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ABSTRACT 

Novel Mg-rich materials for hydrogen storage: bulk and nanoconfined 

Mg6Pd1-xTMx (TM = Ni, Ag, Cu) compounds and MgH2-TiH2 

nanocomposites 

 

This thesis is dedicated to the study of novel magnesium-rich compounds for solid 

state hydrogen storage. The aim is to destabilize Mg hydride and accelerate its sorption 

kinetics by alloying and nanostructuration. Three different kinds of materials have been 

studied.  

The first family of materials concerns the Mg6Pd1-xTMx (TM = Ni, Ag, Cu) pseudo-

binary compounds. Their structural properties and the effects of Pd substitution have 

been studied by X-ray diffraction, scanning electron microscopy and electron 

microprobe analyses. Their thermodynamics and kinetics of hydrogenation have been 

determined by solid-gas reaction. Different hydrogenation mechanisms take place 

depending on the substituting element. The stability of the metal-hydrogen system is 

altered by the nature of the phases formed during hydrogenation reaction. Thus, metal to 

hydride transformation is characterized by at least two absorption plateau pressures. The 

pressure of the first plateau is similar to that of Mg/MgH2 while the second one occurs 

at higher pressure. The enthalpy and entropy of reaction are determined to quantify the 

destabilizing effect of Pd by TM substitution. Best desorption kinetics are found for the 

Ni containing alloy thanks to the catalytic effect of the Mg2NiH4 phase formed on 

hydrogenation. 

The second approach aims to combine alloying with nanostructuration effects. 

Nanoparticles of Mg6Pd as small as 3 nm are confined into nanoporous carbon matrix. 

By comparing their hydrogenation properties with those of the bulk alloy, we 

demonstrate that not only the (de)hydrogenation kinetics are much faster for the 

nanoparticles, but also that their hydrided state is destabilized. 

Finally, MgH2-TiH2 nanocomposites were synthesized by mechanical milling under 

reactive atmosphere. The addition of a catalyst (TiH2) and Mg nanostructuration allow 

strongly accelerating the sorption kinetics of hydrogen in Mg. To understand the role of 

the TiH2 phase on the outstanding kinetics of these nanocomposites, their structural 

properties have been determined by X-ray and neutron diffraction. The existence of a 

coupled interface between Mg and TiH2 phases is of major importance to facilitate H-

mobility within the nanocomposite. Furthermore, it is shown that the TiH2 inclusions 

inhibit the Mg/MgH2 grain growth, thus maintaining the composites nanostructure 

during their cycling. 

Keywords: Metal hydrides, hydrogen storage, magnesium, intermetallic alloys, 

nanomaterials 
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RÉSUMÉ  

Nouveaux matériaux riches en Mg pour le stockage d’hydrogène : 

composés Mg6Pd1-xMTx (MT = Ni, Ag, Cu) massifs et nanoconfinés et 

nanocomposites MgH2-TiH2 

 

Cette thèse est consacrée à l’étude de composés riches en magnésium innovants 

destinés au stockage solide de l’hydrogène. Le but est de déstabiliser l’hydrure de Mg et 

d’accélérer sa cinétique de sorption par des effets d’alliage et de nano-structuration. 

Trois différents types de matériaux ont été étudiés. 

La première famille de matériaux concerne les composés pseudo-binaires 

Mg6Pd1-xMTx (MT = Ni, Ag, Cu). Leurs propriétés structurales et les effets de 

substitution du Pd ont été étudiés par diffraction des rayons X, microscopie électronique 

à balayage et microsonde de Castaing. Les propriétés thermodynamiques et cinétiques 

d’hydrogénation de ces matériaux ont ensuite été déterminées par réaction solide-gaz. 

Différents mécanismes d’hydrogénation sont mis en jeu en fonction de l’élément de 

substitution. La nature des phases formées lors de la réaction d’hydrogénation modifie 

la stabilité des systèmes métal-hydrogène. Ainsi, la transformation de métal à hydrure 

est caractérisée par au moins deux plateaux de pression. Le premier plateau a lieu à une 

pression proche de celle de Mg/MgH2, alors que le second se produit à pression plus 

élevée. La détermination des valeurs d’enthalpie et d’entropie de réaction ont permis de 

quantifier la déstabilisation atteinte. Les meilleures cinétiques de désorption sont 

obtenues pour l’alliage au Ni, grâce à l’effet catalytique de la phase Mg2NiH4 formée 

lors de l’hydrogénation. 

La seconde approche vise à combiner les effets d’alliage et de nano-structuration. 

Des nanoparticules de Mg6Pd atteignant des tailles aussi petites que 3 nm sont confinées 

dans des matrices carbonées nano-poreuses. En comparant leurs propriétés 

d'hydrogénation à celles de l’alliage massif équivalent, on démontre non seulement que 

la cinétique de (dés)hydrogénation des nanoparticules est bien plus rapide, mais aussi 

que leur état hydrogéné est déstabilisé.  

Enfin, des nano-composites MgH2-TiH2 ont été synthétisés par broyage mécanique 

sous atmosphère réactive. L’ajout d’un catalyseur (TiH2) et la nano-structuration du Mg 

permettent de considérablement accélérer les cinétiques d’absorption et désorption 

d’hydrogène dans le Mg. Afin de comprendre le rôle de la phase TiH2 sur les propriétés 

cinétiques remarquables de ces nano-composites, leurs propriétés structurales ont été 

déterminées par diffraction des rayons X et des neutrons. L’existence d’un couplage à 

l’interface entre les phases Mg et TiH2 est d’importance majeure pour faciliter la 

mobilité de H au sein du nano-composite. De plus, il est démontré que les inclusions de 

TiH2 freinent la croissance de grain de Mg/MgH2, permettant ainsi de maintenir la nano-

structuration des composés lors de leur cyclage.  

Mots clés: Hydrures métalliques, stockage d’hydrogène, magnésium, alliages 

intermétalliques, nanomatériaux. 
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RESUMEN 

Nuevos materiales ricos en Mg para el almacenamiento de hidrógeno: 

compuestos en volumen y nano-confinados Mg6Pd1-xMTx (MT = Ni, Ag, 

Cu) y nano-compuestos MgH2-TiH2 

 

Esta tesis está dedicada al estudio de nuevos compuestos ricos en magnesio para el 

almacenamiento sólido de hidrógeno. El objetivo es desestabilizar el hidruro de Mg y 

acelerar su cinética de sorción mediante efectos de aleación y nano-estructuración. Tres 

distintos tipos de materiales se han estudiado. 

La primera familia de materiales concierne los compuestos pseudo-binarios Mg6Pd1-

xMTx (MT = Ni, Ag, Cu). Sus propiedades estructurales y los efectos de sustitución del 

Pd se han estudiado por difracción de rayos X, microscopía electrónica de barrido y 

microsonda electrónica. Las propiedades termodinámicas y cinéticas de hidrogenación 

de estos materiales se determinaron por reacción sólido-gas. Diferentes mecanismos de 

hidrogenación entran en juego dependiendo del elemento de sustitución. La naturaleza 

de las fases formadas durante la reacción de hidrogenación modifica la estabilidad de 

los sistemas metal-hidrógeno. A este respecto, la transformación de metal a hidruro se 

caracteriza por al menos dos plateaus de presión. El primer plateau ocurre a una presión 

cercana a la del Mg/MgH2, mientras que el segundo se produce a mayor presión. La 

determinación de los valores de entalpía y entropía de reacción ha permitido cuantificar 

la desestabilización alcanzada. Las mejores cinéticas de desorción se obtienen para la 

aleación con Ni, gracias al efecto catalítico de la fase Mg2NiH4 formada durante la 

hidrogenación. 

El segundo enfoque consiste en combinar los efectos de aleación y de nano-

estructuración. Nano-partículas de Mg6Pd con tamaños tan pequeños como 3 nm se han 

confinado en una matriz de carbono nano-poroso. Sus propiedades de hidrogenación se 

han comparado con las de la aleación en volumen equivalente, demostrando que no sólo 

la cinética de (de)hidrogenación de las nano-partículas es mucho más rápida, sino 

también que su estado hidrogenado se ha desestabilizado.  

Por último, se han sintetizado nano-compuestos MgH2-TiH2 mediante molienda 

mecánica en atmósfera reactiva. La adición de un catalizador (TiH2) y la nano-

estructuración del Mg han permitido acelerar significativamente la cinética de absorción 

y desorción de hidrógeno por el Mg. Para entender el papel que juega la fase TiH2 en las 

excelentes propiedades cinéticas de estos nano-compuestos, se han determinado sus 

propiedades estructurales mediante difracción de rayos X y de neutrones. La existencia 

de un acoplamiento a la interfase entre el Mg y el TiH2 es clave para facilitar la 

movilidad de H en el nano-compuesto. Además, se demuestra que las inclusiones de 

TiH2 ralentizan el crecimiento de grano de Mg/MgH2, manteniendo la nano-estructura 

de los compuestos durante su ciclado. 

Palabras claves: Hidruros metálicos, almacenamiento de hidrogeno, magnesio, 

aleaciones intermetálicas, nanomateriales.  
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General introduction  

 

One of the main issues of modern society concerns energy management at the 

global scale. On one hand, the fossil fuel reserves are reaching their limits and are 

source of many geopolitical conflicts. On the other hand, renewable energy sources are 

inexhaustible and a large variety of technologies are available to convert them into 

electricity or heat for industrial or individual utilisations. However, the production of 

renewable energies is intrinsically intermittent and, alone, is not able to supply on-time 

the energy needed to respond the consumer demand. Therefore, it is necessary to store 

the energy produced during over production of electricity to be able to return it during 

the consumption peaks. This process, also known as energy peak shaving, requires 

efficient and safe systems able to store large amount of energy during relatively long 

times.  

One excellent candidate to fulfil this function is hydrogen, which can be used as an 

energy carrier, i.e. an intermediate between the energy production and consumption. 

Not only can this intermediate be consumed at any time but also at any place. That is 

why hydrogen is also very interesting for mobile applications. In a clean energy system, 

hydrogen can be produced from renewable sources, typically by water electrolysis 

powered by wind or solar energy. It can then be stored in a convenient way and finally 

used in a fuel cell to reject only water, thus closing the hydrogen cycle. Each of these 

steps requires efficient technologies, but hydrogen storage remains a key issue for 

industrial development of hydrogen utilisation as a clean energy carrier. 

Conventionally, hydrogen is stored as a compressed gas. The containers 

commercially available, designated as type I, are made of steel and are designed for 

nominal pressure between 20 and 30 MPa. They offer good safety properties but 

relatively low gravimetric hydrogen density (~ 0.01 kgH2/kgtank). A second generation 

of high pressure tanks has been developed to store up to 0.05 kgH2/kgtank at pressure of 

70 MPa for a container of type IV. They consist of composite structures made of a 

hydrogen-tight inner liner mechanically stabilized by carbon fibres. The main drawback 



General introduction 

2 

of such systems lies in their low volumetric hydrogen density (~ 23 gH2/Ltank in the best 

case) [1].  

This parameter can be considerably increased by cryogenic hydrogen liquefaction to 

reach 40 gH2/Ltank (for a liquid hydrogen density of 71 gH2/L). In these containers, 

hydrogen has to be maintained at temperature as low as 20 K through a sophisticated 

and expensive tank system that requires important energy input. In addition, about 1 % 

per day of hydrogen losses by evaporation cannot be avoided.  

Alternatively, hydrogen can be reversibly stored in the solid form, either by 

physisorption in porous materials or by chemisorption in metal hydrides. The first 

method involves weak interaction between H2 molecules and the atoms on the surface 

of a solid adsorbent. However, this mechanism is efficient only at low temperature 

(typically 77 K) where it can reach 7.5 wt.% H for the best materials, i.e. for the highest 

specific surface area (metal organic framework) [2]. Besides, the volumetric density 

achieved by physisorption process is limited to 34 gH2/Lmaterial.  

In contrast, the strength of metal hydrides resides in their high volumetric hydrogen 

storage capacity that can reach 150 gH2/Lmaterial, i.e. more than twice the one of liquid 

hydrogen. Formation of metal hydrides involves the dissociation of hydrogen molecules 

into H-atoms which are then absorbed in the metal lattice. Hydrogen forms stable 

hydrides with many metallic species and alloys but only few of them are reversible at 

moderate temperature and pressure [3]. For example, we can mention LaNi5 or FeTi 

compounds which are able to desorb hydrogen at ambient temperature and hydrogen 

pressure below 0.5 MPa. However, their reversible gravimetric storage capacity does 

not exceed 2 wt.% H (material basis) which is insufficient for most mobile applications. 

Hence, better gravimetric storage capacities are achieved using light elements. To this 

respect, Mg is an excellent candidate as it can store up to 7.6 wt.% H. Besides, this 

element possesses many advantages regarding the feasibility of a large scale utilisation 

as it is abundant on Earth, inexpensive and innocuous to human health and the 

environment. However, the Mg/MgH2 system alone is not able to meet with the 

thermodynamic and kinetic requirements for hydrogen storage applications. It is yet 

possible to tailor these properties through the research of new phases and by tuning the 

materials at the nanoscale. 
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The objective of this PhD Thesis is to deeply develop these ideas to obtain new Mg-

based materials with better properties than pure Mg. Kinetics and thermodynamics of 

(de)hydrogenation are extensively investigated to understand the mechanisms governing 

these reactions. The first chapter browses a state of the art of the relevant advancements 

in Mg-based materials for hydrogen storage. The experimental techniques used for this 

thesis are described in the second chapter. The subsequent investigation is organized 

according to three main axes, corresponding to three different types of materials. The 

first axis is developed in chapter 3 and focuses on Mg-rich alloys based on the Mg6Pd 

intermetallic compound. Several transition metals (TM = Ag, Cu and Ni) are used to 

substitute Pd atoms and form Mg6Pd1-xTMx pseudo-binary phases which hydrogenation 

properties are deeply investigated. The fourth chapter is also centred on the Mg6Pd 

phase but now nanoconfined in a porous carbon matrix. This hybrid material constitutes 

the second line of investigation of this thesis. The last type of materials is investigated 

in Chapter 5 through the structural and sorption properties of MgH2-TiH2 

nanocomposites. Finally, the last chapter aims to evaluate and discuss the outcome of 

this Thesis in order to reach potential guidelines for future investigation.  
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This chapter aims to bring to the reader the state-of-the-art of hydrogen storage in 

Mg-based systems prior to the work undertaken in this Thesis study. General points on 

thermodynamic and kinetic characteristics of metal hydrides will be described and 

relevant results on Mg-based materials for hydrogen storage will be presented from 

bibliographic survey.  

 

1 Hydrogen in Mg 

1.1 Structural properties of the Magnesium-Hydrogen system 

Magnesium and hydrogen form a simple system with a single hydride phase, MgH2, 

which is stable below 553 K in atmospheric pressure condition [1]. During 

hydrogenation, H atoms can be absorbed into the hexagonal close-packed (hcp) metal 

lattice of Mg (S.G. P63/mmc) to form a solid solution phase at low hydrogen 

concentration, called α-Mg, with a very short range of solubility up to 9 at.% H 

at 833 K [2]. When H concentration increases, the β-MgH2 phase is formed with a 

tetragonal crystal structure of rutile type (S.G. P42/mnm), as represented in Figure 1.1a.  

 

 

 

 

 

 

a) b)  

Figure 1.1. a) Rutile structure of β-MgH2 and b) orthorhombic structure of γ-MgH2. 

 

The β-MgH2 phase transforms into a metastable γ-MgH2 phase at high pressure. 

The β to γ phase transition theoretically occurs at 0.39 GPa [3], but the coexistence of 

both phases is often observed during ball-milling preparations [4–11]. This high 

pressure modification has an orthorhombic structure (Figure 1.1b) with S.G. Pbcn [12] 

which is maintained as metastable at ambient conditions. Up to now, a complete β to γ 

conversion has never been achieved, making difficult to determine experimentally the 
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transition pressure. Crystallographic data of the different phases of the Mg-H system are 

summarized in Table 1.1. 

 

Table 1.1. Crystal data of the Mg-H system 

Phase Space group Cell parameters (Å) Ref. 

Mg P63/mmc a = 3.2125, c = 5.2132 [13] 

β-MgH2 P42/mnm a = 4.5168, c = 3.0205 [14] 

γ-MgH2 Pbcn a = 4.53, b = 5.44, c = 4.93 [15] 
 

 

Under further compression, other pressure-induced phase transitions have been 

reported [3; 16] but they are out of the scope of this Thesis as pressures involved exceed 

several GPa.    

Independently on its structual modification, MgH2 possesses ionic bondings 

between Mg and H, with a charge distribution of Mg
1.91+

 and H
0.26-

 [17]. However, 

because of the weak ionisation of H, it is often considered as a transition hydride 

between ionic and covalent.  

 

1.2 Sorption properties of Mg 

Magnesium is able to reversibly absorb up to 7.6 wt.% H, according to the solid-gas 

reaction (1.1).  

Mg(s) + H2(g) ↔ MgH2(s) (1.1) 

The formation of the hydride is exothermic and should thermodynamically occur at 

room temperature with a very low plateau pressure (0.05 Pa at 293 K). However this 

hardly happens because of important kinetic limitations. Mg surface easily passivates 

because of the formation of a thin layer of magnesium oxide impeding H absorption. 

Activation is usually achieved by applying high temperature and high hydrogen 

pressure [18].  

Thermodynamic properties of Mg reflect the high stability of its hydride. The 

commonly accepted values for desorption enthalpy and entropy variations are 

74.5 kJ/molH2 and 135 J/KmolH2 as determined by Stampfer et al. in 1960 [2] and latter 

confirmed by several authors [19; 20]. In consequence, a temperature of 553 K is 

required to desorb hydrogen at atmospheric pressure. This temperature is obviously too 

high for practical use of hydrogen storage.  
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Besides its high stability, MgH2 also suffers from poor kinetics of hydriding and 

dehydriding reactions, which origin is generally attributed to the following barriers:  

i) Passivation of Mg surface by formation of a MgO layer 

ii) Limited dissociation rate of hydrogen molecules at Mg surface 

iii) Slow diffusion coefficient of H atoms in MgH2 (D = 1.5 × 10
-16

 m
2
/s, almost 

constant within the temperature range 300 - 600 K [21]). 

Owing to the first two barriers, hydrogen chemisorption on Mg surface is 

characterized by high activation energy. Atomic hydrogen penetrates then to the metal 

lattice where its mobility is hampered by the sluggish hydrogen diffusion through the 

magnesium hydride. The formation of MgH2 is driven by nucleation and growth 

mechanism [22].  

Magnesium hydride as a hydrogen store has been extensively investigated during 

the past fifty years. Significant improvements to previously described properties have 

been achieved by modification of Mg surface or by addition of other metals. The 

purpose of the next sections is, on one hand to describe how Mg sorption properties can 

be improved, and on the other hand to present a state-of-the-art of the most promising 

Mg-based materials for hydrogen storage.  

 

2 Strategies to improve Mg sorption properties 

The ability of any material to efficiently store hydrogen is defined according to two 

essential aspects: the thermodynamics and kinetics of its reaction of (de)hydrogenation. 

Besides its hydrogen storage capacity, these two aspects are commonly used to 

characterize the hydrogenation properties of a compound because they reflect its 

potential for practical applications. In this section we will consider a typical α to β phase 

transformation, where α is the hydrogen solid solution into a metal M and β is the metal 

hydride phase.   

 

2.1 Thermodynamic approach 

2.1.1 Basics of thermodynamics in metal hydrides 

The equilibrium of a hydrogen-metal system is frequently described using the Van’t 

Hoff equation (1.2):  
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 (1.2) 

where Pp is the plateau pressure, T is the temperature, P0 = 1.01325.10
5
 Pa, R is the gas 

constant (R = 8.314 J/mol.K), ΔH and ΔS are the enthalpy and entropy changes 

occurring during the α → β transformation. The plateau pressure Pp corresponds to the 

coexistence of α and β phases and is experimentally determined by Pressure 

Composition Isotherms (PCI) measurements, as represented on the left of Figure 1.2. 

According to equation (1.2), if we plot the logarithm of Pp versus 1/T we obtain a 

straight line which slope is proportional to ΔH (Van’t Hoff plot on the right of Figure 

1.2). The intercept of this line with the vertical axis gives the value of ΔS.   

 

 

Figure 1.2. Schematic PCI diagram and corresponding Van’t Hoff plot, taken from [23]. 

 

Therefore, the equilibrium conditions of pressure and temperature at which a 

hydride can be formed or decomposed are determined by its enthalpy and entropy 

changes. The entropy variation is mainly due to the transition of hydrogen gas 

molecules to atomic hydrogen absorbed in the metal lattice. Consequently, it will be 

very similar for most metal-hydrogen systems (ΔSabsorption ~ -130 J/KmolH2 [24]) and the 

stability of a hydrided compound will be mainly determined from its enthalpy of 

hydrogenation. Van’t Hoff representation is then very convenient to visualize and 

compare thermodynamic characteristics of different hydrides. The Van’t Hoff plots of 

various binary hydrides represented on Figure 1.3 show that most of them are out of the 

required thermodynamic window of 0.1 < P < 1 MPa and 273 < T < 373 K for most 

applications such as PEM fuel cells. Only VH2 can be operated at room temperature, but 
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its reversible storage capacity remains limited (2.1 wt.% H2 [25]) and pure vanadium is 

an expensive metal.   

 

 

Figure 1.3. Van’t Hoff lines (desorption) for binary hydrides. Box indicates 0.1-1 MPa and 

273-373 K ranges. Taken from [26].  

  

We saw in the previous section that one of the principal drawbacks of MgH2 was its 

high thermodynamic stability, reflected by the too negative enthalpy of hydrogenation 

(ΔH = -74.5 kJ/molH2). Therefore, one important objective in the quest for Mg-based 

material for hydrogen storage is to shift the absorption enthalpy to less negative values. 

The US Department of Energy (DOE) requires for on-board hydrogen storage system a 

dissociation pressure of 0.3 MPa at a maximum working temperature of 358 K. This 

leads to an ambitious target of ΔH = 43.3 kJ/molH2. 

 

2.1.2 Tailoring thermodynamics of Mg-H system 

Traditionally, thermodynamic properties of metal hydrides can be tuned by building 

ABn type intermetallic compounds where element A tends to form stable hydride (e.g. 

Mg) and element B does not form stable hydride. ABn intermetallics are classified into 

several groups according to their stoichiometry, with n = 0.5, 1, 2 or 5.  

Miedema et al. developed a semi-empirical model [27; 28] which allows predicting 

the enthalpy of formation of a ternary hydride from the heat of formation of elemental 

hydrides and of the alloy. The rule of Miedema, also known as the rule of reverse 

stability, can be written as:  
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                                     (1.3) 

This model implies that the more stable is the intermetallic compound, the less 

stable is the corresponding ternary hydride. Thus, MgH2 can be destabilized by alloying 

Mg with other metals that have less affinity for hydrogen and that form stable 

intermetallic compounds with Mg.  

Alternatively, MgH2 destabilization can also be achieved by addition of suitable 

reactive components (A) to the hydride so that Mg does not return to its elemental 

structure but forms an intermediate compound (MgAx) [29] according to the following 

reaction: 

MgH2 + xA ↔ MgAx + H2 (1.4) 

Figure 1.4 shows the corresponding destabilization mechanism. If the formation of 

the MgAx compound is exothermic, it will offset the endothermic release of hydrogen 

from MgH2 and consequently reduce the net enthalpy value of hydrogen desorption. 

 

 

Figure 1.4. Schematic representation of enthalpy reduction by introduction of a reactive 

component A to the Mg-H system. Adapted from [30]. 

  

Finally, ab intio studies have demonstrated that MgH2 stability can also be altered 

when particle size reaches the nanometric scale [30–32]. Indeed, the high surface to 

volume ratio, typical of nanomaterials, will add a non-negligible surface energy term to 

the molar free energy of reaction. The surface free energy γ represents the excess energy 

of surface atoms with respect to bulk atoms due to unsaturated electronic bonds. In the 

case of Mg/MgH2, a sufficiently high surface area will result in a less exothermic 

hydriding reaction. Another contribution to the reduction of the absolute value of 

enthalpy, predicted for nanosized materials, comes from the high density of grain 

boundaries, which similarly leads to an excess energy. A combination of these 
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phenomena, specific of the nanometric scale, can result in a significant hydride 

destabilization. According to Wagemans et al., if the size of MgH2 crystallites is 

reduced to 0.9 nm, hydrogen desorption at atmospheric pressure can occur at 

temperature as low as 473 K [31]. Significant destabilization of MgH2 was predicted for 

crystallite smaller than 1.3 nm while Bérubé et al. calculated a reduction by more than 

30 % of enthalpy value for Mg crystals smaller than 5 nm [30]. Unfortunately, MgH2 

destabilization by size reduction is experimentally difficult to measure because of the 

rapid crystal growth of Mg phase when submitted to hydrogen absorption and 

desorption. However, this route remains a very promising field of investigation to 

achieve low temperature hydrogen storage in Mg.  

 

2.2 Kinetic approach 

2.2.1 Basics of kinetics in metal hydrides 

Besides having suitable thermodynamic properties, a metal-hydrogen system is 

required to rapidly absorb and desorb hydrogen at moderate temperature. The time 

necessary to charge a storage tank must not exceed 5 minutes and hydrogen availability 

has to be sufficient to respond to a fuel cell supply. Kinetic performance of a system 

will be controlled by external thermodynamic variables such as pressure and 

temperature, but also by several intrinsic properties of the material. Thus, heat and mass 

transfer as well as surface interactions and phase transformations are important issues 

for (de)hydriding kinetics of a system. At the stage of laboratory work, it is considered 

that heat transport will not be a rate-limiting step and that this issue has to be addressed 

from an engineering point of view at the tank scale. The successive energy barriers that 

have to be overcome beforehand for absorption reaction concern the following steps: 

i) Physisorption and dissociation (chemisorption) of hydrogen molecules on 

the metal surface 

ii) Penetration of hydrogen atoms to the metal bulk and diffusion through the 

metal lattice 

iii) Nucleation and growth of the β-hydride phase 

iv) Diffusion of hydrogen atoms through the hydride phase 
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A simplified representation of the corresponding potential energy curve is given in 

Figure 1.5. Depending on the intrinsic properties of the storage media, any one of the 

energy barriers can be the rate-controlling step for the (de)hydriding reaction.  

 

 

Figure 1.5. Potential diagram of a hydrogen molecule during absorption in a metal host, with 

Edis: energy of dissociation, Ephys: energy of physisorption, Echem: energy of chemisorption, Epen: 

energy of penetration, Edif: energy of diffusion and EN-G: energy for the nucleation and growth. 

Taken from [33]. 

  

For metal hydrides, kinetic characterization is usually obtained from the 

transformed fraction (F) versus time. The sorption reaction highly depends on 

temperature, pressure and initial state of the sample, hence great attention has to be paid 

to experimental conditions and procedures. Afterwards, the rate-limiting step of 

hydrogen sorption can be identified by mathematical modelling of experimental kinetic 

curves. The existing models are generally based on three different types of mechanisms 

[34; 35]. The first one is the surface controlled process (SC), where chemisorption is the 

limiting step. The second one is the Johnson-Mehl-Avrami (JMA) mechanism, where 

nucleation and growth occurs randomly into the bulk and at the surface of a particle. 

The velocity of the metal/hydride interface growth becomes the controlling step, 

assuming that the nucleation rate is not limiting. Finally, the contracting volume (CV) 

model describes a nucleation at the surface of a particle and a growth from the surface 

into the bulk. Several equations result from the last two models, depending on the 
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material characteristics and external parameters, which can be fitted to experimental 

data.  

Several investigations on kinetics of MgH2 formation and decomposition seem to 

converge to a nucleation and growth mechanism both in absorption and desorption [9; 

22; 36; 37]. The MgH2 growth during absorption is limited by hydrogen diffusion into 

the MgH2 phase [22; 37; 38] while desorption seems to be controlled by the MgH2-Mg 

interface displacement [9; 37]. Therefore, to improve Mg (de)hydriding kinetics, one 

has to increase the number of nucleation sites and reduce the length of hydrogen 

diffusion. This can be achieved by adding suitable catalysts and by reducing the particle 

size of Mg [39]. 

 

2.2.2 Nanostructuration by ball milling 

The particle and crystallite size of most hydrogen storage materials can be 

efficiently reduced by ball milling (BM) process. This method has been widely 

developed over the last twenty years to prepare Mg-based materials at low temperature 

and in relatively short times [40]. This technology offers a wide range of mills 

(vibratory mill, planetary mill, attritor mill), milling tools (made of different materials, 

with different ball diameters or vial volume) and process variables (milling time and 

speed, ball-to-powder weight ratio, temperature) that can be varied and combined for 

different milling output [41]. BM methods can be classified in three different types 

according to the targeted microstructure and composition of the final products [42].  

The first type consists in nanostructuring a material without any change in its initial 

phase composition. The balls impacts can reduce the powder to micrometric particle 

size while the crystallites size reaches nanometer scale [41]. This technique can be used 

as well to incorporate catalyst additives during grinding. It presents the advantage to 

obtain a homogeneous distribution of the particles mixture at the nanometer scale.   

Ball milling can also be employed to synthesize alloys from metallic elements. It is 

usually referred to as mechanical alloying. In this case, Mg powder is milled with 

another metal in the suitable composition. Nanostructured alloys are rapidly obtained at 

room temperature. Such materials exhibit better hydrogenation kinetics than equivalent 

alloy obtained by conventional metallurgy because of their high density of active 
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surface available for hydrogen absorption and due to the presence of defects introduced 

during plastic deformation.  

Finally, milling of elemental mixtures or alloys can be performed under reactive 

atmosphere, i.e. hydrogen or deuterium gas, instead of an inert atmosphere. Reactive 

ball milling (RBM) allows synthesizing hydrided materials in a single step process by 

the formation of clean surface that is immediately available to react with hydrogen. 

Oxide formation, which is often an issue in nanoparticles handling, is then limited. 

Modern vials designed for this purpose are equipped with temperature and pressure 

sensors, allowing for in situ monitoring of hydrogen absorption.  

In all cases, BM is an excellent method to obtain nanosized materials with improved 

kinetic properties through the generation of oxide-free surfaces and by reducing the 

length of hydrogen diffusion paths. In addition, the formation of multiple cracks and 

defects into the crystal lattice favours nucleation of the hydride phase.  

 

2.2.3 Using catalysts 

The use of catalyst additives, such as transition metals (TM) or metal oxides, is also 

known to improve Mg absorption kinetics by facilitating the electron transfer necessary 

for hydrogen dissociation. This mechanism is known as hydrogen spillover [43], which 

is described in Figure 1.6. The hydrogen molecule dissociates on the highly reactive 

catalyst located on the metal surface. Hydrogen atoms are then available to diffuse at 

the metal surface to finally penetrate in the metal bulk.  

 

 

Figure 1.6. Hydrogen spillover mechanism: the hydrogen molecule dissociates on a catalyst 

particle. Atomic hydrogen then migrates to the metal surface and diffuses into the bulk of the 

material. 
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 Catalysts are generally added to the storing material by BM which ensures a 

homogeneous distribution of doping particles. Usually, a small amount of catalyst is 

sufficient to significantly improve the sorption kinetics. Thus, the gravimetric 

absorption capacity loss can be minimized.  

 

2.2.4 Nanoconfinement in porous materials 

The use of nanoparticles as efficient media for hydrogen storage implies their 

stabilization against coalescence during heating or hydrogen cycling. To this purpose, 

nanoparticles are confined into nanoporous support with high surface area. Many 

additional advantages can be highlighted from the use of a suitable support. For 

example, the supporting material can provide additional storage capacity by hydrogen 

physisorption on its surface at low temperature. The interaction between the metal 

nanoparticles and its support can also result in a catalytic activity for the 

(de)hydrogenation process. From a large scale point of view, a support with high 

thermal conductivity allows for an efficient thermal management during refilling of a 

hydrogen tank [44]. The presence of a porous support also provides a better mechanical 

stability in a metal hydride tank. Indeed, absorption and desorption cycling causes 

volume variations of the material and induces mechanical stresses in the system.  

The choice of the stabilizing matrix is guided by the following requirements [45]: 

i) Light weight in order to preserve high gravimetric storage capacity  

ii) High porosity and high surface area allowing high metal loading 

iii) Chemically inert as respect to the active material 

iv) Low cost 

Hence, carbon materials are the more adapted to hydrogen storage applications, 

although metal-organic frameworks, mesoporous oxides or zeolites have been also 

considered. Different methods are used to deposit the nanoparticles into the pores, 

depending on the nature of the active material. If the active material can be dissolved in 

a suitable solvent, then it is possible to disperse the nanoparticles by solution 

impregnation of a porous matrix. After impregnation of the matrix with the precursor 

solution, the solvent is generally removed by heating. Another possibility is to infiltrate 

the active material as a molten phase. A mixture of powdered active material and the 

supporting matrix is heated up to the melting temperature of the phase, leading to the 
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infiltration of the liquid phase into the pores. This last method is recognized to be 

convenient for Mg based materials, as Mg melts at relatively low temperature (922 K). 

In addition, it can be combined with a prior precursor impregnation to obtain alloyed 

nanoparticles confined into the porous matrix.  

The nanoconfinement technique is a relatively new approach to stabilize 

nanoparticles and several issues, such as high air sensitivity or poor gravimetric 

capacity, need to be solved. However, it is a promising way to improve hydrogen 

sorption kinetics.  

 

3 Mg-based materials for hydrogen storage 

In this section, the most relevant progresses on Mg-based materials for hydrogen 

storage will be reviewed, with a focus on the materials related to this Thesis.  

 

3.1 Mg-based alloys 

3.1.1 Mg-TM alloys 

The first route considered to improve MgH2 properties was to alloy Mg with other 

metals. The aim was to reduce desorption temperature within a realistic pressure 

window, while maintaining a high gravimetric capacity of hydrogen absorption.  

Thus, in 1967, Reilly and Wiswall [46] initially characterized hydrogenation 

properties of Mg2Cu and Mg2Cu/Mg alloys. Upon hydrogenation, Mg2Cu decomposes 

into MgH2 and MgCu2 with a higher plateau pressure than pure MgH2 formation. The 

absorption enthalpy and entropy deduced from isothermal pressure-composition 

measurements were -73 ± 4 kJ/molH2 and -142 ± 3 J/KmolH2, respectively. More 

recently, Shao et al. [47] reported more negative values of -77.1 kJ/molH2 and 

-146.4 J/KmolH2 for the formation enthalpy and entropy, respectively, of hydrided 

Mg2Cu. However, the storage capacity of Mg2Cu is significantly reduced to 1 H/M 

(equivalent to 2.6 wt.% H) instead of 2 H/M for pure Mg. Reilly and Wiswall also 

suggested the catalytic property of Mg2Cu during Mg hydrogenation reaction. This last 

point has been later deepen by Karty et al. [48] to reach the conclusion that Mg2Cu was 

efficient to provide a clean surface for hydrogen dissociation but that hydrogen 

diffusion through the metal or the hydride was still the rate limiting step.  
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More interesting in terms of destabilization of the magnesium hydride is the 

alloying between Mg and Ni. Mg2Ni intermetallic compound forms a ternary hydride, 

Mg2NiH4, with a hydrogenation enthalpy and entropy of -64 ± 4 kJ/molH2 and 

-122 ± 6 J/KmolH2, respectively [49], which is significantly lower than pure Mg. The 

catalytic properties of Ni for hydrogen dissociation also have a strong impact on 

sorption kinetics. For example, Mg2NiH4/MgH2 mixtures obtained by BM presented 

lower desorption temperatures than both separated hydride [50]. The catalytic effect of 

Ni was also evidenced in BM Ni/MgH2 mixtures, which desorption temperature was 

lowered by more than 200 K as compared to BM MgH2 [51]. However, its storage 

capacity (3.6 wt.% H) is much lower than the one of Mg. Many researchers attempted to 

improve its properties by partial substitution of Ni by other transition metals (V, Cr, Fe, 

Co, Cu, Ag, Zn or Y) but efforts remained unsuccessful [52–55]. In all cases, the 

absorption capacity was reduced to even lower values and the thermodynamic gain was 

relevant only for Cu substitution [56].  

It is noteworthy to mention here the difficulties to obtain reliable structural data on 

the Mg2NiH4 hydride due to its polymorphic properties. When formed at temperature 

higher than 508 K, it crystallizes in a cubic structure (called HT), with S.G. Fm-3m 

[57]. At temperature below 483 K, a monoclinic modification is formed (called LT1, 

S.G. C2/c) [58]. A third modification was reported when a HT polymorph was cooled 

down below the transition temperature, leading to the partial formation of an 

orthorhombic structure (called LT2) with S.G. Pcc2. This LT2 modification is the result 

of microtwinning in the LT1 lattice, favoured by the HT to LT transition [59].  In 

addition, several sub-stoichiometric Mg2NiHx phases have been reported. The solid 

solution Mg2NiH0.3 is isostructural to the Mg2Ni phase [60] while the Mg2NiH hydride 

has been identified with the same polymorphic properties as Mg2NiH4 phase [61].  

Alloys of Mg with other transition metals have also been explored but only few 

elements exhibited relevant hydride properties. We can mention here the interesting 

properties of the Mg-Fe-H system. Although Mg and Fe are immiscible, they react with 

hydrogen to form a ternary hydride Mg2FeH6. Therefore, this hydride needs to be 

synthesised either by high pressure sintering [62] or by RBM processes [4; 63; 64]. The 

gravimetric capacity of such compound is relatively high with 5.5 wt.% H, and its 

volumetric hydrogen density is one of the highest with 150 kgH2/m
3
. Although a 
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catalytic effect due to the presence of Fe was reported for the decomposition reaction 

[64], this hydride remained too stable (ΔH = -77.4 kJ/molH2 [65]) for possible hydrogen 

storage applications near room temperature. 

Similarly, Mg-Co hydrides have to be prepared by direct synthesis methods (RBM 

or sintering techniques) as Mg2Co alloy does not exist. Two different hydride phases 

belong to the Mg-Co-H system: Mg6Co2H11 and Mg2CoH5, respectively storing 4.0 and 

4.5 wt.% H. This material showed very good reversibility and cycling properties [66; 

67] but the stability of the hydride remained too high (ΔH = -83.2 kJ/molH2 [68]). 

Mg also forms stable alloys with Pd. This system and its hydrogen storage 

properties will be detailed in the next section.   

 

3.1.2 The Mg6Pd intermetallic compound  

Although it is too expensive for large scale applications, palladium acts as a catalyst 

and improves magnesium sorption properties, as well as resistance to air oxidation [69].  

 

 

Figure 1.7. The Mg-Pd phase diagram [70]. 

  

The binary phase diagram of the Mg-Pd system [70] shows the existence of 

numerous intermetallic phases (Figure 1.7), among which Mg6Pd is the richest in Mg. 
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Hence, this compound has attracted wide interest for hydrogen storage over the last 

decades, as it is the lightest and also the cheapest Mg-Pd intermetallic. 

 

a. Structural properties 

The Mg6Pd phase crystallizes in a large fcc (face centered cubic) unit cell with the 

space group F-43m. The crystal structure of this intermetallic was determined by 

Samson [71]. Its large unit-cell (a = 20.108 Å) contains 340 atoms of Mg and 56 atoms 

of Pd distributed over 14 crystallographic sites: 10 for Mg atoms, 3 for Pd atoms and 

one with mixed occupancies. The corresponding structural parameters as described by 

Samson are reported in Table 1.2. Site 12 can be simultaneously occupied by Mg and 

Pd, and constitutional Mg vacancies are formed on site 14. This two sites act as buffer 

for Mg concentration through the wide homogeneity range which extends from 85.0 to 

87.4 at.% Mg. 

 

Table 1.2. Atomic sites, Wyckoff positions, Site Occupancy Factors (SOF) and atomic 

coordinates of the Mg6Pd crystal structure [71]. 

Site n° Atom 
Wyckoff 

position 
SOF 

Atomic coordinates 

x y z 

1 Mg 48h 1 0.1436 x 0.0340 

2 Mg 48h 1 0.0940 x 0.2739 

3 Mg 48h 1 0.1510 x 0.5281 

4 Mg 48h 1 0.0566 x 0.7676 

5 Mg 48h 1 0.2002 x 0.9072 

6 Mg 24f 1 0.1072 0 0 

7 Mg 24f 1 0.3813 0 0 

8 Mg 24g 1 0.0648 1/4 1/4 

9 Mg 16e 1 0.3025 x x 

10 Pd 16e 1 0.1679 x x 

11 Pd 16e 1 0.4065 x x 

12 Pd 16e 0.49 0.6687 x x 

Mg 0.51 x x 

13 Pd 16e 1 0.9004 x x 

14 Mg 4d 0.97 1/4 1/4 3/4 
 

 

This structural model has been later revised by Makongo et al. [72] to better 

describe the accommodation of the homogeneity range. In particular, at the Mg-rich 

boundary, strong disorder affects sites 12 and 14. When the phase composition exceeds 
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86.2 at.% Mg, Mg vacancies are created on site 14 and site 12 splits into two atomic 

positions named 12a and 12b, being the latter exclusively occupied by Mg atoms. Thus, 

when Mg concentration increases in the Mg6Pd phase, site occupancy factor (SOF) on 

site 14 decreases while SOF on site 12b increases. This configuration implies the 

following new restraints for SOF refinements: ∑ (SOF12a, SOF12b) = 1 and 

∑ (SOF12b, SOF14) = 1. When Mg content is below 86.2 at.%, the chemical 

composition of the phase is accommodated  through SOF of Mg and Pd on site 12a. In 

consequence of the wide homogeneity range of this phase, the lattice parameter varies 

linearly from 20.045 to 20.199 Å, depending on Mg concentration (from 85.0 to 87.4 

at.% Mg, respectively).  

Regarding the construction of the Mg6Pd cell, it can be described by an arrangement 

of interpenetrated Mackay clusters (Figure 1.8b). A Mackay cluster is made of three 

concentric shells centred on a Pd atom [72]: the inner shell consists of an icosahedron 

with 12 Mg atoms at the vertices, the second shell is formed by 30 Mg atoms on the 

vertices of an icosidodecahedron and the outer shell consists of 6 Pd and 6 Mg on an 

icosahedron (Figure 1.8a from bottom to top).  

 

 

Figure 1.8. a) The three concentric shells of a Mackay cluster and b) arrangement of Mackay 

clusters in the Mg6Pd cell [72]. 
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b. Hydrogenation properties 

Mg6Pd absorbs up to 4.3 wt.% H when exposed to 4 MPa of hydrogen pressure and 

573 K [73]. The PCI curve measured by Huot et al. displays three plateau pressures 

corresponding to the following successive reactions [74]:  

Mg6Pd + 2.35 H2 ↔ Mg3.65Pd + 2.35 MgH2  (1.5)  

Mg3.65Pd + 2.35 MgH2 + 1.15 H2 ↔ ½ Mg5Pd2 + 3.5 MgH2 (1.6) 

½ Mg5Pd2 + 3.5 MgH2 + 1.5 H2 ↔ MgPd + 5 MgH2 (1.7) 

 The hydrogen uptake corresponding to each reaction is 1.9, 0.9 and 1.2 wt.% H 

respectively, for a total of 4.0 wt.% H. The difference with experimental capacity was 

attributed to the formation of Mg5Pd2(H) and MgPd(H) solid solutions. An investigation 

on Mg/Mg6Pd nanoparticles [75] concluded to a similar hydrogenation mechanism but 

the occurrence of unidentified Mg-Pd compounds during hydrogenation was also 

suggested [75; 76].  

Regarding the thermodynamics of Mg6Pd hydrogenation, only few data are 

available. Kume and Weiss [77] obtained enthalpy and entropy values for the 

dehydriding reaction of Mg6Pd catalyzed by tetracyanoethylene (TCNE) using the Van’t 

Hoff equation. PCI curves were measured at relatively low temperature (433 to 468 K) 

and low pressure (< 0.01 MPa) and were limited to reactions (1.5) and (1.6), although 

only one plateau pressure was observed. They found that the hydrided Mg6Pd was more 

stable than MgH2 with ΔH = -80.3 kJ/molH2 and ΔS = - 148 J/KmolH2.  

Kinetics reported for Mg6Pd is rather slow, even for ball milled material [74]. 

Though, Roquefere et al. achieved significant kinetic improvement by short co-milling 

of Mg6Pd with 15 wt.% Fe [78]. The crystallite size was significantly reduced and Fe 

was expected to have catalytic properties on hydrogen absorption. However, 

thermodynamic and kinetic properties remain unsatisfactory and further improvements 

are needed. Investigation based on the Mg6Pd intermetallic has been continued by 

exploration of new pseudo-binary isomorphous compounds, with the objective to create 

less stable hydrides.  

 

3.1.3 Mg6Pd1-xNix pseudo-binary compounds 

New families of intermetallics can be obtained by substitution of Pd by other 

transition metals that have less affinity for hydrogen. Ni seems to be a suitable 
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substitution element as, besides having close electronic outer shell configuration to Pd, 

it has catalytic properties for hydrogen dissociation and it is much cheaper than Pd.  

 

a. Ternary phase diagram 

Pd and Ni are totally miscible and form an isomorphous binary system [79], which 

lead to expect complete miscibility in the Mg6Pd1-xNix pseudo-binary phase. However, 

this hypothesis is refuted by the fact that the Mg6Ni phase does not exist in the Mg-Ni 

phase diagram. Only a metastable phase, isostructural to Mg6Pd, can be obtained by 

melt-spinning and low temperature annealing [80; 81]. 

The first data reported on the Mg-Ni-Pd ternary system [82; 83] mentioned a Ni 

solubility in the Mg6Pd phase limited to 2 at.% Ni (i.e. x = 0.13) at 673 K. A deeper 

investigation on Ni solubility limit in the Mg6Pd phase demonstrated that the 

homogeneity range actually extends to 9 at.% Ni at 673 K [84]. The corresponding 

ternary phase diagram at the Mg-rich corner is represented in Figure 1.9. 

 

 

Figure 1.9. Ternary phase diagram of the Mg-Ni-Pd system in the Mg-rich corner at 673 K 

[84]. Labels: ρ for Mg6Pd phase; β for Mg2Ni phase; ε for Mg phase.  

 

b. Structural properties 

The Mg6Pd1-xNix crystal structure has been determined for several compositions by 

X-ray diffraction [84; 85] and by neutron diffraction for x = 0.5 [86]. The space group 

was the same than for Mg6Pd crystal. Therefore, the model of Makongo previously 
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described (Chapter 1, section 3.1.2.a) was applied to this pseudo-binary phase and Ni 

substitution was allowed on Pd sites. Interestingly, it was found that Ni atoms 

preferentially locate on sites with low coordination numbers (CN), i.e. sites 10 (CN = 

12), 11 (CN = 10) and 13 (CN = 12), and that site 12 (CN = 13) was exclusively 

occupied by Pd and Mg. This distribution was attributed to steric effects: larger atoms 

will preferentially locate on sites with higher CN because they offer a larger space. In 

this case, Ni atoms are smaller than Pd ones (rNi = 1.24 Å and rPd = 1.37 Å) and 

therefore locate on site with lower CN. This feature was also confirmed by first-

principles calculations on this pseudo-binary compound [87]. 

As anticipated by the difference of atomic radii, the lattice parameter of the pseudo-

binary phase decreases linearly with the amount of Ni substituting Pd [84; 87]. 

However, Mg concentration in the Mg6Pd phase affects more importantly the size of the 

cell due to its much larger radius (rMg = 1.60 Å) as compared to Ni and Pd ones.  

 

c. Hydrogenation properties 

Hitherto, hydrogenation properties have been investigated for the partially 

substituted Mg6Pd0.5Ni0.5 compound [86; 88]. The sample absorbed up to 4.5 wt.% H at 

615 K and under 2 MPa of hydrogen pressure. Hydrogenation led to a totally reversible 

disproportionation of the initial compound into MgH2, Mg2NiH4 and Mg5Pd2 phases. 

Neutron diffraction analyses highlighted the complex polymorphic properties of the 

Mg2NiH4 phase. Indeed, it was found that under the studied hydrogenation conditions, 

this hydride phase crystallizes in the LT2 orthorhombic structure which exhibits 

microtwinning occurring during the cooling of the cubic HT polymorph (see Chapter 1, 

section 3.1.1). These structural modifications made crystallographic refinements of this 

phase difficult. Mg5Pd2 and Mg2NiH4 final phases did not show any sign of partial 

substitution of Ni by Pd or vice versa. In contrast, Lass reported the formation of the 

Mg2(Ni,Pd)H4 phase and the absence of Mg-Pd intermetallics during the hydrogenation 

of a Mg6Pd0.3Ni0.7 compound [89].  

Thermodynamic properties of the Mg6Pd0.5Ni0.5 compound were determined by PCI 

measurements and using the Van’t Hoff equation [88]. Enthalpy and entropy variations 

during hydrogen absorption (ΔH = -63 ± 3 kJ/molH2 and ΔS = -114 ± 4 J/K.molH2) 

represented a significant decrease in stability as compared to that of pure MgH2.  
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3.2 Mg and catalysts 

One of the main drawbacks of Mg-based alloys is the loss in gravimetric storage 

capacity as compared to pure Mg. In addition, hydrogenation of well-crystallized 

intermetallic compounds generally implies long range diffusion of metallic elements 

which slows down the reaction kinetics. An alternative to Mg alloys is the addition of 

catalysts which is generally achieved by ball milling. In this section, different examples 

of Mg-catalyst systems will be presented.   

 

3.2.1 Transition metal additives 

TM are commonly used to catalyse hydrogen absorption or desorption in Mg. 

Effective catalysis requires a uniform distribution of very small catalyst particles over 

Mg surface. They generally affect the reaction kinetics by the spill-over mechanism, as 

described in Chapter 1, section 2.2.3. Because of its widely recognized catalytic 

properties, Pd was one of the first elements to be added to ball-milled Mg [90; 91]. It 

was demonstrated that very small amounts of Pd (< 1 wt.%) homogeneously distributed 

over the Mg surface resulted in significant kinetic improvement and eliminated the need 

of an activation process. The positive effect of other TM, such as TM from the 3d-block 

but also Zr or Nb, was also tested. The experimental procedure generally consists in ball 

milling a small quantity of additive (from 1 to 5 at.% TM) with MgH2 powder [8; 92–

97]. The type of mill as well as the milling conditions, the amount of additive and the 

initial state of the powders influences the efficiency of the catalyst. Therefore, 

comparison of results from different experimental procedures must be taken with a lot 

of care. As a general trend, kinetic improvements are clearly observed when compared 

to a reference of pure MgH2 sample and are evidenced by activation energy decrease 

[97; 98]. Among the abundance of results in this area of investigation, Nb [8; 94; 99; 

100], V [92; 96; 98; 100] and Ti [92; 96] elements stand out for their strong ability to 

facilitate hydrogen absorption. In addition, their immiscibility with Mg allows 

decorating Mg particles without forming any alloyed phases. For example, a 

MgH2 + 5 at.% V mixture milled during 20 hours was able to desorb hydrogen in 

33 min at 508 K and subsequently absorb 5.6 wt.% H in about 4 min at 473 K [93]. In 

addition, these outstanding hydrogenation properties were essentially maintained after 

2000 cycles [101]. Similar properties were found out for Nb catalysed MgH2 [99; 102]. 
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The precise role of these catalysts is still subject to debate and several effects seem to 

take part in the kinetic enhancement. However, several authors agree on the formation 

of metastable NbHx or VHx hydride phases that act as gateway for hydrogen diffusion 

[8; 96; 99; 102; 103]. Analogous conclusions were drawn from Ti catalysed MgH2 [92; 

96] but more details on the Mg-Ti-H system will be given in section 3.2.3.  

Finally, it is worth to precise that none of the publications mentioned above in this 

section reported any thermodynamic modification on the Mg-H system. However, in 

some cases it is possible to form Mg-TM metastable phases with better thermodynamic 

properties. For example, interesting results on metastable Mg0.75Nb0.25 bcc alloy 

obtained by co-deposition show a destabilization of the (Mg0.75Nb0.25)H2 bcc hydride as 

compared to MgH2 [104]. The PCI curves measured during hydrogen absorption 

between 293 and 413 K indicated an enthalpy of -53 kJ/molH2 with an entropy of -117 

J/K.molH2.  

 

3.2.2 Metal oxide catalysts 

Metal oxide catalysts combine the abrasive properties of ceramic materials with the 

catalytic properties of the metal as seen in the previous section. Investigation in this 

field is very productive and most of the TM oxides from the 3d-block have been tested 

[105–108], as well as Nb, Zr, Al or Si oxides. As for TM catalysts, small amounts of 

oxides are generally added before a BM process with MgH2. Considering the large 

amount of data and the diversity of experimental procedures, systematic studies are the 

most suitable way to compare the efficiency of the different catalysts. For example, 

Oelerich et al. compared the effects of 0.2 at.% of different oxides when ball milled 

during 100 h with MgH2. They found that Cr2O3 led to fast hydrogen absorption while 

Fe3O4 was the most efficient to improve hydrogen desorption rate [108]. Then, 

Barkhordarian et al. continued the systematic study by comparing the two previous 

oxides with Nb2O5 using the same conditions of preparation and characterization [109]. 

It was found that the last one was much better than all the previously investigated 

catalysts on MgH2, showing a complete hydrogen absorption in 1 min at 573 K. Figure 

1.10 illustrates the strikingly superior desorption rate of MgH2 catalysed with Nb2O5. 

From this moment, Nb2O5 passed to be the most promising catalyst to improve sorption 

reaction kinetics in Mg. Oxide concentration did not significantly influence the 
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hydrogen absorption rate. Nevertheless, it was optimized to 0.5 at.% in MgH2 to reach 

the fastest desorption [110]. This concentration is low enough to limit the loss in 

gravimetric capacity which was maintained at 7 wt.% H.  

 

 

Figure 1.10. Desorption rate of MgH2 catalysed with different metal oxides at 573 K into 

vacuum [109]. 

 

Several hypotheses have been suggested to explain the outstanding kinetics of such 

composites. The first proposed mechanism concerns the ceramic nature of metal oxides 

which favour the nanostructuration of the material during BM process and hence reduce 

the diffusion length path of hydrogen atoms. In addition, the introduction of a high 

density of structural defects is expected to change the electronic structure of the metal 

ion and increase the catalytic activity of the metal oxide [111]. The formation of a 

hydrogen depleted MgH2-x phase, identified by XRD and calorimetry, has also been 

reported to highly increase H diffusion [107; 112]. Finally, the catalytic mechanism of 

metal oxides also involves the ability of the metal cation to have multiple valence states 

which helps to dissociate hydrogen molecules and to transfer hydrogen atoms to the Mg 

phase. This intermediate state allows fast hydrogen dissociation and recombination. The 

role of oxygen anions is then to tailor the electronic structure of the metal ions [111].  

 

3.2.3 The Mg-Ti system 

Owing to its light weight among the TM and its relatively low cost, Ti is an 

attractive additive to improve Mg hydrogenation properties. As Nb or V catalysts, Ti 

forms several hydride phases and the existence of a metastable TiHx (0.7 < x < 1.1, 
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depending on the particle size) phase has been reported [113]. In addition, the fluorite-

type face centred cubic (fcc) structure of TiH2 exhibits much faster hydrogen diffusion 

rate (1.7 × 10
-13

 m²/s at 600 K [114]) than the rutile-type body centred tetragonal (bct) 

MgH2. Therefore, it is expected to be a good H carrier and favour the kinetics of 

hydrogen diffusion. As magnesium, pure Ti crystallizes at room temperature in the 

hexagonal close packed (hcp) structure (S.G. P63mmc). However, Mg and Ti form an 

immiscible system [115], characterised by a large positive heat of mixing 

(ΔH > 20 kJ/mol atom). The nearly inexistent solubility of one element into the other 

was attributed to their different valence (4 electrons for Ti and 2 electrons for Mg) 

[116]. In consequence, no Mg-Ti stable phases can be formed but, as suggested by first 

principles investigation [117], obtaining Ti-doped MgH2 opens field to possible 

thermodynamic destabilization of the hydride. To this purpose, solubility of one element 

into the other can be extended using non-equilibrium processing techniques such as 

vapour deposition or mechanochemistry.  

In the first part of this section we will see some achievements of metastable Mg-Ti 

alloys and ternary Mg-Ti-H hydrides obtained either by ball milling or as thin films. 

The second part will be dedicated to the most recent results obtained on MgH2-TiH2 

nanocomposites.  

 

a. Metastable Mg-Ti alloys and Mg-Ti-H hydrides 

Mg-Ti thin films have attracted wide interest not only for hydrogen storage 

investigation but also for their peculiar optical properties for solar collector applications 

or optical switchable devices [118]. While the as-deposited films are metallic and highly 

reflective, the hydrided state becomes strongly absorbing. For both types of 

applications, the understanding of structural properties and hydrogenation mechanism 

of this system is essential. 

 Metastable Mg1-xTix thin film alloys have been obtained by Notten and co-workers 

using dc magnetron sputtering deposition method with x = 0 to 0.5 [119–121]. The 

as-deposited thin films crystallized in a single phase hcp structure at ambient 

temperature [119]. It was demonstrated that the cell parameters of the Mg1-xTix phase 

closely followed a linear variation with x according to Vegard’s law. When these films 

were hydrogenated at low temperature, a different structure transformation was induced 
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for Mg-rich alloys (x < 0.1) which formed a rutile bct MgH2 phase, while a fluorite fcc 

hydride was formed for samples with x > 0.13. This structural dependence was also 

related to different discharge rates during electrochemical dehydrogenation: the fcc 

structure revealed a much better ability to rapidly desorb hydrogen than samples with 

bct structure [121]. This fact confirmed the importance of the crystal structure on 

hydrogen diffusion properties. Combining structural, optical and electrical data, Borsa 

et al. suggested the formation of a coherent crystalline structure between TiH2 and Mg 

phases, which induced the formation of a cubic MgH2 structure, isomorphous to TiH2, 

upon hydrogenation of samples with x > 0.13 [120]. This coherent structure was 

assumed to be responsible for enhanced hydrogenation properties. Recently, a fcc 

Mg1-xTixHy phase with reduced enthalpy of hydrogenation has been achieved by 

hydrogenation of a Mg1-xTix  + Mg + Ti nanocomposite synthesized by spark discharge 

generation [122]. However, if the enthalpy was reduced to -45 kJ/molH2, the entropy 

value also decreased to -84 J/K.molH2. This destabilization was attributed to the high 

density of interfaces generating lattice strains, the presence of hydrogen vacancies and 

the excess free volume due to local deformations.  

The achievement of large scale hydrogen storage implies to develop bulk materials. 

Mechanochemistry is a suitable method to prepare Mg-Ti based materials in larger 

amount than in thin films. Some researchers started to experiment mechanical alloying 

of pure Mg and Ti and to study the consequent solubility of Mg into Ti and vice versa. 

Solubility of Mg into Ti has been reported to reach 24 at.% when Ti and Mg were ball 

milled under Ar atmosphere [123]. Similarly, solid solution of Ti into Mg was observed 

up to 12.5 at.% [124]. In both cases, lattice expansion or contraction for Ti(Mg) and 

Mg(Ti) solid solutions respectively, in agreement with their respective atomic radii, has 

been reported. These rich solid solutions were easily explained by the isomorphous 

crystal structures of Ti and Mg, but the metastable Mg(Ti) phase dissociated into MgH2 

and TiH2 upon hydrogenation at 563 K [124]. Ti(Mg) solid solution remained thermally 

stable up to 913 K [123].  

In latter studies, Asano et al. demonstrated that the final structure of a ball milled 

Mg-Ti mixture strongly depended on the milling conditions and the Mg:Ti atomic ratio 

[125]. Thus, they achieved to synthesize hcp, fcc and bcc Mg1-xTix alloys 

(0.2 < x < 0.65), concluding that the crystal structure of milled products is closely 
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related to the plastic deformation process, i.e. to the amount of energy introduced in the 

system through the milling process. For example, a Mg80Ti20 sample ball milled during 

200 h with stainless steel balls and vial resulted in a hcp structure while zirconia tools 

led to a hcp and fcc mixture. They achieved to hydrogenate at low temperature and high 

pressure (423 K, 8 MPa) a Mg50Ti50 bcc alloy obtained by mechanical milling to form a 

fcc Mg0.42Ti0.58H1.77 hydride phase with the fluorite structure of TiH2 [126]. They 

obtained closely related hydride phases (fcc Mg0.40Ti0.6H1.13) by ball milling MgH2 + Ti 

during long times (200 h) [127]. However, no data on the thermal stability of this 

ternary hydride was given.  

In the same direction, Kalisvaart et al. obtained different final structures (hcp and 

fcc) by varying the initial state of ball milled materials (powder or ribbon) [128].  

According to Rousselot et al., a 0.5Mg-0.5Ti mixture ball milled during 20 hours in 

a vibratory mill resulted in a metastable hcp structure with complete solution of Mg and 

Ti [129]. This phase was irreversibly transformed in a fcc structure after electrochemical 

hydrogenation. They also showed the possibility to directly synthesize ternary hydride 

phases by high energy ball milling of MgH2 + Ti, Mg + TiH2 or MgH2 + TiH2 mixtures. 

In this case, the final products consisted of two different hydride phases in the fcc 

structure with different cell parameters [130].  

Another method to prepare Mg-Ti-H hydride was proposed by Kyoi et al. by 

reacting a mixture of MgH2 and TiH2 in a high pressure anvil cell at 8 GPa and 873 K 

[131]. A Mg7TiHx compound was obtained with a fcc structure. This material was able 

to desorb about 5.5 wt.% H at 605 K, which is about 130 K lower than MgH2 

temperature desorption. However, the Mg7Ti phase did not exist without the stabilizing 

presence of hydrogen and no information was given on the reversibility of this material.  

In summary, the abundance and diversity of results concerning the Mg-Ti-H system 

does not allow concluding on a simple behaviour, as the synthesis conditions strongly 

influence the final products. We have seen that Mg(Ti) and Ti(Mg) solid solutions can 

be extended to a significant range by means of ball milling during long times (from 10 

to 200 h). It is also possible to form ternary hydrides Mg-Ti-H but their thermal stability 

remains limited. The main limitations associated with the previously described materials 

are the long times required for synthesis, issues of cold welding between the powder 
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and the milling tools, and the poor stability of the obtained compounds. In addition, 

only few data on their hydrogenation properties are available.  

 

b. MgH2-TiH2 composites 

More recently, a new type of Mg-Ti based materials have been developed using 

reactive ball milling (RBM). This technique is an efficient way to enhance 

hydrogenation kinetics, but also to avoid thermal activation treatments and oxidation 

concerns. Different approaches have been used to obtain MgH2-TiH2 composites.  

Choi and co-workers prepared composites samples by high-energy-high-pressure 

mechanical milling of MgH2 and TiH2 under a hydrogen pressure of 13.8 MPa 

[130; 131]. After 12 hours of milling, they obtained a nanocrystalline (15-23 nm) 

mixture of MgH2 and TiH2 phases and no ternary hydride was identified. The 

thermodesorption of the as-milled 7MgH2-TiH2 resulted in much faster kinetics than 

pure MgH2 ball milled in the same conditions, with an onset desorption temperature at 

400 K at a heating rate of 5 K/min [132]. They evidenced the catalytic properties of 

TiH2 showing a decrease in activation energy for dehydrogenation from 96 kJ/mol for 

ball milled MgH2 to 81 kJ/mol for 50MgH2-TiH2 composite. The activation energy 

reduction was more important as the TiH2 content increased and reached 68 kJ/mol for 

the 4MgH2-TiH2 composition [132; 133]. In addition, the desorption properties of the 

composite sample remained almost stable after 5 absorption/desorption cycles. A 

decrease in desorption enthalpy was also reported for 10MgH2-TiH2 material 

(69.2 ± 0.5 kJ/molH2) and was attributed to the destabilizing effect of TiH2 incorporated 

into the MgH2 lattice [133]. These encouraging results led to further investigations on 

the hydrogenation properties of 10MgH2-TiH2 nanocomposites [134; 135]. Lu et al. 

showed the very good sorption kinetics and high stability on reversible hydrogen 

sorption over 80 cycles of a 10MgH2-TiH2 composite [134]. In addition, they achieved 

to hydrogenate more than 50 % of a desorbed composite at room temperature under 

2 MPa of hydrogen pressure [135]. The activation energy corresponding to hydrogen 

absorption was found to be remarkably low (16.4 kJ/molH2). Lower enthalpy and 

entropy values were also reported for hydrogen absorption from MgH2 phase 

(69.8 kJ/molH2 and 129 J/KmolH2) and kinetic improvements were essentially 

attributed to the catalytic effect of TiH2.  
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Lately, RBM has been employed for in situ hydrogenation of elemental Mg-Ti 

mixtures [136; 137]. Shao et al. synthesized a 10MgH2-TiH2 nanocomposite by milling 

during 20 hours a 10Mg-Ti mixture under 30 MPa of hydrogen pressure [136]. They 

obtained a nanometric composite powder (5 nm) able to desorb at 100 K lower than 

commercial MgH2 during thermodesorption. In contrast with previous results from Lu 

and Choi, they concluded that no modification of the thermodynamic properties 

occurred as compared to those of pure MgH2. These results are in agreement with those 

obtained by Cuevas et al. on MgH2-TiH2 nanocomposites synthesized by RBM for 

several Ti contents [137]. The H-cycling properties of a 7MgH2-3TiH2 nanocomposite 

were compared to those of Ti-free MgH2 synthesized by the same method. The 

Ti-containing nanocomposite exhibited outstanding sorption kinetics with 

absorption/desorption reaction times below 100 seconds at 573 K. Furthermore, such 

fast kinetics remained stable on more than 30 cycles. In contrast, pure MgH2 obtained 

by RBM exhibited sorption reaction times over 60 min and slowed down on H-sorption 

cycling.  

All these results coincide on the outstanding properties of MgH2-TiH2 composites 

for hydrogen storage. However, no clear explanation on the effect of TiH2 on Mg 

hydrogenation properties was evidenced. 

 

3.3 Nanoconfined Mg  

Nanoconfinement in porous media has recently attracted interest as it opens the 

possibility to synthesize and stabilize Mg particles as small as 2 nm. At this scale, a 

significant enthalpy reduction is expected, as calculated by Bérubé et al. [30] (see 

Chapter 1, section 2.2.4). We will see here some examples of Mg-based nanoparticles 

supported into porous carbon matrix. Mg nanoparticles confined into carbons pores 

have been successfully prepared by de Jongh et al. [138] using melt infiltration 

techniques. They started from a mixture of MgH2 powder and carbon that was heated up 

to the Mg melting temperature. They studied the influence of impurities (oxygen and 

nitrogen) in the carbon and the pore size distribution on the nanoparticles final size and 

pore filling. They obtained particles from 2 to 5 nm large with a high ratio of pore 

filling for the high-purity carbons with the smallest pores. The optimum metal loading 
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was found to be around 15 wt.% Mg. For higher Mg content, large bulk particles were 

detected out of the carbon.  

This promising technique was later extended to form Mg1-xNix confined 

nanoparticles [139]. In this case, the carbon was previously impregnated with Ni 

nanoparticles (5 nm) that were dispersed into the pores using a nickel nitrate solution. In 

a second time, Mg was infiltrated into the carbon by the same technique than in 

ref. [138], leading to the formation of an intimate mixture of Mg and Mg2Ni phases with 

sizes from 10 to 30 nm (Figure 1.11). This result showed the possibility to confine Mg-

based alloys and also that the presence of Ni was facilitating the wetting of the molten 

Mg in the carbon pores. After hydrogenation at 598 K under 5 MPa of hydrogen 

pressure of different Mg-Ni compositions, a thermal desorption investigation showed 

that MgH2 and Mg2NiH4 desorption peaks were easily identified at slightly lower 

temperatures than bulk materials. In addition, an intermediate broad peak appeared 

close to the eutectic composition (Mg0.88Ni0.12). These hybrid materials exhibited 

attractive desorption properties although no data were available on their cycling 

properties.  

 

 

Figure 1.11. Bright field (left) and dark field (right) transmission electron micrographs of 

Mg0.87Ni0.13 nanoparticles supported on a high surface area graphite [139]. 

 

Another method to synthesize nanoconfined Mg-based particles has been explored 

by Zhang et al. [140]. MgH2 particles nanoconfined into a carbon aerogel scaffold were 

directly obtained by decomposition of an organometallic precursor, dibutylmagnesium 

(MgBu2), under hydrogen atmosphere at 443 K. The particle size could not be 

determined but the broad X-ray diffraction peaks suggested the nanometric size of the 
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MgH2 phase. Such composite presented faster desorption kinetics than ball-milled 

MgH2 and its reversibility was proved over 10 cycles. A similar composite, which 

consists of 3 nm MgH2 particles confined into activated carbon fibre, was reported to 

have significantly reduced enthalpy and entropy of hydrogenation of 63.8 kJ/molH2 and 

117.2 J/KmolH2 respectively [141]. This thermodynamic change was attributed to the 

very small particle size (< 3 nm) and to the possible interaction of Mg with the carbon 

support.  

Based on the same preparation technique, other elements have been confined into 

porous carbons using different organometallic precursors. Hence, Mg-Fe-H and 

Mg-Ni-H hydrides have been infiltrated into a carbon template by impregnation of 

FeCp2 and NiCp2 precursors followed by the addition of either MgEt2 or MgBu2 [142]. 

These results show the possibility to extend nanoconfinement to a wide range of Mg-

based alloys. 

Nanoconfinement of Mg-based materials into porous matrix is a powerful way to 

improve hydrogenation kinetics and probably thermodynamics of (de)hydrogenation. 

However, the gravimetric capacity of these hybrid materials remains too low because 

the loading of the carbon pores is usually limited to ~15 wt.% of active material. Thus, 

the hydrogen gravimetric capacity of a carbon loaded with 15 wt.% of MgH2 would not 

exceed 1.1 wt.% H. Therefore, the porosity and surface area of the support remain key 

parameters to reach higher metal loading.  

 

4 Conclusion 

After more than fifty years of investigation on Mg-based materials, extensive 

advances have been achieved on improving their hydrogenation properties. Progresses 

on kinetics of absorption and desorption are considerable, through the addition of 

suitable catalysts combined with powder nanostructuration. Concerning thermodynamic 

improvements, some Mg-based hydrides have been reported to be destabilized as 

compared to pure MgH2. However, the operating conditions of the obtained materials 

remain far from the required working window of 0.1-1 MPa and 273-373 K for feeding 

fuel cells.  

Nevertheless, the use of Mg for solid state hydrogen storage is still relevant. The 

thermodynamic drawbacks can be minimised, for example, by coupling a metal hydride 
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tank to a suitable thermal management system which allows recovering the heat 

released during exothermic absorption and reuse it to initiate endothermic desorption. 

Indeed, several patents on Mg-based hydrogen tank already exist [143; 144] and some 

commercial models are by now available for stationary hydrogen storage. Besides, the 

development of novel Mg-based materials is expected to improve the thermodynamic 

and kinetic issues related to the Mg-H system. The diversity of potential new 

compounds, including metastable alloys, is wide and opens many fields for solid state 

hydrogen storage investigation. Therefore, further comprehension of the mechanisms 

involved during H-metal reaction is still needed to achieve efficient Mg-based storage 

media.  

In this context, the purpose of the next chapters is on one side to explore novel Mg-

based materials by combining different strategies to improve their hydrogenation 

properties, and on the other side to reach a deep understanding of the mechanisms that 

lead to enhanced hydrogen storage ability.  
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In this chapter we present the technical and theoretical tools that have been used 

throughout this Thesis. The different methods used for materials synthesis are first 

described. Then, we will present the techniques employed to characterize their 

morphology, chemical composition and structural properties. Finally, we detail the 

procedures used to determine the hydrogenation properties of each investigated 

material.  

 

1 Material preparation 

Different methods of synthesis are employed in this Thesis, giving rise to diverse 

natures of materials with their own specificities.  

 

1.1 Alloy synthesis 

The preparation of Mg6Pd1-xTMx bulk alloys was performed by melting of the 

constituent elements. The low melting point of Mg as compared to the transition metals 

used in this thesis has to be considered. Indeed, Mg melts at 923 K while Pd and Ni 

melting point is over 1700 K and Cu and Ag melt at temperatures over 1200 K. In 

consequence, one has to adopt specific methods in order to avoid strong Mg evaporation 

during heating. In this thesis, two techniques have been used depending on the amount 

of alloy to be prepared and the initial form of the products (see Table 2.1).  

 

Table 2.1. Commercial products used for alloy syntheses 

Element Provider Purity Form 

Mg Alfa Aesar > 99.8 % chips 

Pd Sempsa > 99.9 % foil 

Ni Cerac > 99.9 % foil 

Ag - > 99.9 % powder 

Cu CENIM > 99.9 % foil 
 

 

1.1.1 Induction melting 

Induction melting was used to synthesize relatively large amounts of alloy 

(50 - 100 g), owing to the dimensions of the furnace (Figure 2.1). The raw or 

pre-alloyed elements were mechanically cleaned of eventual oxide layer and weighted 

to obtain the desired nominal composition. To offset the Mg loss during melting, about 
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1 at.% excess of Mg was added to the initial composition. All reactants were then 

introduced into a graphite crucible covered with a thin layer of boron nitride to avoid 

possible carbon contamination. The chamber of the furnace was flushed three times 

with Ar and finally kept with 75 kPa of Ar pressure to limit Mg evaporation during 

melting. Melting was achieved by increasing the alternative current passing through the 

induction coil around the crucible, which generates a strong magnetic field into the coil 

axis and heats up the metallic constituents. After 10 minutes at the molten state, the 

metal was cast in a stainless steel mould where it cooled down rapidly, still under Ar 

atmosphere. This last step provides to the alloy a good homogenisation of all the molten 

phases. In addition, a two or three days annealing was performed under secondary 

vacuum to reach a better thermodynamic equilibrium.   

 

 

Figure 2.1. View of the open chamber of the induction furnace. 

 

1.1.2 Sealed crucibles  

Another technique was used to synthesize smaller amounts of Mg-based alloys 

(1 - 5 g). In this case, initial compounds were introduced into a steel crucible that was 

then hermetically sealed under argon and placed in a high temperature electric furnace 

(Figure 2.2). It was then heated up over the melting temperature of the alloy (typically 

at 1000 K) during 3 hours and cooled down to the annealing temperature where it was 

maintained for two days. The sealed crucible allows for melting Mg-based alloys, 

prevents sample oxidation and avoids Mg loss by evaporation.  
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Figure 2.2. Procedure for the alloy preparation in sealed steel crucible. 

 

1.2 Reactive ball milling 

The reactive ball milling (RBM) technique was used for the synthesis of MgH2-TiH2 

nanocomposites. Indeed, Mg and Ti elements are immiscible and alloying these two 

elements by melting techniques is impossible. RBM allows for fast in situ 

hydrogenation of Mg-Ti mixtures at room temperature. The mechanical treatment 

induces highly energetic collisions which favour the formation of fresh surfaces directly 

available for hydrogen absorption as well as homogeneous mixing of the solid 

constituents at the nanoscale. 

RBM experiments under hydrogen or deuterium gas have been performed in a high-

pressure milling vial commercialized by Evicomagnetics (Figure 2.3 left). This vial is 

equipped with gas pressure and temperature sensors which allows for in situ monitoring 

of hydrogen (deuterium) uptake as a function of milling time. An experimental method 

which takes into account the real gas behaviour of hydrogen (deuterium) and the 

calibration of the gas temperature was developed to reach a typical accuracy in the 

determination of H-content of 95 % [1].  

 

 

 

Figure 2.3. The Evicomagnetics milling vial and the telemetric receptor (left). Schematic 

representation of the principle of a planetary mill (right). 

 



Chapter 2. Experimental techniques 

51 

Mg (Alfa Aesar, < 800 μm, 99.8 % purity metal basis) and Ti (Aldrich, < 150 μm, 

99.7 % purity metal basis) powders together with the 12 mm stainless steel balls were 

loaded in the milling vial inside the glove box. The ball to powder mass ratio was 37.5 

for all Mg-Ti powder mixtures and 60 for pure Mg powder and the typical sample mass 

was 8 g. The vial was then connected to a manometric hydrogenation device to calibrate 

the empty volume inside the vial (typically 170 mL) and introduce the initial gas 

pressure (typically 6-8 MPa). The milling was carried out in a Fritsch Pulverisette 4 

planetary mill at respective disk and vial rotation speeds of 400 and 800 rpm as 

illustrated in Figure 2.3 on the right. Milling was performed in two milling cycles of 

120 min with 120 min pause in between for cooling of the milling tools. Hydrogenation 

was completed during the first cycle and the second cycle was used for calibration 

purpose. Finally, the remaining hydrogen (deuterium) was evacuated and the powder 

unloaded inside the glove box.  

 

1.3 Intermetallic nanoconfinement in porous carbon 

The preparation of nanoconfined Mg-based alloys in an activated carbon requires a 

two-step specific procedure that has been recently developed [2; 3]. Figure 2.4 

summarizes the experimental procedure followed to obtain nanoconfined Mg6Pd 

particles. The first step consists in the impregnation of the porous carbon (HSAG500 

from TIMCAL) by a home-made precursor Pd-containing solution (H2PdCl4) followed 

by the reduction of [PdCl4]
2-

 ions in Ar/H2 flow (0.5 L/min) at 573 K to obtain Pd@C 

hybrids. The sample was then degassed under secondary vacuum for several hours and 

protected from air contact for all further sample handling. 

The second step consists in melt-infiltration of MgH2 in this hybrid to get 

Mg6Pd@C intermetallic/carbon materials. Mg mass was calculated according to the 

stoichiometry of the required alloy. In the glove box, the MgH2 (Alfa Aesar 98 %) was 

mixed with the Pd@C hybrid and loaded in a graphite crucible which was then put in a 

non-hermetic stainless steel holder and introduced into a quartz tube. The mixture was 

then placed in a furnace under an Ar flow and heated up to 923 K to decompose MgH2 

and to reach infiltration of the molten Mg into the pores. After 40 minutes of dwelling, 

the sample was cooled down slowly and extracted inside the glove box.  
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Figure 2.4. The precursor impregnation followed by the melt-infiltration process. Pink circles 

stand for the Pd precursor particles, MgH2 is represented in blue and green colour symbolises 

the alloy nanoparticles.  

 

Finally, the hybrid material was hydrogenated overnight in a high pressure 

autoclave (Parr) at 573 K under a hydrogen pressure of 5 MPa.  

 

2 Chemical and structural characterization 

2.1 Scanning electron microscopy 

Scanning electron microscopy (SEM) coupled with energy dispersive X-ray 

analysis (EDX) has been used to characterize the morphology and the chemical 

composition of the alloys.  

 

2.1.1 Basics of SEM 

SEM is a powerful technique of observation that uses a high energy electron beam 

(from 0.3 to 30 keV) to scan the surface of a sample and produce an image through the 

different types of emitted electrons [4]. The different types of interactions of the 

electrons with the atoms of a sample are represented in Figure 2.5. The most common 

imaging technique is the one produced by secondary electrons (SE). These electrons 

result from inelastic interactions between the sample atoms and the primary electrons 

from the beam. Owing to their low energy, the SE are emitted within a few nanometers 

from the sample surface. Therefore, this technique is mainly used to observe the 

morphology and topography of a surface.  
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Figure 2.5. The different interactions of an incident electron beam with a sample [5].  

 

Backscattered electrons (BSE) are emitted as a result of elastic interactions between 

the incident electron beam and the sample atoms. Larger atoms, because of their larger 

cross-sectional area, have a higher probability to generate a collision with primary 

electrons. In consequence, the number of emitted BSE is proportional to the mean 

atomic number Z of the sample. Thus, BSE images are an excellent tool to generate 

Z-contrast maps of sample compositions, where phases containing heavy elements 

appear in bright grey and dark areas correspond to light elements. This method probes a 

sample thickness of about 1 μm.  

EDX analysis, a complementary tool to SEM, uses the X-ray emission characteristic 

of each element to determine the chemical composition of a sample. The inelastic 

collisions of the incident beam with electrons from the inner layer of atoms in the 

specimen generate electron excitation. As the excited electrons return to lower energy 

states, photons are emitted with fixed wavelength, related to the difference in energy 

levels of electrons in different shells for a given element. The emitted X-rays are 

detected by an energy dispersive spectrometer (EDS). The technique allows determining 

the relative atomic composition of the samples with a typical error of 1 at.% and spatial 

resolution about 1 µm
3
. 

 

2.1.2 Sample preparation and instrument 

The use of BSE images and EDX analysis requires working with flat and polished 

surface. To this purpose, the samples were embedded in epoxy resin and polished with 
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diamond paste under ethanol down to 1/4 μm when possible. In some cases, the sample 

was too sensitive to oxidation, due to the large amount of Mg, and polishing had to be 

stopped at 3 μm. In addition, the analysed specimen has to be conductive, which is not 

the case of epoxy resin. Thus, the polished sample had to be coated with a 10 nm layer 

of Au by evaporation under vacuum. The instruments used during this Thesis were a 

Hitachi S-3000N 0K coupled to an EDS Oxford Instruments, INCA x-sight. 

 

2.2 Electron probe micro analysis 

2.2.1 Basics of EPMA 

Electron probe micro analysis (EPMA) is a quantitative and non-destructive 

technique [6] that provides accurate chemical composition of samples and phases which 

elements atomic mass (Z) is higher than 5. This technology works according to the same 

principle than SEM-EDX, but allows for better accuracy because it is equipped with a 

wavelength dispersive spectrometer (WDS) instead of EDS. Unlike EDS which 

produces a broad spectrum of energies simultaneously detected, WDS isolates the 

X-rays of interest by means of a single crystal. The constructive interference generated 

at a given wavelength according to the Bragg’s law allows detecting and counting a 

single wavelength at a time. Detection of other wavelengths corresponding to other 

elements is obtained by changing the position of the crystal. This method avoids 

overlapping issues that occur when emission lines from two different elements share the 

same energy. Quantitative analysis of all elemental constituents is achieved after 

comparison of the measured signal intensity for each element to that of a standard 

sample. Typical error in chemical analysis is ~0.1 at.% and the spatial resolution is 

~1 µm
3
. 

 

2.2.2 Sample preparation and instrument 

As for SEM-EDX, the sample surface needs to be flat and polished to obtain good 

quality analyses. Small pieces of the alloy ingots were embedded in a low melting point 

Wood alloy and polished in the same way than the epoxy resin used for SEM. In this 

study, the samples were analyzed in a Cameca SX-100 instrument which main features 

are represented in Figure 2.6. 
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Figure 2.6. Technical drawing of the Cameca SX-100 EPMA instrument. 

 

2.3 Transmission electron microscopy  

2.3.1 Basics of transmission electron microscopy 

Transmission electron microscopy (TEM) [7] uses a high energy electron beam 

(from 100 keV to 1 MeV) projected on a very thin (< 200 nm) sample. The electrons are 

emitted by a source (e.g. a field emission gun) and are focused and magnified by a 

system of magnetic lenses. The incident electrons penetrate the thickness of the sample 

and give rise to different types of interactions. The different scattering processes (elastic 

or inelastic) occurring through the material are interpreted to obtain information on 

defects, grain boundaries, interfaces, etc. with atomic scale resolution.  

In this Thesis, we focus on the conventional TEM imaging techniques to obtain 

information about the microstructure of nanosized materials. The bright field (BF) 

images are formed by a two dimensional projection of the sample obtained by the 
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transmitted unscattered beam. Thicker regions of the sample or regions with a higher 

atomic number will appear dark, while thinner regions or with no sample in the beam 

path will appear bright. The dark field (DF) mode is obtained by selecting one reflection 

of the diffracted beam. Therefore, only the crystalline parts of the sample which 

orientation corresponds to the Bragg angle of the selected reflection will appear bright. 

These two modes produce contrasted images that allow identifying metallic particles 

and oriented crystallites.  

 

2.3.2 Sample preparation and instrument 

The air-sensitivity of the studied samples implied the use of a special sample-holder 

that could be loaded inside the glove-box and protected from air during the transfer to 

the TEM vacuum chamber. In addition, the sample-holder was cooled to ~100 K with 

liquid nitrogen to avoid decomposition of the hydrided samples by the beam irradiation. 

The thin powder was dispersed on a Cu grid covered with a carbon layer. The 

instrument used was a FEI Tecnai F20 ST with a field emission gun 200 keV.  

 

2.4 Powder diffraction 

2.4.1 General principles of powder diffraction 

Both X-ray and neutron diffraction are essential techniques for structural 

characterization of crystalline materials [8]. Powder diffraction is based on the 

interaction of sub-atomic particles (photons or neutrons) with the atoms constituent of a 

crystal, and more particularly on the elastic scattering. Elastic scattering occurs when 

the energy of an incident radiation is conserved but its direction of propagation may 

change. When an incident beam hits an atom, the scattered radiations will propagate in 

all directions. In a crystalline solid where the atoms are arranged in a regular pattern, the 

interferences of scattered radiations are in majority destructive but they are constructive 

when Bragg’s law is satisfied: 

nλ = 2d sin θ (2.1) 

where n is an integer, d is the spacing between the scattering planes in the solid, λ is the 

wavelength of the incident beam (which has to be comparable with d) and θ is the angle 

between the incident ray and the scattering planes (Figure 2.7). In other words, 
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diffraction occurs only when the path length difference between two parallel waves is 

an integer multiple of the wavelength.  

 

 

Figure 2.7. Geometric illustration of the Bragg condition with a constructive interference from 

a parallel incident beam [9].  

 

When this condition is fulfilled, the waves are in phase and produce a Bragg peak, 

which relative intensity will depend on the nature of the atoms in the diffracting plane. 

In the case of powder diffraction, the samples are polycrystalline with a random 

distribution of all (h,k,l) planes. Therefore, the diffraction pattern obtained by scanning 

a large θ range will result in a peak distribution corresponding to the reflections of each 

(h,k,l) plane. Analysis of the diffraction pattern allows, for instance, the determination 

of relative phase amounts, their atomic and structural parameters and their average 

crystallite sizes.  

 

2.4.2 X-ray powder diffraction 

In the case of X-ray radiation, the incident beam interacts with the electron cloud of 

the atoms. Therefore, heavy atoms are easily detected while light atoms, such as 

hydrogen, are hardly perceived. The amplitude of the scattered wave is described by the 

atomic form factor f which is proportional to the atomic number of the atom and 

decreases with θ angle.  

Typical X-ray diffractometers use the Bragg-Brentano geometry. In this geometry, 

the relationship between θ (the angle between the sample surface and the incident X-ray 

beam) and 2θ (the angle between the incident beam and the detector) is maintained 

throughout the analysis. The position of the sample defines the centre of a circle on 

which the X-ray source and the detector are located. If the X-ray source is fixed while 
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the sample and detector rotate an angle θ and 2θ, respectively, this is called θ-2θ 

geometry. If the sample is fixed, while both the X-ray source and detector move an 

angle θ, then it corresponds to θ-θ geometry (Figure 2.8). All the instruments used in 

this Thesis were designed in the Bragg-Brentano geometry but they have different 

configurations.  

 

 

Figure 2.8. Schematic representation of the θ-θ Bragg-Brentano geometry [10]. 

 

Most of the X-ray powder diffraction (XRPD) acquisitions concerning the 

Mg6Pd1-xTMx alloys were performed in a Panalytical X’Pert Pro θ-2θ diffractometer 

with filtered Cu-K1 radiation (λK1 = 1.54050 Å). The samples were prepared by 

dispersing the metal powder on a thin layer of vacuum grease spread on a glass support. 

The powder was previously ground in an agate mortar and sieved to particle size below 

63 μm. This technique ensures a random orientation of the crystallites.  

The XRPD analyses of the ball milled composites and nanoconfined hybrids were 

obtained in a Bruker D8 Advance - diffractometer with Cu-K radiation 

(λK1 = 1.54051 Å, λK2 = 1.54433 Å) and graphite rear monochromator. Owing to the 

pyrophoric character of these samples, a special air-tight sample-holder commercialized 

by Bruker was used to avoid samples to be in contact with air. This sample-holder was 

loaded with about 200 mg of powder inside the glove box and hermetically closed with 

a X-ray transparent cap.  
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2.4.3 Neutron powder diffraction 

a. Basics of neutron diffraction 

Unlike X-rays, neutrons are scattered by the nuclei of the atoms. Analogically to the 

form factor f in X-ray diffraction, the amplitude of the diffracted neutrons is 

proportional to the scattering length b. This characteristic value is independent of the 

scattering angle, allowing for better peak resolution at high angles. As can be noticed in 

Figure 2.9, there is no straightforward relation between the atomic number Z of the 

atoms and the scattering length b of neutrons. This property makes neutron diffraction a 

very helpful tool to detect light atoms such as hydrogen or deuterium that exhibits a 

strong contrast. However, the hydrogen atom neutron scattering is dominated by a very 

large incoherent scattering cross section (σinc(H) = 79.7 × 10
-28

 m
-2

) which results in an 

important background contribution. In consequence, the studies of hydrides are almost 

always performed on deuterated materials as deuterium incoherent scattering cross 

section is much smaller (σinc(D) = 2.0 × 10
-28

 m
-2

).  

 

 

Figure 2.9. Neutron scattering length b as a function of the atomic number Z [11]. 

 

In addition, since neutrons do not have any electric charge, they can penetrate 

several centimetres through the condensed matter. This is an advantage to probe the 

bulk of a sample instead of the few μm analysed by XRPD.  

Most of the neutron powder diffractometers use the Debye Scherrer geometry 

(Figure 2.10). A parallel monochromatic neutron beam hits the sample contained in a 

cylindrical holder and a series of detectors are located on a detection cylinder. In 
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consequence, diffracted neutrons are counted simultaneously for the whole θ range, 

allowing for fast diffractogram acquisition.  

 

 

Figure 2.10. Technical drawing of the D1B diffractometer showing the Debye-Scherrer 

geometry. 

 

In this Thesis, two types of neutron diffraction measurements have been performed. 

On one hand, high resolution powder diffraction was used for ex situ acquisition at 

room temperature. On the other hand, in situ neutron measurements were carried out to 

determine structural evolutions during (ab)desorption experiments.  

 

b. Ex situ neutron diffraction: sample preparation and instruments 

Ex situ measurements have been performed on deuterated samples synthesized by 

RBM. The sample powder was introduced in a vanadium tube hermetically sealed in an 

Ar protective atmosphere. Sample masses varied from 2 to 5 g, depending on molar 

mass of the compound and sample-holder size. 

The 3T2 diffractometer at Laboratoire Léon Brillouin (Saclay, France) was used to 

measure composites MgD2-TiD2 samples in neutron beam with wavelength λ = 1.225 Å. 



Chapter 2. Experimental techniques 

61 

The 2θ angle ranges from 5° to 122° and scattered neutrons counting was obtained by 

50 
3
He detectors. The MgD2 sample was measured in the HRPT diffractometer at Paul 

Scherrer Institute (Villingen, Switzerland) with λ = 1.494 Å. The diffractogram was 

obtained in the 0 - 165° 2θ-range by 1600 
3
He detectors. 

 

c. In situ neutron diffraction: sample preparation and instruments 

In situ neutron diffraction experiments were carried out in the diffractometer D1B at 

Institut Laue Langevin (Grenoble, France). The sample-holder, specially designed for 

that purpose, was made of stainless steel and equipped with an external thermocouple 

and a valve for deuterium input and output. It was connected to a volumetric rig 

allowing deuterium uptake control by manometric methods. A vanadium furnace, 

transparent to neutrons, was used to control the thermal environment of the sample. A 

general view of the diffractometer is presented in Figure 2.11. 

 

 

Figure 2.11. General view of the diffractometer D1B equipped with the V furnace.  

 

D1B is a high resolution diffractometer equipped with He/CF4 position-sensitive 

detector composed of a system of multi-electrodes with 1280 cells with a separation of 

0.1º, covering in total 128º ranged from 0.8 to 128.8º in 2θ. Three pyrolitic graphite 

monochromators provide a flux of 6.5 × 10
6
 n cm

-2
s

-1
 for a wavelength of 2.52 Å. At the 

expense of the neutron flux (reduced to 0.4 × 10
6
 n cm

-2
s

-1
), a second wavelength, λ = 

1.28 Å, is available by using a germanium monochromator. This elevated neutron flux 
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allows for short time acquisitions (typically 10 min in this study) to follow the structural 

evolution of the materials with deuterium uptake.  

 

2.4.4 Diffractogram analysis: the Rietveld method 

X-ray or neutron powder diffraction can provide a large amount of structural 

information on polycrystalline materials. To extract this information, it is first necessary 

to identify the present phases. This step is done by using the Eva (from Brucker) or 

X’Pert Pro (from Panalytical) software which access to the crystallographic PDF 

(powder diffraction file) database. Once the phases and their structure are identified, the 

experimental profile can be fitted to a calculated profile by means of the Rietveld 

method [12]. In this Thesis, diffraction patterns were analyzed using the Rietveld 

method with the Fullprof Suite software [13]. 

The principle of this method is to calculate a theoretical diffractogram from the 

different variables in the equations of diffraction and taking in account the instrumental 

characteristics. The structural parameters (lattice parameters, atomic positions, Debye-

Waller factors, site occupancy), the scale factor, the background signal and the shape 

function are progressively refined by a least square method to produce a calculated 

pattern that should be as close as possible to the experimental diffractogram. This is 

done by minimising the function M:  

     

 

                  (2.2) 

where yi,obs is the observed intensity of point i, yi,calc is the calculated intensity and wi is 

a statistical weight given by the inverse of the calculated intensity (1/yi,calc). 

The intensity at point i, yi,calc, is calculated as the sum of the background 

contribution and all the Bragg peaks from the different phases contributing at this point: 

               
 

         
 

             (2.3) 

where:  

ybi is the background contribution 

SΦ is the scale factor of the phase Φ 

jΦk is the multiplicity of the reflection k 
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LpΦk is the Lorentz-polarization factor. It modulates the intensity as a function of 

the θ angle. 

FΦk is the structure factor of the reflection k 

ΩiΦk is the profile shape function 

The first summation concerns all the crystalline phases Φ present in the sample and 

the second one relates to all the reflections k contributing to point i.  

The structure factor FΦk relates the intensity of the reflection k to the atomic 

arrangement of the diffracting structure: 

                         

 

   

               
 

  
   (2.4) 

where:  

fj is the form factor of atom j in the case of X-ray, and the scattering length b in the 

case of neutrons.  

    is the direction of the diffraction 

      indicates the position of atom j 

Bj is the Debye-Waller factor for atom j (in Å²). This factor reflects the thermal 

vibration of an atom around its crystallographic position. In the case of isotropic 

vibration, it is written as 

B = 8π²Uiso (2.5) 

with Uiso the average quadratic amplitude of the vibration.  

In the case of anisotropic displacement, the atom vibrates into an ellipsoid volume 

which shape and orientation can be defined by the following parameters: 

    
 

 
    

    (2.6)     
 

 
    

       (2.7) 

    
 

 
    

    (2.8)     
 

 
    

       (2.9) 

    
 

 
    

    (2.10)     
 

 
    

       (2.11) 

with a*, b* and c* the lengths of the reciprocal axes. 

The profile shape function ΩiΦk is used to define the peak profile. In this study, the 

refinements were performed using the “Thomson-Cox-Hastings pseudo-Voigt” 

function, which considers the peak profile as a weighted sum of a Gaussian and a 

Lorentzian functions:  
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Ω = ηL + (1-η)G (2.12) 

where η represents the balance between G and L components.  

The full-width at half maximum (FWHM) of the Gaussian and Lorentzian 

components are given as: 

HG = (U tan
2
θ + V tanθ + W)

1/2
 (2.13) 

HL = X tanθ + Y cosθ  (2.14) 

The parameter U is mainly affected by peak broadening induced by sample 

microstrains, while Y depends on the crystallite size in the sample. Parameters V, W and 

X are related to the instrument contribution. In consequence, U and Y parameters are 

refined and can be used for the determination of the crystallite size and microstrain 

analysis. The crystallite size is determined from the Lorentzian broadening contribution 

and the Scherrer formula according to the following relation: 

  
   

  
 

 

    
 (2.15) 

with D the diameter in Å of the crystallite considered isotropic, λ the wavelength in Å 

and Y0 the instrumental contribution to the Lorentzian component in degrees. 

The evaluation of the microstrain in the sample can be obtained from the Gaussian 

contribution to the peak broadening by the equation: 

  
 
 
  

         
       (2.16) 

where ε is the average microstrain in % and U0 is the instrumental contribution to the 

Gaussian component. 

To evaluate the validity of a diffraction profile refinement, several reliability factors 

are calculated. These factors measure the agreement between the experimental and the 

calculated profiles. The Bragg factor evaluates the validity of the refinement for a given 

phase. It is probably the best criteria to validate the refined structural model:  

       
                  

          
 (2.17) 

with Ik = jk.Fk
2
 

The profile factor Rp and the weighted profile factor Rwp characterise the quality of 

the global refinement. They are dominated by the precision of the shape function to 
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describe the peak shape but they have relatively low sensibility to the structural 

parameters: 

       
                  

          
 (2.18) 

         
                    

 

            
  

   

 (2.19) 

The expected weighted profile factor reflects the statistical quality of the data: 

          
     

            
  

   

 (2.20) 

where n is the number of points used in the refinement, p is the number of refined 

parameters and c is the number of constraints. 

Finally, the reduced chi-square is a statistic parameter that represents the goodness 

of fit. Its value should be as close as possible to 1:  

    
   

    
 

 

 (2.21) 

 

2.5 X-ray Absorption Spectroscopy 

X-ray Absorption Spectroscopy (XAS) allows the determination of the local 

structure around an absorbing atom, independently of the crystalline state of the 

material (amorphous, nanocrystalline, etc.). In this technique, the sample is irradiated by 

a monochromatic but energy-tuneable X-ray beam and the absorbance is recorded as a 

function of the photon energy. When the beam energy corresponds to the energy of a 

core-level electron, i.e. at the absorption edge, the incident photon is absorbed and the 

core electron ejected from the atom. At higher energies, the photo-electron is back-

scattered by the neighbouring atoms, inducing interferences responsible for the 

oscillations observed in the absorption spectra above the edge. The X-ray absorption 

spectrum is typically divided in two regimes: X-ray Absorption Near Edge 

Spectroscopy (XANES) and Extended X-ray Absorption Fine-structure Spectroscopy 

(EXAFS). XANES spectrum provides information on the oxidation state, symmetry 

around the absorbing atom and electronic structure. The EXAFS function χ(k) is the 

oscillatory part of the absorption spectrum. EXAFS is used to determine atomic 
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distances, coordination numbers and species of the neighbours of an absorbing atom, as 

well as disorder parameters through Debye-Waller factors.  

This technique has been used to obtain information on the local structure of Mg6Pd 

nanoparticles confined in a porous matrix. EXAFS measurements were performed by P. 

De Jongh’s group (Utrecht University) at the DESY-synchrotron facility in Hamburg 

(DORIS beamline C). The Pd-edge (E = 24350 eV) was measured for a Mg6Pd bulk 

reference mixed in boron nitride (30 mg in 20 mg BN) and a Mg6Pd@C composite (160 

mg). The quantities were calculated in order to obtain an edge jump near 1. All samples 

were pressed into pellets in the glove box and measured in a closed cell in a He 

atmosphere.  

The study of XAS measurements requires a complex mathematical treatment that is 

widely described in ref. [14]. The spectra were extracted using standard procedures 

available in MAX-Cherokee program [15]. All EXAFS fits were performed with MAX-

RoundMidnight code [15] by fitting the experimental spectra to the EXAFS standard 

formula, using first-coordination sphere filtered spectra. Theoretical phases and 

amplitudes were calculated with FEFF8.4 code [16; 17].  

 

2.6 Porosity analysis by nitrogen physisorption 

Physisorption is the process by which gas molecules are adsorbed onto a surface of 

a solid through weak attractive forces, usually at cryogenic temperatures. This process is 

used experimentally to quantify the surface area of a solid, its pore size and pore volume 

distribution. The porosity and surface area analysis is achieved by measuring the 

adsorption and desorption isotherms of the sample with liquid nitrogen at 77 K. Porous 

hybrid materials were analysed in this thesis by using a Quantachrome Instruments 

Autosorb IQ. The amount of adsorbed nitrogen is determined by volumetric 

measurements as a function of the relative pressure P/P0, where P0 is the saturation 

pressure. 
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2.6.1 Specific surface area determination 

The specific surface area of a porous sample is generally determined through the 

Brunauer, Emmett and Teller (BET) method [18], with the following equation:  

 

           
 

 

   
 
   

   
 
 

  
  (2.22) 

where W is the weight of gas adsorbed measured by volumetric means, Wm is the weight 

of one monolayer of adsorbate and C is the BET constant which is related to the 

adsorption energy of the gas.  

The plot of 
 

           
 against 

 

  
 is linear at low pressure, i.e. in the 0.05 - 0.25 relative 

pressure range. From the values of the slope s and the intercept i we can deduce the 

value of Wm: 

   
   

   
        

 

   
               

 

   
 (2.23) 

Finally, the specific surface area is expressed as: 

   
        

   
 (2.24) 

with N Avogadro’s number, Acs the cross sectional area of the adsorbate, M its 

molecular weight and w the sample weight.  

 

2.6.2 Total pore volume, pore size distribution and microporous volume 

The total pore volume Vtot of the sample is determined from the amount of adsorbed 

nitrogen close to the saturation pressure (typically at P/P0 = 0.99 in the isotherm). It is 

expressed as follows: 

      
    
     

       (2.25) 

where Vads is the gaseous volume of adsorbed nitrogen, Vm(g) and Vm(l) are the molar 

volumes of gaseous and liquid nitrogen respectively.  

The pore size distribution is commonly obtained by the Barrett, Joyner and Halenda 

(BJH) method [19], based on an adaptation of the Kelvin equation. It is a step by step 

computational analysis of the desorption branch of the isotherm that relates the pore 

volume to the pore dimensions. Hence, we obtain a cumulative plot of the pore volume 

against the mean pore size.  
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The total volume of micropores is estimated by the Dubinin-Radushkevic (DR) 

method [20], generally in the 0 - 0.1 relative pressure range. The DR equation gives the 

following relationship: 

                  
  

 
 
 

 (2.26) 

with W the weight of the liquid adsorbate, W0 the weight adsorbed in the volume of the 

micropores, and K the Dubinin-Radushkevich isotherm constant. By plotting      

against     
  

 
 
 

, we obtain the value of W0 from the intercept with the vertical axis. 

Thus, from the density of the liquid nitrogen, we obtain the volume of the micropores.  

 

3 Hydrogenation properties 

3.1 Sievert’s manometric measurements 

3.1.1 General principle of the Sievert’s method 

This method, based on manometric measurements, is used to determine the amount 

of hydrogen absorbed or desorbed in a sample during solid-gas reaction. A certain 

amount of hydrogen is first introduced in a calibrated reservoir volume at a given 

temperature. By measuring the pressure in this volume, it is then possible to know the 

initial number of hydrogen moles ni. The gas is then expanded to another calibrated 

volume containing the sample which can react with hydrogen. H-sorption causes a 

pressure variation in the total volume and the equilibrium is reached when the pressure 

does not change anymore. The final number of hydrogen moles nf is determined from 

the final equilibrium pressure. Therefore, the accurate determination of ni and nf is 

essential to calculate the hydrogen uptake of a sample. In a first approach, the ideal gas 

law can be used to calculate the number of hydrogen moles at pressure lower than 

1 MPa.  

   
  

  
 (2.27) 

with P the hydrogen pressure in the reservoir (Pa), V the volume of the reservoir (m
3
), T 

the temperature of the reservoir (K) and R the gas constant (R = 8.314 J/mol.K). This 

model assumes that no interaction force exists between the hydrogen molecules and 

considers the gas molecules as point masses with no significant volume.  
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To take in account the real gas behaviour of hydrogen at higher pressure 

(0 - 10 MPa) and temperature (100 - 1000 K), Hemmes [21] developed a model derived 

from the Van der Waals equation: 

   
       

  

            

  
 

(2.28) 

where a(P) and b(P) depend on the pressure and α on the temperature, according to the 

following expressions: 

                                      for P > 0.1 MPa (2.29) 

               
  

    for P > 10 MPa 

                 for P < 10 MPa 
(2.30) 

                 (2.31) 

The numerical solution of equation (2.28) is obtained according to the Newton 

method by resolving the following function:   

             
  

  
               (2.32) 

This is achieved by an iteration process, considering the initial n value as 

n0 = PV/RT. The next estimations of ni are calculated with the relation 

ni+1 = ni - f(ni)/f’(ni) until a convergence is reached, being f’(ni) the molar derivative of 

the function f(ni).  

The Hemmes method has been used to calculate the hydrogen uptake from 

manometric measurements in a Sievert type apparatus.  

 

3.1.2 Experimental device  

A typical Sievert type apparatus (Figure 2.12) is made of calibrated volumes, 

including a reservoir volume Vr, a sample holder volume Vs and a cross volume Vcr. The 

device is equipped with a pressure sensor that measures the pressure in Vcr. The cross 

volume includes the volume of the pressure sensor. Depending on the amount of sample 

and on the sensitivity of the measurements, either Vcr or Vcr + Vr can be used as initial 

volume before expansion to Vs. The bench is connected to the atmosphere to empty 

hydrogen pressure when it exceeds 0.1 MPa and to a pump to evacuate the residual gas 

from the system (Pvac ~ 1 Pa). The sample is placed into a sample-holder which is 

introduced in an electric furnace.  
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Figure 2.12. Schematic representation of a typical Sievert type apparatus.  

 

3.1.3 Measurement conditions 

In this work, several models of hydrogenation bench have been used, with pressure 

sensors adapted to the working pressure range (1, 3, 6 or 10 MPa) and reservoir 

volumes chosen in function of the amount of hydrogen to be (ab)desorbed.  

For all bulk samples, ~ 0.5 g of alloy was introduced in form of powder (particle 

size < 63 μm) into the sample-holder closed with a stainless steel filter. The temperature 

was measured by means of a thermocouple (type K) either fixed on the external wall of 

the sample-holder or in direct contact with the sample, depending of the bench used. 

Every hydrogenation was preceded by 3 activation cycles at 620 K under 3 MPa of 

hydrogen pressure (absorption) and primary vacuum (desorption).  

Pressure composition isotherms (PCI) were measured by successive addition of 

hydrogen in the sample. At each point, hydrogen content is obtained when the 

equilibrium pressure is reached. A PCI curve consists of about 15 equilibrium points in 

absorption and the same in desorption. The accuracy of PCI measurements depends on 

the operating temperature and the time needed to reach equilibrium. Indeed, hydrogen 

permeation may occur through the sealing gasket of the sample-holder which results in 

a decrease of the measured hydrogen pressure. Therefore, a shift that can reach 0.5 wt.% 

H in the final hydrogen content is generally observed at temperature ≥ 623 K. 

Kinetic measurements were performed by isothermal absorption with typical initial 

pressure of 2 MPa. A special attention was paid to reduce at maximum the pressure 

drop by using a large initial volume.  
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3.2 Thermal desorption spectroscopy 

Thermal Desorption Spectroscopy (TDS) is a commonly used technique to 

determine the kinetics of decomposition of metal hydrides. Two different setups were 

used during this Thesis, depending on the sample requirements.  

The first one is designed for measurements under Ar flow. It consists of a 

quadrupole mass spectrometer (QMS 200 Balzers) for gas analysis coupled to a 

differential scanning calorimeter (DSC4 Perkin Elmer) through a thin capillary tube. A 

schematic representation of the experimental setup is given in Figure 2.13. The 

hydrided sample (~ 15 mg) is introduced in a graphite crucible located in a double-

furnace system. An empty graphite crucible is used as a reference. A controlled flow of 

Ar passes through the furnace while a linear heating ramp is imposed on both pans 

(typically from 323 to 823 K). A fraction of the gas mixture of Ar + H2 is extracted by 

the capillary tube to the high vacuum chamber containing the QMS. The H2 ion current 

measured by the mass spectrometer (MS) is hence proportional to the desorption rate 

from the hydride. It is also possible to quantify the amount of desorbed hydrogen by 

calibration measurements performed with commercial MgH2 (Alfa Aesar, 95% purity). 

Therefore, an accurate estimation of the desorbed hydrogen (typical accuracy of 98 %) 

can be obtained by the following relation: 

                 
     (2.33) 

where φH2 is the calibration factor determined from MgH2 desorption, i2 is the hydrogen 

ion current measured in the MS and i2
0
 is the background signal due to residual H2 

atmosphere in the system. MgH2 calibration was regularly actualized due to possible 

changes in the QMS instrument (filament ageing) or in the gas flow (pump 

maintenance). The sample was weighted before and after the experiment to compare the 

mass loss to the measured amount of hydrogen desorbed. In this system, contact with air 

during sample loading cannot be avoided even though it can be minimized by fast 

transfer to the furnace.  
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Figure 2.13. Experimental setup of the DSC-MS system [22].  

 

Since the DSC system offers an accurate measurement of the sample temperature, it 

is also possible to obtain reliable results on activation energy measurements. Indeed, 

application of the Kissinger method [23] to TDS measurements at different heating rates 

(5, 10 an 20 K/min) allows to calculate the activation energy of hydrogen desorption 

according to the equation: 

    
 

  
 
       

  

  
  

  
   

 (2.34) 

where Ea is the activation energy (kJ/molH2), A is the pre-exponential factor (min
-1

),  

is the heating rate (K/min), Tp is the peak temperature (K) and R is the gas constant. 

Hence, the plot of     
 

  
  
  against 

 

  
 gives a straight lines which intercept is 

proportionnal to the activation energy.  

The second setup consists of a QMS (MKS Microvision Plus RGA) connected 

through a series of valves to a silica tube where the sample is placed in a Ta pan. The 

heating ramp imposed to the sample is programmed and controlled by an electric 

furnace around the silica tube. Contrary to the other setup, the whole system works 

under dynamic high vacuum (10
-6

 - 10
-4

 Pa). The temperature is monitored by a 

thermocouple (type K) in close contact with the sample. This setup offers the possibility 

to load the sample inside the glove box, which is particularly interesting for air-sensitive 

nanoparticles. However, this system was used only for qualitative measurement as the 

accuracy on the partial H2 pressure and mass sample were too low.  
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Figure 2.14. Experimental setup of the high vacuum TDS system. 

 

3.3 Differential scanning calorimetry 

3.3.1 Standard DSC 

The thermal stability of some alloys has been tested by means of differential 

scanning calorimetry (DSC) in Ar flow. This thermoanalytical technique measures the 

difference in the amount of heat required to maintain a sample at the same temperature 

than a reference during a ramp of temperature. The recorded heat flow can be associated 

to thermal events in the material such as phase decomposition or melting.  

Few mg of the sample is introduced in a graphite crucible and placed in a DSC TA 

Instrument Q100. The heat flow is recorded as a function of temperature during heating 

and cooling ramps between 323 and 823 K at a constant rate of 5 K/min. A baseline was 

measured in the same experimental conditions with an empty crucible before each 

experiment.  

 

3.3.2 High pressure DSC 

High pressure DSC (HP-DSC) is based on the same principle than standard DSC 

but allows for measurements under hydrogen pressure. In consequence, it is possible to 

measure the heat flow associated to hydrogen absorption or desorption during heating 

and cooling ramps of temperature. The sample (typical mass ~10 mg) is introduced in a 

high pressure cell that fits into the DSC furnace of the SENSYS evo DSC instrument 

from Setaram. The reference cell is identical and placed into the reference furnace. The 

cell containing the sample is connected to a high pressure gas panel equipped with a 

pressure sensor and a large reservoir volume to maintain the pressure as steady as 

possible during the length of the experiment. The cell containing the sample is flushed 
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with hydrogen gas twice before starting the measurement. Then, a given hydrogen 

pressure is introduced in the system and maintained during all the experiment. 

Temperature ramps are programmed in the desired temperature range to observe 

absorption and desorption events.  

This technique allows characterizing the cycling properties of a material by 

observation of the shape, position and size evolution of the heat-flow peaks.  
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Among all the Mg-TM systems, Mg-Pd exhibits the largest number of intermetallic 

phases, with eleven identified compounds. Besides, Mg6Pd is the Mg-richest 

intermetallic phase among the referenced Mg-TM phases. The catalytic properties of Pd 

for hydrogen dissociation are an additional advantage to make attractive the Mg6Pd 

compound for hydrogen storage. This chapter presents the properties of several pseudo-

binary compounds based on the Mg6Pd intermetallic with substitution of Pd atoms by 

other TM (TM = Ag, Cu and Ni) [1; 2]. We are interested here in the structural 

properties of the Mg6Pd1-xTMx compounds in relation with the TM solubility. Their 

hydrogenation properties are then investigated and compared to those of Mg. The 

Mg6Pd intermetallic compound is first characterized as a reference for the following 

substituted compounds.  

 

1 Mg6Pd intermetallic compound 

The Mg6Pd compound has been synthesized by induction melting followed by an 

annealing at 773 K in an Ar atmosphere. The nominal composition has been set close to 

the Mg-rich limit of the Mg6Pd homogeneity range, with 87.3 at.% Mg, in order to 

counterbalance eventual Mg loss during melting due to its ability to evaporate at 

moderate temperature.  

 

1.1 Characterization of the alloy 

1.1.1 Micro-structure and chemical composition  

A cross-sectional slice of the Mg6Pd ingot was polished with diamond paste and 

observed using the BSE technique of the EPMA instrument. A representative image of 

the sample is shown in Figure 3.1. The sample is single phase (in grey on Figure 3.1). 

The average atomic composition as obtained by EPMA measurements on 50 random 

points at the ingot core is Mg85.7(3)Pd14.3(3). This composition is slightly below the 

nominal one and corresponds to the exact 6:1 stoichiometry. 
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Figure 3.1. BSE image of a polished Mg6Pd sample from the ingot core. 

 

1.1.2 Structural properties  

XRPD analysis confirmed that the alloy only consists of the ρ-Mg6Pd phase, with a 

lattice parameter of a = 20.1502(2) Å. The obtained diffractogram and the 

corresponding Rietveld refinement output are represented in Figure 3.2.  
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Figure 3.2. XRPD Rietveld refinement of the Mg6Pd compound (Cu Kα radiation). Continuous 

line shows the calculated diffraction pattern, vertical bars correspond to the Bragg positions for 

the Mg6Pd phase. The difference between experimental and calculated patterns is given below.  

 

In order to validate the structural models proposed by Samson [3] and Makongo et 

al. [4], both have been probed to refine the Mg6Pd structure (see section 3.1.2.a in 

Chapter 1). Table 3.1 displays the refined atomic coordinates and SOF obtained 

according to each model. In Samson’s model, the homogeneity range is accommodated 
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by Mg vacancies at site 14 and mixed Mg and Pd occupancy at site 12. In Makongo’s 

model, which is more accurate, site 12 splits into 12a and 12b sites, being the former 

occupied by Mg and Pd atoms and the latter exclusively occupied by Mg. Nevertheless, 

both models yield in our case very similar structural parameters. In particular, the 

refinement of Mg and Pd occupancy on sites 12 and 14 leads in both models to very 

close atomic compositions, which are consistent with EPMA results. In addition, it has 

to be noted that both models lead to equivalent agreement factors. This indicates that the 

collected XRPD data does not allow confirming the most detailed model given by 

Makongo. Thus, to refine our data it is more appropriate to use the simplest model 

(Samson’s one) which involves a lower number of fitting parameters. This choice has 

been followed all over this manuscript. 
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Table 3.1. Atomic sites, Wyckoff positions, SOF and atomic coordinates of the Mg6Pd phase 

obtained by Rietveld refinement, according to Makongo’s and Samson’s crystallographic 

models. The refined atomic compositions and agreement factors are also given at the end of the 

table. Along this Thesis, numbers inside parentheses stand for the error in the last digit. 

Site n° Atom 
Wyckoff 

position 

Makongo’s model Samson’s model 

SOF 
Atomic coordinates 

SOF 
Atomic coordinates 

x y z x y z 

1 Mg 48h 1 0.141(1) x 0.038(1) 1 0.142(1) x 0.039(1) 

2 Mg 48h 1 0.094(1) x 0.275(1) 1 0.094(1) x 0.275(1) 

3 Mg 48h 1 0.153(1) x 0.522(1) 1 0.153(1) x 0.522(1) 

4 Mg 48h 1 0.058(1) x 0.769(1) 1 0.058(1) x 0.770(1) 

5 Mg 48h 1 0.203(1) x 0.910(1) 1 0.203(1) x 0.910(1) 

6 Mg 24f 1 0.107(1) 0 0 1 0.107(1) 0 0 

7 Mg 24f 1 0.380(1) 0 0 1 0.381(1) 0 0 

8 Mg 24g 1 0.057(1) 1/4 1/4 1 0.056(1) 1/4 1/4 

9 Mg 16e 1 0.304(1) x x 1 0.304(1) x x 

10 Pd 16e 1 0.168(1) x x 1 0.168(1) x x 

11 Pd 16e 1 0.406(1) x x 1 0.406(1) x x 

12 Pd 16e - - - - 0.34(2) 0.669(1) x x 

 Mg  - - - - 0.66(2) 0.669(1) x x 

12a Pd 16e 0.38(6) 0.664(1) x x - - - - 

 Mg  0 0.664(1) x x - - - - 

12b Mg 16e 0.62(6) 0.681(2) x x - - - - 

13 Pd 16e 1 0.901(1) x x 1 0.901(1) x x 

14 Mg 4d 0.38(6) 1/4 1/4 3/4 0.4(1) 1/4 1/4 3/4 

Refined atomic 

composition 

Mg (at.%) 86.3(3)    86.4(2)    

Pd (at.%) 13.7(3)    13.6(1)    

Agreement 

factors 

RB 8.76    8.99    

Rwp 17.5    17.6    
 

 

1.2 Hydrogenation properties 

1.2.1 Thermodynamics: PCI curves 

The pressure-composition isotherms have been measured in a Sievert’s manometric 

apparatus at three different temperatures between 0.01 and 3 MPa (Figure 3.3). In this 

pressure range, the compound absorbs up to 3.2 wt.% H with two equilibrium plateau 

pressures. This result is in agreement with the PCI at 573 K reported by Dufour et al. 

[5] where two plateau pressures were observed between 0 and 3.0 wt.% H. The 

hysteresis between equilibrium pressures of absorption and desorption is particularly 

pronounced for the high pressure plateau. This phenomenon is probably the result of 
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slowest (de)hydriding kinetics in this region of the PCI, making difficult to reach 

equilibrium at each measured point (typical equilibrium time was 24 hours).   

Furthermore, we can observe that the hydrogen content at the end of the desorption 

isotherms is not equal to zero, in particular at T = 648 K. This difference is explained by 

the experimental error due mainly to some hydrogen permeation through the sealing 

gasket at high temperature. This error increases with temperature and accumulates on 

each measured point of the PCI, making the last points of desorption affected by a 

larger error. For the sake of clarity, error bars are not represented in Figure 3.3 and 

analogous figures along this chapter, but we easily observe that this error can reach 0.5 

wt.% H at the end of an isotherm.  
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Figure 3.3. PCI curves of the Mg6Pd compound during absorption (full symbols) and 

desorption (empty symbols) at 598, 623 and 648 K.  

 

The equilibrium pressures at the middle of each plateau of absorption (1 wt.% H for 

plateau 1 and 2.5 wt.% H for plateau 2) are reported in Table 3.2. These values are used 

to plot the Van’t Hoff lines in Figure 3.4, according to equation (1.2), and to deduce the 

enthalpy and entropy of hydrogenation. The enthalpy variation corresponding to plateau 

1, ΔH1 = -72(1) kJ/molH2, is rather close to the formation enthalpy of MgH2 

(-74.5 kJ/molH2). The enthalpy variation of plateau 2 is slightly less negative with 

ΔH2 = -68(1) kJ/molH2, showing a small destabilization of the hydrided state for H-rich 

composition. Entropy values (ΔS1 = -133(2) J/KmolH2 and ΔS2 = -131(2) J/KmolH2) 
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are in very good agreement with the entropy variation attributed to hydrogen molecule 

dissociation in metal-hydrogen systems.  

This result diverges from the only thermodynamic values previously reported in 

literature for TCNE-catalysed Mg6Pd. Significantly more negative values were found 

with ΔH = -80 kJ/molH2 and ΔS = -148 J/KmolH2 for the first plateau [6]. This 

discrepancy can be explained by a large experimental error in ref. [6] due to relatively 

low working temperatures (433 - 468 K) and consequent long equilibrium times (> 50 

hours).  

 

Table 3.2. Equilibrium pressures corresponding to absorption plateaus 1 and 2 of the Mg6Pd PCI 

curves. 

  Peq (MPa) 

T (K) Plateau 1 @1 wt.% H Plateau 2 @2.5 wt.% H 

598 0.502 0.804 

623 0.884 1.372 

648 1.531 2.304 
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Figure 3.4. Van’t Hoff plots corresponding to the two absorption plateaus of the Mg6Pd 

isotherms.  

 

1.2.2 Hydrogenation mechanism 

As presented in section 3.1.2.b of Chapter 1, the hydrogenation reaction of the 

Mg6Pd compound takes place in several steps, leading to the formation of several 

Mg-Pd intermetallic phases. Based on the amount of hydrogen absorbed during the first 

plateau and considering the different possible reactions, Dufour and Huot suggested the 

formation of ζ-Mg3.65Pd as intermediate phase during the first plateau of hydrogenation 
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[5]. However, this phase consists of an extremely complex crystallographic structure, 

described by Makongo with 89 atomic sites in the orthorhombic S.G. Fmmm [7], and 

has never been clearly identified during Mg6Pd hydrogenation. In contrast, the 

formation of the Mg5Pd2 phase during the second plateau has been confirmed by 

neutron diffraction data [8] and its structure is well known. Huot et al. have also 

reported the occurrence of a third plateau at high pressure (P = 3 MPa at T = 573 K) [8], 

which is not reached in our study. This plateau would correspond to the decomposition 

of the Mg5Pd2 phase into MgH2 and MgPd intermetallic compound. 

In order to confirm this mechanism, a sample of Mg6Pd has been hydrogenated at 

623 K under 2 MPa of hydrogen pressure. The hydrogen content calculated from 

manometric measurements was 3.2 wt.% H, which corresponds to the end of the second 

plateau observed on PCI curves. Considering the hydrogenation conditions of pressure 

and temperature, MgH2 and Mg5Pd2 phases are expected as final products. This was 

confirmed by the XRPD measurements presented in Figure 3.5 and the corresponding 

refined phase amounts of 58.0 wt.% for Mg5Pd2 and 41.5 wt.% for MgH2 (Table 3.3). 

Additionally, a small amount of a third phase was also detected with the presence of 

diffraction peaks at 2θ = 24.6° and 39.1°, as can be observed on the detailed plot of 

Figure 3.5. This phase has been refined as the hexagonal η-Mg3Pd phase which 

structure has been determined by Makongo et al. [9]. Its structure is rather simple (only 

5 atomic positions in the S.G. P63cm) as compared to the ζ-Mg3.65Pd phase. However, 

the high Bragg agreement factor (RB = 31.1) attributed to this phase leads to think that 

the refined structure is not the correct one. Indeed, several other intermetallic phases 

have close compositions (ζ-Mg3.65Pd and ε-Mg3.97Pd) with their main diffraction peaks 

also located around 24.5° and 39° with Cu-Kα radiation. In view of the very complex 

structures of the ζ- and ε-phases and the small amount of this phase present in our 

sample, we will consider the η-Mg3Pd phase as an approximate structure and 

composition for this third phase. The presence of a Mg rich compound as Mg3Pd at this 

stage of hydrogenation suggests that the second plateau of absorption is not totally 

completed.  
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Figure 3.5. XRPD Rietveld refinement of the hydrided (3.2 wt.% H) Mg6Pd compound (Cu Kα 

radiation). The plot on the right shows a detailed view of the Mg3Pd main peaks. Continuous 

line shows the calculated diffraction pattern and vertical bars correspond to the Bragg positions. 

The difference between experimental and calculated patterns is given below. 

 

Table 3.3. Rietveld refinement results of the hydrided (3.2 wt.% H) Mg6Pd compound. 

Phase S.G. 
Phase amount 

(wt.%) 

Cell parameters 

(Å) 
RB Rwp χ² 

MgH2 P42/mnm 41.5(5) 
a = 4.5135(1) 

c = 3.0197(1) 
3.98 

19.1 2.59 Mg5Pd2 P63/mmc 58.0(5) 
a = 8.6704(1) 

c = 8.1678(1) 
10.4 

η-Mg3Pd P63cm 0.5(1) 
a = 7.9743(6) 

c = 8.437(5) 
31.1 

 

 

In summary, the phase composition of the hydrided Mg6Pd is in agreement with the 

hydrogenation mechanism proposed by Dufour and Huot [5]. Hydrogenation of the 

Mg6Pd compound leads to the formation of MgH2 together with a Mg-Pd intermetallic. 

With increasing H-uptake, this intermetallic becomes richer in Pd and the amount of 

MgH2 gradually rises.  

 

1.2.3 Kinetic characterization 

The desorption rate of hydrided Mg6Pd has been compared with commercial MgH2 

by TDS measurements at 10 K/min (Figure 3.6). The hydrided Mg6Pd desorbed H at a 
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temperature which is about 15 K lower than that of commercial MgH2. This result 

reflects mainly the faster kinetics of the Pd containing material. 
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Figure 3.6. TDS spectra of Mg6Pd hydrided at 3.2 wt.% H compared with commercial MgH2 at 

the same heating rate of 10 K/min.  

 

1.3 Discussion on the stability of the Mg6Pd-H system  

The thermodynamic improvement achieved by alloying Mg and Pd is highlighted in 

the Van’t Hoff plots shown in Figure 3.7. Both plateaus of the Mg6Pd isotherms occur 

at higher pressures than for pure Mg.  
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Figure 3.7. Van’t Hoff plots of the two absorption plateaus of the Mg6Pd compound compared 

with the MgH2 considering ΔH = -74.5 kJ/molH2 and ΔS = -135 J/KmolH2 [10]. 
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Although MgH2 is the only hydride phase formed during the hydrogenation reaction 

of Mg6Pd, the net enthalpy of reaction is reduced because of the formation of other 

phases. Let’s consider the hydrogenation reaction of the first plateau: 

Mg6Pd + 3 H2 ↔ Mg3Pd + 3 MgH2 (3.1) 

The corresponding enthalpy of reaction, ΔrH(1), can be calculated from the 

formation enthalpy of each component as reported in Table 3.4 and applying Hess’s 

law. Hence, we obtain: 

                   
                      

 
 (3.2) 

Therefore, the reduction of |ΔrH| compared to |ΔfH(MgH2)| will only depend on the 

difference of formation enthalpy between the initial and the final compounds. In this 

case, if |ΔfH(Mg3Pd)| < |ΔfH(Mg6Pd)|, then we will have |ΔrH| < |ΔfH(MgH2)|. However, 

according to the enthalpy values reported in Table 3.4, this condition is not fulfilled for 

these compounds and ΔrH(1) = -75.3 kJ/molH2, a value very close to the formation 

enthalpy of MgH2. The difference with the value obtained experimentally for the first 

plateau of absorption (-72(1) kJ/molH2) is explained by the uncertainty concerning the 

Mg-Pd intermetallic formed at the end of the first plateau and the uncertainties on the 

calculated enthalpy values. We have seen previously (in section 1.2.2 of this chapter) 

that the Mg-Pd phase diagram exhibits several intermetallic phases with composition 

close to Mg3Pd (η-Mg3Pd, ζ-Mg3.65Pd and ε-Mg3.97Pd) and complex crystallographic 

structures. Besides, the ζ-Mg3.65Pd phase was in fact reported by Dufour and Huot to be 

the end-product of the first plateau as deduced from mass balance considerations [5]. 

The same authors also mentioned that the existence of a homogeneity range for the ζ-

Mg3.65Pd, Mg5Pd2 and MgPd phases–contrary to the other Mg-Pd intermetallic phases–

may be responsible for the formation of the three observed plateau pressures. According 

to this argument, the reaction enthalpy of the first plateau should be calculated taking 

into account the formation enthalpy of the ζ-Mg3.65Pd phase, for which no value is 

available at the moment. Therefore, the calculated ΔrH(1) constitutes an approximation 

for the first plateau of absorption.  
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A similar calculation can be applied for the next two plateaus of absorption 

according to the following hydrogenation reactions: 

Mg3Pd + 3 MgH2 + 0.5 H2 ↔ ½ Mg5Pd2 + 3.5 MgH2 (3.3) 

½ Mg5Pd2 + 3.5 MgH2 + 1.5 H2 ↔ MgPd + 5 MgH2 (3.4) 

Using the formation enthalpy values of Table 3.4 and Hess’s law, we obtain 

ΔrH(2) = -65.5 kJ/molH2 and ΔrH(3) = -60.7 kJ/molH2 for plateaus 2 and 3, respectively. 

The hydrogenation enthalpy corresponding to the second plateau is in good agreement 

with the experimental value (-68(1) kJ/molH2). This result shows the increasing 

destabilization with higher H-concentration, due to the contribution to enthalpy of the 

Mg-Pd compounds formation while depleting in Mg. In other words, the enthalpy 

variation of the decomposition of Mg-Pd phases into Pd-richer intermetallic phases 

counterbalances the stability of MgH2.  

 

The study of the Mg6Pd compound has demonstrated that both kinetic and 

thermodynamic properties are slightly improved as compared to those of pure Mg. In 

the next sections of this chapter, effort will be focused on reducing the Pd amount in 

such compound by creating new pseudo-binary intermetallic alloys of the type 

Mg6Pd1-xTMx. One important advantage will be obviously to reduce the cost of such 

alloys, but other effects are also expected, in particular on the energy involved during 

hydrogenation reactions. Indeed, hydrogenation of these alloys will lead to the 

Table 3.4. Enthalpy of formation of the different compounds involved in the Mg6Pd 

hydrogenation reaction at 300 K. Enthalpy values for the intermetallic phases are determined by 

thermodynamic modelling of finite temperature effects and extrapolation from the values at T = 

0 K given in Ref. [11].  

Compound 
Enthalpy 300 K 

(kJ/molcompound) [Ref] 

MgH2 -74.5 [10] 

ρ-Mg6Pd -173.7 [12] 

γ-Mg4.4Pd -182.1 [12] 

η-Mg3Pd -176 [12] 

Mg5Pd2 -343 [12] 

MgPd -150 [12] 
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formation of different Mg-TM intermetallic compounds which may possibly alter the 

net enthalpy of the global (de)hydrogenation reaction.  

 

2 Substituting Pd by Ag  

Owing to the similarities in electronic configuration of Ag and Pd and their 

complete miscibility in the liquid and solid states [13], we expect a relatively easy 

substitution of Pd by Ag in the ρ-phase. In fact, a previous assessment of the Mg-Pd-Ag 

ternary phase diagram showed the existence of a wide homogeneity range for the 

Mg6Pd1-xAgx pseudo-binary ρ-phase up to x = 0.56 [14].  

To study the hydrogenation properties of this phase, a pseudo-binary Ag-rich 

Mg6Pd1-xAgx alloy was synthesized by induction melting of Mg and Pd elements 

together with a pre-alloyed eutectic mixture Mg4Ag/Mg. An ingot of about 50 g has 

been prepared for the nominal atomic composition Mg86.2Pd6.9Ag6.9, which corresponds 

to the x = 0.5 stoichiometry. The alloy was annealed during 2 days at 648 K.  

 

2.1 Characterization of the alloy 

2.1.1 Micro-structure and chemical composition  

A polished cross sectional slice of the Mg86.2Pd6.9Ag6.9 ingot has been studied by 

SEM. BSE images on Figure 3.8 give an overview of the material morphology at the 

ingot core. It is composed of a homogeneous matrix (in grey on the image) and Mg 

precipitates located at the grain boundaries (in black). The chemical composition of the 

matrix has been determined by EPMA on 30 points distributed over a sample area of 

about 300 x 200 nm. The average atomic composition is Mg83.2(3)Pd9.6(2)Ag7.2(3). The Mg 

concentration is lower than in nominal composition, a fact attributed to partial 

evaporation of Mg during the melting of the alloy and to the precipitation of pure Mg on 

grain boundaries. A small depletion of Ag content is also observed as compared to 

nominal composition due to minor segregation of Ag rich compounds at the ingot 

surface. 
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Figure 3.8. BSE images of an ingot slice of the Mg6Pd0.5Ag0.5 alloy.  

 

2.1.2 Structural properties  

The XRPD pattern of the alloy with Ag substitution has been analysed using the 

Rietveld method (Figure 3.9). The diffractogram displays sharp peaks that can be 

indexed with two phases: Mg (S.G. P63/mmc, hexagonal) and ρ-Mg6Pd (S.G. F-43m, 

cubic).  
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Figure 3.9. XRPD pattern (Cu Kα radiation) of the Mg6Pd0.5Ag0.5 alloy (dots) and the 

corresponding Rietveld refinement (solid line). Bragg peak positions are plotted as vertical bars 

for Mg and Mg6Pd phases. The line below represents the difference between the calculated and 

the experimental patterns. 
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Table 3.5. Summary of Rietveld refinement results for the Mg6Pd0.5Ag0.5 alloy.  

Phase S.G. 
Phase amount 

(wt.%) 

Cell parameters 

(Å) 
RB Rwp 

Mg P63/mmc 11.1(4) 
a = 3.208(1) 

c = 5.208(1) 
9.0 

13.1 

ρ-Mg6Pd F-43m 88.9(8) a = 20.188(1) 8.8 
 

 

Table 3.5 shows good agreement factors between observed and calculated patterns. 

The Mg phase appears in a significant but nevertheless acceptable amount (11.1 wt.%). 

The main phase, Mg6Pd with Ag substitution, exhibits a larger cell parameter than for 

the binary intermetallic at the same Mg content. Makongo et al. reported that the a-axis 

of Mg6Pd phase increases linearly from 20.045 to 20.1985 Å when Mg concentration 

varies within the homogeneity range from 85.0 to 87.4 at.% Mg [4]. Considering the 

EPMA results, the Mg concentration is at the poor side of the homogeneity range. 

Therefore one would expect a smaller lattice parameter than the one obtained by 

Rietveld refinement (a = 20.188 Å). The observed difference indicates that Ag partially 

substitutes Pd, as Ag has a larger atomic radius than Pd (rAg = 1.44 Å and rPd = 1.37 Å). 

Unfortunately, these two elements possess very close number of electrons (Z = 46 and 

47 for Pd and Ag, respectively), making not possible to refine Ag site occupancy on Pd 

sites. In consequence, the Mg6Pd phase has been refined using the structural model 

proposed by Samson [3] without considering Pd by Ag substitution. Therefore, Mg 

occupancy has been refined on site 14 and occupancy on site 12 has been refined for Mg 

and Pd atoms. The obtained structural parameters are presented in Table 3.6. Atomic 

coordinates are in very good agreement with those reported by Samson for the Mg6Pd 

phase and the refined Mg concentration is in fairly good agreement with EPMA result 

(MgXRD = 84.3(2) at.%, MgEPMA = 83.2(3) at.%). Comparison with the previous non-

substituted Mg6Pd sample shows that a lower Mg concentration leads to a higher Mg 

occupancy at site 14 and lower occupancy at site 12, in accordance with the results 

obtained by Makongo [7] throughout the homogeneity range of the intermetallic phase.  
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Table 3.6. Refined positional parameters and occupancies of the Mg6Pd0.5Ag0.5 phase. The 

refined atomic composition is also given at the end of the table. 

Site n° Atom 
Wyckoff 

position 
SOF 

Atomic coordinates 

x y z 

1 Mg 48h 1 0.144(2) x 0.034(3) 

2 Mg 48h 1 0.090(2) x 0.273(2) 

3 Mg 48h 1 0.153(2) x 0.528(3) 

4 Mg 48h 1 0.056(2) x 0.764(2) 

5 Mg 48h 1 0.202(2) x 0.908(2) 

6 Mg 24f 1 0.106(3) 0 0 

7 Mg 24f 1 0.378(3) 0 0 

8 Mg 24g 1 0.059(3) 1/4 1/4 

9 Mg 16e 1 0.305(2) x x 

10 Pd 16e 1 0.167(1) x x 

11 Pd 16e 1 0.407(1) x x 

12 Pd 16e 0.90(5) 0.670(1) x x 

Mg 0.10(5) x x 

13 Pd 16e 1 0.899(1) x x 

14 Mg 4d 0.96(5) 1/4 1/4 3/4 

Refined atomic 

composition 

Mg (at.%) 84.3(2)    

Pd (at.%) 15.7(1)    
 

 

2.1.3 Thermal stability 

The thermal behaviour of the alloy has been analyzed by DSC. The heat flow 

recorded as a function of temperature is plotted in Figure 3.10. 
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Figure 3.10. DSC scan of Mg6Pd0.5Ag0.5 sample during heating and cooling at 5 K/min. 
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On heating, two endothermic peaks are detected at 779 K and 805 K. They are 

attributed to melting events, which however are much broader than typical melting 

peaks. Thus, it can be inferred that melting occurs simultaneously with the 

disproportionation of the pseudo-binary compound into intermetallic phases. Owing to 

the phase complexity of both Mg-Pd and Mg-Ag systems, and even more of the ternary 

Mg-Pd-Ag system, it seems ambitious to describe the exact disproportionation 

mechanism that occurs during heating. However, some hints allow us to propose an 

approximate reaction path for the Mg6Pd1-xAgx disproportionation. The onset 

temperature of the first peak, 764 K, concurs with the reported melting temperature of 

the Mg3Ag phase at 767 K [15]. We have confirmed the formation of this phase above 

728 K by in situ high-temperature XRPD measurements (Figure 3.11). In addition, it 

appeared that the alloy disproportionates into Mg3Ag phase and Mg, implying that Pd 

should be fully dissolved in the Mg3Ag phase. Unfortunately, the formation of MgO 

could not be avoided during the in situ XRPD experiment, which probably affected the 

thermodynamic of the reaction. Therefore, we cannot rule out the persistence of the 

Mg6(Pd,Ag) compound together with Mg3(Ag,Pd) and Mg phases during heating in the 

absence of oxygen, i.e. during DSC measurements. The second endothermic peak may 

correspond to the melting of the Mg phase mixed with Mg6(Pd,Ag). To this respect, the 

eutectic melting of Mg6Pd and Mg phases occurs at 812 K [16], in fairly good 

agreement with the temperature of the second peak at 805 K. In consequence, it can be 

proposed that the homogeneity range of the Mg6Pd1-xAgx phase shrinks during heating, 

leading to the alloy disproportionation into Mg, Mg6(Pd,Ag) and Mg3(Ag,Pd) phases. 

According to in situ XRPD measurements, the thermal stability of the pseudo-binary 

alloy Mg6Pd1-xAgx with x = 0.5 is maintained up to 728 K.  
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Figure 3.11. XRPD patterns (Co Kα radiation) of the Mg6Pd0.5Ag0.5 sample obtained during 

heating at 5 K/min under He flow. 

 

During cooling, two sharp exothermic peaks are observed at 788 K and 773 K. They 

are attributed to the solidification of Mg, Mg6(Pd,Ag) and Mg3(Ag,Pd) phases 

mentioned above. They are followed by an exothermic bump at lower temperature, 

which is attributed to the reformation of the pseudo-binary ρ-phase by a solid state 

reaction between the solidified phases. XRPD analysis of the sample after DSC scan 

(Figure 3.12) shows that the initial material was reformed after cooling and no trace of 

Mg3Ag was found.  

 

10 20 30 40 50

-Mg
6
Pd

   Mg


























 

 

C
o

u
n
ts

 (
a

.u
.)

2  

Figure 3.12. XRPD pattern (Cu Kα radiation) of the Mg6Pd0.5Ag0.5 sample after heating at 823 

K during DSC experiment.  
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2.1.4 Ag solubility – ternary phase diagram 

The ternary Mg-Pd-Ag phase diagram at 673 K assessed by Prince in 1988 [14] 

displays a homogeneity range for the Mg6Pd1-xAgx phase with a maximum Ag solubility 

of 8 at.% (x = 0.56) for a Mg content of 84 at.% (Figure 3.13). Our experimental results 

for the composition of the pseudo-binary phase annealed at 648 K according to EPMA 

gives a slightly lower Ag content (7.2 at.% Ag) and a smaller Mg concentration (83.2 

at.% Mg). Though, such small differences can be explained by the lower annealing 

temperature used in our work as compared to the isothermal section determined by 

Prince. 

 

 

Figure 3.13. Ternary phase diagram of the Mg-Pd-Ag system at 673 K [14]. 

 

2.2 Hydrogenation properties 

2.2.1 Thermodynamics: PCI curves 

The PCI curves of the Mg6Pd0.5Ag0.5 alloy have been measured at 598, 623 and 648 

K between 0.01 and 3 MPa of hydrogen pressure. Figure 3.14 displays the resulting 

isotherms in absorption and desorption. The sample absorbs up to 3.0 wt.% H according 

to two plateau pressures. The first plateau occurs for H-contents below 1.5 wt.% H and 

is rather flat. The second one occurs above 2 wt.% H and is more tilted. It could result 

of the merging of two shorter plateaus that unfortunately could not be resolved. As 
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observed for Mg6Pd, a large experimental error is attributed on the last points of 

desorption at the highest temperature, due to hydrogen permeation through the sample 

holder.  
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Figure 3.14. PCI curves of the Mg6Pd0.5Ag0.5 sample during absorption (full symbols) and 

desorption (empty symbols) at 598, 623 and 648 K. 

 

Using the equilibrium pressures of the two plateaus at 1 wt.% H and 2.5 wt.% H 

(Table 3.7) and the corresponding Van’t Hoff plots (Figure 3.15), enthalpies and 

entropies of hydrogenation have been calculated. The resulting values for plateau 1, 

∆H1 = -72(2) kJ/molH2 and ∆S1 = -132(2) J/K.molH2, are similar to those of Mg6Pd. 

Thus, Ag substitution does not change the thermodynamics of the first hydrogenation 

reaction. In contrast, the second plateau exhibits much less negative values of enthalpy 

and entropy with ∆H2 = -35(4) kJ/molH2 and ∆S2 = -81(6) J/K.molH2, suggesting that 

Ag significantly affects the equilibrium of the second hydrogenation reaction. However, 

last results should be taken with care in view of the slope and extent in hydrogen 

content of the second plateau. 

 



Chapter 3. Pseudo-binary Mg6Pd1-xTMx compounds for H-storage 

100 

Table 3.7. Equilibrium pressures corresponding to absorption plateaus 1 and 2 of the 

Mg6Pd0.5Ag0.5 PCI curves. 

  Peq (MPa) 

T (K) Plateau 1 @1 wt.% H Plateau 2 @2.5 wt.% H 

598 0.375 1.498 

623 0.682 1.770 

648 1.150 2.580 
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Figure 3.15. Van’t Hoff plots corresponding to the two absorption plateaus of the Mg6Pd0.5Ag0.5 

isotherms. 

 

2.2.2 Hydrogenation mechanism 

Several samples with different hydrogen contents have been prepared in order to 

identify the phases that are formed during hydrogenation at 623 K of the Mg6Pd0.5Ag0.5 

compound. In addition, one sample has been fully hydrided under 4 MPa of hydrogen 

pressure at 623 K, leading to an H-uptake of 4.4 wt.% H. Their labels and hydrogen 

contents are detailed in Table 3.8. 

 

Table 3.8. Hydrogen content of the annealed and partially hydrided Mg6Pd0.5Ag0.5 samples. 

Label 
H content 

(wt.% H) 

MPA 0 

MPAH1.8 1.8(2) 

MPAH2 2.0(2) 

MPAH3 3.0(2) 

MPAH4.4 4.4(3) 
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The XRPD patterns and peak identification of these samples are presented in Figure 

3.16. During the first plateau of hydrogenation (from 0 to 2 wt.% H), we clearly identify 

the formation of MgH2 together with the cubic ε-Mg3Ag phase while the initial 

ρ-Mg6Pd progressively disappears. The Mg5Pd2 phase is formed during the second 

plateau (up to 3 wt.% H) and finally the MgPd phase appears for the highest H-content 

(4.4 wt.% H).  
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Figure 3.16. XRPD patterns (Cu Kα radiation) of the Mg6Pd0.5Ag0.5 sample at different hydrogen 

contents. 

 

The relative phase amounts and structural properties have been determined by 

Rietveld analysis of the XRPD patterns. Main results are displayed in Table 3.9. The 

decrease of the Mg6Pd lattice parameter (a/a = -0.5 %) observed in MPAH1.8 and 

MPAH2 samples as compared to the parent compound is attributed to Mg depletion in 

this phase on hydriding (rMg = 1.60 Å while rAg = 1.44 Å and rPd = 1.37 Å). The 

ε-Mg3Ag phase is also observed to exhibit a cell shrinkage (a/a = -0.7 %) as compared 
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to the cubic ε-Mg3Ag compound (a = 17.61 Å [17]). This is attributed to Pd solubility in 

this phase (rPd < rAg). Even more interesting is the behaviour of the lattice parameters of 

the Mg5Pd2 phase. The occurrence of this phase is detected at 3.0 and 4.4 wt.% H. At 

3.0 wt.% H, strong anisotropic cell expansion (a/a = -0.1 %, c/c = 4.8 %) is observed 

by comparison with the reported lattice parameters of Mg5Pd2 compound (a = 8.65 Å, 

c = 8.17 Å [18]). At higher H-content (4.4 wt.% H), the unit cell seems to relax 

(a/a = 0.2 %, c/c = 0.5 %). This distortion is too important to be linked to the Mg 

homogeneity range of this phase (related cell variations below 0.3 % [18]). Instead, it 

suggests Ag-solubility (rAg > rPd) in the Mg5Pd2 compound, which extent depends on the 

progress of the hydrogenation reaction. Finally, the MgPd and MgAg phases are 

isostructural (CsCl-type) and possess complete solubility [14]. Using the data reported 

in ref. [19], its approximate composition is MgPd0.3Ag0.7.  

 

Table 3.9. Rietveld refinements results of partially hydrided Mg6Pd0.5Ag0.5 samples. 

Sample Phase S.G. 
Phase amount 

(wt.%) 

Cell parameters 

(Å) 
RB Rwp 

MPAH1.8 

ρ-Mg6Pd F-43m 30.2(3) a = 20.1012(3) 13.7 

15.3 
MgH2 P42/mnm 25.2(4) a = 4.5107(1) 

c = 3.0185(1) 

3.5 

ε-Mg3Ag Fm-3 44.6(4) a = 17.4801(2) 7.84 

MPAH2 

ρ-Mg6Pd F-43m 1.8(1) a = 20.0822(1) 33.7 

16.1 
MgH2 P42/mnm 30.3(4) a = 4.5110(1) 

c = 3.0183(1) 

7.34 

ε-Mg3Ag Fm-3 67.9(5) a = 17.4448(2) 7.68 

MPAH3 

MgH2 P42/mnm 42.7(5) a = 4.5157(1) 

c = 3.0208(1) 

6.79 

19.1 Mg5Pd2 P63/mmc 51.0(5) a = 8.6451(2) 

c = 8.5661(2) 

6.04 

MgPd0.3Ag0.7 Pm-3m 6.3(2) a = 3.2695(2) 9.43 

MPAH4.4 

MgH2 P42/mnm 50.8(5) a = 4.5152(1) 

c = 3.0209(1) 

4.79 

16.2 Mg5Pd2 P63/mmc 15.7(2) a = 8.6748(2) 

c = 8.2108(2) 

13.2 

MgPd0.3Ag0.7 Pm-3m 33.5(3) a = 3.2648(1) 7.32 
 

 

XRPD results clearly show the formation of the MgH2 phase along with different 

intermetallic phases during hydrogenation. Though, they are not conclusive regarding 

Pd and Ag solubility due to the impossibility to refine their respective site occupancy. A 
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relevant approximation of the chemical composition of these samples has been obtained 

by means of SEM-EDX analyses. The BSE images are presented in Figure 3.17 and 

chemical compositions of the identified phases are reported in Table 3.10. The images 

show the increasing surface of the dark area, identified as MgH2, with the increasing H-

content. In addition, several phases with different tones of grey are observed and 

identified in agreement with the XRPD results. Besides, EDX analyses detect the 

presence of both Pd and Ag elements in all intermetallic Mgx(Pd,Ag)y phases, 

confirming the high level of solubility of these two TMs that was anticipated by Prince 

in the ternary Mg-Pd-Ag phase diagram [14]. However, the full structural 

characterization of such substituted compounds requires more complex techniques than 

conventional XRPD, like anomalous diffraction tools [20], diffuse scattering or EXAFS, 

to determine the site occupancy of  Pd and Ag atoms.  

 

Table 3.10. Chemical composition of the partially hydrided Mg6Pd0.5Ag0.5 samples as obtained 

by SEM-EDX analyses.  

 Sample Phase Mg (at.%) Pd (at.%) Ag (at.%) 

MPAH1.8 

ε-Mg3Ag 76(4) 9(2) 15(3) 

ρ-Mg6Pd 80(3) 12(1) 8(1) 

MgH2 95(4) 3(2) 2(1) 

MPAH2 

ε-Mg3Ag 74(2) 11(2) 15(2) 

ρ-Mg6Pd 80(3) 13(2) 7(1) 

MgH2 100 0 0 

MPAH3 
Mg5Pd2 69(4) 16(2) 15(2) 

MgH2 98(4) 1(1) 1(1) 
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Figure 3.17. BSE images of a) and b) MPAH1.8, c) and d) MPAH2, e) and f) MPAH3. 

 

At the light of this detailed information on the composition of samples at different 

hydrogenation stages, the following hydrogenation reactions are proposed:  

Mg6Pd0.5Ag0.5 + 3 H2 ↔ Mg3Ag0.5Pd0.5 + 3 MgH2 (3.5) 

Mg3Ag0.5Pd0.5 + 3 MgH2 + 0.5 H2 ↔ ½ Mg5PdAg + 3.5 MgH2 (3.6) 

½ Mg5PdAg + 3.5 MgH2+ 1.5 H2 ↔ MgPd0.5Ag0.5 + 5 MgH2 (3.7) 

For the sake of simplicity, equiatomic Pd and Ag contents have been fixed for the 

composition of Mgx(Pd,Ag)y phases. This mechanism is analogous to the one of Mg6Pd 

and leads to a similar hydrogen storage capacity. The successive transformations are 

schematically represented in Figure 3.18. The progressive Mg depletion of the 
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intermetallic phases with hydrogen concentration results in the formation of additional 

MgH2.  

 

 

Figure 3.18. Schematic illustration of the phase growth during hydrogenation of the 

Mg6Pd0.5Ag0.5 compound. Large arrows represent the growing direction of the phases. Thin 

arrows symbolize the diffusion of Mg atoms.  

 

2.2.3 Reversibility  

A totally desorbed sample (MPAdes) has been prepared after 3 activation cycles and 

analysed by SEM-EDX and XRPD. Desorption was performed at 623 K by two 

successive desorption steps at P < 0.15 MPa and finally evacuating during 

approximately 30 minutes. As observed on the BSE images (Figure 3.19) and EDX 

results (Table 3.11), the composition of the desorbed sample differs from the one of the 

parent compound as significant amounts of Mg and Mg3(Ag,Pd) phases are detected 

along with the Mg6Pd1-xAgx main phase. XRPD refinement results (Table 3.12) show 

that 75.3 wt.% of the ρ-phase was reformed after desorption, with a lattice parameter 

(a = 20.191 Å) close to the one of the former pseudo-binary compound (a = 20.188 Å). 

This last data, together with chemical composition obtained by EDX, suggests a similar 

composition in the main phase than in the parent compound.  

 

Table 3.11. Chemical composition of the desorbed Mg6Pd0.5Ag0.5 sample as obtained by SEM-

EDX analyses.  

 Sample Phase Mg (at.%) Pd (at.%) Ag (at.%) 

MPAdes 

ε-Mg3Ag 78(3) 10(2) 12(2) 

ρ-Mg6Pd 82(3) 10(1) 8(1) 

Mg 95(4) 2(2) 3(2) 
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Figure 3.19. BSE images of the desorbed Mg6Pd0.5Ag0.5 sample.  

 

Table 3.12. Rietveld refinement results of the desorbed Mg6Pd0.5Ag0.5 sample. 

Sample Phase S.G. 
Phase amount 

(wt.%) 

Cell parameters 

(Å) 
RB Rwp 

MPAdes 

Mg P63/mmc 14.0(4) a = 3.2081(1) 

c = 5.2088(2) 

4.89 

21.6 ρ-Mg6Pd F-43m 75.3(6) a = 20.1910(1) 6.63 

ε-Mg3Ag Fm-3 10.7(2) a = 17.5454(3) 12.9 
 

 

However, this limited reversibility on the alloy composition did not affect the 

reversible hydrogen capacity which was maintained after at least 3 cycles of absorption 

and desorption. This also confirms that the residual -Mg3(Ag,Pd) phase should be 

active towards hydrogenation, since its occurrence is not detrimental for the reversible 

capacity.  

 

2.2.4 Kinetic characterization 

The desorption kinetics of the MPAH3 sample has been analysed by means of 

thermal desorption spectroscopy at different heating rates. The obtained hydrogen 

desorption spectra are represented in Figure 3.20. The spectra consist of a single 

desorption peak, with onset temperature at 665 K at the slowest heating rate. The 

activation energy of hydrogen desorption has been calculated using the Kissinger 

equation. This energy, 169(8) kJ/molH2, is comparable with that reported for H-

desorption from MgH2, which ranges from 140 to 172 kJ/molH2 [21–26]. This suggests 

that the controlling step for H-desorption is the nucleation and growth of the Mg phase 

controlled by the Mg-MgH2 interface displacement.  
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Figure 3.20. TDS spectra of the MPAH3 sample measured at heating rates of 5, 10 and 20 

K/min. The inset displays the Kissinger plot with the corresponding activation energy.   

 

As for kinetics during absorption, no improvement is achieved with Ag substitution, 

as can be observed in Figure 3.21. The absorption is slightly faster for Mg6Pd0.5Ag0.5 

than for Mg6Pd during the first half of the reaction but then slows down and 90 % of the 

sample is hydrided in about 100 min, which is significantly slower than the 60 min 

observed for the Mg6Pd.  
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Figure 3.21. Comparison of the kinetics for the Mg6Pd and Mg6Pd0.5Ag0.5 samples during the 

third absorption at 623 K and 2 MPa of hydrogen pressure. 
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2.3 Discussion on the stability of the Mg6Pd1-xAgx-H system 

Substituting Pd by Ag atoms in the Mg6Pd structure is possible up to a solubility 

limit of 7.2 at.% Ag. The hydrogenation of this pseudo-binary compound leads to a 

similar reaction pathway than the one observed for the Mg6Pd compound. However, the 

resulting thermodynamics differ significantly. The first absorption plateau, 

corresponding to reaction (3.5), is similar to the Mg/MgH2 equilibrium as can be 

observed in Figure 3.22. According to Hess’s law and reaction (3.5), this implies that 

ΔfH(Mg3Ag0.5Pd0.5) and ΔfH(Mg6Pd0.5Ag0.5) must have very close values, as it was 

calculated for the non-substituted compound. For the second plateau, corresponding to 

reaction (3.6), the destabilization seems obvious, with a strong slope reduction in the 

Van’t Hoff plot (Figure 3.22) that reflects a much less negative enthalpy of absorption 

(∆H2 = -35(4) kJ/molH2). However, because of the lower entropy variation associated to 

the second plateau (∆S2 = -84(6) J/K.molH2), the equilibrium pressure at a given 

temperature does not increase as much as expected for such enthalpy reduction.  
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Figure 3.22. Van’t Hoff plots of the two absorption plateaus of the Mg6Pd0.5Ag0.5 compound 

compared with the Mg/MgH2 system considering ΔH = -74.5 kJ/molH2 and ΔS = -135 

J/KmolH2 [10]. 

 

It should be noted that the measured entropy variation is strikingly low. It almost 

approaches that reported for adsorbents (∆S ~ 8R = 66.5 J/K.molH2 [27]). This less 

negative value of ∆S is probably related to the contribution of the solid reactants. 

Certainly, the complexity of the disproportionation reaction path leading to a multi-

phase and fine microstructure, the atomic disorder due to the presence of pseudo-binary 
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compounds and the occurrence of linear defects in the end-products (microstrains as 

high as 0.20 and 0.28 % for Mg3(Ag,Pd) and Mg(Pd,Ag) phases have been evaluated), 

might lead to a significant reduction of the reaction entropy. However, the occurrence of 

sloping and ill-defined plateaus in this system imposes to consider the entropy value as 

only approximate. Further confirmation by using calorimetric measurements and/or ab-

initio calculations is needed. Questionable results related to low entropy variations have 

been reported in the past as concerns, for instance, the ZrMn2+x-H system [28].  

 

3 Substituting Pd by Cu  

Though Pd and Cu do not belong to the same period and group, they are located 

close in the periodic table. Moreover, they are fully miscible in the liquid state [29]. 

Because of that, it is expected that Cu can substitute Pd atoms in the Mg6Pd 

intermetallic phase. As presented in Chapter 1 section 3.1.1, Cu-Mg alloys have already 

been investigated for hydrogen storage [30–32], and Cu was found to destabilize MgH2 

and to have catalytic properties for hydrogen sorption [31]. Although no Mg-Pd-Cu 

ternary phase diagram has been reported in the literature, the existence of a pseudo-

binary Mg6Pd1-xCux phase is expected.  

Mg6Pd1-xCux alloy ingots have been prepared for three different Cu contents with 

nominal compositions: Mg85.7Pd7.1Cu7.1, Mg85.8Pd10.3Cu3.9 and Mg85.7Pd11.8Cu2.5. They 

will be designated as x = 0.5, x = 0.3 and x = 0.2, respectively. The x = 0.5 sample was 

obtained with the same procedure than for Ag-substituted sample. In the case of the 

other two compositions, pre-alloyed Mg6Pd compound as well as Mg and Cu elements 

were introduced in a steel crucible that was then hermetically sealed under argon and 

placed in a high temperature electric furnace. They were then heated at 1000 K during 3 

hours. All samples were submitted to a 2 days annealing at 673 K before structural 

characterization.  

 

3.1 Characterization of the alloy 

3.1.1 Micro-structure and chemical composition  

Figure 3.23 shows the BSE images of the three studied Mg6Pd1-xCux samples. In all 

cases, three phases, which proportion depends on Cu content, are observed as black, 

dark grey and light grey areas. EDX analyses proved that these phases are Mg, 
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Mg6(Pd,Cu) and Mg2(Cu,Pd), respectively. Thus, for x = 0.5, large Mg dendrites are 

observed in black (Figure 3.23a). These dendrites are surrounded by small precipitates 

(< 5 µm) belonging to the three different phases (Figure 3.23b). At lower Cu content 

(i.e. for x = 0.3 and 0.2), a large amount of the dark grey Mg6(Pd,Cu) phase dominates 

with still minor eutectic areas of light grey Mg2(Cu,Pd) and black Mg phases. EDX 

analyses of the matrix (dark grey) in both samples indicate that the Mg6(Pd,Cu)-type 

phase has a low Cu solubility.  

 

 

Figure 3.23. BSE images of Mg6Pd1-xCux compounds with x = 0.5 (a and b), x = 0.3 (c and d) 

and x = 0.2 (e and f). Top and bottom images show different magnification views.  

 

Accurate chemical compositions have been obtained for the three samples by EPMA 

and results are gathered in Table 3.13. For all samples, the Mg concentration of the 

pseudo-binary ρ-phase is around 86.0 at.%. In contrast, the relative amount of Cu and 

Pd varies depending on the nominal composition of the alloy. The Cu concentration 

gradually decreases from 3.9(5) at.% for x = 0.5 down to 1.8(4) at.% for x = 0.2. As for 

the Mg2(Cu,Pd) phase, its composition is roughly the same for all samples with 67.5 

at.% Mg, 27.5 at.% Cu and only 5 at.% Pd.  
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Table 3.13. Chemical compositions of Mg6(Pd,Cu) and Mg2(Cu,Pd) pseudo-binary phases 

obtained by EPMA on x = 0.5, 0.3 and 0.2 samples.  

Sample Phase Mg (at.%) Pd (at.%) Cu (at.%) 

x = 0.5 
ρ-Mg6Pd1-xCux 86.0(5) 10.2(2) 3.9(5) 

Mg2Cu1-yPdy 67.9(8) 4.7(8) 27.4(2) 

x = 0.3 
ρ-Mg6Pd1-xCux 86.1(1) 11.6(2) 2.3(2) 

Mg2Cu1-yPdy 67.3(5) 5.0(3) 27.7(8) 

x = 0.2 
ρ-Mg6Pd1-xCux 85.9(1) 12.3(4) 1.8(4) 

Mg2Cu1-yPdy 67.2(1.0) 4.8(3) 28.0(9) 
 

 

3.1.2 Structural properties  

The crystal structure of all Cu-substituted samples has been analysed by XRPD and 

refined using the Rietveld method. The analysed diffraction patterns are presented in 

Figure 3.24. The width of the diffraction peaks reflects the microstructures previously 

observed by SEM. The presence of small precipitates in the x = 0.5 sample leads to 

wider diffraction peaks than for the other two samples. The three phases previously 

identified by SEM-EDX are also indexed by XRPD. Details on their cell parameters and 

relative amounts are summarized in Table 3.14. At the highest Cu concentration (i.e. x = 

0.5), the three phases are present in significant amounts, with nearly 50 wt.% of the 

pseudo-binary Mg6Pd1-xCux phase. When x = 0.3, the amount of Mg is negligible, and 

that of Mg6Pd1-xCux is close to 90 wt.%. For x = 0.2, the alloy is almost Mg6Pd1-xCux 

single phase. 
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Figure 3.24. XRPD patterns (Cu Kα radiation) of the Mg6Pd1-xCux alloys for x = 0.5, 0.3 and 0.2 

(dots) and the corresponding Rietveld refinement (solid line). Bragg peak positions are plotted 

as vertical bars. The line below represents the difference between the calculated and the 

experimental patterns. 
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Table 3.14. Rietveld refinements results of the Mg6Pd1-xCux alloys for x = 0.5, 0.3 and 0.2 

samples.  

Sample Phase S.G. 
Phase amount 

(wt.%) 

Cell parameters 

(Å) 
RB Rwp 

x = 0.5 

ρ-Mg6Pd1-xCux F-43m 49.3(1.0) a = 20.182(1) 6.5 

13.5 

Mg P63/mmc 26.7(6) a = 3.209(1) 

c = 5.210(1) 

5.5 

Mg2Cu1-yPdy P6222 24.0(9) a = 5.285(1) 

c = 13.648(1) 

9.2 

x = 0.3 

ρ-Mg6Pd1-xCux F-43m 88.9(9) a = 20.161(1) 8.1 

13.7 

Mg P63/mmc 0.2(1) a = 3.209* 

c = 5.210* 

20.9 

Mg2Cu1-yPdy P6222 10.9(2) a = 5.283(1) 

c = 13.648(1) 

18.6 

x = 0.2 

ρ-Mg6Pd1-xCux F-43m 98(2) a = 20.161(1) 8.9 

17.2 

Mg P63/mmc 0.8(2) a = 3.209(1) 

c = 5.210(1) 

32.6 

Mg2Cu1-yPdy P6222 1.2(2) a = 5.285(1) 

c = 13.645(1) 

34.1 

* Not refined 

 

As for Mg6Pd1-xAgx, the ρ-phase crystallizes in the F-43m space group. In this case, 

the electron density of Cu and Pd atoms differs sufficiently to refine their respective 

occupancy on Pd sites. Hence, refinements have been performed taking into account the 

previously explained structural constraints on Mg and Pd positions and by allowing Pd 

by Cu partial substitution on Pd sites. Table 3.15 displays atomic sites as well as their 

atomic coordinates and refined SOF. The chemical composition of the phase resulting 

from Rietveld refinement is also given. Occupancy on site 12 has been restricted to Pd 

and Mg atoms, considering that Cu, which has a smaller radius than Pd, will 

preferentially locate on sites with low coordination number (CN) (i.e. sites 10, 11 and 

13 with CN = 12, 10 and 12, respectively). Indeed, it was previously demonstrated for 

Pd by Ni substitution in the Mg6Pd phase that Ni occupancy on site 12 (CN = 13) was 

almost negligible [33]. Site 11, which has the lower CN (CN = 10), shows the highest 

Cu occupancy while site 13 remains mostly occupied by Pd atoms.  
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Table 3.15. Refined positional parameters and occupancy factors (SOF) for the Mg6Pd1-xCux phase in x = 0.5, 0.3 and 0.2 samples. The last three rows 

correspond to the chemical composition of the phase according to Rietveld refinements.   

Site n° Atom 
Wyckoff 

position 

x = 0.5 x = 0.3 x = 0.2 

SOF  
Atomic coordinates 

SOF 
Atomic coordinates 

SOF 
Atomic coordinates 

x y z x y z x y z 

1 Mg 48h 1 0.137(1) x 0.037(2) 1 0.145(1) x 0.032(1) 1 0.143(1) x 0.033(1) 

2 Mg 48h 1 0.096(1) x 0.276(2) 1 0.095(1) x 0.273(1) 1 0.094(1) x 0.272(1) 

3 Mg 48h 1 0.160(1) x 0.525(2) 1 0.150(1) x 0.525(1) 1 0.152(1) x 0.527(1) 

4 Mg 48h 1 0.054(1) x 0.768(2) 1 0.055(1) x 0.766(1) 1 0.053(1) x 0.769(1) 

5 Mg 48h 1 0.201(1) x 0.911(2) 1 0.202(1) x 0.915(1) 1 0.201(1) x 0.913(1) 

6 Mg 24f 1 0.100(2) 0 0 1 0.099(1) 0 0 1 0.103(1) 0 0 

7 Mg 24f 1 0.387(2) 0 0 1 0.387(1) 0 0 1 0.385(1) 0 0 

8 Mg 24g 1 0.067(2) 0.25 0.25 1 0.055(1) 0.25 0.25 1 0.058(1) 0.25 0.25 

9 Mg 16e 1 0.304(2) x x 1 0.301(1) x x 1 0.302(1) x x 

10 
Pd 

16e 
0.8(1) 0.167(1) x x 0.89(2) 0.168(1) x x 1 0.168(1) x x 

Cu 0.2(1)     0.11(2)     0     

11 
Pd 

16e 
0.2(2) 0.404(1) x x 0.67(2) 0.407(1) x x 0.85(9) 0.406(1) x x 

Cu 0.8(2)     0.33(2)     0.15(9)     

12 

Pd 

16e 

0.18(3) 0.673(1) x x 0.13(2) 0.673(1) x x 0.20(3) 0.673(1) x x 

Cu 0     0     0     

Mg 0.82(3)     0.87(2)     0.80(3)     

13 
Pd 

16e 
1 0.901(1) x x 0.92(2) 0.900(1) x x 0.99(9) 0.900(1) x x 

Cu 0     0.08(2)     0.01(9)     

14 Mg 4d 0.4(4) 0.25 0.25 0.75 0.7(2) 0.25 0.25 0.75 0.8(2) 0.25 0.25 0.75 

Refined atomic 

composition 

Mg (at.%) 87.1(7)    87.3(3)    87.1(4)    

Pd (at.%) 8.9(1.4)    10.6(7)    12.3(8)    
Cu (at.%) 4.0(1.4)    2.1(6)    0.6(7)    
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The evolution of the Mg6Pd1-xCux phase composition as determined from XRPD 

Rietveld refinements follows the same trend than from EPMA analysis (Figure 3.25), 

though Mg concentration seems to be over-estimated in Rietveld refinements. It can be 

concluded that Pd by Cu substitution increases with Cu-content in the alloy.  
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Figure 3.25. Chemical composition of the Mg6Pd1-xCux ρ-phase measured by EPMA and by 

XRPD Rietveld refinements for x = 0.5, 0.3 and 0.2 samples. 

 

The lattice parameter of the ρ-phase obtained by XRPD refinements (Table 3.14) 

exhibits identical values for x = 0.3 and 0.2 (a = 20.161(1) Å). This suggests that the 

composition of the phase is almost the same, in agreement with EPMA results. In 

contrast, the sample with x = 0.5 exhibits a significantly larger cell (a = 20.182 Å). 

Considering the atomic radii of the phase constituents (rMg = 1.60 Å, rPd = 1.37 Å and 

rCu =1.28 Å), a cell reduction is expected for constant Mg content when the Cu content 

increases. Strikingly, the opposite behaviour is observed, which can only be explained 

by a higher Mg content in the x = 0.5 sample. This discrepancy can be understood by 

the larger error in EPMA measurements for the x = 0.5 sample as a result of its finer 

microstructure (see Figure 3.23 a and b).  
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As for the Mg2Cu1-yPdy secondary phase, it is worth mentioning that its crystal 

structure differs from those of the end binary compounds: Mg2Cu crystallizes in the 

orthorhombic symmetry (S.G. Fddd) whereas Mg2Pd crystallizes in the cubic one (S.G. 

Fd-3m). Indeed, the crystal structure of the Mg2Cu1-yPdy phase with 5 at.% Pd was 

found to be hexagonal and the corresponding diffraction peaks can be indexed in the 

same space group as the Mg2Ni phase (S.G. P6222). In other words, the (Cu,Pd)-pseudo 

atom behaves as a Ni one from the structural point of view. Further investigations on 

the structural stability of this phase as function of Pd/Cu ratio are in progress but 

beyond the scope of the present thesis.  

 

3.1.3 Thermal stability 

The thermal stability of the Cu-substituted compound has been probed on the quasi-

single phase sample (x = 0.2) by DSC (Figure 3.26). 
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Figure 3.26. DSC scan of the Mg6Pd0.8Cu0.2 sample during heating and cooling at 5 K/min. 

 

As for the Mg-Pd-Ag system, the complexity of the Mg-Pd-Cu system does not 

allow us to provide a complete description of the disproportionation mechanism of the 

ρ-phase. However some interesting information can be extracted from this data on the 

thermal stability of this material. On heating, an exothermic bump appears above 675 K. 

Next, we observe two endothermic peaks: a sharp one at 748 K and a broad one at 819 

K. The bump temperature matches with the annealing treatment for sample synthesis 

and may suggest that the ρ-phase starts decomposing into Mg6Pd, Mg2Cu and Mg 
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phases just above the alloy annealing temperature. Next, the first endothermic peak can 

be attributed to the melting of a Mg2Cu/Mg mixture, which is reported to occur at 758 K 

[34]. The width of the second peak leads to assume a progressive melting of Mg6Pd 

phase with remaining Mg. Once again, the eutectic melting of Mg and Mg6Pd phases at 

812 K is in fairly good agreement with the temperature of the second peak at 819 K.  

On cooling, a complex behaviour is observed with several broad and overlapped 

exothermic peaks, making difficult to identify with certainty the solidification and 

reformation of the different phases. 

 

3.1.4 Cu solubility – ternary phase diagram 

At the light of the results obtained for several ternary alloys of the Mg-Pd-Cu 

system, a phase diagram in the Mg-rich corner is proposed for the first time in Figure 

3.27. The phase composition of the x = 0.5 sample establishes the composition of the 

three phased (Mg, Mg6(Pd,Cu) and Mg2(Cu,Pd)) domain, while that of x = 0.3 sample 

shows the equilibrium between Mg6(Pd,Cu) and Mg2(Cu,Pd) phases. The x = 0.2 

sample can be considered within the homogeneity range of the ρ-phase. 
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Figure 3.27. Isothermal section at 673 K of the Mg-Pd-Cu ternary phase diagram in the Mg-rich 

corner. Experimental points for the ρ-phase and Mg2(Cu,Pd) are obtained from EPMA analyses 

(triangle symbols). The nominal composition of each sample is marked by empty dots. 
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The most relevant feature of this phase diagram concerns the rather small solubility 

limit of Cu in Mg6Pd as compared to other TM substitutions such as Ni (9 at.%) [35] or 

Ag (7.2 at.%). Indeed, the Cu solubility limit only attains 3.9 at.%. In addition, at least 

three different phases should exist along the Mg2Cu-Mg2Pd line, since three compounds 

with distinct crystal structures (Mg2Cu, Mg2Pd and Mg2(Cu,Pd) with 5 at.% Pd) have 

been evidenced. 

 

3.2 Hydrogenation properties 

The hydrogenation properties of the Mg6Pd1-xCux ρ-phase have been determined 

using the x = 0.3 sample. This sample contains close to 90 wt.% of the ρ-phase.  

 

3.2.1 Thermodynamics: PCI curves 

The thermodynamic properties have been evaluated by measuring the PCI curves at 

595, 628 and 648 K between 0.01 and 3 MPa of hydrogen pressure (Figure 3.28). The 

isotherms exhibit two plateau pressures and a maximum hydrogen content of 3.2 wt.%.  
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Figure 3.28. PCI curves of the Mg6Pd0.7Cu0.3 compound during absorption (full symbols) and 

desorption (empty symbols) at 595, 628 and 648 K. 

 

The equilibrium pressures at the middle of each plateau of absorption (Table 3.16) 

have been used to draw the Van’t Hoff plots and calculate the corresponding enthalpy 

and entropy changes (Figure 3.29). The obtained values for the first plateau 

(∆H1 = -71(3) kJ/molH2 and ∆S1 = -130(5) J/K.molH2) are comparable with those of the 
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Mg6Pd and Mg6Pd0.5Ag0.5 compounds. The equilibrium of the second plateau 

(∆H2 = -62(4) kJ/molH2 and ∆S2 = -120(6) J/K.molH2) is slightly destabilized as 

compared to Mg6Pd, but still more stable than for Mg6Pd0.5Ag0.5.  

 

Table 3.16. Equilibrium pressures corresponding to absorption plateaus 1 and 2 of the 

Mg6Pd0.7Cu0.3 PCI curves. 

  Peq (MPa) 

T (K) Plateau 1 @1 wt.% H Plateau 2 @2.5 wt.% H 

595 0.350 0.641 

628 0.775 1.300 

648 1.126 1.780 
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Figure 3.29. Van’t Hoff plots corresponding to the two absorption plateaus of the Mg6Pd0.7Cu0.3 

isotherms. 

 

3.2.2 Hydrogenation mechanism 

The hydrogenation path of the Mg6Pd1-xCux compound has been determined by 

analysing the composition of partially (1.4 wt.% H, labelled as MPCH1.4) and totally 

(3.2 wt.% H, labelled as MPCH3.2) hydrided samples. MPCH1.4 corresponds to the 

middle of the first plateau and MPCH3.2 matches with the end of the second plateau. 

Their XRPD patterns compared to the parent alloy are displayed in Figure 3.30 while 

the corresponding Rietveld refinements results are detailed in Table 3.17. The partially 

hydrided sample (MPCH1.4) is composed of MgH2 together with the Mg2Cu phase and 

a large amount of remaining Mg6Pd1-xCux. A small amount of the cubic γ-Mg57Pd13 is 

also observed. At further hydrogenation, the Mg5Pd2 phase is formed along with more 
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Mg2Cu and MgH2, at the expense of the ρ-phase which totally disappeared. As a general 

trend, Mg6Pd1-xCux decomposes progressively to form the MgH2 phase together with 

Mg2Cu and a Mg-Pd intermetallic compound which depletes in Mg with increasing H-

content. The cell parameter of the ρ-phase (a = 20.107(1) Å) is significantly reduced in 

the MPCH1.4 sample as compared to the same phase before hydrogenation (a = 

20.161(1) Å), suggesting a depletion in Mg which atomic radius is the largest.  
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Figure 3.30. XRPD patterns (Cu Kα radiation) of the Mg6Pd0.7Cu0.3 alloy before hydrogenation 

and hydrided to 1.4 wt.% H and 3.2 wt.% H.  

 

Table 3.17. Rietveld refinements results of partially hydrided Mg6Pd0.7Cu0.3 samples. 

Sample Phase S.G. 
Phase amount 

(wt.%) 

Cell parameters 

(Å) 
RB Rwp 

MPCH1.4 

ρ-Mg6Pd1-xCux F-43m 60(2) a = 20.107(1) 10.3 

7.5 

Mg2Cu1-yPdy P6222 16(1) 
a = 5.2873(3)  

c = 13.684(1) 
12.5 

γ-Mg57Pd13 Pm-3 7(1) a = 14.049(1) 17.2 

MgH2 P42/mnm 17(1) 
a =4.5123(4) 

c = 3.0186(4) 
10.8 

MPCH3.2 

Mg5Pd2-zCuz P63/mmc 36(1) 
a = 8.649(4)  

c = 8.188(5) 
12.4 

8.9 Mg2Cu1-yPdy P6222 22(2) 
a = 5.300(1)  

c = 13.679(1) 
16.7 

MgH2 P42/mnm 42(1) 
a =4.5143(2)  

c = 3.0204(2) 
4.97 
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The same phases have been identified on the BSE images of Figure 3.31, except the 

γ-Mg57Pd13 phase which amount is too low. All the intermetallic phases exhibit Pd by 

Cu substitution and vice versa. The amount of substituted atoms has been determined by 

EPMA analyses on both hydrided samples for the three main pseudo-binary phases 

(Table 3.18). The amount of Cu substituting Pd in the ρ-phase was slightly reduced in 

the MPCH1.4 sample (1.8(3) at.% Cu) as compared to the same phase in the parent 

alloy (2.3(2) at.% Cu). But the decrease in Mg concentration is more significant as it 

loses close to 2 at.% Mg in the partially hydrided sample. This result is consistent with 

the cell parameter reduction previously mentioned. As regard to the Mg2Cu1-yPdy phase, 

its composition remains almost constant, independently of the hydrogen concentration 

in the sample, with ~10 at.% Pd (i.e. y = 0.3). Finally, the Mg5Pd2-zCuz phase exhibits 

little Cu solubility with a Cu concentration of 5 at.%, corresponding to z = 0.3.  

 

 

Figure 3.31. BSE images of a) MPCH1.4 and c) MPCH3.2 samples. 

 

Table 3.18. Chemical composition of partially hydrided Mg6Pd0.7Cu0.3 samples as obtained by 

EPMA analyses. 

 Sample Phase Mg (at.%) Pd (at.%) Cu (at.%) 

MPCH1.4 
ρ-Mg6Pd1-xCux  84.2(2) 14.0(2) 1.8(3) 

Mg2Cu1-yPdy  67(1) 9(2) 24(2) 

MPCH3.2 
Mg2Cu1-yPdy  67(3) 10(2) 23(3) 

Mg5Pd2-zCuz 71(1) 24(2) 5(2) 
 

 

Based on these results, the hydrogenation mechanism can be described through the 

following hydrogenation reactions (for the sake of simplicity, γ-Mg57Pd13 is written as 

Mg4.4Pd and no Cu solubility is considered in the Mg-Pd intermetallic phases): 
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7 Mg6Pd0.7Cu0.3 + 18.4 H2 ↔ 3 Mg2Cu0.7Pd0.3 + 4 Mg4.4Pd + 18.4 MgH2 (3.8) 

3 Mg2Cu0.7Pd0.3 + 4 Mg4.4Pd + 18.4 MgH2 + 7.6 H2 ↔  

3 Mg2Cu0.7Pd0.3 + 2 Mg5Pd2 + 26 MgH2 
(3.9) 

Reaction (3.8) leads to a theoretical hydrogen absorption of 2.2 wt.% H, matching 

perfectly with the end of the first plateau of absorption. This plateau corresponds to the 

decomposition of the initial pseudo-binary Mg6Pd1-xCux phase into the Cu-rich 

Mg2Cu1-yPdy and a Pd-rich Mg4.4Pd phase. Concerning this last phase, no information 

allows to state on the occurrence of Cu solubility.  

The additional hydrogen uptake corresponding to reaction (3.9) is of 0.9 wt.% H, in 

agreement with the hydrogen content at the end of the second plateau of absorption. 

During this stage of hydrogenation, the Mg4.4Pd depletes in Mg which is immediately 

hydrided, and forms the Mg5Pd2 intermetallic containing a small amount of Cu.  

In spite of having no result at higher H-content, we can assume that a third plateau 

would occur by the decomposition of the Mg5Pd2 into MgPd and more MgH2, as it 

happens for the Mg6Pd compound. In addition, the decomposition of the Mg2Cu1-yPdy is 

also expected, as Mg2Cu is known to react with hydrogen to form MgH2 and MgCu2. 

However, this possibility is only speculative as we do not have information on the 

stability of the pseudo-binary Mg2Cu1-yPdy phase. The following hypothetic reaction can 

be proposed: 

3 Mg2Cu0.7Pd0.3 + 2 Mg5Pd2 + 26 MgH2 + 10.5 H2 ↔  

1.5 MgCu1.4Pd0.6 + 4 MgPd + 36.5 MgH2 
(3.10) 

This last reaction would provide an additional hydrogen capacity 1.2 wt.% H, for a 

total of 4.3 wt.% H corresponding to the global reaction.  

The overall hydrogenation mechanism is illustrated in Figure 3.32. In summary, the 

Mg6Pd1-xCux compound reacts with hydrogen to form MgH2 together with Cu-rich 

(Mg2(Cu,Pd) and Mg(Cu,Pd)2) and Pd-rich (Mg4.4Pd, Mg5Pd2 and MgPd) intermetallic 

phases which occurrence and amount depend on the progress of the hydrogenation 

process.  
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Figure 3.32. Schematic illustration of the phase growth during hydrogenation of the 

Mg6Pd1-xCux compound. Large arrows represent the growing direction of the phases. Thin 

arrows symbolize the diffusion of each element. 

 

3.2.3 Reversibility  

A totally desorbed sample (MPCdes) has been prepared at T = 623 K by two 

successive desorption steps (P < 0.15 MPa) and final vacuum during 30 minutes. Its 

phase composition has been analysed by EPMA. The major part of the compound 

consisted of the Mg6Pd1-xCux ρ-phase. In addition, a small amount of Mg2Cu1-yPdy was 

also detected, which appears in light grey areas on the BSE image of Figure 3.33. The 

chemical atomic composition of the ρ-phase was found to be Mg86.1(6)Pd11.6(5)Cu2.3(3), 

showing that we recover exactly the same composition as in the parent compound.  

 

 

Figure 3.33. BSE image of the Mg6Pd0.7Cu0.3 compound after desorption. 
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XRPD refinement on the desorbed sample (Table 3.19) shows that the relative 

phase amounts are very close to the composition of the original compound with about 

90 wt.% of the ρ-phase. The cell parameter of this phase is only 0.01 Å larger than in 

the parent compound.  

 

Table 3.19. Rietveld refinement results of the desorbed Mg6Pd0.7Cu0.3 compound. 

Sample Phase S.G. 
Phase amount 

(wt.%) 

Cell parameters 

(Å) 
RB Rwp 

MPCdes 

ρ-Mg6Pd1-xCux F-43m 92(2) a = 20.1716(3) 9.84 

7.08 
Mg2Cu1-yPdy P6222 8(1) 

a = 5.2846(3)  

c = 13.656(1) 
13 

 

 

Thus, full reversibility of the Mg6Pd0.7Cu0.3 compound after hydrogen absorption 

and desorption has been achieved while the Cu solubility is maintained in the ρ-phase.  

 

3.2.4 Kinetic characterization 

The activation energy involved during hydrogen desorption from the MPCH3.2 

sample has been determined using the Kissinger equation applied to the TDS spectra of 

Figure 3.34.  

 

500 550 600 650 700 750 800

H
 d

e
s
o
rp

ti
o
n
 r

a
te

 (
a
.u

.)

Temperature (K)

20 K/min

10 K/min

5 K/min

1.38 1.40 1.42 1.44

-15.5

-15.0

-14.5
E

a
 = 189(18) kJ/mol

 L
n

/T

2

1000/T

 

Figure 3.34. TDS spectra of the Mg6Pd0.7Cu0.3 compound hydrided at 3.2 wt.% H measured at 

heating rates of 5, 10 and 20 K/min. The inset displays the Kissinger plot and corresponding 

activation energy.  
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The obtained value, 189(18) kJ/molH2, is of the same order as for the Ag-

substituted compound, taking in account the large error attributed to this measurement. 

This result shows that the limiting step for hydrogen desorption might be similar to that 

of Mg6Pd0.5Ag0.5 and MgH2, i.e. the Mg-MgH2 interface displacement. 

Concerning the absorption, slightly faster kinetics is observed for the Cu-substituted 

material than for the Mg6Pd sample (Figure 3.35). About 90 % of the alloy is hydrided 

in less than 40 minutes while almost 60 minutes is needed to transform the same 

fraction of the Mg6Pd compound.  
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Figure 3.35. Comparison of the kinetics for the Mg6Pd and Mg6Pd0.7Cu0.3 compounds during 

the third absorption at 623 K and 2 MPa of hydrogen pressure. 

 

3.3 Discussion on the stability of the Mg6Pd1-xCux-H system 

In the case of the Cu-substituted compound, the global stability of the hydrided 

system is expected to be altered by the formation of the Mg2Cu1-yPdy phase, besides the 

Mg-Pd intermetallics. Indeed, the reported heat of formation of Mg2Cu is 

-29.4 kJ/molcompound [36], which is significantly less stable than all the known Mg-Pd 

intermetallics (see Table 3.4). Applying Hess’s law to equation (3.8) considering pure 

intermetallic compounds (i.e. with no Cu and Pd solubility) would give the following 

reaction enthalpy: 

                   
                                       

    
 (3.11) 

The resulting value, -52.8 kJ/molH2, differs significantly from the experimental 

result (-71(3) kJ/molH2), showing that miscibility of Pd and Cu atoms in the reactants 



Chapter 3. Pseudo-binary Mg6Pd1-xTMx compounds for H-storage 

126 

and products must notably change the thermodynamic of the system. In this case, it is 

expected that Cu substitution in the Mg6Pd phase will destabilize the compound and 

consequently increase |ΔrH(1)|. Ab initio calculations are here fundamental to understand 

the thermodynamics of this system.  

Finally, if the hypothetical reaction (3.10) takes place, it should occur at higher 

pressure than the other two plateaus, resulting in an even less stable hydride.  

 

4 Substituting Pd by Ni  

Ni is an interesting candidate for Pd substitution in the M6Pd intermetallic 

compound as it possesses good catalytic properties for H2 dissociation [37; 38]. It has 

been recently demonstrated that, at 623 K, the maximum solubility of Ni in the Mg6Pd 

phase reaches 9 at.% Ni, corresponding to Mg6Pd0.25Ni0.75 composition [11; 35]. The 

structural and hydrogenation properties of the pseudo-binary phase at the maximum Ni 

solubility are investigated in this section. The compound with nominal composition 

Mg6Pd0.25Ni0.75 was prepared by induction melting, mixing pure Mg and Pd elements 

with a pre-alloyed Mg2Ni/Mg eutectic mixture.  

 

4.1 Characterization of the alloy 

4.1.1 Micro-structure and chemical composition  

The BSE image of a polished sample from the original ingot (Figure 3.36) showed a 

homogeneous main phase with minor occurrence of black precipitates and eutectic 

zones. The average atomic composition for the main phase was found to be 

Mg87.0(3)Pd4.4(3)Ni8.6(3), as determined by EDX analyses on 20 points of the ingot. EDX 

analyses of black precipitates and eutectic zones revealed that they are formed by pure 

Mg and eutectic Mg/Mg2Ni, respectively.  
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Figure 3.36. BSE image of an ingot slice of the Mg6Pd0.25Ni0.75 alloy. 

 

4.1.2 Structural properties  

XRPD data analysed by the Rietveld method (Figure 3.37 and Table 3.20) 

confirmed the low amount of Mg and Mg2Ni phases (5.9 and 4.7 wt.%, respectively). 

The main phase crystallizes in the same structure as the binary Mg6Pd compound (S.G. 

F-43m), with a lattice parameter of 20.106 Å. The crystal refinement of the Mg6Pd1-xNix 

phase, as displayed in Table 3.21, has been performed following the model of Samson 

[3], assuming that Ni and Pd atoms share atomic sites 10, 11 and 13 whereas site 12 was 

shared by Mg and Pd atoms. Refined site occupancy of Ni shows good agreement with 

the nominal Ni content. In addition, the site with the lowest CN (site 11) exhibits the 

highest Ni occupancy. The refined atomic composition Mg87.6(2)Pd4.1(9)Ni8.3(8) is 

consistent with EDX analysis.  

 

 

Table 3.20. Summary of Rietveld refinement results for the Mg6Pd0.25Ni0.75 alloy. 

Phase S.G. 
Phase amount 

(wt.%) 

Cell parameters 

(Å) 
RB Rwp 

Mg P63/mmc 5.8(4) 
a = 3.209(1) 

c = 5.212(1) 
12.4 

17.3 
Mg2Ni P6222 4.7(4) 

a = 5.224(2) 

c = 13.30(1) 
33.6 

ρ-Mg6.19(1)Pd0.29(7)Ni0.59(6) F-43m 89.4(1.5) a = 20.106(1) 14.0 
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Figure 3.37. XRPD pattern (Cu Kα radiation) of the Mg6Pd0.25Ni0.75 alloy (dots) and the 

corresponding Rietveld refinement (solid line). Bragg peak positions are plotted as vertical bars 

for Mg, Mg2Ni and Mg6Pd phases. The line below represents the difference between the 

calculated and the experimental patterns. 

 

Table 3.21. SOF and atomic coordinates of the Mg6Pd1-xNix ρ-phase for x = 0.75. 

Site n° Atom 
Wyckoff 

position 
SOF 

Atomic coordinates 

x y z 

1 Mg 48h 1 0.144(1) x 0.034(1) 

2 Mg 48h 1 0.095(1) x 0.274(1) 

3 Mg 48h 1 0.149(1) x 0.525(1) 

4 Mg 48h 1 0.0545(1) x 0.769(1) 

5 Mg 48h 1 0.201(1) x 0.913(1) 

6 Mg 24f 1 0.102(2) 0 0 

7 Mg 24f 1 0.387(1) 0 0 

8 Mg 24g 1 0.064(2) 0.25 0.25 

9 Mg 16e 1 0.305(1) x x 

10 Pd 16e 0.42(2) 0.168(1) x x 

Ni 0.58(2)    

11 Pd 16e 0.22(2) 0.406(1) x x 

Ni 0.78(2)    

12 Pd 16e 0.08(1) 0.678(6) x x 

Ni 0    

Mg 0.92(1)    

13 Pd 16e 0.29(2) 0.900(1) x x 

Ni 0.71(2)    

14 Mg 4d 1 0.25 0.25 0.75 

Refined atomic 

composition 

Mg (at.%) 87.6(2)    

Pd (at.%) 4.1(9)    

Ni (at.%) 8.3(8)    
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4.1.3 Ni solubility – ternary phase diagram 

The Ni content is very close to its maximum solubility in the Mg6Pd phase that was 

reported to be 9 at.% Ni at 673 K [35]. Therefore, the three-phase microstructure shown 

in Figure 3.36 is compatible with the nominal alloy composition (Mg85.7Pd3.6Ni10.7 in 

at.% units) and the Mg-Ni-Pd phase diagram of Figure 1.9. 

 

4.2 Hydrogenation properties 

4.2.1 Thermodynamics: PCI curves 

Figure 3.38 shows the absorption and desorption PCI curves of the Mg6Pd0.25Ni0.75 

alloy. The isotherms exhibit two plateau pressures and a full capacity of about 5.6 wt.% 

H. This storage capacity is slightly higher than the one reported by Lass for a similar 

compound (4.9 wt.% H under 2 MPa of hydrogen pressure at 473 K in the 

Mg5.95Pd0.7Ni0.35 alloy) [39], but it can be justified by the higher hydrogen pressure used 

in our study. The first plateau pressure extends from 0 to 3.2 wt.% H and is rather flat, 

while the second plateau pressure is more tilted and exhibits a more pronounced 

hysteresis.  
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Figure 3.38. PCI curves of the Mg6Pd0.25Ni0.75 compound during absorption (full symbols) and 

desorption (empty symbols) at 594, 620 and 646 K. 

 

The enthalpy and entropy changes during hydrogen absorption were calculated 

using the Van’t Hoff equation from the equilibrium pressures reported in Table 3.22. 

The corresponding Van’t Hoff plot is shown in Figure 3.39. The thermodynamic values 
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of the low pressure plateau (∆H1 = -72(2) kJ/molH2 and ∆S1 = -129(2) J/K.molH2) are 

very close to those of MgH2 formation. As for the high pressure plateau, enthalpy and 

entropy reach much less negative values (∆H2 = -55(1) kJ/molH2 and ∆S2 = -108(1) 

J/K.molH2) than for MgH2, indicating a significant destabilizing effect.  

 

Table 3.22. Equilibrium pressures corresponding to the two absorption plateaus 1 and 2 of the 

Mg6Pd0.25Ni0.75 PCI curves. 

  Peq (MPa) 

T (K) Plateau 1 @1.8 wt.% H Plateau 2 @4.5 wt.% H 

594 0.283 0.635 

620 0.528 1.022 

646 0.908 1.560 
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Figure 3.39. Van’t Hoff plots corresponding to the two absorption plateaus of the 

Mg6Pd0.25Ni0.75 isotherms. 

 

4.2.2 Hydrogenation mechanism 

In order to determine the reactions that occur during each of the observed plateau 

pressure, five samples with different H contents were synthesized. Their hydrogen 

contents, as established by manometric means, are displayed in Table 3.23.  
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Table 3.23. Hydrogen content of the as-cast and partially hydrided Mg6Pd0.25Ni0.75 samples. 

Label 
H content 

(wt.% H) 

MPN 0 

MPNH1.9 1.9(1) 

MPNH2.5 2.5(2) 

MPNH3.5 3.5(2) 

MPNH4 4.0(3) 

MPNH5.6 5.6(2) 
 

 

These samples have been analysed by means of XRPD which patterns and main 

peaks identification are displayed in Figure 3.40. The corresponding phase amount 

evolution with H-content is represented in Figure 3.41. It is observed that hydrogen 

absorption causes complex phase transformations with the occurrence of several Mg-Pd 

intermetallic phases and two hydride phases. MgH2 is formed during the first plateau of 

hydrogenation, together with the Mg2Ni phase, while the relative amount of the 

Mg6Pd1-xNix phase decreases. The second hydride, Mg2NiH4, starts to form during the 

second plateau, along with η-Mg3Pd, Mg5Pd2 and finally MgPd.  
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Figure 3.40. XRPD patterns (Cu Kα radiation) of the Mg6Pd0.25Ni0.75 compound at different H-

contents during absorption. Phase identification of main diffraction peaks is expressly indicated. 
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Figure 3.41. Evolution of the relative phase amounts with hydrogen absorption, as determined 

by Rietveld refinement of the XRPD patterns.  

 

The corresponding Rietveld refinements results are gathered in Table 3.24, from 

which the following relevant information can be extracted: 

i) The composition of the ρ-phase, which has been refined as described for the 

parent alloy, depletes in Ni and Mg contents during the first plateau of 

hydrogenation. In fact, these elements segregate out to form Mg2Ni and 

MgH2 phases. Thus, the lattice parameter of the ρ-phase changes due to the 

different atomic radii of the components (rPd = 1.37 Å, rNi = 1.25 Å and rMg 

= 1.60 Å). The more Pd (and the less Ni) the phase contains, the larger the 

cell volume is. However, these correlations are only valid as long as the Mg-

content in the -phase remains constant. At higher H-content (3.5 wt.% H), 

the Mg content drops and the cell volume strongly decreases. We can justify 

this strong dependence of the cell volume with Mg content by the much 

larger atomic radius of this atom as compared with Ni and Pd. This partial 

disproportionation of the intermetallic compound into Pd-rich Mg6(Pd,Ni) 

and Mg2Ni phases reflects that hydrogen absorption shrinks the 

homogeneity range of the ρ-phase, both in Mg and Ni contents. 

ii) The Mg2Ni phase of the partially hydrided samples exhibits a larger crystal 

cell than the one reported in literature (a = 5.211 Å, c = 13.244 Å [40]) or 

observed in the as-cast material (Table 3.20). This fact is explained by the 
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solid solution of hydrogen in the Mg2Ni phase, which has been described by 

Noreus et al. as Mg2NiH0.3 [40]. 

iii) A similar observation can be done for the Mg5Pd2 and MgPd phases, which 

cell parameters are slightly higher than those reported in the literature (a = 

8.6598 Å and c = 8.1688 Å [18] for Mg5Pd2 and a = 3.12 Å for MgPd [41]). 

H-solid solution in those phases was already reported by Huot et al. [8]. 

It is also worth mentioning that the Mg2NiH4 phase could be reasonably but not 

perfectly refined in the orthorhombic LT2 modification. The structure of this phase 

could be in fact more intricate than described in section 3.1.1 of Chapter 1. Finally, no 

Ni solubility was detected in Mg-Pd phases. 
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Table 3.24. Rietveld refinements results of partially hydrided Mg6Pd0.25Ni0.75 samples. 

Sample Phase S.G. 
Phase amount 

(wt.%) 

Cell parameters 

(Å) 
RB Rwp 

MPNH1.9 

MgH2 P42/mnm       25.7(5) 
a = 4.5139(2) 

c = 3.0201(2) 
11.2 

18.7 
Mg2Ni P6222 24.0(5) 

a = 5.2404(3) 

c = 13.445(2) 
11.8 

ρ-Mg6.18(1)Pd0.55(2)Ni0.32(2) F-43m 50.3(6) a = 20.1456(7) 13.4 

MPNH2.5 

MgH2 P42/mnm       30.8(5) 
a = 4.5171(2) 

c = 3.0218(2) 
8.14 

22 
Mg2Ni P6222 25.7(5) 

a = 5.2459(3)  

c = 13.464(2) 
10.2 

ρ-Mg6.18(2)Pd0.68(5)Ni0.21(4) F-43m 43.5(5) a = 20.155(1) 11.5 

MPNH3.5  

MgH2 P42/mnm       43.0(5) 
a = 4.5149(2) 

c = 3.0208(2) 
7.53 

20.5 
Mg2Ni P6222 32.0(5) 

a = 5.2493(3)  

c = 13.476(1) 
15.1 

ρ-Mg5.98(3)Pd0.76(7)Ni0.30(5) F-43m 25.0(4) a = 20.002(2) 18.9 

MPNH4 

MgH2 P42/mnm       44.9(6) 
a = 4.5180(3) 

c = 3.0214(2) 
6.55 

15.3 

Mg2Ni P6222 16.5(5) 
a = 5.2499(8) 

c = 13.475(3) 
12.1 

Mg2NiH4 Pcc2 21.9(7) 

a = 13.53(3) 

b = 6.55(1) 

c = 6.18(1) 

5.28 

Mg5Pd2 P63/m  1.7(2) 
a = 8.677(5)  

c = 8.167(7) 
17.7 

η-Mg3Pd P63 cm  15.1(3) 
a = 7.9815(8) 

c = 8.446(1) 
15.3 

MPNH5.6  

MgH2 P42/mnm       52.1(7) 
a = 4.5191(2)  

c = 3.0228(2) 
9.1 

23.4 
Mg2NiH4 Pcc2 31.9(6) 

a = 13.139(5)  

b = 6.436(3)   

c = 6.478(3) 

14.4 

Mg5Pd2 P63/m  2.1(2) 
a = 8.677(2)  

c = 8.187(4) 
33.7 

MgPd Pm-3  13.9(3) a = 3.1583(4) 2.35 
 

 

The BSE images in Figure 3.42 show the complex morphology of partially hydrided 

samples. The sample microstructure depends on its hydrogen content. The MPNH1.9 

sample contains dark precipitates with typical sizes from 1 to 20 μm, preferentially 

located near interfaces (grain boundaries and cracks). EDX analyses indicate that they 

correspond to the MgH2 phase. The surrounding matrix is composed of the Mg6Pd1-xNix 

phase with Mg2Ni inclusions (light grey in Figure 3.42b). As the sample is getting 

hydrided, the grey matrix shrinks at the benefit of filament-like areas leading to a sub-

micrometric microstructure in the fully hydrided sample (Figure 3.42f). According to 
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the XRPD results, the white areas are assigned to the occurrence of both Mg2NiH4 and 

Mg-Pd phases.  

 

 

Figure 3.42. BSE images of a) and b) MPNH1.9, c) and d) MPNH3.5, e) and f) MPNH5.6. 

 

These results demonstrate that the Mg6Pd0.25Ni0.75 compound reacts with hydrogen 

through a complex mechanism. The study of samples at different stages of 

hydrogenation and results from Rietveld analyses constitute a solid basis to propose a 

series of reactions, corresponding to the hydrogenation pathway of the alloy.  
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According to the phases present in samples MPN, MPNH1.9, MPNH2.5 and 

MPNH3.5, the first step for hydrogen absorption, corresponding to the first plateau, can 

be described as follows:  

2.6 Mg6.19Pd0.29Ni0.59 + 7.7 H2 ↔ Mg5.98Pd0.76Ni0.30 + 1.2 Mg2Ni + 7.7 MgH2 (3.12) 

Reaction (3.12) reveals the depletion of Mg and Ni in the ρ-phase. The hydrogen 

uptake during the first plateau essentially results from MgH2 formation. Ni and some 

Mg react together to form Mg2Ni which absorbs little hydrogen as a solid solution. At 

the end of this plateau, the calculated hydrogen content according to reaction (3.12) is 

2.75 wt.% H. Taking in account that the parent alloy originally contained pure Mg and 

Mg2Ni phases, this value matches satisfactorily with the hydrogen absorbed at the end 

of the first plateau during the PCI curves (Figure 3.38).   

During the second plateau, two simultaneous paths occur. On one side, the Mg2Ni is 

getting hydrided while on the other side, the Mg-Pd intermetallic phases deplete in Mg 

to form Pd-richer phases and MgH2. This process can be approximated through the 

following reactions:  

Mg5.98Pd0.76Ni0.30 + 1.2 Mg2Ni + 7.7 MgH2 + 4.3 H2 ↔  

0.6 Mg2NiH4 + 0.9 Mg2Ni + 10.8 MgH2 + 0.76 Mg3Pd 

(3.13) 

0.6 Mg2NiH4 + 0.9 Mg2Ni + 10.8 MgH2 + 0.76 Mg3Pd + 1.2 H2 ↔  

Mg2NiH4 + 0.5 Mg2Ni + 11.2 MgH2 + 0.38 Mg5Pd2 
(3.14) 

Mg2NiH4 + 0.5 Mg2Ni + 11.2 MgH2 + 0.38 Mg5Pd2 + 2.1 H2 ↔  

1.5 Mg2NiH4 + 12.3 MgH2 + 0.76 MgPd 
(3.15) 

for which the increasing amount of Mg2NiH4 is arbitrarily given. 

During reaction (3.13), the ρ-phase totally disproportionates into Mg2Ni, MgH2 and 

Mg3Pd phases. Besides, the Mg2Ni phase partially hydrogenates to form Mg2NiH4. The 

Mg3Pd phase decomposes into Mg5Pd2 and more MgH2 during reaction (3.14). In 

reaction (3.15), the formation of the Mg2NiH4 hydride is completed and the amount 

MgH2 hydride continues to grow as a result of the disproportionation of Mg5Pd2 into the 

Pd-richest MgPd compound. The slope of the second plateau is then explained by the 

successive transformations of the Mg-Pd phases that occur during this stage of 

absorption.  
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The calculated absorption corresponding to the reactions mentioned above 

represents a total hydrogen capacity of 5.4 wt.% H. This value is in good agreement 

with the experimental value at the end of the second plateau (5.6(2) wt.% H).  

The overall hydrogenation process can be summarized as schematically represented 

in Figure 3.43. Phase growth during the first plateau results from Mg2Ni and MgH2 

formation through Mg and Ni migration from the ρ-phase in the parent compound. As a 

consequence, the ρ-phase shrinks, depletes in Mg and Ni, and enriches in Pd. As for the 

second plateau, the ρ-phase totally disproportionates and forms Mg-Pd (Mg3Pd, Mg5Pd2 

and MgPd) intermetallic phases. At the same time, the Mg2Ni transforms into Mg2NiH4 

hydride. 

 

 

Figure 3.43. Schematic illustration of the phase growth during hydrogenation of the 

Mg6Pd1-xNix compound. Large arrows represent the growing direction of the phases. Thin 

arrows symbolize the diffusion of each element. 

 

In contrast with the reaction scheme proposed by Lass [39], MgH2 and Mg2NiH4 do 

not form simultaneously but in two different steps. Furthermore, no evidence of Pd 

solubility in Mg2NiH4 phase has been found. This last difference may be justified by the 

higher temperature used in our study (620 K) as compared to that of Lass (473 K).  
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4.2.3 Reversibility  

Partially dehydrided samples have been prepared to check the reversibility of the 

previously described mechanism. Their hydrogen contents, deduced from manometric 

measurements, are reported in Table 3.25.  

 

Table 3.25. Hydrogen content of the desorbed and partially dehydrided Mg6Pd0.25Ni0.75 samples. 

Label 
H content 

(wt.% H) 

MPNH3.9des 3.9(5) 

MPNH0.7des 0.7(3) 

MPNdes 0 
 

 

Rietveld refinements (Table 3.26) of the corresponding XRPD patterns (Figure 

3.44) evidence that desorption also occurs in two main steps:  

i) The composition of the MPNH3.9des sample, i.e. between the two plateau 

pressures, is similar to the composition of the sample with close H-content 

formed during absorption (MPNH3.5). The Mg2NiH4 phase is totally 

desorbed while MgH2 remains in large amount (41.4 wt.%) but nevertheless 

lower than in the totally hydrided sample. Therefore, hydrogen desorption 

from the Mg2NiH4 hydride is completed during the second plateau and about 

23 wt.% of the pseudo-binary phase is already reformed.  

ii) The MPNH0.7des sample, which hydrogen content lies at the beginning of 

the low pressure plateau, exhibits a large amount of the pseudo-binary phase 

(about 60 wt.%) which results from the recombination of the Mg2Ni and 

Mg6.02Pd0,97Ni0.09 phases. Both MgH2 and Mg phases are observed, showing 

that the decomposition of the MgH2 phase mainly occurs during this stage.   

As occurs in partially hydrided samples, the Mg2Ni phase exhibits a cell volume 

expansion with hydrogen content attributed to the presence of H in solid solution. It is 

also observed that the Mg6Pd1-xNix phase gradually recovered its initial composition 

which is refined as Mg87.8(1)Pd3.8(2)Ni8.4(2) (in at.%) in the totally desorbed material. 

Finally, more than 90 % of the initial Mg6Pd1-xNix phase is recovered, which 

demonstrates the reversibility of the hydrogenation reaction. Minor amounts of Mg and 

Mg2Ni phases remain after desorption.   
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Figure 3.44. XRPD patterns (Cu Kα radiation) of the Mg6Pd0.25Ni0.75 compound at different H-

contents during desorption. Phase identification of main diffraction peaks is expressly 

indicated. 

 

Table 3.26. Rietveld refinements results of the desorbed and partially dehydrided 

Mg6Pd0.25Ni0.75 samples. 

Sample Phases S.G. 
Phase amount 

(wt.%) 

Cell 

parameters (Å) 
RB Rwp 

MPNH3.9des  

MgH2 P42/mnm       41.4(6) 
a = 4.5158(1)  

c = 3.0213(1) 
9.94 

21.5 
Mg2Ni P6222 35.4(6) 

a = 5.537(3)  

c = 13.473(2) 
21.2 

ρ-Mg6.02(2)Pd0,97(4)Ni0.09(2) F-43m 23.2(5) a = 20.106(2) 21 

MPNH0.7des  

Mg P63/mmc 12.7(4) 
a = 3.2102(2)  

c = 5.2125(5) 
8.02 

16.2 
MgH2 P42/mnm       10.7(3) 

a = 4.5158(4)  

c = 3.0200(4) 
3.72 

Mg2Ni P6222 17.5(4) 
a = 5.229(1)  

c = 13.332(2) 
17.7 

ρ-Mg6.18(1)Pd0.32(3)Ni0.54(2) F-43m 59.1(6) a = 20.151(1) 12.5 

MPNdes 

Mg P63/mmc 8.4(4) 
a = 3.2107(2)  

c = 5.2133(4) 
5.28 

21.6 
Mg2Ni P6222 6.3(3) 

a = 5.218(1)  

c = 13.270(3) 
25.1 

ρ-Mg6.19(1)Pd0.27(1)Ni0.59(1) F-43m 85.3(8) a = 20.132(1) 10 
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The microstructure of the compound after complete desorption was analysed by 

SEM-EDX and the corresponding BSE images are displayed in Figure 3.45. The small 

amount of remaining Mg2Ni phase appears as small crystallites of about 1 μm large, 

surrounded by the ρ-phase (Figure 3.45b). The Mg phase is observed in form of larger 

precipitates.  

 

 

Figure 3.45. BSE images of the Mg6Pd0.25Ni0.75 compound after total desorption (MPNdes).  

 

Owing to the high number of phases that coexist in the material during H-

desorption, the present data does not allow to accurately identify the actual desorption 

mechanism. To gain further insight on this issue, in situ neutron diffraction experiments 

have been performed during desorption from D-loaded Mg6Pd and Mg6Pd1-xNix alloys.  

 

4.2.4 In situ neutron diffraction during thermal desorption 

To determine the complex desorption mechanism of the Ni-substituted compound, 

an in situ thermodesorption experiment has been performed on deuterated 

Mg6Pd0.75Ni0.25 alloy, taken from the same ingot than the one used in the rest of the 

study. A deuterated Mg6Pd sample has also been measured in the same conditions for 

reference purposes. The same Mg6Pd alloy as the one studied in section 1 of this chapter 

was used. Both samples were heated up from 300 to 723 K at a heating rate of 0.5 

K/min under dynamic vacuum and the D-desorption rate was determined from changes 

in the residual pressure. The resulting 2D neutron diffraction patterns are represented in 

Figure 3.46 together with the desorption curves for both studied samples. We can first 

appreciate the shift to lower temperature of the Mg6Pd0.75Ni0.25 desorption peak, which 

takes place at about 60 K lower than non-substituted Mg6Pd, showing the significantly 
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faster kinetics in presence of Ni. Next, we observe that both desorption peaks match 

with the transformation of the hydrides and Mg5Pd2 phases into the Mg6Pd-type phase. 

In the case of the Ni-containing sample, Mg2Ni and Mg also appear as intermediate 

phases.  

 

 

Figure 3.46. Thermal desorption curves and corresponding 2D projections of neutron 

diffraction patterns obtained during in situ thermal desorption at 0.5 K/min of deuterated Mg6Pd 

(top) and Mg6Pd0.25Ni0.75 (bottom) alloys. The intensity of the reflection is indicated by the 

colour scale from blue (lowest intensity) to yellow (strongest intensity). The Fe reflection is due 

to diffraction from the sample holder. 

 

The evolution of the relative phase amounts as obtained by Rietveld refinements is 

plotted in Figure 3.47. The desorption mechanism of the Mg6Pd compound seems to be 

rather straightforward with the simultaneous disappearing of MgD2 and Mg5Pd2 phases, 

resulting in the direct recombination of Mg and Mg5Pd2 into Mg6Pd. In fact, the Mg6Pd 

phase amount matches very well with the deuterium desorbed fraction. In spite of its 

very low amount, the MgPd phase seems to disappear at lower temperature. Contrary to 

absorption experiment (section 1.2.2 of this chapter), the Mg3Pd-type phase is not 

observed during desorption. As for the Ni-substituted compound, desorption starts at 

temperature as low as 450 K, with the decomposition of Mg2NiD4 into Mg2Ni. 
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Simultaneously, the Mg5Pd2 amount starts to decrease and probably forms a Mg-richer 

intermetallic phase which could not be identified due to the low resolution and the 

complexity of the diffractograms. The increase of the MgD2 phase amount at 

temperatures below 480 K is reasonably attributed to a mass balance effect due to the 

loss of deuterium in the total mass of the material. At temperature above 480 K, MgD2 

decomposes while Mg6Pd1-xNix reforms. Surprisingly, the Mg phase also increases 

between 500 and 550 K, showing that in this case the recombination of the original 

alloy is not simultaneous to hydrogen desorption. At 550 K, desorption is mostly 

completed but significant amounts of Mg and Mg2Ni remain present. The original ρ-

phase is then recovered at higher temperatures by Mg, Mg2Ni and Pd-rich Mg6Pd1-xNix 

recombination.  
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Figure 3.47. Temperature evolution of the relative phase amounts during in situ 

thermodesorption experiments (heating rate: 0.5 K/min) for Mg6Pd (top) and Mg6Pd0.25Ni0.75 

(bottom) alloys. Dashed lines show the desorbed fraction of deuterium.  
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These results demonstrate that desorption from MgD2 occurs at significantly lower 

temperature in the Ni-substituted compound than in Mg6Pd. Contrary to absorption 

mechanism where MgD2 was found to form before Mg2NiD4, desorption process 

exhibits an overlapping of H-desorption from both hydrides. The Mg2NiD4 initiates the 

desorption process from 450 K and MgD2 decomposes from 500 K. Both compounds 

are totally desorbed at 550 K. This mechanism suggests the activating properties of 

some phases that are only present at high H-content, i.e. Mg2NiD4 or Mg-Pd 

intermetallic phases. Taking in account that desorption from hydrided Mg6Pd occurs at 

much higher temperature, the activating effect of the Mg-Pd phases can be discarded. 

Therefore, a synergetic effect between Mg2NiH4 and MgH2 can be considered. For 

example, it is probable that H-desorption from the Mg2NiH4 phase prior to MgH2 

decomposition may activate the nucleation of the Mg phase. This cooperative 

desorption behaviour between these two hydrides had already been observed by Zaluska 

et al. on ball-milled MgH2 and Mg2NiH4 [42]. We also show here that, in dynamic 

conditions, the recombination of the pseudo-binary phase takes place after the total 

D-desorption. In consequence, this step is not rate-limiting for the desorption process, 

but the recombination of the alloy is strongly slowed down by the diffusion of metal 

atoms.  

 

4.2.5 Kinetic characterization 

TDS experiments were carried out for all H-loaded samples. Figure 3.48 depicts the 

desorption spectra measured at 10 K/min. Samples which hydrogen content was below 

4 wt.% H exhibited a single high-temperature (HT) peak around 670 K with onset 

temperature at 630 K. Above this hydrogen content, desorption spectra were more 

complex with the occurrence of two peaks. Hydrogen desorption started from 500 K 

and displayed a broad low-temperature (LT) peak centred at ~ 550 K. A second peak 

occurred at ~ 625 K for the fully hydrided sample and at ~ 650 K for MPNH4, i.e. at 

lower temperature than for samples containing less than 4 wt.% H. According to 

previous results during in situ thermodesorption, the LT peak can be assigned to 

desorption from the Mg2NiH4 phase which corresponds to weak bonded hydrogen. 

Similarly, the HT peak is mainly related to desorption from the MgH2 phase, but also 

from remaining Mg2NiH4.  
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Figure 3.48. TDS spectra measured at 10 K/min for several partially hydrided Mg6Pd0.25Ni0.75 

compounds. The inset represents the amount of hydrogen desorbed (wt.% H) as a function of 

the temperature.  

 

Activation energies have been determined for all partially hydrided samples by 

measurements at several heating rates. Figure 3.49 illustrates the thermal desorption 

spectra of the MPNH5.6 sample and the corresponding Kissinger plot. Activation 

energies have been calculated from the HT peak exclusively and the results are gathered 

in Table 3.27. For low H-contents ( 3.5 wt.% H), the activation energies can be 

directly related to the MgH2 decomposition, as the values are compatible with those 

reported for pure MgH2 (from 140 to 172 kJ/molH2 [21–26]).  

For high H-contents ( 4 wt.% H), much lower activation energies are obtained, 

which values are typical of ball-milled MgH2 in presence of additives [43; 44]. This 

result confirms the catalytic effect of the Mg2NiH4 phase on MgH2 desorption, as 

suggested in the previous section. Indeed, the Mg2NiH4 phase is only present at high H-

contents, explaining that the reduced energy of activation is only observed for MPNH4 

and MPNH5.6 samples. To this respect, it is also worth noting, the strong 

microstructure refining in this system (Figure 3.42f) that accompanies hydrogen 

absorption at high hydrogen contents.  
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Figure 3.49. TDS spectra of the Mg6Pd0.25Ni0.75 compound hydrided at 5.6 wt.% H measured at 

heating rates of 5, 10 and 20 K/min. The inset displays the Kissinger plot and corresponding 

activation energy. 

 

Table 3.27. Activation energies of hydrogen desorption from partially hydrided Mg6Pd0.25Ni0.75 

compounds calculated from TDS high-temperature peak using the Kissinger equation. The 

amount of desorbed hydrogen is deduced from TDS results.   

Sample 
H2 release 

(wt.%) 

Activation energy 

(kJ/molH2) 

MPNH1.9 1,9(1) 136(5) 

MPNH2.5 2,7(1) 152(2) 

MPNH3.5 3,5(1) 161(1) 

MPNH4 4,2(1) 54(1) 

MPNH5.6 5,5(1) 68(5) 
 

 

4.3 Discussion on the stability of the Mg6Pd1-xNix-H system 

The standard enthalpy and entropy changes of the hydrogenation reactions leading 

to the low pressure (reaction (3.12)) and high pressure (reactions (3.13) + (3.14) + 

(3.15)) plateaus can be calculated using Hess’s law and the formation enthalpy and 

entropy of the involved compounds (see Table 3.28). Thus, the reaction enthalpies 

corresponding to plateaus 1 and 2 are evaluated, respectively, as:  

                 
                       

                                         

   
 (3.16) 

       
                                                                                

   
 (3.17) 
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Table 3.28. Enthalpy and entropy of formation (Mg6Pd1-xNix, MgH2, Mg2Ni and MgPd phases) 

and reaction (Mg2NiH4). For Mg6Pd1-xNix, Mg2Ni and MgPd compounds, values are determined 

by thermodynamic modelling of finite temperature effects and extrapolation from the values at 

T = 0 K given in Ref. [11]. All values are given at 298 K.  

Compound 
Enthalpy 

(kJ/molcompound) [Ref] 

Entropy  

(J/K molcompound) [Ref] 

ρ-Mg6.19Pd0.29Ni0.59 -76 [12] -15 [12] 

ρ-Mg5.98 Pd0.76Ni0.30 -161 [12] -21 [12] 

MgH2 -74.5 [10] -135 [10] 

Mg2NiH4 -128 [45] -244 [45] 

Mg2Ni -61 [12]  -0.8 [12] 

MgPd -150 [12] -24 [12] 
 

 

The obtained enthalpy values for both plateaus are ΔrH(1) = -79.1 kJ/molH2 and 

ΔrH(2) = -54.7 kJ/molH2, in rather good agreement with the experimental values 

(ΔH1 = -72(2) kJ/molH2 and ΔH2 = -55(3) kJ/molH2). Entropy changes, which were 

analogously calculated, are -132.8 and -129.4 J/KmolH2 for plateau 1 and 2, 

respectively. The first value concurs also fairly well with the experimental values of 

ΔS1 = -129(2) as deduced from the PCI measurements, but the second one differs from 

the experimental value ΔS2 = -108(1) J/KmolH2, showing that additional contributions 

to entropy must be taken in account during the second plateau.  

In the case of the first plateau of absorption, the enthalpy of reaction strongly 

depends on the enthalpy of decomposition of the Ni-rich initial compound into Mg2Ni 

and Mg5.98Pd0.76Ni0.30. Thus, the formation enthalpy of the Pd-rich Mg6Pd1-xNix 

compound is much more negative than the one of the Ni-rich Mg6Pd1-xNix, resulting in 

an endothermic disproportionation reaction. Consequently, the calculated enthalpy 

variation associated to the first plateau of absorption is more endothermic than it is for 

MgH2 formation. However, the experimental value ΔH1 is not as negative as the 

calculated one, probably because of the uncertainty on the Mg6Pd1-xNix phase 

composition and on the corresponding calculated formation enthalpy values. 

In contrast, the enthalpy involved during the second plateau of hydrogenation is 

significantly smaller than |ΔfH(MgH2)|. Main contribution to this enthalpy decrease 

comes from the hydrogenation of the Mg2Ni phase and the decomposition of the 

remaining Mg6Pd into MgPd and MgH2 phases.  
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5 Discussion on the effects of alloying on Mg hydriding 

properties 

5.1 Structural occupation factors in Mg6Pd1-xTMx compounds 

The structural properties of the Mg6Pd1-xTMx ρ-phase are altered by the nature of 

the substituting TM. Figure 3.50 shows, for Ni and Cu substitutions and different 

nominal compositions, a comparison of the occupancy distribution as obtained by 

Rietveld refinement on sites 10, 11 and 13. These are the Pd sites where TM 

substitution was observed. We remind that, owing to its high CN (CN = 13), site 12 was 

considered to be exclusively occupied by the larger Pd and Mg atoms. The samples with 

Cu-substitution and the Mg6Pd0.25Ni0.75 sample are obtained in this thesis, while the data 

on the Mg6Pd0.5Ni0.5 sample comes from a previous work [33]. As a general trend, one 

can observe that SOF of the TM is higher at site 11. This result is in agreement with the 

low CN of site 11 (CN = 10) and the smaller radius of Cu and Ni atoms as compared to 

Pd one. Obviously, we observe that the higher is the TM content in the alloy, the higher 

is the TM occupancy at all sites. For example, the Ni occupancy for the x = 0.75 

composition is shifted to higher values for the three sites as compared to the x = 0.5 

composition. Strikingly, the preferential occupation of site 11 (CN =10) as compared to 

sites 10 and 13 (CN = 12) is higher for Cu than for Ni despite the larger atomic radius of 

the former (rCu = 1.28 Å and rNi = 1.25 Å). This contradicts geometric expectations 

pointing to the fact that electronic properties have to be considered. Indeed, one should 

notice for all studied compositions the very low occupancy factors for Cu at sites with 

CN = 12. This fact may account for the low solubility of Cu in the ρ-Mg6Pd phase.  

In summary, the atomic size of a TM element is not the only parameter which 

determines the maximum Pd by TM substitution ratio. Indeed, even though Cu and Ni 

atoms possess close atomic radii, Ni solubility reaches 9 at.% while Cu is limited to 

3.9 at.%. The ability of a TM to substitute Pd atoms will also depend on electronic 

effects. The closer the chemical properties of the substituting TM elements and Pd are, 

the higher the solubility limit of the TM in the ρ-Mg6Pd phase is. This statement is 

illustrated by the Pd-TM miscibility properties (TM = Ag, Ni and Cu) in their respective 

binary phase diagrams. Thus, full miscibility in the solid state exists in Pd-Ag and Pd-

Ni systems [13], i.e. for TM with high solubility in the ρ-phase. In contrast, ordered 
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intermetallic compounds exist in the Pd-Cu system [29], which concurs with the low Cu 

solubility in the ρ-phase.  

However, steric effects remain a deciding factor concerning preferential site 

occupancy, as observed for Cu and Ni atoms. Therefore, it can be anticipated that Ag 

atoms, which radius is significantly larger than Pd, Cu or Ni one (rAg = 1.44 Å), might 

preferentially occupy the Pd site with the highest CN, i.e. site 12. 
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Figure 3.50. Comparison of the SOF of TM = Cu and Ni at sites 10, 11 and 13 in the 

Mg6Pd1-xTMx phase for different nominal alloy compositions. The nominal composition of Cu- 

and Ni-substituted compounds is labelled at the left of the data point.   

 

5.2 Effects on thermodynamics 

We have seen along the previous sections that substituting Pd atoms by different 

TM in the Mg6Pd compound gives rise to different hydrogenation mechanisms and 

thermodynamic properties. Thus, while the Ag-substituted compound forms MgH2 and 

Mg(Pd,Ag) intermetallic without chemical constraints in the (Pd,Ag) pseudo-atom, the 

Cu-substituted alloy dissociates into MgH2 and two intermetallic phases, one rich in Cu 

(Mg2Cu1-yPdy) and the other one rich in Pd (Mg5Pd2-zCuz) with limited solubility of both 

TMs. On the other hand, the pseudo-binary compound containing Ni forms two hydride 

phases (MgH2 and Mg2NiH4) and MgPd intermetallic with no Ni solubility. The study 

of these different hydrogenation paths and their associated thermodynamics leads to 

relevant information concerning the destabilization mechanism of Mg-based alloys.  

In Figure 3.51, we can appreciate the thermodynamic features of the different 

Mg6Pd1-xTMx compounds as compared to the MgH2 reference. It is obvious that at a 
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given temperature hydrogen absorption during the first plateau occurs at similar 

pressure for all the investigated materials. The hydrided Ni-containing compound is 

even more stable than pure MgH2. The thermodynamic values reported in Table 3.29 

are very close to those of MgH2, showing that the equilibrium pressure of the first 

plateau is mainly determined by the formation of MgH2.  
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Figure 3.51. Van’t Hoff plots of the Mg6Pd1-xTMx compounds (TM = Pd, Ag, Cu and Ni) 

corresponding to each of the experimentally observed absorption plateau pressures. They are 

compared to the MgH2 (dashed line) considering ΔH = -74.5 kJ/molH2 and 

ΔS = -135 J/KmolH2 [10]. 

 

Table 3.29. Summary of the experimental and calculated enthalpy and entropy values of the 

Mg6Pd1-xTMx compounds (TM = Pd, Ag, Cu and Ni) for each plateau pressure.  

TM 

Plateau 1 Plateau 2 

ΔH1 (kJ/molH2) ΔS1 (J/KmolH2) ΔH2 (kJ/molH2) ΔS2 (J/KmolH2) 

Exp. Calc. Exp. Calc. Exp. Calc. Exp. Calc. 

Pd -72(1) -75.8 -133(2) -124.5 -68(1) -66.0 -131(2) -135 

Ag -72(2) - -132(2) - -35(4) - -84(6) - 

Cu -71(3) - -130(5) - -62(4) - -120(6) - 

Ni -72(2) -79.1 -129(2) -132.8 -55(1) -54.7 -108(1) -129.4 
 

 

On the contrary, the second plateau of absorption leads to a significant modification 

of the MgH2 equilibrium for all the compositions. The non parallelism of the Van’t Hoff 

plots reflects the different enthalpy of hydrogenation. The lowest slope, i.e. the smallest 

enthalpy, is found for the Ag-substituted compound, and the highest for pure Mg6Pd. 

The |ΔH| decrease in the hydrogenation reaction is due to the reduced formation 

enthalpy of the final intermetallic products (e.g. ΔfH(MgPd) = -150 kJ/molcompound in the 
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case of non-substituted Mg6Pd) as compared to the initial reactant (e.g. ΔfH(Mg6Pd) = 

-173.7 kJ/molcompound).  

We also observe that the straight lines do not converge to the same point on the 

vertical axis due to their different entropy values, as reported in Table 3.29. The lowest 

entropy of hydrogenation reaction is found for pure Mg6Pd while the highest occurs for 

the Ag-substituted compound, i.e. the same trend as for the enthalpy behaviour. Indeed, 

it is interesting to note that, for all studied Mg6Pd1-xTMx compounds, the smallest is the 

enthalpy change, the smallest is the entropy loss. This is illustrated on Figure 3.52, 

where a linear relation between enthalpy and entropy values occurs. While it is 

commonly accepted that in simple metal-hydrogen systems the entropy variation is due 

to the transition from gaseous dihydrogen to chemisorbed hydrogen atoms, it seems that 

other mechanisms may contribute to the entropy in the studied pseudo-binary 

compounds. Although the obtained thermodynamic values are somehow questionable 

for the Ag-substitution for which the PCI curves are not well defined (Figure 3.14), they 

are more reliable for the Ni-substitution for which isotherms are well defined (Figure 

3.38). In the latter case, the reduced entropy decrease during the second plateau of the 

Mg6Pd0.75Ni0.25 compound may be related to the formation of highly disordered 

Mg2NiH4 structure which exhibits complex polymorphic properties and microtwinning 

defects [46; 47].  

 

To summarize, thermodynamic analysis of Mg6Pd1-xTMx compounds indicates that 

the product phases that allow for destabilization of the hydrided state, because of their 

lower stability as compared to the reactants, are also characterised by a high disorder. 

According to the pressure-temperature dependence as defined by the Van’t Hoff 

equation (1.2), a reduction of |ΔS| leads to an increase of the equilibrium temperature at 

a given pressure and ΔH. In other words, if both |ΔH| and |ΔS| decrease, the effective 

change on equilibrium pressure and temperature of a metal-hydride system will be 

limited.  
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Figure 3.52. Linear correlation between enthalpy and entropy of hydrogenation experimentally 

obtained for Mg6Pd1-xTMx compounds (TM = Pd, Ag, Cu and Ni) compared to MgH2 [10]. Full 

symbols correspond to the low pressure plateau (plateau 1) and empty symbols are for the high 

pressure plateau (plateau 2). The different TM substitutions are identified by the symbol 

colours. 

 

In the quest for MgH2 destabilization, alloying Mg with TM to form intermediate 

compounds during H-absorption is an efficient strategy to tailor the thermodynamics of 

a hydrogenation reaction. However, an important difficulty comes from the fact that the 

intermediate compounds might increase the global entropy of the system which results 

in an equilibrium temperature increase at a given working pressure. The pseudo-binary 

compounds investigated in this Thesis exhibit interesting thermodynamic improvements 

only for the high pressure plateau of absorption, i.e. at high H-content range. For 

example, the hydrided Mg6Pd0.25Ni0.75 compound can desorb about 2.5 wt.% H under 

atmospheric pressure at a temperature of 510 K, which is 40 K lower than pure MgH2 

desorption. The remaining 3 wt.% H would need a higher temperature (560 K) to be 

desorbed.  

The good agreement between experimental and calculated thermodynamic values 

(Table 3.29 for TM = Pd and Ni) is encouraging for further prediction by ab initio 

calculations of the thermodynamic properties of the different investigated systems. By 

calculating the formation enthalpy and entropy of initial and final components, it is 

possible to anticipate the thermodynamic conditions for hydrogenation of potential 

alloys. An important result coming out from this Doctoral Thesis is the clear evidence 

of the negative role played by the disorder of the resulting products on the stability of 
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the hydrided state. Future studies on destabilization of metal-hydrogen systems should 

consider the choice of appropriate elements or phases which yield well-ordered phases 

upon hydrogenation.  

 

5.3 Effects on kinetics 

We can observe on Figure 3.53 that for all Mg6Pd1-xTMx compounds, the thermal 

desorption of hydrided samples occur at lower temperature than for commercial MgH2. 

However, the desorption peaks of samples with TM = Pd, Ag and Cu take place at 

rather close temperatures, only 10 to 15 K lower than pure MgH2. This observation 

concurs with the activation energy values reported in the table attached to Figure 3.53. 

They are of the same order than activation energies reported for MgH2 [21–26]. 

Therefore, it is tempting to attribute to these compounds a similar desorption 

mechanism than for MgH2, i.e. nucleation and growth of Mg controlled by the 

displacement of Mg/MgH2 interface. Besides, in situ neutron diffraction experiments 

demonstrated that, in the case of Mg6Pd1-xNix alloy, the recombination of the initial 

pseudo-binary phase only occurs once the desorption is completed. Thus, the diffusion 

of metal atoms cannot be the rate limiting step during desorption. A similar mechanism 

can be expected for the other TM-substitutions. On another hand, the presence of Pd 

and other TM is expected to catalyse the recombination of hydrogen molecules, 

although at high desorption temperatures this process is expected to be fast. 

 

500 550 600 650 700 750

TM = Pd

H
 d

e
s
o
rp

ti
o
n
 r

a
te

 (
a
.u

.)

MgH
2

TM = Cu

TM = Ag

 

T (K)

Mg
6
Pd

x
TM

1-x
 

HR = 10 K/min

TM = Ni

 

TM 
Ea 

(kJ/molH2) 

Ag 169(8) 

Cu 189(18) 

Ni 68(5) 

  

Figure 3.53. Comparison of the TDS spectra of the totally hydrided Mg6Pd1-xTMx compounds 

(TM = Pd, Ag, Cu and Ni) and commercial MgH2. The activation energies obtained by TDS 

measurements at different heating rates are reported in the table on the right-hand side.  
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The Ni-containing sample possesses however a particular and interesting kinetic 

behaviour. It exhibits a significantly lower desorption peak, about 90 K below the one 

of MgH2, and a much lower activation energy. The effect of alloying on the kinetics of 

desorption is minor in the case where only MgH2 is formed as hydride phase (i.e. for 

TM = Ag, Cu and Pd) but significative in presence of additional Mg2NiH4. This last one 

may actuate as a catalyst for Mg nucleation and Mg/MgH2 interface displacement, 

which is also reflected by the lower activation energy. It has been shown that the 

formation of Mg2NiH4 is accompanied by a strong microstructure refinement of the 

fully hydride sample (Figure 3.42f) and that its desorption onset precedes that of MgH2 

(Figure 3.47). Thus, hydrogen desorption from MgH2 phase may be facilitated through 

the Mg2NiH4 phase, favouring Mg nucleation at the numerous MgH2/Mg2NiH4 grain 

boundaries. Then, Mg/MgH2 interface displacement occurs in short time thanks to sub-

micrometric grain size of the MgH2 phase. 

The comparison of the kinetics during absorption of the four studied Mg6Pd1-xTMx 

compounds (Figure 3.54) shows important differences for the same hydrogenation 

conditions. The fastest to reach 90 % of transformed fraction is the Ni-substituted 

compound, with only 11 minutes, while the Ag-substituted compound spends more than 

100 minutes. 
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Figure 3.54. Time-evolution of the transformed fraction during H-absorption in the 

Mg6Pd1-xTMx compounds (TM = Pd, Ag, Cu and Ni) at 623 K under 2 MPa of hydrogen 

pressure. 
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Information on the rate limiting step of the absorption reaction can be obtained by 

fitting the kinetic curves to the model equations describing solid-gas reactions. The 

general kinetics equation gives the time evolution of the reacted fraction F as: 

F = 1 – exp(–Bt
m
)  (3.18) 

where B is a constant that depends on the nucleation frequency and linear rate of the 

grain growth and m is a constant that varies with the geometry of the system. According 

to the method proposed by Hancock and Sharp [48], the plot of ln(–ln(1–F)) vs. ln(t) for 

0.15 < F < 0.5 gives a straight line which slope m allows identifying the absorption 

mechanism by comparison with theoretical tabulated values [48]. This method has been 

applied to the isothermal absorption curves of Figure 3.54 and the corresponding plots 

are represented in Figure 3.55. The obtained m-values are included between 0.47 and 

0.56, which clearly indicates an absorption mechanism controlled by diffusion. This 

result is consistent with the fact that hydrogen absorption in such compounds implies 

the diffusion of heavy atoms (as compared to hydrogen) to dissociate into new 

intermetallic and hydride phases. Thus, the MgH2 phase cannot be formed if the TM 

atoms have not migrated from the ρ-phase to another phase. This was also confirmed by 

the microstructure of partially hydrided compounds where MgH2 appeared mainly on 

cracks and grain boundaries. Hydrogen atoms penetrate through these interfaces and 

react with available Mg after TM diffusion towards intermetallic phases. In other words, 

the growth of the MgH2 phase during absorption is controlled by the diffusion of TM. 

Therefore, absorption will be faster if the diffusion coefficient is high and if the 

diffusion path is short. The first parameter depends on the nature of the metal while the 

second one depends on the microstructure of the material. Regarding the diffusion of 

TM, the speed of the absorption rate (Figure 3.54) can be tentatively related to the 

weight of the metallic atoms present in the compound. Thus, the slowest kinetics is 

obtained for the heaviest Ag-substituted compound and the fastest for the Ni-containing 

sample. Besides, the microstructure of the hydrided compounds was finer for the Ni-

containing material than for Cu or Ag-substituted alloys (Figures 3.17, 3.31 and 3.42). 

 



Chapter 3. Pseudo-binary Mg6Pd1-xTMx compounds for H-storage 

155 

2 3 4 5 6
-1.6

-1.2

-0.8

-0.4

TM
 =

 A
g,

 m
 =

 0
.4

7

TM
 =

 N
i, 

m
 =

 0
.4

9
T
M

 =
 C

u,
 m

 =
 0

.5
6  

 

 
ln

(-
ln

(1
-F

))

ln(t)

T
M

 =
 P

d,
 m

 =
 0

.5
2

 

Figure 3.55. Plots of ln(-ln(1-F)) vs. ln(t) (with 0.2 < F < 0.5) for the hydrogen absorption 

curves obtained at 623 K under 2 MPa of hydrogen pressure for the Mg6Pd1-xTMx compounds. 

 

The effect of Mg alloying on the (de)hydriding kinetics strongly depends on the 

nature of the phases that are formed during hydrogenation and their ability to catalyse 

the sorption reaction. Different mechanisms have been identified for absorption and 

desorption reactions. The desorption of the samples with TM = Pd, Ag and Cu is driven 

by the nucleation and growth of the Mg phase and the rate is limited by the MgH2/Mg 

interface displacement. In the case of Ni substitution, the decomposition of the MgH2 

phase is catalysed by the Mg2NiH4 phase and the related microstructure refinement, and 

occurs at much lower temperature. During absorption, the diffusion of metal atoms is 

rate-limiting for the decomposition of the parent alloys into hydride and intermetallic 

phases.  

 

6 Conclusion 

This chapter has brought an exhaustive characterization of a new family of Mg-

based alloys of the type Mg6Pd1-xTMx with TM = Pd, Ag, Cu and Ni. From a structural 

and compositional points of view, we have shown that the Mg6Pd compound admits Pd 

atoms substitution by at least three different TM. The Ni solubility is the highest, with 9 

at.% (i.e. x = 0.75) while Ag solubility reaches 7.2 at.% (i.e. x = 0.5) and Cu solubility 

is limited to 3.9 at.% (i.e. x = 0.3). The solubility limit does not scale with the atomic 
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radii of the TM and follows the same trends as the miscibility of Pd-TM binary systems. 

This suggests that electronic rather than geometric factors should be considered to 

explain the reported solubility limits. The structural properties of such pseudo-binary 

phases have been determined using the crystallographic model proposed by Samson [3]. 

Ni and Cu TM atoms preferentially occupy the site of lowest coordination number, 

particularly in the case of Cu.  

Next, the hydrogenation properties of the alloys have been determined by different 

solid-gas reaction methods. Each pseudo-binary compound exhibits a different 

hydrogenation mechanism leading to different intermetallic and hydride phases. For 

example, hydrogenation of the Cu-substituted compound results in the formation of 

MgH2 together with two intermetallic phases, one rich in Cu (Mg2Cu1-yPdy) and one 

rich in Pd (Mg5Pd2-zCuz). In the case of substitution by Ni, two hydride phases are 

formed, MgH2 and Mg2NiH4, along with MgPd intermetallic. Finally, the complete 

miscibility of the Pd-Ag system leads to the formation of a unique intermetallic 

MgPd0.5Ag0.5 phase besides MgH2.  

The thermodynamics of the four compounds have been experimentally determined 

by means of PCI measurements using the Van’t Hoff equation. Hydrogen absorption 

isotherms exhibit two equilibrium plateau pressures between 0.01 and 3 MPa, at 

temperatures between 595 and 650 K. The enthalpy and entropy of the low pressure 

plateau are, for all compounds, very close to those of the MgH2. In contrast, significant 

destabilization is found for the high pressure plateau, which exhibits much lower 

enthalpy variation but also, and unfortunately, smaller entropy loss. It was highlighted 

that thermodynamic destabilization systematically entailed an increase of disorder in the 

final intermetallic (e.g. MgPd0.5Ag0.5) or hydride (e.g. Mg2NiH4) phases. In 

consequence, the effective improvement on the operating temperature and pressure is 

limited. The knowledge of this effect allows now to focus effort on reducing the 

disorder in the final products of the hydrided state.  

In the cases of TM = Pd and Ni, the enthalpy of the hydrogenation reactions has 

been calculated using the enthalpies of formation of the different compounds involved 

and applying Hess’s law. The agreement between the calculated and experimental 

values is very good and encourages performing further ab initio calculations to 

anticipate possible destabilization by Mg-TM alloying.  
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Unquestionably, the Ni-substituted alloy possesses the strong advantage of a much 

higher hydrogen storage capacity (5.6 wt%. H at T = 623 K and PH2 = 3 MPa) as 

compared to the other studied compounds (3.2 wt.% and 3.0 wt.% H in the same P-T 

conditions for Cu and Ag, respectively). However, it is probable that the absorption 

capacity of the Mg6Pd1-xCux compound can increase up to 4.3 wt.% H at higher 

hydrogen pressure, and we have seen that Mg6Pd1-xAgx absorbed 4.4 wt.% H under 4 

MPa at 623 K. Although no thermodynamic data were obtained on this area of the PCI 

curves, the hydride formed at higher pressures will obviously be less stable.  

Kinetic improvements are limited for Ag and Cu substitutions. In contrast, the Ni-

substituted compound exhibits much faster absorption kinetics and a low activation 

energy for desorption (Ea = 68(5) kJ/molH2). This very interesting property is attributed 

to a catalytic effect of the Mg2NiH4 phase, which is formed during the alloy 

disproportionation on hydriding, on the Mg/MgH2 nucleation. For all compounds, 

absorption reaction kinetics are controlled by diffusion of TM atoms, whereas the rate-

limiting parameter during H-desorption is the MgH2/Mg interface displacement.   
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In this chapter, the effect of nanosizing on the kinetics and thermodynamics of 

(de)hydrogenation of Mg-based materials is approached. One main issue related to the 

use of nanoparticles is the fast sintering of the nanostructures with temperature and/or 

cycling. Indeed, large particles are energetically more favourable due to their lower 

surface energy. To avoid this coalescence phenomenon, nanosized compounds can be 

stabilized into the pores of a light and inert matrix. This study focuses on the Mg6Pd 

intermetallic compound which bulk properties have already been investigated in the 

previous chapter. The aim is to achieve kinetics improvement as well as destabilization 

of the hydrided state. 

 

1 Carbon characteristics 

The micro-structural properties of infiltrated metal nanoparticles strongly depend on 

the morphology of the supporting matrix. The available volume into the pores will 

define the maximum metal loading of the hybrid compound while the support pore size 

distribution will restrict the particle size and its distribution. In this investigation, a 

commercial activated carbon (High Surface Area Graphite, HSAG500 from TIMCAL) 

has been chosen for its high porosity and purity (> 99.9 %). Micro-structural 

observations were performed by Transmission Electron Microscopy. Figure 4.1 shows 

the bright field image of pristine HSAG500 carbon.  

 

 

Figure 4.1. TEM image of HSAG500. 

 

As can be observed on the XRPD pattern of Figure 4.2, the crystal structure of the 

HSAG500 corresponds to the common hexagonal graphite. 
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Figure 4.2. XRPD patterns (Cu Kα radiation) of pristine HSAG500. 

 

The surface area and porosity of pristine carbon have been determined by nitrogen 

adsorption isotherm at 77 K (Figure 4.3). The curve exhibits a hysteresis loop of type 

H2 according to IUPAC classification, which is attributed to an irregular and wide pore 

size distribution. The specific surface area was obtained by the Brunauer-Emmett-Teller 

(BET) method in the 0.05-0.25 relative pressure range. The BET surface area was 

500(10) m
2
/g, in agreement with the manufacturer data (500 m²/g).  
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Figure 4.3. Nitrogen physisorption isotherm of pristine HSAG500.  

 

The pore size distribution displayed in Figure 4.4 was determined by the Barrett-

Joyner-Halenda (BJH) method. The modal value of the pore size distribution is around 

4 nm and the total porous volume is 0.69 cm
3
/g. The microporous volume (i.e. with pore 

diameters smaller than 2 nm) reached 0.19(1) cm
3
/g.  
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Figure 4.4. Pore size distribution of pristine HSAG500 determined by the BJH model. 

 

2 Structural properties of the synthesized materials 

The confinement of Mg6Pd intermetallic nanoparticles was achieved by the 

Pd-impregnation of the carbon followed by melt-infiltration process. After the precursor 

impregnation step with the solution of H2PdCl4, the Pd content in the Pd@C hybrid was 

determined by ICP-OES (inductively coupled plasma optical emission spectrometer) as 

8.6(3) wt.% Pd. The Pd@C was then mixed with MgH2 powder which mass was 

calculated to obtain the Mg6Pd stoichiometry. After melt-infiltration of Mg, the final 

metal loading (i.e. mMg+Pd/mMg+Pd+C) in the Mg6Pd@C hybrid was 18.3(5) wt.%, as 

calculated from the weighted mass of MgH2 and the mass of impregnated Pd deduced 

from ICP-OES data. The obtained hybrid material has been then hydrogenated 

overnight in an autoclave at 573 K under a hydrogen pressure of 5 MPa.  

The bulk Mg6Pd used as a reference sample was a single phase alloy ball-milled 

during 5 min and sieved to reach a grain size below 63 μm.  

 

2.1 Textural properties 

The N2-physisorption isotherms (Figure 4.5 top) have been measured on the hybrid 

compounds after each step of the synthesis. In addition, one sample was leached from 

all metal particles using an acidic solution. The main results extracted from BET and 

BJH calculations are presented in Table 4.1 and the pore size distribution is displayed at 

the bottom of Figure 4.5. Comparison of the isotherms shows a loss in the total pore 

volume after Pd impregnation, passing from 0.69 to 0.61 cm
3
/g. This volume reduction 
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is more important than it would be expected from the volume occupied by the amount 

of Pd. We can interpret this observation by the obstruction of the micropores by the Pd 

nanoparticles. The pore size distribution shows that the volume reduction mainly 

concerns the pores smaller than 10 nm, but we also observe a shift to lower value of the 

modal pore size. This last point suggests that the pores are occupied by Pd nanoparticles 

but that they are not totally filled, which results in smaller pores and only a slightly 

surface area decrease (460 m
2
/g). After Mg infiltration, the total pore volume decreases 

to 0.51 cm
3
/g and the surface area is strongly reduced to 320 m

2
/g. The pore size 

distribution is similar to the one of Pd@C but with a reduced volume. This indicates 

that Mg infiltrated the same pores as those containing the Pd nanoparticles, making 

possible the reaction of both elements. In the hydrided sample, the BET surface area 

slightly decreases to 263 m
2
/g and the total pore volume is reduced to 0.41 cm

3
/g. 

Indeed, H-absorption is expected to expand the volume of the active material and pore 

obstruction also contributes to the pore volume decrease. Surprisingly, the modal pore 

size recovers the same value as in the pristine carbon, indicating that the active material 

might have got out of the 4 nm pores and occupies instead larger pores as shown by the 

volume decrease for diameters from 5 to 10 nm. In addition, the pores smaller than 

3 nm are blocked by the hydrided particles. This process can occur during the reaction 

of the alloy with hydrogen to form MgH2. Finally, the leached sample exhibits a similar 

BET surface area and total pore volume than in the pristine carbon, showing that the 

porous structure of the carbon was preserved during the different treatments of the 

synthesis.  
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Figure 4.5. Nitrogen physisorption isotherms (top) and pore size distribution (bottom) of 

pristine HSAG500, after Pd impregnation (Pd@C), after infiltration of Mg (Mg6Pd@C), after 

hydrogenation (Mg6PdHx@C) and after removal of all metal species (leached). Full symbols 

correspond to adsorption and empty symbols to desorption.  

 

Table 4.1. BET surface area, total pore volume and mean pore size obtained from 

N2-physisorption measurements on hybrid samples at different stages. All values are given per 

gram of carbon.  

Sample 
S (BET) 

(m²/g) 

Total pore 

volume (cm3/g) 

Expected volume 

loss (cm3/g) 

Modal pore 

size (nm) 

HSAG500 500(10) 0.69(1) - 4 

Pd@C 460(10) 0.61(1) 0.01 3 

Mg6Pd@C 320(7) 0.51(1) 0.07 3 

Mg6PdHx@C 262(6) 0.41(1) - 4 

Leached 500(10) 0.70(1) - 3 
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2.2 Micro-structural characterization  

TEM imaging was performed on the hybrid samples (Figure 4.6) in order to 

determine the distribution of the nanoparticles in the carbon matrix and their size. The 

histograms displayed at the right side of Figure 4.6 are obtained by measuring the 

diameters of random particles.  

  

 

Figure 4.6. TEM images of a) Pd@C, b) Mg6Pd@C and c) Mg6PdHx@C samples. The 

histograms on the right display the size distribution of the nanoparticles. 

 

The Pd@C hybrid resulted in a homogeneous distribution of Pd nanoparticles which 

diameter was centred at 3 nm. After Mg infiltration, the mean particle size slightly 

increases to 4 nm and the homogeneous distribution is maintained all over the carbon. 
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After hydrogenation, the particle size clearly increases to ~ 10 nm. In consequence, 

these particles do not fit any more in the 4 nm pores and have to be located in larger 

pores. This observation confirms the previous assumption that hydrogenation causes the 

extraction of the active material from the 4 nm pores and a coarsening of the particles. 

 

2.3 Structural properties 

2.3.1 XRPD analyses 

Figure 4.7 shows the XRPD patterns of the hybrid compounds at different stages of 

the synthesis. The broad diffraction lines corresponding to Pd in the Pd@C hybrid are 

typical of low-range nanometric crystals, in agreement with the TEM observations. 

Similarly, the XRPD pattern of the infiltrated alloy Mg6Pd@C exhibits only two broad 

peaks corresponding to the strongest lines of the Mg6Pd intermetallic compound: 

reflections of the (422) and (822) planes at 2θ = 21.63° and 39.94°, respectively. The 

fact that no Mg neither Pd unary phases were detected indicates that both elements did 

react during the melt-infiltration process. However, X-ray diffraction data are 

insufficient to determine the crystal structure of the obtained Mg-Pd phase as some 

MgxPdy intermetallic phases such as Mg5Pd2 possess their main diffraction peaks 

around 2θ = 21 and 39°. The occurrence of broad diffraction peaks both for Pd@C and 

Mg6Pd@C concurs with the formation of nanocrystalline metal particles within the 

pores of the carbon host.  

Regarding the hydrided compound, the MgH2 phase is clearly identified, with much 

more narrow peaks, reflecting the larger crystallite size of this phase. The MgPd 

intermetallic is also detected in a large amount, as deduced from the intensity of the 

corresponding peaks. A small amount of MgO is also detected, especially in the 

hydrided compound, owing to the possible air contamination of the sample during 

handling.   

 



Chapter 4. Nanoconfinement of Mg6Pd particles in porous carbon 

171 

20 30 40 50 60 70 80

HSAG

Pd@C

Mg
6
Pd@C

Mg
6
PdH

x
@C

















 MgH
2

 Mg
6
Pd

 MgPd

 Pd
C

o
u

n
ts

 (
a

.u
.)

2

MgO

MgO



 

Figure 4.7. XRPD patterns (Cu Kα radiation) and phase identification of pristine HSAG, 

Pd@C, Mg6Pd@C and Mg6PdHx@C hybrids. 

 

2.3.2 XAS measurements 

In an attempt to obtain more detailed information on the nature of the Mg-Pd phase 

formed during melt-infiltration, XAS measurements at the Pd K-edge have been 

performed. This technique offers the possibility to analyse the local order of amorphous 

or nanocrystalline structure that cannot be determined by XRPD.  

The as-synthesized Mg6Pd@C hybrid was measured and compared to a bulk Mg6Pd 

reference as well as a Pd foil standard. Figure 4.8a displays the experimental XANES 

spectra near the Pd-edge obtained for the Pd foil, the bulk Mg6Pd reference and the 

hybrid Mg6Pd@C compound. Mg6Pd and Mg6Pd@C present similar edges, with a 

shoulder around 24359 eV which is not observed in the Pd foil edge. Above the edge, 

signal oscillations related to the local atomic order are observed. The signals for Mg6Pd 

and Mg6Pd@C only slightly differ and are in phase opposition to those of the Pd foil. 

This fact suggests for the hybrid material that the first coordination sphere around the 

Pd atom contains Mg. This preliminary result indicates that Mg and Pd species coexist 

in the same phase and hence that a Mg-Pd alloy is formed in the nanoconfined particles.  
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Figure 4.8. a) XANES spectra near Pd-edge of bulk and nanoconfined Mg6Pd compared to the 

Pd metal signal. b) Fourier transform of the EXAFS function χ(k) (k
3
-weighted calculated on 

2.8-11.5 Å
-1

 domain) of bulk and nanoconfined Mg6Pd. Continuous and dashed lines correspond 

to modulus and imaginary part, respectively. 

 

The Fourier transforms of bulk Mg6Pd and Mg6Pd@C EXAFS signals are shown in 

Figure 4.8b. The observed intensity of the main peak (i.e. the signal due to the first 

sphere) is stronger for the nanoparticles than for the bulk alloy. At longer distances in 

the R-space (i.e. at longer distances from the Pd atoms), the signal intensity is weaker 

for the Mg6Pd@C hybrid than for the bulk alloy, as a result of higher disorder at longer 

distances characteristic of nanosized materials.   

Next, the signals of the Mg6Pd reference and Mg6Pd@C hybrid have been fitted 

according to a model that focuses on the first coordination sphere around Pd atoms. The 

filtered experimental spectra are compared to theoretical ones, calculated from the 

crystallographic data of the Mg6Pd compound. As described in section 3.1.2 of Chapter 

1 and illustrated in Figure 4.9, the Mg6Pd structure comprises 3 sites (10, 11, 13) 

exclusively occupied by Pd atoms and one shared with Mg (12).  

 

 

Figure 4.9. Representation of the first coordination sphere around each Pd site in the Mg6Pd 

structure.  
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All together, these 4 independent sites provide 14 different Pd-Mg interatomic 

distances in the 2.5-3.5 Å range. Taking into account the multiplicity and SOF of each 

site, it results in an average coordination number of 10.8 Mg atoms (approximated to 11 

for EXAFS fits). In order to reduce the number of independent fitted parameters, the 

environment of a Pd atom has been simplified to 3 average Pd-Mg distances (Ri) for 

which the Mg atom distribution (Ni) is described in the first row of Table 4.2. 

 

Table 4.2. Environment within the first shell of a Pd atom as calculated from crystallographic 

data and as fitted for Mg6Pd bulk and nanoparticles. Ni is the number of Mg atoms situated at a 

distance Ri of a Pd centre. σ
2
 is the Debye-Waller factor and QFk and QFR are the quality factors 

in k- and R-spaces, respectively. 

 N1 R1 (Å) N2 R2 (Å) N3 R3 (Å) σ
2
 (Å

2
) QFk QFR 

Crystallographic 

average distances 
5.7 2.79(10) 3.4 2.96(3) 1.7 3.12(1) - - - 

Mg6Pd bulk 4(3) 2.76(8) 5(1) 2.95(11) 2 3.18(17) 0.012(9) 0.61 0.3 

Mg6Pd@C 8(7) 2.73(2) 3 3.00(5) - - 0.017(3) 0.8 0.68 
 

 

Initially, a preliminary fit was performed to determine whether Pd atoms were 

present within the first sphere of each Pd site. This was achieved by refining the number 

of Pd and Mg atoms and their distances in the first coordination sphere, considering 

only a unique average distance for Pd-Mg or Pd-Pd. As expected for the bulk 

compound, the fitted number of Pd atoms converged to zero, in agreement with the 

structure previously described. The same fit was performed for the nanoconfined 

particles and a similar result was found, confirming that the neighbouring atoms within 

the first sphere around a Pd atom only consist of Mg. Thus, the nanoconfined compound 

is definitely a Mg-rich alloy.  

Then, the local ordering of the Mg atoms around Pd ones has been fitted in both 

compounds by optimising the number of Pd-Mg distances used in the calculated signals 

to minimise the quality factors (QF) of the refinement [1]. In both cases, the total 

number of Mg atoms was set to 11. The graphical outputs of the bulk and nanoparticles 

fits are represented in Figure 4.10 and the main fit results are gathered in Table 4.2. For 

the bulk material, the best fit was obtained with a model that allows for 3 average 

distances, and the refined distances Ri were in good agreement with the average 
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crystallographic ones. This result is particularly satisfying in view of the complexity of 

the Mg6Pd structure. 

In the case of the nanoconfined particles, the experimental spectrum was also well 

fitted to the theoretical spectrum of the Mg6Pd structure but the model was optimized, 

i.e. the QF minimised, by reducing the number of average distances to 2. This result 

shows the less complex atomic arrangement in the nanoparticles than in the bulk phase. 

The stronger intensity of the main peak observed for the nanoparticles (Figure 4.8b) 

also results from its simpler atomic arrangement as compared to bulk Mg6Pd. Indeed, 

calculated signals from the Mg6Pd crystallographic structure show the occurrence of 

destructive interferences that reduce the signal intensity of the FT main peak. The two 

different distances obtained from Mg6Pd@C result in less destructive interferences, and 

thus a more intense FT main peak. In addition, the Debye-Waller factor (σ²) was higher 

for the nanoparticles than in the bulk material. This last point indicates a higher atomic 

disorder in the hybrid sample than in the bulk Mg6Pd compound, as commonly 

observed in nanoparticles. Finally, the refined average distances were smaller in the 

nanoparticles than the crystallographic ones.  
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Figure 4.10. First shell refinements of EXAFS spectra obtained for a) bulk Mg6Pd and b) 

Mg6Pd@C hybrid.  The black line corresponds to the experimental signal and the red line is the 

calculated one. Continuous and dashed lines correspond to modulus and imaginary part, 

respectively. 

 

In summary, it was found that the structure of the nanoparticles is very close but 

somehow less complex than that of the bulk phase. Indeed, the large cell (a = 20.15 Å) 
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of the Mg6Pd phase implies that a 4 nm nanoparticle contains two Mg6Pd unit-cells. 

Following this geometric considerations, it is very likely that the atomic order of the 

complex Mg6Pd crystal structure is not preserved in the hybrid material. Therefore, the 

nanoconfined phase corresponds to a Mg-rich Mg-Pd alloy which structure is simpler 

(i.e. lower number of different Pd-Mg distances) but more disordered (i.e. higher 

Debye-Waller factor) than the complex Mg6Pd intermetallic.    

 

3 Hydrogenation properties compared to bulk material 

3.1 Kinetic properties and cyclability  

3.1.1 Isothermal hydrogen absorption 

Kinetics of absorption has been tested in a Sievert’s apparatus at 573 K over 10 

cycles of hydrogenation under 4.5 MPa of hydrogen pressure. The kinetic performance 

of the nanoconfined Mg6Pd has been compared to that of the bulk alloy. The absorption 

curves of cycles 2, 5 and 10 are displayed in Figure 4.11. Desorption was achieved at 

Pdes = 0.03 MPa. The first absorption corresponded to the activation cycle for the bulk 

sample and is not represented. In the nanosized sample, this step was not necessary and 

the first absorption was similar to the second one. The absorption kinetics in the 

nanoconfined material is strikingly enhanced, with a transformation about five times 

faster than in the bulk sample during the second absorption. This fast kinetics is 

attributed to the nanometric particle size which provides higher active surface for H-

chemisorption and shorter H-diffusion path.  

In addition, we observe a rapid decay of the absorption kinetics in the bulk material 

after only few cycles (Figure 4.11). The tenth absorption requires about 3 hours to reach 

80 % of reacted fraction. This deterioration can be explained by the progressive 

disproportionation of the initial Mg6Pd alloy into Mg and another Mg-Pd intermetallic 

phase. Indeed, it is probable that the alloy recombination step is not fully completed 

after each desorption owing to the slow diffusion kinetics of metallic atoms. In contrast, 

the nanoconfined Mg6Pd exhibits steady absorption rates, even after 10 cycles. This 

result suggests that the nanometric size of the active material is maintained, by means of 

the physical barrier provided by the carbon pores to avoid coalescence. In consequence, 

the diffusion length of the metallic atoms remains very short and allows for fast alloy 

recombination and short H-diffusion length.  
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Figure 4.11. Time-evolution of the transformed fraction during H-absorption at 573 K in bulk 

and nanoconfined Mg6Pd. Absorption curves during cycles 2, 5 and 10 are represented as solid, 

dash and dot lines, respectively.  

 

Figure 4.12 shows the XRPD pattern of the desorbed Mg6Pd@C after 10 cycles of 

absorption and desorption at 573 K. The presence of the Mg6Pd phase seems quite clear, 

but we also detect the three characteristic peaks of the Mg phase at 2θ = 32.19, 34.40 

and 36.62°. In addition, a broad peak is observed around 40° and a shoulder appears on 

both sides of the main carbon peak. According to mass balance considerations, these 

peaks must belong to a Pd-rich phase. Thus, the Mg2Pd phase possesses its main 

diffraction peaks at 2θ = 25.58 and 38.78° [2] and the η-Mg3Pd phase at 2θ = 24.66 and 

39.02° [3]. However, the width and overlapping of the diffraction peaks do not allow 

concluding with certainty on the origin of these peaks. Anyway, this result shows the 

limited reversibility of the hybrid system as Mg segregation occurs. However, the 

persistence of broad diffraction peaks leads to believe that the nanoconfinement was 

preserved which allows for fast hydriding kinetics. We also see that the formation of 

MgO could not be avoided, in spite of the protective atmosphere used at each step of 

handling.  
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Figure 4.12. XRPD pattern (Cu Kα radiation) and phase identification of Mg6Pd@C after 10 

cycles of ab/desorption at 573 K. The pattern for the pristine HSAG is shown below.   

 

Finally, it was found that the H-absorption capacity is significantly higher in the 

bulk sample than in the nanoparticles. The average amount of H-absorbed over the 10 

cycles is 3.7(2) wt.% H for the bulk Mg6Pd and 2.6(5) wt.% H in the nanoparticles of 

the hybrid compound (taking in account only the mass of active material). Similar 

observation has already been reported by Jurczyk et al. on nanocrystalline ball milled 

Mg2Cu alloy and was attributed to the large amount of defects, strains and chemical 

disorder in the lattice of the nanoparticles [4]. It is probable that the highly disordered 

nanoconfined Mg6Pd suffers from the same drawback which results in a reduced 

absorption capacity.  

 

3.1.2 Thermal desorption 

The H-desorption properties have also been analysed by means of TDS 

measurements (Figure 4.13) under secondary vacuum (Pres = 2.10
-4

 Pa). For the bulk 

sample, the desorption begins around 650 K with a single and rather sharp peak. The 

Mg6Pd@C hybrid starts to desorb at much lower temperature with a first broad peak 

between 370 and 515 K, followed by a more intense peak around 600 K. For both 

compounds, the main peak at high temperature is attributed to H-desorption from the 

MgH2 phase. However, desorption from the nanoparticles occurs at about 100 K lower 

than from the bulk powder. This is attributed to the shortening of H-diffusion path for 
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the hybrid material. In addition, the broadening of the desorption peak as compared to 

bulk Mg6Pd probably results of the size distribution of the hydride nanoparticles. The 

contribution of carbon on the accelerated desorption process also has to be considered, 

as it has already been reported to facilitate H-release [5; 6]. However, this effect was 

recognized to be of minor importance in comparison with the nanosizing effect. 

Regarding the low temperature peak observed during H-desorption from the hybrid 

material, it can be reasonably attributed to surface MgH2/Mg(OH)2 interface reactions 

[7]. Indeed, Mg(OH)2 is unavoidably formed on the particles surface by reaction of 

MgH2 with moisture impurities during handling. It was demonstrated that interaction 

between these two phases leads to H-desorption at low temperature. This effect is 

usually inappreciable but owing to the high specific surface area of the nanoparticles, 

the amount of hydrogen desorbed from this process results in a significant desorption 

peak at low temperature.  
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Figure 4.13. Thermal desorption hydrogen spectra at 5 K/min of bulk (black line) and 

nanoconfined (red line) Mg6Pd. 

 

3.2 Thermodynamic properties 

The stability of the nanoconfined alloy has been compared to the already studied 

Mg6Pd in its bulk form. Figure 4.14 shows the pressure-composition isotherm measured 

between 0.01 and 1 MPa of hydrogen pressure at 548 K. While the bulk alloy displays a 

flat plateau in this pressure range, the nanostructured compound exhibits a sloping 

plateau with a significantly higher equilibrium pressure. This result highlights the 
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equilibrium modification related to the nanosizing effect. In addition, the absence of 

well resolved plateau pressure also reflects the disordered structure of the nanoparticles.   
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Figure 4.14. PCI curves at 548 K of the bulk (black line) and nanoconfined (red line) Mg6Pd. 

 

Another hint of hydride destabilization due to nanosizing effect has been evidenced 

through HP-DSC analysis. Figure 4.15 shows desorption/absorption cycles obtained in 

the same conditions for both nanoconfined and bulk Mg6Pd. The desorption peak results 

in an endothermic signal while absorption is exothermic.  
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Figure 4.15. HP-DSC measurements obtained during heating and cooling ramps under 0.5 

MPa of hydrogen pressure on bulk (black line) and nanoconfined (red line) Mg6Pd.  
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On one hand, the narrow peak observed for the hybrid compound as compared to 

the bulk sample reflects the faster sorption kinetics of nanometric particles due to the 

shortening of diffusion paths. On the other hand, we observe that the onsets of both 

desorption and absorption peaks are shifted to lower temperature values in the case of 

the Mg6Pd@C compound. This result indicates the destabilization of the nanoconfined 

alloy as compared to the bulk one. Indeed, as demonstrated by the Van’t Hoff 

relationship (equation 1.2), for two metal-hydrogen systems working under isobaric 

conditions, the plateau temperature of the less stable one will be lower. Thus, this result 

confirms that the equilibrium of the nanoconfined alloy has been changed to a less 

stable hydrided state due to nanosizing effect.  

 

4 Discussion 

4.1 Synthesis and hydrogenation mechanism 

The melt-infiltration method is a novel approach to synthesize stabilized Mg-based 

nanoparticles confined into a porous matrix. We demonstrated that it is relatively easy 

to infiltrate Mg at the molten state and make it react with the previously confined TM 

precursor into the pores of the carbon. This technique has already been successfully 

applied to Mg-Ni [8] and Mg-Cu [6] nanoparticles. The advantage to use Pd lies in its 

well-known catalytic properties and in its ability to form Mg-rich intermetallic phases. 

The targeted stoichiometry was the Mg richer intermetallic compound, i.e. the Mg6Pd 

phase. However, maintaining the complex crystal structure of the Mg6Pd phase at the 

nanometric scale seems improbable owing to its large cell parameter. Indeed, it is 

difficult to believe that a 2 nm side cubic cell can preserve its crystal structure when 

constrained to fit into a pore as small as 4 nm. Though, we were able to demonstrate the 

formation of Mg-rich Mg-Pd alloyed nanoparticles with sizes ranging from 2 to 8 nm. 

Phase identification by X-ray diffraction was rather complicated because of the low 

crystallinity of the alloy and the complexity of the Mg6Pd structure. However, EXAFS 

analyses allowed stating that the nanocrystalline structure was close to that of the bulk 

Mg6Pd (S.G. F-43m), though with a simpler atomic ordering.  

We saw in Chapter 3 that hydrogenation of the Mg6Pd compound led to the 

formation of MgH2 together with a MgxPdy intermetallic phase which composition 

depends on the pressure and temperature conditions. Therefore, this reaction requires 
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the diffusion of Mg and Pd atoms to form these two phases. In the case of the 

nanoconfined alloy, a similar mechanism occurs as we clearly observed the formation of 

MgH2 and MgPd phases by XRPD (Figure 4.7). However, TEM images (Figure 4.6) 

and pore size distribution analysis (Figure 4.5) show that hydrogenation causes an 

increase in the particle size accompanied by a migration of the active material to larger 

pores. Considering the Mg segregation observed in the desorbed sample (Figure 4.12), 

we can assume that only a part of the MgH2 phase migrates while the Pd-containing 

phase remains into the smallest pores. This process is responsible for the limited 

reversibility of the hybrid compound, making difficult to fully recover the original 

phase composition. However, it seems that the size of the particles remains in the 

nanometric scale, allowing for fast hydrogenation kinetics after at least 10 cycles.  

 

4.2 Kinetic improvement 

The faster kinetics of the nanoparticles as compared to the bulk material is striking. 

Not only the absorption takes place in less than 10 min at 573 K, but also the desorption 

occurs at about 100 K lower than in the bulk material. In addition, this fast kinetics was 

maintained during at least 10 cycles. The isothermal absorption curves of both 

compounds have been fitted according to the method proposed by Hancock and Sharp 

[9] and described in the section 5.3 of Chapter 3. The obtained fits for 0.2 < F < 0.5 are 

displayed in Figure 4.16 with the corresponding m-values of the slope. The clearly 

different values of m indicate that different absorption mechanisms occur. In the case of 

the bulk compound (m = 0.92), the reaction seems to be controlled by a phase 

transformation mechanism
1
, either the interface displacement (Mg6Pd/MgxPdy or 

Mg6Pd/MgH2) or the nucleation of the MgH2 phase. In contrast, hydrogen absorption in 

the nanoparticles is limited by a diffusion process (m = 0.54), either of the metal or the 

hydrogen atoms. These two mechanisms can be explained by the difference in particle 

size. The amount of sites available for the nucleation of the MgH2 phase is much higher 

in the nanosized sample than in the bulk material, owing to the high specific surface 

                                                 

 

1
 The different value of m as compared to the one obtained in Chapter 3, Figure 3.55 for the same 

compound (m = 0.52 at 623 K and PH2 = 2 MPa) is explained by the different temperatures and pressures 

of measurement. 
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area of the former one. Therefore, the rapid nucleation in the nanoparticles shifts the 

rate limiting step to hydrogen or metal diffusion. Although the present data does not 

allow to further distinction in the rate limiting step of each mechanism, we can conclude 

to a strong effect of nanosizing on the reaction kinetics.  
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Figure 4.16. Plots of ln(-ln(1-F)) vs. ln(t) obtained for the absorption curves at 573 K under 4.5 

MPa of hydrogen pressure for the nanoconfined and bulk Mg6Pd.  

 

The origin of the improved kinetics of the hybrid compound concerns different 

aspects. First, a catalytic effect of the carbon support on the (de)hydriding reaction is 

probable, but further experiments would have to be performed to confirm this 

hypothesis. Then, the nanometric scale of the active material is undoubtedly of great 

importance to reduce the diffusion path of hydrogen and provide a high surface area for 

H2 dissociation/recombination. The role of the porous matrix is also essential to limit 

the sintering of the nanoparticles upon cycling, even if a small growth could not be 

avoided during hydrogenation. Finally, the modified structure of the alloy and the high 

disorder associated to the nanoscale are also expected to have a role on the reaction 

mechanism.  

 

4.3 Effect on thermodynamics  

The experimental results obtained in this chapter do not allow quantifying the 

effective destabilization as compared to bulk Mg6Pd, but clear evidences of the 

thermodynamic modification are given. Thus, the PCI curve measured at 548 K shows a 
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significantly higher equilibrium pressure in the nanoparticles than in the bulk sample. 

Besides, the peak shift observed both on absorption and desorption during HP-DSC 

experiments also confirmed the reduced stability of the nanoconfined material. This 

destabilization can be attributed to two main phenomena: 

i) The non-negligible free surface energy related to the nanosized particles 

results in a less stable hydride. This effect has already been anticipated by 

ab initio calculations but up to now very few experimental results support 

this assumption. An enthalpy of absorption of -63.8 kJ/molH2 was reported 

for MgH2 nanoparticles smaller than 3 nm [10]. However, this enthalpy 

reduction was accompanied by an entropy decrease and the effective change 

on the desorption temperature was only of 11 K at 0.1 MPa of hydrogen 

pressure. In our case, the effective destabilization seems to be significant 

ii) The modified structure of the Mg6Pd phase at the nano-scale probably alters 

the stability of the compound. Thus, we showed that the crystal structure of 

the Mg6Pd compound was too complex (396 atoms) and too large (a ~ 2 nm) 

to be maintained in nanoparticles of the same composition. Therefore, the 

stability of such modified compound may differ from the bulk form.  

It is now necessary to determine enthalpy en entropy values by performing further 

PCI measurements at different temperatures. 

 

5 Conclusion 

Nanoconfined Mg6Pd particles have been successfully synthesized by melt-

infiltration process in porous carbon. The particle size was about 4 nm in the as-

synthesized compound and increased to 10 nm after hydrogenation. The outstanding 

kinetic and cycling properties of the hybrid Mg6Pd@C compound are explained by the 

reduced H-diffusion path, the high specific surface area available for hydrogen 

dissociation and nucleation of the MgH2 phase. In addition, the confinement in a porous 

scaffold allowed limiting the sintering of the particles, even though small Mg 

segregation could not be avoided. Thermodynamic destabilization was also achieved, 

confirming the various ab initio predictions on equilibrium and particle size matters.  
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The objective of the following investigation is to significantly improve Mg sorption 

kinetics while preserving a high hydrogen storage capacity for a reduced cost of the 

material. A twofold approach is then developed: the use of a catalyst to accelerate 

hydrogen chemisorption, and nanosizing of the material to reduce the length of 

diffusion of H atoms. As described in Chapter 1, section 3.2.3, the choice of Ti basically 

relies on its light weight, the fcc structure of its hydride known to facilitate H diffusion 

and its low cost. The catalytic properties of the TiH2 phase on reversible hydrogenation 

of MgH2/Mg have already been reported [1–3] but the mechanisms responsible of the 

outstanding kinetic improvement remain unclear. In this chapter, the technique of RBM 

is employed to form Mg(H/D)2-Ti(H/D)2 nanocomposites by in situ hydrogenation of 

Mg and Ti powders during milling. A deep investigation of the structural properties of 

such nanocomposites is carried out to determine the catalytic role of the TiH2 phase.  

 

1 Hydrogenation by RBM 

1.1 Formation of MgH2-TiH2 nanocomposites 

The synthesis of MgH2-TiH2 nanocomposites was achieved by in situ 

hydrogenation of Mg-Ti powder mixtures during high energy ball milling under reactive 

atmosphere (hydrogen or deuterium). The monitoring of the pressure and temperature 

evolution into the vial allows recording the gas absorption as a function of milling time. 

A typical time evolution of hydrogen pressure and vial temperature recorded during two 

cycles of Mg-Ti RBM is displayed in Figure 5.1a. The pressure drop observed during 

the first milling cycle corresponds to the formation of the hydride phases. The 

concomitant temperature increase is due to ball collisions and frictions and does not 

exceed 315 K thanks to heat dissipation through the vial wall. During rest time, both 

temperature and pressure decrease to equilibrium values at ambient conditions. The 

second cycle does not present any additional hydrogen absorption so it can be used to 

calibrate the gas temperature that differs from the measured vial temperature. This data 

is an important parameter to calculate accurately the hydrogen uptake corresponding to 

the pressure change [4]. The extracted temperature and pressure data are then used to 

determine the hydrogen uptake as a function of milling time, as presented in Figure 

5.1b. 
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Figure 5.1. a) Time evolution of hydrogen pressure (black line) and vial temperature (red line) 

during RBM of 70 at.% Mg - 30 at.% Ti mixture. b) Corresponding hydrogen absorption curves 

during the first milling cycle. The hydrogen to metal atomic ratio is shown on the left axis 

(black line) and the H-mass uptake is given on the right axis (red line). 

 

The final hydrogen to metal atomic ratio is generally around 1.9 H/f.u. instead of 

2.0 H/f.u., owing to the occurrence of a minor amount of MgO. The mass hydrogen 

uptake depends on the Mg to Ti ratio, as Ti molar mass is almost twice the one of Mg. 

Thus, the highest storage mass-capacities are obtained for the lowest Ti-contents.  

 

1.2 Ti content vs. absorption kinetics 

Different (1-x)Mg-xTi compositions have been prepared by RBM under deuterium 

gas to allow neutron diffraction analyses. The corresponding absorption curves are 

displayed in Figure 5.2a. The faster absorption kinetics observed for the Ti-containing 

samples as compared to the pure Mg sample is striking. While absorption is completed 

in less than 90 min in presence of Ti, almost 240 min are needed to deuterate Mg alone. 

Besides, the derivative plots of the absorption curves (Figure 5.2b) clearly show the 

occurrence of two absorption peaks for the Mg-Ti mixtures, corresponding to two 

absorption stages. It was demonstrated in a previous work [1] that TiD2 was formed in a 

first absorption stage during the first minutes of ball milling. The second peak is then 

attributed to the formation of MgD2. This last one is significantly accelerated thanks to 

the abrasive properties of TiD2 which improve the efficiency of the milling process. In 

addition, some catalytic properties of this phase are also expected to enhance the 

kinetics of hydrogenation. It was previously reported that this phase acts as a gateway 

for H(D) uptake in the Mg phase [1; 3]. Finally, it is worth noting that the influence of 
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the Mg to Ti ratio on the absorption kinetics is rather limited. The maximum absorption 

rate during MgD2 formation is shifted from 28 min to 39 min for x = 0.5 and x = 0.1, 

respectively. In contrast, the maximum absorption rate of pure Mg occurs at 153 min. 
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Figure 5.2. a) In situ absorption curves during RBM under deuterium gas of (1-x)Mg-xTi 

powder mixtures (x = 0, 0.1, 0.3 and 0.5). b) Corresponding time-derivative plots. 

 

These results show that Ti significantly improves the kinetics of absorption of Mg 

during RBM synthesis. This faster kinetics is attributed to the highly abrasive properties 

and the catalytic effect of TiD2 which is formed during the first stage of milling.  

 

1.3 Isotopic effect: hydrogen vs. deuterium 

Besides the Ti content, the isotope of the reactive gas was found to have a 

remarkable effect on the kinetics of absorption during RBM. Figure 5.3 compares the 

hydrogen and deuterium absorption rate during RBM of pure Mg and 0.9Mg-0.1Ti 

mixture. For the x = 0 sample (Figure 5.3a), the formation of MgD2 is significantly 

slower than that of MgH2. In contrast, the Mg-Ti mixture exhibits similar absorption 

behaviour during RBM under hydrogen or under deuterium (Figure 5.3b). The 

interpretation of such different behaviour with or without Ti relies on the mechanism 

controlling absorption during the milling process. Indeed, the nature of the isotope is 

expected to particularly affect the diffusion coefficient of the interstitial atoms, which 

according to classical rate theory [5], is slower for D than for H atoms. Therefore, it can 

be inferred that without Ti, absorption during RBM is controlled by the diffusion of 

H(D) through MgH(D)2 phase. On the other hand, absorption in Mg-Ti mixtures must 



Chapter 5. Mg(H/D)2-Ti(H/D)2 nanocomposites 

191 

be governed by a mechanism independent of the gas isotope. In fact, the abrasive 

properties of Ti improve the efficiency of the milling process by rapidly reducing the 

particle size and creating numerous oxide-free surfaces available for nucleation of the 

hydride. In consequence, the H(D) diffusion path is strongly reduced and a large amount 

of hydride nuclei are formed on the surface of the small Mg particles. Therefore, in 

presence of Ti, the rate limiting step of absorption during RBM depends on the 

efficiency of the milling process in forming nanosized particles, which is immediately 

followed by the formation of new MgH(D)2 nuclei. This controlling step does not 

depend on the isotope nature. In addition, a catalytic effect of the TiH(D)2 phase, which 

is formed during the first minutes of milling, cannot be discarded.  
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Figure 5.3. Time-derivative plots of the absorption curves obtained during RBM under 

hydrogen (black line) and deuterium gas (red line) for a) pure Mg and b) 0.9Mg-0.1Ti mixture.  

 

In summary, the isotopic effect observed during in situ absorption highlights the 

different mechanisms that occur during milling of pure Mg and Mg-Ti mixtures. While 

the absorption in pure Mg is controlled by H(D)-diffusion, the presence of Ti enhances 

the milling efficiency which allows for fast and abundant nucleation of the hydride and 

shorter H(D)-diffusion paths.  

 

2 Structural properties of as-milled and desorbed materials 

2.1 X-ray and neutron diffraction analysis 

Neutron diffraction is an ideal technique for providing deep structural information 

on deuterated materials. The structural properties of nanocomposites prepared by RBM 
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have been determined by means of high resolution NPD and XRPD joint analysis. The 

crystal structure of deuterated (1-x)MgD2-xTiD2 nanocomposites (0  x  0.5) have 

been analyzed in the as-milled and desorbed states. Information on Ti and Mg solubility 

are obtained as well as the influence of Ti content on nanocomposites microstructure.  

 

2.1.1 Structural properties of as-milled deuterated nanocomposites 

Deuterated samples previously synthesized by RBM at different Ti concentrations 

have been measured at room temperature by XRPD and NPD. Corresponding 

diffraction patterns and peak identification are plotted in Figure 5.4. The Ti-free sample 

(x = 0) is composed of the rutile type β-MgD2, (S.G. P42/mnm) and the high pressure γ-

MgD2 (S.G. Pbcn) phases. The Ti-containing nanocomposites (x = 0.1, 0.3 and 0.5) 

consist of a mixture of β-, γ-MgD2 phases and the distorted fluorite type ε-TiD2 (S.G. 

I4/mmm) phase.  
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Figure 5.4. a) X-ray and b) neutron diffraction patterns of deuterated (1-x)MgD2-xTiD2 

nanocomposites for x = 0, 0.1, 0.3 and 0.5. 

 

Crystal data for the detected phases in each sample were determined by Rietveld 

joint XRPD-NPD analysis. For instance, the graphical output for Rietveld analysis of 

x = 0.3 is shown in Figure 5.5 and the corresponding crystal data results are gathered in 

Table 5.1. For each phase, lattice parameters, atomic positions and occupancy factors 

(chemical composition), and crystallite size underwent joint refinement for both 

diffraction patterns. The possible solubility of Mg in TiD2 as well as that of Ti in MgD2 

has been checked by refining the occupancy factor of metal atoms within the crystal 
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structure of deuterated phases, i.e. by allowing for partial replacement of Ti by Mg 

atoms, and vice versa, in the crystal structures of TiD2 and β-MgD2 phases, respectively. 

The -MgD2 relative phase amount was too low to reliably refine its cell parameters and 

possible Ti substitution. The values displayed in Table 5.1 for the -phase correspond to 

those refined for the x = 0 sample. Anisotropic thermal displacement factors (ij
) were 

considered for the -phase, as already pointed out in Ref. [6]. Relative phase amounts 

were determined from NPD measurements since the neutron beam probes the bulk of 

the sample while X-ray analysis is reduced to some µm of the sample thickness. Main 

refinement results obtained for different Ti contents are gathered in Table 5.2.  
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Figure 5.5. NPD and XRPD Rietveld joint analysis of 0.7MgD2-0.3TiD2 sample. Continuous 

line shows the calculated diffraction patterns, vertical bars correspond to the Bragg positions 

for ε-TiD2, β-MgD2 and γ-MgD2 from top to bottom. The difference between experimental and 

calculated patterns is given below. 
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Table 5.1. Results of Rietveld joint analysis for 0.7MgD2-0.3TiD2 sample. 

Phase/S.G. Atom site x y z B (Å2) / βij (×104) SOF 

ε-TiD2/ 

I4/mmm 

Ti 2a 0 0 0 0.6(1) 0.98(1) 

Mg 2a     0.02(1) 

D 4c 0 1/2 1/4 1.3(1) 1* 

a = 3.1630(2) Å, c = 4.4010(5) Å; phase amount: 42(1) wt.%. 

β-MgD2/ 

P42/mnm 

Mg 2a 0 0 0 β11=β22=84(11) β33=94(33) β12=134(18) 0.93(1) 

Ti 2a       0.07(1) 

D 4f 0.3015(4) x 0 β11=β22=367(11) β33=755(33) β12=-135(12) 1* 

a = 4.5138(4) Å, b = 3.0060(4) Å; phase amount: 48(1) wt.%. 

γ-MgD2/ 

Pbcn 

Mg 4c 0 0.364* 1/4 0.5* 1* 

D 8d 0.249* 0.128* 0.0827* 1.4* 1* 

a = 4.515 Å*, b = 5.422 Å*, c = 4.936 Å*; phase amount: 11(1) wt.%. 

 Rwp Rp Rbε Rbβ Rbγ 

NPD 3.67 2.74 2.1 5.6 5.4 

XRPD 6.86 5.27 1.7 4.3 8.9 

Number of fitted parameters: 27 

* Not refined 

 

Table 5.2. Results from XRPD and NPD Rietveld joint analysis of deuterated samples (x = 0, 

0.1, 0.3 and 0.5).  

Sample Phase S.G. 

Phase 

amount 

(wt.%) 

Cell parameters (Å) Cell volume 

(Å3) 

Crystallite 

size (nm) 

Atomic 

substitution 

(at.%) a b c 

x = 0 
β-MgD2  P42/mnm 78(3) 4.510(1) - 3.014(1) 61.31(1) 7(1) 0* 

γ-MgD2  Pbcn 22(2) 4.515(2) 5.422(2) 4.936(2) 120.83(6) 9(1) 0* 

x = 0.1 

ε-TiD2  I4/mmm 14(1) 3.160(1) - 4.397(2) 43.89(2) 15(3) 0* 

β-MgD2  P42/mnm 69(2) 4.514(1) - 3.006(1) 61.25(1) 9(1) 7(1) 

γ-MgD2  Pbcn 17(1) 4.515* 5.422* 4.936* 120.83* 9(1) 0* 

x = 0.3 

ε-TiD2 I4/mmm 42(1) 3.163(1) - 4.400(1) 44.02(1) 13(1) 2(1) 

β-MgD2  P42/mnm 48(1) 4.513(1) - 3.006(1) 61.22(2) 7(1) 7(2) 

γ-MgD2  Pbcn 11(1) 4.515* 5.422* 4.936* 120.83* 7(1) 0* 

x = 0.5 

ε-TiD2 I4/mmm 67(1) 3.168(1) - 4.415(1) 44.31(1) 10(2) 8(1) 

β-MgD2  P42/mnm 26(1) 4.514(1) - 3.004(1) 61.21(2) 5(1) 4(2) 

γ-MgD2  Pbcn 7(1) 4.515* 5.422* 4.936* 120.83* 5(1) 0* 

* Not refined 

 

Figure 5.6 shows the refined phase amounts of MgD2 and TiD2 phases as a function 

of Ti-molar fraction, x, in the RBM reactants. As expected, the TiD2 phase amount 

increases with Ti-content. Moreover, this increase is close to the theoretical phase 



Chapter 5. Mg(H/D)2-Ti(H/D)2 nanocomposites 

195 

content that is calculated assuming no solubility of Mg in TiD2 nor Ti in MgD2 phases. 

This result anticipates that the solubility of metal atoms should be low (see last column 

of Table 5.2). The average relative ratio of the γ-MgD2 phase amount as compared to 

the total MgD2 is of 20 ± 3 wt.%, which is slightly lower than previous results based on 

XRPD data (27 ± 3 wt.%) [1]. 
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Figure 5.6. Refined phase content (TiD2 and (+)-MgD2) in the as-milled (1-x)MgD2-xTiD2 

samples. Continuous lines display the theoretical phase content for a MgD2-TiD2 composite 

assuming no solubility of Mg in TiD2 nor Ti in MgD2 phases. 

 

Figure 5.7 shows the dependence of the relative unit-cell volume of β-MgD2 and ε-

TiD2 phases with the Ti-molar fraction used for sample synthesis. The relative unit-cell 

volume is established by comparison to that of the pure phases obtained by RBM of the 

metallic elements (from ref. [1] for TiD2 and this work for MgD2). The TiD2 cell 

volume gradually increases when the Ti-molar fraction raises. This phenomenon 

concurs with the increase of Mg substitution in the TiD2 phase determined from the 

refinement of atomic occupancy (Table 5.2). At the highest Ti-molar fraction used in 

this work (i.e. x = 0.5), Mg solubility in TiD2 phase reaches ~ 8 at.% Mg and the 

relative cell volume increases by more than 1 %. This fact can be explained by the 

larger metallic radius of Mg as compared to Ti (rMg = 1.60 Å, rTi = 1.47 Å). Regarding 

Ti substitution in β-MgD2, site occupancy refinement yields ~ 7 at.% Ti (for x = 0.1 and 

0.3) but, strikingly, the relative cell volume of the β-MgD2 phase only decreases slightly 

with the Ti-molar fraction.  
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Figure 5.7. Relative unit-cell volume variation as a function of the Ti-molar fraction for ε-TiD2 

(in as-milled and desorbed samples) and β-MgD2 (in as-milled samples). The unit-cell volumes 

of the MgD2 sample (x = 0) synthesized in this work and TiH2 synthesized by RBM under 

hydrogen gas [1] are used as references. 

 

Crystallite sizes (Table 5.2) and microstrains of the different phases have been 

calculated from the width of the Lorentzian and Gaussian components respectively, of 

the “Thompson-Cox-Hastings pseudo-Voigt” profile shape function after considering 

instrumental resolution. All as-milled samples exhibit nanocrystalline phases, with TiD2 

crystallites slightly larger than β-MgD2 ones (13 ± 3 nm and 7 ± 2 nm, respectively). 

With increasing Ti-molar fraction, smaller crystallite sizes are obtained. This is 

attributed to the abrasive character of titanium deuteride, which favours 

nanostructuration of the MgD2 phase. However, for Ti-free synthesis, mechanical 

energy induced by RBM is high enough to nanosize MgD2 as well. Microstrains in the 

β-MgD2 phase increased from 0.4 % for the x = 0 sample to 0.6 % for the x = 0.5 

sample while the TiD2 phase showed values from 0.6 to 0.8 % for x = 0.1 and x = 0.5, 

respectively. This result shows that the abrasive properties of titanium deuteride 

increase as well the deformation and the amount of defects in the crystal lattices. 

 

2.1.2 Structural properties of thermally desorbed samples 

RBM samples were desorbed by heating up to 530 K under a deuterium back-

pressure of 0.06 MPa. The amount of desorbed deuterium was measured as 1.5, 1.2 and 

0.9 D/f.u. for x = 0.1, 0.3 and 0.5 samples, respectively. Under these measurement 

conditions, only deuterium from the MgD2 phase should desorb appreciably, since TiD2 
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is reported to have equilibrium pressure far below 0.06 MPa at 530 K [7]. Therefore, the 

expected deuterium desorption corresponds to the D-content stored in the MgD2 phase, 

i.e. 1.8, 1.4 and 1 D/f.u., respectively. However, we observe that desorption is not fully 

completed, in particular for low Ti-molar fractions: only 83, 86 and 90 % of the 

deuterium amount stored in the MgD2 phase are desorbed for x = 0.1, 0.3 and 0.5, 

respectively. Two phenomena may explain this discrepancy:  

i) the ocurrence of minor Mg oxidation, making a minor fraction of this phase 

inactive for hydrogen desorption and 

ii) the persistence of non-desorbed MgD2 phase due to slow kinetics of MgD2 

decomposition, particularly at low Ti-molar fractions.  

The second option seems to be more significant as no MgO was observed on diffraction 

data.  

The thermally desorbed samples were analyzed by XRPD and NPD. The measured 

diffractogramms are displayed in Figure 5.8 and the main results of Rietveld joint 

analysis are gathered in Table 5.3. Partial replacement of Ti by Mg atoms in the TiD2 

phase is still observed for x = 0.3 and 0.5 samples. This indicates that Mg does not 

segregate out of the TiD2 phase below 530 K. This fact is supported by the evolution of 

relative unit-cell volume of the ε-TiD2 phase represented in Figure 5.7. The unit-cell 

volume of this phase increases with the Ti-molar fraction for both as-synthesised and 

desorbed samples, though it is clearly shifted to lower values for the latter ones.  
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Figure 5.8. a) X-ray and b) neutron powder diffraction patterns of thermally desorbed 

(1-x)Mg-xTiD2 nanocomposites for x = 0.1, 0.3 and 0.5. 
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Table 5.3. Main results from XRPD and NPD Rietveld joint analysis of thermally desorbed 

samples. 

Desorbed 

samples 
Phase S.G. 

Phase 

amount 

(wt.%) 

Cell parameters (Å) Cell volume 

(Å3) 

Crystallite 

size (nm) 

Atomic 

substitution 

(at.%) a c 

x = 0.1 
ε-TiD2 I4/mmm 19(1) 3.150(1) 4.413(1) 43.76(1) 16(1) 0 

Mg P63/mmc 81(1) 3.210(1) 5.213(1) 46.52(1) 95(5)  - 

x = 0.3 
ε-TiD2 I4/mmm 49(1) 3.151(1) 4.417(1) 43.84(1) 13(1) 6(1) 

Mg P63/mmc 51(1) 3.211(1) 5.214(1) 46.55(1) 29(2)  - 

x = 0.5 
ε-TiD2 I4/mmm 71(1) 3.156(1) 4.426(1) 44.09(1) 10(1) 8(1) 

Mg P63/mmc 29(1) 3.212(1) 5.220(1) 46.65(1) 10(1) -  
 

 

Another major result of the structural analysis concerns changes in crystallite size 

upon deuterium desorption. Figure 5.9 shows the crystallite size of -MgD2, Mg and 

TiD2 phases for as-milled and thermally desorbed samples with the different Ti-molar 

fractions. The crystallite size of TiD2 does not change during thermal desorption. In 

contrast, the Mg phase exhibits grain growth during desorption as compared to the as-

milled -MgD2 phase. It should be noted, however, that grain growth decreases with 

Ti-content. More information on these effects will be given in next sections concerning 

in situ NPD studies. 

 

0.0 0.1 0.2 0.3 0.4 0.5

10

100

After thermal desorption

       -TiD
2

       Mg 

As-milled 

 -TiD
2
 

 -MgD
2

 

 

 C
ry

s
ta

lli
te

 s
iz

e
 (

n
m

)

Ti molar fraction (x)
 

Figure 5.9. Comparison of crystallite size in as-milled (full symbols) and thermally desorbed 

samples (empty symbols) as a function of Ti content. 
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2.2 Nanocomposite microstructure 

TEM has been used to characterize the microstructure of as-milled RBM samples. 

Figure 5.10 shows the microstructure of x = 0.3 sample. In bright field, TiD2 inclusions 

appear as dark areas, which are easily detected in dark field as white spots. TiD2 

inclusions are homogeneously distributed inside of MgD2 agglomerates. The measured 

average size for TiD2 inclusions is 9 ± 3 nm, with a size distribution ranging from 2 to 

16 nm. The size of TiD2 inclusions matches the crystal size of the TiD2 phase. This 

suggests that TiD2 inclusions are essentially single crystals. 

 

 

Figure 5.10. Bright field (left) and dark field (right) TEM images of as-milled 0.7MgD2-

0.3TiD2 sample. Small spots correspond to the TiD2 phase. The inset in bright field image 

shows the size distribution of TiD2 inclusions. 

 

3 Sorption properties 

In this section, the sorption properties of the x = 0.3 nanocomposite sample are 

compared to those of the pure MgH2 obtained by RBM (x = 0) to understand the role 

played by TiH2 on the Mg/MgH2 system.   

 

3.1 Kinetic properties 

The outstanding kinetic properties of the x = 0.3 sample as compared to pure Mg 

have been previously demonstrated during isothermal absorption and desorption 

experiments [1]. The Ti-containing material exhibited much faster sorption rates than 

RBM MgH2. We here determine the activation energy involved during H-desorption 
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from as-milled compounds by TDS measurements at several heating rates. The obtained 

desorption spectra are displayed in Figure 5.11. In both samples, desorption events 

consist of two overlapped peaks that are better resolved at slow heating rate. This 

peculiar shape has already been observed in ball milled MgH2 and was attributed to the 

presence of the metastable γ-MgH2 phase which induces partial desorption from the β-

phase [8; 9]. However, this interpretation is in contradiction with further results of in 

situ TD on deuterated x = 0 sample where we observe a γ to β transformation prior to D-

desorption, as later discussed in section 4.2. Thus, this bimodal peak shape may be 

better explained by two different desorption steps occurring successively. The low 

temperature peak is attributed to the fast nucleation and growth of the Mg phase until 

forming a Mg shell around a MgH2 core. Owing to the small particle size in both 

samples, this stage produces an important fraction of Mg. The subsequent high 

temperature shoulder corresponds to the growth of the Mg phase limited by the 

MgH2/Mg interface displacement.  

The temperature of the peak onset gives information on the nucleation step. We 

observe that it occurs at similar temperature (~ 550 K) for both compositions in spite the 

position of the main peak differs. For the Ti-free sample, the slight H-desorption that 

occurs between 500 and 600 K may be related to MgH2/Mg(OH)2 interface reactions 

leading to low temperature H-desorption [10]. Mg(OH)2 is formed by reaction of MgH2 

with unavoidable moisture present during storage, but its presence is hardly detectable 

as its main diffraction peak coincides with the (200) reflection of MgH2. In presence of 

TiH2, this step is merged within the main desorption peak that is clearly shifted to lower 

temperature. Indeed, Mg nucleation is favoured by defects such as abundant MgH2/TiH2 

interface regions and therefore occurs at lower temperature.  

 Next, we observe that the activation energies, determined according to the 

Kissinger method described in section 3.2 of Chapter 2, considerably differ from pure 

MgH2 to the composite sample. While RBM MgH2 possesses an activation energy of 

94(12) kJ/molH2, its value is only of 62(15) kJ/molH2 for the 0.7MgH2-0.3TiH2 sample. 

The first value is lower than those reported for ball milled MgH2, which typically 

reaches 120 kJ/molH2 [11]. This discrepancy can be attributed to the higher amount of 

defects achieved by RBM than by conventional milling, as suggested by the smaller 

crystallite size of RBM MgH2 (7 nm, Table 5.2) as compared to BM MgH2 (12 nm, 
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[11]). Indeed, the numerous defects provide a high number of nucleation sites for the 

Mg phase and thus reduces the activation energy for desorption. Regarding the value for 

the nanocomposite sample, it agrees with reported activation energies for MgH2 

catalysed with TM or TM oxides [12–14]. It was suggested that the homogeneous 

distribution of the catalyst nanoparticles at the surface and grain boundaries of MgH2 

provides a large amount of additional Mg nucleation sites. These results clearly 

evidence the catalytic properties of TiH2 nanoparticles that act as Mg nucleation centres 

and lower the energy barrier necessary to desorb hydrogen from MgH2.  
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Figure 5.11. TDS spectra of RBM a) MgH2 and b) 0.7MgH2-0.3TiH2 samples obtained during 

heating at different rates (5, 10 and 20 K/min). The insets display the Kissinger plots used to 

determine the activation energies of desorption.  

 

3.2 Cycling properties 

The stability of the reversible hydrogen uptake of the x = 0.3 sample has been 

previously confirmed over 32 cycles during isothermal experiments at 573 K [1]. On the 

contrary, the storage capacity of the x = 0 sample decreased significantly during the first 

14 cycles. To obtain further information on the samples evolution during cycling, HP-

DSC has been performed under 0.4 MPa of hydrogen pressure during heating and 

cooling at 5 K/min. Figure 5.12 displays the peak shape evolution on cycling of x = 0 

and x = 0.3 samples.  
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Figure 5.12. Evolution with cycling of x = 0 (top) and x = 0.3 (bottom) samples during HP-

DSC under 0.4 MPa of hydrogen pressure at a heating rate of 5 K/min. For x = 0, the 5 first 

cycles are represented and then every 5 cycles up to cycle 40 (the same sample has been cycled 

up to 60 times but the ill-defined spectra are not shown). For x = 0.3, data are represented every 

10 cycles and cycles 1 to 5 are detailed on the right. Long arrows indicate the direction of cycle 

evolution for the different peaks. The dashed line corresponds to the first desorption-absorption 

cycle.  

 

In both cases, a single endothermic desorption peak is observed around 650 K for 

x = 0 and at 627 K for x = 0.3. The x = 0 sample exhibits a broad peak shape with an ill-

defined onset at relatively low temperature (~600 K), probably related to the previously 

mentioned MgH2/Mg(OH)2 interface reactions [10]. In contrast, the desorption peak 

onset of the x = 0.3 sample is sharp and located at 620 K. Though, we can observe the 

occurrence of a very small peak at 600 K which intensity gradually increases on 
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cycling. As for x = 0, it is possible to attribute this peak to MgH2/Mg(OH)2 interactions 

that become more important as the amount of hydroxide increases with cycling.  

It is also worth mentioning that the behaviour of the first cycle significantly differs. 

In the case of the x = 0 sample, the first desorption is probably hampered because of 

surface passivation effect that may occur during sample storage inside the glove box. 

For the x = 0.3 sample, both desorption and absorption peaks are shifted to lower 

temperatures, suggesting a slight thermodynamic destabilization. This effect may be due 

to Ti solution in the MgH2 phase which segregates during the first cycles. Further 

experiments – e.g. longer milling time to increase Ti solution in MgH2 – are necessary 

to shed light on this behaviour.  

In the next cycles, the area and shape of the desorption peak is almost constant over 

100 cycles for the x = 0.3 sample, whereas it progressively and strongly decreases on 40 

cycles for the x = 0 sample. These different behaviours are illustrated in Figure 5.13 

with the evolution of the relative desorption peak area with cycling, considering that the 

amount of heat absorbed by the system is directly proportional to the amount of 

desorbed hydrogen. While the Ti-containing sample barely loses 8 % of its initial 

capacity after 100 cycles, the amount of desorbed hydrogen is reduced by almost 60 % 

after 40 cycles in the pure Mg sample. This result shows that an important fraction of 

the Mg becomes inactive during cycling. In fact, this is confirmed by the XRPD 

patterns of the cycled samples (Figure 5.14) where we observe that only 10 wt.% of 

MgH2 is formed during the 60
th

 absorption of the pure Mg sample. About 85 wt.% of 

Mg remains neither hydrided, nor oxidized. This clearly demonstrates that the reversible 

capacity loss in the pure Mg sample is due to progressive slowing down of hydrogen 

absorption rate on cycling. The origin of this can be twofold: the formation of a MgO 

shell at the Mg surface or the growth of crystallite size. In contrast, the composite 

sample is totally hydrided after the 100
th

 absorption, except a small fraction of Mg that 

is oxidized because of impurities in the HP-DSC system. However, this oxidation has 

no significant effect on kinetics when the TiH2 phase is present. Indeed, the Mg/TiH2 

interface provides an oxide free area where hydrogen can reach Mg phase after fast 

diffusion through the protecting TiH2. This demonstrates that the TiH2 phase acts as a 

gateway for hydrogen transfer to Mg. 
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 In addition, the crystallite size between both samples differs significantly. The 

MgH2 crystallites reach 1200 nm in the x = 0 sample while they remain around 600 nm 

in the Ti-containing compound after 60 and 100 cycles, respectively. This important 

coarsening is certainly favoured by the high temperatures reached during cycling (670 K 

and 650 K for x = 0 and x = 0.3, respectively). However, this phenomenon is limited by 

the presence of TiH2. The large crystallite size is probably also limiting the absorption 

kinetics in the case of pure Mg, which is hampered by H-diffusion through the MgH2 

shell, but does not seem to affect the composite sample. Once again, we demonstrate the 

outstanding catalytic properties of TiH2 on the reversibility of the Mg/MgH2 system, 

even in presence of MgO.  

 

0 20 40 60 80 100
0

20

40

60

80

100

x = 0.3

R
e

la
ti
v
e

 d
e

s
o

rb
e

d
 a

m
o

u
n

t 
(%

)

Cycle number

x = 0

 

Figure 5.13. Evolution of the relative desorption peak area during HP-DSC cycling of x = 0.3 

and x = 0 samples.  
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Sample Phase 

Phase 

amount 

(wt.%) 

Crystallite 

size (nm) 

x = 0.3 ε-TiH2 39(1) 530(50) 

 
β-MgH2 58(1) 580(30) 

 
MgO 3(1) - 

x = 0 β-MgH2 10(1) 1200(700) 

 
Mg 85(1) 1600(100) 

 
MgO 5(1) - 

 

Figure 5.14. XRPD patterns of the x = 0 and x = 0.3 samples after 60 and 100 cycles 

respectively (right) and the main results of the corresponding Rietveld refinements (left).  
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Let’s focus now on the HP-DSC exothermic absorption peaks shown in Figure 5.12. 

For pure Mg, a unique broad (span of temperature > 60 K) and ill-defined peak is 

observed. It rapidly decreases in intensity on cycling. Absorption in the nanocomposite 

sample starts at the same temperature (Tonset = 590 K), but occurs in a narrower span of 

temperature (~40 K). This behaviour shows the fast absorption kinetics of the 

nanocomposite sample as compared to pure Mg. The Ti-containing material exhibits a 

complex behaviour with two peaks of absorption which relative intensities vary with 

cycling. During the first cycles, the main peak occurs at 583 K and a secondary peak 

appears at 569 K. Throughout cycling, the first peak decreases in intensity until 

complete disappearing while the second one grows at the expense of the first one. The 

different peak shape and evolution between absorption and desorption reflects different 

sorption mechanisms. Indeed, it has been widely demonstrated that absorption is 

controlled by H-diffusion through the MgH2 phase while desorption is generally 

governed by the MgH2/Mg interface displacement [15]. In the case of the MgH2-TiH2 

nanocomposite, the almost constant position and shape of the desorption peak, even 

after crystal growth through 100 cycles, seems to indicate that the desorption rate that is 

controlled by interface displacement hardly changes on cycling at these temperatures 

(620-640 K), resulting only in a very small shift of the desorption peak to higher 

temperature.  

In contrast, the absorption mechanism seems to occur in two steps which relative 

importance probably depends on the crystallite size. This two-stage regime has already 

been evidenced during isothermal absorption curves on the same material [1]. The 

absorption mechanism in presence of TiH2 catalyst can be described according to two 

successive stages. The first one consists in the abundant nucleation of the MgH2 phase, 

favoured by the TiH2 nanoparticles at Mg/TiH2 interfaces. When the TiH2 inclusions are 

small and numerous, the amount of MgH2 formed during this step is large, giving rise to 

the first absorption peak at 583 K. As Mg and TiH2 phases grow on cycling, the number 

of TiH2 inclusions decreases and the Mg surface available for MgH2 nucleation is 

reduced. Therefore, the number of nuclei formed during the first absorption step 

decreases and the first peak shrinks. The second absorption step depends on the 

diffusion of H atoms through the layer of MgH2 formed during the first stage. This step 
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is fast and almost insignificant when Mg and TiH2 particles are small but becomes more 

important as they grow, thus explaining the increase of the second peak at 569 K.  

Even if the absorption is shifted to lower temperature with cycling owing to crystal 

growth of both phases, complete absorption of the Mg phase is always achieved in a 

narrow temperature range (590 to 560 K) thanks to the catalytic effect of TiH2. This 

demonstrates the striking robustness of MgH2-TiH2 composites even after prolonged 

cycling and concomitant grain growth.  

 

3.3 In situ neutron diffraction investigation 

In situ NPD experiments were conducted to better understand the role of the TiD2 

phase on the sorption properties of (1-x)MgD2-xTiD2 nanocomposites. The x = 0.3 

sample was chosen as representative of the Ti containing materials as it provides fast 

absorption kinetics and the significant amount of the TiD2 phase yields a strong enough 

NPD signal. Ti-free sample (x = 0) was used as a reference. Both samples were first 

thermally desorbed (in situ TD) on heating from 298 to 600 K under dynamic vacuum 

(residual pressure ~ 1 Pa). The deuterium desorption rate was determined from changes 

in the residual pressure. Next, PCI on deuterium absorption and desorption (in situ PCI) 

were performed at 548 K between 0.01 and 1 MPa. Typical equilibrium times were 50 

minutes for x = 0.3 compound and 90 minutes for x = 0. An additional absorption 

process was monitored at room temperature (RT) under a deuterium pressure of 

0.8 MPa.  

 

3.3.1 In situ TD experiments 

Neutron diffraction acquisitions and simultaneous TD curves are displayed in 

Figure 5.15. For both samples, the TD signal exhibits a single desorption peak matching 

with the phase transformation of - and -MgD2 phases into Mg observed on the 2D 

diffraction plot. It is worth noting that the TD peak of the TiD2-MgD2 composite is 

located about 30 K lower than for the pure MgD2 sample. In addition, the width of the 

TD peak is narrower for the x = 0.3 sample. It extends from 450 to 600 K in pure MgD2, 

whereas it occurs from 425 to 550 K in presence of TiD2. These facts reveal much faster 

desorption kinetics for the Ti-containing sample.  
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Figure 5.15. Thermal desorption curves and corresponding 2D diffraction pattern projections 

(λ = 1.287 Å) for x = 0 and x = 0.3 samples. 

 

The analysis of these neutron diffraction patterns allows quantifying the phase 

amounts during in situ TD. Figure 5.16 displays the evolution of phase distribution upon 

deuterium desorption as determined by Rietveld refinements. For the Ti-free MgD2 

sample (Figure 5.16 top), the amount of γ-MgD2 gradually decreases with temperature 

with a simultaneous increase of the β-MgD2 phase. No significant formation of Mg 

occurs below 500 K, whereas most of the γ-MgD2 phase has disappeared at this 

temperature. Therefore, it can be concluded that the γ-MgD2 phase gradually transforms 

into the β-MgD2 structure before significant deuterium desorption occurs.  

In the case of the Ti-containing material (Figure 5.16 bottom), both β- and γ-MgD2 

phases disappear simultaneously above 475 K, whereas a concomitant increase of the 

Mg phase occurs. The tetragonally distorted ε-TiD2 (S.G. I4/mmm) phase observed at 

room temperature transforms into the fluorite type δ-TiD2 (S.G. Fm-3m) phase at 

temperatures over 320 K [16]. The amount of the TiD2 phase is almost constant during 

the whole desorption process, confirming that this hydride does not significantly 

decompose in the studied temperature range. However, its amount slightly increases 

between 510 and 540 K and then decreases between 540 and 600 K. The increase of the 

relative weight fraction of TiD2 between 510 and 540 K is explained by a mass balance 
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effect: the TiD2 relative amount increases as a result of deuterium mass loss due to 

desorption from the MgD2 phase. Above 540 K (hatched area in Figure 5.16), the 

decline of the TiD2 amount matches a concomitant increase of the Mg content since all 

traces of MgD2 phases have disappeared at these temperatures. However, some 

deuterium desorption (dashed line) is still detected. 
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Figure 5.16. Evolution of the phase amounts with temperature during in situ TD experiments 

(heating rate: 0.5 K/min) for x = 0 and 0.3 samples. Dashed lines show desorbed fraction of 

deuterium. Hatched area for x = 0.3 sample indicates the temperature region where MgD2 

phases are no longer detected. For the sake of clarity, error bars are not represented in the 

graph. 

 

The evolution of the unit-cell volume of the TiD2 phase during in-situ TD of the 

TiD2-MgD2 composite is shown in Figure 5.17. Up to 510 K, it increases due to thermal 

expansion. Then, during the MgD2 to Mg transformation (510 to 540 K), the unit-cell 

volume drops by ~ 0.2 Å
3
 and seems to stabilize. However, above 540 K (hatched area 

in Figure 5.17), it undergoes a continuous and further decrease. The origin of the latter 

decrease can be two-fold. First, it may indicate Mg segregation out of TiD2 phase since 

the metallic radius of Mg is larger than it is for Ti. The segregation probably occurs in 

the form of MgD2 leading to a slight raise of the Mg amount due to simultaneous MgD2 
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decomposition above 550 K (Figure 5.16). In addition, TiD2 may partially desorb 

deuterium at high temperature, causing an additional cell volume reduction. 

Unfortunately, the quality of in situ diffraction data does not allow for a reliable 

refinement of partial substitution of Mg atoms in Ti sites, nor of D atom occupancy, in 

order to quantify the individual contribution of these two effects. 
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Figure 5.17. Cell volume evolution of the δ-TiD2 phase during in situ TD of x = 0.3 sample. 

Dashed lines show desorbed fraction of deuterium. Hatched area indicates the temperature 

region where MgD2 phases are no longer detected. 

 

The evolution of the crystallite size of β-MgD2 and Mg phases during in situ TD 

experiments on both samples is displayed in Figure 5.18. For the Ti-free sample, the Mg 

phase exhibits severe grain coarsening after desorption of MgD2. The size of Mg 

crystallites reaches 90  20 nm after desorption (i.e. above 560 K), which is much larger 

than the crystallite size of β-MgD2 (22  3 nm) before deuterium desorption (i.e. at 525 

K). On the other hand, for the Ti-containing sample, the presence of the TiD2 phase 

limits grain coarsening of Mg crystallites. The crystallite size of the Mg phase only 

attains 30  5 nm after deuterium desorption. As for the TiD2 phase, its crystallite size 

remains constant (13 ± 3 nm) all over the desorption process. 
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Figure 5.18. Evolution of the crystallite size of β-MgD2 and Mg phases during in situ TD of 

x = 0 and x = 0.3 samples. 

 

3.3.2 PCI 

PCI curves on absorption and desorption have been measured in neutron beam at 

548 K. The results are displayed in Figure 5.19 with reversible D-content evaluated 

from manometric measurements. 
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Figure 5.19. PCI absorption (full symbols) and desorption (empty symbols) curves at 548 K of 

x = 0 and 0.3 samples. 

 

The Ti-containing sample absorbs reversibly 1.2 D/f.u. due to reversible deuterium 

loading in the magnesium phase. The equilibrium pressure at half-plateau is about 0.5 

MPa on absorption and 0.3 MPa on desorption. For the Ti-free sample, 1.6 D/f.u. are 



Chapter 5. Mg(H/D)2-Ti(H/D)2 nanocomposites 

211 

absorbed, but only 1.3 D/f.u. are desorbed. Such irreversible behaviour is attributed to 

the slow H-sorption kinetics of the Ti-free sample. Full equilibrium could not be 

reached during the rest time used (90 minutes). Both isotherms exhibit sloping plateaus. 

This fact is attributed to unavoidable temperature gradients along the sample-holder 

used for in situ measurements. Indeed, ex situ PCI curves monitored in properly 

thermalized Sievert’s laboratory devices exhibit flat plateaus, as reported in Ref. [1]. 

Neutron diffraction patterns recorded at each PCI equilibrium point have been 

refined using the Rietveld method (not shown). The occurrence of the -MgD2 phase is 

not detected, showing that this phase is metastable and that it is not formed by 

deuterium absorption from the gas phase. Besides the TiD2 phase, only the -MgD2 

phase is observed on deuteration. The amount of the TiD2 phase during all PCI 

measurements is almost constant. It varies between 44 and 50 wt.% as result of mass 

balance variations associated with reversible D-loading in the -MgD2 phase. The -

MgD2 phase amount followed a linear increase with D-content, at the expense of the Mg 

amount. 

Figure 5.20 displays the crystallite size of the different phases during in situ PCI 

measurements. The crystallite size of both Mg and -MgD2 phases remains constant but 

is larger for the Ti-free sample (100 ± 20 nm) than for the Ti-containing one (40 ± 10 

nm). TiD2 does not suffer any crystal growth and remains around 13 ± 3 nm throughout 

the experiment. 

 

2.0 1.5 1.0 0.5 0.0
0

50

100

150

2.0 1.5 1.0 0.5 0.0

 MgD
2

 Mg

C
ry

s
ta

lli
te

 s
iz

e
 (

n
m

)

Deuterium content (D/f.u.)

x = 0 x = 0.3 MgD
2

 TiD
2

 Mg

 

Figure 5.20. Evolution of the crystallite size with deuterium content for x = 0 and x = 0.3 

samples during the acquisition of PCI desorption measurements at 548 K. 
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3.3.3 Absorption at room temperature 

Once desorbed, both samples have been exposed to a deuterium pressure of 0.8 

MPa at room temperature. For the Ti-free sample, no absorption was detected and no 

changes were observed for the diffraction patterns. In contrast, the Ti-containing 

material absorbed about 0.2 D/f.u. after 160 minutes under the same conditions. As 

represented in Figure 5.21, the β-MgD2 phase amount raises progressively up to 5.6 

wt.% while the Mg quantity decreases. The reaction rate slows down after 100 minutes. 

This result demonstrates that the intimate mixture of TiD2 and Mg phases makes 

deuterium absorption at room temperature and moderate pressure possible. Thus, 

deuterium absorption likely results from MgD2 nucleation at Mg/TiD2 interfaces. 

However, the progression of the reaction is still probably limited by the slow deuterium 

diffusion into the growing deuteride phase.  
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Figure 5.21. Evolution of phase contents during deuterium absorption at RT and 0.8 MPa for 

the x = 0.3 sample. 

 

4 Discussion  

4.1 Metal solubility in milled Mg-Ti-D systems 

In spite of their thermodynamic immiscibility, significant solubility of Mg into Ti 

and vice versa can be attained by mechanical milling [17; 18]. Unfortunately, these 

metastable phases dissociate into MgH2 and TiH2 upon hydrogenation at 563 K [17]. 

However, Asano et al. were able to hydrogenate at low temperature (423 K) a Mg50Ti50 

bcc alloy obtained by mechanical milling to form a fcc Mg0.42Ti0.58H1.77 hydride phase 

with the fluorite structure of TiH2 [19]. In complementary experiments, they obtained 
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closely related hydride phases (fcc Mg0.40Ti0.6H1.13) by milling of MgH2 and Ti powders 

over a long time (200 h) [20]. In contrast, the RBM technique allows for the direct 

synthesis of MgH2-TiH2 nanocomposites in a short milling time, but thus far no 

evidence of solubility of Mg (respectively Ti) into TiH2 (respectively MgH2) by RBM 

has been reported. 

 

4.1.1 Ti(Mg)D2 solid solution and its thermal stability 

In this work, the structural analysis of as-milled samples proves that Mg solid 

solution in TiD2 increases with Ti-molar concentration reaching 8 at.% at x = 0.5. The 

unit-cell volume of the Ti(Mg)D2 phase increases with Mg incorporation into the Ti 

sub-lattice. Such an increase concurs with the cell expansion reported by Sun and Froes 

for Mg solubility in Ti [18]. The increase of Mg solubility with the Ti-molar fraction is 

attributed to the abrasive properties of titanium deuteride which forms during RBM and 

enhances the milling efficiency in the mixture. This solubility persists after thermal 

desorption of the β-MgD2 phase at a moderate temperature of 530 K (Table 5.3), but 

disappears at temperatures above 540 K as suggested by in situ neutron diffraction 

during TD experiments (Figure 5.16 and Figure 5.17) and discussed below. 

Figure 5.22 displays the change in cell volume of the TiD2 phase at different stages 

(labelled events 1, 2 and 3, in chronological order) of in situ experiments (thermal 

desorption and PCI isotherms). During the in situ TD experiment (event 1), the TiD2 

cell volume drastically decreases between 548 and 600 K (see Figure 5.17). Next, 

during PCI absorption at 548 K, the cell volume increases again at the early stage of D-

absorption (event 2), but does not recover the value observed during the TD experiment 

at 548 K. One should remark that during the PCI absorption, as D-content increases due 

to the formation of the MgD2 phase, the cell volume increases slightly ~ 0.2 Å
3
. This 

increase is attributed to interface coupling between TiD2 and Mg/MgD2 phases as 

discussed below (section 4.3). Next, during the PCI desorption, the TiD2 cell volume 

decreases reversibly for high D-contents, i.e. while MgD2 transforms into Mg. Finally, 

at low D-contents (D/f.u. ~ 0.5) the TiD2 cell volume decreases strongly (event 3). 

Events 2 and 3 can be explained by reversible partial D-sorption within the TiD2 phase. 

This indicates that a sub-stoichiometric TiD2-η phase with smaller cell volume is formed 

at low D-pressure. On the other hand, the cell volume difference observed between the 
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in situ TD experiment (88.6 Å
3
) and PCI measurements both at 548 K (88.2 Å

3
) can 

only be explained by the irreversible Mg segregation out of the TiD2 phase. It can be 

concluded that Mg solubility in the Ti0.92Mg0.08D2 phase is stable on heating up to 548 

K. Further heating to 600 K results in Mg segregation as well as partial deuterium 

desorption from the TiD2 phase to form a sub-stoichiometric TiD2-η phase. 

 

 

Figure 5.22. Evolution of TiD2 cell volume during in situ TD and PCI measurements as a 

function of deuterium concentration for x = 0.3 sample. Event 1 corresponds to cell volume 

decrease between 548 and 600 K during in situ TD. Events 2 and 3 correspond to the cell 

volume variations during partial absorption and desorption of deuterium in TiD2 phase during 

PCI experiments at 548 K. The cell volume decrease from 88.6 to 88.2 Å
3
 is attributed to Mg 

segregation. Variations in the range 88.1 - 88.3 Å
3
 result from the interface coupling between 

the TiD2 phase and Mg/MgD2 interfaces. The largest variations between 87.1 and 88.1 Å
3
 

correspond to the reversible formation of a sub-stoichiometric TiD2-η phase. 

 

4.1.2 Mg(Ti)D2 solid solution and its thermal stability 

Ti solubility in the MgD2 phase has also been observed up to 7 at.% by site 

occupancy refinement in as-milled samples (Table 5.2), but this result was poorly 

supported by the cell-volume variation of the Mg(Ti)D2 phase with the Ti-molar 

fraction (Figure 5.7). This quasi-constant cell volume behaviour can be attributed to the 

ionic nature of the Mg-D bonding, in contrast to the metallic bonding of TiD2. Indeed, 

the ionic radius of Mg
2+

 (rMg2+ = 0.72 Å) is rather close to that of Ti
2+

 (rTi2+ = 0.86 Å) in 

the same oxidation state, and even closer to the Ti
3+

 ionic radius (rTi3+ = 0.67 Å). 
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Therefore, the very small reduction observed in Mg(Ti)D2 lattice (Figure 5.7) seems to 

point towards the ionic character of Ti-D bonding in the Mg(Ti)D2 solid solution. 

Theoretical studies on the effect of transition metal solution in MgH2 cell-volume are 

not conclusive. While Song et al. [21] predict a cell reduction for Mg(Ti)H2 phase, 

Chen et al. [22] report similar volume lattice for MgH2 with our without Ti doping. Our 

experimental results support the latter calculations. 

Regarding the thermal stability of Ti solubility in the Mg(Ti)D2 phase, Ti 

segregation should occur below 530 K, i.e. the maximum temperature used for ex situ 

thermal desorption. Indeed, the unit-cell volume of the Mg phase in desorbed samples 

(Table 5.3) did not significantly deviate from the reported value for pure Mg 

(46.47 Å
3
 [23]). 

 

4.1.3 Solubility mechanisms 

Solubility of 7 at.% Ti in MgD2 and 8 at.% Mg in TiD2 is observed in as-milled 

(1-x)MgD2-xTiD2 nanocomposites at x = 0.1 and 0.5 respectively. It is worth discussing 

how immiscible Mg and Ti elements may combine with hydrogen to form metastable 

ternary hydrides. Two possibilities can be considered. The first concerns the formation 

of nano-domains of one phase into the host hydride. We will refer to these mixed phases 

as MgD2(TiD2) and TiD2(MgD2). If the nano-domains are large enough to form a 

coherent domain (typically > 2 nm), then they will diffract as separate phases though 

yielding very broad peaks. The other possibility to be considered is atomic random 

substitution of Mg or Ti atoms, which can be written as Mg(Ti)D2 or Ti(Mg)D2 phases. 

In this case, the crystal structure of the host hydride remains the same, but its lattice 

constant is expected to change if the two elements have different atomic radii. 

Our experimental results suggest that the second mechanism occurs as the 

refinement of site occupancies yields significant atomic substitution on Mg and Ti sites. 

Cell volume increase was observed for the Ti(Mg)D2 phase, in agreement with the 

larger Mg atomic radius as compared to that of Ti, but the Mg(Ti)D2 lattice remained 

constant due to the ionic character of MgD2 bonds. 
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4.2 Structural properties and reversible deuterium loading in - and 

γ-MgD2 phases 

Reversible deuterium loading in all MgD2-TiD2 nanocomposites occurs through the 

reversible MgD2 to Mg transformation. However, some characteristics of this 

transformation depend on the presence of the TiD2 phase. Figure 5.11 and Figure 5.15 

show that the deuterium desorption temperature from the MgD2 phase depends on the 

Ti-molar fraction. In this context, the evolution of unit-cell parameters of the β-MgD2 

phase during in situ TD of Ti-free and 0.7MgD2-0.3TiD2 samples are displayed in 

Figure 5.23. For the Ti-free sample, the cell volume, as well as both a- and c-lattice 

parameters, increases continuously on heating due to the thermal expansion of the β-

MgD2 phase (Figure 5.23a). In contrast, for the Ti-containing sample, a cell distortion of 

the β-MgD2 phase is observed between 510 and 540 K during in situ TD of 0.7MgD2-

0.3TiD2: the length of the a-axis decreases while the c-axis remains constant (Figure 

5.23b). Interestingly, this deformation only occured in presence of TiD2. A similar trend 

is observed during deuterium absorption at room temperature for the Ti-containing 

sample (Figure 5.23c), with a contraction of the a-axis at low D concentration. As 

solubility of Ti in MgD2 hardly affects cell volume, this cell distortion cannot be related 

to Ti segregation. A possible explanation of such effect can rely on the formation of a 

sub-stoichiometric MgD2-η phase favoured by the presence of TiD2, as recently reported 

in ref. [6; 24]. This fact suggests structural coupling between both phases as later 

discussed in section 4.3. The observed deuterium absorption at room temperature may 

well correspond to the formation of a sub-stoichiometric MgD2-η phase at Mg/TiD2 

interfaces. 
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Figure 5.23. Evolution of cell volume (up) and cell parameters (down) of the β-MgD2 phase 

during a) in situ TD of x = 0, b) in situ TD of x = 0.3 samples and c) absorption at RT of x = 0.3 

sample. 

 

Sub-stoichiometric MgH2-η has already been reported in the case of catalysed 

MgH2. Schimmel et al. observed the occurence of hydrogen depleted MgH2-η during the 

early stage of hydriding of Mg catalysed with Nb or V [6]. However, contrary to our 

observations, they report a stretching of the a-axis and a contraction of the c-axis as a 

signature of MgH2-η formation. More signs of the existence of this phase were given 

later by Borgschulte et al. on MgH2 ball milled with transition metal oxide catalysts 

[24]. Both studies suggested that the H vacancies generated in such destabilized phase 

would increase H diffusion and enhance sorption kinetics. This assumption is consistent 

with the fast kinetics observed in MgD2-TiD2 nanocomposites. 

The behaviour of the γ-MgD2 phase during thermal desorption experiments also 

merits attention. Two different behaviours are reported in the literature. Some authors 

report that the γ-phase decomposes into Mg + H2 at a lower temperature than the β 

phase [8] while others claim a γ- to β-MgH2 phase transformation before hydrogen 

desorption [25]. The in situ neutron diffraction analysis performed in this work allows 

us to state that, for a pure Mg sample, γ-MgD2 progressively transforms into β-MgD2 

from temperatures as low as 330 K, i.e. before desorption occurs. To this respect, Figure 

5.24a clearly shows the decrease of the γ/β-MgD2 phase ratio with temperature. The γ-

MgD2 phase fully disappears at ~ 540 K. Deuterium is then gradually desorbed, leading 
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to the formation of the hcp-Mg phase (dashed curves in Figure 5.24). For the 0.7MgD2-

0.3TiD2 sample, in spite of the lower γ-phase amount and the consequently larger error, 

a different trend is observed (Figure 5.24b). Both γ- and β-MgD2 phases decompose 

simultaneously from 480 K. The persistence of the γ-MgD2 phase at higher temperature 

shows the higher stability of this phase in the composite sample. Taking into account 

that the β-MgD2 phase admits Ti solid solution, we can speculate that Ti solubility also 

takes place in the γ-phase, although it could not be refined, and may be responsible for 

the stabilization of the γ-MgD2 phase. This result opens a new route to the possible 

stabilization of this metastable phase. 

However, it is likely that γ-MgD2 does not contribute significantly to lowering the 

desorption temperature of MgD2, as this phase is irreversible (i.e. does not form during 

rehydrogenation of Mg) and does not participate in the following hydrogenation cycles. 
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Figure 5.24.  to  phase ratio during in situ TD of a) pure MgD2 and b) 0.7MgD2-0.3TiD2 

samples. Dashed curves represent the amount of Mg phase. 

 

4.3 Interface coupling between TiD2 and Mg/MgD2 phases 

An intimate and homogeneous mixture of MgD2 and TiD2 phases at the nanometric 

scale is obtained by RBM of Mg and Ti powders under deuterium atmosphere. The 

TEM images presented in Figure 5.10 show the homogeneous distribution of TiD2 
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nano-crystallites into MgD2 agglomerates. Therefore, interface interactions between 

both hydrides can be expected. Through first principle density functional theory 

calculations, S. Hao and D.S. Sholl demonstrated that the formation of epitaxial contact 

between TiH2(111)/Mg(0001), and TiH2(111)/MgH2(110) interfaces are energetically 

favourable [26]. Experimental evidence of coherent coupling between TiH2 and Mg 

phases has also been reported in Mg-Ti-H thin films [27] and mechanically alloyed 

powders [28]. 

Our experimental results also support the existence of coupling between TiD2 and 

Mg/MgD2 phases. As shown in Figure 5.7, the cell volume of TiD2 phase shrinks when 

the MgD2 phase transforms into the Mg one after ex-situ thermal desorption. A similar 

shrinkage is observed during in-situ TD experiments (Figure 5.17) within the 

temperature range 510-540 K, i.e. when MgD2 transforms into Mg. Finally, reversible 

changes of TiD2 cell volume are detected during reversible D-loading of Mg during PCI 

isotherms (Figure 5.22). In all cases, the unit-cell volume of TiD2 expands by ~ 0.2 Å
3
 

during the formation of MgD2 and reversibly contracts when the Mg phase is formed. 

Such induced volume changes in the TiD2 phase during reversible loading of Mg clearly 

demonstrate the occurrence of epitaxial relationships at TiD2-Mg/MgD2 interfaces. It is 

very likely that this coupling favours H mobility at interfaces and ensures a fast 

hydrogen transfer between TiH2 and Mg phases.  

According to this mechanism, it is essential to achieve the smallest particle size of 

both phases in order to have the highest boundary density between the TiH2 and 

Mg/MgH2 phases. 

 

4.4 TiD2 inclusions as grain growth inhibitors of the Mg phase  

One of the most relevant outcomes of this investigation is the effect of the TiD2 

phase on the limited grain growth of the Mg phase during deuterium desorption and 

reversible loading. The crystallite size of the Mg phase strongly depends on the Ti-

molar fraction (Figure 5.9): the smallest crystallites are obtained for the highest Ti 

content. This phenomenon can be explained by the effect of inclusions on the grain 

boundary mobility that was first considered by Zener [29]. It was demonstrated that 

crystal grain growth in the presence of randomly distributed second phase particles 

reaches a limiting size. Such a limit is determined by the size of inclusions and its 
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concentration in the solid. In the case of spherical inclusions, the Zener relationship can 

be expressed as follows: 

     
 

 
 
 

 
 (5.1) 

where Glim is the limiting grain size, D is the diameter of the inclusion and f is the 

volume fraction of inclusions in the solid. 

Using the Zener relationship, Figure 5.25 shows Glim of Mg phase for TiD2 

inclusions with a particle size of 10, 13 or 16 nm (i.e. those reported for different Ti-

molar fractions in Table 5.3). The experimental Mg crystallite size after deuterium 

desorption for the different Ti-contents (Table 5.3) follows the same trend as the Zener 

relationship, although they have not reached Glim. The Zener relationship currently 

overestimates the limiting crystallite size as shown for model systems such as -Fe 

[30]. 
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Figure 5.25. Limiting grain size of Mg crystallites as a function of Ti-molar fraction according 

to Zener relationship (continuous lines) for TiD2 inclusions of 10, 13 and 16 nm. Full symbols 

correspond to experimental values of Mg crystallite size after ex situ desorption experiments. 

 

These results clearly show the grain refiner role played by the TiD2 phase on the 

Mg one during desorption experiments. Furthermore, in situ TD and PCI measurements 

for x = 0.3 sample confirmed that crystallite size remains stable on cycling at moderate 

temperature (548 K). This is a key fact to ensuring fast kinetics in this system during 

reversible H-sorption by maintaining short diffusion paths within the Mg phase. For the 

Ti-containing sample, the crystallite size of the Mg phase after TD is 30  5 nm, while 
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in pure Mg it coarsens up to 90  20 nm. Very close values are observed after 

subsequent PCI measurement (35  5 nm and 100  20 nm for x = 0.3 and x = 0 

compositions, respectively). According to the Zener relationship, the limiting Mg size 

will be maintained as long as TiD2 inclusions do not undergo coalescence. However, in 

HP-DSC experiments, such small crystallite size was not maintained after 100 cycles at 

higher temperatures (650 K) where both TiH2 and MgH2 suffered important grain 

growth (530 and 580 nm, respectively). Nevertheless, this growth was significantly 

limited by the presence of TiH2 as compared to the pure Mg sample. This process opens 

a new route to limit grain coarsening in hydrogen storage materials that need to be 

operated or treated at high temperatures. 

 

4.5 Kinetic mechanisms during reversible H-loading  

At the light of the structural characteristics and sorption properties gathered along 

this study, the following mechanisms can be proposed for reversible hydrogen 

absorption and desorption in MgH2-TiH2 nanocomposites.  

Both absorption and desorption are governed by a nucleation and growth 

mechanism. Figure 5.26 illustrates the absorption and desorption nucleation step at the 

TiH2-Mg/MgH2 interfaces. Nucleation occurs mainly at this interface because TiH2 acts 

as a gateway for hydrogen gas which is dissociated and transferred to the Mg phase 

where MgH2 nucleates. This is supported by the large diffusion coefficient of H in TiH2 

[31]. In addition, it is proposed that fast H-absorption is possible in nanocomposites 

because the MgO barrier is bypassed through the TiH2 phase.  

 

 

Figure 5.26. Schematic representation of hydrogen absorption and desorption mechanisms in 

MgH2-TiH2 nanocomposites. 
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As illustrated in Figure 5.27 for absorption, the amount of hydride phase associated 

to the nucleation step is more important when the number of interfaces is high, i.e. when 

the crystallites of both phases are small. In consequence, the growth of the MgH2 phase 

would not be a limiting step if the density of nuclei is elevated, as observed in the 

smallest particles configuration of Figure 5.27. In the case of larger particles, the MgH2 

phase growth is limited by H-diffusion through the MgH2 phase.  

 

 

Figure 5.27. Illustration of the crystallite size effect on the absorption kinetics in MgH2-TiH2 

nanocomposites.  

 

Finally, TDS experiments revealed that the desorption process is accelerated thanks 

to the abundant and fast nucleation of the Mg phase at the TiH2/MgH2 interfaces. This 

results in a reduced activation energy (62(15) kJ/molH2 for the desorption of the 

0.7MgH2-0.3TiH2 sample). The subsequent growth of the Mg phase is governed by the 

Mg/MgH2 interface displacement.  

 

5 Conclusion 

MgH(D)2-TiH(D)2 nanocomposites have been synthesized by RBM which allows 

for fast nanosizing and simultaneous hydriding of the material at room temperature. The 

presence of Ti during RBM enhances the absorption kinetics by increasing the 

MgH(D)2 nucleation rate and reducing the H(D)-diffusion path length. The catalytic 

effect of the TiH2 phase has been also evidenced during desorption by means of TDS 

experiments. The activation energy necessary for desorption of the 0.7MgH2-0.3TiH2 

nanocomposite is significantly lower (62(15) kJ/molH2) than for the Ti-free sample 
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(94(12) kJ/molH2). Besides, this catalytic effect was proved to be maintained over at 

least 100 cycles by means of HP-DSC experiment. A deep structural characterization of 

these compounds has been accomplished by XRPD, NPD and TEM methods in order to 

shed light on the outstanding H-sorption kinetics of this system. In this respect, the main 

results can be summarized as follows: 

 Mg solubility in TiD2 up to 8 at.% Mg and Ti solubility in β-MgD2 up to 

7 at.% Ti have been evidenced in as-milled samples. Such metal solubilities are 

metastable on heating: Mg segregates out of Ti(Mg)D2 between 550 and 600 K, 

whereas Ti segregates out of Mg(Ti)D2 below 530 K, i.e. during deuterium desorption 

from this phase. As a consequence, Ti solubility in the MgD2 phase does not play any 

significant kinetic role during the reversible deuterium loading of the Mg/MgD2 system.  

 The metastable γ-MgD2 phase is formed during RBM synthesis. For the 

Ti-free sample, it irreversibly transforms into its polymorph β-MgD2 before 

decomposition of the deuteride (T < 540 K). For Ti-containing nanocomposites, both γ- 

and -MgD2 desorb simultaneously. Nevertheless, the γ-MgD2 phase is not formed 

during the deuteration of desorbed samples and therefore does not contribute to the fast 

reaction kinetics on cycling. 

 In MgD2-TiD2 nanocomposites, TiD2 inclusions with typical sizes of 10 

nm are homogeneously distributed within the MgD2 matrix. Their size remains constant 

on cycling at moderate temperature. Coupling at the interface between TiD2 inclusions 

and the Mg/MgD2 matrix are evidenced by TiD2 cell-volume variations induced by 

reversible D-loading in the Mg phase. This coupling is expected to enhance deuterium 

mobility within the nanocomposite components.  

 The occurrence of sub-stoichiometric deuterides MgD2-η and TiD2-η has 

been identified at low D contents in the nanocomposite. Both defective phases may 

enhance deuterium diffusion within each phase. The Mg/TiH2 interface coupling and the 

formation of MgD2-η may explain deuterium absorption of MgD2-TiD2 nanocomposites 

at room temperature and the lower activation energy for H-desorption of these 

compounds. 

 TiD2 inclusions act as effective inhibitors for the crystal growth of Mg 

and MgD2 phases during reversible deuterium loading. Limited grain growth is 

explained by the Zener pinning model. This phenomenon holds during H-cycling at 
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moderate temperature which demonstrates the key role of the TiD2 phase for attaining 

fast H-kinetics and stability on cycling.  

Although the TiD2 phase does not modify Mg/MgH2 thermodynamics, it provides 

outstanding H-sorption kinetics, making MgH2-TiH2 nanocomposites able to absorb a 

significant amount of hydrogen, even at room temperature. These kinetic properties are 

attributed to the limited grain growth of Mg and MgH2 phases, the interface coupling 

between TiH2 and Mg/MgH2 phases and the fast H-diffusion through sub-stoichiometric 

MgH2-η and TiH2-η phases. 
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This final chapter aims to address a comprehensive discussion of the main results 

achieved throughout this PhD Thesis. Different strategies have been implemented 

through different Mg-based materials to improve the hydrogen sorption properties of 

pure Mg. On one hand, the thermodynamic properties have been tackled by alloying Mg 

with several transition metals. On the other hand, the kinetic properties were enhanced 

by the use of catalysts. In addition, nanostructuration of the material was found to play a 

role on both kinetic and thermodynamic properties. It is now essential to consider the 

relevance of these strategies to correctly orientate future investigations.  

 

1 Thermodynamic modifications 

Destabilizing metal hydrides is one of the main conditions required to allow 

working at reasonable temperatures and pressures. However, attaining the target of 

-45 < ΔH < -35 kJ/molH2 with ΔS = -130 J/ K.molH2 while maintaining satisfactory 

hydrogen gravimetric density is a real challenge for on-board hydrogen storage 

applications. In this PhD thesis, new steps toward this objective have been 

accomplished, opening potential routes for further investigation.  

 

1.1 By formation of stable alloys 

Different TMs have been associated to Mg by different synthesis processes. In a 

first approach, stable alloys based on the Mg6Pd ρ-phase were formed by conventional 

melting techniques. The interest of this strategy is to change the global enthalpy of the 

hydriding reaction by bringing into play intermetallic phases instead of pure Mg. Thus, 

if the formation enthalpy of the initial reactants is lower than it is for the final 

intermetallic products (i.e. in the hydrided state), then the global enthalpy of reaction 

will be reduced as compared to the formation enthalpy of MgH2. In the simple case of 

non-substituted Mg6Pd, the global reaction thermodynamics can be illustrated by 

comparison of the energy levels in Figure 6.1. It appears that the difference of formation 

enthalpies between initial Mg6Pd and final MgPd is fundamental to decrease the net 

enthalpy of reaction. However, only little enthalpy reduction (ΔrH = -69.8 kJ/molH2) is 

achieved because this difference is rather small for these compounds (ΔfH(Mg6Pd) = 

-173.7 kJ/molcompound and ΔfH(MgPd) = -150 kJ/molcompound).  
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Figure 6.1. Schematic representation of the thermodynamic states during hydrogenation of the 

Mg6Pd compound. ΔrH is the enthalpy change corresponding to the global hydriding reaction 

(Mg6Pd + 5 H2 ↔ 5 MgH2 + MgPd). ΔrH is smaller than ΔfH(MgH2) because Mg6Pd is more 

stable than MgPd.  

 

In clear, it is necessary to start from a stable Mg-rich phase that decomposes into 

MgH2 and a Mg-poor phase with much smaller formation enthalpy than the initial one. 

The interest of the Mg6Pd phase resides in its high Mg content that provides a high 

storage capacity. We have seen along Chapter 3 that Pd can be substituted by several 

TMs, leading to Mg-rich pseudo-binary phases with different hydrogenation properties. 

For example, the case of Ag substitution is characterized by a significant enthalpy 

reduction at high H-content while, unfortunately, a strong entropy decrease is also 

observed. More accurately, a significantly reduced entropy variation was also measured 

for the Ni-substituted compound on the high pressure plateau of absorption. While 

enthalpy of hydrogenation is generally presented as the unique thermodynamic 

parameter that governs hydride stability, we show here that entropy also has a 

primordial importance. Thus, the needed equilibrium temperature of a system working 

at atmospheric pressure is a more relevant parameter to evaluate the effective 

destabilization of a hydrided compound. This equilibrium temperature is represented in 

Figure 6.2 for the different Mg6Pd1-xTMx compounds as a function of hydrogen content.  

Hence, high temperature, i.e. the same as pure Mg, is required to totally desorb the 

hydrided compounds. However, in the H-content range corresponding to the high 

plateau pressure, the operating temperature is significantly lower. For instance the Ni-

substituted compound can reversibly store about 2 wt.% H at 510 K and atmospheric 

pressure. Although this capacity is relatively low, it is available at about 40 K lower 
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than pure Mg. This result is encouraging on the potential of Mg-based alloys to form 

less stable hydrides.  
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Figure 6.2. Equilibrium absorption temperatures at atmospheric pressure (P = 0.1 MPa) as a 

function of hydrogen content in Mg6Pd1-xTMx compounds, as calculated from ΔH and ΔS 

values determined by PCI measurements between 590 and 650 K. 

 

The field of binary Mg-TM alloys is already well studied and no relevant candidate 

stands out. However, investigation of ternary systems rich in Mg opens a wide range of 

possibilities. For example, the Mg-Co phase diagram [1] possesses only one 

intermetallic phase (MgCo2) but the Pd-Co system exhibits complete miscibility in the 

liquid and solid states [2]. Therefore, a Mg6Pd1-xCox pseudo-binary phase with large 

homogeneity range may exist. In addition, the formation enthalpy of the MgCo2 phase 

(ΔHf = -19 kJ/molcompound [3]) is much lower than the one of MgPd (ΔHf = -150 

kJ/molcompound) and may result in a reduction of enthalpy of the hydrogenation reaction 

if this phase is present in the final products, though the formation of the complex 

hydride Mg2CoH5 cannot be ruled out. However, ab initio calculations are necessary to 

determine the formation enthalpy of the Mg6Pd1-xCox pseudo-binary phase.  

 

1.2 By formation of metastable phases 

Another approach to tailor the thermodynamics of the Mg-H system is the addition 

of an immiscible element, such as Ti, to form metastable hydride phases. This was 

achieved by the technique of RBM with the formation of Mg(Ti)H2 and Ti(Mg)H2 

phases. Ti solubility in MgH2 was limited to 7 at.% in the best case and was not 

maintained after desorption at 530 K. In consequence, no thermodynamic change was 
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observed during PCI measurements, as the metastable Mg(Ti)H2 phase was no longer 

engaged. However, some hints of thermodynamic destabilization did appear during the 

first desorption-absorption cycle of HP-DSC. This result encourages deepening this 

aspect of the MgH2-TiH2 nanocomposites properties, for instance by increasing Ti 

solubility in MgH2 through longer milling times. Besides, low temperature 

hydrogenation experiments must be carried out to preserve the metastable phase on 

cycling. As presented in Chapter 1, the formation of Mg-Ti based metastable alloys 

strongly depends on the synthesis method (ball milling with different parameters, 

vapour deposition on thin films, etc.), thus opening many routes of investigation on 

metastable phases in the Mg-Ti-H system.  

 

1.3 By nanostructuration 

We already know from theoretical calculations [4; 5] that the enthalpy of formation 

of metal hydrides can be reduced by decreasing the particle size up to a nanometric 

scale. We have experimentally demonstrated in this PhD Thesis that hydrided 

nanoparticles ranging from 4 to 10 nm are less stable than the equivalent bulk hydride. 

This destabilization is helped by the porous scaffold which limits the particle growth 

during cycling. The technique of nanoconfinement for Mg-based alloys is quite new and 

opens promising lines of investigation. For instance, it is possible to confine other Mg-

based compounds with interesting properties for hydrogen storage, such as stable binary 

phases (e.g. Mg2Ni [6] or Mg2Cu [7]), pseudo-binary phases (e.g. Mg6Pd1-xNix) or even 

metastable phases (e.g. Mg-Ti or Mg-Nb).  

 

2 Kinetic modifications  

Improving the sorption kinetics in a metal-hydride system is somehow easier than 

its thermodynamic destabilization. However, maintaining high kinetic performance over 

cycling is more challenging. Indeed, one of the main issues of Mg-based materials is 

that they undergo coarsening during hydrogen cycling that usually occurs at rather high 

temperature. Along this Thesis, kinetic issues have been addressed through two main 

axes: catalyst addition and nanostructuration.  
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2.1 By metal addition  

2.1.1 TM alloying  

Catalytic properties for hydrogen dissociation/recombination have been reported for 

instance for Pd [8], Ni [9] or Mg2Cu [10]. Therefore, we can expect that the 

Mg6Pd1-xTMx compounds will possess better kinetic properties than pure Mg. This 

seems to be the case though different properties are found, depending on the 

composition of the alloy and the pathways involved during (de)hydrogenation reactions.  

For all compositions, the absorption reaction paths are similar: hydrogen pressure 

induces disproportionation of the pseudo-binary phase into MgH2 (and Mg2NiH4 in the 

case of TM = Ni) and Pd-containing intermetallic phases. Analyses of the isothermal 

absorption curves show that they are all controlled by the diffusion of metal atoms that 

allows disproportionation. In consequence, faster kinetics are achieved for more mobile 

metallic atoms in the ρ-phase and finer microstructures. Apparently, Ni substitution is 

more suitable for better absorption kinetics.  

As for desorption, kinetics are controlled by the MgH2/Mg interface displacement. 

Thus, no significant improvement is achieved when the only hydride in presence is 

MgH2 as the growth velocity of the Mg phase is constant. However, Mg nucleation was 

strikingly accelerated in presence of finely structured Mg2NiH4 resulting in a much 

lower activation energy (68 kJ/molH2).  

In summary, from a kinetic point of view, Ni seems to be a better choice to 

substitute Pd atoms in the Mg6Pd phase. On the other hand, it is necessary to perform 

cycling experiment to check the ability of this compound to preserve its microstructure 

and its phase composition. As a general rule, the kinetic properties of Mg-based alloys 

strongly depend on the catalytic properties of the present phases as well as the 

microstructure of the material.  

 

2.1.2 TM inclusions (TiH2) 

The kinetics of the MgH2-TiH2 nanocomposites are certainly the fastest achieved in 

this PhD Thesis. Indeed, activation energy of desorption is remarkably low 

(62 kJ/molH2) and absorption occurs in less than one minute at 573 K and PH2 = 

0.8 MPa [11]. Besides, the storage capacity only loses 8 % of its initial capacity after 
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100 cycles between 523 and 650 K during HP-DSC experiments, being probably due to 

impurities in the gas phase.  

In this case, the phase responsible of the kinetic improvement is not alloyed to Mg, 

but in close contact by means of coupled interfaces. One of the roles of inclusions is to 

provide a gateway for hydrogen. The gas molecules are dissociated (recombined) on 

TiH2 surface, they diffuse through this phase towards (from) Mg, and MgH2 (Mg) 

nucleates at the interface.  

This mechanism is demonstrated to be highly efficient and has to be considered for 

developing efficient hydrogen storage materials.  

 

2.2 By nanostructuration  

The effect of nanostructuration on the H-sorption kinetics is obviously related to the 

shorter diffusion path (of H or TMs) and to the high surface density for hydrogen 

chemisorption. One efficient method to obtain nanosized materials following a top-

down approach is mechanical milling, which, in the case of Mg, is more effective in 

presence of an abrasive component. RBM was shown to be an excellent technique to 

rapidly obtain nanostructured hydrides. The main issue related to nanostructuration is 

that it is hardly preserved on cycling. To this purpose, two methods have been 

implemented in this thesis to limit the material coarsening during cycling.  

The first one applies to MgH2-TiH2 nanocomposites. It consists in blocking the 

grain growth of the Mg/MgH2 phase by pinning the grain boundary movement by TiH2 

inclusions. This method was proved to be particularly efficient as long as the 

temperature was not too high. Thus, at high temperature (> 548 K), TiH2 inclusions start 

to coalesce and the pinning effect is reduced. However, sorption properties of these 

nanocomposites are still sufficient at 548 K where the Mg crystallite size was 

maintained around 30 nm with 30 at.% Ti. This process is highly interesting to 

overcome coarsening issues in hydrogen storage materials and could be extended to 

many types of compounds.  

The second method used to limit coarsening is the nanoconfinement of the active 

material. Here, nanostructuration is achieved thanks to a bottom-up approach. In this 

method, a nanoporous carbon scaffold is used to hinder the material coalescence on 

cycling. The cycling results are encouraging as the absorption kinetics was maintained 
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over at least 10 cycles. Though, these materials are more sensitive to air oxidation, 

which can result in a progressive loss in hydrogen storage capacity.   

 

2.3 Comparative desorption properties 

Finally, a comparison of thermal desorption spectra of Mg6Pd1-xTMx alloys, 

0.7MgH2-0.3TiH2 and MgH2 obtained by RBM, and commercial MgH2 is displayed in 

Figure 6.3a. As can be better appreciated on the integrated plots (Figure 6.3b), the 

hydrided Mg6Pd0.25Ni0.75 compound has the lowest onset of desorption. This is 

explained by the reduced thermodynamic stability of the Mg2NiH4 phase as compared 

to MgH2. Besides, the peak corresponding to the desorption from the MgH2 phase in 

this sample occurs at lower temperature than RBM MgH2. This result shows that the 

catalytic properties of the Mg2NiH4 phase reported in section 5.2.2 of Chapter 3 are 

more powerful than nanostructuration of pure MgH2 by RBM. Thus, substituting Pd by 

Ni in the Mg6Pd phase results in very interesting desorption kinetics, with an activation 

energy almost as low as for MgH2-TiH2 nanocomposites. As for this last one, most of its 

hydrogen is desorbed at lower temperature than for all the other materials, though the 

desorption rate is slower owing to the reduced temperature. Regarding the Mg6Pd1-xTMx 

compounds with TM = Pd, Ag and Cu, their kinetics of desorption are very similar to 

those of commercial MgH2.  
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Figure 6.3. a) Comparison of the TDS spectra of Mg6Pd1-xTMx compounds (TM = Pd, Ag, Cu, 

Ni), (1-x)MgH2-xTiH2 nanocomposites (x = 0 and 0.3) and commercial MgH2 powder at a 

heating rate of 10 K/min. b) Integrated plots of the TDS spectra.   
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Finally, we have to mention that Mg6Pd@C hybrid sample could not be measured 

in the same TDS apparatus, because of its high air-sensitivity. However, TDS measured 

under secondary vacuum (Chapter 4, section 3.1.2) seems to indicate a desorption peak 

situated between those of MgH2-TiH2 nanocomposites and Mg6Pd0.25Ni0.75 compound. 

 

3 Advances and bottlenecks of Mg-rich materials for hydrogen 

storage 

As suggested by the increasing research activity on Mg-based materials for 

hydrogen storage during the last fifty years, Mg element remains of major interest to 

develop efficient storage materials. Indeed, considerable progresses have been achieved 

to improve its sorption properties thanks to theoretical studies and experimental 

investigations. For instance, the stability of alloy phases and their thermodynamic 

properties of hydrogenation can be predicted from first principles or semi-empirical 

calculations [12–15]. These are powerful predictive techniques that should be 

implemented for systematic investigation of Mg-based ternary systems.  

From a technical point of view, nanostructuration is one of the essential characters 

that should be considered for future hydrogen storage materials, as it confers to the 

system fast kinetics. The use of additives and ball milling techniques are now mature to 

be implemented at large scales. On the other hand, nanoconfinement methods are very 

promising but require further adjustments such as reducing the high air-sensitivity of the 

hybrid materials and increasing their gravimetric storage capacity. 

Certainly, the main impediment to Mg-based hydrogen storage materials for 

potential on-board applications resides in their thermodynamic stability and relatively 

low gravimetric capacity. Indeed, DOE’s targets require a gravimetric capacity for the 

whole storage system of 5.5 wt.% H [16], i.e. including tank material, heat exchanger 

and other components. However, Mg-based materials can be reasonably employed for 

stationary hydrogen tanks, thus providing a safe and compact storage. In such 

applications, the difficulties encountered to reduce the stability of the hydrided materials 

can possibly be overcome by coupling the storage system to a residual heat source from 

one of the many generated by industries (metalworking industry, cement manufacturing, 

glass melting, etc.). In a near future, hydrogen will definitely be part of the energy 
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landscape and Mg-based materials are real potential storage candidates to make this 

energy carrier viable.  

 

4 Conclusions 

This PhD Thesis has been devoted to the investigation of three families of Mg-rich 

materials for hydrogen storage. The main achievements can be summarized as follows: 

 The thermodynamics of the Mg/MgH2 system have been modified by 

alloying Mg with TMs to form new Mg-rich phases. Pseudo-binary Mg6Pd1-xTMx (TM 

= Pd, Ag, Cu and Ni) alloys have been synthesized to the TM solubility limit by 

conventional melting techniques.  

 The TM solubility limit is determined by electronic effects, being higher 

when TM chemical properties approach to those of Pd. Thus, Ni solubility reaches 9 

at.% while it does not exceed 3.9 at.% for Cu. Ag exhibits a solubility of 7.2 at.%. The 

crystallographic model developed by Samson for the Mg6Pd phase [17] is suitable for 

all the TM substitutions. Cu and Ni site occupancy was then determined by XRPD 

Rietveld refinements. Owing to steric effect, TMs preferentially occupy Pd sites with 

low CN.  

 For all Mg6Pd1-xTMx compounds, absorption PCI curves occur according 

to two plateau pressures. The low plateau pressure does not show any notable 

destabilization as compared to MgH2. However, the enthalpy corresponding to the high 

plateau pressure is significantly less negative, in particular for the Ag-containing 

compound. Though, this enthalpy decrease was found to be correlated to a reduced 

entropy of reaction, attributed to a disorder increase in the solid products of 

hydrogenation. Calculated thermodynamic values are in good agreement with 

experimental values for TM = Pd and Ni, encouraging further ab initio studies. 

 The detailed hydrogenation pathways have been determined for all the 

Mg6Pd1-xTMx pseudo-binary compounds as illustrated in Figures 3.18, 3.32 and 3.43.  

 The kinetic mechanism governing absorption in these compounds is the 

diffusion of TM atoms and therefore depends on their mobility and the microstructure 

of the alloy. Desorption is controlled by the MgH2/Mg interface displacement, but 

nucleation of the Mg phase was found to be significantly accelerated in presence of the 
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finely structured Mg2NiH4 phase. Thus, the activation energy for desorption from the 

Ni-containing compound was reduced to 68 kJ/molH2.  

 Innovative melt-infiltration technique has been used to confine Mg6Pd 

nanoparticles into the pores of an activated carbon. Alloyed nanoparticles as small as 4 

nm have been achieved.  

 This hybrid Mg6Pd@C material exhibits strongly accelerated kinetics as 

compared to the bulk alloy. This fast kinetics is maintained during at least 10 cycles 

thanks to the porous scaffold that limits particles coarsening. In addition, PCI and HP-

DSC measurements compared to bulk Mg6Pd point toward a thermodynamic 

destabilization of the hydrided compound. 

 MgH2-TiH2 nanocomposites with outstanding kinetic properties have 

been synthesized by RBM. As-milled samples are composed of β- and γ-MgH2 

polymorphs and ε-TiH2 fluorite phase. Solubility of 7 at.% Ti and 8 at.% Mg in β-MgH2 

and ε-TiH2 phases has been evidenced by neutron diffraction analysis. It is observed 

during thermodesorption of as-milled compounds that the γ-MgH2 phase is stabilized by 

the presence of Ti.  

 The growth of the Mg phase is limited thanks to the pinning effect of the 

TiH2 particles. The maximum grain size reached by the Mg phase is properly modeled 

through the Zener relationship, as a function of the concentration and dimension of TiH2 

inclusions. 

 Besides, TiH2 phase acts as a catalyst for hydrogen sorption in Mg 

through an intimate coupling at the (Mg-MgH2)/TiH2 interface that allows for fast Mg 

and MgH2 nucleation. The mobility of hydrogen is also facilitated by the formation of 

sub-stoichiometric MgH2-η and TiH2-η phases. The introduction of TiH2 inclusions in 

nanosized MgH2 is highly efficient to improve kinetics and cycling properties. 

 The material containing 30 at.% Ti is able to rapidly absorb and desorb 

hydrogen during at least 100 cycles. These enhanced kinetic properties are related to the 

fast and abundant nucleation of the Mg-MgH2 phases thanks to the high density of 

interfaces with TiH2 inclusions, thus bypassing the unavoidable MgO layer. During 

absorption, the growth of the MgH2 phase is controlled by the diffusion of H through 

the MgH2 shell, while on desorption Mg growth depends on the MgH2/Mg interface 

displacement.  



Chapter 6. Final remarks and conclusions 

240 

Finally, a comparative overview on the hydrogenation properties of the investigated 

compounds is presented in Table 6.1.  

 

Table 6.1. Summary of the main hydrogenation properties of the Mg-based materials 

investigated in this Thesis. The equilibrium temperature at atmospheric pressure corresponds to 

the high pressure plateau for all the Mg6Pd1-xTMx compounds. Qualitative assessment is given 

for kinetics and cyclability from – (bad) to +++ (very good). /-symbol stands for not 

determined property.  

Material 
T (K) for Peq = 

0.1 MPa 
Kinetics Cyclability 

Reversible H-

capacity (wt.% H) 

Mg6Pd 520 – / 4.3 

Mg6Pd0.5Ag0.5 418 – / 4.4 

Mg6Pd0.7Cu0.3 517 – / 4.3 

Mg6Pd0.25Ni0.75 510 ++ / 5.6 

Mg6Pd@C / ++ + <1 

0.7MgH2-0.3TiH2 553 +++ +++ 4.3 

RBM-MgH2 553 + – 7.6 

MgH2 553 – – 7.6 
 

 

Two types of materials stand out in this Thesis: the Mg6Pd0.25Ni0.75 alloy and the 

MgH2-TiH2 nanocomposites. The first one offers a good compromise between improved 

thermodynamics, good kinetic properties and a rather high storage capacity. Its 

robustness on cycling still has to be tested. The second one is remarkable for its 

extremely fast kinetics and stability over cycling. Besides, its reversible storage capacity 

could be improved by optimizing the Mg to Ti ratio. Regarding the other investigated 

compounds, they provide a deep comprehension of hydrogenation mechanisms and 

potential pathways for hydride destabilization. 
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