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Abstract

Doctor of Philosophy

Graphene: FET and metal contact modeling

by Giancarlo Vincenzi

Nine years have passed since the discovery of graphene, all of them dense of research

works and publications that, piece by piece, shed more light on the properties of this

extraordinary material. With more understanding of its best qualities, a more precise

prospect of the applications that would better profit from its use has been defined.

High Frequency devices, like mixers and power amplifiers, and Flexible and Transparent

electronics are the most promising fields.

In those fields great attention is devoted to two subjects: the downscaling of the dimen-

sions of the graphene transistor, in order to reduce the carriers travel time and attain

increasingly larger fractions of ballistic electronic transport; and the optimization of the

contact parasitics. Both are highly beneficial to the maximization of the device’s RF

Figures Of Merit.

In this thesis, Two models have been developed to address such topics: the first served

both the quasi-ballistic large-area graphene and graphene nanoribbon transistors. It

demonstrated the correlation between ballistic and diffusive electron transport and de-

vice length, and extracted the large signal DC currents and transconductances. The

second reproduced the high-frequency conduction through graphene and its contact par-

asitics. The latter also motivated the development and fabrication of a RF test bed on a

dedicated plastic technology, enabling the RF characterization of the contact impedance

and of the specific interfacial impedance of monolayer CVD graphene.
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Chapter 1

Introduction

Graphene, in its simplest definition, is a single atomic sheet isolated out of the graphitic

stack. In each one of these sheets, carbon atoms occupy the vertices of hexagons in

what is sometimes called the honeycomb lattice. They form a very strong σ bond with

the three adjacent atoms through sp2 hybridization. The remaining 2p orbital is then

available to form a π bond with adjacent atoms. The so formed extended π-electron

system allows for the electronic conduction in graphene and determines its electrical

and optical properties [1]. Graphene is one of the many allotropes in which molecular

carbon can be found and some of them are related to its very structure. Fullerenes and

Carbon Nanotubes (CNT) are hollow structures where the graphene sheet is rolled on

itself or around an axis (the tube axis, orthogonal to the chiral vector), while graphite is

the result of stacking graphene planes in the hexagonal (AB) or rhombohedral (ABC)

order. The characteristics of those allotropes thus derive directly from graphene. The

strength of its sp2 bonds and its consequent chemical stability are the ground for its

excellent mechanical properties: a Young’s modulus of 1 TPa [2], which is more than

the double of silicon carbide [3], and a breaking strength virtually 100 times larger than

a steel film of the same thickness.

Electrical properties of graphene are just as good as, or even more exciting than, me-

chanical ones: electron mobilities beyond 2.5 × 105 cm−2V−1s−1 have been found at

room T, four times than state of art III-V semiconductors [4] and 200 times that of Si,

thanks to the reduced electron-phonon interaction [5] when the substrate is carefully

chosen [6] or eliminated by suspension technology [7]. These high values are associated

with long distances between scattering events for traveling electrons: mean free paths

larger than 1µm have been reported [6], allowing the exploration of room-temperature

ballistic transport electronics with existing technological capabilities. Higher values of

mobilities were obtained for graphene suspended devices at liquid helium temperatures

1



2 Chapter 1 Introduction

(more than 1.0× 106 cm−2V−1s−1, [8]), but not yet as good as compound semiconduc-

tors (35× 106 cm−2V−1s−1 has been achieved, [9]), supporting and limiting the interest

in room temperature operation.

Graphene’s performance in electron and thermal conduction are full of records: electron

saturation velocities demonstrated experimentally and theoretically up to 7× 107 cm/s

[10],[11], much higher than both peak and high-field saturation velocities for Si and

III-V semiconductors; current density as large as 108 A/cm2 [12], five orders of magni-

tude higher than copper interconnects; in-plane thermal conductivity higher than 3,000

Wm−1K−1 [13], larger than single-crystal diamond and ten times larger than copper.

Finally, optical properties of graphene are very peculiar too: an optical opacity of 2.3%

over a very broad spectrum, practically wavelength-independent in the range between

far-infrared and blue light [14]. Moreover, compared with other semiconductors used as

saturable absorbers, graphene absorbs more photons per unit surface and unit thickness,

meaning greater efficiency per volume and greater chances to saturate with high-intensity

light pulses.

However, graphene’s properties are such for the isolated single layer, and stacking more

layers on top of each other gives mere graphite as a result, a quite different material from

graphene. This means that the great majority of physical properties that depend also on

the thickness of the material, such as the sheet resistance, the maximum current density,

and the optical absorptivity per surface, show values that, even when comparable with

established technologies, are not excellent.

Graphene has been shown to really be a unique material, with many excellent proper-

ties that cannot be found altogether in one material alone. However, the unsatisfying

values of other essential properties hinder its application as a replacement for every elec-

tronic technology developed up to date: In high frequency electronics, graphene will not

likely replace Si or III-V semiconductors in the short term. The domain of flexible and

transparent electronics instead is quickly gaining momentum, since today’s most used

material, Indium-Tin Oxide, is increasingly expensive and difficult to find. Graphene,

with its superior mechanical and optical properties has already attracted the attention

of consumer electronics giants like Samsung and Sony [15]. Both high frequency and

flexible electronics domains need an accurate study of graphene’s contact parasitics. Fi-

nally, there’s an entirely new domain that can be explored and that can pave the way

for millimeter waves and THz electronics, and that is room-temperature ballistic elec-

tronics [16]. This thesis will scrutinize the effects of ballistic transport and the contact

parasitics, respectively on field effect transistors and interconnects.
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1.1 Thesis structure

Chapter 2 will introduce a collection of fundamental concepts about the physics of

graphene. This will be used to review and understand the state of the art on graphene

modeling. Two main subjects will be discussed: in the first part a survey of the modeling

of graphene field effect transistors in DC will be done; in the second part, the modeling

of graphene passive structures will be reviewed. The metal contact and the electronic

propagation in graphene are considered as two deeply connected aspects of the same

subject, and their analysis will be developed in both DC and RF.

In Chapter 3 the DC model of a graphene nanoribbon FET will be presented, along with

the modifications needed to extend it to large-area graphene devices.

In Chapter 4 an RF structure, a CPW line, loaded with graphene, will be analyzed by

means of an equivalent circuit for graphene and electromagnetic modeling of the line.

This will allow for the extraction of the metal/graphene contact impedance.

In Chapter 5 the design of an improved RF structure with a set of deembedding standards

will be shown, along with measurements, analysis of the EM data and retro-simulations

results. This will provide a low-loss access fixture for the RF characterization of graphene

and deembedding of data. The graphene sheet and contact impedance will be measured

and analyzed in both low and high frequency.

In the Conclusions chapter the innovations to the state of art contained in this manuscript

will be resumed, and possible new directions of work will be outlined.
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Chapter 2

Literature Review

In this chapter some fundamentals on graphene technology and physics will be presented.

The current state of the art in graphene DC and RF modeling will be reviewed, as well

as some recent studies on the graphene/metal contact. Those subjects will be elemental

parts of a larger concept: a graphene universal model, from DC to RF that includes

metal contact parasitics.

2.1 Graphene Technology

Graphene can be obtained from various sources achieving different levels of quantity

and quality. Moreover, each source allows for different processes, devices and finally

applications that can be targeted.

2.1.1 Graphene Isolation and synthesis

The first report on the isolation of graphene was published in 2004 in a seminal paper

from K. Novoselov and A. Geim [1]. Their simple but very effective method of the

scotch-tape, associated with the optical identification on 285 nm SiO2 substrates, gave

virtually anybody access to a breakthrough research subject as graphene, without the

need of important resources to acquire and process the material. Although the circum-

stances are now changed, for the first few years the mechanical exfoliation of graphene

was the preferred method to get sparse, small but high-quality graphene flakes. The

graphite source can be natural or artificial (HOPG or Kish). The flake size achievable

would rarely be larger than 100 µm, with the exception of those sold by commercial

firms like Graphene Industries that can reach one millimeter in length. This is anyway

a very small value compared to artificially grown graphenes, making its price very high.

5
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Moreover, these flakes are sparsely distributed over the wafer and it’s a very human-

intensive operation to look for them. This prevents the fabrication of a batch of devices

on the same wafer, limiting strongly the number of devices that can be fabricated within

reasonable time and resources. The flake is a continuous region of one or few layers of

graphene. The relatively low density of defects within the crystallites and their large

size in exfoliated graphene compared to other graphene forms, like CVD graphene, are

the origin of its high quality in terms of electron mobility, with mobility values typically

around 2×104 cm2V −1s−1 on SiO2 substrates, while values of 2.5×105 cm2V −1s−1 have

been reached at room temperature on hexagonal-BN (h-BN) substrates [2]. Similar val-

ues have been obtained for suspended exfoliated graphene [3], eliminating all substrate

interaction, but the high complexity of such a technology hinders any realistic applica-

tion. Easy access and high quality made this graphene source the most preferred for lab

research and small-number prototype fabrication.

Graphene from SiC decomposition is a high-quality graphene source discovered from

the group of W. de Heer [4]. It is based on the thermal decomposition of SiC by Si

sublimation and the segregation of C atoms on graphitic layers; in early reports is also

called epitaxially grown graphene. The C segregation can happen on both the faces

of the wafer: the (0001) and the (0001) one, respectively the Si-face and the C-face.

Typical temperatures and pressures are 1600◦ and 100 mbar for Si-face and 1450◦ and

1e−4 mbar for C-face, both in argon atmosphere [5]. This thermal process results in the

formation of few-layer graphene on the Si-face and of a thicker graphene stack on the

C-face, although in some cases high-quality graphene monolayer have been obtained on

the C-face too [6]. Because of the Si desorption the surface of SiC forms narrow terraces

of graphene a few micrometers wide, connected by steps with higher electrical resistance.

This type of graphene allows for both batch processing and high quality samples, but

has the inconvenient of the very high cost of the pristine SiC wafers and their small

size compared to those normally used in electronic industry. Moreover, SiC is a very

hard and difficult to process material. A bandgap around 260 meV is associated with

few-layer graphene on SiC; this value appear to depend inversely on the sample thickness

and should reach zero for four layers [7], suggesting some interaction from the underlying

substrate. Other reports correlate the bandgap to the strain induced by the substrate

[8]. Anyhow, its value is too small to allow for the complete switch-off of the transistor

[9]. The electron mobility reaches 3.0 × 104 cm2V −1s−1 [10], although it depends on

the alignment of the direction of transport with substrate terraces [11]. SiC graphene

is then a high-cost, high-performance material for batch fabrication of devices, though

only for niche applications like high-frequency electronics.

Chemical Vapor Deposition (CVD) of polycrystalline graphene is based on the decom-

position at 1000◦ of a carbon precursor (methane or ethanol) and segregation of carbon
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atoms on a foil of catalyst, a transition metal with low solubility for carbon (in most

cases Cu) with a very smooth surface [12]. In order to be used, graphene must be sep-

arated by the catalyst: a transfer polymer (typically PMMA) is spun on graphene to

provide an alternative substrate, the catalyst is etched away and graphene can then be

placed on any substrate desired; in some reports graphene is simply peeled off the metal

with a PDMS polymer allowing for the reuse of the catalyst [13], but the mechanical

stress of the peeling can break the graphene, especially in manual operation. Roll-to-

roll production has been demonstrated by Samsung in 2010 with the fabrication of a

30-inch graphene foil [14], and recently industrial-grade continuous production has been

performed by Sony, yielding a 100 m long monolayer graphene foil [15], revealing evident

interest from both industrial groups in developing transparent and flexible electronics.

Large continuous areas of graphene can be synthesized, but unfortunately the crystallite

size is rather small and the quality depends strongly on the roughness of the catalyst

metal. Mobility values of 0.5 and 2 m2V −1s−1 can be obtained respectively on SiO2

and h-BN substrates. Finally, the transfer step exposing graphene to PMMA or other

polymers pollutes its surface with polymer residues, affecting its electron mobility and

surface charge [16]. To date this technique, although cheaper than SiC decomposition,

still bares high costs because of energy consumption and the production of a smooth Cu

foil to be etched off. The optimization of the process can offer a cheap way to large-scale

production of graphene for photonics and displays applications.

Liquid-phase suspensions of graphene can be obtained through the exfoliation of graphite

in non-aqueous solvents [17] or water-based surfactants [18]. The surface tension of

these solvents favors an increase in the total area of the graphite material, making

it to split in thinner platelets. Particle size is typically below 1 µm. Another way

to obtain a liquid-phase graphitic material is to oxidize graphite to obtain graphene

oxide, which is easily soluble in water. It can be deposited as an ink and ultrasound

sonication allows its thinning down to monolayer. However, it must be reduced by

thermal treatment to obtain graphene, although a complete reduction of all oxide is

hardly achievable [19]. Laser scribing allows selective reduction of graphene oxide and

allows the interesting possibility to pattern Reduced Graphene Oxide (RGO) without

the use of lithography [20]. Graphene and RGO solutions provide low-quality but very

low cost techniques. This makes them attractive for applications like printed and flexible

electronics, electromagnetic shielding and supercapacitors.

In Fig. 2.1 a comparison between cost and quality of the type of graphene is shown. In

conclusion, depending on the application targeted it’s possible to select the most appro-

priate type of graphene, choosing upon the desired cost, performance and adaptability.
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Figure 2.1: Quality vs. Cost for graphene production. Adapted from [21].

2.2 Graphene Physics

The theoretical investigations on the band structure of graphene started in 1947 with

the work of Wallace [22]. At the time perfectly 2D crystals were considered unstable at

any physical temperature [23], and graphene was just considered as a building block for

graphite. The interest on the detailed physical properties came indeed from this latter

material, as it was used a few years earlier by Enrico Fermi as a neutron moderator in the

first nuclear pile. A quantum model of the electronic properties of monolayer graphene

was then necessary, and was later enriched by the Slonczewski-Weiss-McClure (SWM)

band structure of graphite [24],[25], derived within the tight-binding description up to

the second-nearest neighbor hopping term. A more detailed and updated formulation

can be found in [26]. Semi-classical physics have been used as the bare minimum to

understand the origin of graphene’s physical properties. A full-quantum description of

graphene, including Dirac fermions, spinors and Pauli matrices, although fascinating is

unfortunately out of scope for this manuscript, as well as the treatment of the effects of

magnetic fields. A more detailed explanation can be found in [27].

2.2.1 Electronic Bandstructure

The six atoms in the hexagonal honeycomb structure can be thought as a triangu-

lar lattice with a basis of two atoms per unit cell, residing respectively in the two

equivalent lattice sites A and B. The two lattice vectors are A0 = (a/2) (3, sqrt3)

and B0 = (a/2) (3,−sqrt3), where a ≈ 0.142 nm is the carbon-carbon distance. In
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momentum space the first Brillouin zone is delimited by the two inequivalent points

K = (2π/3a, 2π/(3sqrt3a)) and K′ = (2π/3a,−2π/(3sqrt3a)). These corners are

called Dirac points and the physics of electron and hole carriers in the close vicinity

of those points is of particular importance. The electronic band dispersion obtained for

the conduction (π∗) and the valence (π) bands, a low-energy approximation zeroing the

second-nearest neighbor hopping term, is usually written as follows:

E±(q) = ±~vF q +O(q/k)2 , (2.1)

where q is the translation of the momentum vector k at one Dirac point and its modulus

is small (q = |q| � 2π/a). This bandstructure has two remarkable properties: first, at

the Dirac points (q = 0) the conduction and valence band touch each other and intersect,

leaving no energy gap. This qualifies graphene as a zero band-gap semiconductor or, as

it is also called, a semi-metal. Second, the energy dispersion is linear with momentum,

resulting in a carrier group velocity constant over energy (vg ' vF , where vF ≈ 1e8 ms−1

is the Fermi velocity); moreover, the effective mass is directly proportional to momen-

tum and zeroes at zero energy [28]. This is a very different behavior than common

semiconductors, whose dispersion has a parabolic shape and carrier velocity is function

of the second derivative of the dispersion.

The density of states (DOS) is linear too; its value is zero at thermal equilibrium (E = 0)

and 0 K. Each point q is twofold spin degenerate (indicated with gs = 2) and, because

of the two inequivalent Dirac points K and K′, also called valleys, is also twofold valley

degenerate (gv = 2). The DOS then reads as follows [29]:

ρgr(E) =
gsgv

2π(~vF )2
|E| . (2.2)

At non-zero temperature, the energy integral of the DOS times the Fermi-Dirac distri-

bution results always in a non negligible electron sheet density. Moreover, graphene is

not perfectly planar and presents some corrugation on its surface (ripples), that how-

ever are the reason for which it can exist at non-zero temperatures without crumbling

or decomposing [30]. This should induce charge inhomogeneities in neutral graphene,

i.e. electron and hole puddles that increase the graphene conductivity at zero energy.

2.2.2 Consequences of the absence of bandgap

The most striking consequence of the lack of a bandgap is that a device made of graphene

cannot stop the current flow. One of the most important achievements of Si CMOS

technology, along with the ideal signal reconstruction, is the possibility to completely

switch off the logic element to reduce the power consumption of the IC. A bandgap at



10 Chapter 2 Literature Review

least comprised between 400 and 500 meV should be necessary for digital logic operation

[9], [31]. Recently, the importance of a transport gap has also been stated for RF

transistors [32], where devices don’t switch off completely but a high output resistance

r0, i.e. saturation behavior, is necessary to obtain a high intrinsic gain Gint = gmr0

[9]. Graphene FETs provide very high transconductance, but the lack of a well-defined

saturation region reduces heavily the advantage of a graphene power amplifier.

A few methods exist to open a gap in the bandstructure of graphene, while some device

concepts other than the conventional FET allowed for a remarkable ION/IOFF ratio.

The first, perhaps most obvious, way to create a bandgap is to localize the electronic

wavefunction by reducing the lateral size of the Graphene Nanoribbon (GNR), down

to a few nanometers or tens of nanometers, obtaining a quasi-1D structure. The small

DOS and the reduced dimensions of the GNR nanotransistor enhanced ballistic quan-

tum transport, making graphene competitive with carbon nanotubes and III-V HEMTs.

GNRs are very similar to carbon nanotubes, with the difference that a CNT has peri-

odic boundary conditions. The confinement gap typically scales as the reciprocal of

the width (1/W ), depending on the crystallographic direction, i.e. the edge [33]: con-

versely to CNTs, zigzag GNRs are always metallic while armchair GNRs result in three

families, two of which semiconducting and one metallic, depending on the width. The

inverse proportionality of the bandgap with the width has been validated experimen-

tally with values reaching 300 meV for ribbons smaller than 30 nm, but without any

decisive evidence of a dependence on crystallographic direction [34]. Moreover, defective

edges and charge puddles alter the transport properties of the nanoribbon, eventually

fragmenting it in a collection of quantum dots, making the transport gap to include con-

ductance peaks instead of a homogeneous switch-off behavior [35]–[37]. Edge disorder

also perturbs heavily the mobility, which is the main advantage of graphene over Si [38].

However, the need for a saturating behavior has pushed researchers to pattern graphene

in reduced-width strips in high-frequency mixers [39] and amplifiers [40]. Ribbons of

100 nm in the first case and 50 nm in the second one allowed to increase the ION/IOFF

ratio and to improve RF Figures of Merit (FOM) as fmax.

A particular kind of bilayer graphene (BLG), the Bernal stacked one, has the interesting

property of creating a small gap between the parabolic conduction and valence bands

(sometimes referred to as a “Mexican hat”) when a vertical electric field is applied. In

Bernal stacked graphene, half of the carbon atoms are placed above the center of the

underlying hexagon, and half above the corners, i.e. above C atoms. Unfortunately

Bernal BLG is mostly obtained by mechanical exfoliation, which is a costly and human-

intensive task. The number of studies available in literature of direct growth of Bernal

BLG is also very limited [41], [42]. In addition, the working principle is more complicated

and to create a vertical electric field two gate electrodes are necessary. Achievable
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bandgaps are quite limited, with experimental values of 130 meV and ION/IOFF ratios

of 100 at RT [43].

An alternative, more exotic, configuration is the Vertical Graphene Transistor based

on the tunnel current through a thin dielectric between a graphene layer and another

electrode. A device with a graphene layer as second electrode has been presented in

2012, where in addition to the tunnel stack a third isolated gate is present (a doped

Si wafer and its surface oxide) which allowed for the triode modulation of the tunnel

current [44]. An ION/IOFF ratio of 50 has been achieved. No RF operation has been

demonstrated yet.

A variant of this configuration is the graphene hot-electron transistor, which is actually a

graphene implementation of the hot-electron metal-insulator-metal-insulator-metal (M-

I-M-I-M) transistor, a concept close to the BJT. Graphene is used as a low resistivity and

extremely thin base electrode of a device composed by an emitter-base tunnel junction

and a base-collector filtering dielectric (a relatively thick Alumina layer). This operation

principle has been explored independently by two labs, and interesting ION/IOFF ratios

of 105 have been achieved [45], [46]. Unfortunately, present-day literature has not yet

recognized the main problem involved by such devices, which is the same that plagued in

the first place the concept of a M-I-M-I-M tunnel transistor: an extremely low current

gain, which resulted in collector currents 10 orders of magnitude smaller than those

simulated with NEGF models [47].

2.3 Graphene FET models

As stated in § 2.2, full-quantum models like Tight-Binding (TB) [26] and Density-

Functional Theory (DFT) [48] calculations were the first to be developed for graphene.

When graphene was experimentally discovered in 2004, they were the first tool used

for the investigation of its properties. However, their computational cost depends on

the number of atoms of the material piece to be modeled, thus its use is limited to

extremely small surfaces (or volumes). This fact influenced the kind of devices which

theoretical researchers were first interested to. GNRs are structures of very limited

surface and considerable bandgap. They were the motivation for the highly envisaged

“graphenium-inside” computer processor [49], in the sense that it was a research subject

that offered exciting performances derived directly from a quantum effect like ballistic

transport [50]–[53]. In addition, semiclassical ballistic models were applied to GNR-FET

[54]–[57]. However, the validation of GNR models versus device measurement is more

complicated due to the technological difficulties in realizing defect-free ribbon edges, so
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it was mainly done against TB models. The development of an empirical model of the

GNR-FET has been largely inhibited for the same reason.

On the other hand, empirical characterization of graphene was done on micrometer-sized

devices, therefore transistors based on large-area graphene (GFET). For that range of

dimensions, the main electronic transport mechanism is drift-diffusion and, due to its

larger dimensions compared to GNR-FET, the simulation of its behavior was hardly

achievable with full-quantum models. Semiclassical modeling was instead a more appro-

priate tool for the analysis of its characteristics, and existing physical and semi-empirical

models [58], [59] for semiconductors were adapted to graphene [60], [61]. The comparison

of those models to device measurement is easily achievable and strengthens the reliabil-

ity and the accuracy of those approaches. In this work, large-area graphene transistors

will be simply referred as GFET. Moreover, the aim of this work is to model single-layer

graphene devices, whereas few-layer devices will be considered as out of scope.

2.3.1 Physical models

Quantum models are numerical tools in which the set of quantum mechanics equations

are discretized and evaluated for each atom of the entire device. Those models allow for

the computation of the drain current in the ballistic limit through Tight Binding (TB)

theory for all drain and gate biases. The TB problem is solved using Non-Equilibrium

Greens Functions (NEGF) formalism [52], [62], [63] or the scattering matrix approach

[64], [65].

The TB simulation of the device is done in a number of steps, here briefly reviewed: the

Dirac Hamiltonian is discretized using the Finite Difference (FD) method; the N × N
FD matrix, where N is the number of atoms in the channel, is constructed using the

values of the overlap integrals computed through finer models as DFT; the solution for

the eigenvalues of the matrix gives the bandstructure of the channel, from which the

number of transmitting modes is extracted for the specified gate and drain bias; finally

the Landauer equation is applied to each mode, yielding the net current of the device.

The overall computational cost of TB methods, already elevated, scales as N2 and is

not suitable for compact modeling in circuit simulators. The band structure produced

by those models is generally compared for validation with DFT simulations. Large-area

short-channel graphene has also been simulated, although in the ballistic transport limit

[63].

Semiclassical ballistic models for GNR-FET simulation are simplified approaches that

avoid the Hamiltonian discretization step typical of TB models; they instead derive the

bandstructure using either analytical equations or off-line TB-computed values. They
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include a number of approaches, both semi-analytical and analytical ones. A type of

semiclassical semi-analytical nanotransistor model can be found in [54], [66]; it is the

adaptation to GNR of the MOS nanotransistor Top-of-the-barrier model [67]. In this

theoretical framework the conduction relies on transmission modes, each allowing a quan-

tized amount of current through the Landauer equation [68] for ballistic transport. The

net number of transmitting modes is the result of the balance of two injected electron

fluxes, one from source and one from drain [69]. The channel potential determines which

modes are able to transmit by changing the alignment of the energy state distribution

to the Fermi energy. The electrostatic problem for the channel is simplified into the

solution of a single non-linear system of equations, which is solved iteratively by succes-

sive approximations. Finally the current is evaluated for transmitting modes through

the Landauer equation for ballistic transport. The model operation will be discussed

in greater detail in 3. Analytical implementations of this type of model, which employ

only closed-form equations for the computation of the channel potential, has also been

presented [70], [71]. In conclusion, Top-of-the-barrier models allow for the simulation

of the ballistic conduction phenomenon, which is a quantum effect and is significant for

GNR-FET, without the use of extensively numerical tools and taking into account a

simplified picture for device electrostatics. The drift-diffusion conduction mechanism is

not considered here, neither is any scattering mechanism. Being ideal ballistic conduc-

tion the theoretical limit to which nanoscaled devices tend, there doesn’t exist yet any

measurable device that can be fabricated to validate those models.

A more complicate semiclassical analytical model for single layer and BLG nanoribbon

transistor simulation is shown in [57], with the implementation of a scattering mechanism

in [72]. It is based on the Boltzmann Transport Equation for the electron transport

and represents the channel potential in the weak nonlocality approximation formalism;

this allows expressing the channel potential in an analytical form. The model is then

evaluated to various limiting cases corresponding to the amount of charge induced in the

channel by the top-gate electrode. This model allows relating analytically the current

and the transconductance with geometrical dimensions of the device. However, the

validation is an issue even for this work, which does not present any comparison to finer

models or measurements.

Semiclassical approaches have been applied also to large-area graphene FET devices.

Although they are all based upon the drift-diffusion transport equations, they can be

categorized from semi-analytical to purely analytical approaches. The existence of a

large number of GFET device measurements in literature enables the validation of these

models.
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A type of semiclassical semi-analytical for GFET is shown in refs. [60], [73], [74]. In

those works a numerical approach for the computation of the channel electrostatics is

employed: the channel length dimension is discretized in a vector of points; the self-

potential of channel carriers and the quantum capacitance effects are then iteratively

evaluated for each point. The resulting potential profile is used to find the longitudinal

electric field and the current using the drift-diffusion transport equation. Another semi-

analytical approach derives a closed-form expression to account for quantum capacitance

[75]; on the other hand, it uses an iterative method to solve for the internal bias of the

intrinsic transistor. Finally, purely analytical models don’t use iterative methods at all

[76], [77], but it’s not clear whether they take into account the contribution of external

drain and source resistance as [75] does. Those models are well suited for the simulation

of long-channel GFET devices, and include short-channel effects through the empirical

account for saturation velocity. In this way they can take into account a limited amount

of ballistic transport in a more general drift-diffusion picture. However, the case of the

nanotransistor where nearly the entirety of transport is sustained by quantum effects

cannot be correctly taken into account. The validation of those models is generally done

versus measurements, except for the work presented in [76], [77]. Their accuracy together

with the small computational load makes those models suitable for compact modeling

in circuit simulators. An example of such a possibility is given by the implementation

in VHDL-AMS and SPICE language of a semi-analytical drift-diffusion model as shown

in [78], [79].

2.3.2 Empirical models

Empirical models are less devoted to the understanding of the physics involved in the

device operation, while they are more suitable for the reproduction of the measurements

of a small class of devices, typically brought together for similar geometrical dimensions

and materials used. Those models generally contain a greater number of parameters

that don’t have any physical meaning. Moreover, they typically use a smaller amount

of iterative loops in favor of closed form expressions.

An empirical physics-based compact model is presented in [61]. It extends the virtual-

source model originally developed for short-channel Si CMOS [59] to the GFET case.

It is similar to the Top-of-the barrier model, with the use of the drift-diffusion theory

in the place of the ballistic transport. In this model the operation of the device is

divided in three regions, depending on the type of carriers present in the channel: only

electrons, only holes or both of them. The charge density is computed empirically, while

the current in the intrinsic transistor is computed with the drift-diffusion equation for

each region. As in [75], the computation of the current is part of an iterative loop
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that ensures its self-consistence with both internal and external (applied) bias. This

step is also commonly done by SPICE-like tools as in [80], but in this particular one it

must be done inside the model itself to determine the correct operating region. Finally

empirical smoothing functions are employed to ensure the continuity of the current up to

the first derivative between two regions. The simulated current is then validated versus

measurements. This model provides a numerically efficient and accurate compact model

of the GFET operation that can be readily implemented in circuit simulators. However,

the use of different set of equations for different regions may introduce artifacts in the

shape of the transconductance gm. Moreover, while its continuity is ensured by the

smoothing functions, the continuity of its derivative is not taken into account and can

represent an issue of this approach (see section 1.3 in [81]).

In conclusion, it has been shown that the simulation of graphene devices can be ap-

proached with different levels of physical detail, starting from full-quantum modeling of

graphene nanotransistors to the empirical modeling of large-area graphene transistors.

Greater detail is associated to a geometrically smaller domain that can be simulated

and in which the assumptions introduced maintain their validity. A model with validity

extending from the GNR nanotransistor to the long-channel GFET is not known to

date. Moreover, the validation versus measurements should be gauge of quality, that for

GFET are available while for nanotransistors are not.

2.4 Graphene/metal contact and propagation models

In mono-layer graphene the conduction takes place onto the surface of the material, in

the system of π∗ electrons and π holes that are located out of the plane. The surface

also is in direct contact with metals; thus the electronic conduction properties are deeply

influenced by the type and strength of the interaction between metal and graphene. It is

then reasonable to say that the contacted graphene behaves as a different material com-

pared to freestanding graphene. The graphene under the metal together with the layers

of the metal with which it interacts is called a graphene-metal complex. The modeling of

its specific physical and electrical properties is addressed by means of physical-chemical

modeling and empirical modeling.

The most relevant electrical parameter is the contact resistance RC . The regions that

are adjacent to the contact are also chemically and electrically affected by the metal.

Those regions contribute as well to the overall resistance of the device because of altered

amount and type of carriers they contain. In this work the access resistance in a typical

graphene device will be referred as the total resistance between the bulk of the metal

and the contact-independent graphene. In the specific case of a FET, this latter region
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Table 2.1: Contact Resistance at Room Temperature.

Ref. Metal stack RC [Ω · µm]

[85] Pd/Au 230 ÷ 900
[85] Ti/Au 430 ÷ 900
[86] thin Cr/Pd 350 ÷ 750
[87] Ni > 500
[88] Ti/Pd/Au 525 (top)
[89] Clean Au 95 ÷ 128
[90] Ti 20 ÷ 80

Table 2.2: Contact Resistance at Low Temperature.

Ref. Metal stack RC [Ω · µm] T

[85] Pd/Au 110÷470 6 K
[91] Ti/Au > 800 0.25 K
[92] Cu 135 4 K

will be the one controlled by the gate electrode alone. The contact resistance will be

defined instead as the resistance between metal and graphene directly underneath. The

case of a device too short to show a contact-independent region will not be considered.

The contact resistance is a parasitic that inhibits the performance of a device, in par-

ticular the transconductance [82]. The extrinsic transconductance is obtained by the

derivative δID/δVG measured on the external device terminals; it is related to the in-

trinsic one as follows:

gm,x =
gm

1 +RSgm
(2.3)

where RS is the source access resistance (which contains the contact resistance term).

The International Technology Roadmap for Semiconductors has selected the contact

resistance as one of the target parameters to be minimized for graphene to be employed

in semiconductor industry. A target value of 1e−8 Ω·cm−2 has been proposed [83]. For

MOSFET technology instead it is 80 Ω · µm per contact, which is about the 10% of the

transistor’s on-resistance VDD/ION [84]. In Tables 2.1 and 2.2 a summary of values of

RC from recent studies is collected.

2.4.1 Physical and Chemical models of the contact

Metal-graphene contact is a very active subject of current study, and the physical mech-

anisms behind it are not completely understood. Advances in the modeling of the

contact were motivated by new phenomena, introduced by new experiments and that it

was necessary to account for.
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In the first graphene transistors an asymmetry in the electron and hole branches of the

V-shaped ID(VG) was shown. It was first noticed by [93] and was later explained exper-

imentally by the presence of doping: along with the shift of the minimum conductivity

point (i.e. Dirac point) in the VG axis, the slope of the left branch increased for p-type

doping, and conversely on the right branch for n-type doping [94]. A photocurrent study

confirmed the presence of p-n junctions in the region adjacent the metal contacts, sug-

gesting the possibility that doping was induced by the metals that contacted graphene

[95]. P-n junctions within the channel are expected to increase the access resistance of a

FET device [96], i.e. the resistance between the metal contact and gate-controlled region

of the FET channel. The presence of a metal-doped region was explained by chemical

models for complexes made of graphene and various metals within the density functional

theory (DFT) [97], [98]. This is a quantitative technique of computational chemistry

to obtain ground-state electronic properties of many-body systems, in particular atoms

and molecules; more details are contained in [99].

DFT was used to study the band-structure of graphene-metal complexes, along with

their work function and bonding energy for various metals. Those studies allowed dis-

tinguishing two categories of complexes upon the strength of the metal-graphene bind-

ing: physisorbed graphene, where graphene’s band-structure is mostly preserved; and

chemisorbed graphene, where the contact is more intimate and the band-structure of

the complex is something different from both metal and graphene. Chemisorbed metals

can provide better mechanical stability and electrical connection than physisorbed ones

[97]. However, for the purpose of an equivalent circuit of contacted graphene, in this

manuscript there will be no distinction between chemisorbed and physisorbed metals.

The formation of the graphene-metal complex is conceptually divided in four steps in

Fig.2.2. In (a) the clean metal and intrinsic graphene are separated. The different

magnitude of their work functions induces doping in graphene when the vacuum potential

of the materials gets aligned (b). The common Fermi level is pinned to the metal’s one

and graphene’s band structure is shifted (towards higher energies in this case), creating

a doping potential ∆EF ”.

However, a strong Pauli-exclusion interaction occurs between the metals’ inner orbitals

(s-electrons) and graphene π-electrons. It repels electrons from the metal-graphene

interface and significantly shifts down graphene’s energy levels, leaving unaltered the

metal’s ones because of the large difference in amount of states between the two materials

[100]. The depletion in electrons at the interface leads to the formation of an electric

dipole, influencing the magnitude and eventually the sign of the doping. The potential

generated by the dipole, marked in [98] as a quantity ∆c, adds up with the previous

potential difference value and gives∆EF ′ = ∆EF ′′ −∆c, as seen in Fig.2.2(c). In [98] is
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Figure 2.2: The Work functions of metal and Graphene, in successive steps: non in
contact (a); alignment of vacuum potentials and initial graphene doping (b); the forma-
tion of the Pauli repulsion potential ∆c (c); the charge transfer and further reduction
of the potential, up to its zeroing at a distance from the metal when pristine graphene

is encountered (d).
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proposed that the potential added by this Pauli-interaction dipole should have a value

nearly independent from the metal or the systems, so that the doping type and value

can be predicted within some limits for metals with known working functions. However,

in [100] is stated that this potential value is indeed very sensitive to the filling of the

outermost s-orbital of the metal, thus to the metal itself. As a consequence of the doping

induction, a charge transfer process happens which mitigates the doping itself.

As matter of fact, not all of the attracted charges can be sustained by graphene for a

certain amount of doping. Each elemental charge generates a self-potential, marked in

Fig.2.2(d) as ∆tr, which acts on the graphene itself and, because of the limited amount of

states in graphene, shifts back significantly the Fermi level to values closer to neutrality.

It is useful to stress the point that transferred charge, which is generated by the re-

equilibration of Gauss law, is substantially different from the charge dipole generated

from the Pauli-exclusion interaction. How this latter charge behaves in presence of

electric fields is still a matter of study. Transferred charge shifts graphene’s energy

levels up (n-doped graphene) or down (p-doped graphene), compensating the overall

potential of graphene under the metal, then the doping itself. The final value of the

doping is ∆EF . In (d) is also shown the region of graphene far from the contact which

regains its intrinsic state. The region comprised between those two points is called charge

transfer region [95].

So, with DFT studies it is possible to identify the origin of doping from adsorbed metals

in graphene and predict their value. Based upon DFT calculations, an empirical model

of graphene doping from metals has been presented [98]. The results proposed by DFT

calculations include a detailed description of many useful physical and electrical param-

eters. However, those results must be taken carefully because small variations in the

structural parameters of the metal’s atomic lattice [101] or in the computational method

used [102] can yield a difference in graphene doping of several hundreds of meV, and

even a change of doping type.

Photocurrent studies have confirmed that the metal-induced doping extends spatially

towards uncontacted graphene forming the charge transfer region, creating then a junc-

tion with gate-controlled graphene [95]. In Fig.2.3(a) a back-gate FET is shown that,

depending on the gate potential, modulates the doping of its charge transfer regions

(shaded in green for the case VG = 0 in (b)), and therefore its access resistance RS,D.

The first work that focused on the extension of this region was a DFT study of metal-

contacted graphene nanoribbons (GNR) [104], whereby the potential of metal-induced

doping potential was suppressed after few nanometers from the edge of the contact.

Moreover, this study shows that the potential of contacted graphene start a smooth

transition towards uncontacted graphene before crossing the metal edge. This is a result
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Figure 2.3: Potential and resistivity along the channel of a graphene FET. (a) struc-
ture of the back-gated FET; (b) Electrostatic potential represented as the trace of the
Dirac point of graphene for VG > 0V (blue dash-dotted line), VG = 0V (black dotted
line) and VG < 0V (red dash-double-dotted line); (c) Resistivity along the channel for
various gate voltages. In yellow the area of the access resistances RS and RD. ρDP is

the resistivity at the Dirac point in graphene. Adapted from [103].

that can be found in more recent models (notably [85]) and that will be discussed in

greater depth in the last part of this section. However, the fact that the charge-transfer

process is neglected and the use of ill-defined boundary conditions, as pointed out by

[105], tend to lower the importance of this study.

An analytical model of the charge transfer region and its spatial extension has been pro-

posed in [105]. This model uses the Thomas-Fermi approach to study the band bending

caused by metal contacts on undoped, chemically doped and electrically doped (i.e. with

a gate electrode) graphene. The extension of the charge transfer region depends on the

decay of the electrostatic potential by the charge screening, which strength depends on

the doping and on the presence of electrical gating. This screening is generally weak, and

makes the potential to decay with the distance from the metal contact as x−
1/2 and x−1

for undoped and doped graphene [105]. The predicted charge transfer region is there-

fore of considerable size. The position of the junction as well as its type (p-n, p’-p, etc.)
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Figure 2.4: Access resistance of a double-gate graphene FET. (a) the structure; (b)
The Fermi level EF (solid black) and the trace of the Dirac point (blue dash-dotted)

along the channel; (c) the equivalent circuit of the extrinsic transistor.

depends on the metal-induced doping and gate voltage. This model thus allows for the

prediction of the dimension and type of the metal-induced junction, which is responsible

for the increase of the access resistance and of the asymmetry of the ID(VG) transfer

characteristic in graphene FETs. However its complexity and the lack of a comparison

with access resistance measurements make its use difficult. On the other hand, another

analytical model [106] proposes to use linear-graded charge transfer regions instead.

In Fig.2.4 a double-gated graphene FET is shown along with its equivalent circuit in

(c). RS and RD are the access resistances; each of them is the series of the contact

resistance RC , the charge transfer junction resistance Rjunc and of the resistance Rch

that comes from the section of the channel not controlled by the top-gate. Self-aligned

contacts in top-gated GFETs allow for the minimization of access resistance and for

a better electrostatic control of the channel [6], which results in graphene completely

covered either by the gate electrode stack or by the contact electrodes. The extension of

the charge transfer region should be also minimized. A comparison between a transistor

with a partially gated channel and one with self-aligned contacts has been performed in

[107]. A better control of the channel through the top gate was found, together with

a modulation effect by the back-gate potential on the electron-hole asymmetry in the

ID − VG,top characteristic. Being the term Rch minimized by contact auto-alignment, it

cannot contribute to the asymmetry modulation; instead, this effect is ascribed to con-

tacted graphene. This means that a modulation of the doping profiles in the graphene
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regions underneath the source/drain contacts by the back-gate voltage should be possi-

ble. Authors of [107] then claim that the back-gate impacts the alignment of the Fermi

level relative to the graphene cone dispersion relation. An electrostatic control of the

Fermi level of contacted graphene through the back-gate should be possible, contradict-

ing the thesis that the Fermi level of the graphene-metal complex is firmly pinned to the

metal’s one. However, it’s not clear what would be the effect of the back-gate on the

term Rjunc, which is neither under the contact nor totally controlled by the top-gate.

An explanation to the back-gate control of the doping of contacted graphene, along

with its effect on Rjunc, is presented in [108]. In case of weak electronic interaction be-

tween metal and graphene (physisorption), graphene’s pristine electronic band structure

is preserved, and the metal/graphene interfacial layer demonstrates a dielectric-like be-

havior. The modulation effect is then modeled through an effective thin metal–graphene

interfacial dielectric layer, whose capacitance concurs with the much weaker back-gate

capacitance to the electrostatic control of the Fermi-level in contacted graphene. The

dielectric layer should be thin enough to sustain a tunneling current through it, defining

a tunneling contact resistivity across the interface. However, an overall equivalent circuit

with both the capacitive and resistive terms of the contact has not been presented by

the authors. On the other hand, the transport across the junction is considered ballistic

and it is modeled through the Landauer equation of transport in the NEGF formalism.

The two terms of the resistance are thought independent and separated, thus the overall

access resistance can be calculated as the series of all terms. This approach then allows

for the computation of the electron-hole asymmetry effect through the modeling of the

impact of back-gate voltage on the doping of the contact. However, it must be noted

that this approach does not include any interaction between metal and graphene apart

from the electrostatic one, and does not consider any Fermi level pinning; in short, the

metal-graphene contact is not considered as a chemical complex. Moreover, the model by

construction is not able to extract both the interface capacitance and the metal-induced

doping at the same time, therefore it leaves the doping as a free parameter, which could

be an issue in this approach.

The effect of the gate on the electronic properties of the contact has been studied in

more depth in [100]. Within the frame of DFT simulations used to compute the band

structure of physisorbed and chemisorbed graphene, the effect of an externally applied

electric field to the complex has been analyzed. DFT simulations have shown that an

external electric field can shift graphene’s energy-levels up and down relative to the Fermi

level, which is pinned by the metal substrate; this allows for the back-gate modulation of

graphene’s work function and doping [100]. Anyway, it’s not clear whether the electric

field affects only the alignment of the energy levels or affects also the Pauli-exclusion

interaction dipole, i.e. the equilibrium distance between metal and carbon atoms.
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A model that combines most of the results from DFT simulations with the geometry of

the contact is presented in [85]. Here the transport along the graphene surface under-

neath the metal is also considered, proposing the concept of a distributed transmission

of carriers from graphene to metal. In this model the contact is no more considered as

only dependent on the width of the contact; instead, a transport mechanism would be

present in contacted graphene also beyond the contact edge, and a contact length di-

mension would be involved. The transport from free-standing graphene, crossing the p-n

junction towards beyond-the-edge contacted graphene is thought as ballistic; in addition

to this, another mechanism would be the tunneling transport across the graphene/metal

interface. The electric contact is considered to be the result of the concurrency of

those two transport mechanisms: the only scattering process suffered by the graphene-

graphene transport is the graphene/metal tunneling, and the overall transmittance is

treated as the coherent cascade of the two transmittances [108]. The model includes

the results of DFT simulations through the empirical model introduced by [98] for the

modeling of the doping; this latter is further affected by the back-gate through elec-

trostatic doping. The conductivity of contacted graphene depends on the doping, and

so does the transmittance of the graphene-graphene transport. The unit-length contact

conductance is finally evaluated using a modified Landauer formula, combining the two

transmittances. Anyway, because of its complexity, this model contains a number of free

physical parameters that makes its use for real measurement datasets very difficult.

At first a dependence of the contact resistance on length has been argued by [87], sup-

porting only a width dependence of RC ; however, those experiments were prone to the

minimum feature length of around 1 µm by the technology adopted by the authors. In

[85] the residual potential difference between metal and graphene is shown to decrease

with distance from the edge, in a similar way as proposed by [104], and should reach

zero in few hundreds of nanometers, that is well below the experimental limits of [87].

Finally it has been shown experimentally in [109] that reducing the contact length be-

low 200 nm would make the resistance to increase inversely linearly with contact length,

thus contradicting the results of [87]. The model proposed in [85] allows relating the

metal-induced doping, the electrostatic doping and the geometry of the contact to its

resistance. The trend of the dependence of RC on length has been therefore confirmed.

However more accurate measurements would allow extracting a precise law for this de-

pendence, if any; such kind of law has been extracted for semiconductors already in the

‘70s, and will be presented in the next section.
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Figure 2.5: The Transmission Line Model (TLM) circuit for contact resistance. The
current ID crowds in a transfer length LT neighborhood from the edge of the metal,

following the least resistance path.

2.4.2 DC models and measurements

When a metal is in contact with another material with a lower conductivity, either a

semiconductor or a semimetal, the current naturally flows through the least resistance

path and enters the semiconductor only near the edge of the metal. This effect is

called contact current crowding and it’s thoroughly described in the Transmission Line

Method (TLM) for planar devices by [110]. Its equivalent circuit is shown in Fig.2.5 for

the case of a metal-graphene contact. The units of the quantities in the image are the

following: contact resistance RC [Ω·mm], specific interface resistance ρC [Ωmm2], metal

sheet resistance RM and graphene-under-metal sheet resistance Rch,M [Ω/�], transfer

length LT [nm].

In this model the semiconductor sheet thickness is zero, which is a perfectly adequate

assumption for graphene, less for traditional semiconductors (see § 3.4 of [111]). So, the

current flow is distributed on one-dimension. In horizontal direction there are the sheet

resistivities, RM for metal and Rch,M for contacted graphene, and on vertical sections the

interface resistivity ρC . For semiconductors the resistivity of the free-standing material

is the same of the contacted one. The analytical solution of the model gives an hyperbolic

cotangent dependence of RC on contact length:

RC(L) =
ρC
LT

coth(L/LT ) . (2.4)

This equation was also confirmed for CNT by measurements of a device in which the

contact length was increasingly reduced by FIB and laser ablation [112], [113].In [87]

the sheet resistances of contact and uncontacted graphene are assumed equal in value

(Rch = Rch,M ), but with the result that RC is almost independent on length; this

brought the authors to deduce that the most of the current crowds at the edge of the

contact, mostly because of the great difference in value between Rch,M and RM .
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The large difference in resistivity should be further enhanced by the higher scattering

that electrons in contacted graphene should suffer, larger than in free-standing graphene;

this assumption is supported by an increased signature in the defect-related D band in

Raman spectroscopy of graphene through a thin metal film [103]. However, no increased

signature of the D band is reported in [114]. Anyway, the TLM picture does not include

the resistor Rjunc (see Fig.2.3), so it’s not clear which role should play the junction in

the overall access resistances RS and RD.

The most used procedure to measure RC is the Transfer Length Method (again, ab-

breviated as TLM) which was originally proposed by Shockley [115]. It has been later

refined as the measurement of the resistance of a pairs of devices with unequal contact

separation; the contact resistance RC is extrapolated by the y-intercept of the R vs. L

plot, while the resistivity of the semiconductor is given by the slope of the R-length plot.

For short length contact, of the order or less than LT , it can yield ρC too. This method

is however prone to at least two sources of error: one that comes from the geometry, in

which strip width and contact separation variation can induce significant error on the

final RC [116]. This can be minimized by the excact geometrical characterization of the

measured devices, as done in [90]. Moreover, non-uniformities of the electrical param-

eters can lead to errors in the extracted contact parameters even if there is no error in

the measured electrical and geometrical parameters [117]. Finally, metal overlays with

high sheet resistances can also alter effective RC value [118].

In conclusion, recent physical models had to comply with a larger number of phenomena

observed during experiments, notably the metal-induced doping, the charge transfer

junction and the dependence of RC on geometry. A model that includes all those effects

should represent a more thorough understanding of the problem. However, the large

number of free physical parameters makes their use in the prediction of the contact

properties for new systems and metal-graphene stacks difficult. On the other hand,

empirical TLM models would be very useful for the prediction of the contact properties

for a given metal-graphene stack.

2.4.3 RF measurements and models

The exploration of the conduction properties of graphene have also been performed in

RF, with the fabrication of passive structures and the development of simple empirical

models. One of the first experiments of this kind was the fabrication of a CPW line

loaded with exfoliated graphene [119], [120]. The fabrication of this device was quite

challenging because of the reduced dimensions of the graphene flake, around 20×80µm;

the three electrodes of the CPW line have been designed to fit into the short side of the
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flake. EM simulations were performed, assigning a sheet resistance and capacitance to

a material and matching the S-parameters, for multiple DC biases. In this way a 50 Ω

shunt resistance was found at some bias point between 1.0 and 2.0 V.

In [121] a very general lumped element model is used in order to extract the contact and

conductivity properties for single and few-layers graphene strips. Exfoliated graphene

strips of 10 × 10µm are placed in series connection between the two central electrodes

of an RF access structure; the model is then fitted against measured S-parameters.

The model of graphene consist of a bulk resistance R, capacitance C and inductance

L, together with contact resistance RC and capacitance CC . The circuit parameters

used therein are however function of frequency. As remarked in [122] for a similar

work on CNTs, the system is overdetermined: 5 parameters have to be fitted for each

frequency point out of complex transmission and reflection measurements (the device

is both reciprocal and symmetric, giving 4 values per data point). Among the other

parameters, the inductance L is here associated to the kinetic inductance of graphene:

it represents the inertia of ballistic electrons, which travel at Fermi velocity, against

alternating longitudinal electric field. The bulk capacitance C instead is not associated

to any physical quantity.

An analogous work has been done for CVD graphene on low-loss fused quartz [123].

Series and shunt connections on a CPW transmission line resulted in a sheet resistance

of 1100 Ω, which was close to the DC value measured (1400 Ω). The contact resistance

varied with frequency, indicating the presence of a capacitive effect between metal and

graphene, possibly coming from local regions of resist residue. The model was simplified

by ignoring the contact parasitics; it was applied only at high frequency, where the

RC is shorted by the contact capacitance and only the sheet resistance appears. Also

the authors of [124] ignored the effect of the contact, but in the other hand the model

they used is more complicate. They measured a 20 × 20µm graphene strip in series

connection up to 40 GHz. Then, they modeled it with a transmission line model, after

de-embedding the access fixtures subtracting the correspondent Y matrixes. However,

the wavelength of a CPW on Si as the one proposed by [124] is much larger than the

strip of graphene, whose phase delay should be less than 3◦ and perhaps too short to

justify a transmission line model. The sheet resistance obtained was 620 Ω for single

layer graphene and 237 Ω for multilayer.

Finally, a few studies analyzed the sheet conductivity of non-contacted graphene samples

by immersing them in rectangular waveguides, normal to the wave propagation [125]–

[127]. From the analysis of the transmission and reflection of the WG, the obtained

sheet conductivities ranged from 1670 to 8941 Ω, while in [128] it was around 2000 Ω at

zero magnetostatic field in a circular waveguide.
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2.5 Conclusions

The study of the metal/graphene contact and of the high-frequency propagation is

treated very differently among the various fields of study. They should be considered as

aspects of a same, larger, problem. However, the examinations of contact are carried out

only at zero frequency. A few empirical studies consider both aspects, but sometimes

with over-simplified models.

On the other hand, in FET modeling the contact parasitic is taken into account. Its

effects on high-frequency FOMs are deeply evaluated because of the severe impact on the

transconductance and output current. High frequency performances are the main target

of these experiments and models, stressing the importance of sub-micrometer scaling to

attain even higher performances. And yet, contact parasitics are generally represented

by a simple resistance, evaluated in DC and independent in frequency.

In conclusion, the need of a universal model connecting the finer investigation of the

physics involved in sub-micrometric FET devices and the high frequency propagation is

growing in importance. This work aims to bring near those two fields, putting the basis

for their integration in a single domain of study.
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Chapter 3

Graphene DC model

In this chapter the work on the DC modeling of graphene active devices will be presented.

The described model is based on the Top of the Barrier approach, which is a physical

semi-analytical ballistic model [1].

3.1 Motivation

The great majority of models used today to simulate the I-V characteristics of graphene

devices are based on the Drift-Diffusion (DD) transport mechanism, upon which the

industrial-standard model for Si CMOS, the BSIM is founded as well. DD is based on

the assumption that in the channel of the transistor (or any other conductor) a certain

amount of scattering centers exists, and that the conductivity depends on how many

charge carriers there are and how frequently they collide with a scatterer; the carrier drift

velocity is a function of the longitudinal electric field (given by the drain bias) and of the

mobility and saturation velocity parameters. Voltage and current are related through

the Drude model. However, if scattering is absent, as in an ideal ballistic transistor, the

velocity of carriers assumes its maximum value: it is not anymore directly related to the

longitudinal electric field, but with the potential drop between source and drain instead.

DD models can include empirically the increase in saturation current that comes from

ballistic effects, for example through the Source End Limit Velocity model as done for Si

in BSIM4v4.7 [2], but their validity in regimes near to ideal ballistic transport becomes

questionable.

The peculiarity of graphene is to support a very limited amount of scattering even

at room temperature, especially when the interaction with the substrate is reduced

[3]. Moreover, at the same time that the quality of graphene samples improves, the
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channel lengths are scaled down too; this means that increasingly larger parts of the

electron conduction should rely on ballistic transport [4]. A ballistic model of graphene

nanotransistors becomes appropriate, but on the other hand their validity is generally

given only when ballistic transport is dominant [5].

Finally, many models fragment their operation in multiple segments or regimes, accord-

ing to the shape of the ID(VDS) curve (linear, quasi-saturation, second linear) or to

the type of charges within the channel (either electrons or holes, or both of them). In

this last context the word “ambipolar” is frequently used even if inappropriate [6]. The

fragmentation of the operation can lead to discontinuities in the gm or in its derivative.

3.2 Objectives of the study

This part of the work aims at finding a model that can correctly simulate both nanoscale

ballistic devices and microscale conventional Field Effect Transistors. This model should

rely on physical equations, with a minimal use of empirical parameters. Finally, its

operation should not be fragmented in different regimes.

3.3 Model: Top of the Barrier

In this section the discussion will be limited at the case of zero temperature. In the rest

of the chapter, room temperature will be taken into account. The Top of the Barrier is a

model that computes the carrier population of the channel of a transistor observing the

energy of the free carriers that it contains and the contacts. Considering a free carrier

at the edge of a contact, the barrier is the difference between the carrier’s energy, i.e. its

Fermi potential, and the closest-free-state energy in the channel. Carriers from source

and drain contacts are injected into the channel in a number dependent on the barrier’s

height towards each contact: in a condition of nonzero source-drain bias, each contact

causes a different amount of channel population, creating an unbalance between carriers

from the source and carriers from the drain. This non-equilibrium condition makes the

carriers move from source to drain, from the contact that fills the channel to the one

that depletes it, creating a current. If the free-state energy drops between the contact’s

energies, source and drain will inject respectively electrons and holes, and deplete the

opposite carrier type. Eventually the action of the gate electrode can be included by

shifting in energy the free states of the channel with a sign related to the gate bias

polarity, a magnitude non-linearly related to the gate voltage, the channel doping and

the injected carrier population. In the following sections each of those mechanisms will

be thoroughly detailed.
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Figure 3.1: The cross-section of a graphene FET. Graphene is the black thick dotted
line under contacts and gate oxide.

3.3.1 The Landauer Equation, carriers and contacts

In a top of the barrier framework either drift-diffusive (DD) or ballistic models can be

used. Examples of DD applications are in [7], [8], and for ballistic models in [1]. The

aim of this subsection is to describe the behavior of GNR-FET devices, in which small

dimensions and characteristics make the ballistic transport dominant. A cross-section

of the device is shown in Fig. 3.1. The Landauer equation will be used to quantify the

current of ballistic electrons and holes. By separating between the electron and hole

contributions, the drain current is given by [9]:

Id = In − Ip , (3.1)

where In and Ip correspond to electron and hole current respectively. A similar conven-

tion for all variables is followed throughout this chapter. The net current is given by

the difference of the injected electron and hole currents. In a simplified ballistic regime,

carriers are not subjected to recombination and are not exchanged between different

conducting states, thus they can be considered as independent fluxes. Moreover, no

energy relaxation into channel’s statistics is assumed as scattering is neglected [10]. As

opposed to DD, the Landauer equation allows for the computation of the current in a

device without scattering. Free states (or modes) are responsible for transport, and each

one of them is associated with a fixed conductivity q2/h, where q is the electron charge

and h is Planck’s constant. Injected electrons from each contact through the barrier are

described by the Fermi potential of their respective contact, and the injection unbalance

is the difference of the two Fermi functions fS and fD times the density of states Dn(E).

After integrating over energy, the electron current is given by:

In =
vxq

2~

∫ +∞

−∞
Dn(E) (fS − fD) dE . (3.2)
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where vx is the averaged carrier velocity, which is calculated from the energy dispersion

relation of the channel material. The dispersion relation is computed offline through

a full-quantum model, generally Tight Binding (TB) solved through Non-Equilibrium

Green’s Functions (NEGF) as in [11] for the case of a GNR. The hole current is com-

puted in a similar fashion. Differentiating the dispersion relation and averaging over all

available subbands and k-space yields the band velocity:

vx =
1

2π

∫ +π/a

−π/a

1

N

N∑
n=1

∣∣∣∣1~ dεn(k)

dk

∣∣∣∣dk , (3.3)

where k is the wavenumber, εn(k) is the energy of the n-th sub-band of the nanoribbon

and N is the number of unit cells. The averaging operation is a simplification with

respect to [1] where the carrier velocity is expressed as a function of energy (vx(E)), but

works around an intrinsic limit of the model. The geometry of the device is simplified

and, as it will be clearer from the electrostatics section, the channel is represented dimen-

sionlessly as a point. Carriers are injected at the top of the barrier, where their velocity

is minimum and kept constant all along the channel, neglecting carrier acceleration (in

a GNR, energy bands are parabolic as opposed to large area graphene where they show

the double-cone shape). Tests have been conducted and this results in underestimation

of the overall carrier velocity in the vx(E) model, especially for high biasing conditions.

Averaging its value over the entire k-space and all bands as in Eq. (3.3) can compen-

sate for this error [9]. Therefore, constant carrier velocity formulation was chosen being

both more accurate and simple compared to the energy-dependent expression. Finally,

this method allows a more coherent and unified framework including the simulation of

large-area graphene devices, which are in theory characterized by an energy independent

carrier velocity.

The density of states D(E) is analytically derived from the bandstructure [12]. To

account for impurities, the channel’s Fermi energy is shifted by the Dirac voltage, here

used as free parameter to describe the channel potential at zero bias. As the function

relating the gate voltage and the channel potential is strongly non-linear, it’s not possible

to retrieve the channel potential from, say, an ID−−VGS measure of the conductivity at

low drain bias; the lowest point in the V-shaped ID − −VGS indicates the gate voltage

at which the channel potential crosses the Charge Neutrality Point (CNP), but the

channel potential magnitude is generally smaller than the gate voltage. Its value must

be found iteratively by computing the minimum conductivity point in a low-bias ID (VD)

simulation [1].

Assuming the source contact potential is set as the reference, the drain potential is given

by −qVds, where q is the electron charge and Vds is the drain-source voltage difference.
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Figure 3.2: The lumped element model for the electrostatic part of the problem.

For this case, the expressions of the Fermi Dirac statistic fS for the source and fD for

the drain become:

fS(E) ≡ fFD(E) , (3.4a)

fD(E) ≡ fFD(E − qVds) , (3.4b)

where fFD is the Fermi-Dirac statistics equation.

3.3.2 Electrostatics

The amount of injection depends mainly from the barrier height towards the contacts;

while the free states in the channel are located at energies which are characteristic of the

material and its geometry, their absolute position can be moved by shifting the channel’s

Fermi potential with the gate electrode. A very convenient way to represent this shift is

to replace the energy E with the difference E−U , where U is the electrostatic potential.

Thus, the following quantities will be used:

– The density of states D(n,p)(E − U);

– The contact Fermi statistics fS(E − U and fD(E − U) in eqs. (3.4).

The potential U can in turn be expressed as the sum of two terms [13], namely the

charge-less Laplace potential UL and the mobile charge potential UP:

U = UL + UP . (3.5)

The Laplace potential UL is the potential that would be present if the channel was a

perfect insulator between the source electrode, grounded, and the gate electrode (for

simplicity no bulk electrode is considered). The computation of its value at a precise

point in the geometry is possible through a FEM simulator like COMSOL(TM), solving
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the Laplace equation for electrostatic potential. However, to obtain a value for the

entire channel an average operation would be envisaged, but this is not possible: in

an open neighborhood of either the source or drain electrodes the potential follows the

electrode’s one, rendering the average operation pointless. This puts a theoretical limit

to the applicability of FEM for this task, other than the computational complexity added

to each bias step. A more convenient way to treat this problem is to consider the channel

as the central node of a capacitor network [1], as shown in Fig. 3.2, composed by the gate,

source and drain capacitances towards the channel, called respectively CG, CS and CD.

The gate term is just the capacitance across the gate oxide, to be computed only once

through simple analytical formulas or FEM solution of a capacitor with metallic plates.

The source and drain elements, equal in value, are instead left as fitting parameters as

in [1]. In many works, CG is thought as the series of the oxide capacitance Cox and the

quantum capacitance Cq. This latter is considered as a separate entity, a tool to obtain

the channel potential, equal to the potential difference at its terminals. In addition,

the dependence of Cq to the channel potential itself is sometimes neglected [14], even

if it varies between a fraction of Cox and many times its value. The top of the barrier

model doesn’t need Cq, as it computes directly the channel potential as a function of

UL and of UP, in turn function of the channel carrier population. Taking into account

that VS = 0V , the expression of the Laplace potential UL becomes:

UL = −q (CGVG + CDVD) . (3.6)

UP is the sum of the potential increment from each charge added to the channel originally

in equilibrium. It is calculated using a first-order linearized Poisson equation, where the

potential is proportional to the charge unbalance in the channel. Taking into account

both electrons and holes it is:

UP =
q2

CΣ
(N −N0 − P + P0) , (3.7)

where CΣ is the sum of the three capacitors described above, N and N0 are the number

of mobile and fixed electrons in the channel respectively, P and P0 are the respective

number of holes.

3.3.3 The channel population: closing the loop

The number of fixed charges N0 and P0 are computed only once as the energy integral

of D(n,p)(E) times the Fermi statistic at equilibrium:
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Figure 3.3: Injection of carriers into the channel. The double cone is the density of
states of large-area graphene, wheras “1” and “2” respectively are the pseudo-Fermi
levels of source and drain contacts. The black dashed line represents the population of

carriers, according to the two contacts.

N0 =

∫ +∞

−∞
D(E)fFD dE . (3.8)

The Fermi potential of the channel is slightly shifted by the Dirac voltage, generating a

doping which reflects in the numbers N0 and P0. The mobile charge in the channel is

obtained averaging the Fermi potentials of the two contacts integrated in energy. The

integral independent variable is shifted by the electrostatic potential U (not shown).

N =

∫ +∞

−∞
D(E) ·

(
fS + fD

2

)
dE . (3.9)

A similar expression is used for holes. Fig. 3.3 depicts the channel under the injection

of carriers from the source and the drain contact, whose pseudo-Fermi levels are labeled

“1” and “2” respectively. The source injects carriers — in this case holes – which are

described by the respective pseudo-Fermi potential and move to the right; similarly, the

drain injects carriers moving to the left. With the simplified notation D (f1 + f2) /2 the

average of the two injected fluxes, i.e. the total number of out-of-equilibrium carriers in

the channel, is indicated. Unfortunately, eqs. (3.5) and (3.9) cannot be easily put in a

system and solved together because of the strong non-linear behavior of Fermi statistics;

instead, those two expressions together with eq. (3.5) can be easily solved iteratively,

with moderate computational cost, in a self-consistent loop. Finally equations (3.3) and

(3.4) are used to compute the current for a given bias through equations (3.2) and (3.1).
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Figure 3.4: Quasi-ballistic injection into a nanoscale semiconductor, with parabolic
subbands. Levels “1” and “2” respectively are the pseudo-Fermi levels of source and
drain contacts. The grey dashed line represents the population of carriers, according
to the two contacts. N2 is the total injected charge from contact “2”, sum of N+ and

N−.

3.4 Method: Extending the model to GFETs

The Top of the Barrier model has originally been developed for the simulation of

nanoscale MOSFETs in silicon or III-V technologies. Their results have been compared

against more complex simulations, such as those presented in [15], [16], and experimen-

tal data, as in [17], suggesting that nanoscale devices are likely to operate still quite far

from the ideal ballistic case. This holds true for carbon devices too, where scattering

mechanisms are very similar to semiconductor’s [18], [19], and that become effective al-

ready in the tens of nanometers scale [20]. The model described so far is inadequate for

large channel lengths where diffusive transport becomes dominant. The modifications

introduced for nanoscale MOSFETs (in which we note that the simultaneous electron

and hole transport phenomenon is negligible compared to gapless graphene) allow for a

qualitative understanding of the quasi-ballistic transport regime.

The ideal ballistic model builds a picture where all injected electrons are delivered at the

opposite electrode, such as their transmission coefficient T ' 1 and the corresponding

back-scattering parameter (1 − T ) = R ' 0. Carriers that originate from the source

contact are all described by the source pseudo-Fermi potential. Assuming that the

distribution of scatterers is nonzero but uniform across the channel, the increase in

length of the channel affects the transmission of carriers and the value of T decreases

approaching 0. Thus a fraction T = 1−R of the total charge advances at its own pace

towards the opposite electrode, and a fraction R of the injected charge suffers scattering.

In Fig. 3.4 the total injected chargeN1, sum of those propagated and reflected, contribute

to the electrostatic potential of the channel. In section 5.7 of ref. [21] it is proposed that
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the current of the quasi-ballistic (QB) device should be expressed as a fraction of the

ideal ballistic one:

IQB = IBalT/(1 +R) . (3.10)

where IQB is the QB current and IBal is the ideal one. From Eq. 3.10 it’s possible to see

how the effect of scattering is twofold: the current is reduced because only a fraction T

of carriers traverses the channel, but also because for the same total charge (which is set

by VGS) only a fraction 1/(1 +R) of the carrier density is available to support transport

in the positive (unreflected) direction. In this picture developed for semiconductors, a

consistent amount of electrons are backscattered towards the source electrode and, at the

same time, contribute for the electrostatic potential of the channel together with those

moving in the positive direction. A distinction between elastic scattering (reflection

without energy loss) and inelastic scattering (energetically non-conservative) processes

is made. However, graphene is better described as a semimetal, and its equilibrium

potential resides, unless of a residual doping captured by a small Dirac potential, at

the CNP. Moreover, the distinction in terms of effects on the current between elastic

and inelastic scattering processes can be perceived as purely academic if the first is

always followed by the second as reported in [10], especially at room temperature. This

causes scattered electrons (or holes) in graphene to be “removed” from the ensemble

of injected electrons, resuming their path through thermalization, thus recovering the

charge equilibrium state.

3.4.1 Scattering and channel population

To account for the effects on graphene’s carrier population due to scattering, the Top of

the barrier model has been modified in [9]. The central assumption is that the portion

of carriers that ballistically traverse the channel decrease in number. Those that have

scattered either by elastic or inelastic scattering regain the thermodynamic equilibrium

and should finally be described by the channel Fermi level. The effect that this assump-

tion has on the current is substantially different from that introduced by [22]: it cannot

be described simply by a coefficient in the current of the device. As reported in ref.

[16] after full-quantum Monte-Carlo simulations, the assumption of charge invariance

made by [22] drops for devices where the Drain Induced Barrier Lowering (DIBL) effect

is strong: indeed, graphene devices shows carrier type inversion (from electron to holes

and vice versa) and eventually Negative Differential Resistance (NDR) behavior [23],

[24] with increasing drain bias [14], so the injected charge is expected to vary strongly
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Figure 3.5: Quasi-ballistic injection in graphene. Levels “1” and “2” respectively are
the pseudo-Fermi levels of source and drain contacts. The black dashed line represents
the new population of carriers, according to the two injected charge amounts. Df2 is
the total injected charge from contact “2”, while DTf2 alone traverses the channel and

participate to the channel electrostatic potential.

with the amount of scattering. Hence, the entire electrostatic and electrodynamic prob-

lem is deeply affected by carrier thermalization, which should be included in the model

starting from the self-consistent carrier density and potential computation step. Fig. 3.5

shows a simplified case in which a single scattering process divides the drain flux in two

parts: a fraction T that is transmitted and a fraction (1 − T ) that is scattered. To

restore the apparent reduction of carriers introduced into the ballistic model by using

the T factor, a modified, effective pseudo-Fermi potential ϕ is defined. As described in

[10], ϕ is the weighted average of the contact pseudo-Fermi and the channel Fermi level.

The weight factor depends on the transmission probability T . This way, all carriers

originating from the drain contact are described by the effective level ϕ. A parameter λ

related to the mean free path is introduced to describe the transmission factor T . The

relation between T and the channel length coordinate x [10] is:

T =
λ

λ+ x
. (3.11)

In order to obtain an effective value for ϕ, the average of T over the entire length of the

channel is used:

ϕ =

[
1− 1

L

∫ L

0

x

L
(1− T ) dx

]
qVds

= (1− k) qVds . (3.12)

Thus, ϕ represents the effective value of drain bias that will be used in the model. It

depends linearly from the parameter λ, and scales inversely with the gate length.
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Table 3.1: Structure dimensions

FET1 FET2

L 15 nm 3000 nm

W 1.35 nm 2100 nm

tox 1 nm 15 nm

εr 3.9 16

V0 / 2.45 V

Vbs / -40 V

This modification to the Top-of-the-barrier models allows simulating GFETs with gate

lengths larger than the mean free path, including the effect of carrier thermalization. In

the case of channels much shorter than the mean free path, this model reduces to the

ideally ballistic Top-of-the-barrier representation.

3.5 Results

The model proposed in [9] has been validated against two devices presented in the

literature. A narrow channel graphene nanoribbon transistor described in [25] and a

large area wide channel graphene FET described in [14]. The two devices are shortly

presented in Table 3.1.

3.5.1 GNRFET

The first device simulated is a GNR nanotransistor [25] with gate length L=15 nm, based

upon a semiconducting nanoribbon. For clarity, the device cross-section is sketched in

Fig. 3.1. The parameters used by the model are calculated using the procedure described

in § 3.2. The best results are obtained for a λ value of 21 nm. The current flowing

through the device for two distinct drain voltages is depicted in Fig. 3.6.

The quality of the agreement to the current-voltage characteristics calculated in [25]

is excellent for the low drain bias curve, while it is underestimated for the high drain

bias one. This discrepancy, also identified in the original purely ballistic model [1], is

due to the fact that under high bias the assumption of constant 0 eV at the source

contact breaks down. One possible solution to this issue is to empirically identify a

reference potential for each bias point [1]. However, this procedure introduces several

free parameters and thus was not adopted in this work. Further testing of the importance

of the scattering in the current-voltage characteristics has shown that there is a minor
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Figure 3.6: Transfer characteristic (Id-Vgs) in linear scale for this model compared to
NEGF from [25].

Table 3.2: Simulated transconductance gm for FET1

Vds [25] This model

V 3.6 mSµm−1 3.55 mSµm−1

0.5 V 4.8 mSµm−1 4.81 mSµm−1

effect originating from the introduced scattering parameter. Finally, Table 3.2 shows an

excellent agreement of simulated gm with that presented in [25].

3.5.2 GFET

The second device is a large-area graphene FET [14] with gate length L = 3µm and

width W = 2.1µm (see Table 3.1). The structure of the FET (shown in Fig. 3.7) is

slightly more complex because of the back-gate electrode. This can be taken into

account by adding a backgate capacitance term in Eq. (3.6) which in turn becomes:

UL = −q (CBVb + CGVg + CDVd) . (3.13)

where Vb is the potential of the back-gate electrode and Vg is the potential of the top-gate

electrode. The values of the capacitors CB, CG and CD have been computed through

a finite elements simulator. The use of large-area graphene also implies the use of the

associated density of states equation, as described in [12].

The parameters of the large-area graphene model are the same of the GNR model, but

the procedure to extract them is different. First, the Dirac voltage is empirically found

by matching the position of the minimum conductivity point in the Id(Vgs) transfer

characteristic. According to the discussion in reference [14], the gate voltage — which

corresponds to minimum conduction — is Vgs = 2.38V ; the computed Dirac voltage has

been found as VDirac = 0.213V .
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Figure 3.7: (a) The cross-section of the large-area graphene FET of [14]. Graphene
is the black thick dotted line under contacts and top-gate oxide. A global back-gate
electrode is shown under the back-gate oxide. (b) The lumped element model that

accounts for the electrostatics of a large-area double-gate device.
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Figure 3.8: Simulated Id (Vsd) current for FET2 (solid lines) for Gate voltages from
Vgs = 0V to −3V compared to measurement (markers only).
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Table 3.3: Peak transconductance gm for FET2

Vgs [14] This model

-1.5 V 211 µS 180 µS

-2.9 V 205 µS 186 µS

Table 3.4: Fit parameters for FET1 and FET2

Name FET1 FET2

vx Eq. (3.3) 3.25× 104 ms−1

VDirac -0.062 V 0.213 V

CD 4.41× 10−20F 6.12× 10−17F

λ 21 nm 380 nm

The λ parameter is calculated using the Id(Vds) for low Vds. In effect, the λ parameter

will have a pronounced effect on the onset of the saturation effects in the Id (Vds) curve.

In this case the best value is λ = 380nm which is consistent with the value found in

literature [20].

Finally, the value of the average carrier velocity is found empirically by matching sim-

ulations with the magnitude of the current. The best match was obtained at vx =

3.25 · 104ms−1. A direct comparison with literature is not possible, since drift-diffusion

models use a saturation model for velocity, where drift velocity vd is an empirical func-

tion of the longitudinal electric field [26]. The value of carrier velocity used in this

model is however consistent with vd that may be computed for similar structures in the

literature [14], [27].

The output current Id(Vsd) is plotted in Fig. 3.8. The points correspond to DC current

measurement taken from [14], whereas the group of solid lines are this model’s predic-

tions. It should be pointed out that although this is a compact model, unlike those

described in [14], [27] and [28], it is able to correctly predict the presence of saturation

effects in the current–voltage characteristics of the device. To our knowledge the only

compact models presented so far with the ability to predict saturation and second lin-

ear characteristics of GFET’s are based on different equations for each region [8], [29].

Unfortunately, the use of different set of equations for different regions may introduce

artifacts in the continuity of the transconductance gm or its derivative (see section 1.3 in

[30]). Finally, Table 3.3 presents the peak measured and simulated gm for two different

gate biases. The agreement is not excellent but this could be attributed to the method

used to compute gm in [14] to remove the effects of the contacts.

In summary, the described model uses four parameters to fit the experimental results.

Those are presented in Table 3.4, for the two simulated devices, with the exception of
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Table 3.5: Model Comparison

This work DD Tight Binding BSIM 4.4 (CMOS)

Parameters 4 5 [28] <10 >80
Dimensionality 0D 1D 1D to 3D 0D
CPU time/bias point 0.024 s N/A 314 s N/A
Operation regimes 1 1 1 4

the carrier velocity for FET1 which is analytically derived using (3.3).

3.6 Future work

The model presented so far has two issues that limit the quality of the simulation,

respectively in the GNR-FET and GFET cases. The first one is the reference Fermi

potential, which is set to the source potential that is considered fixed for the entire

operation of the GNRFET transistor. This is incorrect as has been demonstrated in

ref. [1]; the same authors proposed a modification in the model involving a new free

parameter to include for each operating point to be found in an empirical way. A better

solution would be to obtain a relation between injected charge, current and the reference

potential, which would be allowed to follow in some measure the channel’s potential.

Another point is the modeling of contact and access resistances to the channel, evolving

the present model of the intrinsic transistor to a complete extrinsic model. Because

the model does not include any invertible expression as opposed to, for example, the

Ohm’s law, a self-consistent iteration of applied external voltages and internal currents

computed by the model is necessary.

3.7 Conclusions

In Table 3.5 a comparison between this work, Drift-Diffusion and NEGF research models

and an industrial model (BSIM 4.4.0 for Silicon CMOS) is shown. Of particualr relevance

is the CPU time employed, on a 2007 Dell workstation, to compute the current of the

15nm GNR-FET for one bias point, for this model and for an in-house NEGF model.

An improvement of more than 4 orders of magnitude is achieved.

In conclusion, a simple modification to the Top-of-the-barrier model that enables accu-

rate simulation of a broad range of graphene based transistors was presented. The model

retains the simplicity of a lumped element approach and is able to correctly describe

the I–V characteristics of both ballistic and diffusive devices. Furthermore, it is able to

correctly predict the behavior of both large-area as well as graphene nanoribbon based
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field effect devices. Its simplicity compared to more complex model, like full-quantum

NEGF, allow for its use in graphene-enabled circuit simulation tools.
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Chapter 4

Graphene RF model

In this chapter the work on the DC and RF modeling of graphene passive devices will

be presented. A lumped element model with frequency-independent parameters will

be used to extract the material resistance and the contact impedance of the analyzed

devices. This model will be used to project the expected performance from parameters

found in literature.

4.1 Motivation

The parameters that have an influence on the high-frequency performance of the tran-

sistor, in particular the Figure of Merit (FOM) cut-off frequency fT and maximum

oscillation frequency fmax, are easily recognizable in the small signal model of the FET

transistor, which for graphene-based devices maintains the same topology and compo-

nents than the original one for semiconductors.

Figure 4.1: The small signal circuit of a typical FET device, showing the intrinsic
device and its access and gate resistance parasitics, along with capacitive coupling

between electrodes.
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In Fig. 4.1 the encircled part of the circuit represents the intrinsic transistor, i.e. the

ideal device without access parasitic impedances. Intrinsic values of FOM refer to the

maximum theoretical performance that is obtained after de-embedding. However, de-

spite the very high values of intrinsic fT shown in some publications and the great

attention given to those values in recent literature, their extrinsic values may give to

the reader a more accurate idea of the actual performance and usefulness of a device.

As an example, one of the highest reported intrinsic cut-off frequency in recent litera-

ture is equal to 350 GHz, while including parasitics the extrinsic fT is thirty times less

(10.5 GHz) [1]. The impact of the access resistance is central for the actual usability

of graphene active and passive devices. Therefore its study on simplified structures like

passive interconnects becomes crucial.

The access resistance is composed by the transition between metal and graphene (the

contact resistance RC and the contact capacitance CC) and the resistance of the ungated

graphene between the source/drain electrode and the gate oxide/gate metal stack. If the

channel potential has a different sign than the potential of the graphene physically in

contact with the metal, a proper access resistance can account for the transport across

the p-n transition that forms between the two. These phenomena are present in passive

devices too, and they are profoundly influential on the total resistance of Interconnects.

The value of the contact resistance depends on many factors, including the quality and

type of graphene, the metal stack, and the presence of lithographic residues. It can also

depend on the length of the graphene strip that lies below the metal, if this is less than

a few hundreds of nanometers. The Transmission Line Model (TLM) is the method

commonly used by graphene and semiconductor device engineers to extract the value of

RC. It requires the fabrication of a dedicated test set of material strips of increasing

length to allow the RC extraction by linearization over contact separation (a recent

and detailed example is found in [2]). The contact capacitance CC is instead too often

overlooked during the measurement and deembedding of active devices, and most of the

times is incorporated in a parasitic pad capacitance. Nonetheless, this is a parameter

whose presence is well established among fundamental studies of the graphene-metal

contact [3], [4], and its exploration is tackled by a few studies on graphene passive

devices [5].

4.2 Objectives of the study

This part of the work aims at finding an equivalent circuit model for passive graphene

elements. This model should be suitable for the extraction of the contact impedance and

the material resistivity by the DC and RF characterization of a single device. It should
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Figure 4.2: The equivalent circuit of a FET including access parasitics (a) and its
simplified version for passive interconnects(b).

be composed by frequency-independent parameters and be valid in the whole spectrum

of measurements (DC to 110 GHz).

4.3 Model

The equivalent circuit (EC) of a graphene interconnect is shown in Fig. 4.2(b) and

includes only the resistance of the strip itself R (or its unitary equivalent, the sheet

resistance R�), the contact resistance RC and the contact capacitance CC. The sheet

resistance of metals is much smaller than graphene’s one because of the small carrier

density in this latter, also for a small thickness: an 15 nm film of Cu has a sheet

resistance of 18.0 Ω (including dimension-dependent scattering) [6], significantly lower

than undoped graphene (R� = 6 kΩ) or even doped graphene (R� = 50 Ω) [7]. Typical

values for pristine monolayer graphene gather around R� = 700 Ω. This means that in

the TLM contact model the current flows preferentially in the metal to follow the least

resistance path, and enters graphene at the edge of the contact. The transfer length dT ,

defined as the effective contact distance from the edge, is related to R� and the specific

contact resistance per area ρC�:

dT =

√
ρC�

R�
, (4.1)

and its value is generally well below one µm. Contact lengths larger than the transfer

length make the current to crowd near the edge of the interface. Therefore, RC is

more simply related to the width of the contact alone (sometimes referred to as the

running length), and accordingly expressed in [Ω · mm], and not to its interface area.

The contact capacitance CC is also assumed to be by large more effective near the edge

of the contact, but in present-day literature there are no experimental reports on the

relationship between the contact reactance and the contact length. Theoretical studies

instead relate this quantity to the interface area. In this work CC will be related to the

contact width and expressed in [F/mm].
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Figure 4.3: An optical microphotograph of the CPW test bed and the on-wafer test
probes for RF measurements.

Figure 4.4: An SEM image of the CPW central electrode, the two Ground electrodes
and of a part of the graphene flake shunting between them. The central line is 4µm

wide and the gaps between the lines are 2µm wide.

4.4 Method

The EC has been used to reproduce the RF characteristics of a graphene device previ-

ously fabricated at FORTH (Heraklion, Greece) [8], [9] and measured in-house in both

DC and RF. It consists of a metallic CPW line deposited over an exfoliated graphene

monolayer flake acting as shunt load. Figures 4.3 and 4.4 show an optical micrograph

of the device under test and a SEM of the same.
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4.4.1 Technology and design

The graphene monolayer flake was provided by Graphene Industries and deposited for

optical identification on a 300 nm SiO2 /n+ Si wafer, along with Raman spectrographic

data to confirm the number of layers. The low-resistivity Si substrate was the only

available from Graphene Industries at the time of the sample supply because of its

versatility: it automatically provides a bottom-gate electrode for easy fabrication of

graphene FETs. However, the presence of a lossy semiconductor below a microwave

waveguide is detrimental for RF power, as the power on the signal line can capacitively

couple to the substrate and to ground lines through the thin oxide. Another effect of

the lossy substrate is to bend the electric field lines, altering the line capacitance of the

structure and introducing mismatch losses.

A flake of monolayer graphene with dimensions about 80×20µm was chosen and 2 nm Ti

/ 300 nm Au metal electrodes were successively deposited on top of it trough an e-beam

patterned lift-off process [8]. Owing to its reduced lateral dimension, a very narrow

CPW was required to accommodate the central line and the inner edges of the ground

lines on a continuous strip of graphene. The central line of the narrow CPW is 100µm

long, 4µm wide and the gaps by the ground lines are 2µm wide. The small waveguide

dimension was challenging for lithographic accuracy and originates significant ohmic

losses: more than 35% of the power is lost at 20 GHz sue to metal and substrate

losses. This structure required tapered access lines to connect the 150µm−spaced RF

landing pads. A Reference structure was also realized on the same Si substrate without

graphene. Both CPW devices were measured at LAAS on a Karl-Suss on-wafer probe

station with an Anritsu 37397C VNA with 110 GHz extension mixers connected to 110

GHz Picoprobe GSG probes at zero DC bias. The DC resistance between the signal

electrode and one of the ground electrodes was measured at IMT (Bucharest, Romania)

[9].

4.4.2 EM model (MoM) and schematic

To model the RF behavior of the test bed a planar MoM simulator (Agilent ADS Mo-

mentum) has been used. It is adequately accurate on planar structures such as the CPW

and can compute their S-parameters in a smaller time than full-wave 3D simulators like

HFSS. As a first approach, a patch of a material with a given contact impedance was

embedded in a MoM layout, but this proved to be a cumbersome task. The approach to

model both structures has been simplified by putting the electromagnetic (EM) model

into a SPICE-like circuit simulator (Agilent ADS Schematic). To do so, four open-loaded

terminals have been added to the original EM model of the unloaded structure. Those
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Figure 4.5: A simplified view of the layout of the test bed loaded with two parallel
patches of graphene, and the EC of the same.

Material Thickness [nm] Conductivity [S/m] Permittivity (real) Loss tangent

Au 200 4.1e7 N.D. N.D.
SiO2 300 0 3.9 0.005
Si-n (open boundary) 10 11.9 0

Table 4.1: List of materials used in the MoM simulation.

terminals, connected in the schematic circuit to two 1 MΩ loads (one for each branch

of the CPW line) made the Reference model, whereas connecting the same to a pair of

ECs shown in Fig. 4.2(b) allowed a good matching of the graphene-loaded structure’s

S-parameters. In Fig. 4.5 a simplified view of the layout connections is shown.

The material parameters for the EM simulation are summarized in Table 4.1. It should

be noted that the thickness of the metallization has been fitted to match the low-

frequency value of both |S11| and |S21|, keeping the σ of the metal constant. This

allowed to match the series resistance of the central line measured with the VNA, find-

ing a value slightly smaller than the nominal one used in fabrication. A number of issues

during the fabrication could have caused this deviation: an smaller metal thickness, a

certain degree of metal roughness or metal contamination; however, the correct isolation

of each one of those issues is beyond the scope of this work; thus, an effective value of

metal thickness of nominal conductivity is used.

As can be observed in Fig. 4.6, the simulated transmitted power S21 and total power

losses of the Reference structure match well with measurements in both magnitude and

phase, validating the quality of the EM model.
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Figure 4.6: Measured S-parameters of the reference structure (pink line) vs. simula-
tions (grey circles). (a) Transmission magnitude (left axis) and phase (right axis); (b)

Total Losses (1− |S11|2 − |S21|2).

Figure 4.7: Measured S-parameters (black solid line) vs. simulations (red lines) of
the graphene-loaded structure. The triangles indicate the maximum change against a
variation of 10% of the circuit parameters. Transmission left Y-axis, Reflection right

Y-axis; (a) Magnitude, (b) Phase.

4.5 Results

The embedded EC contains three parameters. From [9] the zero-bias DC value of the re-

sistance of one patch of graphene has been taken, that is Rdc = 426 kΩ ·µm, constraining

one parameter of the EC, as clarified by the following equation.

RC = (Rdc −R) /2 , (4.2)

This already allowed a perfect match with the lowest-frequency value of the S-parameters

(f=40 MHz, lower limit of the measurements). The matching on the rest of the spectrum

was obtained by fitting the remaining two parameters, R and CC. The agreement of

simulated and measured Reflection and Transmission is shown in Fig. 4.7.

The extracted values of contact resistivity RC and sheet resistivity R are summarized

in the first row of Table 4.2, along with some values from literature.
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Ref. Year Graphene Type Metal Stack R� [Ω] RC [Ω ·mm]

this work 2009 exfoliated 2 nm Ti/300 nm Au 1380 211.00
[10] 2010 exfoliated Ti/Au 3800 5.00÷ 60.00
[10] 2010 exfoliated Ni 3800 0.50÷ 4.00
[10] 2010 exfoliated Cr/Au 3800 2.00÷ 200.00
[11] 2011 CVD 20 nm Pd/30 nm Au N.A. 0.60
[2] 2012 SiC Ti/Pt/Au 236 0.07
[12] 2013 SiC 7 nm Pd/10 nm Au N.A. 0.10

Table 4.2: Material and contact resistances from literature compared to those ex-
tracted by the model.

It must be noted that the RC value of this device is the highest listed, worse than the

ones reported in the same period and much worse than current state of the art. Moreover

it is responsible for most of the resistance of the graphene patch (2RC/Rdc
= 99%). This

is probably because of a great amount of lithographic residues (PMMA) at the interface

between graphene and metal, reducing the effective contact area. Annealing techniques

to effectively remove residues [13], alternative support polymers such as Polycarbonate

[14] and optimized metal stacks for the metal-graphene contact have since been discov-

ered. Most of the advances on this subject have been the result of empirical studies,

and the great attention devoted to it led to such performance improvement in small

time. Today, to achieve low values of RC metal stacks such as Ti/Pt/Au or Pd/Au are

commonly used [2], [12]. The extracted value of the contact capacitance per unitary

width is CC = 9.38 pF/mm, and its value per unitary surface is 4.68 fF/mm2. This

value is compatible with the presence of a thin dielectric film at the metal/graphene

interface (for PMMA with εr = 2.6, a thickness d = 4.9 nm is computed). However, the

presence of a DC current across the metal/graphene interface suggests that graphene is,

at least in some points, in physical contact with the metal, in a manner very similar to

other studies based on the metal/metal contact [15]. Moreover, there is another contact

phenomenon intrinsic in graphene: the interface charge accumulation, as foreseen by

theoretical studies [16],[3]. It’s not known yet if this acts as an actual capacitor, and it’s

not possible to divide the capacitance contribution across dielectric residues from the

interface charge accumulation with this simple experiment.

4.5.1 Performance projection with other graphene materials

Bulk and contact resistance values from various sources in literature, as well as those

prospected for graphene in the Emerging Research Materials chapter of the ITRS 2011,

have been used in the model described in § 4.4.2 to show the projected effects in the

simulated passive RF device. In addition to those materials, state-of-art transparent

graphene materials and indium tin oxide films have also been simulated. When not



4.6 Chapter conclusions and future/ongoing work 65

Ref. Year Material Metal Stack R� [Ω] RC [Ω ·mm]

this work 2009 exf. graphene TI/Au 1450 211.00
[2] 2012 SiC graphene Ti/Pt/Au 236 0.07
[18] 2012 FeCl3 intercalated gr. N.A. 8.8 N.A. (0.07 used)
[19] 2001 ITO N.A. 60 N.A. (0.07 used)
[17] 2011 graphene (ITRS-ERM’11) N.A. N.A. 1.0e-3

Table 4.3: Simulated performance comparsion with alternative solutions.

Figure 4.8: Simulated Transmission S-parameters for materials listed in Table 4.3);
(a) Magnitude, (b) Phase.

available in literature, the value of RC has been taken from [2], while the value of

CC used has been taken from this study. A summary of the parameters used in the

simulation is found in the following table, and a comparison of magnitude and phase of

S21 of the device is shown in Fig. 4.8. Being the target graphene sheet resistance not

specified in the ITRS - Emerging Research Materials 2011 chapter [17], the simulation

with this specific parameter set was not possible.

4.6 Chapter conclusions and future/ongoing work

In this chapter a wide band model describing the phenomena associated to the con-

tact has been shown. This model allowed the extraction of resistive and capacitive

parasites from DC and RF measurements of a single device, in the place of a dedi-

cated set of devices as in the TLM method. Moreover, the parameters extracted here

are frequency-independent, meaning that most of the physical phenomena involved are

correctly addressed with the proper parameters, as opposed to other models showing re-

sistances and capacitances whose values depend on frequency [20]. However, to complete

the validation of the model an RF characterization of TLM-ordered structures is nec-

essary. This kind of structures, like the one pictured in [3], are typically low-frequency

only and do not support the transmission of a mm-wave RF signal without incurring

serious mismatch losses and coupling, making it impossible to establish a relationship
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between high-frequency impedance and geometrical dimensions. Moreover, the transfer

length LT has been studied only once and in DC only [21], and no models defining an

equivalent quantity for the contact capacitance has been developed to date. A dedicated

RF test structure with increasing graphene length and/or width must be fabricated and

analyzed in order to compare the parameters extracted by the model shown here with

those extracted by TLM. This topic will be addressed in the forthcoming chapter.
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Chapter 5

Plastic test beds

In this chapter the design of a plastic test bed dedicated to the measurement of the sheet

and contact impedance of various materials will be shown, along with expected values

of the impedance characterization and performed measurements. A set of carbonaceous

materials, including monolayer graphene, will be analyzed in DC and RF by the Transfer

Length Method (TLM) and by the model presented in Chapter 4, showing a consistent

validation of the same. Finally, the analysis of the RF impedance of contacts of reduced

dimensions, named here Nanocontacts, will be shown.

5.1 Motivation

As discussed in § 4.1, the metal/graphene contact impedance is responsible for most

of the performance degradation of the device. Other elements that seriously affect

the performances are the structure and access lines connecting the RF probes to the

actual device. Each unit Ohm of mismatch from 50 Ω in the characteristic impedance

introduces a reflection of around 4% of the input power, whereas a series resistance

introduces mismatch and ohmic losses for about 4% per Ohm. Through careful design

of RF access lines it’s possible to minimize impedance mismatch and probes/device series

resistance and maximize the signal delivered.

In some works there are microwave impedance tuning structures like inductors [1] or

microstrip filters [2] fabricated on the same wafers of graphene amplifiers and mix-

ers. These approaches are very effective to remove mismatch losses in common-source

graphene FETs with a known, at least in some degree, high input impedance. Unfor-

tunately in the case of an exploratory study when the input impedance is unknown it’s

not practical to design and fabricate an on-wafer tuning structure.

69
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Figure 5.1: Standards used for some common de-embedding techniques. On the
tips of the GSG probes are the SOLT reference planes (black dashed lines), while the
de-embedding reference plane are defined by the standards (blue dash-dotted lines).

To overcome this limitation two strategies are typically applied at the same time: the

fabrication of known deembedding standards on the same wafer of the device; and, as

stated before, the design of well 50 Ω-matched access lines. The former allows applying

mathematical methods to shift the reference plane to a point closer to the Device Under

Test (DUT), eliminating the phase delay and most, if not all, of the mismatch and ohmic

losses associated to access lines; the latter supports a better handling of the dynamic

range of the measurement instrument (typically, but not limited to, 50 dB for a VNA)

and minimizes the impact of the error associated to the de-embedding of the DUT after

the measurement of the standards.

In Fig. 5.1 a hypothetical DUT together with some de-embedding standards is shown.

The vertical dashed lines correspond to the reference planes of the measurement accord-

ing to the Short-Open-Load-Thru (SOLT) calibration, done with a separated calibration

kit on alumina and widely adopted alone or as the first of a two-step calibration pro-

tocol: it allows removing the effects of the cables, probes and of the instrument itself.

The vertical dash-dotted lines correspond to the de-embedding planes defined by the

known standards. Various techniques exist, among which the most commonly adopted

are the Open-Short and Thru-Reflect-Line (TRL, which includes a delay line standard

not shown in the figure). After the de-embedding, the access lines are virtually removed

from the DUT.
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For mm- and sub-mm wave devices the intrinsic FOMs are often considered of greater

impact than extrinsic FOMs and other design parameters like device footprint. Even

though de-embedding procedures are extensively applied and refined, the graphene/metal

contact parasitic can deeply affect not only the extrinsic but also the intrinsic FOMs if

they are not correctly removed. The Open-Short de-embedding procedure is typically

applied to semiconductor device measurements [3], but in recent literature on graphene

devices it is not clear whether the graphene/metal contact resistance is removed from

presented data. However, a study of its effect at high frequencies, where those devices

operate, is in any case necessary.

5.2 Objectives of the study

The main objective of this chapter is the building of a low-loss test bed for the RF

characterization of monolayer graphene and other thin films of carbonaceous materials.

This substrate must provide a set of de-embedding standards and reference devices for

the extraction and isolation of the test material’s impedance. This test bed must support

the following two experiments.

High-Frequency TLM. The extraction of the contact and bulk impedance of a test

material, in particular monolayer graphene. A set of two-port RF access lines must

be built, and the separation between the two central electrodes must be varied

across the set. This should allow the linearization of the DC contact resistance

over contact separation, and the simultaneous measurement of contact impedance

ZC(ω) for each device.

Nanocontacts. The development of a model relating ZC(ω) with nanoscaled contact

lengths. A set of two-port access lines with various sub-micrometric contact lengths

must be built. The new model should provide the minimal contact length to achieve

the saturation of YC(ω) for a given frequency.

5.2.1 Design Specifications

The specifications for the test bed were defined as follows:

– G-S-G landing pads for coplanar RF probes; they should support probe pitches of 100

and 150 µm;

– the CPW lines should have a characteristic impedance of Z0 = 50 Ω;

– the electrical length of the material under test should be less than λ/10 up to 110 GHz;

– the reference de-embedding plane should be 50 µm farther than the CPW taper, to

allow the dissipation of higher-order modes excited by the geometrical discontinuity.
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– the typical size of a flake of monolayer graphene is expected to be larger than 10 ×
25µm, and it should cover entirely the CPW line width;

– the minimum feature size of Contact Optical lithography is 1 µm;

5.3 Method

During the design of the test bed, a considerable effort was devoted to the selection

of the substrate. In the structures of Chapter 4, a consistent amount of the losses

originated from the silicon substrate. Doped Si-n+ offers a capacitively-coupled low-

impedance path to ground for high-frequency signals. In addition to that, the Si/SiO2

interface induces a layer of charges that can act in the same way, and generate substrate

losses. In particular this phenomenon is only weakly related to the conductivity of the

semiconductor, and High Resistivity Silicon (HRS) bears the same issue. A complete

design on HRS was initially made, fulfilling the specifications contained in § 5.2.1; The

layout of a 100 µm is shown in Fig.5.2. This design was fabricated and measured as a

reference, but was abandoned due to high RF losses. It will not be further described in

this manuscript. However, before the design based on HRS was fabricated, the choice

went for a plastic substrate. Benzocyclobutene (BCB) was selected for its interesting

properties in RF: low εr and low loss tangent [4], both resulting in low line losses.

Then, another requirement was added: the reduction of graphene’s contact resistance by

preventing contamination of graphene, in particular of its face turned towards contact

metals. One obvious source of contamination was the resins (among them, PMMA)

used for the lithographic patterning of graphene and the lift-off processing of the CPW

line metals. Those resins are normally removed with solvents, but due to their strong

adhesion to graphene some residues are left, polluting the graphene/metal interface [5]

and reducing the effective contact surface. Moreover, if the graphene is CVD grown, a

prior step is necessary to transfer graphene to the target substrate: PMMA polymer is

spun on top of graphene, the catalyst metal is etched (for Cu, ferric chloride is used), and

the freed graphene/PMMA bilayer is transferred on the substrate of choice. Transfer

PMMA is dissolved with solvents, but again some residues can be left on graphene.

Recently, some advances have been made on graphene cleaning techniques, like vacuum

annealing [6], or the use of sacrificial layers (aluminum oxide) on CVD graphene prior

to PMMA spinning [7].

5.3.1 Technology

Silicon and plastic technologies are fabricated with very different processes and will be

both detailed in this section.
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Figure 5.2: The layout of a 100 µm line designed for High Resistivity Silicon. The
dimensions of the inner CPW are S = 9µm and G = 4mum.

5.3.1.1 Fabrication of CPW on SiO2/HR Silicon

Optical lithography was used to pattern the Coplanar waveguide structures on SiO2/HR

Silicon. The substrate was High resistivity and the SiO2 thermally grown 290 nm (tuned

to enhance the optical contrast of graphene layers. Metals were deposited by electron

gun evaporation and were usually comprised of a thin (∼2÷5 nm) layer of adhesion

metal (Chromium or Titanium) and then a thick (∼300 nm) layer of Gold. Lift-off was

used to remove the excess metal. In case nano sized patterns were necessary, E-beam

lithography using positive resin (PMMA) was used to define the electrode shape and lift-

off was used with a metal thickness of ∼100 nm to allow narrow patterns to be realized.

In Fig. 5.3 this process is shown. The polymer residues interfere with the surface quality

needed by metal contacts.

5.3.1.2 Fabrication of CPW on Polymeric substrates

This technology takes advantage of the solution proposed by Dr. Deligeorgis, substan-

tially modifying the vertical stack order of metal contact and graphene. The second

fabrication method used was as follows: Initially a temporary substrate (Silicon or

preferably GaAs) was used to deposit the CPW as described above. Nanosized parts
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Figure 5.3: Graphene on HRS, process steps.

Figure 5.4: Graphene on Polyimide, process steps.

were added using electron beam lithography. It should be noted that the deposition was

modified to contain an adhesion layer at the top side as well. So an example of the final

deposition was: Cr/Au/Ti. The final layer was added to increase adhesion with the

polymeric layer deposited afterwards. Following the completion of the CPW structure,

a thick (∼100 µm) polymeric layer (SU-8 or Polyimide) was spin coated on top of the

structures. After polymerization by UV exposure and thermal treatment to stabilize

the polymer layer, the rigid substrate was etched away. A Lapping step to reduce the

substrate thickness from ∼500 µm down to 100-200 µm was initially used. Following

that, plasma or wet etching for the Silicon and the GaAs case were used respectively.

The resulting polymeric layer containing the CPW structures was used to deposit the

carbon material. In the case of CVD graphene, this is deposited on pre-patterned metal

lines, freed from the transfer polymer and then cut in the desired shape. The topmost

surface of graphene is exposed to transfer and lithographic polymers, whereas the bot-

tom one, which is in direct contact with metals, is left uncontaminated. In Fig. 5.4 the

process is detailed. In Fig.5.5 a photograph of the fabricated PI sample demonstrating
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Figure 5.5: A photograph of the Polyimide (PI) sample demonstrating its mechanical
flexibility.

its mechanical flexibility is shown.

5.3.2 Design

Apart from the specifications, some design choices were also outlined to improve the

robustness of the design. For the High-Frequency TLM experiment, the circuit con-

nections series (between the two signal lines) and shunt (between signal and ground,

symmetrically) were considered. The matching of the lines to 50 Ω was constrained by

two parameters: the total CPW line width should be below 25µm, and the lithographic

resolution of 1 µm, very close to the gap that would be necessary. Deviations of fractions

of micrometer are expected for contact optical lithography from the designed mask and

fabrication. To comply with that, larger electrode separations are generally used, but

this was not possible because of the CPW total width limit. Also, a preliminary test

with lines with different electrode separations can be done, but it would have required an

additional optical mask to be fabricated. Instead, two device sets, called G10 and G15,

were designed with increased CPW total width: one with a specified gap of 1 µm and
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Line [µm] f @ 20◦ [GHz] f @ 160◦ [GHz]

4500 2.7 21.9
1500 8.2 65.7
500 24.6 197.2
300 41.1 328.7
100 123.2 986.0

Table 5.1: TRL Line standards and their frequency range.

another one with a 1.5µm gap, and the corresponding signal line width was calculated

to have Z0 = 50 Ω.

For each CPW line set a TRL de-embedding standard has been designed. Seven stan-

dards, including one Short, one Thru and five lines of different lengths are implemented;

all of them have the same access line geometry in common up to the reference plane, in

the same fashion as shown in Fig. 5.1. In the TRL algorithm, each Line standard can

provide a correct sample of the propagation constant γ when its phase delay is roughly

between 20◦ and 160◦. For a BCB substrate, εr = 2.65, the five Line standards together

with their lowest and highest frequency are presented in Table 5.1. For the Nanocontacts

experiment, only the shunt topology has been chosen: five thin signal lines, having a

length of 6 µm and a width varying from 100 nm to 350 nm. Finally, Van der Pauw

devices for Hall mobility measurement and two large CPW lines (700 and 1200 µm long

and a constant width of 80 µm) have been added to the design. In Fig. 5.6 the layout

of the optical mask period, including oll device groups, is shown.

5.3.2.1 Modeling

The EM modeling of the CPW was performed in two major steps: first the characteristic

impedance of the CPW lines was matched to 50 Ω through a number of tools, namely

quasi-static analysis, ADS Linecalc and HFSS; then the layout was defined through 2.5D

MoM simulations in Agilent ADS Momentum.

The quasi-static analysis is based on the conformal mapping of the cross-section of the

CPW into a simpler geometry (a parallel-plate capacitor), enabling the computation

of the fringing electric fields between signal and ground electrodes and the Z0 of the

line. It is based on a number of assumptions: the metallization has a zero thickness;

the dielectric constant of the substrate is real, i.e. with zero DC conductivity and zero

tanδ; and finally the boundary between dielectric and air is a magnetic wall, so that the

Cair and Cdiel can be separated and the total capacitance is the sum of the two partial

capacitances. In particular, the case for a double layer substrate, a stack of BCB (75 µm

thick, εr = 2.65 [4]) and glass (infinite thickness, εr = 3.9), has been implemented as
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Parameter Analytical LineCalc HFSS

BCB εr 2.65 2.65 2.65
BCB thickness [µm] 75 1000 75
BCB tanδ N.A. 0.0008 0.0008
SiO2 εr 3.90 N.A. 3.90
SiO2 thickness [µm] inf. N.A. 1000
SiO2 tanδ N.A. N.A. 0.0050
Au thickness [nm] N.A. 300 300

Table 5.2: List of material parameters for the computation of Z0.

Set G Analytical Linecalc HFSS Final design

G10 1.0 16.25 12.15 14.00 14
G15 1.5 24.52 20.90 21.50 22
Pads 4.5 70.81 75.84 69.50 71

Table 5.3: Signal widths S obtained from the three tools used, expressed in µm, and
their averaged value used in the design.

in § 2.2.6 of [8] in a Matlab script. Unfortunately, this analysis lacks the effect of the

dispersion over frequency of the quasi-TEM mode and, in addition to that, for ratios of

signal width over separation S/G � 5 this computation is less accurate. Finally, when

the thickness of the metals is comparable to the gap, the assumption of infinitely thin

metals can underestimate the line capacitance and overestimate the Z0.

The second tool used was ADS Linecalc, which is a commercial tool based on conformal

mapping. It includes a Svensson/Djordjevic Model to take into account the loss tangent

of the dielectric [9], but it doesn’t support multi-dielectric substrates. A simpler model

with a single material substrate has been selected with this tool. Finally, the Z0 was

also computed in HFSS, a full-wave 3D finite elements EM simulator. As opposed to

the analytical computation, HFSS takes into account the dispersion of the line and the

resulting Z0 is thus a function of the frequency. In Table 5.2 a list of the parameters

used in each tool is shown. These are the nominal values of thickness and dielectric

properties for the process described in § 5.3.1. The signal width S for the two sets G10

and G15 that resulted in Z0 = 50 Ω for each tool are presented in Table 5.3, together

with the S and G for the larger probe-landing section of the CPW. The final design

values are obtained as an average of those proposed by the three tools, rounded to one

micrometer precision.

The preliminary layout based on the specifications in § 5.2.1 has been drawn and sim-

ulated in ADS Momentum. The taper connecting the landing pads to the narrower

line was found to contribute significantly to the signal reflection. The taper should not

provide impedance adaptation, since the Z0 of both its ends is 50 Ω, so a smooth width

adaptation would be expected to give the lowest signal reflection. However, the best
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Figure 5.7: An example of the final layout made in Agilent ADS, showing the 100 µm
line standard for the G15 set. The landing pads and access lines are identical for every
device in the G15 set. The device comprised between the two vertical lines is the

intrinsic DUT.

performance was obtained with a 45◦ connection, which is also beneficial to keep both

the size of the access lines and related ohmic losses small. The reference plane was fi-

nally designed to be 50 µm farther than the taper to allow the dissipation of higher-order

modes excited by the line discontinuity. The 100 µm line standard is shown in Fig.

The simulated S-parameters for the 100 µm line, from both G10 and G15 sets, is shown

in Fig. 5.8. Higher ohmic losses are expected for the G10 set because of the narrower

signal line width (14µm) compared to the G15 set (22µm).

The dynamic range of test impedances that resulted from these test beds was also

studied. Each test device of the High-Frequency TRL experiment has two reference

devices: an Open without graphene, and a Short with all electrodes contacted together.

Line standards are also available from the TRL kit. The DC resistance of access lines is

0.612 Ω for 22 µm wide and 300 nm thick signal lines. This shouls sum up with about

2 Ω of DC resistance for cables, probes and contact. In the case of high resistances this
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Figure 5.8: The 100 µm line in Fig. 5.7 (red line) and its equivalent in the G10
set (blue line) simulated in MoM (ADS Momentum). The transmission magnitude is
lower for the G10 device because of the smaller CPW line width and signal line width

(14 µm).

quantity can be be neglected, while for low resistances a multimeter with precision, for

example, of 5.5-digits would allow to measure resistances of the order of 10 mΩ. However,

contact repeatability would represent the highest obstacle in the low-R scenario.

In RF, well matched and well designed access lines give very high ratios between the

transmission (and the reflection) of the Open and Short references. In Fig.5.9 the |S21|
ratio between the Open and Short reference is plotted in blue for a 1 µm Shunt gap, and

the |S21| ratio for the Open and the Line references of a 100 µm Series gap is plotted

in red; values higher than 30 dB on the whole bandwidth suggest that a wide dynamic

range of test impedances can be read.

5.3.3 Fabricated structures

The fabrication of the devices was fulfilled by Dr. Deligeorgis. A number of issues

arose during the development of the technology. The ones whose correction affected

the final design are listed here. The BCB plastic substrate demonstrated very low

adhesion to both the supporting SiO2 and metal lines. This made the landing pads

mechanically unstable and very prone to scratching, piercing and detachment by the

action of RF probes (in some cases the entire signal line was seen to raise from the
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Figure 5.9: The ratio between Open and Short transmission for the Shunt device (blue
line, calculated as dB(Open)–dB(Short) ) and between the Open and Line transmission
for the Series device (red line, calculated as dB(Line)–dB(Open) ), simulated in MoM

(ADS Momentum). The electrode separation is respectively 1 and 100 µm.

substrate and eventually detach). The BCB polymer was then replaced with SU8,

which has much better adhesion but unfortunately has higher RF losses (tanδ around

0.04 instead of 0.005) and a different dielectric constant (estimated as εr = 2.85 in

both this work and [10]). This implicates a considerable mismatch of the lines from the

designed characteristic impedance, increasing the line capacitance by 7.5% and lowering

the Z0 by 1.7 Ω.

On the other hand, the SU8 substrate was found to constrict slightly after the baking

step, with a difference to nominal dimensions of below 0.5%. This had practically no

consequences on the electrode separation, but prevented the correct alignment of optical

masks on the 4” wafer. Patterning of graphene, which in this technology is the last

step, had a very low yield. SU8 was then replaced with Polyimide (PI) which gave lower

constriction than SU8. The dielectric constant of PI is even higher than SU8: a value of

εr = 3.3 was given in [11], and a value of εr = 3.4 was estimated by MoM simulations in

Fig.5.14. This resulted in a parallel-plate component of the line capacitance 25% higher

than BCB, and a Z0 estimated 4.0 Ω lower than BCB.

The accuracy of the lithography was also a concern of difficult evaluation. The most

influent features as the Signal-Ground separation, the Signal-Signal gap of Series devices

and the width of the signal lines in the Nanocontacts experiment cannot be measured

with optical microscope because they all are of the same order or smaller than the optical

wavelength. Moreover, the top profile is perfectly flat and topography with AFM would

give no appreciable data. Finally the substrate is insulating and, during SEM imaging,

electrons cause the metallic lines to charge up, deviating further incoming electrons and

making the image blurry and oscillating. Sample preparation with gold pulverization
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Figure 5.10: Low-voltage SEM scan of the electrode separation as fabricated in SU8
sample. The image represents a series capacitance with a nominal signal-to-signal gap
of 1 µm (0.66 µm measured) and a signal-ground gap of 1.5 µm (1.15 µm measured).

would than made the material underneath unrecognizable and again no information

would have been retrieved by the flat topography.

The measure of these small but important features was not possible until August 2013,

when the newly available dual beam microscope FEI Helios 600i allowed scans with

voltages lower than 1 kV. This, together with a reduced time of scan and software image

stabilization, limited the charge accumulation and the image blurring. The measure in

these conditions showed evidence of a resin development issue during the lift-off of the

CPW access lines on the SU8 sample: the nominal electrode separations are reduced of

350± 50 nm, as can be seen by the SEM scan in Fig. 5.10.

The PI sample was also analyzed at low-voltage SEM. The electrode separation for that

run is in average reduced of 170 ± 60 nm, as shown in Fig. 5.11. This increases the

parallel-plate component of the signal-ground capacitance up to the 54% for the SU8

sample and 25% for the PI one. The consequent reduction on Z0 can be evaluated as,

at worst, 6.1 Ω for SU8 and 2.7 Ω for PI.

Finally, the nominal thickness of the metal has been increased from the initial value of

300 nm for two reasons: for better resilience against scratches from the RF probes, and

for improved ohmic losses. The adhesion layer between the metal and the plastic was
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Figure 5.11: Low-voltage SEM scan of the electrode separation as fabricated in Poly-
imide sample. The image represents a series capacitance with a nominal signal-to-signal
gap of 1 µm (0.89 µm measured) and a signal-ground gap of 1.5 µm (1.27 µm measured).

also improved, which made the landing pads much more robust. A final value of 330 nm

for the SU8 run was extracted: 2-point DC measurement of lines of different length

were subtracted together to de-embed the effect of DC probes and contacts. Although

4-points measurements would have given a more accurate value, they were not used

in order to avoid excessive damage on the reference structures. A side-effect of higher

metal thickness is the increase in the parallel-plate component of the line capacitance;

30 nm thicker metal lowers the simulated Z0 of 0.31 Ω. For the Polyimide run, the DC

measurements gave a thickness of 120 nm, while RF simulations suggested a value of

140 nm. This was highly detrimental for losses (shown in Fig.5.12), which increased to

5% at low frequency and to 11–13% at high frequency. However, the thickness reduction

compensated for the many factors that lowered the Z0: an improvement of 1.56 Ω has

been computed for this effect.

The cumulated effect on Z0 cannot be simply derived algebraically, it must be calculated.

The final computed values of the Z0 are 42.63 Ω in set G10 and 45.43 Ω in set G15.

All the reference devices without graphene were measured in RF with an Anritsu 37397C

VNA with 110 GHz extension mixers, with the exclusion of the HRS sample, measured

up to 67 GHz with an Agilent PNA-X VNA. In Fig. 5.13 a comparison between measure-

ments and simulation is done for a 100µm, 300µm and 500µm lines for the SU8 sample.
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Figure 5.12: Total Losses (1−|S11|2−|S21|2) measured for a 100µm line (plus access
fixtures) made on HRS (black circles), SU8 (red squares) and Polyimide (blue solid).
The peak after 100 GHz for PI is due to inadequate calibration. The lines were designed
to be matched on a HRS technology in the first case, and on a BCB technology in the

remaining two.

The close fitting of |S11| and of the phase of < S21 to measurements suggested that the

permittivity of SU8 should be εr,SU8 = 2.85, as also reported in [10] for in-house SU8

technology. The fitting of the low-frequency value of both |S11| and |S21| resulted in

a metal thickness of 330 nm, consistent with DC measurements as stated before. The

largest contribution to RF losses was then given by the metals with an attenuation con-

stant of αc = 1.04 dB/mm at 40 GHz, without access lines and probes. A fitted value

of the loss tangent of tanδ = 0.04 was also found, consistent with [10].

In Fig.5.14 the same comparison as above is done for the Polyimide sample. The ex-

tracted dielectric constant εr,PI = 3.4 is close to the data provided by the manufacturer

(εr,= 3.3, [11]), while the loss tangent therein was measured at 2 kHz, a frequency that

lies in a range not considered in this study (RF measurements were performed starting

from 40 MHz). The extracted value, fitting the RF losses, was tanδ = 0.035. The

computed value of Z0 are 45.16 Ω in set G10 and 46.52 Ω in set G15.
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Figure 5.13: Measured S-parameters for the G15 set in SU8: the 100µm line (blue
solid), the 300µm (red solid) and 500µm (green solid). Simulated S-param for the same

structures (respectively, circles, crosses and squares).

Figure 5.14: Measured S-parameters for the G15 set in Polyimide: the 100µm line
(blue solid), the 300µm (red solid) and 500µm (green solid). Simulated S-param for

the same structures (respectively, circles, crosses and squares).
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Figure 5.15: Test DUT circuit. The framed section of the circuit is the intrinsic
device, DUTint.

5.3.3.1 De-embedding

The SOLT (Short-Open-Load-Thru) is one of the standard procedures used for the

calibration of VNA. It relies on three known connection standards and a broadband

matched load on an Alumina calibration kit, and allows the shift of the reference plane

up to the tips of the RF probes. However, to further push the reference plane up to the

DUT, a de-embedding procedure is necessary. Many different methods exist, and many

of them rely on the fabrication of a high-precision and broadband matched load, which

is a complicated process. Other methods do not rely on matched loads, and three of

them have been explored and compared: Through-Reflect-Line (TRL), Open-Short and

Cascade-Thru.

The test device is a circuital model drawn in ADS Schematic. A ”raw” DUT to be

deembedded is shown in Fig. 5.15, containing an internal section DUTint that is the

target of the de-embedding procedure, two slightly mismatched lossy transmission lines

at the inputs, and parasitic capacitances and resistances CS , CP1, CP2, RS1, RS2 and

RP . The Short and the Open standards are built according to the specifications in [3],

and the Thru contains all the elements with the exception of the shorting resistor RP .

The Line standard contains a 857 µm line element with κeff = 2.0, which has a 160◦

phase delay at 110 GHz.

The TRL de-embedding procedure is based on the measurement of three connections: a

reflection standard, typically a Short, a Thru and Line standards. It allows the extraction

of the propagation constant γ of the access line, followed by the reflection parameter Γ

[12]. The standards must be perfectly identical up to the reference plane. In addition,
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Figure 5.16: Comparison between intrinsic model (red), uncorrected data (purple)
and TRL de-embedded data(black). S-parameters are shown, Reflection (above) and

Transmission (below).

the 50 Ω Line standard must have a phase delay between 20◦ and 160◦, as also stated in

§ 5.3.2. The single-line TRL procedure was implemented in a Matlab script. In Fig.5.16

the uncorrected and TRL de-embedded data are presented along with the internal model.

The lowest frequency point (50 MHz) of TRL corrected data falls beyond the 20◦÷160◦

phase delay requirement for the Line standard and is not valid.

The Open-Short de-embedding procedure is extensively used in state-of-art graphene

device research [13], [14]. The measurements of two standards are needed: the Open, i.e.

the DUT without graphene, and the Short, i.e. with all electrodes connected together.

In Eq. 5.1 the equation of the Open-Short de-embedding is shown [3].

Yint =
[
(YDUT–YOpen)−1–(YShort −YOpen)−1

]−1
, (5.1)

where in bold are the Y-matrices of the de-embedded data, the raw data, the Open

standard and the Short standard respectively. The effect of this method will be shown

in Fig.5.17.

A variant of the Cascade-Thru de-embedding procedure was also developed. In this

method, the device is thought as the chain of a left fixture, the DUT to be deembedded,
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and the right fixture. The ABCD parameters of the Thru of each device (its metal-

shorted version) are measured, square-rooted, inverted and left- and right-multiplied to

the ABCD parameters of the DUT, as clearly described in the next formula.

Dint =
(√

T
)−1

Draw

(√
T
)−1

, (5.2)

where Draw are the measured ABCD parameters of the DUT, T those of its reference

Thru structure and Dint are the de-embedded parameters. The square-root R of a

matrix M =
(
a b
c d

)
is instead computed as follows:

R =
1

t

(
a+ s b

c d+ s

)
(5.3)

with

s = ±
√
δ and t = ±

√
τ − 2s , (5.4)

and τ and δ are respectively the trace and the determinant of M. Two solutions exist

for the square root of the matrix of a generic delay line (other two are identical to the

first pair). However, one of them is unphysical because gives anti-symmetric delays in

forward and reverse transmission (< S21 and < S12 are rotated of π in Smith chart

representation).

A general requirement of the Cascade-Thru is that the Thru device has to be reciprocal

and symmetrical, which is not always the case because of some small yet unavoidable cal-

ibration errors after the SOLT step. This requirement in S-parameter notation translates

in a bi-symmetrical matrix, i.e. simultaneously symmetrical around the main diagonal

(S21 = S12, reciprocal device) and the secondary one (S11 = S22, symmetrical device).

However, every matrix can easily be separated in a symmetrical and anti-symmetrical

component with simple average and difference operations. The small imperfections left

by the SOLT calibration can be subtracted away and incorporated in the de-embedding

error, and the modified Thru reference structure can be assumed as the chain of its

square roots. Hence, the T matrix in Eq. 5.2 must be the ABCD transform of the bi-

symmetrized S-parameters of the Thru. This procedure, although intuitive, has not yet

been found in literature in this exact formulation to date. Single-standard Thru-based

De-embedding techniques generally decompose the Thru matrix in π- or T-shaped net-

works and derive the values of their components. The use of Eq. 5.2 is not yet reported,

thus it will be soon described in a technical paper.

In Table 5.4 the average errors between de-embedded data and the intrinsic model are

presented. The lowest error is found for the Cascade-Thru technique. The Open-Short

and the Cascade-Thru broadband methods were also compared with a random variation
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TRL Open-Short Cascade-Thru

0.021 0.205 0.012

Table 5.4: Average errors on the magnitude of S-parameters (linear) for various de-
embedding techniques.

Figure 5.17: Comparison between Open-Short (blue solid line and blue up and down
triangles), Cascade-Thru (green solid line and triangles) and the target DUTint (solid

red line). S-parameters are shown, Reflection (above) and Transmission (below).

Table 5.5: Open-Short and Cascade-Thru de-embedding errors compared at 110 GHz.

Method |S11| [dB] |S21| [dB] < S11 [deg] < S21 [deg]

Open-Short 6.06± 0.32 6.02± 0.39 2.10± 0.88 0.95± 1.96

Cascade-Thru 0.59± 0.07 0.31± 0.04 0.13± 2.67 0.06± 1.93

on the circuit parameters in the standards and in the uncorrected DUT. The variation is

described by a Gaussian distribution with 5% of std. dev. amplitude, and a Monte-Carlo

analysis has been performed. The resulting S-parameters are shown in Fig.5.17. The

output variation of each method is comprised between the top and bottom triangles of

the respective color. The maximum errors of Open-Short and Cascade-Thru techniques

are listed in Table 5.5. Cascade-Thru performs generally better, although it also gives

a larger variation in the phase error compared to Open-Short.

In conclusion, the Cascade-Thru method has been proven as more accurate than both

TRL and OS, and more robust against variations in the known standards as far as the
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Table 5.6: Measured DC resistance values for devices of various separations.

Device Separation [µm] Rdc [Ω]

Srs001 0.85 272.6 ± 5.6
Srs002 1.85 239.7 ± 6.7
Srs020 20.0 421.4 ± 4.5

Table 5.7: Extracted contact and sheet resistances .

Device Rdc [Ω] R� [Ω] RC [Ω·mm] CC [pF/mm]

Srs001 273 2933 1.70 3.73
Srs002 240 1021 1.64 6.40
Srs020 421 251 2.02 0.78

magnitude of S-parameters are concerned.

5.4 Results: Graphene monolayer, CVD

CVD monolayer Graphene provided by Graphene Supermarket has been deposited on

the Polyimide substrate as shown in Fig. 5.4. Similarly to SU-8, the PI too suffered

some constriction after the curing step, estimated as < 0.4%. This prevented the correct

alignment of the graphene patterning shapes during the optical lithography step. Fur-

thermore, in some spots graphene was missing. Three devices were correctly patterned

and working, all of which of the Series kind and with electrode separations respectively

of 1, 2 and 20 µm.

S-paramenter measurements were performed with an Agilent PNA-X up to 67 GHz and

with a Keithley 2410 SMU connected on the DC feeds of the VNA. In order to avoid

any non-linear effects of the graphene conductivity versus DC bias and RF power, both

measurements were conducted at low power. The VNA was calibrated in power to -

20 dBm at the tip of the cable, while the DC sweeps were performed between 1 and

100 µA. The DC resistance was then extracted with a first-order polynomial fit to cancel

out zero-crossing errors. The overall resistance was linear with DC bias. The values of

the DC resistance Rdc are resumed in Table 5.6.

The RF measurements were de-embedded using the Cascade-Thru procedure. The cir-

cuit shown in Chapter 4, reported in Fig. 5.18 for convenience, has been adapted to the

data. De-embedded and modeled data are shown in Fig. 5.19. The extracted values of

contact resistance RC , sheet resistance R� and contact capacitance CC are listed in Ta-

ble 5.7. The RC values for the three devices are very similar, while a larger discrepancy

can be found for R� and CC .
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Figure 5.18: Equivalent circuit used for measurements matching.

Figure 5.19: Graphene devices measurements (solid lines) and simulations (symbols,
dashed) for three electrode separations: 0.85 µm (red squares), 1.85 µm (blue triangles)

and 20 µm (green circles).

5.5 Future work

The test bed, and in particular the CPW line dimensions, must be adjusted to the

final substrate as soon as the technology is optimized. During the time allowed for this

study it was not possible to perform any characterization of the Nanocontacts set, which

would have given the first measurement of the interfacial contact impedance in RF for

graphene and Au. In addition to the experiments described in this work, a number of

different test materials, thin films, not only carbonaceous, can be analyzed on this test

bed and compared. The Cascade-Thru de-embedding technique should be expanded to

4-ports systems and verified on active devices in order to be a valid candidate for high-

frequency semiconductor industry and research. Finally, a new optical mask that takes

into account the substrate constriction should be fabricated, obtaining a much higher

yield of graphene devices and allowing for the measurement of statistically meaningful

data.
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5.6 Conclusions

In conclusion, a test bed for the RF characterization of the contact impedance and

its verification against the TLM method in DC has been developed, simulated and

measured. A single-standard variant of the Cascade-Thru de-embedding technique has

been developed, outperforming existing de-embedding methods that are commonly used

in the semiconductor industry. The graphene contact parasitic and sheet resistance have

been extracted from a reduced subset of the devices in the experiments. The similarity

of their values suggests that the procedure used here is valid.
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Chapter 6

Conclusions

Three keywords emerge from the most recent researches on graphene devices, and they

are downscaling, ballistic transport and contact parasitics minimization. In this work

they have been addressed in two topics: the mixed diffusive and ballistic transport in

sub-micrometric graphene FETs, and the RF behavior of contact parasitics.

Chapter 3 addresses the first topic. A purely ballistic model has been enriched with

a mean-free-path dependent scattering and thermalization effect, thus extending the

validity of the model from a few nanometers to the micrometric scale. This simple

modification to the top of the barrier model enables accurate simulation of a broad range

of graphene based transistors. It is able to correctly describe the I–V characteristics of

both ballistic and diffusive devices. Furthermore, it is able to correctly predict the

behavior of both large-area and graphene nanoribbon based field effect devices. Its

simplicity compared to more complex model, like full-quantum NEGF, allow for its use

in graphene-enabled circuit simulation tools.

Chapter 4 addresses the RF modeling of graphene. A wide-band model describing the

phenomena associated to the contact has been shown. This model allowed the extraction

of resistive and capacitive parasites from DC and RF measurements of a single device, in

the place of a dedicated set of devices as in the TLM method. Moreover, the parameters

extracted here are frequency-independent, meaning that most of the physical phenomena

involved are correctly addressed with the proper parameters.

Chapter 5 addresses the second topic: the RF behavior of contact parasitics. A dedicated

test bed for the RF characterization of the contact impedance and its verification against

the TLM method in DC has been developed, simulated and measured. A single-standard

variant of the Cascade-Thru de-embedding technique has been developed, outperforming

existing de-embedding methods that are commonly used in the semiconductor industry.
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The metal/graphene contact impedance has been analyzed through the dedicated plastic

test bed up to 67 GHz. The graphene contact parasitic and sheet resistance have been

extracted from a reduced subset of the devices in the experiments.

6.1 Future work

The model of Chapter 3 will be expanded in order to include the source starving effect,

namely the dependence of the Fermi reference potential to injected charge, thus the

current. To achieve that, a mathematical relation relating the Fermi reference potential

and the channel potential, independently from the operating regime, will be found. The

model will be further expanded to include contact and access resistances.

The test bed of Chapter 5 will be updated with respect to the technology that has

been finally used. The Nanocontacts set will be characterized, resulting in the first

measurement of the interfacial contact impedance in RF for graphene and Au. This

will allow for the evaluation of the occupied surface needed for sub-micrometric high-

frequency FETs. More carbonaceous materials and other thin films will be deposited on

this test bed and analyzed. Finally, Cascade-Thru de-embedding technique will include

the Open standard (becoming a robust and high-precision variation of the Open-Thru

method) and will be verified on active devices, in order to be a valid candidate for

high-frequency semiconductor industry and research.

A finer description of the metal/graphene coupling mechanisms, incorporated into the

quasi-ballistic model, will enable a thorough analysis of sub-micrometric high-frequency

FETs in a unique framework.
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Graphene:	FET	and	metal	contact	modeling	

Graphène	:	modélisation	du	FET	et	du	contact	

métallique	

Giancarlo	Vincenzi  

Abstract en Français 

Neuf ans sont passés depuis la découverte du graphène, tous très dense de travaux de 

recherche et publications que, petit à petit, ont mieux  illuminé  les propriétés de  ce 

matériau  extraordinaire.  Avec  une  meilleure  compréhension  de  ses  meilleures 

qualités, une idée plus précise des applications que mieux pourront profiter de son use 

ont été défini. Dispositifs à haute fréquence, comme mélangeurs et amplificateurs de 

puissance,  et  l’électronique  Flexible  et  Transparent  sont  les  domaines  les  plus 

prometteurs. 

Dans ces domaines une grande attention est dévouée à deux sujets :  la réduction des 

dimensions des transistors à base de graphène, pour réduire le temps de propagation 

des porteurs de charge et atteindre des pourcentages de transport balistique toujours 

plus  élevés ;  et  l’optimisation  des  parasites  de  contact.  Tout  les  deux  sont  très 

bénéfiques pou la maximisation des figures de mérite du dispositif. 

En cette thèse, deux modèles ont été développés pour aborder ces sujets : le premier 

est dédié aux transistors quasi‐balistiques de graphène de grande surface comme aussi 

aux transistors graphène nano‐ruban. Ceci démontre  la corrélation entre  le transport 

balistique  et  diffusive  et  la  longueur  du  dispositif,  et  extrait  les  courants DC  grand 

signal et les transconductances. Le second reproduit la conduction à haute fréquence à 
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travers  le graphène et son  impédance parasite de contact. Le dernier modèle a aussi 

motivé  la  conception  et  fabrication  d’un  test  bed RF  sur une  technologie dédié  sur 

plastique,  fait  qui  permet  la  caractérisation  RF  de  l’impédance  de  contact  et  de 

l’impédance spécifique d’interface avec du graphène monocouche accru par CVD. 
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Résumé	de	la	thèse	en	Français	

Chapitre	1	–	Introduction	

Le graphène, dans sa définition la plus simple, est une feuillette d’un seul atome isolé 

du graphite. En chacun de ces  feuillettes,  les atomes de carbone occupent  les vertex  

des hexagones de ce qu’est parfois appelé    le  réseau à nid d’abeille.  Ils  forment des 

liens de type σ très fort avec les trois atomes adjacents à travers l’hybridation de type 

sp². L’orbitale qui reste est finalement disponible pour former un  lien de type π avec 

les  atomes  adjacents.  Le  système  étendu  d’électrons  de  type  π  permet  donc  la 

conduction  électrique  dans  le  graphène  et  permet    se  propriétés  électriques  et 

optiques [1]. La force de ses liens sp² et sa résultante stabilité électronique sont la base 

de ses excellentes propriétés mécaniques : un module de Young de 1 TPa [2], qui est 

plus  que  le  double  de  celui  du  carbure  de  silicium  [3],  et  un  force  de  rupture 

virtuellement 100 fois plus grand que pour un couche d’acier de la même épaisseur. 

Les propriétés électriques du graphène ne sont pas moins étonnantes : des mobilités 

électroniques plus grandes que 2.5	ݔ	10ହܿ݉ିଶܸିଵିݏଵ ont été trouvées à température 

ambiante, quatre fois plus large de celle de l’état de l’art des semi‐conducteurs III‐V [4] 

et  200  fois  celle  du  silicium,  grâce  à  une  réduite  interaction  électron‐phonon  [5] 

lorsque  le  substrat  est  choisi  attentivement  [6]  ou  éliminé  à  travers  la  technologie 

suspendue [7]. Ces valeurs très élevés sont associées à des très longues distances entre 

des  événements  de  scattering  pour  des  électrons  en  voyage :  des mean  free  paths  

plus  grands  de  1  µm  ont  étés  reportés  [6],  fait  qui  permet  l’exploration  de 

l’électronique  balistique  à  température  ambiante  avec  des  capacités  technologique 

qu’on possède aujourd’hui. Des valeurs plus élevés de mobilités ont été obtenus pour 

le  graphène  suspendu  à  la  température    de  l’hélium  liquide  (plus  que 

 ଵିݏ10ܿ݉ିଶܸିଵ	ݔ	1.0 [8]),  mais  non  autant  bonne  que  les  alliages  de  semi‐

conducteurs   ଵିݏ10ܿ݉ିଶܸିଵ	ݔ	35.0) a  été  obtenu  [9]),  fait  qui  soutien  et  limite 

l’intérêt de la recherche dans l’opération à température ambiante. 
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Le  graphène  a  été  montré  pour  être  vraiment  un  matériau  unique,  avec  de 

nombreuses excellentes propriétés qui ne peuvent pas être trouvé tout à fait dans un 

matériau  seul.  Toutefois,  les  valeurs  insatisfaisantes  d'autres  propriétés  essentielles 

entravent  son  application  comme  un  remplacement  pour  chaque  technologie 

électronique développé à  jour  : Dans  l'électronique haute  fréquence,  le graphène ne 

remplacera probablement Si ou semi‐conducteurs  III‐V à court terme. Le domaine de 

l'électronique  flexible et  transparent est plutôt  rapidement de  l’ampleur, puisque  la 

matière  la  plus  utilisée  aujourd’hui,  Indium‐  Tin Oxide,  est  de  plus  en  plus  cher  et 

difficile  à  trouver.  Le  graphène,  avec  ses  propriétés  mécaniques  et  optiques 

supérieures  a  déjà  attiré  l'attention  de  l'électronique  grand  public :  géants  comme 

Samsung et  Sony  [10]. Tant haute  fréquence et  flexibles domaines de  l'électronique 

ont besoin d'une étude précise des parasites de contact de graphène. Enfin,  il ya un 

domaine entièrement nouveau qui peut être exploré et qui peut ouvrir la voie à ondes 

millimétriques et  THz électronique, et qui  est  à  température  ambiante  électronique 

balistique [11]. Cette thèse examiner les effets du transport balistique et les parasites 

de contact, respectivement sur les effets des transistors et des interconnexions  

Structure	de	la	thèse	

Le Chapitre 2  introduira un ensemble de concepts  fondamentaux  sur  la physique du 

graphène. Ceux‐ci vont être utilisés pour comprendre l’état de l’art sur le modeling du 

graphène.  Deux  aspects  principaux  vont  être  discutés :  d’abord  une  enquête  du 

modeling de transistors à effet de champ en DC sera faite. Dans une deuxième partie, 

le modeling  des  structures  passives  en  graphène  sera  passé  en  revue.  Le  contact 

métallique et  la propagation électronique dans  le  graphène  sont  considérés  comme 

deux aspects du même sujet  intimement connectés, et  leur analyse sera développée 

en DC comme en RF. 

Dans  le Chapitre 3  le modèle DC d’un FET de nanoruban de graphène sera présenté, 

avec  les modifications nécessaires pour sa extension à dispositifs de graphène grand 

surface. 
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Dans  le Chapitre 4 une structure RF, une  ligne CPW chargée avec du graphème, sera 

analyse  à  travers  d’un  circuit  équivalent  pour  le  graphème  et  du  modeling 

électromagnétique de  la  ligne. Ceci permettra  l'extraction de  l'impédance de contact 

métal/graphène. 

Dans le chapitre 5 la conception d'une structure de RF améliorée avec un ensemble de 

normes de‐embedding  sera montré, avec des mesures,  l'analyse des données EM et 

rétro‐résultats de simulations. Cela fournira un montage d'accès à faibles pertes pour 

la caractérisation RF de graphène et de‐embedding de données. La feuille de graphène 

et  l'impédance de contact seront mesurées et analysé en fréquence à  la fois faible et 

élevé. 

Dans le chapitre des conclusions les innovations par rapport à l'état de l'art contenues 

dans ce manuscrit seront repris, et de nouvelles orientations possibles de travail seront 

présentées. 
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Chapitre	2	–	Etat	de	l’art	

L'étude du contact métal/graphène et de la propagation à haute fréquence est traitée 

très  différemment  entre  les  divers  domaines  d'études.  Ils  doivent  être  considérés 

comme des aspects d'une même chose, plus grand, problème. Cependant, les examens 

de  contact  sont  effectuées  uniquement  à  la  fréquence  zéro.  Quelques  études 

empiriques  considèrent  ces  deux  aspects,  mais  parfois  avec  des  modèles  trop 

simplifiées. 

D'autre part, dans  la modélisation de  la FET parasite de contact est prise en compte. 

Ses effets sur  la Figures de Mérite à haute  fréquence sont profondément évalués en 

raison  de  l'impact  sévère  sur  le  courant  de  transconductance  et  de  sortie. 

Performances  à  haute  fréquence  sont  la  cible  principale  de  ces  expériences  et 

modèles,  soulignant  l'importance de  l’échelle  sub‐micrométrique pour  atteindre des 

performances  encore  plus  élevées.  Et  pourtant,  les  parasites  de  contact  sont 

généralement  représentés  par  une  simple  résistance,  évaluée  en  continu  et 

indépendante de la fréquence. 

En conclusion, la nécessité d'un modèle universel reliant l'investigation plus fine de la 

physique  impliquée  dans  les  dispositifs  FET  sous‐ micrométriques  et  la  propagation 

haute  fréquence  prend  une  importance  croissante.  Ce  travail  vise  à  rapprocher  ces 

deux  domaines,  en  mettant  à  la  base  de  leur  intégration  dans  un  seul  domaine 

d'étude. 
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Chapitre	3	–	Modèle	DC	

Dans ce chapitre,  le  travail sur  la modélisation de dispositifs actifs DC graphène sera 

présenté.  Le  modèle  décrit  est  basé  sur  l'approche  Top‐of‐the‐barrier,  qui  est  un 

modèle balistique physique semi‐analytique [1]. 

Motivation	

La grande majorité des modèles utilisés aujourd'hui pour simuler les caractéristiques IV 

des  dispositifs  de  graphène  sont  basées  sur  le mécanisme  de  transport  de  dérive‐

diffusion  (DD),  sur  lequel  le modèle  industriel  standard  pour  Si  CMOS,  le  BSIM  est 

fondée ainsi. DD est basé sur l'hypothèse que dans le canal du transistor (ou tout autre 

conducteur) une certaine quantité de centres de diffusion existe, et que la conductivité 

dépend du nombre de porteurs chargés il existe et à quelle fréquence elles entrent en 

collision  avec  un  diffuseur,  le  support  vitesse  de  dérive  est  une  fonction  du  champ 

électrique  longitudinal  (donnée par  la polarisation de drain) et des paramètres de  la 

mobilité et de la vitesse de saturation. Tension et le courant sont liés par le modèle de 

Drude. Toutefois, si la dispersion est absent, comme dans un transistor balistique idéal, 

la vitesse des transporteurs prend sa valeur maximale, ce n'est plus directement reliée 

au champ électrique longitudinal, mais avec la chute de potentiel entre la source et le 

drain  à  la  place.  DD  modèles  peuvent  inclure  empiriquement  l'augmentation  du 

courant de saturation qui vient des effets balistiques, par exemple à travers le modèle 

de limite de vitesse Fin Source comme cela se fait pour Si dans BSIM4v4.7 [2], mais leur 

validité dans les régimes à proximité de transport balistique idéal devient discutable. 

La  particularité  de  graphène  est  de  soutenir  un  nombre  très  limité  de  la  diffusion, 

même à température ambiante, en particulier lorsque l'interaction avec le substrat est 

réduite [3]. Par ailleurs, en même temps que  la qualité des échantillons de graphène 

s'améliore, les longueurs de canal sont trop réduites, ce qui signifie que de plus en plus 

grandes  parties  de  la  conduction  des  électrons  doivent  compter  sur  le  transport 

balistique  [4].  Un  modèle  balistique  de  nano‐transistors  de  graphène  devient 



105 
 

approprié, mais  d'autre  part,  leur  validité  est  généralement  donnée  que  lorsque  le 

transport balistique est dominant [5]. 

Enfin,  de  nombreux  modèles  se  fragmentent  leur  fonctionnement  dans  plusieurs 

segments  ou  des  régimes,  en  fonction  de  la  forme  de  la  courbe	ܫሺ ܸௌሻ	  (linéaire, 

quasi‐saturation, deuxième  linéaire) ou  le  type de charges à  l'intérieur du canal  (soit 

des électrons ou des trous, ou des deux d'entre eux). Dans ce dernier contexte, le mot 

''ambipolaire"  est  souvent  utilisée  même  si  inapproprié  [6].  La  fragmentation  de 

l'opération peut conduire à des discontinuités dans  la transconductance ݃ ou de sa 

dérivée. 

Objectives	de	l’étude	

Cette partie du travail vise à trouver un modèle qui peut simuler correctement les deux 

transistors  à  effet  de  champ  à  l'échelle  nanométrique  balistique  comme  à  celle 

microscopique  conventionnelle.  Ce  modèle  devrait  s'appuyer  sur  des  équations 

physiques,  avec  une  utilisation  minimale  des  paramètres  empiriques.  Enfin,  son 

fonctionnement ne doit pas être fragmenté en différents régimes. 

Résultats	

Le modèle proposé dans [7] a été validée par rapport à deux dispositifs présentés dans 

la  littérature. Un transistor de graphène nano‐ruban de canal étroit décrit dans [8] et 

un grand espace large FET canal de graphène décrit dans [9]. 
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Figure 1 ‐  Caractéristique de transfer (Id‐Vgs) in échelle lineaire de ce modèle comparé a celui de type NEGF en 
[8]. 

 

Figure 2 ‐ Courante Id(Vsd) pour le deuxième FET (ligne pleine) pour tensions de grille entre Vgs=0V et ‐3V 
comparée à les mesures (symboles) 

En  résumé,  le  modèle  décrit  utilise  quatre  paramètres  pour  ajuster  les  résultats 

expérimentaux. 



107 
 

Travaux	Futures	

Le modèle présenté a jusqu'ici deux problèmes qui limitent la qualité de la simulation, 

respectivement dans les cas GNR‐FET et GFET. Le premier est le potentiel de Fermi de 

référence,  qui  est  réglé  sur  le  potentiel  de  source  qui  est  considérée  fixe  pour 

l'ensemble  du  fonctionnement  du  transistor GNRFET.  Ceci  est  incorrect,  les mêmes 

auteurs  ont  proposé  une  modification  dans  le  modèle  impliquant  un  nouveau 

paramètre libre à inclure pour chaque point et qui se trouve de façon empirique. Une 

meilleure solution serait d'obtenir une relation entre la charge injectée, le courant et le 

potentiel  de  référence,  qui  serait  autorisé  à  suivre  dans  une  certaine  mesure  le 

potentiel de la chaîne. 

Un  autre  point  est  la  modélisation  de  contact  et  d'accès  résistances  à  la  chaîne, 

l'évolution  du  modèle  actuel  du  transistor  intrinsèque  à  un  modèle  extrinsèque 

complète. Étant donné que  le modèle ne comporte aucune expression  inversible, par 

opposition à, par exemple,  la  loi d'Ohm, une  itération de  l'auto‐cohérent de tensions 

externes appliquées et les courants internes calculées par le modèle est nécessaire. 

Conclusions	

Une  simple  modification  du  modèle  Top‐of‐the‐barrier  qui  permet  une  simulation 

précise  d'un  large  éventail  de  transistors  à  base  de  graphène  a  été  présentée.  Le 

modèle  conserve  la  simplicité d'une approche élément  localisé et est en mesure de 

décrire  correctement  les  caractéristiques  I‐V  des  deux  dispositifs  balistiques  et  de 

diffusion.  En  outre,  il  est  capable  de  prédire  correctement  le  comportement  de 

dispositifs à effet de champ à  la  fois de grande surface ainsi que de graphène nano‐

ruban. Sa simplicité par rapport à des modèles plus complexes, comme le full‐quantum 

NEGF, permets sa utilisation dans des outils de simulation de circuit graphène permis. 
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Chapitre	4	

Dans ce chapitre, le travail sur la modélisation DC et RF de dispositifs passifs graphène 

sera  présenté.  Un modèle  d'éléments  à  constantes  localisées  avec  les  paramètres 

indépendants de la fréquence sera utilisé pour extraire la résistance du matériau et de 

l'impédance des dispositifs de contact analysés. Ce modèle sera utilisé pour projeter la 

performance attendue à partir des paramètres de la littérature. 

Motivation	

Les  paramètres  qui  ont  une  influence  sur  les  performances  à  haute  fréquence  du 

transistor,  en  particulier  la  figure  de mérite  (FOM)  de  fréquence  de  coupure  et  la 

fréquence  d'oscillation  maximale,  sont  facilement  reconnaissables  dans  le  petit 

modèle  de  signal  du  transistor  FET,  qui  pour  le  graphène  à  base  de  dispositifs 

maintient  la  même  topologie  et  composants  que  celui  d'origine  pour  les  semi‐

conducteurs. 

Objectives	de	l’étude	

Cette partie du travail vise à trouver un modèle de circuit équivalent pour les éléments 

de  graphène  passifs.  Ce modèle  doit  être  adapté  à  l'extraction  de  l'impédance  de 

contact  et  la  résistivité de  la matière  par  la  caractérisation DC  et RF d'un  dispositif 

unique.  Il devrait être composé par des paramètres  indépendants de  la  fréquence et 

est valable dans l'ensemble du spectre de mesures (DC à 110 GHz). 

Résultats	

L’accord entre modèle et figure est montré en Fig. 3. 
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Figure 3 ‐ Paramètres S mesurés (ligne pleine noire) et simulations (ligne rouge) pour la structure CPW chargée en 
graphène. Les triangles indiquent le changement maximal par rapport à une variation du 10% des paramètres de 
circuit. (a) Module, (b) Phase. 

Conclusions	et	travaux	futurs	

Dans ce chapitre, un modèle de bande large décrivant des phénomènes associés à l’un 

contact a été établi. Ce modèle a permis l'extraction de résistifs et capacitifs parasites 

de  DC  et  des mesures  RF  d'un  seul  dispositif,  à  la  place  d'un  ensemble  dédié  de 

dispositifs  que  dans  la  méthode  TLM.  De  plus,  les  paramètres  extraits  sont  ici 

indépendante  de  la  fréquence,  ce  qui  signifie  que  la  plupart  des  phénomènes 

physiques mis en jeu sont correctement adressées avec les paramètres appropriés, par 

opposition à d'autres modèles présentant des résistances et des condensateurs dont 

les valeurs dépendent de  la  fréquence. Toutefois, afin de compléter  la validation du 

modèle, une caractérisation des RF de structures de type TLM est nécessaire. Ce genre 

de  structures  sont  généralement  basse  fréquence  seulement  et  ne  prend  pas  en 

charge la transmission d'un signal RF ondes millimétriques sans encourir de pertes de 

désadaptation  graves  et  le  couplage,  ce  qui  rend  impossible  d'établir  une  relation 

entre  l'impédance  à  haute  fréquence  et  les  dimensions  géométriques.  De  plus,  la 

longueur  de  transfert  a  été  étudiée  qu'une  seule  fois  et  en  un  courant  continu,  et 

aucun modèle définissant une quantité équivalente à  la capacitance de contact a été 

mis au point à ce jour. Une structure de test RF dédié avec la longueur et la largeur de 

graphène doit être fabriqué et analysé afin de comparer les paramètres extraits par le 
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modèle  présenté  ici  avec  celles  extraites  par  TLM.  Ce  sujet  sera  abordé  dans  le 

prochain chapitre. 
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Chapitre	5	

Dans ce chapitre,  la conception d'un banc d'essai en plastique dédié à  la mesure de 

l'impédance de surface et de contact de différents matériaux sera montrée, avec  les 

valeurs  attendues  de  la  caractérisation  d'impédance  et  a  effectué  des mesures. Un 

ensemble de matières carbonées, y compris monocouche de graphène, sera analysé in 

DC et RF par la méthode TLM et par le modèle présenté dans le chapitre 4, montrant 

une validation uniforme du même. Enfin,  l'analyse de  l'impédance RF de contacts de 

dimensions réduites, nommés ici nano‐contacts, sera montrée. 

Motivation	

L'impédance d’un contact métal / de graphène est responsable de la majeure partie de 

la  dégradation  des  performances  du  dispositif.  D'autres  éléments  qui  affectent 

gravement  les performances sont  les  lignes de structure et d'accès reliant  les sondes 

RF à l'appareil réel. Chaque unité Ohm de l'inadéquation de 50Ohm dans l'impédance 

caractéristique  introduit une réflexion de près de 4 % de  la puissance d’entrée, alors 

une résistance série introduit mismatch et pertes ohmiques pour environ 4% par Ohm. 

Grâce  à  une  conception  soignée  de  lignes  d'accès  RF,  il  est  possible  de minimiser 

désadaptation d'impédance et  la  résistance des sondes / de  série de  l'appareil et de 

maximiser le signal délivré. 

Dans certaines œuvres, des structures de réglage d’impédance sont présents comme 

inducteurs [1] ou micro filtres [2] fabriqués sur les mêmes wafers des amplificateurs et 

des  mélangeurs  en  graphène.  Ces  approches  sont  très  efficaces  pour  éliminer  les 

pertes de désadaptation en commun source FET de graphène avec une au moins dans 

une certaine mesure,  l'impédance d'entrée connue, élevé. Malheureusement, dans  le 

cas d’une étude exploratoire  lorsque  l'impédance d'entrée est  inconnue,  il n'est pas 

pratique de concevoir et de fabriquer une structure d'accord sur la plaquette. 

Pour  surmonter  cette  limitation  deux  stratégies  sont  généralement  appliqués  en 

même  temps  :  la  fabrication  des  standards  de  de‐embedding  connus  sur  le même 
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wafer du dispositif, et, comme indiqué précédemment, la conception de lignes d'accès 

bien  à  50Ohm.  La  première  permet  d'appliquer  les  méthodes  mathématiques  de 

déplacer  le  plan  de  référence  à  un  point  plus  proche  de  l'objet  à  tester  (DUT), 

l'élimination du retard de phase et la plupart, sinon la totalité, du mismatching et des 

pertes ohmiques associé à des  lignes d'accès, celui‐ci prend en charge une meilleure 

manipulation de la gamme dynamique de l' instrument de mesure (typiquement, mais 

sans  être  limité,  de  50  dB  pour  un VNA)  et  réduit  au minimum  l'impact  de  l'erreur 

associée à la de‐embedding de l'objet sous test après la mesure de ces normes. 

 

Figure 4 ‐ Standards utilisés pour des techniques de de‐embedding. 

Dans  la  Fig.  4  un  DUT  hypothétique  avec  certaines  normes  de  de‐embedding  est 

affiché. Les lignes verticales en pointillé correspondent à des plans de référence de la 

mesure en fonction du calibrage de SOLT, fait avec un kit de calibrage séparées sur de 

l'alumine  et  largement  adoptée,  seul  ou  en  tant  que  le  premier  d'un  protocole 

d'étalonnage en deux étapes : il permet de retirer les effets de câbles, des sondes et de 

l'instrument lui‐même. Les lignes en traits pointillés verticaux correspondent aux plans 
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de  de‐embedding  définies  par  les  normes  connues. Différentes  techniques  existent, 

parmi lesquelles la plus communément adoptée sont l'Open‐Short et Thru‐Reflect‐Line 

(TRL, qui comprend une série de lignes à retard non représenté sur la figure). Après la 

de‐embedding, les lignes d'accès sont pratiquement supprimées de l'objet sous test. 

Pour  les  dispositifs  à  ondes  mm  et  sous‐mm,  les  FOM  intrinsèques  sont  souvent 

considérés  comme  de  plus  grand  impact  que  les  FOM  extrinsèques  et  d'autres 

paramètres de conception tels que  l'empreinte de  l'appareil. Même si  les procédures 

de‐embedding  sont  largement  appliquées  et  raffiné,  le  parasite  de  contact 

graphène/métal  peut  profondément  affecter  non  seulement  les  extrinsèques mais 

aussi les FOM intrinsèques si ceci n’est pas correctement éliminés. La procédure de de‐

embedding Open‐Short est  généralement  appliquée  aux mesures de dispositif  semi‐

conducteur, mais dans la littérature récente sur les dispositifs de graphène il n'est pas 

clair  si  la  résistance  de  contact  graphène/métal  est  retirée  de  données  présentées. 

Cependant,  une  étude  de  son  effet  à  des  fréquences  élevées,  où  ces  appareils 

fonctionnent, est en tout cas nécessaire. 

Objectives	de	l’étude	

L'objectif principal de ce chapitre est  la construction d'un banc d'essai à  faible perte 

pour  la  caractérisation  RF  de  graphène monocouche  et  autres  couches minces  de 

matériaux  carbonés.  Ce  substrat  doit  fournir  un  ensemble  de  normes  de  de‐

embedding  et  de  dispositifs  de  référence  pour  l'extraction  et  l'isolement  de 

l'impédance  du matériau  de  test.  Ce  banc  d'essai  doit  prendre  en  charge  les  deux 

expériences suivantes. 

1. TLM à Haute Fréquence : L'extraction de l'impédance de contact et de surface 

d'un matériau en essai, en particulier graphène monocouche. Un ensemble de 

lignes d'accès RF à deux ports doit être construit, et la séparation entre les deux 

électrodes centrales doit être modifiée dans l'ensemble. Cela devrait permettre 
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la linéarisation de la résistance de contact DC sur la séparation des contacts, et 

la mesure simultanée de l'impédance de contact Zc(ω) pour chaque dispositif. 

2. Nano‐contacts :  Le  développement  d'un  modèle  reliant  Zc(ω)  avec  des 

longueurs de contact à l'échelle nanométrique. Un ensemble de lignes d'accès à 

deux  ports  avec  différentes  longueurs  de  contact  sous‐micrométriques  doit 

être  construit.  Le  nouveau  modèle  devrait  fournir  la  longueur  de  contact 

minimal pour atteindre la saturation de Yc(ω) pour une fréquence donnée. 

Résultats	

CVD monocouche  graphène  fourni  par  Graphene  Supermarket  a  été  déposé  sur  le 

substrat polyimide comme  le montre  la figure 5. De même pour SU‐8,  le PI trop subi 

quelques constriction après l'étape de durcissement, estimée à <0,4%. Ceci a empêché 

l'alignement  correct  des  formes  de  mise  en  forme  graphène  pendant  l'étape  de 

lithographie  optique.  En  outre,  dans  certains  endroits  graphène  manquait.  Trois 

dispositifs ont été correctement fabriqués, tous de type Série et avec des séparations 

d'électrodes respectivement de 1, 2 et 20 um. 

 

Figure 5 ‐ Substrat en Polyimide avec dispositifs intégrés. 
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Mesures de paramètres S ont été  réalisées avec un Agilent PNA‐X  jusqu'à 67 GHz et 

avec un Keithley 2410 SMU connecté sur le feed DC du VNA. Afin d'éviter les effets non 

linéaires de la conductivité en fonction de graphène polarisation en courant continu et 

de  la puissance RF, deux mesures ont été effectuées à faible puissance. Le VNA a été 

calibré en puissance à ‐20 dBm à l'extrémité du câble, tandis que les balayages ont été 

effectués à  courant  continu entre 1 et 100 µA.  La  résistance DC est ensuite extraite 

avec un ajustement polynomial de premier ordre à annuler  les erreurs de passage à 

zéro.  

Les mesures RF ont été dé‐intégrée en utilisant  la procédure Cascade‐Thru. Le circuit 

représenté sur  la figure 6 a été adapté pour  les données. Les données modélisées et 

mesurés après de‐embedding sont présentées dans la figure 7. Les valeurs extraites de 

la  résistance  de  contact  Rc,  feuille  résistance  R□  et  contacts  capacité  Cc  sont  listés 

dans le Tableau 1. Les valeurs de Rc pour les trois dispositifs sont très similaires, alors 

qu'une plus grande différence peut être trouvée pour R□ et Cc. 

 

Figure 6 ‐ Circuit equivalent utilié pour le matching des mesures. 
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Figure 7 ‐ Mesures (ligne pleine) et simulations (symbols) des dispositifs à base de graphene. 

 

Tableau 1 ‐ Resistance de contact et de surface. 

Travaux	futures	

Le banc d'essai, et en particulier  les dimensions de  la  ligne de CPW, doit être ajustée 

sur  le  substrat  final, dès que  la  technologie est optimisée. Pendant  le  temps  imparti 

pour cette étude,  il n'était pas possible d'effectuer une caractérisation de  l'ensemble 

nano‐contacts,  qui  aurait  donné  la  première  mesure  de  l'impédance  de  contact 

d’interface en RF pour  le graphène et Au.  En plus des expériences décrites dans  ce 

travail,  un  certain  nombre  de  matériaux  d'essai  différents,  des  films  minces,  non 

seulement  carboné,  peut  être  analysé  sur  ce  banc  d'essai  et  de  comparaison.  La 

Cascade‐Thru technique de de‐embedding devrait être étendu aux systèmes 4‐ports et 

vérifiée sur les dispositifs actifs pour être un candidat valable pour l'industrie des semi‐

conducteurs à haute fréquence et de la recherche. Enfin, un nouveau masque optique 

qui prend en compte le rétrécissement du substrat doit être fabriqué, l'obtention d'un 

rendement beaucoup plus élevé de dispositifs de graphène et permettant la mesure de 

données statistiquement significatives. 
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Chapitre	6	‐	Conclusions	

Trois mots‐clés émergents des plus récentes recherches sur les dispositifs de graphène, 

et  ils  sont  la  réduction  d'échelle,  transport  balistique  et  parasites  de  contact 

minimisation. Dans ce travail,  ils ont été abordés dans deux thèmes :  le transport par 

diffusion  et  balistique  mixte  en  sous‐micrométriques  FET  de  graphène,  et  le 

comportement de RF de parasites de contact. 

Chapitre 3 aborde le premier sujet. Un modèle purement balistique a été enrichi avec 

le  traitement  du  scattering  dépendant  du  mean‐free‐path  et  de  l'effet  de 

thermalisation,  prolongeant  ainsi  la  validité  du modèle  de  quelques  nanomètres  à 

l'échelle  micrométrique.  Cette  simple  modification  du  modèle  top‐of‐the‐barrier 

permet  la simulation précise d'un  large éventail de transistors à base de graphène.  Il 

est  capable  de  décrire  correctement  les  caractéristiques  I‐  V  des  deux  dispositifs 

balistiques  et  de  diffusion.  En  outre,  il  est  capable  de  prédire  correctement  le 

comportement des deux grandes surfaces et graphène nano‐ruban dispositifs à effet 

de champ à base. Sa simplicité par rapport à des modèles plus complexes, comme  le 

NEGF,  permette  son  utilisation  dans  des  outils  de  simulation  de  circuit  graphène 

permis. 

Chapitre 4 traites de  la modélisation de  la RF de graphène. Un modèle à  large bande 

décrivant des phénomènes  associés  à  l'un  contact  a été établi. Ce modèle  a permis 

l'extraction  de  résistifs  et  capacitifs  parasites  de  DC  et  des mesures  RF  d'un  seul 

appareil, à  la place d'un ensemble dédié de dispositifs que dans  la méthode TLM. En 

outre, les paramètres extraits ici sont indépendant de la fréquence, ce qui signifie que 

la plupart des phénomènes physiques mis en  jeu sont correctement traitées avec  les 

paramètres appropriés. 
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Chapitre 5 aborde la deuxième question : le comportement RF de parasites de contact. 

Un banc d'essai dédié à la caractérisation RF de l'impédance de contact et son contrôle 

contre  la méthode TLM à Washington DC a été développé, simulée et mesurée. Une 

variante  d'une  seule  norme  de  la  Cascade‐Thru  technique  de  de‐embedding  a  été 

développée,  par  rapport  aux  méthodes  de  de‐embedding  existants  qui  sont 

couramment  utilisés  dans  l'industrie  des  semi‐conducteurs.  L'impédance  de  contact 

métal/graphène  a été  analysée par  le  test de plastique dédié  lit  jusqu'à 67 GHz.  Le 

graphène contacts parasite et la résistance de la feuille ont été extraites à partir d'un 

sous‐ensemble réduit des appareils dans les expériences. 

 

 


