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Introduction

Le travail général de cette thèse consiste à étendre les outils analytiques et al-
gébriques usuellement employés dans la résolution de problèmes combinatoires al-
gorithmiques déterministes à un cadre combinatoire stochastique. Deux cadres
distincts sont abordés : les problèmes combinatoires stochastiques discrets et les
problèmes stochastiques continus. Le cadre discret est abordé à travers le problème
de la forêt couvrante de poids maximal dans une formulation Two-Stage à multi
scénarios. La version déterministe très connue de ce problème établit des liens entre
la fonction de rang dans un matroïde et la formulation duale via l'algorithme glou-
ton. La clé de voûte de la preuve mathématique du cas déterministe réside d'une
part dans la fomulation duale du problème et l'absence de saut de dualité pour le
problème linéaire, et d'autre part dans une transformation d'Abel appliquée sur la
di�érence de coût des arêtes. La formulation stochastique discrète du problème de
la forêt maximale couvrante est transformée en un problème déterministe équiv-
alent, mais du fait de la multiplicité des scénarios, le dual associé est en quelque
sorte incomplet. Le travail réalisé ici consiste à comprendre en quelles circonstances
la fomulation duale atteint néanmoins un minimum égal au problème primal inté-
gral. D'ordinaire, une approche combinatoire classique des problèmes de matroïdes
consiste à rechercher des con�gurations particulières au sein des graphes, comme
les circuits, et à explorer d'éventuelles recombinaisons. Le problème classique de
l'intersection de deux matroïdes est par exemple résolu par ce type d'approche
algorithmique, où la partie analytique est �nalement absente. Les preuves combi-
natoires prennent en compte les éléments de recon�guration d'un graphe pondéré
en inventoriant une liste de recon�gurations possibles . Pour donner une interpré-
tation prosaïque, si on change d'une manière in�nitésimale les valeurs de poids des
arêtes d'un graphe, il est possible que la forêt couvrante se réorganise complète-
ment. Ceci est vu comme un obstacle dans une approche purement combinatoire.
Pourtant, certaines grandeurs analytiques vont varier de manière continue en fonc-
tion de ces variations in�nitésimales, comme la somme des poids des arêtes choisies.
Il apparaît également que les choix de telle ou telle arête est une fonction de son
poids, mais également du poids des autres arêtes. Ainsi, il est naturel d'essayer
de formuler ces sauts décisionels comme autant de fonctions implicites (je serais
tenté d'écrire fonctions implicites les unes des autres si cela n'était par essence
même le rôle des fonctions implicites). Après un premier chapitre d'introduction
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des concepts de base, la section 2 décrit la formulation déterministe et la formula-
tion stochastique du problème de la forêt couvrante de poids maximal. Signalons
dès à présent que j'ai choisi de répartir les références bibliographiques dans chacun
des chapitres séparément, dans la mesure où la lecture des chapitres peut se faire
séparément elle aussi. Dans le chapitre 3, la formulation stochastique de la forêt
couvrante dans le cas de deux scénarios seulement est abordée avec une preuve
de la conservation du caractère intégral du dual. Le chapitre 4 présente le cas de
trois scénarios ou plus et donne les situations où le système dual perd son caractère
intégral. Le chapitre 5 propose une réduction du problème considéré et aborde un
algorithme d'approximation dans le cas d'un dual non intégral. Dans le cas où
le dual n'est pas intégral, on peut explorer les forêts couvrantes après relaxation
du problème. Une autre di�culté surgit liée au fait que le nombre d'inégalités du
système est exponentiel. En e�et, pour chaque sous ensemble de sommets, une
contrainte apparait dans le fait que le nombre d'arêtes internes doit être stricte-
ment inférieur au cardinal de l'ensemble de sommets. Le chapitre 6 propose un
modèle polynomial de contraintes par rapport au cardinal de l'ensemble de som-
mets en introduisant une orientation arbitraire des arêtes, des résultats numériques
sont présentés dans une mise en oeuvre du modèle. Les problèmes stochastiques
continus sont abordés au cours du chapitre 7 dans le cadre du problème de sac à
dos avec contrainte stochastique. La formulation est de type �chance constraint�,
et la dualisation par variable lagrangienne est adaptée à une situation où la prob-
abilité de respecter la contrainte doit rester proche de 1. Le modèle étudié est
celui d'un sac à dos où les objets ont une valeur et un poids déterminés par des
distributions normales. Cette situation présente un certain nombre d'avantages
calculatoires. En premier lieu, la contrainte étant linéaire, son expression devient
une espérance d'une loi normale. Cette formulation permet de s'a�ranchir de prob-
lèmes de convexité, voire de connexité de l'espace admissible des solutions. De plus,
la loi normale étant déterminée par sa moyenne et son écart-type, il est possible de
géométriser complètement le problème. C'est cette particularité qui est exploitée

par Prékopa dans [50] pour a�rmer que le problème est convexe pour p >
1

2
, mais

c'est également la même particularité qui permet de mettre en oeuvre une résolu-
tion par la méthode du �second order cone programming�. Dans notre approche,
nous nous attachons à appliquer des méthodes de gradient directement sur la for-
mulation en espérance de la fonction objectif et de la contrainte. Nous délaissons
donc une possible reformulation du problème sous forme géométrique pour détailler
les conditions de convergence de la méthode du gradient stochastique. Cette par-
tie est illustrée par des tests numériques de comparaison avec la méthode SOCP
sur des instances combinatoires avec méthode de Branch and Bound, et sur des
instances relaxées.

The global purpose of this thesis is to study the conditions to extend analyt-
ical and algebraical properties commonly observed in the resolution of determin-
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istic combinatorial problems to the corresponding stochastic formulations of these
problems. Two distinct situations are treated : discrete combinatorial stochas-
tic problems and continuous stochastic problems. Discrete situation is examined
with the Two Stage formulation of the Maximum Weight Covering Forest. The
well known corresponding deterministic formulation shows connexion between the
rank function of a matroid, the greedy algorithm , and the dual formulation. The
key-stone of the mathematical proof in the deterministic case relies on the dual
formulation and on an Abel transformation on the summation of the costs of the
greedy selected edges. The discrete stochastic formulation of the Maximal Cover-
ing Forest is turned into a deterministic equivalent formulation, but, due to the
number of scenarios, the associated dual is not complete. The work of this thesis
leads to understand in which cases the dual formulation of the primal problem
remains integer, and, when it is not the case, how to approximate the primal in-
teger solution. Usually, classical combinatorial approaches aim to �nd particular
con�gurations in the graph, as circuits, in order to handle eventual recon�gura-
tions. The classical problem of intersection of two matroids is solved by this kind
of methods, where we can consider that analytical considerations are not taken
in account. Combinatorial proofs examine possible recon�guration of a weighted
graph by listing all combinations of speci�c edges. In order to give a global consid-
eration, slight modi�cations of the weights of the edges mights change considerably
the con�guration of the Maximum Weight Covering Forest. This can be seen as
an obstacle to handle pure combinatorial proofs. However, some global relevant
quantities, like the global weight of the selected edges during the greedy algorithm,
have a continuous variation in function of the weights of each edges in the graph.
It appears equally, that an edge is selected or not depending on its own weight,
but equally depending on the weight of the other edges too. So it is attracting to
try to formulate this decision as an implicit function. After a �rst chapter devoted
to the introduction of basis concepts, like matroids, rank function, duality, System
Totally Dual Integral, the chapter 2 describes the deterministic formulation of the
Maximum Weight Covering Forest. I Have chosen to give bibliographical references
separately in each chapter, in consideration to the relative main distance between
the di�erent subjects in the thesis. In chapter 3, we deal with the stochastic for-
mulation of the covering forest in the case of only two scenarios, and we give the
proof of the TDIness of the problem. Chapter 4 is devoted to the case of more or
equal to three scenarios and give conditions to preserve TDIness. Chapter 5 gives
a reduction of this problem and elaborates an approximation algorithm in the case
where the system is not TDI. In the case where the dual formulation is not integer,
we come back to a direct resolution of the primal problem. But another di�culty
is that the number of constraints grows exponentially with the number of vertices.
Every subset of vertices is associated to a new constraint : the number of chosen
edges connecting these vertices must be strictly smaller than the number of vertices
itself. Chapter 6 proposes a polynomial formulation of the constraints by intro-
ducing an arbitrary orientation of the edges. Numerical experiments are presented.
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Continuous stochastic problems are presented in chapter 7 in the case of the
stochastic Knapsack with chance constraint. Chance constraint and dual La-
grangian formulation are adapted in the case where the expected probability of
not exceeding the knapsack capacity is close to 1. The model introduced consists
in item with costs and rewards following a normal distribution. This situation is
comfortable in the sense that in some cases, the convexity and even the connect-
edness of the feasible set is not guaranteed for some stochastic process. In case of
normal distribution, completely determined by its mean and its standard deviation,
the feasible set gains a geometric description that ensures easy computations, with
a new formulation of the constraint (SOCP method). In our case, we try to ap-
ply direct gradient methods rather than reformulating the problem in geometrical
terms. We detail convergence conditions of gradient based methods directly on the
initial formulation. This part is illustrated with numerical tests on combinatorial
instances and Branch and Bound evaluations on relaxed formulations.
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Part I

Discrete Stochastic modeling
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Chapter 1

Matroids, sub-modular functions,

duality

1.1 Introduction

This chapter introduces the fundamental tools used to modelize the discrete prob-
lem of �nding a Maximal Weight Covering Forest in a graph. These tools are
Matroids, rank function, dual formulation, and System Totally Dual Integral. The
purpose of this part is not to present a complete and deep overview of these sub-
jects, but to pick up progressively the di�erent aspects which are relevant for the
proofs we will give in the di�erent parts of our work. Matroid theory is developed
in [49]. Matroids have been introduced by Whitney(1935) to study the fundamen-
tal properties of dependence that appears commonly in a graph and in a matrix.
The �rst chapter is organised as follow : in section 1.2, we introduce several equiv-
alent de�nitions of matroids, in section 1.3, we introduce the rank function and
the notion of submodular function, in section 1.4.1, we present a �rst approach of
dual formulation for a linear problem, and �nally, in section 1.4.3, we introduce
the notion of System Totally Dual Integral.

1.2 General de�nitions

Several equivalent de�nitions of matroids exist. We use the following approach
given in [48]:

De�nition 1 Let N = {1, . . . , n} be a �nite set, and consider a collection F of

subsets. (N,F ) is an independence system if

∀F1 ∈ F ,∀F2 ⊂ N,F2 ⊂ F1 ⇒ F2 ∈ F .

Elements of F are called independent sets, and the remaining subsets are called

dependent sets.
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De�nition 2 Given an independence system (N,F ), a subset F ∈ F is said to

be a maximal independent set if F ∪ {j} /∈ F for all j /∈ F .

De�nition 3 A maximal independent set T is maximum if |S| ≤ |T | for all

S ∈ F .

We introduce the notation m(T ) = {max
S⊂T
|S| : S ∈ F}.

De�nition 4 M = (N,F ) is a matroid if M is an independence system in which

for any subset T ⊂ N , every independent set in T that is maximal in T has the

same cardinality m(T ).

Some other equivalent de�nitions can be adopted, using a "switching axiom"
formulation:

De�nition 5 Alternative formulation: Let N = {1, . . . , n} be a �nite set, and

consider a collection F of subsets. (N,F ) is a matroid if

• ∅ ∈ F

• ∀F1 ∈ F ,∀F2 ⊂ N,F2 ⊂ F1 ⇒ F2 ∈ F

• ∀F1 ∈ F ,∀F2 ∈ F , |F2| < |F1| ⇒ ∃j ∈ F1\F2 such as j ∪ F2 ∈ F .

Among independent sets, those with maximum cardinality are called bases:

De�nition 6 Let M = (N,F ) be a matroid, a set B is a base if B ∈ F and

∀j ∈ N, j ∪B /∈ F

It is possible to de�ne matroids from the collection of bases:

De�nition 7 Let N be a �nite set and B a collection of subsets such that:

• B 6= ∅

• ∀(B1, B2) ∈ B and i ∈ B1\B2,∃j ∈ B2\B1 such that (B1 − {i}) ∪ {j} ∈ B

Independent sets are subsets of elements of B ∈ B.

Circuits are subsets with an extra element:

De�nition 8 Circuits. Let M be a matroid. A subset C ⊂ N is a circuit if

• C /∈ F

• ∀j ∈ C,C\j ∈ F

4



Circuit is synonym of cycle for graphic matroids. It is possible to de�ne matroids
from the collection of circuits:

De�nition 9 Let N be a �nite set and C a collection of subsets such that:

• ∅ /∈ C

• ∀(C1, C2) ∈ C 2, C1 ⊆ C2 ⇒ C1 = C2

• ∀(C1, C2) ∈ C 2 and C1 6= C2, ∀i ∈ C1 ∩ C2, ∃C3 ∈ C , C3 ⊂ (C1 ∪ C2)\{i}

For the problem of �nding a maximal independent covering forest in a graph,
these formulations are useful to construct algorithms where the global strategy is
based on exchanging the edges one by one. But, according to the approach we lead
in this work, considering the �rst de�nition is more adapted. We do not compare
the independent sets with the analysis of closed con�gurations between themselves,
but we compare the independent sets by ranking the weight of the lightest edge of
the subset. This way is more �exible and it is possible to handle simultaneously
several subsets with di�erent con�gurations but with a common level of weighted
edges.

There exist several kinds of matroids. First examples have been introduced
in 1935 by Whitney in matrices when considering the subsets of columns who are
linearly independent.

1.2.1 Matric and linear matroids

Matric matroid

For any matrixA ∈Mm,n(K), consider the setN of columns ofA noted {C1, . . . , Cn}.
The family F of independent subsets consists of subset of columns who are linearly
independent. m(T ) is the space dimension of the subspace generated by a family
T of columns.

Linear matroid

The pending formulation of a matric matroid in terms of vectors of Km is given by
the independent vectors of a family of N vectors corresponding to the columns of
a matrix A ∈Mmn(K).

1.2.2 Graphic matroids

This type of matroids is widely used in this work. Let G = (V,E) be a graph,
and F the collection of subsets whose edges contain no cycles. M = (E,F ) is a
matroid.
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• The independent sets are the forests.

• The circuits are the cycles of G.

• The bases are the maximal covering forests.

Directed graphs can be used in the same manner: Let G = (V,E) be a digraph,
and F the collection of subsets whose edges contain no cycles. M = (E,F ) is a
matroid.
A global survey of Franck [21] for applications of submodular functions presents
properties of directed graphs and associated matroids.

Isomorphism and matroids

De�nition 10 Two matroids M = (N,F ) and M ′ = (N ′,F ′) are isomorphic if

there exists a bijection f that maps independent sets of M to independent sets of

M ′.

Theorem 11 Any graphic matroid is isomorphic to a matric matroid.

Proof. This theorem is given in [49]. Let G = (V,E) be a graph, and for any
vertex i ∈ V , consider the vector

Vi =



0
...
1
0
...
0


where 1 is on the line i. For any edge (u, v) ∈ E, build the vector Vuv = Vu − Vv.
For any circuit C = {u1u2, u2u3, . . . , uku1} in the graph, the corresponding family
SC = {Vu1u2, . . . , Vuku1} is linearly dependent. Moreover for any egde in the circuit,
let say (uku1), the family SC\{Vuku1} is linearly independent.

Conversely, it is much more di�cult to associate any matric matroid with a
graphic matroid. If we consider a similar reverse construction with any matrix A ∈
Mmn(K) of rank r, we try to construct a graph in this way : We call {(C1, . . . , Cn)}
the columns of A. There exists a subset of columns of cardinal r which is a base,
call it B and suppose without restriction that B consists of the r �rst columns
set of A. For any columns Ci with i > r there exists only one subset of B (and
moreover only one linear combination) of elements of B such that Ci belongs to
the subspace generated by this subset.

∀i > r,∃!{j1i, j2i, . . . , jki} ⊂ {1, . . . , r}, Ci ∈ V ect(Cj1i , . . . , Cjki)
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The indexes {j1i, j2i, . . . , jki} are considered in an increasing order. Consider the
map φ that associates to a column Ci the following column of a new matrix A′:

∀i ∈ {1, . . . , r}, Ci 7→ Vi,i+1 =



0
...
1
−1
0
...
0


where 1 is on the line i. And

∀i ∈ {r + 1, . . . , n}, Ci 7→ Vjkij1i =



0
...
−1
0
...
1
0
...
0


where 1 is on the line jki and −1 on the line j1i. Now we associate to A′ a
graphic matroid when considering a graph of r+1 vertices, where the edge between
two vertices exist if and only if the corresponding column exist in the matrix
A′. Unfortunately, this map is not a bijection. Suppose that there exist two
di�erent columns C and C ′ that are exactly in the same subspace generated by
V ect(Cj1i , . . . , Cjki). These two columns are associated to the same edge.
Yet, it is possible to associate a matric matroid to a graphic matroid with an
exponential number of edges, and make a bijection between circuits. We show an
example with a matrix A ∈ Mn4(K) whose rank is 2 in �gure 1.1. Suppose that
any subset of two columns is linearly independent (for instance A = (C1C2C3C4)
is the matrix associated with 4 non collinear vectors in a plan of Kn). Circuits of
A are all the subsets of 3 vectors.
The map between the set of columns of A and the subsets of G is the following
one:

{C1} → {e11, e12, e13}
{C2} → {e21, e22, e24}
{C3} → {e31, e33, e34}
{C4} → {e42, e43, e44}

Note that the graph G is not connected. Indeed, the bijection is not directly
between the edges of the graph and the columns of the matrix.
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Figure 1.1: graphic matroid associated with A

Indeed, the question of representation of any matroid by a matric matroid has
huge developments. First of all, in this short introduction, we just consider matrix
with 0, 1 coe�cients. Considering matrices with coe�cients in a �nite �eld modify
linear dependence other the columns of a matrix, and open widely the possible
matric reprensentation for a matroid. It is well known that any graphic matroid is
isomorphic with a matric matroid over any �nite �eld [49]. Matroids that admit a
graphic or matric representation are said to have a compact representation.

1.2.3 Partition matroid

Given m disjoint �nite sets Ei for i ∈ {1, . . . ,m}, let E =
m⋃
i=1

Ei, F ⊂ E is

independent if |F ∩ Ei| ≤ 1,∀i ∈ {1, . . . ,m}. (E,F ) is a matroid.
Partition matroids can be used to show that the k-matroid intersection problem

is NP Complete with k ≥ 3 [48]: Given k ≥ 3 matroids Mi = (N,Fi) for i ∈
{1, . . . , k} and a weight vector c ∈ Rn, the problem is

max
S

∑
j∈S

cj : S ∈
k⋂
i=1

Fi

 .

The intersection problem of 3 matroids can be reduced to the search of an Hamil-
tonian path in a graph. Consider a directed graph D = (V,A ) and the following
matroids:

• M1 = (A ,F1) where F1 are the subsets of A with no cycle.

• M2 = (A ,F2) where F2 are the subsets of A where, for each vertex e of V ,
there is at most only one arc entering on e.

• M3 = (A ,F3) where F3 are the subsets of A where, for each vertex e of V ,
there is at most only one arc leaving e.

M1 is a graphic matroid and M2 and M3 are partition matroids. Every subset in
the intersection M1 ∩M2 ∩M3 is an Hamiltonian path.
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There exist several class of matroids which are not presented here. We focus
here on graphic matroids since we study the maximum weight forest problem in
a graph. Graphic matroids are said to be binary matroids because they can be
represented by a matrix with coe�cients in the �eld K with two elements {0, 1}.

1.3 Rank function

De�nition 12 Consider a matroid M = (V,F ), the cardinality function m(T ) =
max
F⊂T
{|F |, F ∈ F} is the rank function associated to the matroid M .

De�nition 13 • A function f is submodular on V if

∀(S, T ) ⊂ V 2, f(T ∩ S) + f(T ∪ S) ≤ f(S) + f(T )

• A function f is nondecreasing on V if

∀(S, T ) ⊂ V 2, T ⊂ S ⇒ f(T ) ≤ f(S)

The rank function m associated to a matroid is submodular and nondecreasing.
In the same way that matroids can be de�ned by di�erent approaches (bases,

independent sets, cycles,...), a rank function can be the starting point to de�ne
matroids [48]:

Proposition 14 An independence system (V,F ) whose cardinality function m is

submodular is a matroid.

A more generaly approach can be formulated in this way:

De�nition 15 A function f : P(V )→ N such that

1. f(∅) = 0

2. ∀e ∈ V, f(e) = 1

3. ∀F ∈ P(V ), ∀e ∈ V, f(e ∪ F ) = f(F ) + k(F, e) where k(F, e) ∈ {0, 1}

4. ∀F ∈ P(V ),∀(e1, e2) ∈ V 2, f(e1∪F ) = f(e2∪F ) = f(F )⇒ f(F ∪e1∪e2) =
f(F ).

is called a rank function.

From this starting point, it is possible to de�ne a matroid in a set by its bases:
subsets F 6= ∅ such that f(F ) = f(V ) and ∀e ∈ F, f(V \{e}) < f(F ).

Before ending this introduction on matroids, it is essential to introduce the
concept of closure.
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De�nition 16 LetM = (V,F ) be a matroid, with a rank function m. The closure

of a subset F is cl(F ) = {e ∈ V,m(F ∪ {e}) = m(F ). The closure of a set F is

called equally the span of F .

This de�nition is central in the �rst part of this work. The closure is clearly con-
nected to the notion of cycle presented in de�nition 8. Moreover, there is another
way to de�ne a matroid, which is not so much used in graphs. This de�nition was
given as the �rst step of a former course of mathematics on combinatorial geometry
[20] and we will see that this de�nition useful in our work :

De�nition 17 A dependency closure on V is an application cl : P(V ) 7→ P(V )
which satis�es:

1. ∀F ⊂ V, F ⊂ cl(F )

2. ∀(F1, F2) ⊂ V 2, F1 ⊂ F2 ⇒ cl(F1) ⊂ cl(F2)

3. ∀F ⊂ V, cl(F ) = cl(cl(F ))

4. ∀F ⊂ V,∀(x, y) ∈ V 2, (y ∈ cl(F ∪ {x}) and y /∈ cl(F ))⇒ x ∈ cl(F ∪ {y})

5. ∀F ⊂ V,∀x ∈ cl(F ),∃Z ⊂ F, |Z| �nite and x ∈ cl(Z)

The last axiom is clearly useless in �nite sets, but ordinary expresses that the
algebraic dependency is over a �nite subset.

Then, the couple M = (V, cl) is a matroid. It is easy to de�ne a base as a
subset of V with minimal cardinality and whose closure is exactly V .

1.4 Duality, System totally Dual Integral

1.4.1 Duality

In mathematics and specially in graph theory, duality can be traduced in numer-
ous ways. Finding a duality formulation to a problem means generally that we
transport the problem into another space con�guration with an isomorphism, and
that the new structure is easier to handle. Consider the following maximization
problem : c ∈ Rn, A ∈Mpn(R), x ∈ Rn and b ∈ (R+)

p

ZLP =

 max
n∑
j=1

cjxj

Ax ≤ b
(1.1)
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We consider the columns of the matrix A as vectors V1, . . . , Vn of Rp. The �rst
interpretation of 1.4.1 is to attribute a speci�c weight cj to each vector Vj and to
�nd the maximum weighted linear combination of {V1, . . . , Vn} in the part P of
the associated half cone bounded by b:

P = {(x1, . . . , xn) ∈ (R+)
n\x1V1 + . . .+ xnVn ≤ b}

P is a polyhedron and we outline that a topological argument shows that ZLP has
always a solution which is reached wheneverA ∈Mpn(R+) and b ∈ V ect(V1, . . . , Vn)

since P is a nonempty compact subset of Rn (closed and bounded) while
n∑
j=1

cjxj

is a continuous function of (x1, . . . , xn).

A dual approach leads to considering each line L1, . . . , Lp of the matrix A

as a linear form on the space Rn, and the combination
n∑
j=1

cjxj as a linear form

φ(x1, . . . , xn). If we note Li(x1, . . . , xn) =
n∑
j=1

Aijxj , and according to the fact

that φ ∈ V ect(L1, . . . , Lp), ZLP can be interpreted as the maximization of φ over
(R+)

n under the constraints that each linear form Li is bounded by bi over the
same subpart of the space. The dual approach leads to the dual formulation that
we introduce with an example in the next subsection:

1.4.2 Dual formulation

Consider the following problem:

ZLP =


max 2x1 + x2 + 2x3

x1 + x2 + x3 ≤ 2
x2 ≤ 1

x1 + x2 ≤ 1

(1.2)

The �rst approach is to maximize the linear combination of V1 =

 1
0
1

,

V2 =

 1
1
1

 and V3 =

 1
0
0

 bounded by b =

 2
1
1

 according to the fact

that the costs of V1 and V3 are 2 while the cost of V2 is only 1. In our example,
P = {(x1, x2, x3) ∈ (R+)

3\x1V1 + x2V2 + x3V3 ≤ b}
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The dual approach leads to maximize the linear form φ(x1, x2, x3) = 2x1 +
x2 + 2x3 under the constraints that the three linear forms L1, L2, L3 are bounded
respectively by : L1(x1, x2, x3) = x1 + x2 + x3 ≤ 2, L2(x1, x2, x3) = x2 ≤ 1 and
L3(x1, x2, x3) = x1 + x2 ≤ 1.
In this case, observe that A is invertible, so that φ is a linear combination of
L1, L2, L3. The combination is unique : φ = 2L1 − L2.
Now we introduce (y1, y2, y3) ∈ (R+)

3 and consider y1L1 + y2L2 + y3L3. Since
(L1, L2, L3) is a basis of the dual space of R3, it is possible to �nd (y1, y2, y3)
such that φ ≤ y1L1 + y2L2 + y3L3 (it su�ces to increase the linear combination
φ = 2L1−L2 up to positive coe�cients)1. For any vector x ∈ (R+)

3 and y ∈ (R+)
3,

we get:
φ ≤ y1L1 + y2L2 + y3L3 : (y1, y2, y3) ∈ (R+)

3

⇒ φ(x) ≤ y1L1(x) + y2L2(x) + y3L3(x) : x ∈ (R+)
3

x ∈ P ⇒ φ(x) ≤ y1L1(x) + y2L2(x) + y3L3(x) ≤ y1b1 + y2b2 + y3b3

If we introduce the dual problem ZLD

ZLD =


min

3∑
i=1

yibi

φ ≤ y1L1 + y2L2 + y3L3

(y1, y2, y3) ∈ (R+)
3

then :

max
x∈P

φ(x) ≤ max
x ∈ P
y /∈ P ′

y1L1(x) + y2L2(x) + y3L3(x) ≤ y1b1 + y2b2 + y3b3 : y /∈ P ′

Note that the matrix formulation of the constraint of ZLD is AT y ≥ c and a dual
polyhedron can be de�ned by : P ′ = {(y1, y2, y3) ∈ (R+)

3\AT y < c}. The right
hand side of this equation does not depend on x, and it results that ZLP ≤ ZLD.
The di�erence ZLD − ZLP is called the duality gap. This example illustrates the
weak LP duality theorem.

Indeed, this gap is zero, this result is the strong duality theorem. We keep the
same example to illustrate the mechanism of the strong duality theorem.
We have seen that (L1, L2, L3) is a basis of the linear forms on (R+)

3. We can
compute the ante-dual basis (ε1, ε2, ε3), verifying Li(εi) = δij for (i, j) ∈ [1, 3]2.
Obviously, the column vectors (ε1, ε2, ε3) are the columns of the matrix A−1 =

1More generally, we need that φ ∈ V ect(L1, . . . , Lp), and a condition that ensures that
is that {L1, . . . , Lp} is a generating system
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 0 −1 1
0 1 0
1 0 −1


We have now three di�erent bases of R3:

1. the canonical basis B = ((1, 0, 0), (0, 1, 0), (0, 0, 1)),

2. the basis V = (V1, V2, V3),

3. and the basis E = (ε1, ε2, ε3),

So for any vector x = (x1, x2, x3) ∈ R3, there are three column matrices associated
with x: X, XV and XE . We note PBE = A the changing basis matrix between the
two bases B and E, we get the relations :

X = PBEXE = A−1XE

AX = XE

These relations show that the ante-dual basis E is the right basis to formulate the
constraints on the vectors x ∈ P . The polyhedron P is de�ned by :

P = {(x1, x2, x3) ∈ (R+)
3\x1V1 + x2V2 + x3V3 ≤ b =

 2
1
1

}
And

x1V1 + x2V2 + x3V3 ≤ b⇔ AX ≤ b⇔ XE ≤ b

Now we try to maximize the value φ(x) = 2L1(x)− L2(x) over P . If we write
this problem with matrices, we get:

max(2L1 − L2)X
X = A−1XE

XE =

 XE1

XE2

XE3

 ≤

 2
1
1


X ≥ 0

where Li is the line matrix identi�ed as the linear form Li. Then we get (2L1 −
L2)X = (2L1 − L2)A−1XE = 2XE1 −XE2. This linear combination is maximized
with XE

∗
1 = 2 and XE

∗
2 = 0 = XE

∗
3 and on this example, we get that the corre-

sponding x∗ = (0, 0, 2) is positive.
In the same time this choice of XE induces a natural minimal value reached for
the dual problem : From the inequality

max
x∈P

φ(x) ≤ max
x ∈ P
y /∈ P ′

y1L1(x) + y2L2(x) + y3L3(x) ≤ y1b1 + y2b2 + y3b3 : y /∈ P ′
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the value x = x∗ gives:

φ(x∗) ≤ y1L1(x∗) + y2L2(x∗) + y3L3(x∗) : y /∈ P ′

and
min
y/∈P ′

y1L1(x∗) = 4 for y1 = 2

This example uses only basic algebraic calculus. Usually, the strong duality the-
orem is demonstrated with the Lagrangian relaxation that introduces the notion
of local cost for a constraint. The lagrangian technic will be widely studied in the
second part of this Thesis and it is interesting to handle only algebraical transfor-
mations to get the optimal value here.
It is interesting to mention that a geometric approach of ZLP is to consider each
constraint Li(x) ≤ bi as the half space of Rn delimited by the hyperplane of equa-
tion Li(x) = bi. P is the intersection of p half spaces with the positive orthant,
and introducing the vector C = (c1, . . . , cn), the problem ZLP leads to consider
the orthogonal projection of P on V ect(C). Indeed, this approach is not a second
dual approach, it is strictly equivalent to those mentioned in 1.4.1 according to the
Fréchet-Riesz theorem of representation [52].
To conclude this subsection, I would like to outline that in many computations,
duality is merely a way to handle new variables in a scalar product. This way
of computing is merely e�cient but does not permit to fashion a correct mental
representation of the reason why there is no duality gap for a linear problem. Using
a scalar product is always a kind of projection on a linear subspace and does not
render the complexity of the search of a complete basis adapted to the problem as
I try to formulate in the previous example.

1.4.3 System Totally Dual Integral

This subsection is a short description of TDI systems. TDI properties will be
exploited in the next chapter in the case of the Maximum Weight Covering Forest
2.

De�nition 18 A system of linear inequalities Ax ≤ b is called totally dual integral

(TDI) if, for all integer c such that ZLP = max{cx : Ax ≤ b} is �nite, the dual

ZLD = min{yb : Aty ≥ c, y ∈ (R+)
p} has an integer optimal solution.

We get the property:

Proposition 19 If Ax ≤ b is TDI and b is integral, then P = {x ∈ Rn : Ax ≤ b}
is integral. Hence, for all c for which ZLP is �nite, ZLP is integral.

Operations that preserve TDI systems are described in [12]. An algebraic approach
of TDI systems needs to introduce Hilbert basis of a positive cone. Consider a �-
nite set of vectors S of Rn, the positive cone(S) is the set of linear combinations
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of elements of S with nonnegative coe�cients. The lattice lat(S) is the linear
combinations of elements of S with integer coe�cients. An Hilbert basis is a min-
imal �nite set of vectors (with integer components) such that every elements of
lat(S) ∩ cone(S) is a �nite combination of elements of H with integer coe�cients.
Giles and Pulleyblank in [25] have established connections between TDI systems
and Hilbert bases, they used the fact that every rational convex cone - a set of type
x : Ax ≥ 0, where A is rational - is generated by a �nite Hilbert basis, to show
that every integer polyhedron can be described by a TDI system. In our work,
the starting point is that the system of inequalities involved in the deterministic
covering forest of a graph, is TDI. This central point will be developed in next
section.

We gathered in this chapter all the basic tools used to characterize how integer
formulations can be relaxed without introducing a duality gap : rank function in
matroid, dual formulation and TDIness.
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Chapter 2

Maximum Weight Covering

Forest

2.1 Introduction

This chapter presents the Maximum Weight Covering Forest. We begin with pre-
senting the deterministic formulation in 2.2.1. The greedy algorithm is recalled
in 2.2.2 and we present �rst results concerning the way an edge is chosen or not
during the greedy process in theorem 23. The Two Stage Stochastic formulation
of this problem is given in 2.3 and we �nish this presentation in 2.4 by a state of
the art.

2.2 The deterministic formulation

We consider a graph G = (V,E) where E is a set of edges of cardinality |E|, and a
cost function c de�ned on edges. The edges are indexed by i ∈ [1, |E|] and for any
subset F of edges, we call c(F ) the sum

∑
j∈F

cjxj where xj = 1 if j ∈ F and xj = 0

otherwise.

A subset F is said independent if there is no cycle in F . The maximization
problem of c(F ) for independent F is well known to be connected to matroids and
is e�ciently solved in the case of a �xed cost value for every edge [48]. When
every edge has a �xed value, we say that the problem is deterministic and since
independent sets are a matroid, the greedy algorithm is e�cient to provide the
maximization problem of c(F ) polynomially. The matroid structure of indepen-
dent sets involves the fact that the rank function r(F ) (the maximum cardinality
of any independent subset included in F ) is submodular. In this case, the polyhe-
dron associated to dependence constraints is Totally Dual Integral. This is a very
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nice property which allows to apply algebraic methods to solve the maximization
problem.

2.2.1 Polytopes and problems associated with the de-

terministic problem

In the deterministic case, we note n = |E| the number of edges in the graph. Con-
sidering the graphic matroid of independent subgraphs described in 1.2.2, for any
subset S of edges, we introduce the rank function r(S) as the maximal cardinality
of the independent subsets of edges in S. Finding a maximum weight forest is
formulated by:

ZIP =


max

n∑
j=1

cjxj

x ∈ {0, 1}n∑
j∈S

xj ≤ r(S) ∀S ⊆ E

(2.1)

The polytope associated with this problem is:

π(r) = {x ∈ {0, 1}n :
∑
j∈S

xj ≤ r(S) ∀S ⊆ E} (2.2)

The polyhedron associated to the matroid :

P (r) = {x ∈ (R+)n :
∑
j∈S

xj ≤ r(S) ∀S ⊆ E} (2.3)

and the linear program :

ZLP =


max

n∑
j=1

cjxj

x ∈ (R+)
n∑

j∈S
xj ≤ r(S) ∀S ⊆ E

(2.4)
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The dual problem associated with zIP is :

ZLD =


min

∑
S⊆E

r(S)yS∑
S:j∈S

yS ≥ cj ∀j ∈ E

yS ≥ 0 ∀S ⊂ E

(2.5)

We have ZIP ≤ ZLP ≤ ZLD but Edmonds showed in [48] that zIP = zLD by
exhibiting an optimal solution for zLD which is indeed the greedy solution for zIP .
The conclusion is that π(r) is TDI and the duality gap is equal to 0.

2.2.2 The greedy algorithm

This algorithm is due to Edmonds ([48]).

We call F the set of independent subsets in E. Rank the elements of E so
that c1 ≥ c2 ≥ . . . ≥ cn.

1. Let begin by J0 = ∅ , t = 1.

2. Iteration t : If ct ≤ 0 then stop and SG = Jt−1.

3. If ct > 0 and Jt−1 ∪ {t} ∈ F , then set Jt = Jt−1 ∪ {t}.
If ct > 0 and St−1 ∪ {t} /∈ F then set Jt = Jt−1.

4. If t = N stop and SG = Jt

5. Set t to t+ 1

The greedy solution is {xi : i ∈ SG}.

We call p the number of chosen edges and SG = Jp.

We now present the main result connecting the greedy solution to the dual
problem, and we emphasize the growing closure mechanism. We say that any edge
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chosen during the greedy algorithm is greedy while any unchosen edge is covered .
In de�nition 16, we introduced the central notion of closure or span of a subset :
the closure or span of a set A is sp(A) = {i ∈ E : r(A ∪ {i}) = r(A)}.

We brie�y describe the greedy algorithm in terms of closure sets. We refer
to an edge xi ∈ E either directly as xi or only via its index i. We assume that
indexation of edges is equal to their rank. For the edges of the greedy solution for
G, let {i1, . . . , it} be the set of edges indexes in decreasing order of edge weights.
Denote Jτ = {i1, . . . , iτ}, 1 ≤ τ ≤ t and κτ = sp(Jτ ). The �rst step of the greedy
process is the choice of the heaviest weight and we set J1 = {x1}. We call i1 = 1
the �rst chosen edge and we notice that κ1 = sp(J1). We now choose the second
edge i2 with the highest rank among all remaining edges such that i2 /∈ κ1. Up to
this point of construction, obviously i2 = 2 since there is no cycle with only two
edges. We build now Jτ+1:

The iterative mechanism consists in the choice of iτ+1 with the highest rank
among all remaining edges such as iτ+1 /∈ κτ and ciτ+1 ≥ 0. It is important to
notice that sp(Jτ ) = sp(κτ ).

Theorem 20 The dual problem zLD and the greedy solution of zIP have the same

objective value. P (r) is an integral polytope, and the system de�ning P (r) is TDI.

Proof. We assume that indexation of edges is equal to their rank according
to decreasing weights. We dynamically construct both greedy solution and dual
solution equals at every step.

According to notations used in 2.2.2, the optimal solution to zLD is :

yκt = cjt − cjt+1 for t = 1, . . . , p− 1
yκp = cjp
yS = 0 otherwise

First, we need to check that for every j ∈ N :
∑

S/j∈S
yS ≥ cj .

it is obviously the case for every ji ∈ SG since ji ∈ Jt for i ≤ t.
For any j which has not been chosen during the greedy algorithm, j belongs to
some sp(Jt) \ sp(Jt−1).
So

∑
S/j∈S

yS = cjt ≥ cj .

Secondly, we need to compute the sum :
∑
S⊆E

r(S)yS =
p−1∑
t=1

t(cjt − cjt+1) + pcjp

this leads, when splitting in two sums and re-indexing to
∑
S⊆E

r(S)yS =
p∑
t=1

cjt .

This shows that zIP and zLD have the same objective value. More precisely, the
greedy solution to zIP and zLD have the same objective value. We conclude that
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the set of inequalities de�ning P (r) is TDI, and P (r) is an integral polytope.

It is important to remark the following points:

• The dual variable chosen at step t is the one associated with the heaviest

constraint
∑
j∈κt

xj ≤ r(κt) in the sense that among all subsets S of rank t,

the linear forms introduced in 1.4.1 verify Lκt(x1, . . . , xn) ≥ LS(x1, . . . , xn)

• The dual variable depends only on the current chosen weighted edge and the
next one. That means indeed that the greedy algorithm will not change if
we modify any weighted edge with a smaller cost than those examined at
step t, independently of any geometrical consideration in the graph.

This second remark leads to introduce the next de�nition and the following
theorem:

De�nition 21 For a given cost c ∈ RN on G and b ∈ R, we note U(b) = {xi :
ci ≥ b}

Lemma 22 For any graph G of cardinal N , consider speci�cally any edge x with

cost c ∈ R considered as a variable, and assume that every other edges (x1, . . . , xN−1)
have a given cost (c1, . . . , cN−1). There exists a threshold b ∈ R+ such that if c > b,
then x belongs to the greedy solution applied to G, while x is covered if c < b. The
threshold b is a function of (c1, . . . , cN−1). When c = b, the status of x can be greedy

or covered according to the choice of x or another edge of same weight during the

greedy algorithm.

Proof. We still assume that the indexation of edges x1, . . . , xN−1 is equal to
their rank according to a decreasing weight. We dynamically construct a greedy
solution on G̃ = G \ {x} without taking into account the speci�c edge x. We get
a �nite sequence of sets J̃1, . . . , J̃p and of corresponding closures κ̃1, . . . , κ̃p of G̃.
Remark that κ̃1, . . . , κ̃p is a strictly increasing sequence for inclusion of subsets
such that G \ {x} = κ̃p.
We reintroduce x as a new edge in the graph G̃. In the case where x /∈ κ̃p, that
means that as soon as c > 0 then x would be chosen during the greedy algorithm
applied properly on the whole graph G, so that b = 0.
In the case where x ∈ κ̃p that means that there exists a particular step τ such that
x ∈ sp(J̃τ+1) and x /∈ sp(J̃τ ). The threshold b is equal to ciτ+1 . In the case where
c = ciτ+1 occurs, then x and xiτ+1 have the same weight (and perhaps several other
edges) and x or xiτ+1 can be indi�erently chosen during the greedy algorithm but
not both together.

Theorem 23 b(c1, . . . , cN−1) is a continuous function of (c1, . . . , cN−1)
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Proof. We consider the same mechanism as in lemma 22 to get a �rst threshold
b = b(c1, . . . , cN−1) when removing x from G. We begin to notice that during the
greedy algorithm, at every step, when choosing the τ th edge of the greedy solution,
Jτ ⊆ U(ciτ ) ⊆ κτ .
We �x ε > 0 and for c = (c1, . . . , cN−1) ∈ RN−1, we consider a small perturbation
c′ = (c′1, . . . , c

′
N−1) such that |ci − c′i| < ε ∀i ∈ [1, . . . , N − 1]. We note U ′(b) =

{xi/c′i ≥ b}, the set of edges whose slightly modi�ed weights are greater than b.
Obviously, if x is not covered by any independent subset in U ′(b), that means
that b will decrease. Conversely, if U ′(b) contains some new independent subsets
that covers x, it will possibly enforce b to increase. We begin to explain how the
variation of the threshold is lower bounded: U(b) contains a subset Jτ such that
x ∈ sp(Jτ ) and U(b) ⊂ U ′(b − 2ε). Then U ′(b − 2ε) contains a subset J ′τ ′ , step of
the greedy algorithm applied to G̃ with c′ cost and such that x ∈ sp(J ′τ ′). This
proves that b(c′) ≥ b− 2ε.
For the upper bound of the variation, we see that since U(b+ ε) does not contain
any independent set covering x with cost c, and U ′(b+2ε) ⊆ U(b+ε) then U ′(b+2ε)
does not contain any independent set covering x in G with c′ cost. This proves
that b(c′) ≤ b(c) + 2ε. We conclude that |b(c′) − b(c)| ≤ 2ε, and b is a continuous
function of c.

2.3 The Two Stage Stochastic formulation

The problem that we introduce now is to understand what happens when cost
function is not deterministic but follows a discrete probability distribution π. In
our problem, the edges are split into two subsets E = X ∪ Y . In stochastic
programming, the �rst subset X has a deterministic cost function, this set is called
�rst stage, we set card(X) = n, whereas in second subset called second stage,
card(Y ) = q. We notice N = n+ q the cardinal of the whole set of edges in G.
The cost function depends on K ≥ 2 scenarios and the cost values are given by a
probability distribution π = (π1, . . . , πK). The formulation of this problem is:

zIP =


max

∑
j∈X

cjxj +
k=K∑
k=1

πk
∑
j∈Y

cj(k)zkj∑
j∈S∩X

xj +
∑

j∈S∩Y
zkj ≤ r(S), k ∈ {1, . . . ,K}, ∀S ⊆ E

(x, zk) ∈ {0, 1}n × {0, 1}q, k ∈ {1, . . . ,K}.

(2.6)

We outline that any �rst stage edge is associated with a single binary variable
xj , while a second stage edge is associated with K binary variables zkj . In the
deterministic case, we had only n = N = |E|. We introduce the notations:
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The linear program associated to (6.2) is:

zLP =


max

∑
j∈X

cjxj +
k=K∑
k=1

πk
∑
j∈Y

cjkzjk :∑
j∈S∩X

xj +
∑

j∈S∩Y
zjk ≤ r(S), k ∈ {1, . . . ,K}, ∀S ⊆ E

(x, zk) ∈ [0, 1]n × [0, 1]q, k ∈ {1, . . . ,K}.

(2.7)

and its LP-dual is:

zLD =



min
K∑
k=1

∑
S⊆E

r(S)yS,k :

K∑
k=1

∑
S⊆E:i∈X∩S

yS,k ≥ ci, i ∈ X∑
S⊆E:j∈Y ∩S

yS,k ≥ πkcjk, j ∈ Y, k ∈ {1, . . . ,K}

yS,k ≥ 0, k ∈ {1, . . . ,K}, S ⊆ E.

(2.8)

Remark that in some parts of this work, we omit the stochastic vector π by
considering directly a new cost cjk which is indeed the product of πk by cjk.

2.4 A general introduction of two stages prob-

lems

The problem 6.2 belongs to the general model class :

zP =

{
max
x∈X

cTx+ E[Q(x, ξ)]

s.t.Ax ≤ b, x ≥ 0
(2.9)

where Q[x, ξ] is the optimal value of the second-stage problem, and E stands for
expectation :

Q[x,ξ] =

{
max
z∈Y

qT z

s.t.Tx+Wz ≤ h, z ≥ 0
(2.10)
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where ξ = (q, h, T,W ) are the random data of the second-stage. X and Y are
an integer domains, which is indeed the worst case to handle. The relaxed problem
2.7 belongs to the the same class of problems, but, due to the fact that X and Y
are continuous and that the number of scenarios is �nite, several results can be
obtained easily. An introduction concerning these problems is described in [55]. A
survey for speci�c strategies in case of Two-Stage stochastic Integer programming
is given in [53]. A tutorial on Stochastic Programming and Applications is given
in [54]. We begin by explaining how this relaxed problem can be treated and why
the integer version is very di�cult to solve since we loose convexity properties.
Considering any �xed value of x in 2.7, the second-stage problem is a linear problem
whose dual is given by:

{
min
π
πT (h− Tx)

s.t.W Tπ ≥ q
(2.11)

Observe that this formulation is compatible with strong duality results recalled
in 1.4.1. Unless both problems are infeasible, they have the same optimal value.
If we introduce the function Sq(χ) = sup{qT z : Wz ≤ χ, z ≥ 0} and Π(q) = {π :
W Tπ ≥ q}, then

Sq(χ) = inf
π∈Π(q)

πTχ

and
Sq(h− Tx) = Q(x, ξ).

The result is that for any realization of ξ, the function Q(., ξ) is convex because Sq
is a polyhedral function. 1 Moreover, since the probability distribution has a �nite
support, the problem 2.7 can be considered as a large-scale deterministic linear
problem.
Unfortunately, as soon as integer variables are part of the formulation in second
stage, continuity and consequently convexity properties can disappear. Consider
the following problem:



max 30x1 + 30x2 + 30x3 + 10y1 + 10y2 + 10y3

x1 + x2 + y1 ≤ 2
x2 + x2 + y2 ≤ 2
x3 + x1 + y3 ≤ 2
xi ≥ 0, i ∈ {1, 3}
yi ∈ {0, 1}, i ∈ {1, 3}

(2.12)

It is easy to compute that for x1 = 1
2 , x2 = 1

2 , x3 = 1
2 + ε where ε > 0, the

optimal solution is y1 = 1, y2 = 0, y3 = 0 with the optimal value 55 + 30ε, while for

1A polyhedral function f is proper convex and lower semi-continuous, its domain is a
closed convex polyhedron and f is piecewise linear
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x1 = 1
2 , x2 = 1

2 , x3 = 1
2 − ε, the optimal solution is y1 = 1, y2 = 1, y3 = 1 with the

optimal value 75− 10ε.
Several technics have been used to deal with integer stochastic programs. We

mainly distinguish exact and approximation approaches. In exact approaches,
branch and bound methods are presented in [3]. In this type of approach, the
main di�culty is to avoid exponential enumeration of the solution space. Another
type of exact approach is presented in [37], where superadditive duality properties
are exploited. Unlike in branch and bound algorithms, the column elimination
(setting some variables xj to 0), is based on a level-set approach. This approach
can be understood as a increasing improvement of the global objective function, by
adding some sub-objective value -called the value function- to the expected value
of a second stage function, whose variables are called �tender variables�.

Among approximation methods, it is possible to build a continuous convex hull
of the second stage value function. This approach is used in case of a simple re-
course situation 2 and analyzed in [28]. The branch and bound technic is often
used in approximation too, this type of approach uses generally optimal cuts [41]
and can be coupled with approximation of the second stage value function [8].

Another way to classify the approximation methods is to consider whether the
exploration scheme mixes �rst stage variables with two stage variables, or only �xes
�rst stage variables and explores some relative two stage variable issues. Benders'
like method are adapted to two stage stochastic formulations because of the natural
shape of the constraint matrix. In Benders' method, selecting nice and complicating
variables is a delicate balance between complexity of the primal problem and the
number of constraints to relax. In Mixed Integer Programs (MIP), one can choose
to keep all integer variables into the main program or, conversely, to put them
into the lagrangian relaxation formulation. In the case of pure integer variables,
the dual lagrangian problem associated to the relaxed variables occurs after the
relaxation of complicating variables [9] [29].
When mixing �rst and second stage variables, the starting point is to introduce
�non anticipativity constraints�. These constraints state the property that any �rst
stage variable has the same value in every scenario [55]. Then, it is possible to use
Lagrangian multipliers. We will explain why these constraints are inappropriate in
our approach 3.2.

Some unclassical approaches adopt a di�erent point of view [53] by decomposing
the problem after translating it into another space variable (graver test set)

Some speci�c situations have been studied more speci�cally, trying to extend
properties of the deterministic formulations to the case of stochastic versions. The
present work is connected with this class of approach. The case of totally unimod-
ular programs is characteristic of the e�orts of research in this domain. A matrix

2a simple recourse means that each second stage variable is bounded separately by two
values; it follows that the recourse matrix W is [I,−I]
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A is said to be totally unimodular if and only if for any squared submatrix A′ ⊂ A,
det(A′) ∈ {0, 1,−1}. That property ensures that for any b ∈ Zm, the polyhedron
P = {x ∈ (R+)nAx ≤ b} is integer [48], [4], [13]. Totally unimodular matrices
are present in network �ows and are studied in [16]. Interval matrices are Totally
Unimodular [22]. In [36], Kong, Shabbir and Schae�er study an extension of to-
tally unimodular matrices in the case of a constraint matrix B associated to the
program 2.4.

B =


T 1 W 1

T 2 W 1

...
. . .

TK WK


They extend the de�nition of totally unimodular matrices by coming back to

the fundamental root of the nature of a unimodular matrix exposed in the Ghouila-
Houri theorem [24]:

Theorem 24 A {0, 1,−1} m × n matrix A is TU if and only if for every J ⊂
{1, . . . , n}, there exists a partition (J1, J2) of J such that∣∣∣∣∣∣

∑
j∈J1

Aij −
∑
j∈J2

Aij

∣∣∣∣∣∣ ≤ 1, for i = 1, . . . ,m..

The authors introduce some synchronization between technology submatrices T i

according to a speci�c vector v, and then de�ne conditions over recourse matrices
W j in order to satisfy similar conditions that those given in Ghouila-Houri theorem.
The aim we tried to reach here is similar to this approach. In the deterministic
case, the maximal covering forest is solved in polynomial time since the formulation
gives a TDI system. We try to analyze in which stochastic cases, TDI properties
are preserved and how to proceed when it is not the case.
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Chapter 3

Two stage problems with only two

scenarios

3.1 Introduction

In this chapter, we study the case of a two-stage problem with only two scenarios.
This situation leads to introduce the formal split of the cost for the �rst level edges.
In 3.2, any �rst level cost is split in many subcosts corresponding to each scenario.
These subcosts give a corresponding status for any �rst level edge considered in
a speci�c scenario. The central point is that we do not create many decision
variables associated to each �rst stage level, which is far di�erent from introducing
non anticipativity constraints. In 3.3, we prove that a two-stage problem with only
two scenarios is always TDI in three steps: �rst with only one �rst stage edge,
secondly with only two �rst stage edges, and �nally by induction on the number
of �rst stage edges.

3.2 Formal split of the cost of a �rst stage edge

Since the cost of second stage edges change with scenarios, while �rst stage edges
costs remain the same, when one speci�c scenario occurs, we apply a greedy algo-
rithm not with the whole cost of �rst stage edge, but only with a fractional part
as described below:
For E = X ∪ Y �rst and second stage edges, and for (c, ck) weights vectors with
c ∈ Rn, ck ∈ Rq, k = 1, . . . ,K.
Consider a split of the form

ci =
K∑
k=1

cki , i ∈ X
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with
cki ≥ 0, i ∈ X

or an equivalent vector formulation:

c =
K∑
k=1

ck

with
ck ≥ 0

For k ∈ {1, . . . ,K} we consider the sets {ik1, . . . , iktk} of indexes in the order
they are picked by the greedy algorithm applied for each (ck, ck) cost vector.

By κkτ we denote the spans of the following subsets of the edge sets in the greedy
sequence

{ik1, . . . , iktk}, τ = 1, . . . , tk, k = 1, . . . ,K.

Remark
r(κkτ ) = τ, τ = 1, . . . , tk, k = 1, . . . ,K.

We introduce a speci�c condition on �rst stage edges in every scenario:

De�nition 25 For the individual weight vectors (ck, ck), k = 1, . . . ,K, if each

�rst stage edge is either always or never picked simultaneously in every scenario by

the greedy algorithm, we say that the status of �rst stage edges is uniform.

In chapter 2 of [55], the mechanism of non anticipativity constraints is devel-
oped. Since the �rst level edges variables are replaced by K equivalent distinct
new variables, we need to give some global coherence by adding new constraints as
x1
i = . . . = xKi for all i ∈ {1, . . . , n}. These constraints are called non-anticipativity

constraints. Unfortunately, these constraints are ine�cient to turn the system into
a TDI one. They only set the same fractional value to all �rst stage edges. For
instance, the simple example given in annex A with Porta and nonanticipativity
constraints still gives several fractional solutions.

Theorem 26 Assume that for any c, there exists a split c =
K∑
k=1

ck with ck ≥ 0

ful�lling the condition of de�nition (25); then the system


(x, z1, . . . , zK) ∈ [0, 1]n × [0, 1]q × . . .× [0, 1]q :∑
j∈S∩X

xj +
∑

j∈S∩Y
zjk ≤ r(S), k ∈ {1, . . . ,K}, ∀S ⊆ E (3.1)

is totally dual integral.
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Proof. Let (c, c1, . . . , cK) be an arbitrary weight vector with c ∈ Rn, ck ∈
Rq, k = 1, . . . ,K. Consider the two stage stochastic maximum problem:

max
∑
j∈X

cjxj +

k=K∑
k=1

∑
j∈Y

cjkzjk∑
j∈S∩X

xj +
∑

j∈S∩Y
zjk ≤ r(S), k ∈ {1, . . . ,K}, ∀S ⊆ E

(x, zk) ∈ {0, 1}n × {0, 1}q, k ∈ {1, . . . ,K}.

(3.2)

Consider a split for c ful�lling condition (25) and for k = 1, . . . ,K, put xki =
1, zik = 1 if the greedy algorithm picks i ∈ X respectively i ∈ Y , under the vector
(ck, ck), and xki = 0, zik = 0 otherwise. We obtain :

k=K∑
k=1

∑
j∈X

ckjx
k
j+

k=K∑
k=1

∑
j∈Y

cjkzjk =
∑
j∈X

(
k=K∑
k=1

ckj )xj +
k=K∑
k=1

∑
j∈Y

cjkzjk =
∑
j∈X

cjxj +
k=K∑
k=1

∑
j∈Y

cjkzjk(3.3)

The feasibility of the scenario speci�c solutions∑
j∈S∩X

xkj +
∑

j∈S∩Y
zjk ≤ r(S), k ∈ {1, . . . ,K}, ∀S ⊆ E

implies the feasibility of the two-stage model∑
j∈S∩X

xj +
∑

j∈S∩Y
zjk ≤ r(S), k ∈ {1, . . . ,K}, ∀S ⊆ E

Now turn to the dual of the LP relaxation aiming at the construction of an optimal
solution whose objective value coincides with (3.3):

min
K∑
k=1

∑
S⊆E

r(S)yS,k :

K∑
k=1

∑
S⊆E:i∈X∩S

yS,k ≥ ci, i ∈ X∑
S⊆E:j∈Y ∩S

yS,k ≥ cjk, j ∈ Y, k ∈ {1, . . . ,K}

yS,k ≥ 0, k ∈ {1, . . . ,K}, S ⊆ E.

(3.4)

For each k = 1, . . . ,K let, according to the choice {ik1, . . . , iktk}, τ = 1, . . . , tk, k =
1, . . . ,K and in descending order, ĉik1 ≥ . . . ≥ ĉiktk

≥ 0 be the weights of the

edge picked by the greedy algorithm runned on the instance with edge weights
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(ck, ck). According to the deterministic proof of the greedy solution, for the edge
sets S = κkτ , τ = 1, . . . , tk, k = 1, . . . ,K we put

yS,k = ĉikτ − ĉikτ+1
, τ = 1, . . . , tk − 1 and yS,k = ĉiktk

, τ = tk.

For the remaining S ⊆ E and k = 1, . . . ,K, we put yS,k = 0. To check feasibility,
�x some i ∈ X, then for each k = 1, . . . ,K, there exists a unique index τ∗ with
i ∈ κkτ∗+1 \ κkτ∗ . It holds:

∑
S⊆E:i∈X∩S

yS,k =

tk∑
τ∗

yκkτ ,k =

tk∑
τ∗

(ĉikτ − ĉikτ+1
) = ĉik

τ∗
≥ cki .

Summing up over k yelds

K∑
k=1

∑
S⊆E:i∈X∩S

yS,k ≥
K∑
k=1

cki = ci.

For i ∈ Y and k ∈ {1, . . . ,K} again there exists a unique index τ∗ with i ∈
κkτ∗+1 \ κkτ∗ , and we have:

∑
S⊆E:i∈Y ∩S

yS,k =

tk∑
τ∗

yκkτ ,k =

tk∑
τ∗

(ĉikτ − ĉikτ+1
) = ĉik

τ∗
≥ cik.

Non-negativity of the dual solution is immediate. If i /∈ κktk , then its edge weight is
non-positive, and the dual constraint involving i is satis�ed. For the dual objective,
it holds

K∑
k=1

∑
S⊆E

r(S)yS,k (3.5)

=

K∑
k=1

tk∑
τ=1

r(κkτ )yκkτ ,k =

K∑
k=1

tk−1∑
τ=1

τ(ĉikτ − ĉikτ+1
) + tk ĉiktk

=

K∑
k=1

tk∑
τ=1

ĉikτ (3.6)

=
K∑
k=1

(
∑
i∈X

cki x
k
i +

∑
i∈Y

cikzik) =
K∑
k=1

(
∑
i∈X

cki xi +
∑
i∈Y

cikzik) (3.7)

=
∑
i∈X

(

K∑
k=1

cki )xi +

K∑
k=1

∑
i∈Y

cikzik (3.8)

=
∑
i∈X

cixi +
K∑
k=1

∑
i∈Y

cikzik (3.9)

which coincides with (3.3). Hence the system in question is totally dual integral.
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3.3 Two stage problem with only two scenarios

The case K = 2 is very di�erent from the case K ≥ 3. We prove in this section
that in the case K = 2, the optimal value of the problem is integer. The main
idea is to prove the existence of a correct split of �rst stage edge costs according to
(25) by induction on the number of �rst stage edges. Yet, the case of only one �rst
stage edge gives a basic settlement for any value of K, and the case of only two

�rst stage edges is a central point in the proof. When there exists a split c =
K∑
k=1

ck

with ck ≥ 0 ful�lling the condition of de�nition (25), we say that the �rst stage
edge i is 'covered' if the split turns to xki = 0 k = 1, . . . ,K when applying greedy
algorithms. Conversely, we say that the �rst stage i is 'chosen' if the split turns to
xki = 1 k = 1, . . . ,K.

3.3.1 The case of only one edge in the �rst level

We consider the case where only one edge x1 belongs to the �rst stage.

Theorem 27 With only one edge in the �rst stage and K = 2, the primal problem

zIP (6.2) and dual problem zLP (2.3) have the same integer value. This entails that

the system is TDI.

Proof. It su�ces to prove that it is possible to correctly split the cost c1 into
two parts in order to get the same status in both scenarios.

According to lemma 22, there exist two thresholds b11 = b11(c11, . . . , cq1) and
b21 = b21(c12, . . . , cq2) that determine the status of x1 in each scenario.
In the case where b11 + b21 ≤ c1 then it is possible to split c1 with respect to b11 ≤ c1

1

and b21 ≤ c2
1.

In the case where b11 + b21 ≥ c1 then it is possible to split c1 with respect to b11 ≥ c1
1

and b21 ≥ c2
1.

From the point of view of a single scenario, these di�erent cases can be summarized
into one single criteria: for c1

1 ∈ [min(b11, c1 − b21),max(b11, c1 − b21)], the status of
x1 into both scenarios during greedy algorithm is the same.

The case of only one edge in the �rst stage with any number of scenarios can
easily be answered in the same manner:

Theorem 28 In the case of any number of scenarios K ≥ 2, with only one edge

in the �rst stage, the primal problem zIP (6.2) and dual problem zLP (2.3) have the
same integer value. This entails that the system is TDI.

Proof. It su�ces to prove that it is possible to correctly split the cost c1 into
K parts in order to get the same status in every scenario.

According to lemma 22, there exist K thresholds bk1 = bk1(c1k, . . . , cqk), k =

1, . . . ,K. In the case where
K∑
k=1

bk1 ≤ c1, it is possible to split c1 with respect to
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bk1 ≤ ck1, ∀k

In the case where
K∑
k=1

bk1 ≤ c1 then it is possible to split c1 with respect to bk1 ≥

ck1, ∀k

3.3.2 The case of two edges in the �rst stage

We consider the case where two edges x1 and x2 belong to the �rst stage with
respectively costs c1 and c2. We proceed in the same way as with one single edge
by splitting �xed costs into two parts: c1 = c1

1 + c2
1 and c2 = c1

2 + c2
2.

Theorem 29 With only two edges in �rst stage and K = 2, the primal problem

zIP (6.2) and dual problem zLP (2.3) have the same integer value. This entails that

the system is TDI.

Proof.

In the proof of theorem 27, we have seen that an accurate split of the cost of
one edge is given by a compact interval [min(b11, c1−b21),max(b11, c1−b21)], where b11
and b21 are two continuous functions of the other costs of all edges -independently
of their stage.
Since there are only two scenarios, any split of the cost c2 = c1

2 + c2
2 can be inter-

preted as the variation of a single parameter c1
2. That means that b11 (respectively

b21) can be seen as a function depending of a simple variable c1
2 and several �xed

parameters c2, c11, . . . , cq1 (respectively c2, c12, . . . , cq2):

b11 = b11(c1
2, c11, . . . , cq1)

and
b21 = b21(c2 − c1

2, c12, . . . , cq2).

Considering the standalone variation of the value c1
2 ∈ [0, c2], we get two contin-

uous functions f1(c1
2) = min(b11, c1 − b21) and g1(c1

2) = max(b11, c1 − b21), de�ning
the boundary of a never empty area of the two dimensional space for variables
(c1

1, c
1
2) ∈ [0, c1]× [0, c2] where x1 has a common status in scenario S1 and S2 i.e.

x1
1 = x2

1. See �gure 3.3.2

Functions f1 and g1 de�ne two continuous parametric curves connecting respec-
tively the points (f1(0), 0) to (f1(c2), c2) and (g1(0), 0) to (g1(c2), c2) in the space
(c1

1, c
1
2) ∈ [0, c1]× [0, c2].

The same analysis with the second �rst stage edge leads to introduce two similar
thresholds:

b12 = b12(c1
1, c11, . . . , cq1)

32



Figure 3.1: common status for x1 between two continuous parametric curves

Figure 3.2: common status for x2 between two continuous parametric curves
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and

b22 = b22(c1 − c1
1, c12, . . . , cq2)

A split of c2 between these two thresholds gives the same status of x2 in both
scenarios.
We then consider in the same manner two continuous functions f2(c1

1) = min(b12, c2−
b22) and g2(c1

1) = max(b12, c2− b22) de�ning the boundary of a non-empty area of the
same two dimensional space for variables (c1

1, c
1
2) ∈ [0, c1] × [0, c2], where x2 has a

common status in scenario S1 and S2.
Functions f2 and g2 de�ne two continuous parametric curves connecting respec-
tively the points (0, f2(0)) to (c1, f2(c1)) and (0, g2(0)) to (c1, g2(c1), 0) in the space
[0, c1]× [0, c2]. See �gure 3.2
According to the theorem of intermediate values for continuous functions, there
exist crossing values for curves (f1, f2), (g1, f1), (f1, g2) and (g1, g2) which de�ne
a zone with continuous parametric curves for boundary and where x1 and x2 have
simultaneously the same status in S1 and S2. See �gure 3.3

Figure 3.3: common status for x1 and x2
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3.3.3 The case of any number of �rst stage edges with

only two scenarios

Theorem 30 With only two scenarios, the primal problem zIP and dual problem

zLP have the same integer value and the system is TDI.

Proof. We prove this theorem by an induction based on the number of �rst
stage edges. We claim the following statement:
H(n) ⇔ "with n edges in the �rst stage, there exist a correct split of the costs
of every edges of �rst stage in terms of c1 = c1

1 + c2
1, . . . , cn = c1

n + c2
n such that

these edges get the same respective uniform status in scenario S1 and S2 with
respect to condition (25). When focusing on the part of these splits concerning the
�rst scenario, the correct split is given by (c1

1, . . . , c
1
n) ∈ Ω(1,...,n) where Ω(1,...,n) ⊂

[0, c1]× . . .× [0, cn] is a regular compact zone whose boundary is de�ned by regular
(continuous) parametric hypersurfaces.
These hypersurfaces are speci�c thresholds of the kind

fi(c
1
1, . . . , c

1
i−1, c

1
i+1, . . . , c

1
n, c11, . . . , c1q, c11, . . . , cq1, c12, . . . , cq2) = min(b1i , ci−b2i ), i ∈ {1, . . . , n}

and

gi(c
1
1, . . . , c

1
i−1, c

1
i+1, . . . , c

1
n, c11, . . . , cq1, c12, . . . , cq2) = max(b1i , ci−b2i ), i ∈ {1, . . . , n}

or intersections of such thresholds."
The case of n = 2 has been considered in section 3.3.2.
Assume that H(n) is true for some value n, we consider a graph G with n + 1
�rst stage edges and q second stage edges. We split the value cn+1 into cn+1 =
c1
n+1 + c2

n+1. To every value c1
n+1, by application of H(n), it corresponds a regular

compact zone Ω(c1
n+1) into which boundaries are given by speci�c thresholds of the

kind :

fi(c
1
1, . . . , c

1
i−1, c

1
i+1, . . . , c

1
n, c

1
n+1, c11, . . . , cq1, c12, . . . , cq2) = min(b1i , ci − b2i )

and

gi(c
1
1, . . . , c

1
i−1, c

1
i+1, . . . , c

1
n, c

1
n+1, c11, . . . , cq1, c12, . . . , cq2) = max(b1i , ci − b2i )

or intersections of such thresholds.
Since functions involved of type f or g are min or max of continuous functions of the
kind of b1i or b

2
i de�ned in 23, the collection Ω(1,...,n) = {Ω(c1

n+1), c1
n+1 ∈ [0, cn+1]}

de�nes a continuous zone into which all �rst stage edges x1, . . . , xn have respectively
a uniform status in both scenarios according to condition (25).
Consider now the proper thresholds for xn+1 given by

fn+1(c1
1, . . . , c

1
n, c11, . . . , cq1, c12, . . . , cq2) = min(b1n+1, cn+1 − b2n+1)
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and

gn+1(c1
1, . . . , c

1
n, c11, . . . , cq1, c21, . . . , cq2) = max(b1n+1, cn+1 − b2n+1)

These two functions de�ne respectively two regular (continuous) parametric hyper-
surfaces. Between these two hypersurfaces, xn+1 has a common status in scenario
S1 and S2. If we call Ωn+1 the subset of [0, c1]× . . .× [0, cn+1] between these two
hypersurfaces, then the crossing part Ω(1,...,n) ∩ Ωn+1 = Ω(1,...,n+1) is a non-empty
zone where all n+ 1 �rst stage edges have a uniform status in both scenarios. The
boundary of this intersection is of the same kind as those described in H(n) and
that ends the proof for H(n+ 1). For illustration with n = 3, see �gure (3.4).

Figure 3.4: intersection of surfaces fn+1 and gn+1 and zone U(1,...,n) in the case n = 2
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Chapter 4

Two stage problems with three

scenarios and more

4.1 Introduction

This chapter is divided into two parts : in the �rst part, na example of non TDI
system with three scenarios is given, with extension to a more general class of non
TDI illustrations. In the second part, a reduction is proposed, derivate from the
set cover problem and from the reduction presented in [19].

4.2 A �rst example

In this section, we study the case where there exist more than two scenarios in the
second stage. We will change our point of view by exhibiting a counter-example,
where a fractional solution for (x, z) still compatible with all requirements leads to
a higher value than for all integer vectors (x, z). We present a graph where there
exist 3 �rst stage edges not directly connected, and 6 second stage edges.
For all �rst stage edges, the cost values are c1 = c2 = c3 = 5.
In scenario S1, the cost function for second stage edges is c11 = c21 = 6 and
c31 = c41 = c51 = c61 = 0.
In scenario S2, the cost function for second stage edges is c32 = c42 = 6 and
c12 = c22 = c52 = c62 = 0.
In scenario S3, the cost function for second stage edges is c53 = c63 = 6 and
c13 = c23 = c33 = c43 = 0.
There is no integer solution (x, z) where it is possible to take all second stage
edges with positive strictly cost and strictly more than only one �rst stage edge,
otherwise there would be a cycle (see �gure 4.2). The cost of the edges is presented
for every edge with a strictly positive cost in �gure (4.2).

We can a�ord that best integer value is less or equal than 6 ∗ 6 + 5 = 41. Now
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we propose to take x1 = x2 = x3 =
1

2
and, in the second stage, only edges with

strictly positive costs: z11 = z21 = 1; z32 = z42 = 1; z53 = z63 = 1. This fractional

solution gives a positive value of 6 ∗ 6 + 3 ∗ 5 ∗ 1

2
= 43, 5. This clearly shows that

this system is not TDI. All requirements are satis�ed:


∑

j∈S∩X
xj +

∑
j∈S∩Y

zjk ≤ r(S), k ∈ {1, . . . , 3}, ∀S ⊆ E

(x, zk) ∈ [0, 1]n × [0, 1]q, k ∈ {1, . . . , 3}
(4.1)

Figure 4.1: A �rst example : Complete graph for one scenario

4.3 A more general class of non TDI systems

When we began to study the question of TDIness for the multi-stage covering
forest, it appeared that every simple example of graph treated in Porta gave integer
optimal solutions. The �rst reason has been explained since when there are only
two scenarios, the system is always TDI. The �rst example that shows that some
formulation should not be TDI needed to behold at least 3 scenarios, and some
�rst stage edges that where systematically covered by some second stage edges in
one scenario and always picked up in another one. This kind of con�guration is
not very common indeed. Then, some �rst stage edge is never covered by second
stage edges because of some structural reasons of geometry of the graph (see �gure
4.3). We try to give some graphical characterization of non-TDI systems.
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Figure 4.2: A �rst example : three scenarios with cost function
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Theorem 31 Suppose that there exist K ≥ 3 scenarios and at least three �rst

stage edges called x1, x2, x3 such that there exist three scenarios k1, k2, k3 with the

following assumptions:

1. In scenario ki for i ∈ {1, . . . , 3}, xi is isolated (connect a vertex of degree 1).

2. In scenario ki, the two others �rst stage edges belong to a circuit (De�nition

8) and are the only �rst stage edges of this circuit.

Then the system is not TDI.

Proof. The proof is similar to the construction of the above example. Give the
same value c1 = c2 = c3 = c to the three �rst stage edges, and in scenario ki give
some value c′ > c for any second stage edge in the circuit and 0 for all other second
stage edges. Then, it is not possible to pick up every second stage edge in the three
circuits and at least two �rst stage edges. This ensures that the fractional value

where x1 = x2 = x3 =
1

2
has a better optimal value that any integer solution.

Figure 4.3: More general case : 3 scenarios with 3 circuits beholding two �rst stage
edges and an isolated �rst stage edge in each scenario

In appendix, we give the formulations of these polyhedra in Porta.
In next section, we adapt the proof given by Flaxman et. al in [19] to analyze

the reduction of our problem.

4.4 Reduction from set cover

Let S = {S1, S2, . . . , Sm} be a set cover instance of V . The set cover problem
is to �nd a minimum cardinality subcollection of S that covers all elements of
V . We construct a SMaxST (Stochastic Maximum Spanning Tree) instance with
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n + m + 1 vertices by de�ning two stage cost functions. Denote the vertices by
{r, v1, v2, . . . , vm, 1, 2, . . . , n}. Set the �rst stage edges set as {{r, v1}, {r, v2}, . . . , {r, vm}}
and the cost function c = 1 for all �rst stage edges, set all remaining edges as sec-
ond stage edges. Consider n scenarios for the second stage and de�ne scenario Sj

with the set Tj = {j} ∪ {vi : Si 3 j} and the cost function:

c({u, v}) =



2 if {u, v} ∈ T 2
j and v ∈ {v1, v2, . . . , vm} and u = j

0 if {u, v} ∈ T 2
j and {u, v} ∈ {v1, v2, . . . , vm}2

−∞ if {u, v} ∈ (Tj , Tj)

2 if {u, v} ∈ (Tj)
2 and v ∈ {v1, v2, . . . , vm} and u ∈ {1, . . . , n}

0 if {u, v} ∈ (Tj)
2 and {u, v} ∈ {v1, v2, . . . , vm}2or {u, v} ∈ {1, . . . , n}2

1 if {u, v} ∈ (Tj)
2 and v = r and u ∈ {1, . . . , n}

0 if {u, v} ∈ (Tj)
2 and u = r and v ∈ {v1, v2, . . . , vm}.

Note that this is the only part of this work where we analyze some graph with
negative costs.

Figure 4.4: First stage edges with cost function

Select a value of p where 1 ≤ p ≤ m. For Si1 ∪ Si2 ∪ . . . ∪ Sip a minimal set
cover selection, we choose at �rst stage the edges {r, vis} where s = 1, . . . , p. When
scenario j occurs, the tree can be completed by choosing for each i ∈ {1, . . . , n}
with j 6= i the edge {i, r}, and for any vi /∈ Tj only one ` 6= j such that ` ∈ Si. For
j, we select one speci�c vij ∈ Tj and choose {j, Tij}.

Now we prove that this choice is optimal. Suppose that the selected sets are not
a covering set; there exists at least one edge ` /∈ Si1 ∪ Si2 ∪ . . .∪ Sip . In scenario `,
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Figure 4.5: Second stage edges and cost for scenario j, the set Tj is isolated from the
rest of the graph

Figure 4.6: Maximal Spanning Tree when scenario j occurs. vj2 is a corresponding vertex
of the selected cover set Sj2 but {vj2 , j} cannot be selected in the maximal spanning tree
since {r, vj2} is selected during the �rst stage.
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since the part T` is connected with in�nitely negative costs with T`, any spanning
tree is negative.
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Chapter 5

Approximation in case of a

non-TDI system

5.1 Introduction

Before commenting Stochastic Maximal Tree Problem, it is useful to describe De-
terministic and Stochastic versions of two connected problems:

The Maximal Spanning Tree problem (MaxST) is very close to the Minimal
Spanning Tree problem (MinST). These problems can be considered both in De-
terministic version or Stochastic (2-stage) version. The Deterministic Maximal
Spanning Tree Problem (DMaxST) is solved by the greedy algorithm in a poly-
nomial time [40]. The complexity of the algorithm is merely the complexity of a
sorting algorithm. The Deterministic Minimal Spanning Tree Problem (DMinST)
is equivalent from a complexity point of view (replace the cost function c by c′

where c′(e) = cmax − c(e) for any edge e). However, this equivalence seems not
to hold for Stochastic Maximal Spanning Tree (SMaxST) and Stochastic Minimal
Spanning Tree (SMinST) problems [18].

Concerning the DMaxST problem, since two decades, numerous works have
proposed to reduce the polynomial cost at the price of an approximation factor.
Best randomized algorithms have reached a linear cost and are based upon a ver-
i�cation that a given solution is optimal [32]. In this approach, Karger et al [31]
proposed a randomized algorithm with linear complexity for the DMinST problem.

There are two basic approaches with approximation algorithms in linear pro-
gramming [58]: LP-rounding and primal-dual schemes.

LP rounding technics applied in multi-stage stochastic problems appear to be
natural and bring e�cient results.

Concerning the SMinST problem, �rst approaches have been presented in a
restrictive frame of hypotheses corresponding to one or several items presented
below:

• Choices made at the �rst stage build partial solutions that cannot be in-
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validate at the second stage [17]. Esco�er Gourvès Monnot and Spanjaard
qualify this property of "monotonicity" in [18].

• The number of scenarios is either an input of the problem [19] or not [18].

• There exists an in�ation ratio which �xes the ratio of costs between �rst
stage and second stage [27], or a global in�ation factor which limits the same
ratio [51].

The DMinST problem is connected with the Deterministic Set Cover Problem
(DSCP) via reduction techniques displayed in section 4.4. We remind that the
LP formulation of the DSCP has an integrality gap of 2. Meanwhile, Shmoys and
Swamy [56] show that any ρ-approximation of the DSCP gives a 2ρ-approximation
of the Stochastic Set Cover Problem (SSCP).

Unfortunately, these reduction techniques are not appropriate for the stochastic
version of spanning trees because they induce an in�ating number of scenarios. So
the stochastic version SMinST is O(log n)-hard to approximate by using these
techniques. In the next section, we adapt the proof given by Flaxman et al in [19]
to prove the reduction in our case.

Concerning the Stochastic Maximal Spanning Tree (SMaxST) problem, the
authors in [18] show that this problem is APX-complete 1.

As a partial conclusion, Maximal or minimal stochastic spanning tree problems
(SMST) appear to be hard to approximate. More precisely, [19] and [51] show
that, via a reduction from set-cover, the SMinST problem is hard to approximate
within a factor of min {log n, log k}, with a very general black-box model. And
for SMaxST problem, Esco�er et al propose an approximation algorithm with
guarantee K

2K−1 by improving techniques proposed by Kong and Schae�er in [35].
We outline that in their model, every �rst stage edge is possibly a second stage
edge, so that when K scenarios occur in their work, this corresponds to K + 1
scenarios in our description. The results given in our �rst part concerning the case
of only two scenarios is therefore not treated in their approach.

5.2 Di�erent point of views in approximation

As mentionned in the introduction, mainly two techniques are possible to build
approximation algorithms: LP rounding and Primal-Dual schemes. LP rounding
is based at �rst step on the linearization of the problem, then, in a second step
an algorithm decides to select or discard the edges whose frequency (or ponderate
value) is greater than a given threshold. Primal-Dual method is more sophisticated
and is usually the best way to design approximation algorithms with a guarantee
of upper bound of OPT. The �rst step is the linearization of the problem in both
approaches.

1A problem is APX if there exists a polynomial approximation algorithm with approx-
imation ratio bounded by a constant.
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5.3 An approximation algorithm in the case of

more than two scenarios

The main idea in this section is to change the cost function c in order to turn the
stochastic problem into a new one which gets an optimal integer solution. Since
the greedy algorithm �nds a solution for any scenario according to the attributed
value of partial �rst stage edges, we progressively downsize the cost of �rst stages
edges which are in con�ict between several scenarios.

5.3.1 Introduction

We remind the two stage stochastic maximum problem formulation: For E = X∪Y ,
X �rst stage edges and Y second stage edges, and for (c, ck) weights vectors with
c ∈ Rn, ck ∈ Rq, k = 1, . . . ,K, consider the two stage stochastic maximum problem:

ZIP =


max

∑
j∈X

cjxj +

k=K∑
k=1

∑
j∈Y

cjkzjk∑
j∈S∩X

xj +
∑

j∈S∩Y
zjk ≤ r(S), k ∈ {1, . . . ,K}, ∀S ⊆ E

(x, zk) ∈ {0, 1}n × {0, 1}q, k ∈ {1, . . . ,K}.

(5.1)

Consider a split of the form

ci =
K∑
k=1

cki , i ∈ X

with

cki ≥ 0, i ∈ X

or in an equivalent vector formulation:

c =
K∑
k=1

ck

with

ck ≥ 0

We proved in (25) that when for any given split, (ck, ck), k = 1, . . . ,K, if each
�rst stage edge is either always or never picked simultaneously in every scenario
by the greedy algorithm, then the system (5.1) is TDI.
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5.3.2 Two new tools derived from the standalone sce-

nario or deterministic problem

In a deterministic graph (or in a single scenario), the greedy algorithm leads to the
construction of an increasing sequence of selected edges known as Jt. We suppose
c1 ≥ c2 ≥ . . . ≥ cn. The subset Jt is the partial subtree of free greedy edges built
at step t. We call Kt the closure set of a partial greedy solution at step t. In
the previous part of this work, we have seen that the status of one speci�c edge i
depends on a speci�c threshold b. If ci ≥ b then the edge will be chosen, while if
ci ≤ b, the edge is dropped. We now extend this approach to the observation of
the increasing sequence of subsets Kt. As we did before, we begin by considering
that a new edge of cost ce is theoretically introduced in a given graph. The status
of this edge depends on a speci�c threshold b. We reformulate this question as the
following one: is it possible to build some functions of real variable b taking values
in the graph G?

We introduce two functions:

J :

{
R+ → G
b 7→ Jt where t = sup{index(ct), ct ≥ b}

and K(b) = sp(J(b)).

In other words, we describe the evolution of the progressive closure of the partial
greedy solution as depending on a parameter b. b decreases from the heaviest
weight down to zero. When b is strictly between two values of weights of the graph
ct > b > ct+1, there is no change and the closure remains the same as the one gained
for b = ct. When b reaches any value ct, J(b) and K(b) possibly change, depending
on the fact that the examined edge is added or not to the greedy solution. The
interesting point is that J can radically change when the weight vector c is slightly
modi�ed, but K has a relative stability that we study here.

Lemma 32 K(b, c1, c2, . . . , ci ≥ b, b > ci+1, . . . , cn) = K(b, c1, c2, . . . , ci, 0, . . . , 0)
where the weights of edges lighter than b are replaced by 0.

Proof. This lemma is clearly a consequence of the de�nition of J(b). Since
in J(b), the only edges examined are those with a weight greater than b, then
J(b, c1, c2, . . . , ci ≥ b, b > ci+1, . . . , cn) = J(b, c1, c2, . . . , ci, 0, . . . , 0). The closure
building of K from J does not depend on the weights of the graph, so the equality
is true for K too.

We still need some extended version of the greedy algorithm: Consider a graph
G = (V,E) where some speci�c edges have been de�nitely selected to belong to
any solution of any covering forest. Let say that these edges form a set called
S0 = {x̃1, . . . , x̃α} of cardinality α and that S0 contains no cycle. With these
assumptions, the rank of S0 is equal to α. Now we consider the problem of �nding
the maximal independent set F containing S0 with maximal cost c(F ). We index
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the edges not in S0 by x1, . . . , xn, for any subset S in E we de�ne r0(S) = r(S∩S0)
We formulate this problem this way:

Z(S0)IP =


max

n∑
j=1

cjxj

x ∈ {0, 1}n∑
j∈S

xj ≤ r(S)− r0(S) ∀S ⊆ E.

(5.2)

The dual problem associated with zIP is :

Z(S0)LD =


min

∑
S⊆E

(r − r0)(S)yS .∑
S:j∈S

yS ≥ cj ∀j ∈ {1, . . . , n}

yS ≥ 0 ∀S ⊂ E

(5.3)

Theorem 33 The system 5.3.2 is TDI, the greedy algorithm gives the optimal

solution.

Proof. The algorithm is exactly the same as in 2.2.2. We call F the set of
independent subsets in E. Rank the elements of E who are not in S0 so that
c1 ≥ c2 ≥ . . . ≥ cn.

1. Let us begin with J0 = S0 , t = 1.

2. Iteration t : If ct ≤ 0 then stop and SG = Jt−1.

3. If ct > 0 and Jt−1 ∪ {t} ∈ F , then set Jt = Jt−1 ∪ {t}.
If ct > 0 and St−1 ∪ {t} /∈ F then set Jt = Jt−1.

4. If t = n stop and SG = Jt

5. Set t to t+ 1
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The greedy solution is {xi : i ∈ SG} ∪ S0.

We call p the number of chosen edges and SG = Jp.

Denote Jτ = {i1, . . . , iτ}, 1 ≤ τ ≤ t and κτ = sp(Jτ ). The selected sets in the
dual formulation are the sets κτ , and the dual variables are �xed like before:

yκt = cjt − cjt+1 for t = 1, . . . , p− 1
yκp = cjp
yS = 0 otherwise.

Like previously in the greedy algorithm, we easily check that for every j ∈
{1, . . . , n} :

∑
S/j∈S

yS ≥ cj .

Then, we compute the sum :
∑
S⊆E

(r − r0)(S)yS =
α+p−1∑
t=α+1

(t− r0(κt))(cjt − cjt+1) +

(p+ α− r0(κp))cjp
Since for every κt, we have r(κt) = t + r0(S0) = t − α, we have the same sum as

previously, and the same re-indexation gives:
∑
S⊆E

r(S)yS =
p∑
t=1

cjt .

This shows that z(S0)IP and z(S0)LD have the same objective value.

5.3.3 Application to the multi-stage problem

We notice Kk(b, (c
k, ck)) the closure described above speci�cally in scenario k. Re-

minding that every �rst stage edge cost is split according to c 7→
∏

(ck, ck). In this
notation, upper index is for a �rst stage edge, and lower index is for second stage
index. For instance c3

1 is the partial value of the �rst stage edge in scenario 3, and
c45 is the value of the fourth second stage edge in scenario 5.

Now suppose that (5.1) is not TDI. That means that the resolution of (5.1)
gives some fractional solution.

Lemma 34 The subset of variables whose values are fractional always contains

�rst stage edges.

Proof. Suppose that in scenario k, there is no fractional �rst stage edge and at
least one fractional second stage edge. Pick up the �rst stage edges selected in the
optimal solution and call it S0, then consider only the graph associated to scenario
k, the second stage edges as remaining edges possibly chosen x1k, . . . , xnk and def-
initely let the other �rst stage edges unchosen in this graph. The optimal solution
with fractional second stage edges has to be compared with the one encountered in
this new formulation of the type of 5.3.2. The theorem 33 proves that a solution
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with no fractional second stage in scenario k is better than the optimal solution.

Lemma 35 Any fractional solution involves at least two �rst stage edges

Proof. Suppose there is only one �rst stage fractional edge in the optimal
solution and possibly several complete �rst stage edges. Pick up the complete �rst
stage edges selected in S0 and consider the graph with only the remaining fractional
�rst stage edge as a single �rst stage edge. According to theorem 28, the associated
system is TDI and ensures that the optimal solution has not its only �rst stage
edge fractional.

Lemma 36 In case of a fractional optimal solution, any split of �rst stage edge

costs never gives a uniform status to fractional edges. That means that there always

exists a scenario where an edge is covered and another where it is selected when

considering separate greedy algorithm for any given split.

Proof. This is a consequence of theorem 26.

Lemma 37 Any fractional solution beholds at least 3 fractional edges.

Proof. Suppose there are only two fractional edges. According to lemma 35,
these edges are �rst stage edges. So there is no more fractional edge in second
stage. Pick up the complete selected �rst stage edges in S0 and keep the fractional
ones as new �rst stage edges. We are now in the case of only two �rst stage edges
and K scenarios examined in 3.3.2. The idea is to reduce the complexity down to
the case of two scenarios only. Consider any split along K scenarios for the two
fractional �rst stage edges and examine only two speci�c scenarios j and i where
these edges have an opposite status. Balance the partial split of these two edges
between scenarios i and j without changing partial costs along the other scenarios.
Theorem 29 ensures that there is a correct balance giving the same status that can
be chosen indi�erently as chosen or covered. Choose the status corresponding to
the scenarios where the given split gives no con�ict between the two edges.

Some extension of this lemma leads to the following result:

Lemma 38 Any fractional solution involves at least three �rst stage edges.

5.3.4 Approximation algorithm

Suppose that the problem 5.1 is not TDI. That means that there exists some
speci�c cost vector c, for which with any split of c, some �rst stage edge xi cannot
get the same status in every scenario. In that case, ZIP (c) < ZLD(c). We propose
to decrease the weight ci of the fractional �rst stage edge down to zero one by one
until we reach some equality ZIP (c′) = ZLD(c′). This leads to set every con�icting
edge to a status of covered in every scenario.
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1. Solve with polynomial complexity method the problem (5.1).

2. In case of fractional solution, select one �rst stage edge with fractional value
of highest weight and drop its weight to zero. This leads to solve the problem
with a new vector cost c′.

3. Solve the new linear problem and observe if its solution is fractional or not.
In case of a fractional solution, iterate process to point 2. In case of an
integer solution jump to point 4.

4. Select the remaining set of complete �rst stage edges as S0 and for every
scenario j, solve with the greedy algorithm the system formulated by 5.3.2
with second stage edges only as decision variables. In every scenario, this
optimal solution is called Z(S0)IP,j .

Figure 5.1: Illustration of step 1: the optimal solution of 5.1 is not TDI (�rst stage edge
n◦5 has a fractional value), while edge n◦1 is selected (grey color) and edge n◦2 is not
selected (white color). Among second stage edges, edges n◦3, 1 and n◦3, 2 have a fractional
value.

5.3.5 Evaluation of the approximation

Note that the number of iterations is bounded by the number of �rst stage edges
since every iteration removes one edge. This construction leads to a set of complete

52



Figure 5.2: Illustration of step 2: Reduce the value of c5 to c′5 = 0, then some changes
occur in the optimal solution and for instance, edges n◦3, 1 and n◦3, 2 are now completely
selected
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Figure 5.3: Illustration of step 4: Observe in every scenario the graphical status of
x5, determine the associated threshold for which the status change in the local greedy
algorithm. Lift up c′5 up to this value without changing the status. The total amount for
c5 that still gives a TDI system is c31 + c32
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integer values for �rst and second stage variables. The objective value of this

solution is Zapp = c(S0) +
k∑
j=1

Z(S0)IP,j . Obviously, this approximation is a lower

bound of ZIP of problem 5.1. Denote by xf the fractional optimal value associated
to ZLP (2.7), by xI the integer optimal value associated to ZIP (6.2) (which is
unknown) and by x′I the integer optimal value associated to Zapp = ZIP (c′). We
get the following inequalities:

cxf ≥ cxI
cxf ≥ c′xf
cxI ≥ cx′I
cx′I ≥ c′x′I
c′x′I ≥ c′xf .

These inequalities lead to

(c− c′)xf ≥ cxI − cx′I ≥ 0.

5.3.6 Illustration

The �gure 5.4 illustrates a graph with three scenarios. Despite the fact that in
every scenario, the set of second stage is the same, in the �gure, second stages
with null cost are not shown. The indexes in brackets are those used in PORTA to
check possible fractional values. PORTA gives all possible summits (5 fractional
summits among 728 for the system) See annex A for inequalities. In scenario 1,
the �rst stage edge x3 belongs to a triangle with the edges x31 and x41. The cost
vector is : (

c1 c2 c3 c11 c21 c31 c41 c12 c13 c23

5 5 5 10 10 10 4 10 10 10

)
.

This cost vector shows a fractional optimal value
139

2
(x1,x2 and x3 have a

fractional value). The algorithm leads to choose one �rst stage edge with fractional
solution (x3) and to decrease c3 to 0. Then the new optimal value is 69 with an
integer solution :(

x1 x2 x3 x11 x21 x31 x41 x12 x13 x23

0 1 0 1 1 1 1 1 1 1

)
In scenario 1, x3 is covered in the greedy algorithm by x41 whose cost is 4. Reducing
�nally the cost from 5 to 4 for c3, we get an integer optimal solution with an optimal
value of 69. In this situation, the approximation is bounded by (c − c′)xf =

(5− 4)
1

2
=

1

2
.

In annex B, we present some computations with Maple 16 associated to this
graph and this algorithm.
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Figure 5.4: A graph with 3 scenarios

Figure 5.5: Objective value function of the cost of x3, the threshold c3 = 4 is the value
where x3 changes of status.
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Chapter 6

Exploring inequalities in the

stochastic maximum weight forest

6.1 Introduction

Let G = (V,E) be a non-oriented graph. Let V ′ ⊂ V be a subset of the vertices,
we call G(V ′) the subset of edges e whose two extremities are in V ′. The covering
forest of G are the subgraphs of maximal cardinality satisfying all the following
constraints:

∀V ′ ⊂ E, |{e ⊂ G(V ′)}| ≤ |V ′| − 1.

These constraints are easy to check, but, due to the arbitrary choice of a subset
V ′ ⊂ V , the number of constraints is exponential with the size of the graph. The
purpose of this section is to explain how it is possible to formulate an equivalent
set of constraints with a polynomial number of inequalities.
It is possible to check if a subgraph V ′ contains a cycle in a polynomial time. Any
graph with no cycle has at least two vertices of degree 1. The following algorithm
checks in a polynomial time if the graph is acyclic:

1. Set i = 1 and F1 = V ′

2. remove from Fi the vertices of degree 1, call Fi+1 the remaining set of vertices,
i 7→ i+ 1

3. if Fn 6= ∅ then V ′ has a cycle, else V ′ has no cycle.

Unfortunately, this veri�cation is not easy to translate into inequalities. In [43],
the authors propose a polynomial formulation, in terms of inequalities. This work
is based upon [45] for the spanning tree polytope by a straightforward adaptation
for non-complete graphs. The �rst step of this work needs the graph be orientated.
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6.2 Polynomial Formulation

6.2.1 Orientation of a graph

The following results are given for a deterministic graph. Since the stochastic
formulation of the SMWF leads to handle separate variables for each scenario, it
is possible to extend these results to a two-stage formulation.

Theorem 39 Let G = (V,E) be a graph, and F a subgraph. F is acyclic ⇐⇒
for any node k ∈ F , there exists an orientation Fk such that :

1. There is no entering arc on the referential node k

2. There is at most one entering arc on each node j 6= k.

Proof. Suppose that F is acyclic. Consider a node k and organize the graph
into a pending tree for all the elements of the connected component of k in F .
For the other nodes of F in di�erent connected components, choose an arbitrary
node k2, . . . , kp and consider the corresponding pending trees. For all j ∈ F we
de�ne the distance to the referential node ki of its connected component as the
minimal number of nodes to pass to reach j from ki in F . We orientate each edge
in F according to the growing sequence of the nodes linked. In an acyclic forest,
each node can only be reached in a single way. This orientation clearly satis�es
assumptions of the theorem.
Conversely, suppose there is a cycle in F , choose a speci�c node k of the cycle. It
is clear that it is not possible to satisfy both conditions for the arcs belonging to
the cycle.

6.2.2 Polynomial Formulation

We recall the stochastic formulation of the SMWF problem :

zIP =


max

∑
j∈X

cjxj +
k=K∑
k=1

πk
∑
j∈Y

cj(k)zkj∑
j∈S∩X

xj +
∑

j∈S∩Y
zkj ≤ r(S), k ∈ {1, . . . ,K}, ∀S ⊆ E

(x, zk) ∈ {0, 1}n × {0, 1}q, k ∈ {1, . . . ,K}.

(6.1)

We add the modeling of the choice of a referential node and the orientation of
the pending graph : de�ne for every node v in V chosen as referential node, and for
every scenario k and for every edge xj , two binary variables λkvj1 and λkvj2, for zj ,
two binary variables µkvj1 and µkvj2. These binary variables are de�ned according
to the following rules:

58



1. λkvj1 is associated to an oriented sense between the two nodes connected
by xj . If (u,w) are the extremities of the edge, we note λkvj1 → u if the
orientation associated to λkvj1 is pointing on u, and λkvj2 → u on the opposite
case.

2. λkvj2 is associated to the opposite sense.

3. λkvj1 is set to 1 when for referential node v, the oriented sense of the arc cor-
responds to the abstract orientation of extremities, and is set to 0 otherwise.

4. equivalent formulation for µkvj1 and µkvj2

The formulation of the SMWF is now :

zIP =



max
∑
j∈X

cjxj +
k=K∑
k=1

πk
∑
j∈Y

cj(k)zkj∑
j∈S∩X

xj +
∑

j∈S∩Y
zkj ≤ r(S), ∀S ⊆ E

λkvj1 + λkvj2 = xj , ∀v ∈ V,∀j ∈ {1, . . . , n},
µkvj1 + µkvj2 = zkj , ∀v ∈ V,∀j ∈ {1, . . . , q},∑
j:λkvj1→u orλkvj2→u

λkvj1 + λkvj2 ≤ 1 ∀u 6= v

∑
j:λkvj1→v orλkvj2→v

λkvj1 + λkvj2 = 0

∑
j:µkvj1→u orµkvj2→u

µkvj1 + µkvj2 ≤ 1 ∀u 6= v

∑
j:µkvj1→v orµkvj2→v

µkvj1 + µkvj2 = 0

(x, zk) ∈ {0, 1}n × {0, 1}q,
(λkvj1) ∈ {0, 1}nK , (λkvj2) ∈ {0, 1}nK
(µkvj1) ∈ {0, 1}qK , (µkvj2) ∈ {0, 1}qK
k ∈ {1, . . . ,K}.

(6.2)

The equations
∑

j:λkvj1→u orλkvj2→u

λkvj1 + λkvj2 ≤ 1 ∀u 6= v stand for the condition

that there is at most only one entering arc on every node (and simile for the equa-
tions in µ). The equations

∑
j:λkvj1→v orλkvj2→v

λkvj1 + λkvj2 = 0 stand for no entering

arc on the referring node. The model presented here is a slight simpli�cation of
the model developed in [43]. With this compact extended formulation we can now
handle instances with up to 40 nodes.
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Inst.
Instance parameters (RP1) (RP2)

|V | N M P # Constr. # Var. # Constr. # Var.

1 5 5 5 5 130 30 675 550

2 5 5 5 50 1300 255 6750 5500

3 5 5 5 100 2600 505 13500 11000

4 8 14 14 5 1235 84 2730 2380

5 8 14 14 50 12350 714 27300 23800

6 8 14 14 100 24700 1414 54600 47600

7 10 22 23 5 5065 137 5285 4725

8 10 22 23 50 50650 1172 52850 47250

9 10 22 23 100 101300 2322 105700 94500

10 12 33 33 5 20415 198 9075 8250

11 12 33 33 50 204150 1683 90750 82500

12 12 33 33 100 408300 3333 181500 165000

13 15 52 53 5 163760 317 17585 16275

14 15 52 53 50 1637600 2702 175850 162750

15 15 52 53 100 3275200 5352 351700 325500

16 20 95 95 5 5242775 570 41325 38950

17 20 95 95 10 10485550 1045 82650 77900

18 20 95 95 25 26213875 2470 206625 194750

19 30 217 218 5 5368708965 1307 138110 132675

20 30 217 218 10 10737417930 2397 276220 265350

21 40 390 390 5 5497558138675 2340 325650 315900

22 6 3 6 3 171 21 684 585

23 8 4 10 4 988 44 2144 1904

24 8 4 11 5 1235 59 2680 2380

25 14 6 30 4 65476 126 11308 10556

Table 6.1: Dimensions of the instances.

6.3 Computational experiments

Numerical experiments have been carried out on a Pentium IV, 1 GHz with 2G-
RAM under windows XP. The source codes are generated with Matlab and the
optimization models are solved by CPLEX 12. We report preliminary results for
randomly (1�21) and arbitrarily (22�25) generated instances.

The dimensions of the instances are in the Table 1. (RP1) and (RP2) corre-
spond to the linear relaxations of the models (P1) and (P2), respectively. The �rst
column identi�es the instance number. Columns 2-5 provide the parameters |V |,
N = |ED|, M = |ES | and P = |S|. Columns 6-7 and 8-9 show the number of
constraints and variables for (RP1) and (RP2), respectively. For the model (RP1),
the number of variables is of the order of O(N + MP ) and the number of con-
straints, O(2|V |P ). For the model (P2), the number of variables and constraints
are of the order of O(P |V |3). In the �rst part of Table 2 we report numerical
results for random generated instances. Column Inst. identi�es the instance from
the Table 1. Columns 2-3, 4-5, 6-7 and 8-9 give the optimal solution value and the
cpu time in seconds for (P1), (RP1), (P2) and (RP2), respectively. We have that
the optimal relaxed solutions are all integer. For the random generated instances,
the data for columns 6 and 7 are equal to those for columns 8 and 9, respectively.
This means that these random generated instances have been proved easy. The
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Inst. (P1) cpu(s) (RP1) cpu(s) (P2) cpu(s) (RP2) cpu(s)

Random generated instances

1 163.0000 0.34 163.0000 0.32 163.0000 0.36 163.0000 0.36

2 178.6012 0.36 178.6012 0.36 178.6012 1.50 178.6012 1.50

3 176.4886 0.41 176.4886 0.41 176.4886 2.94 176.4886 2.94

4 460.0961 0.42 460.0961 0.39 460.0961 0.53 460.0961 0.53

5 395.5182 0.81 395.5182 0.75 395.5182 3.98 395.5182 3.98

6 460.7503 3.38 460.7503 1.36 460.7503 12.91 460.7503 12.91

7 585.3537 0.73 585.3537 0.69 585.3537 0.78 585.3537 0.78

8 589.5790 5.22 589.5790 2.66 589.5790 6.81 589.5790 6.81

9 612.3388 14.06 612.3388 5.50 612.3388 27.20 612.3388 27.20

10 808.9535 2.97 808.9535 2.36 808.9535 0.92 808.9535 0.92

11 809.6658 44.58 809.6658 19.00 809.6658 28.12 809.6658 28.12

12 855.6202 107.17 855.6202 37.00 855.6202 57.48 855.6202 57.48

13 1182.2429 44.23 1182.2429 27.05 1182.2429 2.83 1182.2429 2.83

14 - - - - 1142.6433 161.94 1142.6433 161.94

15 - - - - 1108.7019 1025.52 1108.7019 1025.52

16 - - - - 1616.3587 15.67 1616.3587 15.67

17 - - - - 1586.4263 37.13 1586.4263 37.13

18 - - - - 1579.3486 759.53 1579.3486 759.53

19 - - - - 2537.2853 254.66 2537.2853 254.66

20 - - - - 2649.1216 3425.19 2649.1216 3425.19

21 - - - - 3540.0685 4682.42 3540.0685 4682.42

Arbitrarily generated instances

22 41 1.484 43.500 0.422 41 0.011 43.500 0.010

23 94 0.515 97.333 0.391 94 0.028 97.333 0.006

24 118 0.406 120.500 0.391 118 0.032 120.500 0.006

25 202 14.375 204.500 11.563 202 0.110 204.500 0.044

�-": No solution found due to CPLEX shortage memory.

Table 6.2: Numerical results for random and arbitrarily generated instances.

model (P1) is very limited in solving those instances with more than 13 nodes.
However, generally solving their corresponding linear relaxations (RP1) takes less
cpu time than by using the linear relaxation (RP2) for these instances. Note that
CPLEX �nds integer solutions for (RP1) in smaller cpu time than for (P1) for
these instances. In the second part of Table 2 we report numerical results for the
arbitrarily generated instances of the Table 1. These instances intend to show the
di�culty of the problem. These results give some insights about the complexity of
this problem (this is an open question). Note that despite the reduced dimensions
of these instances, and the fact that we do not have many instances to perform ex-
haustive numerical experiments, the new compact model obtains all their optimal
solutions in considerable fewer cpu time than the model (P1).

6.4 Conclusion

In this chapter, we proposed a polynomial size formulation for the stochastic maxi-
mum weight forest problem. This formulation is based on the one for the spanning
tree polytope of complete undirected graphs [46]. We extend the model in [46]
to deal with forests in non-complete graphs. For this, we proposed a new theo-
rem characterizing forests in undirected graphs, which is important to prove the
correctness of the new model.
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Part II

Continuous Stochastic modeling
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Chapter 7

The Stochastic Knapsack Problem

7.1 Introduction

The deterministic knapsack problem is a well known and well studied NP-hard
combinatorial optimization problem. It consists in �lling a knapsack with items
out of a given set such that the weight capacity of the knapsack is respected and the
total reward maximized. There exist several variations of the standard problem,
as the multi-objective knapsack problem, or the bounded or unbounded knapsack
problem. The connection with other NP-hard problems is given in [23]. In the
deterministic problem, all parameters (item weights, rewards, knapsack capacity)
are known. In the stochastic counterpart, some of these parameters are assumed
to be random, i.e. not known at the moment the decision has to be made.

We consider a stochastic knapsack problem of the following form : A set of n
items with the following characteristics:

• item i has a weight following of random variable χi, independent and nor-
mally distributed with mean µi > 0 and standard deviation σi.

• the reward of i is equal to the weight. The choice of a reward per weight
unit can be motivated by the fact that the value of an item often depends
on the quantity of this item.

The choice of normal distribution was motivated by computational developments.
All the methods used and results presented in this work are still valid in the case
where the rewards are deterministic or random but independent of the weights.
The fact that the rewards per item are normally distributed is used in some as-
pects of the proofs, but should be extended for any other distribution with similar
properties. We denote by χ, µ, σ and r the corresponding n-dimensional vectors.
The objective is to maximize the expected total gain E[

∑n
i=1 riχixi]. The knap-

sack problem has a �xed weight capacity c > 0. The formulation is called chance
constrained optimization or probabilistic constraint optimization problem :
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Chance Constrained Knapsack Problem (CCKP )

max
x∈{0,1}n

E

[
n∑
i=1

riχixi

]
(7.1)

s.t. P{g(x, χ) ≤ c} ≥ p (7.2)

where E [·] denotes the expected value, g(x, χ) =
∑n

i=1 χixi is the total weight of
the chosen items, p ∈ (0.5, 1] is the prescribed probability.
The choice of p is a decision parameter that restricts the percentage of cases where
the capacity is exceeded. p is not connected with the amount of overweight.

The choice of the formulation as a chance constrained problem will be discussed
in the next subsection. Many other approaches have been held in the stochastic
knapsack problem. Another formulation is the stochastic knapsack with simple
recourse, where a penalty is calculated with a factor d when the total weight exceeds
the capacity of the knapsack :

max
x∈{0,1}n

E

[
n∑
i=1

riχixi

]
− dE[[g(x, χ)− c]+] (7.3)

This classical formulation has been studied in [1],[11],[33] and recently in [47]. We
still mention two other important issues concerning stochastic knapsack problems,
but more far from our approach : �rst, dynamic decision problems - where some
information concerning the items are supposed to be known during the process [42],
[6]- and where a decision policy has to be established, and, secondly, approximation
algorithms [26], [34].

The results presented in this part of the thesis belong to a larger work on
stochastic knapsack problems [39] [38] where di�erent methods are analyzed, from
branch and bound to stochastic gradient algorithms, and presented numerical re-
sults. Due to its combinatorial nature, CCKP can be treated by using a branch-
and-bound framework as presented in [39]. To obtain upper bounds, the authors
propose to solve there the corresponding continuous optimization problem. Then,
the relaxed formulation of this optimization problem is treated by using a stochas-
tic gradient type algorithm. Several technical and theoretical di�culties are raised
in these methods. This part of the thesis focuses on these di�culties and the way
they are treated. Mainly we distinguish di�culties connected to the reformulation
of the constraint with smooth functions, and those connected to the convergence
of the stochastic algorithm. Stochastic gradient based methods have been applied
to both combinatorial formulation and continuous formulation of the stochastic
knapsack. We will shortly present some numerical results for comparison with
those given in [38].
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7.2 Global frame for the Chance constrained

formulation

The problem 7.1 belongs to a wide class of formulations of stochastic optimization
problems called optimization problems withs chance constraints. Chapter 4 of
[55] gives an overview of these formulations. Chance constraint optimizations are
used when it seems necessary to control the risk. The �rst part of this thesis was
an example of a model with two-stage formulation. In multi-stage formulation,
uncertainty is taken into account by a decision process during realization of the
events. The multistage model leads naturally to the on-line decision modeling,
where decisions occur during the execution of the process. Chance constrained
optimization is rather di�erent from multi-stage modeling. A typical example of
chance constrained modeling is the Value at Risk constraint : optimization has
to be made under the assumption that the loss will not exceed a given threshold
according to a good ratio of probability. A basic example is given by n investment
opportunities with random return rates R1, . . . , Rn and an initial capital c to invest
in order to maximize the outcomes, under the condition that the chance of loosing
more than a �xed percentage η of the capital will not exceed a probability p. The
formulation is

max
x∈[0,c]n

E

[
n∑
i=1

Rixi

]
(7.4)

s.t. P{
n∑
i=1

Rixi ≥ cη} ≥ p (7.5)

n∑
i=1

xi = c. (7.6)

A wide covering formulation of these problems is given by :

max f(x) (7.7)

s.t. P{gj(x, χ) ≤ 0, j ∈ J} ≥ p (7.8)

x ∈ X, (7.9)

where X ⊂ Rn is non-empty, f : Rn → R, gj : Rn × Rs → R, J is a set of indexes
(here, there is only one constraint), and χ is a s-dimensional random vector. The
function f can itself be an expected function. Several fundamental questions arise:

1. Are the involved probabilistic functions di�erentiable (in order to apply nu-
merical schemes)?

2. Is the feasible set convex ?

3. Is the feasible set connected ?
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4. The tractability of computations in case of formulation in terms of expecta-
tion functions and the question of convexity in the lagrangian formulation.

All these questions open a wide area of publications and works. The �rst question
of di�erentiability involves the choice of the formulation and will be discussed in
7.6.1. More generally, the question of di�erentiability is treated in [57]. Questions
about convexity and connectedness of the feasible set has di�erent answers accord-
ing to the hypothesis on the stochastic distribution. First, the connectedness of the
feasible set is treated by Prékopa in [50] and extended in [30] by Henrion. A grow-
ing number of studies explore the question concerning joint probabilities, where
convexity and even connectedness of the feasible set can be lost. The present case
is rather simple since there is only one constraint. Moreover, the function g is quasi-
concave in both arguments 1 since linear, and the normal distribution is log-concave.
The formulation is identical to the portfolio optimization given above, and in the
chapter 4, [55] presents results concerning convexity of the feasible set under these
assumptions. The remaining questions of tractability of the computations and the
convexity of the lagrangian formulation are indeed the main directions investigated
in this work. These questions are presented in section 7.4. Usually, the question of
tractability of computation is linked to the technic of approximation. [55] shows in
chapter 4 that in the case of a normal distribution and with a quasi-concave func-
tion g, a reformulation gives a convex optimization problem (for instance replace
the constraint G(x) = Pr{g(x, χ) ≤ c} by G̃(x) = ln(p) − ln(Pr{g(x, χ) ≤ c})).
Without modifying the formulation, instead of convex formulation, it is possible
to replace concavity assumptions by di�erentiability requirements. In that case,
smoothing technics [57] provide a global frame for numerical computations. A pre-
sentation of this approach is given in [10] and [5]. In our approach, we need to
preserve direct convexity properties of the original formulation on some subpart of
the feasible set in order to use a stochastic algorithm and a sampling method. The
fact that convex properties are preserved only on a subpart of the feasible set is
due to structural reasons. In [5], the following example is given :

min
x∈R

1

2
(u− 1)2 (7.10)

s.t. P{u ≤ χ} ≥ p (7.11)

with p = 0.7 and a normal distribution χ with µ = −2 and σ = 0.1; there
exist two separate zones of attraction, one associated to the optimal solution u =
−2.05244, and another one associated with an asymptotic limit u = 1.

The reformulation that we propose is not an approximation method and pre-
serves exact computation of the gradient, as far as sampling methods ful�ll con-
ditions of convergence. Sampling approximation methods based on Monte Carlo
method are commonly used for approximation results [59]. Any sampling can

1A quasi-concave function f de�ned on a convex set X veri�es: ∀(x, x′) ∈ X2,∀λ ∈
[0, 1], f(λx+ (1− λ)x′) ≥ min(f(x), f(x′)).
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be interpreted as an empirical distribution, by replacing the initial constraint
P{g(x, χ) ≤ c} ≥ p by a set of sampling constraints : P{g(x, χi) ≤ c} ≥ p, i ∈
[1, . . . , n] with χ1, . . . , χn n independent and identically distributed realizations of
χ. Then, according to theoretical analyzis devoted to the tightness of approxima-
tion, the number of samples according to the value of p, the rate of convergence,
the approximation method are investigated in several works [2],[15],[44]. In our
work, this question is viewed from the point of view of the convergence of the
stochastic Arrow-Hurwicz algorithm, which is proved in [14]. In 7.4.2, we check all
the assumptions to prove that this approach is e�cient.

7.3 Formulation with expected values functions

and introduction of a lagrangian

The constraint (7.2) can be equivalently reformulated as:

E [HR+(c− g(x, χ))] ≥ p, (7.12)

where HR+ denotes the indicator function of R+. Without loss of generality, we
assume that E [HR+(c− χi)] ≥ p for all i ∈ {1, . . . , n}.

Then, it is possible to formulate the problem and the lagrangian associated
with expected values :

L(x, λ) = E [
∑n

i=1 riχixi]− λ (p− E [HR+(c− g(x, χ))]) ,

where λ is the Lagrange multiplier. We call J the objective function of the above
maximization problem de�ned by J(x) = E[

∑n
i=1 riχixi]. We denote j(x, χ) =∑n

i=1 riχixi. Furthermore, we refer to the function on the left-hand side of the
constraint as Θ and to the function inside the expectation of Θ as θ, i.e. Θ(x) =
E[θ(x, χ)] = E[HR+(c− g(x, χ))].
Finally we note: L(x, λ) = E[l(x, λ, χ)] with l(x, λ, χ) =

∑n
i=1 riχixi − λθ(x, χ).

The lagrangian can be written now :

L(x, λ) = E

[
n∑
i=1

riχixi

]
− λΘ(x). (7.13)

This formulation will be called �expected constraint knapsack problem : �ECKP �

Any item that does not satisfy this constraint could be excluded from the be-
ginning. It follows that the optimal solution vector x∗ has at least one non-zero
component.
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Throughout this work, we assume that the weights are normally distributed.
Normally distributed items have the nice property that their linear combination
is still normally distributed. This property ensures easier numerical computations
but is not a foremost condition. To some extent, in the case of normal distri-
butions, it is even possible to compute directly the gradient of the expectation
function. Assuming normal distribution is mainly a practical frame in order to
produce numerical results and theoretical formulations. Moreover, as mentioned
before, normal distribution and a linear constraint are su�cient to have a convex
feasible set.

Normally distributed random variables can have negative realizations, and as-
suming normally distributed weights might thus seem contradictory with the fact
that item weights are always strictly positive. However, in most applications, the
standard deviation is several times smaller than mean values of the unknown pa-
rameters. In this case, the probability of negative weights becomes negligible.

7.3.1 The stochastic gradient type algorithm

We propose to solve the relaxed version of ECKP with a Stochastic Arrow-Hurwicz
algorithm (called hereafter SAH-algorithm)) that uses Lagrangian multipliers to
deal with the probability constraint.

The SAH-Algorithm can be formulated as follows :

(rk + λk−1(τk)) = ∇xl(xk, λk, χk)

and
θ(xk+1, χk)− p = l′λ(xk+1, λk, χk)

where rk, λk and τk are de�ned in Algorithm 7.3.1:

Stochastic Arrow-Hurwicz Algorithm

1. Choose x0 ∈ Xad
cont and λ

0 ∈ [0,∞) as well as two σ-sequences (εk)k∈N∗ and
(ρk)k∈N∗ . Set k = 1.2

2. Given xk−1 and λk−1, draw χk following its normal distribution, compute
rk = ∇xj(xk−1, χk), τk = ∇xθ(xk−1, χk) and update x and λ as follows:

xk = xk−1 + εk(rk + λk−1(τk))

λk = λk−1 + ρk(p− θ(xk, χk)).

3. If λk < 0 set λk = 0.

2a σ-sequence is a sequence of positive numbers, such that
∑

k ε
k = +∞ and

∑
k (εk)

2
<

+∞.
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4. If k = kmax: STOP. Else: Set k = k + 1. Go to step 2.

Note that in the deterministic form of the Arrow-Hurwicz algorithm we would
have to use the gradients of the Lagrangian itself. But this function is here an
expectation function and its gradient is thus di�cult to compute. By drawing in-
dependent samples of the random variables at each iteration of the algorithm, the
expectation of the gradient is approximated (see [14]), as do Monte Carlo based
methods. We discuss in section 7.4 theoretical requirements needed to prove the
convergence of the algorithm.
At each iteration of the algorithm we need to calculate the gradient of θ at (xk, χk).
However, θ is an indicator function and therefore non-di�erentiable. In section 7.4,
we present a way to bypass this disadvantage by reformulating the constraint func-
tion Θ using Integration by Parts.

7.4 Analysis of the convergence

The stochastic gradient algorithm (SAH) used to solve this problem needs to eval-
uate the gradient of the expected value function, which is an indicator function
HR+(·). In [39], this evaluation has been done by using an approximation by
convolution, which is a smoothing technic. This method belongs to the class of
approximation as mentioned in the introduction. In this work, we study a di�erent
approach, a non-biased estimator based on Integration by Parts (called hereafter
IP-method). The Integration by Parts leads to replace the expected function -
which is an indicator function - by a more regular function, that allows a gradient
computation. A Heaviside function is piecewise C∞ and a primitive function is
continuous and piecewise derivable, except on zero. So, instead of replacing {0, 1}n
by [0, 1]n when relaxing ECKP , the theoretical analysis will compel us to con-
sider a complementary set of a neighborhood of 0[0,1]n . Considering that an empty
knapsack is not an optimal solution, it follows that the optimal solution vector of
the continuous problem contains at least one component xκ with xκ ≥ 1/n. We
are thus allowed to replace [0, 1]n by {x ∈ [0, 1]n | ||x||∞ ≥ 1/n}Xcont. Accordingly,
we obtain the following feasible set of the relaxed ECKP :

Xad
cont = {x ∈ Xcont : Θ(x) ≥ p}.

This approach is presented before checking the theorem on convergence of SAH
algorithm.

7.4.1 Computation of the gradient of θ

The IP-method involves Integration by Parts to reformulate E[θ(x, χ)] and to obtain
an expected value function E[θ̃(x, χ)] such that E[θ̃(x, χ)] = E[θ(x, χ)] = Θ(x). θ̃
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is di�erentiable and the idea is to use the gradient of θ̃ in the SAH-algorithm.
[5] present a general method to compute the gradient of an indicator function in
expectation using Integration by Parts (see Theorem 5.5 in [?]). We state and
prove the theorem for the case of ECKP . The variables and functions used in this
proposition are de�ned in section 7.3:

Proposition 40 Let YR+(·) be a primitive function of HR+(·). Let x ∈ Xad
cont and

let κ = κ(x) ∈ {1, . . . , n} be de�ned such that xκ = ||x||∞ ≥ 1/n. Then, using

Integration by Parts, we get

Θ(x) = E [YR+(c− g(x, χ))Mκ(x, χ)]

where

Mκ(x, χ) = −(χκ − µκ)

σ2
κ

1

xκ
.

It follows that

∇xΘ(x) = E [−HR+(c− g(x, χ))Mκ(x, χ)χ+ YR+(c− g(x, χ))∇xMκ(x, χ)] .

Proof. Let ϕ denote the density function of the random vector χ = (χ1, . . . , χn)
and de�ne

u′χκ(x, χ)−HR+(c− g(x, χ))xκ and

v(x, χ)− ϕ(χ)

xκ
.

It follows

Θ(x) =

∞∫
−∞

HR+(c− g(x, χ))ϕ(χ) dχ =

∞∫
−∞

u′χκ(x, χ)v(x, χ) dχ.

Integration by Parts over χκ leads to

Θ(x) =
[
u(x, χ)v(x, χ)

]∞
−∞ −

∞∫
−∞

u(x, χ)v′χκ(x, χ) dχ

= −
∞∫
−∞

u(x, χ)v′χκ(x, χ) dχ = −
∞∫
−∞

YR+(c− g(x, χ))v′χκ(x, χ) dχ.
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In our case the random variables are independently distributed. With ϕi the
density function of χi we get

ϕ′χκ(χ) =
∏
i 6=κ

ϕi(χi) · (ϕκ)′χκ(χκ) =
∏
i 6=κ

ϕi(χi) ·
(
−(χκ − µκ)

σ2
κ

ϕκ(χκ)

)

= −(χκ − µκ)

σ2
κ

ϕ(χ).

It follows

v′χκ(x, χ) =
∂

∂χκ

(
−ϕ(χ)

xκ

)
=

(χκ − µκ)

xκσ2
κ

ϕ(χ)

and therefore

Θ(x) = −
∞∫
−∞

YR+(c− g(x, χ))
(χκ − µκ)

xκσ2
κ

ϕ(χ) dχ

= E[−YR+(c− g(x, χ))
(χκ − µκ)

xκσ2
κ

].

If ∇xΘ(x) = E[∇x
(
−YR+(c− g(x, χ)) (χκ−µκ)

xκσ2
κ

)
] we get the announced result.

Thus, it remains to proof the following result:

Claim 41

∇xΘ(x) = E[∇x
(
−YR+(c− g(x, χ))

(χκ − µκ)

xκσ2
κ

)
]

.

This is a classical result under the assumption of uniform boundedness of the
gradient function under the integral sign. In our case, we can easily show that
this bounding is obtained with the assumption that xκ ≥ 1/n. First of all, let
us observe that we can choose YR+(x) = HR+(x) · x = [x]+. Therefore, the κ-th

component of ∇x
(
−YR+(c− g(x, χ)) (χκ−µκ)

xκσ2
κ

)
can be reformulated as follows:

(
∇x
(
−YR+(c− g(x, χ))

(χκ − µκ)

xκσ2
κ

))
κ

= HR+(c− g(x, χ))
(χκ − µκ)

xκσ2
κ

χκ + [c− g(x, χ)]+
(χκ − µκ)

x2
κσ

2
κ

= HR+(c− g(x, χ))(χκ − µκ)

(
χκ
xκσ2

κ

+
(c− g(x, χ))

x2
κσ

2
κ

)
.
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For (χκ − µκ) > 0 and as [(c− g(x, χ)) ≥ 0 is equivalent to HR+(c− g(x, χ)) = 1]
it follows

0 ≤ (∇x
(
−YR+(c− g(x, χ))

(χκ − µκ)

xκσ2
κ

)
)κ ≤ (χκ−µκ)

(
n · χκ

σ2
κ

+ n2 · (c− g(x, χ))

σ2
κ

)
. If (χκ − µκ) < 0, the bounds are reversed.

For the other components h 6= κ of the gradient, we just have HR+(c −
g(x, χ)) (χκ−µκ)

xκσ2
κ
χh and the same limitations hold for the h-th component.

7.4.2 Convergence of the Stochastic Arrow-Hurwicz al-

gorithm

Culioli and Cohen showed in [14] how to obtain the convergence of the SAH-
algorithm in the case where the objective function J is convex despite the fact that
j is not (for a global survey see [10]). More precisely, they adapt the classical SAH-
algorithm to the case where the constraint is given an expectation by considering
a subgradient both in dual variables x and λ instead only in λ. We introduce
two lemmas to show that the hypothesis needed to apply the SAH algorithm are
correctly assumed in the present case, and we discuss some speci�c particularities.
The following lemma proves the assertions on θ̃ and Θ that must be veri�ed to
apply the algorithm.

Assertions on θ̃ and Θ

Lemma 421. θ̃(·, χ) is di�erentiable with a gradient uniformly bounded with respect

to χ.

2. ∀χ ∈ Rn, θ(·, χ) is locally Lipschitz continuous.

3. There exist c1, c2 > 0 such that:

∀χ ∈ Rn, ∀x, y ∈ Xcont, ||θ(x, χ)− θ(y, χ)|| ≤ c1||x− y||+ c2.

4. Θ(.) is Lipschitz continuous and concave on a partial set in Xcont.

5. There exist α, β > 0 such that:

∀χ ∈ Rn, ∀ (x, x̃) ∈ X2
cont ||∇xj(x, χ)|| ≤ α||x− x̃||+ β.

6. There exist γ, δ > 0 such that

∀x ∈ Xcont E[θ(x, χ)−Θ(x)]2 < γ||x− x̃||2 + δ.

Proof.

1. As presented in subsection 7.6.1, it is possible to replace θ(x, χ) by a dif-
ferentiable function θ̃(x, χ) such that E[θ̃(x, χ)] = E[θ(x, χ)]. We get the
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following gradient:

∇xθ̃(x, χ) = HR+(c− g(x, χ))
(χκ − µκ)

xκσ2
κ

χ+

[c− g(x, χ)]+
(χκ − µκ)

x2
κσ

2
κ

νκ

2. The fact that HR+(c − g(x, χ)) = 1 only for c − g(x, χ) ≥ 0 limits χ to a
compact domain. Moreover, adding the fact that x ∈ Xcont where xκ ≥ 1

n for
all χ ∈ Rn, θ̃(·, χ) is locally Lipschitz continuous since ∇xθ̃(x, χ) is bounded.
We get that conditions on θ(., χ) are checked.

3. Since ∀χ ∈ Rn, ∀x, y ∈ Xcont ||θ(x, χ)− θ(y, χ)|| ≤ c2. Any value of c1 > 0
is correct.

4. Since we assume the item weights to be normally distributed, Θ(x) = P{g(x, χ) ≤
c} is Lipschitz continuous: Let F be the cumulative distribution function of
the standard normal distribution. Then we have

Θ(x) = F (
c−

∑n
i=1 µixi√∑n
i=1 σ

2
i x

2
i

).

It is easy to see that Θ is continuous on Xcont. In addition, we have
0 ≤ Θ(x) ≤ 1 for all x ∈ Rn and, as Xcont is a compact set, it follows
that Θ is Lipschitz continuous on Xcont.

5. It is possible to avoid the use of a speci�c argument based on the normal
distribution to establish this assumption. As we replaced θ by θ̃, we get:

∀χ,∀(x, y) ∈ Xcont ||θ̃(x, χ)− θ̃(y, χ)|| ≤ τ ||x− y||,

where τ bounds ||∇xθ̃|| given in 1. on Xcont. Then we integrate the inequal-
ity and we get the bound on Θ.

6. j is linear in each component of x, then there exist α, β > 0 such that
∀χ ∈ Rn, ∀ (x, x̃) ∈ X2

cont ||∇xj(x, χ)|| ≤ α||x− x̃||+ β.
Finally we have

θ(x, χ) ≤ 1 and Θ(x) = P{g(x, χ) ≤ c} ≥ 0

⇒ θ(x, χ)−Θ(x) ≤ 1⇒ E[θ(x, χ)−Θ(x)]2 ≤ 1.

It follows that the last requirement is ful�lled for all δ > 1.
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Concavity of the constraint

The question of concavity of Θ is more complex and depends on the stochastic
distribution. There are two di�erent questions to answer: is the constraint function
concave on the hypercube, and if not, is the constraint function concave on a partial
subset of the hypercube? The answer to the �rst question is de�nitively no in a
general case [50]. But, we mentioned that very simple chance constrained problems
can have several zones of convergence using the lagrangian method. So, indeed, we
need to focus on the second question, which depends on initial parameters.

A practical approach combined with a theoretical analysis of the concavity is
then possible. We begin to compute the eigenvalues of the Hessian matrix H(x̃)
at a point x̃ close to 0 of the set Xcont, and we �nd them all negative. According
to the fact that the determinant of the Hessian matrix det(H(x)) is a continuous
function of x, it follows that there exists a connected component C ⊆ Xcont of x̃
such that det(H(x)) 6= 0 for all x ∈ C and x̃ ∈ C. We consider the boundary C\C
of this set and we set p = min{Θ(x) : x ∈ C\C}.
To conclude on the above observations, we formulate the following lemma:

Lemma 43 Let χ1, ..., χn be a �xed set of independently normally distributed ran-

dom variables and let c be a �xed capacity such that for the vector x with all compo-

nents near to 0, the Hessian matrix has all eigenvalues strictly negative. Then there

exists p = p(χ1, ..., χn, c) such that Θ(.) is concave on the set {x ∈ Xcont|Θ(x) ≥ p}.

In other words, we establish that for a given sample set, there exists p such that
the corresponding Lagrangian relaxation is concave on the feasible set.

Convexity of J

We suppose that the Lagrangian function admits a saddle point (x̃, λ̃). Generally,
strict convexity of J is a su�cient condition to get the stability of the Lagrangian
function and the existence of an unique saddle point. In our case, the function J is
only linear. In deterministic optimization, the problem of lack of strict concavity
of the objective function is often solved by applying an augmented Lagrangian
method. This approach consists in subtracting a strictly convex function of the
constraint function (generally the square of the euclidean norm) from the simple
Lagrangian. In our case, we would obtain the following augmented Lagrangian:

Laug(x, λ) = E[j(x, χ)]− 1

2γ

(
‖ [λ+ γ(p− E [HR+(c− g(x, χ))])]+ ‖2 − ‖ λ ‖2

)
= E[j(x, χ)]− 1

2γ

((
[λ+ γ(p− E [HR+(c− g(x, χ))])]+

)2 − λ2
)

(7.14)

= L(x, λ) +
γ

2
E(θ(x))2. (7.15)

with a constant γ > 0. Unfortunately, the term
γ

2
E(θ(x))2 is non-linear, and

computing its gradient is out of the scope of this work.
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7.5 Technical Implementation of the SAH al-

gorithm

Some improvements in our implementations are worth being noted:

• During our �rst numerical tests we remarked that the SAH-algorithm involv-
ing the IP-method was ine�cient and even did not converge in some cases.
Then we analyzed and modi�ed the implementation of the IP-method. The
�rst enhancement deals with the formulation of ECKP . The expectation
constraint states

E [HR+(c− g(x, χ))] ≥ p⇔ p− E [HR+(c− g(x, χ))] ≤ 0.

We thus get the Lagrangian

L(x, λ) = E

[
n∑
i=1

riχixi

]
− λ (p− E [HR+(c− g(x, χ))]) .

Using the IP-method, we rewrite this Lagrangian as follows:

L(x, λ) = E[
n∑
i=1

riχixi]− λ
(
p+ E[YR+(c− g(x, χ))

(χκ − µκ)

xκσ2
κ

]

)
. (7.16)

Let us denote l̃ the function inside the expectation of the Lagrangian (7.16),
i.e.

l̃(x, λ, χ) =

n∑
i=1

riχixi − λ
(
p+ YR+(c− g(x, χ))

(χκ − µκ)

xκσ2
κ

)
.

It follows(
∇x l̃(x, λ, χ)

)
h

= rhχh + λ

(
HR+(c− g(x, χ))

(χκ − µκ)

xκσ2
κ

(
χh +

(c− g(x, χ))

xκ
νκh

))
.

Observe that the term that multiplies λ is zero whenever the capacity con-
straint is not satis�ed. In these cases all the components of the current xk

are incremented (as all the components of (r1χ1, . . . , rnχn)T are positive)
although at least one component should be decremented in order to better
�t the capacity.
The constraint in expectation can be equivalently reformulated as

E [HR+(g(x, χ)− c)] ≤ 1− p⇔ E [HR+(g(x, χ)− c)]− (1− p) ≤ 0.

In this case the hth component of the gradient of l̃ is(
∇x l̃(x, λ, χ)

)
h

= rhχh − λ
(
HR+(g(x, χ)− c)(χκ − µκ)

xκσ2
κ

(
χh −

(g(x, χ)− c)
xκ

νκh

))
.
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Here the term that multiplies λ is zero whenever the capacity constraint is
satis�ed. In this case the components of xk are incremented by the compo-
nents of the positive vector (r1χ

k
1, . . . , rnχ

k
n)T (multiplied by the correspond-

ing factor σk). When the capacity constraint is not satis�ed the term with
coe�cient λ is subtracted from this vector in order to correct xk. This term
is positive whenever (χkκ − µκ) > 0 and the Lagrange multiplier λ is thus
playing its assigned role of a penalty factor in the case where the constraint
is violated.

• A second improvement can be obtained by a speci�c choice of the compo-
nent to be integrated by parts: The hth component of the gradient of the
Lagrangian function obtained by the IP-method after reformulation:(

∇x l̃(x, λ, χ)
)
h

= rhχh − λ
(
HR+(g(x, χ)− c)(χκ − µκ)

xκσ2
κ

(
χh −

(g(x, χ)− c)
xκ

νκh

))
.

In case of an overload, we expect this gradient to be negative for some indexes
h in order to decrease the total weight of the knapsack. However, for h 6= κ
and HR+(g(x, χ)− c) = 1, the term that multiplies λ is positive if and only if
(χκ − µκ) > 0, which is not always the case. When this does not occur, the
gradient is strictly positive and all components of x with index di�erent from
κ are incremented despite the overload. Due to this observation we propose
the following improved choice of the index κ: Instead of just choosing κ in
the kth iteration such that xkκ = ||xk||∞ (see Proposition 40), we choose κ as
follows:

κ = arg max
i=1,...,n

{xki |xki ≥ 1/n and (χki − µi) > 0}

However, if {xki |xki ≥ 1/n and (χki −µi) > 0} = ∅, we choose κ as before, i.e.
such that xkκ = ||xk||∞ ≥ 1/n.
With this modi�cation, we signi�cantly improved the convergence of the
SAH-algorithm involving the IP-method and could reduce the maximum
number of iterations to 1000 with e�ective results.

7.6 Numerical results

7.6.1 Convergence of the Stochastic Arrow-Hurwicz Al-

gorithm

In the case of gradient class algorithm, the speed of variation of the objective value
cannot be e�ciently used to establish a stopping rule of the algorithm. A classical
approach in this case leads to set a maximum number of iterations. We �xed our
limitation to 1000 iterations.(see Table 7.1).
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In order to evaluate the e�ciency of our computations, we compare the Integra-
tion By Parts with a simple method of computation that consists in approximating
the hth component of the gradient of θ by the corresponding di�erences ratio:

θ(x+ δνh, χ)− θ(x− δνh, χ)

2δ
,

where δ > 0 and νh ∈ {0, 1}n such that νhh = 1 and νhi = 0 for i 6= h. This leads to
the following approximation of the hth component of the gradient of θ:

(∇x(θδ)(x, χ))h =
HR+(c− g(x+ δνh, χ))−HR+(c− g(x− δνh, χ))

2δ
.

All numerical tests have been carried out on an Intel PC with 2GB RAM. The
SAH-algorithm algorithms as well as the branch-and-bound framework have been
implemented in C language. The random numbers needed for the computations
of the stochastic gradient algorithm where generated in advance using the gsl C-
library and stored in a �le. We tested the SAH-algorithm on the instance used in
[11] called hereafter C./B., as well as on 50 randomly generated instances for each
dimension. The data given in the tables 7.1 and 7.2 are average values over these
instances. As noticed at the end of section 7.3, the choice of normally distributed
weights implies that theoretically weights can take negative values. The test in-
stances were generated in such a way that the variance/mean ratio is below 1/4
(see [11] or [39] for details). This implies a very low probability for the realization
of negative weights: Although a high number of scenarios were generated (either
500 or 1000 for each run of the SAH-algorithm), we have not encountered any
negative weight realization.
In Table 7.1, the numerical results of the SAH-algorithm involving the FD- or IP-
method are compared with those using a Second Order Cone Programming-solver
(SOCP): As mentioned, ECKP can be equivalently reformulated as a chance con-
strained knapsack problem that, in turn, can be reformulated as a deterministic
equivalent SOCP -problem (for details see [7] or [39]). The deterministic equiva-

lent formulation is closely connected with the Prékopa's result that for p >
1

2
, the

feasible set is convex. Remind that we call F the cumulative distribution function
of the standard normal distribution. Then we have

Θ(x) = F (
c−

∑n
i=1 µixi√∑n
i=1 σ

2
i x

2
i

) ≥ p⇔
c−

∑n
i=1 µixi

F−1(p)
≥

√√√√ n∑
i=1

σ2
i x

2
i

This formulation can be seen as the condition that a vector x is closer to the origin
than to an hyperplane for some euclidean distance. This type of set is the interior
of a paraboloid.
First of all, we remark that the optimal solution values of the SAH-algorithm in-
volving the FD-method are comparable with those produced by the IP-method.
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Some �uctuations occur and can be interpreted in terms of choice of implemen-
tation, like the choice of the two σ-sequences for the SAH-algorithm. Choosing
the right parametrization for these sequences has an important in�uence on the
convergence of the algorithm and the best found solution.
In terms of running time, both methods outperform the SOCP -algorithm for small
and medium size instances. For higher dimensional problems, this is still true for
the FD-method. However, the SAH-algorithm involving the IP-method needs ap-
proximately twice the time as when using the FD-method. This is of course due
to the total number of iterations that we �xed at 500 when using the FD-method,
while we �xed 1000 iterations with the IP-method in order to obtain equally good
solutions. For higher dimensional instances, the Mosek interior point method needs
therefore less CPU-time than the IP-method.

7.7 Solving the (combinatorial) ECKP - Nu-

merical Results

The combinatorial problem has been solved using a branch-and-bound algorithm
as described in [11] and [39]. The algorithm has been tested on the instances pre-
viously used for the tests of the SAH-algorithm.
We stored the random numbers needed for the executions of the SAH in a batch
�le. As the total number of executions during the branch-and-bound algorithm
is unknown and the number of random numbers needed for all those executions
is generally very high, we only stored random numbers for a limited number of
executions. Before starting an execution of the SAH we then chose randomly one
of the instances of random numbers. Remark that, as the executions of the SAH
are independent, one stored instance of random numbers would theoretically be
su�cient.
The results given in Table 7.2 indicate that the branch-and-bound algorithm that
uses SOCP -program to obtain upper bounds, considers more nodes than when us-
ing an SAH-algorithm. This is not due to a better choice of the upper bounds in
the latter method, as in both algorithms the upper bounds are supposed to be the
same (i.e. the optima of the corresponding relaxed problems). However, as the best
solution found by the approximate SAH-algorithm might be slightly smaller than
the solution value of the relaxed problem, more branches are pruned than with the
primal-dual SOCP -algorithm. Note that this could theoretically also cause the
pruning of a subtree that contains the optimal solution.
Similarly, the SAH-algorithm involving the IP-method considers an average num-
ber of nodes greater than when using the FD-method. This implies that the solu-
tions of the relaxed subproblems produced by the FD-method are not as good as
those obtained when using the IP-method. As both methods perform equally on
the relaxed overall problems (see subsection 7.6), we conclude that the FD-method
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Figure 7.1: Numerical results for the continuous ECKP
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is less robust: Instead of choosing particular σ-sequences for each instance or even
each subproblem that has to be solved during the branch-and-bound algorithm, we
�xed one parametrization for each dimension. However, the subproblems solved
during the branch-and-bound algorithm are mostly lower dimensional problems.
And the SAH-algorithm using the �xed σ-sequences is less performant on these
subproblems. This seems to be especially the case when using the FD-method.
If we only allow an average computing time of 1h, the SOCP -algorithm can only
be used up to dimension 50. On the contrary, when using the FD-method and
allowing 500 iterations in the SAH-algorithm, we are able to solve problems up to
dimension 250 within an average CPU-time of 1h.

7.8 Conclusion

In this part, we have studied and analyzed a method for computing the gradient of
the Stochastic Knapsack Problem, where the expectation constraint is considered.
The constraint expressed here is scalar. Additional work is necessary to study the
case of joint probabilistic constraints. As mentioned in the introduction, the joint
probabilistic constraints formulation is given by :

max f(x) (7.17)

s.t. P{gj(x, χ) ≤ 0, j ∈ J} ≥ p (7.18)

x ∈ X (7.19)

where X ⊂ Rn is non-empty, f : Rn → R, gj : Rn×Rs → R, J is a set of more than
two indexes, and χ is a s-dimensional random vector. In the case of the stochastic
Knapsack, this means the introduction of a multi-purpose knapsack for instance.
This type of formulation will be developed in future works.

7.9 Global Conclusion and future works

Our work has been developed towards two di�erent directions :

• A Two-Stage formulation of the stochastic Maximal Weight Forest Problem.

• A Chance Constrained formulation of the stochastic Knapsack Problem.

In the case of the Maximal Weight Forest Problem, we proved that for some spe-
ci�c cases, the algebraical properties of the Dual formulation are preserved and
that the system is Totally Dual Integral. In a general case, we found and analyzed
necessary and su�cient conditions to preserve integrity. We proposed an algorithm
of approximation based on these conditions. Finally, we proposed a compact model
formulation for the exponential system of constraints associated to a covering for-
est and we presented numerical results. Moreover, we introduced new functions to
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Figure 7.2: Numerical results for the (combinatorial) ECKP
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handle the di�culty that in case of minimal �uctuations in the cost functions, the
chosen forest should drastically change. We considered that the status of an edge
chosen or not in the greedy solution is an implicit function depending of its cost,
but equally of the cost of the other edges, and of the status of these other edges.
We reintroduced some continuous dependence into the greedy solution when the
cost function is slightly modi�ed. We believe that this approach can be extended
to several combinatorial problems with discrete stochastic distributions. We will
investigate some improvements in the approximation algorithm and try to perform
it on larger instances.
In the case of the Chance Constrained Knapsack (second part), we analyzed the
e�ciency of a gradient based method by reformulating an expected constraint with
smooth functions considering Integration by Parts on the constraint on expecta-
tion. The method proposed outperforms geometrical reformulation based on the
properties of normal distributions (SOCP). Many questions arise concerning the
e�ciency of the numerical stability of these methods, and we should explore these
questions. There are several developments that can be foreseen after this work :
the same stochastic Knapsack problem with multiple constraints is a joint proba-
bility problem. It is possible to attempt to apply similar techniques as Integration
by Parts (for instance geometrical transformation) to the expected formulation, in
order to compute separately several constraints. Another direction of work is the
use of semide�nite programming methods for approximating the NP hard combi-
natorial stochastic problems that we are trying to investigate with the Shortest
Path problem.
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Appendix A

Porta

DIM = 10

LOWER_BOUNDS

0 0 0 0 0 0 0 0 0 0

UPPER_BOUNDS

1 1 1 1 1 1 1 1 1 1

INEQUALITIES_SECTION

( 2) x1 + x2 + x4 + x5 <= 3

( 3) x3 + x6 + x7 <= 2

( 4) x2 + x3 + x8 <= 2

( 5) x1 + x3 + x9 + x10 <= 3

( 27) x1 <= 1

( 28) x2 <= 1

( 29) x3 <= 1

( 30) x4 <= 1

( 31) x5 <= 1

( 32) x6 <= 1

( 33) x7 <= 1

( 34) x8 <= 1

( 35) x9 <= 1

( 36) x10 <= 1

( 42) x1 >= 0

( 43) x2 >= 0
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( 44) x3 >= 0

( 45) x4 >= 0

( 46) x5 >= 0

( 47) x6 >= 0

( 48) x7 >= 0

( 49) x8 >= 0

( 50) x9 >= 0

( 51) x10 >= 0

END
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Appendix B

maple

De�nition of a procedure f computing the optimal value

> with(simplex):

> f:=proc(c1,c2,c3,c4,c5,c6,c7,c8,c9,c10)
local l,s,i,a,x1,x2,x3,x4,x5,x6,x7,x8,x9,X10;
l:=[c1,c2,c3,c4,c5,c6,c7,c8,c9,c10];
assign(maximize(c1*x1+c2*x2+c3*x3+c4*x4+c5*x5+c6*x6+c7*x7+c8*x8+
c9*x9+c10*x10,
{x1<= 1,x2 <=1,x3<=1,x4<=1,x5<=1,x6<=1,x7<=1,x8<=1,x9 <=1,x10 <=1,x1+x2+x4+x5<=3,
x3+x6+x7<=2,x2+x3+x8<=2,x1+x3+x9+x10<=3},NONNEGATIVE));
s:=c1*x1+c2*x2+c3*x3+c4*x4+c5*x5+c6*x6+c7*x7+c8*x8+c9*x9+c10*x10;
end:

De�nition of a procedure g computing the optimal vector
> g:=proc(c1,c2,c3,c4,c5,c6,c7,c8,c9,c10)
> unassign('x1','x2','x3','x4','x5','x6','x7','x8','x9','x10');
> maximize(c1*x1+c2*x2+c3*x3+c4*x4+c5*x5+c6*x6+c7*x7+c8*x8+c9*x9+c10*x10,
> {x1<= 1,x2 <=1,x3<=1,x4<=1,x5<=1,x6<=1,x7<=1,x8<=1,x9 <=1,x10 <=1,
> x1+x2+x4+x5<=3,x3+x6+x7<=2,x2+x3+x8<=2,x1+x3+x9+x10<=3},NONNEGATIVE);
> end:

Optimal value and optimal vector with a cost vector

(5,5,5,10,10,10,4,10,10,10)

> f(5,5,5,10,10,10,4,10,10,10);

139

2
> g(5,5,5,10,10,10,4,10,10,10);

{x1 = 1/2, x10 = 1, x2 = 1/2, x3 = 1/2, x4 = 1, x5 = 1, x6 = 1, x7 = 1/2, x8 = 1, x9 = 1}

Decreasing the value of c3 to 0, identify the chosen edges.

> f(5,5,0,10,10,10,4,10,10,10);

69
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> g(5,5,0,10,10,10,4,10,10,10);

{x1 = 0, x10 = 1, x2 = 1, x3 = 0, x4 = 1, x5 = 1, x6 = 1, x7 = 1, x8 = 1, x9 = 1}

Leveling the value of c3 to 3.9999, identify the chosen edges.

> f(5,5,3.99,10,10,10,4,10,10,10);

69.0

> g(5,5,3.99,10,10,10,4,10,10,10);

{x1 = 1, x10 = 1, x2 = 0, x3 = 0, x4 = 1, x5 = 1, x6 = 1, x7 = 1, x8 = 1, x9 = 1}

Variation of the cost of the third edge from 0 to 7
> for i from 0 to 7
> do
> print('c3'=i);
> print('Z[Lp]'=f(5,5,i,10,10,10,4,10,10,10));
> g(5,5,i,10,10,10,4,10,10,10)
> od;

c3 = 0

ZLp = 69

{x1 = 0, x10 = 1, x2 = 1, x3 = 0, x4 = 1, x5 = 1, x6 = 1, x7 = 1, x8 = 1, x9 = 1}
c3 = 1

ZLp = 69

{x1 = 1, x10 = 1, x2 = 0, x3 = 0, x4 = 1, x5 = 1, x6 = 1, x7 = 1, x8 = 1, x9 = 1}
c3 = 2

ZLp = 69

{x1 = 1, x10 = 1, x2 = 0, x3 = 0, x4 = 1, x5 = 1, x6 = 1, x7 = 1, x8 = 1, x9 = 1}
c3 = 3

ZLp = 69

{x1 = 1, x10 = 1, x2 = 0, x3 = 0, x4 = 1, x5 = 1, x6 = 1, x7 = 1, x8 = 1, x9 = 1}
c3 = 4

ZLp = 69

{x1 = 1/2, x10 = 1, x2 = 1/2, x3 = 1/2, x4 = 1, x5 = 1, x6 = 1, x7 = 1/2, x8 = 1, x9 = 1}
c3 = 5

ZLp =
139

2

{x1 = 1/2, x10 = 1, x2 = 1/2, x3 = 1/2, x4 = 1, x5 = 1, x6 = 1, x7 = 1/2, x8 = 1, x9 = 1}
c3 = 6

ZLp = 70



{x1 = 1/2, x10 = 1, x2 = 1/2, x3 = 1/2, x4 = 1, x5 = 1, x6 = 1, x7 = 1/2, x8 = 1, x9 = 1}
c3 = 7

ZLp =
141

2

{x1 = 1/2, x10 = 1, x2 = 1/2, x3 = 1/2, x4 = 1, x5 = 1, x6 = 1, x7 = 1/2, x8 = 1, x9 = 1}

Same work with another �rst stage edge (x1)

Variation of the cost of the �rst edge from 0 to 7
> for i from 0 to 7
> do
> print('c1'=i);
> print('Z[Lp]'=f(i,5,5,10,10,10,4,10,10,10));
> g(i,5,5,10,10,10,4,10,10,10)
> od;

c1 = 0

ZLp = 69

{x1 = 0, x10 = 1, x2 = 1, x3 = 0, x4 = 1, x5 = 1, x6 = 1, x7 = 1, x8 = 1, x9 = 1}
c1 = 1

ZLp = 69

{x1 = 0, x10 = 1, x2 = 1, x3 = 0, x4 = 1, x5 = 1, x6 = 1, x7 = 1, x8 = 1, x9 = 1}
c1 = 2

ZLp = 69

{x1 = 0, x10 = 1, x2 = 1, x3 = 0, x4 = 1, x5 = 1, x6 = 1, x7 = 1, x8 = 1, x9 = 1}
c1 = 3

ZLp = 69

{x1 = 0, x10 = 1, x2 = 1, x3 = 0, x4 = 1, x5 = 1, x6 = 1, x7 = 1, x8 = 1, x9 = 1}
c1 = 4

ZLp = 69

{x1 = 1/2, x10 = 1, x2 = 1/2, x3 = 1/2, x4 = 1, x5 = 1, x6 = 1, x7 = 1/2, x8 = 1, x9 = 1}
c1 = 5

ZLp =
139

2

{x1 = 1/2, x10 = 1, x2 = 1/2, x3 = 1/2, x4 = 1, x5 = 1, x6 = 1, x7 = 1/2, x8 = 1, x9 = 1}
c1 = 6

ZLp = 70

{x1 = 1/2, x10 = 1, x2 = 1/2, x3 = 1/2, x4 = 1, x5 = 1, x6 = 1, x7 = 1/2, x8 = 1, x9 = 1}
c1 = 7

ZLp = 71



{x1 = 1, x10 = 1, x2 = 0, x3 = 0, x4 = 1, x5 = 1, x6 = 1, x7 = 1, x8 = 1, x9 = 1}
> f(3.999,5,5,10,10,10,4,10,10,10);
> g(3.999,5,5,10,10,10,4,10,10,10);

69.0

{x1 = 0, x10 = 1, x2 = 1, x3 = 0, x4 = 1, x5 = 1, x6 = 1, x7 = 1, x8 = 1, x9 = 1}
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