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Résumé

De manière générale, en informatique, les vulnérabilités logicielles sont dé�nies comme

des cas particuliers de fonctionnements non attendus du système menant à la dégradation

des propriétés de sécurité ou à la violation de la politique de sécurité. Ces vulnérabilités

peuvent être exploitées par des utilisateurs malveillants comme brèches de sécurité. Comme

la documentation sur les vulnérabilités n'est pas toujours disponible pour les développeurs

et que les outils qu'ils utilisent ne leur permettent pas de les détecter et les éviter, l'industrie

du logiciel continue à être paralysée par des failles de sécurité. C'est pourquoi, la détection

de ces vulnérabilités dans le logiciel est devenue une préoccupation majeure.

Les vulnérabilités logicielles proviennent des failles potentielles dans la conception des

programmes mais également des erreurs commises dans leurs mises en ÷uvre comme

l'utilisation abusive des aspects dangereux et source d'erreurs du langage de program-

mation. Pour le langage C par exemple, les vulnérabilités sont dues essentiellement à

l'arithmétique des pointeurs, le manque d'un type de base pour les chaînes de caractères

ou aussi l'absence de véri�cation des bornes des tableaux.

Nos travaux de recherche s'inscrivent dans le cadre du projet Européen SHIELDS 1 et

portent plus particulièrement sur les techniques de modélisation et de détection formelles

de vulnérabilités. Dans ce domaine, les approches existantes sont peu nombreuses et ne

se basent pas toujours sur une modélisation formelle précise des vulnérabilités qu'elles

traitent [15, 18, 26]. De plus, les outils de détection sous-jacents produisent un nombre

conséquent de faux positifs/négatifs 2. Notons également qu'il est assez di�cile pour un

développeur de savoir quelles vulnérabilités sont détectées par chaque outil vu que ces

derniers sont très peu documentés.

En résumé, les contributions réalisées dans le cadre de cette thèse sont les suivantes:

1. Dé�nition d'un formalisme tabulaire de description de vulnérabilités appelé template.

1. http://er-projects.gf.liu.se/
2. Un faux positif (resp. négatif) est la détection (resp. non détection) à tord d'une vulnérabilité

9



Ce formalisme a l'intérêt de faciliter la communication entre les di�érents acteurs de

l'équipe du développement.

2. Dé�nition d'un langage formel, appelé Condition de Détection de Vulnérabilité (VDC),

qui permet de modéliser avec précision l'occurrence d'une vulnérabilité. Une ap-

proche de génération de VDCs à partir des templates a été également dé�nie. En�n,

la génération de VDCs permet une détection automatique de vulnérabilités par le

test passif sur les traces d'execution du programme.

3. Dé�nition d'une deuxième approche de détection de vulnérabilités combinant le

model checking et l'injection de fautes.

4. Evaluation des deux approches sur des études de cas.
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Abstract

In general, computer software vulnerabilities are de�ned as special cases where an un-

expected behavior of the system leads to the degradation of security properties or the

violation of security policies. These vulnerabilities can be exploited by malicious users or

systems impacting the security and/or operation of the attacked system. Since the litera-

ture on vulnerabilities is not always available to developers and the used tools do not allow

detecting and avoiding them; the software industry continues to be a�ected by security

breaches. Therefore, the detection of vulnerabilities in software has become a major con-

cern and research area. Software vulnerabilities result from potential �aws in the design of

programs and also from errors in their implementation as the misuse of dangerous aspects

and error-prone programming languages. In the case of the C programming language, for

example, vulnerabilities are primarily due to pointer arithmetic, the lack of a basic type

for strings and the lack of bounds checking.

Our research was done under the scope of the SHIELDS 3 European project and focuses

speci�cally on modeling techniques and formal detection of vulnerabilities. In this area,

existing approaches are limited and do not always rely on a precise formal modeling of the

vulnerabilities they target [15, 18, 26]. Additionally detection tools produce a signi�cant

number of false positives/negatives. Note also that it is quite di�cult for a developer to

know what vulnerabilities are detected by each tool because they are not well documented.

Under this context the contributions made in this thesis are:

1. De�nition of a formalism called template, created to capture the description of vul-

nerabilities given in natural language or by a vulnerability model. This formalism

has the advantage of facilitating the communication between the di�erent actors of

the development team.

2. De�nition of a formal language, called Vulnerability Detection Condition (VDC),

which can accurately model the occurrence of a vulnerability. Also a method to

3. http://er-projects.gf.liu.se/
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generate VDCs from templates has been de�ned.

3. De�ning a second approach for detecting vulnerabilities which combines model check-

ing and fault injection techniques.

4. Experiments: both approaches were evaluated with particular case studies, results

showed that the use of VDCs for vulnerability detection is promising due to the use

of a repository to store the vulnerability representation and/or the instantiation used

by the detection tool.
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Chapter 1

Introduction

1.1 Context and Motivations

In computer science, software vulnerabilities are generally de�ned as speci�c instances

of not intended functionality in a certain software/system that might lead to degradation

of security properties or the violation of the security policy. Considering that most of the

actual systems are interconnected through Internet or mobile devices, interacting with other

systems or users, then the possibility that vulnerabilities can be exploited by malicious code

or misuse of the system is a major concern.

Software vulnerabilities arise from de�ciencies in the design of computer programs or

mistakes in their implementation. An example of a design �aw was the Solaris sadmin

service, which allowed any unprivileged user to forge their security credentials and execute

arbitrary commands as root compromising the whole system. In order to solve this kind

of problem a redesign and reinforce of the use of a stronger authentication mechanism was

needed. Vulnerabilities of this kind are harder and costly to �x, but fortunately they are

rare. In practice, most software vulnerabilities are a result of programming mistakes, in

particular the misuse of unsafe and error-prone features of the programming language, in

the case of C language: pointer arithmetic, lack of a native string type and lack of array

bounds checking.

Though the causes of software vulnerabilities are not much di�erent from the causes

of software defects in general, their impact is more severe. A user might be willing to
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save his work more often in case a program crashes, but there is little they can do to

lessen the consequences of a security compromise. This makes the problem of detecting

existing vulnerabilities and preventing new ones an important task for software developers.

Although e�orts are being made to reduce security vulnerabilities in software, we note in

published statistics that the number of vulnerabilities and the number of computer security

incidents resulting from exploiting vulnerabilities are growing [10]. One of the reasons

for this is that information on known vulnerabilities is not easily available to software

developers or integrated into the tools they use.

Under this context, European project SHIELDS [1] was launched with the purpose

of increasing software security knowledge by reducing the gap between software security

experts and practitioners. The idea is to help software developers to e�ectively prevent the

occurrences of known vulnerabilities when building software. To do that, a Vulnerability

Repository Service (SVRS) is available online to software developer in order to facilitate the

dissemination of vulnerability knowledge; including for instance formalisms for representing

security information that improve the vulnerability comprehension and/or some tools that

can be use for detection.

Figure 1.1: SHIELDS Repository Schema

SHIELDS project's addressed some of the problems encountered in the design and

development of secure software like:

1. The lack of a common vulnerabilities database that can be shared between security

14



experts and software developers.

2. The lack of powerful integrated development environment that permits to prevent

occurrences of known vulnerabilities when building software.

3. The lack of detection methods and tools that detect su�ciently many (or even all)

known vulnerabilities, yet do not generate too many false positives.

4. The lack of rich formalisms tackle the problem of vulnerability detection that com-

bines tool based automation with human skills.

1.2 Contributions

The present thesis, achieved in the context of mentioned European SHIELDS project

contributes with:

� De�nition of a graphical representation of a software vulnerability, called template,

that facilitates the communication with software developers. Roughly speaking, this

template describes how the vulnerability occurs and under which conditions.

� De�nition of a formal language, called Vulnerability Detection Conditions (VDCs),

to describe the presence of a vulnerability without any ambiguity. A systematic ap-

proach to produce VDCs from templates describing a vulnerability is also provided.

The generated VDCs are then used to an e�ective detection of vulnerabilities fol-

lowing a dynamic code analysis based on the passive testing technique that check

the presence of vulnerabilities on its execution traces. A graphical tool to help the

software users elaborate their VDC has been developed in collaboration with the

Montimage SME.

� De�nition of a model-checking based approach, using SPIN [21], to detect vulnerabil-

ities. This approach consists in extracting the information, relevant for vulnerability

detection, from the C code to verify and mapping it into PROMELA [21], the input

language of SPIN, in order to verify the presence/absence of vulnerabilities. Each

counterexample returned by SPIN denotes a potential vulnerability that should be

con�rmed by applying the active testing technique and injecting the related values

into the C code and observing how it behaves.
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� Evaluation of the developed approaches on some case studies.

1.3 Publications

� Nahid Shahmehri, Amel Mammar, Edgardo Montes de Oca, David Byers, Ana Cav-

alli, Shanai Ardi and Willy Jimenez, "An Advanced Approach for Modeling and

Detecting Software Vulnerabilities", Journal Information and Software Technology,

vol 54, issue 9, September 2012.

� Amel Mammar, Ana Cavalli, Willy Jimenez, Wissam Mallouli and Edgardo Montes

de Oca. "Using testing techniques for vulnerability detection in C programs", 23th

IFIP Int. Conference on Testing Software and Systems (ICTSS) 2011, November

7-10, Paris, France. Best Paper Award.

� Wissam Mallouli, Amel Mammar, Ana Cavalli and Willy Jimenez. "VDC-Based

Dynamic Code Analysis: Application to C Programs", Published in the international

Journal of Internet Services and Information Security (JISIS). Volume 1, Issue 2/3,

pages 4-20, August 2011.

� Amel Mammar, Ana Cavalli, Natalia Kushik, Willy Jimenez, Nina Yevtushenko and

Edgardo Montes de Oca. "A SPIN-based Approach for Detecting Vulnerabilities in C

Programs", Second Workshop on Program Semantics, Speci�cation and Veri�cation:

Theory and Applications (PSSV 2011) ST-Petersburg, Russia, July 12-13, 2011.

� Willy Jimenez , Amel Mammar, Ana Cavalli. "Software Vulnerabilities, Prevention

and Detection Methods: A Review", SEC-MDA workshop, 24 June 2009, Enschede,

The Netherlands.

1.4 Organization of the Thesis

This thesis is organized as follows:

� The �rst chapter describes the common vulnerabilities that may occur in software.

How they occur, how they can be modeled and how to detect them. Static detection

techniques works directly on the source code without executing it, while dynamic

ones require to run software to perform the detection. Each of these techniques has
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its advantages and limits. An emphasis is done on the models covered by SHIELDS

project.

� Second chapter presents the formal language, Vulnerability Detection Condition (VDC),

which was de�ned to describe the occurrence of a vulnerability without any ambigu-

ity. A systematic approach is de�ned in order to derive the VDCs from a graphical

modeling language called Vulnerability Cause Graph (VCG). Then, a dynamic detec-

tion method using these VDCs and based on passive testing is presented.

� Fourth chapter presents an exploration of a model checking-based approach to detect

vulnerability in a program developed with C programming language. The approach

translates the original C code into Promela language; vulnerabilities are describe as

assertions in Promela also, and then SPIN model checker [20] is used to detect the

vulnerability. A set of translation rules to map a subset of C code into Promela are

described.

� Fifth chapter presents some practical results based on proposed approaches.

� Finally, last chapter concludes the present work and establishes some potential future

work.
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In order to perform their tasks software systems interact with other systems, the users or

their environment to obtain the required information. If inputs are not properly processed

and validated before being used inside the program then they might cause an unexpected

behavior of the program, or even worse, of the system where the program is running. Such

condition may be exploited by an attacker for its bene�t and he may access critical data;

impersonate a real user and/or damage the system.

This chapter presents the most frequent and known software vulnerabilities, also some

formalisms to describe vulnerabilities together with the di�erent existing methods and tools

to deal with are provided. We are particularly interested on vulnerabilities related to the

C programming language and the graphical formalisms used to describe them. Concerning

detection techniques, we describe static and dynamic approaches which are the most used

in the literature. This state of the art of software vulnerabilities has been published in [24].

2.1 Known Vulnerabilities

2.1.1 Bu�er Over�ow

It occurs in �xed length bu�ers when data is written beyond the boundaries of the

current de�ned capacity. This could lead to mal functioning of the system since the new

data can corrupt the data of other bu�ers or processes. The bu�er over�ow can be used

also to inject malicious code to alter the normal execution of the program and take control

of the system. C programming language is particularly a�ected by this vulnerability due to

its dynamic management of the memory, in fact, some critical applications like aeronautics

forbids the use of pointers or dynamic memory allocations to avoid this kind of problems.

The following C program is vulnerable:

int main(int argc, char **argv) {

char buffer[1024];

strcpy (buffer, argv[1]);

}

Because argv[1] can contain more than 1024 characters (is bigger than variable bu�er).

To understand what e�ects a bu�er over�ow has and, in particular, how it can be exploited,

20



(a) Stack before input (b) Stack after input

Figure 2.1: Evolution of the stack

we �rst have to take a closer look at memory management (See Figure 2.1) with the

following program:

#include <stdio.h>

#include <string.h>

int check_password (char *password) {

int result = 0;

char buffer[8];

printf(" password: ");

gets(buffer);

if (strcmp(buffer, password) == 0){

result = 1;

}

return result;

}

int main (int argc, char *argv[]) {

int i;

for (i=1; i<argc; i++) {

printf(argv[i]);

if (check_password("secret")) {

printf("success\n");

}
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else {

printf("failed\n");

}

}

}

In this example, the program will ask user to enter a password. If password is correct

program will answer "success". If user gives a wrong password, it will answer failed. Figure

2.1 is the graphically presentations of the virtual memory management where every memory

cell has 4 bytes(32bits-cpu) in size, and the input is equal to AAAAAAAA1. Figure 2.1(a)

(resp. 2.1(b)) shows us the stack memory before (resp. after) input. In �gure 2.1(b), we

can see the last character of the bu�er overwrites the value of result with 1. Whatever the

value of the bu�er, the program will answer "success".

2.1.2 XSS or Cross Site Scripting

This vulnerability is associated to web applications. An attacker injects code in web

pages that are accessed by other users. And then uses it to bypass access controls, perform

phishing, identity theft or expose connections. Such vulnerability is very widespread and

happens anywhere a web application uses input from a user without validating it. An

attacker can exploit XSS to send a malicious script to an unsuspecting user. The end

user's browser has no way to know that the script should not be trusted, and will execute

the script. Consequently, the malicious script can access any cookies, session tokens, or

other sensitive information saved by the browser and used with that site. Such scripts can

even rewrite the content of the HTML page.

2.1.3 SQL Injection

Any application that uses SQL database must be protected against SQL injection. An

attacker can get sensitive information from the database by injecting crafted inputs that

contain hidden SQL commands. If they are not well �ltered, they can be executed by the

SQL interpreter and expose the content of the database. For example, if an application

requests to enter the user name to login, and the attacker enters the following text: ' or

'1'='1, then the application may execute the following SQL command:
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SELECT * FROM users WHERE name = '' OR '1'='1';

So, the attacker will get a valid user name since the evaluation of the statement '1'='1' is

always true. In a similar manner the attacker might get con�dential information, alter the

content or even delete the records of the database impacting the service and/or business.

2.1.4 Format String Bugs

Similar to bu�er over�ow, it happens when external data is given to an output function

(syslog, printf, fprintf, sprintf, and snprintf ) as format string argument. The format

arguments tell the function the type and the sequence of arguments to pop and then the

format for output. Such format string bugs most commonly appear when a programmer

wishes to print a string containing user supplied data. The programmer may mistakenly

write printf(InputBuffer) instead of printf(”%s”, InputBuffer). The �rst version may

interpret bu�er as a format string, and parses any formatting instructions it may contain.

The second version simply prints a string to the screen, as the programmer intended.

The �rst version can lead to the Denial of Service. In this case, when an invalid memory

address is requested, normally the program is terminated. For example, if the attacker uses

%s%s%s%s as input, the system will output segmentation error and stop the program.

There is another string vulnerability that allows an attacker rewrite the data in stack

memory. For example, if we have the following code:

int i, j;

i=j=0;

printf("abc%ndef%n",&i,&j);

After executing this code, the value of i will be rewritten by 3 1, the value of j will be

rewritten by 6. Also, a well trained attacker can overwrite the function return address

with a malicious shellcode address by using %n.

2.1.5 Integer Vulnerabilities

They can be of two di�erent types, sign conversion and arithmetic operations bugs.

The �rst occurs when a signed integer is converted to an unsigned integer. The second

1. In printf() function, %n will rewrite the value of variables with the number of arguments read before
it.

23



occurs when the result of an arithmetic operation is an integer larger/smaller than the

maximum/minimum possible integer values. Integer vulnerabilities are not only caused by

wrong input validation, they can also be caused by not verifying the result of arithmetic

operations, which means that two validated inputs, used together in the same operation

can create a vulnerability.

2.1.5.1 Integer over�ow vulnerabilities

An integer over�ow occurs at run-time when the result of an integer expression exceeds

the maximum value for its respective type. For example, the product of two unsigned

8-bit integers may require up to 16-bits to represent, e.g., (28 − 1) ∗ (28 − 1) = 65025,

which cannot be accurately represented by a signed 8-bit integer. Also, if variable a holds

the biggest integer value (a = 2147483647) and we execute a+1, then the result will

(a = −2147483648) be instead of the right value 2147483648.

2.1.5.2 Integer under�ow vulnerabilities

An integer under�ow occurs at run-time when the result of an integer expression is

smaller than its minimum value, thus "wrapping" to the maximum integer for the type.

For example, subtracting 0 − 1 and storing the result in an unsigned 16-bit integer will

result in a value of 216−1, not −1. Since under�ows normally occur only with subtraction,

they are rarer than over�ows with only 10 occurrences according the survey given in [17].

2.1.5.3 Integer sign conversion vulnerabilities

A signedness error occurs when a signed integer is interpreted as unsigned, or vice-versa.

If a negative signed integer is cast to unsigned, it will become a large value. And if a large

positive unsigned integer is cast to a signed integer, it will become negative. Because the

sign bit is interpreted as the most signi�cant bit (MSB) or conversely, hence −1 and 232−1

are misinterpreted to each other on 32-bit machines.

24



2.1.5.4 Integer down-cast vulnerabilities

An integer cast may increase (up-cast) or decrease (down-cast) the precision of the

representation. Increasing the precision is always safe, and usually accomplished by zero-

extending the casted value. However, decreasing the number of bits is potentially unsafe.

Now, in the next part we study how modeling software vulnerabilities can be helpful to

understand vulnerabilities causes, their consequence and possible mitigation or detection

methods.

2.2 Vulnerability Modeling

Most of the vulnerabilities could be prevented if software is developed more carefully,

however, reading the vulnerabilities reports we notice this is not the case. One possible

solution to reduce the number of vulnerabilities is in the improvement of the knowledge

and understanding of software developers; in fact developers should not only care about the

code and coding speed but also about the vulnerabilities related to the used programming

language or system, their causes, consequences, possible threats, types attacks and counter

measures. Graphical models might be an adequate tool to implement such solution as we

study next.

2.2.1 Vulnerability Cause Graph

Vulnerability Cause Graph (VCG) [2, 6] "is a directed acyclic graph that contains one

exit node representing the vulnerability being modeled, and any number of cause nodes,

each of which represents a condition or event during software development that might

contribute to the presence of the modeled vulnerability". The VCG [3] showed in Figure

2.2 represents the vulnerability CVE-2005-3192, which corresponds to a bu�er over�ow in

xpdf.

In this graph we can observe the di�erent causes, nodes one to six and possible scenarios

that could lead to the introduction of this kind of vulnerability. A scenario is composed

by a sequence of nodes, in our example a scenario might be {1, 2, 4, 5, 7}.
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The VCG is helpful to understand what can cause the vulnerability. So, if causes are

well understood then they could be avoided in the development process. Since VCGs have

been improved by SGMs, we will cover more details later.

Figure 2.2: Vulnerability Cause Graph

2.2.2 Security Activity Graph

Security Activity Graphs (SAGs) [2,7] are a graphical representation that is associated

with causes in a VCG. SAGs indicate how a particular cause can be prevented following a

combination of security activities during the development process. Figure 2.3 represents a

SAG [7] showing di�erent alternatives to address the cause "Lacking design to implemen-

tation traceability".

Thus, in order to solve the design to implementation traceability problem during soft-

ware development; we have several alternatives resulting from the combination of the

di�erent security activities and operators X (AND), + (OR):

� Generate a code from design OR

� Make design objects identi�able AND code comments linking core to design objects

OR

� Make design objects identi�able and cross reference index between design and code.
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Figure 2.3: Security Activity Graph

2.2.3 Security Goal Indicator Tree

Security Goal Indicator Tree (SGIT) [32] focuses on positive features of the software

which can be veri�ed during the inspection process. A SGIT is then a graph where the

root is a security goal and its subtrees are indicators or properties that can be checked

for achieving that goal. However, since not all properties can be positively expressed it

is possible to have also negative indicators (something that should not occur). These

indicators have Boolean relations with the goal and have to be checked in order to validate

the security goal. SGIT are created by security experts. A SGIT for the goal Audit Data

Generation, taken from [32], is presented in �gure 2.4, showing some dependency relations,

and positive and negative indicators. Also the small box pointing to the indicator "An

audit component exists" means that a specialization tree can be deployed for this indicator.

2.2.4 Security Goal Model

The Security Goal Model (SGM) [8] "can be used in place of security activity graphs

(SAG), vulnerability cause graphs (VCG), and security goal indicator trees (SGIT)"; since

SGMs can be more accurate and rich in expression than previous mentioned models.

In the case of software vulnerabilities, �gure 2.5 shows a SGM representing a known

bu�er over�ow in xine, a free multimedia player (CVE-2009-1274). We can observe that

this graph is similar to VCG but it o�ers more details about the di�erent causes and

scenarios that could lead to the introduction of this kind of vulnerability. For instance, the
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Figure 2.4: Security Goal Indicator Tree

black node represents a "positive" subgoal that helps to reduce the possibility of having

the vulnerability, while the information ports and edges (dash arrows) provide more details

about the relation among the di�erent subgoals or causes, and the places which can be

useful for detection purposes. In our case the subgoal "code controlled by range check"

helps to reduce vulnerability presence in the case where a data entered by the user controls

or is used inside a loop.

This ideas are helpful to understand the "enchainment" of events that may lead to a

vulnerability, thus, they are a valuable input for a detecting tool as we explain later.

2.3 Vulnerability Detection

Models and inspections are useful to understand and prevent vulnerabilities; neverthe-

less it is also necessary to count on tools that can be used by programmers in order to

detect vulnerabilities during the process of software construction.
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Figure 2.5: Security Goal Model

Some of these tools are based on static methods, thus it is not necessary to run the

code to perform the detection. In the case of dynamic methods, the code is run inside

a controlled environment to perform the detection or collect program traces that can be

use for such purpose. In the next section we present some existing techniques to detect

vulnerabilities.

2.3.1 Software Inspection

The software inspection process consists in reading or visually inspecting the program

code or documents in order to �nd any defects and correct them early in the development

process. When the defect is found soon the less expensive it becomes to �x. However, a

good inspection depends then on the ability and expertise of the inspector, and the kind

of defects he is looking for. Usually during the software inspection, it is necessary to look

for any possible defects during the security inspections. Vulnerability Inspection Diagram

(VID) is a manual inspection introduced in [14], the purpose is to bene�t developers from

the knowledge and experience of security experts in the detection of problems in the de-
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velopment process. Thus a VID is a �owchart-like graph that guides developers to check

the software to detect the presence of vulnerabilities based on the knowledge of experts.

There is a speci�c VID for each vulnerability class.

2.3.2 Static Techniques

Static techniques are those applied directly to the source code without running the

application, the objective is to evaluate or get speci�c information directly from the source

code without executing it. There are di�erent techniques to perform static analysis; here

we mention some of them.

2.3.2.1 Pattern matching

Consists in searching a "pattern" string inside the source code and give as results the

number of occurrences of it. For instance if we consider C language, the pattern could be

any call to possible dangerous functions (vulnerable) like "getc". Pattern matching can

be implemented using a simple tool like the Unix command "grep", however this method

generates much false positives because there is no analysis of the results, additionally its

e�ectively is limited since depends on the exact writing of the strings, thus additional white

spaces will limit the results.

Flaw�nder contains a built-in database of potentially dangerous functions, and uses

pattern matching process to �nd possible vulnerabilities in the code. In order to reduce

false positives the results are sorted by risk level [38]. The risk level is associated to the

vulnerability of the function used and to the type of function parameters, for example the

use of a constant variable is less risky.

2.3.2.2 Parsing

Parsing is more complex than lexical analysis, thus when the source code is parsed, a

representation of the program is built using a parsing tree in order to analyze the syntax

and the semantics of the program. For example the parsing technique is used to detect

SQL command injection attacks [35].
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2.3.2.3 Type quali�er

The addition of type quali�ers in a program can be useful to analyze the properties or

content of variables in order to �nd vulnerabilities. For example; Cqual [16], is a type-based

static analysis tool for �nding bugs in C programs, which means that programmers can

extends the existing C types to add annotations to the program; those annotations can be

then checked by the tool and detect possible problems. In Cqual user's guide is given the

following example:

$tainted char *getenv(const char *name);

int printf($untainted const char *fmt, ...);

int main(void)

{

char *s, *t;

s = getenv("LD LIBRARY PATH");

t = s;

printf(t);

}

When the code is analyzed by the tool, there will be an error indicating the use of a

tainted data (t) where an untainted is expected (argument of printf ).

2.3.2.4 Data �ow analysis

The purpose is to evaluate the source code in order to determine the possible set of

values that a variable or an expression may have during the execution of the program. This

technique is specially suited for bu�er over�ow detection.

A control �ow graph CFG is used to evaluate sections of the program where the assig-

nation of a given value to a variable is done, and how it is propagated inside the program.

Kem et al in [25] use data �ow analysis, they create rules describing vulnerability

patterns to detect locations and paths of the pattern in the program. The detector is

implemented in three parts: a pattern matcher which �nds locations of vulnerabilities in

source program, a �ow graph constructor which extracts the control �ow and data �ow

from the program, and a �ow analyzer which �nds program's vulnerable execution paths.
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2.3.2.5 Taint analysis

It is a special case of data �ow analysis where any data coming from un-trusted sources,

e.g. introduced by a user, is a potential problem to the system, thus it is marked as

tainted. Tainted data �ow is monitored because it cannot reach critical functions unless it

is processed and changed to untainted.

Livshits and Lam [29] propose a static analysis framework to �nd vulnerabilities in

Java applications. They de�ne a Tainted Object Propagation problem class to deal with

improper user input validation. Java bytecode and vulnerability speci�cations are employed

to perform a taint object propagation and �nd vulnerabilities using the Eclipse platform.

2.3.2.6 Model checking

Model Checking is a technique to automatically test if a property is veri�ed on a

system, so it can be also used to detect vulnerabilities. However, usually model checking

is a complex technique because the elaboration of the model is di�cult, but once obtained

it is easier to test the properties of the system.

A security veri�cation framework with multi-language support was developed based on

GCC compiler [19]. Their approach uses a conventional push down system model checker

for reach ability properties to verify software security properties; it is composed of three

phases: security property speci�cations, program model extraction and property model

checking, this last has as output the detected errors with execution traces.

Constraint analysis has been combined with model checking in order to detect bu�er

over�ow vulnerabilities [37]. They trace the memory size of bu�er-related variables and the

code instrumented with constrains assertions before the potential vulnerable points. The

vulnerability can be detected with the reach ability of the assertion using model checking.

They decrease the cost of model checking by slicing the program.

Model checking has been used to detect vulnerabilities [5, 11] bugs or problems in C

programs. For instance, Holzmann developed the Modex [30] tool to extracts models from

ANSI-C code using a test-harness speci�ed by the user in a �le and then test distributed

systems using the Spin model checker. Modex have also been employ by Kim et al [25]

to test for concurrency bugs in the Linux kernel while Bao et al [2] test abstract com-
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ponents, however previously to the model extraction they compile the C program into a

C intermediate language (CIL) [31] to reduce the syntactic constructs and simplify the

translation.

Another approach based on model checking is the one of Jiang et Jonsson [23] who test

the correctness of concurrent algorithms. They automatically translate a subset of C into

Promela speci�cation; they describe the properties to test and run Spin to verify if the

speci�cation is correct. Wan et al [37] combine model checking and program analysis. The

purpose is to detect bu�er over�ows using constraint based analysis and program slicing

to instrument assertions before vulnerable points and verify the reach-ability with model

checking.

2.3.3 Dynamic Techniques

In order to dynamically detect vulnerabilities it is necessary to execute the program

code, and then analyze the behavior or the answers of the system and gives a verdict. In

the next part we study some of the techniques to perform dynamic detection.

2.3.3.1 Fault injection

Fault injection is a testing technique that introduces faults in order to test the behavior

of the system, some knowledge about the system is required to generate the possible faults.

With fault injection, it is possible to �nd security �aws in a system [36] by injecting them

into the system under test and observing its behavior. The failure to tolerate faults is an

indicator of a potential security �aw in the system, a model is used to decide what faults

to inject.

2.3.3.2 Fuzz testing

The idea of this test is to provide random data as input to the application in order to

determine if the application can handle it correctly. Fuzz testing is easier to implement

than fault injection because the test design is simpler and previous knowledge about the

system to test is not always required, additionally it is limited to the entry points of the

program. Web scanners are in this tool category. Fuzz testing can also be improved to
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have a better coverage of the system. For instance recording real user inputs to �ll out

web forms and then utilize the collected data in the fuzz testing process to better explore

web applications (reach ability) [27].

2.3.3.3 Dynamic taint

Similar to taint analysis, however in this case the tainted data is monitored during the

execution of the program to determine its proper validation before entering sensitive func-

tions. It enables the discovering of possible input validation problems which are reported

as vulnerabilities [12].

2.3.3.4 Sanitization

One possibility to avoid vulnerabilities due to the use of user supply data is the imple-

mentation of new incorporated functions or custom routines whose main idea is to validate

or sanitize any input from the users before using it inside a program. In [3] they present an

approach using static and dynamic analysis to detect the correctness of sanitization process

in web applications that could be bypass by an attacker. They use data �ow techniques

to identify the �ows of input values from sources to sensitive sinks or the places where the

value is used. Later they apply the dynamic analysis to determine the correct sanitization

process.

In Table 2.1, we present a list of tools for dynamic code analysis.

2.4 Conclusion

Software security has become an important research area due to the massive use of

software programs in multiple kinds of applications and environments. It is necessary to

guarantee that those programs do not contain vulnerabilities that represent a potential

source of problems. Vulnerabilities are not new, however the impact of their presence has

increased because of the "interconnection" capabilities of programs, that facilitate their

use and access but also attacks.
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In order to help developers to better understand vulnerabilities and how avoid and

detect them in the code we can count on models like VCG and SGM, which show how

vulnerabilities are caused. Despite the graphical aspect of such models that facilitates the

communication with the di�erent stakeholders, they lack rigorous semantics. Thus, they

cannot be used as basis for automatic vulnerabilities detection. This is why we propose in

chapter 3 a formal language, called Vulnerability Detection Conditions(VDC), that permits

to formally describe the occurrence of vulnerabilities to detect them automatically. We

also de�ne an intermediate format, called template, to represent vulnerabilities that is less

informal than VCG and allows an automatic translation into VDC. Rules to generate such

templates from VCG are also provided.

Despite of all precautions we can take during software development, we need to ensure

the program does not contain any vulnerability. The selection of tool and detection tech-

nique for vulnerabilities is related to the type of application to evaluate, the programming

language and the type of vulnerability to detect. A classic technique to detect vulnerabil-

ities is the inspection of the source code, this method can be applied several times during

the construction phase as advantage but requires specialists to perform the task as draw-

back and it is time consuming and is performed by an expert. The static techniques cover

all possible execution paths but require the source code while dynamic techniques have the

di�culty of requiring the preparation of test cases and the possibility that not all paths

in the program are covered, but the advantage that the problems if any, are found in the

running code. Dynamic techniques have also less false positives than static ones. Moreover,

the tools/libraries supporting dynamic techniques detect runtime errors but they do not

allow users to de�ne vulnerabilities to be checked on the analyzed executable program.

The next two chapters present two complementary dynamic techniques to detect vul-

nerabilities. The �rst one is based on passive testing technique [4] and uses the concept of

VDC, while the second uses the model checking together with active testing technique [9].
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Tool Name Developed by Description

Valgrind Valgrind Valgrind runs programs on a virtual processor and can
developers detect memory errors (e.g., misuse of malloc and free)

and race conditions in multithread programs
Insure++ Parasoft Insure++ is a memory debugger computer program, used by

software developers to detect various errors in programs
written in C and C++.

Dmalloc Gray Watson Dmalloc is a memory debugger C library that helps
programmers to �nd a variety of memory allocation
programming errors for dynamic memory. It replaces
parts of standard programming library provided by the
operating system for malloc and other software with its
own versions which help the programmer detect bu�er
over�ows and other critical programming issues

DynInst University of DynInst is a runtime code-patching library that is useful
Wisconsin-Madison in developing dynamic program analysis probes and
and University applying them to compiled executables. Dyninst does not
of Maryland require source code or recompilation in general, however,

non-stripped executables and executables with debugging
symbols are easier to instrument.

Daikon MIT Daikon (system) is an implementation of dynamic
invariant detection. Daikon runs a program, observes the
values that the program computes, and then reports
properties that were true over the observed executions, and
thus likely true over all executions.

IBM IBM IBM Rational AppScan is a suite of application security
Rational solutions targeted for di�erent stages of the development
AppScan lifecycle. The suite includes two main dynamic analysis

products: IBM Rational AppScan Standard Edition, and
IBM Rational AppScan Enterprise Edition. In addition, the
suite includes IBM Rational AppScan Source Edition a
static analysis tool.

Purify IBM Purify is a memory debugger program used by software
developers to detect memory access errors in programs,
especially those written in C or C++. It was originally
written by Reed Hastings of Pure Software. Pure Software
later merged with Atria Software to form Pure Atria
Software, which in turn was later acquired by Rational
Software, which in turn was acquired by IBM. It is
functionally similar to other memory debuggers, such as
Insure++ and Valgrind.

Intel Intel Intel Thread Checker is a runtime threading error analysis
Thread tool which can detect potential data races and deadlocks in
Checker multithreaded Windows or Linux applications.

Table 2.1: List of dynamic code analyzers
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Security has become an important issue for the industry of software; being one of its

main objectives to reduce as much as possible the presence of vulnerabilities in the software

that is produced; reducing as well the risk of attacks and their impact in terms of money,

downtime, loss of customers, and performance. Nevertheless, if we consider the complexity

and size of programs we need then to count on tools and methods to test software and be

able to detect as much vulnerabilities as possible. In previous part, we presented a review of

known software vulnerabilities, detection methods and modeling techniques like for example

SGM and VCG. These models are helpful to understand known vulnerabilities because they

graphically represent how a given vulnerability was caused in a speci�c program. In fact,

they show the sequence of actions and conditions alongside the program code; that leaded to

the modeled vulnerability. Vulnerability models are then helpful to improve the knowledge

of programmers, but also they are of great value from a vulnerability point of view since

they provide a guide about the conditions and actions that should be checked inside a

program code to detect such vulnerabilities. However, in these models the descriptions of

the causes are done in natural language, which is good for human understanding but not

very valuable for automatic detection. In this chapter we present a formal language called

Vulnerability Detection Condition (VDC); a formal interpretation of the occurrence of the

vulnerability. These VDCs can be obtained from VCGs or SGMs through an intermediate

format called Template. A template is a table with speci�c and �xed �elds conceived to

systematically extract information from the vulnerability models or the description of the

vulnerability and automatically generate VDCs. Our approach, has been used to develop

a passive testing tool which takes VDCs as input in order to monitor the execution of the

program under test and detect the presence of the vulnerability given as input, as explained

in this chapter. This chapter gives also a formal syntax and semantics of SGM in order to

formalize the derivation of templates from them.

3.1 Vulnerability Detection Condition

Vulnerability Detection Conditions is the formalism we have de�ned to describe the

presence of a vulnerability in a software. It allows to express that, for instance, a dynami-

cally allocated memory must not be used (read or written) without �rst checking that the
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allocation operation succeeded. The main idea behind the de�nition of the VDC formalism

is to point out the use of a dangerous action under some particular conditions, for instance

�it is dangerous to use unallocated memory�.

De�nition 1 (Vulnerability Detection Condition). Let Act be a set of action names, Var

be a set of variables, and P be a set of predicates on (Var ∪Act). A vulnerability detection

condition VDC is of the form (square brackets denote an optional element):

VDC ::= a/P (Var ,Act) | a[/P (Var ,Act)];P ′(Var ,Act)

where a denotes an action, called a master action, that produces the vulnerability, P (Var ,Act)

and P ′(Var ,Act) represent any predicates on variables Var and actions Act .

A vulnerability detection condition a/P (Var ,Act) means that the master action a

produces a vulnerability when it occurs under speci�c conditions denoted by predicate

P (Var ,Act).

A vulnerability may also occur due to the action that follows the master action. That

case is represented by

a[/P (Var ,Act)];P ′(Var ,Act)

This means that the master action a used under the optional conditions P (Var ,Act)

is followed by a statement whose execution satis�es P ′(Var ;Act). Naturally, if action a is

not followed by an action, the predicate P ′(Var ,Act) is assumed to be true.

Intuitively, VDCs are composed of actions and conditions. An action denotes a partic-

ular point in a program where a task or an instruction that modi�es the value of a given

object is executed. Some examples of actions are variable assignments, copying memory

or opening a �le. A condition denotes a particular state of a program de�ned by the value

and the status of each variable. For a bu�er, for instance, we can �nd out if it has been

allocated or not.

More complex vulnerability detection conditions can be built inductively using the

di�erent logical operators according to the following de�nition:

De�nition 2 (General Vulnerability Detection Conditions). If VDC 1 and VDC 2 are vul-

nerability detection conditions, then (VDC 1 ∨ VDC 2) and (VDC 1 ∧ VDC 2) are also vul-

nerability detection conditions.
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3.1.1 VDC examples

In order to clarify the concept we present some examples of VDCs. First, consider

that we want to de�ne a vulnerability detection condition to detect if a certain value y is

assigned to a memory variable x, but the memory space for x has not yet been allocated.

We can de�ne the VDC as follows:

VDC 1 = Assign(x, y)/IsNot_Allocated(x)

In the case of programming languages like C/C++, there are some functions that might

lead to a vulnerability if they are applied on out-of-bounds arguments. The use of a tainted

variable as an argument to a memory allocation function (e.g. malloc) is a well-known

example of such a vulnerability, expressed by the vulnerability detection condition VDC 2

below. A variable is tainted if its value is obtained from a non-secure source. This value

may be produced by reading from a �le, getting input from a user or the network, etc.

Note that a tainted value can be untainted during the execution of the program if it is

checked to determine if it has an acceptable value.

VDC 2 = memoryAllocation(S)/tainted(S)

A good programming practice is to verify the return value from any allocation func-

tion. The following vulnerability detection condition VDC 3 detects the absence of such

veri�cation:

VDC 3 = Assign(u,memoryAllocation(S)); notChecked(u, null)

3.1.2 Creating VDC

As we have mentioned previously, the aim of VDCs is to formally de�ne the causes

described by the vulnerability model. An informal description of a vulnerability states the

conditions under which the execution of a dangerous action leads to a security breach. So,

it should include the following elements:

1. A master action: an action denotes a particular point in a program where a task or

an instruction that modi�es the value of a given object is executed. Some examples
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of actions are variable assignments, copying memory or opening a �le. A master

action Act_Master is a particular action that produces the related vulnerability.

2. A set of conditions: a condition denotes a particular state of a program de�ned

by the value and the status of each variable. For a bu�er, for instance, we can

�nd out if it has been allocated or not. Once the master action is identi�ed for

a scenario, all the other facts are conditions {C1, . . . ,Cn} under which the master

action is executed. Among these conditions, a particular condition Ck may exist,

called missing condition, which must be satis�ed by an action following Act_Master .

In our work we developed a method consisting in four steps:

1. Analyze the model that represents the vulnerability

2. Extract the testing information using templates

3. Automatically process the templates to obtain the VDCs and

4. De�ne the global VDC for the vulnerability.

Each step is described in detail in the next part. To this aim, we give �rst the syntax and

the semantics of the SGM model to help the readers understand our approach.

3.2 The SGM Vulnerability Model

3.2.1 The SGM Syntax

A security goal model (SGM) is a directed acyclic graph. Vertices represent subgoals;

solid edges represent dependencies between subgoals; and dashed edges can be thought

of as modeling information �ow. For VDC generation purpose, we only consider the solid

edges, the others are skipped. Also, we adapt the de�nition given in [33] in order to improve

the formalization of scenarios generation. To this aim, let N be a set of all possible nodes.

De�nition 3 A security goal model T is a 7-tuple (N,N0, nexit, succ, desc, struct, conj),

where N is a �nite set of nodes (N ⊆ N) such that N0 (N0 ⊆ N) denotes the set of

the initial nodes for the scenarios that lead to the vulnerability represented by the root

of the SGM nexit (nexit ∈ N), succ is a relation that gives for each node its successor
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nodes (succ ∈ N ↔ N), desc is a function that returns the textual description of each

node (desc ∈ N → String); struct is a function that gives the SGM associated with each

composite node (struct ∈ N → SGM ∪ {⊥}) where value ⊥ is the image of a simple

node by function struct, and conj is a function that gives the set of nodes that composes a

conjunction node (conj ∈ N − {nexit} → P (N−N)).

To be suitable for VDC translation, a SGM model should meet the following require-

ments:

1. each node of N0 has no antecedent
1:

∀n.(n ∈ N0 ⇒ n /∈ ran(succ))

2. node nexit has no successor
2:

nexit /∈ dom(succ)

3. for each node n1, such that (n1 ∈ N), there should exist a path starting from a node

of N0 that includes n1 and nexit. That means that the following two properties are

veri�ed:

(a) node n1 is reachable from a node of N0:

∀n1.(n1 ∈ N ⇒ ∃n0.(n0 ∈ N0 ∧ n1 ∈ succ∗[{n0}]))

(b) node nexit is reachable from node n1
3:

∀n1.(n1 ∈ N ⇒ nexit ∈ succ∗[{n1}])

1. If R ∈ X ↔ Y, ran(R) = {y | y ∈ Y ∧ ∃x.(x ∈ X ∧ x 7→ y ∈ R)}
2. If R ∈ X ↔ Y, dom(R) = {x | x ∈ X ∧ ∃y.(y ∈ Y ∧ x 7→ y ∈ R)}
3. succ∗ denotes the re�exive transitive closure of relation succ.
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3.2.2 The SGM Semantics

For the VDC generation purpose, we de�ne the semantics of a SGM model as a trans-

formation function that translates the 7-tuple into a set of scenarios (or paths) (called

scenario suites), each of which describes a valid path to obtain the modeled vulnerability.

The scenarios can then be interpreted in an appropriate manner to create VDCs. These set

of scenarios S, is used to build the test suite that is going to be used by the detection tool

to verify if the program under evaluation is executing certain actions under some speci�c

conditions, if it is the case the considered vulnerability is detected. Before de�ning this

semantics, we introduce some useful notations:

� succ2 = {(x1, x2, x3) | (x1, x2) ∈ succ ∧ (x2, x3) ∈ succ}
� succ3 = {(x1, x2, x3, x4) | (x1, x2, x3) ∈ succ2 ∧ (x3, x4) ∈ succ}
� for any rank i: succi = {(x1, x2, . . . , xi+1) | (x1, x2, x3, xi) ∈ succ(i−1)∧(xi, xi+1) ∈
succ}

� a set of functions map_seti(i≥2) that transform any i− tuple to a set of its elements;

each function map_seti is de�ned by:

map_seti ∈ N × . . .×N︸ ︷︷ ︸
i times

→ P(N)

with:

map_seti((x1, . . . , xi)) = {x1, . . . , xi}

De�nition 4 Let T be an SGM (N,N0, nexit, succ, desc, struct, conj). The semantic trans-

formation of T , S_ ∈ SGM→ P(
⋃

i=1,..∞map_seti+1[succ
i]) is such that :

1. each scenario sc contains an initial node and the exit node

∀sc.(sc ∈ S(T )⇒ sc ∩N0 6= ∅ ∧ nexit ∈ sc)

2. each node of T belongs to one scenario at least:

∀n.(n ∈ N ⇒ ∃sc.(sc ∈ S(T ) ∧ n ∈ sc))
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3. each sub-set scs of P(
⋃

i=1,..∞map_seti+1[succ
i]) that veri�es conditions (1) and (2)

is included in S(T ):

scs ⊆ S(T )

3.3 Procedure to Create VDC

This section describes the procedure to create a VDC from a SGM according to the

di�erent syntactical and semantical de�nitions presented before.

3.3.1 Analyze the Model that represents the Vulnerability

Before deriving the scenarios from a SGMmodel T (T = (N,N0, nexit, succ, desc, struct, conj)),

we have to ensure that it meets some speci�c requirements:

� if there is a node A shared by two conjunction nodes B and C, then make B and C

disjoint by duplicating the node A.To do that, let node A′ be a new node:

� T.N , T.N0, T.nexit and T.succ remain the same

� make the description of node A′ equal to that of A: (A′.desc = A.desc) where

A.desc denotes the description of node A.

� make the structure of node A′ equal to that of A: (A′.struct = A.struct) where

A.struct denotes the structure of node A.

� T.conj = ({B}�− T.conj) ∪ {(B,B.conj − {A} ∪ {A′})} where B.conj gives the

components of node B. We chose to replace node A by A′ in B.

� If there is a conjunction node A modeled by a a set of nodes B, replace it with

sequential nodes. To this aims, we have to de�ne a path pa = (ni, nf , succ
′) with the

nodes B as follows:

1. ni and nf (ni ∈ B ∧ nf ∈ B) denote respectively the initial and �nal nodes of

pa,

2. function succ′ is such that:

succ′ ∈ (B − {nf}) �→ (B − {ni})
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this means that:

(a) Except the �nal node nf , each node has exactly one successeur,

(b) Except the initial node ni, each node has exactly one predecessor.

the path pa, being de�ned, the replacement of a conjunction node is performed as

follows:

� T.N = T.N − {A} ∪B

� if A belongs to T.N0, T.N0 = T.N0 − {A} ∪ {ni}
� T.nexit remains the same

� T.succ = (({A}�− T.succ)�− {A})∪(T.succ−1[{A}]×{ni})∪({nf}×T.succ[{A}])∪
succ′ 4

� T.desc = ({A}�− T.desc)∪B.desc where B.desc gives the description of each node

of B.

� T.struct = ({A}�− T.struct)∪B.struct where B.struct gives the structure of each

node of B

� T.conj = ({A}�− T.conj)∪B.conj where B.conj gives the possible components of

each node of B

� If there is any nodeAmodeled by a suitable SGMG (G = (N,N0, nexit, succ, desc, struct, conj)),

replace it with its corresponding model. To do that, we have to relate all the an-

tecedents of A to each initial node of G and the antecedent nodes of G.nexit to each

successor of A. Formally, components of T become as follows:

� T.N = T.N − {A} ∪G.N − {G.nexit}
� if A belongs to T.N0, T.N0 = T.N0 − {A} ∪G.N0

� T.nexit remains the same

� T.succ = (({A}�− T.succ)�− {A})∪(T.succ−1[{A}]×G.N0)∪(G.succ−1[{G.nexit}]×
T.succ[{A}])

� T.desc = ({A}�− T.desc) ∪G.desc

� T.struct = ({A}�− T.struct) ∪G.struct

� T.conj = ({A}�− T.conj) ∪G.conj

4. If R ∈ X ↔ Y , A1 ⊆ X and B1 ⊆ Y , then A1�−f = {x 7→ y | x 7→ y ∈ R ∧ x /∈ A1} and
f�−B1 = {x 7→ y | x 7→ y ∈ R ∧ y /∈ B1}
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� Discard the qualitative subgoals of the SGM and keep only quantitative ones. Qual-

itative subgoals cannot be checked or evaluated without human intervention. Docu-

mentation is unclear is an example of such a cause. Since our interest is automatic

testing, we are concerned only with quantitative subgoals. A quantitative subgoal

is directly related to the software code, so it can be automatically checked. An

example is the use of malloc as memory allocation function. To formalize this

step, we add to the previous de�nition of SGM, a function Qualitative de�ned as

(Qualitative ∈ N → BOOL) to indicate whether a node is qualitative of not. So if

a node A is qualitative, the initial SGM T becomes:

� T.N = T.N − {A}
� If A ∈ T.N0, T.N0 = T.N0 − {A} ∪ {n | n ∈ T.N ∧ succ−1[{n}] = {A}}
� T.nexit remains the same because we assume that (Qualitative(nexit) = False),

that is A 6= nexit.

� T.succ = (({A}�− T.succ)�− {A}) ∪ (T.succ−1[{A}]× T.succ[{A}])
� T.desc = ({A}�− T.desc)

� T.struct = {A}�− T.struct

� T.conj = {A}�− T.conj

� Replace counteracting nodes with an equivalent contributing nodes. When testing,

we want to check if the �bad� actions or conditions are execute in order to determine

whether the vulnerability is present or not. To formalize this step, we add to the

previous de�nition of SGM, a partial function counteract de�ned as (contrib ∈ N 7→
N ′) to provide the corresponding contributing node for counteracting node. So if a

node A is counteracting, the initial SGM T becomes:

� T.N = (T.N − {A}) ∪ {contrib(A)}
� T.N0 = T.N0−{A}∪ {contrib(A)} if (A ∈ N0), otherwise T.N0 remains the same.

� T.nexit remains the same because we assume that nexit is not a counteracting node.

� T.succ = (({A}�− T.succ)�− {A})∪(T.succ−1[{A}]×{contrib(A)})∪({contrib(A)}×
T.succ[{A}]))

� T.desc = ({A}�− desc)∪{contrib(A) 7→ desc′} where desc′ is the description of the

contributing node.

� T.struct = ({A}�−T.struct) ∪ {contrib(A) 7→ struct′} where struct′ denotes the
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potential SGM associated with the contributing node, ⊥ otherwise.

� T.conj = ({A}�− T.conj)∪{contrib(A) 7→ conj′} where conj′ denotes the potential
components of the contributing node.

The resulting graph is now adequate to obtain the VDCs. Nevertheless, in order to

facilitate the scenario processing we use numbers to identify subgoals. So, we add an

injective function number de�ned by: number ∈ N � NAT because two distinct nodes

should have di�erent numbers.

3.3.2 Extract Testing Information using Templates

Once the scenarios are de�ned we have to collect all the possible details given by the

subgoals. The idea is to identify the variables, parameters, actions and conditions that

contribute to the vulnerability. For that we have created two templates, one correspond-

ing to master actions and another to the conditions under which the master actions are

executed. These templates, produced manually, are automatically processed to generate

the VDCs.

In the SGM, every possible scenario must contain one master action Act_Master that

produces the related vulnerability. All the other vertices of this path denote conditions

{C1, ..., Cn}.

Among these conditions, a particular condition Ck may exist, called missing condition,

which must be satis�ed by an action following Act_Master. Let {P1, . . . , Pk, . . . , Pn}
be the predicates describing conditions {C1, . . . , Ck, . . . , Cn}. The formal vulnerability

detection condition expressing this dangerous scenario is de�ned by: Act_Master/(P1 ∧
... ∧ Pk−1 ∧ Pk+1 . . . ∧ Pn);Pk

After the identi�cation of master actions and conditions we take the corresponding

template to analyze each subgoal. The master action and condition templates are herewith

explained.

3.3.2.1 Master action template

This template is designed to collect all the information related to the master action

of the SGM and possible input/output parameters. The master action template with its
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corresponding items and a brief explanation of them are shown in Table 3.1.

Table 3.1: Master Action Template
Item Description Value
1. Node number Number used to identify each node of the SGM:

number(A) with A denoting the master action
Inte-
ger

2. Previous node This �eld indicates the number of the previous node in
the SGM; it is duplicated from the SGM to make the
template more self-contained: number[succ−1[{A}]]

Inte-
ger

3. Next node This �eld indicates the number of the next node/nodes in
the SGM; it is duplicated from the SGM to make the
template more self-contained: number[succ[{A}]]

Inte-
ger(s)

4. Function name Indicate the name of the master action function : derived
from desc(A)

Text
(pre-
de-
�ned)

5. Input
parameter name

Indicate the name of the input parameter of the master
action function

Free
text

6. Input
parameter type

Indicate the type of the input parameter of the master
action function

Vari-
able
types

7. Variable that
receives function
result

Indicate the name of the variable that receives the result
of the execution of the function considered

Free
text

8. Type of the
variable that
receives function
result

Indicate the type of the output parameter of the master
action function

Vari-
able
types

From the template, the master action expression is derived by combining some of the

items according to the following general expressions:

� function_name(inputparameter): the master action is related to the execution of

function_name which receives inputparameter as input.

� function_name(outputparameter, inputparameter): if the outputparameter is given;

the master action is related to the use of function_name which receives inputparameter

as input to calculate the value of outputparameter.
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3.3.2.2 Condition template

The condition template is intended to describe the conditions under which the execution

of the master action becomes dangerous, i.e., produces the modeled vulnerability. The

condition template is described in Table 3.2.

Table 3.2: Condition Template
Item Description Value
1. Node
number

Number used to identify each node of the SGM:
number(A) with A denoting the node of SGM

Integer(s)

2. Previous
node

This �eld indicates the number of the previous node of
the SGM; it is duplicated from the SGM to make the
template more self-contained: number[succ[{A}]]

Integer

3. Next
node

This �eld indicates the number of the next node of the
SGM; it is duplicated from the SGM to make the
template more self-contained: number[succ[{A}]]

Integer

4. Search Indicate the element considered in the node Functions,
variables, list

5. Name Indicate the name of the element considered in the node Free text or
prede�ned
(case of
functions)

6. Type Indicate the type of the element considered in the node Prede�ned
7.
Condition
follows
master
action

Indicates if the current condition follows or not the
execution of the master action

Yes or no

8.
Condition

Condition expressed by the node Reserved text

9.
Condition
element

Elements involved in the condition Text

The expression derived from condition template is written according to the formula:

Condition(name, condition_element)

This indicates that the condition is given by condition_element acting on element name.
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3.3.3 Automatically Process of Templates to obtain the VDCs

In this step the information collected with the master action and condition templates

are automatically processed to generate the expressions of the VDCs according to the

corresponding testing scenario.

For that, all nodes of the graph are numbered in the template, indicating also the

number of the predecessor/successor nodes. The purpose is to identify the nodes and �nd

all the paths starting from the initial node to the exit node (the vulnerability). These paths

correspond the testing scenarios. Once the templates are �lled, a predicate is associated

with each node, and the scenarios identi�ed according to the previous de�nitions, the

templates are processed to generate the VDCs using an algorithm.

This algorithm considers a set of nodes stored in a collection where each node is represented

by a record data type (like a JAVA class) with the following attributes:

� Number: denotes the node number as de�ned in the template,

� Nextnodes: denotes a collection of the node numbers of the successors nodes as

de�ned in the template,

� FollowMasterAction: speci�es if the node follows the master action or not, as de-

�ned in the template,

� Predicate: denotes the predicate associated with each node, its type is string.
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FOR each scenario S DO

search the exit node B /*B is such that B.Nextnodes = null*/

let A be the master action

pre = ""; post="" /*variables pre and post are initialized to empty Strings*/

FOR EACH node C of S DO

IF C.Number 6= A.Number ∧ C.Number 6= B.Number THEN

/* check if C does not follow A*/

IF C.FollowMasterAction THEN

IF post = ”” THEN post = ”; ” • C.Predicate

ELSE

post = post • ” ∧ ” • C.Predicate

END

ELSE

IF pre = ”” THEN pre = ”/” • C.Predicate

/* where • denotes the concatenation operator on strings*/

ELSE pre = pre • ” ∧ ” • C.Predicate

END

END

END

END

print A.Predicate • pre • post

END

3.3.4 De�ne the Global VDC for the given Vulnerability

The semantic transformation explained in section 3 helps to �nd the scenario suite,

a set of scenarios that show all the di�erent paths that cause the modeled vulnerability.

From a testing perspective we have to consider this scenario suite, it means we have to test

all the scenarios in order to detect the considered vulnerability.
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Therefore, we de�ne the global VDC representing the modeled vulnerability as the

disjunction of the all vulnerability detection conditions of each scenario (V DCi denotes

the VDC associated with each path i):

S = (V DC1 ∨ . . . ∨ V DCn)

3.4 Examples of VDC Creation

In this section, we illustrate the process of the VDC generation through some vulner-

ability examples. For each vulnerability, we give its description using the VCG or SGM

formalisms, them we show how to translate it to VDC.

3.4.1 VDC for CVE-2005-3192 vulnerability

Consider the VCG shown in Figure 3.1 for CVE-2005-3192 vulnerability, which is a

bu�er over�ow in Xpdf 3.01.

Figure 3.1: VCG for CVE-2005-3192

The �rst step of the process is to assign an identi�cation number for each node of the

graph as shown in Figure 3.1. Then, the di�erent scenarios can be generated as illustrated

below. First, we have to calculate the di�erent relations succi:
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� succ = {(1, 2), (1, 3), (2, 4), (3, 4), (4, 5), (4, 6), (5, 7), (6, 7)}
� succ2 = {(1, 2, 4), (1, 3, 4), (2, 4, 5), (2, 4, 6), (3, 4, 6), (3, 4, 5), (4, 5, 7), (4, 6, 7)}
� succ3 = {(1, 2, 4, 5), (1, 2, 4, 6), (1, 3, 4, 5), (1, 3, 4, 6), (2, 4, 5, 7), (2, 4, 6, 7),

(3, 4, 6, 7), (3, 4, 5, 7)}
� succ4 = {(1, 2, 4, 5, 7), (1, 2, 4, 6, 7), (1, 3, 4, 5, 7), (1, 3, 4, 6, 7)}

Now, we have to compute functions map_seti:

� map_set2[succ] = {{1, 2}, {1, 3}, {2, 4}, {3, 4}, {4, 5}, {4, 6}, {5, 7}, {6, 7}}
� map_set3[succ

2] = {{1, 2, 4}, {1, 3, 4}, {2, 4, 5}, {2, 4, 6}, {3, 4, 6}, {3, 4, 5},
{4, 5, 7}, {4, 6, 7}}

� map_set4[succ
3] = {{1, 2, 4, 5}, {1, 2, 4, 6}, {1, 3, 4, 5}, {1, 3, 4, 6}, {2, 4, 5, 7},

{2, 4, 6, 7}, {3, 4, 6, 7}, {3, 4, 5, 7}}
� map_set5[succ

4] = {{1, 2, 4, 5, 7}, {1, 2, 4, 6, 7}, {1, 3, 4, 5, 7}, {1, 3, 4, 6, 7}}

Finally, we deduce the set of scenarios: {1,2,4,5,7},{1,2,4,6,7}, {1,3,4,5,7} and {1,3,4,6,7}.

And for each one we have to de�ne its vulnerability detection condition.

In our example, the master action that may lead to the vulnerability is the use of a

memory allocation function (node 4), which is common to all the scenarios. To collect the

information regarding the master action we �ll the master action template.

Table 3.3: Master Action Templates for CVE-2005-3192

Item Description Node
1 Node number 4
2 Previous node 2, 3
3 Next node 5, 6
4 Function name malloc
5 Input parameter name bu�er_size
6 Input parameter type integer
7 Variable that receives function result bu�er
8 Type of the variable that receives function result pointer
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When the template is processed, the master action expression is:

malloc(buffer, buffer_size)

Which means the master action is the allocation of memory for the variable bu�er using

the function malloc which has the variable buffer_size as input. The other nodes are

analyzed with the condition template, considering the variables and functions indicated by

the master action, the result is shown in the next table:

Table 3.4: Condition Templates for CVE-2005-3192

Item Description Node Node Node Node Node
1 Node number 1 2 3 5 6
2 Previous node Null 1 1 4 4
3 Next node 2, 3 4 4 7 7
4 Search Variable Variable Variable Variable Variable
5 Name bu�er bu�er_size bu�er_size bu�er bu�er_size
6 Type Pointer Integer Integer Pointer Integer
7 Condition follows No No No Yes No

master action
8 Condition Fixed Result Result Unchecked Unchecked
9 Condition element user_input multiplication Null less than

Max integer

The predicates derived from the template are:

Table 3.5: Predicates for CVE-2005-3192

Node Predicate
1 Fixed(bu�er)
2 Result(bu�er_size, user_input)
3 Result(bu�er_size, multiplication)
5 Unchecked(bu�er, NULL)
6 Unchecked(bu�er_size, less than Max_integer)

Once the predicates are ready, it is necessary to get the VDCs for each of the scenarios.
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For instance, using the algorithm for scenario {1, 2, 4, 5, 7}, we have:

� The master action is:

”malloc(buffer, buffer_size)”

� Node 1 is evaluated, it does not follow master action: pre = ”/F ixed(buffer)”

� Node 2 is evaluated, it does not follow master action: pre = ”/F ixed(buffer) ∧
Result(buffer_size, user_input)”

� Next node is master action, it is skipped

� Next node is node 5, it follows master action:

post = ”;Unchecked(buffer,NULL)”

� Node 7 is the exit node and iteration for this scenario �nishes

The complete VDC expression for this scenario is printed:

malloc(buffer, buffer_size)/F ixed(buffer) ∧Result(buffer_size, user_input)

;Unchecked(buffer,NULL)

The VDC expressions for the rest of the scenarios are:

� Scenario {1, 2, 4, 6, 7}:

malloc(buffer, buffer_size)/F ixed(buffer)∧Result(buffer_size, user_input)∧

Unchecked(buffer_size, lessthanMax_integer)

� Scenario {1, 3, 4, 5, 7}:

malloc(buffer, buffer_size)/F ixed(buffer)∧Result(buffer_size,multiplication)

;Unchecked(buffer,NULL)

� Scenario {1, 3, 4, 6, 7}:

malloc(buffer, buffer_size)/F ixed(buffer)∧Result(buffer_size,multiplication)∧
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Unchecked(buffer_size, lessthanMax_integer)

3.4.2 VDC for CVE-2009-1274 vulnerability

Consider the SGM for CVE-2009-1274 in �gure 3.2, which shows how a bu�er over�ow

vulnerability is caused in the xine media player.

Figure 3.2: SGM for CVE-2009-1274

Analyzing this model we observe the following features: there are six di�erent subgoals.

Two of them are counteracting subgoals: use adaptive bu�ers and code controlled by

range check; while subgoal unsafe use of malloc/calloc is associated with a SGM. Thus,

we have to transform this graph for creating the VDCs: we replace the subgoal unsafe use

of malloc/calloc with its associated SGM, we also replace the counteracting subgoals with

contributing ones and the resulting graph is shown in Figure 3.4.

Applying the semantic transformation to the SGM of Figure 3.4, the resulting sce-

nario suite contains three scenarios that cause the modeled vulnerability (CVE-2009-1274):

S = {{1,2,3,4,5,9}, {1,2,3,4,6,9}, {1,2,7,8,9} }

Now a vulnerability detection condition has to be de�ned for each of these scenarios.
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Figure 3.3: SGM for Subgoal Unsafe Use of malloc/calloc

Use of nonadaptive buffers

Failed to check input 
parameters to malloc

CVE-2009-1274

Unchecked integer 
multiplication

Use of malloc/calloc/
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The return value of malloc 
is not checked
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9

Data read from user

Range check is missing

Data copied within loop

Figure 3.4: Transformed SGM for a Bu�er Over�ow in xine

The next part consists in identifying master actions. In our case we can identify two dif-
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ferent master actions that lead to the vulnerability, given by nodes 4 and 7. The templates

associated with these nodes are as follows.

Table 3.6: Master Action Templates for CVE-2009-1274
Item Node Node

1. Node number 4 7
2. Previous node 3 2
3. Next node 5,6 8
4. Function name Alloc CopyData
5. Input parameter name bu�er_size user_input, loop_counter
6. Input parameter type integer string, integer
7. Variable that receives function result bu�er bu�er
8. Type of the variable that receives function result pointer pointer

Summarizing, we have that variable buffer_size has to be considered at least in the

templates for nodes 4, 5 and 6. Node 7 is processed in a similar manner and the results of

the analysis for both master actions are shown in Table 3.6.

The master action expressions are:

Alloc(bu�er, bu�er_size) and CopyData(loop_counter, user_input).

Table 3.7: Condition Templates for CVE-2009-1274
Item Node Node Node Node Node Node

1. Node number 1 2 3 5 6 8
2. Previous node Null 1 2 4 4 7
3. Next node 2, 7 3 4 10 9 10
4. Search Variable Variable Variable Variable Variable Variable
5. Name bu�er bu�er_size bu�er_size bu�er bu�er_size loop_counter
6. Type pointer integer integer pointer integer integer
7. Condition follows No No No Yes No No
master action
8. Condition Fixed Result Result Unchecked Unchecked Unchecked
9. Condition element user_input null null bu�er_bounds counter_bounds

The other nodes are analyzed with the condition template, considering the variables

and functions indicated by master actions. The process is shown with one node, number

2, which is about reading data from the user. Such a condition creates problems if the

data is used in an integer arithmetic operation or if the data is copied inside a loop. We

de�ne a variable user_input in node 2, that holds the data provided by the user. The
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same variable has to appear in nodes 3 and 7 to keep the relation. Table 3.7 contains the

results of the analysis for nodes 1, 2, and 3, 5, 6 and 8.

The predicates derived from the templates are listed in table 3.8.

Table 3.8: Predicates for CVE-2009-1274

Node Predicate
1 Fixed(bu�er)
2 Result(bu�er_size, user_input)
3 Result(bu�er_size, arithmetic)
5 Unchecked(bu�er, null)
6 Unchecked(bu�er_size, bu�er_bounds)
8 Unchecked(loop_counter, counter_bounds)

Finally, the vulnerability detection condition for scenario {1, 2, 3, 4, 5, 9} is given by the

expression:

alloc(buffer, buffer_size)/F ixed(buffer) ∧Result(buffer_size, user_input)

∧Result(buffer_size, arithmetic)

;Unchecked(buffer,NULL)

This vulnerability detection condition expresses a potential vulnerability when the memory

space for a non-adaptive bu�er is allocated using the function malloc (or similar) whose

size is calculated using data that is obtained from the user and the return value from

memory allocation is not checked with respect to null .

In a similar way the VDCs for scenarios 2 and 3 are generated and the VDC for CVE-

2009-1274 is given by the expression:

V DC = V DC1 ∨ V DC2 ∨ V DC3
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3.4.3 VDC for CVE-2006-5525 vulnerability

This vulnerability is more complex since the VCG includes several composed nodes,

conjunction nodes and some qualitative causes as shown in Figure 3.5.

Figure 3.5: VCG for CVE-2006-5525
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First, it is necessary to simplify the VCG in order to identify the scenarios. The simpli�-

cation is done following these steps:

1. Discarding all qualitative nodes. In this case: "Tables names can be guessed",

"Source code available" and "Exhaustive blacklist cannot be constructed".

2. The conjunctions nodes are converted into two sequential nodes.

3. The composed nodes are replaced by their components.

After this simpli�cation the resulting VCG is shown in Figure 3.6:

Figure 3.6: Simpli�ed VCG for CVE-2006-5525
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In this case, the vulnerable action is the use of SQL queries as indicated in node one,

so �lling the master action template we obtain:

Table 3.9: Master Action Template for CVE-2006-5525

Item Description Node
1 Node number 1
2 Previous node Null
3 Next node 2
4 Function name Sql_query
5 Input parameter name s
6 Input parameter type string
7 Variable that receives function result
8 Type of the variable that receives function result

The expression for the master action is Sql_query(s); or the execution of a SQL query

using a variable s of string type.

The condition templates for the other nodes are:

Table 3.10: Condition Template for CVE-2006-5525, 1/3

Item Description Node Node Node
1 Node number 2 3 4
2 Previous node 1 2 3
3 Next node 3 4, 5, 7, 10 9
4 Search Variable Sql error message Black list
5 Name s sql error message black list
6 Type string sql error message black list
7 Condition follows No Yes No

master action
9 Condition Result Un�ltered Missing
10 Condition element user_input sql comments
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Table 3.11: Condition Template for CVE-2006-5525, 2/3

Item Description Node Node Node
1 Node number 5 6 7
2 Previous node 3 5 3
3 Next node 6 9 8
4 Search sql query black list variable
5 Name sql query black list s
6 Type sql query black list s
7 Condition follows No No No

master action
9 Condition Support missing contains
10 Condition element UNION UNION metacharacter

Table 3.12: Condition Template for CVE-2006-5525, 3/3

Item Description Node Node Node
1 Node number 8 9 10
2 Previous node 7 4,6 3
3 Next node 11 11 11
4 Search variable variable variable
5 Name s s s
6 Type string string string
7 Condition follows no no no

master action
9 Condition not escaped contains contains
10 Condition element metacharacters unquoted content unquoted content
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The predicates are then:

Table 3.13: Predicates for CVE-2006-5525

Node Predicate
2 Result(s, user_input)
3 Un�ltered(ErrorMessage)
4 Missing(blacklist, sql comments)
5 Support(Sql_query, UNION)
6 Missing(blaclist,UNION)
7 Content(s, metacharacters)
8 Not_escaped(s, metacharacters)
9 Content(s, unquoted_content)
10 Content(s, unquoted_content)

The VCG in Figure 3.5 has 4 di�erent scenarios that could lead to the vulnerability

and their expressions for each of them are:

� Scenario {1, 2, 3, 4, 9, 11}:

Sql_query(s)/Result(s, user_input) ∧Missing(blacklist, sqlcomments)∧

Content(s, unquoted_content);Unfiltered(ErrorMessage)

� Scenario {1, 2, 3, 5, 6, 9, 11}:

Sql_query(s)/Result(s, user_input) ∧ Support(Sql_query, UNION)∧

Missing(blaclist, UNION)∧Content(s, unquoted_content);Unfiltered(ErrorMessage)

� Scenario {1, 2, 3, 10, 11}:

Sql_query(s)/Result(s, user_input) ∧ Content(s, unquoted_content);

Unfiltered(ErrorMessage)
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� Scenario {1, 2, 3, 7, 8, 11}:

Sql_query(s)/Result(s, user_input) ∧ Content(s,metacharacters)

∧Not_escaped(s,metacharacters);Unfiltered(ErrorMessage)

3.5 Detection of Vulnerabilities using Passive Testing

and VDC

In active testing special inputs are crafted to test the behavior of the system under

test while in passive testing the behavior is evaluated through the monitoring of its execu-

tion trace without entering any special data. The trace is compared to formal models to

determine the presence or not of faults on it.

A passive testing technique combined with our approach has been used in a prototype

tool developed by Montimage. The tool called TestInv-Code [33] detects software vulner-

abilities in C programs using VDCs as inputs and analyzing the traces of the program

execution. The VDCs are expressed in XML, which are then translated to a set of predi-

cates or patterns that may appear in the code under evaluation. The tool aims at detecting

vulnerabilities in an application by analyzing the traces of the code while it is executing.

By traces we mean here the disassembled instructions that are being executed. They are

produced by executing the program under the control of the TestInv-Code tool, similar to

what a debugger does.

In order to use the TestInv-Code tool the �rst step consists in de�ning the vulnerabilities

causes that are of interest. Starting from informal descriptions of the vulnerabilities and

VDCs models, a set of conditions that lead to a vulnerability are derived. These conditions

are formally speci�ed as regular expressions that constitute the �rst input for TestInv-Code

tool.

Thus, passive testing using TestInv-Code proceeds along the following steps:

1. Informal de�nition of vulnerable scenarios. A security expert describes the di�erent

scenarios under which a vulnerability may appear.
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2. De�nition of VDC. A VDC expressing formally the occurrence of the related vulner-

ability is created for each possible situation that leads to the vulnerability.

3. Instantiation of the VDC. The predicates of the VDCs need to be instantiated with

speci�c information related to the programming environment used. This will result

in regular expressions that can be matched against the trace.

4. Vulnerability checking. Finally, TestInv-Code checks for evidence of the vulnerabil-

ities during the execution of the program. Using the VDCs and the corresponding

regular expressions, it will analyze the execution traces to produce messages identi-

fying the vulnerabilities found, if any, and indicating where they are located in the

code.

Figure 3.7: Passive Testing for Vulnerability Detection

Consider for instance the following V DC1:

Assign(x, y)/Is_notAllocated(x)

where variables x and y are the generic representation of any variable/expression inside

a C program. In practice to perform the vulnerability detection, those variables have to
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be instantiated with real variables/expression from the C program. If we consider the

following C program as input of the tool:

void main(){

1. int *a;

2. int b;

3. *a=b+2;}

then the tool will instantiate, at each point of the program, the predicates that appear in

V DC1 to produce the following formula:

� At point 1: Is_notAllocated(a)

� At point 2: Is_notAllocated(a)

� At point 3: Assign(a, b) and Is_notAllocated(a). Then in step 4, the tool detects

the vulnerability in the program since VDC1 is veri�ed at point 3.

Figure 3.7 depicts the passive testing architecture for vulnerability detection. As shown,

the TestInv-Code tool takes as input:

1. The vulnerability causes. The �le containing the vulnerabilities causes formally spec-

i�ed using VDCs and the corresponding regular expressions.

2. The executable. The Executable Linked Format (ELF) �le for the application that

is to be tested. This �le contains the binary code of the application and it should

include debug information if we want the tool to be able to determine the line of code

where the vulnerability occurs and processes them to produce the �nal verdicts.

3.6 Conclusions

Vulnerability models as VCG and SGM are useful to understand how vulnerabilities

are created in a program since they show the sequence of causes ("events" or "actions")

that may lead to known vulnerability. These models could be valuable to train program-

mers about vulnerabilities but unfortunately they cannot be directly used in vulnerability

detection. Their constraint is due to the use of natural language to express the caused.

In this chapter we have presented a method to formally describe the causes indicated

in the vulnerability model. In a �rst step, the causes expressed in natural language are
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analyzed using templates; these templates are prede�ned tables that help us to formalize

them. Later the content of the templates are used to generate the VDCs expressions which

are the formal expression of the sequence of causes that creates the vulnerability.

The formal expression of VDCs makes them suitable to be used in automated tools, and

it has been proved in practice by Montimage and their passive testing tool TestInv-Code.

This tool takes VDCs expressed in XML as input which are then translated to a set of

predicates or patterns that are later veri�ed in the execution trace of the program under

evaluation and �nally emits a verdict about the presence of the vulnerability.
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This chapter presents a model-checking based approach for dynamic detection of vul-

nerabilities in a C program. In our work, we are interested in C programs that read data

from users because C language is a popular and performance programming language that

can be vulnerable if it is not use with precautions. Considering that some C standard func-

tions are vulnerable due to the lack of automatic bounds checking; then it is important to

avoid vulnerabilities when creating programs in C. In our approach we de�ne translation

rules and security assertions in order to generate a formal speci�cation in Promela from

the considered C code. On the generated formal speci�cation, the Spin model checker is

used to detect the presence or not of vulnerabilities. If there is any assertion violation, due

to a possible vulnerability, a counter example is given by Spin. It is then used as a test case

of the real C program to con�rm the vulnerability presence. The use of model checking

permits a maximal coverage of the state space, that is, better vulnerability detection. The

goal of our work is to show the feasibility of the approach that combines model checking

and fault injection and needs improvements to take all the vulnerable concepts of the C

language. This work has been published mainly in [28].

4.1 Overview of Spin Model Checker

Promela is a formal language originally devoted for the analysis and veri�cation of

communication protocols [20]; its syntax is very similar to that of C language, but it also

includes control �ow statements based on Dijkstra's guarded commands. A Promela formal

speci�cation is composed of set processes that can communicate among them through

shared memory represented as global variables. Each process consists of a set of actions

that are considered asynchronous and interleaved, which means that in every step only one

enabled action is performed and without any additional assumptions of the relative speed

of the process execution.

The spin model checker can do random or interactive simulations to perform the valida-

tion of the Promela model by scanning the state space, if there is a property violation then

a counterexample is generated. The main advantage of Spin is the generation of optimized

veri�ers from a Promela model [22]. The veri�er is setup to be fast and to use a minimal

amount of memory. The exhaustive veri�cations performed by Spin are conclusive, estab-
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lishing whether or not a system's behavior is error-free. In fact, very large veri�cation that

cannot be performed with automated techniques can be run in Spin with the �bit state

space� technique. This method collapses the state space to a few bits per system state

stored.

4.2 Overview of the Approach

Our proposal to deal with vulnerabilities using the Spin model checker includes the

following phases (see Figure 4.1):

Figure 4.1: Detecting Vulnerabilities in C using Spin Model Checker

1. In a �rst step, the C code is transformed into an abstract form in order to be processed

to generate a Promela speci�cation. To this end, we have de�ned a sub-set of C

language that includes, among others, the declarations of bu�ers and arithmetic

data.

2. In the second step, a Promela formal speci�cation is generated from the C program

to analyze. The Promela speci�cation contains the useful information about the

vulnerable elements that appear in the C code. In case of bu�er for instance, we

generate its size and also the size of the data it holds at each moment. To detect

vulnerabilities, we add some assertions to state that each vulnerable element must
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always be in a safe state. For bu�er for example, we add an assertion to specify that

the size of the data it holds is always less than its size.

3. To detect the presence/absence of vulnerabilities, the Spin model checker is used on

the generated Promela speci�cation. The presence of a vulnerability is detected by

an assertion violation. In that case, a counterexample is returned by Spin to give the

values of the di�erent variables that cause the violation of the related assertion.

4. To highlight the part of the C code that corresponds to the detected vulnerability,

we apply a fault injection approach by replaying the counterexample found in the

previous step on the C program.

The following section describes the generation of the Promela formal speci�cation from

a C program in order to detect vulnerabilities. It is important to note that the goal of the

work presented here is to show the feasibility of the approach. This is why the approach

does not deal with all the concepts the C language. Some ideas to extend approach are

included as future work. Our approach considers a subset of the ANSI C language satisfying

the following assumptions:

� the ANSI-C program has been already preprocessed, e.g., all the #define directives

are expanded (inline expansion).

� the supported C types are primitive integer and array.

� function calls are expanded (inline expansion), the return statement is replaced by

an assignment (if the function returns a value).

� all the arithmetic operations contain two operands, that is, they are of the form

(z := x op y). Multi-operand operations are transformed into binary operations

by introducing temporary variables. For instance, operation (a = a1 + a2 + a3) is

replaced by the following two binary operations: atemp = a1+a2, a = atemp+a2. This

transformation is necessary in order to detect any arithmetic over�ow. Indeed, multi-

operand operations may mask some over�ows like in statement (x = maxint+1− 1)

where the sub-assignment (x = maxint+1) produces an over�ow while its equivalent

(x = maxint) does not.

� the declaration of variables, bu�ers,arrays pointers, and �les,

� the prede�ned C functions like input/output functions (printf , scanf , etc.) and also
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the functions on bu�ers (strcpy, strncpy) and �les (fscanf , fgets),

� the assignment, the sequence and the choice (IF) statements.

Considering these elements, the present chapter presents the detection of the follow-

ing vulnerabilities: arithmetic over�ow/under�ow, bu�er over�ow, incorrect array index,

vulnerabilities related to pointers.

4.3 The Promela Model of a C Program

An important step in our approach is the creation of a Promela model based on the C

program. The C program structure we consider include: functions, variables, statements

and expressions and comments; while the Promela [9] model consists of processes, message

channels and variables.

In this transformation process C functions are mapped to Promela processes. For

instance, the main function in C is translated into the init process in Promela. C statements

and expressions are mapped to their Promela equivalent while the comments are removed.

Regarding the C variables, we only consider those who can have over�ows or under�ows

as explained in the next section.

4.3.1 Mapping of C Functions

To facilitate the presentation of our approach, we consider that the C program contains

a unique function, that is, the particular main function that denotes the entry point of the

program. In other words, we make the hypothesis that all other functions are expanded in

the main function.

The main function is translated into the init Promela process that is implicitly active

(i.e., running) in the initial system state as shown in the rule mapping of Table 4.1.

4.3.2 Mapping of Bu�ers

To detect bu�er over�ows, we have to generate information about the maximum size

of each declared bu�er and also the amount of the data that it contains at any time.

This information is stored in a constant buffer_max and a variable buffer_used. The
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C Code Promela Code
�Global Variable Declarations� �Global Variable Declarations�
main() { init() {

�Local Variable Declarations� �Local Variable Declarations�
S S′

} }

Table 4.1: Translation C to Promela

Bu�er declaration buffer_max

char bu�[N ] N
char bu�[N ]="hello_world" N
char bu�[]; 0
char bu�[] = {′a′,′ b′,′ c′} 3
char *bu� ="hello_world" 11

Table 4.2: De�nition of the size of a bu�er

value of constant buffer_max is de�ned according to the declaration of the bu�er. Some

examples are given in table 4.2.

Variable buffer_used is updated each time a new value is assigned to the bu�er using

di�erent C instructions that modify the value of the bu�er. Table 4.3 gives some examples.

For functions gets, fscanf and scanf , we have to deal with the limit cases, that is,

the bu�er may contain data of maximum size: buffer_used = buffer_max + N where

N denotes any big number. For our experiments, we have chosen buffer_used equal to

buffer_max + 1 to simulate a potential attacker. To detect a potential vulnerability at

each point of the program, we have to add the following assertion after each assignment

on variable buffer_used

ASSERT(buffer_used ≤ buffer_max)

4.3.3 Mapping of C Language Variables

Since we are considering C programs that read data from users, it is necessary to

simulate such process in the model in order to have an automatic veri�cation. However,

we �rst have to review the variable types in C and its correspondence in Promela types.
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Bu�er assignment PROMELA Translation

char bu�[N ]="hello_world" buffer_used = 11;
buff = malloc(sizeof(char∗) ∗ N) buffer_max = N ;

buffer_used = 0;
gets(buff)
fscanf(file_name, ”%s”, buff)
scanf(”%s”, buff) buffer_used = buffer_max+ 1

fgets(buff, size, fp)
read(fd, buff, size)

buff_used := size;

strcpy(dest_buff, source_buff) dest_buff_used = source_buff_used;
strncpy(dest_buff, src_buff, size) dest_buff_used = size;

Table 4.3: PROMELA translation of C instructions on bu�ers

In Table 4.4 we present the default variable types in C language, while Table 4.5 presents

the Promela types.

Name Size Range
short int 2 bytes −215 to 215 − 1
unsigned short int 2 bytes 0 to 216 − 1
unsigned int 4 bytes 0 to 232 − 1
int 4 bytes −231 to 231 − 1
unsigned long int 4 bytes 0 to 232 − 1
long int 4 bytes −231 to 231 − 1
unsigned char 1 byte 0 to 28 − 1
char 1 byte −27 to 27 − 1
bool 1 byte true or false
�oat 4 bytes
double 8 bytes
long double 12 bytes

Table 4.4: C language variables

As we can observe comparing both tables there is no complete correspondence between

all the C variables and the Promela variables which means we have to map the variables.

Nevertheless we are not interested in all C variables but those that are more susceptible to

over�ow or under�ow like integer types or those who can be easily converted to integers like

char types. These C variables are all transformed to integers in Promela, but establishing
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Name Size Range
bit 1 bit 0 to 1
bool 1 bit False, true
byte 8 bit 0 to 28 − 1
short 16 bit −215 − 1 to 215 − 1
int 32 bit -231 − 1 to 231 − 1

Table 4.5: Promela variable types

bounds that will help in the detection of vulnerabilities, as shown in Table 4.6. For instance,

a variable v in C of type short integer is equivalent to the Promela variable v of type int

where MIN ≤ v ≤MAX with MIN = −32767 and MAX = +32767.

C type Promela type Constraints (min, max value)
short int Int −215 ≤ int ≤ 215 − 1
Unsigned short int int 0 ≤ int ≤ 216 − 1
unsigned int int int
Int int int
Unsigned long int int int
Long int int int
unsigned char int 0 ≤ int ≤ 28 − 1
char int −27 ≤ int ≤ 27 − 1
bool bit or bool

Table 4.6: C variables transformed into Promela

Let us remark that since the Unsigned long int type has been mapped into int whose

domain is smaller, it is possible to get a false positive during the veri�cation of the Promela

code.

4.3.4 The C Language Input Functions

To simulate any of the input functions of C (e.g., scanf) that read a variable v of

type t, whose minimum and maximal values are t_min and t_max respectively, we use

a Promela process called input_t, which randomly generates a value to the corresponding

variable. This Promela process is speci�ed as follow (t′ denotes the Promela translation of

type t):

78



int t_min= MIN;

int t_max= MAX;

t' result;

proctype input_t(){

result = t_min;

do

:: if

::(result > t_max-step1) -> result= t_min+step2;

::(result <= t_max-step1) -> result= result+step1;

fi

:: break;

od

}

Let us give some explanations about process input_t. This process is used to produce a

value for a variable of type t whose translation into Promela is t′. The de�nition of process

input_t is based on a global variable result, which is initialized to the minimum value of

type t′. In order to consider all the possible values of result, the variable is incremented by

an amount equal to step1 until the maximal value is reached. If t_max is reached before

any assertion violation, we check other values by going back (result = t_min + step2)

with step2 6= step1. We chose step1 di�erent from step2 in order to obtain di�erent values

when going back. Indeed, if step1 and step2 are equal, the process will generate the same

values as the �rst iteration. Also, we consider step1 and step2 less or equal to t_max in

order to avoid arithmetic over�ow/under�ow since the beginning of the program. At any

moment, we can break the loop in order to produce the �nal value of result.

Recall that our goal is to read a value for a variable v of type t. So, each C scanf

function to read a variable v is translated into Promela by the two following statements:

run input_t();

timeout -> v=result;

To read the Promela variable v, process input_t is launched, then we have to wait

that it ends its execution, once �nished predicate timeout becomes true to state that no
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statement is executable in any other active process. In that case, value of result is assigned

to variable v.

4.3.5 Arithmetic Over�ow/Under�ow

To detect arithmetic over�ow/under�ow, we have to check the result of each arithmetic

operation. Since an arithmetic operation can be composed by one or more variables or

expressions then we have to consider only binary operations, that is, we transform each

multi-operation into several binary operations by introducing temporary variables; the

goal is to detect the speci�c operation or value that causes the problem. For instance, the

following C arithmetic statement:

a = b+ c+ d+ e

can be grouped as a = (((b + c) + d) + e) and then we use the temporary variables to

perform the operation:

a1 = b+ c;

a2 = a1 + d;

a = a2 + e;

Also, to detect type conversion over�ow/under�ow, we transform any assignment (v1 = v2)

into a binary expression (v1 = v2+0). We make such a transformation in order to use the

same approach to detect all kinds of over�ow/under�ow vulnerabilities.

After transforming all arithmetic operations into binary ones, type over�ow/under�ow

can be detected by de�ning the following Promela process that check the result z of an

operation (z = x + y) with respect to the values of both operands x and y. For instance,

when variables x and y are both positive, the value z must be greater than both (z ≥
x ∧ z ≥ y) otherwise a type over�ow is detected. Process check is de�ned as follows:

proctype check(int x, y, z){

if

::(x>=0) -> if

::(y>=0) -> assert(z>=x & z>=y);
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::(y<0) -> if

::(x> -y) -> assert(z>=0);

::(x< -y) -> assert(z<0);

fi

fi

::(x<0) -> if

::(y>=0) -> if

::(y>= -x) -> assert(z>=0);

::(y< -x) -> assert(z<0);

fi

::(y<0)-> assert(z<=x & z<=y);

fi

fi

}

Process check being de�ned, we translate each C arithmetic operation (zz = xx + yy) by

the following Promela statements:

zz = xx+ yy;

run check(xx,yy,zz);

Let us remark that process check can also detect type conversion vulnerability.

4.3.6 Incorrect Array Index

For every C array a of size_a items whose index of variable type t is i, then any time

an element of the array is going to be accessed we add the following two assertions previous

to the element access :

assert(i<size_a);

assert(i>=0);
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4.3.7 Vulnerabilities on Pointers

This section describes how we deal with two main vulnerabilities on pointers but without

considering neither the arithmetic operations on pointers nor the aliasing concept. On

pointers, two known vulnerabilities are: double free on pointers and deleting unallocated

pointers. Double free vulnerability means that in a corresponding C code a pointer ∗p
is declared and the programmer tries to delete the allocated memory for p twice, while

deleting unallocated pointers means that the programmer tries to delete a memory which

is not allocated before. To detect such vulnerabilities, we de�ne a variable alloc_p to

memorize the number of times a memory is allocated. This variable is updated as follows:

initialized to 0, alloc_p is incremented each time an allocation statement on p is used; it

is decremented each time a free statement is applied on it. To detect vulnerabilities on

pointers, we generate the following Promela statements from the C program:

� Allocation statement on p: such a statement is translated into:

assert(alloc_p == 0);

alloc_p = alloc_p+1;

the �rst statement checks that the memory has not already allocated.

� Free statement on p: such a statement is translated into:

assert(alloc_p == 1);

alloc_p = alloc_p-1;

the �rst statement checks that the memory is really allocated before any statement.

In this way, a double free memory can be detected.

� Other statements on p: this case denotes the use of variable p. So, we have to check

that the used memory is allocated by generating the following Promela assertion:

assert(alloc_p == 1);

4.4 Injecting Data into a C Code for Detecting Vulner-

abilities

The counterexample returned by SPIN should correspond to a real vulnerability in

the initial C program, but it may not be always the case due to the inherent limitations
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of Promela language and also because we do not prove the correctness of the translation

rules. So, in order to guarantee that the counterexample is valid, an injection test is

performed. Then, the C program is executed and fed with input data based on the resulting

counterexample in order to verify that a vulnerability is present in the program. The

process of injecting data is not trivial and di�erent options are possible.

1. The produced counterexample directly provides input data for the initial C program.

2. The values of variables corresponded to input data values have been changed during

the program execution and SPIN produced the last values of those variables.

We note that in the former case corresponding input data could be injected manually

by a user but automatic injection is preferable, i.e., it is desirable to automate the injection

process. In both cases, in order to con�rm that the alarm was not false we modify the

initial C code injecting special corresponding assignments in some parts of the initial code.

For this reason, we study C code instructions, so-called input functions, which deal with

input data. A C function is an input function if it reads the value (or values) of a variable

(or several variables) from a keyboard or from a �le. These input functions are scanf ,

getc, read, fscanf e.t.c. Two cases are considered below.

� Let SPIN produce the value e for a variable v as a counterexample. In this case,

we scan the C program in order to �nd an input function that reads variable v.

The C program is then modi�ed by direct injecting the instruction (v = e) after

the corresponding input function. We run the modi�ed program and if no error

message about incorrect data appears but the result of the program is incorrect then

a program is vulnerable, and we output this information. If such an error message

appears for the value e of the variable v then we conclude that the program is safe

w.r.t. this vulnerability.

� Let SPIN produce the value e for a variable v as a counterexample; however, in the

PROMELA code the v value has been recalculated several times and e is its current

value. In this case, after running an input function in a corresponding PROMELA

code we put instruction printf(v) in order to get the counterexample that has to be

injected into the initial C code. Afterward we proceed as in Case 1.
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4.5 Tool Support

To make the presented approach workable, we are developing a tool called SecInject -

Security Injection whose architecture is depicted in Figure 4.2.

Figure 4.2: SecInject Tool Architecture

The following part brie�y explains the architecture of the SecInject tool which is com-

posed of three main modules:

1. C2P Translation module: Takes two inputs and combines then into a unique Promela

speci�cation. First input is the C code to be tested, which is translated into Promela.

The second input is a Promela model of the vulnerability that is taken from the

Shields SVRS repository.
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2. The Model Checking module: Executes the Spin model checker with the unique

Promela speci�cation generated in the previous module to determine if the speci�-

cation is correct, if yes, a verdict of safe code is emitted, otherwise an injection test

case if prepared with the counterexample.

3. The Test Engine: Takes the test case and injects the speci�ed values to the executable

C code and evaluates the response to give a verdict con�rming the detection of the

vulnerability if any or safe code on the contrary.

4.6 Illustrative Example

To illustrate our approach, let us apply the di�erent translation rules to the following

C program:

#include <stdio.h>

int main(void){

int n,n1,n2;

printf("Enter first integer n1= ");

scanf("%d", &n1);

printf("\nEnter second integer n2= ");

scanf("%d", &n2);

if (n1>=n2) n=n1+n2;

else n=n2-n1;

}

and then we obtain the Promela speci�cation below:

int n;

int n1;

int n2;

int v;

int t_min = -1073741824;

int t_max = 1073741824;
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int step1 = 2;

int step2 = 3;

proctype input_t(){

v=1;

do

::

if

:: (v > t_max) -> v = t_min+step2 ; break;

:: (true) -> v = v +step1;

fi

:: break;

od

}

proctype check(int x, y, z){

if

::(x>=0) -> if

::(y>=0) -> assert(z >= x); assert(z >= y);

::(y<0) -> if

::(x > -y) -> assert(z >= 0);

::(x < -y) -> assert(z < 0);

fi

fi

::(x<0) -> if

::(y>=0) -> if

::(y >= -x) -> assert(z >= 0);

::(y< -x) -> assert(z < 0);

fi

::(y<0)-> assert(z <= x); assert(z <= y);

fi
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fi

}

init {

run input_t();

timeout -> n1=v;

run input_t();

timeout -> n2=v;

if

:: (n1 >= n2) -> n = (n1 + n2); run check(n1, n2, n);

:: else -> n = (n2 - n1); run check(-n1, n2, n);

fi;

}

This Promela speci�cation is veri�ed by the Spin model checker. It detects an assertion

violation for the addition and gives a counterexample with the values of n1 and n2 that

cause it:

n1 = 1073741834 and n2 = 1073741834

Now, in order to determine if these values create a vulnerability in the C program, we

inject both values to the executable C code and we probe the result is not correct, so the

C program is vulnerable.

4.7 Conclusion

The advantage of the model checking based approach is that the C code does not need

to be changed in order to test it for vulnerability detection; however the di�culty resides

in obtaining the right model of the code under evaluation. Our approach considers C

programs that read data from users, since this is one of the main sources of vulnerabilities

because if the data provided is not correctly validated it can cause a vulnerability during

run time with undetermined consequences.

Our method takes a C program that read data from users and transforms it to a Promela
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model using some transformation rules. Then some assertions are added to state that each

vulnerable element must always be in a safe state. The model and the assertions conforms

a Promela speci�cation that is veri�ed using Spin model checker. An assertion violation is

a sign of a vulnerability in the C program, so the counterexample given by Spin is used by

a fault injector to demonstrate the presence of the vulnerability in the original C program.

Some tests were done to show the validity of our method, which proved to be useful to �nd

speci�c values for which a C program is vulnerable.

The approach presented in this chapter is close to that introduced in [37] that uses

also model-checking technique. However, we think that our approach is more general since

it does not deal with bu�ers only but it considers more C constructs and vulnerability

kinds. In addition, our approach does not modify the initial C code since the assertions

are generated automatically when producing the PROMELA code. Finally, our approach

can be automated by adapting the Modex [30] tool dedicated to the veri�cation of multi-

threaded software that is written in the C programming language. We did not select this

option because the Modex tool is complex and it is very hard to use it.
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This chapter presents some practical experiences of the approaches considered in this

thesis. First, we present the work done in collaboration with Montimage enterprise. They

have developed a tool to graphically describe the VDCs as well as a tool to detect vulner-

abilities using VDCs. The tool is evaluated on a real size application XINE 1 which was

written in C language. More details can be found in [13]. Finally, the model checking

approach is applied to some well known algorithms.

5.1 Evaluation of the VDC-based Approach

This section describes the VDC tool editor developed by Montimage in order to design

and store VDCs. It also mentions some of the features of TestInv-C vulnerability testing

tool.

5.1.1 Montimage VDC Editor and TestInv-C Tool

The VDC editor was developed as a GOAT 2 plug-in. It o�ers security experts the

possibility to create and store vulnerability detection conditions (VDCs). The VDC editor

has the following functionalities:

� The creation of new VDCs corresponding to vulnerability causes from scratch and

their storage in an XML format.

� The visualization of already conceived VDCs.

� The editing (modi�cation) of existing VDCs in order to create new ones.

The VDCs are stored in an XML format �le that constitutes one of the inputs for

the Montimage vulnerability detection tool, called TestInv-Code. The VDCs are then

instantiated in the tool in order to establish the conditions to be evaluated during program

execution and detect a given vulnerability. A vulnerability is discovered if a VDC signature

is detected on the execution trace.

In the editor a VDC is mainly composed of 3 parts:

1. Master condition: The triggering condition, also called master action (denoted a).

1. http://www.xine-project.org
2. http://www.ida.liu.se/divisions/adit/security/goat/
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Figure 5.1: VDC for "Use of Tainted Value in malloc" in GOAT.

When analyzing the execution trace, if this condition is detected, we should verify

if the state and post conditions of the VDC hold as well. If yes then a vulnerability

has been detected. A master condition is mandatory in a VDC.

2. State condition: A set of conditions related to the system state (denoted P(Var,Act)).

The state condition describes the states of the speci�ed variables at the occurrence

of the master action. We make the state condition also mandatory since predicate

P (V ar,Act) is often present. If it is absent, the user can put value True for this

predicate.

3. Post condition: A set of conditions related to the system future state (denoted

P′(Var,Act)). If a master action is detected in the state condition context, then

we should verify if the post condition holds in the execution that follows. If this is

the case, a vulnerability has been detected. Post condition is not mandatory in a

VDC.

Figure 5.1 shows the top-level VDC for the bu�er over�ow vulnerability modeled in

GOAT. This vulnerability detection condition concerns the use of a tainted value in a

memory allocation. The textual representation of this VDC is:

buffer = Memory_allocation(buffer_size)/(Fixed(buffer)∧Tainted(buffer_size));

Unchecked(buffer,Not_equal,NULL)

The graphical notation used to edit VDCs is de�ned as follows:

� Root : denoted by , the root node of VDC which represents the entire VDC.
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� Master action: denoted by , it represents the triggering con-

dition. If detected, the state and post conditions need to be checked.

� State condition: denoted by , it represents a set of condi-

tions that should have occurred prior to the master action in order to detect the

vulnerability.

� Post condition: denoted by , it represents a set of conditions

that should occur following the master action in order to detect the vulnerability.

SimpleCondition-Node: denoted by , it represents the label

of a simple condition in VDCs.

� VDC Function Parameters : denoted by:

a condition in a VDC is represented by a function with parameters (at least one).

Each parameter has a name and a type (variable, operator or value).

� And Gate: denoted by , the "And" gate is used to build a conjunction of at

least 2 conditions. The result is complex condition.

� Or Gate: denoted by , the "Or" gate is used to build a disjunction of at least

2 conditions. The result is complex con-dition.

5.1.2 XINE Application

XINE 3 an open source application and free multimedia player that plays back audio

and video which was written in C, was selected as case study for the tool TestInv-C since

it is a real world application, is open source code (code available free of copyright), and

3. http://www.xine-project.org
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because it contains a number of known vulnerabilities which can be used to demonstrate

the e�ectiveness of our detection approach.

The application contains a set of modules and libraries however we are interested in

xine-lib 4 (xine core), module developed in C language. We selected an obsolete version of

xine-lib that is known as vulnerable.

5.1.3 Case Study: XINE CVE-2009-1274 Vulnerability

The version v1.1.15 of XINE application has several vulnerabilities, in our case of study

we dealt with with CVE-2009-1274 as explained below:

� Summary: Integer over�ow in the qt_error parse_trak_atom function in

de-muxers/demux_qt.c in xine-lib 1.1.16.2 and earlier allows remote attackers to

execute arbitrary code via a Quicktime movie �le with a large count value in an

STTS atom, which triggers a heap-based bu�er over�ow.

� Published date: 04/08/2009

� CVSS Severity: 5.0 (MEDIUM)

The exploitation occurs when someone is trying to play with XINE a Quicktime encoded

video that an attacker has modi�ed to make one of its building blocks (the �time to sample"

or STTS atom) have an incorrect value. The malformed STTS atom processing by XINE

leads to an integer over�ow that triggers a heap-based bu�er over�ow probably resulting

in arbitrary code execution. The patch to this Vulnerability is in version v1.1.16.1, also

included in v1.1.16.3.

CVE-2009-1274 can be considered as part of the family or of vulnerabilities class

named �Integer Over�ow", which has ID CWE 190 in the Common Weakness Enumer-

ation database. The description of CWE 190 is summarized as follows �The software

performs a calculation that can produce an integer over�ow or wraparound, when the

logic assumes that the resulting value will always be larger than the original value. This

can introduce other weaknesses when the calculation is used for resource management or

execution control". Figure 5.2 depicts the associated VCG [34].

4. Xine-lib source code can be downloaded from: http://sourceforge.net/projects/xine.
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Figure 5.2: VCG for CVE-2009-1274

5.1.4 Vulnerability Modeling

Using the VCG that describes CVE-2009-1274 vulnerability, we have derived 3 VDCs

and their corresponding regular expressions to be used as input to TestInv-Code tool.

1. Calloc(bu�er, bu�er_size) / Fixed(bu�er) ∧ Result(bu�er_size, user_input)∧ Re-

sult(bu�er_size, addition); Unchecked(bu�er, NULL)

2. Calloc(bu�er, bu�er_size) / Fixed(bu�er) ∧ Result(bu�er_size, user_input) ∧ Re-

sult(bu�er_size, addition) ∧ Unchecked(bu�er_size, bu�er_bounds)

3. CopyVar(loop_counter, user_input) / Fixed(bu�er) ∧ Unchecked(loop_counter,

counter_bounds); CopyData(bu�er, user_input, loop_counter)

Using VDC editor, the VDC models for each cause scenario can be built. For instance,

�gure 5.3 illustrates the VDC model for the �rst scenario. Created VDCs are inputs to

TestInv-C tool.
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Figure 5.3: VDC Model for CVE-2009-1274 vulnerability

5.1.5 Application of TestInv-Code

In order to analyze the xine-lib it is necessary to run it. Actually, to be able to reach

the plug-in that contains the error (the quicktime �le demuxer), the muxine application

was run with a quicktime �le. The TestInv-C tool allows performing the analysis on all the

application's functions (including those of the library and the plug-ins). The tool's user can

also identify a function or set of functions to be analyzed. This feature is necessary to avoid

performance issues, particularly in applications that perform intensive data manipulations

(like video players). The complete list of available functions is obtained automatically.

Another feature that helps improve the performance of the tool is the possibility of limiting

the number of times a piece of code inside a loop is analyzed. Below the XINE code

executed:

Code fragment from demux_qt.c

...

1907 trak->time_to_sample_table = calloc(

1908 trak->time_to_sample_count+1,

sizeof(time_to_sample_table_t));

1909 if (!trak->time_to_sample_table) {

1910 last_error = QT_NO_MEMORY;

1911 goto free_trak;

1912 }

1913
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1914 /* load the time to sample table */

1915 for(j=0;j<trak->time_to_sample_count;j++)

...

where trak->time_to_sample_table is tainted since it is set from information taken

from the external QuickTime �le.

The tool detects the vulnerability CVE-2009-1274 when it is launched on the mux-

ine application using a quicktime video �le. It is done activating the option to ana-

lyze all functions (of the application, the library and the plug-ins) or just the function

parse_trak_atom in the quicktime plug-in. The result of the vulnerability testing pro-

vided by TestInv-Code is shown in �gure 5.4.

5.1.6 Analysis

The same VDCs can be reused to analyze any code under the same programming

environment to detect the same types of vulnerabilities. For instance, we applied the same

VDCs on ppmunbox, a program developed by Linköpings university to remove borders

from portable pixmap image �les (ppm) and the same vulnerability was detected.

This vulnerability is located in the following section of ppmunbox.c �le:

Code fragment from ppmunbox.c

...

76:/* Read the dimensions */

77:if(fscanf(fp_in,"%d%d%d",&cols,&rows &maxval)<3){

78: printf("unable to read dimensions from PPM file");

79: exit(1);

80 }

81:

82:/* Calculate some sizes */

83:pixBytes = (maxval > 255) ? 6 : 3;

84:rowBytes = pixBytes * cols;

85:rasterBytes=rows;rasterBytes=rowBytes*rows;
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86:

87:/* Allocate the image */

88:img = malloc(sizeof(*img));

89:img->rows = rows;

90:img->cols = cols;

91:img->depth = (maxval > 255)?2:1;

92:p = (void*)malloc(rasterBytes);

93:img->raster = p;

94:

95:/* Read pixels into the buffer */

96:while (rows--) {

...

To illustrate the applicability and scalability of TestInv-Code, it has been tested with

six di�erent open source programs to determine if known vulnerabilities can be detected

using a single model. The following paragraphs describe the vulnerabilities and give a

short explanation of the results obtained, which are summarized in table 5.1.

Table 5.1: Summary of TestInv-Code results with di�erent VDCs
Vulnerability Software Detected ?
CVE-2009-1274 XINE Yes
Bu�er over�ow ppmunbox Yes
CVE-2004-0548 aspell Yes (two)
CVE-2004-0557 SoX Yes
CVE-2004-0559 libpng Yes
CVE-2008-0411 Ghostscript Yes

In the experiment, we checked the scalability of the tool by the application of a high

number of VDCs (more than 100) to a software with intensive data use (as in the case of

video decoders). The tool performance remained good in comparison to known dynamic

code analysis tools in the market like Dmalloc, DynInst, and Valgrind. Indeed, the detec-

tion based on our tool does not insert a big overhead (the execution time is almost equal

to the program execution time).
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To optimize the analysis, the tool is being modi�ed so that the user can select speci�c

functions to check in the program. But in this case all the input parameters for this

function are marked as tainted even if they are not. Another solution that is being studied

is to only check the �rst iteration of loops in the program to avoid checking the same code

more than once.

At present, we have checked applications written in C, which do not have a complex

architecture. We are now starting to experiment more complex applications with archi-

tectures that integrate di�erent modules, plugins, pointers to function, variable number of

parameters or mixing di�erent programming languages.

5.2 Evaluation of the SPIN Model-checking Based Ap-

proach

In chapter 4 we presented our model-checking approach to detect vulnerabilities in C

programs. In this section we apply it to student's implementations of di�erent purpose

array algorithms such as minimal (maximal) item searching, sorting, average value calcu-

lating etc. Although those programs might be easily written they are widely used in a

number of complex C codes.

As explained previously, in order to dynamically detect vulnerabilities in a C code for

calculating an average value of array items we have to translate the corresponding C code

into PROMELA code according to given rules presented. As test case, we consider a C code

where array items are of the unsigned short type and sred is the variable where the average

value is saved, the memory is allocated statically and the variable n which corresponds to

the real array size (dimension) is an input to the code. When experimenting with the

given implementation we compared the sred value with the maximal value for unsigned

short type - 65535. Correspondingly an assertion (sred < 65536) was added into the

corresponding PROMELA program. The SPIN model checker produced a counterexample

for the assertion violation. The latter means that there exist such values for an array

items that sred is larger than 65535. SPIN detected the type over�ow vulnerability and

produced the value 10005 as a counterexample for each array item value. For the case
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where (n = 10), the assertion violated on the seventh cycle iteration for sred being equal

70035. The corresponding counterexample was injected into the initial C code that was

not interrupted as well as no error message was produced. The result produced was 34514

while the right value should be 100050; integer 34514 equals 100050 w.r.t. module 65536.

This result illustrates that a given C code has a vulnerability, i.e., the C code is unsafe

according to the presence of type over�ow vulnerability. In order to dynamically detect

this vulnerability we inserted the following instruction into PROMELA code 'assert(n <

10)'. The corresponding codes are presented below; the corresponding PROMELA code is

developed by a student of Tomsk State University Anton Ermakov.
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C code of calculating an average PROMELA code

value of array items

#include <iostream> int result;

#include <conio.h> proctype input_int ()

using namespace std; {

int main() . . .

{ }

unsigned short n=10, a[10]; init

for(int i=0; i<n; i++) {

{ int i;

scanf("%d",&a[i]); for(i:1..10){

} run input_int ();

unsigned short sred=0; a[i]=result;

for(int i=0; i<n; i++) printf("%d ",a[i]);

{ }

sred+=a[i]; for(i:1..10){

} sred=sred+a[i];

sred/=n; assert(sred<65536);

printf("sred = %d",sred); }

getch(); sred=sred/n;

} assert(sred<65536);

printf("the value of sred=%d",sred);

}

An array over�ow vulnerability was also detected in other C codes for array algorithms

when the memory was statically allocated and later a user used the real size of an array.

Below there is a list of C programs where this vulnerability was detected.

1. C program for �nding a minimal (maximal) item of a given array.

2. C program of the bubble sort;

3. C program of the insertion sort;

4. C program of �nding primes in the interval [1, n] for a given n (Eratosthenes sieve).
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When detecting vulnerabilities in the above C programs we never asked SPIN to generate

another counterexample. The latter con�rms that the rules for translating a C program

into PROMELA instructions are correct. This correctness is also con�rmed by the fact

that when SPIN detects a vulnerability an initial C code indeed has such vulnerability and

this fact is con�rmed by the test injection

5.3 Conclusion

This chapter reports on the application of both VDC and model checking based ap-

proaches on real sized applications. The results obtained are very promising since the

vulnerabilities are successfully detected with no false positive. Compared to the other

existing tools/methods, our methods seem more workable and can be easily extended to

consider other vulnerabilities. Indeed, the presented TestInv-C tool is extensible, which

means that new vulnerabilities can be integrated easily by just adding their corresponding

VDCs into the repository and de�ning some additional checking functions. This feature is

interesting for the evolution and exploitability of the tool.
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Figure 5.4: Screenshot of TestInv-Code Result for xine Vulnerability
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This thesis was achieved in the context of the European Project: "SHIELDS, detect-

ing known security vulnerabilities from within design and development tools". The main

objective of this project was to contribute with innovative formal and tool-oriented ap-

proaches to detect software vulnerabilities. In the literature, there are several available

tools/approaches that have been developed to detect vulnerabilities; nevertheless they are

speci�c vulnerabilities oriented. Consequently, in the practice several tools should be used

in order to cover a wider range of vulnerabilities that may be present in our application.

Additionally, some tools are not documented enough to precise which vulnerabilities they

deal with.

6.1 Contributions

In our work we addressed those limitations by de�ning a more general and extensible

approach that allow to cover multiple vulnerabilities. Thus our contribution in this �eld

can be summarized as:

1. First, de�ning a formal language called Vulnerability Detection Conditions (VDCs)

to describe the presence of a software vulnerability without any ambiguity. The aim

is to formally describe a vulnerability as the execution of a particular action in the

program under very speci�c conditions. At the beginning this formal language was

created to formalize the information given in natural language by a graphical repre-

sentation of vulnerabilities called Security Goal Model (SGM). This model provides a

visual representation of the di�erent scenarios that lead to the occurrence of a known

vulnerability. Although this model favors the communication between the di�erent

stakeholders of the development team, they lack a precise semantics that does not

allow their use to automatically detect vulnerabilities. With the translation of these

graphical notations into VDCs we assign a formal semantics and we establish the

basis to automate the vulnerability detection process.

2. Second, formalization of SGMs. we have de�ned a syntax and semantics that helps

in the transformation of a initial SGM into a SGM that is more suitable for VDC

translation. In our study we have only considered SGMs that model vulnerabilities.
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Additionally, we have proposed an intermediate format called templates, that for-

malize the description in natural language of the vulnerability causes provided by

the vulnerability model.

The global approach to detect a software vulnerability begins with its SGM model,

which is analyzed to �ll the templates with the proper information. Later they are

processed and translated into one or several VDCs. Some formal rules are de�ned

to map SGMs into templates and to generate from them the VDCs. These VDCs

can then be easily translated to conditions that can be checked during the execution

of the program under evaluation. In fact, this approach was used By Montimage

to develop a tool that uses VDCs combining dynamic code analysis and passive

testing techniques to detect vulnerabilities in the execution trace of the program.

It is important to note that this approach is general and might be applied to any

programming language (like C, JAVA, etc.) since VDCs are de�ned in a generic

manner. Finally, in practice we noticed that VDCs can also be directly derived from

the vulnerability description (given in natural language) without the need of having

the vulnerability model, giving more �exibility to this approach.

3. The third contribution consists of an alternative approach that uses model checking

to detect vulnerabilities in C programs. It is based on the SPIN model checker and

its associated formal input language Promela. We have de�ned a subset of the C

language that might contain vulnerable statements, and we have proposed formal

rules to translate them into Promela. The presence/absence of vulnerabilities are

modeled as assertions. On the obtained Promela speci�cation, the SPIN tool is

launched to check the safety of the code or detect the presence of vulnerabilities by

providing counterexamples. The approach combines a passive/active technique, since

at the beginning the program is not executed but its model; once the counterexample

is given it is used as input to the original program to demonstrate the existence of

the vulnerability; avoiding having false positives.
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6.2 Perspectives

The work presented here could be extended :

1. For the VDC-based approach, a repository may be built to store the templates of

the most common vulnerabilities and their associated VDCs. Then they can be

reused by programmers to secure theirs codes. It would be like providing a set of

bricks that help to check a program against several kinds of known vulnerabilities.

As noted before, the VDC formal language is generic, and can be extended to other

programming languages. Also, more properties of the SGMs can be considered to

enrich the transformation process, for instance, the information edges.

2. The model checking-based approach might be extended considering C recursive func-

tions and more elaborated statements like loops and dynamic allocation of the mem-

ory; in order to apply it real-sized applications and be able to evaluate its scalability

and performance. Also, it is necessary to consider the di�erent compilers in this

approach.
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