: [t])∗

A program in this language is analogous to a function body in C code. In the grammar, exp refers to
an arbitrary expression, including function calls, f refers to the name of a function, and l refers to a
label. To avoid clutter, we omit the braces around the branches of a conditional.

We distinguish two sets of expressions, String and Error. String is the set of strings. Error is the
set of expression that may indicate an error, as determined by common Linux coding patterns. Fol-
lowing Linux coding conventions, expressions in Error include NULL, negated integers and macros,
and expressions of the form ERR_PTR(exp) and PTR_ERR(exp).2 Identifiers are also in Error, as
they may be initialized to one of these values. A few Linux services, such as ACPI, define their own
error conventions. The approach could be extended to take these into account, although in the long
term it may be better to refactor that code to use a more standard strategy.

3.3.1 Identifying Error-Handling Code (step 1)

Error handling code is responsible for detecting the failure of an operation, releasing allocated re-
sources to restore the system to a consistent state, and returning an appropriate error indicator to the

2ERR_PTR(exp) and PTR_ERR(exp) coerce an integer error indicator to and from a pointer type, respectively.
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Figure 3.5: Number of functions using only the basic strategy, using the only the goto-based strategy,
and using a mixture of both.
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Figure 3.7: Number of Linux 3.6 functions, by directory, using only the basic strategy, using the only
the goto-based strategy, and using a mixture of both.

calling function. Any operation that may fail must thus be followed by a conditional statement that
checks for an error value and performs the appropriate operations.

The C language does not provide any specific abstractions for identifying error-handling code, and
thus some heuristics are required. Our heuristics are based on several hypotheses. 1) Whenever an
error may occur, it may also not occur, and thus a conditional is required to detect it. 2) When an error
occurs, the current computation can either attempt to continue or it can abort. Resource releasing
is typically required in the latter case, we call them state-restoring operations because they restore
the system to a consistent state. 3) When an error occurs, the error-handling code should inform the
calling context. For example, an error condition can be indicated via various integer error codes,
which are supported by the C standard library function perror.

Based on these hypotheses, we identify a block of error-handling code as any conditional branch
(possibly containing a goto) that ends by either a void return or by returning an error value. Error
values are specific to each software project, but typically include NULL and various constants, or
error-value constructing function calls. For example, in Linux, common error values include negative
constants, as illustrated in line 8, 17 and 27 of Figure 3.1. The user must list these error values in a
configuration file. This is the only configuration information that is required. Because error values
are used for communicating between different parts of the software, they typically change rarely and
should be well known to the user. We have developed a tool that proposes a list of possibilities to the
user based on the values that are commonly returned in conditional branches.

Our algorithm first focuses on the return value of a conditional branch. Information about the
return value is obtained using intraprocedural flow- and path-sensitive constant propagation. This
analysis recognizes explicit returns of one of the aforementioned error values, or returns of variables
that have been explicitly assigned to one of these values. If the return value is represented as a variable
that does not satisfy these properties, or if the function has void type, the algorithm analyzes the
associated conditional test. In this case, a conditional branch is considered to be a block of error-
handling code if the test expression checks for an error value and the branch corresponds to the error
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value case.

Table 3.1 shows the kinds of test expressions that are considered to indicate error-handling blocks.
Here, x is any identifier, e is any expression and C is a constant (typically defined as a macro).

Table 3.1: Test expressions guarding error-handling blocks
pointer x non-pointer x e of any type
!x x !e e == !e’

x == 0 (x = e) IS_ERR(e) e == NULL
(x = e) == 0 e < 0 e == -C

In Figure 3.3, all of the conditionals that abort the function end by returning NULL, and are thus
considered to be blocks of error-handling code. Furthermore, all of the conditional tests, on lines 9,
12, 17, 21, 31, 40, 44, also match the patterns shown in Table 3.1.

A conditional that directly returns the result of a function that it calls, other than one of the error
functions mentioned above, is not considered to be a block of error handling code, as in this case, the
called function is expected to handle any errors.

3.3.1.1 Selecting If Branches (step 1a)

The first step is to select the if branches that should potentially be converted from the basic strategy
to the goto-based strategy. Such if branches must at a minimum represent error-handling code. The
if branch must also not contain other conditionals and must contain at least one function call that is
not debugging code, i.e., that does not have a string as an argument.

Figure 3.9 shows a function having multiple if branches. The branches labeled 2, 3, 5, and 6
(lines 6, 11, 19, and 25) meet the above conditions and are thus selected for further consideration. On
the other hand, the branch labeled 1 (line 4) is not selected because it does not contain any function
calls other than the Error call, the branch labeled 4 (line 17) is not selected because it contains another
conditional, and the branch labeled 7 (line 31) is not selected because it does not end with a return.

The rule for selecting if branches from a program P is formalized as follows. The notation
e1 ∈ e2, for any terms e1 and e2, means that e1 is a subterm of e2. The notation “. . . ” means an
arbitrary sequence of statements. The result S of this rule is a set of pairs of a line number and an if
branch, where the line number is that of the if containing the collected branch, obtained using the
operator startline. We refer to this set S as the branch list.

S = {〈ln, [t]〉 |
if (exp) [t] ∈ P ∧
[t] ≡ . . . f(exp′) . . . return exp′′; ∧
exp′ 6∈ String ∧ exp′′ ∈ Error ∧
∀exp′′′, [t]1, [t]2 : if (exp′′′) [t]1 (else [t]2)? 6∈ [t] ∧
ln = startline(if (exp) [t])}

Figure 3.8 shows the total number of functions that use the basic strategy or a mixture of the
goto-based strategy and the basic strategy (red/leftmost bars). The green/middle bars represent the
number of functions that are discarded due to the absence of any state-restoring operations in the if
branches. Thus, this number of functions do not have any basic strategy based if branch contain-
ing state-restoring operations to be transformed into goto-based strategy. Finally, the blue/rightmost
bars represent the number of functions that are considered for the transformations process. Figure
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Figure 3.8: The red/leftmost bars show the number of functions with basic strategy. The green/middle
bars show the number that discarded due to absence of any state-restoring operations. The blue/right-
most bars show the number of the considered functions for the transformation process.

3.8(a) shows that 80% to 90% of the functions in different directories, are discarded before the trans-
formation process. This percentage of the functions do not have any state-restoring operations in the
if branches that could be moved to label at the end of the functions. In the fs directory, 25% of the
functions are selected for the transformation. Figure 3.8(b) shows the same information for a range of
other systems software, including Wine and Python, considered previously. 80% to 90% of the func-
tions are discarded in different software projects. However, in the Python 3.2.3, 73% of the functions
are discarded.

3.3.1.2 Storing the error constants in a variable (step 1b)

An if branch implementing the basic strategy can return an error indicator directly or it can store
this value in some variable, either before or within the if branch. In Linux 3.6 among error-handling
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1 static int acct on(char *name) {
2 ...
3 if (IS ERR(file)) /* 1, not selected */
4 return PTR ERR(file);
5
6 if (!S ISREG(file−>f path.dentry−>d inode−>i mode)) { /* 2 */
7 filp close(file, NULL);
8 return −EACCES;
9 }

10
11 if (!file−>f op−>write) { /* 3 */
12 filp close(file, NULL);
13 return −EIO;
14 }
15
16 ...
17 if (ns−>bacct == NULL) { /* 4, not selected */
18 acct = kzalloc(sizeof(struct bsd acct struct), GFP KERNEL);
19 if (acct == NULL) { /* 5 */
20 filp close(file, NULL);
21 return −ENOMEM;
22 }
23 }
24 ...
25 if (error) { /* 6 */
26 kfree(acct);
27 filp close(file, NULL);
28 return error;
29 }
30 ...
31 if (ns−>bacct == NULL) { /* 7, not selected */
32 ns−>bacct = acct;
33 acct = NULL;
34 }
35 return 0;
36 }

Figure 3.9: Ifs that do and do not represent error-handling code (Linux-2.6.34/kernel/acct.c)

if branches following the basic strategy, the error indicator is returned directly 63% of the time.
When different if branches return different error indicators, this approach prevents merging the error-
handling code. To make this merging possible, our algorithm transforms if branches that directly
return an error indicator as follows: 1) a new statement is added at the beginning of the if branch that
stores the current return value in a variable that is common to all selected if branches, which we refer
to as the return variable, and 2) the return statement at the end of the if branch is transformed to
return the value of the return variable.

To carry out this transformation, the algorithm first searches for a variable that is used to return a
result somewhere in the function, which can be used as the return variable. Using an existing return
variable enables merging return statements and improves readability. If there is no such variable, the
algorithm creates a fresh variable for this purpose. If there is more than one such variable, then the
first one is chosen. For example, in Figure 3.9, the variable error is already used to return the error
indicator in the if labeled 6 (line 28). Our algorithm thus uses that variable as the return variable. On
the other hand, in Figure 3.10 there is no such variable, so the algorithm creates a fresh one.

Formally, the choice of the return variable is determined by the function rv, defined below. This
function takes as arguments the complete program P and the branch list S , defined previously. It
returns a pair of the return variable and a new version of the program, which may be augmented with
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the declaration of the return variable if no suitable existing variable can be found. In this definition @
is used to concatenate code fragments.

rv(P,S) =
〈x, P 〉 if return x; ∈ P ∧

∀〈ln, [t]〉 ∈ S : return x; ∈ [t] ∨ x 6∈ [t]
〈x,int x;@P 〉 where x 6∈ P , otherwise

After choosing a return variable, the next step is to transform each selected if branch that does
not already use that variable in its return statement. An assignment of the current return value to the
return variable is added at the beginning of each such branch, and the return statement is modified
to return the return variable at the end. This transformation is safe because the return variable has
been chosen such that it is not already used anywhere in the branch. The transformation is performed
on elements of the branch list S , producing an extended version of the branch list, Srv, as follows,
where 〈x, P ′〉 = rv(P,S):

Srv = {〈ln, [t]′〉 | 〈ln, ifcode@return e;〉 ∈ S ∧
[t]′ ≡ ifcode@return e; if e ≡ x ∧
[t]′ ≡ x = e;@ifcode@return x; otherwise}

3.3.1.3 Creating the label environment (step 1c)

The algorithm next creates a label environment that maps each label to all of the code that can be ex-
ecuted when jumping to that label. This label environment is used subsequently to determine whether
the state-restoring code of a given if branch matches the code following any existing label. Two
kinds of judgements are used. For a program P , the judgement, ` P → lblenv indicates that the
final label environment is lblenv. For a sequence of labeled statements (l′ : [t])∗, a judgement of the
form ` (l′ : [t])∗ → 〈[t]′, lblenv〉, indicates that [t]′ is the sequence of statements at the beginning of
(l′ : [t])∗ that preceding code may fall through to, and lblenv is the label environment derived from
(l′ : [t])∗. In this definition, for conciseness, we follow the convention that the first rule that matches
is the one that applies. ε is an empty sequence of statements.

` (l : [t]′)∗ → 〈[t]′′, lblenv〉
` [t](l : [t]′)∗ → lblenv

` ε→ 〈ε, ∅〉

` (l′ : [t]′)∗ → 〈[t]′′, lblenv〉 ∧ [t]′′′ = [t] return e;
` l : [t] return e; (l′ : [t]′)∗ → 〈[t]′′′, {〈l, [t]′′′〉} ∪ lblenv〉

` (l′ : [t]′)∗ → 〈[t]′′, lblenv〉 ∧ [t]′′′ = [t]@[t]′′

` l : [t] (l′ : [t]′)∗ → 〈[t]′′′, {〈l, [t]′′′〉} ∪ lblenv〉

3.3.2 Partition (step 2a)

The next step is to partition each branch in the branch list computed in step 1a to separate the code
that is specific to the given error condition, which we refer to as if code, from the potentially sharable
state-restoring code, which we refer to as label code. In particular, return statements are label
code, as is any non-debugging function call, i.e., a function call that does not have a string argument.
For example, in the first branch of Figure 3.10, the call to printk and the assignment statement are
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1 int dvb register device(struct dvb adapter *adap, ...) {
2 ...
3 if ((id = dvbdev get free id (adap, type)) < 0) {
4 mutex unlock(&dvbdev register lock);
5 *pdvbdev = NULL;
6 printk(KERN ERR "%s: couldn’t find free
7 device id\n",% func );
8 return −ENFILE;
9 }

10 ...
11 if (!dvbdev) {
12 mutex unlock(&dvbdev register lock);
13 return −ENOMEM;
14 }
15 ...
16 if (!dvbdevfops) {
17 kfree (dvbdev);
18 mutex unlock(&dvbdev register lock);
19 return −ENOMEM;
20 }
21 ...
22 if (minor == MAX DVB MINORS) {
23 kfree(dvbdevfops);
24 kfree(dvbdev);
25 mutex unlock(&dvbdev register lock);
26 return −EINVAL;
27 }
28 ...
29 if (IS ERR(clsdev)) {
30 printk(KERN ERR "%s: failed to create
31 device dvb%d.%s%d %(%ld)\n",
32 func , adap−>num, dnames[type], id,
33 PTR ERR(clsdev));
34 return PTR ERR(clsdev);
35 }
36 ...
37 return 0;
38 }

Figure 3.10: A function that does not have any variable for storing the error indicator.
(Linux-2.6.34/drivers/media/dvb/dvb-core/dvbdev.c)

considered to be specific to the given error condition, and are thus if code. However, in the branch,
mutex_unlock(...) on line 4 is not specific to the branch. It is common to other branches and
it is sharable. Thus, mutex_unlock(...) is label code.

The transformation performed in step 3 will leave the if code in the if branch and move the label
code to the end of the function. If in the original block of error-handling code, label code were to
appear before if code, then this transformation process would change the order of the operations. To
prevent this, the label code is defined to be the largest suffix of an if branch that satisfies the above
properties. Given the Srv computed above, the result of the partitioning process is a refined branch
list:

Spart =
{〈ln, ifcode, lblcode〉 | 〈ln, [t]〉 ∈ Srv∧ ` [t]→ 〈ifcode, lblcode〉}

where the judgement ` [t]→ 〈ifcode, lblcode〉 is defined below. We again follow the convention that
the first rule that matches is the one that applies. There is no need for a rule for an if statement
because an element of the branch list contains no nested conditionals.
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` [t]→ 〈ifcode, lblcode〉
` [t] return e;→ 〈ifcode, lblcode@return e;〉

` [t]→ 〈ifcode, lblcode〉
` exp1 = exp2;[t]→ 〈exp1 = exp2;@ifcode, lblcode〉

` [t]→ 〈ifcode, lblcode〉 ∧ (exp ∈ String ∨ ifcode 6= ε)
` f(exp);[t]→ 〈f(exp);@ifcode, lblcode〉

` [t]→ 〈ε, lblcode〉
` f(exp);[t]→ 〈ε, f(exp);@lblcode〉 ` ε→ 〈ε, ε〉

3.3.3 Filtering (step 2b)

Moving label code to the end of the function can only reduce the code size if part of the label code,
including at least one state-restoring operation, is shared with the label code of some other if branch
or some other existing code at the end of the function. If there is no such shared code, then we consider
that the benefit of transforming the code does not outweigh the cost of introducing a goto, and thus
we remove the entry from the branch list Spart computed in step 2a. This filtering process is defined as
follows, using the program P and the lblenv computed above, to produce a filtered branch list Sfilter:

Sfilter =
{〈l, ifcode, lblcode〉 |
〈l, ifcode, lblcode〉 ∈ Spart ∧
lblcode ≡ ... f(exp1); return (exp2); ∧
(∃〈l′, ifcode′,... f(exp1); return (exp2);〉 ∈ Spart : l 6= l′ ∨
∃〈l′,... f(exp1); return (exp2);〉 ∈ lblenv ∨
P ≡ ... f(exp1); return (exp2);)}

Figure 3.11 shows the total number of functions that were considered for the transformation
process (red/leftmost bars), the number of functions that are not considered for transformation
(green/middle bars), indicating that there is no shared state-restoring code, and the number of these
functions that survive the filtering process (blue/rightmost bars), implying that there is some shared
state-restoring code. The Figure 3.11(a) showing that the filtering eliminates two thirds of the se-
lected functions in most directories in the Linux. However, almost half of the selected functions in
the sound directory are transformed. Figure 3.11(b) also shows the same information for the other
software projects. The filtering process eliminates almost two thirds of the selected functions in each
of the software projects.

3.3.4 Classification and transformation (step 3)

This step classifies the remaining elements of the branch list, Sfilter, according to how difficult they
are to transform. On the basis of difficulty, the algorithm chooses the appropriate transformation. We
classify the if branches into four categories: Simple, Hard, Harder and Hardest. The classification
and transformation process iterates over the elements of Sfilter starting with the one with the largest
line number. This element typically contains the longest sequence of state-restoring code (cf Fig-
ure 5.2), undoing all of the operations that have been performed in the function, and thus offers the
most opportunity for sharing. We explain the classification and transformation process in terms of an
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Figure 3.11: The red/leftmost bars show the number of functions collected in the if selection step.
The green/middle bars show the number that the filtering step discards. The blue/rightmost bars show
the number that the filtering step keeps for transformation.

artificial example that illustrates all of the possible cases. This example is more complex than typical
functions.

For a given if branch, if the label code is the same as the code already associated with some label
in the label environment, then the if branch is classified as Simple, because no code has to be moved.
Instead, it is sufficient to remove the label code from the branch and replace it with a goto statement
with that label name. An example is the branch labeled 5 in Figure 3.12a (line 20). In this case, the
label code is exactly same as the code already at the label out.

On the other hand, if an if branch’s label code is not exactly same as the code at any label, but
is the same as a suffix of some existing label’s code or is the same as a suffix of the entire function,
then the if branch is classified as Hard. In this case it is also not necessary to move any code, but the
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1 if(x) { /* 1, Hardest */
2 kl();
3 gh();
4 return ret;
5 }
6 if(y) { /* 2, Hardest */
7 ij();
8 cd();
9 return ret;

10 }
11 if(z) { /* 3, Harder */
12 ef();
13 gh();
14 return ret;
15 }
16 if(k) { /* 4, Hard */
17 cd();
18 return ret;
19 }
20 if(l) { /* 5, Simple */
21 ab();
22 cd();
23 return ret;
24 }
25 ...
26 out: ab();
27 cd();
28 return ret;

1 if(x)
2 goto out4;
3 if(y)
4 goto out3;
5 if(z)
6 goto out2;
7 if(k)
8 goto out1;
9 if(l)

10 goto out;
11 ...
12 out: ab();
13 out1: cd();
14 return ret;
15 out2: ef();
16 out5: gh();
17 return ret;
18 out3: ij();
19 goto out1;
20 out4: kl();
21 goto out5;

a) Original code b) Transformed code

Figure 3.12: Simple, Hard, Harder, Hardest branches

algorithm has to identify a position for a new label. The label code of branch 4 in Figure 3.12a (line
16) matches a suffix of the code at the label out. The algorithm thus creates a new label just before
the call to cd at the end of the function (line 13 in Fugure 3.12b), and replaces branch 4 by a goto
to the new label (line 8, in Figure 3.12b).

In the third case, an if branch’s label code matches neither a suffix of any existing label’s code
nor the code at the original end of the function. Such a branch is classified as Harder. For such
a branch, the algorithm creates a new label and places it at the end of the function, along with the
branch’s label code. In the case of a void function (outside the scope of our small language), there
may be no return at the end of the original function. In this case, the algorithm additionally adds
return; before the new label. For example, after transforming branches 5 and 4 in Figure 3.12a,
the code in branch 3 is not a suffix of any existing label’s code. So, the algorithm inserts a new label
with this code after the return statement of the out label.

The final category is Hardest. In this category, the complete label code is not a suffix of any
existing label’s code, however a suffix of the label code is the same as a suffix of some existing label’s
code. This results in two parts of the label code; one that does not match any existing label’s code and
the other that is a suffix of some existing label’s code. The unmatched part can be treated as Harder
and the matched part can be treated as though it is Simple or Hard. Branches 2 and 1 of Figure 3.12a
(lines 6 and 1) are in the Hardest category. In each case, the first statement of the label code, ij()
or kl(), respectively, is not found in any branch. So these statements are treated as Harder. In each
case, the code in the remainder of the branch is identical to or a proper suffix of the code at an existing
label. For branch 2 (line 6), the call to cd and the return are identical to the code at the label
introduced for treating branch 4, so this code is treated as Simple. For branch 1 (line 1), the call to
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gh and the return match a suffix of the code at the label introduced when treating branch 3, so this
code is treated as Hard.

The complete transformation process selects the element of Sfilter with the largest line number,
classifies it according to the rules below, transforms it according to the result of the classification,
and then repeats on the next element of Sfilter, until all elements have been considered. The label
environment lblenv is recomputed after each transformation step, according to the rules described in
step 1c.

The rules for classifying branches as Simple, Hard, Harder, and Hardest are formalized as shown
below for an element of Sfilter, 〈ln, ifcode, lblcode〉. In these rules, createlbl() creates a new label
and suffix(a, b) is satisfied if a is a suffix of b. A judgement has the form `c 〈ln, ifcode, lblcode〉 →
〈ln, ifcode, status〉 where status is defined as follows:

status = Simple(label)
| Hard(label, fresh label, lblcode)
| Harder(fresh label, lblcode)
| Hardest(fresh label, lblcode, status)

The classification rules are as follows. In each case, the first rule that matches is the one that is applied.

∃l : 〈l, lblcode〉 ∈ lblenv
`c 〈ln, ifcode, lblcode〉 → 〈ln, ifcode@goto l;, Simple(l)〉

∃〈l, [t]〉 ∈ lblenv : suffix(lblcode, [t]) ∧ nl = createlbl()
`c 〈ln, ifcode, lblcode〉 → 〈ln, ifcode@goto nl;, Hard(l, nl, lblcode)〉

lblcode ≡ . . . f(exp); return e; ∧ nl = createlbl() ∧
(∀〈l, [t]〉 ∈ lblenv ∧ not(suffix(f(exp); return e;, [t]))

`c 〈ln, ifcode, lblcode〉 → 〈ln, ifcode@goto nl;, Harder(nl, lblcode)〉

(∃[t]1, [t]2 : lblcode ≡ [t]1@[t]2 ∧
(∀〈l, [t]〉 ∈ lblenv : ∀[t]′1 6= ε :

suffix([t]′1, [t]1)⇒ not(suffix([t]′1@[t]2, [t]))) ∧
nl = createlbl() ∧
`c 〈−1, [t]1, [t]2〉 → 〈−1, [t]′′1 , status〉

`c 〈ln, ifcode, lblcode〉 → 〈ln, ifcode@goto nl;, Hardest(nl, [t]1, status)〉

The transformation is then in two parts, considering first the label code and then the if code. Given
a classified triple 〈ln, ifcode, status〉, we first transform the program P to reposition the label code as
indicated by status. This part of the transformation uses judgements of the form status `lbl P → P ′,
producing a new program P ′.
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Simple(l) `lbl P → P

Hard(l, nl, lblcode) `lbl . . . l : [t] @ lblcode . . .→
. . . l : [t] @ nl : lblcode . . .

Harder(nl, lblcode) `lbl . . .return e;→ . . .return e; nl : lblcode

Hardest(nl, [t]1, Simple(l)) `lbl . . .return e; l : [t]2 . . .→
. . .return e; nl : [t]1 @ l : [t]2 . . .

Hardest(nl, [t], Simple(l)) `lbl . . .return e;→
. . .return e; nl : [t] @ goto l

Hardest(nl, [t]1, Hard(l, nl′, [t]2)) `lbl . . . l : [t]@[t]2 . . .return e;→
. . . l : [t]@nl′ : [t]2 . . .return e; nl : [t]1 @ goto l

Finally, given a classified triple 〈ln, ifcode, status〉 and the program P ′ produced by the above
rules, we adjust the corresponding if statement in the program to use the new if code. This part of
the transformation uses judgements of the form status `if P → P ′, producing a new program P ′.
This new program P ′ is then used on the next iteration, to treat the next element of Sfilter.

startline(if (exp) [t]) = ln
〈ln, ifcode, status〉 `if . . . if (exp) [t] . . .→

. . . if (exp) ifcode . . .

3.4 Evaluation

The algorithm, excluding the parser, has been implemented as 1300 lines of OCaml code. For
the parser, we have reused the parser developed for the program transformation system Coccinelle
[63, 64]. This parser does not require first executing the C preprocessor, and thus all Linux code, for
all possible architectures and configurations, can be treated. In this section, we present the results
of applying our tool to five directories (drivers, fs, net, arch, and sound) in Linux 3.6 ker-
nel source code as well as to five widely used open-source systems software projects: PostgreSQL,
Apache, Wine, Python, and PHP on one core of an 8-code 3GHz machine with 16GB memory.

The goals of the evaluation of our transformation algorithm are 1) analyze a real example to un-
derstand the effects of the transformation to the systems code, 2) to assess the impact of the filtering
process presented in Section 3.3.3, 3) to understand the different types of the branches in the consid-
ered systems software, 4) to understand the effect of creating assignments, gotos and labels to the
systems code, and 5) to understand the contributions of the transformation process in code sharing.

3.4.1 An example from the Linux kernel.

Figure 3.13 shows an extract of code from Linux 3.6 using the basic strategy, and Figure 3.14 shows
the result of the transformation. The transformation starts with the branch labelled 4 (line 34). This
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1 static int download fw(struct edgeport serial *serial) {
2 ...
3 if (serial−>product info.TiMode == TI MODE DOWNLOAD) {
4 ...
5 }
6 else if ((start address = get descriptor addr(serial,
7 I2C DESC TYPE FIRMWARE BLANK, rom desc)) != 0) {
8 ...
9 if (!vheader) { /* 1 */

10 dev err(dev, "%s - out of memory.\n", func );
11 kfree(header);
12 kfree(rom desc);
13 kfree(ti manuf desc);
14 return −ENOMEM;
15 }
16 ...
17 if (status) { /* 2 */
18 kfree(vheader);
19 kfree(header);
20 kfree(rom desc);
21 kfree(ti manuf desc);
22 return status;
23 }
24 ...
25 if (status) { /* 3 */
26 dbg("%s - can’t read header back", func );
27 kfree(vheader);
28 kfree(header);
29 kfree(rom desc);
30 kfree(ti manuf desc);
31 return status;
32 }
33 ...
34 if (status) { /* 4 */
35 dev err(dev,"%s - UMPC_COPY_DNLD_TO_I2C failed\n",...);
36 kfree(rom desc);
37 kfree(ti manuf desc);
38 return status;
39 }
40 }
41 ...
42 stayinbootmode:
43 dbg("%s - STAYING IN BOOT MODE", func );
44 serial−>product info.TiMode = TI MODE BOOT;
45 return 0;
46 }

Figure 3.13: Example for transformation. (Linux-3.6/drivers/usb/serial/io_ti.c)

branch has no code in common with the only label that is available, and so it is classified as Harder.
Its code is moved to the end of the function, with the label out (Figure 3.14, line 37). Next, the
branch labelled 3 (line 26) is considered. This branch contains a superset of the operations at the label
out, and so it is classified as Hardest. Because the label out is at this point immediately preceded
by return 0 and the code at the label out is a suffix of the code in branch 3, the new label out1
can be placed just before out. Next, we consider the branch labelled 2 (line 18). This branch has the
same state-restoring operations as the branch labelled 3, and thus the branch labelled 2 is considered
to Simple and reuses the label out1. Finally, the branch labelled 1 (line 10) contains a suffix of this
code, implying that it is classified as Hard. The label out2 is introduced in transforming this branch.
Overall, all of the ifs of the function are transformed, and most are reduced to a goto and possibly
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1 static int download fw(struct edgeport serial *serial) {
2 ...
3 if (serial−>product info.TiMode == TI MODE DOWNLOAD) {
4 ...
5 }
6 else if ((start address = get descriptor addr(serial,
7 I2C DESC TYPE FIRMWARE BLANK, rom desc)) != 0) {
8 ...
9 if (!vheader) {

10 status = −ENOMEM;
11 dev err(dev, "%s - out of memory.\n", func );
12 goto out2;
13 }
14 ...
15 if (status)
16 goto out1;
17 ...
18 if (status) {
19 dbg("%s - can’t read header back", func );
20 goto out1;
21 }
22 ...
23 if (status) {
24 dev err(dev,"%s - UMPC_COPY_DNLD_TO_I2C failed\n",...);
25 goto out;
26 }
27 }
28 ...
29 stayinbootmode:
30 dbg("%s - STAYING IN BOOT MODE", func );
31 serial−>product info.TiMode = TI MODE BOOT;
32 return 0;
33 out1:
34 kfree(vheader);
35 out2:
36 kfree(header);
37 out:
38 kfree(rom desc);
39 kfree(ti manuf desc);
40 return status;
41 }

Figure 3.14: Transformed version of Figure 3.13.

a debugging statement.

3.4.2 The impact of filtering.

As was shown in Figure 3.11, for many functions that use the basic strategy, all of the branches are
filtered, and thus the function is not transformed by our algorithm. Furthermore, due to the filtering,
only a subset of the error handling code within a function may be transformed. Table 3.2 shows the
number of the considered functions using the basic strategy, quantifies the reasons why functions are
not transformed, and indicates the number of functions that are partially affected and unaffected by
the filtering process. Between 14% and 49% of the functions are fully or partially transformed in
different applications.

Filtering discards an if branch either 1) because its label code contains only a return statement
or 2) because its label code ends with state restoring code that is not shared with that of any other label
code. Columns 6 to 9 of Table 3.2 show the number of functions for which all of the if branches are
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filtered due to these reasons. Label code may contain only a return statement due to the requirement
in the partitioning process that state-restoring code only be added to the label code when there are no
subsequent assignments or debugging statements. If an assignments or debugging code occurs just
before the return, then the label code will not contain any state-restoring operations. The number of
functions discarded for this reason is shown in the column “Strict”. The lack of shared state-restoring
code may occur because a function has only one error-handling if (“Single if”), because there are
shared state-restoring operations but they appear in the wrong order (“Unordered”), or because there
are multiple if branches with state-restoring operations but none are shared (“No sharing”). The
latter two cases may indicate bugs, and are thus reported to the user for further inspection.

All of the error-handling code in a function may be transformed, or some of the if branches may
be filtered and thus only a portion of the error-handling code is transformed. Table 3.2 shows that, de-
pending on the applications, between 10 and 30% of the functions are fully transformed and 2 to 39%
more are partially transformed. Overall, 22% of the functions that contain some error-handling code
structured according to the basic strategy are transformed. Table 3.2 shows that, 28% of the functions
are not transformed because of strict reason. 46% of the functions are not transformed because there
is only one if branch in the function. 1% of the functions are not transformed because state-restoring
operations are in the wrong order in the branches. 3% of the functions are not transformed state-
restoring operations in the branches are not shared. In total, depending on the applications, between
51% and 86% of the functions are not transformed.

3.4.3 Branch classification.

Transforming a Simple branch replaces the branch’s label code by a single goto, which is a best case
in terms of the reduction in code size. Transforming a Hard branch achieves similar improvement, as
it requires only adding a new label. Both the Simple and Hard cases may also introduce an assignment
for the return variable. Transforming a Harder if branch in itself increases code size, because the
label code is copied to the end of the function as is, and a goto, a label and possibly an assignment
must be introduced. Nevertheless, the filtering process guarantees that at least part of the copied code
for a Harder branch is shared with another branch. Finally, transformation of a Hardest branch copies
some code and introduces an extra goto, but part of its code is again shared with some other branch.

Table 3.3 shows the number of if branches in each category in the various applications, as well
as the percentage in each category as compared to the total number of transformed if branches in
the given application. In many of the applications, the percentages in all of the categories are roughly
similar. The most significant exception is Apache. Apache has a higher proportion of simple and
Hardest harder branch than the other software and lower proportion of Hard and Hardest simple.
There are other exceptions to the proportions of classifications of branches in the applications. PHP
has higher proportions of Harder, and a lower proportion of Hardest simple and Hardest harder. In the
Linux, drivers, arch and sound have a higher proportion of Simple branches. fs has a relatively
high proportion of Hardest harder branches, while sound has a very low proportion of Hard branches.
sound is a collection of sound-card drivers that were split off from the drivers directory early in
the Linux 2.5 series, and it may be that they have followed a different development pattern than the
rest of the code.
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3.4.4 Branch transformation.

Transformation process creates labels, gotos, and return variable initialization statements while con-
verting basic strategy into goto-based strategy. Table 3.4 shows the number of transformed functions
and the number of labels, gotos, and return variable initialization statements (“assignment” column)
introduced by the transformation. The transformation of a given branch introduces at most two labels
and two gotos (Hardest case), and at most one assignment. A Simple branch, however, introduces no
labels, and a Hard or Harder branch introduces only one. The information in this table thus presents
another perspective on the number of branches in the various categories (Table 3.3).

Table 3.4 shows that the number of labels introduced is always significantly lower than the num-
ber of branches, reflecting a good number of Simple branches. Apache has a particularly high ratio
of branches to labels created, reflecting the high rate of Simple branches in this case. The number of
gotos introduced is overall slightly higher than the number of branches, because each branch intro-
duces at least one goto and Hardest branches may introduce two. The number of branches requiring
two gotos is however small (cf, Hardest-Hard case in Table 3.3). Finally, the number of return vari-
able initializations is also much lower than the number of branches, and for many applications it is
lower than the number of labels, indicating that the need to introduce a return variable to abstract over
error indicators is not a major burden.

Transformed Branch Label (Avg) Goto (Avg) Assignment (Avg)
functions

L
in

ux

drivers 1415 3109 2055 (1.45) 3129 (2.21) 2787 (1.97)
fs 248 450 344 (1.38) 456 (1.84) 448 (1.81)
net 143 271 195 (1.36) 276 (1.93) 270 (1.89)
arch 88 181 126 (1.43) 184 (2.09) 143 (1.63)
sound 252 813 447 (1.77) 814 (3.23) 577 (2.29)
total 2146 4824 3167 (1.47) 4859(2.26) 4227 (1.97)

Wine 452 1000 714 (1.58) 1007 (2.23) 863 (1.91)
PostgreSQL 94 272 162 (1.72) 273 (2.91) 176(1.88)
Apache 33 122 71 (2.15) 123 (3.73) 90(2.73)
Python-2.7.3 266 600 404 (1.52) 604 (2.27) 481 (1.81)
Python-3.3.0 219 512 356 (1.63) 515 (2.35) 422(1.92)
PHP 24 56 38 (1.58) 58 (2.42) 43 (1.83)
Grand total 5380 7386 4912 (1.52) 7439(2.30) 6305 (1.95)

Table 3.4: Total number and average number of labels, gotos, assignments created in the transformed
functions.

3.4.5 Code sharing.

The goal of the approach is to cause state-restoring code to be shared, to improve robustness in the
face of maintenance and to reduce code size. Thus, we should ideally not just have many Simple and
Hard branches, but these branches should also contain a good number of state-restoring operations
that can then be shared. On the other hand, Harder branches, and to some extent Hardest branches,
simply move existing code. Table 3.5 shows the number of merged and moved lines of code. In most
applications, at least 45% more code is merged than moved.

Another perspective on the same information is to consider how many functions have only Simple
and Hard branches, implying that the state-restoring operations are already available at the end of the
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Merged (Avg) Moved (Avg) Merged/Moved Transformed (Avg)

L
in

ux

drivers 4416 (3.1) 2584 (1.8) 1.7 7000 (4.9)
fs 591 (2.4) 462 (1.9) 1.3 1053 (4.2)
net 350 (2.4) 248 (1.7) 1.4 598 (4.2)
arch 243 (2.8) 156 (1.8) 1.6 399 (4.5)
sound 1062 (4.2) 656 (2.6) 1.6 1718 (6.8)
total 6662 (3.1) 4106 (1.9) 1.6 10768(5.0)

Wine 1218 (2.7) 958 (2.1) 1.3 2176 (4.8)
PostgreSQL 391 (4.2) 240 (2.6) 1.6 631 (6.7)
Apache 156 (4.7) 109 (3.3) 1.4 265 (8.0)
Python-2.7.3 789 (3.0) 553 (2.1) 1.4 1342 (5.1)
Python-3.3.0 677 (3.1) 477 (2.2) 1.4 1154 (5.3)
PHP 69 (2.9) 56 (2.3) 1.2 125 (5.2)
Grand total 9962 (3.1) 6499 (2.0) 1.5 16461(5.1)

Table 3.5: Total number and average number of lines that are merged, moved, and transformed in the
transformed functions.

Harder = 0 and Harder = 1 Harder >1 and Harder ≥ 0 and
Hardest = 0 and Hardest = 0 Hardest = 0 Hardest ≥ 1

L
in

ux

drivers 446 688 54 227
fs 52 150 23 23
net 33 84 11 15
arch 26 41 4 17
sound 31 161 13 47
total 588 1124 105 329

Wine 84 253 42 73
PostgreSQL 24 52 6 12
Apache 5 23 4 1
Python-2.7.3 62 151 7 46
Python-3.3.0 49 121 9 40
PHP 6 12 3 3
Grand total 818 1736 176 504

Table 3.6: The number of functions with various numbers of Harder and Hardest branches.

function, how many have one Harder branch and then only Simple and Hard branches, implying that
all of the state-restoring code is being shared, and how many have multiple Harder branches or have
Hardest branches, implying the need for extra blocks of state-restoring code at the end of the function.
As shown in Table 3.6, across all systems software, most functions have only one Harder branch, and
then the rest of the branches are Simple or Hard. A large number of functions also have only Simple
and Hard branches, providing the best case for reduction in code size. Finally, only a few functions
have multiple Harder branches or have Hardest branches. These results show that overall the systems
code is well suited to the use of the goto-based strategy.

3.5 Conclusion

This chapter has focused on the structuring of error handling code in the Linux kernel. The Linux
kernel coding style guidelines advocate organizing such code using labels and gotos, but a substan-
tial part of the Linux kernel source code as well as other systems code still do not follow this strategy.



60 Chapter 3 – Improving Structure of Error Handling Code

We have proposed an automatic transformation that converts error-handling code that is dispersed and
duplicated throughout the body of a function into error-handling code that uses the goto-based strat-
egy. We have found that our transformation applies to many functions across the systems source code,
and that it identifies many opportunities for code sharing.
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4.1 Summary

Adequate error-handling code is essential to the reliability of any systems software. On an error, such
code is responsible for releasing acquired resources to restore the system to a viable state. Omitting
such operations leads not only to memory leaks, but also to system crashes and deadlocks. This is
a continual problem in ensuring the robustness of system software. Finding such faults is very chal-
lenging due to the difficulty of systematically reproducing system errors and the diversity of system
resources and their associated resource release operations. To address these issues, over 10 years of
research has focused on macroscopic approaches that globally scan a code base for common resource-
release operations. Such approaches are notorious for their high rates of false positives, while at the
same time, in practice, they leave many faults undetected.

In this chapter, we observe that resource-release operations are often found in error-handling code,
and that the choice of resource-release operation may depend on the context in which it is to be used.
We propose a novel microscopic approach to finding resource-release faults in systems software, tak-
ing into account such software’s diversity of resource types and resource-release operations. Rather
than generalizing from the results of a complete scan of the source code, our approach achieves preci-
sion and scalability by focusing on the error-handling code of each function. Using a tool, Hector, that
we have developed based on this approach, we have found over 485 faults in 19 different C systems
software projects, including Linux, Python, and Apache, with a false positive rate of 23%, well below
the 30% that has been reported in a survey by Coverity to be acceptable to developers. Some of these
faults are exploitable by an unprivileged malicious user, making it possible to crash the entire system.

4.2 Motivation

We first present some faults in error-handling code that have been found using Hector. These examples
reveal that faults in error-handling code can have an impact that goes beyond just the loss of a few
bytes due to an unreleased resource. We then give an overview of error-handling in systems software.

4.2.1 Linux resource-release omission faults

We motivate our work using four representative crashes and memory leaks derived from a variety of
faults in Linux error-handling code. Two of these faults were previously found by users; in these
cases, the Linux commit logs contain no evidence that the faults were found using other tools. The
other two faults were previously unreported; we have reported them to the appropriate maintainers
and provided patches.1 The unreported faults involve rarely used acquisition and release functions
that would be unlikely to be reported by existing specification-mining based approaches.

Crash following a resource conflict In January 2009, a user of the Fedora Rawhide (development)
kernel found that installing the w83627ehf driver crashed his machine.2 Figure 4.1 shows an extract
of the faulty code. It performs a series of operations, on lines 1, 4, 6, 10, and 13, that may encounter
an error. If an error is detected, the function branches to the error-handling code (boxed) on lines 3, 5,
8, 12 and 15, respectively. In the first three cases, the error-handling code correctly jumps to labels at
the end of the function that execute an increasing sequence of device unregister operations, according

1http://lkml.org/lkml/2012/4/14/41, http://lkml.org/lkml/2012/5/3/230
2https://bugzilla.redhat.com/show_bug.cgi?id=483208
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to the resource acquisitions that have been performed so far. The error-handling code provided with
the ACPI resource conflict check on line 10, however, is faulty, as it jumps to the last label in the
function, which just returns the error code. The device remains registered even though it does not
exist, and subsequent operations by the kernel on the non-existent device cause the system to crash.

1 err = platform driver register(&w83627ehf driver);
2 if (err)
3 goto exit;
4 if (!(pdev = platform device alloc(...)))
5 goto exit unregister;
6 err = platform device add data(...);
7 if (err)
8 goto exit device put;
9 ...

10 err = acpi check resource conflict(&res);
11 if (err)
12 goto exit;
13 err = platform device add resources(pdev, &res, 1);
14 if (err)
15 goto exit device put;
16 ...
17 exit device put:
18 platform device put(pdev);
19 exit unregister:
20 platform driver unregister(&w83627ehf driver);
21 exit:
22 return err;

Omission fault

(From drivers/hwmon/w83627ehf.c, sensors_w83627ehf_init)

Figure 4.1: w83627ehf driver containing an omission fault

Note that the error-handling code starting on line 3 correctly does not release any resources. Thus,
flow and path sensitivity are necessary to determine when release operations are needed.

The fault was introduced a few weeks before it was detected, when the initialization functions
of 14 hwmon drivers were updated to check whether the resources required by the device conflicted
with those used by ACPI. In three of these drivers, the newly added error-handling code jumped to the
wrong label, causing all of the resource-release operations to be skipped.

Crash following the detection of an incorrectly configured driver In December 2008, a user of a
Cyclades serial board reported that when the board was used in a particular configuration, installing
it would fail, and then the board could not be installed again until the machine was rebooted.3 Subse-
quently accessing the driver via the /proc interface would also crash the machine. The problem was
traced to error-handling code that did not release any of the locally allocated resources.

The code associated with this fault is similar to that of the previous one: as execution proceeds
within the initialization function cy_pci_probe, error-handling code is implemented as jumps to
an increasingly complex sequence of resource-release operations. The error-handling code containing
the fault, however, just returns with an error value, and thus none of the needed cleanup actions are
performed.

This fault was introduced in a major reorganization of the code in May 2007, that added some
new resource acquisitions and corresponding error-handling code containing resource releases. The
faulty block of error-handling code was not updated to use the error-handling code required by its new
context.

3https://bugzilla.kernel.org/show_bug.cgi?id=12137
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Memory leak in the handling of invalid user inputs Using Hector, we found a previously unre-
ported memory-release omission fault in the autofs4 IOCTL function. As shown in Figure 4.2, the
error-handling code starting on line 11 does not release the resource param that was previously re-
leased in the error-handling code starting on lines 6 and 8. Using a 9-line program, we were able to
repeatedly invoke the IOCTL function with an invalid command argument, and use up almost all of the
2GB of memory on our test machine in under one minute. This fault is exploitable by an unprivileged
user who has obtained the CAP_MKNOD capability. We have verified that an unprivileged user can
obtain this capability using a previously reported NFS security vulnerability.4 Using this vulnerabil-
ity, an attacker, having usurped the IP address of an NFS client, is able to create an autofs4 device file
accessible to unprivileged users on the NFS server. Then, the attacker, connected as a unprivileged
user on each NFS client machine, can exploit the autofs4 fault to exhaust all the memory of each
client machine by issuing invalid IOCTL calls, preventing other programs from allocating memory
and causing them to fail in unpredictable ways. Reclaiming the lost memory requires rebooting each
affected machine.

The resource-release omission has been present since the code was introduced into the Linux
kernel in version 2.6.28 (2008), and is still present in the most recent version, 3.6.6.

1 param = copy dev ioctl(user);
2 if (IS ERR(param))
3 return PTR ERR(param);
4 err = validate dev ioctl(command, param);
5 if (err)
6 goto out;
7 if (cmd == AUTOFS DEV IOCTL VERSION CMD)
8 goto done;
9 fn = lookup dev ioctl(cmd);

10 if (!fn) {
11 AUTOFS WARN("...", command);
12 return −ENOTTY;
13 }
14 ... /* more error-handling code jumping to out */
15 done:
16 if (err >= 0 && copy to user(user, param, ...))
17 err = −EFAULT;
18 out:
19 free dev ioctl(param);
20 return err;

Omission fault

(From fs/autofs4/dev-ioctl.c, _autofs_dev_ioctl)

Figure 4.2: Autofs4 code containing an omission fault

Memory leak in the handling of an invalid file system Using Hector, we found a previously
unreported memory-release omission fault in the initialization of the ReiserFS file system journal.
The omission occurs when there is an attempt to mount the file system and some parameters stored
within the file system are found to be invalid. As shown in Figure 4.3, the error-handling code starting
on line 16 does not release bhjh that was previously released in the error-handling code starting on
line 9. The fault can be triggered by an unprivileged user, if such a user mounts a file system from an
external disk drive that has been previously formatted with invalid parameters. On a modern Linux
distribution, such a file system is normally mounted using autofs, which imposes a delay between
file-system mounts, thus limiting the possible damage. Older systems, however, may be configured to

4http://lwn.net/Articles/328594/
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allow the user to mount such a file system directly. In the latter case, as an unprivileged user, we were
able to use up almost all of the 2GB of memory on our test machine within an hour, by repeatedly
mounting the file system.

The fault was introduced in Linux 2.6.24 (2008), and is still present in the most recent version,
3.6.6.

1 bhjh = journal bread(sb, ...);
2 if (!bhjh) {
3 reiserfs warning(sb, ...);
4 goto free and return;
5 }
6 jh = (struct reiserfs journal header *)(bhjh−>b data);
7 if (is reiserfs jr(rs)
8 && (le32 to cpu(...) != sb jp journal magic(rs))) {
9 reiserfs warning(sb, ...);

10 brelse(bhjh);
11 goto free and return;
12 }
13 journal−>j trans max = le32 to cpu(...);
14 ...
15 if (check advise trans params(sb, journal) != 0)
16 goto free and return;
17 journal−>j default max commit age = journal−>j max commit age;
18 ...
19 brelse(bhjh);
20 ...
21 free and return: ...

Omission fault

(From fs/reiserfs/journal.c, journal_init)

Figure 4.3: ReiserFS code containing an omission fault

4.3 Systems error-handling code

We have already described in Chapter 2 how the number of functions with error-handling code is
increasing versions by versions of the applications. To better understand the current state of error-
handling code in systems software, we analyze these functions in more detail. In this Chapter, we
consider the amount of code that is found within functions that contain error-handling code, the kinds
of functions that contain error-handling code, and the kinds of errors that are handled. Our study
primarily focuses on the drivers, sound (sound drivers), net (network protocols), and fs (file
systems) directories of Linux 2.6.34, but we also consider a selection of other widely used systems
software, previously summarized in Table 2.1.

4.3.1 Amount of code containing error-handling code

We define a block of error-handling code as the code executed from when a test for an error is found
to be true up to the point of returning from the containing function. The block may include gotos.
Figure 4.4 shows the percentage of code found within functions that contain zero, one, or more blocks
of error-handling code. Depending on the project, 28%-69% of the code is within functions that
contain at least one block of error-handling code and 16%-43% of the code is within functions that
contain multiple blocks of error-handling code (shown below the horizontal dashed lines). The latter
functions are of particular interest, because in such functions, it is possible to identify resource-release
omission faults by comparing the various blocks of error-handling code to each other and determining
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Figure 4.4: Percentage of code found within functions that have 0 or more blocks of error-handling
code

whether they are consistent. Our examples in Section 4.2.1 come from functions containing 7-14
blocks of error-handling code. The fault in the fourth example was introduced when a function was
reorganized, and new error-handling code was introduced, showing the difficulty of maintaining such
complex code.

4.3.2 Role of code containing error-handling code

The role of the functions containing error-handling code determines how often these functions are
likely to be executed, and thus the impact that any faults in their error-handling code are likely to
have. Determining the role of every function that contains error-handling code in a large code base
is impractical. In the case of Linux, we can obtain a partial view by exploiting the fact that many
kinds of services, including drivers, network protocols and file systems, are represented in the kernel
as statically declared structures, containing various callback functions. The names of the fields in
these structures then suggest the role of the functions stored within them. Table 4.1 shows the average
number of blocks of error-handling code in the functions stored in the fields related to basic system
interactions in the most common of these structures.

Initialization functions, stored in fields named e.g., probe and attach, typically contain many
blocks of error-handling code. Faults in such functions can crash the machine or make it impossible to
use a device, as illustrated by our examples in Section 4.2.1. Nevertheless, such faults are unlikely to
lead to major memory leaks, even in the hands of a malicious user, because initialization functions are
often executed only once and the initialization process may require root privilege. More frequently
executed functions include IOCTL functions, as illustrated by our third example, and read/write func-
tions. IOCTL functions on average also contain several blocks of error-handling code, while read and
write functions contain fewer. The latter two kinds of functions can typically be executed many times
by an unprivileged user, and thus faults in such code can open the system to attacks. Finally, error-
handling code is rare in close and shutdown functions, as such operations rarely allocate resources
and are expected to always be successful.

4.3.3 Kinds of errors encountered

The impact of faults in error handling code is determined in part by how often the handled errors
occur. It is difficult to automatically determine the source of all the possible errors that may be
encountered. Nevertheless, 48% of the error-handling code in Linux drivers, sound, net, and
fs, returns integer error codes, understood by the user-level standard library function perror, to
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Table 4.1: Average (and maximum) number of blocks of EHC in the most common kinds of callback
functions

Structure Direct- probe, open ioctl read write remove,
(Static instances) ories etc. close etc.
file_operations (761) DSNF − < 1 (10) 3.0 (62) 1.8 (12) 2.4 (57) −
platform_driver (727) DSN 4.6 (19) − − − − < 1 (2)
pci_driver (557) DS 5.6 (25) − − − − < 1 (2)
net_device_ops (378) DN < 1 (2) 1.9 (11) 2.2 (24) − − < 1 (2)
usb_driver (231) DS 3.9 (21) − 2.5 (5) − − < 1 (2)
i2c_driver (210) DS 3.6 (13) − − − − < 1 (2)
seq_operations (123) DNF < 1 (4) − − − − 0 (0)
fb_ops (122) D − < 1 (2) 4.6 (32) 2.0 (3) 2.6 (6) −
D = drivers, S = sound, N = net, F = fs
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Figure 4.5: Distribution of integer error-code return values

indicate the error cause. We rely on these error codes to obtain an overview of the reasons for the
errors encountered in Linux.

Figure 4.5 shows the percentage of the considered blocks of error-handling code that involve the
various constants used in each of the Linux drivers, sound, net, and fs directories, focusing
on the top 10 such constants used in each case. The errors associated with these values differ in their
source and likelihood. EINVAL is the most common value throughout and indicates that the function
has received invalid arguments. These arguments may depend on values received from applications
or hardware, allowing invalid values from the user level or from hardware malfunctions to trigger
a fault. ENOMEM, indicating insufficient memory, is the next most common value in most cases.
Running out of kernel memory is unlikely, except in the case of low-memory embedded systems or
unless the system is already under a memory-leak based attack, and thus faults in such blocks of error-
handling code are unlikely to be triggered in an otherwise well-programmed system. For drivers,
the second most common constant is ENODEV, which is also common in sound. ENODEV indicates
the unavailability of a device, as may be triggered by defective hardware. Another common constant is
EFAULT, indicating a bad address. EFAULT is commonly used by functions copying data to or from
user space, where an address comes from user level. A malicious application can easily construct
an invalid address, making the correctness of the associated error-handling code critical. Finally, a
common value, especially for fs, is EIO, indicating an I/O error. Such an error can again be triggered
by defective hardware, such as a disk or other device.

4.4 Algorithm

The goal of our algorithm is to identify inconsistencies in the releasing of resources in a function’s
error-handling code. Such inconsistencies are reported as faults. The algorithm is microscopic in
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that it is primarily based on intraprocedural information. It is made resistant to false positives in the
information about resource acquisition and release operations by following a strategy of correlating
information about acquisition and release operations within each analyzed function.

The input to our algorithm is a function definition where some statements have been already anno-
tated as being resource acquisitions or releases. These annotations are performed by a preprocessing
phase, which is orthogonal to our algorithm. The preprocessing phase must also annotate each acqui-
sition or release with an expression representing the affected resource, and annotate some basic blocks
as being the start of a block of error-handling code. This preprocessing can be done in any manner;
we present an implementation in Section 4.5.1. Our algorithm then works on the control-flow graph
(CFG) of the provided function definition, annotated with the results of the preprocessing phase. The
CFG is interprocedural, but only takes into account functions defined in the same file, and does not
unfold recursive calls. Each node in the CFG contains a single atomic statement (assignment, function
call, etc.), or the header of a control-structure, such as a loop or a conditional. An edge connects such
a term to one that may be executed immediately after it. As a running example, we use the code shown
in Figure 4.1, focussing on the resource pdev. Figure 4.6(a) shows a portion of this code’s CFG, start-
ing from line 4, where pdev is first initialized. Nodes are numbered according to the corresponding
line numbers. A branch to the right enters error-handling code.

Given the annotated CFG, the first step of the algorithm connects resource releases in error-
handling code to the resource acquisitions that can reach them. This is done by what amounts to
an intraprocedural live-variable analysis, in which acquisitions are considered to be definitions and
releases in error-handling code are considered to be the only uses. In the example (Figure 4.6(a)), the
release of pdev on line 18 (solid node), which is part of error-handling code, is found to be live at the
acquisition of pdev on line 4 (shaded node), by following in reverse the dashed edges.

Next, for each acquisition that is found to have at least one “live” release, the algorithm walks for-
wards through the function’s (CFG), collecting each possible subset of the CFG nodes that represents
a path from the acquisition to any block of error-handling code. For our example, there are four such
paths, shown in Figure 4.6(b-e). The resulting set of paths is then divided into a set of exemplars,
which for some resource contain both an acquisition of the resource and a release of the resource in
error-handling code, and a set of candidate faults, which contain an acquisition but no correspond-
ing release in error-handling code (annotated releases prior to the error-handling code are possible).
Exemplars are truncated just before the block of error-handling code. In our example, the paths in
Figure 4.6(c and e) represent exemplars, because they contain the release operation, while the paths
in Figure 4.6(b and d) represent candidate faults. We refer to the resource acquired at the beginning
of any such path as the associated resource.

The algorithm then compares each candidate fault to the exemplar closest to it in the code, to de-
termine whether the exemplar provides evidence that the candidate fault should release its associated
resource in its error-handling code. In our example, we consider the exemplar in Figure 4.6(c) and
the candidate fault in Figure 4.6(d). A fault report is generated for the candidate fault if the following
conditions all hold:

1. The candidate fault does not return the resource.

2. The candidate fault and the exemplar both allocate their associated resource in the same way.
These allocations may, but need not, occur at the same line of code.

3. Any operation in the candidate fault prior to the error-handling code that is annotated as a
release of the associated resource also occurs in the exemplar.
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Figure 4.6: CFG and paths for Figure 4.1

These conditions are motivated as follows. If the candidate fault returns the resource (condition
1), then the resource should not be released, and indeed the block at the end of the candidate fault
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is probably not really error-handling code. Condition 2 results from the observation that we only
have evidence that the resources associated with the candidate fault and the exemplar should be
released in the same way if they were allocated in the same way. Finally, if a supposed release
operation is followed in the exemplar by another release of the same resource in error-handling
code, then the supposed release operation does not really perform a release (condition 3). The set of
generated reports is then returned as the output of the algorithm. In our example, the candidate fault
(Figure 4.6(d)) does not return pdev, it allocates its associated resource using the same function as
the exemplar (Figure 4.6(c)), and it does not contain any release of pdev. Thus, the omission of the
release of pdev in the block of error-handling code starting on line 12 is correctly reported as a fault.

As a second example, consider the code in Figure 4.3 and the acquisition of bhjh on line 1. One
path from the acquisition leads through the error-handling code starting on line 9. This error-handling
code releases bhjh using brelse, and so the path is considered to be an exemplar. Suppose that another
path from the acquisition leads through the call to brelse on line 19 to a later block of error-handling
that does not release bhjh. This path would be considered to be a candidate fault. However, it meets
only the first two of the conditions for reporting a fault; it does not satisfy the third condition because
it contains a release of bhjh that does not appear in the (truncated) exemplar. The algorithm correctly
concludes that the call to brelse annotated as a release on line 19 is an actual release of bhjh, and thus
no further release is needed.

4.5 Implementation

We have validated our algorithm by implementing a tool, Hector. Hector consists of around 3500 lines
of OCaml code, excluding the C parser and abstract syntax, which we have borrowed from the open-
source C-code transformation tool Coccinelle.5 Creating this implementation requires implementing
a preprocessing phase and instantiating the algorithm with various analysis strategies.

4.5.1 Preprocessing phase

Preprocessing requires identifying and annotating error-handling code, resource acquisitions, and re-
source releases. Due to the nature of the C language, this must necessarily be done using heuristics.
Our heuristics mostly rely on intraprocedural information, making the implementation highly scal-
able. We have already described how error-handling code is identified in Chapter 3. Here we discuss
present process of annotating resource acquisitions and release.

A resource is typically represented by a collection of information, and is thus implemented by a
pointer to a structure or buffer.6 Resource acquisition and release are typically complex operations,
and are thus implemented by function calls. Hector recognizes an acquisition as a function call that
returns a pointer-typed value, either directly or via a reference argument (&x), and recognizes a release
as the last operation on a resource in a path in the CFG. The result of a release should not be tested, as
release operations do not normally report error codes. Finally, the preprocessors ignore operations that
have constant string arguments, as such operations are typically debugging code. A resource can be

5http://coccinelle.lip6.fr/
6File descriptors, as obtained by open, are an exception, being represented as integers, and thus Hector does not detect

file descriptor release omissions. open is, however, now rarely used, in favor of the more modern fopen, which provides
richer functionalities. fopen returns a pointer. The Linux kernel also uses pointers to represent its more primitive file
objects.
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released by some locally defined operation other than the omitted resource-releasing operation either
before or inside the error-handling code. To improve accuracy, within the file containing the analyzed
function, the preprocessors identify resource-release operations interprocedurally. A function call
that has an acquired resource as an argument and whose definition contains a release of that resource,
according to the above criteria, is also considered to be a release operation.

In Figure 4.7, the error-handling code on lines 2-4 uses kfree(fw) to release fw. However, the
subsequent error-handling code, on lines 7-8, uses free_fw to release fw. The function free_-
fw is defined in the same file and its definition contains kfree(fw) to release the resource fw.
Therefore, the preprocessors identify free_fw as a resource-release operation interprocedurally.
Thus, free_fw operation is also used to release fw in line 11 prior to the error-handling code on
line 14, and thus no call to kfree(fw) is needed in either case.

1 if (...) {
2 ...
3 kfree(fw);
4 return −ENOMEM;
5 }
6 if (...) {
7 free fw(fw);
8 return −EFAULT;
9 }

10 ...
11 free fw(fw);
12 ...
13 if (...)
14 return err;

Figure 4.7: Release of a resource via a locally defined function (to be more like the others).
(Extract of vx_hwdep_dsp_load, from Linux-2.6.34/sound/drivers/vx/vx_hwdep.c)

Some kinds of resources, notably locks, are not acquired and released according to the above pat-
terns, but instead using a function that takes the resource as an argument, or even takes no arguments.
To account for these cases, we also consider a function call having at most one argument, where the
argument, if any, has pointer type and is not involved in an earlier resource acquisition, as being a
resource acquisition. The corresponding release operation must occur in a block of error-handling
code and must include the same argument value, if any, as verified by checking that the corresponding
arguments have the same set of reaching definitions.

Finally, in some cases a resource is released as a side-effect of another operation. In Figure 4.8, the
resource kctl is acquired on line 4. On line 12, kctl is passed to the function add_control_to_empty,
which is the last operation on kctl before the return on line 13. This call would not normally be
considered a release, because its value is tested. Nevertheless, kctl is never again referenced on any
execution path following this call, neither on the success nor the failure of the test, and thus the call
is considered to either release kctl or store it in some way that makes a subsequent release in error-
handling code unnecessary. The latter is indeed the behavior of this function.

4.5.2 Instantiation of the algorithm

The algorithm needs to connect resource-release operations to the corresponding possible resource ac-
quisitions, and then to collect the paths in which an acquired resource is live. For connecting the opera-
tions, Hector uses a backwards dataflow analysis that takes into account alias information. Concretely,
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1 namelist = kmalloc(...);
2 if (! namelist) { ... }
3 ...
4 kctl = snd ctl new1(&mixer selectunit ctl, cval);
5 if (! kctl) {
6 kfree(namelist);
7 ...
8 return −ENOMEM;
9 }

10 kctl−>private value = (unsigned long)namelist;
11 ...
12 if ((err = add control to empty(state, kctl)) < 0)
13 return err;
14 return 0;

Figure 4.8: Release a resource via a side-effect of another operation.
(Extract of parse_audio_selector_unit, from Linux-2.6.34/sound/usb/usbmixer.c)

the alias analysis considers statements of the form y = x, y->fld = x, and y = f(. . . , x, . . .) as
creating a possible alias from y to x. For collecting the paths, Hector uses a forward path-sensitive
dataflow analysis, again taking into account alias information. In both cases, the analyses are flow
sensitive and purely intraprocedural.

The need for path sensitivity is illustrated by the use of pdev in Figure 4.1. It was noted in Section
4.4 that the execution path starting with line 4 and passing through the block of error-handling code
starting on line 12 is missing a release of pdev. The execution path starting on line 4 and passing
through the block of error-handling code starting on line 5 is likewise missing a release of pdev
(cf. Figure 4.6(b)). However, the path-sensitivity of the path collection process implies that the latter
path is not reported as a fault, because it includes a successful test that pdev is null, implying that its
value is different from the one (line 4) for which a release is needed.

The need for alias analysis arises when an execution path beginning with an acquisition of some
resource x contains an assignment such as y->fld = x that makes x reachable from some other re-
source y. Alias information makes the path collection process aware that x may either be released
directly or be released via a release of y, thus allowing a path that contains either resource release to
be considered to be an exemplar. In Figure 4.9, on line 6, the structure pr is stored in the structure
device. The subsequent error-handling code on lines 9-10 releases pr using device on line 14
rather than explicitly calling kfree.

1 if (...) {
2 kfree(pr);
3 return ;
4 }
5 ...
6 device−>driver data = pr;
7 ...
8 if (...) {
9 ...

10 goto err remove fs;
11 }
12 ...
13 err remove fs:
14 acpi processor remove fs(device);

Figure 4.9: Release a resource via other pointer.
(Extract of acpi_processor_add, from Linux-2.6.34/drivers/acpi/processor_driver.c)
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Finally, the need for flow sensitivity arises when a resource is acquired and released more than
once within a single function. This is often the case of locking in systems code.

4.5.3 Formal Description of the Algorithm

Now, we formally describe our algorithm to detect resource-release omission faults.
A path in a CFG is a sequence of edges {e1, . . . , em} such that for each i < m, the target of ei is the
same as the source of ei+1. For a given path p, p0 is the first node in the path and pi is the node that
is the target of the edge ei.

The following definitions relate to properties of the nodes and paths in a CFG:

• code(n) is the set of subterms of the term found at node n.

• calls(x, n) is the set of elements of code(n) that have the form of a function call with x as one
of the arguments.

• aliases(x, n) is the set of variables that may become aliases of x at node n. Concretely,
aliases(x, n) = {y | y = x ∈ code(n) ∨ y->fld = x ∈ code(n) ∨
y = f(. . . , x, . . .) ∈ code(n)}.

• paths(n1, n2, Vwrite) is the set of paths from node n1 to node n2 such that the target node of
each edge in the path does not write the variables in Vwrite .

• paths3(n1, n2, n3, Vwrite) =
{p | p ∈ paths(n1, n3, Vwrite) ∧ n2 ∈ p} ∪
{p | paths(n2, n1, ∅) 6= ∅ ∧ p ∈ paths(n1, n3, Vwrite)}

paths3(n1, n2, n3, Vwrite) contains both paths from n1 to n3 that pass through n2 and paths from n1

to n3 that are reachable from n2. This allows paths3 to capture cases where a path crosses into a
block of error-handling code, whose associated test is represented by the node n2, and the case where
the entire path is found inside the block of error-handling code itself.

The following definitions relate to a given resource in the candidate set of a given block of error-
handling code:

• x is the variable pointing to the omitted resource.

• nfault is the node containing the return at the bottom of the block of error handling code.

• test fault is the node containing the test expression of the conditional whose branch is the block
of error handling code.

• nexemplar is the node at the top of the block of error handling code that is serving as the exemplar
for the suspected release omission.

For example, consider the block of error-handling code starting on line 12 of Figure 4.1 and the
element pdev of its candidate set. One possible exemplar for the release of pdev is the block of
error-handling code starting on line 8. For convenience, we again assume that the node numbers in
the CFG are the same as the line numbers in the code. In this case, x is pdev, nfault is 21, test fault is
11, and nexemplar is 8.
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Finally, the following definitions relate to the interaction between nodes and paths in the CFG and
the released resource x.

• A-fault is the set of nodes that contain acquisitions of x and reach nfault through test fault .

A-fault = {d | ∃exp : x = exp ∈ code(d) ∧ paths3(d, ntest , nfault , {x})

• A-exemplar is the set of nodes that contain acquisitions of x and reach nexemplar .

A-exemplar = {d | ∃exp : x = exp ∈ code(d) ∧ paths(d, nexemplar , {x})

• D-fault is the set of nodes that contain any form of definition of x and reach nfault through
test fault .

• D-exemplar is the set of nodes that contain any from of definition of x and reach nexemplar .

• Vref(x, p) is the set of aliases for x, including x itself, at the end of path p.

Vref(x, p) = {x} ∪ {y | ∃pi : y ∈ aliases(x, pi) ∧ ∀j > i : ∀exp : y = exp 6∈ code(pj)}

• Release(x, p) is the set containing the node within the path p containing the last function call
having an element of Vref(x, p) as an argument, such that there is no further reference to any
element of Vref(x, p) within p. If there is no such node, Release(x, p) is empty.

Release(x, p) = {pi | ∃y ∈ Vref(x, p) : calls(y, pi) 6= ∅ ∧ ∀j > i : Vref(x, p) ∩ code(pj) 6=
∅}

For example, for the block of error-handling code starting on line 12 of Figure 4.6(d), we consider
the released resource pdev and the nodes test fault , i.e., 11, and nfault , i.e., 22, in computing A-
fault. The only acquisition of pdev that reaches node 22 through node 11 is the one on line 4. This
acquisition reaches nexemplar , i.e., 8, in Figure 4.6(c) as well. Thus, both A-fault and A-exemplar are
{4}. Between the acquisition of pdev on line 4, test fault on line 11, and nfault on line 22, there is no
function call having pdev as an argument, and thus the set Release is empty.

Using these definitions, for a given cadidate fault, represented by the nodes test fault and nfault ,
and for each exemplar, represented by the node nexemplar , we classify the candidate fault as Fault or
Unknown, as described by the rules below. These rules are considered in order until one of them
produces a result. A candidate fault is reported to the user as a fault if it is classified as Fault for any
exemplar. Otherwise, it is considered to be a false positive, and is not reported to the user. These rules
are formalized here.

• If x ∈ code(nfault), then Unknown.

The first condition to be a fault report in our algorithm in Section 4.4 is that a candidate fault
does not return the resource. If x is used to compute the return value, it cannot be freed. If
this case is selected for any exemplar, it is selected for all exemplars, and so the algorithm will
detect that this report is a false positive. This case is not illustrated by our examples.

• If {code(n) | n ∈ D-fault} 6= {code(n) | n ∈ D-exemplar}, then Unknown.

The second condition to be a fault report in our algorithm is that the candidate fault and the
exemplar both allocate their associated resource in the same way. If the sets of acquisitions
reaching the candidate fault and the exemplar are different, then the exemplar provides no in-
formation about whether the resource should be released. The analysis of acquisitions takes into
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af

. n:g(x) /* Annotated as Release(x, pf) */

. test fault

n fault

(a) candidate fault (Pf)

ae

. n’:g(x);

. n exemplar

. h(x); /* Annotated as Release(x, pe) */

(b) exemplar (Pe)

Figure 4.10: An annotated resource-releasing operation in the candidate fault appears in the exemplar
before the actual releasing operation.

account not only explicit acquisitions, but also information that can be inferred from test expres-
sions, via path sensitivity. For example, in Figure 4.1, at line 4, a resource is allocated by calling
platform_device_alloc, and the result is stored in the variable pdev. From the analysis
of the complete function, we find that pdev is not released in the block of error-handling code
starting on line 5. However, the enclosing conditional tests whether pdev is NULL, and thus
within the error-handling code we consider that the value of pdev is to NULL, as identified by
the test, not at the result of the call to platform_device_alloc. Therefore, the omission
of the release of pdev is not considered to be a fault.

• If the following condition is satisfied, then Fault.

∃af ∈ A-fault : ∃pf ∈ paths3(af , test fault , nfault , {x}) :
∃ae ∈ A-exemplar : ∃pe ∈ paths(ae, nexemplar , {x}) :
∀n ∈ Release(x, pf ) :
∃y ∈ (Vref(x, pf ) ∩ Vref(x, pe)) : ∃n′ ∈ pe :
calls(y, n) ∩ calls(y, n′) 6= ∅ ∧ paths(n′, nexemplar , {y}) 6= ∅

Figure 4.10 illustrates this condition, which corresponds to the third condition of our algorithm,
as presented in Section 4.4. In this case a call that was annotated by the preprocessing phase
as a resource-releasing operation with respect to nfault also appears in an execution path that
ends in nexemplar . Thus, the call must not actually release the resource, because in nexemplar

it is followed by another resource-release operation. There is no subsequent reference to x on
the path to nfault , by the definition of Release, and thus this path contains a resource-release
omission fault.

This case is also illustrated by the real example in Figure 4.6. There, we have A-fault = {4},
nfault = 22, and Release = ∅. For any a ∈ A-fault and p ∈ paths(a, nfault , {x}, ∅), both of
which are nonempty, Release(x, p) = ∅, and thus the omission of a release of pdev here is
correctly considered to be a fault. In Figure 4.10(a) the annotated release operation, g(x) in
the candidate fault also appear before annotated release operation h(x) in the examplar (Fig-
ure 4.10(b). Thus, g(x) in the candidate fault will be not considered as releasing operation..

• If the following condition is satisfied, then Fault.

∃a ∈ A-fault : ∃p ∈ paths3(a, test fault , nfault , {x}) :
∃n ∈ Release(x, p) : paths(n, test fault , {x}) 6= ∅ ∧
∃n′ : paths(n, n′, {x}) 6= ∅ ∧ x ∈ code(n′)
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. a

. n:g(x); /* Annotated as Release(x, p) */

. test fault

y = x;
n fault

Figure 4.11: An annotated resource-releasing operation followed by an operation on the released
resource.

Intuitively, if a call at n that appears to be a resource-releasing operation with respect to nfault

is followed along any path by a reference to the released resource, then it is considered that the
call at n did not release the resource. There is thus no resource releasing operation for x in the
path to nfault , and thus there is a fault. In Figure 4.11 the annotated release operation, g(x)
is followed along a path by an operation, y = x; on the released resource x. Therefore, the
annotated release operation will not be as an actual releasing operation.

• Otherwise, Unknown.

4.6 Ranking reports

To help the user focus on the reports that are the most likely to represent real faults, a standard
approach, taken by e.g., Engler et al. [27], PR-Miner [46], Le Goues and Weimer [44], etc, is to
rank the reports in some way. Previous approaches have ranked reports based on some combination
of support and confidence. We propose a novel ranking strategy that reflects the properties of error-
handling code.

The main cause for false positives in our approach is the failure of the heuristics in the prepro-
cessing phase. The preprocessing phase may identify a block of code as error-handling code when
actually it represents a success condition, consider a call to be an acquisition even though it does not
acquire any resources, or overlook a call as a release even though it does release the resource. We
propose a strategy for ranking the reports as high or low confidence that takes these possibilities into
account.

The ranking strategy gives a fault report a high rank when the block of error-handling code con-
taining the fault is both preceded in the CFG by a block of error-handing code that releases the resource
and followed in the CFG by a release of the resource, whether or not in error-handling code. The for-
mer indicates that a release has been necessary, while the latter indicates that the resource has not yet
been released. The ranking strategy gives a report that is only somewhere followed in the CFG by
a block of error-handling code releasing the resource a low-initial rank, as it is possible that in this
case a release is not yet needed. Finally, the ranking strategy gives a low-final rank to a report that is
somewhere preceded in the CFG by a block of error-handling code that releases the resource but is
not followed in the CFG by any release of the resource, as in this case the resource may have been
released in some undetected way already.

For example, in Figure 4.1, the faulty block of error-handling code starting on line 12 does not
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release pdev, while the preceding and following blocks of error-handling code, starting on lines 8
and 15 respectively, do release this resource. The fault is thus ranked high.

4.7 Experimenting with Hector

The goals of the experiments with Hector are 1) to determine its success in finding faults in systems
code, 2) to compare the results obtained with those of related approaches, 3) to assess the potential
impact of the identified faults, 4) to understand the reason for any false positives and false negatives,
5) to understand the benefits of analysis strategies and 6) to understand the scalability of the approach.
We evaluate Hector on the large, widely used open-source infrastructure software projects previously
described in Table 2.1.

4.7.1 Found faults

As shown in Table 4.2, Hector generates a total of 624 reports for all of the projects. We manually
investigated all of them and found that 485, from 296 different functions, represent actual faults. There
are 139 false positives. We study them further in Section 4.7.5.

Table 4.2: Faults and containing functions (Fns)
Reports (Fns) Faults (Fns) Faults per Impact

EHC Resource leak Dead lock Debug
Linux drivers 293 (180) 237 (152) 0.0026 217 7 13
Linux sound 32 (19) 19 (13) 0.0018 16 0 3
Linux net 13 (13) 7 (7) 0.0005 7 0 0
Linux fs 47 (34) 22 (17) 0.0012 17 2 3
Python (2.7) 17 (13) 13 (11) 0.0007 13 0 0
Python (3.2.3) 22 (13) 20 (12) 0.0023 20 0 0
Apache httpd 5 (5) 3 (3) 0.0012 3 0 0
Wine 31 (19) 30 (18) 0.0009 30 0 0
PHP 16 (13) 13 (10) 0.0053 13 0 0
PostgreSQL 8 (5) 7 (4) 0.0010 7 0 0
Samba4 13 (9) 12 (8) 0.0009 12 0 0
ALSA-driver 12 (10) 10 (8) 0.0095 10 0 0
wise 13 (1) 13 (1) 0.0032 13 0 0
libvirt 4 (3) 2 (1) 0.0002 2 0 0
GlusterFS 18 (7) 17 (7) 0.0029 17 0 0
QuteCom 7 (3) 7 (3) 0.0021 7 0 0
wpa_supplicant 6 (1) 6 (1) 0.0010 6 0 0
RedHat 9 (6) 9 (6) 0.0023 9 0 0
hostapd 6 (1) 6 (1) 0.0012 6 0 0
LibEtPan 23 (10) 10 (4) 0.0036 10 0 0
FreeRADIUS 12 (4) 8 (3) 0.0045 8 0 0
ALSA-lib 13 (6) 11 (5) 0.0045 11 0 0
IPsec 4 (2) 3 (1) 0.0017 3 0 0

Total 624 (377) 485 (296) 457 9 19

Figure 4.12 shows the number of functions with various numbers of blocks of error-handling code
that contain at least one fault. We have already seen, in Section 4.2, that larger numbers of blocks
of error-handling code complicate code maintenance. Indeed, the number of faulty functions tends to
increase as there are more blocks of error-handling code. Above four blocks of error-handling code
the number of faults found gradually declines, however, there are also fewer of such functions. For
example, for the functions with more than 25 blocks of error-handling code, Hector finds only three
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faults, but there are only 74 such functions in the considered directories, and thus the fault rate is
actually quite high in this case.
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Figure 4.12: Complexity of faulty functions

We first investigate the complementarity of our approach with other approaches. Because the
implementation of other C code specification mining tools are not publicly available, we first assess
our results in terms of the strategies and thresholds used in previous work. We then consider how
many of the faults detected by Hector have been found and fixed in practice in Linux code.

4.7.2 Comparison to specification mining.

In Chapter 1, we observed that specification mining approaches often rely on thresholds defined in
terms of support (the number of times the protocol is followed across the code base) and confidence
(the percentage of occurrences of a portion of the protocol that satisfy the complete protocol) to reduce
the number of false positives. Figure 5.5 showed that most of the pairs of resource acquisition and
release functions identified by the heuristics presented in Section 4.5.1 do not meet the support and
confidence thresholds proposed by the specification-mining tool PR-Miner [46]. Here, we focus on
the subset of these pairs of resource acquisition and release functions that are associated with the
reports generated by Hector.

Figure 4.13 shows the support and confidence for the protocols involved in our identified faults in
Linux, Python, Apache, PostgreSQL, Apache PHP, and Wine. The ×s and circles represent the 150
pairs of resource acquisition and release operations associated with the 371 faults in these systems
software, identified by Hector. Protocols associated with 52% of the faults found by Hector have
support less than 15, and protocols associated with 86% of the faults found by Hector have confidence
less than 90%. Indeed, only 7 pairs, marked as ×, have support greater than or equal to 15 and
confidence greater than or equal to 90%. These 7 pairs are associated with only 23 (7%) of the 371
faults found by Hector, implying that 94% of the faults found by Hector would be overlooked when
using these thresholds. Indeed, the well-known Linux protocol kmalloc/kfree, for which Hector finds
28 faults, only has confidence of 59%, as many of the functions that call kmalloc have no reason to
also call kfree. On the other hand, reducing the support or confidence thresholds used by specification-
mining-based approaches could drastically increase their number of false positives. Hector finds faults
independent of the support and confidence of the protocol.

Figure 4.13 also shows as open rectangles the support and confidence for the 55 protocols involved
in the 113 false positives generated by Hector for these systems software. None of these protocols ex-
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Figure 4.13: Support and confidence associated with the protocols in the faults reported by Hector.
The dotted lines mark support 15 and confidence 90%.

ceed the thresholds of support 15 and confidence 90%, showing the reasonableness of these thresholds
in a setting where false positives are very likely. Otherwise, these protocols show a distribution similar
to that of protocols for which there are faults, with some having high support or high confidence.
These results suggest that support and confidence are not very helpful in assessing these cases.

4.7.3 Comparison to faults fixed in Linux.

Linux 2.6.34 was released in May 2010, and thus some of the faults identified by Hector have sub-
sequently been fixed or otherwise eliminated by other developers. We have furthermore submitted
patches for many of the faults detected by Hector, for Linux and for other software. Figure 4.14 sum-
marizes the status of the 187 faults in drivers that have been fixed or otherwise eliminated since
the release of Linux 2.6.34. The fixes include patches that we have submitted and have been accepted
(74), patches that we have submitted but have not yet been accepted (23), patches that have been sub-
mitted by others and have been accepted (55), and faults that have disappeared due to reorganization
or elimination of the code (36). The faults in the third category were primarily identified manually by
developers, and thus the involved functions may have low support.

72 of the faults fixed by ourselves or others involve the common memory allocation functions
kmalloc, kzalloc, and kcalloc. Because these functions and the corresponding release function, kfree,
are well known, such faults could be found using fault-finding tools such as Coccinelle, smatch, and
sparse,7 that are configurable with respect to a priori known protocols. These tools are regularly
applied to the Linux kernel, and thus the fact that such faults remain suggests a lack of attention to the
affected files by tool users or lack of attention to the submitted patches by the associated maintainers.
For the remaining functions, only 30% of the faults have been found and fixed by others. This shows
that the strategies Hector uses are complementary to existing maintenance approaches. While many of
these functions are used less often, within the implementation of a given service, a function with few
overall call sites may be even more important than widely used generic functions, such as kmalloc.
Indeed, omitting a single kfree typically results in the loss of only a few bytes, while an omission fault
associated with a more specialized function, e.g., one that unregisters a device from the kernel, can
lead to serious errors such as resource unavailability and kernel crashes, as illustrated in Section 4.2.1.

7http://coccinelle.lip6.fr, http://smatch.sourceforge.net/, https://sparse.wiki.kernel.org/index.php/Main_Page
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Figure 4.14: Fixed or eliminated Linux driver faults. Bars on the left refer to functions associated
with 4 or more fixes. These bars are annotated with the support for the corresponding acquisition and
release functions. Bars on the right refer to functions with fewer than 4 fixes and varying levels of
support.

4.7.4 Impact of the detected faults

As illustrated in Section 4.2.1, the kinds of faults Hector detects can lead to crashes, memory exhaus-
tion or deadlocks. Faults can also involve omitted debugging operations, which do not themselves
cause a system crash, but can complicate the process of debugging other errors, particularly those
that are difficult to reproduce.

Faults in Linux. We first focus on Linux, as this is the most critical and long-running of the
considered software projects. The impact of a fault in error-handling code depends on the probability
that the function containing the fault will be executed, the likelihood that the associated error will
occur, and the nature of the omitted operation. Table 4.3 classifies the faults that we have found
according to these properties. Linux kernel functions vary in the degree of privilege required to
cause them to be executed and the number of times they are likely to be executed in normal system
usage, with read/write functions being executed the most often and requiring the least privilege, and
initialization functions being executed the least often and frequently requiring the greatest privilege.
We furthermore distinguish between static initialization functions, which are only executed during
the boot, and dynamic initialization functions, for e.g., hotpluggable devices that can be loaded and
unloaded many times within the lifetime of a system. The errors handled range from a lack of memory,
which should be rare in a correctly dimensioned system, to invalid arguments from the user level,
which are completely under user control. Finally, we classify faults according to the effect the fault
may have: a memory leak (Leak), a deadlock (Lock), or inconsistent debugging logs (Debug).

We first consider the faults in terms of the properties of the containing function. Almost 40% of the
faults found in Linux code are in dynamic initialization functions, and this ratio reaches almost 50%
if static initialization functions are included. Indeed, Kadav and Swift have found that initialization
functions make up 30-50% of the code of many kinds of drivers [40]. 12 of the faults occur in
read/write functions, which users typically invoke repeatedly. A third of these faults depend in some
way on a file structure, which may depend on user-level requests. Most of the rest of the faults depend
only on internal structures, making it less likely that specific user actions can trigger the fault.

Next, we consider the faults in terms of the reason for the handled error. Over half of the faults (No
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Table 4.3: Impact of faults found in Linux
Lack of Transient No device Invalid Total

memory errors or address user value
Leak 2 2 6 0 10

Read/write Lock 0 0 0 0 0
Debug 0 0 0 2 2
Leak 12 3 16 5 36

Ioctl Lock 0 0 0 1 1
Debug 0 0 1 2 3
Leak 16 9 46 1 72

Open Lock 1 1 5 0 7
Debug 1 1 8 1 11

Dynamic Leak 48 5 49 7 109
init Lock 0 0 0 0 0

Debug 0 0 2 1 3
Static Leak 12 2 14 2 30
init Lock 0 0 0 1 1

Debug 0 0 0 0 0
Leak 90 21 131 15 257

Total Lock 1 1 5 2 9
Debug 1 1 11 6 19

device or address) are found in the handling of errors related to invalid arguments and non-existent
devices, represented by constants such as EINVAL. Such faults may arise from invalid user requests
or unavailable or malfunctioning devices. 23 of the faults are found in the handling of errors related
to invalid values received from the user level (EFAULT), such as invalid addresses for copying data to
or from the kernel, which are easy for the user to construct.

Finally, we consider the effect of the faults. 9 involve omitted unlock operations, thus introducing
potential deadlocks. Among the faults that have the most potential impact, in 1 case, the error can be
caused by an invalid user-level value, provided via an ioctl, while in 4 other cases the error is caused
by the inability to access a resource such as a file, the identity of which may ultimately depend on
user-level requests. These faults may thus be exploitable by a determined attacker. In two other cases,
the error derives from malfunctioning hardware; such errors may be more difficult for attacker to
exploit, but can result in the inability to access related resources. Finally, over 90% of the faults cause
memory leaks. Of these, 88% are in functions that can be iterated, and of these 5% are in read/write
functions that can be iterated by an unprivileged user.

These results generalize the examples presented in Section 4.2, showing that faults in error-
handling code can potentially have a significant impact on the reliability of systems software.

Faults in other software. To have a broader view of the potential impact of faults in error-
handling code, we have also studied the impact of the faults found by Hector in the PHP and Python
language runtimes. Out of the 13 faults Hector finds in the PHP runtime, 11 are located in PHP
functions that are called by at least 14 API functions (i.e., functions that are exposed directly to PHP
developers). Several of the associated blocks of error-handling code are triggered by bad argument
values or malformed input files (images, in particular, in the gd2 module). These blocks of error-
handling code expose PHP applications to memory leaks. Moreover, since PHP is commonly used
as a web scripting language, an attacker could potentially provide faulty arguments to a remote PHP
script or upload malformed files in order to trigger memory leaks on a remote server. Indeed, 7 of the
memory leaks detected by Hector pertain to persistent memory (i.e., memory that is never released as
long as the web server runs). For Python, 8 of the 33 faults found in Python code are in three Python
3.2.3 API functions. These functions either are new since Python 2.7.2 or have been completely
reimplemented. Most of the remaining faults are in initialization functions or in functions stored in



82 Chapter 4 – Finding Faults in Error Handling Code

Python modules. Python manages internal data structures using reference counts, and almost all of
the faults involve omission of a reference count decrement operation.

For PHP, we have designed a possible attack that exploits a fault in the function _xmlwriter_-
get_valid_file_path(). We wrote a PHP script that calls this function via the PHP runtime function
xmlwriter_open_uri() a hundred million times with a faulty argument that triggers the bug. Running
this PHP script on an apache2 web server results in an apache2 process that uses up all of the
available RAM of a 4GB server. An attacker could use this fault in two ways. First, if he has the
ability to upload PHP files to the server in a directory where they are interpreted by Apache, he can
upload our script and access it remotely to use up all memory. Second, if he finds a PHP script on
the server that uses xmlwriter_open_uri() with an argument that is passed in via an HTML form, he
can fetch the page millions of times with a faulty argument until all of the memory of the server is
exhausted.

4.7.5 False positives

Table 4.4 shows the number of false positives among the reports generated by Hector and the reasons
why these reports are false positives. The overall false positive rate is 23%, which is below the
threshold of 30% that has has been found to be the limit of what is acceptable to developers [12]. The
reasons for the false positives vary, including failure of the heuristics for distinguishing error-handling
code from successful completion of a function (Not EHC, 4%), failure of the heuristics for identifying
acquired resources (Not alloc, 22%), or for recognizing existing releases, whether via an alias (Via
alias, 36%) or via a non-local call (Non-local call frees, 14%), or releases performed in the caller of
the considered function rather than in the function itself (Caller frees, 11%).

Table 4.4: False Positives
FP Reasons

(Rate, Fns) Not Not Via Non-local Caller Other
Reports EHC alloc alias call frees frees

Linux drivers 293 56 (19%,34) 3 16 11 13 8 5
Linux sound 32 13 (41%,6) 0 0 13 0 0 0
Linux net 13 6 (46%,6) 0 0 0 0 1 5
Linux fs 47 25 (53%,17) 0 7 6 1 6 5
Python (2.7) 17 4 (24%,2) 0 0 3 0 0 1
Python (3.2.3) 22 2 (9%,2) 0 1 0 0 0 1
Apache httpd 5 2 (20%,2) 1 0 0 0 0 1
Wine 31 1 (3%,1) 0 1 0 0 0 0
PHP 16 3 (19%,3) 0 3 0 0 0 0
PostgreSQL 8 1 (12%,1) 0 1 0 0 0 0
Samba4 13 1 (1%,1) 0 0 1 0 0 0
ALSA-driver 12 2 (17%,2) 0 0 0 2 0 0
wise 13 0 (0%,0) 0 0 0 0 0 0
libvirt 4 2 (50%,2) 2 0 0 0 0 0
GlusterFS 18 1 (6%,1) 0 0 1 0 0 0
QuteCom 7 0 (0%,0) 0 0 0 0 0 0
wpa_supplicant 6 0 (0%,0) 0 0 0 0 0 0
RedHat 9 0 (0%,0) 0 0 0 0 0 0
hostapd 6 0 (0%,0) 0 0 0 0 0 0
LibEtPan 23 13 (57%,6) 0 0 13 0 0 0
FreeRADIUS 12 4 (33%,1) 0 0 0 4 0 0
ALSA-lib 13 2 (15%,1) 0 0 2 0 0 0
IPsec 4 1 (25%,1) 0 1 0 0 0 0
Total 624 139 (23%,89) 6 30 50 20 15 18
FP = False positives, Rate = FP/Reports, Fns = Containing functions
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The Linux sound, net, and fs directories all have false positive rates higher than 30%. All of
the sound false positives come from the use of a single function that creates an alias via which the
resource is released. The affected functions all show the same pattern, making these false positives
easy to spot. For net, 4 of the 6 false positives are due to error-handling code related to timeouts,
in which case it is not necessary to release all of the resources. Again, the affected functions have
a similar structure. Finally, the fs faults are more varied, and thus more difficult to identify. Still,
there are fewer than 50 fs reports in all, making the identification of false positives tractable by a
filesystem expert.

For the software other than Linux, the false positive rate positives varies considerably. Wise,
QuteCom, Wpa_supplicant, Hostapd, and RedHat have no false positives. Libvirt and LibEtPan have
false positive rates of 50% or higher. Libvirt has only 4 reports, including only 2 false positives,
meaning that assessing the set of reports is not time-consuming. LibEtPan uses a pattern of nested
data structures that the alias information collected by Hector is not sufficient to take into account.
Nevertheless, many of the false positives have a similar structure and we found them easy to evaluate.

To help the user navigate among the reports, we have proposed a ranking strategy (Section 4.6).
The ranking strategy is motivated by the common cases of false positives, where a candidate fault
occurs before a release is actually needed (low-initial rank, corresponding to the Not alloc cases in
Table 4.4) and where a candidate fault occurs after the resource has already been released (low-final
rank, corresponding to the Via alias and Non-local call free cases in Table 4.4). Table 4.5 shows the
total number of high, low-initial and low-final ranked reports. Few false positives are high. The user
may thus study the high ranked reports first, to get an overall understanding of the use of resources in
the software, and then consider the low ranked reports, taking into account the acquired intuitions.

Table 4.5: Report ranking
Reports Faults FP

High Low-Initial Low-Final High Low-Initial Low-Final High Low-Initial Low-Final
Linux drivers 68 127 98 62 116 59 6 11 39
Linux sound 11 8 13 11 8 0 0 0 13
Linux net 6 3 4 2 3 2 4 0 2
Linux fs 12 20 15 8 12 2 4 8 13
Python (2.7) 4 7 6 4 7 2 0 0 4
Python (3.2.3) 3 6 13 3 5 12 0 1 1
Apache httpd 2 1 2 2 1 0 0 0 2
Wine 10 15 6 10 15 5 0 0 1
PHP 2 13 1 2 10 1 0 3 0
PostgreSQL 1 5 2 1 4 2 0 1 0
Samba4 3 2 8 3 2 7 0 0 1
ALSA-driver 5 4 3 5 4 1 0 0 2
wise 13 0 0 13 0 0 0 0 0
libvirt 0 1 3 0 0 2 0 1 1
GlusterFS 4 4 10 4 4 9 0 0 1
QuteCom 3 0 4 3 0 4 0 0 0
wpa_supplicant 0 2 4 0 2 4 0 0 0
RedHat 2 7 0 2 7 0 0 0 0
hostapd 0 2 4 0 2 4 0 0 0
LibEtPan 6 4 13 6 4 0 0 0 13
FreeRADIUS 2 0 10 2 0 6 0 0 4
ALSA-lib 5 0 8 5 0 6 0 0 2
IPsec 0 1 3 0 0 3 0 1 0
Total 162 232 230 148 206 131 14 26 99
(H = High, LI = Low-initial, LF = Low-final)
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Table 4.6: Faults, false positives, and false negatives, for kmalloc, kzalloc, and kcalloc
Coccinelle Hector

Faults FP FN Faults FP FN
Linux drivers 38 28 (42%) 70 (65%) 86 10 (10%) 22 (20%)
Linux sound 2 6 (75%) 6 (75%) 7 13 (65%) 1 (13%)
Linux net 4 5 (56%) 1 (20%) 1 1 (50%) 4 (80%)
Linux fs 1 8 (89%) 1 (50%) 1 7 (88%) 1 (50%)

4.7.6 False negatives

Hector requires an exemplar of the release of a resource before it can detect that a release of that
resource is somewhere omitted. This exemplar permits Hector to find faults without precise infor-
mation about resource acquisition and release functions. However, without an exemplar, no fault can
be detected, resulting in false negatives. Other potential reasons for false negatives are analogous
to the reasons for false positives, e.g., failing to recognize a call that represents an acquisition, and
considering a call to be a release operation when the called function does not perform a release.

Estimating the rate of false negatives is difficult, because it requires complete knowledge of the
set of faults in a system. Indeed, we know of no other fault-finding tools for systems code for which
false negatives have been investigated. To reduce the amount of code to study while being able to
estimate the effect of the need for an exemplar, we focus on the Linux kernel functions, kmalloc,
kzalloc, and kcalloc, for which Figure 4.14 showed that faults are common. To further reduce the
amount of code to consider, we focus on cases where the acquired resource is stored in a local variable
and is not passed to another function or stored in another location before reaching the error-handling
code; these restrictions imply that there is a high probability that the resource must be released
before the variable referencing it goes out of scope. we have implemented this strategy using the
open-source tool Coccinelle [64]. Coccinelle does not implement a specific fault-finding policy, but
instead makes it possible to search for patterns involving properties of paths within a function’s CFG.

Table 4.6 shows the rate of detected faults in the use of kmalloc, kzalloc, and kcalloc and the
rate of false positives, for the Coccinelle rule and for Hector. From this information, we compute a
lower bound on the number and rate of false negatives by comparing the set of faults found by each
approach to the complete set of faults found by either approach. While Hector has a high rate of
false negatives, the absolute numbers involved are small. Almost all of the false negatives are due to
the lack of an exemplar. There are only three cases, all in a single function, where there is a failure
of the preprocessing heuristics, as a call is considered to be a release when it is not. Furthermore,
the Coccinelle rule also has a high rate of false negatives, because of the restrictions noted above to
avoid false positives. These restrictions are indeed only partially successful, because the rate of false
positives is up to 89%, and is consistently higher than that of Hector.

4.7.7 The benefits of the analysis features

The instantiation of our algorithm provides the following features 1) identifying the candidate faults
that use different resource release operations that may or may not be defined in the same file, instead
of the releasing operation found in the exemplar, 2) identifying operations whose side effects release
the resources, and 3) identifying operations that release the resource via another pointer.

These features are illustrated by the examples in Figures 4.7, 4.8, and 4.9 respectively. In this sec-
tion, we evaluate in more detail the impact of the analysis, taking into account the presence of alternate
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Table 4.7: Discard candidate faults using different analysis features

analyzable multiple releasing release by release via
candidate faults operations that may or side effect of another pointers

may not be locally defined other operations
Linux drivers 567 220 2 52
Linux sound 193 157 0 4
Linux net 33 11 1 8
Linux fs 235 84 14 90
Wine 42 11 0 0
PostgreSQL 14 2 0 2
Apache httpd 5 0 0 0
Python (2.7.3) 52 16 0 19
Python (3.2.3) 65 22 0 21
PHP 20 4 0 0
Samba 114 78 2 21
ALSA-driver 170 153 0 5
wise 17 4 0 0
libvirt 8 2 0 2
GlusterFS 27 5 1 3
QuteCom 9 2 0 0
wpa_supplicant 18 11 0 1
RedHat 13 4 0 0
hostapd 18 11 0 1
LibEtPan 75 1 0 51
FreeRADIUS 76 64 0 0
ALSA-lib 23 8 0 2
IPsec 4 0 0 0
Total 1798 870 (48.4%) 20 (1.1%) 282 (15.7%)

resource-releasing operations based on the scenarios in Figures 4.7, 4.8, and 4.9. On the considered
software, we analyze how often these features discard candidate faults avoiding false positives.

On all 19 considered software projects, Hector found 380K candidate faults, each being a possible
execution path that contains a resource acquisition operation but no corresponding release operation
in error-handling code. However, by applying the first two conditions presented in Section 4.4 to the
candidate faults, Hector discards 378K (99.5%) candidate faults, leaving only 1798 (0.5%) candidate
faults. We call these candidate faults the analyzable candidate faults. Table 4.7 shows the number of
analyzable candidate faults and the number of analyzable candidate faults that are eliminated in the
analysis phases.

In the example shown in Figure 4.7, different execution paths use different resource release op-
erations. These releasing operations may or may not be defined in the same file. A specification
mining approach that takes into account only the specification that has the highest rank, would give
a false positive in at least one of these cases. Table 4.7 shows that 48.4% of the analyzable candi-
date faults use different releasing operations to release the resource than the releasing operations in
the exemplars. Hector identifies all of these cases and discard these candidate faults to avoid false
positives.

In the example shown in Figure 4.8, a resource is released by an intervening function when this
function fails on some task. Hector identifies this scenario and removes the candidate faults from
consideration. Table 4.7 shows that 1.1% of the analyzable candidate faults use such operations to
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Table 4.8: Scalability of Hector

Time (seconds) Lines of code(LoC) Time/LoC
Linux drivers 18342 4.6MLoC 0.0051
Linux sound 1649 0.4MLoC 0.0038
Linux net 1428 0.4MLoC 0.0036
Linux fs 10503 0.7MLoC 0.015
Wine 1381 2.1MLoC 0.0007
PostgreSQL 750 0.6MLoC 0.0013
Apache httpd 2224 0.1MLoC 0.0153
Python (2.7.3) 1306 0.4MLoC 0.0033
Python (3.2.3) 1885 0.3MLoC 0.0063
PHP 114 0.6MLoC 0.0002
Samba 10308 496KLoC 0.0208
ALSA-driver 2155 474KLoC 0.0045
wise 335 276KLoC 0.0012
libvirt 3445 224KLoC 0.0154
GlusterFS 1799 193KLoC 0.0093
QuteCom 190 188KLoC 0.0010
wpa_supplicant 635 160KLoC 0.004
RedHat 1333 151KLoC 0.0089
hostapd 440 134KLoC 0.0033
LibEtPan 47 94KLoC 0.0005
FreeRADIUS 1252 82KLoC 0.0153
ALSA-lib 733 76KLoC 0.0097
IPsec 2076 62KLoC 0.0335

release the resource.

A resource can be made accessible via another pointer, and can be released via this pointer in
a candidate fault, as illustrated in Figure 4.9. Hector analyzes such pointers to determine whether
the pointer is used to released the resource. If so, Hector discards those candidate faults to avoid
false positives. Table 4.7 shows that 15.7% of the candidate faults use other pointers to release the
resources.

Finally, Hector generates reports for 37.8% of the candidate faults.

In the Section 4.7.6, we have already discussed that Hector may produce false negatives.

4.7.8 Scalability

We carried out our tests on one core of a 8-core 3GHz Intel Xeon with 16GB RAM. Analyzing Linux
drivers, which is the largest considered project (4.6 MLOC), takes around 5 hours. Table 4.8 shows
the processing time per line of code for each considered project. Over all the considered projects, the
processing time, excluding the parsing time, ranges from 0.0003 s/LOC (seconds per line of code)
to 0.0335 s/LOC. Linux drivers, which is the largest project (4.6MLoC), and, IPSec, which is the
smallest (62KLoC), have processing time per line of code 0.0051 s/LOC and 0.0335 s/LOC respec-
tively, showing the scalability of the approach. Figure 4.15 shows the different processing time per
line of code of different software projects. In this figure, the software projects are organized according
to their total number of lines of code. The smallest project comes first.
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Figure 4.15: Analyzing time (in seconds) per line of code

4.7.9 Threats to validity

The validity of our study depends on the representativeness of the software chosen and the accuracy
of our labeling of the reports. For the software, we have chosen projects that are widely used or that
have many C functions and a relatively high density of error handling code. These characteristics are
not found in all C software, but do serve to define the kinds of software targeted by our approach. For
the labeling of the reports, we have validated some of our results by submitting patches to the relevant
developer communities, as illustrated for Linux in Section 4.7.1.

4.8 Conclusion

In this chapter, we have defined an algorithm for finding resource-release omission faults that takes
local information into account. Our algorithm finds a number of probable faults in different kinds
of systems software with a low rate of false positives. We have shown that taking local information
into account significantly reduces the number of false positives. Moreover, the algorithm ranks the
generated reports to draw the user’s attention to the more probable fault instances.
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Our studies on error-handling code in this dissertation have shown that the number of functions
with error-handling code in widely used systems software is increasing version by version. Moreover,
we have found that writing error-handling code in a dispersed way creates duplicate code that is
difficult for developers to maintain. As a result, programmers often make mistakes while writing new
error-handling code. The motivation of this dissertation is to improve error handling code in systems
software by refactoring such code and by finding faults in it. We have first focused on improving the
structure of error-handling code with the goal of helping to reduce the number of system faults that
may occur in error handling code in future. We have then focused on finding existing faults in systems
error-handling code.

5.1 Conclusion

The first part of this dissertation has focused on the refactoring of error-handling code in systems
software. The Linux kernel coding style guidelines advocate organizing such code using labels and
gotos, but systems software frequently does not follow this strategy. We have proposed an automatic
transformation that converts error-handling code that is dispersed and duplicated throughout the body
of a function such that it uses the single labelled sequence of state-restoring operations at the end of
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the function. We have found that our transformation applies to many functions across the systems
software, and that it identifies many opportunities for code sharing. The approach was actually moti-
vated by Linux, but we have found that the approach is applicable to other systems software. That is,
in the other software, the goto style is sometimes but not always used.

Next, we have shown that error-handling code is a substantial source of faults in systems code,
and that such faults can have a significant impact on system reliability. We have presented a novel
approach to finding faults in error-handling code of systems software that uses a function’s existing
error-handling code as an exemplar of the operations that are required. By focusing on one function at
a time, while taking into account a small amount of interprocedural information from other functions
defined in the same file, we obtain a fault-finding algorithm that is precise and scalable. We have
implemented our approach as the tool Hector, and applied it to find 485 faults in Linux and 18 other
systems software projects.

5.2 Limitations and Future Work

5.2.1 Relax the need for exemplars

A limitation of our approach to finding faults in error-handling is the need for at least one exemplar
of a given resource-release operation in the considered function. In future work, we will consider
whether it is possible to relax this requirement, e.g., to find exemplars in other functions in the same
file, or in functions that appear to play the same role in the implementations of related services.

5.2.2 Other memory related bugs

In our work, we have focused on finding missing resource-releasing operations that may lead to mem-
ory leaks and deadlocks. However, we can use our approach to find other types of memory related
bugs. For example, the algorithm keeps track of NULL values, but does not fully use this informa-
tion, e.g., to find probable NULL pointer dereferences. We will consider the benefit of such checks in
future work. The algorithm also can be used to find double free bugs in error-handling code. Our algo-
rithm identifies any releasing operation on a resource and keeps the information for further analysis.
Therefore, it can easily detect if a freed resource is used in an operation for freeing again.

5.2.3 Fixing bugs

Another direction of future work is to consider how to automatically fix the faults, based on the
information in the exemplar, or based on the history of the software as a whole, taking into account
how similar faults have been fixed in other parts of the software over time.

We have a preliminary idea to automatically fix the detected omission faults. Recall that high
ranked fault reports are in Section 4.6. The ranking strategy gives a fault report a high rank when the
block of error-handling code containing the fault is both preceded in the CFG by a block of error-
handing code that releases the resource and followed in the CFG by a release of the resource, whether
or not in error-handling code. In this case, we propose to insert the omitted We target only the high
ranked fault reports and propose to insert omitted resource-releasing operations into the error-handling
code. Doing so requires determining: 1) what resource releasing operation to use, if the function uses
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multiple releasing operations for a particular resource, and 2) where to insert the resource releasing
operation into the existing error-handling code.

In order to insert the appropriate releasing operation, the algorithm uses the releasing operation
in the preceding error-handling code. The following error-handling code may contain an alternate
releasing operation to release the resource which might not be the appropriate operation to be inserted.
In order to insert the omitted resource-releasing operation at the right place in the error-handling code,
the algorithm uses the information found in the following block of error-handling code. Usually,
the number of resource-releasing operations needed in error-handling code increases as execution
progresses through a function, as more and more resources are allocated that need to be released. The
later blocks of error-handling code thus provide more information about the relationships between the
complete set of resource-releasing operations than the earlier ones. The algorithm inserts the omitted
releasing operation into the error-handling code after the last operation that accesses the resource’s
associated variable and the operations that appear in the following error-handling code prior to the
omitted releasing operation.

1 ...
2 x = kmalloc(...);
3 ...
4 if(!y) {
5 kfree(x);
6 return −ENOMEM;
7 }
8 ...
9 if(!z) {

10 put(x,y);
11 kfree(y);
12 return −ENOMEM;
13 }
14 ...
15 ptr−>name = x;
16 ...
17 if(!m) {
18 kfree(z);
19 put(y,x);
20 kfree(y);
21 free(ptr);
22 return −ENOMEM;
23 }

1 ...
2 x = kmalloc(...);
3 ...
4 if(!y) {
5 kfree(x);
6 return −ENOMEM;
7 }
8 ...
9 if(!z) {

10 put(x,y);
11 kfree(y);
12 kfree(x);
13 return −ENOMEM;
14 }
15 ...
16 ptr−>name = x;
17 ...
18 if(!m) {
19 kfree(z);
20 put(y,x);
21 kfree(y);
22 free(ptr);
23 return −ENOMEM;
24 }

a. Code containing an omitted resource-release fault b. The same code, after fixing the fault

Figure 5.1: Example of fixing a resource-release omission fault

In practice, simple examples among the high-ranked fault reports, and thus we have made up an
example in Figure 5.1 to show the algorithm in its full generality. In Figure 5.1a, a resource is allocated
by calling the function kmalloc, and the result is stored in the variable x (line 2). The error-handling
code on lines 5-6 then calls kfree(x) to release x. The variable x is stored in the structure ptr
on line 15. The error-handling code on lines 18-22 calls free(ptr) on line 21 to release x via
ptr. However, the error-handling code in the middle of the function, on lines 10-12, does not have
any operation that releases x. This omission fault receives rank high and is selected to be fixed. The
call free(ptr) cannot be used to release the resource in the error-handling code on lines 10-12,
because the resource only becomes referenced by ptr on line 15, after the block of error-handling
code in lines 10-12. Therefore, free(ptr) is not the appropriate resource-releasing operation to be
inserted in the error-handling code on lines 10-12. Thus, the algorithm inserts the omitted resource-
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releasing operation kfree(x) into the block of error-handling code on lines 10-12 after kfree(y)
on line 11. This placement is based on the information in the subsequent block of error-handling code
on line 18-22, that says x is released using free(ptr) on line 21 after kfree(y). However the
preceding error-handling code on lines 5-6 does not have any information about kfree(y) that can
not help the algorithm to decide whether the omitted resource-releasing operation after kfree(y).
Figure 5.1b shows the function after fixing the omitted the resource-releasing fault. The new call to
kfree(x) is on line 12, in the error-handling code on lines 10-13.

5.2.4 Finding shared variables

A data-race is a well-known type of concurrency bug. A data-race occurs when two different threads
in a given program can simultaneously access a shared variable, with at least one of the accesses
being a write operation. A number of works have been proposed to detect data-races in concurrent
programs [18, 36, 58, 92]. The most critical step in detecting data-races is to automatically identify
shared variables [41]. Incorrect identification of shared variables leads to a high rate of false positives
in data-race reports. Kahlon et el. studied the accuracy of the identification of shared variables [41].
They propose a static analysis approach to identify shared variables, and then use the identified shared
variables to detect data-races. Their shared variable detection routine is based on the precise that all
shared variables are either global variable of threads, aliases thereof, pointers passed as parameters to
API functions or escape variables.

We will consider how the use of local information can be applied to identify shared variables. An
ad hoc synchronization is a synchronization that is implemented in an ad hoc way. That does not fol-
low any modularize manner like synchronization using lock/unlock or any user-defined function
calls. Detecting ad hoc synchronization is another challenging problem while detecting concurrency
bugs. The accuracy of identifying ad hoc synchronization helps to reduce the rate of false positives
and discovers new concurrency bugs [89]. The accuracy on identifying of shared variables can help
to identify ad hoc synchronization accurately.

5.2.5 Bugs in web applications

Finally, we plan to apply the expertise acquired on C code to propose an approach for detecting bugs
in error-handling code in PHP programs. Compilers for web languages such as PHP do not provide
strong type-checking or static detection of mistakes such as the use of undeclared variables. Therefore,
Web Applications are more defect-prone than Desktop applications [79]. Semantic bugs in PHP code
may lead to generating incorrect HTML code, degrading the user experience and potentially crashing
the user’s browser.1 Because two languages are involved, PHP and HTML, finding such bugs is
especially challenging.

Figure 5.2 illustrates the kinds of problems that can arise. This example is taken from the work of
Artzi et al. on finding bugs in dynamic web applications [9]. In this example the error-handling code
on lines 5-6 terminates the PHP program without executing the code on line 9 that prints the HTML
footer. This generates a malformed HTML page.

Currently, few program validation tools target PHP. One used in Facebook is Pfff [3], a set of
tools and APIs, that provides a lint-like bug finder to find generic bugs in PHP code. Nevertheless,

1https://bugzilla.mozilla.org/show_bug.cgi?id=209095 and https://bugzilla.mozilla.org/show_bug.cgi?id=320459
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1 ...
2 make header();// print HTML header
3 ...
4 if($ GET[’page2’] == 1337) {
5 require(’printReportCards.php’);
6 die();// terminate the PHP program
7 }
8 ...
9 make footer();// print HTML footer

10 ...

Figure 5.2: Bug in the PHP error-handling code

this technique does not target semantic bugs. Some semantic bugs can be found by testing. But it is
difficult to force tests into all error handling code, making semantic bugs in such code hard to find.

The goal of the bug-finding tool for PHP programs is to find semantic bugs in error-handling code,
taking into account context-sensitivity. To exploit the information contained in error-handling code,
the algorithm will first collect information about the structure and contents of all the error-handling
code in a given PHP file. Based on this information, it will then search for error-handling code that is
missing some important information or contains some incorrect information. Finally, it will use some
heuristics to determine whether these omissions or incorrect information are legitimate or represent
actual bugs.
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5.3 Summary of Contributions

The contributions of this thesis are as follows:

• An algorithm to transform error-handling from the basic strategy to the goto-based strategy.
This transformation can reduce duplicated code and make it easier for a developer to maintain
the error-handling code, thus, it helps developers avoid introducing new bugs into error-handling
code.

• 22% of the conditionals containing state-restoring error-handling code have been successfully
converted from the basic strategy to the goto-based strategy.

• The concept of extracting specifications using local information to a single function definition
instead of using a global scan of the code base.

• A collection of heuristics for identifying error-handling code in C systems software. These
heuristics address the issue that the C language does not provide any error-handling abstractions.

• An algorithm for finding faults in error-handling code, implemented as a tool, Hector.

• 485 faults identified by Hector in the error-handling code of 19 system software projects, in-
cluding 285 faults found in Linux.

• 97 patches submitted to the system developers of Linux. Among them 74 patches have been
accepted and 23 have not yet been accepted.

• Examples of crashes and malicious attacks that are enabled by the omission of resource-
releasing operations in the error-handling code.
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N’importe quel système logiciel peut rencontrer des erreurs, telles que des requêtes inapropriées
de la part d’applications supportées, ou des comportements inattendus de materiel ne fonctionnant pas
correctement ou étant mal configurés. Si le système d’un logiciel, tel que son système d’exploitation,
l’exécutif d’un langage de programmation, ou un serveur web, ne récupère pas sur ces erreurs correcte-
ment, elles peuvent conduire à un echec plus serieux tel qu’un arrêt brutal ou une vulnérabilité à une
attaque par un utilisateur malicieux. Ainsi, une recupération sur erreurs correcte est essentielle quand
un système supporte des services critiques ou déstinés à s’exécuter logntemps. En effet, la capacité
à récupérer des erreurs a longtemps été vue comme la pierre angulaire de la robustesse des systèmes
[55], et beaucoup de code de systèmes sont concernés par la détection et la gestion d’erreurs. Par
exemple, 48% du code des drivers de Linux 2.6.34 se trouve dans des fonctions qui gèrent au moins
une erreur. 2

Le code système est écrit en C, qui contrairement aux langages de programmation modernes
comme Java, ne fournissent aucune abstraction spécifique pour la gestion des ressources ou la gestion
d’erreurs. Le code de gestion d’erreurs est responsable de la détection de l’échec d’une opération,
libérant les ressources pour restaurer le système dans un état cohérent, et retournant un indicateur
d’erreur à la fonction appellante. N’importe quelle opération qui peut échouer doit être suivie par une
branche conditionelle qui vérifie si une valeure d’erreur est retournée et effectue l’opération appro-
priée.

La Figure 5.3 montre un exemple de code de gestion d’erreurs. Au début de l’extrait de code,
il y a trois expressions conditionelles aux lignes 5, 9, et 14 qui testent differentes conditions. Dans
chaque cas, si une erreur est detectée, la branche conditionelle appelle d’abord unlock_kernel
puis retourne un indicateur d’erreur. Les opérations de gestion d’erreur libèrent des structures de
différentes complexités, et ommetre une partie de ce code lors de la construction de n’importe quel
code de gestion d’erreur, ce qui deviens obligatoire quand la fonction évolue, conduira à des fuites
mémoires.

1 {
2 ...
3 lock kernel();
4 ...
5 if (!autofs oz mode(sbi)) {
6 unlock kernel();
7 return −EACCES;
8 }
9 if (autofs hash lookup(dh, &dentry−>d name)) {

10 unlock kernel();
11 return −EEXIST;
12 }
13 n = find first zero bit(sbi−>symlink bitmap,AUTOFS MAX SYMLINKS);
14 if (n >= AUTOFS MAX SYMLINKS) {
15 unlock kernel();
16 return −ENOSPC;
17 }
18 ...
19 d instantiate(dentry, inode);
20 unlock kernel();
21 return 0;
22 }

Figure 5.3: Code de traitement d’exception (Linux-2.6.34/fs/autofs/root.c)

2Linux 2.6.34 a été publié 2010. Nous nous concentrons sur une version de Linux datant de quelques années pour éviter
que nos contributions au noyau Linux des premières étapes du développement de Hector n’interfèrent avec nos résultats
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Restructuration de code: Une stratégie typique pour l’implémentation d’un code de gestion
d’erreurs dans un système logiciel est montré en Figure 5.3.

La stratégie consiste à faire suivre chaque opération qui peut rencontrer une erreur par un bloc
conditionel qui vérifie si une erreur s’est produite, et, le cas échéant, effectue les opérations de nettoy-
age appropriées avant de sortir de la fonction. Nous appelons cette stratégie stratégie basique. Cette
stratégie, cependant, est sujette à erreurs, car il est facile de négliger certaines opérations de nettoyage
qui sont requises, et d’oublier de mettre à jour certains codes de gestion d’erreurs existants quand la
fonction est étendue avec de nouvelles opérations qui ont besoin d’être défaites dans un cas d’erreur.
De plus, il peut y avoir de la duplication de code, du fait que le même code de gestion d’erreurs peut
être necessaire à plusieurs endroits dans une même fonction.

Pour illustrer ces problèmes, considérons encore la Figure 5.3. Les trois bloc conditionels de ges-
tion d’erreurs appellent la même fonction: unlock_kernel. Si le protocole pour utiliser ces fonc-
tions change, le code doit être adapté dans chaque cas. De plus, négliger l’appel à unlock_kernel
est une erreur qui va potentiellement conduire à un interblocage. Si d’autres allocations de ressources
sont ajoutées à la fonction et le code de gestion d’erreur n’est pas mis à jour correctement, il va y avoir
d’autre type de fuites de ressources.

Un style de programmation qui peut alléger ces difficultés est de déplacer les opérations de restau-
ration d’état des blocs conditionnels de gestion d’erreurs individuels à une sequence d’opérations de
restauration d’état à la fin de la fonction, atteignable grâce à une étiquette. Nous appellons ce style de
programmation la strategie basé sur goto. Dans cette stratégie, chaque bloc conditionel de gestion
d’erreur effectue uniquement les opérations qui sont spécifiques à la condition de l’erreur identifiée,
tel que journaliser l’erreur ou stocker son l’indicateur dans une variable. Ensuite, un goto saute à la
bonne position dans une suite d’opération de restauration d’état à la fin de la fonction. Cette approche
place toutes les opérations de restauration d’état dans une zone facilement identifiable. Si le corps de
la fonction est modifié de telle sorte qu’il y a des nouvelles conditions d’erreur possibles, les codes
de gestion d’erreurs associés auront seulement besoin d’effectuer un saut au bon endroit dans cette
suite. Si des nouvelles opérations de changement d’état sont ajoutées dans le corps de la fonction,
les opérations de restauration d’état correspondantes ont seulement à être ajoutées à cette séquence.
Enfin, la duplication de code est en grande partie limitée à l’introduction de goto, quelque soit la
complexité du processus de gestion d’erreurs.

Nous considérons comment ce code serait écrit si il utilisait la stratégie basé sur goto. Sur
la figure 5.3, nous observons que tous les codes de gestion d’erreurs appellent la même fonction,
unlock_kernel. Nous observons aussi qu’il y a un autre appel de cette fonction à la ligne 20, à
la fin de la fonction. Par conséquent, le programmeur peut utiliser cet appel au lieu d’écrire le même
appel dans chaque bloc de code de gestion d’erreurs, en ajoutant une étiquette juste avant la ligne 20
et un saut de tous les blocs de code de gestion d’erreurs vers cette étiquette. Cette transformation,
cependant, n’est pas suffisante pour obtenire une implémentation correcte. Une des difficultés de la
conversion du code en Figure 5.3 pour utiliser la stratégie basée sur des goto est que trois blocs de
gestion d’erreurs retournent differents indicateurs d’erreurs. Ainsi, il est aussi nécessaire d’assigner
tous les indicateurs d’erreurs dans une seule variable. Ensuite il devient possible de fusionner tous les
blocs de code de gestion d’erreurs en un seul.

La version améliorée de l’exemple donné en Figure 5.3 est montrée en Figure 5.4. Cette version
déclare une variable ret à la ligne 3 au début de la fonction. Ensuite, elle utilise cette variable pour
stocker l’indicateur d’erreur à la ligne 7, 11 et 16, dans chaque bloc de code de gestion d’erreurs.
L’exemple utilise aussi cette variable ret pour stocker la valeur de retour de la fonction, 0, dans le
cas ou aucune erreur n’est détéctée, à la ligne 20. Une nouvelle étiquette out est ajoutée ligne 22 et
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des gotos sont ajoutés à l’interieur des blocs de code de gestion d’erreurs pour sauter vers la nouvelle
étiquette. Finalement, la variable ret est retourné à la ligne 24.

1 {
2 ...
3 int ret;
4 lock kernel();
5 ...
6 if (!autofs oz mode(sbi)) {
7 ret = −EACCES;
8 goto out;
9 }

10 if (autofs hash lookup(dh, &dentry−>d name)) {
11 ret = −EEXIST;
12 goto out;
13 }
14 n = find first zero bit(sbi−>symlink bitmap,AUTOFS MAX SYMLINKS);
15 if (n >= AUTOFS MAX SYMLINKS) {
16 ret = −ENOSPC;
17 goto out;
18 }
19 ...
20 ret = 0;
21 d instantiate(dentry, inode);
22 out:
23 unlock kernel();
24 return ret;
25 }

Figure 5.4: Version améliorée de l’Exemple 5.3

Actuellement, plusieurs fonctions dans les logiciels systèmes utilisent les stratégies basées sur
goto. Cette stratégie est aussi recommendée par la documentation du noyau Linux.3 Néanmoins, un
grand nombre de fonctions utilisent encore la stratégie basique, et un grand nombre de bugs ont été
découverts dans ce type de code. Par exemple, dans les patches de corrections de bug appliqués au
noyau Linux 2.6.20 après sa publication, nous avons trouvé qu’à peu près un tier (12/32) de ceux
dont l’unique effet est d’ajouter un appel à kfree ou à une fonction de déverouillage telle que
spin_unlock, le bug est dans du code qui utilise la stratégie basique. La plupart des 32 autres
bugs n’étaient pas dans du code de gestion d’erreurs. Nous avons obtenu des résultats similaires
(6/20) dans l’ensemble de patches de Linux 2.6.34. 4

Afin d’améliorer la structure des codes de gestion d’erreurs dans les systèmes logiciels, notre
première contribution est un algorithme transformant le code de gestion d’erreur implémenté selon la
stratégie basique afin qu’il suive la stratégie basé sur goto. Cet algorithme fusionne les opérations de
réstauration d’état trouvées dans chaque bloc conditionel en une séquence d’opérations de réstauration
d’état à la fin de la fonction. Nous avons implémenté cet algorithme dans un outil, que nous avons
appliqué à cinq répertoires (drivers, fs, net, arch, et sound) dans le code source de Linux 3.6
ainsi qu’à cinq projets open-source largement utilisés : PostgreSQL, Apache, Wine, Python, and PHP.
Cet outil convertit 22% des blocs conditionels contenant des codes de gestion d’erreurs de remise en
état pouvant etre fusionnées en un seul, de la stratégie de base à la stratégie basée sur des goto.

3Linux-2.6.34/Documentation/CodingStyle, Chapter 7.
4Les patches de Linux 2.6.20 proviennent de git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-2.6.20.y.git en

utilisant la commande “git log -p v2.6.20..”. Les patches de Linux 2.6.34 proviennent de git://git.kernel.org/pub/scm/-
linux/kernel/git/next/linux-next.git en utilisant la commande “git log -p v2.6.33..v2.6.34”.
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Amélioration la qualité d’un code de gestion d’erreur: Même quand le code de gestion d’erreurs
est structuré comme recommendé par les conventions de code de Linux, la gestion de la libération des
ressources allouées reste un problème critique pour la garantie de la robustesse du système. [67].

Une partie critique de la récupération sur erreurs est de libérer toutes les ressources que l’erreur
a rendu incohérentes ou non-nécessaires. Ommetre une libération necessaire peut mener à des ar-
rêts brutaux, des interblocages et des fuites de ressources. Les fautes d’omission de libération de
ressources sont des cas particulier du problème de vérification que les protocoles d’utilisation des API
sont respéctés. Ce problème a fait l’objet d’un nombre de recherche conséquent [19, 43, 67, 83]. Un
défi, cependant, est d’identifier les opérations de libération de ressources qui sont requises. En ef-
fet, le code des systèmes manipule differents types de ressources, chacuns associés avec leur propres
opérations dédiées, rendant difficile pour un développer donné de devenir familière avec elles. De
plus, le protocole pour libérer un type donné de ressource peut varier d’un sous-système à l’autre, et
peut même varier à l’interieur d’une fonction, selon l’état de la ressource.

Dans le contexte du problème général de vérification de l’utilisation des APIs, un nombre élevé
de travaux ont proposé de compléter un outils de recherche de fautes avec une phase préliminaire
de fouille de spécifications afin de trouver des ensembles d’opérations qui pourraient être présentes
ensembles dans le code [8, 27, 31, 43, 46, 49, 62, 82, 84, 90]. Ces approches suivent une stratégie
macroscopique, identifiant les ensembles communs d’opérations par un balayage globale de la base
de code, ou d’un historique d’exécution suffisament gros. En pratique, cependant, de tels balayages
rapportent beaucoup de faux-positifs [44], qui, à leur tour, conduisent à beaucoup de faux-positifs
parmis les fautes trouvées. Afin de réduire le taux de faux positifs, l’approche de la fouille de spécifi-
cations limite les résultats rapportés aux opérations les plus fréquentes. Les spécifications résultantes,
cependant, sont insuffisantes pour trouver des fautes d’omissions de libération de ressouce dans les
fonctions peu utilisées, ce qui est fréquent dans du code système.

L’approche de la fouille de spécifications détecte les ensembles dans lequels les séquences de fonc-
tions qui sont communément utilisées ensembles et nécessaires pour représenter les protocoles requis
pour effectuer une tache particulière. De telles approches souffrent en générale d’un haut taux de faux
positifs, [44], et ainsi utilisent des formes d’élaguage et de classement pour rendre les spécifications
qui correspondent le mieux les plus apparentes pour l’utilisateur. Les métriques communes incluent
le support et la confiance, ou des variantes [49, 62, 82, 84, 90], comme par exemple le "classement-z"
utilisé par Engler et al. [27]. Le support est le nombre de fois que le protocol est respécté à travers
la base de code, alors que la confiance est le pourcentage d’occurences d’une partie du protocole qui
satisfait le protocole complet. L’outil de fouille de spécification PR-Miner, par exemple, qui a été ap-
pliqué au code de Linux [46], a été évalué avec un seuil qui a pour conséquence d’élaguer les rapports
de fautes dans lesquelles le protocol associé n’a pas un support d’au moins 15 et une confiance d’au
moins 90%.

En utilisant les heuristiques que nous présenterons au Chapitre 4 pour identifier les ressources liées
aux fonctions d’aquisition et de libération, nous identifions 2747 protocoles potentiels dans Linux,
et 1051 dans les autres logiciels considérés (Wine, PostgreSQL, Appache, Python, and PHP). La
Figure 5.5 montre le support et la confiance de chacun, déterminés par une analyse interprocédurale.
Chaque point ou × sur cette figure représente un ou plusieurs protocoles avec les même valeurs de
support et de confiance. Pour Linux, seulement 3% des protocoles ont à la fois un support de 15 ou
plus, et une confiance de 90% ou plus. 88% ont un support en dessous de 15 et 58% ont une confiance
en dessous de 90%. Pour chacun des autres logiciels, 3% des protocoles ont à la fois un support de
15 ou plus, et une confiance de 90% ou plus. 81% ont un support en dessous de 15 et 68% ont une
confiance en dessous de 90%. Les distributions sont ainsi toutes similaires au niveau du noyau et du
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Figure 5.5: Support et confiance des protocoles identifiés

niveau utilisateur. Les fautes dans l’utilisation de presque tous ces protocoles seraient négligées dans
une apprche avec fouille de spécifications utilisant ces seuils. Réduire ces seuils pourrait augmenter
significativement le nombre de faux positifs. Il y a ainsi un besoin pour une approche de détection
de fautes capable trouver des fautes dans l’utilisation de protocoles ayant un support et une confiance
plus basse.

Dans cette thèse, nous proposons une approche alternative qui cible spécifiquement les proprietés
de code de gestion d’erreurs (CGE) dans les systèmes logiciels écrits en C. Nous observons que
quand un bloc de code de gestion d’erreurs a besoin d’une opération de libération de ressources
donnée, les codes de gestion d’erreurs proches ont généralement besoin de la même opération. En
se basant sur cette observation, nous proposons un algorithme de recherche microscopic de fautes
d’omission de libération de ressources, basé sur une analyse de flux et de chemins en grande partie
interprocedurale, qui cible et exploite les propriétés de code de gestion d’erreurs. Notre algorithme est
resistant aux faux positifs dans l’ensemble des opérations d’aquisition et de libération de ressources,
résultant en un faible taux de faux positifs dans les rapports de fautes, et passe très bien à l’échelle.
Il trouve des fautes d’omission de libération de ressources quel que soit le nombre de fois que les
opérations d’aquisition et de libération associées sont utilisées ensemble à travers la base de code, et
est independant de la stratégie pour les identifier. Il se concentre sur l’endroit où une libération de
ressources est nécessaire, en se basant sur les informations trouvées dans la même fonction, et n’est
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pas géné par des informations dérivés d’une autre partie du système. Comme preuve de concepte,
nous fournissons une implémentation, Hector,5 qui utilisent des heuristiques et des analyses en grande
partie interprocedurales pour identifier des opérations de libération de ressource. Hector ne nécéssite
aucune liste fixé ou fournie par l’utiisateur d’opérations de libération de ressource et ne dépend pas
des résultats les plus fréquents obtenus par un balayage global, mais qui atteint toujours un faible
taux de faux positifs.

Les principales contributions de notre travail sont:

• Nous mettons en évidence le fait que les fautes d’omissions de libération de ressources dans les
codes de gestion d’erreurs sont un problème important, qui peut conduire à des arrêts brutaux,
l’indisponibilité de ressources, et l’épuisement de la mémoire. La plupart des codes de gestion
d’erreurs sont rarement exécutés, rendant les fautes difficiles à trouver par les tests.

• Nous montrons que les outils existants pour trouver les fautes dans du code système ne sont pas
capables de trouver la majorité de ces fautes. Ces outils se reposent en effet sur la fréquence
d’utilisation des fonctions pour réduire le nombre de faux positifs.

• Nous proposons un algorithme de détection de fautes d’omission de libération de ressources
basé sur l’observation que le motif de code trouvé dans une fonction peut fournir une idée
des besoins dans le reste du code à l’interieur de la même fonction. Les applications de cette
approche sont illustrées par le fait que dans les systèmes logiciels considérés, jusqu’à 43% du
code est dans des fonctions qui contiennent de multiples blocs de code de gestion d’erreurs.

• En utilisant Hector, nous trouvons 485 fautes d’omission de ressources dans 19 systèmes logi-
ciels, avec un taux de faux positif de 23%.

• Parmis les 485 fautes, il y a 371 fautes d’omission de libération de ressources dans les sys-
tèmes très utilisés Linux, PHP, Python, Apache, Wine, and PostgreSQL. 52% des 371 fautes
impliquent des couples d’aquisition et de libération de ressources qui sont utilisés ensembles
moins de 15 fois dans le code, la faute associée étant peu encline à être détectée par les aproches
par fouilles de données décrite précedemment. Nous avons soumis des patches basés sur beau-
coup de nos résultats aux développeurs des sytèmes concernés, et ces patches ont été acceptés
ou sont en attente d’évaluation.

• Nous avons trouvé que 257 des 285 fautes trouvées dans Linux causent des fuites de mémoires,
et 9 conduisent à des interblocages.

• Un grand nombre des fautes de Linux que nous avons trouvé sont du code non-initialisé, affec-
tant par exemple l’installation d’un préiphérique branché à chaud ou le montage d’un système
de fichier. D’autres sont trouvées dans des fonction exécutées plus fréquemment, telles que les
fonctions IOCTL ou les fonctions read/write. Les fautes détectées par Hector dans les codes
de gestion d’erreurs peuvent en pratique causer des arrêt brutaux ou l’indisponibilité de certain
périphériques, quand le système a une vue incohérente de l’état des ressources. Il peuvent aussi
conduirent à des interblocages et à des fuites de mémoire, si le code fautif peut être itéré. Ces
conditions peuvent rendre le système vulnérable à des attaques malicieuses.

5Les trois premières lettres de “Hector” sont une permutation de “EHC.”
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Plan de la thèse : Le but général de cette dissertation est d’améliorer la gestion des erreurs dans
le code système. Nous avons divisé ce travail en deux parties. La première partie se concentre sur
l’amélioration des structures de code de gestion d’erreurs dans le but d’aider à réduire le nombre
de fautes pouvant etre présentes dans le code de gestion d’erreurs dans le futur. La seconde partie se
concentre sur la recherche de fautes existantes dans le code de gestion d’erreurs des systèmes logiciels.
Le manuscrit est organisé de la manière suivante:

• Chapitre 2 : Contexte. Ce chapitre est composé de plusieurs sections. D’abord, il décrit
brievement differents types de bugs et ceux que nous ciblons. Deuxièmement, il décrit la termi-
nologie utilisée dans nos approches. Troisèmement, il décrit brievement les systèmes logiciels
que nous utilisons pour évaluer les outils proposés, et ensuite décrit l’état actuel de la gestion
d’erreurs dans les logiciels considérés en quatrième section. La cinquième section décrit l’état
de l’art et le compare avec notre travail. La dernière section décrit aussi ma contribution à un
papier sur une étude des fautes dans Linux qui a été publié à [ASPLOS11].

• Chapitre 3 : Amélioration de la structure des code de gestion d’erreurs. Ce chapitre
présente d’abord un algorithme pour améliorer la structure des codes de gestion d’erreurs
dans un système logiciel et décrit l’implémentation de cet algorithme. Ce travail a été pub-
lié à [LCTES11].

• Chapitre 4 : Recherche de fautes dans les codes de gestion d’erreurs. Ce chapitre présente
un algorithme pour trouver les fautes d’omission de libération de ressources dans les codes
de gestion d’erreurs et l’implémentation de cet algorithme dans l’outil Hector. Une version
préliminaire de ce travail a été publié à [PLOS11, Operating System Review (OSR’11)]. Ce
travail a été publié à [DSN13].

• Chapitre 5 : Conclusion et travaux futurs. Pour conclure la thèse, nous fournissons un
résumé des leçons apprises lors de notre travail. Nous fournissons aussi des directions pour les
travaux futurs dans ce domaine.
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