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Abstract

Micro-Electro-Mechanical Systems (MEMS) inertial sensors that are based on a
resonating structure are used in a wide range of applications including inertial
guidance and automotive safety systems. Damping has a significant and negative
effect on sensor performance and there is an increasing need to accurately predict
and control damping levels, particularly for high performance guidance and naviga-
tion applications. Support loss, which governs the losses from the resonator to its
foundation through the supporting structure, is an important source of damping in
MEMS resonators. This thesis focuses on improving the understanding of this par-
ticular damping mechanism and on developing efficient models to predict support

loss at the design stage.

The coupling between resonator and support is of primary interest when evaluating
the interaction and energy transmission between them. To quantify the stresses
acting on the support, a model that predicts vibration transmission through com-
mon MEMS structures is first developed. A general wave propagation approach for
the vibration analysis of networks consisting of slender, straight and curved beam
elements, and a complete ring is presented. The analysis is based on a ray tracing
method and a procedure to predict the natural frequencies and mode shapes of
complex ring/beam structures is demonstrated, for both in-plane and out-of-plane
vibration. Furthermore, a simplification of the analysis for cyclically symmetric
structure is presented. An analytical method is then used to model the support,
approximated as a semi-infinite domain, and to quantify support losses, again for

both in-plane and out-of-plane vibration.




Abstract

To illustrate the effectiveness of the models, several numerical examples are pre-
sented, ranging from simple beam-like structures to ring/beam structures of increas-
ing complexity. A parametric study on the design of particular ring-based reso-
nators, and general strategies for improving the quality factor of common MEMS

sensors by reducing support losses, are also considered.
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Chapter 1

Introduction and literature review

1.1 General introduction and energy damping

The research reported in this thesis relates to the understanding, modelling and
quantification of a specific damping mechanism, called support loss, encountered
notably in Micro-Electro-Mechanical Systems (MEMS) sensors. The research is fo-
cused on applications in the area of miniaturised vibrating resonators that are manu-
factured using recently developed MEMS technology processes and, in particular,

resonators in the form of rings used for angular rate measurements (gyroscopes).

1.1.1 Gyroscopes

Gyroscopes are inertial devices used to measure angular velocity, and are often
referred to as rate sensors. The Foucault pendulum which was first used in about
1850 to demonstrate the Earth’s rotation may be thought of as the earliest man-
made vibrating gyroscope. It was observed that the plane of the swing of the
pendulum appeared to rotate at the same rate as the local vertical component of
the Earth’s rate, as the angular momentum vector of the pendulum was fixed in
inertial space. The gyroscopic effect was there first experimentally proved. This

effect has then be used to manufacture rate sensor devices.
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The basic design for conventional mechanical gyroscopes consists of one gimbal
supported on a frame that is usually constrained by some elastic restraints, see
Figure [1.1} The coupling gyroscopic effects of the high speed rotor would provide
means of measuring the rate. However the need for acute precision bearings to
support a very high speed rotor (typically between 20000 and 30 000 rev/min) and
their general complexity have kept their size quite large. The cost of production of
such devices remains very high. These factors have limited the range of applications

for such gyroscopes to the naval, aerospace and military industries.

Recent technological advances have made possible the emergence of new generations
of rate sensors that do not rely on a spinning rotor to measure the rate. The first
category, namely “optical gyroscopes”, relies on the properties of light. The second
group includes all devices that rely on the mechanical resonance of two or more
modes of vibrations of a resonating structure. These sensors are known as vibrating
structure rate sensors. They consist of a mass supported in the sensor, a means
to excite the mass along a primary mode, and a means to measure the resulting
response along the coupled secondary mode. They make use of Coriolis forces to
determine the rate at which it is rotating about one or more axes. Their main
advantage is that they have no rotating parts that require bearings, and hence they

can be easily miniaturised and batch-fabricated using micro-machining techniques.

The latest generation of vibrating gyroscopes are micro-engineered from silicon
and have dimensions and feature sizes ranging from a few millimetres to a few
micrometres. They are manufactured using the MEMS technology. By taking
advantage of the wafer processing technology developed for the electronics industry
where many devices can be created per wafer (see for instance Figure , a
high volume, low cost and robust manufacturing process can be designed. This
yields very small devices that take full advantage of the excellent mechanical and

electrical properties of crystalline silicon.

This new generation of gyroscopes has widened the range of applications for rate
sensors. In addition to the classic field of applications already stated — mainly

military, rate sensors are now used in automotive safety and navigation, robotics,
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biomechanics and prosthetic aids. An example of practical application is to measure
how quickly a car turns by mounting a set of gyroscopes inside the vehicle. If the
gyroscopes sense that the car is spinning out of control, differential braking engages
to bring it back into control. This application is known as the Electronic Stability
Control or Program (ESC or ESP) and is now mounted in most high standard cars.
The angular rate can also be integrated over time to determine angular position
— particularly useful for maintaining continuity of GPS-based navigation when the
satellite signal is lost for short periods of time. Other possible applications can be

found in the aerospace or military domain with platform stabilisation of avionics.

The potential of gyroscope sensors is quickly expanding with the constant improve-
ment in miniaturisation and performance. The thesis focuses on the MEMS vibrat-
ing ring-based rate sensor developed by Atlantic Inertial Systems (AIS), (previously
BAE Systems). Figure shows photographs and a schematic representation of
the sensor. It consists of a silicon ring structure supported on eight thin, nominally
identical external legs [I]. Ring/beam structures of this form will be used as the

main focus of the thesis.

The sensitivity of the sensor depends on the natural frequencies of the primary
and secondary modes of vibration. For a perfect ring the natural frequencies are
identical and the sensitivity is maximised. However, the presence of manufacturing
variations introduces frequency splits that can significantly degrade performance.
The sensitivity of the sensor is also degraded by the presence of damping. This
project aims to gain improved understanding of the damping caused by support
losses, so that sensors with increased sensitivity can be designed. The following

section provides an overview of damping in MEMS resonators.

1.1.2 Damping in MEMS resonators

Energy is dissipated from MEMS resonators through a number of different damp-
ing mechanisms. Systems contained in a fluid medium (gas or liquid) lose energy

through viscous forces in the fluid, and by radiating sound into the fluid. For ex-
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ample in the Foucault pendulum mentioned in Section [I.1.1] air resistance damps
the oscillation of the mass, so Foucault pendulums in museums often incorporate
an electromagnetic or other drive to keep the mass swinging; others are restarted
and re-launched regularly. By removing the fluid that surrounds the resonator, the

effects of fluid damping can be made negligible.

Energy can also be dissipated by intrinsic damping mechanisms. These are damping
mechanisms that originate within the material itself. One of them is thermoelastic
damping which is caused by the interaction between mechanical strain and thermal
effects in the resonator. Thermoelastic damping in ring resonators has been inves-
tigated in previous research work [2]. Brief reviews of gas damping, thermoelastic
damping and other intrinsic damping mechanisms are presented in Section [1.3
Energy can also be lost by transmission of vibrations from the resonator to its
foundation through the supporting structure; this loss mechanism is known as sup-
port loss, see Section [I.4, This form of damping is less well known than the other
damping mechanisms, and relatively little work has been performed in this area.

This topic forms the main focus of the research project.

The optimum level of damping depends of course on applications. In some cases,
such as mechanical machinery and civil engineering structures, a lack of damping
may lead to excessive vibrations, especially at resonance, leading to fatigue and frac-
ture. In these cases, there is a need to design the structure such that the damping
is over some minimum level to give safe operation. In vibro-acoustic applications,
the goal is usually to reduce the sound transmitted to another environment and a
sufficient amount of damping is consciously introduced (with the use of visco-elastic
materials for example). On the other hand, there are applications in sensors and
instrumentation where it is necessary to minimise the damping, or to control it at
some relatively low level, in order to obtain good performance. The consideration
of damping is therefore important in the design of mechanical systems that contain
vibrating structures. An application where minimising energy losses by damping
becomes very important is when micro-mechanical resonators are used as filtering
elements in electronics using their vibrational transfer function. When a vibrating

beam is under-damped, its vibration will have a bigger amplitude at its natural
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frequency than at any other frequency, giving rise to a resonant peak. Maximum

efficiency will be obtained when this peak is as high as possible.

The work presented in this thesis is motivated by the general need to gain an
improved understanding of the energy dissipation mechanisms in vibrating micro-
structures used in vibrating gyroscopes, and to develop models to quantify and
predict damping levels at the design stage. Within the main damping mechanisms
occurring in such devices, support loss is one of the most complex and least well

understood.

To set the scene for the rest of Chapter 1, a brief theory of the principles of op-
eration of gyroscopes will be presented in Section A detailed review of the
various sources of damping mechanisms that exist in MEMS structures will follow,
in Section [I.3] The ring-based resonator on which the research is focused is sup-
ported on complexly-shaped, folded beam legs, and one may easily understand that
the vibration and energy propagation from the ring to the support are of particular
interest. A review of wave transmission and propagation will therefore be presented
in Section [I.5] Subsequently, the aims and objectives of the research will be stated
in Section [L.7.

1.2 Theory of vibrating gyroscopes

1.2.1 Gyroscope operating principles

All vibrating rate sensors are based upon the phenomenon of Coriolis accelera-
tion [3]. This acceleration is experienced by a particle undergoing linear motion in
a frame of reference which is rotating about an axis perpendicular to that of the
linear motion. The resulting acceleration, which is directly proportional to the rate
of turn, occurs in the third axis which is perpendicular to the plane containing the
other two axes. Thus, in a rate sensor, vibrating motion is coupled from a pri-

mary vibrating mode into a secondary mode, when the sensor experiences angular
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rate. The Coriolis acceleration couples two fundamental modes of vibration of the
resonator structure. In most micro-mechanical vibrating gyroscopes, the sensitive
element can be represented as an inertia element and elastic suspensions with two

prevalent degrees of freedom. A generic example is presented in Figure (1.3

The sensitive element is driven to oscillate at one of its modes with prescribed am-
plitude. This mode is usually called primary mode. When the sensitive element
rotates about a particular fixed-body axis, which is called sensitive axis, the re-
sulting Coriolis force causes the proof mass to move in a different mode. FExcited
oscillations are referred to as primary oscillations and drive mode, whereas oscil-
lations caused by angular rate are referred to as secondary oscillations, secondary

mode or companion mode.

In effect, the operation of Coriolis-based vibrating rate sensors can be summarised
as follows. One mode of vibration of a resonator possessing two orthogonal modes is
excited at a frequency matching its natural frequency in order to minimise the drive
force required to achieve a given amplitude of vibration. Due to the Coriolis accel-
eration, energy is transferred from this excited drive mode to a companion mode
that in turn experiences linear motion. The steady state motion of the companion
mode is a direct measure of the rotational rate that the resonator is experiencing
(see theory in Section . If both modes have the same frequency of vibration,

the coupling is maximised and the sensitivity reached is maximum.

In general, it is possible to design gyroscopes with different types of primary and
secondary oscillations. For example, a combination of translation as primary os-
cillations and rotation as secondary oscillations was implemented in a so-called
tuning-fork gyroscope [4]. It is worth mentioning that the nature of the primary
motion does not necessarily have to be translatory but could be rotary as well.
Such gyroscopes are called rotary vibrating gyroscopes. However, it is typically
more convenient for the vibrating gyroscopes to be implemented with the same

type and nature of primary and secondary oscillations.

Nowadays, there are many practical designs which can be used as a gyroscope. With

respect to the number of inertia elements used, the nature of primary and secondary

6
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motions of the sensitive element, it is convenient to subdivide these into three groups
as follows: simple oscillators (mass on a string, beam), balanced oscillators (tuning
fork), shell resonators (wine glass, cylinder, ring); see [5] for details and principle

of operation for each of these groups.

One of the most well known examples of oscillatory gyroscope with continuous
vibrating media is the Hemispherical Resonating Gyroscope (HRG). Its sensitive
element design is based on the resonating shell that has a hemispheric or so-called
“wine-glass” shape. Primary oscillations are provided by exciting vibrations in the
rim of the shell. In case of no external angular rate, the nodes of vibration do not
move. If the sensitive element rotates around its sensitive axis, which is orthogonal
to the plane of vibration, the secondary oscillations can be detected at the nodes.
Despite the HRG itself has never been referred to as a micro-mechanical gyroscope,
its operation principle has been widely used in numbers of micro-mechanical designs.
The hemispherical shape of the shell has in particular been replaced with a thin

cylinder or a ring.

By correct design of a shell resonator it is possible to overcome problems associated
with resonator mount sensitivity experienced by simple oscillators and thus improve

bias performance, and greatly reduce sensitivity to shock and vibration [I].

1.2.2 Motion equations

To illustrate the principle of a vibrating gyroscope, consider a point mass M at-
tached to a rigid frame by four springs of stiffness K and four dampers with damping
coefficient C' as shown in Figure [I.4] The mass is constrained to move in the (z,y)
plane. In operation, the mass is forced to vibrate at the frequency w in the z-
direction by some external mechanism which maintains a constant amplitude X, of
oscillation such that z = X, e“!. Assuming that there are no linear accelerations
experienced by the device along the z- and y-axes, but that the frame is rotated

about the z-axis at an angular velocity €2, the response y of the mass along the
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y-axis is governed by [5]:
Mij+2C7% 4+ 2Ky = —2iMwXQ . (1.1)

The angular velocity €2 is assumed to be constant in the following discussion. Pro-
vided that the vibration along the z-axis is maintained, it can be deduced from
Equation that vibrations along the y-axis exist only when the angular velocity
Q) is non zero. In other terms, when a constant angular rate of turn is applied, the
Coriolis force causes the mass to vibrate in the perpendicular direction. For steady

state response, y = Y ¢! is substituted into Equation (I.1]) and the motion of the

. QIMWX()Q iwt (1 2)
Y= "\ M f2iCwr2K) © ‘

mass becomes [5]:

Equation (1.2]) shows that the steady state amplitude of the response in the y-
direction is directly proportional to the applied angular velocity €2. Thus the am-
plitude of the response in the y-direction provides a measure of the applied angular

velocity ).

1.2.3 Special case of the ring-based rate sensor
Operating principle

For the purposes of discussing the basic operation of a ring-based vibrating gy-
roscope, it is convenient to neglect the supporting legs and consider the ring in
isolation. For a perfectly circular ring with an uniform rectangular cross-section, it
is well known [5] that the in-plane flexural modes of vibration occur in degenerate
pairs with equal natural frequencies. Figure (1.5 shows the mode shapes for the
so-called 260 and 36 pairs of modes. The modes in a degenerate pair of flexural
modes have identical natural frequencies, are asymmetric, have the same deformed
shape and are separated from each other by an angle %, n being the flexural mode

number (n = 2 for the 20 mode and n = 3 for the 30 mode).

To operate as a sensor, one of the 20 modes, which is normally referred to as the

8
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primary mode, is driven at constant amplitude at its natural frequency via induc-
tive, capacitive or piezoelectric actuation. Figure illustrates an inductive
excitation where a magnet is present within the ring. When there is no angular
velocity applied to the ring (i.e. the ring is stationary), the motion of the ring is
described by the primary mode only (see Figure . However, when the ring is
rotated about its polar axis, Coriolis acceleration occurs and the complementary
secondary mode of vibration is excited (see Figure . By placing transducers
at the nodal points of the primary mode, the radial component of vibration of the
secondary mode can be measured. Given that the amplitude of this vibration is
proportional to the rate of turn, the angular velocity of the sensor about the polar

axis can be determined.

In the new generation of ring gyroscopes, out-of-plane modes are excited and mea-
sured [6]. Even though this design is more complex and difficulties occur in match-
ing each vibrating mode with a particular resonant frequency [7], the operating

principles are the same as for in-plane vibrations.

Existing model

The inductive sensor that vibrates in-plane is shown in Figure|l.2, Electrical current
travels around segments of the ring. It provides inductive drive forces on the sensor
that excite its primary mode of vibration. Similar inductive means are used to
monitor the vibration of its secondary mode [I]. This sensor is composed of a thin
ring supported on eight external, nominally identical legs attached to a surrounding
structure. The supporting legs consist of three straight beams with curved sections
between them, each beam having a rectangular cross-section area. The geometry of
the supporting legs and the point at which they are attached to the ring critically
affect the performance of the sensor. The chosen design ensures that the displaced
shape of the resonator is not significantly different from that of a free ring when
the sensor is in operation. This ensures that the ring is the dominant resonant

structure, and prevents frequency splitting [§].

The tangential w,(6,t) and radial w,(6,t) modal displacements for the in-plane

9
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flexural vibrations of a thin ring vibrating at the frequency w are given by [9]:
wy(0,t) = Wy sin(nd) e and U, (0,t) = Uy cos(nd) e, (1.3)

where 6 is the circumferential location relative to a pre-defined datum. In practical
applications, the ring is never perfect and small imperfections are always present.
Imperfections due to manufacturing variations and material non-uniformity fix the

positions of the modes relative to the ring and yield small frequency splits [10].

In order to model the complete sensor (ring and legs) it is necessary to combine the
above ring model with an appropriate leg model. In previous work [I1], the leg was
modelled as point masses with three discrete springs (two translational and one
rotational). This lumped parameter model was used to determine the governing
equation of motion and natural frequencies for the complete sensor. The princi-
pal stiffness values were obtained by using an analytical approach to deduce the
compliance matrix. The effective masses were then obtained by using a frequency
response method in conjunction with finite elements. In this model, the leg de-
formation was assumed to be determined by the ring displacement at the point of
attachment of the leg to the ring. It was also assumed that the mode shapes of the
ring were identical to those of a free ring. This model was then re-used to calculate
the quantity of energy lost by thermoelastic damping in the legs [2]. But again, the
vibrations of the legs were assumed not to have any influence on the ring and were

not modelled in detail.

In order to study the support losses, it is necessary to fully understand the displace-
ments of the leg at the end attached to the supporting structure, referred to as the
anchor end (see Section [I.4). To achieve this, an improved model of the supporting
leg is required that properly takes account of the vibrations in the different leg

sections. Techniques capable of achieving this are discussed in Section [1.5

10
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1.3 MEMS damping mechanisms

Characterisation and quantification of the different damping mechanisms are im-
portant steps in the design of MEMS resonators. A variety of damping mechanisms
can lower the quality in resonant MEMS, including gas damping, material losses,
thermoelastic damping, and support losses. Which loss mechanism matters most to
a particular design depends on the device geometry, the material used, the environ-
ment, and the operating frequency range. All of these damping mechanisms have
been studied experimentally for different types of cantilever beam resonators [12-
14]. The work reported in [15] gives a more general review. Each of the different
energy loss mechanisms is discussed in this section. Before doing this the quantity

used to define energy loss, namely the quality factor, is defined.

1.3.1 The quality factor

Damping cannot be measured directly but instead is deduced from the response
characteristics of selected vibrating systems. The steady state response of a single
degree of freedom system, excited by a harmonic force of constant amplitude, can
be used to determine damping through the observation of several characteristics,
including the bandwidth of the frequency response, the amplitude of the response

at resonance, Nyquist plots, hysteresis loops, and dynamic stiffness [16].

For sufficiently small values of damping, the quality factor @ (or Q-factor) can be

experimentally measured from the amplitude-frequency curve and defined as:

Q=—"_ (1.4)

)
Wo — W

where wy is the natural resonant frequency; w; and wy are situated around the
resonant frequency such that the amplitude of response X; at frequency w; and X,

1
at frequency wy are equal to —= times the peak amplitude X, (amplitude at wy):

V2

X, =X, = (1.5)

Xo
2
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It can be shown [17] that the energies dissipated at the frequencies w; and wy are
then equal to one-half of the energy dissipated at resonance. For this reason, the
above bandwidth (wy — wy) is often called the half-power bandwidth. Noting that:

X1

1

~ -3 (1.6)

justifies the frequently practical used technique of determining the half-power band-
width by locating the frequencies on either side of resonance peak for which the

response has decreased by three decibels, see Figure [1.6]

The @Q-factor is a measure of the sharpness of the resonance peak of the system
response curve. Systems with high @Q-factor have a sharp, large magnitude and

well-defined resonance, and equivalently low levels of energy loss.

The @Q-factor can also be introduced with the simple viscous damping model that
is usually presented in vibration textbooks. Consider the free vibration of a linear

mass-spring-damper system whose equation of motion can be written as:
Mi+ Ci+ Kx =0, (1.7)

with M the mass, C' the damping coefficient, K the stiffness and x the displacement.
The form of the solution to Equation depends on the amount of damping. If
the damping is small enough, the system will still vibrate, but eventually, over time,
will stop vibrating. This case is called under-damping — this is of most interest in
vibration analysis. If the damping is increased just to the point where the system
no longer oscillates, the point of critical damping is reached. After this point, the
system is over-damped. The value that the damping coefficient needs to reach for
critical damping in the mass-spring-damper model is: C, = 2¢/KM. When ¢, the
viscous damping ratio defined as ( = C'/C., is small, i.e. ¢ < 0.1, the Q-factor can

be approximated as [17]:

1
Q ~ 5% (1.8)

The damping ratio ¢ characterises the amount of damping in the system. The
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form of the solution of the differential equation (1.7)) depends on the value of the

parameter (.

This mechanical quality factor @) is a key performance factor in MEMS resonators.
Just like the damping ratio ¢, the )-factor is a non-dimensional parameter that
quantifies the level of damping in the system. Whilst the damping ratio is widely
used in the vibration literature to quantify damping, the Q-factor is widely used
in the MEMS literature, and will also be used in this thesis. ) can also be seen
as a measure of the ratio of the total energy stored in the system W to the energy

dissipated per cycle of vibration AW (energy lost per cycle). It is defined as [18]:

(1.9)

The presence of damping causes a reduction in vibration amplitude and can seri-
ously affect sensor performance. Generally damping forces can depend on many
quantities and in practical systems, such as MEMS resonators, different energy loss
mechanisms occur. There are three main ways for the energy of vibrating systems
to be dissipated. First of all, the interaction of vibrating structure with its ambient
fluid causes energy dissipation either via local viscous effect or radiation away into
the fluid. This is called air (or gas) damping. Secondly, energy can be dissipated
throughout the entire bulk material used to manufacture the structure. This is often
referred to as intrinsic material damping which includes thermoelastic damping and
energy losses as a result of dislocation and grain boundaries relaxation in the ma-
terial, called material losses. Lastly, vibrational energy can be dissipated through
transmission of elastic waves away from the resonator during vibration. These vi-
brations usually propagate and dissipate in the support structure. This mechanism
is known as support loss. It can be shown that the overall Q-factor, Qioa1, due to
a set of n distinct independent loss mechanisms with individual QQ-factors @)1, Q)o,

..., @, can be calculated as [19)]:

1 1 1 1
=— 4+ —+...+ . 1.10
Qtotal Ql QQ Qn ( )

This relationship indicates that it is the lowest ()-factor of the different mecha-
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nisms which limits the total (). The several known sources of damping in MEMS

resonators will be discussed in the following section.

1.3.2 Air damping

Air damping can occur in a number of different ways. A body that travels through
a fluid collides with the molecules of that fluid and transmits some of its energy
to those molecules. This process causes viscous damping by displacing some of the
fluid around the body, commonly referred to as viscous drag, and acoustic radiation
by exciting the fluid in a direction parallel to the motion. The source of damping is
the resulting shear force and drag force acting on the resonator as it cuts through
the gas during motion. Analysis of this problem is not trivial because of the large

volume of gas interacting with the resonator.

One common situation of air damping in MEMS applications is a body moving
near a stationary body or surface. If the vibrating structure oscillates parallel
to the base structure separated by a thin gap, the gas in the gap and ambient
to the microstructure is sheared which in turn, imposes viscous damping on the
system. This phenomenon is often modelled as Couette flow. In the case where
the vibrating structure has a perpendicular motion towards the stationary surface,
squeezed gas damping is present as the surfaces move towards each other. This is
particularly the case for devices relying on capacitive sensing and actuation, such as
the one described in [6]. Generally, smaller gap thickness will increase the level of
electrostatic excitation but gas film forces also increase rapidly as the gap thickness
reduces. Consequently, the viscous forces in the gas can cause a significant amount

of damping to the motion.

Modelling the flow of real gas mathematically is never simple. The gas flow can
be represented either as a continuum or as a collection of molecules. Its modelling
depends on the flow regime. A dimensionless parameter that is commonly used to
determine the flow regime in a particular case is the Knudsen number [20], which is

the ratio of the mean free-path length of molecules within the gas to a characteristic
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dimension of geometry.

When the Knudsen number is small, gas behaviour is described by differential equa-
tions in terms of spatial and temporal variations of density, velocity, pressure, tem-
perature and other macroscopic quantities [20]. The well-known continuum model
is the Navier-Stokes equations. This is the most commonly applicable mathematical
model. When the continuum model is valid, local gas properties such as density
or velocity can be defined as averages over a volume that is large compared to the
microscopic structure of the gas [20]. However, continuum models based on the in-
compressible Navier-Stokes equations do not cover the cases where MEMS devices
operate in a low pressure environment or when the devices are designed with gaps

in the order of a micron.

When the Knudsen number is not small, sub-continuum deviations from the Navier-
Stokes model begin to play a role. For Knudsen numbers greater that 0.01, slip
flow along walls starts to become important; for Knudsen numbers between 0.1
and 10 the flow is in the transitional regime, where the bulk of the fluid no longer
conforms to the incompressible constant-viscosity assumptions of the Navier-Stokes
equation; and for Knudsen numbers greater than 10, one enters the regime of free
molecular flow, where interactions between gas molecules are much less frequent

than interactions between a gas molecule and the solid boundary [20].

When the Knudsen number is not small, the flow is modelled using the second
approach: as a collection of molecules. In this approach, the gas is regarded as
a very large number of discrete particles. The model is derived from statistical
mechanics in which a distribution of gas molecule velocities is used to compute the
momentum transferred from the vibrating device into the gas [20, 2I]. In other
words, the flow is in this case studied using deterministic or probabilistic methods.

For structures with simple geometry, the continuum model is often tractable.

Gas damping was recognised early as a major energy loss mechanisms for micro-
resonators, as it is for macroscopic resonator. Consequently the role of gas damping
in micro-resonators has been widely studied using both theoretical models and

experiments. A recent review on the subject can be found in [22]. With the advances
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in MEMS packaging technology, resonators are now often designed to be contained
in a vacuum encapsulation. Assuming that the gas pressure is sufficiently low,
gas damping of the vibration of the resonator is eliminated, but other damping
mechanisms are still present and limit the @)-factor. One of these is thermoelastic

damping, which is discussed in the next section.

1.3.3 Thermoelastic damping

Thermoelasticity describes the coupling between the elastic field in the structure
caused by deformation and the temperature field. When a beam bends, it produces
a stress gradient in the direction of the bending, which is accompanied by a strain
gradient. One side of the beam will be in compression and the other in tension.
Volume changes will exist that are opposite on each side of the beam. The strain
field causes a change in the internal energy such that the compressed region becomes
hotter and the extended region becomes cooler. This volume change creates a
temperature gradient. When this temperature gradient is created, the body tends
to move back to thermal equilibrium, and dissipative heat flow will ensue. Energy

is dissipated within this irreversible heat flow.

The earliest study of thermoelastic damping can be found in Zener’s classical work
starting in 1937 [23H25]. In these papers, Zener described the mechanism of ther-
moelastic damping, derived approximate formulae of the damping effects in beams
and other simple geometries, and compared his predictions to experimental mea-
surements. The formula he derived for evaluation of thermoelastic damping for
beam structures in bending has been widely accepted due to its closed form, sim-
plicity, and applicability. It has been verified to be accurate, but is only applicable
to beams or thin structures vibrating in low order flexural modes. Many of the

following works on thermoelastic damping are extensions of Zener’s studies.

Lifshitz and Roukes [26] presented a refined mathematical analysis of the same
thermoelastic problem in which the governing equations were solved in a more ex-

act manner. Instead of using a sine series to approximate the temperature profile
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(method used by Zener), the differential equation for temperature was solved ana-
lytically. The results from [24] and [26] analyses agreed well. Unfortunately, their

model was still restricted to beams.

Wong [2] performed a detailed study on thermoelastic damping in MEMS resonator.
He took two existing analyses for simple beam structures [24, 26] and extended them
to deal with the in-plane and out-of-plane flexural vibrations of thin perfect rings,
developing analytical formulae for their Q)-factors. This work also extended Zener’s
theory [24] to a multi-component structure composed of a ring supported on eight
beam-like legs. During his research, analytical models for thermoelastic damping
were developed which provided improved understanding of how resonator geometry,
dimensions and material properties affect thermoelastic damping in ring resonators.

Further work extended the models to consider bi-layer beams and slotted rings.

As designers explore different geometries which are no longer simple beam-like struc-
tures, more general methods based on numerical simulations have been developed.
Some recent studies have used finite element simulations to numerically solve the
coupled equations of elasticity [27-29]. The finite element approaches are based
on the discretisation of the coupled equations of thermoelasticity. They have been
shown to be valid and verified against experimental data for beam-type geometries.
However, they have an important drawback which is that solving coupled equations
increases the degrees of freedom of the problem and increases the computational
cost. Koyama [30] presented a finite element based numerical method to efficiently
evaluate the transfer function for the coupled equations of thermoelasticity. From
this transfer function, the Q)-factors of MEMS resonators including the effect of ther-
moelastic damping were computed. Finite element analysis allows @)-evaluation of
devices irrespective of fabrication material or geometry, liberating designers from
the contemporary beam-like structures. To enable a fast transfer function evalu-
ation, Koyama used the projection of the large finite element discretised system
of equations onto a smaller subspace of solutions. This method based on transfer
function evaluation of a reduced-order model was proved to be up to 60 times faster

than a full finite element discretisation, and as accurate [30].
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In a recent work [31I], a finite element analysis was used to validate predictions
obtained with a modal approach. In this modal approach, the key was to repre-
sent mechanical vibration using pure structural modes and temperature distribution
using a summation of pure thermal modes. The approach concentrated on under-
standing the interactions between the mechanical strain and the thermal gradients.
It was applied to simple beams and to more complicated slotted structures and

showed good agreement with the finite element method.

It is important to note that thermoelastic damping is one of the most dominant
damping mechanisms in structures with sizes in the range of a few microns to a few
hundred microns. Sub-micron-sized structures have natural frequencies that are
comparable to that of the lattice vibration of the material, and it is not possible to
consider the system as an elastic continuum. Moreover, it is not possible to define
the temperature locally and the definition of the thermal expansion coefficient is not
valid [26]. For this range of sub-micron resonators, a transition from thermoelastic

damping loss to surface-related loss (or material loss) is suggested [14].

1.3.4 Material losses

An ever-present source of energy loss in MEMS resonators is internal friction [14)
32]. This source is the most difficult to quantify, because it is dependent on the
imperfections in the structure of the materials used and it is also highly dependent

on fabrication methods.

Internal friction is the dissipation in the form of heat occurring when chemical bonds
are made and broken. In a single-crystal beam, point defects and dislocations are
the cause of internal friction. The quantity of point defects and dislocations in the
beam can be estimated using probabilities. The energy loss due to a single defect
or dislocation can be modelled and the overall internal friction derived using the
total number of defects and dislocations estimated. In a polycrystalline material,
the dominant cause of internal friction is grain boundaries. In an amorphous ma-

terial, the friction is a bulk property, and is greater than the other two cases. The
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irreversible energy lost in the relaxation phenomena when defects and chemical im-
purities in the material try to relax back to equilibrium, is the basis of the so-called

material losses.

In addition, the surface state of a material can cause energy loss due to the fact
that bonds are dangling at the edge of a crystal. Composite materials also have

energy lost at the boundary between two layers.

Surface-related loss is an important damping mechanism for structures with high
surface to volume ratio [33]. The surface to volume ratio increases as the thickness
reduces. It is common for micro-structures to have a thin layer with different
material properties on their surfaces due to the different fabrication processes and
surface contamination. This layer of material with properties different from those of
the bulk material can affect the achievable Q-factor significantly. There is no clear
explanation on how surface treatments processes modify the surface property but

it is expected to change the crystallographic orientation of the bulk material [34].

A thorough review of support loss, which is the mechanism of main interest in the

thesis, is given in the next section.

1.4 Support loss

An essential energy loss mechanism is support loss — also referred to as anchor
loss. Every resonator is attached to the surrounding structure, and this attachment
creates a path for the radiation of vibrational energy away from the resonator.
Elastic waves are created when the anchor moves, sending internal pressure waves
out into the bulk material. These waves can be longitudinal or transverse, depending

on the vibrational mode of the resonator and anchor attachment.

Innovative designs potentially allow the coupling between the resonator and its an-
chor to be removed [35], reducing energy loss by reducing anchor motion. Such
systems may involve a mounting mechanism which isolates shear and moment reac-

tions from the support. Support loss can also be reduced by properly designing the
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resonator so that the vibrating structure is symmetric and vibrations do not result in
motion of the centre of mass [19]. If resonators were unbalanced, energy loss would
occur at the mounts. It is recommended that resonators should have a fixed centre
of mass and zero total moments resulting from vibration. Stemme [19] reported ex-
amples of balanced structures including a dual-diaphragm resonant pressure sensor

where the vibrating structure was suspended at the two nodal lines.

Another efficient design in the support loss point of view can be exemplified by
the keys of a xylophone. When the free bar flexes in the fundamental mode, there
are two places that have no translational motion — otherwise known as the nodal
points. The vibrating elements are suspended not at the ends, but at these nodal
points. By simply supporting the bar at those points, the coupling is minimised,
resulting in reduced energy radiation through the support. In addition, it is worth
noting that the higher modes tend to have nodal points at different places, mean-
ing that the support will damp these modes quickly. This allows the xylophone
to have a sustained, pure tonal sound. A similar design can minimise energy loss
due to energy radiation through the anchor in MEMS resonators, although creating
a simple support for a micro-mechanical beam is difficult. A perfect simple sup-
port has infinitesimally small width and exact position at the nodes. With very
narrow resonators, it is difficult to make the support beams sufficiently small, and

manufacturing errors ensure that the position of the support will not be exact.

Energy propagation into the supporting structure has received only limited atten-
tion. A variety of different computational approaches have been proposed by Park
and Park [36, 37] and Bindel et al. [38, B9] but the most relevant analytic treat-
ments appear to be those by Jimbo and Itao [40], Cross and Lifshitz [41], Hao et
al. [42, [43] and Photiadis et al. [44, 145]. These approaches are reviewed below.

1.4.1 Computational approach

In 2004, Park and Park [36] [37] proposed a computational model for predicting the

propagation of waves from a vibrating beam to the substrate. They developed a
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multi-physics model consisting of a resonating beam model, a spatially distributed
electrostatic model and a substrate model. They assumed that the wave propagation
in the substrate was caused by external forces at the anchors. The substrate motion
was then treated as a classical wave propagation problem into an elastic half-space
foundation. This assumption is analogous to the one made in references [41], 42], in
which, sinusoidal excitations were applied at the anchor area of the resonator beam
to obtain the mechanical force-displacement relation at the anchor. The resulting
coupled model was then used to evaluate the resonator performance, in particular,

the Q-factor degradation due to the anchor loss.

The assumption that the substrate can be modelled as a semi-infinite elastic half-
space has often been used. By considering the resonator to be much smaller than
the substrate, very little energy leaving the resonator is reflected back and there-
fore the substrate can be seen as being semi-infinite from the perspective of the
resonator. To simulate the response of a semi-infinite domain, boundary dampers,
infinite elements, boundary integrals or exact Dirichlet-to-Neumann boundary con-
ditions can be used (see e.g. [46-49]). Each of these methods in some way truncates
the simulation domain with an artificial boundary and attempts to absorb outgoing
wave energy without reflection. However, all of these techniques have some fail-
ings that are mainly a “non-total” dissipation of energy when waves are impinging
the exterior boundaries, and a high computational cost when using finite element

methods.

In 2005, Bindel et al. |38, 39] developed an approach to implement a Perfectly
Matched Layer (PML) applied on a radially driven centre-supported disk resonator.
This approach was based on the fundamental work done by Bérenger [50]. Bindel
et al. described how anchor losses can be computed accurately using an absorbing
boundary based on a PML which reduces incoming waves over a wide frequency
range. A PML is a finite domain that is attached to the outer boundary of a (finite
element) model which incorporates the system of interest — the resonator, its anchors
and part of the substrate. The extension of the PML technique fits naturally within
the standard finite element code architecture. The PML is a continuum domain

devised in such way that the mechanical impedance between the PML and the
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model is perfectly matched. This essentially eliminates spurious reflections from
the artificial interface. The PML is finite in extent and thus has an outer boundary.
The presence of this outer boundary requires the PML to damp the out-going waves
before they reflect and “pollute” the computation. The out-going waves go through
the interface with the PML without being reflected; they are massively damped in
the PML region; few of them are reflected on the outer boundary of the PML; the
resulting in-coming waves are damped again in such a way that almost no in-coming

waves come back into the model.

1.4.2 Analytical approach

In 1968, Jimbo and Itao [40] derived an expression for the energy loss from a can-
tilever vibrator of infinite out-of-plane thickness attached to a semi-infinite medium.
They compared the vibration energy of the cantilever with the energy associated
with strain induced in the elastic medium by the shear force and bending moment
at the root of the cantilever. They suggested that the Q-factor (Qsupport) given by

the developed model was:

L) 3 Esup.

qupport ~ 2.17 (b E )

(1.11)

where b and L are the in-plane width and length of the cantilever, respectively, E
is the Young’s modulus of the cantilever, and Fj,, is the Young’s modulus of the

supporting medium.

In 2003, Hao et al. [42] derived a closed-form expression for support loss in beam res-
onator. The beam resonator was vibrating in-plane and had the same out-of-plane
thickness as its support. They modelled support losses in beams with clamped-free
and clamped-clamped boundaries. The flexural vibrations of the beam were de-
scribed using beam theory. Elastic waves excited by the shear stress of the beam
resonator and propagating into the support structure were described using two-
dimensional elastic wave theory. Proposed expressions for the Q)-factor of in-plane

bending vibrations are functions of the cube of length to in-plane width ratio (L/b)
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and are mode shape dependent. The model suggested lower quality factor for higher
order resonant modes compared to the fundamental mode of a beam resonator. Hao
et al. calculated the Q-factor for the fundamental mode of in-plane vibration of can-

tilever beam to be:

I 3
qupport = 2081 <b> . (112)

Later, the work was extended to a centre-supported disk resonator [43]. The same
method was used: separation and coupling between the three components (disk,
support beam, and support structure). The disk was modelled by a free-edged cir-
cular thin-plate as the support beam was much smaller in size and had negligible
effect on the mode considered. Hence, explicit expressions for its resonant frequen-
cies, mode shapes and vibration energy were derived. The displacement at the disk
end of the support beam was found from the mode shapes of the disk. Through
the support beam, this displacement is further transferred to the stress on the sup-
port structure (substrate). The support structure was modelled as a semi-infinite
medium, through which part of the vibration energy propagates to infinity (in the
form of elastic waves) and cannot return to the resonator, leading to energy loss.
The behaviour of the support structure was described by the elastic wave theory,
giving rise to the displacement under varying stress. From these displacements and

stresses, the quality factor could be evaluated.

The analytical closed form expressions obtained in [42} 43] are particularly attractive
to designers due to their simplicity, but the drawback is that they are only valid
under the assumptions that are made and available for restricted geometries. Thus
if the geometry is special such that the mechanism of damping is not known, this

method is inapplicable.

More recently, Cross and Lifshitz [41] considered elastic wave transmission across
the junction between two plates of differing widths (having the same out-of-plane
thickness), and calculated the associated energy loss. With both systems assumed
to be small compared to a wavelength, they determined that ) was linearly pro-
portional to L/b for the fundamental compression mode, the torsion mode and the

out-of-plane flexural mode, and that ) was proportional to (L/ b)® for the in-plane
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bending mode. They suggested that thin-plate elasticity theory provides a useful
and tractable approximation to the three-dimensional geometry. The results showed
that when the resonator-support coupling is large, it is important to consider the

dissipation properties of the support structures as well as the resonator.

The main difference between all these analytical studies is the way that they treat
the support structure. The support is either considered to be of infinite out-of-plane

thickness [40] or as a plate equal in thickness to the resonator [41l [42].

Photiadis et al. [44], 45] analysed these two different cases. They provided analyti-
cal expressions for the energy loss from vibrating mechanical resonators into their
support structures for two limiting cases: supports that can be treated as plates
with a thickness that needs not to be the same as that of the resonator itself, and
supports that act as semi-infinite elastic media, with effectively infinite thickness.
The support loss resulting from out-of-plane vibration of a cantilevered beam and
radiation into a supporting medium, modelled as a semi-infinite plate, was found

to be:

L

A 2
qupport =~ 1053 E (Shup> ) (113)

where b is the in-plane width of the cantilever beam, and i and hg,;,. are respectively
the out-of-plane thickness of the cantilever beam and the support structure. The
in-plane width of the support is supposed to be infinite as the support is modelled
as a semi-infinite plate. One can see here the same proportionality in L/b expressed
by Cross and Lifshitz [41]. As the in-plane stiffness of the plate is much greater
than its out-of-plane stiffness, Photiadis et al. did not consider in-plane vibrations
of the beam and assumed that the attachment loss due to in-plane displacement is
negligible compared to loss due to out-of-plane displacements. When the support
structure was sufficiently thick relative to the wavelength of the propagating waves,
the base was approximated as a semi-infinite elastic medium (a half-space) and the

@-factor for out-of-plane vibration was found to be:

L

L 4
qupport = 3226 E <h> . (114)
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All these different studies use the displacements of the resonator at its anchor end to
evaluate the support loss. In the case of a rate sensor consisting of a ring supported
on legs, the derivation of these displacements is not straightforward. The vibration
of the ring resonator is firstly transmitted to its anchor legs, then it travels along
the first beam section of the leg to be partially transmitted to the second beam
section. The same process occurs between the second and third beams constituting
the leg. The resulting vibration in the third and last beam section impinges on
the anchor end and gives the required displacements. From this description it is
clear that the transmission and propagation of vibrations through the structure is

of principal interest in this work. The following section discusses this topic.

1.5 Vibration transmission and propagation

This section reviews the current literature relating the prediction of vibration trans-
mission and propagation through a structure. From this study it was concluded
that the ray tracing method is well suited to analysing the vibration transmis-
sion through the rate sensor at a particular frequency. A brief description of this
method is introduced later in this section, and a more detailed examination of the
method is provided in Chapter 2. Before this, a brief description of other available
techniques is provided, with the strengths and weaknesses of each approach high-
lighted. The approaches considered are the Finite Element Analysis (FEA), the
Statistical Energy Analysis and (SEA) the Energy Flow Analysis (EFA) based on

wave propagation.

1.5.1 Finite element analysis

Finite element analysis (FEA) is widely used in industry to model complex struc-
tures subjected to various loads and stresses. The technique can also be applied to
vibration problems. This is usually done in two stages. The mesh of the structures

is analysed to calculate the mode shapes and natural frequencies of the structure.
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Using this data the response of the structure is evaluated using a modal superposi-

tion technique.

Gavric and Pavic [51] developed a superposition technique approach to model the
vibrational energy response in a structure using FEA. The results presented showed
that the response at low frequencies is affected by higher order modes. If these
higher order modes are ignored then the predicted results can become misleading.
Therefore a more dense mesh is required which is capable of including these higher
modes, so an accurate prediction of the response of the structure is obtained for
the lower frequency range, which also limits this approach to low frequencies. This
is a common problem encountered in FEA. As the frequency increases, so does the
number of modes in the structure, requiring more elements and hence increasing
computing time. The mesh has to contain a large number of elements and makes
even relatively simple cases, at low modes, very expensive and time-consuming to
run. This factor limits the application of FEA. Even the most powerful computer

has an upper limit to the problem size it can handle economically.

To study, understand and quantify support losses in MEMS resonators, it is im-
portant to know which parameters have strong influence on energy losses. From
a single FEA, it is not possible to derive the significant parameters and to get a

precise description of the behaviour at the anchor end.

1.5.2 Statistical energy analysis

In the early 1960’s the existing FEA approach was found to be of limited practical
use for modelling light weight aerospace structures, due to the restrictions imposed
to the size and frequency range of the model and the computational cost, which
are still limiting factors today. Statistical Energy Analysis (SEA), developed by
Lyon [52], considers a greatly simplified structure compared to FEA. Instead of
considering the variation of the response as a spatially dependent factor, the struc-
ture is split into subsystems and the average energy density of each subsystem is

evaluated over a frequency band. Each subsystem is assumed to contain a uniform
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energy density. Due to this, SEA produces a single statistically averaged prediction
of the response in each subsystem, per frequency band, which is not sensitive to

slight variations in the structure.

Criteria have been set which the structure should meet to provide some confidence
in the predicted response. The main restrictions are that there should be more than
five to seven resonant modes in a frequency band, in each subsystem [53]; and that
there should be a weak coupling between subsystems. These criteria are likely to
be satisfied at higher frequencies, which can be far above the reliable frequency of

FEA, leaving a gap in mid-frequency range.

Confusion is often formed by the term “low”, “mid” and “high” frequency. The
predictive approaches, such as SEA and FEA, are concerned with the number of
modes present in the structures. The exact number of modes is dependent upon
the structure itself. If the frequency considered is low, there tends to be a low
number of modes excited in the structure (which favours the FEA approach), as
the frequency increases the number of modes increases (which favours the SEA
approach). The term “mid” frequency represents the frequency range where there
are too many modes to apply FEA with confidence and too few modes to satisfy
the SEA assumptions. In some structures this band between FEA and SEA may
not be present. However, in many structures the SEA approach is not appropriate
(i.e. strongly coupled subsystems) and there is a void in the analysis for the “mid”

and “high” frequencies.

There is therefore a possible gap between the applicability of the FEA and SEA
approaches in the mid-frequency range and for structures where SEA cannot be
reliably applied. Due to this, a different approach has been required which can
be applied to structures which are strongly coupled in the mid- to high-frequency
range. This approach is the energy flow analysis based on wave propagation, see
Section [I.5.3] It is simple to apply to structures and can be implemented using

existing FEA software, which reduces the development costs.

Moreover, SEA approach is not applicable to gyroscopes as they operate at partic-

ular frequencies and only these frequencies are of interest — not a frequency band
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containing several modes. Furthermore, SEA is usually used for systems that are
not precisely known and defined. It gives an approximate description of the energy
contained in these systems. For the case of support losses in MEMS gyroscopes, a

precise and detailed evaluation of the energy transmitted to the support is needed.

1.5.3 Wave approach

The vibrations of elastic structures, such as strings, beams, and rings, can be de-
scribed in terms of waves that propagate and decay in waveguides. Such waves are
reflected and transmitted when incident upon discontinuities [54) [55]. For the rate
sensor under investigation, the different components (ring and legs) effectively form

a waveguide and a wave approach seems to be a suitable approach.

Ray tracing

Mace [56], [57] was one of the first to use a wave approach to determine the power
flow between two coupled Euler-Bernoulli beams and the distribution of energy
within the system. In his model, each subsystem was essentially one-dimensional,
supporting just one wave type. Mace showed that when the coupling between the
two beams is weak, peaks in coupling power occur near the natural frequencies of the
uncoupled subsystems. Expanding the work of Mace, Langley [58] developed a ray
tracing method to evaluate the response of one-dimensional structures subjected to
harmonic excitation. The application of this approach to the ring-based rate sensor

is presented in Chapter 2.

Simple rod structures were first studied by Langley [58]. Ashby [59] incorporated
near-field effects and validated the method for a simply supported beam. A similar
approach was used recently [60] to describe wave propagation, transmission and
reflection in Timoshenko beams under various conditions. In Timoshenko beams,
the effect of transverse shear deformation and rotary inertia are no longer neglected.

Propagation, reflection and transmission matrices were given for different discon-
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tinuities such as general point supports, boundaries and change in section in Ti-
moshenko beam. When Timoshenko beam theory is used, the vibration analysis
becomes more complex and further difficulties arise from the increasing complex-
ity of structures. However from these matrices, the vibration analysis becomes

systematic and concise.

The application of the ray tracing method relies on having knowledge of the detailed
propagation, reflection, and transmission characteristics of waves in different parts
of the system. In particular, the precise detail of the waves at discontinuities is
needed to predict their reflection and transmission. For the ring-based resonator
considered here, the discontinuities occur between the ring and supporting legs, and

between connected beams in the supporting legs.

As this approach is “exact”, the precise detail of the structure, joint, material
properties and frequency is required. A slight change in one of these terms can

significantly alter the predicted response.

Energy flow analysis

The basic premise of Energy Flow Analysis (EFA) is that the state of vibration
can be essentially represented by stored, dissipated, and transferred far-field energy
densities. This method translates into differential terms the basic hypotheses of
SEA, based on the thermal propagation principle. SEA considers a power balance
among macro-structures or finite subsystems, while in EFA the same laws are writ-
ten for element volumes. The energy flow analysis or power flow method is found

to provide a reasonable space, time and frequency-averaged prediction.

In 1987, Nefske and Sung [61] presented the “power flow finite element method” and
made the link between the modelling of heat conductivity and vibrational energy
flow. Successively, Palmer [62] made a detailed study of the application of EFA
to predict the flow of flexural vibration in one-dimensional structures. Bernhard
et al. [63, 164] gave the partial differential equations that govern the propagation

of energy-related quantities in simple structural elements such as rods, beams and
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plates. They also derived the coupling relationships in terms of energy-related
quantities that describe the transfer of energy for various joint. To couple sim-
ple structural elements together, they used the power transmission and reflections

coeflicients — that can be found in the literature, e.g. in [53].

Ashby [59] developed an EFA that can incorporate the near-field and phase coher-
ence effects into the predicted response; and an alternative approach to apply EFA

to structures containing more that one type of vibration.

1.6 Summary of the literature review

From the review of various damping mechanisms presented in Sections and
it can be summarised that thermoelastic damping has already been thoroughly
investigated and gas damping can be eliminated by packaging the resonators in
sufficiently low pressure environment. Internal losses and surface-related losses are
intrinsic damping mechanisms that occur at the microscopic level of the materials
or when the surface to volume ratio is large, and are difficult to model and quantify.
Also, they are not yet really relevant to devices which are not particularly “thin”.
Support loss, an ever present mechanism as the resonator will always be attached
to a support, has not been widely investigated and its research mainly consisted of
analytical models which derived parametric description of energy losses in simple
cantilever beam structures. Regarding the complex design of the MEMS vibrating
ring-based resonator, it has been seen that a vibration transmission and propagation

model is needed.

The EFA — as the SEA, gives frequency-averaged predictions. Broadband excitation
is always considered, which is not appropriate for studying the case of a vibrating
resonator. For a resonator, the frequencies of interest are its resonant frequencies
and the resonator does not operate over a frequency range. An “exact” model
for a particular frequency is needed. Furthermore, the approach used by the FEA
solution is a modal technique, which assumes that the total response of the structure

is given by the sum of the responses of individual modes. An exact approach to
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model the vibrations of structure at a particular frequency is to use waves to form
the resulting response; this is the foundation of the ray tracing method. From this
literature review, the ray tracing analysis seems the most appropriated method as it
relies on an “exact” wave approach that gives the behaviour of complex structures

at particular frequencies.

1.7 Aims and objectives of the thesis

The research presented in this thesis is motivated by the need to gain an improved
understanding of the energy dissipation mechanisms in vibrating MEMS structures
used in vibrating rate sensors, and to develop models to predict and quantify damp-
ing levels arising from support losses. It is anticipated that this work will provide
improved understanding of the dynamical behaviour of MEMS sensors, so as to im-
prove design and prediction capabilities, and hence aid the development of sensors

with better mechanical performance characteristics.

The work will focus on a fundamental study of support loss in vibrating ring-based
resonators in which energy flows from the ring through the supporting legs into the
surrounding structure. The main themes of work to be considered include the two

following steps:

1. Developing models to predict the vibrational energy flow through structures
composed of ring/beam components is the first step to quantify the energy
that impinges into the surrounding structure. The different methods pre-
sented in Section have shown that a wave approach, and especially the
ray tracing method is well suited to study the vibrations of complex struc-
tures at a particular frequency. The ring-based resonator, and the energy flow

occurring from the ring to the supporting legs will be of principal interest.

2. Developing models to predict the vibration transmitted from a resonator to
its surrounding structure represents the second important step in the support

loss modelling. The existing analytical approach [42] is only applicable to
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flexural vibrations of beam resonators. It is therefore necessary to consider
an extension of this approach that can deal with more complex structures. A
model that considers vibrations of complex resonators must be developed and

must efficiently deal with various MEMS design.

Initially, the work will consider in-plane vibrations of the resonator, representing
existing single-axis rate sensors. However, the presence of out-of-plane vibrations
of the resonator and the associated support losses will be considered later in the

thesis to investigate damping in novel multi-axis rate sensors [§].

It is also of high interest to understand and quantify the influence of different pa-
rameters on the support loss and on the particular vibrational motion of the sensor.
The possibility of another ring-based rate sensor design with better performance

with regard to support loss damping needs to be investigated.

The next section gives an overview of the organisation of the thesis.

1.8 Outline of the thesis

The content of the remaining chapters in the thesis is summarised below.

Chapter 2 presents the fundamental vibration analysis of ring/beam structures by
the ray tracing method. A wave approach is used to model the free and forced
vibrations of complex networks. It is intended to find the natural frequencies and
mode shapes of the ring-based resonator by this method. A validation process of the
method is carried out using known analytical solutions of simple beam systems. The
approach relies on the knowledge of transmission coefficients and they are derived

for the different discontinuities encountered in the ring-based rate sensor.

Chapter 3 shows simplification methods to analyse structures that exhibit symme-
try properties. This is applied, in particular, to the ring-based resonator which is

cyclically symmetric. The extension of a method firstly developed for finite element
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analysis is presented. It allows a great reduction of the number of unknowns in the
model. The model complexity and the computing time that is used to solve the
equations of wave propagation and transmission are reduced. With this simplifi-
cation, natural frequencies and mode shapes of different cyclic symmetric systems
are derived and the vibrations of the ring-based rate sensor are modelled by what

is proved to be a fast and efficient method.

Chapter 4 links the vibration analysis of the ring-based resonator with the overall
research aim, which is to quantify support losses. In-plane vibrations are considered
and a model for support loss is presented based on an analytical study that sees the
support as a semi-infinite thin plate. This model is validated using two different
finite element approaches that model in a different way the infinite length of the
support. Simple test cases are studied and the results for the support losses obtained

are compared with the different methods.

The previous model developed in Chapter 4 is a rapid and efficient technique to
model support losses. By combining this model with the ray tracing method pre-
sented in Chapter 2, the support losses of the ring-based rate sensor can be cal-
culated. Results for support losses for different ring-based rate sensors designs are
presented in Chapter 5. A few parameters, such as material properties or leg di-
mensions are modified and their influence on the @-factor is analysed. Chapter 5
also studies the possibility to add blocking masses in the sensor in order to reduce

support loss.

Novel multi-axis rate sensors are designed to vibrate both in- and out-of-plane. The
ray tracing method presented in Chapter 2 is extended to out-of-plane vibrations in
Chapter 6 in order to study the vibrations of such sensors. A model for support loss
when the resonator vibrates out-of-plane is presented. It is based on the particular
out-of-plane bending characteristics of the support modelled as a semi-infinite thin

plate. Numerical results and a detailed discussion of the proposed models are given.

Chapter 7 is the final chapter that summarises the key findings of all the work

presented in this thesis and proposes suitable future work in this area of research.
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Figure 1.1: Traditional spinning rotor gyroscope.
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(d)

Figure 1.2: Photographs of the ring-based rate sensor: @ on its silicon wafer,
@ details of the leg structure, and mounted on its chip.
@ Schematic representation of the device.
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Figure 1.3: Schematic diagram of a simple mass-springs gyroscope.

Figure 1.4: Schematic diagram of a vibrating gyroscope.
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Figure 1.5: In-plane flexural modes of vibration of rings.
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Figure 1.6: Various parameters shown on an amplitude-frequency response
curve, used to calculate the Q)-factor of a resonator.
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Chapter 2

In-plane vibration analysis using a

wave approach

2.1 Introduction

Engineering structures often consist of a number of components that can be mod-
elled as straight and curved beams, and rings. Figure [2.1| shows a schematic repre-
sentation of a MEMS ring-based rate sensor that is the main focus of interest in this
thesis. The basic sensor structure is a resonator consisting of a slender circular ring,
supported on slender legs as shown. Each leg consists of three straight beams. The
design and optimisation of structures like these are aided greatly by the availabil-
ity of efficient techniques to rapidly determine the effects of variations in geometry
and dimensions on vibration characteristics, such as natural frequencies and mode
shapes. The performance of MEMS sensors, like the one shown in Figure 2.1} is
often highly dependent on the level of damping, see Chapter 1. One important
damping mechanism is support loss or attachment loss [42] 44], which accounts for
the transmission of vibration from the resonator into the supporting structure. The
work reported in this chapter deals with the development of an efficient approach
to analyse the vibrations of ring/beam structures that has the potential to be used

to predict support losses. Chapters 4 and 5 will focus on predicting support losses
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in ring-resonators.

The vibrational response of simple structures such as uncoupled beams or rings can
be determined without difficulty [65] using the Rayleigh-Ritz or modal approaches.
However, the analysis of complex systems containing several elements is more chal-
lenging. A possible method is the dynamic stiffness method [66] [67] that has been
developed to analyse in-plane and out-of-plane vibrations of networks. Each compo-
nent is modelled using an exact solution and matrices, coupling displacements and
forces of each element with its neighbours, are considered. The Wittrick-Williams
algorithm [68] is customarily applied to determine the natural frequencies of the
system. An alternative method is the use of Finite Element (FE) packages that
are employed widely to model complex structures, and can be used to calculate
natural frequencies and mode shapes, and the vibration response. However, it is
often computationally expensive if many different FE meshes need to be gener-
ated, when performing optimisation studies. In contrast, the wave-based approach
considered in this chapter not only allows natural frequencies and mode shapes to
be determined efficiently, but its formulation also allows the geometry and size of
the structure to be varied easily and efficiently. The dynamic stiffness method,
which is also based on an exact analysis, could have been applied at this point
but wave approaches have proved to be powerful for analysing the energy trans-
mission through structural networks [69], and their characteristics will be used in

subsequent chapters to calculate support losses in MEMS structures.

As seen in Chapter 1, the vibrations of elastic structures, such as beams and rings,
can be described in terms of waves that propagate and decay in waveguides. Such
waves are reflected and transmitted when incident upon discontinuities [54} 55]. Ex-
panding the work of Mace [56] 57|, Langley [58] developed a ray tracing method to
evaluate the response of one-dimensional structures subjected to harmonic excita-
tion. This method was further exploited by Ashby [59] who incorporated near-field
effects and validated the method for a simply supported beam. One of the earliest
investigations of wave motion in curved beams was by Graff [54], who developed
equations for a ring, accounting for extension, shear and rotary inertia. Dispersion

curves were presented showing the effects of curvature, shear, and inertia on the
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wave propagation. Kang et al. [70] extended the ray tracing method to planar cir-
cular curved beam structures including the effects of attenuating wave components.
So far, the technique has not been used on complex structures, such as the one

presented in Figure 2.1}

The principle behind the present approach is called phase closure [71] (also called
wave-train closure [55]). This principle states that if the phase difference between
incident and reflected waves is an integer multiple of 27, then the waves propagate at
a natural frequency and their motions constitute a vibration mode. The compact
and systematic methodology of this approach allows complex structures, such as

multi-span beams, trusses and aircraft panels with periodic supports to be analysed.

The application of the ray tracing method relies on having knowledge of the detailed
propagation, reflection, and transmission characteristics of waves in different parts
of the structure and particularly of their behaviour at discontinuities. The reflection
and transmission of waves in Euler-Bernoulli beams at various discontinuities have

been determined by Mace [72].

In the present chapter, the method has been extended to analyse the natural fre-
quencies of a structure, such as that shown in Figure [2.1, which contains more
complex discontinuities, like those arising between a ring and a straight beam. The

method has also been extended to model the forced response of simple structures.

This chapter is organised as follows. Sections[2.2|and [2.3| provide a review of the ba-
sics of wave propagation in straight and curved beams, and show the development
of the ray tracing method. Section presents a derivation of the transmission
coefficients for different discontinuities relevant to the structure of interest. Sec-
tion presents results for simple structures to validate the proposed ray tracing
method for free and forced vibration analyses. Section [2.6] gives a summary and a

statement of conclusions.
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2.2 Wave propagation in beams

This section introduces the fundamental governing equations of motion of curved
beams with constant radius, neglecting shear deformation and rotary inertia. A har-
monic wave solution is used and the derivation of the corresponding wavenumbers
is presented. By letting the radius of curvature tend to infinity, the equations and
solutions are simplified to the case of straight beams. The equations obtained are

well known [54] and are used extensively in later sections.

2.2.1 Curved beams

Consider a curved beam of constant radius of curvature as shown in Figure .
The curved beam is characterised by the radius of curvature R, the cross-sectional
area A, the second moment of area of the cross-section I,, the Young’s modulus
E, and the mass density p. In Figure 2.%(a)l S, T and M are the resultant shear
force, tensile force and bending moment, respectively, while v and w are the corre-
sponding radial and tangential displacements. The circumferential coordinate along
the centreline is denoted by s. For curved beams, the equations of motion can be

expressed as [54]:
3 [w Ou EA[O0w wu 0%u
“Elys (R * a) TR (a B R) =145 1)
El, 0% (w Ou 0 [ow wu 0*w
R 832(R+85)+ as(as R) P o (22)

In these coupled equations for u and w, the effect of rotary inertia and shear defor-
mation are neglected. The equations of motion including these effects for circular

rings and curved beams can be found in [65].

The axial force T, shear force S and bending moment M; are related to the dis-

41



Chapter 2. In-plane vibration analysis using a wave approach

placements by the relations:

ow u
T=FA| — — — 2.
0 [0u w
M, = EIy% (88 + R), (2.4)
0% [Ou w
() .

The radial and tangential displacements satisfying Equations (2.1) and (2.2) are
assumed to be time harmonic waves travelling in the positive s direction [55] and
are expressed as:

u=q e (Fs=wt), (2.6a)
w = 1 e kswt), (2.6b)

where 4 and w are the amplitudes of the radial and tangential waves respectively,

k is the associated wavenumber and w is the circular frequency. Substituting Equa-

tions ([2.6)) into the equations of motion (2.1)) and ({2.2)) gives:

—EI,R** 4 pR*Aw? — EA —iERk(A+ I,k?) al o 27
iERE(A+ 1,k?) ~ER (AR + L) + pR2A*| |@| o]

Non-trivial solutions to Equation (2.7 give the characteristic (dispersion) equation

for the wavenumber:
(E*1,R")K® — ELR (R + 2E) k" — E<pP£w2 (AR*+1,) - E[y) k2
+ApR*w? (pR2 — E) = 0.

(2.8)

Equation (2.8)) is a cubic equation in k? and has six complex roots +k; (i = 1, 2, 3)
at any given frequency. If the wavenumber k; is real and positive, then the displace-
ment is given by:

u =0 e ks, (2.9)

This represents a wave travelling in the positive s direction. If the wavenumber is
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complex, such that k; = Re(k;) + iIm(k;), then:
u = ﬁ(elm(ki)s e_iRe(ki)S>. (2.10)

To make this wave decay and propagate in the positive s direction, the basic
rule applied to choose the appropriate wavenumbers among the six complex roots
of is: Im(k;) <0 (that gives a wave decaying in the positive s direction) and
Re(k;) > 0 (which makes the wave propagate in the positive s direction). A more
detailed physical description of the complex wavenumbers in curved beams and the

dispersion curves can be found in [73].

At a given frequency and as R — oo, the curved beam has an infinite radius
and represents a straight beam. Alternatively, for a given radius, as w — oo,
the curvature effect disappears and the wave travels as if the beam was straight.
This ensures that straight and curved beams have a common limit as R — oo and
w — 00. This common limit provides a convenient way to characterise the resulting

wavenumber, i.e.

e The root which tends to k;, (kz being the wavenumber of longitudinal (“tan-
gential”) waves in a straight beam, see Section [2.2.2)) when R — 0o or w — 00,

is related to predominantly longitudinal waves and is denoted here by k.

e The roots which tend to kg, and —ikp, (kr, being the wavenumber of flexural
(“radial”) waves in a straight beam, see Section[2.2.2)) when R — 00 or w — 00
are related to predominantly propagating far-field flexural waves and decaying
near-field waves respectively. These roots will be denoted here by ks and ks

respectively.

In any curved beam section, the radial and tangential displacements can be ex-

pressed as a sum of waves travelling in the right and left directions, i.e.:
3 . . .
u=> (ﬁj e ki 4 a; elki(S_L)> e’ (2.11a)

i=1
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w=>Yy (u?j e s b eik"(s’L)) et (2.11b)
i=1

In these expressions, 4] and w; are the complex amplitudes of the radial and
tangential waves travelling in the positive s direction; while 4; and w; are the
complex amplitudes of the radial and tangential waves travelling in the negative s

direction. The waves travelling in the positive s direction (4, ;") originate from

the location s = 0, whilst the waves travelling in the negative s direction (a; , ;)
originate from the location s = L. In applications it is convenient to choose s =0

and s = L to be located at either end of the curved beam section.

From the analysis presented above it is clear that the radial and tangential displace-
ments for a single curved section are defined by twelve unknown wave amplitudes.
In general the amplitudes of these waves will depend on the waves propagating in
other sections of the structure. However, for curved beams it can be shown that
some of the radial and tangential wave amplitudes in a particular curved beam

section are related to each other.

Substituting Equations (2.6)) with appropriate wavenumbers into equation of mo-
tion ([2.1)), the following ratio X; can be obtained:

iERE, <ka3 + A)

aF i
) S L 2.12
uA)j» ~— ( )

B R Aw? — (E]szkf + EA) '

The ratio X; relates to the ratio of the radial to tangential wave amplitudes of waves
travelling in the same direction that have the same wavenumber. Graphs of this
coupling ratio as a function of the frequency can be found in [73]. Non-zero values
of this ratio indicate that a radial wave of magnitude 7. is accompanied by a tan-
gential wave of magnitude X;w;" and a radial wave of magnitude 4; is accompanied
by a tangential wave of magnitude —X;w; . Thus for the wave amplitude pair (ﬁf,
W7F) it is only necessary to determine one of the amplitudes, as the other is known
implicitly from knowledge of the ratio X;. As the amplitudes with subscript i = 1

are related to waves which are predominantly extensional, and those with subscript

i = 2 and 3 to waves which are predominantly flexural (propagating and decaying
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respectively), the six wave amplitudes |@;, 44, 43, i, 45, U5 } are taken as pri-

mary unknowns. This coupling between the radial and tangential wave amplitudes
indicates that six unknown wave amplitudes are needed to determine the radial
and tangential displacements of each curved beam section — three travelling in the

positive s direction, and three travelling in the negative s direction.

2.2.2 Simplification to straight beams

The equations derived for curved beams can be reduced to those for straight beams.
The same notations are used and these are illustrated in Figure . By letting

R — 00, the circumferential coordinate s is changed to a linear coordinate z, and

Equations ((2.1)-(2.5)) give:

u 0%u

~BISS = pATs, (2.13)
5;;’ _ p%z”, (2.14)

T = EA?”ZU, (2.15)
My = Elygz, (2.16)
5= —Elyg::;. (2.17)

In these equations, u is the radial displacement, which is referred to as the flexural
displacement for the straight beam case, and w is the tangential displacement,
which is referred to as the longitudinal displacement for the straight beam case.
It is important to note that for the straight beam case the equations governing
the longitudinal and flexural displacements are uncoupled — this is in contrast to
curved beams for which the tangential and radial equations are coupled. Following
the same procedure to that followed for curved beams, the longitudinal and flexural
displacements of straight beams are assumed to be time harmonic waves travelling

in the positive z-direction, and are expressed in an identical form to Equations (2.6]).

The dispersion equation for the straight beam case can be obtained easily by letting
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R — o0 in Equation ([2.8]). This gives:
E?1,k° — El,pw’k* — AEpw’k* + Ap*w* = 0. (2.18)

Since the longitudinal and flexural displacements are not coupled, Equation ([2.18])

can be factorised, such that:

B

This equation has six roots +k; (i = 1, 2, 3), which are either purely real or purely

k’l = k’L = w\/g, (220&)

pA
EI’

. . pA
ks = —ikp, = —i\|w BT (2.20c)

Noting that the flexural and longitudinal displacements are not coupled, and that

the ratios expressed in Equation (2.12)) become X; = 0 and Xy = X3 = 00 in a

imaginary, such that:

ky = kpy = (2.20D)

straight beam section, the flexural and longitudinal displacements can be described

as the sum of waves travelling in the positive and negative z-directions, such that:
u= (ﬁ; e~ wrvt gl emhruE 4 gy efr(Emh) 4 ekFy(Z_L)> et (2.21a)

w = (LDI“ e RLE by eikL(Z_L)> et (2.21b)

In these expressions, w; and @] are the complex amplitudes of the longitudinal
waves propagating in the positive and negative z-directions respectively; @i and 7y
are the complex amplitudes of the flexural purely propagating waves in the positive
and negative z-directions respectively; and @5 and @3 are the complex amplitudes
of the flexural purely decaying (near field) waves in the positive and negative z-

directions respectively. The waves travelling in the positive z-direction (17, @3,

03) originate from the location z = 0, whilst the wave travelling in the negative
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z-direction (w7, 1y, 43 ) originate from the location z = L. In applications it is
convenient to choose z = 0 and z = L to be located at either end of the straight

beam section.

The above equations indicate that six unknown wave amplitudes are needed to de-
termine the longitudinal and flexural displacements — three travelling in the positive

z-direction, and three travelling in the negative z-direction.

2.3 The ray tracing method

This section presents the development of the ray tracing method, which is an exten-
sion of the work carried out in [58]. It is based on a wave approach that is suitable
for systems whose elements form waveguides. The technique, which is similar to the
phase or wave-train closure principle [55] has been used previously for free vibration
analysis of Timoshenko beams [60] or curved beams [70], but has not been used for
complex networks such as the one presented in Figure 2.1} It provides a systematic
approach to the free vibration analysis of complex waveguide structures, and is used
here to analyse coupled curved/straight beam structures. An extension of the wave

approach that deals with forced response of simple structures is also presented.

2.3.1 Simplified development for a two-beam example

To simplify the development and presentation, the case of a network composed of
two straight beam components, coupled together at a discontinuity, and subjected
to a harmonic vibration at frequency w is considered, see Figure The analysis

is performed for this simple case and can be extended easily to more complex cases

(see Section [2.3.2)).

The longitudinal w and flexural u displacements in any component of the structure

are defined as a sum of waves, see Section The displacements at a location
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having coordinate z in component (I) are expressed as:

w(z,t) = (@TJEI)JF e ihLz 4 u?g)* eikL(z_Lm)) et (2.22)

u(z,t) = (ag1)+ e—ikryz 4 ﬁz(z,IH e kruz 4 7lgl)— iy (z—LD) + ﬁgl)— ekFy(ZfL(U)) plwt

)

(2.23)

M+ D+

where LU is the length of the component (I), @)’~, @y~ and ﬁg)i

are the am-
plitudes of the longitudinal, flexural propagating and decaying waves, respectively
in component (I). The amplitudes of waves travelling in the positive z-direction
(with a superscript +) are defined at z = 0, while the ones corresponding to waves

travelling in the negative z-direction (superscript —) are defined at z = LU,

The ray tracing method considers an initial wave amplitude vector ag which contains
the initial waves amplitude sources in the “positive” and “negative” z-direction
for each beam, see Figure 2.3 These waves start at any discontinuity and their
amplitudes are maximum at the initial point. There are only non-zero terms in the
excited beams. For the two-beam case considered, the initial wave amplitude vector

has the form:
T
D+ OF (ID+ L, dD— . (2.24)

A0ax1) = | Winitial  Winitial  Winitial  Winitial

Each u%iul represents the initial wave amplitude vector in component j (5 = I, II).
(£

U, 18 @ vector containing wave amplitudes corresponding to longitudinal, flexural

and decaying waves and is defined as:

GE | A AG)E A0
Winitial = | Wi Yiniiar Winisiar | * (225)

While the waves travel from one end of the component to the other end, the pro-
pagating waves change phase and the decaying waves change amplitude. These

effects depend on the wavenumber k; (k; = ki, kp, or —ikp,) and the length L)

of the component. The complex amplitude of the waves changes from ﬁl(-j)i to

ﬁgj JE o=tk L) Thig phenomenon can be expressed using a diagonal matrix D called

the dispersion matrix (or transfer matrix in [60]) whose diagonal elements have the

ik L) . . . : N
form D;; = e LY where k; is the wavenumber associated with wave ¢ and LU) ig
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the corresponding beam length.

When a wave hits a discontinuity (boundary at the end of a component or dis-
continuity between two different elements), it can be either reflected back in the
opposite direction or transmitted to another waveguide component. An incident
wave of one type can induce reflected and transmitted waves of other types. For
example, an incident flexural wave might induce reflected and transmitted flexural
and longitudinal waves in all the components attached to the discontinuity. By con-
sidering the complex wave amplitude transmission and reflection coefficients, the
amplitude of the waves leaving the discontinuity can be evaluated. This scattering
at a discontinuity can be expressed in terms of a transmission matrix T of complex
wave amplitude transmission/reflection coefficients, where 0; = T;;0; and T;; is the

transmission coefficient from a wave of amplitude 9, to a wave of amplitude v;.

The dispersion matrix has the form:

A,y 0O 0 0
b 0 A O 0 (2.26)
[12x12] = ) :

0 O AL(II) 0

0 0 0 Am

e kY0 0
where Azo) ey = 0 e~ ikmy LY 0 , j = I, II. The transmission
0 0 ekl
matrix has the form:

0 RO 0 o |

BO+ o o TW-0
Tiiox19) = qo-m g 0 Ba- |’ (2.27)

0 0 RW 0

where R[(;)X 3 and R[%IX)?)] contain the reflection coefficients at the boundaries in beams
(I) and (II) respectively; B[(é);g] and BE;IX);] contain the reflection coefficients at the

discontinuity situated on the positive end of component (I) and the negative end
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of component (II) respectively; HE?X_:;]U ) contains the transmission coefficients from

waves incident in beam (i) to beam (7).

After the waves have traversed along the length of the beam and one transmission

has taken place, the new wave amplitude vector a; can be written as:
a; = TDao. (228)

This vector contains the wave amplitudes after one ray trace. This approach can
be repeated to give the wave amplitudes after the next ray trace: a; = TDa; =
(TD)QaO. The cycle of decay, propagation and transmission can be continued
indefinitely. After an infinite number of ray traces, the total set of wave amplitudes

a present in the structure is expressed as the sum of all the previous waves.
> i
a=ay+a +a+...+asx=> (TD)a. (2.29)

1=0

Equation ([2.29)) is a geometric series with common ratio TD and first term a.
As |TD| < 1, meaning that the amplitudes of the waves are attenuated from one
trace to the next, it can be derived from Equation (2.29) that the final set of wave

amplitudes a is governed by:
(I- TD)a = ay, (2.30)

where I is the identity matrix. In Equation (2.30]), the term a represents the final

set of wave amplitudes and defines the motion at any point in the system.

For the free vibration case, the initial wave amplitude vector is zero, and Equa-

tion (2.30) becomes:
(I-TD)a =0. (2.31)

Non-trivial solutions to this equation occur when:
1-TD|=0. (2.32)

This is the characteristic equation from which the natural frequencies of the system
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can be found. This equation can be solved analytically for systems such as a simple
beam with clamped, free or pinned boundary conditions or for a perfect ring (see

Section [2.5.1]). For more complex structures, a numerical solution is required.

The corresponding mode shape can be determined by back-substituting the fre-
quency solutions w, in the T and D matrices, which are both frequency dependent,
and calculating the corresponding wave amplitude vector a that is the solution to

Equation (2.31]). These wave amplitudes can be used in Equations ([2.22)) and (2.23))

to determine the displacement mode shape.

2.3.2 Procedure development for a more complex example

The ray tracing method was presented above for a simple two-beam system, but
can be extended easily to a more complex structure. Here it is applied to the
ring-based rate sensor shown in Figure 2.1} In this example, the supporting legs
consist of straight beams connected at different angles modelled as abrupt changes

in direction, in contrast to real “radiused” angles as illustrated in Figure [1.2]

For simplification, the ray tracing method is applied here to only a single ring por-
tion containing a single supporting leg. The set of initial wave amplitudes considered
are presented in Figure 2.4 The system is divided into five different components:
two ring portions (one on either side of the discontinuity ring/leg) and three straight

beams. The initial wave amplitude vector is defined as:

T
— |, D+ (OF I+ (In)— (V)+ (V)-
05051 — |Winitial Winitial Winitial WMinitial - -+ Winitial Winitial | (2.33)
)+ (i (i (4 . ..
where ugfgm = [ng x ug)i uéj)i . Waves start at all discontinuities and
initial initial initial

in each direction. Their amplitude is taken to be maximum at their initial point.
Equation ([2.11)) would imply the u%iul to be of order six for the curved members;
however, only three of these amplitudes are independent due to using the X; ratio

of Equation (2.12). In this example, ul(-i)i;al and u%)t:al are evaluated at the joint

with the neighbouring legs. The wavenumbers ki, ko and k3 (see Section are

associated with the amplitudes u?ij )i, ﬁgj % and ﬁéj )i, respectively.
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The transmission and dispersion matrices corresponding to Figure [2.4] with wave

amplitude vector a, defined in Equation ([2.33)), are as follows:

[ 0 RO o0 0 0 0
BO+ o o0 I1Im-O 0 [T —
H(I)—>(II) 0 0 B(H)— 0 H(III)—»(H)
0 0 R 0 0 0
H(I)H(HI) 0 0 H(H)H(HI) 0 B(IH)f
Tovan =\ 0 0 0 B+ 0
0 0 0 0 mn—av) 0
0 0 o0 0 0 0
0 0 o0 0 0 0
0 0 o0 0 0 0
- _(2.34)
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 IvV)—am g 0 ’
0 BV)- 0 0
B(IV)+ 0 0 H(V)H(IV)
- 0 0 BW)-
0 0 RM) (U
Aw 0 0 0 0 0 |
0 A;m 0 0 0 0
0 0 Ay O 0 0
Dizoxso = | 0 0 0 A;m 0 0 (2.35)
: : 0 0
0 0 0 0 0 A, O
0 0 0 0 0 0 Ay

All matrix entities present in T and D are [3 x 3] matrices. The matrices RV
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(7 =1, II, V) contain the reflection coefficients at the boundaries. The boundaries
in component (I) and (II) are not “real” boundaries in the ring-based rate sensor.
They have been introduced here to demonstrate how the T matrix is formed. The
wave amplitudes u®+ and u™~- are functions of the waves incident from the neigh-
bouring legs and ring portions. The matrices BY* and BY)~ contain the reflection
coefficients at the discontinuity situated at the positive or negative end of com-
ponent (7). The matrices ITI™ () contain the transmission coefficient from waves

incident from component (i) to component (7). The A} matrices are defined as:

e—ileU) 0 0
Ay = 0 ko L) 0 : (2.36)
0 0 e kI

For the straight beam sections (III), (IV) and (V), k1 = kg, ko = kp, and k3 =
—ikpy. The analysis performed is similar to the simple case considered in Sec-

tion [2.3.1l However the matrices involved are much larger.

The transmission coefficients for discontinuities such as the ones encountered in the
ring-based rate sensor are derived in Section [2.4] In a complex structure where the
same discontinuity is encountered several times, the transmission coefficients only
need to be calculated once. These coefficients will then be placed in the overall T
matrix containing all transmission coefficients of the system. For example, for the
entire ring-based rate sensor studied in Chapter 3, the overall matrices involved in
the ray tracing method (T and D) have a size of [192 x 192]. But there are no more
transmission coefficients needed than the ones presented in Equation (2.34). By
solving Equation (2.32), the natural frequencies of the system can be calculated.

2.3.3 Forced response

The application of a force acts as a discontinuity in the structure. Applied harmonic
point forces and moments have the effect of injecting waves on both sides of the
disturbance. To simplify the analysis, the case of a straight beam is presented here

but the same approach can be used to model the forced response of curved beams.
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Consider a straight beam that is split in two components by the application of
an external tensile force Ty, a shear force S. ¢ and a bending moment M, see
Figure . The variables u*, u®~, u™+ and u™~ model the waves impinging
and leaving the discontinuity created by the applied forces. Each of them represents
a set of wave amplitudes consisting of an extensional wave, a flexural propagating

wave and a decaying wave:
ul* = |p0* giE 0= (2.37)
The sets of wave amplitudes uf introduced by the external forces are defined as:

m+

upf = u u+, (2.38)

up = ul™ — -, (2.39)

By suppressing the temporal terms in the wave solutions ([2.21)), the longitudinal
w") and flexural u7) displacements in the component (j) (j = I, II) can be expressed

in terms of wave amplitudes:

w(]) _ uA)gj)Jr efikLz + ng)* eikLZ’ (240)
u(]) — ﬁgj)—i- e—ik;Fyz + agj)-‘r e—kpyz + ﬂéj)_ eikFyZ + agj)_ ekFyz' (241)

Forces and moment equilibrium evaluated at the point of applied forces (z = 0)

give:

T = TW — 7, (2.42)
Sext = SV — gD, (2.43)
M = MO — M. (2.44)

where T0), SU) and Ml(j) are the internal tensile force, shear force and bending
moment of the component (j) (j = I, II), and are defined in Equations (2.15])-
(2.17). Using the displacement and slope continuity (at z = 0) between the two
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components and Equations ([2.37))-(2.44]), one can derive that:

Text S ext M ext

| i1 == 1 === (24
ui = |- 0 o) 2EAk, o - IELKS, o1 L, )
— Text Sext Mext

_ [ Lo e Ji| et (246
o [ P 0] 2EAk; [0 : 1} BTk, {O ! 1} iELe, 210

These are the amplitudes of the waves created by the applied forces, waves leaving

the point of application of these forces.

For a forced response analysis, the ray tracing method presented in Section [2.3.1
takes into account the force terms uji and ug in the ag term of Equation ([2.30)).
Equation (2.30) can then be solved. It gives the set of wave amplitudes a, which
govern the displacement at any point of the structure. Application of this method

on different beam systems is presented in Section [2.5.2]

As seen in Section [2.3] the ray tracing method requires several transmission coeffi-

cients matrices, and these are considered next.

2.4 Transmission coefficients

Transmission coefficients are used to quantify the reflection and transmission of
waves when incident upon discontinuities [54, 55]. They are calculated by con-
sidering the continuity and force equilibrium equations at discontinuities taken in
isolation from the rest of the structure. This section presents a derivation of the
principal transmission coefficients encountered in common MEMS structures, such
as the one presented in Figure [2.1, This includes reflection at beam boundaries,
transmission through connected beams at abrupt junction, and transmission be-

tween a ring and an attached beam.
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2.4.1 Ring/beam transmission

The general case for the transmission between a ring and an attached beam is
investigated first. The configuration considered is shown in Figure The beam
forms an angle o with the ring. The discontinuity is modelled as a rigid joint
(cylindrical mass) connecting two ring portions and a beam. This joint has been
introduced to study the influence on the transmission coefficients of an added mass
or inertia at the discontinuity. This analysis is an extension of the work carried out

in [59] that studied the energy transmission between straight beams.

In Figure 2.6 the subscripts r and b relate to the ring and the beam respectively,
the superscript (j) (j = I, II, III) corresponds to the component considered (two
ring parts and one beam part), the superscript k (kK = +, —) corresponds to the
direction of propagation of the waves (positive and negative direction respectively).
Each of the variables u®+, u®=, u+ u- u{™* and u{™" represents a set
of wave amplitudes consisting of a principal extensional wave, a principal flexural
propagating wave, and a principal decaying wave:

ul)F = |0+ gO* 0| (2.47)
In addition, the waves represented by a plain arrow in Figure relate to waves

incident on the discontinuity, while the dashed arrows are transmitted or reflected

waves.

To obtain a general method, the wave incident on the joint along the first portion,
which can be a straight beam or a circular bar, is assumed to be either predomi-
nantly flexural, longitudinal or decaying in nature. The presence of the joint ensures
that part of this wave is reflected back along the same portion and the remainder
is transmitted into the other portions. This partial reflection is also accompanied
by mode conversion, so that the incident wave can generate flexural, longitudinal

and decaying wave components in each of the three portions.

Assembly of the equilibrium and continuity expressions at the joint yields a system

of simultaneous equations that can be solved to provide values for the required

56



Chapter 2. In-plane vibration analysis using a wave approach

transmission coefficients for each wave type. The transmission matrix Tiing/beam
contains the transmission coefficients from any wave type, in any portion to any
resulting wave after transmission or reflection. For example, in the case presented
in Figure [2.6] the equilibrium and continuity equations can be derived as follows.
By suppressing the temporal terms in the wave solutions and (2.21)), the
transverse displacements (", «{'V and uISIH); the tangential displacements w(®, w{V

HI); and the rotations of cross-section (!, 4™ and @Z),(,IH) at the ring portion

and w,g
(I) (left), the ring portion (II) (right) and the beam portion (IIT), respectively, can

be expressed in terms of wave amplitudes.

By considering input waves coming from the ring porti