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Chapter 1

Introduction

1.1 Formulation of the problem

Pressure�driven channel �ow is associated with physiological �ows for which constricted chan-
nel portions occur either naturally or are due to a pathology or an abnormality. Well known
examples are for instance air�ow through the human lower (asthma) or upper airways (human
speech production, obstructive sleep apnea) and blood �ow through a stenosis.

Consequently, e�orts are made to model pressure�driven �ow through constricted channels
in order to understand the mechanisms involved and to develop aiding tools for health care
workers such as surgeons, medical doctors, speech therapists, prosthesis designers (dental or
glottal), aerosol spray designers, etc. Due to the complexity of the human respiratory (Fig. 1.1)
and cardiovascular system, most studies severely simplify the physiological reality in order to
come up with a con�guration depending on a limited number of meaningful physiological and
physical parameters [56, 117, 5, 98, 72, 112, 71, 8, 104, 74]. Such a simpli�cation enhances
understanding of the ongoing physical phenomena and facilitates experimental validation of
the models accuracy [107, 15, 97, 70, 76, 25, 111].

In general, simpli�cations of the �ow model through portions of the respiratory or car-
diovascular system are based on a non dimensional analysis of the governing Navier-Stokes
equations [9] while accounting for typical values of physiological, geometrical and �ow char-
acteristics. From these observations relevant non-dimensional numbers (Mach number Ma,
Reynolds number Re, Strouhal number Sr and mean channel width-to-height ratio Ar) allow
one simplify the �ow model. For instance, glottal �ow during phonation can be assumed to
be incompressible (Ma2 � 0.7), laminar inviscid (Re ≈ O(103)), quasi-steady (Sr � 1) and
two-dimensional (Ar > 4) [28, 51, 98, 110, 63, 120, 23]. The assumption of a two-dimensional
glottal �ow implies a rectangular glottal cross section shape for which height h(x) varies along
main �ow direction x, whereas glottal width w is �xed [56, 117, 5, 98, 72, 112, 71, 8, 64, 104,
74]. Theoretical �ow models based on these assumptions result in a quasi-one-dimensional �ow
description when accounting for kinetic losses as well as viscous losses [30, 25, 23]. Therefore,
quasi-one-dimensional (1D) or two-dimensional (2D) �ow models have proven to be extremely
useful to grasp the underlying physics and are applied to mimic and predict ongoing phe-
nomena using few computational resources while allowing experimental validation on replicas
with di�erent degrees of complexity [120, 23, 20]. Naturally, the assumption of a 1D or 2D
geometry implies that details of the cross section shape perpendicular to main �ow direction
x are neglected.

1
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Figure 1.1: The human airway system [1].

Nevertheless, visualization of the auto-oscillation of deformable mechanical glottal repli-
cas [121] as well as observations of the glottal geometry during human speech production [37,
28, 91, 131, 31] revealed that the cross section shape defers from a rectangular shape. For
example, a "neutral" vowel (`e' as in taken or `i' as in pencil) is de�ned as a vowel produced by
a vocal tract con�guration that has uniform cross section area along its entire length in which
the vocal tract can be treated mathematically as a single uniform tube closed at one end (the
glottis). While in reality the con�guration of the vocal tract during speech production is much
more complex. Fig 1.2a shows the derived medial section of a vocal tract during the produc-
tion of a high central spread-lipped vowel. The red line approximately represents the mid line
of the vocal tract during this gesture. Fig. 1.2b displays seven cross section shapes along the
vocal tract taken from the equivalently numbered locations in Fig. 1.2a. It can be seen that
the actual cross section shape of the vocal tract varies greatly along its length and this is the
case even during the production of a neutral vowel. Fig. 1.3 shows that the assumption of a
rectangular shape can be questioned even for non-pathological conditions. The same way a
large diversity of cross section shapes is observed for the cardiovascular system as illustrated
in Fig. 1.4.

Since the cross section shape is known to a�ect boundary layer development [9], varying the
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(a) (b)

Figure 1.2: a) X-ray derived vocal tract medial section during the articulation of a high central
spread-lipped vowel (/i/) spoken by an adult male. b) cross section shapes were determined
along the vocal tract at the cross section lines numbered 1 to 7 (see Fig. 1.2b) [37].

(a) (b)

(c) (d)

Figure 1.3: Still images of vibrating vocal folds (http://bastianmedicalmedia.com/photos/
vocal-fold-bowing/).

cross section shape might alter the viscous contribution to the pressure drop, the theoretical
�ow models using the above mentioned simpli�cations can thus be questioned for normal as
well as pathological geometrical conditions.

Recently, Computational Fluid Dynamics (CFD) has been utilized to characterize the
�uid �ow in human biological circulation models. E�orts have been made to understand the
blood �ow and related problems in cardiovascular system [116, 14, 60, 69, 17, 89, 115, 118,

http://bastianmedicalmedia.com/photos/vocal-fold-bowing/
http://bastianmedicalmedia.com/photos/vocal-fold-bowing/
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Figure 1.4: The anterior view of heart and pericardium [1].

123] using patience-speci�c computational model. Several authors [130, 103, 68, 79, 114, 128,
13, 57, 58, 93, 84, 92, 124, 67, 36] give important contributions to three-dimensional steady
and unsteady modeling of �ow through bifurcating lung branches and realistic oropharynx
geometries with respect to quiet respiration. Experimental validation of �ow simulations
through human upper airways is presented in [50, 90]. In order to assess systematic variation
of the constricted passage and �ow conditions instead of quiet respiration three-dimensional
models of the impact of the geometry and �ow circulation on the �ow development with �nite
element modeling are assessed in [19, 3, 132, 16]. In particular, automatic mesh adaptation,
as proposed in [19], is of interest considering modeling of the total �uid-structure interaction
involving varying geometrical con�gurations in space and time. Other studies propose large
eddy simulation (LES) of �ow in simpli�ed human airways [78, 59, 122, 22, 21]. Nevertheless,
the computational load of accurate three-dimensional modeling, requiring a large amount of
mesh points, should not be underestimated and seems at current date out of reach for clinical
applications [69].

1.2 Objectives and outline of the thesis

The aim of the current work is to assess the potential impact of a simple `quasi-three-
dimensional' �ow model � with low computational cost and which takes into account kinetic
losses, viscosity as well as the cross section shape � on the �ow outcome. The �ow model out-



1.2. Objectives and outline of the thesis 5

Figure 1.5: Overview of the thesis objectives.

come is analyzed with respect to the outcome of quasi-one-dimensional and two-dimensional
�ow model, a three-dimensional �ow model as well as experimental �ow data. The proposed
model with low computational cost, is applied to phonation, biological circulation systems
and physical equations. An overview of the thesis objectives is presented in Fig. 1.5.

In the following chapter, Chap. 2, we consider pressure-driven viscous �ow through uniform
channels with di�erent, but constant cross section shape. We extend results for classical cross
section shapes to an arbitrary cross section shape for which the solution is obtained either
numerically using a pseudo-spectral approach or quasi-analytically.

Next, in Chap. 3, we exploit the proposed parametrization of an arbitrary cross section
shape following the `superformula' to physical equations such as the wave equation for two-
dimensional and three-dimensional geometries.

In Chap. 4, we integrate the cross section shape in a �ow model which can be applied
to pressure-driven �ow through a constricted channel with di�erent cross section shape. The
�ow model is used to estimate the in�uence of the cross section shape on a major phonation
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parameter, i.e. the minimum phonation threshold pressure required to sustain vocal folds
auto-oscillation.

In order to assess the in�uence of the cross section shape of a constriction on the �ow,
experimental and numerical data are gathered as reported in Chap. 5 and 6, respectively.
Besides the e�ect of the cross section shape on the �ow, the in�uence of �ow conditions
upstream from the constriction are experimentally assessed. Numerical data are simulated
using the Immersed Boundary (IB) method. In the current work the structure is �xed to
match the experimental and model geometry so that the accuracy of the �ow model can
be evaluated. Notice that the Immersed Boundary method is suitable to capture the �uid-
structure interaction, which is of particular interest for the aimed biological applications. A
comparison is made between modeled, experimental and numerical data.

Finally, conclusions with respect to the in�uence of the cross section shape on the �ow and
the ability of the di�erent model approaches to capture its e�ect are presented in Chap. 7.
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In the current chapter we present quasi-analytical solutions for developed pressure-driven
laminar viscous �ow through uniform channels of di�erent, but constant cross section shape.
Fig. 2.1 illustrates the main geometrical characteristics for a channel of length L oriented in
the streamwise x direction with its entry at x = x0 and a constant arbitrary cross section with
area A, perimeter Pm and hydraulic diameter D de�ned as D = 4A/Pm. At �rst, a quasi-
analytical solution for a limited number of cross section shapes is presented. Next, a general
quasi-analytical solution for an arbitrary cross section shape is proposed and the solution is
compared to a numerical solution obtained using a pseudo-spectral approach.

2.1 Poisson equation in polar and Cartesian coordinates

We consider the Navier-Stokes equation

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇P +∇ ·T + f , (2.1)

7



8 Chapter 2. Developed laminar viscous �ow through uniform channels

x

z

y

L

x0

A, Pm, D = 4A
Pm

Figure 2.1: Illustration of a uniform channel geometry of length L with arbitrary but constant
cross section shape of area A, perimeter Pm and hydraulic diameter D. The channel is oriented
along the streamwise direction x and the streamwise channel onset coordinate is denoted x0.
The spanwise direction y and transverse direction z are indicated.

where u = (u, v, w) is the �ow velocity, ρ is the �uid density, P is the pressure, T is the
(deviatoric) component of the total stress tensor, and f represents body forces (per unit
volume) acting on the �uid and ∇ is the del operator.

Next, we consider conservation of mass expressed by the continuity equation

∂ρ

∂t
+∇ · ρu = 0. (2.2)

If the �ow is assumed to be incompressible with constant density ρ, then the continuity
equation simpli�es to ∇ · u = 0. Taking the incompressible �ow assumption into account and
assuming constant dynamic viscosity µ, the Navier-Stokes equation (2.1) will read, in vector
form:

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇P + µ∆u + f . (2.3)

Now let us consider a straight duct of arbitrary but constant cross section shape of su�cient
length to obtain fully developed laminar channel �ow. Ref. ([126]) shows that, regardless of
the cross section shape, the minimum channel length, entry length Lf , for laminar �ow is
given as,

Lf ≈ (0.05Re+ 0.5)D, (2.4)

where D denotes the hydraulic diameter and Re denotes the �ow's Reynolds number based
on D1. Fig. 2.2 illustrates the relationship between entry length Lf and hydraulic diameter
D for typical range Reynolds number, Re ≤ 0(103), mentioned in the introduction.

1so Re = QD
Aν

with volume �ow rate Q, hydraulic diameter D, area A and kinematic viscosity of the �uid

ν. Unless mentioned di�erently, we present results using air as a �uid with density ρ = 1.2kg/m3, dynamic

viscosity µ = 1.8 × 10−5 Pa·s and kinematic viscosity ν = 1.5 × 10−5m2/s.
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Figure 2.2: Illustration of the relationship between entry length Lf and hydraulic diameter
D for di�erent Reynolds numbers. The hydraulic diameter range and the Reynolds number
range is relevant for the aimed biological �ow applications mentioned in Fig. 1.5.

When the streamwise coordinate x > Lf (or L > Lf with x0 = 0 ), the velocity becomes
purely axial and varies only with the lateral coordinate, thus v = w = 0 and u = u(y, z).
The �ow is then called fully developed. For fully developed pressure-driven �ow through a
uniform channel with arbitrary but constant cross section shape, and under the assumptions
of laminar, incompressible, parallel and steady viscous �ow, the streamwise component of
the momentum equation expressed in Cartesian coordinates (x, y, z) reduces to the following
Poisson equation [9, 126]2

1

µ

dP

dx
=
∂2u

∂y2
+
∂2u

∂z2
, (2.5)

with driving pressure gradient dP/dx, velocity u(y, z) and dynamic viscosity µ. The spanwise
and transverse components of the momentum equation become,

∂P

∂y
= 0,

∂P

∂z
= 0, (2.6)

and the continuity equation yields,

∂u

∂x
= 0. (2.7)

In cylindrical coordinates (r, θ, x), and under the same assumptions, the Poisson equation
(2.5) becomes

1

µ

dP

dx
=

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
, (2.8)

2The gravitational force is neglected.
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while the spanwise and transverse components of the momentum equation become,

∂P

∂r
= 0,

∂P

∂θ
= 0, (2.9)

and the continuity equation is still the one given in (2.7).

For uniform geometries and applying the no slip boundary condition u = 0 on the channel
walls, (2.5) can be rewritten as a classical Dirichlet problem which can be solved analytically
for simple geometries using e.g. separation of variables or conformal mapping [86, 11, 106, 48,
66]. Therefore exact solutions can be obtained for: local velocity u(y, z), local pressure P (x),
wall shear stress τ(x) and derived quantities such as volume �ow rate Q and bulk Reynolds
number Re = QD

νA again based on hydraulic diameter D. The local pressure P (x) can be
obtained by integrating (2.5) or (2.8). The wall shear stress is de�ned as τ = ±µ∂u∂y |w or
±µ∂u∂z |w in plane coordinates and τ = ±µ∂u∂r |w in cylindrical coordinates, in which the symbol
depend on the positive normal direction of the boundary.

In the following quasi-analytical solutions are given for some cross section shapes de�ned
by geometrical parameters, denoted (a, b), of which some are validated on expressions reported
in literature [95, 126, 81, 101, 49, 11]. Analytical solutions of the volume �ow rate can be
described in general by an expression of the form,

Q = βq(a, b)
1

µ

(
−dp
dx

)
, (2.10)

for which βq depends on the cross section shape parameters (a, b). Consequently, the resulting
volume �ow rate is proportional to the ratio of the driving pressure gradient dP/dx to the
dynamic viscosity µ. Expression (2.10) also holds in the case of a quasi-one dimensional �ow
model approach [25] for which the viscous contribution to the pressure drop is accounted for
by a Poiseuille term under the assumption of a rectangular cross section with �xed width w
and height h.

It is seen that besides the volume �ow rate Q also the velocity distribution u(y, z) is
proportional to the ratio of the driving pressure gradient dP/dx and the dynamic viscosity µ
so that the following holds using (2.10),

u = βu(a, b)
1

µ

(
−dp
dx

)
or u = Q

βu(a, b)

βq(a, b)
, (2.11)

in which βu(a, b) expresses the in�uence of the cross section shape on the velocity distribution.

The wall shear stress

τ = βt(a, b)

(
dp

dx

)
, (2.12)
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depends on the driving pressure gradient dP/dx and the cross section shape βt(a, b).

From expression (2.10), it follows that the viscous contribution to the pressure drop is

∆Pvisc(x) = −µQ
∫ x

x0

dx

βq(a, b)
, , (2.13)

with x0 denotes the channel onset and x > x0. Consequently, ∆Pvisc varies linearly with
volume �ow rate Q and dynamic viscosity µ and is reversed proportional to the cross
section shape factor βq. In the following section, expressions for βq, βu and βt are derived
quasi-analytically for some particular cross section shapes.

2.1.1 Quasi-analytical solutions for particular cross section shapes

The uniform channel geometry is fully de�ned by the cross section shape. In order to use
the cross section shape in quasi-analytical models only shapes for which the geometry can be
expressed analytically using one or two geometrical parameters (a, b) are assessed: circle (cl),
rectangle (re), ellipse (el), eccentric annulus (ea), concentric annulus (ca), half moon (hm),
circular sector (cs), equilateral triangle (tr) and limacon (lm). Di�erent cross section shapes
and associated geometrical parameters are illustrated in Fig. 2.3.

a

circle (cl)

a

rectangle (re)

b

ellipse (el)

a

b

eccentric

annulus (ea)

a
b

half moon

(hm)

b
a

circular

sector (cs)

a

a

b

a

a a

equilateral

triangle (tr)

⊗
x y
z

limacon (lm)

(b ≤ 1)

a

a+ ab

Figure 2.3: cross section shapes with parameters (a, b) in the (y, z) plane. Note that for a
circular sector, b indicates an angle. As in Fig. 2.1, x denotes the streamwise, y the spanwise
and z the transverse direction.

The chosen shapes have, although a severe idealization, some relevance to describe the
channel cross section shape in the case of normal as well as pathological geometrical conditions
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of the human respiratory and cardiovascular systems. The circular, rectangular and elliptical
cross section shapes are idealized shapes assuming a perfect symmetry of the channel or the
constricted portion with respect to the spanwise y and transverse z directions. The eccentric
annulus, half moon and limacon are crude approximations to an asymmetrical shape due to e.g.
the presence of a polyp, a tumor, an asymmetrical stenosis or a vocal tract during articulation.
The circular sector and the equilateral triangle are approximations of asymmetrical cross
section shapes occurring e.g. at the glottis during normal respiration. Comparison between
di�erent shapes is done by imposing either area A or hydraulic diameter D. Cross section
shapes which are de�ned using two instead of one geometrical parameter require an addition
condition for a geometrical quantity. Expressions for area A, hydraulic diameter D, total
width ytot and perimeter Pm as a function of geometrical parameters (a, b) for the shapes
shown in Fig. 2.3 are given in Table 2.1.

Quasi-analytical solutions for the cross section shapes shown in Fig. 2.3 are obtained as
detailed in Appendix A. From the obtained solutions for the volume �ow rate Q, velocity
pro�le u and wall shear stress τ the terms depending on the cross section shapes are de�ned.
The term βq(a, b) needed to quantify the volume �ow rate (2.10) is provided in Table 2.2. The
term βu(a, b) of (2.11) describing velocity distribution u(y, z) for di�erent cross section shapes
is given in Table 2.3. Table 2.4 lists the corresponding term βt(a, b) needed to quantify the
wall shear stress.

In the following the in�uence of the cross section shape on the model outcome is assessed
for developed laminar viscous �ow through a uniform channel. The comparison between dif-
ferent cross section shapes is assessed by imposing either area A or hydraulic diameter D.
As mentioned the circle and equilateral triangle cross section shapes are fully described by
one parameter, acl and atr, whose value follows immediately from the imposed A or D. For
the remaining cross section shapes, an additional condition is necessary in order to obtain
the geometrical parameter set {a, b} illustrated in Fig. 2.3. Two di�erent types of additional
conditions are considered. Firstly, an explicit condition requiring a parameter αshape is intro-
duced scaling the cross section shape as: are = αreacl, ael = αelacl, bea = αeaaea, bcs = αcs,
bhm = αhmahm and blm = αlm. Secondly, the required additional condition is obtained by im-
posing, besides area A or hydraulic diameter D, a �xed width w in the spanwise direction, i.e.
ytot = w. The relationship between the geometrical parameters and quantities was given in
Table 2.1. The in�uence of the cross section shape on the quasi-analytical velocity distribution
is considered by quantifying the velocity distribution as presented in the next section 2.1.2.

2.1.2 Quasi-analytical velocity distribution

The ratio of maximum velocity umax and maximum velocity for a circular cross section shape
uclmax is assessed for an imposed area3 A = 79 mm2 in order to estimate the in�uence of
the cross section shape. The ratio umax/uclmax is constant for a circle (=1) and equilateral
triangle (=0.8) since these shapes are fully determined by the imposed area and hence do not

3The imposed area A = 79 mm2 corresponds to a circle with radius 5mm, i.e. acl = 5mm, which is relevant

to human airways and other biological circulation systems.
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Table 2.1: Geometrical quantities for di�erent shapes as a function of the cross section pa-
rameters (a, b) de�ned in Fig. 2.3 [12].

shape A D ytot Pm

circle πa2 2a 2a 2πa

ellipse(1,3) πab 4ab

(a+b)
(

1+h
4

+h2

64
+ h3

256

) 2a 4aE

(√
1− ( ba)2

)
rectangle 4ab 4ab

a+b 2a 4(a+ b)

equilateral √
3

4 a
2

√
3

3 a
√

3
2 a 3a

triangle

circular
a2

2 b
2ab
2+b a a (2 + b)

sector

eccentric

π(a2 − b2) 2(a− b) 2(a− b) 2π (a+ b)
annulus

concentric

annulus

half moon(2)
a2
(
π − θ2 + 1

2 sin(2θ2)
)

4A
(π−θ2)(2a+b) a+ a cos(θ2) (π − θ2) (2a+ b)

− b2

2 (π − θ2 − sin θ2)

limacon πa2
(

1 + b2

2

)
4a b

2+2
b2+4

a(1 + b) aπ
2

(
b2 + 4

)
+
(

1
4b2
− a

2b

)
(1) h = (a−b)2

(a+b)2 .

(2) θ2 = 2 arcsin
(

b
2a

)
.

(3) E(x) =
∫ π

2

0

√
1− x2sin2tdt is the complete elliptic integral of the second kind.

depend on the parameter α. For all other cross section shapes, the choice of the parameter
α does in�uence to some extent the velocity distribution as shown in Fig. 2.4 by considering
umax/u

cl
max as a function of α.

It is seen from Fig. 2.4a that varying the cross section shape by increasing α from 0
(corresponding to a circle) to 0.95 reduces the maximum velocity with 40% for a half moon
and with 5% for a limacon cross section shape. Fig. 2.4b shows that varying the cross section
shape by increasing α from

√
π/4 (corresponding to a square) for a rectangular and from

1 (corresponding to a circle) for an ellipse to 12 reduces the maximum velocity with 99%.
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Table 2.2: βq(a, b) of (2.10) for volume �ow rate Q [95, 126, 101, 11].

Shape βq(a, b)

circle πa4

8

ellipse π
4
a3b3

a2+b2

rectangle(1) 4a3

3

[
b− 192a

π5

∞∑
n=1,3,...

tanh(nπb/2a)
n5

]
equilateral √

3a4

320
triangle

circular
a4

4

[
tan b−b

4 − 32b4

π5

∞∑
n=1,3...

1
n2(n+2b/π)2(n−2b/π)

]
sector(1)

eccentric
annulus(1,2)

π
8

[
a4 − b4 − 4c2M2

β−γ − 8c2M2
∞∑
n=1

ne−n(β+γ)

sinh(nβ−nγ)

]
0 < c ≤ a− b, F = a2−b2+c2

2c

M =
√
F 2 − a2

γ = 1
2 ln F+M

F−M , β = 1
2 ln F−c+M

F−c−M

concentric
π
8

[
a4 − b4 − (a2−b2)2

lna
b

]
annulus

half
moon

1
4

[
(2a3b+ 21

12ab
3) sin(θ1) + (a4 − b4

2 − 2a2b2)θ1

]
θ1 = arccos(b/2a)

limacon π
8a

4
(
1 + 4b2 − 2b4

)
Poiseuille(3) wh3

12

(1) in�nite sum is limited to n ≤ 60.

(2) c yields the distance between inner and outer circle centers.

(3) quasi-one-dimensional approach: height h and �xed width w.

Fig. 2.4c illustatrates that for a circular sector increasing the angle b decreases the in�uence of
viscosity at �rst until b ' 85o. Further increasing the angle enforces the in�uence of viscosity,
so that the ratio Umax/U clmax decreases. Actually, this general tendency re�ects the variation of
the hydraulic diameter D as a function of angle b. Since the minimum e�ect of viscosity near
b ' 85o corresponds to a minimum perimeter Pm and hence a maximum hydraulic diameter D
(since the area A is �xed and D = 4A

Pm
) which is illustrated in Fig. 2.5. Consequently, Fig. 2.4
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Table 2.3: βu(a, b) of (2.11) for velocity distribution u [95, 126, 101, 81, 11] .

Shape βu(a, b)

circle 1
4(a2 − r2)

ellipse 1
2
a2b2

a2+b2
(1− y2

a2
− z2

b2
)

rectangle(1) 1
2

[
b2 − z2 − 32b2

π3

∞∑
n=1,3,...

(−1)
n−1
2

cosh(nπy
2b

)

cosh(nπa
2b

)

cos(nπz
2b

)

n3

]
equilateral

1
4
√

3
1
a(3y2 − z2)(2z −

√
3a)

triangle

circular
sector(1)

−1
4 [r2

(
1− cos 2θ

cos b

)
−

16a2b2

π3

∞∑
n=1,3...

(−1)
n+1
2

(
r
a

)nπ
b cos (nπθ/b)
n(n+2b/π)(n−2b/π) ]

eccentric
annulus
(1,2,3)

M2

[ ∞∑
n=1

(−1)n e
−nβ cothβ sinh (n(η−γ))−e−nγ coth γ sinh (n(η−β))

sinh (n(β−γ))

· cos (nξ) + coth γ−cothβ
2(γ−β) η + β(1−2 coth γ)−γ(1−2 cothβ)

4(γ−β) − cosh η−cos ξ
4(cosh η+cos ξ)

]
0 < c ≤ a− b, F = a2−b2+c2

2c ,M =
√
F 2 − a2

γ = 1
2 ln F+M

F−M , β = 1
2 ln F−c+M

F−c−M

concentric
1
4

[
a2 − r2 + (a2 − b2) ln(a/r)

ln(b/a)

]
annulus

half moon 1
4

(
r2 − b2

) (
2a cos θ

r − 1
)

limacon(4) a2

4

[
1 + 2bξ + b2 − (ξ + b(ξ2 − η2))2 − (η + 2bξη)2

]
Poiseuille(5) −1

2(y2 − hy)

(1) in�nite sum is limited to n ≤ 60.

(2) c yields the distance between inner and outer circle centers.

(3) the mapping is y + iz = M tanh 1
2 (ξ + iη) with 0 ≤ ξ ≤ 2π, γ ≤ η ≤ β.

(4) the mapping is (y, z) = (a(ξ + b(ξ2 − η2)), a(η + 2bξη)) on the circle (ξ2 + η2) ≤ 1.

(5) quasi-one-dimensional approach: height h, 0 ≤ y ≤ h.

shows that for a constant area A and cross section shape, the scaling parameter α in�uences
the e�ect of viscosity on the �ow development since the variation of the ratio umax/uclmax with
α is signi�cant for all assessed cross section shapes.
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Table 2.4: βt(a, b) of (2.12) for wall shear stress τ [49, 11].

Shape βt(a, b)

circle a
2 , (r = a)

ellipse − a2b2

a2+b2

√
y2

a4
+ z2

b4
, (y

2

a2
+ z2

b2
= 1)

rectangle(1)

8a
π2

∞∑
n=1,3,...

(−1)
n−1
2

i2

[
1− cosh(nπz

2a
)

cosh(nπb
2a

)

]
, (y = ±a)

8a
π2

∞∑
i=1,3,...

(−1)
n−1
2 tanh (nπb2a )

cos(nπy
2a

)

n2 , (z = ±b)

equilateral
triangle

− 1
az(z −

√
3

2 a), (y = ±
√

3
3 z)

√
3

2a (y2 − a2

4 ), (z =
√

3a
2 )

circular
sector(1)

−

[
r2

4 (1 + 2 tanα) + 4a2α
π2

∞∑
n=1,3...

( ra)
nπ
α

(n+ 2α
π

)(n− 2α
π

)

]
, (θ = ±α

2 )

−a
2

[(
1− cos 2θ

cosα

)
− 8α

π2

∞∑
n=1,3...

(−1)
n+1
2

cos (nπθ/α)

(n+ 2α
π

)(n− 2α
π

)

]
, (r = a)

eccentric
annulus
(1,2,3)

−M2

[ ∞∑
n=1

(−1)n e
−nβ cothβ cosh (n(η−γ))−e−nγ coth γ cosh (n(η−β))

sinh (n(β−γ))

·n cos (nξ) + coth γ−cothβ
2(γ−β) − sinh η cos ξ

2(cosh η+cos ξ)2

]
, (η = γ, β)

0 < c ≤ a− b, F = a2−b2+c2

2c ,M =
√
F 2 − a2

γ = 1
2 ln F+M

F−M , β = 1
2 ln F−c+M

F−c−M

concentric
annulus

1
4

[
2b+ a2−b2

b ln(b/a)

]
, (r = b)

−1
4

[
2a+ a2−b2

a ln(b/a)

]
, (r = a)

half moon
1
4(4a cos θ − 2b), (r = b)

−1
4( b2

2a cos θ − 2a cos θ), (r = 2a cos θ)

limacon −a2

2 (1 + 2b cos θ + 2b2) cos θ, (0 ≤ θ ≤ 2π)

Poiseuille(4)
y − h

2 , (y = 0, h)

(1) in�nite sum is limited to n ≤ 60.

(2) c yields the distance between inner and outer circle centers.

(3) the mapping is y + iz = M tanh 1
2 (ξ + iη) with 0 ≤ ξ ≤ 2π, γ ≤ η ≤ β.

(4) quasi-one-dimensional approach: height h, 0 ≤ y ≤ h.

In order to evaluate the impact of the cross section shape in more detail, two sets of
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(a) half moon `hm' and limacon `lm' (b) rectangle `re' and ellipse `el'

(c) circular sector `cs'

Figure 2.4: Illustration of the in�uence of geometrical parameter α on normalized maximum
velocity, umax/uclmax, for di�erent cross section shapes and imposed area A = 79 mm2. Vertical
lines indicate values corresponding to default parameter set (α1) and non-default parameter
set (α2) for which umax/uclmax ≈ 1 and umax/uclmax � 1, respectively.

(a) perimeter, Pm(b) (b) hydraulic diameter, D(b)

Figure 2.5: Circular sector (cs) of �xed area and varying angle b: a) perimeter Pm(b) and b)
hydraulic diameter D(b).

parameters α are selected, default parameter set (α1) and non-default parameter set (α2),
resulting in umax/uclmax ≈ 1 and umax/uclmax � 1, respectively. Default parameter set (α1) is
de�ned as: are = 1acl, ael = 1.2acl, bea = 0.2aea, bcs = π/3, bhm = 0.2ahm and blm = 0.2.
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Non-default parameter set (α2) yields: are = 10acl, ael = 10acl, bea = 0.6aea, bcs = π/6,
bhm = 0.6ahm and blm = 0.6. Both parameter sets are indicated in Fig. 2.4.

Three di�erent cross section shapes are obtained by imposing area A=79mm2 together
with one of the following conditions:

� default parameter set (α1),

� non-default parameter set (α2),

� �xed spanwise width w, i.e. ytot = w.

The resulting velocity distribution u(y/acl, z/acl) for a uniform channel with imposed area
A = 79 mm2 and pressure gradient dP/dx = 75 Pa is further illustrated in Fig. 2.6 for default
parameter set (α1) and in Fig. 2.7 for non-default parameter set (α2) and �xed spanwise width
(ytot = w).

From Fig. 2.6, obtained using default parameter set (α1), it is seen that in accordance
with Fig. 2.4 the maximum velocity for all cross section shapes varies between values observed
for a circular and an equilateral triangle cross section shape so that the maximum velocity
reduction compared to a circular cross section yields 20%. From Fig. 2.7 is seen that using
non-default parameter set (α2) or imposing a �xed width (w) reduces the velocity more (20%
up to 98%).

The in�uence of the cross section shape on the maximum velocity is further quanti�ed in
Fig. 2.8 by imposing either area A = 79 mm2 or the corresponding hydraulic diameter D = 10

mm in combination with default parameter set (α1), non-default parameter set (α2) or �xed
width (w = 20mm).

Fig. 2.8a shows the maximum velocity normalized with respect to the maximum velocity of
a rectangular cross section shape 4. As before, the variation from uremax for default parameter
set (α1) is small yielding less than 5% when imposing A and less than 15% when imposing D.
For �xed area A the variation from uremax increases to 60% in the case of a �xed width w and to
more than 300% when non-default parameter set (α2) is used. Imposing the hydraulic diameter
D instead of area A limits the velocity variation to 60% for both non-default parameter set
(α2) and �xed width (w).

Fig. 2.8b illustrates for each cross section shape the ratio of the maximum velocity of
default parameter set (α1) to the maximum velocity obtained using non-default parameter set
(α2) or a �xed width (w). The relative di�erence between di�erent parameter sets is limited

4The rectangular cross section shape is taken as a reference since the shape is related to the quasi-one-

dimensional model assumption of �xed width w (two-dimensional �ow is assumed to take into account the

viscous contribution to the pressure drop) and is a case which occurs frequently when �ow models are experi-

mentally validated. Note that in case a �xed width w is imposed its value is set to w = 20mm in accordance

with a common value in experimental studies.
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(a) circle (b) rectangle

(c) ellipse (d) eccentric annulus

(e) half moon (f) circular sector

(g) equilateral triangle (h) limacon

Figure 2.6: Velocity distribution u(y/acl, z/acl) for A = 79 mm2 and dP/dx = 75 Pa/m for
air�ow and geometrical default parameter set (α1) while acl = 5mm.
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(a) ellipse (b) ellipse

(c) eccentric annulus (d) eccentric annulus

(e) half moon (f) rectangle

(g) circular sector (h) circular sector

Figure 2.7: Velocity distribution u(y/acl, z/acl) for A = 79 mm2 and dP/dx = 75 Pa/m
for air�ow: left) geometrical non-default parameter set (α2) and right) �xed width (w) with
w = 4× acl while acl = 5mm.
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(a) cfr. rectangular cross section (b) cfr. set α1

Figure 2.8: Illustration of in�uence of cross section shapes (re: rectangle, el: ellipse, ea:
eccentric annulus, cs: circular sector) obtained from imposing di�erent conditions (default
parameter set (α1), non-default parameter set (α2) and �xed width (w = 20mm)) for imposed
area A = 79mm2 or hydraulic diameter D = 10mm on the maximum velocity: a) with respect
to maximum velocities associated with a rectangular cross section and b) with respect to
maximum velocities associated with default parameter set. The dashed line corresponds to
uparam1
max /umax = 1.

to 40% when the hydraulic diameter D is imposed. In the case where area A is imposed, the
velocity ratio varies from 40% up to >100%.

The mean wall shear stress on the boundary of the cross section shape as a function of
driving pressure gradient dP/dx is illustrated in Fig. 2.9. The normalized wall shear stress
increases as driving pressure gradient dP/dx decreases or as area A decreases.

Figure 2.9: Normalized wall shear stress τ as a function of dP/dx, area A and cross section
shape (circular sector with b = 60o) with ub,cl indicating the bulk velocity in the case of a
circular cross section shape.
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2.2 Poisson equation in stretched coordinates

2.2.1 Arbitrary cross section shape

In5 the previous section 2.1.1 solutions are discussed for particular cross section shapes. Nev-
ertheless, given the variation and irregularity of cross section shapes observed for biological
circulation systems, it is important to introduce a general quasi-analytical solution for a chan-
nel with an arbitrary cross section shape. In the following, we introduce a general polar
equation, the so called "superformula" [39], in order to describe the boundary ∂Ω of an arbi-
trary shape with 0 ≤ θ ≤ 2π:

r(θ) = g(θ)

[∣∣∣∣∣cos(mθ4 )

a

∣∣∣∣∣
n2

+

∣∣∣∣∣sin(mθ4 )

b

∣∣∣∣∣
n3
]−1/n1

= g(θ) · f(θ), m > 0. (2.14)

This equation describes almost any closed curve based on the deformed circle, f(θ) with
parameter set {m, n1, n2, n3, a, b}6. The function g(θ) can be considered as a modi�er factor
of the function f(θ) for which parameters depend on the used function, for example, the
modi�er with limacon shape g(θ) = n4 + n5cosθ. Fig. 2.10 illustrates some of the particular
cross section shapes introduced previously in Fig 2.3. The shapes are generated using the
general polar equation (2.14) with the parameters listed in Table 2.5.

(a) circle (b) ellipse (c) rectangle

(d) square (e) equilateral triangle (f) limacon

Figure 2.10: Illustration of some cross section shapes generated using the general polar equa-
tion (2.14) with the parameters listed in Table 2.5.

Now let us consider the (x, y) plane expressed in polar coordinates (ρ, θ)

5In this section, the symbol ρ denotes the polar radius and not the �uid density.
6The method to estimate these parameters from empirical data is presented in Appendix B.
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Table 2.5: Overview of parameter values used in (2.14) to generate the shapes show in Fig. 2.10.

shape m n1 n2 n3 g(θ) a, b

circle(1) 1 2 2 2 c a=b

ellipse(1) 4 2 2 2 c -

rectangle(1) 4 100 100 100 c -

equilateral
3 0.5 1 1 c a=b

triangle(1)

limacon(2) 4 2 2 -2 n4 + n5 cos θ a=b

(1) c is an arbitrary constant scaling the channel cross section.

(2) n4, n5 are arbitrary constants.

x = ρ cos θ, y = ρ sin θ, (2.15)

and assuming that the radius equation ρ on boundary ∂Ω

ρ = r(θ), 0 ≤ θ ≤ 2π, (2.16)

where r(θ) ∈ C2[0, 2π] and suppose the radius ρ > 0 so that r(θ) > 0 in the domain Ω.

We introduce the stretched radius ρ∗ such that

ρ = ρ∗r(θ), (2.17)

and in stretched coordinates (ρ∗, θ) the plane (x, y) is given as

x = ρ∗r(θ) cos θ, y = ρ∗r(θ) sin θ. (2.18)

Therefore, using the stretched coordinates, the domain Ω is transformed to the domain
0 ≤ θ ≤ 2π, 0 ≤ ρ∗ ≤ 1.

2.2.2 The Laplace equation in stretched coordinates

Now consider a C2 function u(x, y) = u(ρ cos(θ), ρ sin(θ)) = u(ρ, θ) in the domain Ω and the
Laplace equation in cylindrical coordinate
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∆u =
∂2u

∂x2
+
∂2u

∂y2
=
∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2

∂2u

∂θ2
. (2.19)

Now we want to represent the general polar equation (2.8) in the new stretched coordinates
system (ρ∗, θ) using

U(ρ∗, θ) = u(ρ∗r(θ) cos(θ), ρ∗r(θ) sin(θ)) = u(ρ, θ). (2.20)

Substituting this transformation into the Laplace equation (2.19) one �nds that

∆u =
1

r2(θ)

(
1 +

r′2(θ)

r2(θ)

)
∂2U

∂ρ∗2
+

1

ρ∗r2(θ)

(
1 +

2r′2(θ)− r(θ)r′′(θ)
r2(θ)

)
∂U

∂ρ∗

− 2r′(θ)

ρ∗r3(θ)

∂2U

∂ρ∗∂θ
+

1

ρ∗2r2(θ)

∂2U

∂θ2
,

(2.21)

with the boundary r(θ) = ρ when ρ∗ = 1.

For convenience, the Laplace equation (2.21) on the boundary ∂Ω is rewritten using the
transformation

ρ = r(θ) =
1

R(θ)
, 0 ≤ θ ≤ 2π. (2.22)

With this transformation, the function U in stretched coordinates corresponding to u is
given as

U(ρ∗, θ) = u (ρ∗ cos(θ)/R(θ), ρ∗ sin(θ)/R(θ)) .

So that the Laplace equation (2.21) becomes

∆u =
(
R2(θ) +R′

2
(θ)
) ∂2U

∂ρ∗2
+

1

ρ∗
(
R2(θ) +R(θ)R′′(θ)

) ∂U
∂ρ∗

+
2

ρ∗
R(θ)R′(θ)

∂2U

∂ρ∗∂θ
+
R2(θ)

ρ∗2
∂2U

∂θ2
.

(2.23)

Thus in stretched coordinates the Poisson equation (2.8) describing laminar viscous
pressure-driven �ow through a uniform channel with an arbitrary cross section shape is given
as
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1

µ

dP

dx
=
(
R2(θ) +R′

2
(θ)
) ∂2U

∂ρ∗2
+

1

ρ∗
(
R2(θ) +R(θ)R′′(θ)

) ∂U
∂ρ∗

+
2

ρ∗
R(θ)R′(θ)

∂2U

∂ρ∗∂θ
+
R2(θ)

ρ∗2
∂2U

∂θ2
.

(2.24)

2.3 Numerical solution for Poisson equation

In order to solve the Poisson equation (2.5) for arbitrary cross section shapes �rstly a numerical
solution is considered. In the following the pseudo-spectral approach on the unit disc in polar
coordinate [18, 34, 55, 62, 82, 108, 113] is outlined and numerical results are presented.

Consider the classical Poisson equation (2.5)

1

µ

dP

dx
=
∂2u

∂y2
+
∂2u

∂z2
. (2.25)

This equation can be rewritten as a classical Dirichlet problem by introducing the following
dimensionless variables:

y∗ =
y

h
, z∗ =

z

h
, u∗ =

µu

h2(−dp/dx)
,

where h denotes some characteristic duct width.

Note that the pressure gradient dP
dx < 0 is needed to hold in order to make u∗ a positive

quantity, u∗ > 0. So when substituting these variables and introducing the Laplace operator
∆, the Poisson equation (2.25) becomes,

∆u∗ = −1, (2.26)

subjected to u∗ = 0 for all points on the boundary ∂Ω of the duct cross section Ω.

Recall the Laplace equation in stretched coordinates

∆u =
(
R2(θ) +R′

2
(θ)
) ∂2U

∂ρ∗2
+

1

ρ∗
(
R2(θ) +R(θ)R′′(θ)

) ∂U
∂ρ∗

+
2

ρ∗
R(θ)R′(θ)

∂2U

∂ρ∗∂θ
+
R2(θ)

ρ∗2
∂2U

∂θ2
,

(2.27)

Using (2.27) the transformed Laplace equation (2.26) can be rewritten as

∆u∗ =
(
R2(θ) +R′

2
(θ)
) ∂2U∗

∂ρ∗2
+

1

ρ∗
(
R2(θ) +R(θ)R′′(θ)

) ∂U∗
∂ρ∗

+
2

ρ∗
R(θ)R′(θ)

∂2U∗

∂ρ∗∂θ
+
R2(θ)

ρ∗2
∂2U∗

∂θ2
= −1,

(2.28)
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For simplicity this is rewritten in the form

LU∗ = −1, (2.29)

with the operator L:

L =
(
R2(θ) +R′

2
(θ)
) ∂2

∂ρ∗2
+

1

ρ∗
(
R2(θ) +R(θ)R′′(θ)

) ∂

∂ρ∗

+
2

ρ∗
R(θ)R′(θ)

∂2

∂ρ∗∂θ
+
R2(θ)

ρ∗2
∂2

∂θ2
.

(2.30)

2.3.1 Pseudo-spectral method

Instead of the domain Ω used in section 2.2 with ρ∗ ∈ [0, 1] we employ the Chebyshev dis-
cretization for radius ρ∗ and Fourier discretization for angle θ ∈ [0, 2π]. The domain Ω is then
discretized as

(ρ∗i , θj) =

(
cos

(
iπ

N

)
,
2jπ

M

)
, i = 0, ..., N, j = 1, ...,M, (2.31)

with ρ∗ ∈ [−1, 1]. The nodes are only dense near the boundary of the unit disc but not in
the center. By choosing an odd number N for radial nodes the center of r = 0 is not a node
and no condition is needed to avoid a singularity at r = 0. The angle is chosen θ > 0 with
a shift of 2π/M so that overlap of nodes is avoided. The number M must be even in order
to capture the angle 2π. So, we need to solve the Poisson equation on the domain θ ∈ [0, 2π]

and ρ∗ ∈ [−1, 1]. In the following, the spectral derivatives are given in matrix notation. First
since we employ a Chebyshev expansion we obtain the following matrix

T = cos

(
k
iπ

N

)
, i, k = 0, ..., N. (2.32)

Further the di�erentiation matrix in the Chebyshev coe�cient space is explicitly given by
D̂ = (di,j) ∈ RN+1,N+1 with

di,j =

{
2j
ci

j = i+ 1, i+ 3, ..., N

0 others

and

ci =

{
2 i = 0

1 others

Now we are able to write the �rst and second spectral derivative matrices D1 and D2 which
are explicitly given by
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D̃1 = TD̂T−1 =

[
E1 E2

0 0

]
,

D̃2 = TD̂2T−1 =

[
D1 D2

0 0

]
,

(2.33)

Where

E1 = D̃1(2,...,N+1
2

),(2,...,N+1
2

), E2 = D̃1(2,...,N+1
2

),(N,...,N+3
2

),

D1 = D̃2(2,...,N+1
2

),(2,...,N+1
2

), D2 = D̃2(2,...,N+1
2

),(N,...,N+3
2

),

and
0 = [0]N+1

2
,N+1

2
.

The �rst and second spectral derivatives D̃1
θ , D̃

2
θ can be written in matrix form as respec-

tively

D̃1
θ =



0 (−1)M−1

2 cot
(

(M−1)d
2

)
−1

2 cot(d2)

−1
2 cot(d2) 0

. . . 1
2 cot(2d

2 )

1
2 cot(2d

2 ) −1
2 cot(d2)

. . . −1
2 cot(3d

2 )

−1
2 cot(3d

2 ) 1
2 cot(2d

2 )
. . .

...
...

...
. . . . . . (−1)M−1

2 cot
(

(M−1)d
2

)
(−1)M−1

2 cot
(

(M−1)d
2

)
0


,

(2.34)

and

D̃2
θ =



− π2

3d2
− 1

6
1
2 csc2(d2) (−1)M

2 csc2
(

(M−1)d
2

)
1
2 csc2(d2) − π2

3d2
− 1

6

. . .

−1
2 csc2(2d

2 ) 1
2 csc2(d2)

. . .
...

... −1
2 csc2(2d

2 )
. . . −1

2 csc2(2d
2 )

...
. . . . . . 1

2 csc2(d2)
(−1)M

2 csc2
(

(M−1)d
2

)
− π2

3d2
− 1

6


, (2.35)

where d denotes the shift of angle d = 2π/M .

By representing the Kronecker product as



28 Chapter 2. Developed laminar viscous �ow through uniform channels

A⊗B = (Abi,j)i,j , (2.36)

and introducing identity matrix IM
2
,M
2
, we are able to write the spectral derivatives in 2D.

The �rst order partial derivatives are given by

∂

∂ρ∗
= E1 ⊗

[
I 0

0 I

]
+ E2 ⊗

[
0 I

I 0

]
. (2.37)

The second order partial derivatives are given by

∂2

∂ρ∗2
= D1 ⊗

[
I 0

0 I

]
+D2 ⊗

[
0 I

I 0

]
,

∂2

∂ρ∗∂θ
= E1 ⊗ D̃1

θ + E2 ⊗ D̃1
θ ,

∂2

∂θ2
= I ⊗ D̃2

θ .

(2.38)

The 2D spectral operators can be e�ciently evaluated by fast Fourier transform (FFT).
Substituting the �rst and second order partial derivatives into (2.30) gives

L = (R2
0D1 +R2

1D1)⊗
[
I 0

0 I

]
+ (R2

0D2 +R2
1D2)⊗

[
0 I

I 0

]
(RR2

0E1 +RR2E1)⊗
[
I 0

0 I

]
+ (RR2

0E2 +RR2E2)⊗
[

0 I

I 0

]
2RR0R1E1 ⊗ D̃1

θ + 2RR0R1E2 ⊗ D̃1
θ +R2R2

0 ⊗ D̃2
θ ,

(2.39)

where R is the diagonal matrix

R = diag(ρ∗−1
j ), 1 ≤ j ≤ (N − 1)/2,

and R0, R1, R2 are the M ×M diagonal matrix of the polar equation ρ(θ), the �rst order
derivative ρ′(θ) and the second order derivative ρ′′(θ) respectively.

Therefore, the non-dimensional solution of (2.29) is given as the solution of the linear
system of equations [119]

U∗ = L−1 · [−1](M×N+1
2

)×1. (2.40)

Finally, the solution with dimensions can be obtained as
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u(y, z) =
U∗h2

µ

(
−dP
dx

)
. (2.41)

2.3.2 Numerical results

The value at ρ∗ = 0 is not computed in order to avoid the singularity but it is substituted by
the averaged value of the surrounding points. In order to assess the accuracy of the method,
the numerical solution is validated for shapes for which the analytical solution was described
in section 2.1.2. The accuracy is estimated for the maximum velocity using the error measure:

Emax =
|umaxana − umaxN |

umaxana

. (2.42)

with umaxana denoting the maximum velocity in the quasi-analytical solution and umaxN the
maximum velocity of numerical method.

Fig. 2.11 illustrates the estimated maximum error Emax as a function of radial discretiza-
tion number N for shapes for which the stretched parameters are listed in Table 2.6. The
estimated error becomes constant when the radial number N > 40 and Emax < 10%. For
shapes with smooth boundaries high accuracy (Emax < 1%) can be achieved for a smaller
radial number N < 40 while Emax < 4% for N ≥ 73 when shapes are not smooth. Anyway,
the decreasing tendency of the estimated error Emax as N increases show the convergence
of the numerical solution. Moreover, the estimated maximum error Emax as a function of
angular discretization numberM for shapes is illustrated in Fig. 2.12. It is seen that this time
the error is stable for symmetric shapes but reaches a quasi-steady values for other shapes so
that depends on the cross section shape.

Table 2.6: Overview the stretched parameters of shapes.

shape m n1 n2 n3 g(θ) a b

circle (Fig. 2.6a) 1 2 2 2 1 5e-3 5e-3

rectangle (Fig. 2.6b) 4 100 100 100 0.002 5.05 1

ellipse (Fig. 2.6c) 4 2 2 2 1 0.006 0.0042

equilateral triangle
3 0.5 1 1 0.0038 1.414 1.414

(Fig. 2.6g)
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(a) circle (b) rectangle

(c) ellipse (d) equilateral triangle

Figure 2.11: Illustration of the estimated maximum error Emax with function of radial number
N for shapes shown in Fig. 2.6 when M =72.

2.4 General analytical solution for Poisson equation

In the previous section 2.3 a Pseudo-spectral numerical method is presented. Lower accuracy
appears when the shapes are C1 continuous on the boundary. In the current section, a general
analytical solution is proposed to avoid this problem. (2.8) is reduced to the Laplace equation,
which is a familiar partial di�erential equation and can be solved analytically.

In stretched coordinates the radius r is substituted by ρ as before. A reduced velocity u∗

is introduced as

u = u∗ +
ρ2

4µ

dP

dx
. (2.43)

Applying this transformation to (2.8) shows that the reduced velocity u∗ must satisfy the
following Laplace equation

∇2u∗ =
∂2u∗

∂ρ2
+

1

ρ

∂u∗

∂ρ
+

1

ρ2

∂2u∗

∂2θ
= 0, (2.44)

Then the no slip boundary condition u = 0 can be expressed as
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(a) circle (b) rectangle

(c) ellipse (d) equilateral triangle

Figure 2.12: Illustration of the estimated maximum error Emax with function of angular
number N for shapes shown in Fig. 2.6 when N =41.

u∗ = − ρ
2
i

4µ

dP

dx
= − r

2
i

4µ

dP

dx
, on ∂Ω. (2.45)

Here, the su�x i denotes the value of a point on the duct boundary ∂Ω. Now the �ow
problem is transformed to a Dirichlet problem for the Laplace equation with slip condition for
reduced velocity u∗ and thus has a unique solution.

Using separation of variables, let us look for a solution of the form P (ρ)Φ(θ). Substituting
this into the (2.23) it follows that the functions P (ρ), Φ(θ) must satisfy the following equations

{
ρ2P ′′(ρ) + ρP ′(ρ)− λ2P (ρ) = 0,

Φ′′(θ) + λ2Φ(θ) = 0.
(2.46)

Consider the periodicity of the function Φ(θ) one �nds that

Φ(θ) = c1 cos(mθ) + c2 sin(mθ), (2.47)

where λ = m is an integer number.
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Let us now solve the equation for P (ρ). Since the equation is a Cauchy-Euler equation
and the solutions of the Cauchy-Euler equation are known to be of the form ρm and ρ−m. So
the general solution is of the form

P (ρ) = d1ρ
m + d2ρ

−m. (2.48)

This means that we have found the elementary solutions for the Laplace equation (2.44)

u∗(ρ, θ) = (c1 cos(mθ) + c2 sin(mθ))(d1ρ
m + d2ρ

−m),

m = 0, 1, 2...
(2.49)

For the interior problem one needs to require d2 = 0 to make sure that u∗ <∞, then

u∗(ρ, θ) =
∞∑
m=0

(am cos(mθ) + bm sin(mθ))ρm. (2.50)

Actually as coe�cient b0 ≡ 0, (2.50) then can be rewritten as follows

u∗(ρ, θ) = a0 +
∞∑
m=1

(am cos(mθ) + bm sin(mθ))ρm, (2.51)

where the coe�cients a0, am and bm are arbitrary constants that can be determined by
imposing the boundary condition.

In order to get the unknown coe�cients the general solution (2.51) can be represented by
the partial sum of N polynomials

u∗N (ρ, θ) = a0 +
N∑
m=1

ρm (am cos(mθ) + bm sin(mθ)). (2.52)

Applying the boundary condition (2.45), thus

a0 +

N∑
m=1

rmi (am cos(mθi) + bm sin(mθi)) = − r
2
i

4µ

dP

dx
, (2.53)

This equation includes the total L = 2N + 1 unknown coe�cients am and bm. The values
ri and θi are provided with L points on the boundary ∂Ω so that L equations are available to
get the unknown coe�cients. Finally combining (2.43) and (2.52) the solution for the velocity
distribution is obtained as
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uN (ρ, θ) = a0 +

N∑
m=1

ρm (am cos(mθ) + bm sin(mθ)) +
ρ2

4µ

dP

dx
, (2.54)

To assess the performance of the proposed method in terms of numerical accuracy, as the
maximum error will occur at the boundary points, the root mean square error (ERMS) on the
boundary values has been thus evaluated as follows

ERMS =

√√√√ 1

n

n∑
i=1

[
a0 +

N∑
m=1

rmi (am cos(mθi) + bm sin(mθi)) +
r2
i

4µ

dP

dx

]2

, (2.55)

Emax is computed to determine the degree of precision for the velocity pro�le and in addition,
the accuracy is assessed as before with respect to the analytical solutions in case the no slip
condition is applied as in (2.42) with:

Emax =
|umaxana − umax|

umaxana

, (2.56)

where umaxana denotes as before the maximum velocity on the quasi-analytical solution given in
section 2.42.

2.4.1 Numerical results

Firstly, the solution for the cross section shapes shown in Fig. 2.6 and Fig. 2.7 with no slip
condition is investigated. Fig. 2.13 illustrates the velocity distribution for the same shapes
with parameters listed in Table 2.6.

Fig. 2.14 and Fig. 2.15 illustrate the estimated root mean square error and the maximum
error as a function of the sum truncation number N . It is seen that the solution for a circular
shape matches the one analytical described in section 2.1 for N = 2. For all assessed shapes
good accuracies are achieved (ERMS < 0.5% and Emax < 0.03% ) for N > 6. In particular, for
shapes without a sharp corner results with high accuracy can be obtained using a very small
sum truncation number N . Table 2.7 illustrates the comparison errors Emax. High accuracy
of the presented solution is found for all assessed cross section shapes so that the accuracy of
the approach is validated.

2.5 Summary

In the current chapter, analytical solutions for laminar viscous pressure-driven �ow through
a uniform channel of an arbitrary cross section shape are presented so that the in�uence
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(a) circle (N=2) (b) rectangle (N=10)

(c) ellipse (N=2) (d) equilateral triangle
(N=10)

Figure 2.13: Illustration of the velocity distribution for the cross section shapes shown in
Fig. 2.6a, Fig. 2.6b, Fig. 2.6c and Fig. 2.6g.

(a) rectangle (b) ellipse (c) equilateral triangle

Figure 2.14: Illustration of the estimated root mean square error ERMS with function of sum
truncation number N for shapes shown in Fig. 2.6b, Fig. 2.6c and Fig. 2.6g.

(a) rectangle (b) ellipse (c) equilateral triangle

Figure 2.15: Illustration of the estimated maximum error Emax as a function of sum truncation
numberN for shapes shown in Fig. 2.6b, Fig. 2.6c and Fig. 2.6g.
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Table 2.7: Comparison of error Emax for the general analytical and numerical pseudo-spectral
approach. Examples of Fig. 2.6a, Fig. 2.6b, Fig. 2.6c and Fig. 2.6g are assessed.

Approach circle rectangle ellipse
equilateral

triangle

present [%]
0 0.393 1.44e-14 0.479

(N > 6)

numerical [%]
0.046 0.046 4.09 10.69

(N > 40)

of cross section shape on the viscous �ow is accounted for. A wide range of cross section
shapes is considered. The transformed Poisson equation with stretched coordinates provides
an analytical solution for an arbitrary cross section shape, avoiding the use of conformal
mapping.

Next, a pseudo-spectral approach is assessed to solve the Poisson problem for an arbitrary
cross section shape based on stretched coordinates. The presented numerical results show good
performance of the approach but lower accuracy when shapes have no continuous boundary.
Finally, the proposed general analytical method avoid this problem and improves the accuracy
for all assessed cross section shapes at a low computational cost.
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Application to physical equations
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In this chapter, we exploit the proposed parametrization of an arbitrary cross section
shape using stretched coordinates following the "superformula" (2.14) described in chapter 2.
Previously, solutions of the Poisson equation for two-dimensional shapes were presented. In
this chapter, we focus on solutions in terms of stretched coordinates for physical equations in
case of two-dimensional (2D) as well as three-dimensional (3D) parametrized shapes. In the
following, solutions of the Laplace, Helmholtz and wave equation are formulated and numerical
results are presented.

3.1 Two-dimensional shapes

3.1.1 Laplace equation

Firstly, consider the interior Dirichlet problem for the Laplace equation with a domain Ω,
whose boundary is described by the polar equation ρ = r(θ)

{
∂2u
∂x2

+ ∂2u
∂y2

= 0 in Ω

u = f(x, y) on ∂Ω
(3.1)

37
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Recall the coordinate transform from plane (x, y) to stretched (ρ∗, θ) coordinates and the
derivation process described in section 2.4 of the previous chapter 2. The same way, we get

U(ρ∗, θ) =

∞∑
m=0

(am cos(mθ) + bm sin(mθ)) [ρ∗r(θ)]m , (3.2)

with u(x, y) = u(ρ cos θ, ρ sin θ) = U(ρ∗, θ) and the domain Ω is transformed to 0 ≤ θ ≤ 2π,
0 ≤ ρ∗ ≤ 1.

In order to determine the coe�cients am, bm the boundary condition (ρ∗ = 1, thus ρ =

r(θ)) can be rewritten as

F (θ) = f(r(θ) cos(θ), r(θ) sin(θ)) =

∞∑
m=0

(am cos(mθ) + bm sin(mθ)) r(θ)m. (3.3)

Now consider the Fourier method and the solution to be of the form

F (θ) =
∞∑
m=0

(αm cos(mθ) + βm sin(mθ)) , (3.4)

where the Fourier coe�cients αm and βm are constants.

Clearly F (θ) is a periodic function with period 2π since the right hand side of (3.4) has this
property. By considering the orthogonality of the functions cos(mθ) and sin(mθ) we deduce
that

{
αm
βm

}
=
εm
2π

∫ 2π

0
F (θ)

{
cos(mθ)

sin(mθ)

}
dθ, (3.5)

where εm denoting the Neumann symbol, so

εm =

{
1, m=0
2, m6=0.

Thus the coe�cients am and bm are obtained by solving the following system:
∞∑
m=0

εk
2π

[
am
∫ 2π

0 r(θ)m cos(mθ) cos(kθ)dθ + bm
∫ 2π

0 r(θ)m sin(mθ) cos(kθ)dθ
]

= αk,

∞∑
m=0

εk
2π

[
am
∫ 2π

0 r(θ)m cos(mθ) sin(kθ)dθ + bm
∫ 2π

0 r(θ)m sin(mθ) sin(kθ)dθ
]

= βk,

k = 0, 1, 2, ... (3.6)
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3.1.2 Helmholtz equation

Next, let us consider the interior Dirichlet problem for the Helmholtz equation in a domain Ω

{
∆u+ a2u = 0 in Ω

u = f(x, y) on ∂Ω
(3.7)

in which the boundary de�ned by the polar equation ρ = r(θ) and the propagation coe�cient
a > 0. We use separation of variables to search for a solution of the form u(ρ, θ) = U(ρ∗, θ) =

P1(ρ)P2(θ). Substituting this form into (3.7) it follows that the functions P1(ρ), P2(θ) must
satisfy the following equations

{
ρ2P

′′
1 (ρ) + ρP

′
1(ρ) + (a2 − λ2)P1(ρ) = 0,

P
′′
2 (θ) + λ2P2(θ) = 0, λ = const.

(3.8)

In order to assure that the function u(x, y) has a single value at any point, the parameter
λ is selected to satisfy λ = m ∈ N0 and we �nd that

P2(θ) = cm cos(mθ) + dm sin(mθ), (3.9)

where Cm, dm ∈ R are unknown arbitrary constants. Therefore the radial function P1(ρ)

satis�es

ρ2P
′′
1 (ρ) + ρP

′
1(ρ) + (a2 −m2)P1(ρ) = 0. (3.10)

Let s = aρ and let P3 be the function of variable s de�ned by P3(s) ≡ P1(s/a). With this
transformation of variable (3.10) becomes a Bessel's equation

s2P
′′
3 (s) + sP

′
3(s) + (s2 −m2)P3(s) = 0. (3.11)

The general solution of Bessel's equation (3.11) is [2]

P3(s) = amJm(s) + bmYm(s) = amJm(hρ) + bmYm(hρ), (3.12)

where Jm, Ym are the Bessel function of the �rst and second kind with order m respectively.
Notice that the Bessel functions of the second kind Ym(s) has a singularity at ρ = 0. To avoid
this singularity, we have to assume bm = 0 due to the boundedness of the solution. Thus the
solution of (3.10) has the form

P1(ρ) = P3(s) = amJm(hρ). (3.13)
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Finally, the general solution of the problem (3.7) is of the form

U(ρ∗, θ) =
+∞∑
m=0

Jm(aρ∗r(θ)) (Cm cos(mθ) +Dm sin(mθ)). (3.14)

The coe�cients Cm, Dm are determined by imposing the boundary condition, i.e., assum-
ing ρ∗ = 1 and therefore putting ρ = r(θ),

F (θ) = U(1, θ) =
+∞∑
m=0

Jm(ar(θ)) (Cm cos(mθ) +Dm sin(mθ)). (3.15)

By using Fourier method, and thus following the same process as described in section 3.1.1,
we substitute (3.15) into (3.5) and it follows that the sought coe�cients are obtained by solving
the following equations


+∞∑
m=0

εk
2π

[
Cm

∫ 2π
0 Jm(ar(θ)) cos(mθ) cos(kθ)dθ +Dm

∫ 2π
0 Jm(ar(θ)) sin(mθ) cos(kθ)dθ

]
= αk,

+∞∑
m=0

εk
2π

[
Cm

∫ 2π
0 Jm(ar(θ)) cos(mθ) sin(kθ)dθ +Dm

∫ 2π
0 Jm(ar(θ)) sin(mθ) sin(kθ)dθ

]
= βk.

k = 0, 1, 2, ... (3.16)

with εk denoting the Neumann symbol, so

εk =

{
1, k=0
2, k6=0

3.1.3 Wave Equation

Finally, let us consider the interior Dirichlet problem for the wave equation with constant
propagation speed a in a domain Ω. Assume the displacement of the boundary is equal to
zero at all times t and we de�ne the initial displacement and velocity distribution by continuous
functions f1(x, y) and f2(x, y) respectively. Thus the system is of the form


∂2

∂t2
u(x, y, t) = a2∆u(x, y, t), in Ω

u(x, y, t) = 0, on ∂Ω

u(x, y, 0) = f1(x, y),
∂
∂tu(x, y, 0) = f2(x, y).

(3.17)

The domain Ω is transformed to a unit circle using stretched coordinates and reconsider
separation of variables to assume that the elementary solution of the system has the form
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u(x, y, t) = u(ρ, θ, t) = U(ρ∗, θ, t) = P1(ρ)P2(θ)P3(t). (3.18)

Substituting into the wave equation and considering two separation variables λ and s, one
�nds that the functions P1, P2, P3 have to satisfy the following equations


ρ2P

′′
1 (ρ) + ρP

′
1(ρ) +

(
λ2ρ2 − s2

)
P1(ρ) = 0,

P
′′
2 (θ) + s2P2(θ) = 0,

P
′′
3 (t) + a2λ2P3(t) = 0.

(3.19)

Due to the reason of periodicity and single-value for θ the constant variable s = m ∈ Z so
that

P2(θ) = am cos(mθ) + bm sin(mθ), (3.20)

with undetermined arbitrary constants am, bm. Let µ = λρ and let P4 be the function of µ
de�ned by P4(µ) ≡ P1(µ/λ). With this transformation, the equation of radial function P1

turns into a Bessel's equation

µ2P
′′
4 (µ) + µP

′
4(µ) +

(
µ2 −m2

)
P
′
4(µ) = 0. (3.21)

Due to the boundedness, the general solution of this Bessel's equation is of the form

P1(ρ) = cmJm(µ) = cmJm(λρ). (3.22)

For the equation of function P3 one �nds that

P3(θ) = dλ cos(aλt) + eλ sin aλt. (3.23)

Thus the general solution of (3.17) is of the form

U(ρ∗, θ, t) =

+∞∑
m=0

∑
λ

Jm(λρ∗r(θ)) [Am,λ cos(mθ) cos(aλt) +Bm,λ cos(mθ) sin(aλt)

+Cm,λ sin(mθ) cos(aλt) +Dm,λ sin(mθ) sin(aλt) ].

(3.24)

Imposing the boundary condition u(r(θ), θ, t) = 0 results in Jm(λr(θ)) = 0 so that λ(θ) =

gm/r(θ) with unknown coe�cients gm. Denote gmk is the kth positive root of the Bessel
function of the �rst kind with order m, then λ = gmk /r(θ), k ∈ N. Therefore the general
solution of (3.24) becomes
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U(ρ∗, θ, t) =
+∞∑
m=0

+∞∑
k=1

Jm(gmk ρ
∗)

[
[Am,k cos(mθ) cos(

agmk t

r(θ)
) +Bm,k cos(mθ) sin(

agmk t

r(θ)
)

+Cm,k sin(mθ) cos(
agmk t

r(θ)
) +Dm,k sin(mθ) sin(

agmk t

r(θ)
)

]
,

(3.25)

and this gives

Ut(ρ
∗, θ, t) =

a

r(θ)

+∞∑
m=0

+∞∑
k=1

gmk Jm(gmk ρ
∗)[

−Am,k cos(mθ) sin(
agmk t

r(θ)
) +Bm,k cos(mθ) cos(

agmk t

r(θ)
)

−Cm,k sin(mθ) sin(
agmk t

r(θ)
) +Dm,k sin(mθ) cos(

agmk t

r(θ)
)

]
.

(3.26)

Using the initial conditions and let them have the forms

F1(ρ∗, θ) = f1(ρ cos(θ), ρ sin(θ)) =
+∞∑
m=0

(αm cos(mθ) + βm sin(mθ)) , (3.27)

F2(ρ∗, θ) = f2(ρ cos(θ), ρ sin(θ)) =
a

r(θ)

+∞∑
m=0

(ηm cos(mθ) + γm sin(mθ)) , (3.28)

where the coe�cients αm, βm, ηm and γm can be found using Fourier method

{
αm
βm

}
=
εm
2π

∫ 2π

0

∫ π

0
F1(ρ∗, θ)

{
cos(mθ)

sin(mθ)

}
dθdφ, (3.29)

{
ηm
γm

}
=

εm
2πa

∫ 2π

0

∫ π

0
F2(ρ∗, θ)r(θ)

{
cos(mθ)

sin(mθ)

}
dθdφ, (3.30)

with Neumann symbol εm, so

εm =

{
1, m=0
2, m6=0.

Consider the orthogonality of the Bessel functions of �rst kind

∫ 1

0
Jm(gmk ρ

∗)Jm(gmn ρ
∗)ρ∗dρ∗ =

{
1
2 [Jm+1(gmk )]2 , n = k

0, n 6= k
(3.31)
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and (3.25) v (3.30), the coe�cients Am,k, Bm,k, Cm,k and Dm,k �nally can be obtained by
solving the following system{

Am,k
Cm,k

}
=

2[
Jm+1(gmk )

]2 ∫ 1

0
Jm(gmk ρ

∗)

{
αm(ρ∗)

βm(ρ∗)

}
ρ∗dθ (3.32){

Bm,k
Dm,k

}
=

2

gmk
[
Jm+1(gmk )

]2 ∫ 1

0
Jm(gmk ρ

∗)

{
ηm(ρ∗)

γm(ρ∗)

}
ρ∗dθ. (3.33)

m = 1, 2, 3, ..., k = 1, 2, 3, ...

3.1.4 Numerical results

In the following examples the boundary ∂Ω is described by the called "superformula" [39].

r(θ) = g(θ)

[∣∣∣∣∣cos(mθ4 )

a

∣∣∣∣∣
n2

+

∣∣∣∣∣cos(mθ4 )

b

∣∣∣∣∣
n3
]−1/n1

= g(θ).f(θ), m > 0. (3.34)

In order to assess the numerical accuracy of the applications, the relative boundary errors
for Laplace (L), Helmholtz (H) and wave (W)1 equations have been evaluated as follows

errLN =
‖ULN − FL(θ)‖
‖FL(θ)‖

, (3.35)

errHN =
‖UHN − FH(θ)‖
‖FH(θ)‖

, (3.36)

errWN =
1

2

(
‖UWM.K − FW1 (θ)‖
‖FW1 (θ)‖

+
‖∂tUWM.K − FW2 (θ)‖

‖FW2 (θ)‖

)
, (3.37)

in which ‖ · ‖ denotes the L2 norm. The solutions of these boundary value problems are
represented by the truncated sum with order N in Fourier series expansion, which listed as
follows, respectively.

ULN (ρ∗, θ) = a0 +

N∑
m=1

(am cos(mθ) + bm sin(mθ)) (ρ∗θ)m , (3.38)

UHN (ρ∗, θ) =

N∑
m=0

Jm(aρ∗θ) (Cm cos(mθ) +Dm sin(mθ)), (3.39)

1Numerical results are in preparation.
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UWM,K(ρ∗, θ, t) =
M∑
m=0

K∑
k=1

Jm(gmk ρ
∗)

[
Am,k cos(mθ) cos(

agmk t

r(θ)
) +Bm,k cos(mθ) sin(

agmk t

r(θ)
)

+Cm,k sin(mθ) cos(
agmk t

r(θ)
) +Dm,k sin(mθ) sin(

agmk t

r(θ)
)

]
.

(3.40)

The shape shown in Fig. 3.1 with the stretched parameters listed in Table 3.1 is assessed
and the domain Ω is given as 0 ≤ θ ≤ 2π and 0 ≤ ρ∗ ≤ 1.

Table 3.1: Overview of the parameters of (2.14) for the symmetrical shape depicted in Fig. 3.1.

shape m n1 n2 n3 g(θ) a b

symmetrical
5 8 4 4 1 1 1

shape

Figure 3.1: Symmetrical shape obtained from (2.14) with the parameters listed in Table 3.1.

For the Laplace equation, we take fL(x, y) = sinh(xy) + log(x2 + y2 + 1) as the function
to describe the Dirichlet boundary condition. The relative boundary error errL, plotted in
Fig. 3.2a, shows us the convergence of the series expansion function ULN (3.38). It is seen that
the expansion with order N = 9 gives a accurate (errL < 2%) estimate of the boundary data
and modeled and imposed boundary values are shown to match.

Let fH(x, y) = x+ 3y + cos(x+ 2y) be the boundary condition for the Dirichlet problem
of the Helmholtz equation. Fig. 3.3 illustrates the relative boundary error errH as a function
of the truncated sum number N in the series expansion (3.39). From Fig. 3.39 and Fig. 3.4a
is seen that a good (errH < 2%) estimation of the initial condition can be observed for
the Fourier expansion solution with order N = 7 and modeled and imposed boundary values
matches well. In addition, the interior domain solution for N = 7 which matches the boundary
condition, is shown in Fig. 3.4b.
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(a) errLN (b) UN=9

Figure 3.2: (a) The relative boundary error errLN as a function of truncated sum number N
for Dirichlet problem of Laplace equation. (b) The series expansion function ULN with order
N = 9. The shape with stretched parameters (Table 3.1) is assessed in domain Ω.

Figure 3.3: Illustration of relative boundary error errHN as a function of truncated sum number
N for Dirichlet problem of Helmholtz equation. The shape with stretched parameters (Ta-
ble 3.1) is assessed in domain Ω.

3.2 Three-dimensional shapes

Now, we consider the physical equations for three-dimensional shapes and hence we need a
three-dimensional coordinate system. Firstly, we introduce the ordinary spherical coordinates
system to describe domain Ω

x = ρ cosφ sin θ, y = ρ cosφ cos θ, z = ρ cos θ, (3.41)

with the boundary condition ρ = r(θ, φ), 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. We introduce again a
stretched radius ρ∗ with ρ = ρ∗r(θ, φ) and thus the space in stretched coordinates becomes

x = ρ∗r(θ, φ) cosφ sin θ, y = ρ∗r(θ, φ) cosφ cos θ, z = ρ∗r(θ, φ) cos θ, (3.42)
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(a) boundary value (b) distribution

Figure 3.4: (a) Comparison of the boundary value between the initial condition and the derived
truncated sum UHN when the order N = 7 for the Helmholtz equation. (b) Distribution of the
solution represented by the truncated sum for N = 7 (3.39).

with domain Ω given as 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and 0 ≤ ρ∗ ≤ 1.

Now, we consider the Laplace operator in spherical coordinates [29]

∆u =
∂2u

∂ρ2
+

2

ρ

∂u

∂ρ
+

1

ρ2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

ρ2 sin2 θ

∂2u

∂φ2
. (3.43)

By setting U(ρ∗, θ, φ) = u(ρ, θ, φ) in the new stretched coordinates system (ρ∗, θ, φ) and
substituting this transform into (3.43), one �nds that

∆u =
1

r2

(
1 +

rθ
2

r2
+

rφ
2

r2 sin2 θ

)
∂2U

∂ρ∗2

+
1

ρ∗r2

[
2

(
1 +

rθ
2

r2
+

rφ
2

r2 sin2 θ

)
− 1

r

(
rθθ + rθ cot θ +

rφφ

sin2 θ

)] ∂U
∂ρ∗

− 2rθ
ρ∗r3

∂2U

∂ρ∗∂θ
−

2rφ

ρ∗r3 sin2 θ

∂2U

∂ρ∗∂φ
+

1

ρ∗2r2

∂2U

∂θ2
+

cot θ

ρ∗r2

∂U

∂θ
+

1

ρ∗2r2 sin2 θ

∂2U

∂φ2
,

(3.44)

with the boundary r(θ, φ) = ρ when ρ∗ = 1.

For convenience, we rewrite the boundary condition ∂Ω as

ρ = r(θ, φ) =
1

R(θ, φ)
, 0 ≤ θ ≤ π, 0 ≤ π ≤ 2π. (3.45)

Substituting this equation into the Laplace equation (3.44) results in
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∆u =

(
R2 +Rθ

2 +
Rφ

2

sin2 θ

)
∂2U

∂ρ∗2
+
R

ρ∗

(
2R+Rθ cot θ +Rθ

2 +
Rφφ

sin2 θ

)
∂U

∂ρ∗

+
2RRθ
ρ∗

∂2U

∂ρ∗∂θ
+

2RRφ

ρ∗ sin2 θ

∂2U

∂ρ∗∂φ
+
R2

ρ∗2
∂2U

∂θ2
+
R2 cot θ

ρ∗2
∂U

∂θ
+

R2

ρ∗2 sin2 θ

∂2U

∂φ2
.

(3.46)

3.2.1 Laplace equation

Firstly, consider the interior Dirichlet problem for the Laplace equation with on a domain Ω,
whose boundary is described by the polar equation ρ = r(θ, φ).

{
∆u(ρ, θ, φ) = 0 in Ω

u(ρ, θ, φ) = f(θ, φ) on ∂Ω.
(3.47)

Consider the method of separation of variables, search for a solution with the form
u(ρ, θ, φ) = U(ρ∗, θ, φ) = P1(ρ)P2(θ)P3(φ). Substituting this form into (3.47) gives

ρ2P
′′
1

P1
+ 2ρ

P
′
1

P1
+
P
′′
2

P2
+ cot θ

P
′′
2

P2
+

1

sin2 θ

P
′′
3

P3
= 0. (3.48)

Now the �rst two terms are dependent only on ρ so that it must be constant and we choose
n(n+ 1) as the separation constant which gives

ρ2P
′′
1 + 2ρP

′
1 − n(n+ 1)P1 = 0. (3.49)

Setting t = ln ρ, (3.49) becomes

P
′′
1 (t) + P

′
1(t)− n(n+ 1)P1(t) = 0. (3.50)

So, the general solution of (3.50) has the form

P1 = Ane
nt +Bne−(n+ 1)t = Anρ

n +Bnρ
−(n+1). (3.51)

Then the remainder of (3.48) is

sin2 θ
P
′′
2

P2
+

sin 2θ

2

P
′′
2

P2
+ n(n+ 1) sin2 θ +

P
′′
3

P3
= 0. (3.52)

The �rst three terms and the last term of (3.52) depend on each other, and we can assume
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sin2 θ
P
′′
2

P2
+

sin 2θ

2

P
′′
2

P2
+ n(n+ 1) sin2 θ = −P

′′
3

P3
= m2, (3.53)

which gives

P
′′
3 +m2P3 = 0, (3.54)

sin2 θP
′′
2 +

sin 2θ

2
P
′′
2 +

[
n(n+ 1) sin2 θ −m2

]
P2 = 0. (3.55)

From (3.54) it is seen that

P3 = Cm cos(mφ) +Dm sin(mφ). (3.56)

It follows from periodicity that m is an integer number. For (3.55) and introducing w =

cos(θ) we have

(1− w2)
d2P2(θ)

dw2
− 2w

dP2(θ)

dw
+

[
n(n+ 1)− m2

1− w2

]
P2(θ) = 0, (3.57)

which is the associated Legendre equation. The solution of this equation is known as the
associated Legendre polynomials, Pmn (w) [2]. Therefore, the elementary solution of (3.47) is

U(ρ∗, θ, φ) =
(
An(ρ∗r(θ, φ))n +Bn(ρ∗r(θ, φ))−(n+1)

)
·

Pmn (cosθ) (Cm cos(mφ) +Dm sin(mφ)) ,

n = 0, 1, 2, ..., m = 0.1, ..., n.

(3.58)

For the interior problem one needs to require U <∞ so Bn = 0. Then, we get

U(ρ∗, θ, φ) = [ρ∗r(θ, φ)]n Pmn (cos θ) (An,m cos(mφ) +Bn,m sin(mφ)) ,

n = 0, 1, 2, ..., m = 0.1, ..., n.
(3.59)

So, the general solution is given as,

U(ρ∗, θ, φ) =

+∞∑
n=0

n∑
m=0

[ρ∗r(θ, φ)]n Pmn (cos θ) (An,m cos(mφ) +Bn,m sin(mφ)), (3.60)

The coe�cients Amn and Bm
n can be determined by imposing the boundary condition

(ρ∗ = 1) and thus
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f(θ, φ) = U(1, θ, φ) =

+∞∑
n=0

n∑
m=0

[r(θ, φ)]n Pmn (cos θ) (An,m cos(mφ) +Bn,m sin(mφ)). (3.61)

Consider the solution of (3.61) to be a Fourier series

f(θ, φ) =

+∞∑
n=0

n∑
m=0

Pmn (cosθ) (αn,m cos(mφ) + βn,m sin(mφ)). (3.62)

Utilize the orthogonality of trigonometric function and Legendre polynomials, multi-
ply (3.62) by P kh (cos θ) cos(kφ) sin θ and integral to obtain

αn,m =
εm(2n+ 1)

4π

(n−m)!

(n+m)!

∫ 2π

0

∫ π

0
f(θ, φ)Pmn (cos θ) cos(mφ) sin θdθdφ, (3.63)

with Neumann symbol εm, so

εm =

{
1, m=0
2, m6=0.

Similarly, we get

βn,m =
εm(2n+ 1)

4π

(n−m)!

(n+m)!

∫ 2π

0

∫ π

0
f(θ, φ)Pmn (cos θ) sin(mφ) sin θdθdφ. (3.64)

Finally the coe�cients Amn and Bm
n are obtained by solving the following equations



+∞∑
n=0

n∑
m=0

εk(2h+1)
4π

(h−k)!
(h+k)!

[
An,m

∫ 2π
0

∫ π
0 (r(θ, φ))n Pmn (cos θ)P kh (cos θ) cos(mφ) cos(kφ) sin θdθdφ

+Bn,m
∫ 2π

0

∫ π
0 (r(θ, φ))n Pmn (cos θ)P kh (cos θ) sin(mφ) cos(kφ) sin θdθdφ

]
= αh,k,

+∞∑
n=0

n∑
m=0

εk(2h+1)
4π

(h−k)!
(h+k)!

[
An,m

∫ 2π
0

∫ π
0 (r(θ, φ))n Pmn (cos θ)P kh (cos θ) cos(mφ) sin(kφ) sin θdθdφ

+Bn,m
∫ 2π

0

∫ π
0 (r(θ, φ))n Pmn (cos θ)P kh (cos θ) sin(mφ) sin(kφ) sin θdθdφ

]
= βh,k,

h = 0, 1, 2..., k = 0, 1, ..., h. (3.65)
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3.2.2 Helmholtz equation

Next, let us consider the interior Dirichlet problem for the Helmholtz equation in a domain Ω

{
∆u(ρ, θ, φ) + a2u(ρ, θ, φ) = 0 in Ω

u(ρ, θ, φ) = f(θ, φ) on ∂Ω
(3.66)

in which the boundary de�ned by the polar equation ρ = r(θ, φ) and the propagation coe�cient
a > 0.

Similarity, the elementary solution of problem (3.66) can be searched by separation of
variables imposing the form u(ρ, θ, φ) = U(ρ∗, θ, φ) = P1(ρ)P2(θ)P3(φ). Substituting this
form into (3.66) it is seen that the functions P1(ρ), P2(θ) and P3(φ) must satisfy the following
equations respectively:

ρ2d
2P1

dρ2
+ 2ρ

dP1

dρ
+ (a2ρ2 − λ2)P1 = 0, (3.67)

d2P2

dθ2
+ cot θ

dP2

dθ
+

(
λ2 − µ2

sin2 θ

)
P2 = 0, (3.68)

d2P3

dφ2
+ µ2P2 = 0, (3.69)

The parameters λ and µ are separation constants. From the same derivation as detailed in
section 3.2.1, we have µ = m ∈ Z, λ2 = n(n+ 1), n ∈ N0 and

P2(θ) = gn,mP
m
n (cosθ), (3.70)

P3(φ) = Cm cos(mφ) +Dm sin(mφ), (3.71)

where Cm, Dm, gn,m are unknown constants and Pmn (·) is the associated Legendre function of
the �rst kind with orders (n,m). In order to solve the radial function P1(ρ) of (3.67), we set

P4(ρ) = (aρ)
1
2P1(ρ), (3.72)

with this transformation (3.67) becomes

ρ2d
2P4

dρ2
+ ρ

dP4

dρ
+

[
a2ρ2 − (n+

1

2
)2

]
P4 = 0. (3.73)

Let s = aρ and P5(s) ≡ P4( sa), (3.73) turns into a Bessel's equation

d2P5

ds2
+
dP5

ds
+

[
s2 − (n+

1

2
)2

]
P5 = 0. (3.74)
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Due to the boundedness at ρ = 0 the solution of function P1(ρ) can be expressed as a
function of spherical Bessel functions of the �rst kind [2]

P1(ρ) = Anjn(hρ), (3.75)

where jn(x) =
√

π
2xJn+ 1

2
(x), Jn+ 1

2
is the Bessel function of the �rst kind with order (n+ 1

2).
Therefore, the general solution of the Helmholtz problem (3.66) is of the form

U(ρ∗, θ, φ) =
+∞∑
n=0

n∑
m=0

jn(aρ∗r(θ, φ))Pmn (cos θ)(An,m cos(mφ) +Bn,m sin(mφ)). (3.76)

In order to identify the coe�cients An,m, Bn,m, imposing the boundary condition

f(θ, φ) = U(1, θ, φ) =
+∞∑
n=0

n∑
m=0

jn (hr(θ, φ))Pmn (cos θ)

(An,m cos(mφ) +Bn,m sin(mφ)).

(3.77)

Using the Fourier method we have

f(θ, φ) =
+∞∑
n=0

n∑
m=0

Pmn (cosθ) (αn,m cos(mφ) + βn,m sin(mφ)). (3.78)

Consider the orthogonality of trigonometric function and Legendre polynomials one can
�nd that

{
αn,m
βn,m

}
=
εm(2n+ 1)

4π

(n−m)!

(n+m)!

∫ 2π

0

∫ π

0
f(θ, φ)Pmn (cos θ)

{
cos(mφ)

sin(mφ)

}
sin θdθdφ, (3.79)

with Neumann symbol εm

εm =

{
1, m=0
2, m6=0.

Finally the coe�cients An,m, Bn,m can be obtained by solving the following equations

+∞∑
n=0

n∑
m=0

[
V +
n,m,k,l W+

n,m,k,l

V −n,m,k,l W−n,m,k,l

]
·
[
An,m
Bn,m

]
=

[
αh,k
βh,k

]
k = 0, 1, 2, ..., l = 0, 1, ..., k, (3.80)
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where

V ±n,m,k,l =
εl(2k + 1)

4π

(k − l)!
(k + l)!

∫ 2π

0

∫ π

0
jn (ar(θ, φ))Pmn (cos θ)P lk(cos θ) cos(mφ)·{

cos(lφ)

sin(lφ)

}
sin θdθdφ,

W±n,m,k,l =
εl(2k + 1)

4π

(k − l)!
(k + l)!

∫ 2π

0

∫ π

0
jn (ar(θ, φ))Pmn (cos θ)P lk(cos θ) sin(mφ)·{

cos(lφ)

sin(lφ)

}
sin θdθdφ.

3.2.3 Wave equation

Finally, let us consider the interior Dirichlet problem for the wave equation with constant
propagation speed a in a domain Ω. Assume the displacement of the boundary is equal to
zero at all times t and we de�ne the initial displacement and velocity distribution by continuous
functions f1(ρ, θ, φ) and f2(ρ, θ, φ) respectively. Thus the system is of the form


∂2

∂t2
u(ρ, θ, φ, t) = a2∆u(ρ, θ, φ, t), in Ω

u(ρ, θ, φ, t) = 0, on ∂Ω

u(ρ, θ, φ, 0) = f1(ρ, θ, φ),
∂
∂tu(ρ, θ, φ, 0) = f2(ρ, θ, φ).

(3.81)

Reconsider the method of separation of variables and assume that the elementary solution
of the system is of the form

u(ρ, θ, φ, t) = U(ρ∗, θ, φ, t) = P1(ρ)P2(θ)P3(φ)P4(t). (3.82)

Substituting into the wave equation and introducing two separation variables λ, s, it is
seen that the functions P1(ρ), P2(θ), P3(φ) and P4(t) have to satisfy the following equations


ρ2P

′′
1 (ρ) + 2ρP

′
1(ρ) +

(
k2ρ2 − λ2

)
P1(ρ) = 0,

P
′′
2 (θ) + cot θP

′
2(θ) +

(
λ2 − µ2

sin2 θ

)
P2(θ) = 0,

P
′′
3 (φ) + µ2P3(φ) = 0,

P
′′
4 (t) + a2k2P4(t) = 0.

(3.83)

Due to the periodicity and a single value for θ, the constant variable µ = m ∈ Z so that

P2(θ) = am cos(mθ) + bm sin(mθ), (3.84)
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with unknown arbitrary constants am, bm. For the equation of function P4 one �nds that

P4(t) = ck cos(akt) + dk sin(akt). (3.85)

Using the same process as detailed in section 3.2.2, we have

P1(ρ) = enjn(kρ), (3.86)

P2(θ) = gn,mP
m
n (cos θ), (3.87)

where jn(·) is the spherical Bessel function of the �rst kind with order n and Pmn (·) is the
associated Legendre function of the �rst kind with orders (n,m).

Thus the general solution of (3.81) has the form

U(ρ∗, θ, φ, t) =

+∞∑
n=0

n∑
m=0

Pmn (cos θ)
∑
k

jn(kρ∗r(θ))·

[Am,k cos(mφ) cos(akt) +Bm,k cos(mφ) sin(akt)

+Cm,k sin(mφ) cos(akt) +Dm,k sin(mφ) sin(akt)].

(3.88)

Imposing the boundary condition ρ∗ = 1, and thus u(r(θ, φ), θ, φ, t) = 0, results in
jn(kr(θ, φ)) = 0 so that k(θ, φ) = ξn/r(θ, φ) with unknown coe�cients ξn. Denote ξnk is
the kth positive root of the spherical Bessel function of the �rst kind with order n so that
k = ξnk /r(θ, φ), j ∈ N. Therefore the general solution (3.88) becomes

U(ρ∗, θ, φ, t) =

+∞∑
n=0

n∑
m=0

+∞∑
k=1

jn(ξnk ρ
∗)Pmn (cos θ)·[

An,m,k cos(mφ) cos

(
aξnk t

r(θ, φ)

)
+Bn,m,k cos(mφ) sin

(
aξnk t

r(θ, φ)

)
+Cn,m,k sin(mφ) cos

(
aξnk t

r(θ, φ)

)
+Dn,m,k sin(mφ) sin

(
aξnk t

r(θ, φ)

)]
,

(3.89)

and this gives

Ut(ρ
∗, θ, φ, t) =

a

r(θ, φ)

+∞∑
n=0

n∑
m=0

+∞∑
k=1

ξnk jn(ξnk ρ
∗)Pmn (cos θ)·[

−An,m,k cos(mφ) sin

(
aξnk t

r(θ, φ)

)
+Bn,m,k cos(mφ) cos

(
aξnk t

r(θ, φ)

)
−Cn,m,k sin(mφ) sin

(
aξnk t

r(θ, φ)

)
+Dn,m,k sin(mφ) cos

(
aξnk t

r(θ, φ)

)]
.

(3.90)
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Using the initial displacement and velocity conditions and assuming them to be of the
form

F1(ρ∗, θ, φ) = f1(ρ, θ, φ) =
+∞∑
n=0

n∑
m=0

Pmn (cos θ) · (αn,m cos(mθ) + βn,m sin(mθ)),

F2(ρ∗, θ, φ) = f2(ρ, θ, φ) =
a

r(θ, φ)

+∞∑
n=0

n∑
m=0

Pmn (cos θ) · (ηn,m cos(mθ) + γn,m sin(mθ)),

(3.91)

where the coe�cients αn,m, βn,m, ηn,m and γn,m are obtained using Fourier's method

{
αn,m
βn,m

}
=
εm(2n+ 1)

4π

(n−m)!

(n+m)!

∫ 2π

0

∫ π

0
F1(ρ∗, θ, φ)Pmn (cos θ)·{

cos(mφ)

sin(mφ)

}
sin θdθdφ,

(3.92)

{
ηn,m
γn,m

}
=
εm(2n+ 1)

4πa

(n−m)!

(n+m)!

∫ 2π

0

∫ π

0
r(θ, φ)F2(ρ∗, θ, φ)Pmn (cos θ)·{

cos(mφ)

sin(mφ)

}
sin θdθdφ,

(3.93)

with

εm =

{
1, m=0
2, m6=0.

Finally, consider the orthogonality of the Bessel function of the �rst kind

∫ 1

0
jn(ξnk ρ

∗)jn(ξlkρ
∗)ρ∗2dρ∗ =

{
1
2 [jn+1(ξnk )]2 , n = l

0, n 6= l
(3.94)

and (3.89) v (3.93), so that the coe�cients An,m,k, Bn,m,k, Cn,m,k and Dn,m,k can be obtained
by solving the following system{

An,m,k
Cn,m,k

}
=

2[
jn+1(ξnk )

]2 ∫ 1

0
jn(ξnk ρ

∗)

{
αn,m(ρ∗)

βn,m(ρ∗)

}
ρ∗2dθ, (3.95){

Bn,m,k
Dn,m,k

}
=

2

ξnk
[
jn+1(ξnk )

]2 ∫ 1

0
jn(ξnk ρ

∗)

{
ηn,m(ρ∗)

γn,m(ρ∗)

}
ρ∗2dθ. (3.96)

n = 0, 1, 2, ..., m = 1, 2, ..., n, k = 1, 2, 3, ...
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3.3 Summary

In this chapter the proposed parametrization of an arbitrary cross section shape following
the "superformula" described in previous chapter 2 is exploited to solve quasi-analytically the
physical equations for two-dimensional and three-dimensional arbitrary shapes. Concretely,
solutions for the interior Dirichlet problem for the Laplace, Helmholtz and wave equation are
presented. The numerical solution is presented and the accuracy is validated for the Laplace
and Helmholtz equations of two-dimensional shapes.
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In chapter 2, we modeled and discussed the impact of the cross section shape on developed
viscous �ow through a uniform channel. Since pressure-driven �ow in constricted channels is
an important issue for physiological �ows during normal as well as pathological health con-
ditions (stenosis), in the following section 4.1 a simple quasi-three-dimensional �ow model is
formulated for steady �ow which accounts for kinetic losses, viscosity as well as the cross sec-
tion shape [127]1. In the introduction, it was argued that simpli�ed �ow models favor model
analysis for biological applications due to their interpretation in terms of signi�cant physio-
logical parameters as well as due to their low computational cost which facilitates parameter
space analysis. In order to illustrate these points, in section 4.2, we apply the quasi-three-
dimensional �ow model, proposed in section 4.1, to the stability analysis of a physical model
of human phonation, i.e. vocal folds auto-oscillation during voiced sound production. We
discuss the potential impact of the �ow model taking into account the cross section shape on
the predicted minimum pressure required to sustain phonation.

4.1 Stenosis

In this section we consider constricted channels due to their relevance for physiological �ows
during normal as well as pathological health conditions (stenosis). We propose a simple `quasi-
three-dimensional' (quasi-3D) �ow model which accounts for kinetic losses, viscosity as well

1The quasi-three-dimensional model for unsteady �ow is presented in Appendix G.
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as the cross section shape [127]. The in�uence of the cross section shape on the pressure
distribution is discussed since the pressure distribution will determine the forces exerted by
the �ow on the enveloping walls and is therefore a major quantity for biological applications.
The outcome of the `quasi-three-dimensional' �ow model is compared to the outcome of a
`quasi-one-dimensional' �ow model for which details of the cross section shape are neglected.
Biological stenosis occur for di�erent �uids. In the following, we consider blood �ow and
air �ow since these �uids occur in major circulatory systems, i.e. the cardiovascular and
respiratory system. Characteristic �uid properties are summarized in Table 4.1.

Table 4.1: Overview of major �uid properties.

dynamic viscosity µ [Pa·s] density ρ [kg/m3]

blood 3.5× 10−3 1060

air 1.8× 10−5 1.2

ratio1 194 883

(1) ratio of blood property to air property.

4.1.1 A quasi-three-dimensional �ow model

Based on a non-dimensional analysis of the governing Navier-Stokes equations for pressure-
driven, steady, laminar and incompressible �ow through a channel with varying streamwise
area A(x) involving a constricted portion as illustrated in Fig. 4.1. The degree of stenosis is
quanti�ed by the ratio Rc = Amin/A0, the streamwise extent of the stenosis is given by Ls
and the streamwise extent of the constriction with minimum area is denoted Lc. In case of a
severe stenosis (Rc � 1), both �ow inertia, i.e. kinetic losses (subscript `ber') , and viscosity
(subscript `visc') need to be accounted for [126, 9].

Therefore, the streamwise momentum equation of the governing Navier-Stokes equation is
approximated using volume �ow rate conservation dQ/dx = 0, as:

−Q
2

A3

dA

dx
+

1

ρ

dP

dx
= ν

(
∂2u

∂y2
+
∂2u

∂z2

)
, (4.1)

with driving pressure gradient dP/dx, local velocity u(x, y, z), volume �ow rateQ, �uid density
ρ and kinematic viscosity ν = µ/ρ. The spanwise and transverse components of the momentum
equation are described by (2.6). The �ow model expressed in (4.1) accounts for viscosity (right
hand term) as well as �ow inertia (�rst source term at the left hand side) and depends therefore
on the area as well as on the shape of the cross section. It is seen that for a uniform channel,
so that dA/dx = 0 holds, (4.1) reduces to purely viscous �ow described by (2.5). The same
way, it is seen that when viscosity is neglected, i.e. ν = 0 as for an ideal (symbol B) inviscid
�ow, (4.1) reduces to Euler's equation �ow,
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Ls

Lc

Amin

stenosis

A(x)

�ow

x/D

A0

Rc = Amin
A0

Figure 4.1: Schematic overview of a constricted channel, representing a stenosis, oriented along
the streamwise x direction: varying streamwise channel area A(x), unconstricted inlet area
A0 and minimum area Amin. The degree of stenosis is expressed by ratio Rc = Amin/A0 and
its streamwise extent by Ls. The streamwise extent of the minimum constriction is denoted
Lc.

ū
dū

dx
= −1

ρ

dP

dx
, (4.2)

with local bulk velocity ū(x) so that volume �ow rate Q = A(x)ū(x). The contribution of
kinetic losses to the pressure drop is then:

∆Pber(x) =
ρ

2
Q2

[
1

A(x)2
− 1

A2
0

]
, (4.3)

where A0 denotes the unconstricted channel area at the channel inlet.

Depending on driving pressure, �uid and geometry � in particular the minimum streamwise
channel area Amin � viscous boundary layer development will a�ect the �ow development and
a viscosity needs to be accounted for. When (4.1) is used a three-dimensional aspect is added
to the �ow model accounting for the viscous term. Classical simpli�ed �ow models rely either
on a two-dimensional �ow assumption by neglecting the spanwise dimension [120, 23, 20] or
fully reduce the problem to a one-dimensional model for which the right hand side of (4.1) is
reduced to a �ow resistance term characterized by a constant [107, 97, 111].

In the following, a constricted channel with a smooth or an abrupt diverging area portion
is accounted for, as depicted in Fig. 4.2. For an abrupt expansion characterized by a sharp
trailing edge, the streamwise position of �ow separation xs is �xed and coincides with the
trailing end of the constriction, so that xs = x3 as depicted in Fig. 4.2b. In the case of
a smooth expansion, the �ow separation position depends on the channel geometry as well
as on the imposed driving pressure gradient dP/dx, so that x3 < xs ≤ x4 as illustrated in
Fig. 4.2a and the position of �ow separation needs to be determined.

The separation position x = xs corresponds to the position along the diverging portion
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jet

x3 < xs ≤ x4

smooth

�ow x

P0 Pd = 0

x2 x3x1 x4

(a) smooth expansion

jet
�ow x

P0 Pd = 0

x2 x3x1 x4

xs = x3

step

(b) abrupt expansion

Figure 4.2: Schematic overview of �ow within a converging-diverging channel geometry (x1 ≤
x ≤ x4) with upstream area A0 and minimum area Amin (x2 ≤ x ≤ x3) (see Fig. 4.1) for a)
a smooth and b) an abrupt expansion. Flow separation and jet formation occurs for x = xs.
P0 denotes the upstream pressure and Pd the downstream pressure.

where the area yields A(xs) = cs×Amin with cs = 1.2. This ad-hoc criterion is commonly used
and validated for a quasi-one-dimensional �ow model approach [120, 23, 74]. The pressure
downstream from the �ow separation point is assumed to be zero so that Pd = 0 holds for
x ≥ xs and the model outcome remains constant for x ≥ xs. Consequently, imposing the
upstream pressure P0 allows to impose the total driving pressure di�erence.

Therefore, the same way as for a quasi-one-dimensional �ow model [25, 120] (symbol BP),
�rstly the volume �ow rate Q can be estimated from the imposed pressure gradient using (4.1).
Next, the streamwise distribution of other �ow quantities such as the pressure distribution up
to �ow separation can be derived since from (4.1), it follows that,

P0 − Pd = ∆Pvisc + ∆Pber, (4.4)

holds with ∆Pvisc and ∆Pber as de�ned in (2.13) and (4.3).

In the following, we model the pressure distribution using the proposed quasi-three-
dimensional �ow model for a smooth and an abrupt constricted channel with di�erent cross
section shapes2 for air �ow (section 4.1.2) and blood �ow (section 4.1.3). Di�erent stenosis con-
�gurations are considered by varying some of the geometrical parameters depicted in Fig. 4.1:
stenosis degree Rc, minimum area Amin, and streamwise extent of minimum constriction Lc.
The possible impact of cross section details on the pressure distribution is assessed applying
default parameter set (α1), non-default parameter set (α2) and �xed width (ytot = w) to each
cross section shape, the same way as was de�ned previously in section 2.1.2.

2The cross section shapes are abbreviated as depicted in Fig. 2.3: circle (cl), rectangle (re), ellipse (el),

eccentric annulus (ea), half moon (hm), circular sector (cs), equilateral triangle (tr) and limacon (lm).
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4.1.2 Pressure distribution: air �ow

Fig. 4.3 and Fig. 4.4 illustrate the pressure distribution for a smooth and an abrupt expansion,
as depicted in Fig. 4.2, for the di�erent parameter sets � default parameter set (α1), non-default
parameter set (α2) and �xed width (ytot = w) � applied to each of the cross section shapes.
The stenosis parameters are set as minimum area Amin = 79mm2, Rc = 30% and Lc/Dcl = 6.
The upstream pressure is set to P0 = 75Pa. For the each of the cross section shapes the
pressure distribution is modeled using the quasi-three-dimensional �ow model presented in
the previous section 4.1.1. For completeness, the pressure distributions associated with a
quasi-one-dimensional model (BP)3 and an ideal �ow (B) are indicated as well.

It is seen that, in agreement with the �ndings outlined in section 2.1.2, the in�uence of the
cross section shape on the model outcome is less pronounced using default parameter set α1

than using non-default parameter set α2 or �xed width ytot = w. Pressure distributions ob-
tained for all cross section shapes using default parameter set α1 approximate the distribution
of an ideal (B) �uid for which ∆Pvisc = 0 so that the quasi-one-dimensional (BP) approxi-
mation results in a severe underestimation of the pressure drop along the constricted portion.
On the other hand, it is seen that for non-default parameter set α2 and �xed width ytot = w

the magnitude of the pressure drop varies signi�cantly so that, depending on the cross section
shape, the quasi-one-dimensional (BP) approximation results in an overestimation, an under-
estimation or an accurate estimation of the pressure drop within the constriction. Note that
a rectangular cross section yields the smallest pressure drop using non-default parameter set
α2 and an annulus using �xed width ytot = w. Moreover, it is observed that imposing a �xed
width ytot = w results in a match between the quasi-one-dimensional (BP) approximation and
the pressure distribution obtained using a rectangular cross section (re).

Fig. 4.5 quanti�es the normalized pressure P/P0 at position x = x2, corresponding to the
onset of the minimum area as de�ned in Fig. 4.2, and at position x = xm corresponding to
the position of minimum pressure within the constriction. In the case of an abrupt expansion
the minimum pressure equals zero regardless the cross section shape, whereas variations in the
cross section shape increases the pressure at x = x2 by up to ≤60%. In the case of a smooth
expansion the impact of the cross section shape is more pronounced. At x = xm, the minimum
pressure P/P0 is negative and varying the cross section shape induces a variation by as much as
≤40%. At the onset of the constriction x = x2 the in�uence is even more prominent since the
pressure variation increases to 100%. As for an abrupt expansion, the quasi-one-dimensional
model accounting for viscosity (BP) results in a signi�cant underestimation or overestimation
of the pressure at x = x2 (≥15%) as well as at x = xm (≤25%) depending on the cross section
shape.

3Details are presented in Appendix. C.1



62 Chapter 4. Application to biological �ows

(a) smooth expansion (α1)

(b) abrupt expansion (α1)

Figure 4.3: Illustration of normalized pressure distribution P (x)/P0 using the quasi-three-
dimensional model for air �ow and imposed area Amin = 79mm2, P0 = 75Pa, Rc = 30% and
Lc/Dcl = 6 for di�erent cross section shapes obtained for a) smooth expansion and default
parameter set (α1) b) an abrupt expansion and default parameter set (α1). For completeness
also the pressure distribution associated with a quasi-one-dimensional model (BP) and an ideal
�ow (B) are indicated. The normalized geometry is indicated in gray shade and the streamwise
x direction is normalized as xN = x/Dcl. As a reference and following the notation in Fig. 4.2,
the constriction onset x2 and �ow separation position xs are indicated.
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(a) smooth expansion (α2)

(b) smooth expansion (ytot = w)

Figure 4.4: Illustration of normalized pressure distribution P (x)/P0 using the quasi-three-
dimensional model for air �ow and imposed area Amin = 79mm2, P0 = 75Pa, Rc = 30% and
Lc/Dcl = 6 for di�erent cross section shapes obtained for a) non-default parameter set (α2)
and b) �xed width (ytot = w). For completeness also the pressure distribution associated with
a quasi-one-dimensional model (BP) and an ideal �ow (B) are indicated. The normalized
geometry is indicated in gray shade and the streamwise x direction is normalized as xN =

x/Dcl. As a reference and following the notation in Fig. 4.2, the constriction onset x2 and
�ow separation position xs are indicated.
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(a) abrupt expansion (b) smooth expansion

Figure 4.5: Normalized pressure values P/P0 sampled from Fig. 4.3 at the onset of the mini-
mum constriction x2 and the position of minimum pressure xm for air �ow for an ideal �uid
(B), a quasi-one-dimensional model (BP) and a quasi-three-dimensional model for di�erent
cross section shapes and parameter sets α1 and α2 for a) abrupt expansion and b) smooth
expansion. Recall that the stenosis parameters are set to minimum area Amin = 79mm2,
P0 = 1000Pa, Rc = 30% and Lc/Dcl = 6.

4.1.3 Pressure distribution: blood �ow

In order to illustrate the impact of the �uid on the �ow, the velocity distributions of developed
�ow through a uniform channel of area A = 79mm2 are illustrated in Fig. 4.6 blood �ow and
air �ow for a circular (cl) cross section shape and for a circular sector (cs) cross section shape.
The maximum velocities are summarized in Table 4.2.

Table 4.2: Overview of maximum velocities from the distributions shown in Fig. 4.6 .

uclmax [m/s] ucsmax [m/s]

blood 0.1339 0.1151

air 26.29 22.59

ratio1 5.1× 10−3 5.2× 10−3

(1) ratio of maximum velocity between blood and air �ow.

From Table 4.2, it is seen that the ratio of maximum velocity for blood blow and air �ow
approximates ≈ 5 × 10−3 which yields the inverse of the ratio of their dynamics viscosities
listed in Table 4.1. For the circular sector the maximum velocity reduction compared to the
circular cross section yields 15%.

Next, we apply the quasi-three-dimensional �ow model proposed in section 4.1 to blood
�uid through constricted channels of di�erent cross section shape. The pressure distribution for
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(a) circle + blood (b) circular sector + blood

(c) circle + air (d) circular sector + air

Figure 4.6: Velocity distributions u(y/acl, z/acl) for a uniform channel with area A = 79mm2

and driving pressure dP/dx = 75Pa/m for blood �ow and air �ow. The cross section shapes
are de�ned using geometrical default parameter set α1.

a smooth and an abrupt expansion with minimum area Amin = 79mm2 and default parameter
set α1 is illustrated in Fig. 4.7 for the same stenosis parameters as used for air �ow and the
upstream pressure is set to P0 = 75Pa. It is seen that the same conclusions described for air
�ow in section 4.1.2 hold in the case of blood �ow. The quasi-one-dimensional �ow model
(BP) severely underestimates the pressure drop compared to the quasi-three-dimensional �ow
model taking into account the cross section shape. The in�uence of the cross section shape
on the model outcome becomes more prominent using the non-default parameter set (α2)
or imposing a �xed width (ytot = w) since the di�erence between the pressure distributions
between cross section shapes increases compared to the use of default parameter set (α1). The
quasi-one-dimensional �ow model (BP) either overestimates or underestimates the pressure
drop for all the cross section shapes except for the rectangular shape, which is reassuring since
obviously the rectangular cross section shape and the two-dimensional �ow assumption result
in a similar cross section shape.

Comparing results for air �ow shown in Fig. 4.3 and for blood �ow in Fig. 4.7 and Fig. 4.8,
it is observed that the pressure drop at the onset of minimum area x2 are decreased for blood
�ow by at least 25% using the default parameter set α1. This is particular the case for a quasi-
one-dimensional (BP) �ow model for which a 50% decrease is found. The average between
di�erent cross section shapes are increased from 5% to 10%. For non-default parameter set
(α2) and �xed width (ytot = w) the same observations can be made as a result of the di�erence
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(a) smooth expansion (α1)

(b) abrupt expansion (α1)

Figure 4.7: Illustration of normalized pressure distribution P (x)/P0 using the quasi-three-
dimensional model for blood �ow and imposed area Amin = 79mm2, P0 = 75Pa, Rc = 30%

and Lc/Dcl = 6 for di�erent cross section shapes obtained for a) smooth expansion and default
parameter set (α1) b) abrupt expansion and default parameter set (α1). For completeness also
the pressure distribution associated with a quasi-one-dimensional model (BP) and an ideal �ow
(B) are indicated. The normalized geometry is indicated in gray shade and the streamwise x
direction is normalized as xN = x/Dcl. As a reference and following the notation in Fig. 4.2,
the constriction onset x2 and �ow separation position xs are indicated.
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(a) smooth expansion (α2)

(b) smooth expansion (ytot = w)

Figure 4.8: Illustration of normalized pressure distribution P (x)/P0 using the quasi-three-
dimensional model for blood �ow and imposed area Amin = 79mm2, P0 = 75Pa, Rc = 30%

and Lc/Dcl = 6 for di�erent cross section shapes obtained for a) non-default parameter set
(α2) and b) �xed width (ytot = w). For completeness also the pressure distribution associated
with a quasi-one-dimensional model (BP) and an ideal �ow (B) are indicated. The normalized
geometry is indicated in gray shade and the streamwise x direction is normalized as xN =

x/Dcl. As a reference and following the notation in Fig. 4.2, the constriction onset x2 and
�ow separation position xs are indicated.
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in dynamic viscosity of the �uids. Indeed since for the same geometries the higher the speed
is, the lower the viscosity is. In blood �ow the speed is just 0.5% of the one in air �ow which
will obviously decrease the in�uence of viscosity. The comparison is further discussed in the
next section.

4.1.4 Comparison of modeled results

In the following the in�uence of �ow, �uid and geometrical variables - cross section shape,
stenosis parameters, dynamic viscosity, upstream pressure and imposed parameter (A or D)
- on the pressure distribution is quanti�ed by considering ζ, de�ned as the ratio of the slope
of the normalized pressure drop within the constriction applying the quasi-three-dimensional
�ow model and the slope obtained assuming a quasi-one-dimensional (BP) model:

ζ =
|Pmin − P (x2)|
|Pmin − P (x2)|BP

, (4.5)

where Pmin denotes the minimum pressure and x2 as before the onset of the minimum area.
The value ζ = 1 indicates that the quasi-one-dimensional (BP) model provides an accurate
estimate of viscous e�ects, ζ = 0 corresponds to an inviscid �uid, ζ < 1 indicates an over-
estimation of viscous e�ects and ζ > 1 shows that the quasi-one-dimensional (BP) model
results in an underestimation of viscous e�ects. Values of ζ using default parameter set α1,
non-default parameter set α2 and �xed width ytot = w are illustrated in Fig. 4.9 and Fig. 4.10.

(a) smooth expansion (b) abrupt expansion

Figure 4.9: Illustration of ζ (4.5) for a stenosis with minimum area Amin = 79 mm2 and
upstream pressure P0 = 75 Pa. The in�uence for di�erent cross section shapes is assessed
for default parameter set α1 (+), non-default parameter set α2 (.), �xed width ytot = w (o).
Di�erent degrees of stenosis and di�erent �uids are assessed as indicated.

Di�erent con�gurations for stenosis degree Rc (30% or 6%), streamwise constriction extent
Lc/Dcl (6 or 30), dynamic viscosity µ (air or blood), expansion geometry (smooth or abrupt),
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(a) A = 79mm2, P0 = 1000Pa (b) D = 10mm, P0 = 75Pa

Figure 4.10: Illustration of ζ for a smooth expansion and default parameter set (+), non-
default parameter set (.), �xed width (o) for di�erent geometrical, �uid and �ow con�gura-
tions. For subplots in Fig. 4.10a and Fig. 4.10b values of Rc, Lc/Dcl and µ are the same as
indicated in Fig. 4.9a.

upstream pressure P0 (75Pa or 1000Pa) and imposed variable (minimum area Amin = 79 mm2

or hydraulic diameter D = 10mm) are assessed.

Fig. 4.9a shows that when the minimum area Amin of a smooth expansion is imposed, the
quasi-one-dimensional (BP) model results in either an overestimation (such as for the default
parameter set α1) or underestimation (such as for non-default parameter set α2) for a rectan-
gular (re), elliptical (el), concentric annulus (ca) or eccentric annulus (ea) cross section. The
magnitude of the over- and in particular the underestimation depends on the con�guration. In
general, it is observed that the underestimation reduces and even disappears for con�gurations
favoring viscous e�ects such as increasing stenosis length Lc/Dcl (Lc/Dcl = 30), decreasing
stenosis degree Rc (Rc = 6%) or yet increasing dynamic viscosity µ (µ = µblood). The overesti-
mation appears to be less sensitive to the exact con�guration, including the cross section shape
as observed for default parameter set α1. This is also observed for a circular sector or limacon
cross section shape, which is in accordance with previous �ndings illustrated in Fig. 2.4 or
Fig. 4.3. Imposing the minimum area Amin for an abrupt instead of a smooth expansion does
not alter the observations with respect to the lack of accuracy of the quasi-one-dimensional
(BP) model as illustrated in Fig. 4.9b.

Increasing upstream pressure P0 reduces the impact of viscosity on the �ow so that in
accordance with the previous �ndings applying the quasi-one-dimensional (BP) model results
in an overestimation or a severe underestimation (600%) of the viscous �ow e�ects. This is
illustrated in Fig. 4.10a. Results shown in Fig. 4.9a con�rm that the underestimation with the
quasi-one-dimensional (BP) model reduces as the geometrical or �uid parameters are altered so
that the contribution of viscosity to the pressure distribution within the constriction increases.
Moreover, it is seen from Fig. 4.9a, Fig. 4.9b and Fig. 4.10a that the quasi-one-dimensional
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(BP) model matches the outcome obtained in the case of a rectangular cross section shape.

In case the hydraulic diameter D is imposed, Fig. 4.10b illustrates that the quasi-one-
dimensional (BP) model overestimates viscous e�ects, for all assessed con�gurations. More-
over, the variation of the model outcome for di�erent con�gurations is small compared to the
variation obtained when the minimum area Amin is imposed.

4.2 Phonation

In section 4.1 a simple quasi-three-dimensional �ow model was formulated which accounts for
kinetic losses, viscosity as well as the cross section shape [127]. It was shown that varying the
cross section shape alters the pressure distribution within a constricted channel signi�cantly,
20% up to 100% when comparing to the quasi-one-dimensional (BP) �ow solution [127]. This
amounts to the same order of magnitude as well-studied �ow events such as the position of �ow
separation along a convergent-divergent channel constriction [120, 23, 109]. Such a constricted
channel is relevant to the glottis during human phonation. Therefore, applying a �ow model
for which the viscous contribution depends on the cross section shape potentially a�ects the
outcome of physical or mathematical models of human phonation, i.e. vocal folds auto-
oscillation during voiced sound production. In this section, we focus on the prediction of the
phonation onset pressure threshold Pon, i.e. the minimum upstream pressure to sustain the
auto-oscillation. A schematic overview of the main �ow, geometrical and acoustic quantities
characterizing human phonation is given in Fig. 4.11.

trachea glottis (vocal folds) vocal tract

(w)

P0 Pd
A0

Q
ū0 = Q

A0
A(x) Amin

Ls

Sr = fLs
ū0

Rex = QD
νA(x)

z

x
y

f

Figure 4.11: Schematic overview of main �ow (blue), geometrical (green) and acoustic (red)
quantities to determine non-dimensional numbers motivating simpli�ed �ow descriptions ap-
plied in phonation models. Upstream pressure P0, downstream pressure Pd, volume �ow rate
Q, inlet cross section area A0, minimal glottal area Amin, streamwise varying area A(x), glottal
streamwise length Ls, acoustic auto-oscillation frequency f , inlet bulk velocity ū0, Reynolds
number Rex based on hydraulic diameter D and Strouhal number Sr. Note that, the channel
has arbitrary cross section shape and hence the width w (in gray shade) is only relevant with
respect to the particular case of a rectangular channel with �xed w.

The aim of this section is to assess the potential impact of the quasi-three-dimensional
�ow model, which takes into account the cross section shape, on the outcome of a physical
phonation model in comparison with a quasi-one-dimensional (BP) �ow model. We focus on
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cross section shapes relevant for the glottal constriction: rectangular (re), elliptical (el) and
circular sector (cs) as illustrated in Fig. 4.12.

w/2

rectangle (re)

h/2

Are = hre · w

ellipse (el)

Ael = π
4hel · w

w/2

h/2

circular
sector (cs)

Acs = w2 arcsin hcs
2w

h

wy
z

×x

Figure 4.12: cross section shapes in the (y, z) plane (perpendicular to the main �ow direction
x) de�ned by two geometrical parameters � width w and height h·, with · = re, el, cs � from
which geometrical quantities, such as area A·, can be derived.

In order to provide a fair comparison with the quasi-one-dimensional (BP) model approach
width w is �xed regardless of the cross section shape to w = 20mm, which is within the range
observed on human speakers (15 up to 25mm [28, 23]) and mechanical glottal replicas (20 up
to 25mm [104, 24]). All cross section shapes illustrated in Fig. 4.12 are fully de�ned by two
geometrical parameters, such as width w and height h, from which the area can be derived as
shown in Table 2.1.

4.2.1 Stability analysis of a physical phonation model

The symmetrical two-mass model is used to represent the vocal folds during phonation. Each
of the vocal folds is modeled as a reduced spring-mass-damper system with two degrees of
freedom driven by the pressure di�erence, ∆P = P0 − Pd, across the masses as illustrated
in Fig. 4.13 [24]. The applied models for glottal air�ow, vocal folds mechanics and acoustic
interaction with a upstream and downstream pipe, representing the trachea upstream from
the glottis and the vocal tract downstream from the glottis, are severe simpli�cations of the
�uid-structure interaction in the larynx during human voiced sound production.

In section 4.1 a three-dimensional aspect is added to the �ow model, which is lacking
in classically applied �ow models for which the anterior-posterior y-dimension is neglected.
This results in the common quasi-one-dimensional �ow model (labeled BP) assuming a �xed
glottal width w and streamwise variable glottal height h(x, t) so that ABP (x, t) = w×h(x, t).
Flow separation along the diverging portion of the glottis is taken into account as As(t) =

1.2×min
(
A(x, t)

)
de�ning the position of �ow separation xs with x1 < xs ≤ x3. From (2.13)

and (4.7) the pressure distribution P (x, t) for x0 ≤ x ≤ xs is written as a quadratic equation
of volume �ow rate Φ:
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x0 x1
x2

x3

�ow

+ cross section shape

A0/2, P0 Ad/2, Pd

x

K R

m

KR

m

Kc = γK

A2/2A1/2

z

×y

Figure 4.13: Schematic representation of a deformable vocal fold structure modeled as a
symmetrical reduced two mass model [24]. The cross section shape is added to the set of
input parameters.

P (x, t) =P0 −
1

2
ρQ2

(
1

A2(x, t)
− 1

A2(x0)

)
+ µQ

∫ x

x0

dx

β(x, t)
, if x0 ≤ x < xs, (4.6)

P (x, t) =Pd, if x ≥ xs, (4.7)

with upstream pressure P0, downstream pressure Pd, dynamic viscosity of air µ = 1.8 ×
10−5Pa·s, β depending on the cross section shape as given in Table 4.3 and volume �ow rate
Φ estimated as:

Q =

[
µ

∫ x

x0

dx

β(x, t)
+

{(
µ

∫ x

x0

dx

β(x, t)

)2

+

2(P0 − Pd)ρ
(
1/A2

s − 1/A2(x0)
)}1/2

]
×
[
ρ
(
1/A2

s − 1/A2(x0)
)]−1

.

(4.8)

The vocal folds mechanics is modeled as a symmetrical low order model in which each vocal
fold is represented by two identical masses m. The two mass model describes the movement
of the two masses perpendicular to the �ow direction. The cross section shape is given and
assumed not to vary within the glottis. The mechanical model is further expressed as a
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Table 4.3: β as a function of width w and area A for cross section shapes depicted in
Fig. 4.12 [127].

Shape β
(
w,A

)
rectangle(a) w3

6

 A

2w
− 96w

π5

∞∑
n=1,3,...

tanh(nπA/2w2)

n5


ellipse

w2A3

(π2w4 + 16A2)

circular
sector(a)

w4

4

[
tan 2A/w2 − 2A/w2

4
−

512A4

π5w8

∞∑
n=1,3...

1

n2(n+ 4A/πw2)2(n− 4A/πw2)


BP(b) A3

12w2

(a) in�nite sum is limited to n ≤ 60.

(b) quasi-one-dimensional �ow model.

function of �xed width w and varying area A(x, t) using the relationship A = f(w, h·) given in
Fig. 4.12. The main parameters required in the mechanical model are mass m, spring sti�ness
K, coupling sti�ness Kc = γK between the two masses, damping R and critical glottal area
threshold Acrit triggering vocal folds collision when Ac < Acrit, with minimum glottal area
Ac = min(A1, A2). Whenever collision is detected the values of K and R are increased to
K = 4K and R = R + 2

√
Km. The two masses have the same mechanical parameters K, R

and m as depicted in Fig. 4.13. With these notations the mechanical model is written as two
coupled equations:

m

2

d2A1

dt2
+
R

2

dA1

dt
+
K(1 + γ)

2
A1 −

γK

2
A2 = F1(A1, A2, P0, Pd), (4.9)

m

2

d2A2

dt2
+
R

2

dA2

dt
+
K(1 + γ)

2
A2 −

γK

2
A1 = F2(A1, A2, P0, Pd), (4.10)

with F1,2 the force exerted by the �uid on the �rst and second mass respectively. The me-
chanical equations at equilibrium reduces to:
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K(1 + γ)

2
Ā1 −

γK

2
Ā2 = F1(Ā1, Ā2, P̄0, P̄d = 0), (4.11)

K(1 + γ)

2
Ā2 −

γK

2
Ā1 = F2(Ā1, Ā2, P̄0, P̄d = 0), (4.12)

from which the equilibrium positions for a given upstream pressure P̄0 are derived by a �xed
point method. Assuming a small perturbation (a1, a2, p0, pd) of the quantities around the
equilibrium values eq = (Ā1, Ā2, P̄0, P̄d = 0) as:

A1 = Ā1 + a1, A2 = Ā2 + a2, (4.13)

P0 = P̄0 + p0, Pd = pd, (4.14)

results in the following set of equations:

m

2

d2a1

dt2
+
R

2

da1

dt
+
K(1 + γ)

2
a1 −

γK

2
a2

=
∂F1

∂A1

∣∣∣∣
eq

a1 +
∂F1

∂A2

∣∣∣∣
eq

a2 +
∂F1

∂P

∣∣∣∣
eq

p0 +
∂F1

∂Pd

∣∣∣∣
eq

pd, (4.15)

m

2

d2a2

dt2
+
R

2

da2

dt
+
K(1 + γ)

2
a2 −

γK

2
a1

=
∂F2

∂A1

∣∣∣∣
eq

a1 +
∂F2

∂A2

∣∣∣∣
eq

a2 +
∂F2

∂P

∣∣∣∣
eq

p0 +
∂F2

∂Pd

∣∣∣∣
eq

pd. (4.16)

Acoustical coupling between the vocal folds and a uniform upstream tube with length
Lu representing the trachea and/or a uniform downstream tube with length Ld representing
the vocal tract is important when the acoustical resonance frequencies of the pipe and the
auto-oscillation frequency are close [24, 73]. The acoustic set of equations is given as

d2ψd
d2t

+
ωd
Qd

dψd
dt

+ ω2
dψd =

Zdωd
Qd

φ, (4.17)

d2ψ0

d2t
+
ω0

Qd

dψ0

dt
+ ω2

0ψu = −Z0ω0

Q0
φ, (4.18)

with ∂ψ0,d/∂t = p0,d the acoustic pressure and φ the unsteady portion of the volume �ow
velocity, ω0,d the acoustical pipe resonance pulsations, Q0,d the quality factor and Z0,d the
peak value of the acoustical impedance. As for the mechanical equations assuming small
variations around equilibrium results in:

d2ψd
d2t

+
ωd
Qd

dψd
dt

+ ω2
dψd =

Zdωd
Qd

×

(
∂Q

∂A1

∣∣∣∣
eq

a1 +
∂Q

∂A2

∣∣∣∣
eq

a2 +
∂Q

∂P0

∣∣∣∣
eq

p0 +
∂Q

∂Pd

∣∣∣∣
eq

pd

)
, (4.19)
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d2ψ0

d2t
+
ω0

Qd

dψ0

dt
+ ω2

0ψ0 = −Z0ω0

Q0

×

(
∂Q

∂A1

∣∣∣∣
eq

a1 +
∂Q

∂A2

∣∣∣∣
eq

a2 +
∂Q

∂P0

∣∣∣∣
eq

p0 +
∂Q

∂Pd
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eq

pd

)
. (4.20)

Consequently, assuming small variations around equilibrium results in a coupled set of
equations obtained from (4.15), (4.16), (4.19) and (4.20). The system can be expressed in
state-space form as

Ẋ = MX (4.21)

with X = [a1, a2, ψ0, ψd, da1/dt, da2/dt, dψ0/dt, dψd/dt] andM =

[
A B

C D

]
with null matrix

A = 04,4, identity matrix B = I4 and matrices C and D de�ned as:

C =



−
K(1+γ)−2
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eq
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eq

m −
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eq
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Zdωd
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eq

Zdωd
Qd

∂Q
∂A2
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eq

0 −ω2
d

−Z0ω0
Q0

∂Q
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eq

−Z0ω0
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∂Q
∂A2
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eq

−ω2
0 0
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(4.22)

and

D =


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eq


. (4.23)

The system will become in-stable, corresponding to the onset of auto-oscillation, when the
real portion of an eigenvalue of M is positive.

4.2.2 Results

We search the in�uence of the cross section shapes, depicted in Fig. 4.12, on the predicted auto-
oscillation onset by assessing the onset pressure threshold Pon. Therefore, a linear stability
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analysis is performed by considering the real portion of the eigenvalues of M for increasing
upstream pressure P0 for di�erent cross section shapes and for di�erent initial constriction
degrees 1−A10

· /A0, with A10 denotes the initial minimum area in absence of �ow. Concretely,
the constriction degree is varied from 50% up to 90% whereas the width w is �xed. The
resulting aspect ratios yield 1 < w/h10

· < 9 and depend on the cross section shape as illustrated
in Fig. 4.14. For �xed width w the aspect ratios of the quasi-one-dimensional geometry and
the rectangular cross section shape match since A10 = w×h10

re holds in both cases. Besides the
constriction degree and the cross section shape the other model parameters are taken constant
with values derived from [24] as: geometry [x0 x1 x2 x3] = [0 1 4 5]mm, width w = 20mm,
upstream area A0,d = 400mm2, masses m = 0.2g, spring sti�ness K = 131N·m−2, coupling
spring sti�ness Kc = 65N·m−2, damping R = 0.006N·s·m−2 and collision threshold Acrit =

0.4mm2, upstream pipe lengths L0 = 0cm and downstream pipe length Ld = 17cm, acoustic
pipe resonance pulsations ω0=0 and ωd = 2965Hz, quality factors Q0 = 0 and Qd = 51, and
acoustic impedance peaks Z0 = 0 and Zd = 54MPa·s·m−3). Simulated results for phonation
onset pressure threshold Pon are illustrated in Fig. 4.15a as a function of constriction degree
1−A10/A0 which is independent from the cross section shape and in Fig. 4.15b as a function
of aspect ratio Ar10

· = w/h10
· , which depends on the cross section shape.

(a) Ar10
· (1−A10/Au) for · =re,el,BP,cs

Figure 4.14: Aspect ratio Ar10
· = w/h10

· as a function of initial constriction degree 1−A10/A0

for cross section shapes (rectangle � re, ellipse � el, quasi-one-dimensional � BP and circular
sector � cs) with �xed width w = 20mm.

For large constriction degrees (greater than 75% in Fig. 4.15a) the cross section shape can
be neglected. For medium or small constriction degrees (smaller than 75% in Fig. 4.15a) the
predicted phonation onset threshold pressure Pon depends on the cross section shape since
less pressure is required to sustain oscillation for a circular sector cross section shape than
for a rectangular or elliptical cross section shape. The discrepancy between Pon estimations
belonging to di�erent cross section shapes increases as the constriction degree (Fig. 4.15a) or
aspect ratio (Fig. 4.15b) decreases. Moreover, it is observed that for the assessed range of
constriction degrees and associated aspect ratios (from 2 up to 9 illustrated in Fig. 4.14), a
rectangular geometry can be modeled using a quasi-one-dimensional (BP) �ow approximation.
The simulated phonation onset threshold pressures Pon suggest that for large constriction
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(a) Pon(1−A10/A0) for · =re,el,BP,cs (b) Pon(Ar10
· ) for · =re,el,BP,cs

Figure 4.15: (a,b) Modeled onset pressure threshold Pon as a function of constriction degree
1−A10/A0 (a) and as a function of aspect ratio Ar10

· .

degrees (greater than 75% in Fig. 4.15a) the model outcome depends on an accurate value of
the constricted area A10 as a model input parameter. This �nding is a consequence of the small
discrepancy found in the predicted �ow quantities when viscosity dominates the �ow behavior
and �ow inertia e�ects become less pronounced and so the in�uence of the cross section shape.
For medium or smaller constriction degrees (smaller than 75% in Fig. 4.15a) it is necessary to
quantify the constricted area A10 as well as to obtain information on the cross section shape
in order to capture the impact of the cross section shape on the viscous losses in the �ow
model. When the aspect ratio Ar10 is used as model input parameter (Fig. 4.15b) additional
information on the cross section shape is required as a model input parameter for all aspect
ratios. Experimental studies aiming to validate the modeled in�uence of the cross section
shape on the phonation onset pressure should account for the necessary input parameters.
In addition, given the severe in�uence of the cross section shape on the predicted phonation
onset pressure Pon, it is of interest to extent the current model approach to an arbitrary cross
section shape. This seems important in order to enlarge the relevance of simpli�ed physical
phonation models for applications such as vocal folds pathologies a�ecting the cross section
shape of the glottis during phonation.

4.3 Summary

The current chapter deals with �ow through constricted channels with di�erent cross section
shape and its application to a stenosis for air �ow or blood �ow. A simpli�ed quasi-three-
dimensional �ow model is proposed which accounts for �ow inertia, viscosity as well as cross
section shape. The model outcome is quanti�ed and compared with respect to a quasi-one-
dimensional (BP) model. It is seen that in case the area is imposed the pressure distribution
within the constriction varies to a large extent so that the quasi-one-dimensional (BP) model
outcome yields either an overestimation or an underestimation of the viscous e�ects depending
on the cross section shape. Nevertheless, it is observed that in general the accuracy of a quasi-
one-dimensional (BP) model improves as the imposed geometrical (stenosis degree, constric-
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tion length), �uid (dynamic viscosity) and �ow (imposed pressure di�erence) conditions favor
the viscous contribution to the �ow development. Note that all those parameters can be al-
tered due to pathologies. In case the hydraulic diameter is imposed the quasi-one-dimensional
(BP) model yields an overestimation of viscous e�ects regardless the con�guration.

Next, the proposed quasi-three-dimensional �ow model is applied to a theoretical sym-
metrical two-mass model assuming di�erent cross section shapes as schematically depicted in
Fig. 4.13. A stability analysis is performed in order to quantify the impact of the cross section
shape on the minimum pressure required to sustain phonation. For large constriction degrees
(greater than 75%) the cross section shape can be neglected and the quasi-one-dimensional
�ow model is capable to describe the �ow. For medium and small constriction degrees on
the other hand, a discrepancy appears between cross section shapes which increases as the
constriction degree decreases.

Consequently, accounting for the cross section shape improves the model accuracy in partic-
ular for �ow and geometrical con�gurations which are not completely dominated by viscosity.
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In chapter 4, the in�uence of the cross section shape on �ow through a constricted channel
is shown for the outcome of a quasi-three-dimensional �ow model. In the current chapter,
it is sought to assess the possible impact of the cross section shape of a constriction on �ow
properties experimentally. In addition, the quasi-three-dimensional �ow model outcome can
be validated on experimental data.

The �ow �eld is quanti�ed by temporal and spatial sampling of the pressure and velocity
�eld. In order to fully characterize the �ow �eld, upstream �ow conditions are varied. A
spatial overview of the �ow �eld is presented using �ow visualization.

5.1 Experimental con�guration

5.1.1 Constricted channel cross section shapes

Eight constricted channel portions with di�erent cross section shapes1, previously assessed in
chapter 2 and chapter 4, are considered. The constricted channel portions and the di�erent

1Circular (cl), square (sq), elliptical (el), rectangular (re), equilateral triangular (tr), isosceles triangular

(ntr), small circular sector (scs) and large circular sector (lcs)

79
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cross section shapes are illustrated in Fig. 5.1 and detailed in Appendix D. The geometri-
cal characteristics (hydraulic diameter D, width2 w along the y-direction and height h along
the z-direction) are summarized in Table 5.1. The cross section shapes have constant area
Ac = 79mm2 and constant length Lc = 25mm along the streamwise x direction. Each con-
striction can be screwed to an upstream and downstream channel with the screwthread along
the outer walls in order to obtain a constricted channel portion. In the current work, unless
stated di�erently, the upstream or downstream channel is a uniform circular channel with inner
diameter 25mm, �tting the outer diameter of the constricted portion, so that the constric-
tion inlet and outlet makes a sharp angle with the upstream and downstream unconstricted
channel3. One or two pressure taps of diameter 0.5mm are positioned at the center of the
constriction4, corresponding to Lc/2. Measured pressures at these positions are labeled P1

for one and P1,2 for two pressure taps. The position of the pressure taps and their labels is
depicted in Fig. 5.1. It is seen that depending on the symmetry of the cross section shape one
or two pressure taps can be used.

(a) transverse view (b) streamwise view

Figure 5.1: Illustration of experimentally assessed uniform cross section shapes and position
of the pressure taps P1 (full arrow) and P2 (dashed arrow): a) front view of the cross section
shapes along the (y, z) plane. As an example, total width w and height h, summarized
in Table 5.1, is indicated for the rectangular cross section shape. b) streamwise view of the
constricted portion with length Lc. Screwthread is present at the outer edges of the constricted
channel portion. The positions of the pressure taps is pointed out. The geometry is further
detailed in Appendix D.

2The total width w was denoted ytot in Table 2.1. The geometrical parameters were previously de�ned in

Table 2.1 and illustrated in Fig. 2.3 and Fig. 4.12.
3The sharp angle at the outlet of the constriction results in �ow separation at the constriction exit, so that

its position is known and does not in�uence the measured or modeled �ow outcome. On the other hand, the

choice of sharp inlet angle can be criticized since complex �ow phenomena might occur at the inlet.
4The pressure sensors are screwed in the pressure holes shown in Fig. 5.1b. The pressure tap itself is situated

at the bottom of the pressure hole and has a diameter of 0.4mm.
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Table 5.1: Overview of geometrical parameters for the constriction cross section shapes illus-
trated in Fig. 5.1: hydraulic diameter D, width w, height h, cross section area Ac, constriction
length Lc and ratios of geometrical parameters.

cl sq lcs tr scs ntr el re

D [mm] 10 8.9 8.4 7.8 7.2 7.0 6.7 6.6
w [mm] 10 8.9 12.2 11.7 17.3 17.1 22.4 19.8
h [mm] 10 8.9 12.2 13.5 9.0 9.2 4.5 4.0
w/h [-] 1 1 1 0.9 1.9 1.9 5.0 5.0
w/D [-] 1 0.9 1.5 1.7 2.4 2.5 3.3 3.0
Lc/D [-] 2.5 2.8 3.0 3.2 3.5 3.6 3.7 3.8
Ac = 79mm2, Lc = 25mm

5.1.2 Experimental setup and �ow conditioning

5.1.2.1 Experimental setup

Flow facility and pressure measurements The setup consists of an air compressor (Atlas
Copco GA7), followed by a pressure regulator (Norgren type 11-818-987) providing an air�ow
at constant pressure. A general overview of the experimental setup is depicted in Fig. 5.2.
The volume �ow rate is controlled by a manual valve placed downstream from the pressure
regulator. The volume �ow rate is measured by a thermal mass �ow meter (Model 4043 TSI)
with an accuracy of 2% of its reading. To homogenize the �ow, a settling chamber is used,
with dimensions 0.25m×0.3m×0.35m, to which a series of 3 perforated plates with holes of
diameter 1.5mm are added. The walls of the settling chamber are tapered with acoustic foam
(SE50-AL-ML Elastomeres Solutions) in order to avoid acoustic resonances. The in�uence
of the cross section shape on the �ow development is assessed experimentally by adding one
of the constricted channel portions, illustrated in Fig. 5.1, to a uniform circular tube, with
unconstricted internal diameter 25mm. The �ow channel is mounted to the settling chamber
by means of a converging nozzle. The used nozzle and resulting nozzle �ow is detailed in [41].
An acoustic source, pressure driver unit (KU 916T), upstream from the constriction can be
used to create unsteady �ow5. Pressure sensors (Kulite XCS-093) can be positioned in pressure
taps of diameter 0.5mm upstream from (P0), in the middle of (P1 and P2) and downstream
(P3) from the constricted portion illustrated in Fig. 5.1. The used pressure taps depend on
the value of the length of the channel upstream from the constriction Lu and the length of the
channel downstream from the constriction Ld. Two omni directional microphones (B&K 4192)
with associated pre-ampli�er (B&K 4165) and additional ampli�er and power supply (B&K
5935L) are positioned downstream from the �ow channel in order to analyze the acoustic
signal6. Except for the air compressor, the whole setup is placed in a con�ned room in
order to avoid �ow disturbances. Electrical signals are ampli�ed and conditioned using a pre-
ampli�er/conditioning board (National Instruments SXCI-1121) connected to a PC through

5Examples of unsteady measurements are presented in Appendix G.
6In the current chapter, the acoustic signals are not analyzed since we focus on characterizing the �ow �eld.
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a National Instruments BNC-2080 and a National Instruments PCI-MIO-16XE acquisition
card. The acquired data are processed using LabView 7 software (National Instruments).

Volume �ow rate Q is sampled at 500Hz. Pressure sensors P and microphone M are
sampled at 10kHz or 24kHz. Statistical quantities, such as mean values, are derived on 5s of
steady signal as shown in Fig. 5.2c for the measured volume �ow rate Q(t) and pressure signal
P (t). In general, �ow experiments are performed for volume rates within the range 0 ≤ Q ≤
200l/min. The increment is 5l/min for Q ≤ 80l/min, 10l/min for 90l/min≤ Q ≤ 100l/min
and 25l/min for Q ≥ 125l/min.

x

z

y

Q

settling
chamber

grid nozzle
(4.5cm)

Lu 2.5cm Ld

S P0P1(P2) P3

0 x [cm]
-1.25 1.25

M1 M2

LM ≥ 50cm

24cm

constriction
inlet condition (sharp edge,...)

source

17cm

(a) schematic overview

(b) photograph (c) statistics on 5s of signal

Figure 5.2: a) Schematic overview of the experimental setup indicating the position of pressure
taps (upstream from the constriction P0, within the constriction P1 (P2) and downstream from
the constriction P3), the position of microphones M1 and M2 at a distance LM = 50cm or
LM = 1m. The length of the unconstricted upstream Lu and downstream channel Ld is varied
as well as the inlet condition immediately upstream from the constriction. b) Photograph
and c) Measured volume �ow rate Q(t) and pressure P (t) indicating the 5s interval used to
determine the steady values.

Velocity measurements The �ow velocity downstream of the constriction is measured for
di�erent cross section shapes by hot �lm anemometry for Lu = 100cm, a sharp constriction
inlet condition and in absence of a downstream channel, i.e. Ld = 0, as illustrated in Fig. 5.4.
Note that the �ow facility is the same as described for the pressure measurements. The hot
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�lm (TSI 1201-20), for which the working principle and calibration is detailed in Appendix E.2,
is mounted to a home-made positioning system providing a positioning accuracy of 0.1mm.
The positioning system is illustrated in Fig. E.7 of Appendix E.2. The probe displacement
is controlled by a user-de�ned matrix implemented in LabView (National Instruments). At
each spatial measurement position, the hot-�lm output voltage is sampled at 10kHz during
40s (the number of samples is su�cient to provide a statistical analysis of the mean and
root mean square velocity). The voltage is collected by a constant temperature anemometer
system (TSI IFA 300) and corrected for drifts in temperature following the procedure outlined
in Appendix E.2.

Transverse velocity pro�les are gathered by positioning the hot �lm at a distance < 1mm
downstream from the center of the nozzle exit7 and displacing the hot �lm with a transverse
step of 0.5mm parallel to the cross section exit plane across the directions shown in Fig. 5.3a.
Longitudinal velocity pro�les in the near �eld downstream from the constriction are obtained
by positioning the hot �lm at a distance < 1mm downstream from the center of the nozzle
exit and displacing the hot �lm with streamwise steps of 1mm up to 1cm downstream from
its initial position followed by streamwise step of 5mm up to 8cm from its initial position.
The streamwise extent of the longitudinal velocity pro�le is denoted LHF = 8cm. The ratio
of this extent to hydraulic diameter for the assessed cross section shapes LHF /D is listed in
Table. 5.2 in order to characterize the assessed near �eld region for each cross section shape.

(a) transverse velocity pro�les (b) �ow visualization sheets

Figure 5.3: Experimentally assessed directions along the major axis (full arrow) and along the
minor axis (dashed arrow): a) transverse velocity pro�les and b) visualization sheets. Note
that except for the squared cross section shape all transverse pro�les are taken along the sheets
used for �ow visualization.

Flow visualization A spatial overview of the impact of the cross section shape on the �ow
�eld immediately downstream from the constricted portion is obtained by applying �ow visu-
alization. Therefore, the constricted channel is attached to a settling chamber, of dimensions
0.38m×0.38m×0.48m, to which smoke can be injected. Smoke is generated by a smoke ma-

7<1mm corresponds to (x− Lc)/D ≤ 0.15.
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Table 5.2: Near �eld region assessed by the longitudinal velocity pro�le characterized by the
ratio LHF /D with LHF denoting the extent of the longitudinal velocity pro�le and D the
hydraulic diameter for the cross section shapes shown in Fig. 5.1.

cl sq lcs tr scs ntr el re
D [mm] 10 8.9 8.4 7.8 7.2 7.0 6.7 6.6

LHF /D 8.0 9.0 9.5 10.3 11.1 11.4 11.9 12.1
LHF = 80mm

x

z

y

Q

settling
chamber

100cm 2.5cm

hot �lm

IFA-300 constriction

sharp edge
single grid plate (ogp)

positioning
system

67cm

0 8cm

(a) schematic overview

(b) hot �lm (TSI 1201-20) (c) photograph

Figure 5.4: Illustration of hot �lm anemometry setup. a) Schematic overview of the setup and
con�guration used to assess the in�uence of the di�erent cross section shapes of the constricted
portion on the velocity �eld immediately downstream from the constriction. Transverse and
longitudinal velocity pro�les are assessed. The spatial range of the longitudinal velocity pro�le
is indicated. b) Hot �lm. c) Photograph of hot �lm positioning.

chine (Fog-1200E KOOL). Two-dimensional illumination of the �ow �eld is applied with a
two-dimensional laser light beam (class IIIb). The illuminated smoke pattern is recorded at
300fps (Casio EXILIM Pro EX-F1) which ensures good freezing of the �ow development. For
each �ow condition between 600 and 900 images are gathered corresponding to an acquisition
time of 2s up to 3s. An overview of the �ow visualization setup is given in Fig. 5.5. The dig-
itized two-dimensional images are 512× 384 data matrices. Spatial calibration of the images
is performed using the grid illustrated in Fig. E.2 of Appendix E. The streamwise extent of
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the visualized �ow �eld yields Lv = 21cm. The visualized near �eld region downstream form
the constriction is characterized by its ratio with the hydraulic diameter of the cross section
shape Lv/D for which values are listed in Table 5.3. Concretely, two visualization planes are
considered: one along the major axis and one along the minor axis of the cross section shapes
as illustrated in Fig 5.3b.

Table 5.3: Visualized near �eld characterized by the ratio Lv/D with Lv denoting the stream-
wise extent of the visualized area and D the hydraulic diameter of the cross section shapes
shown in Fig. 5.1.

cl sq lcs tr scs ntr el re
D [mm] 10 8.9 8.4 7.8 7.2 7.0 6.7 6.6

Lv/D [mm] 21 23.6 25 26.9 29.2 30 31.3 31.8
Lv = 210mm.

x

z

y

air

smoke

chamber

60cm 2.5cm

47cm

camera
constriction

sharp edge laser

28cm

(a) schematic overview

(b) photograph

Figure 5.5: Illustration of the experimental setup used for �ow visualization.

5.1.2.2 Flow conditioning

The impact of the constriction cross section shapes illustrated in Fig. 5.1 on the �ow �eld is
assessed for di�erent upstream �ow conditions. Di�erent upstream conditions are generated
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by varying the length Lu of the channel upstream from the constriction, by varying the inlet
condition immediately upstream from the constriction and by varying the length Ld of the
channel downstream from the constriction. In addition, a free and con�ned jet con�guration
downstream from the constriction considered for Ld = 0cm or Ld = 15cm, respectively.

The nozzle �ow exiting the settling chamber approximates a top hat pro�le, characterized
by an almost uniform velocity pro�le [41], so that increasing Lu will result in a more developed
�ow pro�le. Concretely, Lu is set to either 2cm, 35cm or 1m. Note that for Lu = 1m the
length-to-diameter ratio Lu/Du of the unconstricted upstream channel yields Lu/Du = 40,
with Du = 25mm, so that, depending on the applied volume �ow rate, the �ow is expected to
be fully or almost fully developed. For Lu = 35cm, the length-to-diameter yields Lu/Du = 14

so that the �ow is developing. For Lu = 2cm the length-to-diameter ratio Lu/Du < 1 so that
velocity pro�le is imprinted by the almost uniform nozzle pro�le. Therefore, the upstream
pro�le is either characterized by boundary layer limited to the near wall region for Lu = 2cm
or by boundary layers occupying almost the entire �ow channel.

Since the constriction is uniform regardless of the cross section shape, it follows that
the inlet condition a the constriction is de�ned by sharp edges. Sharp edges might cause a
vena contracta to occur at the inlet of the constriction, which will in�uence the downstream
�ow �eld and moreover can not be captured with the simpli�ed quasi-three-dimensional �ow
model proposed in chapter 4. Therefore, �ow mixing at the inlet is altered by putting a �ow
mixing element immediately upstream from the constriction. Concretely three di�erent mixing
elements are introduced, which are illustrated in Fig. 5.6. The transverse dimension �t the
diameter Du of the unconstricted upstream channel and the length of the mixing element is
either 3cm in case the mixing element consists of two grid plates containing pipes of diameter
0.65cm (tgph) or steel wool (tgps) or 1mm in case a single grid plate (ogp) is considered.
The grid plate is characterized by regular circular holes of diameter 0.15cm equally spaced
at 0.08cm. The cross section shapes with the single grid plate at their inlet8 is illustrated in
Fig. 5.7

(a) ogp (b) tgph (c) tgps (d) length

Figure 5.6: Illustration of mixing elements. a) one grid plate (ogp), b) two grid plates contain-
ing pipes (tgph), c) two grid plates containing steel wool (tgps) and d) length of the mixing
element for cases (tgph) and (tgps). Dimensions of the grid plate and pipes are indicated.

Two additional upstream �ow conditioning conditions are assessed for the constriction with
8The area ratio of the area covered by the holes in the single grid plate to the area of the cross section

shape is estimated between 50% to 60%.
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(a) cl (b) el (c) re (d) sq

(e) tr (f) ntr (g) scs (h) lcs

Figure 5.7: Front view of di�erent cross section shapes shown in Fig. 5.1 with one grid plate
(ogp) placed at the inlet of the constricted portion.

circular cross section shape in order to be able to observe the e�ect of �ow development in
absence of shape edges at the constriction inlet. Firstly, a converging cone with angle 26o is
used to provide a smooth transition between the diameter of the unconstricted upstream pipe
Du = 25mm and the diameter of the constriction with circular cross section shape D = 10mm.
The geometry of the converging cone is detailed in Fig. 5.8. Secondly, as a reference, a circular
constriction with diameter D = 10mm is considered for which the length upstream from the
pressure tap P1 is extended from 12.5mm (Lc = 25mm) to 1000mm (or Lc ≈ 1m so that
Lc/D ≈ 100) in order to compare the �ow �eld resulting from the previous outlined upstream
�ow conditioning with the �ow �eld observed for fully developed �ow.

5.1.2.3 Assessed con�gurations

The assessed geometrical con�gurations for each of the constriction shapes shown in Fig. 5.1
result from the described combination of di�erent �ow conditioning conditions described in
section 5.1.2.2. An overview of the assessed con�gurations is given in Table 5.4. In this chap-
ter we will focus on steady �ow through for 0 < Q ≤ 200l/min (Re ≤ 25000). Measured �ow
quantities are indicated: used pressure taps along the constricted channel, hot-�lm anemom-
etry and �ow visualization. Note that �ow visualization is done using the setup shown in
Fig. 5.5 so that the upstream channel length yields 60cm instead of 1m.

An overview of the assessed con�gurations for concrete values of the inlet conditions �
upstream channel length Lu and downstream channel length Ld � is given in Fig. 5.9 for the
inlet condition corresponding to sharp edges and in Fig. 5.10 in presence of a mixing element.
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(a) photograph (b) schedule

Figure 5.8: Illustration of the geometry and dimensions [mm] of the cone with converging angle
21o mounted immediately upstream from the constriction with circular cross section shape in
order obtain a smooth inlet condition for the circular constriction with diameter 10mm.

Consequently, the con�gurations A, B and C depicted in Fig. 5.9 focus on the impact of �ow
development for the �ow through each constriction shape, whereas the con�gurations D, E and
F depicted in Fig. 5.10 focus on the impact of mixing for the �ow through each constriction
shape.

5.2 Experimental results

5.2.1 Pressure measurements

5.2.1.1 In�uence of �ow development

The in�uence of �ow development on the measured pressures within the constriction P1 is
assessed for all cross section shapes for constriction with sharp edges at its inlet with and
without downstream pipe using the setups depicted in Fig. 5.9 showing the conditions la-
beled A, B and C in Table 5.4. The measured pressures P1 and normalized pressures P1/P0

are shown in Fig. 5.11. It is seen that the general tendency of the pressure dynamics with
increasing upstream pressure is imposed by the presence (or absence) of a downstream pipe
(Ld) enveloping the jet downstream from the constriction since its presence ensures negative
pressures within the constriction for all cross section shapes. Nevertheless, the impact of
the downstream pipe depends on the cross section shape since it is most pronounced for a
rectangular and circular cross section shape. In addition, it is seen that the e�ect becomes
more prominent as the upstream length increases and hence as �ow development increases.
When expressing the measured normalized pressure ratio P1/P0 as a function of Reynolds
number, a minimum value is observed for all cross section shapes for 2000 ≤ Re ≤ 4000

immediately followed by a maximum. The exact position of the minimum depends on the
Reynolds number. Measured values clearly show the impact of the cross section shape on the
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Table 5.4: Overview experimental conditions assessed for the constriction shapes shown in
Fig. 5.1 indicating the used �ow conditioning. In case no �ow conditioning is mentioned sharp
inlet edges are assessed. The measured �ow quantities are indicated: pressure taps de�ned in
Fig. 5.2a, transverse and longitudinal velocity pro�les using hot-�lm anemometry (HF) and
�ow visualization (FV).

Label Lu Ld Pressure sensors(1) Flow �eld(2,3) Comment

Inlet condition: sharp edges (Fig. 5.9) → �ow development

all
shapes

A 2cm
0cm P0, P1(P2) free jet
15cm P0, P1(P2), P3 con�ned jet

B 35cm
0cm P0, P1(P2) free jet
15cm P0, P1(P2), P3 con�ned jet

C 1m
0cm P0, P1(P2) HF, FV free jet
15cm P0, P1(P2), P3 con�ned jet

Inlet condition: use of mixing element (Fig. 5.10) → �ow mixing

D 35cm (ogp)
0cm P0, P1(P2) HF free jet
15cm P0, P1(P2), P3 con�ned jet

E 35cm (tgph)
0cm P0, P1(P2) HF free jet

circular
shape

15cm P0, P1(P2), P3 con�ned jet

F 35cm (tgps)
0cm P0, P1(P2) HF free jet
15cm P0, P1(P2), P3 con�ned jet

Inlet condition: no sharp edges (Fig. 5.8) → �ow development

G 35cm (cone)
0cm P0, P1(P2) HF free jet
15cm P0, P1(P2), P3 con�ned jet

H 1m (d1cm) HF free jet
(1) Steady �ow for 0 < Q ≤ 200l/min or Re ≤ 25000.
(2) Steady �ow for 0 < Q ≤ 100l/min or Re ≤ 15000.
(3) In hot-�lm anemometry the upstream channel length yields 1m.

�ow �eld for a constriction with sharp inlet edges and incoming �ow with di�erent degree of
development. Shown results suggest that the main �ow dynamics is imposed by sharp edges
at the constriction inlet rather than by the degree of �ow development.

To gain more insight in the �ow development, we brie�y consider the root mean square
pressure values P rms1 for Lu = 2cm presented in Fig. 5.12. It is observed that for Reynolds
numbers Re > 5000 the root mean square pressure increases quickly, although its growth
rate depends on the cross section shape (e.g. values for the isosceles triangle are much larger
than values for the circular cross section shape), so that it is an indication that the �ows
becomes turbulent. Consequently, the range of Reynolds numbers for which the minimum
and subsequent maximum is found for the pressure ratio P1/P0(Re) (Fig. 5.11) is probably
associated with the transition regime and passing of vortices triggered somehow by the sharp
edged inlet at the constriction inlet. The �ow dynamics needs to be sought in more detail
in order to inform on the transition mechanism, nevertheless the presence of �ow structures
might be con�rmed (or not) from the �ow visualization further in this chapter as well as from
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Figure 5.9: Schematic overview of assessed con�gurations for all cross section shapes shown
in Fig. 5.1 for the values of Lu, Ld and sharp edges at the inlet of constriction (so no use
of a mixing element) for the con�gurations labeled A, B and C listed in Table 5.4: without
downstream pipe (Ld = 0cm) or with downstream pipe (Ld = 15cm).
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Figure 5.10: Schematic overview of assessed con�gurations for all cross section shapes shown
in Fig. 5.1 for the values of Lu = 35cm, Ld and with the used of a mixing element for the
con�gurations labeled D, E and F listed in Table 5.4: without downstream pipe (Ld = 0cm)
or with downstream pipe (Ld = 15cm).
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(a) Lu = 2cm and Ld = 0cm (b) Lu = 35cm and Ld = 0cm (c) Lu = 1m and Ld = 0cm

(d) Lu = 2cm and Ld = 15cm (e) Lu = 35cm and Ld = 15cm (f) Lu = 1m and Ld = 15cm

(g) Lu = 2cm and Ld = 0cm (h) Lu = 35cm and Ld = 0cm (i) Lu = 1m and Ld = 0cm

(j) Lu = 2cm and Ld = 15cm (k) Lu = 35cm and Ld = 15cm (l) Lu = 1m and Ld = 15cm

Figure 5.11: Measured mean pressures within the constriction as a function of upstream
pressure P1(P0) and normalized pressure measured within the constriction as a function of
Reynolds number P1/P0(Re) for di�erent constriction shapes with sharp inlet edge with (Ld =

15cm) and without (Ld = 0cm) downstream pipe: Lu = 2cm or label A (left) , Lu = 35cm or
label B (middle) and Lu = 1m or label C (right).
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an analysis of the measured velocity pro�les.

(a) Lu = 2cm and Ld = 0m (b) Lu = 2cm and Ld = 15cm

Figure 5.12: Measured root mean pressure values within the constriction P rms1 for Lu = 2cm
(label A in Table 5.4).

Finally, Fig. 5.13 illustrates the impact of the position of the pressure tap on the measured
pressure for cross section shapes for which two pressure taps are present as shown in Fig. 5.1.
Obviously, the position of the pressure tap in�uences the measured values and the position is
more relevant for asymmetrical cross section shapes.

(a) Lu = 2cm and Ld = 0m (b) Lu = 2cm and Ld = 15cm

Figure 5.13: Pressure within the constriction measured at positions P1 and P2 indicated in
Fig. 5.1 for Lu = 2cm and a sharp inlet edge to the constriction (label A in Table 5.4).

5.2.1.2 In�uence of �ow mixing

The in�uence of �ow mixing on the measured pressures within the constriction P1 is assessed
for all cross section shapes by using a mixing element immediately downstream from the
constriction with and without downstream pipe using the setups depicted in Fig. 5.10 showing
the conditions labeled D, E and F in Table 5.4. The measured pressures P1 and normalized
pressures P1/P0 are shown in Fig. 5.14. The same way as for �ow development, It is seen
that the general tendency of the pressure dynamics with increasing upstream pressure is again
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imposed by the presence (or absence) of a downstream pipe (Ld) enveloping the jet downstream
from the constriction since its presence ensures negative pressures within the constriction for
all cross section shapes. Nevertheless � and this was also observed for �ow development � the
impact of the downstream pipe depends on the cross section shape since it is most pronounced
for a rectangular and circular cross section shape. It is noted that the using the mixing element
increases the pressure di�erence between upstream pressure P0 and the pressure within the
constriction P1.

When expressing the measured normalized pressure ratio P1/P0 as a function of Reynolds
number, the in�uence of upstream �ow conditioning becomes apparent when comparing the
measurements plotted in Fig. 5.11 and in Fig. 5.14. Indeed, the pronounced minimum observed
for di�erent degree of upstream �ow development in presence of sharp edges, is no longer
observed for most cross section shapes when a mixing element is used. Instead, a maximum
value is observed in the range 2000 ≤ Re ≤ 4000 for which the position depends on the cross
section shape. To which extent the presence of the �ow dynamics is altered due to �ow mixing
is partly the aim of the �ow visualization further in this chapter as well as from an analysis
of the measured velocity pro�les.

Measured values show the impact of the cross section shape on the �ow �eld for a con-
striction using a mixing element at its inlet.

5.2.1.3 In�uence of the cross sections shape: �ow development and mixing

The previous sections outlined the in�uence of the cross section shape of the constriction on
the measured mean pressures within the constriction for di�erent upstream �ow conditions
either due to �ow development or due to �ow mixing9. In this section, we compare and
quantify the impact of the cross section section shape on the pressure values measured within
the constriction. Measured pressures for di�erent �ow conditions, labeled from A to G in
Table 5.4, are plotted in Fig. 5.15 in the case of a circular constriction. The �gure illustrates the
severe impact of upstream �ow conditioning on the measured pressures within the constriction.
Nevertheless, it is interesting to notice that measured values for Lu = 1m (label C) and the
use of a converging cone (label G) follow the same tendencies. Since besides the cross section
shape and upstream �ow conditions, the �ow dynamics is determined by the applied upstream
pressure (or Reynolds number) the ranges10 ∆P1(P0) and ∆(P1/P0)(Re) due to changing the
cross section shape will change when their value is taken for di�erent upstream pressures P0

or associated Reynolds numbers Re. Nevertheless, in order to quantify the in�uence of the
overall impact of the cross section shape on the pressure measured within the constriction the
relative value of the range ∆P1/P0 and the range of ∆(P1/P0) are quanti�ed for particular
values of the upstream pressure P0 or Reynolds number Re. When the overall impact is sought
for multiple cross section shapes (CSS) and a single upstream �ow condition, the impact is
quanti�ed by evaluating the following expressions at the chosen P0 value or Re values (Re

9For all cases, the �ow dynamics merits a more profound analysis.
10Note that ∆P1(P0) = 0 and ∆(P1/P0)(Re) = 0 holds in case the shape of the constriction does not

in�uence the pressure measurements and hence can be neglected.
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(a) (ogp) and Ld = 0cm (b) (ogp) and Ld = 15cm

(c) (ogp) and Ld = 0cm (d) (ogp) and Ld = 15cm

Figure 5.14: Measured mean pressures within the constriction as a function of upstream
pressure P1(P0) and normalized pressure measured within the constriction as a function of
Reynolds number P1/P0(Re) for di�erent constriction shapes using a mixing element with
(Ld = 15cm) and without (Ld = 0cm) downstream pipe: a single grid is placed immediately
upstream from the constriction or label D.

values are chosen either within (Re ≈ 3600) or well above (Re ≈ 17500) the expected laminar-
turbulent transition regime),
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When the overall impact is sought for multiple upstream �ow conditions (labeled in Table 5.4)
for a single cross section shape (circular), the impact is quanti�ed by evaluating the following
expressions at the chosen P0 value or Re value,
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The resulting overall impact of the cross section shape on the mean pressure within the con-
striction is summarized in Table 5.5. It is observed that both measures, ∆P1/P0 or ∆(P1/P0),
of the impact of the cross section shape on the measured pressure within the constriction
express the same tendencies from the following observations:

� observations when varying either the cross section shape (impact of the cross section
shape) or the �ow conditioning (impact of �ow conditioning):

� the order of magnitude of the impact amounts from 10% up to 30% of the upstream
pressure. This �nding illustrates that, at least for the used P0 or Re, details of the
cross section shape or details of the �ow facility are equally important.

� in general the impact is greater in presence of a channel downstream from the
constriction (con�ned jet at the exit of the constriction) than in absence of such a
downstream channel (free jet at the exit of the constriction).

� observations when varying the cross section shape (impact of the cross section shape):

� the impact of the cross section shapes reduces (from ≈25% to ≈10%) as the up-
stream �ow conditioning favors �ow development (Lu increases ) or as a mixing
element is used (ogp).

� increasing the upstream pressure or Reynolds number does not signi�cantly in-
creases the impact of the cross section shape. This suggests that due to dissipation
and turbulence development, the �ow �eld looses the identity or imprint of the
geometry by means of the �ow structures characterizing the cross section shape.
Flow visualization and �ow velocity analysis can possibly o�er a con�rmation for
this point.

� observations when varying the �ow conditioning (impact of �ow conditioning):

� the impact of the �ow conditioning in presence of an upstream channel (con�ned
jet) is less sensible to an increase of the Reynolds number than in absence of an
upstream channel (free jet for which the impact reduces with more than half its
magnitude as Re is increased) so that the upstream channel has a memory e�ect of
the upstream �ow conditions even for Reynolds numbers well above the transition
regime. Note that no such pronounced memory e�ect (or �ow imprint) is found for
the cross section shape11.

5.2.2 Velocity measurements and �ow visualization

In the previous section, the impact of the cross section shape and �ow conditioning on the
pressure within a constricted channel, with and without a channel downstream from the
constriction, was characterized for a large range of Reynolds numbers (Re ≤ 25000). It was
suggested that the �ow dynamics is partly governed by �ow structures, whose existence is

11It is of interest to further search the spatial extent of the �ow memory for steady �ow.
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(a) Ld = 0cm (b) Ld = 15cm

(c) Ld = 0cm (d) Ld = 15cm

Figure 5.15: Measured mean pressures within the constriction as a function of upstream
pressure P1(P0) and normalized pressure measured within the constriction as a function of
Reynolds number P1/P0(Re) for di�erent constriction shapes for di�erent degrees of upstream
�ow development and sharp inlet edges (label A, B and C in Table 5.4) and for di�erent mixing
elements upstream from the constriction (label D, E and F in Table 5.4) with (Ld = 15cm)
and without (Ld = 0cm) downstream pipe: Lu = 2cm or label A (0m) , Lu = 35cm or label B
(35cm) and Lu = 1m or label C (1m), one grid plate or label D (ogp), pipes or label E (tgph),
steel wool or label F (tgps) and converging cone or label G (cone).

triggered by the sharp edges at the contraction inlet. Therefore, in the current section, a start
is made to search the �ow dynamics. Hot �lm anemometry is applied in order to sample the
velocity �eld in combination with �ow visualization in order to obtain an overall view of the
�ow �eld.

Concretely, the free jet portion immediately downstream from the constricted channel
portion is searched for Re ≤ 15000. Consequently, as indicated in Table 5.4, we limit ourselves
to con�gurations without downstream channel (Ld = 0cm). In addition, we focus on the
in�uence of the cross section shape for two �ow conditions: sharp edges at the constriction
inlet (label C in Table 5.4) and a single grid placed immediately upstream from the constriction
(label D in Table 5.4). As for the pressure measurements outlined in the previous section,
additional upstream �ow conditions are assessed for a circular constriction.
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Table 5.5: Overall impact of the constriction cross section shape (Fig. 5.1) on the range
of ratios ∆P1/P0 and ∆(P1/P0) for a particular upstream pressure or Reynolds number for
di�erent upstream �ow conditions (labeled following Table 5.4). Overall impact of the �ow
conditioning on the range of ratios ∆P1/P0 and ∆(P1/P0) for a particular upstream pressure
or Reynolds number for the constriction with circular shape. Results in absence (Ld = 0cm)
and presence (Ld = 15cm) of a channel downstream from the constriction.

∆P1/P0 [%] ∆(P1/P0) [%]

Ld = 0cm Ld = 15cm Ld = 0cm Ld = 15cm

Overall impact of cross section shapes: Eq. (5.1) and Eq. (5.2)

A (Lu =2cm) 21%(1) 27%(1)
33%(3) 25%(3)

20%(4) 27%(4)

B (Lu =35cm) 18%(1) 23%(1)
18%(3) 27%(3)

17%(4) 21%(4)

C (Lu =1m) 16%(1) 19%(1)
13%(3) 18%(3)

15%(4) 19%(4)

D (ogp) 10%(2) 9%(2)
11%(3) 11%(3)

10%(4) 7%(4)

Overall impact of �ow conditioning (circular shape): Eq. (5.3) and Eq. (5.4)

A to G 9%(5) 26%(5)
32%(3) 32%(3)

11%(4) 26%(4)

(1) P0 ≈ 1500Pa for Ld = 0cm and P0 ≈ 1300Pa for Ld = 15cm.

(2) P0 ≈ 3400Pa for Ld = 0cm and P0 ≈ 3500Pa for Ld = 15cm.

(3) Re ≈ 3600 for Ld = 0cm and Ld = 15cm.

(4) Re ≈ 17500 for Ld = 0cm and Ld = 15cm.

(5) P0 ≈ 360Pa for Ld = 0cm and Ld = 15cm.

Measured velocity pro�les and visualized �ow �elds are presented in the following. The
analysis focuses on the in�uence of the cross section shape and �ow conditioning. Therefore,
the measured pro�les are presented as a function of the cross section shape and as a function
of the applied �ow conditioning rather than as a function of the applied volume �ow rate in
order to assess their impact on the �ow properties. Measured pro�les as a function of volume
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�ow rate are shown in Appendix F.

5.2.2.1 Longitudinal velocity pro�les

As an example, the measured longitudinal mean velocity pro�les downstream from the circular
constriction with sharp inlet edges are plotted in Fig. 5.16a for di�erent �ow rates12 illustrating
the typical range of velocity magnitudes and the applied spatial increment13.

(a) mean longitudinal pro�le (b) velocity signal

Figure 5.16: Illustration of velocity quantities for the circular constriction with sharp inlet
edges (label C in Table 5.4) are plotted in Fig. 5.16a for di�erent �ow rates Q (5, 20, 35,
50, 70 and 100l/min): a) near �eld longitudinal mean velocity pro�les along the centerline x
downstream from the constriction illustrating typical velocity magnitude and spatial increment
(1mm for x ≤ 10mm and 5mm for x >10mm). b) instantaneous velocity signal (0.2s) as a
function of time t normalized by its mean value u/ū at the initial centerline position x = 0 for
the circa. For clarity, velocity signals are shifted with with 0.1 with respect to the previous
one. Quasi-periodicity is observed depending on the �ow rate (e.g. Q = 20l/min).

In�uence of cross section shape The streamwise evolution of the mean velocity shown
in Fig. 5.16a, is a �ne example of round jet development, which is schematically depicted
in Fig. 5.17. Indeed, the centerline velocity immediately downstream from the constriction
exit approximates the initial centerline velocity at the exit u0 characterizing an ideal �ow.
The extent of the cone of ideal �uid for which u ≈ u0 de�nes the potential cone extent xpc.
The potential cone is enveloped by a free shear layer in which the jet �ow mixes with the

12The measured longitudinal normalized velocity pro�les for each of the cross section shapes, shown in

Fig. 5.1, is plotted as a function of the applied volume �ow rate in Appendix F.1: mean (Fig. F.1) and root

mean square (Fig. F.2) for sharp inlet edges (�ow condition labeled C in Table 5.4) and mean (Fig. F.3) for

a single grid placed immediately upstream from the constriction inlet (�ow condition labeled D of Table 5.4)

and the corresponding root mean square (Fig. F.4).
13As a reminder, spatial step ∆x applied for the longitudinal velocity pro�le yields ∆x = 1mm for x ≤ 10mm

and ∆x = 5mm for x >10mm.



100 Chapter 5. Experiments and model validation

surrounding �uid. Downstream from the potential cone, self similar behavior is expected to
occur in the far �eld, which can be described by a velocity decay equation14. In the current
chapter, we focus our attention mainly on near �eld behavior such as the evolution of the
potential cone extent as a function of Reynolds number for the cross section shapes shown in
Fig. 5.1. Indeed, the longitudinal velocity is assessed in the near �eld downstream from the
constriction since variations of the �ow structure due to either the cross section shape or the
upstream �ow conditions will be apparent.

(a) potential cone extent xpc

cl sq lcs tr scs ntr el re

D [mm] 10 8.9 8.4 7.8 7.2 7.0 6.7 6.6

α [%] 91 92 90 96 87 93 90 90

(b) threshold criterion u(x) ≥ αu0

Figure 5.17: Free jet development: a) schematic overview of potential cone extent xpc. b)
Threshold α as a function of the cross section shape applied to determine the potential cone
extent xpc presented in Fig. 5.19 [4]. For a round jet, 4 < xpc/D < 8 [40].

In order to quantify the impact of the cross section shape on the potential cone extent,
we consider the measured normalized mean velocity as a function of the cross section shape
for sharp edges at the constriction inlet (�ow condition labeled C in Table 5.4) plotted in
Fig. 5.18.

The impact of the cross section shape on the near �eld is apparent for all assessed volume
�ow rates with respect to the initial velocity u0, the extent of the potential cone as with
respect to its initial decay. The initial velocity at the constriction exit for instance is seen to
vary up to 20%. As for the pressure measurements, the measured velocity pro�les suggest that
the �ow behavior is shaped by the sharp edges and the presence of �ow structures. Indeed,
the decreasing tendency of the velocity within the potential cone suggests jet forcing due to
the sharp edges at the constriction inlet. In addition, observed humps in the longitudinal
velocity pro�le, such as observed for the rectangular constriction for Q = 5l/min, as well as
the quasi-periodicity of the velocity signal illustrated in Fig. 5.16b, suggests the passing of
coherent structures. The observed di�erences in �ow dynamics, when varying the cross section
shape, motivate the adaptation of the threshold α applied in the threshold criterion to de�ne

14The form of the decay equation will depend on the cross section shape and in addition initial conditions

of the velocity at the jet emitting nozzle outlet, i.e. the constriction outlet.
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(a) Q=5l/min (b) Q=20l/min

(c) Q=35l/min (d) Q=50l/min

(e) Q=70l/min (f) Q=100l/min

Figure 5.18: Measured near �eld normalized longitudinal mean velocity pro�les u/umax along
the centerline of the jet for cross section shapes shown in Fig. 5.1 as a function of volume �ow
rate Q (5, 20, 35, 50, 70 and 100l/min) for sharp edges at the constriction inlet (label C of
Table 5.4). umax denotes the maximum mean initial velocity for all cross section shapes for a
given volume �ow rate.
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the potential cone extent. Applied threshold values, listed in Fig. 5.17, are an `ad-hoc' choice.
The resulting estimation of the potential cone extent xpc as a function of Reynolds number
for each of the assessed cross section shapes is presented in Fig. 5.19.

Figure 5.19: Potential cone extent normalized by the hydraulic diameter xpc/D, mean (sym-
bols) and uncertainty due to the spatial step (vertical bars), as a function of Reynolds number
Re for all cross section shapes shown in Fig. 5.1 and sharp edges at the constriction inlet
(label C in Table 5.4).

Compared to typical values (4 < xpc/D < 8 [40] reported for the potential core extent
of a round jet emitted by, at least from a �ow point of view, well designed nozzles) the
constricted channel with sharp inlet edges reduces the potential core extent since in general
xpc/D ≤ 4 holds for Re > 1000. For Re ≤ 1000 a large variation in the potential core extent is
observed ranging from 0 (large circular constriction) up to 7 (circular). The general tendency
of initially decreasing and consequently increasing of the potential core extent as the Reynolds
number increases corresponds to the expected behavior described in literature. The change in
tendency is related to the transition region. Note that no such tendency is observed for the
large circular sector suggesting that �ow mixing and interaction a�ects the centerline velocity
as far upstream as the constriction outlet. Besides, the described general tendency which is
likely related to the �ow condition, the in�uence of the cross section shape on the near �eld
downstream from the constriction is clearly illustrated by considering the need of a di�erent
threshold for di�erent cross section shapes as well as by the variation of estimated values with
as much as 50%. Note that their is no relation between �rstly the value of the hydraulic
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diameter and the applied threshold and secondly between the value of the threshold and the
estimated potential cone extent.

In�uence of �ow conditioning In the previous section it was suggested that the presence
of sharp edges at the constriction inlet (�ow condition with label C in Table 5.4) results in
a reduction of the potential cone extent compared to values obtained for smooth nozzles. In
the current section, we further explore the in�uence of the upstream �ow condition based
on measured near �eld longitudinal velocity pro�les. Fig.5.20 presents the normalized mean
pro�les as a function of the cross section shape for a single grid placed immediately upstream
from the constriction inlet (�ow condition labeled D in Table 5.4). Comparing the velocity
pro�les in presence of the mixing element (single grid at constriction inlet) presented in Fig.5.20
with the velocity pro�les shown in Fig. 5.18 in absence of such a mixing element (sharp eyes
at constriction inlet) illustrates the severe impact of the mixing element on the near �eld �ow
development for all volume �ow rates15.

The presence of the single grid mixing element will decrease the area at the constriction
inlet with ≈ 50% of the constriction area. Obviously, as a consequence the velocity will
increase in presence of the mixing element compared to the velocity obtained in absence of
the mixing element for the same volume �ow rate. Therefore, besides a�ecting the near �eld
due to increased �ow mixing, the e�ect of the mixing element is likely to reduce the Reynolds
number for which the transition to turbulence occurs. A �rst con�rmation of this e�ect is
provided by the minimum of the potential cone associated with the transition regime extent
which reduces from Q ≈ 35l/min to Q ≈ 20l/min when a mixing element is used. In addition,
increased �ow mixing increases the velocity decay observed in the potential cone extent due to
the increased interaction of the centerline velocity and the enveloping �uid. This suggests also
that the �ow pattern is less stable in presence of a mixing element which in turn again justi�ed
the decrease of the Reynolds numbers associated with the transition regime16. Nevertheless,
although the �ow pattern is argued to be less stable, the presence of the mixing element do
seems to homogenize the �ow behavior17 so that in particular the velocity pro�les measured
for the circular and rectangular cross section are more in agreement with tendencies observed
for the other cross section shapes .

The in�uence of the �ow condition is further quanti�ed for the circular constriction. The
near �eld �ow behavior is assessed in presence of diverse mixing elements and di�erent degrees
of �ow development using the upstream �ow conditions labeled C up to H in Table 5.4.
Normalized mean velocity pro�les for each of the assessed volume �ow rates are presented as
a function of the upstream �ow condition in Fig. 5.21.

The velocity pro�les show the e�ect of upstream �ow development as well as �ow mixing on
the near �eld �ow development for all assessed volume �ow rates (for instance when considering
the resulting variation of potential cone extent which e.g. for Q = 5l/min occupies either the

15and re-illustrates the in�uence of the cross section shape as well.
16More research is motivated for the �ow analysis and in particular for the stability of the �ow patterns and

the transition mechanisms.
17A quantitative study of the onset of the decay region is of interest.
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(a) Q=5l/min (b) Q=20l/min

(c) Q=35l/min (d) Q=50l/min

(e) Q=70l/min (f) Q=100l/min

Figure 5.20: Measured near �eld normalized longitudinal mean velocity pro�les u/umax along
the centerline of the jet for cross section shapes shown in Fig. 5.1 as a function of volume �ow
rate Q (5, 20, 35, 50, 70 and 100l/min) for a single grid placed immediately upstream from
the constriction inlet (label D inTable 5.4). umax denotes the maximum mean initial velocity
for all cross section shapes for a given volume �ow rate.
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(a) Q=5l/min (b) Q=20l/min

(c) Q=35l/min (d) Q=50l/min

(e) Q=70l/min (f) Q=100l/min

Figure 5.21: Measured near �eld normalized longitudinal mean velocity pro�les u/umax along
the centerline of the jet for a circular cross section shape shown in Fig. 5.1 as a function of
volume �ow rate Q (5, 20, 35, 50, 70 and 100l/min) for di�erent �ow conditioning upstream
from the constriction: sharp inlet edges (none, label C in Table 5.4), single grid (ogp, label
D in Table 5.4), pipes (tgph, label E in Table 5.4), steel wool (tgps, label F in Table 5.4),
converging cone (cone, label G in Table 5.4) and Lu = 1m with diameter 1cm (d1cm, label H
in Table 5.4). umax denotes the maximum mean initial velocity for all cross section shapes for
a given volume �ow rate.
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entire near �eld (d1cm) or is absent (tgps)). The following observations are made:

� with respect to upstream �ow conditioning using a mixing element (and using the pre-
viously discussed single grid (ogp, label D in Table 5.4) as a reference):

� immediately downstream from constriction outlet18

* Adding pipes to the single grid mixing element (tgph, label E in Table 5.4)
straightens the �ow and as a result reduces the mixing in the immediate near
�eld.

* Adding steel wool19 to the single grid mixing element (tgps, label F in Table 5.4)
increases the mixing and hence the initial decay rate immediately downstream
from the constriction exit.

� onset of the decay region

* Adding pipes to the single grid mixing element (tgph, label E in Table 5.4)
does not in�uences the decay onset region, since the decay rate matches the
single grid case at least for higher volume �ow rates.

* Adding steel wool to the single grid mixing element (tgps, label F in Table 5.4)
does not in�uences the decay onset. It is interesting to note that it matches
for all volume �ow rates the decay observed for pipes, although that the down-
stream distance needed to `forget' the details of the mixing element decreases
as the Reynolds number (of volume �ow rate) increases. This is in accor-
dance with the expected diminishing stability20 of the �ow pattern for higher
Reynolds numbers.

� with respect to upstream �ow conditioning in�uencing �ow development (and using the
previously discussed sharp inlet edges (none, label C in Table 5.4) as a reference):

� immediately downstream from constriction outlet

* Using a converging cone to reduce the e�ect of sharp inlet edges (cone, label
G in Table 5.4) enlarges the potential cone extent.

* Extending the constriction length in order to approximate fully developed �ow
(d1cm, label H in Table 5.4) increases the initial velocity with 10% or more.
This is in agreement with the analytical solution for fully developed �ow pre-
sented in chapter 2 and in Appendix A, which in case of fully developed �ow
predict a maximum velocity which yields twice the bulk velocity. Based on the
extent of the potential core region, it is interesting to notice that a minima is
reached for Q ≈ 35l/min in case of fully developed �ow, whereas in case a cone
is used, a minimum is reached for Q ≈ 60l/min, suggesting that the �ow �eld
using a converging cone is more stable than the �ow �eld for the developed
�ow.

18Note that in the case of a single grid no potential core is distinguished due to mixing explaining why it is

not assessed to obtain the equivalent of Fig. 5.19.
19Note that for steel wool the velocity pro�le consists of an initial decay region, an intermediate region and

the onset of a second decay region.
20A study aiming �ow stability and transition mechanisms is of interest.
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� onset of the decay region

* Using a converging cone to reduce the e�ect of sharp inlet edges (cone, label
G in Table 5.4) seems to follow the general tendency that the in�uence of
the used upstream �ow condition either based on mixing or based on �ow
development does not impacts the decay rate for high Q or high Reynolds
numbers. Nevertheless, it will impact the Reynolds numbers associated with
the transition from laminar to turbulent and hence the �ow �eld stability.

* Extending the constriction length in order to approximate fully developed �ow
(d1cm, label H in Table 5.4).

→ summary with respect to both �ow development and mixing

� immediately downstream from constriction outlet

* upstream �ow condition determines the �ow behavior as well as its stability
and hence the Reynolds numbers associated with the transition.

� onset of the decay region

* the decay rate is less in�uenced by the upstream �ow condition and `forgets'
the upstream �ow condition. As such it can be noticed that the decay onset
observed for the two reference conditions matches (sharp edges or one, label C
in Table 5.4 and single grid (ogp, label D in Table 5.4)).

5.2.2.2 Transverse velocity pro�les

In the previous section, we showed the in�uence of the cross section shape and the upstream
�ow condition on the near �eld of the jet emitted from the constricted channel. In the current
section, we brie�y present transverse velocity �ow pro�les21 following the `major' and `minor'
axes of the cross section shapes indicated in Fig. 5.3a. Transverse pro�les for each of the
assessed cross section shapes as a function of volume �ow rate are presented in Fig. F.5
(`major' axis) and in Fig. F.6 (`minor' axis) of Appendix F.2.1.

We focus again on the in�uence of the cross section shape on the measured pro�les. Nor-
malized transverse pro�les for a single volume �ow rate (Q = 5l/min and Q = 20l/min) as a
function of the cross section shape are presented in Fig. 5.22. For both the `major' and `minor'
axis it is seen that the extent of the initial jet at the constriction exit occupied by the bound-
ary layer (compared to the �at center portion) depends on the cross section shape. Obviously,
it depends on the volume �ow rate as well since increasing the volume �ow rate will increase
the Reynolds number expressing a reduced viscous contribution to the �ow development.

5.2.2.3 Visualization of longitudinal �ow development

It was suggested at several occasions that �ow structures in�uences the �ow issuing from
the constricted channel. In order to provide evidence of the presence of �ow structures �ow

21As a reminder, spatial step ∆y applied for the transverse velocity pro�le yields ∆y = 0.5mm.
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(a) Q=5l/min � `major' (b) Q=20l/min � `major'

(c) Q=5l/min � `minor' (d) Q=20l/min � `minor'

Figure 5.22: Measured normalized transverse mean velocity pro�les u/umax following the
`major' and `minor' axis de�ned in Fig. 5.3a as a function of the cross section shape for
volume �ow rate Q = 5l/min and Q = 20l/min in the case of sharp edges at the constriction
inlet (label C in Table 5.4). umax denotes the maximum mean velocity for all cross section
shapes at a given volume �ow rate.

visualization is assessed along the `major' and `minor' axis of the cross section shapes as
indicated in Fig. 5.3b. Visualization of the �ow �eld for all of the assessed cross section
shapes are presented in Fig. 5.23 and Fig. 5.24 for a volume �ow rate of Q = 5l/min. More
visualization results are shown in Appendix F.3.

Flow structures of a large diversity (including axis switching) are observed when consid-
ering all cross section shapes and both visualization sheets.

5.3 Model validation

A comparison of measured and modeled �ow quantities is assessed in order to comment on the
accuracy and limitations of the simpli�ed quasi-three-dimensional model proposed in chapter 4.
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(a) circle (b) ellipse

(c) rectangle (d) square

(e) equilateral triangle (f) isosceles triangle

(g) small circular section (h) large circular section

Figure 5.23: Flow visualization along the `major' axis for all cross section shapes for Q =

5l/min. The `major' axis is indicated in Fig. 5.3b.

Experimental data from the pressure measurements and velocity measurements, described in
the previous sections, are used as outlined in the following.

5.3.1 Pressure

The measured pressure values within the constricted channel portion, presented in this chap-
ter, o�er a �rst opportunity to test the pressure distribution predicted with the quasi-three-
dimensional �ow model proposed in chapter 4. An accurate distribution of he pressure distri-
bution within the constricted channel portion is of particular importance. Indeed, application
of the proposed �ow model to �uid-structure interaction problems, such as phonation de-
scribed in section 4.2.1, relies on an accurate prediction of the pressure distribution within
the constricted portion in order to provide a good estimation of forces exerted by the �ow on
the enveloping walls.

In order to evaluate the �ow model, we need to decide when the proposed �ow model
succeeds, and hence results in an accurate prediction, or when on the other hand it fails its
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(a) ellipse (b) rectangle

(c) equilateral triangle (d) isosceles triangle

(e) small circular section (f) large circular section

Figure 5.24: Flow visualization along the `minor' axis for all cross section shapes for Q =

5l/min. The `minor' axis is indicated in Fig. 5.3b.

prediction. Since the quasi-three-dimensional �ow model is presented as an improvement of a
quasi-one-dimensional (BP) �ow model22. It seems fair to decide that a successful prediction
is obtained as the quasi-three-dimensional �ow model provides a more accurate prediction
compared to the measured data than obtained with the quasi-one-dimensional �ow model. In
addition, in chapter 4, it was argued that compared to classical boundary layer solutions, the
proposed quasi-three-dimensional �ow model has the advantage o�ering a (cruel) way of ac-
counting for the cross section shape. Nevertheless, we are interested in evaluating the outcome
of a boundary layer solution against the proposed quasi-three-dimensional �ow model. In the
following a boundary layer solution is obtained for two-dimensional (2D) �ow and axisym-
metrical (Axi) �ow applying Thwaites (Th) method outlined in Appendix C.2. Consequently,
pressure measurements, within the constricted channel portion P1, for the rectangular and
the circular cross section shape are compared to the outcome of the quasi-three-dimensional
(mod), quasi-one-dimensional (BP) and boundary layer solution (ThAxi for circular and Th2D
for rectangular). For other assessed cross section shapes, the measured pressures within the
constriction P1 are compared to the outcome of the quasi-three-dimensional (mod) and quasi-
one-dimensional (BP) model. Concretely, measured pressures obtained for the �ow condition
labeled B in Table 5.4 (Lu = 35cm) are compared to the modeled values. Measured and
modeled normalized pressures P1/P0 are plotted in Fig. 5.25 as a function of the pressure
upstream from the constriction P0.

Since the constriction is uniform all modeled values result in a positive prediction of the

22Models are denoted the same way as in chapter 4. The quasi-one-dimensional (BP) model is expected to

match the quasi-three-dimensional model for the case of an rectangular cross section shape.
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pressure within the constriction and a continuously decreasing ratio P1/P0 for increasing P0.
Consequently, none of the applied �ow model is capable to accurately predict the measured
negative pressures within the constriction or the extrema observed for the measured pressures
within the transition regime 2000 < Re < 4000. Both phenomena result from more complex
�ow phenomena then accounted for in the applied �ow models and they are likely triggered
by the sharp edges at the inlet of the constriction23.

The following observations are made:

� Modeled pressure ratios P1/P0 using the quasi-three-dimensional model are within a
close range (5% for P0 > 300Pa and 10% for P0 < 300Pa.) regardless the cross section
shape. This range is much less than the variation observed for the measured values of
the pressure ratio P1/P0.

� For the rectangular cross section shape it is seen that:

� The quasi-three-dimensional model outcome and the quasi-one-dimensional model
outcome are a good match (<2%).

� The two-dimensional boundary model (Th2D) provides the most accurate predic-
tion P0 < 500Pa and underestimates the pressure drop for P0 > 500Pa. The quasi-
three-dimensional model outcome overestimates the pressure drop and provides the
most accurate match for P0 > 500Pa.

� For the circular cross section shape, it is seen that the axisymmetrical boundary layer
model (ThAxi) underestimates the pressure drop more than the quasi-three-dimensional
model.

� For the elliptical, squared and equilateral triangular cross section shapes, it is seen that
using the quasi-three-dimensional model slightly improves the accuracy obtained with
the quasi-one-dimensional model. Nevertheless, it is noted that the accuracy gain is
small compared to the discrepancy between modeled and measured data.

� The accuracy of the quasi-three-dimensional model compared to the measured data is
summarized as < 5% for P0 > 300 and of <5% up to < 20% for P0 < 300 depending on
the cross section shape.

23e.g. from the measured values shown in Fig. 5.15 it seems likely that a better agreement between modeled

and measured values is expected to occur for �ow conditioning using the converging cone (label G in Table 5.4)

since measured values of P1 are positive as predicted by models. Nevertheless, in the current section, no such

comparison is made since this �ow conditioning is only available for the circular cross section shape and not

for the other assessed cross section shapes shown in Fig. 5.1. So the �ow conditioning used for the comparison

between modeled and measured values (label B in Table 5.4) is not in favor of a good quantitative accuracy,

but allows to realize the limitations of �ow modeling. It further motivates the choice to consider the quality

of the quasi-three-dimensional model outcome with respect to the outcome of the other applied simpli�ed

model approaches then with respect to whatever quantitative measure of the di�erence between measured and

modeled values.
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Mentioned observations are in general in favor for quasi-three-dimensional �ow model, so
it is concluded that the proposed quasi-three-dimensional model is evaluated positive, while
the poor accuracy when confronted with complex �ow phenomena is kept in mind.

(a) cl and re (b) sq, tr and el

Figure 5.25: Normalized measured (�ow conditioning labeled B in Fig. 5.4 with Lu = 35cm)
and modeled pressures within the constriction P1/P0 as a function of upstream pressure P0: a)
rectangular (re, D = 6.6mm) and circular (cl, D = 10mm) cross section shape and b) elliptical
(el, D = 6.7mm), squared (sq, D = 8.9mm) and equilateral triangular (tr, D = 7.8mm) cross
section shape. Modeled values are obtained from the outcome of the quasi-three-dimensional
(mod), quasi-one-dimensional (BP) and boundary layer solution (ThAxi for circular and Th2D
for rectangular). As a reminder the hydraulic diameter D (Table 5.1) is indicated.

5.3.2 Velocity

Measurements24 of the mean transverse velocity pro�le at the exit of the constriction in ab-
sence of a downstream pipe, o�ers (besides the pressure measurements within the constriction)
an opportunity to further consider the relevance and limitations of the proposed quasi-three-
dimensional model outlined in chapter 4 partly exploiting fully developed �ow. Indeed, the
measured volume �ow rate Q allows to estimate the velocity distribution assuming fully de-
veloped viscous �ow as outlined in chapter 2. A comparison25 is made between modeled and
measured transverse pro�les along the `major' and `minor' axis de�ned in Fig. 5.3a. Examples
of measured and modeled pro�les for di�erent volume �ow rates along the `major' and `minor'
axis of the constriction with rectangular cross section of presented in Fig. 5.26 and Fig. 5.27,
respectively.

24Measured transverse pro�les are presented in Fig. F.5 (`major' axis) and in Fig. F.6 (`minor' axis) of

Appendix F.2.2.
25In case the spatial discretization used to compute the modeled velocity pro�le does not matches with the

spatial measurement positions, a third order �t is applied to the modeled pro�le in order to obtain the modeled

value for any position independently of the spatial discretization
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(a) Q=5l/min (b) Q=20l/min

(c) Q=35l/min (d) Q=50l/min

(e) Q=70l/min (f) Q=100l/min

Figure 5.26: Modeled (mod) and measured (exp) transverse velocity pro�les along the `major'
axis normalized by the maximum modeled velocity umaxmod at the exit of constriction for major
axis of a rectangular cross section for di�erent volume �ow rates Q. As a reference the
bulk velocity ū is indicated. The transverse coordinate (y or z) is normalized by the total
width ytot = w of the constricted portion. Measurements are obtained for sharp edges at the
constriction inlet (label C in Table 5.4).

In general, for both the `major' and `minor' axis, it is observed that the modeled and
measured transverse pro�les matches well within the boundary layer. However, since the
modeled pro�le is fully developed, it tends to overestimate the velocity for the core �ow
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(a) Q=5l/min (b) Q=20l/min

(c) Q=35l/min (d) Q=50l/min

(e) Q=70l/min (f) Q=100l/min

Figure 5.27: Modeled (mod) and measured (exp) transverse velocity pro�les along the `minor'
axis normalized by the maximum modeled velocity umaxmod at the exit of constriction for major
axis of a rectangular cross section for di�erent volume �ow rates Q. As a reference the bulk
velocity ū is indicated. The transverse coordinate (y or z) is normalized by the total height
h of the constricted portion. Measurements are obtained for sharp edges at the constriction
inlet (label C in Table 5.4).

enveloped by the boundary layers. In addition, it is noticed that simpli�ed �ow models can
not explain the reduced center velocity such as observed for Q = 100l/min in Fig. 5.26. Given
that the simpli�ed model does not accounts for complex �ow dynamics, which based on the
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presented experimental results suggested to contribute to the �ow development � such as vortex
generation, vortex interaction or turbulence � at �rst sight the comparison is surprisingly good.

In order to further quantify the model accuracy with respect to measured transverse pro�les
shown in Fig. 5.26, Fig. 5.27 and in Appendix F.2.2, the following relative overall error is used:

err =

√
1

n

∑
n

(
uexp(n)− umod(n)

)2
ū

× 100, (5.5)

where umod and uexp denote the modeled velocity and measured results respectively for n
measured velocities and ū denotes the bulk velocity at the constriction exit.

The resulting overall error (5.5) between modeled and experimental transverse velocity
pro�les along the `major' and `minor' axis is illustrated in Fig. 5.28 for the rectangular con-
striction shape as a function of the volume �ow rate Q. The relative errors for other assessed
cross section shapes are presented in Appendix F.2.1. For the rectangular shape, the relative
error varies between 25% and 50% of the bulk velocity. The variation of the error with the
volume �ow rate is more pronounced fore velocity pro�les along the `major' axis than for the
`minor' axis. Note that for the pro�les along the `major' axis a maximum error is retrieved
for 50l/min.

Figure 5.28: Illustration of the overall error (5.5) between modeled and experimental transverse
velocity pro�les along the `major' and `minor' axis of the rectangular cross section for di�erent
volume �ow rates Q.

In the qualitative description of the �ow pro�les shown in Fig. 5.26 and Fig. 5.27, it was
mentioned that the modeled and measured pro�le matches well in the boundary layer. In the
following, we consider the ratio of the modeled and experimental boundary layer δexp/δmod
for transverse pro�les along the `major' and `minor' axis. The boundary layer thickness of the
measured pro�les is determined on the extent of positions for which the velocity is smaller
than 90% of the maximum velocity. In order to reduce the error due to spatial sampling to
0.5mm, the spatial position nearest to the threshold is taken into account. The boundary
layer thickness of a measured pro�le is illustrated in Fig. 5.29.
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Figure 5.29: Illustration of the procedure to determine the boundary layer thickness δexp on
the measured transverse pro�le for a spatial step ∆y.

Table 5.6 summarizes the resulting ratios of the experimental and modeled boundary layer
thicknesses δexp/δmod along the `major' and `minor' axis, respectively. Note that for a square
cross section shape the `minor' follows the diagonal direction. The uncertainty due to the
discretization error (spatial step) is indicated. It is observed that the ratio δexp/δmod varies
from 30% to 99% depending on the cross section shape and the volume �ow rate. The observed
tendency as a function of increasing volume �ow rate is indicated.

For the `major' axis the general tendency for increasing volume �ow rate is consecutive
decrease and increase of the ratio δexp/δmod and hence of the accuracy of the boundary layer
extent since δexp/δmod � 100 is associated with an overestimation of the boundary layer
thickness by the model. The volume �ow rates for which the tendency changes are associated
with Reynolds numbers in the range 2500 < Re < 5000 associated with the transition regime
from laminar to turbulent �ow. Nevertheless, the tendency is not con�rmed for the pro�les
along the `minor' axis. Alternatively, the ratio of the boundary layer thicknesses δexp/δmod
resulting from the threshold criterion illustrated in Fig. 5.29 for a threshold value of 100% or
δexp/δmod = umaxexp /u

max
mod is assessed and results are shown in Table F.1 of Appendix F.2.2. It

is shown that both the tendency as volume �ow rates associated with a change in tendency
depend on the used threshold, so that no de�nite conclusion can be formulated at present.

Nevertheless, the magnitude of the boundary layer thickness ratio 30% < δexp/δmod < 99%

con�rms the fairly good capturing of boundary layer properties given the simplicity of the
model, the complexity of the �ow and the relatively short length of the constriction. The
last point is illustrated by considering the ratio of the length of the constriction Lc to the
entry length Lf required for the �ow through a uniform channel to develop fully for di�erent
cross section shape. The ratio Lc/Lf is illustrate in Fig. 5.30 for laminar and turbulent
�ow as function of Reynolds number for a circular (maximum hydraulic diameter of cross
section shapes considered in this chapter) and rectangular cross section (minimum hydraulic



5.3. Model validation 117

Table 5.6: Ratio δexp/δmod resulting from the threshold criterion illustrated in Fig. 5.29 for a
threshold value of 90% for transverse pro�les along the `major' and `minor' axis of all assessed
cross sections. The uncertainty due to the spatial discretezation (spatial step) is indicated.
Bold volume �ow rates indicate an overall change of tendency.

D [mm]
Q [l/min] discretization

tendency
5 10 15 20 35 50 70 100 error [%]

major axis

cl 10 43 - - 36 50 57 57 64 5 ↘↗

sq 8.9 50 41 32 32 - - - - 6 ↘

lcs 8.4 68 63 57 63 73 - - - 4 ↘↗

tr 7.8 65 59 59 59 76 - - - 4 ↘↗

scs 7.2 67 60 56 56 74 - - - 3 ↘↗

ntr 7.0 70 56 56 63 67 - - - 3 ↘↗

el 6.7 53 47 50 47 53 50 47 53 2 -

re 6.6 64 - - 98 89 89 89 89 3 ↘↗↘

minor axis

sq 8.9 69 64 74 74 - - - - 4 ↘↗

lcs 8.4 41 41 28 28 28 - - - 4 ↘

tr 7.8 58 37 37 47 37 - - - 4 ↘↗↘

scs 7.2 99 85 68 68 51 - - - 6 ↘

ntr 7.0 81 81 65 65 50 - - - 6 ↘

el 6.7 95 63 63 63 63 63 48 48 11 ↘

re 6.6 89 - - 71 53 53 53 71 13 ↘↗

diameter of cross section shapes considered in this chapter). The entry length Lf for laminar
and turbulent �ow as function of Reynolds number and hydraulic diameter D is obtained
as [125] as:

Lf ≈ (0.05Re+ 0.5)D, laminar, (5.6)
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and
Lf ≈ 4.4Re

1
6D, turbulent. (5.7)

Indeed, it is seen that the length of the constriction yields only 1% to 15% for laminar
�ow and only 10% to 30% for turbulent �ow. Therefore, and in case of linear development of
the boundary layer one expect δexp/δmod � 30%. Therefore, we have to conclude, that the
constriction enhances boundary layer development.

Figure 5.30: Illustration of the ratio of the length of the constriction Lc to the entry length
Lf for laminar and turbulent �ow as function of Reynolds number for a circular (maximum
hydraulic diameter of cross section shapes considered in this chapter) and rectangular cross
section (minimum hydraulic diameter of cross section shapes considered in this chapter).

5.4 Summary

The in�uence of the cross section shape for constricted channel �ow is experimentally as-
sessed for a large number of �ow and geometrical con�gurations since besides the cross section
shapes, the upstream �ow condition is varied as well as the presence or absence of a down-
stream pipe. The in�uence of the cross section shape on the �ow is analyzed by means of
point pressure measurements within the constriction and velocity measurements of the near
�eld of the jet emitted from the constriction in absence of a downstream channel. Moreover
�ow visualization is assessed in order to provide some evidence for the existence of �ow struc-
tures. The measured quantities are used to determine the accuracy of the proposed simpli�ed
quasi-three-dimensional model approach. It is seen that although the quantitative error is
considerable, the performance of the model is surprisingly good given the complexity of the
�ow dynamics and the simplicity of the model. In the following chapter, numerical data of
the �ow �eld are presented in presence of a downstream pipe. In contrast with the current
chapter, no attention is given to the upstream �ow condition.
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Chapter 2 showed the in�uence of the cross section shape on the velocity distribution for
developed viscous �ow. In chapter 4, a simple `quasi-three-dimensional' �ow model is proposed
for laminar incompressible steady channel �ow, which accounts for �ow inertia, viscosity and
the cross section shape. Flow data are needed in order to test the relevance of this quasi-three-
dimensional model and to characterize the in�uence of the cross section shape on the �ow. In
chapter 5, experimental data were presented. In the current chapter, we focus on numerical
data in order to quantify and analyze modeled, measured and simulated �ow quantities.

On one hand, biological �ow applications, such as discussed in chapter 4, are the result of a
complex �uid-structure(-acoustic) interaction, and on the other hand, the simple `quasi-three-
dimensional' �ow model assumes laminar �ow. For these two reasons, we prefer a numerical
method which is suitable to simulate complex �uid-structure interactions and at same time
models laminar incompressible three-dimensional �ow. As a result, the immersed boundary
(IB) method is used to simulate the �ow �eld [100, 47, 44, 46]. In the current work, the
immersed boundary method is applied to a �xed structure matching some of the channel
geometries used during the experimental and model study.

Since the IB method is a powerful tool to simulate a �uid-structure interaction, it is com-
monly used in biological �ow dynamics [85, 85, 129, 54, 83, 75, 77, 80]. Nevertheless, most of
the applied research reported in the cited references focus on blood �ow through the cardiovas-
cular system for which typical Reynolds numbers are smaller than the ones encountered when
studying phenomena related to the respiratory system, such as speech production. Therefore,
the laminar �ow model can be questioned and the aimed validation on experimental data
provides a good opportunity to re�ect on the accuracy of the �ow model.

In the following, the IB method is formulated. Next, numerical results are presented and
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simulated �ow quantities are compared to modeled quantities obtained using the `quasi-three-
dimensional' model and measured �ow quantities presented in chapter 5.

6.1 Mathematical formulation

6.1.1 Continuous formulation

The immersed boundary (IB) method for �uid-structure interaction considers an elastic struc-
ture immersed in a viscous incompressible �uid. The immersed boundary formulation of
such problems uses a Lagrangian description of the immersed structure along with an Eule-
rian description of the viscous incompressible �uid, which is modeled by the incompressible
Navier-Stokes equations. The Lagrangian and Eulerian frames are coupled by interaction
equations using Dirac delta function kernels. In the following, the �uid is assumed to have a
uniform mass density ρ and dynamic viscosity µ.

First, let x = (x, y, z) ∈ Ω denote Cartesian physical coordinates, with Ω ⊂ R3 denotes
the physical region that is occupied by the coupled �uid-structure system. The Lagrangian
material coordinates attached to the structure is denoted s = (s1, s2) ∈ U ⊂ R2, with U

denoting the Lagrangian coordinate domain. χ(s, t) ∈ Ω denotes the physical position s of
material points at time t. Throughout the present work, Ω is taken to be a rectangular box
with Ω = [0, Lx]× [0, Ly]× [0, Lz]. The physical region occupied by the structure at time t
is χ(U, t) ⊆ Ω, and the physical region occupied by the �uid at time t is Ω\χ(U, t).

To use an Eulerian description of the �uid and a Lagrangian description of the elasticity of
the immersed structure, it is necessary to describe the stress of the �uid-structure system in
both Eulerian and Lagrangian forms. If σ = σ(x, t) is the Cauchy stress tensor of the coupled
�uid-structure system, then

σ(x, t) =

{
σf (x, t) + σe(x, t) for x ∈ χ(U, t)

σf (x, t) otherwise,
(6.1)

where σf (x, t) is the stress tensor of a viscous incompressible �uid, and σe(x, t) is the stress
tensor that describes the elasticity of the immersed structure. The �uid stress tensor is de�ned
as

σf (x, t) = −P I + µ
[
∇u + (∇u)T

]
(6.2)

in which P = P (x, t) is the pressure and u = u(x, t) is the Eulerian �uid velocity �eld.
In order to describe the elasticity of the structure with respect to the Lagrangian material
coordinate system, it is convenient to use the �rst Piola-Kirchho� elastic stress tensor Pe(s, t),
which is de�ned as
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∫
∂V
Pe(s, t)NdA(s) =

∫
∂χ(V,t)

σf (x, t)nda(x) (6.3)

for any smooth region V ⊂ U , in which N = N(s) is the outward unit normal along ∂V and
n = n(x, t) is the outward normal along ∂χ(V, t). The hyperelastic constitutive models can be
characterized by a strain-energy functional W e = W e(F), in which F = F(s, t) = ∇sχ(s, t) =
∂χ(s,t)
∂s is the deformation gradient associated with the mapping χ : (U, t) → Ω. For such

constitutive laws, Pe(s, t) = ∂W e

∂F (s, t).

The weak form of the equations of motion for the coupled �uid-structure system are

ρ

(
∂u

∂t
(x, t) + u(x, t) · ∇u(x, t)

)
= −∇P (x, t) + µ∇2u(x, t) + f(x, t), (6.4)

∇ · u(x, t) = 0, (6.5)

f(x, t) =

∫
U
F(s, t)δ(x− χ(s, t))ds, (6.6)∫

U
F(s, t) ·V(s)ds =

∫
U
Pe(s, t) · ∇sV(s)ds

−
∫
∂U
Pe(s, t)N(s) · ∇sV(s)dA(s), ∀V(s), (6.7)

∂χ(s, t)

∂t
=

∫
Ω
u(x, t)δ(x− χ(s, t))dx, (6.8)

In the equations of motion, (6.4) and (6.5) are the incompressible Navier�Stokes equations,
which are written in terms of the Eulerian velocity �eld u(x, t) = (u(x, t), v(x, t), w(x, t)) and
the Eulerian pressure �eld P (x, t), along with a Eulerian elastic force density f(x, t) applied
by the structure to the �uid, which is determined by a time-independent functional of the
Lagrangian con�guration of the immersed structure.

(6.6) and (6.7) are Lagrangian�Eulerian interaction equations that use integral transfor-
mations with three-dimensional Dirac delta function kernels δ(x) = δ(x)δ(y)δ(z), to couple
the Lagrangian and Eulerian descriptions. Speci�cally, (6.6) converts the Lagrangian elastic
force density F into the equivalent Eulerian elastic force density f . Notice that F and f have
totally di�erent characters: F(s, t) is the Lagrangian elastic force density (i.e., the force den-
sity with respect to the curvilinear coordinate system so that F(s, t)ds has units of force),
whereas f(x, t) is the Eulerian elastic force density (i.e., the force density with respect to the
physical coordinate system so that f(x, t)dx has units of force). Nonetheless, F and f are
equivalent as densities [99]. Notice that a uni�ed body force density F(s, t) is used to take
into account the e�ects of both the internal and transmission elastic force densities and V(s)

is an arbitrary Lagrangian test function that is not assumed to vanish on ∂U .

The velocity of the structure is determined for the Eulerian �uid velocity �eld u(x, t) via
the integral transform equation (6.8), which is equivalent to
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∂χ

∂t
(s, t) = u(χ(s, t), t) (6.9)

with the no slip condition on the structure walls and no penetration of a viscous incompress-
ible �uid.

6.1.2 Spatial discretization

We employ a �nite element (FE) discretization of the Lagrangian equations and a uniform,
staggered-grid �nite di�erence discretization of the Eulerian equations. For further details on
these spatial discretization, see Gri�th [43, 44, 45]. The time stepping scheme used is similar to
that of Gri�th [45]. However, in the present work we employ a second-order Adams�Bashforth
scheme for the convective terms when solving the incompressible Navier�Stokes equations.

Brie�y, let ui+ 1
2
,j,k, vi,j+ 1

2
,k and wi,j,k+ 1

2
denote staggered-grid approximations to the com-

ponents of the Eulerian velocity �eld that are de�ned at positions xi+ 1
2
,j,k, xi,j+ 1

2
,k and xi,j,k+ 1

2
,

respectively. Let Pi,j,k denote the cell-centered approximation pressure at position xi,j,k. The
position and Lagrangian elastic force density at node (l,m) of the Lagrangian curvilinear
mesh are denoted as xl,m and Fl,m. Let ∇h, ∇h· and ∇2

h denote standard second-order ac-
curate �nite-di�erence approximations to the gradient, divergence, and Laplace operators,
respectively, in which h is the Cartesian grid spacing.

Let τh =
⋃
e U

e be a triangulation of U composed of elements U e . We denote the time-
dependent physical positions of the nodes of the Lagrangian mesh by χl(t)

M
l=1. Using the

Lagrangian basis functions, we de�ne an approximation to χ(s, t) by

χh(s, t) =
M∑
l=1

χl(t)φl(s), (6.10)

where φl(s) denotes the Lagrangian basis functions. An approximation to the deformation
gradient is given by

Fh(s, t) =
∂χh(s, t)

∂s
=

M∑
l=1

χl(t)
∂φl(s)

∂s
. (6.11)

Using Fh(s, t), we compute directly Peh(s, t) and τh(s, t) to approximate the �rst Piola-
Kirchho� stress tensor and the Lagrangian transmission force density, respectively. We ap-
proximate the Lagrangian force densities F(s, t) by



6.1. Mathematical formulation 123

Fh(s, t) =
M∑
l=1

Fl(t)φl(s). (6.12)

where the nodal values Fl(t)Ml=1 must be determined from Ph(s, t).

To compute an approximation to f = (fx, fy, fz) on the Cartesian grid, we construct for
each element U e ∈ τh a Gaussian quadrature rule with N e quadrature points seQ ∈ U e and
weights weQ, Q = 1, ..., N e. We then compute fx, fy and fz on the edges of the Cartesian grid
cells via

(fx
n+ 1

2 )i+ 1
2
,j,k =

∑
Ue∈τh

Ne∑
Q=1

Fx(seQ, t)δh

(
xi+ 1

2
,j,k − χ(seQ, t)

)
weQ, (6.13)

(fy
n+ 1

2 )i,j+ 1
2
,k =

∑
Ue∈τh

Ne∑
Q=1

Fy(s
e
Q, t)δh

(
x, ji+ 1

2
,k − χ(seQ, t)

)
weQ, (6.14)

(fz
n+ 1

2 )i,j,k+ 1
2

=
∑
Ue∈τh

Ne∑
Q=1

Fz(s
e
Q, t)δh

(
x, j, ki+ 1

2
− χ(seQ, t)

)
weQ, (6.15)

where the Lagrangian force density F(s, t) = (Fx(s, t), Fy(s, t), Fz(s, t)). We use the shorthand

f = SF (6.16)

where S = S(χ) is the force prolongation operator implicitly de�ned by (6.13), (6.14)
and (6.15).

A corresponding velocity restriction operator R = R(χ) is used to determine the motion
of the nodes of the Lagrangian mesh from the Cartesian grid velocity �eld via

dχ

dt
= Ru (6.17)

where the approximated Lagrangian vector �eld U(s, t) = (U(s, t), V (s, t),W (s, t)) = Ru is
given by
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U(s, t) =
∑
i,j,k

ui+ 1
2
,j,kδh

(
xi+ 1

2
,j,k − χ(s, t)

)
h3, (6.18)

V (s, t) =
∑
i,j,k

vi,j+ 1
2
,kδh

(
xi,j+ 1

2
,k − χ(s, t)

)
h3, (6.19)

W (s, t) =
∑
i,j,k

wi,j,k+ 1
2
δh

(
xi,j,k+ 1

2
− χ(s, t)

)
h3, (6.20)

where δh(x) = δh(x)δh(y)δh(z) is the four-point delta function of Peskin [99].

Notice that the constructed S and R are adjoint operators which ensures the semi-discrete
scheme conserves energy during Lagrangian�Eulerian interaction.

6.1.3 Temporal discretization

Let xn, un and pn−
1
2 denote the approximations to the values of x and u at time tn, and to

the value of p at time tn−
1
2 , respectively. First, we determine a preliminary approximation to

the deformed structure con�guration at time tn+1 via

χ̃n+1 − χn

∆t
= Rnun, (6.21)

where R = R(χn), and an approximation to χ at time tn+ 1
2 is de�ned as

χn+ 1
2 =

χ̃n+1 + χn

2
. (6.22)

we next solve

ρ

(
un+1 − un

∆t
+ An+ 1

2

)
= −∇hPn+ 1

2 + µ∇2
h

un+1 + un

2
+ fn+ 1

2 , (6.23)

∇h · un+1 = 0, (6.24)

fn+ 1
2 = S(χn+ 1

2 )F(χn+ 1
2 ), (6.25)

χn+1 − χn

∆t
= R(χn+ 1

2 )
un+1 + un

2
, (6.26)

for χn+1, un+1, and Pn+ 1
2 , where An+ 1

2 = 3
2u

n · ∇hun − 1
2u

n−1 · ∇hun−1 is computed via a
piecewise parabolic method (PPM) approximation to the nonlinear advection term [26, 45].



6.2. Numerical results 125

Since time step-lagged values of u and P are used by the time step, we can not use that
scheme for the initial time step. In order to have an initial value for the pressure, P = 0 is
assumed to be an initial guess for Pn+ 1

2 . So during the initial time, we �rst solve

ρ

(
ũn+1 − un

∆t
+ An

)
= −∇hP̃n+ 1

2 + µ∇2
h

ũn+1 + un

2
+ fn, (6.27)

∇h · ũn+1 = 0, (6.28)

fn = S(χn)F(χn), (6.29)
χ̃n+1 − χn

∆t
= R(χn)un, (6.30)

for χ̃n+1, ũn+1, P̃n+ 1
2 , where An = un · ∇hun. Then we set

χn+1 =
χ̃n+1 + χn

2
, (6.31)

and �nally solve (6.23)-(6.26) for χn+1, un+1, Pn+ 1
2 , except that we use An+ 1

2 = un+ 1
2 ·

∇hun+ 1
2 with un+ 1

2 = 1
2

(
ũn+1 + un

)
.

Note that, because in this chapter we consider a constricted channel with rigid wall, the
Piola-Kirchho� elastic stress tensor P is thus not used. Instead, a feedback force, of the form

F(s, t) = κ(s, χ(s, t)), (6.32)

is used in order to force the wall not to move. κ > 0 is a penalty parameter. Note that as
κ→∞, χ(x, t)→ s.

6.2 Numerical results

In the simulations1, the immersed boundary method is applied to describe steady pressure-
driven �ow through a constricted channel. A geometrical model of the channel structure is gen-
erated using the SolidWorks CAD software, and the resulting CAD structure is converted into
a mesh with tetrahedron cells. The constricted channel has a total length Lz = 22.5cm with
radius rx = 1.25cm at the inlet and outlet. The constricted portion is of length Lc = 2.5cm

1The simulations described herein employ the freely available IBAMR code (http://ibamr.googlecode.

com), an adaptive and distributed-memory parallel implementation of the IB method that provides software

infrastructure for developing �uid�structure interaction models that use the IB method. IBAMR leverages

functionality provided by other freely available software libraries, including SAMRAI (http://computation.

llnl.gov/casc/SAMRAI) [52, 53], PETSc (http://www.mcs.anl.gov/petsc) [7, 6] and hypre (http://www.

llnl.gov/CASC/hypre) [35].

http://ibamr.googlecode.com
http://ibamr.googlecode.com
http://computation.llnl.gov/casc/SAMRAI
http://computation.llnl.gov/casc/SAMRAI
http://www.mcs.anl.gov/petsc
http://www.llnl.gov/CASC/hypre
http://www.llnl.gov/CASC/hypre
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with cross section area 0.79cm2. The unconstricted upstream portion has length Lu = 5cm and
the unconstricted downstream portion has length Ld = 15cm. The channel walls are rigid and
have a thickness of 0.1cm. The structure is immersed in a rectangular 5.4cm×5.4cm×22.5cm
�uid box shown in Fig. 6.12.

Figure 6.1: Illustration of the structure immersed in a 5.4cm×5.4cm×22.5cm rectangular �uid
box for which two corner points coordinates are given [cm]. The streamwise direction corre-
sponds to the Z direction. The lengths of the unconstricted upstream portion Lu, constriction
portion Lc and unconstricted downstream portion Ld are indicated. The upstream pressure
P0 and downstream pressure Pd are indicated as well. Note, that the streamwise direction is
normalized as Z/Lc.

In the current simulations, we initialize the discretization of the �uid box with anN×N×N
Cartesian grid for N = 128. The penalty parameter κ is set to κ = 106, which is large enough
to �x the structure for the physical and numerical parameters considered. A pressure gradient
is prescribed between the inlet (Z/Lc = −2) and outlet (Z/Lc = 7) of the interior part of
the �ow channel, i.e. P0−Pd, whereas zero pressure boundary conditions are employed along
the remainder of the �uid domain boundary. The �uid is air with density ρ = 1.2kg/m3

and dynamic viscosity µ = 1.8 × 10−5Pa·s as indicated in Table 4.1. Several upstream pres-
sures are considered (P0 = 10Pa, 35Pa or 100Pa), whereas the downstream pressure is �xed
to Pd = 0Pa. Imposed upstream pressures P0 and corresponding approximated volume �ow
rates Q and Reynolds numbers3 Re are listed in Table 6.1. Concretely, as summarized in
Table 6.2, simulations for di�erent cross section shapes are performed for P0 = 35Pa, whereas
the upstream pressure is varied for a channel with circular cross section shape. The total
simulation time for each geometrical con�guration and upstream pressure P0 is indicated in
Table 6.2 as well. A front view of structures with di�erent cross section shapes (circular,
elliptical, rectangular, circular sector and asymmetric) rounded inlet and outlet with radius

2To avoid numerical errors all sharp corners are rounded with a radius of 0.5mm, such as e.g. at the inlet

and outlet of the constriction.
3As before, the Reynolds number is based on the hydraulic diameter of the constricted area.
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(a) circle (b) ellipse (c) rectangle

(d) circular sector (e) asymmetric

Figure 6.2: Front view of the channel structure mesh for di�erent constriction cross section
shapes. Geometrical characteristics of the circular, elliptical, rectangular, circular and asym-
metrical section cross section shape are shown Table 6.3. The asymmetrical shape is obtained
using the general polar equation (2.14) with the parameters listed in Table 6.4. The shaded
part coincides with the structure mesh of the rigid wall and the blank space in the center
denotes the constricted channel. Note that the angle of the circular sector yields 30o.

Figure 6.3: Example of �uid and structure mesh along the streamwise direction for Y = 0 in
the case of a circular constriction. Self-adjustment of the �uid mesh near the structure walls
and within the constricted channel portion is illustrated.
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0.5mm4 is illustrated in Fig. 6.2. The corresponding geometrical parameters (hydraulic diam-
eter D, total width along the X-direction w and maximum height along the Y -direction h) are
listed in Table 6.3. Fig. 6.3 illustrates the self-adjustment property of the �uid mesh so that
the �uid mesh is more dense along the walls of the structure as well as within the constricted
channel portion. The size of the �uid mesh within the constriction is ∆X = ∆Y = 0.42mm
and ∆Z = 1.76mm. Fig. 6.4 shows an example (at t=40ms) of the imposed uniform pres-
sure pro�le at the entrance Z/Lc = −2 and the corresponding pressure distribution along the
X-axis and the Y-axis for a channel with circular constriction.

Table 6.1: Overview of imposed upstream pressure P0 and corresponding approximated volume
�ow rate Q and Reynolds number Re for a channel with circular constriction.

Upstream pressure, P0 [Pa]

10 35 100

Q [l/min] 16 30 53

Re 2000 3700 7800

Table 6.2: Overview of the total simulation time Ts [ms] for di�erent geometrical con�gurations
and imposed inlet pressures P0 [ms].

P0 [Pa]
Total simulation time, Ts [ms]

circle asymmetric circular sector ellipse rectangle

10 90ms - - - -

35 43ms 50ms 50ms 50ms 50ms

100 40ms - - - -

Table 6.3: Overview of geometrical parameters of di�erent constriction shapes: hydraulic
diameter D, total width along the X-direction w and maximum height along the Y -direction
h. Constrictions have constant area Ac and constant length Lc.

[mm] circle asymmetric circular sector ellipse rectangle

D 10 8.5 7.2 6.7 6.6
w 10 11.4 17.3 22.4 19.8
h 10 12.1 9.0 4.5 4.0
Ac = 0.79cm2, Lc = 2.5cm

4The reason of roundness is due to the limitation of code in the �nite element version of immersed boundary

method.
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(a) (b)

Figure 6.4: Example of the imposed pressure pro�le P0 = 35Pa at the inlet Z/Lc = −2 for a
channel with circular constriction at t=40ms: a) pressure pro�le in (X,Y)-plane. Note that
the pressure unit is dyne/cm2 with 10dyne/cm2 = 1Pa . and b) pressure distribution [Pa]
along the center of the X-axis and the Y-axis along the lines (magenta) depicted in (a).

Table 6.4: Overview of general polar equation parameters (2.14) to generate the asymmetrical
constriction shape.

shape m n1 n2 n3 g(θ) a b

asymmetrical 3 2 8 4 3.68× 10−3 1 1

Fig. 6.5 illustrates the temporal evolution of simulated �ow quantities, pressure and ve-
locity, for a channel with circular sector cross section shape at positions corresponding to the
maximum velocity at the transverse (X,Y) position associated with the maximum velocity
in the analytical model assuming viscous developed �ow through the constricted channel as
outlined in chapter 2. The transverse (X,Y) position is taken within transverse planes located
at the following streamwise Z positions: immediately upstream from (Z/Lc = −0.4), in the
middle of (Z/Lc = 0.5), immediately downstream from (Z/Lc = 1.04) and further downstream
from (Z/Lc = 1.4) of the constricted channel portion. It is seen that both the pressure and
velocity converges and reaches a relatively steady state for t ≥ 20ms. In this example, the
�ow properties �uctuate less for quantities sampled upstream from (Z/Lc = −0.4) or within
(Z/Lc = 0.5) the constriction compared to quantities sampled downstream from (Z/Lc = 1.04

and Z/Lc = 1.4) the constriction. Fluctuations downstream from the constriction are likely
due to the imprint of complex �ow phenomena such as jet formation and recirculation vortices.
Jet formation is occurring as seen from Fig. 6.6 and Fig. 6.7 illustrating the instantaneous
spatial evolution of the �ow �eld at times t ≥ 20ms for all assessed cross section shapes in the
streamwise (plane XZ and plane YZ) and transverse (plane XY at Z/Lc = 0.5) direction. The
in�uence of boundary layer development on the velocity distribution within and downstream
of the constricted channel is observed to be important regardless the cross section shape as
seen from the evolution of the velocity �eld within the constriction. At the constriction outlet,
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(a) P (t, Z/Lc) (b) u(t, Z/Lc)

Figure 6.5: Illustration of simulated �ow quantities as a function of time t for a channel
with circular sector cross section shape and upstream pressure P0 = 35Pa at the transverse
(X,Y) position associated with the maximum velocity in the analytical model assuming viscous
developed �ow through the constricted channel as outlined in Chap. 2. The transverse (X,Y)
position is taken at the following streamwise Z positions, immediately upstream from (Z/Lc =

−0.4), in the middle of (Z/Lc = 0.5), immediately downstream from (Z/Lc = 1.04) and
further downstream from (Z/Lc = 1.4) the constricted channel portion: a) pressure P (t) and
b) velocity u(t). Note that the �ow converges for t ≥ 20ms (vertical red line).

the velocity magnitude distribution for the circular sector clearly illustrates reduced velocity
within the sharp corner of the constricted portion. It is also observed that as a result of the
symmetry break of the velocity pro�le, the jet downstream of the constriction reattaches to
the wall portion nearest to the circular portion of the constriction, whereas for example in
the case of the asymmetrical shape, jet reattachment occurs further downstream of the con-
striction due to jet spreading. Note that in general jet reattachment does not occur within
3cm downstream from the constriction, which corresponds to at least 3 times the hydraulic
diameter. An asymmetrical velocity distribution, such as observed for the circular sector, was
also found for purely viscous �ow as outlined in chapter 2. Nevertheless, the modeled velocity
distribution was continuously decreasing away from the position of maximum velocity, which
is not the case for the simulated instantaneous �ow �eld due to its time dependence. Complex
phenomena such as �ow recirculation and vortex formation can indeed be observed in the
instantaneous velocity �eld immediately downstream of the constriction outlet as shown in
Fig. 6.8 and Fig. 6.9 (Plane XZ and plane YZ). Obviously, recirculation and jet spreading are
not accounted for when using the simpli�ed `quasi-three-dimensional' (quasi-3D) �ow model
presented in chapter 4, so that it is of interest to compare simulated and modeled �ow quanti-
ties in order to determine the relevance of the proposed `quasi-three-dimensional' �ow model.
In the following, we focus on the streamwise pressure and velocity distribution.

Fig. 6.10, Fig. 6.11 and Fig. 6.12 illustrate simulated (IB) and modeled (mod) streamwise
pressure and velocity distributions for P0 = 35Pa. Distributions are shown for a circular, ellip-
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(a) circle (b) Z
Lc

= 0.5

(c) ellipse (d) Z
Lc

= 0.5

(e) rectangle (f) Z
Lc

= 0.5

(g) circular sector (h) Z
Lc

= 0.5

(i) asymmetric (j) Z
Lc

= 0.5

Figure 6.6: Illustration of the magnitude of the instantaneous spatial velocity �eld for
P0 = 35Pa: a) streamwise XZ plane and b) transverse XY plane within the constriction
at streamwise position Z/Lc = 0.5. Pro�les are sampled at time t = 43ms for the circular
shape and at time t = 50ms for the other shapes. Note that the unit of the velocity is [cm/s]
and 1cm/s= 0.01m/s. The velocity along the streamwise YZ plane is illustrated in Fig. 6.7.
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(a) ellipse

(b) rectangle

(c) circular sector

(d) asymmetric

Figure 6.7: Illustration of the magnitude of the instantaneous (t = 50ms) spatial velocity
�eld for P0 = 35Pa along the streamwise YZ plane. The magnitude of the instantaneous
velocity distribution along the streamwise XZ plane and the transverse XY plane is illustrated
in Fig. 6.6.

tical, rectangular and circular sector cross section shape. The modeled pressure distribution
shown in Fig. 6.10 results from the quasi-three-dimensional model outlined in chapter 4. For
the IB method, the streamwise pressure distribution in Fig. 6.10 and the velocity distribution
in Fig. 6.12 are obtained by sampling instantaneous values for each streamwise Z position at
the transverse (X,Y) position associated with the maximum velocity in the analytical model
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(a) circle

(b) ellipse (c) ellipse

(d) rectangle (e) rectangle

Figure 6.8: Illustration of the instantaneous velocity vector �eld for P0 = 35Pa downstream
from the constricted portion with circular (t = 43ms), elliptical (t = 50ms) and rectangular
(t = 50ms) cross section shape.

assuming viscous developed �ow through the constricted channel as outlined in chapter 2.
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(a) circular sector (b) circular sector

(c) asymmetric (d) asymmetric

Figure 6.9: Illustration of the instantaneous velocity vector �eld for P0 = 35Pa downstream
from the constricted portion with circular sector (t = 50ms) and asymmetrical (t = 50ms)
cross section shape.

Fig. 6.11 illustrates the modeled (mod) and simulated (IB) local streamwise bulk velocity ob-
tained as the transverse mean velocity5. Fig. 6.12 illustrates the velocity distribution obtained
from sampling the velocity, for each streamwise Z position, at the transverse (X,Y) position
associated with the maximum velocity in the analytical model assuming viscous developed �ow
through the constricted channel as outlined in chapter 2. The modeled values are sampled at
the same transfers (X,Y) position whereas the transverse velocity pro�le is obtained from the
volume �ow rate Qmod resulting from the quasi-three-dimensional �ow model to compute the
velocity distribution along the constricted portion assuming developed viscous �ow as outlined
in chapter 2.

Fig. 6.10 shows that within the constriction both the quasi-three-dimensional model and
5The modeled mean velocity is obtained as ū(Z) ≈ Qmod/A(Z) with Qmod the volume �ow rate resulting

from the quasi-three-dimensional model described in chapter 4 and A(Z) the streamwise varying channel area.

Alternatively, a one-dimensional velocity distribution could be obtained from the modeled streamwise pressure

distribution as ū(Z) ≈
√

2∆P (Z)/ρ using the local pressure di�erence ∆P (Z) ≈ P0−P (Z) resulting from the

quasi-three-dimensional model.



6.2. Numerical results 135

the simulated pressure distribution6 are decreasing and result in negative pressures7. In gen-
eral, the quasi-three-dimensional model provides a good approximation of the simulated pres-
sure within the constriction since an overall di�erence of 5% between simulated and modeled
pressure distribution is found. This motivates the use of the quasi-three-dimensional �ow
model to compute the �uid forces on the wall within the constriction while accounting for
the cross section shape as was done in the stability analysis to derive phonation quantities
as presented in chapter 4. On the other hand, it is seen that the quasi-three-dimensional
model is incapable to account for jet reattachment downstream from the constriction. Con-
sequently, the simpli�ed quasi-three-dimensional model is not able to capture the pressure
distribution downstream from the constriction. This is a major drawback of the proposed
quasi-three-dimensional �ow model8 and as a consequence the quasi-three-dimensional model
underestimates the pressure di�erence immediately downstream from the constriction with
20% or more.

The main �ndings of comparing the modeled and simulated streamwise pressure distribu-
tion holds also when comparing the modeled and simulated mean streamwise velocity as seen
from Fig. 6.11. Indeed, within the constriction, the modeled mean velocities overestimate the
simulated values with maximum 30% and minimum 15%, whereas immediately downstream
from the constriction the error increases since no reattachment is accounted for in the quasi-
three-dimensional �ow model. Comparing modeled and simulated streamwise velocities at
the position of maximum velocity seems a less fair comparison even within the constriction,
since from Fig. 6.12 is seen that modeled values overestimate simulated values with 50% up
to 60%. The overestimation of the maximum velocity could be expected since developed vis-
cous �ow is assumed in the combination of the �ow models (the quasi-three-dimensional �ow
model to estimate the volume �ow rate, which is then used to compute the transverse velocity
�eld assuming developed viscous �ow). As before, the simpli�ed model does not account for
jet spreading and �ow recirculation so that downstream from the constriction, the proposed
quasi-three-dimensional model fails.

Modeled9, simulated and measured transverse pro�les along the X-dimension are illus-
trated in Fig. 6.13 using the transverse velocity measurements immediately downstream from
the constriction outlet for Q = 35l/min presented in chapter 5. The simulated pro�les at the
inlet (Z/Lc = 0), middle (Z/Lc = 0.5) and outlet (Z/Lc = 1) of the constriction are shown.
Boundary layer development along the constricted portion is observed for the simulated �ow
pro�les so that for Z/Lc ≥ 0.5, the simulated, measured and modeled pro�les matches near
the walls and so that the simulated center velocity provides a better approximation of the

6A comparison could also be made between the modeled streamwise pressure distribution and the mean

streamwise pressure distribution of the simulated �ow �eld.
7Note that for the quasi-three-dimensional model the rounded corners at the outlet of the constriction

result in the negative pressure values since as extensively shown in chapter 4 a sharp outlet results in a positive

pressure distribution.
8Note that this could be partly corrected for by implementing an ad-hoc jet model, e.g. by forcing jet

reattachment at Z/Lc ≈ 3 as observed from the simulated data, but some thoughts should be given to the

sense of such a correction prior to adding it to the model.
9Here again, the velocity pro�le is estimated by applying the quasi-three-dimensional model to estimate the

volume �ow rate and then using this volume �ow rate to predict the transverse velocity pro�le for developed

viscous �ow within the constriction.
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(a) circle (b) ellipse

(c) rectangle (d) circular sector

Figure 6.10: Streamwise pressure distributions obtained using the quasi-three-dimensional
model (mod) described in chapter 4 and the instantaneous simulated pressure distribution
using the immersed boundary method (IB). For the IB method, values are taken at the trans-
verse (X,Y) position associated with the maximum velocity in the analytical model assuming
viscous developed �ow through the constricted channel as outlined in chapter 2. Instantaneous
simulated values are assessed at time t = 43ms for the circular constriction shape and at time
t = 50ms for the other constriction shapes.

measured center velocity as Z/Lc increases. Since developed �ow is assumed10, the modeled
maximum velocity overestimates the measured and the simulated transverse velocity at the
center with 40% as was also observed from Fig. 6.12. Simulated and measured center velocities
provide a good match to within 5% and 10% depending on the cross section shape.

Fig. 6.13 depicted simulated instantaneous pro�les at the constriction outlet whereas the
shown measured pro�les are gathered immediately downstream from the constriction and
represent mean velocities. In order to estimate the impact of the streamwise position and the
variation between instantaneous and mean �ow pro�les Fig. 6.14 shows the transverse pro�les
at the constriction outlet (Z/Lc = 1) and immediately downstream from the constriction outlet
(Z/Lc = 1.04 or 1mm downstream from the constriction) as well as several instantaneous and

10Note that the constriction length provides only 1% of the length required to obtain developed �ow in a

uniform channel. It could be argued that despite the severe overestimation, the result is better than expected

due to the presence of the constriction which favors boundary layer development.
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(a) circle (b) ellipse

(c) rectangle (d) circular sector

Figure 6.11: Modeled (mod) and simulated (IB) streamwise mean or local bulk velocity distri-
butions are normalized by the maximum modeled local bulk velocity ūmaxmod . Modeled velocity
values correspond to the local bulk velocity Qmod/A(Z) with Qmod the volume �ow rate result-
ing from the quasi-three-dimensional model described in chapter 4 and A(Z) the streamwise
varying channel area. For the IB method, the shown values correspond to the transverse
mean value at each streamwise Z position. Instantaneous simulated values are assessed at
time t = 43ms for the circular constriction shape and at time t = 50ms for the other constric-
tion shapes.

the corresponding mean velocity pro�le for t ≥ 20ms in order to make sure that the �ow
simulation is converged (see Fig. 6.5). It is seen that both conditions do not alter the velocity
magnitude signi�cantly. Indeed, the di�erence is smaller than 5% in the center and smaller
than 10% within the boundary layer, illustrating that the �ow is easier to be disturbed in the
boundary layer than along the center core.

Fig. 6.15 presents mean and standard variation of pressure values at di�erent streamwise
positions, immediately upstream from (Z/Lc = −0.4), in the middle of (Z/Lc = 0.5), imme-
diately downstream from (Z/Lc = 1.04) and further downstream from (Z/Lc = 1.4). The
pressure was measured for Z/Lc = −0.4 and Z/Lc = 0.5 as detailed in chapter 5. Conse-
quently, modeled, simulated and measured mean values and their standard deviation can be
compared. In general, a good match is obtained between measured and predicted values. In
particular, the measured and modeled values within the constriction provide a good match
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(a) circle (b) ellipse

(c) rectangle (d) circular sector

Figure 6.12: Modeled (mod) and simulated (IB) streamwise velocity distributions are normal-
ized by the maximum modeled velocity umaxmod . Simulated and modeled values are sampled at
the transverse (X,Y) position associated with the maximum velocity in the analytical model
for viscous developed �ow through a constricted channel as outlined in chapter 2. for a volume
rate obtained from the quasi-three-dimensional model described in chapter 4. Instantaneous
simulated values are assessed at time t = 43ms for the circular constriction shape and at time
t = 50ms for the other constriction shapes.

since the di�erence is limited to about 2Pa, whereas the simulated value slightly overestimates
the pressure (5Pa to 10Pa). It is further observed that the standard variation for both the
simulated and measured data yields about 10Pa. Note that the standard variation for the
modeled streamwise pressure yields 0Pa since no time dependence is taken into account. The
modeled pressure downstream from the constriction is shown for completeness, although from
the previous discussion is seen that the model can not capture downstream �ow development
which is shaped by complex �ow phenomena such as jet spreading, jet reattachment and �ow
recirculation.

Fig. 6.16 further illustrates the simulated and measured time signal of the velocity immedi-
ately downstream from the constriction for a circular and elliptical constriction and P0 = 35Pa.
It is observed that for t > 20ms, as the �ow simulation converges, the simulated and measured
�ow velocity matches well with respect to their magnitude as well as with respect to the ob-
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(a) circle (b) ellipse

(c) rectangle (d) circular sector

Figure 6.13: Illustration of normalized transverse velocity distributions along the X direction:
modeled (mod), experimental (exp) and simulated (IB). Simulated pro�les are shown for
di�erent streamwise positions within the constriction: at the inlet (Z/Lc = 0), in the middle
(Z/Lc = 0.5) and at the outlet (Z/Lc = 1). Instantaneous simulated pro�les are assessed at
time t = 43ms for the circular constriction shape and at time t = 50ms for the other shapes.
The X coordinate is normalized by the the width of the constricted portion w along the X
dimension.

served quasi-periodic behavior of the signal representing the �ow dynamics11. The measured
velocity signal for the elliptical cross section shows in addition irregular variations, which are
likely due to the onset of turbulence, so that the laminar �ow (IB) simulation is not able
to reproduce �ow features related to the dissipation of those turbulent structures and the
consequent generation of turbulent �ow.

The previous discussion dealt with the in�uence of the cross section shape on the �ow
�eld for a single upstream pressure P0 = 35Pa. In the following, we consider the impact of
varying the upstream pressure P0 for a single cross section shape, i.e. a circular cross section
shape. Fig. 6.17 illustrates the simulated velocity as a function of time for P0 = 10Pa and
P0 = 100Pa at di�erent downstream positions (immediately upstream from (Z/Lc = −0.4),
in the middle of (Z/Lc = 0.5), immediately downstream from (Z/Lc = 1.04) and further

11It is of interest to further quantify the �ow dynamics of the measured and simulated velocity �eld.
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(a) (b)

Figure 6.14: (a) Simulated transverse velocity pro�le along the X direction (t = 50ms) at
the constriction outlet (Z/Lc =1) and downstream from the constriction (Z/Lc = 1.04) for
a constriction with circular section shape. (b) Several instantaneous (t = 26ms, t = 30ms,
t = 35ms and t = 40ms) and mean transverse velocity pro�les immediately downstream
(Z/Lc = 1.04) from a circular constriction are shown. The mean value is obtained for t ≥
20ms. The X coordinate is normalized by the the width of the constricted portion w along
the X dimension.

downstream from (Z/Lc = 1.4) the constriction). The �ow simulation is seen to converge for
t > 50ms for P0 = 10Pa and for t > 15ms for P0 = 100Pa. As expected the velocity variation
within and downstream from the constriction is smaller for P0 = 10Pa than for P0 = 100Pa
since �ow structures will occur as the pressure increases. The simulated velocity �eld, pressure
distribution and streamwise velocity pro�les are further shown in Fig. 6.18 for P0 = 10Pa and
in Fig. 6.19 for P0 = 100Pa. The simulated streamwise distributions are compared with the
modeled distributions obtained using the quasi-three-dimensional �ow model. The stream-
wise and transverse velocity �eld seems more homogenous for P0 = 10Pa as for P0 = 100Pa,
again indicating an increase of the �ow complexity as the upstream pressure and hence the
Reynolds number increases. In general, observations made for the comparison of modeled and
simulated streamwise pressure and velocity distributions for P0 = 35Pa hold for P0 = 10Pa
and P0 = 100Pa is well, so that in general the quasi-three-dimensional model provides a good
approximation for the pressure distribution and mean velocity within the constriction whereas
the model result in a severe overestimation (> 50%) of the maximum velocity within the con-
striction compared to the simulated streamwise distributions. Downstream the constriction,
the quasi-three-dimensional model does not capture the �ow dynamics. Nevertheless, looking
in more detail at the streamwise distribution illustrates that �ow reattachment occurs further
downstream from the constriction for P0 = 10Pa than for P0 = 100Pa, i.e. at x/Lc ≈ 5

compared to x/Lc ≈ 3. This corresponds to the decrease of the potential core extent of the jet
as the upstream pressure or Reynolds number increases as was observed from the visualized
�ow �eld in chapter 5. Note that �ow visualization also showed the absence of �ow structures
for low Reynolds numbers as expected for laminar �ow, whereas coherent structures in�uence
the �ow dynamics as the upstream pressure increases.

An overview of measured (E), modeled (M) and simulated (IB) pressure values P1 at the
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(a) circle (b) ellipse

(c) rectangle (d) circular sector

Figure 6.15: Mean pressure and associated standard variation at di�erent streamwise positions
(immediately upstream from (Z/Lc = −0.4), in the middle of (Z/Lc = 0.5), immediately
downstream from (Z/Lc = 1.04) and further downstream from (Z/Lc = 1.4) the constriction):
modeled (mod), simulated (IB) of measured (exp). Simulated mean values are taken for
t > 20ms. Note that the standard deviation of the model is 0Pa.

(a) circle (b) ellipse

Figure 6.16: Measured (exp) and simulated (IB) velocity signal as a function of time immedi-
ately downstream from the constriction (Z/Lc = 1.04) for P0 =35Pa: a) circular constriction
and b) elliptical constriction.
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(a) P0=10Pa (b) P0=100Pa

Figure 6.17: Illustration of simulated (IB) velocity signal for a circular constriction at di�erent
streamwise positions (immediately upstream from (Z/Lc = −0.4), in the middle of (Z/Lc =

0.5), immediately downstream from (Z/Lc = 1.04) and further downstream from (Z/Lc = 1.4)
the constriction) and for di�erent upstream pressures: a) P0 = 10Pa and b) P0 = 100Pa.

(a) velocity pro�le (b) Z
Lc

= 0.5

(c) pressure (d) mean velocity (e) maximum velocity

Figure 6.18: Illustration of �ow �eld for a channel with circular constriction for upstream pres-
sure P0 = 10Pa. Simulated (IB) quantities are obtained at time t = 90ms: a) instantaneous
simulated (IB) streamwise velocity magnitude, b) instantaneous simulated (IB) transverse
velocity magnitude at the middle of the constriction (Z/Lc = 0.5), c) normalized modeled
(mod) and simulated (IB) streamwise pressure distribution, d) normalized modeled (mod)
and simulated (IB) mean streamwise velocity distribution and e) normalized modeled (mod)
and simulated (IB) streamwise velocity distribution along the centerline of the constriction.
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(a) velocity pro�le (b) Z
Lc

= 0.5

(c) pressure (d) mean velocity (e) maximum velocity

Figure 6.19: Illustration of �ow �eld for a channel with circular constriction for upstream pres-
sure P0 = 100Pa. Simulated (IB) quantities are obtained at time t = 40ms: a) instantaneous
simulated (IB) streamwise velocity magnitude, b) instantaneous simulated (IB) transverse
velocity magnitude at the middle of the constriction (Z/Lc = 0.5), c) normalized modeled
(mod) and simulated (IB) streamwise pressure distribution, d) normalized modeled (mod)
and simulated (IB) mean streamwise velocity distribution and e) normalized modeled (mod)
and simulated (IB) streamwise velocity distribution along the centerline of the constriction.

center of the constriction (Z/Lc = 0.5) and of velocity values umax along the centerline of
immediately downstream from the constriction (Z/Lc = 1.04) is shown in Fig. 6.20a and in
Fig. 6.21, respectively.Mean values and their standard variation are indicated for di�erent
cross section shapes, upstream pressures P0 and volume �ow rates Q, so that the impact
of the cross section shape on P1 and umax can be quanti�ed as a function of increasing
upstream pressure or Reynolds number. From Fig. 6.20a is seen that the standard variation
of the simulated and measured pressure P1 increases as the imposed upstream pressure P0

increases for all cross section shapes in accordance with the previous �ndings of an increased
�ow complexity. A good overall match of the mean pressures and their standard deviation
is observed for P0 ≤ 60Pa (corresponding to Re > 4000) between modeled, simulated and
measured values. As the pressure increases, the model underestimates the impact of the
cross section shape on the pressure values as seen from the limited range of predicted values
compared to the measured values, stressing again the limitations of the quasi-three-dimensional
�ow model to capture more complex �ow phenomena. The same observation holds with respect
to the prediction of the centerline velocity umax downstream from the constriction shown in
Fig. 6.21. The magnitude as well as the range associated with varying the cross section shape
of simulated, measured and modeled values exhibit the same tendency for Q < 40l/min. For
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higher volume �ow rates, the modeled values overestimate measured values in agreement with
previous �ndings. It is seen that the standard variation of umax can be neglected. Moreover,
simulated values of umax match the experimental tendency as illustrated in Fig. 6.22.

(a) (b)

Figure 6.20: Overview of pressure values at the center of the constriction (Z/Lc = 0.5) for
a circular (◦ cl), elliptical (× el), rectangular (� re) and circular sector (B scs) cross section
shape as a function of the imposed upstream pressure P0. Modeled (M), experimental (E)
and simulated (IB) values are indicated. For clarity experimental and simulated values are
shifted with +3Pa and −3Pa, respectively. a) mean and standard variation and b) mean
values. Experimental results for upstream length Lu=2cm and downstream length Ld=15cm
are indicated (see chapter 5). The standard variation of modeled values yields 0Pa.

In order to further quantify the impact of the cross section shape on the pressure P1 the
range of the mean P1 values, i.e. |(Pmax1 − Pmin1 )|, is quanti�ed for the experimental and
simulated �ow �eld and normalized with respect to the range observed for the quasi-three-
dimensional model as |(Pmax1 −Pmin1 )/(Pmax1,mod−Pmin1,mod)|. Consequently, a value smaller than
1 indicates that the range is smaller than the range estimated for the quasi-three-dimensional
model whereas a value greater than 1 indicates a range which is larger than the one predicted
from the quasi-three-dimensional model. The quantity is illustrated in Fig. 6.23 as a function
of the upstream pressure P0. Consequently, it is seen that for all upstream pressures the
quasi-three-dimensional model underestimates the impact of the cross section shape on the
range of the mean pressure P1 within the constriction and the underestimation becomes more
prominent as the pressure increases. It is interesting to note that a minimum is found around
P0 = 30, corresponding to 2800 < Re < 4200 and hence the transition regime, for which
the modeled range corresponds best to the experimental range. Moreover, it is seen that the
simulated values provide an overestimation of the range of pressure values P1 due to varying
the cross section shape.
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(a) (b)

Figure 6.21: Overview of velocity values sampled along the centerline immediately downstream
from the constriction (Z/Lc = 1.04) for a circular (◦ cl), elliptical (× el), rectangular (� re)
and circular sector (B scs) cross section shape as a function of the measured and predicted
volume �ow rate Q. Modeled (M), experimental (E) and simulated (IB) values are indicated.
For clarity experimental and simulated values are shifted with +1.2l/min and −1.2l/min,
respectively. a) mean and standard variation and b) mean values. Experimental results for
upstream length Lu=2cm and downstream length Ld=15cm are indicated (see chapter 5).
The standard variation of modeled values yields 0Pa.

Figure 6.22: Illustration of the maximum velocity umax for a circular constriction along the
centerline immediately downstream from the constriction (Z/Lc=1.04) for experiment (exp)
and IB method (IB).
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Figure 6.23: Illustration of ratio |(Pmax1 − Pmin1 )/(Pmax1,mod − Pmin1,mod)| between di�erent cross
section shapes for experiment (exp) and IB method (IB). Experimental results is obtained
when pressure is the initial condition for Lu=2cm and Ld=15cm. Pmax1 and Pmin1 denotes the
maximum and minimum mean pressure for experimental and simulated result.

6.3 Summary

In the current chapter, the immersed boundary (IB) method is applied to �ow through a rigid
constricted channel for a wide range of Reynolds numbers and di�erent cross section shapes
of the constriction. Simulated �ow quantities are compared with the quasi-three-dimensional
model outcome and with experimental values in order to estimate the relevance of the proposed
simpli�ed quasi-three-dimensional �ow model and in order to validate the �ow model used in
the IB method before applying the method to simulate �uid-structure interaction problems.
In general, it is seen that the quasi-three-dimensional �ow model can be used to approximate
the �ow within the constriction, but does not capture �ow phenomena downstream from
the constriction, whereas the IB method is able to capture three-dimensional �ow structures
as well as jet development downstream from the constriction. Nevertheless, both models
fail to capture fully the impact of the cross section shape compared to experimental values.
Nevertheless, it is concluded that the IB model provides an accurate �ow solution for upstream
pressures P0 < 60Pa corresponding to Reynolds numbers Re < 4000 so that �uid-structure
interactions up to this Reynolds number can be assessed. Further research is required to
investigate the �ow dynamics. In addition, it is of interest to extent the �ow models (both
the quasi-three-dimensional as well as the IB �ow model) to include a simple turbulence
model. Finally, it need to be commented that the simulated and quasi-three-dimensional model
outcome is compared to quantities measured on a constricted channel with sharp edges instead
of rounded edges applied to the numerical structure. Consequently, it would be interesting to
perform an additional experiment for a constricted channel for which the geometry matches
the numerical structure.
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Conclusion and perspectives

Simple �ow models have a long and successful tradition with respect to the qualitative pre-
diction of complex biological circulation phenomena in terms of meaningful physiological pa-
rameters at a low computational cost. In addition, the last decades complex �ow simulation
techniques are applied to those biological circulation phenomena in order to overcome the
assumptions inherent to simpli�ed �ow models so as to provide quantitatively accurate pre-
dictions at a large computational cost. A good example of a physiologically important variable
which is either neglected in simple �ow models or for which incorporating all its details in
a computational model is �rstly a huge task and secondly increases the computational cost
signi�cantly is presented by the cross section shape of a stenosis related to a biological circu-
lation system. Besides the cross section shape, attention is given to upstream �ow conditions
since a stenosis might involve blood �ow as well as air �ow so that �ow conditions vary sig-
ni�cantly. Therefore, in this thesis we sought to describe the in�uence of the cross section
shape for pressure-driven laminar �ow at a low computational cost and taking into account
the possible need to analyze the model in terms of its parameter space such as Reynolds
number or a geometrical parameter. As a result, a simpli�ed quasi-three-dimensional �ow
model is proposed in combination with a parametrized description of an arbitrary cross sec-
tion shape. Such a model provides the sought balance between simplicity and complexity
and adds a three-dimensional aspect to a simple �ow model, which is uncommon since it is
more natural to rely on two-dimensional boundary layer theory in case it is sought to improve
the �ow model. The proposed �ow model relies on fully developed �ow solutions and can
therefore be seen at the extension of classical quasi-one-dimensional �ow models. The rele-
vance as well as the limitations of the proposed �ow model with respect to constricted channel
�ow is shown in several ways. Firstly, it is shown that the impact of the cross section shape
on the pressure distribution within the constriction can not be neglected when the �ow is
not completely dominated by viscosity. In the latest case, the classical quasi-one-dimensional
�ow model provides as good results with a minimum of computations. Secondly, it is shown
that the application of the quasi-three-dimensional �ow model to phonation allows indeed a
mathematical analysis in terms of the parameter space and moreover a�ects predicted values,
again compared to the quasi-one-dimensional model, of relevant physiological parameters in
case the �ow is a�ected and hence when the �ow is not fully dominated by viscosity. Thirdly,
pressure measurements within the constriction show that although the quantitative accuracy
is poor, the quasi-three-dimensional �ow model does improve predicted values compared to
the quasi-one-dimensional model as well as to a boundary layer solution for axisymmetrical or
two-dimensional �ows (except for the lowest Reynolds numbers). The same way, transverse
velocity pro�les show that the predicted pro�les by the quasi-three-dimensional �ow model,
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although not accurate, do provide some main characteristics of the velocity pro�le such as the
asymmetrical development of the boundary layers in the case of asymmetrical geometries. On
the other hand, it is shown that the proposed �ow model can not capture the complexity of
the �ow dynamics related to the variation of upstream �ow conditions. At the same time,
although a prediction obtained from the numerical simulation with a more complex �ow model
would certainly be more accurate, it can be questioned that it would capture the impact of
the upstream �ow conditions in a reasonable amount of time. Fourthly, the model outcome
is compared to the outcome of the numerical simulation of a laminar incompressible three-
dimensional �ow model. It is seen that predictions obtained from the model are suitable to
predict the order of magnitude of �ow quantities within the constriction whereas predictions
downstream from the constriction are useless. The simulated �ow �eld on the other hand is
shown to capture some of the �ow dynamics at a high computational cost.

Several research perspectives can be formulated.

In the current work, it was aimed to show the in�uence of the cross section shape and
of upstream �ow conditions. As such both were varied extensively, in order to provide an
overview of their impact on the �ow dynamics. Several observations related to the complexity
of the �ow can be an individual research topic. In particular, the stability of the �ow patterns
and the transition mechanism from laminar to turbulent �ow needs to be addressed.

In the current work, the �ow model is assessed for steady �ow. Obviously, the analysis
needs to be extended to unsteady �ow. In addition, the model can be improved in several
ways. Given the observed �ow regimes, it is of interest to extent the �ow model with a
simple turbulence model. For the same reason, implementation of a simple �ow model in the
numerical model is of interest. Finally, the balance between accuracy and computational cost
would probably improve when a �ow model is proposed which does not rely on fully developed
�ow but on boundary layer development.

The numerical simulation with the immersed boundary method needs to be extended to
represent the full �uid-structure interaction in order to be able to model phonation.

Finally, it is of interest to obtain experimental data using a smooth converging transition
from the upstream channel to the minimum constriction for all cross section shapes and not
only for the circular cross section.
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Appendix A

Derivation of fully developed laminar
viscous �ow

A.1 Basic equation

For fully developed pressure-driven �ow through a uniform channel with arbitrary but constant
cross section shape, and under the assumptions of laminar, incompressible, parallel and steady
viscous �ow, the streamwise component of the momentum equation expressed in Cartesian
coordinates (x, y, z) reduces to the following Poisson equation [9, 126]

1

µ

∂P

∂x
=

(
∂2u

∂y2
+
∂2u

∂z2

)
. (A.1)

with driving pressure gradient dP/dx, velocity u(y, z) and dynamic viscosity µ. The spanwise
and transverse components of the momentum equation become,

∂P

∂y
= 0,

∂P

∂z
= 0, (A.2)

and the continuity equation yields

∂u

∂x
= 0. (A.3)

In cylindrical coordinates (r, θ, x), and under the same assumptions, the Poisson equa-
tion (A.1) becomes

1

µ

dP

dx
=

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
. (A.4)

while the spanwise and transverse components of the momentum equation become,

∂P

∂r
= 0,

∂P

∂θ
= 0. (A.5)
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A.2 Circle

a

circle

yz

In cylindrical coordinates where the pipe radius is indicated by a and the length scale
becomes r∗ = r

a , the general equation can be rewritten as

u∗ = −1

4
r∗2 + C1 ln r∗ + C2, (A.6)

where the Laplace operator reduces to

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂θ2
+

∂2

∂x2
=

1

r

d

dr

(
r
d

dr

)
.

Since the velocity cannot be in�nite at the centerline, on physical grounds, we reject the
logarithm term and set C1 = 0. The no slip condition u∗ = 0 is satis�ed by setting C2 = 1

4 .
The pipe solution is thus

u(r) =
1

4µ

(
−dP
dx

)
(a2 − r2). (A.7)

The velocity distribution in fully developed laminar pipe �ow is then a paraboloid of
revolution about the centerline. The total volume �ow rate Q is of interest, as de�ned for any
duct by Φ =

∫
A udA where the element of area is 2πrdr for this pipe case. The integration is

simple and yields

Φ =
πa4

8µ

(
−dP
dx

)
. (A.8)

From this the bulk velocity de�ned as ū = Φ/A gives

ū =
a2

8µ

(
−dP
dx

)
=

1

2
umax, (A.9)

and the wall shear stress is given as

τw = µ

(
−du
dr

)
w

=
a

2

(
−dP
dx

)
=

4µū

a
. (A.10)



A.3. Ellipse 161

A.3 Ellipse

ellipse

a
b

yz

Elliptical cross section with axes (a, b) and the area A = πab de�ned as

y2

a2
+
z2

b2
≤ 1,

and the solution of (A.1) is sought subject to the no slip boundary condition u = 0. We
postulate the velocity pro�le to be the form

u(y, z) = Ac

(
1− y2

a2
− z2

b2

)
. (A.11)

Since it automatically satis�es the boundary condition for a elliptical cross section and
determine Ac by substituting for u in (A.1) gives Ac = 1

2µ
a2b2

a2+b2
. Because the assumed form

of u satis�es both the Poisson equation and the boundary condition, it's the correct and only
solution possible1. So

u(y, z) =
1

2µ

(
−dP
dx

)
a2b2

a2 + b2

(
1− y2

a2
− z2

b2

)
. (A.12)

Imposing ∂u
∂y = ∂u

∂z = 0 the maximum velocity is given as

umax(y = z = 0) =
1

2µ

(
−dP
dx

)
a2b2

a2 + b2
. (A.13)

Using the transformation y = ar cos θ, z = br sin θ with the limits r ∈ [0, 1], θ ∈ [0, 2π] the
volume �ow rate is given as

Φ =

∫
A
udydz =

π

4µ

(
−dP
dx

)
a3b3

a2 + b2
, (A.14)

From here it follows

1The proof of uniqueness solution is followed at section A.3.1
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ū =
1

4µ

(
−dP
dx

)
a2b2

a2 + b2
. (A.15)

For the wall shear stress, we need transform to an elliptical cylinder coordinate system
with y + iz = d cosh (ξ + iη) and

y = d cosh ξ · cos η,

z = d sinh ξ · sin η,
(A.16)

where d =
√
a2 − b2. The ellipse now be represented by ξ = ξ0 = 1

2 log a+b
a−b . Now we can

convert (A.12) in Cartesian coordinates to (ξ, η) coordinate system via equations (A.16)

u(y, z) =
d2

8µ

(
−dP
dx

)(
cosh 2ξ0 − cosh 2ξ − cos 2η +

cosh 2ξ cos 2η

cosh 2ξ0

)
. (A.17)

Consider the di�erent geometry of the elliptical cylinder coordinate system, the elemental
arc length in the (ξ, η) directions are given as

dsη =

[
∂y

∂η

2

+
∂z

∂η

2] 1
2

dη = δdη,

dsξ =

[
∂y

∂ξ

2

+
∂z

∂ξ

2] 1
2

dξ = δdξ,

(A.18)

respectively, where δ = d[cosh2 ξ − cos2 η]
1
2 . As we know the wall shear stress is given as

τw0(η) = −µ
(
∂u

∂n

)
∂D

, (A.19)

where ∂D represents the boundary of the region D and n is an outward normal from the
boundary. We have dn = δdξ so that the wall shear stress can be written as

τw0(η) = −µ
δ

(
∂u

∂ξ

)
ξ=ξ0

. (A.20)

Substituting the (A.17) into (A.20) the wall shear stress is found that

τw0(η) =
d

4
√

cosh2 ξ0 − cos2 η

(
−dP
dx

)
(sinh 2ξ0 − tanh 2ξ0 cos 2η) , (A.21)
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The expression of wall shear stress can be converting back to Cartesian coordinate by using
equations (A.16), the wall shear stress then becomes

τw0(y1, z1) =

(
−dP
dx

)
a2b2

a2 + b2

√
y2

a4
+
z2

b4
. (A.22)

Here the set of (y1, z1) correspond to those which de�ne the elliptical boundary.

A.3.1 Proof of the uniqueness of solution

Suppose that there exist two solutions u1 and u2 that satis�es (A.1) and the prescribed
boundary condition, i.e.,

∇2u1 =
1

µ

dP

dx
,

u1 = 0, on boundary
(A.23)

and

∇2u2 =
1

µ

dP

dx
,

u2 = 0. on boundary
(A.24)

From these we know that the function u = u1 − u2 satis�es

∇2u = 0,

u = 0. on boundary
(A.25)

Using the identity

∫
s
u(∇u · n)ds =

∫
A

(∇u · ∇u)dA+

∫
A
u∇2udA, (A.26)

with s means on the boundary. Substitutes this in u and gives
∫
A (∇u · ∇u)dA = 0 which

implies that ∇u = 0, thus u = const. But since u = 0 on the boundary we have u1 ≡ u2

everywhere which yields the desired result.
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a

rectangle

b

yz

A.4 Rectangle

The rectangular cross section with axes (a, b) and the area A = 4ab de�ned with |y| ≤ a,
|z| ≤ b. Taking into account the symmetry with respect to the planes y = 0, z = 0, the �ow
can studied only in the �rst quadrant. The boundary condition can be rewritten as follows


∂u
∂y = 0, y = 0,

u = 0, y = a
∂u
∂z = 0, z = 0,

u = 0, z = b.

(A.27)

(A.1) can be transformed into Laplace equation by setting

u(y, z) = u1(y, z) +
1

2µ

dP

dx
(z2 − b2). (A.28)

The second term in the right hand side of (A.28) is just the Poiseuille �ow pro�le between
two in�nite plates at z = ±b. Substitutes (A.28) into (A.1) and (A.27) it gives

∂2u1

∂y2
+
∂2u1

∂z2
= 0, (A.29)

subjected to


∂u1
∂y = 0, y = 0,

u1 = 1
2µ

dP
dx (b2 − z2), y = a,

∂u1
∂z = 0, z = 0,

u1 = 0, z = b.

(A.30)

The above problem can be solved using separation of variables setting u1(y, z) = uy ·
uz. (A.29) gives

u
′′
y − λuy = 0,

u
′′
z + λuz = 0.

(A.31)
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Solutions of (A.31) then can be got

uy,k = cke
(2k−1)π

2b
y + dke

− (2k−1)π
2b

y,

uz,k = A cos

(
(2k − 1)π

2b
z

)
.

(A.32)

Then the special solution of (A.29) is

u1k(y, z) =
(
cke

(2k−1)π
2b

y + dke
− (2k−1)π

2b
y
)
· cos

(
(2k − 1)π

2b
z

)
. (A.33)

So the general solution of (A.29) is

u1k(y, z) =

∞∑
k=1

(
cke

(2k−1)π
2b

y + dke
− (2k−1)π

2b
y
)
· cos

(
(2k − 1)π

2b
z

)
. (A.34)

Using other two boundary conditions

{
∂uy
∂y = 0, y = 0,

uy = 1
2µ

dP
dx (b2 − z2)/uz, y = a,

(A.35)

which gives


ck = dk,

∞∑
k=1

2ck cosh

(
(2k − 1)π

2b
a

)
· cos

(
(2k − 1)π

2b
z

)
= 1

2µ
dP
dx (b2 − z2).

(A.36)

The pivotal point in the analysis is the determination of the Ck. Because cos

(
(2k − 1)π

2b
z

)
forms a complete orthogonal set, as a �rst approach it is natural to consider the methods of

Fourier series. By multiply other item cos

(
(2m− 1)π

2b
z

)
in orthogonal set and integral with

the limits [−b, b], we get

ck =
8b2

µ

(
−dP
dx

)
(−1)k

(2k − 1)3π3

1

cosh
(

(2k−1)π
2b a

) . (A.37)

Then general (A.29) becomes
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u1(y, z) =
∞∑
k=1

16b2

µ

(
−dP
dx

)
(−1)k

(2k − 1)3π3

cosh

(
(2k − 1)π

2b
y

)

cosh

(
(2k − 1)π

2b
a

) · cos

(
(2k − 1)π

2b
z

)
. (A.38)

Finally, with the substituting (A.38) let i = 2k − 1, there is obtained that

u(y, z) =
1

2µ

(
−dP
dx

)b2 − z2 − 32b2

π3

∞∑
i=1,3,...

(−1)(i−1)/2 cosh( iπy2b )

cosh( iπa2b )

cos( iπz2b )

i3

 . (A.39)

The other same results can be also obtained

u(y, z) =
16a2

µπ3

(
−dP
dx

) ∞∑
i=1,3,...

(−1)(i−1)/2

[
1−

cosh( iπz2a )

cosh( iπb2a )

]
cos( iπy2a )

i3
. (A.40)

The volume �ow rate de�ned as Φ =
∫
A u(y, z)dA gives

Φ =
4a3

3µ

(
−dP
dx

)b− 192a

π5

∞∑
i=1,3,...

tanh(iπb/2a)

i5

 . (A.41)

From this it follows that the velocity

ū =
a2

3µ

(
−dP
dx

)1− 192a

π5b

∞∑
i=1,3,...

tanh(iπb/2a)

i5

 , (A.42)

umax(y = z = 0) =
16a2

µπ3

(
−dP
dx

) ∞∑
i=1,3,...

(−1)(i−1)/2

i3

[
1− 1

cosh( iπb2a )

]
, (A.43)

and the wall shear stress are

τ(z, y = ±a) = −8a

π2

(
−dP
dx

) ∞∑
i=1,3,...

(−1)(i−1)/2

i2

[
1−

cosh( iπz2a )

cosh( iπb2a )

]
, (A.44)

τ(y, z = ±b) = −8a

π2

(
−dP
dx

) ∞∑
i=1,3,...

(−1)(i−1)/2

[
tanh (

iπb

2a
)

]
cos( iπy2a )

i2
. (A.45)
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A.5 Equilateral triangle

a

a a

equilateral
triangle

yz

Equilateral triangle cross section with axes a and the area A =
√

3a2

4 de�ned with the
following three boundaries

2z −
√

3a = 0,
√

3y − z = 0,
√

3y + z = 0.

(A.46)

Since the velocity pro�le u(y, z) is zero on the boundaries, the following solution form
for (A.1) is prompted,

u(y, z) = Ac

(√
3y − z

)(√
3y + z

)(
2z −

√
3a
)
, (A.47)

where Ac is a constant to be determined. It turns out that the solution of (A.1) is satis�ed
provided that Ac = 1

4
√

3aµ

(
−dP
dx

)
. Thus, the velocity pro�le is given by

u(y, z) =
1

4
√

3

(
−dP
dx

)
1

aµ

(√
3y − z

)(√
3y + z

)(
2z −

√
3a
)
. (A.48)

The proof of uniqueness solution is already described in section A.3.1. Since the assumed
from of u satis�es both the Poisson equation and the boundary condition, it is the correct and
only solution possible. Then the volume �ow rate de�ned by Φ =

∫
A u(y, z)dA gives

Φ =

∫ √
3a
2

0
dz

∫ √
3z
3

−
√
3z
3

u(y, z)dy =

√
3a4

320µ

(
−dP
dx

)
. (A.49)

From this it follows that the velocity

ū =
a2

80µ

(
−dP
dx

)
, (A.50)

umax

(
y = 0, z =

√
3a

3

)
=

a2

36µ

(
−dP
dx

)
, (A.51)
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and the wall shear stress are

τw(z =

√
3a

2
) =

√
3

2a

(
−dP
dx

)(
a2

4
− y2

)
, (A.52)

τw(y =

√
3z

3
) =

1

a

(
−dP
dx

)
z

(√
3a

2
− z

)
. (A.53)

A.6 Circular sector

circular
sector

a

a

α

yz

For circular sector it is convenient to analysis by considering the Poisson equation (A.4)
in cylindrical coordinates. In approaching the task of solving this equation perhaps the most
reasonable beginning is to reduce it to Laplace equation, which is the most familiar and
perhaps best understood of any partial di�erential equation. Thus there is introduced a
reduced velocity u∗

u = u∗ +
r2

4µ

dP

dx
. (A.54)

After substituting in (A.4) one �nds that u must satisfy Laplace equation

∂2u∗

∂r2
+

1

r

∂u∗

∂r
+

1

r2

∂2u∗

∂2θ
= 0. (A.55)

Using the separation of variables method of the form u∗ = R(r) · Φ(θ) gives

∂2Φ(θ)

∂θ2
+ kΦ(θ) = 0, (A.56)

r2

R(r)

∂2R(r)

∂r2
+

r

R(r)

∂R(r)

∂r
= k. (A.57)

For (A.56) the solution is obtained as follows
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Φn(θ) = Ancos
√
kθ. (A.58)

For (A.57) let t = ln r which gives

d2R

dt2
− kR = 0. (A.59)

Thus the general solution for R(r) is

Rn(r) = Cne
√
kt +Dne

−
√
kt = Cnr

√
k +Dnr

−
√
k. (A.60)

Therefore the general solution of u∗

u∗ = A0 +

∞∑
n=1

(
Anr

√
k +Bnr

−
√
k
)

cos(
√
kθ). (A.61)

If one utilizes the fact that velocity is in�nite at r = 0 then Bn = 0. The remaining
constants are determined by imposing the condition that u = 0 on all boundaries. To satisfy
this requirement at r = 0 it is necessary that A0 = 0. Thus

u∗ =

∞∑
n=1

Anr
√
k cos(

√
kθ), (A.62)

Substitutes the resulting expression for u∗ into (A.54), there is obtained

u =
r2

4µ

dP

dx
+
∑
n

Anr
k cos (kθ). (A.63)

When one applies (A.63) on the oblique sides θ = ±α
2

0 =
r2

4µ

dP

dx
+
∑
n

Anr
k cos

(
kθ

2

)
. (A.64)

This may be satis�ed by taking cos (kα2 ) = 0, from which it follows that k = (2n−1)π
α , n =

1, 2, ...,∞. And in order to cancel the term r2

4µ
dP
dx it is necessary to take k = 2 and

Ak=2 =
1

4 cos(α)

(
− 1

µ

dP

dx

)
, (A.65)
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with these the velocity solution (A.63) becomes

u/

(
− 1

4µ

dP

dx

)
= r2

(
cos(2θ)

cos(α)
− 1

)
+

∞∑
n=1

Anr
(2n−1)π

α cos

(
(2n− 1)πθ

α

)
. (A.66)

The set of constants An, still remains to be found, and for this there is available the
condition that u = 0 ar r = a. The introduction of this into (A.66) and the setting of u = 0

leads to

(
1−

cos(2θ)

cos(α)

)
=

∞∑
n=1

Cncos

(
(2n− 1)πθ

α

)
, (A.67)

where the Cn, are the dimensionless counterparts of the constants An, that is

Cn = Ana

(2n− 1)π

α
−2
. (A.68)

Consider the orthogonality of function cos
(

(2n−1)πθ
α

)
and integral with the limits [−α

2 ,
α
2 ]

we have

Cn = (−1)(i+1)/2 16α2

π3

1

i(i+ 2α
π )(i− 2α

π )
, i = 1, 3, ...,∞. (A.69)

Finally, with the substituting (A.68) and (A.69) we get

u(r, θ) =
1

4µ

(
dP

dx

)r2

(
1− cos 2θ

cosα

)
− 16a2α2

π3

∞∑
i=1,3,...

(−1)
i+1
2

(r
a

) iπ
α cos (iπθ/α)

i(i+ 2α/π)(i− 2α/π)

 .
(A.70)

It is convenient to calculate the volume �ow rate Φ which passes through the cross section
Φ =

∫
A urdrdθ so that

Φ =
a4

4µ

(
−dP
dx

)tanα− α
4

− 32α4

π5

∞∑
i=1,3,...

1

i2(i+ 2α/π)2(i− 2α/π)

 . (A.71)

From this it follows that the mean velocity with the area A = αa2

2 is
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ū =
Φ

A
=

a2

2µα

(
−dP
dx

)tanα− α
4

− 32α4

π5

∞∑
i=1,3,...

1

i2(i+ 2α/π)2(i− 2α/π)

 , (A.72)

and the wall shear stress are

τ
(
θ = ±α

2

)
=

1

4

(
−dP
dx

)r2 (1 + 2 tanα) +
16a2α

π2

∞∑
i=1,3,...

(r
a

) iπ
α 1

(i+ 2α/π)(i− 2α/π)

 ,(A.73)
τ(r = a) =

a

2

(
−dP
dx

)1− cos 2θ

cosα
− 8α

π2

∞∑
i=1,3,...

−i
i+1
2

cos (iπθ/α)

(i+ 2α/π)(i− 2α/π)

 .(A.74)

A.7 Concentric annulus

concentric
annulus

a
b

yz

Consider the general (A.1) for concentric annulus we have

u =
r2

4µ

dP

dx
+ C1 ln r + C2. (A.75)

Impose the boundary conditions the solution in concentric annulus is thus

u =
1

4µ

(
−dP
dx

)[
a2 − r2 + (a2 − b2)

ln(a/r)

ln(b/a)

]
. (A.76)

The volume �ow rate Φ then gives

Φ =
π

8µ

(
−dP
dx

)[
a4 − b4 − (a2 − b2)2

ln(a/b)

]
. (A.77)

From this it follows that the mean velocity with the area A = π(a2 − b2) is
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ū =
1

8µ

(
−dP
dx

)[
a2 + b2 − (a2 − b2)

ln(a/b)

]
, (A.78)

and the wall shear stress are

τ(r = b) = −1

4

(
−dP
dx

)[
2b+

(a2 − b2)

b ln(b/a)

]
, (A.79)

τ(r = a) =
1

4

(
−dP
dx

)[
2a+

(a2 − b2)

a ln(b/a)

]
. (A.80)

A.8 Eccentric annulus

eccentric
annulus

a
b

yz

For eccentric annulus the general equation (A.1) may be arranged as

∇2

(
Ψ +

1

4µ

dP

dx
(y2 + z2)

)
=

1

µ

∂P

∂x
, (A.81)

where Ψ is a plane harmonic function∇2Ψ = 0. The boundary u = 0 leads to Ψ = − 1
4µ

dP
dx (y2+

z2) + d, where d is an arbitrary constant which will not be the same for the two bounding
circles. Let the y-axis contain the centers of pipe and core, of radii a and b respectively, and
distant c apart.

Using complex-variable technique, exact solutions can be obtained if the cross section can
mapped conformal onto a region where Laplace equation has a known solution. The present
case of an eccentric annulus can be mapped by the transformation

W = y + iz = M tan
1

2
ζ, ζ = ξ + η, (A.82)

onto a concentric annulus, where the solution is known, (A.76). The inner and outer boundaries
are described by η = β and α, respectively. In the new (ξ, η) coordinate system, it is necessary
to solve

(
∂2Ψ

∂ξ2
+
∂2Ψ

∂η2

)
= 0. (A.83)
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Since W = M sin ξ+i sinh η
cosh η+cos ξ , so that

y = M
sin ξ

cosh η + cos ξ
, z = M

sinh η

cosh η + cos ξ
,

M =

√
(c2 − (a+ b)2) (c2 − (a− b)2)

4c2
,

(A.84)

In this system the outer and inner cylinders are η = α and η = β respectively, where α and
β are constants given by sinhα = M/a, sinhβ = M/b. Referred to the Cartesian coordinate
system (x, y, z), the axes of the cylinders are the lines (M cothα, 0) and (M cothβ, 0) respec-
tively. Thus the distance between their centers is c = M(cothα − cothβ). Then the (A.82)
subject to Ψ = Ψ1 · (−dP

dx ) 1
µ with

Ψ1 =
M2

4µ

(
2 cosh η

cosh η + cos ξ
− 1

)
+ d, η = α, β. (A.85)

Using the Fourier expansion

cosh η

cosh η + cos ξ
= coth η ·

(
1 + 2

∞∑
n=1

(−1)ne−nη cosnξ

)
. (A.86)

(A.85) may be rewritten as

Ψ1 =
M2

2µ
coth η

∞∑
n=1

(−1)ne−nη cosnξ + const, η = α, β. (A.87)

Assume

Ψ1 =
∞∑
n=1

(−1)n
(
Ane

−nη +Bne
nη
)

cosnξ. (A.88)

Using the orthogonality property we have

An = M2
cothαe−2nα − cothβe−2nβ

e−2nα − e−2nβ
,

Bn = M2
cothα− cothβ

e−2nα − e−2nβ
.

(A.89)

Therefore
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Ψ1 = M2
∞∑
n=1

(−1)n
e−nβ cothβ sinh (n(η − α))− e−nα cothα sinh (n(η − β))

sinh (n(β − α))
cos (nξ),

(A.90)

where α, β are the values of η on the outer and inner boundaries respectively, which satis�es(
∂2Ψ1
∂ξ2

+ ∂2Ψ1
∂η2

)
= 0 and makes Ψ1 = − 1

4µ
dP
dx (y2+z2)+d constant when η = α or β. Inspection

of (A.81) shows that

u =
M2

µ

(
−dP
dx

)[
Ψ1

M2
+Aη +B − cosh η − cos ξ

4(cosh η + cos ξ)

]
, (A.91)

where A and B are constants, will satisfy (A.81), since the �rst three terms within the brackets
form a plane harmonic function in the ζ-plane which transforms into a plane harmonic function
in the W -plane. On the boundaries Ψ is readily shown to be given by

Ψ1 =
M2

2

(
cosh η

cosh η + cos ξ
− coth η

)
, (A.92)

so that on the boundaries

u =
M2

µ

(
−dP
dx

)(
Aη +B − 1

2
coth η +

1

4

)
, (A.93)

and substituting α, β in turn for η, yields two equations for A and B, which together gives

A =
cothα− cothβ

2(α− β)
,

B =
β(1− 2 cothα)− α(1− 2 cothβ)

4(α− β)
,

(A.94)

and (A.91) is then completely determined.

The volume �ow rate evaluated by Φ = 2
∫ π

0

∫ β
α u · |

dW
dζ |dξdη is obtained

Φ =
π

8µ

(
−dP
dx

)[
a4 − b4 − 4c2M2

β − α
− 8c2M2

∞∑
n=1

ne−n(β+α)

sinh (nβ − nα)

]
, (A.95)

where

M =
(
F 2 − a2

)1/2
, F =

a2 − b2 + c2

2c
,

α =
1

2
ln
F +M

F −M
, β =

1

2
ln
F − c+M

F − c−M
,



A.9. Half moon 175

η = α and η = β being the outer bounding circle and inner bounding circle, respectively.

From this it follows that the mean velocity with area A = π(a2 − b2) is

ū =
1

8µ

(
−dP
dx

)
a4 − b4 −

4c2M2

β − α
− 8c2M2

∞∑
n=1

ne−n(β+α)

sinh (nβ − nα)

a2 − b2

 , (A.96)

and the wall shear stress are

τ1 =

∞∑
n=1

(−1)nn
e−nβ cothβ cosh (n(η − α))− e−nα cothα cosh (n(η − β))

sinh (n(β − α))
cos (nξ), (A.97)

τ =
M2

µ

(
−dP
dx

)[
τ1 +

cothα− cothβ

2(α− β)
− sinh η cos ξ

2(cosh η + cos ξ)2

]
, (A.98)

substituting the boundary η = α and η = β the wall shear stress at radius r = a and r = b

are obtained.

A.9 Half moon

half
moon

b
a

yz

Recall the basic equation in cylindrical coordinates.

dP

dx
= µ

(
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2

)
. (A.99)

If (A.99) can be solved subject to the no-slip condition that u is zero on all duct boundaries,
then all �ow quantities of interest can be determined. Consider the two boundary conditions
(y − a)2 + z2 = a2 in inner circle and y2 + z2 = b2 of outer circle and the corresponding
equations in polar coordinate give r = 2a cos θ and r = b, respectively. The domain is thus
θ ∈ [− arccos( b

2a), arccos( b
2a)]. Normally we can postulate the solution to be the form
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u(r, θ) = B(r − b) (2a cos θ − r) , (A.100)

u(r, θ) = B(r − b)
(

2a cos θ

r
− 1

)
, (A.101)

u(r, θ) = B(r2 − b2) (2a cos θ − r) , (A.102)

u(r, θ) = B(r2 − b2)

(
2a cos θ

r
− 1

)
. (A.103)

For (A.100) to (A.102) it can be validated that ∇u 6= const so that are not correct
solution. Consider the (A.103) it gives ∇u = B = 1

µ(−dP
dx ). Since the uniqueness solution of

such problem already been done in section (A.3.1), it's the correct and only solution possible.
Thus, we obtain that

u =
1

4µ

(
−dP
dx

)(
r2 − b2

)(2a cos θ

r
− 1

)
, (A.104)

when ∂u
∂r = ∂u

∂θ = 0 which gives θ = 0 and r3−ar2−ab2 = 0, then the maximum velocity is got
from the root of cubic equations. Obviously, the position of maximum velocity depend on the
radius ratio b/a. The volume �ow rate de�ned by Φ =

∫ θ1
−θ1

∫ 2a cos θ
b udrdθ, θ1 = arccos ( b

2a)

gives

Φ =
1

4µ

(
−dP
dx

)[
(2a3b+

21

12
ab3) sin θ1 + (a4 − b4

2
− 2a2b2)θ1

]
, (A.105)

From this it follows that the mean velocity can be obtained by ū = Φ
A with A =

a2
(
π − θ2 + 1

2 sin(2θ2)
)
− 1

2b
2(π − θ2 − sin θ2) while θ2 = 2 arcsin

(
b

2a

)
. And the wall shear

stress are

τ(r = b) = −1

4

(
−dP
dx

)
(4a cos θ − 2b), (A.106)

τ(r = 2a cos θ) =
1

4

(
−dP
dx

)
(

b2

2a cos θ
− 2a cos θ), (A.107)

where −θ1 ≤ θ ≤ θ1.

A.10 Limacon

Limacon cross section with axes a, constant b and the area A = πa2(1 + 2b2) de�ned by the
following equations
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limacon
(b ≤ 1)

a

a+ ab

yz

y = a(cos θ + b cos 2θ),

z = a(sin θ + b sin 2θ),
(A.108)

with the corresponding polar coordinate is r = a(1 + 2b cos θ). Consider the equation (A.1)
which may be arranged as

∇2

(
Ψ +

1

4µ

dP

dx
(y2 + z2)

)
=

1

µ

dP

dx
, (A.109)

where Ψ is a plane harmonic function ∇2Ψ = 0. As u = 0 on the solid boundaries, so

Ψ = − 1

4µ

dP

dx
(y2 + z2) + d, (A.110)

where d is an arbitrary constant.

Using the following map, we can map a circle (ξ2 + η2) ≤ 1 to the case of Limacon

y = a(ξ + b(ξ2 − η2)), (A.111)

z = a(η + 2bξη). (A.112)

In the new (ξ, η) coordinate system it is necessary to solve (∂
2Ψ
∂ξ2

+ ∂2Ψ
∂η2

) = 0. From the
boundary (A.110), inspection of (A.109) shows that

u =
a2

4µ

(
−dP
dx

)[
B1ξ +B2η +B3ξη +B4 − (ξ2 + η2)− 2bξ(ξ2 + η2)− b2(ξ4 + η4)− 2b2ξ2η2

]
,

(A.113)

where B1, B2, B3 and B4 are constants. Using the boundary (ξ2 + η2) = 1, we have B1 = 2b,
B2 = 0, B3 = 0 and B4 = 1 + b2. Thus, the velocity pro�le is
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u(y, z) =
a2

4µ

(
−dP
dx

)[
1 + 2bξ + b2 − (ξ2 + η2)− 2bξ(ξ2 + η2)− b2(ξ4 + η4)− 2b2ξ2η2

]
.

(A.114)

Impose ∂u
∂ξ = ∂u

∂η = 0 which gives η = 0 and 2b2ξ3 + 3bξ2 + ξ − b = 0, then the
maximum velocity can be obtained from the root of cubic equations. Obviously, the po-
sition of maximum velocity depend on the constant b. The volume �ow rate de�ned by

Φ =
∫ 1
−1

∫√1−η2

−
√

1−η2
u(ξ, η)|∂(y,z)

∂(ξ,η) |dξdη gives

Φ =
π

8µ

(
−dP
dx

)
a4
(
1 + 4b2 − 2b4

)
, (A.115)

where |∂(y,z)
∂(ξ,η) | = a2(1 + 2bξ)2 + 4a2b2η2. From this it follows that the velocity

ū =
a2

8µ

(
−dP
dx

)(
1 + 4b2 − 2b4

1 + 2b2

)
, (A.116)

and the wall shear stress is

τ =
a2

2
(−dP

dx
)(1 + 2b cos θ + 2b2) cos θ, 0 ≤ θ ≤ 2π. (A.117)



Appendix B

Estimation of parameters for an
arbitrary shape

B.1 Method

In the previous chapter 2 the proposed parametrization of an arbitrary cross section shape
following the "superformula"

r(θ) = g(θ)

[∣∣∣∣∣cos(mθ4 )

a

∣∣∣∣∣
n2

+

∣∣∣∣∣sin(mθ4 )

b

∣∣∣∣∣
n3
]−1/n1

= g(θ).f(θ), m > 0, (B.1)

describes almost any closed curve base on the deformed circle, f(θ) and another function,
g(θ) and their parameters. This function g(θ) can be considered as a modi�er factor of the
function f(θ). For a scienti�c purpose, the parameters need to be estimated from empirical
data which are considered in this chapter.

Let the n true points be zi = (xi, yi), i = 1, 2, ..., n, of which the corresponding observed
values are z

′
i = (x

′
i, y
′
i), possibly with errors of measurement and displacement of unknown

origin by (cx, cy). Let (c̃x, c̃y) be the approximate or assumed values of (cx, cy). Let us denote

by z̃i = (x̃i, ỹi) = (x
′
i− c̃x, y

′
i− c̃y) so that we obtain r̃i =

√
x̃2
i + ỹ2

i and θ̃i = tan−1(ỹi/x̃i). On

the other hand, we obtain r̂i = g(θ̃) · f(θ̃i, ã, b̃, m̃, ñ1, ñ2, ñ3). The deviation of assumed values

of parameters from their true values gives rise to di = |r̃− r̂| and consequently S =
n∑
i=1

d2
i ≥ 0.

Only if the assumed values of parameters are the true values, S can be zero, but the smaller
it is, the closer are the assumed values of the parameters from their true values (assuming
empirical uniqueness of the parameters to a given set of data). Thus we have to �nd the values
of the parameters in f(·) and g(·) such that S is minimum.

In many methods of global optimization the Particle Swarm method of global optimization
is a very important and e�ective method [32, 94, 33, 96, 10, 38]. The Particle Swarm method
of global optimization mimics the behavior of a swarm of birds or other animals searching for
food. Each individual of the swarm is considered as a particle in a multidimensional space
which has a position and a velocity. The particles remember the best position they seen
and communicate to each other to adjust their positions and velocities. Among the Particle

179
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Swarm method, the Repulsive Particle Swarm method (RPSM) of optimization is particularly
e�ective in �nding out the global optimum in complex search spaces though may be slower
for certain problems [87, 88, 65, 102]. In Repulsive Particle Swarm method the future velocity
ui+1 of a particle at position xi with a recent velocity ui is calculated by

ui+1 = αui + aξ1 (x̂i − xi) + bξ2α (x̂bi − xi) + cξ3αz, (B.2)

where,

� ξ1, ξ2, ξ3 are random numbers ∈ [0, 1]. a, b, c are constants. α is inertia weight
∈ [0.01, 0.7].

� x̂ is best position of a particle. x̂bi is best position of a randomly chosen other particle
from within he swarm. z is a random velocity vector.

The future xi+1 is thus de�ned as xi+1 = xi + ui+1. Occasionally, when the process is
caught in a local optimum, some perturbation of u may be needed.

B.2 Result

Fig.B.1 illustrates the �gures generated by true and estimated parameters using 360 particles
shown in Table. B.1. It is seen that the estimation is good coincidence with the true values.

Table B.1: True and estimated parameters of "superformula" function by Repulsive Particle
Swarm method when g(θ) = 1. 360 Particles is used.

shape m n1 n2 n3 a b S

true 3 4 2 7 1 1 0.0

estimated 2.9853 4.4548 2.7747 5.6781 1.004 1.001 8.4543e-5

Figure B.1: Illustration of �gures generated with true and estimated parameters.
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Modeling

C.1 Quasi-1D model

The quasi-1D model, which takes into account the kinetic losses and the viscosity for two-
dimensional �ow, can be formulated as follows

ū
dū

dx
+

1

ρ

dP

dx
= ν

∂2u

∂y2
, (C.1)

where ū(x) denotes the local bulk velocity.

C.2 Thwaites method

The equations of Thwaites' method for 2D and axisymmetrical �ow solving steady integral
momentum equation [126, 105] are summarized in the system below

δ1(x) =

∫ ∞
0

rk(x)

(
1− u(x, y)

Ue(x)

)
dy,

δ2(x) =

∫ ∞
0

rk(x)
u(x, y)

Ue(x)

(
1− u(x, y)

Ue(x)

)
dy,

�ow index k =

{
0 2D �ow
1 axisymmetrical �ow

(C.2)

where r(x) is the radial function of the streamwise position x. Using the quasi-similarity
assumptions [126], the laminar boundary-layer momentum thickness can be represented as a
function of downstream distance x with Thwaites equation

δ2
2(x) =

0.45ν

r2k(x)U6
e (x)

∫ x

0
r2k(x)U5

e (x)dx+
δ2

2(0)r2k(0)U6
e (0)

r2kxU6
e (x)

,

�ow index k =

{
0 2D �ow
1 axisymmetrical �ow

(C.3)
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where Ue(0) and δ2(0) are the �ow velocity and momentum thickness at the inlet x = 0. The
skin friction parameter

S(λ) =
δ2

Ue(x)

∂Ue
∂y

, (C.4)

becomes zero at the �ow separation and depends on the Thwaites parameter λ

λ =
δ2

ν

∂Ue(x)

∂x
. (C.5)

In addition, a shape parameter H(λ) is introduced characterizing the boundary layer

H(λ) =
δ1

δ2
. (C.6)

The skin friction parameter S(λ) and shape parameterH(λ) are derived from experimental
data described by modi�ed universal Thwaites functions [12, 27]

S(λ) = 0.22 + 1.402λ+
0.018λ

0.107 + λ
−0.1 ≤ λ ≤ 0,

H(λ) = 2.088 +
0.0731λ

0.14 + λ
,

S(λ) = 0.22 + 1.57λ− 1.8λ2 0 ≤ λ ≤ 0.1,

H(λ) = 2.61− 3.75λ+ 5.24λ2.

(C.7)

This system can be discretized spatially, with the step ∆x and discretisation index i in the
x direction. The values of variable Ue(i∆x), δ1(i∆x), δ2(i∆x) and λ(i∆x) are denoted Ue,i,
δ1,i, δ2,i and λi respectively. Then the system can be rewritten as



δ2
2,i = 0.45ν

r2ki U6
e,i

∆x
i∑

j=1
r2k
j U

5
e,j +

δ22(0)r2k(0)U6
e (0)

r2ki U6
e,i

,

λi =
δ2,i
ν

Ue,i−Ue,i−1

∆x ,

δ1,i = δ2,iH(λi),

Ue,i = Q
A(δ1,i)

,

τs,i =
ρνUe,i
δ2,i

S(λi),

(C.8)

where the area A(δ1,i) based on the displacement thickness δ1,i is de�ned respectively as

A(δ1,i) =

{
l(hi − 2δ1,i), k=0
π(ri − δ1,i)

2, k=1
(C.9)
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The code use the volume �ow rate Q and discretised contraction geometry Ai as the input
parameters. The limit conditions at entrance are


δ0

2 = δ0
1 = 0,

λ0 = 0,

U0
e,i = Q

Ai
,

τ0
s,i = 0.

(C.10)

Once the initial conditions are known, the calculation is performed in the following steps

� The velocity U0
e,i in the �ow entrance is deduced in (C.10).

� After each step of the computational domain, the following steps are repeated until
convergence

a. The velocity U0
e,i is calculated according to the precedent values as

Ue,i =
Q

A(δ1,i−1)
. (C.11)

b. Knowing the value Ue,i, we can calculate δ2,i with the �rst equation of (C.8)

δ2,i =

√√√√ 0.45ν

r2k
i U

6
e,i

∆x

i∑
j=1

r2k
j U

5
e,j +

δ2
2(0)r2k(0)U6

e (0)

r2k
i U

6
e,i

. (C.12)

c. Then λi is determined by the second relation of (C.8) and new δ1,i is obtained by
δ1,i = δ2,iH(λi).

d. With new values obtained, the velocity Ue,i is recalculated by

Ue,i =
Q

A(δ1,i)
. (C.13)

� Finally, the process is reiterated until it converges (the criterion of convergence is deter-
mined by the user) and the wall shear stress τs,i can be calculated by the last equation
of (C.8).





Appendix D

Detailed constriction geometries

D.1 Sharp edged

The detailed geometries for the sharp edged constrictions used for the experiments presented
in chapter 5 is illustrated in Fig. D.1.

D.2 Round edged

The details of three-dimensional printed geometries with rounded edges adapted from the
numerical grid presented in Chap 6 is illustrated in Fig. D.2.
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(a) circle (b) ellipse

(c) rectangle (d) square

(e) equilateral triangle (f) isosceles triangle

(g) small circular sector (h) large circular sector

Figure D.1: Detailed geometries for the sharp edged constrictions used for the experiments
presented in chapter 5.
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(a) circle (b) ellipse

(c) small circular sector (d) photograph

Figure D.2: Three-dimensional printed geometries with rounded edges adapted (screwthread
is added) from the numerical grid presented in chapter 6.





Appendix E

Measurement instruments

During experiments, senors are used to measure physical quantities: pressure, velocity, etc.
These sensors deliver a variable voltage with the digital acquisition system (PCI-MIO, NI,
Labview NI). Converting these voltages into the physical quantities requires calibration.

E.1 Calibration of pressure sensors and visualization images

E.1.1 Electronic manometer

The electronic gauge (Ashcroft-XLdP) is used to calibrate the piezoelectric pressure trans-
ducers (see next section). Its calibration is done using a water manometer. The two gauges
are connected to a point of constant pressure, the value is changed by means of a pressure
regulator which allows �ne adjustment. This arrangement is shown schematically in Fig. E.1a.
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Figure E.1: (a) The calibration device Electronic manometer. (b) The voltage delivered by
pressure manometer Ashcroft-XLdP depending on the pressure read from the water manome-
ter. It is shown that the slope of the line obtained by linear regression on all measurement
points.

Two di�erent water manometers were used: the �rst is a little limited to a pressure of
100mm H2O model, and the second has a larger liquid column up to 300mm H2O. Use both
helped us to ensure that we found the same pressure (with an accuracy of about 0.5mm H2O
or 5 Pa). The calibration is illustrated in Fig. E.1b.
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E.1.2 Piezoelectric pressure transducers

Piezoelectric pressure transducers are used to measure the pressure at various points in the
model. The Kulite XCS-093 models need to be calibrated before use. The calibration proce-
dure is quite similar to the electronic manometer, while it is connected to the transducer at a
point of sampled pressure. On each sensor, a dozen tension / pressure points covering a range
of 0 to 3000 Pa are measured. Then a linear regression is applied as done for the electronic
manometer (Fig. E.1b). The response of both sensors is linear (correlation of 0.99 between
the points and the right) to for example gain 2587 Pa/V for the Kulite XCS-093 model.

E.1.3 Smoke visualization: image calibration

In the experiment of smoke visualization in order to remain the same region of observation
and redress the position of cross section shape calibration using a grid square pattern with
1cm side shown in Fig. E.2 is performed before �lm the �rst time of every new component.

Figure E.2: Calibration using a grid square pattern with 1cm side.

E.2 Single hot �lm anemometry

Constant temperature anemometer IFA-300 TSI is used. In our study a single hot �lm
anemometer called model 1201-20 TSI shown in Fig. E.3 is used for one-dimensional �ow
measurements. The diameter and the length of sensing area are 50.8µm and 1.02mm
respectively. More features of the hot �lm are detailed in Table. E.1. The probe is mounted
on an positioning system and connected to the TFA-300.

Table E.1: Features of hot �lm model 1201-20 TSI ( http://www.tsi.com/uploadedFiles/
Product_Information/Literature/Catalogs/Hotwire_Catalog_2980465.pdf).

Material
Maximum sustained Maximum sensor Temperature Distance

ambient operating coe�cient of between
temperature temperature resistance supports

Platinum 300 � 425 � 0.0024 �−1 1.65mm

http://www.tsi.com/uploadedFiles/Product_Information/Literature/Catalogs/Hotwire_Catalog_2980465.pdf
http://www.tsi.com/uploadedFiles/Product_Information/Literature/Catalogs/Hotwire_Catalog_2980465.pdf
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Figure E.3: Hot �lm model 1201-20 TSI ( http://www.tsi.com/uploadedFiles/Product_

Information/Literature/Catalogs/Hotwire_Catalog_2980465.pdf).

The entire system of constant temperature anemometer is depicted in Fig. E.4. Brie�y
the main function of constant temperature anemometer is to maintain the temperature of the
probe and thus keep its resistance Rop constant. Any variation of the �ow will induce a change
in the resistance Rop and then cause a small voltage change eb at ampli�er input. Finally, the
current out from the di�erential ampli�er changes the bridge voltage EB at output. Once the
temperature becomes stable, the �ow velocity can be indirectly measured from the resulting
tension.

Figure E.4: Schema of constant temperature anemometer, where EB: bridge volt-
age output, eb: small voltage change at ampli�er input, IP : current through sen-
sor, Rop: resistance of sensor at operating temperature, R1, R2, RB: bridge resis-
tor (http://www.tsi.com/uploadedFiles/Product_Information/Literature/Catalogs/
Hotwire_Catalog_2980465.pdf).

Calibration is an important step for the accuracy of the measurements. The instrument
for the calibration of hot �lm is illustrated in Fig. E.5. The compressed air �ow measured
by a �ow meter. The �ow goes through a tube which consists of a diverging portion, a 2m
uniform PVC tube with diameter 10cm and a converging portion with diameter 2.14cm at
outlet. More details can be found in Ref. [42].

The hot �lm is positioned at the center of converging portion at 1mm distance from the
nozzle exit. The displacement is controlled by a user-de�ned matrix implemented in LabView
7 (National Instruments). The speed signal is recorded by hot �lm with frequency 10kHz for
10s at every position. Volume �ow rate is acquired with sampling frequency 100Hz. In order
to avoid any �ow disturbances and temperature variation the whole setup except for the air
compressor is arranged in a con�ned room with an air conditioning system. To account for

http://www.tsi.com/uploadedFiles/Product_Information/Literature/Catalogs/Hotwire_Catalog_2980465.pdf
http://www.tsi.com/uploadedFiles/Product_Information/Literature/Catalogs/Hotwire_Catalog_2980465.pdf
http://www.tsi.com/uploadedFiles/Product_Information/Literature/Catalogs/Hotwire_Catalog_2980465.pdf
http://www.tsi.com/uploadedFiles/Product_Information/Literature/Catalogs/Hotwire_Catalog_2980465.pdf
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the drift in room temperature Ta based on the reference ambient temperature, Ta,r = 21.1oC,
the measured output bridge voltages Emeas are corrected to Ecor using the approach adopted
by Kanevce [61], where Tf denotes the air�ow temperature:

x

z

y air
compressor

200cm

10cm hot film

IFA-300

18.25cm

positioning system

17.18cm

(a)

(b) (c)

Figure E.5: a) Overview the setup of calibration for hot �lm. b) cross sectional view of the
tube arranged in the diverging portion. c) cross sectional view of the converging tube.

Ecor = Emeas

(
Tf − Ta,r
Tf − Ta

)1/2

(E.1)

The voltages are plotting with a �fth order polynomial curve �t. The calibration procedure
is outlined in Ref. [42]. Results are shown in Fig. E.6, which include the ideal velocity (+) by
considering the exit centerline velocity to be equal to the bulk velocity [40, 61], the calibration
velocity (x) and the �tting velocity (o). The main calibration error is due to the experimental
error on the measured volume �ow rates (< 2% of its recording).

Figure E.6: Single hot �lm calibration.

An illustration of the home-made one-dimensional positioning system used to position the
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hot �lm sensor to obtain transverse and longitudinal velocity pro�les is given in Fig. E.7. The
position is determined by means of a step motor so that the precision is determined by the
number of steps (200 steps) in a rotation. The precision based on the step motor is 0.01mm.
The accuracy was validated up to 0.1mm due to the limitation of the used measurement
instrument.

Figure E.7: Illustration of the home-made one-dimensional positioning system used to measure
transverse and longitudinal velocity pro�les.





Appendix F

Velocity pro�les and �ow visualization

F.1 Measured longitudinal pro�les

Measured longitudinal pro�les are presented in Fig. F.1, Fig. F.2, Fig. F.3 and Fig. F.4.

F.2 Transverse pro�les

F.2.1 Measured transverse pro�les

Measured transverse pro�les are presented in Fig. F.5 and Fig. F.6

F.2.2 Modeled and measured transverse pro�les

In the previous chapter 5 the comparison of modeled and measured transverse pro�les along
the 'major' and 'minor' axis of constriction was presented only for rectangular shape, in the
current section the comparison of constrictions with other shapes are shown in F.7vF.14.

In general, for both the `major' and `minor' axis, it is observed that the modeled and mea-
sured transverse pro�les matches well within the boundary layer. However, since the modeled
pro�le is fully developed, it tends to overestimate the velocity for the core �ow enveloped
by the boundary layers. Given that the simpli�ed model does not accounts for complex �ow
dynamics, which based on the presented experimental results suggested to contribute to the
�ow development � such as vortex generation, vortex interaction or turbulence � at �rst sight
the comparison is surprisingly good.

The estimated error between modeled and experimental velocities de�ned by (5.5), is
illustrated in Fig. F.15. The error vary from 33% to 85% and from 12% to 57% of the bulk
velocity at the center of 'major' and 'minor' axis respectively. It is seen that the error tendency
depends on the cross section shape and the volume �ow rate and The variation of the error
with the volume �ow rate is more pronounced fore velocity pro�les along the `major' axis than
for the `minor' axis. The precision is mainly depend on the unaccounted complex phenomena
in model and the undeveloped �ow due to the limit of the length of the upstream pipe and
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(a) circle (b) ellipse

(c) rectangle (d) square

(e) equilateral triangle (f) isosceles triangle

(g) small circular section (h) large circular section

Figure F.1: Measured near �eld normalized longitudinal mean velocity pro�les u/u0 along the
centerline of the jet for cross section shapes shown in Fig. 5.1 as a function of volume �ow
rate Q (5, 20, 35, 50, 70 or 100l/min) for sharp edges at the constriction inlet (label C of
Table 5.4). u0 denotes the initial velocity of the jet along the centerline.
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(a) circle (b) ellipse

(c) rectangle (d) square

(e) equilateral triangle (f) isosceles triangle

(g) small circular section (h) large circular section

Figure F.2: Measured near �eld normalized longitudinal root mean square velocity pro�les
urms/u0 along the centerline of the jet for cross section shapes shown in Fig. 5.1 as a function
of volume �ow rate Q (5, 20, 35, 50, 70 or 100l/min) for sharp edges at the constriction inlet
(label C of Table 5.4). u0 denotes the initial velocity of the jet along the centerline.
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(a) circle (b) ellipse

(c) rectangle (d) square

(e) equilateral triangle (f) isosceles triangle

(g) small circular section (h) large circular section

Figure F.3: Measured near �eld normalized longitudinal mean velocity pro�les u/u0 along the
centerline of the jet for cross section shapes shown in Fig. 5.1 as a function of volume �ow
rate Q (5, 20, 35, 50, 70 or 100l/min) for a single grid placed immediately upstream from the
constriction inlet (label D of Table 5.4). u0 denotes the initial velocity of the jet along the
centerline.
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(a) circle (b) ellipse

(c) rectangle (d) square

(e) equilateral triangle (f) isosceles triangle

(g) small circular section (h) large circular section

Figure F.4: Measured near �eld normalized longitudinal root mean square velocity pro�les
urms/u0 along the centerline of the jet for cross section shapes shown in Fig. 5.1 as a function
of volume �ow rate Q (5, 20, 35, 50, 70 or 100l/min) for a single grid placed immediately
upstream from the constriction inlet (label D of Table 5.4). u0 denotes the initial velocity of
the jet along the centerline.
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(a) circle (b) ellipse

(c) rectangle (d) square

(e) equilateral triangle (f) isosceles triangle

(g) small circular section (h) large circular section

Figure F.5: Measured normalized transverse mean velocity pro�les u/umax at the exit of the
constriction for cross section shapes shapes shown in Fig. 5.1 as a function of volume �ow rate
Q (5, 20, 35, 50, 70 or 100l/min) for sharp edges at the constriction inlet (label C of Table 5.4).
umax denotes the maximum velocity of each volume �ow rate for each cross section shape.
The measure direction is indicated by full arrow shown in Fig. 5.3a and is along the major
axis.
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(a) circle (b) ellipse

(c) rectangle (d) square

(e) equilateral triangle (f) isosceles triangle

(g) small circular section (h) large circular section

Figure F.6: Measured normalized transverse mean velocity pro�les u/umax at the exit of the
constriction for cross section shapes shapes shown in Fig. 5.1 as a function of volume �ow rate
Q (5, 20, 35, 50, 70 or 100l/min) for sharp edges at the constriction inlet (label C of Table 5.4).
umax denotes the maximum velocity of each volume �ow rate for each cross section shape.
The measure direction is indicated by dashed arrow shown in Fig. 5.3a. Note that for a square
it denotes the diagonal direction and not the minor axis.
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constricted portion. Anyway, the discrepancy between modeled and experimental values is
quanti�ed.

(a) Q=5l/min (b) Q=20l/min

(c) Q=35l/min (d) Q=50l/min

(e) Q=70l/min (f) Q=100l/min

Figure F.7: Comparison of modeled and experimental assessed velocities normalized by the
maximum modeled velocity umaxmod at the exit of constriction for major axis of circular shape.
Volume �ow rate are assessed for 5, 20, 35, 50, 70 and 100l/min. Velocity estimated from
transverse pro�les using spatial step ∆y = 0.5mm is labeled "exp". The modeled results is
denoted as "mod" and ū is the bulk velocity. The width of the constricted portion along major
axis is labeled 'w'.

F.3 Flow visualization
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Table F.1: Ratio δexp/δmod = umaxexp /u
max
mod resulting from the threshold criterion illustrated in

Fig. 5.29 for a threshold value of 100% for transverse pro�les along the `major' and `minor'
axis of all assessed cross sections. The uncertainty due to the spatial discretization (spatial
step) is indicated. Bold volume �ow rates indicate an overall change of tendency.

D [mm]
Q [l/min] position

tendency
5 10 15 20 35 50 70 100 error [%]

major axis

cl 10 54 - - 54 54 55 59 67 2.5 →↗

sq 8.9 62 62 61 60 - - - - 3 ↘

lcs 8.4 63 62 61 60 59 - - - 2 ↘

tr 7.8 62 60 58 58 56 - - - 2 ↘

scs 7.2 61 60 57 57 57 - - - 1.5 ↘

ntr 7.0 60 59 58 46 45 - - - 1.5 ↘

el 6.7 72 70 68 67 65 64 67 82 1 ↘↗

re 6.6 81 - - 77 75 75 79 100 1.5 ↘↗

minor axis

sq 8.9 64 63 62 60 - - - - 2 ↘

lcs 8.4 73 73 71 70 69 - - - 2 ↘

tr 7.8 71 71 69 68 66 - - - 2 ↘

scs 7.2 94 94 92 92 96 - - - 3 ↘↗

ntr 7.0 97 93 97 75 75 - - - 3 ↘↗↘

el 6.7 72 70 68 66 63 65 69 80 5.5 ↘↗

re 6.6 83 - - 79 74 72 77 91 6.5 ↘↗
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(a) Q=5l/min (b) Q=10l/min

(c) Q=15l/min (d) Q=20l/min

(e) Q=35l/min (f) Q=50l/min

(g) Q=70l/min (h) Q=100l/min

Figure F.8: Comparison of modeled and experimental assessed velocities normalized by the
maximum modeled velocity umaxmod at the exit of constriction for major axis of elliptic shape.
Volume �ow rate are assessed for 5, 10, 15, 20, 35, 50, 70 and 100l/min. Velocity estimated
from transverse pro�les using spatial step ∆y = 0.5mm is labeled "exp". The modeled results
is denoted as "mod" and ū is the bulk velocity. The width of the constricted portion along
major axis is labeled 'w'.
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(a) Q=5l/min (b) Q=10l/min

(c) Q=15l/min (d) Q=20l/min

(e) Q=35l/min (f) Q=50l/min

(g) Q=70l/min (h) Q=100l/min

Figure F.9: Comparison of modeled and experimental assessed velocities normalized by the
maximum modeled velocity umaxmod at the exit of constriction for minor axis of elliptic shape.
Volume �ow rate are assessed for 5, 10, 15, 20, 35, 50, 70 and 100l/min. Velocity estimated
from transverse pro�les using spatial step ∆y = 0.5mm is labeled "exp". The modeled results
is denoted as "mod" and ū is the bulk velocity. The height of the constricted portion along
minor axis is labeled 'h'.
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(a) Q=5l/min (b) Q=10l/min

(c) Q=15l/min (d) Q=20l/min

(e) Q=5l/min (f) Q=10l/min

(g) Q=15l/min (h) Q=20l/min

Figure F.10: Comparison of modeled and experimental assessed velocities normalized by the
maximum modeled velocity umaxmod at the exit of constriction for: (a-d) major axis and (e-
h) diagonal axis of square shape. Volume �ow rate are assessed for 5, 10, 15 and 20l/min.
Velocity estimated from transverse pro�les using spatial step ∆y = 0.5mm is labeled "exp".
The modeled results is denoted as "mod" and ū is the bulk velocity. The width and diagonal
length of the constricted portion along major and minor axis is labeled 'w' and 'Ldia'.
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(a) Q=5l/min (b) Q=10l/min (c) Q=15l/min

(d) Q=20l/min (e) Q=35l/min

(f) Q=5l/min (g) Q=10l/min (h) Q=15l/min

(i) Q=20l/min (j) Q=35l/min

Figure F.11: Comparison of modeled and experimental assessed velocities normalized by the
maximum modeled velocity umaxmod at the exit of constriction for: (a-e) major axis and (f-j)
minor axis of equilateral triangle. Volume �ow rate are assessed for 5, 10, 15, 20 and 35l/min.
Velocity estimated from transverse pro�les using spatial step ∆y = 0.5mm is labeled "exp".
The modeled results is denoted as "mod" and ū is the bulk velocity. The width and height of
the constricted portion along major and minor axis is labeled 'w' and 'h'.
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(a) Q=5l/min (b) Q=10l/min (c) Q=15l/min

(d) Q=20l/min (e) Q=35l/min

(f) Q=5l/min (g) Q=10l/min (h) Q=15l/min

(i) Q=20l/min (j) Q=35l/min

Figure F.12: Comparison of modeled and experimental assessed velocities normalized by the
maximum modeled velocity umaxmod at the exit of constriction for: (a-e) major axis and (f-j)
minor axis of isosceles triangle. Volume �ow rate are assessed for 5, 10, 15, 20 and 35l/min.
Velocity estimated from transverse pro�les using spatial step ∆y = 0.5mm is labeled "exp".
The modeled results is denoted as "mod" and ū is the bulk velocity. The width and height of
the constricted portion along major and minor axis is labeled 'w' and 'h'.
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(a) Q=5l/min (b) Q=10l/min (c) Q=15l/min

(d) Q=20l/min (e) Q=35l/min

(f) Q=5l/min (g) Q=10l/min (h) Q=15l/min

(i) Q=20l/min (j) Q=35l/min

Figure F.13: Comparison of modeled and experimental assessed velocities normalized by the
maximum modeled velocity umaxmod at the exit of constriction for: (a-e) major axis and (f-
j) minor axis of small circular sector. Volume �ow rate are assessed for 5, 10, 15, 20 and
35l/min. Velocity estimated from transverse pro�les using spatial step ∆y = 0.5mm is labeled
"exp". The modeled results is denoted as "mod" and ū is the bulk velocity. The width and
height of the constricted portion along major and minor axis is labeled 'w' and 'h'.
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(a) Q=5l/min (b) Q=10l/min (c) Q=15l/min

(d) Q=20l/min (e) Q=35l/min

(f) Q=5l/min (g) Q=10l/min (h) Q=15l/min

(i) Q=20l/min (j) Q=35l/min

Figure F.14: Comparison of modeled and experimental assessed velocities normalized by the
maximum modeled velocity umaxmod at the exit of constriction for: (a-e) major axis and (f-
j) minor axis of large circular sector. Volume �ow rate are assessed for 5, 10, 15, 20 and
35l/min. Velocity estimated from transverse pro�les using spatial step ∆y = 0.5mm is labeled
"exp". The modeled results is denoted as "mod" and ū is the bulk velocity. The width and
height of the constricted portion along major and minor axis is labeled 'w' and 'h'.
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(a) circle (b) ellipse

(c) square (d) equilateral triangle

(e) isosceles triangle (f) small circular sector

(g) large circular sector

Figure F.15: Illustration of the estimated error between modeled and experimental velocities
for shapes except rectangular shape. The error along the center of major axis is labeled as
"major" and so is the "minor" for minor axis. Notice that the measured in diagonal axis of
square is labeled as "dia".
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(a) circle (b) ellipse

(c) rectangle (d) square

(e) equilateral triangle (f) isosceles triangle

(g) small circular section (h) large circular section

Figure F.16: Illustration of the visualization at major axis for all cross section shapes when
volume �ow rate equal to 50l/min.
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(a) circle (b) ellipse

(c) rectangle (d) square

(e) equilateral triangle (f) isosceles triangle

(g) small circular section (h) large circular section

Figure F.17: Illustration of the visualization of centerline �ow pro�le at major axis for all
cross section shapes with one grid plate placed at the inlet of the constricted portion when
volume �ow rate equal to 5l/min.
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(a) ellipse (b) rectangle

(c) equilateral triangle (d) isosceles triangle

(e) small circular section (f) large circular section

Figure F.18: Illustration of the visualization of centerline �ow pro�le at minor axis for all
cross section shapes with one grid plate placed at the inlet of the constricted portion when
volume �ow rate equal to 5l/min.
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(a) Q=5l/min (b) Q=10l/min

(c) Q=15l/min (d) Q=20l/min

(e) Q=35l/min (f) Q=50l/min

(g) Q=70l/min (h) Q=100l/min

Figure F.19: Visualization of the �ow pro�les along the centerline of major axis of equilateral
triangle at a distance from 0cm to 21cm of the exit. One grid plate is placed at the inlet of
the constricted portion. Volume �ow rate equal to 5, 10,15, 20, 35, 50, 70 and 100l/min are
experimentally assessed.
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(a) Q=5l/min (b) Q=10l/min

(c) Q=15l/min (d) Q=20l/min

(e) Q=35l/min (f) Q=50l/min

(g) Q=70l/min (h) Q=100l/min

Figure F.20: Visualization of the �ow pro�les along the centerline of major axis of circular
shape at a distance from 0cm to 21cm of the exit. Volume �ow rate equal to 5, 10,15, 20, 35,
50, 70 and 100l/min are experimentally assessed.
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Unsteady �ow

G.1 Modeling

In the previous work the main work is focus on the in�uence of the cross section shape on
steady �ow, in the current the unsteady �ow is assessed by extend the �ow model described
in chapter 4. Experimental data are presented in order to assess the in�uence of cross section
shape for unsteady �ow. The model outcome is validated.

Consider the streamwise area variation consists of a uniform constriction, with �xed
length L = 25mm and varying cross section shape, which is inserted in a uniform tube of
internal diameter 25mm as schematically depicted in Fig. G.1. As the abrupt expansion is
characterized by a sharp trailing edge, the streamwise position of �ow separation xs is at
the constriction end (xs = x3). The pressure downstream from the �ow separation point is
assumed to be zero so that Pd = 0 and the model outcome remains constant for x ≥ xs.
Consequently, imposing the upstream pressure P0 is equivalent to imposing the driving
pressure gradient P0 − Pd.

jet
�ow x

P0 Pd = 0

x2x3x1 x4

xs = x3

L = 25mm

Figure G.1: Flow through an abrupt expansion.

For a given �uid and under assumption of a laminar and incompressible �ow the streamwise
momentum equation of the governing Navier-Stokes equations is simpli�ed using additional
assumptions. With driving pressure gradient dP/dx, bulk velocity u, cross section area A,
volume �ow rate Q, velocity u(x, y, z), kinematic viscosity ν (1.5 × 10−5m2/s for air) and
density ρ (1.2kg/m3 for air), applying conservation of volume �ow rate dQ

dx = 0, the following
simpli�ed �ow model accounts for both viscosity and �ow inertia and depends therefore on
both shape and area of cross section:

217
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du

dt
− Q2

A3

dA

dx
= −1

ρ

dP

dx
+ ν

(
∂2u

∂y2
+
∂2u

∂z2

)
(G.1)

Making a 2D assumption allows to drop the �rst term within brackets resulting in the
quasi-one dimensional �ow model, which is further labeled Bernoulli-Poiseuille �ow (BP) [25].
The �rst term at the left hand side accounts for �ow unsteadiness. Note that in the current
work, unsteadiness is due to varying the upstream �ow conditions, i.e. P0(t), whereas the
cross section area is time independent. Thus

P (x, t) = P0(t)− ρ
∫ x

0

du

dt
dx− ρQ2

2

(
1

A2(x)
− 1

A2
0

)
+ µ

∫ x

0

(
∂2u

∂y2
+
∂2u

∂z2

)
dx (G.2)

The bulk Reynolds number Re = QD
νA and Strouhal number Sr = f0DA

Q are de�ned using
volume �ow rate Q, hydraulic diameter D and characteristic frequency f0. The experimental
setup is described in Fig. 5.9b for Ld = 0cm. unsteady �ow is assessed for Q = 5, 20 and
150l/min with driving frequency f0 = 500Hz.

G.2 Results

Measured pressures P0(t) and P1(t) in case of a circular and elliptic cross section shape are
illustrated in Fig. G.2. The unsteady oscillatory �ow P0(t) with period T = 1/f0 illustrates
�ow for Sr ≈ 1 and Sr < 1. It is seen that the mean pressure value within the constriction
varies as function of the cross section shape, e.g. the ratio observed for the elliptic section
is greater than the one observed for the circular cross section. In addition, the amplitude
of the pressure in the constriction around its mean value, P1(t) − P1(t), observed for the
elliptic section is greater than the one observed for the circular cross section. Moreover, a
phase di�erence between the upstream pressure P0 and constriction pressure P1 is observed,
which is seen to depend on both Reynolds number and cross section shape as summarized in
Table G.1. As for the unsteady �ow, further research is needed to fully determine the �ow
dynamics.

Table G.1: Normalized phase di�erence of P0(t) and P1(t).

Q[l/min]
t
T [−]

cl re el sq tr ntr

5 0.08 0 0.02 0.98 0.98 0.02
20 0.10 0.02 0.02 0.98 0.98 0.04
150 0.04 0.02 0.94 0.90 0.94 0.92

Fig. G.3 illustrates the scaled upstream pressure (P0=1000Pa at time t=0s) and corre-
sponding model outcome while accounting for the cross section. The in�uence of the unsteady
term is apparent.
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(a) Q = 20l/min, Re ≈ 2000 (b) Q = 150l/min, Re ≈ 1.4× 104

Figure G.2: Measured pressures P0 and P1 for a circular (cl) and elliptic (el) cross section.

Figure G.3: Experimental values of P1 for steady and unsteady �ow.

G.3 Conclusion

The in�uence of the cross section shape on unsteady �ow through a constricted channel is
shown for modeled outcome and validated on experimental data.





Résumé � abstract
La modélisation des phénomènes physiologiques induits par un écoulement, tels que
l'écoulement sanguin au travers d'une sténose ou l'écoulement d'air lors de la production de
parole, repose souvent sur des théories quasi-unidimensionnelles ou bi-dimensionnelles. Cepen-
dant, il est établi que le développement des couches limites dépend de la section transversale.
Le but de cette thèse est de modéliser, simuler et caractériser l'importance potentielle de la
section transversale sur les écoulements laminaires, contrôlés en pression, en l'absence ou en
présence d'une constriction. Des coordonnées de translation sont utilisées pour obtenir des
solutions pour des écoulement visqueux au travers d'une section de forme arbitraire. Cette
paramétrisation est appliquée à la résolution des équations physiques pour des formes à deux
et à trois dimensions. Un modèle d'écoulement simpli�é quasi-tridimensionnel, qui prend en
compte les pertes dissipatives par convection, la viscosité et la forme de la section est présenté
et appliqué à la description de l'écoulement le long d'une sténose. Des données expérimentales
et issues de simulations numériques sont collectées a�n de caractériser l'in�uence de la forme
de la section transversale dans le cas d'une constriction. simulation numérique sont comparées.
Mots clés: écoulement; modèle analytique; simulation numérique; sténose; parole

Abstract � abstract
Physical models of physiological �ow-induced phenomena, such as blood �ow through a steno-
sis or air �ow during human speech production, often rely on a quasi-one-dimensional or
two-dimensional �ow model, so that details of the cross section shape are neglected. Never-
theless, boundary layer development is known to depend on the cross section shape. The aim
of this thesis is to model, simulate and characterize the potential impact of the cross section
shape for pressure-driven laminar channel �ow without and with constriction. Stretched co-
ordinates are introduced to obtain viscous �ow solutions for channels with an arbitrary cross
section. The proposed cross section shape parametrization is applied to solve physical equa-
tions for two-dimensional and three-dimensional shapes. A simpli�ed quasi-three-dimensional
�ow model, which accounts for kinetic losses, viscosity and the cross section shape, is pre-
sented and applied to describe the �ow through a stenosis. Finally, �ow data are gathered
experimentally and numerically in order to characterize the in�uence of the cross section shape
in the case of a constricted channel. Modeled, experimental and numerical data are compared.
Keywords: laminar viscous �ow; pressure-driven channel �ow; analytical �ow model; im-
mersed boundary method; stenosis; speech production
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