PhD Thesis Defense Université de Grenoble

The influence of the cross section shape on channel flow: modeling, simulation and experiment

Bo WU

GIPSA-lab, Département Parole & Cognition

Supervisor : Annemie Van Hirtum

January 23, 2014

- I. Introduction and objectives
- II. Model
- III. Data

IV. Validation

V. Conclusions and perspectives

- I. Introduction and objectives
- II. Model
- III. Data

IV. Validation

V. Conclusions and perspectives

Introduction and objectives Problem

Human airway system

Blood circulation system

Introduction and objectives Problem

Problem: flow through highly varying cross section shape ??

3D flow model

Navier – Stokes equation

+ : realistic

- : high computational cost
- : no parameterized general geometry

Introduction and objectives Flow modeling

- : no cross section shape

Introduction and objectives Main objectives

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) = -\nabla P + \mu \Delta \mathbf{u} + \mathbf{f}$$

viscosity

- Influence of the cross section shape on the viscous contribution to the flow
 - > qualitatively
 - > quantitatively
 - propose a simple flow model

Objectives

- Analyze: model, IB method, experiment
- Applications: phonation, biological circulation systems physical equations

I. Introduction and objectives

II. Model

III. Data

IV. Validation

V. Conclusions and perspectives

$$\rho\left(\frac{\partial \mathbf{u}}{\partial \mathbf{t}} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) = -\nabla P + \mu \Delta \mathbf{u} + \mathbf{t}$$

- Flow acceleration => changing area R_c
- Viscosity => cross section shape
- Viscosity => length of constriction L_c

$$\int dQ \, / \, dx = 0$$

+ cross section shape

$$-\frac{Q^2}{A^3}\frac{dA}{dx} + \frac{1}{\rho}\frac{dP}{dx} = \nu\left(\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right)$$

- abrupt expansion: position of flow separation is fixed
- smooth expansion: position of flow separation depend on the ad-hoc criterion

$$P_0 - P_d = \Delta P_{visc} + \Delta P_{ber}$$
viscosity
$$1 \text{D ideal flow}$$

$$\frac{1}{\mu} \frac{dP}{dx} = \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$$

$$\bar{u} \frac{d\bar{u}}{dx} = -\frac{1}{\rho} \frac{dP}{dx}$$

• Uniform channel

$$Re = \frac{\overline{U}D}{v}$$

Academic cross section shape

• quasi-analytical solution

General / arbitrary cross section shape

$$r(\theta) = g(\theta) \left[\left| \frac{\cos(\frac{m\theta}{4})}{a} \right|^{n_2} + \left| \frac{\sin(\frac{m\theta}{4})}{b} \right|^{n_3} \right]^{-1/n_1} = g(\theta) \cdot f(\theta), \quad m > 0$$

- pseudo-spectral method
- quasi-analytical solution

Uniform channel

Fixed width

ID/BP overestimate, underestimate the results

> 80% variation due to cross section shape

- Some model considerations
 - developed viscous flow
 - laminar incompressible flow
 - cross section shape
 - fluid
 - constriction ratio R_c
 - length of constriction L_c

- BP overestimates for parameter set 1
- BP overestimates for parameter set 1 depend on configurations BP underestimates for parameter set 2: re, el, ca and ea Underestimation of BP reduces when decreasing constriction ratio R
- Underestimation of BP reduces when increasing **length L** Underestimation of BP reduces when increasing **dynamic**'s viscosity
- Overestimation of BP is less sensitive to configurations for parameter set 1

1. Stability analysis of a physical phonation model

A¹⁰: initial minimum area

- neglected for large constriction degree
- important for **medium** constriction degree

- Formulate physical equations for an arbitrary shape on 2D and 3D
 - Laplace equation
 - Helmholtz equation
 - Wave equation

for different boundary or/and initial conditions

I. Introduction and objectives

II. Model

III. Data

- Experimental data
- Numerical data

IV. Validation

V. Conclusions and perspectives

Data Experimental data

- fixed area
- fixed length
- sharp inlet and sharp outlet

position of jet formation, flow separation

Data Experimental data

- Pressure
- Velocity profiles downstream the constriction
 - at the outlet (transverse)
 - along the centerline (longitudinal)
- Jet properties by flow visualization

Data Experimental data

Overview

	Label	L_u	L_d	Pressure sensors ⁽¹⁾	Flow field $^{(2,3)}$	Comment		
		Inlet condition: sharp edges (Fig. 5.9) \rightarrow flow development						
	А	2cm	$0 \mathrm{cm}$	$P_0, P_1(P_2)$		free jet		
			$15 \mathrm{cm}$	$P_0, P_1(P_2), P_3$		confined jet		
	В	$35 \mathrm{cm}$	$0 \mathrm{cm}$	$P_0, P_1(P_2)$		free jet		
			$15 \mathrm{cm}$	$P_0, P_1(P_2), P_3$		confined jet		
	C	1m	$0 \mathrm{cm}$	$P_0, P_1(P_2)$	HF, FV	free jet	haj	
			$15 \mathrm{cm}$	$P_0, P_1(P_2), P_3$		confined jet	pes	
		Inlet condition: use of mixing element (Fig. 5.10) \rightarrow flow mixing						
	D	$35 \mathrm{cm} (\mathrm{ogp})$	$0\mathrm{cm}$	$P_0, P_1(P_2)$	$_{ m HF}$	free jet		
			$15 \mathrm{cm}$	$P_0, P_1(P_2), P_3$		confined jet		
-	Е	35cm (tgph)	$0\mathrm{cm}$	$P_0, P_1(P_2)$	$_{ m HF}$	free jet		
			$15 \mathrm{cm}$	$P_0, P_1(P_2), P_3$		confined jet		
	F	$35 \mathrm{cm} (\mathrm{tgps})$	$0\mathrm{cm}$	$P_0, P_1(P_2)$	$_{ m HF}$	free jet	circula	
			$15 \mathrm{cm}$	$P_0, P_1(P_2), P_3$		confined jet		
		Inlet condition: no sharp edges (Fig. 5.8) \rightarrow flow development						
	G	35cm (cone)	$0\mathrm{cm}$	$P_0, P_1(P_2)$	$_{ m HF}$	free jet	haj	
			$15 \mathrm{cm}$	$P_0, P_1(P_2), P_3$		confined jet	pe	
	Н	1 m (d1 cm)			HF	free jet		
	(1) Ste	ady flow for 0 <	$< Q \le 20$	$001/{\rm min} {\rm ~or} {\rm ~} Re \leq 25000.$				
	(2) Steady flow for $0 < Q \leq 1001/\text{min}$ or $Re \leq 15000$.							

(3) In hot-film anemometry the upstream channel length yields 1m.

• Experimental data: quantitatively

Influence of cross section shape

- Influence of flow development
- Influence of flow mixing
- Influence of jet condition: free or confined

• Influence of cross section shape

- rectangle and ellipse have almost the same results
- complexity of flow dynamics
- 20% of variation between ellipse and isosceles triangle

Influence of cross section shape

	$\Delta P_1/$	P_0 [%]	$\Delta(P_1/P_0)$ [%]							
	$L_d = 0$ cm	$L_d = 15 \mathrm{cm}$	$L_d = 0 \mathrm{cm}$	$L_d = 15 \mathrm{cm}$						
Overall impact of cross section shapes: Eq. (5.1) and Eq. (5.2)										
$\Lambda (L - 2 \text{cm})$	21 %(1)	27%(1)	$33\%^{(3)}$	$25\%^{(3)}$						
$A (L_u - 2 \operatorname{cm})$	2170	2170	$20\%^{(4)}$	$27\%^{(4)}$						
$B(L_m=35cm)$	18%(1)	$23\%^{(1)}$	$18\%^{(3)}$	$27\%^{(3)}$						
	1070		$17\%^{(4)}$	$21\%^{(4)}$						
$C(L_n = 1m)$	$16\%^{(1)}$	$19\%^{(1)}$	$13\%^{(3)}$	$18\%^{(3)}$						
	1070	1070	$15\%^{(4)}$	$19\%^{(4)}$						
D (ogn)	10%(2)	9 %(2)	$11\%^{(3)}$	$11\%^{(3)}$						
D (08P)	10/0	070	$10\%^{(4)}$	$7\%^{(4)}$						

⁽¹⁾ $P_0 \approx 1500$ Pa for $L_d = 0$ cm and $P_0 \approx 1300$ Pa for $L_d = 15$ cm.

- $^{(2)}$ $P_0\approx 3400 {\rm Pa}$ for $L_d=0 {\rm cm}$ and $P_0\approx 3500 {\rm Pa}$ for $L_d=15 {\rm cm}.$
- ⁽³⁾ $Re \approx 3600$ for $L_d = 0$ cm and $L_d = 15$ cm.
- ⁽⁴⁾ $Re \approx 17500$ for $L_d = 0$ cm and $L_d = 15$ cm.

20% of variation for all flow conditioning

1<X_{pc}/D<7

Influence of cross section shape

Q=35I/min

- **Differences:**
 - cross section shape amplitude 20%
 - extent of potential cone
 - cross section shape decay rate

Data Experimental data: longitudinal velocity

Influence of flow mixing

- Differences:
 - cross section shape decay rate
 - cross section shape amplitude
 - extent of potential cone

10%

5 times difference

$$A_{c} = 0.79 cm^{2}$$

L_u=100cm

- major axis:
- minor axis:

Data Experimental data: transverse velocity

Influence of cross section shape

Q= 5l/min

Data Experimental data: flow visualization

- Flow with free jet:
 - observation: flow structures (vortices)

Immersed boundary method

$$\begin{split} \rho \left(\frac{\partial \mathbf{u}}{\partial t} (\mathbf{x}, t) + \mathbf{u}(\mathbf{x}, t) \cdot \nabla \mathbf{u}(\mathbf{x}, t) \right) &= -\nabla P(\mathbf{x}, t) + \mu \nabla^2 \mathbf{u}(\mathbf{x}, t) + \mathbf{f}(\mathbf{x}, t) \\ \mathbf{f}(\mathbf{x}, t) &= \int_U \mathbf{F}(\mathbf{s}, t) \delta(\mathbf{x} - \chi(\mathbf{s}, t)) d\mathbf{s} \end{split}$$

- Incompressible laminar flow
- Rigid, no-moving structure
- Impose pressure gradient: inlet & outlet
- Impose P=0Pa for remainder boundary
- t_{tot} >0.04s, quasi-steady: t>0.02s

Data Numerical data

PhD Defense - Bo WU

Data Numerical data

0.000 210.2 420.4[cm/s]

Observations:

- flow development / vena contracta
- reattachment of jet

I. Introduction and objectives

II. Model

III. Data

IV. Validation

- Experimental data
- Numerical data

V. Conclusions and perspectives

Validation Pressure

- can not capture flow dynamics
- agreement between modeled and measured when using cone
- < 5% for P₀ > 300Pa
 > 5% & <20% for P₀ < 300Pa

- useless at downstream
- 10% within constriction

Quantify the variation due to the cross section shape

Validation Velocity

- 40% difference of maximum velocity
- match near the wall
- 20% better approximation: IB>mod

I. Introduction and objectives

II. Model

III. Data : experimental and numerical

IV. Validation

V. Conclusions and perspectives

Conclusions and perspectives Conclusions

Quasi-3D model

validated influence of geometry (cross section shape, L_c , A_r)

- within the constriction (pressure)
- at the outlet (velocity)
- not useful downstream the constriction
- can not capture complex flow dynamics no turbulence

1D / 2D models

- a small aperture
- fast
- simple
- negative points

Experiment

- influence of cross section shape
- influence of flow development
- influence of flow mixing
- complex flow dynamics

3D model

- capture some of flow dynamics
- geometry
- high computational cost
- no variation of initial condition
- no turbulence

Conclusions and perspectives Perspectives

- Stability of the flow patterns
- Transition mechanism : laminar turbulent
- Interactive boundary layer method
- IB method **—** full fluid-structure interaction
- Refine applications, such as speech production, blood arteries, geo-physical flows
- Evolution of replicas, such as rounded corner, smooth inlet

all cross section shapes

Unsteady quasi-3D model

$$\frac{d\overline{u}}{dt} - \frac{Q^2}{A^3}\frac{dA}{dx} = -\frac{1}{\rho}\frac{dP}{dx} + \nu\left(\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right)$$

Conclusions and perspectives Perspectives

Rounded corner

* sharp

15000

* sharp

15000

× smooth

× smooth

3D print

(c) small circular sector

PhD Defense - Bo WU

Rounded corner

Rounded corner

Publications

• Journal articles (3 published)

- 1. Wu B., Van Hirtum A., Luo X.Y., 2013. Pressure driven steady flow in constricted channels of different cross section shapes. International Journal of Applied Mechanics
- 2. Wu B., Van Hirtum A., Pelorson X., Luo X.Y., 2013. The influence of glottal cross-section shape on theoretical flow models. Journal of the Acoustical Society of America
- 3. Grandchamp X., Fujiso Y., Wu,B., Van Hirtum, A., 2012. Steady laminar axisymmetrical nozzle flow at moderate Reynolds numbers: modelling and experiment. Journal of Fluids Engineering

International conference papers (4 published)

- 1. Wu B., Van Hirtum A., Luo X.Y., 2013. Influence of cross section shape on the outcome of a two-mass model. 21st International Congress on Acoustics
- 2. Pelorson X., Van Hirtum A., Wu B., Silva F., 2013. Theoretical and experimental study of glottal geometry in phonation. 21st International Congress on Acoustics
- 3. Wu B., Van Hirtum A., Luo X.Y., 2013. Influence of cross section shape on steady and unsteady flow through a constricted channel. 10th International Workshop on computational system biology
- 4. Wu B., Van Hirtum A., Luo X.Y., 2012. Analytical solution for pressure driven viscid flow in ducts of different shape: application to human upper airways. Acoustics 2012 Nantes

Thanks for your attention!

