
HAL Id: tel-00939346
https://theses.hal.science/tel-00939346v1

Submitted on 30 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From dataflow-based video coding tools to dedicated
embedded multi-core platforms

Hervé Yviquel

To cite this version:
Hervé Yviquel. From dataflow-based video coding tools to dedicated embedded multi-core platforms.
Other [cs.OH]. Université de Rennes, 2013. English. �NNT : 2013REN1S095�. �tel-00939346�

https://theses.hal.science/tel-00939346v1
https://hal.archives-ouvertes.fr

ANNÉE 2013

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

École doctorale Matisse
présentée par

Hervé Yviquel
préparée à l’unité de recherche IRISA (UMR 6074)

Institut de Recherche en Informatique et Systèmes Aléatoires
École Nationale Supérieure des Sciences Appliquées et de Technologie

From

Dataflow-Based

Video Coding Tools

to Dedicated

Embedded Multi-Core

Platforms

Thèse soutenue à Lannion
le 25 octobre 2013
devant le jury composé de :

Alain GIRAULT,
Directeur de recherche, Inria Rhône-Alpes
/Rapporteur

Marco MATTAVELLI,
Maitre d’enseignement et de recherche, École Poly-
technique Fédérale de Lausanne
/Rapporteur

Tanguy RISSET,
Professeur des universités, Institut National des Sci-
ences Appliquées de Lyon
/Examinateur

Jarmo TAKALA,
Professeur, Tampere University of Technology
/Examinateur

Emmanuel CASSEAU
Professeur des universités, Université de Rennes 1

/Directeur de thèse

Mickaël RAULET
Ingénieur de Recherche, Institut National des Sci-
ences Appliquées de Rennes
/Co-directeur de thèse

Hervé Yviquel: From Dataflow-based Video Coding Tools to Dedicated Embedded
Multi-core Platforms, © 2010-2013

Don’t loaf and invite inspiration;
light out after it with a club,

and if you don’t get it
you will nonetheless get something

that looks remarkably like it.

— Jack London

A B S T R A C T

The development of multimedia technology, along with the emergence of
parallel architectures, has revived the interest on dataflow programming
for designing embedded systems. Indeed, dataflow programming offers a
flexible development approach in order to build complex applications while
expressing concurrency and parallelism explicitly. Paradoxically, most of the
studies focus on static dataflow models of computation, even if a pragmatic
development process requires the expressiveness and the practicality of a
programming language based on dynamic dataflow models, such as the
language included in the Reconfigurable Video Coding framework.

In this thesis, we describe a development environment for dataflow pro-
gramming that eases multimedia development for embedded multi-core
platforms. This development environment is built upon a modular software
architecture that benefits from modern software engineering techniques such
as meta modeling and aspect-oriented programming. Then, we develop an
optimized software implementation of dataflow programs targeting desktop
and embedded multi-core platforms. Our implementation aims to bridge
the gap between the practicality of the programming language and the ef-
ficiency of the execution. Finally, we present a set of runtime actors map-
ping/scheduling algorithms that enable the execution of dynamic dataflow
programs over multi-core platforms with scalable performance.

R É S U M É

Le développement du multimédia, avec l’émergence des architectures paral-
lèles, a ravivé l’intérêt de la programmation flux de données pour la concep-
tion de systèmes embarqués. En effet, la programmation flux de données
offre une approche de développement suffisament flexible pour créer des
applications complexes tout en exprimant la concurrence et le parallélisme
explicitement. Paradoxalement, la plupart des études portent sur des mo-
dèles flux de données statiques, même si un processus de développement
pragmatique nécessite l’expressivité et la practicité d’un langage de pro-
grammation basé sur un modèle flux de données dynamiques, comme le
langage de programmation utilisé dans le cadre de Reconfigurable Video
Coding.

Dans cette thèse, nous décrivons un environnement de développement
pour la programmation flux de données qui facilite le développement mul-
timédia pour des plates-formes multi-cœr embarquées. Cet environnement
de développement repose sur une architecture logicielle modulaire qui bé-
néficie de techniques modernes de génie logiciel telles que la méta modéli-
sation et la programmation orientée aspect. Ensuite, nous développons une
implémentation logicielle optimisée des programmes flux de données ci-
blant aussi bien les ordinateurs de bureau que les plates-formes embarquées.
Notre implémentation vise à combler le fossé entre la practicité du langage
de programmation et l’efficacité de son exécution. Enfin, nous présentons
un ensemble d’algorithmes de projection et d’ordonnancement d’acteurs qui
permettent l’exécution de programmes flux de données dynamiques sur des
plates-formes multi-cœur avec des performances extensibles.

v

A C K N O W L E D G M E N T S

Feeling gratitude and
not expressing it is like
wrapping a present and

not giving it.

— William Arthur Ward

First, I would like to thank my advisors Pr Emmanuel Casseau and Dr
Mickaël Raulet for their help and support during these three years. Working
with both of you has been a very pleasant experience from a scientific point
of view, as much as from a human relation point of view. Thank you for
your trust in my work, the freedom you let me has been a great source
of motivation. Emmanuel, thank you for all your consideration: Your wise
advices as well as your ability to take a step back on my work are one of
the reasons of the success of my PhD. Mickaël, Thank you for the close and
unlimited support: Your expertise in video decoding has always been very
helpful to make things working, and our long discussions have helped me
to take the right decisions. In fact, working with both of you has been very
enriching and I hope that our collaboration will be able to continue.

I would also like to give my thanks to Pr Alain Girault and Pr Marco
Mattavelli for reviewing this thesis, and to Pr Tanguy Risset and Pr Jarmo
Takala for participating to the jury. All your comments on my work were
detailed and very encouraging. Marco, thank you for allowing the multiple
collaborations with your team. Tanguy, thank you for you interest on my
work. Alain, thank your again for your reviewing: Reading your comments
on my thesis was a true pleasure. Jarmo, thank you for your involvement
in my PhD: The few months I spent in visit at Tampere have been truly
profitable for me.

I would like to extend my thanks to the people that I have had the plea-
sure to work with. Thanks to the former PhD students for introducing me
to the world of Orcc: Matthieu Wipliez, Jérôme Gorin and Nicolas Siret.
Matthieu, our never-ending debates have always been a pleasure for me.
Thanks to all my collegues with who I have enjoyed working with: Antoine
Lorence, Khaled Jerbi, Alexandre Sanchez, Maxime Pelcat, Jean-François
Nezan. I would also like to thank Pekka Jääskeläinen for making me feel
very welcome during my visit in Tampere. In fact, I would like to thank
the Orcc and TCE communities as a whole for actively participating in the
development of the tools which offers solid basements to this work. I would
also give a special thanks to Angélique Le Pennec and Jocelyne Tremier for
managing administrative tasks seamlessly.

Additionally, I would like to thank my family and friends for their sup-
port during all these years. Big thanks to my parents and sisters for their
love. Thank you for accepting my craziness has it is. Many thanks to all my
friends: Thank you for all the good time spent together, for all the incredible
parties we have made.

Finally, I would like to give a special thanks to my hidden proofreader
that has spent so many nights to fix and improve the English of this thesis.

vii

C O N T E N T S

1 introduction 1

1.1 Landscape of Embedded Computing 1

1.1.1 Embedded Hardware 2

1.1.2 Embedded Software . 2

1.1.3 Embedded System Design 3

1.2 Our Approach and Contributions 4

1.3 Outline . 5

i background 7

2 embedded parallel programming 9

2.1 Parallelism is Everywhere . 9

2.2 Embedded Parallel Platforms 10

2.2.1 Homogeneous versus Heterogeneous 11

2.2.2 Memory Architecture 12

2.2.3 Memory Hierarchy . 13

2.2.4 On-Chip Interconnection Network 14

2.3 Parallel Programming Models 15

2.3.1 General-Purpose Parallel Programming 16

2.3.2 Assisted Parallel Programing 17

2.3.3 High-level Parallel Programming 18

2.4 Mapping and Scheduling . 20

2.5 Conclusion . 21

3 dataflow programming 23

3.1 Definition of a Dataflow Program 24

3.2 Dataflow Paradigm to Enhance Programming 24

3.2.1 Modular Programming 25

3.2.2 Parallel Programming 25

3.3 Model of Computation . 27

3.3.1 Kahn Process Network 27

3.3.2 Dataflow Process Network 28

3.3.3 Static Dataflow Models 29

3.3.4 Quasi-Static Dataflow Model 29

3.4 Comparing Dataflow MoCs . 30

3.4.1 Characterization of Dataflow MoCs 30

3.4.2 Taxonomy of Dataflow MoCs 31

3.5 Dynamic Modeling Requires Dynamic Analysis 32

3.5.1 Classification . 32

3.5.2 Critical Path Analysis 33

3.6 Execution Models . 34

3.6.1 Multi-Threading . 34

3.6.2 Dynamic Scheduling . 35

3.6.3 Static Scheduling . 36

3.6.4 Multi-core scheduling 37

3.7 Existing Dataflow-based Languages and Tools 38

3.8 Conclusion . 39

4 reconfigurable video coding 41

4.1 Limits of the Standardization Process 41

4.1.1 Multiplication of the Standards 41

4.1.2 Monolithic Specifications of the Standards 43

ix

x contents

4.2 An Innovative Development Framework 43

4.2.1 Dataflow to Enhance Multimedia Development 44

4.2.2 Towards the RVC Vision 45

4.3 Multimedia-Specific Languages 46

4.3.1 From Text to Visual Network Programming 46

4.3.2 Actor Programming Made Easy 48

4.4 Applications . 51

4.4.1 Video Codecs . 51

4.4.2 Other Applications . 53

4.5 Existing Tools Supporting RVC 53

4.5.1 OpenDF . 54

4.5.2 Orcc . 54

4.6 Advances and Challenges of the RVC Framework 55

4.6.1 Tools Development . 55

4.6.2 Applications Development 56

4.6.3 Platform Implementation 57

4.7 Conclusion . 58

ii contributions 59

5 advanced development environment for dataflow pro-
gramming 61

5.1 Enhanced Dataflow-specific Compilation Infrastructure 61

5.1.1 Multi-Target Compilation Infrastructure 62

5.1.2 Model-driven Compilation Infrastructure 63

5.1.3 Unified Graph Library 64

5.1.4 Separation of Concerns 65

5.1.5 Procedural Aspect of the Intermediate Representation 65

5.1.6 Dataflow Aspect of the Intermediate Representation . 68

5.2 Architecture Model for Dedicated Embedded Multi-Core Plat-
forms . 70

5.2.1 Processor Architecture 71

5.2.2 Predefined Configurations of Processors 72

5.2.3 Dataflow-specific Memory Architecture 72

5.3 Dataflow Compiler for Embedded Multi-core Platforms . . . 74

5.3.1 Multi-stage Co-design Flow 74

5.3.2 Hardware Synthesis . 76

5.3.3 Software Synthesis . 77

5.3.4 Simulation Infrastructure 78

5.4 Conclusion . 80

6 optimized software implementation of dynamic dataflow

programs 81

6.1 Implementation of Dataflow Process Networks 81

6.2 Optimized Communications . 82

6.2.1 To Be or Not To Be FIFO Channels 82

6.2.2 Software Circular Buffer 83

6.2.3 Control-Free Communications 84

6.2.4 Multi-rate Communications 85

6.2.5 Copy-Free Communications 86

6.2.6 Efficient Broadcasting of Communications 87

6.3 Optimized Scheduling . 88

6.3.1 Scheduling Scheduling 89

6.3.2 Action Scheduling . 89

6.3.3 Actor Machine . 90

contents xi

6.3.4 Quasi-Static Scheduling 91

6.4 Study of RVC-based Video Decoders 92

6.4.1 Experimental setup . 92

6.4.2 Analysis of Global Performance 93

6.4.3 Analysis of Internal Communications 94

6.4.4 Analysis of the Application Decomposition 95

6.4.5 Comparison of the Scheduling Strategies 99

6.5 Conclusion . 101

7 scalable multi-core scheduling of dynamic dataflow

programs 103

7.1 Actors Mapping . 104

7.1.1 Definition of the metrics 104

7.1.2 Evolutionary-based Actor Mapping 105

7.1.3 Graph Partitioning problem 106

7.1.4 Graph partition methodology 107

7.1.5 Mapping Flow . 108

7.2 Actor Scheduling . 109

7.2.1 Distributed Scheduler 109

7.2.2 Multi-core Scheduling Strategies 109

7.2.3 Lock-Free Scheduling Communications 110

7.3 Scalability Analysis of RVC-based Video Decoders 111

7.3.1 Experimental setup . 112

7.3.2 Desktop Multi-core Implementation 113

7.3.3 Embedded Multi-core Implementation 116

7.4 Conclusion . 117

8 conclusions and outlook 119

8.1 Summary . 119

8.2 Perspectives . 120

8.2.1 An Even More Advanced Development Environment . 120

8.2.2 An Even More Optimized Software Implementation . 121

8.2.3 Towards a Platform Dedicated to RVC-based Video
Decoders . 122

iii appendix 125

a résumé en français 127

a.1 Systèmes embarqués . 127

a.1.1 Matériels embarqués . 128

a.1.2 Logiciels embarqués . 128

a.1.3 Conception de systèmes embarqués 129

a.2 Approche et contributions . 129

a.3 État de l’art . 131

a.3.1 Programmation flux de données 131

a.3.2 Reconfigurable Video Coding 132

a.4 Environnement de développement dédié 133

a.4.1 Infrastructure de programmation flux de données . . . 134

a.4.2 Modèle d’architecture dédié 134

a.4.3 Co-conception de systèmes embarqués 136

a.5 Implémentation logicielle des programmes flux de donnée . . 136

a.5.1 Implémentation optimisée 137

a.5.2 Implémentation extensible 138

a.6 Conclusion et perspectives . 138

a.6.1 Environnement de développement avancé 139

a.6.2 Implémentation logicielle optimisée 140

xii contents

a.6.3 Plate-forme dédiée aux codecs vidéo RVC 141

publications 152

bibliography 153

1I N T R O D U C T I O N

To invent an airplane is nothing.
To build one is something.

But to fly is everything.

— Otto Lilienthal, Aviation pioneer

This thesis investigates pragmatic programming approaches of real-world
applications for current and upcoming embedded systems. Actually, the pro-
gramming experience is becoming a central problem for embedded comput-
ing. On the one hand, embedded devices are now complex hardware sys-
tems, known as Multi-Processor System-on-Chip (MPSoC), that include more
and more heterogeneous components on a single chip in order to increase
product functionalities and to meet expectations of the embedded market.
On the other hand, the complexity of the software deployed on these de-
vices keeps growing exponentially, because these are being used to solve
more difficult technical problems. As a result, programmers have to imple-
ment increasingly complex applications for increasingly complex devices
while respecting time-to-market and cost demand requirements.

This thesis aims at providing a toolkit to ease the development of real-
world applications for MPSoC-based platforms from a pragmatic point of
view. Thus, we propose to implement and evaluate a set of methodologies
for designing embedded systems from the application specification to the
platform implementation. In order to benefit from all parallelism present
in the algorithms, applications are already specified in a decomposed form,
called Dataflow Process Network (DPN), by way of a practical dataflow lan-
guage inheriting from CAL Actor Language. They are latter mapped onto
Very Long Instruction Word -like processors which are able to execute mul-
tiple operations at the same time. We evaluate the toolkit using state-of-
the-art video decoders, including the emerging High Efficiency Video Cod-
ing (HEVC) standard.

Now, let us take a look of the landscape of embedded computing in order
to understand the complexity of the problematic that this thesis faces.

1.1 landscape of embedded computing

Embedded systems are now widely used, much more than other comput-
ing systems with billions sold every year [182], flooding the market of
general-purpose computers. Recent analyses have shown a drop in sales
of desktop computers in favor of smartphones, tablets and other embed-
ded devices. As opposed to general-purpose computers, embedded systems
must meet quantifiable goals: real-time performance, restricted power/en-
ergy consumption and market cost. Thus, the design of embedded systems
is entirely guided by these quantifiable goals which make it much more
challenging than general-purpose computers design.

1

2 introduction

1.1.1 Embedded Hardware

Up till recent years, embedded devices were designed around a single pro-
cessor associated with a set of peripherals and hardware accelerators. How-
ever, the increasing demand for flexibility from the embedded market has re-
sulted in a migration from hardware to software. In other words, previously
hardwired functionalities are now performed by programmable processors.

To handle increasingly demanding applications, the design of higher per-
formance processors was achieved, until recent years, by increasing proces-
sor frequency. But, similarly to general-purpose computers, embedded sys-
tems have hit the power wall of the semiconductor technology, forcing chip
manufacturers to look towards multi-core architectures to improve the over-
all system performance. As a result, embedded systems integrate more and
more programmable processors, but contrary to general-purpose comput-
ers, most of these processors are tailored to specific tasks in order to bridge
the gap between hardware efficiency and software flexibility.

������������	���
����

����

������������
���������

������

������������
���������

��������
�������
������

���������

��������������

��������������� ���	��!

Figure 1: Generic MPSoC-based platform

Embedded devices are now complex heterogeneous multi-core platforms
with an increasing number of processor cores so as to meet the performance
requirement (Figure 1). For example, commercial many-core platforms like
Intel SCC, Tilera TILE or STMicroelectronics SThorm [22] contain already
hundred of programmable cores. The increasing number of processor cores
has however raised new questions about hardware designs, such as the
memory organization and the interconnection network, and about the way
to program such a complex architecture.

1.1.2 Embedded Software

Early forms of embedded software were small programs usually written in
assembly to get maximal performance. They can be now complex applica-
tions containing multiple algorithms [183]. Moreover, the nature of the com-
putations performed in different parts of the application can vary widely
(types of operations, memory requirement, parallelism, etc). As a matter of
fact, this variability matches well with heterogeneous architectures. As an
example, considering the structure of modern video decoders [150], the mo-
tion compensation has clearly the largest requirement in memory space and
bandwidth, while the residual decoding and the intra prediction are mostly
computational.

The embedded market is currently driven by user application demands
increasing the complexity of embedded software. For instance, on the one
hand, the new video compression standard namely HEVC reduces bit-rate
requirement by 50% with same picture quality as its predecessor, and thus

1.1 landscape of embedded computing 3

allows higher-definition video. On the other hand, HEVC standard increases
the computational complexity by 1.6x compared to its predecessor [171].
Complex applications are often limited to certain application domains like
multimedia and communication. For example in a 3G phone, above 60%
of the power and over 90% of the available performance are consumed by
radio and multimedia applications [170].

Beyond the heterogeneity and the complexity of the applications, target-
ing multi-core platforms raises new questions concerning embedded soft-
ware, such as the application decomposition in parallel tasks as well as the
mapping and scheduling of these tasks on the multi-core platform.

1.1.3 Embedded System Design

Today, embedded computing is confronted to a fast technology evolution
and a great variety of computing systems. Therefore, highly flexible design
processes are required. As a matter of fact, the design of embedded systems
can be decomposed in three aspects (architecture, application and method-
ology) as illustrated in Figure 2.

Since software and hardware are tightly coupled in embedded system de-
sign, embedded designers have to consider all architectural aspects includ-
ing the organization of the hardware components (processors, memories,
interconnections), the decomposition of the software in tasks in order to
benefit as much as possible from the parallelism, and the mapping between
the hardware and the software to get the best performance. Additionally, de-
signers have to deeply understand their applications to take advantage of all
possible optimizations. Finally, methodologies are central for successful em-
bedded system design. Modeling provides higher-level of abstractions that
are necessary to handle the growing complexity of embedded systems. As
regards to the difficulty of analyzing and debugging hardware platforms,
simulation and analysis are necessary to determine the efficiency and the
cost of the design. Model-based design requires synthesis tools translating
high-level specifications into optimized implementations. Moreover, auto-
matic verification processes are also essential to achieve the required relia-
bility level with minimal cost.

����������	

�����������

������������

������������	���������
���������������	����������
����������������������
�������������������������

������������	���������
����������������
������������	�������

�	�������������
��������������
�����������������

��������
���������������������
��������������������������

����	����
 �����������

Figure 2: Aspects of embedded system design (adapted from Wolf’s analysis [182])

In conclusion, tools are particularly important in embedded system de-
sign. Tools allow rapid design of embedded systems to deal with time-to-
market pressure while achieving their high constraints of efficiency and re-
liability.

4 introduction

1.2 our approach and contributions

The emergence of massively parallel architectures, along with the need for
modularity in software design, has revived the interest in dataflow pro-
gramming. Indeed, dataflow programming offers a flexible development
approach which is able to build complex applications while expressing con-
currency and parallelism explicitly. Paradoxically, most of the studies stay
focused on static dataflow programming, even if a pragmatic development
process requires the expressiveness and the practicality offered by dynamic
dataflow programming.

MPEG has however introduced an innovative framework, called Reconfig-
urable Video Coding (RVC), that can be considered as the first large-scale ex-
perimentation on dynamic dataflow programming to our knowledge. RVC

has been initially introduced to overcome the lack of interoperability be-
tween the various video codecs deployed in the market. The framework
allows the development of video coding tools, among other applications, in
a modular and reusable fashion thanks to the inclusion of a subset of CAL

programming language.

��������
	����������	��

����	���	��
����	�	���	��

���	�������
����	���	�����	�����	��

�������	�����
����	�����	��

����

����	�������
�����

����	������������	��

�

�

�

����

Figure 3: Contributions of this thesis on dataflow-based embedded system design

All along this thesis, we study all steps of the development of RVC-based
video decoders (Figure 3), from their specification based on the dataflow
paradigm to their implementation on embedded multi-core platforms. This
thesis makes the following contributions:

• Contribution 1 [5, 7, 2, 3]: An entire co-design flow to develop RVC-
based applications for embedded multi-core platforms. The co-design
flow relies on a advanced simulation process and a dedicated architec-
ture model. Additionally, the multi-target compilation infrastructure
underlying our co-design flow has been enhanced by the way of mod-
ern software engineering techniques such as Model-Driven Engineer-
ing (MDE).

• Contribution 2 [8, 1]: An optimized software implementation of dy-
namic dataflow programs based on efficient communication techniques
that limit the accesses to the memory, and based on advanced schedul-
ing strategies that reduce the overhead of the scheduling.

• Contribution 3 [4, 6]: A set of actor mapping/scheduling algorithms
executable at runtime in order to handle the unpredictable behavior
of dynamic dataflow programs, and to achieve scalable performance
over multi-core platforms, either desktop multi-core processors or em-
bedded multi-core platforms.

In addition to the specification of our dataflow-based development pro-
cess, we evaluate the efficiency of this contribution using a set of video

1.3 outline 5

decoders, including a decoder based on the HEVC standard, that were imple-
mented within the RVC framework.

All this work has been implemented within two open-source software: a
dataflow-based development environment known under the name of Open
RVC-CAL Compiler (Orcc) [134], and a co-design toolkit using Transport-
Trigger Architecture (TTA) as the architecture template called TTA-based Co-
design Environment (TCE) [166].

1.3 outline

This thesis is decomposed in two distinct parts as follows. Part i contains an
introduction to the global notions and research problems discussed in this
thesis, and details also the previous works that lead to our work. Chapter
2 explores the existing programming models of embedded multi-core plat-
forms including the influence of the hardware architecture. Then, Chapter
3 focuses on dataflow programming and shows the pragmatism underly-
ing the dynamic dataflow model for software development. Finally, Chapter
4 introduces the Reconfigurable Video Coding framework, and deeply in-
spects its current state for highlighting the open challenges of the approach.

Part ii contains the contributions and proposed techniques of this thesis.
Chapter 5 starts by introducing the tool flow. Chapter 6 details our opti-
mized software implementation of dynamic dataflow programs. Chapter 7

closes this part by proposing a set of actor mapping/scheduling algorithms
in order to obtain scalable performance on multi-core platforms.

Part I

B A C K G R O U N D

2E M B E D D E D PA R A L L E L P R O G R A M M I N G

We have seen that computer programming is an art,

because it applies accumulated knowledge to the world,
because it requires skill and ingenuity, and especially

because it produces objects of beauty.

— Donald E. Knuth [114]

Embedded computing has emerged in early in the history of computer
sciences. Already in 1951, a group of researchers from the MIT have built
the Whirlwind computer, the first real-time computer, which was adopted
by the U.S. Air Force to integrate its air defense system. Latter in 1966,
the Apollo Guidance Computer was designed at the MIT to integrate the
navigation system that controls the spacecraft of the Apollo program. While
the Whirlwind can hardly be considered as an embedded system because of
its impressive dimensions, the Apollo Guidance Computer was embedded
in the aircraft modules of several lunar missions requiring more compact
dimensions. Since this time, embedded systems have massively gained in
popularity, and are now everywhere.

Similarly, processor programming has moved well beyond the early days
of assembly programming of 8-bit micro-controllers. The advances in com-
pilation have allowed the translation of high-level language programs into
efficient machine code. As a consequence, the developer simply writes his
application keeping its attention on software aspects, and lets the compiler
in charge of code optimization to reach the expected performance.

The physical limitations of current semiconductor technology have made
it increasingly difficult to achieve frequency improvements in processors.
Thus, hardware designers have organized computers, including embedded
systems, into multi-core architecture to achieve the performance required
for current applications. This raise of parallel computing has however intro-
duced new challenges to both programmers and compiler developers. On
the one hand, the programmers have to describe their application in such
a way that the compiler is able to decompose it in parallel computations.
On the other hand, the compiler has to translate the application to machine
code that can exploit all the parallel ability of the executing platform.

2.1 parallelism is everywhere

The execution of an algorithm onto multiple processing units involves par-
allelism which can be defined as the decomposition of the computation into
multiple pieces that can be executed in parallel [169].

Let us differentiate the granularity of the decomposition (fine-grain and
coarse-grain) from the form of the decomposition (task, data and pipeline
parallelisms). On the one hand, the granularity of the parallelism describes
the amount of computation in relation to communication [156]. During this
thesis, we distinguish only fine and coarse granularities:

9

10 embedded parallel programming

• Fine-grain parallelism refers to instruction-level parallelism that has
been typically exploited by Very Long Instruction Word (VLIW) and
super-scalar processors.

• Coarse-grain parallelism refers to task-level parallelism, also called thread-
level parallelism, that has been typically exploited by multi-processor
platforms.

On the other hand, the form of the parallelism describes the decomposition
of the computation into multiple chunks of smaller entities:

• Data parallelism, requiring data decomposition, is the simultaneous ex-
ecution of the same computation across different datasets.

• Task parallelism, requiring functional decomposition, is the simultane-
ous execution of different computations across the same or different
datasets.

• Pipeline parallelism, requiring temporal decomposition, is the simulta-
neous execution of multiple stages of a given computation. To achieve
pipelining, the computation must be applied repeatedly and must be
subdivided into a sequence of subtasks. The subtasks can then be per-
formed in an overlapped fashion.

Combining all forms and granularities in multi-level parallelism (Table 1),
let us fully exploit the potential parallelism of the application. The challenge
is then to leverage the multi-level parallelism according to the processing
capabilities of the platform.

Fine-grain Coarse-grain

Instruction, Loop Procedure, Subprogram

Task VLIW instruction Concurrent thread

Data Vectorization Kernel function

Pipeline Software pipelining Thread pipelining

Table 1: Parallelism is multi-form and multi-level

2.2 embedded parallel platforms

Computer systems have traditionally been characterized by their Instruction
Set Architecture (ISA). The ISA provides the visible interface to program the
processor: the operations available, the number of operands necessary for
a given operation, as well as the type and the size of the operands, and
the storage locations that are available. Computer systems are then cate-
gorized depending on the complexity of their instruction sets, known as
Reduced Instruction Set Computer (RISC) and Complex Instruction Set Com-
puter (CISC). The development of specialized processors such as Application-
Specific Instruction-Set Processor (ASIP) and Digital Signal Processor (DSP),
and the emergence of heterogeneous and hybrid systems make this classifi-
cation outdated.

The most popular taxonomy of parallel systems has been introduced by
Flynn in 1972 [77]. Flynn classifies computer organization according to the
multiplicity of the hardware resources provided to the instruction and data
streams :

2.2 embedded parallel platforms 11

Single Instruction Single Data streams (SISD) computer organization rep-
resents traditional serial processors. Instructions are executed sequen-
tially but may be overlapped in their execution stages.

Single Instruction Multiple Data streams (SIMD) computer organization
represents most Graphics Processing Units (GPUs) available today. Mul-
tiple processing elements execute simultaneously the same instruction
but operate on different data sets from distinct data streams.

Multiple Instruction Single Data streams (MISD) computer organization
represents systolic arrays. Multiple processing units execute distinct
instructions over the same data stream and its derivatives. The results
of one processing unit become the input of the next processing unit in
the array.

Multiple Instruction Multiple Data streams (MIMD) computer organiza-
tion represents multi-core platforms. Multiple processing elements ex-
ecute distinct instructions which are operating over distinct data streams.

Obviously, the last three classes of computer organization are the classes of
parallel computers.

2.2.1 Homogeneous versus Heterogeneous

Knowing that multi-core platforms are by definition composed of multiple
cores, they can be classified as homogeneous or heterogeneous (Figure 4):

• Homogeneous platforms are composed of identical cores (Figure 4a).
For instance, Texas Instruments commercializes a set of homogeneous
multi-core platforms (excluding hardware accelerators), known as Key-
Stone TMS320C667x family, that targets a large range of application
domains including machine vision and software defined radio.

• Heterogeneous platforms are composed of different types of cores
(Figure 4b) that make their programming more challenging. The het-
erogeneity can however refer to several aspects of the processor cores
(frequency, ISA, etc). For instance, the big.LITTLE MP is an heteroge-
neous architecture developed by ARM coupling a low power Cortex-
A7 processor with a more powerful Cortex-A15 processor, both shar-
ing the same ISA [92]. Nvidia commercializes another type of het-
erogeneous Multi-Processor System-on-Chips (MPSoCs), known as the
Tegra’s family, that are composed of an ARM processor and a Geforce
GPU.

In fact, most of modern MPSoCs are heterogeneous and embed in the same
chip General-Purpose Processors (GPPs), DSPs and hardware accelerators,
but homogeneous organizations can still be present locally. As an exam-
ple, the STHORM multi-core platform developed by STMicroelectronics is
composed of homogeneous clusters of processors [22].

Heterogeneity is obviously the solution to handle all forms and levels
of parallelism that are present inside the algorithms. Heterogeneity makes
however the implementation process of applications exponentially harder
by adding new constraints to the application mapping and scheduling, and
by requiring multiple compilation flows.

Multi-core platforms are not only characterized by the architecture of their
processor cores but also by their memory architecture.

12 embedded parallel programming

�� ��

�� ��

(a) Homogeneous

��

��
��

��

(b) Heterogeneous

Figure 4: Processor architectures characterizing multi-core platforms

2.2.2 Memory Architecture

Multi-core systems are traditionally based on shared-memory architectures,
i.e. multiple processors fully connected to one or multiple memory modules
through an interconnection network with no access restriction. As the num-
ber of processors grows (many-core processors already comprise hundreds
of cores), it quickly becomes impossible for a centralized memory system
to meet the bandwidth needs of the processors. Then, distributed memory
system becomes a necessity [147].

Memory architectures are usually classified as follow [185]:

• Uniform Memory Access (UMA): The memory is shared and can be ac-
cessed uniformly by all processors (Figure 5a), in other words the pro-
cessors have an equal access and access times to any memory location.
In UMA, all the processors are tightly-coupled with the memory com-
ponents. Such a centralized memory architecture is commonly used in
GPP such as the ARM Cortex A-15.

• Non-Uniform Memory Access (NUMA): The memory is shared and
can be similarly accessed by all processors but not with an equal access
time (Figure 5b). In NUMA, processors and memory components are
clustered making the memory accesses across the clusters slower but
still possible. For instance, in Figure 5b the processor P1 can access
both memories M1 and M2, but accessing M1 will be much faster
than accessing M2 because P1 and M1 are tightly-coupled.

• NO Remote Memory Access (NORMA): The memory is not shared by
the processors, i.e. distributed memory, but the processors can com-
municate directly through the interconnection network by the way of
a dedicated communication protocol (Figure 5c). IBM’s Cell processors
are popular NORMA-based commercial platforms [109].

The memory architecture of multi-core platforms impacts directly the pro-
gramming of processors. Therefore, the programming of shared-memory
platforms and distributed-memory platforms is usually very different.

On the one hand, the programming of shared-memory systems stays
closely similar to the programming of uniprocessor systems, which makes it
easier to be handle by the developers. In fact, communication among proces-
sors is simply achieved by writing to and reading memory locations since all
processors are allowed to see data written by any processor. But, multiple

2.2 embedded parallel platforms 13

P1 P2 P3

M1 M2 M3

Interconnection network

Memories

Processors

(a) Uniform Memory Access

P1

P2 P3

M1

M2 M3

Interconnection network

(b) Non-Uniform Memory Access

P1 P2 P3

M1 M2 M3

Interconnection network

(c) NO Remote Memory Access

Figure 5: Memory architectures characterizing multi-core platforms

processors may access the same memory location concurrently and cause
unexpected behaviors, usually called race conditions. Thus, the synchroniza-
tion among processors is required and usually achieved using locks and
barriers.

On the other hand, the programming of distributed-memory systems re-
quires additional interfaces to handle communication among processors.
Since each processor has its own memory system, a processor must commu-
nicate explicitly with the other processors to exchange data using dedicated
methods such as message passing. Thus, programming distributed-memory
systems is not as natural as shared-memory systems. For instance, IBM’s
Cell processors suffer from the complexity of their programming.

2.2.3 Memory Hierarchy

Similarly to uniprocessor, designing multi-core platform on top of hierarchi-
cal memory organization (Figure 6), brings several advantages:

• Reduction of the latency of memory accesses by replicating data in
small and fast memory components.

• Reduction of the demands of external memory bandwidth by exploit-
ing spatial locality and temporal locality of data accesses within algo-
rithms.

As we have seen, shared-memory systems do not scale well when the
number of processors increases: the interconnection network connecting the

14 embedded parallel programming

processors to the shared memory becomes a bottleneck when too many pro-
cessors are trying to access it simultaneously. Therefore, the introduction of
a private level to the memory hierarchy limits the contention on the intercon-
nection network. But, the memory being shared, the replication of data at
private-level introduces a problem of consistency between the memory com-
ponents, when a data is replicated and goes out of synchronization with the
original values where the modifications have taken place. Consequently, the
systems have to ensure the coherency between the memory components.

�����

�����

	���

����

��������

������

�������

Figure 6: Hierarchical memory organization for multi-core platforms

In embedded systems, two types of hierarchical memory, known as cache
and scrachpad memories, are dominating the market (Figure 7):

cache Data replication is controlled by the hardware that automatically
loads the data when needed, providing transparent memory accesses
to the developers but implying unpredictable access time [161] (Figure
7a). In fact, cache mechanism has been extensively used and studied
in general-purpose computing.

scratchpad Data replication is controlled by the software, done explicitly
by the developer or added automatically by the compiler [19, 18] (Fig-
ure 7b). In fact, predictability is the key attribute of scratchpad memo-
ries [182]. All data movement being solved at compile-time, scratchpad
memories have a smaller power consumption than caches.

Even if cache and scratchpad memories have different approaches to solve
the memory wall, they may be mixed in the same system to benefit from all
aspects.

2.2.4 On-Chip Interconnection Network

The interconnection network is responsible for the exchange of informa-
tion between the components of the multi-core platform. Consequently, the
global performance of the multi-core platform is directly affected by the ef-
ficiency of its interconnection network. Two types of exchange are possible:

• Simple accesses from processors to memories.

• Direct communication from a processor to another, to provide message
passing facility.

2.3 parallel programming models 15

������

(a) Cache

������

(b) Scratchpad

Figure 7: Hardware versus software implementation of hierarchical memories

Two types of interconnection network are dominating for intra-chip com-
munication, bus and Network-on-Chip (NoC). We sum up their properties in
Table 2.

buses Bus interconnect has been the dominant architecture for intra-chip
communications, but its lack of scalability makes it clearly not suitable
for massively parallel systems. One the one hand, bus-based systems pro-
vide high-speed communication and large communication bandwitch while
keeping low-cost implementation and easy testability. On the other hand, it
suffers from a number of drawbacks such as a poor scalability, no fault toler-
ance, and a limited parallelism exploitation. Actually, even a well-designed
bus-based system may suffer from data congestions that limit the global per-
formance of the system. It is also not inherently scalable. As more and more
modules are added to a bus, not only data congestion increases, but power
consumption also rises due to the increased load presented to the bus driver
circuits.

network-on-chip NoC is another interconnection scheme that has the
potential to overcome the limitations of bus-based interconnections. In a
NoC-based system, the components are connected via a multistage switching
system composed of point-to-point links. Such a multistage interconnection
avoids the scaling issues of long wires. Since several paths may be avail-
able in the network, the switches dynamically route the data according to
the communication traffic, similarly to networking theory. Consequently, the
scalability of the interconnection network comes at the expense of the vari-
ability in memory access latencies (i. e.NUMA) as well as increased design
complexity to guarantee correctness and fairness and to avoid deadlocks
and starvations.

2.3 parallel programming models

Programming languages are historically sequential, making the program-
ming of modern embedded platform a challenge. In their survey about
MPSoC design methods and tools [138, 137], Park et al. classify the exist-

16 embedded parallel programming

Pros Cons

Bus High-speed Scalability

Low-cost

Large bandwidth

NoC High-speed Design complexity

Scalability Variable latency

Power efficiency

Table 2: Comparison of interconnection networks

ing programming approaches of MPSoC based on the initial specification of
the applications as follows:

• Compiler-based approaches that use compilation techniques to auto-
matically extract the parallelism from the sequential description of an
application,

• Language-extension approaches that ask the programmer to provide
additional parallelism information into the description of the appli-
cation using directives or Application Programming Interface (API) in
order to help the compiler during the parallelizing stage,

• Model-based approaches that rely on Model of Computations (MoCs)
to describe an application to abstract the parallel description of the
application, and

• Platform-based approaches, an additional category introduced by Park
as a model-based approach that embeds parallel information and ar-
chitectural constraints.

Park’s taxonomy clearly shows the challenge of programming multi-core
platforms by exposing the variety of studies about MPSoCs programming
but it suffers from few aspects. First, his classification does not highlight
the tight link between the platform architecture and its programming. Then,
the last category only is a bit artificial since it only includes his own work.
As a consequence, we organized our overview of parallel programming ap-
proaches for embedded systems as follows: General-purpose programming,
assisted programming, and high-level programming.

2.3.1 General-Purpose Parallel Programming

Programming languages are designed to create programs that control com-
puters on which they are running. Knowing that, most general-purpose pro-
gramming models directly inherit from an underlying processor architec-
ture. Like imperative programming inherits from the Von Newman architec-
ture, both ensure a sequential execution of the instructions according to the
control flow. Similarly, parallel programming models inherit from the archi-
tecture of parallel platforms. For instance, multi-threading abstracts shared-
memory architecture, message-passing abstracts distributed-memory, and
stream processing abstracts GPU-like architecture.

multi-threading Definitely the most widely used parallel program-
ming model, that is to say multi-threading, is based on the parallel execu-

2.3 parallel programming models 17

tion of tasks, called threads, that share a single address-space. The shared
memory makes multi-threading ideal to program platforms based on shared
memory architecture. But, in the thread model, the programmer has to han-
dle every low-level details, from the creation of the threads to their synchro-
nizations. In fact, multi-threading requires synchronization primitives, such
as semaphores, to handle concurrent memory accesses.

A well-know implementation of the thread model is the POSIX threading
library pthread.

message passing Another well-known parallel programming model is
message passing in which the developer describes a set of concurrent pro-
cesses that exchange data by sending and receiving messages. In contrast
with multi-threading, message-passing systems have been introduced to
program platforms based on distributed memory architecture. In message-
passing systems, communications may be point-to-point, collective, synchronous,
or asynchronous. Synchronous communications, also called rendezvous, re-
quire sender and receiver to wait for each other in order to transfer a mes-
sage, synchronizing the processes and removing the need for buffering
mechanism. Asynchronous communication simply delivers a message from
the sender to the receiver without any assumption on the availability of the
receiver.

Message Passing Interface (MPI) is a standardized message-passing sys-
tem resulting of a joint effort of academician and industrial researchers [79].
While MPI has been heavily used in High Performance Computing (HPC), the
emergence of NoC-based interconnection network has revived the interest of
MPI for programming embedded multi-core platforms [75, 108].

stream processing More recently, the development of General-Purpose
Processing on GPUs (GPGPU) has revived this interest for an SIMD-related pro-
gramming model usually called stream processing. Instead of describing
task parallelism, this model focuses on computations, usually called kernels,
that can be applied simultaneously on a large panel of data. Data-parallel
programming is usually built on top of an abstract architectural model com-
posed of one host that controls the execution and a set of devices in which the
kernels are executed. Because the kernels usually operate on huge amount
of data, the developer has to manage precisely the data transfers between
host and devices.

OpenCL and CUDA are well-know GPGPU-based implementations of stream
processing principle. OpenCL is developed by Khronos as a standard for het-
erogeneous computing while CUDA is provided by Nvidia in order to give
GPGPU facilities to their products. Brook [40] is another programming lan-
guage, developed at Standford university, that inherits directly from stream
processing.

2.3.2 Assisted Parallel Programing

General-purpose parallel programming is clearly error-prone and usually
requires from the developer a real expertise about parallel computing to take
care of low-level details. A large portion of applications is already written
in a sequential way, and knowing that modifying an existing application
is a well-known source of bugs, many efforts have been made to provide
assisted parallelization methodologies.

18 embedded parallel programming

automatic parallelization The ultimate goal, the Holy Graal of par-
allel computing, is the automated extraction of parallelism from the sequen-
tial description of the application. Early parallelization studies have focused
on the extraction of instruction-level parallelism for VLIW processors. More
recently, the extraction of fine-grain data parallelism, so-called vectorization,
has been studied to take advantage of SIMD instructions such as Intel’s
MMX and ARM’s NEON for general-purpose processors. However, embed-
ded platforms require also a coarser decomposition to really benefit from
multi-core architecture.

Most of coarse-grain parallelization techniques start by analyzing the pro-
gram statically, to identify time-consuming portions and dependences, then
try to decompose it in parallel tasks using heuristics. In order to overcome
static analysis limitations, some studies propose to identify hidden paral-
lelism, then expose it with the help of the developer [48]. Others studies
used optimization techniques such as machine learning [47], integer linear
programming [53, 54] or genetic algorithms [52] but they require execution
profiling and may be time-consuming.

In fact, the efficiency of automatic parallelization remains limited on irreg-
ular applications. Generally speaking, automatic parallelization approaches
suffer from a lack of knowledge about the application domain. Consequently,
restricting general-purpose languages, or else extending the program with
additional information, may improve the parallelization by making easier
the analysis.

directive-based programming Directive-based programming aims
at providing a rapid and easy-going parallelization methodology to the de-
veloper. Traditional programming languages are extended with a set of di-
rectives (such as pragma in C) that informs the compiler about the paral-
lelism potential of certain portions of the program, usually loops but also
parallel sections and even pipeline sections [122, 145].

1 #pragma omp parallel for

2 for (i = 0; i < N; i++) {

3 a[i] = 2 * i;

4 }

Listing 1: One simple directive to parallelize a loop

OpenMP [57] is a standardized language extension (Listing 1) which relies
on multi-threading. OpenMP is probably the most popular directive-based
programming interface. OpenACC [133] is an emerging standard that aims
to make easier GPGPU, similarly to HMPP [62].

2.3.3 High-level Parallel Programming

Embedded computing usually relies on programming techniques that have
been developed for general-purpose processors, but the specificities of em-
bedded systems make their programming more challenging. Embedded sys-
tems have to meet memory footprint constraints, real-time performance con-
straints, as well as power consumption constraints. General-purpose paral-
lel programming is error-prone and assisted parallelization of sequential
programs is limited by nature. Thus, higher-level programming approaches
aim to providing useful abstractions and optimization tools to efficiently
program embedded systems.

2.3 parallel programming models 19

algorithmic skeletons Algorithmic skeletons are a high-level pro-
gramming model that takes advantage of common programming patterns to
hide the complexity of parallel programming [51]. Similarly to software de-
sign patterns, algorithmic skeletons define general programming solutions
to solve common occurring problems. But, while software design patterns
focus on software design, algorithmic skeletons provide parallel resolution
of computational problems.

Algorithmic skeletons aim to be an effective, generic and high-level ap-
proach for parallel programming. To do so, a skeleton is both composed
of a generic interface that abstracts parallel computations, communications,
or interactions, and of an implementation that handles all low-level details
related to the parallelization. The synchronization between the parallel com-
putations is hidden by the implementation of the skeleton, reducing the risk
of errors and making the code more portable.

Dozens of patterns have been proposed since the introduction of algorith-
mic skeletons as a solution for parallel programming. These patterns can be
classified in three families [85]:

• Data-based patterns: Map, Fork, Reduce.

• Task-based patterns: Pipe, For, While, If.

• Resolution-based patterns: Divide & Conquer, Branch & Bound.

Obviously, algorithmic skeletons are not the ultimate solution of parallel
programming but provide a set of best practices that have been proven use-
ful.

dataflow programming Dataflow programming is another high-level
programming method that describes parallel applications inherently [58]. A
dataflow program is described as a directed graph composed of a set of com-
putational units interconnected by communication channels. Dataflow pro-
gramming being also graphical, it is a very natural way for describing par-
allel algorithms. And, contrary to general-purpose parallel programming,
dataflow programming is not built upon an underlying computer architec-
ture.

In fact, dataflow programming is related to message passing in the sense
that it describes a set of concurrent processes interacting by explicit com-
munications. But, contrary to message passing, dataflow programming is
build upon a strict formalism that provides useful abstractions and enables
advanced analysis. For instance, the developer has to describe explicitly the
communication network, so two processes cannot communicate directly if
they are not linked by a communication channel. Dataflow programming
being the main subject of Chapter 3, no more details are given here.

domain-specific language As defined by Van Deursen et al. [61], a
Domain-Specific Language (DSL) is a programming language or executable
specification language that offers, through appropriate notations and ab-
stractions, expressive power focused on, and usually restricted to, a partic-
ular problem domain. Thus, DSLs can provide knowledge about the applica-
tion domain that is lacking in general-purpose languages, in order to allow
automatic parallelization for example. Additionally, DSLs intend to be writ-
ten by domain experts and not by experts in parallel programming.

For example, Streamit [168] and Halide [148] are DSL that inherit directly
from stream processing. In contrast with general-purpose languages such as

20 embedded parallel programming

OpenCL and CUDA, Streamit and Halide target especially signal processing
applications and intend to simplify their development by providing a higher
abstraction of the underlying architecture.

2.4 mapping and scheduling

In contrast with traditional compilers that stay focused on instruction schedul-
ing, MPSoC-based compilation flows have to take advantage of the parallel
processing capabilities of multi-core platforms to satisfy the performance
constraints of the applications. Let us assume that the application has been
previously decomposed into small tasks using automatic, assisted or man-
ual techniques. Then, the tasks composing the application are mapped and
scheduled onto the executing platform, two distinct processes that are inti-
mately related:

• The mapping is the process of assigning a processor to a task, in other
words where the task is executed, that involves the partitioning of the
pool of tasks.

• The scheduling is the process of deciding the moment of the execution
of a task, in other words when the task is executed, that involves the
ordering of the tasks and the timing of their execution.

The mapping and scheduling problem is a NP-hard problem, equivalent
to Quadratic Assignment Problem [81]. Thus, many heuristics aim to find a
nearly optimal solution satisfying all the given constraints. The heuristics
depend on both the application description, usually represented as a task
graph, and the platform specification, based on an architecture model such as
S-LAM [140] or AADL [74], as well as the architecture model used in Syn-
dex [91]. Due to the inherent constraints of embedded systems, mapping
and scheduling heuristics may target power consumption and reliability, ad-
ditionally to execution performance.

As presented in Table 3, Lee and Ha have classified the different ap-
proaches according to the moment, run-time or compile-time, when the
mapping, ordering and timing stages are performed [118]. On the one hand,
fully dynamic approaches can efficiently balance the workload of any ap-
plication over the processors by making all decisions at run-time, but they
come at the cost of a larger execution overhead. On the other hand, fully
static approaches determine all decisions at compile-time to minimize the
execution overhead, but they are only suitable for a subset of applications
that do not have dynamic behavior. Static-assignment approaches partition
the tasks over the processors at compile time to reduce the execution over-
head at the cost of the load-balancing, and self-timed approaches addition-
ally determine the ordering of the task execution at compile-time without
notion of the time. Additionally, compile-time approaches bring guarantees
on the obtained schedule which is a central benefit for safety critical systems.
Indeed, proving real-time constraints on dynamic scheduling is difficult.

Similarly, Singh et al. introduce additional criteria to characterized schedul-
ing and mapping methodologies [155]:

• Mapping methodologies can target either homogeneous platforms,
composed of identical cores, or heterogeneous platforms, composed
of different types of cores, as introduced previously by Section 2.2.1.
The heterogeneity of multi-core platforms imposes additional param-
eters to mapping heuristics.

2.5 conclusion 21

Mapping Ordering Timing

Fully dynamic run run run

Static-assignment compile run run

Self-timed compile compile run

Fully static compile compile compile

Table 3: Dynamism-based taxonomy of mapping and scheduling approaches, run-
time or compile-time, from Lee and Ha’s work [118]

• Mapping and scheduling methodologies performed at run-time re-
quire a management system responsible for taking the decisions. This
system may be centralized and executed by in a single processor, ded-
icated or not, as well as distributed all over the platform.

Task mapping and scheduling have been extensively studied in both com-
munities of general-purpose computing and embedded computing. A good
overview of these techniques for embedded systems has been made by
Singh et al. [155], and, as they say, the application mapping problem is still
one of the most urgent problem to be solved for implementing embedded
systems.

2.5 conclusion

All along this chapter, we have presented the variety of solutions for pro-
gramming parallel platforms that clearly demonstrates its complexity. While
expressing parallelism within an algorithm is already challenging, the archi-
tectural variability of parallel platforms in terms of component organization
and interconnection makes the task infinitely harder.

While general-purpose computing stays often attached to conventional
programming schemes, embedded computing must move towards higher-
level programming approaches, like dataflow models and DSL, that provide
the abstraction necessary to reach the efficiency and reliability that are re-
quired by embedded systems. While MoCs underlying dataflow program-
ming provide formalism, DSLs provides domain knowledge by restricting
the application description.

The next chapter deeply inspects dataflow programming, and we focus es-
pecially on practical aspects that enable the development of real-world appli-
cations. Then, Chapter 4 introduces the Reconfigurable Video Coding (RVC)
framework, an innovating framework dedicated to the development of video
coding tools that is built upon a dataflow-based DSL known as CAL Actor
Language (CAL). After that, the last chapters describe the contributions of
this thesis, that is to say the programming of embedded multi-core plat-
forms thanks to the RVC framework.

3D ATA F L O W P R O G R A M M I N G

Πάντα ῥεῖ (Panta rhei), "everything flows".

— Heraclitus

The concept of dataflow representation was introduced by Sutherland in
1966 as a visual way to describe an arithmetic computation [165]. Sutherland
represents a sequence of arithmetic statements as a dataflow graph (Figure
8b), in contrast with its mathematical form (Figure 8a), to demonstrate the
advantages of the graphical form. In fact, the graphical form replaces each
temporary variable by a simple edge that symbolizes the dependences be-
tween the computations. Inversely, the graphical form emphasizes the input
and output variables.

Z = A x B + C
W = Z + 4
Y = Z²-(3Z + B)

(a) Written statement

x

+

+

x

x

+

+

4

3
x

(C)

(B)

(A)

-1

(W)

(Y)

(b) Graphical statement

Figure 8: The first dataflow representation, the graphical representation of an arith-
metic computation, that was introduced by Sutherland in 1966 [165]

Later in 1974, Dennis has described formally the first dataflow program-
ming language [58]. In this language, a program is modeled as a directed
graph where the edges represent the flow of data and the nodes describe
control and computation.

Following his work on a dataflow language, Dennis has introduced a
novel hardware architecture on top of the dataflow model, known under

23

24 dataflow programming

the name of static dataflow architecture [59]. This architecture differs from the
traditional Von Neumann architecture by making an instruction executable
when all its inputs are available. As a consequence, the instruction-level
parallelism can be directly exploited by the processor. Similarly, Watson et
al. have introduced in 1979 the tagged-token dataflow architecture [174] to
overcome the limitation of static dataflow architecture. But, the too fine gran-
ularity of dataflow architectures prevents them from obtaining scaled per-
formance on large programs.

3.1 definition of a dataflow program

Thus, a dataflow program is defined as a directed graph (Figure 9) com-
posed of a set of computational units interconnected by communication
channels through ports:

• The communication corresponds to a stream of atomic data objects,
called tokens, that follows the First-In-First-Out (FIFO) strategy.

• The computational units, usually called processes or actors, may first
read some tokens from their input channels, may then process some
internal computations, and may finally write some tokens to their out-
put channels.

Conceptually, dataflow programming can be considered as the association
of the component-oriented programming with message-passing communi-
cation.

D

A

C

B

E

Figure 9: A dataflow network of five processes, the vertices named from A to E, that
communicate through a set of communication channels, represented by the
directed edges

3.2 dataflow paradigm to enhance programming

Since the early studies on dataflow paradigm, dataflow programming has
been mainly considered as an interesting approach for two domains of ap-
plication, signal processing and parallel processing [107, 159].

During the last twenty years, dataflow programming has been heavily
used for the development of signal processing applications due to its consis-
tency with the natural representation of the digital signals processing. More
particularly, dataflow programming gives the opportunity to use visual pro-
gramming so as to describe the interconnection between its components.
Such a graphical approach is very natural and makes it more easily under-
standable by programmers who can focus on how things connect.

The emergence of massively parallel architectures, along with the diffi-
culties to program these architecture, make dataflow paradigm an alterna-
tive to the imperative paradigm thanks to its ability to express concurrency
without complex synchronization mechanism. The internal representation
of the application is a network of processing blocks that only communicate

3.2 dataflow paradigm to enhance programming 25

through the communication channels. Consequently, the blocks are indepen-
dent and do not produce any side-effect: This removes the potential concur-
rency issues that arise when the programmer is asked to manually manage
the synchronization between the parallel computations.

3.2.1 Modular Programming

The decomposition of the program into black boxes enables the separation of
concerns, improves maintainability by enforcing the encapsulation of the
components, and makes the application description modular:

• Hierarchical: A component of the network may represent another net-
work, such as the component B in Figure 10. The ability of an appli-
cation to be specified in a hierarchical way is allowed by the strict
separation between the modeling of the interconnection network and
the behavior of the components.

• Reusable: A single component can be used to specify several applica-
tions, or can be used several time in the network which specifies the
application, such as the components A and C in Figure 10 that are
both reused by the subnetwork. This ability for a coded algorithm to
be reused, is simplified by the strong encapsulation of the components
in dataflow programming that makes them side-effect free. A feature
also found in functional programming that highlights the strong links
between functional and dataflow programming.

• Reconfigurable: A component can easily be replaced by another one
while its interfaces (input and output ports) are strictly identical, such
as the components D and G in Figure 10. Thus, the reconfigurability,
i.e. the ability to switch the system into a new configuration in a timely
and cost effective manner, is simplified by dataflow modeling.

G

A

C

F

D

A

C

B

E

G

Figure 10: The dataflow representation is modular by offering hierarchical ability,
re-usability and reconfigurability.

3.2.2 Parallel Programming

A dataflow program states an abundance of parallelisms thanks to the ex-
plicit exposition of the concurrency. In its structural view, the dataflow
model presents three potential degrees of parallelism (task, data and pipeline)
that can be applied to different granularities of description (Figure 11).

26 dataflow programming

1. Task parallelism refers to the potential parallelism between the inde-
pendent parts of an application. In a dataflow context, it appears when
two or more components do not have any dependency constraints (Fig-
ure 11c).

2. Data parallelism refers to a unique computation performed on differ-
ent sets of data. It can be applied by duplicating a given component
when it processes successively several sets of data with no dependen-
cies between them (Figure 11b).

3. Pipeline parallelism can be considered as a mixture of task and data
parallelisms. Pipelining represents the separation of a computation in
several stages that can be executed in parallel. This parallelism is in-
herent to streaming execution model in case of a chain of components
(Figure 11d). Pipelining does not enhance the throughput on one cal-
culation, but the processing of a sequence of calculation.

4. Coarse-grain and fine-grain parallelisms refer to the granularity of
the decomposition of the application’s algorithms into components,
i.e. the ratio of computation to the amount of communication in a
given component [156]. A fine-grain description is composed of small
and atomic components that frequently exchange data, for instance a
unique arithmetic operation such as presented in Figure 8. Conversely,
a coarse-grain description is composed of larger components, which
perform intensive computations and exchange a large amount of data
in each firing. Consequently, a fine-grain description states higher de-
gree of parallelism thanks to a higher number of actors, but has also a
cost tied to the communication synchronization between actors.

Time

DCA B E A

Processing units

(a) Sequential

A

A

Processing units

Time

C EB

B

D

D

A

A

(b) Data parallelism

Processing units

Time

D

CA B E A

(c) Task parallelism

Processing units

Time

A B

A D

C B

E

(d) Pipeline parallelism

Figure 11: Parallelizing the dataflow program presented in Figure 9 from a sequen-
tial execution (11a) to parallel execution using different strategies (11b,
11d, 11c).

3.3 model of computation 27

Additionally, these kinds of parallelism as well as the instruction-level
parallelism, i.e. the potential overlap among instructions, can be potentially
extracted from the internal algorithm of the components such as any proce-
dural language.

3.3 model of computation

A MoC is an abstract specification of how a computation can progress. A MoC

is useful to define the semantics of a programming model, i.e. the type of
components it can contain and the way they interact [152]. Classical exam-
ples of MoC are the Turing machine and Lambda calculus models. During the
last twenty years, dozens of dataflow MoCs were studied due to the attrac-
tive use of dataflow programming for the development of signal processing
applications.

Existing dataflow MoCs can be split into two main classes: The static ones
allow a predictable behavior such as the scheduling can be done at compile
time. The dynamic ones have a data-dependent behavior. Most of the studies
on dataflow programming focus on the statically schedulable MoC because
of the efficiency of synthesis techniques on such models due to their ana-
lyzability. Unfortunately, they do not take into consideration the flexibility
and the expressiveness offered to the programmers by the dynamic dataflow
MoC.

3.3.1 Kahn Process Network

A Kahn Process Network (KPN) [110] is represented as a graph G = (V, E)

such that V is a set of vertices modeling computational units that are called
processes and E is a set of unidirectional edges representing unbounded
communication channels based on FIFO principle. The behavior of this MoC

can be described using the denotational semantic introduced by Kahn [110].
A FIFO channel e ∈ E can be empty, deinputnoted as ⊥, or can carry a

possibly infinite sequence of tokens X = [x1, x2, ...], where each xi is an
atomic data called a token. A sequence X that precedes a sequence Y, e.g.
X = [x1, x2] and Y = [x1, x2, x3], is denoted X v Y. The set of all possible
sequences is denoted S, while Sp is the set of p-tuples of sequences on the
p FIFO channels of a process. In other words, [X1, X2, ..., Xp] ∈ Sp represents
the sequence consumed/produced by a process. The length of a sequence is
given by |X|.

A KPN with m input ports and n output ports is a continuous and mono-
tonic function denoted as:

F : Sm → Sn (1)

A process is triggered when the given sequences of tokens Sm appears on
its input ports; it is activated iteratively as long as Sm exists. Conversely, the
process is suspended when Sm does not exist on its input ports. In other
terms, reading from a FIFO channel can be blocking for one process until Sm

appears again.
The blocking reads ensure that every program following this model of

concurrency is deterministic. However, it also implies to backup the current
context of the blocked process before executing the next one when imple-
menting KPN-based programs in a sequential environment.

28 dataflow programming

3.3.2 Dataflow Process Network

Dataflow Process Network (DPN) [121], also known as Dynamic Data-Flow
(DDF), is closely related to KPN. The DPN model is Turing-complete which
means it can model any algorithm even non-deterministic ones.

In this model, an application is represented as a graph G = (V, E) within
the vertices/processes called actors. Additionally to the KPN model, it in-
troduces the notion of firing. An actor firing, or action, is an indivisible
quantum of computation which corresponds to a mapping function of in-
put tokens to output tokens applied repeatedly and sequentially on one or
more data streams. This mapping is composed of three ordered and indi-
visible steps: data reading, then computational procedure, and finally data
writing. These functions are guarded by a set of firing rules R which speci-
fies when an actor can be fired, i.e. the number and the values of tokens that
have to be available on the input ports to fire the actor.

More formally, firings can be described using the denotational semantic
extended by Dennis [58]. Every actor a ∈ V is associated with its own set of
firing function Fa, and firing rules Ra such that:

Fa = [f1, f2, ..., fM] (2)

Ra = [R1,R2, ...,RN] (3)

Within each function fi ∈ Fa is associated to a given firing rule Ri ∈ Ra.
A firing rule Ri defines a finite sequence of patterns, one for each input

m of the actor such as Ri = [Pi,1, Pi,2, ..., Pi,m] ∈ Sm. A pattern Pi,j is an
acceptable sequence of tokens in Ri on one input j from the input m of an
actor. It is satisfied if and only if Pi,j v Xj where Xj is the sequence of
tokens available on the jth FIFO channel. The pattern Pi,j = ⊥ designates
any empty list where any available sequence on input j is acceptable. The
pattern Pi,j = [∗] is acceptable for any sequence containing at least one token.
The length of a pattern Pi,j is denoted |Pi,j|. We abuse of this notation by
using |Ri| to express the consumption rate of the firing rule Ri and |fi| the
production rate of the firing function fi.

An actor can fire when at least one of its firing rules is satisfied, and, when
several firing rules are satisfied at the same time, a single one is chosen
and its corresponding firing function is executed. So that, DPN can describe
nondeterministic algorithms which is not possible with the KPN model.

B

ActionsActionsActions

State

R
1

R
n

Figure 12: A self-contained actor with its own state, actions and firing rules

The strong encapsulation of the actors is described by Figure 12 that in-
troduces the internal state of an actor. In fact, such an internal state is just

3.3 model of computation 29

a more convenient representation since it is strictly equivalent to a feedback
loop, so it only depends on the ability of the language syntax to describe
state variables.

3.3.3 Static Dataflow Models

Static dataflow models can be seen as a simplification of the DPN model, in
which tokens consumption and production follow a predictable behavior,
which means no data-dependent behavior.

synchronous dataflow The Synchronous Data-Flow (SDF) model is
a simple static dataflow model, in which an actor consumes and produces
a constant number of tokens at each firing. It may have a single firing rule,
which is valid for any sequence Sm of a certain size on its inputs [119]. In
the case where an actor has several firing rules, an actor is SDF if all its firing
rules have the same consumption, which mean for RA ∈ R and ∀RB ∈ R:

|RA| = |RB| (4)

All the firing functions of an SDF actor must also produce a fixed number
of tokens at each firing, which means for fa ∈ F and ∀fb ∈ F:

|fa(s)| = |fb(s)| (5)

for any s ∈ Sm and sb ∈ Sm

cyclo-static dataflow The Cyclo-Static Data-Flow (CSDF) MoC [30]
extends SDF actors by allowing the number of tokens produced and con-
sumed to vary cyclically. This variation is modeled with a state in the actor,
which returns to its initial value after a defined number of firing.

Several other static models were studied to solve a variety of specific
problems. For instance, the Interface-Based Synchronous Dataflow (IBSDF)
model [143] is a hierarchical MoC based on SDF that can be analyzed hierar-
chically in order to extract additional information that can be relevant for
the processing.

3.3.4 Quasi-Static Dataflow Model

Dataflow modeling is the question of striking the right balance between
expressive power and analyzability: On the one hand, synchronous and
cyclo-static dataflow limit the algorithms to be modeled as graphs with
fixed production and consumption rates for their predictability and their
strong properties that allow powerful optimizations to be applied. On the
other hand, dynamic dataflow offers a large expressiveness, until Turing-
completeness, able to describe complex algorithms with variable and data-
dependent communication rate that makes their analyze and optimization
ultimately harder.

The need for a trade-off between expressiveness and predictability has
brought the definition of so-called “quasi-static” dataflow models. Quasi-
static dataflow differs from dynamic dataflow in that there are techniques
that statically schedule as many operations as possible so that only data-
dependent operations are scheduled at runtime [41, 42, 26, 60, 83, 80, 21].

30 dataflow programming

boolean dataflow Buck’s Boolean Data-Flow (BDF) model [41, 42] ex-
tends the SDF model with production/consumption rates that depend on a
control port with a consumption rate statically fixed at one token by firing.
Basically, the rate of a given port p of an actor can be controlled by its asso-
ciated control port Cp, which means that the actor consumes a token from
Cp and the value of this token varies the consumption/production rate of p.
The fundamental dynamic actors of the BDF model are the Switch and Select
that simply choose one of its two inputs or outputs according to the control
token. The BDF model has been proven Turing-complete [41] but it implies a
restrictive coding style that is not useful for practical cases.

parameterized dataflow Parameterized dataflow presented by Bhat-
tacharya et al. [26], as well as the Parameterized and Interfaced Dataflow
Meta-Model (PiMM) [60], are both a higher-level approach to model quasi-
static behavior by extending the semantic of existing dataflow models using
parameters modifiable at runtime. For example, Parameterized synchronous
dataflow (PSDF) [26], Parameterized and Interfaced Synchronous Dataflow
(πSDF) [60], Schedulable Parametric Dataflow (SPDF) [80] and the Boolean
Parametric Data-Flow (BPDF) [21] are all a generalization of the initial SDF

model that allows the expression of quasi-static behavior. In fact, PiMM can
be considered as an evolution of the parameterized dataflow, that intends
to reach a faster propagation of the parameters, a lighter runtime overhead
and a more friendly modeling of the application.

scenario aware dataflow Scenario Aware Dataflow (SADF), intro-
duced by Theleen et al. [167], is a generalization of the SDF model where
the dynamism is modeled by a collection of static behaviors, called sce-
narios. The scenarios may differ in their computation and production/con-
sumption rates, but, are all extended by a probability of occurrence. The
switch between the scenarios is made by specific actors, called detectors, that
can reconfigure other actors by sending them specific tokens sequentially
through control channels. A restricted version, known as Heterochronous
Dataflow (HDF) [83] or FSM-SADF [163], increases the analyzability by model-
ing the dynamism using a state machine.

3.4 comparing dataflow mocs

The dataflow MoCs, presented in Section 3.3, have been designed to solve
a wide range of practical issues. In fact, the design of such a formalism
involves a trade-off between several properties, from expressiveness to pre-
dictability including practical details.

3.4.1 Characterization of Dataflow MoCs

Since the MoC is the underlying structure of a programming language, we
have to consider formal properties as well as practical properties, that may
be hard to formalize. Here is a non-exhaustive list of criteria that character-
ize dataflow MoCs.

expressiveness The expressiveness of a formalism is defined as its the-
oretical expressive power, regardless of the ease [73]. For instance, a MoC

is said Turing-complete when it can model any calculation without any as-
sumptions about the effort to achieve it.

3.4 comparing dataflow mocs 31

practicality Practicality is defined informally by the ease to describe [73].
In fact, practicality differs from formal expressiveness in the sense that it
deals more with the idea of expressing a given system concisely, intuitively
and readily. As an example, a model, proved to be Turing-complete, can
imply a restrictive coding style that is not useful for practical cases.

analyzability The analyzability of a formalism deals with the availabil-
ity of automated processes able to analyze its behavior, for instance termina-
tion and boundedness. A high analyzability offers larger degrees of freedom
for optimizations. In fact, the analyzability is directly related to the expres-
siveness: The more a formalism can express, the less it can be analyzed.

efficiency This criterion is related to the theoretical efficiency of the im-
plementation. In fact, the implementation efficiency can be measured with
the metrics usually involved in the evaluation of an algorithm: speed, i.e. the
execution time, and space, i.e. the memory, that are needed by the algorithm
to perform a certain number of computations.

3.4.2 Taxonomy of Dataflow MoCs

Figure 13 presents a classification system of the dataflow MoCs according to
the evaluation of the criteria introduced below, extending the system used
by Stuijk et al. to demonstrate the interest of scenario-aware dataflow model-
ing [163], by separating the practicality of the modeling from the theoretical
expressiveness. This separation is made in order to better reflect the usabil-
ity of the models to describe real-world applications. The taxonomy reflects
that the theoretical expressive power is progressively restricted, from DPN

towards SDF, while the analysis become more amenable, as well as the ef-
ficiency in general. For example, the proof of termination with bounded
memory consumption is decidable for SDF and CSDF models but undecid-
able for BDF, DPN and KPN models [139]. However, the practicality of the
modeling does not obey to the same rules.

Expressiveness Practicality Efficiency Analyzability

SDF

CSDF

DPN

SADF

KPN

PSDF

BDF

πSDF

high

low

HDF

Figure 13: Comparison of dataflow MoCs, extending the classification system intro-
duced by Stuijk et al. [163], which shows that DPN is the most suitable
model for a practical programming language

DPN is considered more expressive and efficient than KPN, because it al-
lows non-determinate behavior and does not rely on blocking mechanism.
BDF is as expressive as DPN but its restrictive syntax makes it not practical.

32 dataflow programming

SADF, although quite expressive, specifies the execution time of the actors
for each scenario, which offers the efficiency but clearly not the practicality.
HDF, PSDF and πSDF are intermediate trade-offs between these criteria.

In a practical point-of-view, DPN is well suited to model real-world pro-
grams, that become increasingly complex, by offering Turing completeness
while also keeping an intuitive description. Yet, the implementation needs
to be carefully set up in order to ensure the required efficiency. One way to
reach such a goal is the development of advanced analysis that could bridge
the gap between practical development and efficient implementation.

3.5 dynamic modeling requires dynamic analysis

In the last section, we have claimed that the DPN model enables expressive-
ness and practicality, as well as efficient implementation, at the expense
of the analysis power. Yet, the limit of static analysis can be overcome by
the use of advanced analysis techniques such as classification and dynamic
analysis.

3.5.1 Classification

Classification is an analysis that determines the behavior of a given actor
in terms of production/consumption of tokens, patterns that may govern
token exchanges, and possibly acceptable token values. The goal of the clas-
sification is to detect the MoC of an actor. In fact, restricted MoCs represent
different trade-offs between expressiveness and predictability.

In the simplest case, structural information of an actor is enough to clas-
sify it, for instance the rules for an actor to be considered SDF only depend
on the input and output patterns of actions. In more complicated cases, it is
necessary to gather information from an actual execution of the actor.

The literature introduces several algorithms [186, 173, 178, 179, 49] to clas-
sify dynamic actors into restricted MoCs that can be summed up as follow:

1. Detection of time-dependent actors: DPN places no restrictions on the
description of actors, and as such it is possible to describe a time-
dependent actor in that its behavior depends on the time at which
tokens are available. This happens when a given action reads tokens
from input ports which are not read by a higher-priority action, and
when their firing rules are not mutually exclusive.

2. Identification of static behavior: Classification tries to classify each
actor within models that are increasingly expressive and complex. The
rationale behind this is that the more powerful a model is, the more
difficult it is to analyze. If an actor cannot be classified as a static actor,
the method will try to classify it as cyclo-static, and then as quasi-
static. An actor is classified as static if and only if it conforms to the
SDF MoC, which means that all its actions have the same input and
output patterns. A one-action actor is by definition static.

3. Finding cyclo-static behavior: An actor has to meet two conditions
to be a candidate for cyclo-static classification: it must have a state
and there must be a fixed number of data-independent firings that
depart from the initial state, modify the state, and return the actor to
its original state. Once the actor was identified as a valid cyclo-static

3.5 dynamic modeling requires dynamic analysis 33

candidate, abstract interpretation [56] can be used to determine the se-
quence of actions characterizing its behavior, as well as its production
and consumption rates [178, 179].

4. Determining quasi-static behavior: A quasi-static actor is informally
described as an actor that may exhibit distinct static behaviors depend-
ing on data-dependent conditions. The algorithm is composed of two
steps. First, the detection of the input FIFO channels used to control
the behavior of the actor and their existing configuration. Then, the
identification of static behavior for each configuration using abstract
interpretation.

5. If not classified in a restricted MoC, the actor is defined as dynamic.

After being classified, the actors, as well as the network they compose,
may be subject to additional analysis and optimizations that require the
respect of more restricted MoCs, such as static scheduling (Section 3.6.3).

3.5.2 Critical Path Analysis

As defined by the Amdahl’s law and similarly to any program, the execu-
tion time of a dataflow program is constrained by the sequential portions
contained in the program. Even if dataflow modeling exposes explicitly the
parallelism inside an application, the execution of a program is still driven
by the data dependencies between the actors, which are characterized by
the communication channels.

The widest metric to evaluate this efficiency in dataflow programming is
the critical path, i.e. the longest, time-weighted sequence of events from
the start of the program to its termination regardless the availability of
the hardware resources. Since the static analysis of programs based on dy-
namic dataflow MoC is limited due to their data-dependent behavior, some
works [102, 36, 38] investigate the evaluation of the critical path from the ex-
ecution trace obtained after the simulation of the execution. These method-
ologies are composed of the following steps:

1. First, the execution trace is built from the simulation of the execution
of the program. An execution trace is formally described as a directed
acyclic graph G = (V, E) where vi ∈ V corresponds to the firing of
an action and ej = (vx, vy) ∈ E corresponds to the functional depen-
dency between two action firings, i.e. vx produces some data that are
consumed by vy.
The functional dependency between the two action firings imposes an
order in their execution vx ≺ vy and, by extension, a partial order on
the execution trace V . Thus, this execution trace describes an abstract
execution of the application, which is independent from the executing
platform, and independent from the actor mapping/scheduling.

2. Then, a weight wvi is assigned to each action firing vi ∈ V of the
execution trace in order to determine the critical path. The weight of
a given action firing corresponds to the time that is needed to execute
this particular firing such as

wvi = δselectvi
+ δprocessvi + δcommvi (6)

where δselectvi corresponds to the scheduling overhead introduced
by the selection of the action associated to vi, where δprocessvi cor-

34 dataflow programming

responds to the time needed to process vi, and where δcommvi cor-
responds to the time that is needed to read and write the data from
the communication channels. These values can be estimated by instru-
mented simulation or evaluated precisely by instrumented execution
using profiling tools such as Valgrind.

3. Next, a source node vsource and a sink node vsink and their depen-
dencies are added to the graph in order to ease the analysis. To do so,
two types of dependencies are added to the graph: new edges from
vsource to any node without incoming edge, and, respectively, new
edges from all nodes without outgoing edges to vsink.

4. Finally, the critical path corresponds to the weighted longest path from
vsource to vsink, which can be evaluated in linear time using the al-
gorithms presented in [36].

The critical path can be associated to a more practical metric such as
the throughput of the application, which is quite convenient for stream-
based application. Increasing the critical path would ultimately reduce the
throughput performance.

This runtime critical path analysis is dependent to the input stimulus,
which may reduces the interest of the analysis. Consequently, sufficiently
large input stimulus have to be used to overcome this limitation.

3.6 execution models

Dataflow MoCs assume an ideal execution model, offering unlimited compu-
tation resources and unbounded communication channels, which enable the
execution of all actors in parallel. But the practical limit of this assumption
requires the definition of an execution model that enables the execution of
a dataflow program on a processor.

Fortunately, the strong encapsulation of dataflow components, on top of
explicitly modeling the concurrency, lets the choice in a variety of execution
models. But, the efficiency of these execution models stays strongly depen-
dent to the dataflow MoC that they implement. In fact, this execution model
is the formalization of task mapping and scheduling processes introduced
in Chapter 2.

3.6.1 Multi-Threading

A natural approach for handling concurrent execution on a sequential en-
vironment is the use of threads, which can be seen as lightweight pro-
cesses that share a single address space. Similarly to multitasking, multi-
threading is based on a scheduler that organizes the concurrent execution
of the threads using preemptive or cooperative strategies.

As a matter of fact, dataflow programs can be easily implemented on a
multi-threading environment. Each component of the dataflow graph is ex-
ecuted in its own thread and we let the scheduler organize the execution.
Multi-threading is commonly used to execute KPN-based programs on pro-
cessors thanks to the blocking access to the FIFO channels [82, 94, 128].

However, thread-based implementations can lead to a large overhead
when a large number of components are executed to the same processing
unit [43]. That’s why some works have studied lightweight thread imple-
mentations, such as Protothreads [94, 128].

3.6 execution models 35

3.6.2 Dynamic Scheduling

Instead of relying on threads managed by the operating system kernel, the
DPN model allows a continuous execution of the operations of a graph
thanks to a user-level scheduler [121]. This scheduler can sequentially test
the firing rules from several actors, and fire an actor if a firing rule is valid.
An efficient scheduling for dataflow programs consists in finding a, pre-
defined or not, order of actor firings throughout the execution process capa-
ble of maximizing the use of all the processing units in one platform.

Since actors in a DPN may have data-dependent behaviors, and data are
unknown in the system, determining an optimal schedule of a program is
not possible at compile-time (equivalent to the halting problem [139]), i.e.
the scheduling can be only done in the general case at run time. We present
here two strategies of dynamic scheduling that has been extensively used
for the implementation of dynamic dataflow program based on DPN MoC

[177] [4].

round-robin This strategy is a simple scheduling strategy based on
compile-time ordering of actor execution. The scheduler continuously goes
over a static list of actors: The scheduler evaluates the firing rules of an
actor, fires the actor if a rule is met and continues to evaluate the same actor
until it no longer meets a firing rule. Then, the scheduler switches to the next
actor. This scheduling policy guarantees to each actor an equal chance of
being executed, and avoids deadlock and starvation. Contrary to classical
round-robin scheduling, there is no notion of time slice so the timing is
performed at run-time: an actor is executed until it cannot fire anymore
in order to minimize the number of actor switching and consequently the
scheduling overhead. The reason of this actor switching is that in practice
the FIFO channels will finally be full or empty because of their bounded
sizes.

Blocking

Blocking
Bl
oc
kin
g

B
lo
ck
in
g

B
lo
ckin

g

A B

E

D

C

Figure 14: Round-robin scheduling of the actor of the dataflow network presented
in Figure 9

Figure 14 shows an application of this round-robin scheduling on the
example of dataflow graph presented in Figure 9. The scheduler executes the
actors in a circular order i.e. the five actors A, B, C, D and E are successively
executed then the scheduler starts again from A and so on.

data-driven / demand-driven This strategy is a more advanced
runtime scheduling strategy. Indeed, the round-robin strategy schedules ac-
tors unconditionally i.e. the firing rules of an actor could be checked even if

36 dataflow programming

they are all invalid. In this case, the firing rules of the actor will be checked,
but no computation will be performed: That is called a miss. As a result, the
round-robin strategy becomes inefficient with complex applications contain-
ing hundred of actors and a lot of control communications.

Data-driven / demand-driven scheduling strategy is based on the well-
known data driven and demand driven principles [139]. On the one hand,
data-driven policy executes an actor when its input data have to be con-
sumed to unblock the execution of the precedent actor. On the other hand,
demand-driven executes an actor when its output is needed by one of its
successor actor. Two types of events can cause the blocking of an actor exe-
cution, each one is implying a different scheduling decision:

• When an actor is blocked because an input communication channel
is empty, demand-driven policy is applied and asks the scheduler to
execute the predecessor of this channel.

• When an actor is blocked because an output communication channel
is full, data-driven policy is applied and asks the scheduler to execute
the successor of this channel.

Contrary to the round-robin algorithm, the ordering of the actor execution
is made at run-time. Thus, a dynamic list is needed to store next schedula-
ble actors. The behavior of this schedulable list is illustrated with Figure 15.
When an actor is blocked during its execution, the empty or full FIFO chan-
nels are identified and their associate predecessors or successors are added
to the schedulable list. The actor to be executed next corresponds to the next
entry in the schedulable list.

Waiting list of
schedulable actors

Blocking
predecessors

and/or
successors

Next
schedulable

actor

Current
executed

actor

Figure 15: Behavior of the dynamic list of next schedulable actor used by data-driven
/ demand-driven scheduling

3.6.3 Static Scheduling

The main feature of static dataflow MoCs, i.e. SDF or CSDF, is their ability
to be scheduled at compile-time, which allows optimizations that are not
possible with dynamic MoCs. In fact, static scheduling aims to determine
a valid schedule of a dataflow graph that can be applied periodically. A
valid schedule consists in a finite sequence of actor firings that introduces
no deadlock. When every actor appears just once in the valid sequence, we
call the sequence a single appearance schedule.

Given a graph G=(V,E) with |V | = n and |E| = m, a sequence of actor firing
is defined by a repeat vector q = (qv1 , qv2 , · · · , qvn) where each qvk is the
number of firing of the actor vk ∈ V .

3.6 execution models 37

A valid sequence must respect the following equality:

∀e = (vx, vy) ∈ E, prod(e)q(vx) − cons(e)q(vy) = 0 (7)

This equation can be reformulated as an equivalent matrix equation:

Γ = 0 (8)

where Γ is the matrix of consumption/production, called topology matrix,
whose entries are defined by Γ = (γi,j)16i6m,16j6n such as:

γi,j =


prod(ei) if src(ei) = vj
−cons(ei) if dst(ei) = vj
0 otherwise

(9)

The resulting topology matrix defines a set of balance equations q = ~0. A
valid schedule exists only if the set of balance equations admits a non-zero
solution.

The problem of finding an optimal schedule being NP-complete, several
heuristics have been studied [120, 27, 132, 142]. The main objective of static
scheduling for single processor is the minimization of memory require-
ments. Knowing that the single appearance property guarantees the opti-
mal code size of a static schedule, the studies focus on buffer minimization
[120, 27, 132].

3.6.4 Multi-core scheduling

As seen before, multi-core scheduling of applications has been extensively
studied over the last decade [155]. Considering especially the mapping of
dataflow applications, most of the studies focus on static dataflow MoCs since
they can more easily be analyzed [154, 72, 13, 142]. However, we can extract
from the literature three categories of multi-core scheduling that allow dy-
namism within the application description.

scenario-based approaches These approaches handle the schedul-
ing of dynamic applications using multiple static scenarios [162, 163, 153].
While scenario-based approaches have proved to be very efficient, they are
not truly scalable as the number of scenarios increases exponentially with
the complexity of the application. Moreover, describing the scenarios re-
quires either additional work from developers, which is not very practical,
or advanced analyses to detect them automatically, closely related to the
classification described in Section 3.5.1.

trace-based approaches These approaches handle the scheduling of
dynamic applications using execution trace analysis [17, 45, 44]. In fact, the
performance efficiency of dataflow programs is often characterized by the
makespan, the length of the critical path obtained under scheduling con-
straints, due to its close relationship with the application throughput. Thus,
several works perform actor mapping strategies as makespan minimization
on the execution trace. While trace-based approaches are very efficient, they
cannot be performed at runtime due to the complexity of execution trace
analyses.

38 dataflow programming

profiling-based approaches These approaches handle the schedul-
ing of dynamic applications by way of profiling [123]. The execution of the
application is firstly profiled with an initial scheduling, then the schedul-
ing system computes a better schedule from the profiling information. For
example, Lucarz describes an algorithm [123] that assigns successively the
actors to the available processors starting from the ones with higher work-
load. But, his approach focuses on the workload without taking into account
other aspects such as the communications. Thus, Lucarz presents another al-
gorithm based on Simulated Annealing that considers the communication
with the cost of the algorithm complexity.

3.7 existing dataflow-based languages and tools

Since Sutherland’s preliminary work, dataflow programming has been heav-
ily studied. In fact, dozens of languages, exploiting the dataflow paradigm,
were designed to solve a wide range of problems, from digital signal pro-
cessing to hardware design. In fact, dataflow languages can be described as
DSL [61] that focus on how things connect.

Here is a non-exhaustive list of modern languages and tools that are based
upon the dataflow paradigm:

lustre is a synchronous dataflow language developed for programming
real-time systems and describing hardware [95]. It was introduced in
the early 1980s by a research project and is now used as the core lan-
guage of the SCADE toolset, an environment with certified code gener-
ation dedicated to the programming of critical systems such as aircraft
and nuclear plant.

signal is another synchronous dataflow language that was designed for
programming real-time systems [117], similarly to Lustre. SIGNAL is
supported by the open-source Polychrony toolset that provides a com-
plete integrated development environment.

streamit is a dataflow language based on SDF MoC, which was later ex-
tended with dynamic features. Streamit was initially developed as a
support for research studies on dataflow programming at MIT [168].
Streamit is also a dedicated compilation infrastructure that includes
compilation flow for several microprocessors, performing a set of domain-
specific and architecture-specific optimizations.

daedalus is a system-level design environment for MPSoC platform [130],
which automatically parallelizes the C specification of an application
using the Polyhedral Process Network (PPN) model, which is a special
class of KPN that involves nested loops.

maps is another programming environment for MPSoC applications that is
based on the KPN model [44, 45]. MAPS targets automatic paralleliza-
tion of sequential application, scheduling of parallel application, as
well as multi-applications scheduling.

preesm is an open-source tool [141] that aims to generate efficient code for
multi-core DSP thanks to a rapid prototyping approach based on static
dataflow modeling.

c~ pronounced c-flow, is a KPN-based language targeting hardware devel-
opment [181]. Synflow, the start-up company developing C~language

3.8 conclusion 39

and the associated tools Synflow studio, intends to make hardware de-
sign more efficient and reliable using the high abstraction level offered
by the dataflow paradigm.

cal is a dataflow language based on the DPN model [67]. CAL was devel-
oped by Eker and Janneck to provide a practical language for the de-
velopment of applications in a variety of domains, such as multimedia
processing, control systems, network processing, etc. CAL has been de-
signed as a part of the Ptolemy project, which studies model-based
techniques for the development of real-time and embedded system,
inside a tool called Ptolemy II [68].

This subset of dataflow languages and tools shows already the variety of
the application domains where dataflow programming has been applied.

3.8 conclusion

All along this chapter, we introduce dataflow programming as a challeng-
ing programming paradigm that offers a flexible development approach to
deal with the increasing complexity of the applications, and that offers a
large degree of parallelism to exploit the massive parallel capabilities avail-
able in modern architectures. We also show that the use of a programming
language based on the dynamic dataflow model, rather than static mod-
els, is a pragmatic choice to implement complex applications. Indeed, these
dynamic dataflow languages offer a large expressive power along with a
practical syntax that are both required for an industrial-scale development.

Before explaining our contribution to dynamic dataflow programming,
the next chapter introduces the RVC framework: an innovative framework,
introduced in order to improve the standardization process of video com-
pression standards, that can be considered as the first large-scale experi-
mentation on dynamic dataflow programming to our knowledge.

4R E C O N F I G U R A B L E V I D E O C O D I N G

Before you become too entranced with
gorgeous gadgets and

mesmerizing video displays,

let me remind you that
information is not knowledge,
knowledge is not wisdom, and

wisdom is not foresight.

Each grows out of the other, and
we need them all.

— Arthur C. Clarke, British writer

The growing popularity of multimedia has made digital video mainstream.
Digital video is now used for a wide range of applications that are achiev-
able with the advances in computing and communication technologies as
well as video compression techniques. However, the deployment and adop-
tion of these technologies were possible primarily because of the standard-
ization process that offers the interoperability between the multimedia de-
vices available on the market.

The standardization process of video compression formats is mainly driven
by the following organizations that are themselves driven by the industry
with participation and contributions from academia:

• The International Organization for Standardization (ISO) and the In-
ternational Electrotechnical Commission (IEC) that have jointly formed
the Moving Picture Experts Group (MPEG).

• The International Telecommunication Union (ITU) and more specifi-
cally its Video Coding Experts Group (VCEG).

Since 2001, both working groups are collaborating in the standardization of
the major video formats. The standardization process is composed of several
steps that start with a call for proposal asking for tools and technologies to
solve a given problem. Then, the proposals are experimentally evaluated
in order to choose the tools and technologies selected to take part of the
standards and keep the standards relevant to the needs of industry.

4.1 limits of the standardization process

Video compression standards have become extremely complicated systems,
and are consequently long to specify. So, traditional standardization pro-
cesses quickly show their limits as regards to the time-to-market pressure.

4.1.1 Multiplication of the Standards

Since the standardization of H.120, the first digital video coding standard
(in 1984 by the ITU), the number of video coding standards has increased

41

42 reconfigurable video coding

in a linear way, as presented in Figure 16. Even if the H.120 standard was
not widely used due to practical reasons, it represents the roots of digital
video compression techniques, and most of recent video standards can be
considered as its direct successors.

1980 1985 1990 1995 2000 2005 2010 2015

0

2

4

6

8

10

12

14

H.120

H.261

MPEG-1

MPEG-2

H.263

MPEG-4 part 2

H.264

Theora

VC-1

SVC

MVC

VP8

High Efficiency Video Coding

Video standards

Year of publication

N
u

m
b

e
r

o
f s

ta
n

d
a

rd
s

p
u

b
lis

h
e

d

Figure 16: Multiplication of the video compression standards

In fact, the standardization organizations, ITU and ISO/IEC, have ratified
most of the successful video standards: H.262 / MPEG-2 Part 2 in 1996 and
H.264 / MPEG-4 Part 10 in 2003. However, the controversy about the patent
licensing of these standards has led to the definition of royalty-free formats
such as the Google’s VP8/VP9, BBC’s Dirac and Xiph’s Theora/Dalaa. Var-
ious other video compression formats were standardized as well such as
Microsoft’s VC-1 included in the Blu-ray standard or the Chinese Audio
Video Standard (AVS).

Apart from the question of licensing, a large choice of compression stan-
dards is offered to encode a video stream:

• The increasing demand in multimedia applications, requiring constantly
higher compression rate, combined with the technological improve-
ment of computing hardware, offering ever more computational ca-
pabilities, has led to the recurring development of additional video
coding standards based on state-of-the-art algorithms. For instance,
the new High Efficiency Video Coding (HEVC) standard has been de-
signed to take advantage of the parallel processing capabilities offered
by modern devices [164].

• Digital video compression techniques have expended their applica-
tion domains according to the development of multimedia. Nowadays,
video compression is involved in a large panel of applications such as
streaming, conferencing, surveillance, storage, medical monitoring, etc.
As a consequence, the ITU/ISO video standards are structured around
the definition of several profiles, each one defining a subset of features
that is relevant for the applications that they characterize. H.264 / Ad-
vanced Video Coding (AVC) has even been amended with additional
profiles in order to provide scalable and multiview capabilities.

Unfortunately, a standard does not disappear when a new one is an-
nounced, so they have to coexist in most of the situations. In fact, the mi-

4.2 an innovative development framework 43

gration towards a newly adopted standard is a long-time process that often
requires a large scale hardware update, which is much more difficult than
updating a software. As an example, MPEG-2 part 2, yet released in 1995,
is still being used by the television broadcast network in north America,
although MPEG-4 part 10 is also proposed.

4.1.2 Monolithic Specifications of the Standards

Since the specification of MPEG-2, the textual reference of each standard is
provided with an implementation of a video decoder complying with the
ratified standard. This normative implementation, called reference software,
has been up to now developed in monolithic fashion using regular C/C++
languages. Nevertheless, the structure of a software system impacts all its
life, from the development to the deployment through the maintenance, and
a monolithic architecture brings the following limitations:

• Software designers are often compelled to rewrite the decoder from
scratch so as to design a new architecture that may be necessary not
only to reach the performance expected, but also to adapt the software
description to the design methodologies of the computing devices. For
instance, it is impossible to translate automatically such a monolithic
implementation into a synthesizable hardware description. Moreover,
programming languages based on the imperative paradigm have in
general a limited potential of parallelism due to their tendencies to
over-specify the programs.

• Seeing that most of the new standards can be considered as an evo-
lution of the last one, the monolithic implementation of the reference
software has brought a lot of redundancy in video compression stan-
dards and their reference software. As an example, the deblocking
filter is available in both AVC and HEVC standards but, because of their
slight differences, it was entirely rewritten during the specification of
HEVC. Unfortunately, the difficulty to extract the redundancies among
the video standards limits the development of decoding systems sup-
porting several standards.

4.2 an innovative development framework

To overcome the lack of interoperability between all the video compres-
sion standards deployed in the market, MPEG has introduced an innovating
framework, called RVC [125, 29, 126], dedicated to the development of video
coding tools in a modular and reusable fashion.

The MPEG RVC framework defines two standards that have been produced
by the RVC working group:

• The codec configuration representation (ISO/IEC 23001-4 or MPEG-B pt.
4) [10] describes the format with which an RVC decoder can be defined
as a network of computational blocks, as well as a textual language for
the definition of video coding blocks (Section 4.3).

• A video tool library (ISO/IEC 23002-4 or MPEG-C pt. 4) [11] that stan-
dardizes actors needed to describe existing video coding standards
(Section 4.2.2), currently MPEG-4 part 2 and MPEG-4 part 10.

44 reconfigurable video coding

In fact, RVC does not only provide a new standardization process that
overcomes the limits of the current standardization process, but also intro-
duces a framework that enhances multimedia development by offering all
the advantages of dataflow programming with the pragmatism required by
the development of complex applications.

4.2.1 Dataflow to Enhance Multimedia Development

The traditional imperative programming paradigm leads to the implemen-
tation of monolithic applications that are limited by nature. The RVC frame-
work overcomes this limitation by exploiting the dataflow programming
paradigm in order to propose a flexible development approach that pro-
duces modular, scalable and portable applications.

modularity Multimedia applications become more and more complex.
To handle this complexity, the development process has to be flexible enough
to allow the writing of modular descriptions. The strong encapsulation of
the components of a dataflow program offers the required modularity:

1. Hierarchical ability enables the organization of the components in
subnetworks according to their concern, such as the motion prediction
or the residual decoding in a video decoder.

2. In video compression standardization, re-usability is particularly rel-
evant to describe the multiple profiles of a given standard that may
share a large portion of their algorithms.

3. Reconfigurability enables adaptive execution, which is required by
the ideal video decoder: A universal decoder which would be able to
decode any video stream, independently from the compression stan-
dard to which it refers.

scalability Modern multimedia applications manipulate rich media
contents, such as video stream, and consequently can be qualified as compute-
intensive applications. As presented in Chapter 2, modern architectures
offer massive parallel capabilities in order to achieve the real-time perfor-
mance required by these compute-intensive applications. One of the advan-
tages of dataflow programming, that we have emphasized in Section 3.2, is
the explicit concurrency that simplifies the use of the parallelism compared
to traditional imperative programming paradigm. As an example, some par-
allelisms are inherent to video processing:

1. The succession of processings on the data stream (filtering, transform-
ing, etc), which composes a video codec, can be directly modeled by
a set of interconnected boxes making Pipeline-Level Parallelism and
Task-Level Parallelism straight-forward.

2. The independent processings of the image components, Luma and
Chroma, are a good example of the Data-Level Parallelism that can
be exposed within a dataflow description.

portability The heterogeneity of multimedia devices makes portabil-
ity an interesting property of video coding tools, and their implementation
within the RVC framework enables their compatibility with hardware and

4.2 an innovative development framework 45

software platforms. In fact, these high-level descriptions aim to be trans-
compiled in lower-level languages in order to bridge the gap between exist-
ing programming models:

1. Hardware synthesis: Dataflow modeling simplifies the translation of
the description of an application into Hardware Description Languages
(HDLs) targeting Application-Specific Integrated Circuits (ASIC) and
Field-Programmable Gate Arrays (FPGAs). In fact, the explicit concur-
rency is quite similar to the structural view of a hardware descrip-
tion, contrary to monolithic specifications that usually involve com-
plex analysis such as the ones performed in High-Level Synthesis
(HLS).

2. Software programming: When hardware synthesis is straight forward,
the translation of dataflow descriptions into software programming
languages usually requires an execution model to handle the schedul-
ing of the dataflow components in a sequential environment (Section
3.6). But, the increasing parallel capability of modern processors takes
advantage of explicit concurrency of dataflow descriptions. Further-
more, explicit communications simplify the execution on architectures
that require advanced memory accesses such as DSP and GPU.

3. Co-design for heterogeneous platform: Describing the application us-
ing a set of interconnected components enhances its ability to be ex-
ecuted on an heterogeneous platform, containing a mixture of micro-
processors and/or hardware processing units. Since the components
can be translated independently into software or hardware, the co-
design flow performs the mapping of the components onto the avail-
able computing resources according to the specification of the applica-
tion, the executing platform, and the user-defined constraints.

4.2.2 Towards the RVC Vision

To do so, the RVC framework introduces the concepts of Video Tool Library
(VTL) and Abstract Decoder Model (ADM) [125, 29, 126]:

• The VTL is a collection of algorithmic components composing video
codecs, known as Functional Units (FUs), that are specified using a
programming language called RVC-CAL. The RVC framework provides
a normative VTL, the MPEG VTL, that contains all the FUs required to
cover all MPEG standard specifications. Proprietary VTLs can also be
proposed within the framework to provide extended collections of FUs

that allow optimizations or additional features.

• The ADM is a generic representation of a decoder, specified using a
dataflow network of coding tools, the FUs from the VTL. Several codecs
can be specified by combining FUs together from a common VTL, and,
for instance, a single FU can be involved in several specifications. This
re-usability simplifies the development of multi-standard video decod-
ing applications and devices by allowing software and hardware com-
ponents to be reused across video standards.

Thus, as shown in Figure 17, a decoder description can be delivered along
with the encoded video stream. The decoder description is used to configure
the decoder engine to be able to decode the video stream. So, the decoder is
instantiated from the dataflow graph representing the decoder description

46 reconfigurable video coding

and the components available in the VTLs (normative and/or proprietary).
In other words, the decoder is constructed according to the video encoding
format, as opposed to traditional rigidly-specified video decoders.

Decoder type-1
or Decoder type-2
or Hybrid decoder

Decoder
type-1

Decoder
type-2

Decoder Description

Coded data Decoded video

Figure 17: RVC vision

4.3 multimedia-specific languages

The RVC framework uses two programming languages for both levels of the
description [10]: A visual programming language, called Functional unit
Network Language (FNL), to represent the interconnection network (Section
4.3.1), and a subset of CAL, known as RVC-CAL, to describe the component’s
behavior (Section 4.3.2).

Additionally, the framework also introduces the Bitstream Syntax Descrip-
tion Language (BSDL) which describes the structure of the bit-stream [9, 149],
i.e the incoming video stream. This language aims to automatically gener-
ate the actor that can parse and decode the corresponding input stream. But,
considering that no implementation has yet demonstrated the practicality of
this approach, the BSDL will not be described deeper in this thesis.

4.3.1 From Text to Visual Network Programming

FNL is the programming language used to specify the interconnection net-
work between all the actors. The main characteristic of this language is its
ability to support a textual representation (Listing 2) as well as a graphical
representation (Figure 18). Additionally, an equivalent representation based
on eXtensible Markup Language (XML) has been standardized, known as
XML Dataflow Format (XDF), to allow the interoperability between the tools
[10] (Listing 3). As a matter of fact, each vertex or edge from the graphical
representation corresponds to an element of the textual representation, as
well as an element of their XML-based representation:

• A vertex represents one Instance of an entity. An entity can be an actor
or a network, both being identified by their Class which is composed
of the package name, i.e. the localization of the entity, and the name
of the entity. An entity may also be parametrized to improve its re-
usability. By way of example, in Figure 2, the vertex Display (Line 4)
represents the instantiation of an entity, named Display as well, which
is located in the package org.sc29.wg11.common. For this instantiation,
the parameter BLK_SIDE is set to 64.

• An edge represents a Connection, i.e. a communication channel, be-
tween two entities, and, by extension, a data dependency. This edge

4.3 multimedia-specific languages 47

is connected to the port (src-port) of its source entity (src), and to the
port (dst-port) of its destination entity (dst). A connection may also be
parametrized with a specific channel size.

This simple example already demonstrates the practicality of visual pro-
gramming: The verbosity of the textual representation emphasizes the clar-
ity and the natural of the graphical representation. Even so, visual program-
ming requires an advanced editor to be effective.

1 network Top_mpegh_part2_main():

2 entities

3 Source = org.sc29.wg11.common.Source();

4 Display = org.sc29.wg11.common.Display(BLK_SIDE=64);

5 Decoder = org.sc29.wg11.mpegh.part2.Decoder();

6 structure

7 Source.O --> Decoder.BYTE;

8 Decoder.VID --> Display.VID;

9 Decoder.DispCoord --> Display.DispCoord;

10 Decoder.PicSizeInMb --> Display.PicSizeInMb;

11 end

Listing 2: Textual representation of dataflow network

Source
Decoder Display

(BLK_SIDE=64)

BYTEO VID

DispCoord

PicSizeInMb

VID

DispCoord

PicSizeInMb

Figure 18: Visual representation of dataflow network

1 <?xml version=" 1.0 " encoding="UTF−8"?>
2 <XDF name="Top_mpegh_part2_main">
3 <Instance id="Source">
4 <Class name="org . sc29 .wg11.common. Source"/>
5 </Instance>

6 <Instance id="Display">
7 <Class name="org . sc29 .wg11.common. Display"/>
8 <Parameter name="BLK_SIDE">x
9 <Expr kind=" Literal " literal -kind=" Integer" value="64"/>

10 </Parameter>

11 </Instance>

12 <Instance id="Decoder">
13 <Class name="org . sc29 .wg11.mpegh. part2 .Decoder"/>
14 </Instance>

15 <Connection dst="Decoder" dst-port="BYTE" src="Source"
src-port="O"/>

16 <Connection dst="Display" dst-port="VID" src="Decoder"
src-port="VID"/>

17 <Connection dst="Display" dst-port="DispCoord" src="Decoder"
src-port="DispCoord" />

18 <Connection dst="Display" dst-port="PicSizeInMb" src="Decoder"
src-port="PicSizeInMb"/>

19 </XDF>

Listing 3: XML-based intermediate representation of dataflow network

48 reconfigurable video coding

4.3.2 Actor Programming Made Easy

A subset of CAL, called RVC-CAL, has been included in the standardization
of the RVC framework [10]. The language is a mixture between imperative
and functional programming languages that introduces useful abstractions
for dataflow programming. Comparing to the original CAL language [67],
RVC-CAL provides a precise type-system as well as some practical features.

The language is used to describe the behavior of the components, called
actors. The execution of an actor is composed of a sequence of ordered steps,
applied repeatedly:

1. First, the actor consumes, or not, a given amount of data from its input
ports.

2. Then, it may modify its internal state.

3. Finally, it produces, or not, a given amount of data to its output ports.

As a consequence, describing an actor execution involves the description
of its interface such as the input and output ports, its internal state that is
modeled by a set of state variables, as well as the procedural description of
the computational steps and the internal scheduling strategy that ordered
these steps.

header In RVC-CAL, an actor can be decomposed in a header and a body
such as presented in Listing 4. The header of the actor is composed of its
signature along with its interfaces that are both declared at the top of the
actor description:

• The signature that identifies precisely the actor in the VTL. The signa-
ture is composed of the name of the actor (IT4x4_1d), and the name
of the package where the actor is located (devel.org.sc29.wg11.mpegh.
part2.xIT), in a Java fashion.

• The interfaces of the actor that describe the structure used to interact
with the outside. The interfaces is composed of the input ports (int(
size=16)Src) and output ports (int(size=16)Dst) connected to the com-
munication channels, and the parameters (int shift) that are variables
initialized only when the actor is instantiated within a network.

1 package devel.org.sc29.wg11.mpegh.part2.xIT;

2

3 actor IT4x4_1d(int shift) int(size=16) Src ==> int(size=16) Dst :

4

5 // body

6

7 end

Listing 4: Header of an actor

procedural code RVC-CAL describes the behavior of an actor by the
way of imperative programming paradigm, among other specific structures
that we detail below. To do so, the language supports the common concepts
that are traditionally used by procedural language (Listing 5), such as vari-
ables, functions and procedures .

4.3 multimedia-specific languages 49

1 int MAX_RANGE = 15;

2 int BIT_DEPTH = 8;

3 int coeff := 32;

4

5 function abs(int(size=32) x) --> int(size=32) :

6 if(x > 0) then x else -x end

7 end

8

9 procedure nextLcuAddressFilt()

10 begin

11 xCuFilt := xCuFilt + 1;

12 if(xCuFilt = picSizeInCu[0]) then

13 xCuFilt := 0;

14 yCuFilt := yCuFilt + 1;

15 end

16 end

Listing 5: Procedural code

action An action corresponds to a firing function, which describes, in a
procedural manner, the behavior of the actor during a firing. For example,
the action, presented in Listing 6, reads 16 tokens from its input port Src

and copies them in a new order to its output port Dst.

1 action Src:[src] repeat 16 ==> Dst: [dst] repeat 16

2 var

3 List(type:int(size=16), size=16) dst

4 do

5 dst := [src[4 * column + row] :

6 for int row in 0 .. 3, for int column in 0 .. 3];

7 end

Listing 6: An action that transposes 4x4 blocks

internal scheduling CAL is a control-oriented language, several mech-
anisms are offered to describe explicitly the internal scheduling within an
actor [67]:

• The guards and the patterns implement together the concept of the
firing rules introduced by the DPN model (Section 3.3.2). A guard is
a condition on the fireability of the action depending on the value
of the state variables and/or the incoming tokens, while the pattern
focuses on the amounts of tokens/rooms that have to be available on
the communication channels. As an example, being able to fire the
action getPixValue, presented in Listing 7, requires that the condition
of the line 3 is valid, and that the channel connected to the input port
B has at least 256 tokens available.

1 getPixValue: action B :[Bytes] repeat 256 ==>

2 guard

3 nbBlockGot < pictureSizeInMb

4 do

5 // Body

6 end

Listing 7: Guard and pattern

50 reconfigurable video coding

• The priorities define a partial-order relation on the firing rules (lines
9-12 of Listing 8). Since two firing rules are not necessarily exclusive,
the description of priorities reduces the possible non-determinism.

The Finite State Machines (FSMs) have also been introduced to de-
scribe the internal scheduling of an actor in a convenient way (lines
1-7 of Listing 8). In fact, the FSMs do not provide a larger expressive
power to the language than the one already available with the guards,
the patterns and the priorities.

Additionally, all actions without names, that is to say untagged ac-
tions, are not constrained by any schedules [67]. Thus, untagged ac-
tions always have the highest priority and can be executed from any
state of the FSM. Untagged actions are another practical feature that
should be however used carefully since they can imply a large schedul-
ing overhead.

1 schedule fsm initLength:

2 initLength (computeNewLength) --> copy;

3 copy (copyData) --> copy;

4 copy (endCopy) --> padding;

5 padding (zeroPadding) --> padding;

6 padding (endZeroPadding) --> initLength;

7 end

8

9 priority

10 endCopy > copyData;

11 endZeroPadding > zeroPadding;

12 end

Listing 8: FSM and priorities

types The specification of the RVC-CAL language defines an accurate type
system containing the following data types [10]:

• An integer data type that can be signed or unsigned, declared with
the int and uint keywords respectively. An integer data type can also
be bit-accurate, for instance the type int(size=8) considers a signed
integer coded on 8 bits.

• Three floating-point types coded on 16, 32 and 64 bits, that are defined
respectively using the half, float and double keywords.

• A logical data type, having two potential values true and false, unsur-
prisingly declared using the keyword bool.

• A type to describe a sequence of characters, String.

• A list type that is declared with a given type and size, such as List(

type:int, size=8) that represents a list of 8 integers, so closely related
to a simple array.

In fact, the type system is one of the major difference between the original
CAL and the one standardized within the RVC framework. When CAL keeps
an abstract type system authorizing untyped data [67], RVC-CAL defines a
practical type system dedicated to the development of signal processing
algorithms.

4.4 applications 51

All these features make RVC-CAL fully analyzable, in the sense of actor-
level analysis as opposed to network-level analysis, contrary to general-
purpose programming languages such as C that are hardly analyzable be-
cause of complex mechanisms like pointers [97].

4.4 applications

The inclusion of a subset of CAL in the MPEG RVC framework has enabled
the development of several video decoders, along other applications, using
dynamic dataflow programming. Such a collection of applications offers a
great opportunity to study all the problematics related to dynamic dataflow
programs.

4.4.1 Video Codecs

Since the standardization of H.261, the first block-based digital video coding
standard, in 1988 by the ITU, all existing ITU/MPEG video codecs have glob-
ally kept the same structure [150]. The difference between the standards
comes mainly from the evolutions of the algorithmic part that offer an in-
creasing compression rate. In fact, the decoding process can be divided in 3

distinct parts, that make the application graph of all RVC-based video codecs
quite similar [126]:

1. The first part, called parser, extracts values needed by the next process-
ing from the compressed data stream. The stream is decompressed
with entropy decoding techniques, then the syntax elements compos-
ing the stream are extracted in order to be transmitted to the actors
that they may concern.

2. Another one, known as residual, decodes the error resulting of the
image predication using inverse transforms, such as the well-know
IDCT. The transforms allow spatial redundancy reduction within the
encoded residual image.

3. And, a last part, called prediction, performs the intra and inter pre-
diction. Intra prediction is done with collocated blocks in the same
picture whereas inter prediction is performed as a motion compensa-
tion with other pictures. The inter prediction also implies the use of a
buffer containing decoding pictures to be able to perform the temporal
prediction.

Since its creation, the RVC working group has standardized the implemen-
tation of 3 video decoders detailed below:

mpeg-4 part 2 MPEG-4 Part 2 standard, also known as MPEG-4 visual, was
released in 1999 by the joint ISO/ITU consortium. The popular DivX
and Xvid codecs, that have largely contributed to the development
of video sharing over the Internet, implement this standard. In fact,
The Simple Profile of MPEG-4 Part 2 decoder was the first application
standardized by the RVC working group. Given the novelty of the ap-
proach, the decoder was the source of dozens of experiments that have
conducted to the development of several versions of the decoder with
variable granularities.

Figure 19 presents the normative version of the description. As pre-
sented, the structure of the application graph matches well with the

52 reconfigurable video coding

structure of the video standard. The graph can be partitioned into
three regions, each one corresponding to a dedicated processing: pars-
ing, residual decoding and motion compensation. To increase the par-
allelism exposed within the decoder, the parser can separate the pro-
cessing of each image components, luma and chroma, in three parallel
paths (Y, U and V). The image components are then merged back at
the end of the processing.

P
A

R
S

E
R

M
E

R
G

E

TEXTURE DECODING (Y)

BITSTREAM DECODED
VIDEO

MOTION COMPENSATION (Y)

TEXTURE DECODING (U)

TEXTURE DECODING (V)

MOTION COMPENSATION (U)

MOTION COMPENSATION (V)

Figure 19: RVC-based description of the MPEG-4 Part 2 SP decoder

mpeg-4 part 10 Introduced in 2003, MPEG-4 Part 10, also known as MPEG-
4 AVC / H.264, is a widely-used video standard since the advent of
High Definition in everyday usage [176]. In fact, AVC is currently one of
the most exploited standards within commercial video services, going
from web streaming to digital broadcasting including camera record-
ing.

As presented in Table 4, two profiles of the AVC codec were standard-
ized, Constrained Baseline Profile (CBP) [87, 23] and Progressive High
Profile (PHP). The large number of actors and FIFO channels states of
the complexity of the decoder, as well as the controlled fashion of the
descriptions.

mpeg-h part 2 MPEG-H Part 2, also known as MPEG HEVC / H.265, is the
last born video coding standard, developed conjointly by ISO/ITU, as
a successor to MPEG-4 AVC / H.264. HEVC is improving the data com-
pression rate, as well as the image quality, in order to handle modern
video constraints such as the high image resolutions 4K (3840 x 2160)
and 8K (7680 x 4320) [164]. Another key feature of this new video cod-
ing standard is its capability for parallel processing that offers scalable
performance on the trendy parallel architectures [164].

Such parallel capabilities offer a great opportunity to prove the interest
of the RVC approach. Consequently, the RVC working group has devel-
oped, in parallel with the standardization process, an implementation
of the HEVC decoder using the RVC framework, which is presented in
Figure 20. This joint effort has permitted the demonstration of a func-
tional version during the 103th MPEG meeting in January 2013. At the
same time, the final draft of the HEVC standard was approved.

Table 4 summarizes the properties of each description of these well-known
decoders: Respectively, the profile of the decoder, the parallelization of the
decoding for each component, the number of actors and FIFO channels.

The RVC-based video decoders are described with an average granular-
ity (at block level), contrary to the traditional coarse-grain dataflow (at

4.5 existing tools supporting rvc 53

�����
����	��	��

��������
���������

�������
��

�����
����	��	��

�	�����
������

������
���

�����
��

������
���

�����
��

������
���

�����
��

������
���

�����
��

������
�����

�������
��

������
�����

�������
��

������
�����

�������
��

������
�����

�������
��

��� ����� ��� �����

���	����
!��"��

 �#
�$%

��������

	���������

������

	
�
�
�
�
�

Figure 20: RVC-based description of the MPEG-H Part 2 SP decoder

Standard Profile Version YUV #Actors #FIFOs

MPEG-4 Part 2 Simple Profile RVC yes 41 143

Xilinx no 34 86

Ericsson yes 42 105

EPFL no 13 29

Irisa yes 41 104

MPEG-4 AVC CBP RVC yes 94 270

PHP RVC yes 114 404

MPEG HEVC Main RVC no 34 109

Still Picture RVC no 31 74

Table 4: Statistics about the RVC-CAL description of several MPEG video decoders

frame level). This fine-grain streaming approach induces a high potential
in pipeline parallelism and the use of small communication channels, usu-
ally between 512 and 8192 rooms.

4.4.2 Other Applications

While the RVC framework has been introduced in the video context, it is
actually a more general-purpose framework that is usable to model any
application, as long as it can be described in a stream-based fashion.

Beside the standardization context, the RVC framework has been used to
develop a cryptographic library [15, 14], some image codecs such as JPEG,
JPEG 2000 and LAR [104].

4.5 existing tools supporting rvc

Apart from the normative parts, which focus on the conceptual vision of
RVC and the standardization of the FUs, both industrials and academic re-
searchers have developed a set of tools supporting the RVC framework.

54 reconfigurable video coding

4.5.1 OpenDF

The Open Dataflow Environment (OpenDF) [28] is a dataflow toolset, initi-
ated in 2007 under open-source licensing (BSD), dedicated to the CAL lan-
guage. OpenDF is embedding an interpreter of CAL code, as well as a multi-
target compiler and some analysis tools.

The compiler is composed of three backends able to generate code for
different platforms, from an XML-based intermediate representation named
XLIM [127]: The first one is an HDL backend based on OpenForge [103] that
targets Xilinx FPGAs. The last two backends generate C code, one targeting
the SystemC toolchain [151] and the other one dedicated to embedded plat-
form based on ARM processor [172].

Given the technological limitations of OpenDF, the project has been pro-
gressively dropped in favor of Open RVC-CAL Compiler (Orcc) (Section
4.5.2) and is now no longer being maintained. Eker et al. have recently intro-
duced a new tool, called Caltoopia, that is promoting itself as an develop-
ment kit for CAL. Caltoopia is built on the top of a new software architecture
but uses some of the work made in OpenDF.

4.5.2 Orcc

Started in 2009, Orcc [134, 177] is an open-source toolkit dedicated to the
development of RVC applications. Orcc is a complete Eclipse-based Integrated
Development Environment (IDE) that embeds two editors for both actor and
network programming, a functional simulator and a dedicated multi-target
compiler. In fact, this compiler has been the experimental laboratory of this
thesis, as presented in Chapter 5.

The compiler is able to translate the RVC-based description of an applica-
tion into an equivalent description in both hardware and software languages
for various platforms (FPGA, GPP, DSP, etc). A specific compiler back-end has
been written to tackle each configuration case:

• Two software back-ends that generate C/C++ programs usable on
most of the programmable processors [180, 177]. Dataflow application
produced with the software back-ends have multi-core abilities that
benefit from the inherent parallelism of dataflow applications [4, 7],
more details are provided in Chapter 7. A rapid prototyping can addi-
tionally be performed on static applications [3].

• Two hardware back-ends using well-known High-Level Synthesis tools
to generate synthesizable HDL code for FPGA and ASIC implementa-
tions [12, 24].

• A back-end that targets embedded multi-core platforms [5]. The back-
end is implemented as an entire co-design flow that generates the
software code as well as the hardware design that executes it. This
back-end is the main contribution of this thesis and is described along
Chapters 5 and 6.

• A back-end that produces libraries of components, usually called
VTLs, in dataflow-specific bitcode [88] to implement the ADM of the
RVC framework [29]. The libraries of components are then used to per-
form adaptive execution based on virtual machine mechanism using
Jade [2].

4.6 advances and challenges of the rvc framework 55

Additionally, some advanced analysis dedicated to dynamic dataflow ap-
plications can be performed during the compilation. A dynamic analysis,
called actor classification [178, 179], can detect predictable behavior within
a network that may allow compile-time optimization such as static actors
scheduling. Another analysis, based on model-checking techniques [69], can
prune all unreachable execution paths to remove the unnecessary tests and
accelerate the execution.

The Orcc environment has also been the foundation of two external tools,
known as the Just-in-time Adaptive Decoder Engine (Jade) and Turnus:

jade can be considered as the software implementation of RVC concept, a
generic decoder able to configure itself according to a configuration
using a VTL and the virtual machine -based mechanisms [89, 86].

turnus is a proprietary tool based on the Orcc simulator engine, which
is dedicated to the profiling and design space exploration of RVC-CAL

application [39].

4.6 advances and challenges of the rvc framework

Since its introduction in 2004, the RVC framework has been subject to many
studies from academic and industrial researchers. While tools and applica-
tions have now reached a certain maturity, there still are some open chal-
lenges that prevent the wide-spreading of RVC, CAL and more generally dy-
namic dataflow programming. In fact, one of the fundamental challenges of
the RVC framework is paradoxically the development of tools concurrently
with the development of applications.

4.6.1 Tools Development

Since dynamic dataflow programming has not been heavily studied, a large
part of the research work on RVC framework focuses on tools involved in the
development of new applications, e.g. Orcc or OpenDF.

assisted programming Unlike most research tools, our development
environment is actually used to write applications, and not just small bench-
marks but real-world applications that involve complex and error-prone
tasks. As a consequence, our toolset has to provide a certain number of
features that are usually present into most of the modern IDE to make the
development of applications easier and help to use a not-so-natural program-
ming paradigm:

• Graphical editing of application graph, since one of the main interest
of dataflow programming is its ability for visual programming.

• Syntax coloring, code completion, code validation are all basic func-
tions that are expected in a modern text programming editor.

• Programming implies necessarily the need for debugging capabilities,
this need is increasing with the application complexity, but debugging
dataflow programs is more challenging than debugging traditional
programs [146].

While all these features truly simplify the development of new applications,
they require a time-consuming development effort that is largely beyond
our research interests.

56 reconfigurable video coding

retargetability One of the main accomplishments of the RVC frame-
work is the portability of applications over a large range of platforms (FPGA,
GPP, DSP, etc). The idea of targeting multiple platforms with a single appli-
cation description may be very attractive, but it raises a certain number of
issues in term of software architecture such as:

• An increasing number of compiler back-ends, which requires the cap-
italization of algorithms.

• An extensive use of third-party tools to smoothly connect with all tar-
geted platforms.

innovation Most of the contributors to our development environment
have a main background in signal processing. On the one hand, they can
take advantage of their expertize and propose innovative techniques to im-
prove dynamic dataflow programs. On the other hand, their weak knowl-
edge in compilation and software engineering is quickly becoming an obsta-
cle due to the complexity of a software such as a compiler.

To sum up, RVC-based development environments are complex pieces of
software that have to provide the simplicity, reliability and flexibility asked
by application developers, while keeping a maintainable, extensible and scal-
able architecture for boosting research innovations of tool developers. To do
so, we need to setup a pragmatic software development process.

4.6.2 Applications Development

Dozens of applications for a variety of domains have already been produced
within the RVC framework (see Section 4.4). In fact, much of the develop-
ment time has served as manual design exploration to achieve the expected
performance. Thus, Brunet et al. have proposed a set of automatic and semi-
automatic techniques implemented in Turnus [39] to assist application devel-
opers in this exploration task [36, 38]. But, the development of applications
still involves open challenges that are portability and re-usability.

portability Some of these applications, especially video decoders which
were heavily studied, present a large number of variations that have been
proposed in response to particular needs whereas RVC-CAL aspires to be
portable. As an example, there are at least four distinct descriptions of video
decoders implementing the MPEG-4 Part 2 compression standard:

• The normative description considered as the reference;

• A single-rate description developed by Xilinx to specifically target
hardware platforms;

• A description optimized by Ericsson for multi-core processors;

• A description, proposed by Mattavelli et al., resulting of application
design exploration;

From our point of view and in respect to the RVC principles, the applica-
tion developers should develop a single version of each description, prefer-
ably a high-level description to ease the development process, and let the
compiler automatically optimize this description according to the targeted
platforms, such as the multi-to-single rate transformation that is discussed
below to target hardware platforms.

4.6 advances and challenges of the rvc framework 57

re-usability Another major interest of the RVC framework is the re-
usability of the dataflow components, called FUs, over multiple applications.
Actually, Palumbo et al. have proposed a methodology that takes advantage
of this re-utilization over multiple applications to build multi-purpose hard-
ware systems with a limited resource usage [135, 136, 129]. Gorin et al. have
also benefited from the reutilization in their adaptive decoder to speed-up
the reconfiguration [89, 86].

Unfortunately, the applications that are currently available do not make
an extensive utilization of component re-usability. In fact, only AVS and AVC

decoders really share a significant amount of common components [87, 184].

4.6.3 Platform Implementation

Another challenge that have to face dynamic dataflow programs is the demon-
stration of efficient implementations that can achieve performance constraints
imposed by modern applications.

hardware synthesis Design flows from RVC applications to hardware
platforms, in the sense of FPGA and ASIC, have been implemented in OpenDF
[103] and Orcc [158, 24, 12, 25]. The basic idea of these approaches is the
direct transformation of RVC-CAL descriptions into Register Transfer Level
(RTL) ones suitable for FPGA or ASIC synthesis.

The major difference between the methodologies comes from the abstrac-
tion level of the generated code: Janneck et al. generate low-level and opti-
mized HDL code dedicated to a specific platform (close-to-gate RTL) [103, 24,
25], whereas Siret et al. generate high-level, portable and readable HDL code
(close-to-hand-written RTL) and let the synthesizer perform the optimizations
[158]. A novel approach capitalizes on HLS tools that are able to translate
software code into RTL descriptions, such as Xilinx Vivado HLS, in order to
focus on the generation of understandable C code [12].

All of these methodologies suffer however from a severe limitation as they
are only applicable on single-rate RVC-CAL programs, i.e. actors can only
read and write single tokens at once, that require the use of low-level actors
and fine dataflow granularity. Jerbi et al. describe an automated transfor-
mation from multi-rate RVC-CAL programs to a single-rate programs to over-
come this limitation [105, 104]. Nevertheless, the RTL descriptions present an
explosion in the logical gate count and a significant reduction in throughput
performance due to the complexity of the resulting code.

software synthesis To illustrate the difficulties to provide efficient
implementations of dynamic dataflow descriptions, Figure 21 presents the
impressive evolution of the performance of the most studied video decoder
within the RVC framework on desktop mono-processors, namely the norma-
tive description of the decoder implementing the MPEG-4 Part 2 Simple-
Profile standard. We present frame-rates of a small QCIF video because of
its extensive utilization in the literature.

Most of the past work on software synthesis within the RVC framework
has studied the implementation of applications on GPP [177, 86?]. But, in
view of the current market of electronic products, we need to focus on
embedded systems and especially MPSoC-based platforms. Thus, new con-
straints, like power consumption, have to be taken into account.

58 reconfigurable video coding

���� ���� ���� ���� ���� ����

�

���

���

���

���

���

	��

�
��

�
�
��
�
��

Figure 21: Performance evolution of an RVC-based video decoder. Frame-rates of the
foreman sequence (QCIF) using the normative description of the MPEG-4
Part 2 Simple-Profile decoder executed on mono-processor desktop com-
puters [151, 180, 93].

4.7 conclusion

This chapter presents a development framework introduced by MPEG under
the name of RVC. This framework was initially proposed to overcome the lim-
itations of the standardization process of video compression format. Thanks
to dataflow programming, organized on top of the RVC-CAL language, the
RVC framework proposes a flexible development process that produces mod-
ular, scalable and portable applications. These advantages make RVC suitable
for the development of any multimedia application that manipulates rich
media contents.

The next chapters explore the programming of embedded multi-core plat-
forms by the way of the RVC framework. Chapter 5 starts by introducing
the development environment, in other words the design flow from the ap-
plication description to the executing platform. Then, Chapter 6 proposes
an implementation of dynamic dataflow programs optimized for embed-
ded multi-core platforms. Finally, we describe a set of actor mapping and
scheduling strategies that can handle the dynamism of our applications to
provide efficient execution.

Part II

C O N T R I B U T I O N S

5A D VA N C E D D E V E L O P M E N T E N V I R O N M E N T F O R
D ATA F L O W P R O G R A M M I N G

Remember that all models are wrong;

the practical question is
how wrong do they have to be

to not be useful.

— George E. P. Box [35]

The development and the implementation of multimedia applications,
such as video codecs, are time-consuming and error-prone tasks due to the
increasing complexity of the algorithms as well as the increasing variety of
the multimedia devices. In fact, the progression of parallel computing as the
only alternative to meet the performance requirement has made the devel-
opment and the implementation of the applications even harder. As we have
seen in Chapter 2, parallel computing has not only introduced programming
challenges but also architectural and executional challenges (synchronizing
the different tasks, balancing their loads, etc). Consequently, the need for ef-
ficient development methods and tools is becoming increasingly important
so as to meet the requirement of time-to-market.

This chapter describes an IDE dedicated to dataflow programming that
aims to make the development of dataflow programs easier, especially for
embedded multi-core platforms. Starting from the initial work of Wipliez
who has created a compilation infrastructure for dataflow programs [177]
targeting GPP, ASIC and FPGA, the main contributions of this chapter are:

1. Enhancement of the compilation infrastructure by the way of modern
software engineering techniques such as meta-modeling. A compiler
is a complex piece of software that requires reliability and robustness
offered by Model-Driven Engineering (MDE).

2. Introduction of an architecture model for embedded multi-core plat-
forms dedicated to dynamic dataflow programs.

3. Extension of the compilation infrastructure with an entire co-design
flow that targets embedded multi-core platforms based on our dedi-
cated architecture model.

This chapter is organized as follows. We start in Section 5.1 by describ-
ing how the compilation infrastructure proposed by Wipliez [177] can be
enhanced by MDE. Then, we introduce in Section 5.2 our architecture model
that aims to design embedded multi-core platforms dedicated to the execu-
tion of RVC-based dataflow programs. Finally, we present an extension of
the compilation infrastructure for specifically targeting our dedicated archi-
tecture model in Section 5.3.

5.1 enhanced dataflow-specific compilation infrastructure

Compilers and programming languages are the foundation of software en-
gineering which is now present in our whole society. In the last 50 years,

61

62 advanced development environment for dataflow programming

the field of compiling was focused on the translation of high-level language
programs into efficient machine code. However, the increasing complexity
of software and machines has raised new challenges such as parallel pro-
gramming or reliability of complex systems [96].

Starting from the initial work of Wipliez [177], we propose an enhanced
compilation infrastructure for dataflow programs that takes advantage of
meta-modeling and aspect-oriented programming. The contributions of this
section are:

• Building of the whole compiler infrastructure upon meta-tools.

• Maximizing of code reutilization thanks to the implementation of a
unified graph API.

• Separation of dataflow and procedural concerns within our compila-
tion infrastructure.

• Formal specification of our enhanced dataflow-specific Intermediate
representation (IR) by the way of meta-modeling.

Please notice that most of the implementation work associated with the
contributions described in this section has been made jointly with Matthieu
Wipliez.

5.1.1 Multi-Target Compilation Infrastructure

The compilation infrastructure for dataflow programs, included in Orcc toolset
[134], on which we have worked during this thesis is introduced by Fig-
ure 22. Started by Wipliez [177], this compilation infrastructure is a trans-
compiler, also called a source-to-source compiler, that basically translates dataflow
descriptions into more traditional source codes, instead of generating di-
rectly machine codes like many compilers. But, the compilation flow stays
very similar to traditional compilers [16] and may be summed up by the
following three steps performed consecutively:

1. Front-end (orcc-fe): The input program, written in a textual language,
is parsed and translated into an Abstract Syntax Tree (AST). The AST

is then transformed into another IR that allows fast analysis and ad-
vanced optimizations using complex data-structure. During this step,
the front-end performs semantic validation, type inference, and expres-
sion evaluation.

2. Middle-end (orcc-core): Target-independent optimizations are repeat-
edly performed as transformations on the IR. Since IRs aim to make
easier optimizations, the same program can be successively described
with several IRs during its optimization.

3. Back-end (orcc-be): Target-specific optimizations are finally performed
before the code generation, which translates the optimized IR into the
targeted source code. In fact, a DSL is often translated into general-
purpose programming languages to benefit from the power of industrial-
level compilers. The interaction with target compilers is simplified by
the generation of build scripts along with the generation of the source
code.

The IR is the key data structure of any compilation infrastructure in the
sense that analysis and optimizations are applied on it. Actually, one of the

5.1 enhanced dataflow-specific compilation infrastructure 63

���������
��������	��

������

��������

���������

��������

��������

������������

�����������

���������

���������	�����	�������������

���������	�������������

�������	������������

���������	����	�������

��� ���

����

����

�������
���������

������	����

������
����	������
�������	���

�������
���������

�����	������

������	�
�	�������

������	�
�	����	��

��������
��������

Figure 22: Multi-target trans-compilation infrastructure

shortcoming problems of compiler design is the increasing complexity of
the IRs since more and more information is required to perform advanced
optimizations [106]. Similarly to DSLs, domain-specific IRs address a part of
this problem by focusing on the specificity of the application domain and,
additionally, by breaking down complex structure into smaller pieces.

In his thesis [177], Wipliez describes the implementation of an IR dedi-
cated to dataflow compilers and shows naturally that such a domain-specific
IR is well suited for performing advanced analysis and optimizations on
dataflow programs. Now, we show how modern software engineering tech-
niques, such as meta-modeling and aspect-oriented programming, can im-
prove the manipulation of this IR and the whole compilation flow.

5.1.2 Model-driven Compilation Infrastructure

The use of meta-models and MDE technologies speeds up the software de-
velopment by automating time-consuming and error-prone tasks:

• Maintainability: The global homogeneity of the software is increased
thanks to the generative approach of the meta-tools.

• Documentation: Models are inherent source of documentation, equiv-
alent to UML.

������������������	 	��������������������	 �����������������	

��������	�������
���
�����������	�	����������	
����������
����	���������

�����������������	��
��������������	
������ �����
��������

!���	����������
���������	"�	�����������	
�����#�����
!���������	���$	�$���������	
�����

�����
%��������	�������	
�������	������
&���������

���
���'��'���	��������
������� �����
���������	�������

�����
��������	������
����������	(����"����	
����'���

���
��������	����������

Figure 23: Compilation flow based on meta-tools

Meta-modeling also offers many advantages for a compiler infrastructure
[76, 106]. As presented in Figure 23, the three consecutive steps of our com-
pilation flow are built upon specific meta-tools that aim to solve their partic-
ular problematics:

64 advanced development environment for dataflow programming

orcc-fe has been implemented on top of Xtext [66], a framework dedi-
cated to the development of DSL that generates parser, linker and edi-
tor from the grammar of the language.

orcc-core is build upon our dataflow-specific IR, which has been mod-
eled with the Eclipse Modeling Framework (EMF) [160], an open-source
framework implementing the Object Management Group (OMG) spec-
ifications. EMF offers many useful methods for manipulating a data
structure thanks to the containment relationship. EMF also offers the
automatic serialization of the IR allowing incremental compilation.

Additionally, the model describing the IR is annotated with a set of
constraints , expressed in Object Constraint Language (OCL), that guar-
antees its semantic validity. An OCL constraint may be an invariant
that must be valid between each transformation. An OCL constraint
may also be a post/pre condition that must be verified before/after
the realization of an operation. Theses constraints are transformed au-
tomatically into the equivalent Java code.

orcc-be realizes the code generation using Xtend [65], which provides a
flexible template-based code generation approach that is accessible for
non-expert in compilation, thanks to a simplified programming lan-
guage based on Java and fully integrated within Eclipse, while provid-
ing an efficient code generation.

In fact, the definition of models allows the developer to skip most of the
implementation details and to focus on the specification. Additionally, the
modeling approach also forces the developer to deeply specify the model
without leaving out any details.

5.1.3 Unified Graph Library

Most data structures in compilation are related to graph theory, this is es-
pecially true for the compilation of dataflow programs. Consequently, we
choose to develop a graph library containing a unified model of graph (Fig-
ure 24) and the implementation of state-of-the-art algorithms to increase the
code reutilization and speed-up the development of new features.

Figure 24: Class diagram of Graph

Our model of graph, presented in Figure 24, is composed of three classes:

graph is the top-level class of the model. A Graph object contains a list
of vertices and a list of edges. Since dataflow graphs are naturally
hierarchical, the Graph class inherits from Vertex.

5.1 enhanced dataflow-specific compilation infrastructure 65

vertex is a class that describes one kind of element of a Graph object. A
vertex references a list of incoming and outgoing edges from which it
deduces a list of successors and predecessors.

edge is a class that implements the directed edges of the graph. An edge
references its source and target vertices.

The library implements a set of algorithms for searching in a graph fol-
lowing well-known strategies, such as Breadth-First Search and Depth-First
Search [175], for finding strongly connected components, or additionally for
computing the dominator or the post-dominator of a given vertex.

5.1.4 Separation of Concerns

We have chosen to divide the IR into dataflow aspect and procedural as-
pect. Whereas dataflow modeling naturally separates networks from ac-
tors; the analysis and transformations performed on dataflow programs by
the compilers do not usually respect such a separation. On the one hand,
dataflow compilers can perform procedural analysis and transformation just
as general-purpose compilers [177, 16]. On the other hand, compilers can re-
ally benefit from the formalism upon dataflow MoCs by performing dataflow-
level analysis and transformation [179, 32, 105]. Thus, our dataflow-specific
IR is likewise divided in two distinct models:

• The low-level model that contains the classical procedural description
including the instructions, expressions, blocks or even the Control-
Flow Graph (CFG), and

• The high-level model that is related to the dataflow information, such
as the interconnection between the components or their production/-
consumption rates.

Moreover, such a separation of concerns within our IR makes easier its ma-
nipulation by the meta-tools, knowing that one of the major limitation of
MDE is the scalability of meta-tools [106], i.e. their efficiency on large mod-
els.

5.1.5 Procedural Aspect of the Intermediate Representation

The procedural aspect of our dataflow-specific IR describes the computa-
tion, in the sense of the computational step of the imperative programming
paradigm. This aspect is composed of the following classes:

procedure is the top-level class of the procedural level of our IR that cor-
responds to a piece of program (Figure 25). A procedure has a name
and is composed of an ordered set of blocks, and a set of local variables
without the notion of the scope.

var is a class that implements the concept of variable (Figures 25 and 26),
i.e. the association of a storage location and an identifier. A variable
has a name, a type and may be assignable. A variable refers to its
definitions as well as its utilizations. A variable may be local or global
according to its containment.

param/arg are two classes (Figure 25) used to implement the parametriza-
tion of an object (procedures, actors, networks, etc). In fact, the parametriza-
tion is a useful mechanism to increase the re-usability within the code.

66 advanced development environment for dataflow programming

Figure 25: Class diagram related to Procedure

For instance, a parametrized actor may be more easily reused in sev-
eral descriptions.

use/def are two classes that model respectively the utilizations and the
definitions of the variables (Figures 26 and 27). To do so, the two
classes refer to a unique variable. On the one hand, a def is created
every time an instruction sets a variable. On the other hand, a use
is created when the value of a variable is required by an instruction.
This kind of variable management is commonly used to make easier
the static analysis and transformations of procedural code. Def/use
are, for example, heavily used to convert a code into its Static Single
Assignment (SSA) form [16].

block is an abstract class that describes a common program structure (Fig-
ure 25). The blocks organize the sequences of instructions in respect to
the semantic of the program. There are three subclasses of Block:

• BlockBasic is the simplest structure that contains a list of ordered
instructions without branching.

• BlockIf describes conditional structures. Such a block contains an
expression, the condition, and two ordered lists of Block objects
(thenBlocks and elseBlocks) as well as a specific basic block, called
joinBlock, used by the SSA form.

• BlockWhile describes similarly loop structures.

cfg is a direct subclass of Graph that describes the control flow within
a procedure (Figure 25). The vertices of the graph refer to the basic
blocks, and the edges of the graph describe the branching between the
blocks. Such a representation is useful to perform many static analysis
and code optimizations.

We have chosen to not directly use the graph as the structural repre-
sentation of the control-flow of a procedure in our IR considering the
difficulty to maintain the graph all along the compilation flow. Con-
sequently, we have chosen to model the control flow of a procedure
using the control blocks as well as the block hierarchy from which the
cfg may be directly deduced.

instruction is an abstract class that describes a set of statements that
can be performed within a procedure (Figure 26). The subclasses of
Instruction are:

5.1 enhanced dataflow-specific compilation infrastructure 67

• InstAssign that simply describes the assignment of an expression
to a local variable.

• InstLoad and InstStore that describe the accesses to variables that
require memory (i.e. state variables and arrays), and may refer to
an indexing expression in case of an array.

• InstCall and InstReturn that model function-specific instructions.

• InstPhi that is a special instruction required by the SSA form,
closely related to a conditional assignment.

Actually, the distinction between memory accesses (load/store) and
temporary assignments is very important in a trans-compiler due to
the variety of targets. For instance in hardware languages like VHDL,
the accesses to registers and Random Access Memory (RAM) are totally
different.

Figure 26: Class diagram related to Instruction

expression is an abstract class that models the evaluation of a combina-
tion of constants, variables, values, operators and functions (Figure 27).
The subclasses of Expression are:

• ExprVar that models the evaluation of a variable or a constant.
Such an expression contains a use that refers to the associated
variable/constant following the Use/Def mechanism.

• ExprInt, ExprString and so on that contain directly a value of the
corresponding type.

• ExprCall that models the evaluation of a function. Such an ex-
pression contains a list of arguments that are required to evaluate
the referenced procedure.

• ExprUnary and ExprBinary that model the evaluation of a con-
tained expression (respectively a combination of contained ex-
pressions) according to a contained operator.

type is the upper abstract class of our type system, which is limited to
compile-time type inference in order not to reduce the portability of
the applications [178]. Our type system is composed of 7 subclasses:

• TypeInt and TypeUint, both for the type of the integers.

• TypeBool for the booleans.

68 advanced development environment for dataflow programming

Figure 27: Class diagram related to Expression and Type

• TypeFloat for the floating-points.

• TypeString for the sequence of characters.

• TypeList for the lists.

• TypeVoid for the procedures that do not return any value.

As opposed to general purpose IR, our dataflow-specific IR does not
provide a pointer type. In fact, we argue that the use of pointers is an
answer to the lack of functionality of the type system in the application
domain, which should not occur with well-designed domain-specific
IRs. In addition of being a well-known source of bug, the use of pointer
requires complex pointer analysis that can ultimately lead to the inef-
ficiency of the optimizations [97].

The procedural aspect of our IR is generic, which means that nothing
related to dataflow programming is included. But, the procedural aspect of
our IR is also restricted to our application domain, especially the type system.
All of this makes that this aspect of our IR can be considered as a subset of
general-purpose IRs used in industrial compilers. While general-purpose IRs,
such as the one used in Low Level Virtual Machine (LLVM) [116], mainly
inherit from compilation experiences, our IR benefits from both compilation
and MDE [106].

5.1.6 Dataflow Aspect of the Intermediate Representation

Applications that are developed using dataflow programming are composed
of additional pieces of information in comparison with classical program-
ming:

network is the top-level class of the dataflow level of our IR, which inher-
its directly from the Graph class (Figure 28). A network has a name and
contains two sets of ports, inputs and outputs. A network also contains
a set of connections and a set of vertices called children, that may be
constituted indifferently by Entity or Instance.

5.1 enhanced dataflow-specific compilation infrastructure 69

Figure 28: Class diagram related to Network

entity is a class that simply contains a set of input and output ports that
may be view as a superclass between Actor, Network and Instance. In
fact, an entity is used to make easier the instantiation of Actor and
Network.

connection is a class that inherits directly from Edge. A connection mod-
els the communication channel between two entities of the network.
Additionally to its source and target, a connection refers to its source-
Port and targetPort, as well as its size.

actor is a class that represents the basic component of a dataflow program
(Figure 29). An actor contains two sets of ports, inputs and outputs, that
defines its interfaces. An actor also contains a set of procedures, a set
of variables called stateVars, and a set of actions ordered according to
their priorities. An actor may also contains an fsm, used to schedule its
actions, and a set of parameters to increase its re-usability.

Figure 29: Class diagram related to Actor

instance is a subclass of Vertex. Instance is useful to reference a single
entity, network or actor, several times in the same description without
duplicating it. An instance may refer a set of arguments if the refer-
enced entity is parametrized.

port is a class that implements the external interface of Entity, Actor or
Network. A port has a name and a specific type.

70 advanced development environment for dataflow programming

fsm is a direct subclass of Graph that implements a FSM by representing
states by vertices and transitions by edges. Here, an fsm describes, in
a practical manner, a partial order between the action executions. Us-
ing an FSM to describe the action scheduling is not only a practical
structure of the programming language, it allows a factorization of
the generated code as well.

action is a class that implements the firing function. An action is com-
posed of two procedures: Its body that models the processing of the
action, i.e. the firing function, and its scheduler that describes its guard,
i.e. the firing rule. An action also contains three patterns: An inputPat-
tern and an outputPattern that correspond to the token production/-
consumption of the action, as well as a peekPattern1 that corresponds
to the amount of tokens that has to be validated by the scheduler, i.e.
the guard.

pattern is a useful class to abstract the use of communication channel
inside the procedural code. In fact, a pattern describes a mapping be-
tween the input/output ports of an actor and the procedural variables
that will contain the consumed/produced/accessed tokens by an ac-
tion. A pattern also describes the amount of tokens that are concerned.

As a result, communication-specific functions are no longer required
in the procedural code, neither access functions (read, write and peek1)
nor conditional function (hasRooms and hasTokens), so that the compiler
may perform procedural analysis and transformation without taking
into consideration the dataflow aspect.

Actually, the genericity of our IR makes it usable to describe most of the
dataflow MoCs (DPN, SDF, etc). This is put in evidenced by the fact that our IR

is the central data structure of two dataflow-based IDEs, Orcc (Section 4.5.2)
and Synflow studio (Section 3.7), using different dataflow MoCs to target
different usages.

5.2 architecture model for dedicated embedded multi-core

platforms

After describing the global structure of our dataflow-based compiler, we fo-
cus on a particular target, the main subject of this thesis, that is the embed-
ded multi-core platforms. The development of a design flow targeting such
platforms requires the definition of an architecture model that matches the
behavior of the targeted platform, while keeping a high-level of abstraction
and enough configuration options to allow Design-Space Exploration (DSE).
Alternatively, architecture models can be presented as customizable multi-
core processor templates [100] that setup the main architectural aspects.

Considering the complexity of multi-core architectures, together with the
efficiency and the reliability required by embedded systems, we propose
to specialize our architecture model for the execution of dynamic dataflow
programs in order to take advantage of the knowledge inherent to our ap-
plication domain, similarly to DSL. This section makes the following contri-
butions:

• The introduction of Transport-Trigger Architecture (TTA) as the inner
architecture of the processors used to execute dataflow actors.

1 Peeking refers the reading of a token without consumed it. Peeking is an operation required by
the DPN model to describe the firing rules.

5.2 architecture model for dedicated embedded multi-core platforms 71

• A set of predefined configurations of the processors to simplify the
DSE.

• A dataflow-specific memory architecture in order to overcome the
memory wall often reached by dataflow programs.

5.2.1 Processor Architecture

The processor cores underlying our abstract platform is based on a VLIW-
style architecture known as TTA [55]. TTA was chosen for the following rea-
sons:

• Instruction-Level Parallelism: TTA processors are able to take advan-
tage of the only type of parallelism which is not inherent in dataflow
model. TTA processors resemble VLIW processors in the sense that they
fetch and execute multiple instructions each clock cycle. A major differ-
ence, however, is that TTA processors have only one instruction: move,
which simply transfers data from a processor internal place to another
one.

• Embedded processors: TTA processors are ideal for targeting embed-
ded systems. Corporal states that direct programming of the data
transports reduces the register file traffic when compared to VLIW [55],
but however makes the compiler design quite challenging, as it is the
compiler that schedules the data transports and makes sure conflicts
are avoided. Since the compiler makes these decisions at design time,
the run-time system is simplified and hence there are savings on the
processor gate count and energy consumption.

• Flexible architecture: TTA processors are extremely configurable. The
designer can make the processor tiny and energy-efficient or, if needed,
increase the instruction-level parallelism of the processor. We present
4 predefined configurations in Table 5 that have been used during the
experiments.

As an example, Figure 30 presents a simple TTA-based processor com-
posed of two buses, two Arithmetic and Logic Units (ALUs), one Register
File (RF), one Load/Store Unit (LSU) (to manage RAM accesses) and one con-
trol unit connected to the Read-Only Memory (ROM) containing the instruc-
tions. Like most modern processors, TTA processors are based on the Harvard
architecture that physically separates storage and pathway for instructions
and data.

��� ���

����	�
����
������

����	�
����
������

����
�����
����

��������
����

������
�������
����

����
������
����������
 	�

Figure 30: A simple processor based on Transport-Trigger Architecture

72 advanced development environment for dataflow programming

5.2.2 Predefined Configurations of Processors

Table 5 presents 4 predefined configurations of TTA-based processors used
during our experiments (respectively Standard, Custom, Fast and Huge). The
configurations characterize internal aspects of the processors such as the
number of FUs, ALUs, multipliers and LSUs, the number of integer and boolean
RFs as well as the number of registers they contain, and the number of buses
that interconnect all together FUs and RFs. The connectivity of the intercon-
nection network is also characterized as Full or Custom. While a Full con-
nectivity does not limit the data movement between FUs and RFs, a Custom
connectivity avoids the decrease of the clock frequency when the complexity
of the interconnection network increases.

The first one, called Standard, is almost equivalent to a RISC processor: in-
side the TTA processor the interconnection network is composed of 3 buses
that can provide two operands to the FU at each clock cycle and move the
result when it is available. The 3 last configurations, Custom, Fast and Huge,
define larger processors composed of several FUs and buses able to take ad-
vantage of the instruction-level parallelism of the application (like a VLIW

processor). Concerning the Huge configuration, its characteristics are delib-
erately over-sized to acquire the maximal performance, so this configuration
is only used in simulation purposes.

Processor Standard Custom Fast Huge

ALUs 1 2 3 12

Multipliers 1 1 1 8

LSUs 1+ 1+ 1+ 2+

Integer RFs (32 bits) 2x12 3x12 3x14 8x32

Boolean RFs (1 bit) 1x2 1x2 1x6 1x6

Buses 3 6 18 32

Connectivity Full Full Custom Full

Table 5: Comparison of 4 predefined processor configurations

The Fast configuration, introduced in [71] and presented in Figure 31a,
provides clustered TTA-based processors that can reach high-frequency on
FPGA with large potential of parallel computing. Table 31b presents a com-
parison of a Fast TTA-based processor with the well-known softcore architec-
tures Xilinx Micro-Blaze and Altera NIOS II.

5.2.3 Dataflow-specific Memory Architecture

Now, we introduce an hybrid memory architecture specially designed for
dataflow programs. To limit the traditional memory bottleneck, our architec-
ture model contains both shared and private memories, as shown in Figure
32, making the memory architecture a mixture of UMA and NORMA organiza-
tion (see Chapter 2 for the definitions). Thus, the processors (P1, ..., Pk) have
their own private memories (M1, ...,Mk) used for executing their actors, but
the processors are also connected, through an interconnection network, to a
set of shared memories (S1, ..., Sn) devoted to inter-processors communica-
tions.

5.2 architecture model for dedicated embedded multi-core platforms 73

��� ��� ��� ��� ���
�	

���

�	�

����

�	

���

�	

���
���

(a) Predefined processor configuration built on top of a clustered interconnection network

FPGA Softcore FMax LUTs Reg

Xilinx Virtex 5 TTA 192 5218 2785

MB (3) 169 1537 1318

MB (5) 195 1889 1841

Altera Stratix II TTA 148 5024 3485

Nios 175 2322 1896

(b) Comparison with well-known softcore architectures (from [71])

Figure 31: Fast TTA-based processors target high clock-frequency implementa-
tion [71].

����������

����	�
��������

�������
��������

�
�

�
� ���

�� �� ��

�����������������������

�
�

�
� ���

�
�

�
� ���

�
�

���
�

�
�

�������
�����������	�
������	�����������

�������
�������������
�����!����"� �
������		�������

������	�
�����#�����
������

Figure 32: An hybrid memory architecture dedicated to DPN-based programs

Modeling multi-core platforms dedicated to the execution of DPN-based
programs [121] allows us to make the following assumptions:

74 advanced development environment for dataflow programming

• Actors can only communicate through communication channels. Thus,
shared memories do not need to store data apart from the content of
FIFO-based communication channels, implemented as circular buffers
that are detailed later in Section 6.2.

• The DPN model allows stateful actors. Thus, private memories may
have to store the current states of the actors that are assigned to the
processor to which they are related. Additionally, private memories
have to store the heap and the call stack used during the execution of
the actions just as traditional programs.

Furthermore, storing communication channels in shared memory increases
the flexibility of the design flow. Knowing that a single memory component
can contain multiple channels, the compiler has to assign not only actors
to processors but also FIFO channels to memory components. Actually, FIFO

channels can be freely mapped to memory components since they are not
dependent from each other. But, some architectural constraints may have to
be considered, such as the topology of the interconnection network or the
size of the memory components.

5.3 dataflow compiler for embedded multi-core platforms

The difficulty of efficiently programming embedded multi-core platforms,
as presented in Chapter 2, still makes the design process an open challenge.
This section presents an automated co-design flow, designed from scratch
during this thesis, that intends to implement DPN-based programs onto ded-
icated embedded multi-core platforms. This co-design flow has been used
to perform most of the experiments presented in the next chapters, making
it a key component of this thesis [5]. To summarize, the contributions of this
section are:

• The extension of our compilation infrastructure for embedded multi-
core platform by the interfacing with a co-design toolkit dedicated to
ASIP.

• The setup of an advanced simulation process that benefits from dataflow
modeling to facilitate the debugging and analysis of applications onto
embedded multi-core platforms.

This section is organized as follows: First, the global co-design flow is
introduced; Then, the hardware design flow that generates the HDL descrip-
tion of the platform is detailed; Next, the software compilation flow that
generates the binaries for each processor is described; And, finally, a de-
scription of the simulation infrastructure is given.

5.3.1 Multi-stage Co-design Flow

Like most of design approaches of embedded multi-core platforms, our de-
sign flow follows the Y-chart [113] (Figure 33) that separates the specification
of the application, the platform and the mapping. Such a separation of con-
cerns facilitates the design space exploration by varying some of the aspects
while fixing the other aspects. For example, the application can be paral-
lelized to partition its components more equitably without modifying the
platform configuration.

5.3 dataflow compiler for embedded multi-core platforms 75

����������	
����������	

��������
������������	

�����	�
������������	

��������	��
�	������

�����	������
����������	

Figure 33: Designing embedded multi-core platforms following the flexible Y-chart
approach [113]

The co-design flow is implemented around two open-source projects known
as Orcc [134] and TTA-based Co-design Environment (TCE) [166]. In fact, Orcc

can be considered as a dataflow front-end for TCE, and inversely TCE can
be considered as a processor-specific back-end for Orcc. Orcc performs the
high-level stage of the design flow and provides a functional simulator, and
both are entirely independent from the architecture of the processors. For
its part, TCE performs the low-level stage of the design flow and provides
an instruction-set simulator.

��������	�����������

��������
�	���������
���	������

��������
�����������������
�����������

��������
������
�������

����	����

����

���

�����

����

���������
�����������������
�����������

���

�����	����

��������
��������

�����	��	�����

���������
 ��������	�����!	

����	�������

���������
"��#����!
$%����%���

���������
��&��	

�����������

�������
���������
���������

��������

���������
�����	���������
���	������

����	�'

(()*
�����+�,

���������
�����������

�����������	�����������

�

�

�

���

����
���������

�����

���������	��-��	������+������

���������	������+������

�����
���������

�.%�

�����
���	������

���-���	�����
���	�������

"��%���	������+�����

���������
��������
������

/�.������	����	������%

Figure 34: Multi-stage co-design flow

As shown in Figure 34, our co-design flow is multi-stage. First, the dataflow-
specific stage (a) is implemented in Orcc, our dataflow compiler, and com-
posed of 5 different parts:

orcc-fe & orcc-core are the initial steps in our trans-compiler, performed
before all back-ends. The application description (provided in RVC-CAL

and XDF) is translated into our dataflow-specific IR, which is then ana-
lyzed and transformed to be finally ready for the next steps, depend-
ing on the targeted platform.

76 advanced development environment for dataflow programming

orcc-tta is the high-level step of the design flow. This step transforms
our dataflow-specific IR into a general-purpose IR (LLVM IR) that can be
understood by the target compiler. This step also generates XML-based
processor description files, known as Architecture Definition File (ADF)
[50], according to the initial specification of the platform.

orcc-map is the process that assigns a processor to each actor. The ac-
tor mapping has been implemented independently from the compila-
tion step to make it usable at any stage of the design flow (even at
run-time). The actor mapping is based on the heuristics described in
Chapter 7.

orcc-sim is a functional simulator that interprets our dataflow-specific IR.
Such a functional simulator enables a quick validation of the applica-
tion, without requiring any code generation or third-party tools. The
simulator can also produce useful profiling data such as the logs of
the FIFO channels or the execution trace.

Then, the processor-specific stage (b) is implemented in the TCE toolkit, and
composed of two parts:

ttanetgen is the low-level stage of the design flow. This stage both trans-
forms the general-purpose IR into instructions that can be executed by
the targeted platform, and generates the HDL description of the whole
platform from its high-level description.

ttanetsim is an instruction-set simulator for TTA-based multi-core plat-
forms. ttanetsim can either simulate the execution of the whole plat-
form according to an input file, or simulate a single processor in a
standalone fashion using the logs of FIFO channels previously recorded
with orcc-sim.

And finally, the hardware-specific stage (c) is performed by third-party tools
but automatized by a set of scripts and project files generated by the previ-
ous stage:

logic synthesis is the last step of the design flow. In fact, the logic syn-
thesis aims either the generation of an FPGA bitstream or the creation
of an ASIC.

logic simulation is the lower level of simulation: It can be performed
at varying degrees of physical abstraction (transistor level, gate level,
or register-transfer level). Similarly to cycle-accurate simulation, the
logic simulation can be performed either on the whole platform using
an input file, or on a standalone processor using the FIFO channel logs.

The development of this dataflow-based co-design flow has involved some
contributions in both tools (Figure 34).

5.3.2 Hardware Synthesis

The hardware synthesis simply transforms the specification of the platform
into a synthesizable HDL description of multi-core systems. To this end, the
sizes of the memories have to be estimated in order to correctly instanti-
ate the corresponding RAM blocks. Since our architecture model is built on
memory-based interconnection, there are two types of memory:

5.3 dataflow compiler for embedded multi-core platforms 77

• The shared memories that interconnect the processors. A shared mem-
ory simply contains the communication channels that connect two ac-
tors mapped onto two different processors, i.e. the buffers and the
read/write pointers.

• The local memories that are connected to their own processor. A local
memory may contain the state of the actors that are mapped on, the
buffer of the internal communication channels, as well as the stack and
the heap.

Then, the HDL description of each processor is generated from its high-
level description by the TCE using a pre-existing database of standard hard-
ware components.

5.3.3 Software Synthesis

The software synthesis compiles dataflow-based programs into instruction
codes that are executable on the associated embedded multi-core platforms.
In contrast with the hardware synthesis, the flow can really be decomposed
in two successive steps (Figure 35):

1. A first step that translates the whole dataflow description into a proce-
dural IR, low-level but still target independent, which has been devel-
oped for the LLVM project [116]. This step is performed by our dataflow
compiler, described in Section 5.1. In fact, the compiler partitions the
dataflow application over the platform according to the mapping spec-
ification, generating a separated program for each processor.

2. Then, a second step that successively compiles the program of each
processor from LLVM IR into processor instructions thanks to the pro-
cessor description: This makes the whole application executable on
the embedded multi-core platform. This step is performed by the com-
piler of the targeted processor, thus preventing it from being platform
agnostic.

����������	�����������

���������	�������
�������������
���������������
�������������

���������	�����������

����������������������������
 �������������	�������
!������������������

"��"�� "����

����� ! ##$%� ! &��������
'�����

Figure 35: Two-step compilation flow

The LLVM IR provides flexibility and type safety, low-level operations, and
also permits the proper representation of most of the high-level program-
ming languages. Additionally, the IR respects the SSA and Three-Address
Code (3AC) properties to improve the results of code analysis and optimiza-
tions by simplifying the properties of variables.

Our dataflow-specific IR is translated into an equivalent procedural IR in
order to be compiled for the processor. To do so, we perform several sophis-
ticated transformations that are explained below:

1. Communication: The operations related to FIFO channels (read, write,
peek) are instantiated to the procedural IR. More details about our im-
plementation of communications are given in Chapter 6.

78 advanced development environment for dataflow programming

2. Low-level form: A total transformation procedure enables us to make
LLVM IR representations out of our dataflow-specific IR by respecting
properties such as SSA and 3AC. This procedure consists of variable
indexing, φ-function addition and splitting of complex expressions to
multiple primitive instructions.

3. Correct handling of word-lengths: Our dataflow-specific IR allows the
designer to express bit-accurately the word-length of each variable and
communication channel. The respective property is also found in the
LLVM IR. However, when a computation has to be performed with two
variables of different word-lengths, the correct result must be ensured
by the use of an explicit cast instruction.

4. Action scheduler: In our dataflow-specific IR, the scheduling of actions
is expressed by the use of an FSM and priorities between the actions.
We need to express the action scheduler in a procedural way to make
it understandable by the compiler. More details about our implemen-
tation of action scheduling are given in Chapter 6.

After applying these fundamental transformations, the resulting LLVM IR

representation is suitable first for the target-independent powerful optimiza-
tions of the LLVM compiler, and then for the specific optimizations of the TTA

compiler (included in ttanetgen in Figure 34).

5.3.4 Simulation Infrastructure

Much of the difficulties of adopting embedded multi-core platforms is due
to the following reasons:

• Debugging of parallel hardware is very difficult when compared to
debugging of software. Execution tracing of hardware blocks is very
limited when compared to the tracing of software executions.

• Performance analysis at platform level is very difficult. Based on the
performance of individual blocks, it is impossible to tell anything
about the performance of the whole platform.

• System integration for embedded multi-core platforms is a slow and
error-prone process.

Our co-design flow tackles these difficulties by offering an advanced sim-
ulation process that eases the debugging and the profiling of the application
during its integration on the platform. In fact, we take advantage of dataflow
properties, such as the strong encapsulation of components and the exposed
communications, to simulate by pieces the application, i.e. simulate each ac-
tor in a standalone fashion.

functional simulation The functional validation can be performed
directly from the development environment (i.e. Eclipse) using orcc-sim that
simply interprets our dataflow-specific IR generated by the front-end. Know-
ing that the interpretation of complex application can be time-consuming,
the functional validation can also be performed by compiling the applica-
tion for the host platform (i.e. developer’s computer) using orcc-c in order
to allow fast executions. Actually, the developer can easily validate his ap-
plication with both methods by displaying texts, images or videos.

5.3 dataflow compiler for embedded multi-core platforms 79

Apart from the validation, this early simulation phase can be used to
record the logs of the FIFO channels, i.e. the value of the tokens that go
through the FIFO channels. Thus, the actors composing the application can
be executed independently from each other in latter simulation phases. The
simulator can also build execution traces [37], that are used by tools like
Turnus to explore the application design, or to profile the communication
rates within the application.

platform simulation In a latter phase of development, the developer
can simulate the application execution on the targeted platform to get pre-
cise profiling information. Our co-design flow offers a two-level simulation
process that can be used with the instruction-set simulator included in TCE,
known as ttanetsim [99], and with any logic simulator (e.g. Mentor Graphics
ModelSim):

• Platform level: The whole design is simulated to check the functional-
ity of the application including the communications between the pro-
cessors. This enables us to evaluate the global performance of the sys-
tem including the synchronization between the processors.

• Processor level: Each processor can be tested independently from the
others, as presented in Figure 36, using the logs of the FIFO channel that
have been previously produced. To do so, the FIFO simulators (F1, ...Fm)
read the log files and write the shared memories (S1, ...Sn), supplying
the simulated processor (Pi) just as incoming communications from
other processors. And, inversely, the outgoing communication data
produced by the simulated processor (Pi) are automatically consumed
by the FIFO simulators (F1, ...Fm) and compared to reference output
data.

����
�����	�����

����
����������

���������
���������

�������	
������

������	
��������

�
�

�
� ���

���
�

�
�

�
� ���

�
�

�
�

Figure 36: Processor simulation in standalone fashion by way of FIFO simulators

As a matter of fact, the simulation speed is directly related to the simu-
lation precision: The more precisely a simulator describes the platform, the
slower it is. For instance, the instruction-set simulator is about two hundreds
time faster than an RTL simulator.

80 advanced development environment for dataflow programming

5.4 conclusion

This chapter has presented a development environment built upon the dataflow
programming paradigm. This development environment, initially developed
by Wipliez [177], has served as an experimental area for studying the com-
pilation of dataflow programs over multiple platforms. We have shown
how modern software engineering techniques such as meta-modeling can
be used to improve our compilation infrastructure in terms of robustness,
efficiency and architecture. Starting from the global structure of the trans-
compiler, we have also detailed an entire process [5] to design embedded
multi-core platforms dedicated to dataflow programs from a flexible archi-
tecture model.

We are now going to focus on the execution of dynamic dataflow pro-
grams on multi-core platform, starting by the description of an optimized
software implementation (Chapter 6) and following by the description of
actor mapping/scheduling techniques that can handle the unpredictable be-
havior of dynamic dataflow programs (Chapter 7). We are also going to
study the effectiveness of our contributions on both modern desktop plat-
forms and embedded platforms based on our architecture model.

6O P T I M I Z E D S O F T WA R E I M P L E M E N TAT I O N O F
D Y N A M I C D ATA F L O W P R O G R A M S

Now you’re coming back to Earth,
and things are getting more and more dynamic.

— Duane G. Carey, NASA astronaut, 2002

The main challenge that dynamic dataflow programs have to face is the
demonstration of efficient implementations that can achieve performance
constraints imposed by modern applications. For instance, video decoders
have to provide real-time frame-rates for high-definition video sequences,
from 25 FPS for 720p format on mobile terminals to 50 FPS at 8K format
on cinema screens. While the efficiency of traditional language programs
is the result of 50 years of work on compilers to exploit memory locality,
abandoning memory-oriented programming in favor of dataflow program-
ming requires the development of new compilation techniques to fully ben-
efit from the processor architecture. Moreover, the attractiveness of more
restricted dataflow models has often deflected attention from DPN-based
programming.

This chapter describes an optimized software implementation of dynamic
dataflow programs following the DPN model. Our implementation targets
especially the efficient execution of video decoders onto embedded multi-
core platforms, but most of the principles can be applied to all DPN-based
programs and multi-core platforms. The main contributions of this chapter
are:

1. Software implementation of dynamic dataflow programs including op-
timized communications and scheduling. Please notice our implemen-
tation has been integrated in the co-design flow we have introduced
in Chapter 5, so all the experiments presented below are supported by
our compilation flow.

2. Analysis of our software implementation onto dataflow-based video
decoders that have been developed within the RVC framework. Let
us point out that real-time decoding frame-rates of high definition
video sequences are achieved on desktop processors using the RVC

descriptions of several video decoders, including a description of the
emerging HEVC standard which is still being developed.

This chapter is organized as follows. We start by introducing the imple-
mentation of dynamic dataflow programs. Then, we present our optimized
implementation of DPN-based programs, starting by the communications in
Section 6.2, then the scheduling in Section 6.3. Finally, we evaluate our im-
plementation onto RVC-based video decoders in Section 6.4

6.1 implementation of dataflow process networks

One of the fundamental interests of dynamic dataflow programming for de-
signing embedded software is the formalism provided by the underlying MoC.

81

82 optimized software implementation of dynamic dataflow programs

In fact, such a formalism provides a basis for analysis of system properties,
like reliability and efficiency, which are central in embedded systems design.
Thus, implementing DPN-based programs onto programmable processors
requires the translation of the semantic rules of the DPN MoC [121] into im-
perative constructions, which can be executed by our processors, respectful
of these rules.

In general, the implementation of dynamic dataflow programs faces two
problematics to achieve performance requirements:

• Communication is the major bottleneck of dataflow programs. Since
the actors can only communicate through the FIFO channels, the execu-
tion requires a massive amount of data movements that can ultimately
lead to poor performance.

• Scheduling is a well-known bottleneck of dynamic dataflow programs.
In fact, the expressive power offered by the DPN models requires a
large number of control structures. This is supported by the variety
of syntactic constructions available in CAL [67] that control the inner
execution of an actor (FSM, priority, pattern, guard, untagged actions)
as presented in Chapter 4.

These factors are directly impacted by the application granularity, de-
fined in Chapter 3 as the ratio of computation to the amount of commu-
nication [156]. In the literature, the applications are informally classified in
fine-grain, average-grain and coarse-grain families. On the basis of this clas-
sification, we define video decoders as fine-grain when they process each
pixel at a time, as average grain when they process blocks, and as coarse-
grain when they process frames.

6.2 optimized communications

In theory the DPN model defines FIFO-based channels with unbounded ca-
pacity [121], in practice our FIFO-based channels are bounded to limit mem-
ory usage and avoid the overhead of dynamic memory allocation. We as-
sume here that the size of the channel is provided by the application devel-
oper, knowing that some works target their optimization by way of critical
path analysis [38] (See Chapter 3). Actually, bounded FIFO channels have
been studied extensively since the emergence of the first wait-free algo-
rithm presented by Lamport in the late 70s, but communicational channels
of DPN-based programs have specificities that make their implementation
quite challenging.

6.2.1 To Be or Not To Be FIFO Channels

As presented in Chapter 3, the DPN model defines action firing as an indivis-
ible quantum of execution. Therefore, an action is fired if and only if enough
tokens are available in the input channels. Thus, the implementation of FIFO

channels for DPN-based programs requires the ability to check their state, i.e.
the number of tokens available, during the execution.

Additionally, the DPN model introduces the concept of firing rules to or-
der the execution of the firing functions, namely the actions. An action can
be fired if and only if its firing rule is valid, and this validity depends on
the internal state of the actor and the value of incoming data. Therefore,
DPN-based actors peek tokens from input channels, i.e. they check values of

6.2 optimized communications 83

incoming tokens without consuming them, to evaluate action fireability and
thus break FIFO principle.

Since the FIFO principle imposes that the tokens are accessed in order, a
respectful implementation would be a buffering mechanism that conserves
the tokens until they are truly consumed by the actor. In this regards, Jerbi
et al. have proposed an automatic transformation using buffering to remove
peek operations while respecting the DPN model [105, 104]. Their transforma-
tion aims to facilitate the portability over hardware platforms, but ultimately
increases the memory usage as well as the scheduling overhead. Hardware
FIFO being traditionally implemented using acknowledgments, hardware im-
plementations [103, 157, 158] have extensively performed the peek by reading
the token value without acknowledgment. While this approach is very sim-
ple and efficient, the peek stays however limited to the first token of the FIFO

channel and thus reduces the support of dynamic dataflow programs.

6.2.2 Software Circular Buffer

����������	��

��������������

�����������

�����
������

���	��� ���	���

����������

����

Figure 37: Concurrency-safe implementation of FIFO channels in shared-memory

1 struct fifo_s {

2 const int SIZE; /* FIFO size */

3 unsigned int rdInd; /* Read index */

4 unsigned int wrInd; /* Write index */

5 tokenType *content; /* Data buffer */

6 };

Listing 9: Software data structure of FIFO channels

In software, FIFO channels are traditionally implemented by a circular
buffer allocated in shared memory (Figure 37 and Listing 9). Read and write
are then achieved by accessing the buffer according to read and write in-
dexes that are updated afterwards (Listing 10). Moreover, the comparison of
the indexes is sufficient to know the state of the FIFO channel. Similarly to
hardware implementations, a peek is a read without the update of the read
index, but any token can be peeked thanks to the full accessibility of the
shared memory.

84 optimized software implementation of dynamic dataflow programs

1 void write(Fifo *fifo, tokenType *buff, int n) {

2 for(int i=0; i<n, i++) {

3 fifo->content[fifo->wrInd] = buff[i];

4 fifo->wrInd++

5 if(fifo->wrInd == fifo->SIZE) {

6 fifo->wrInd = 0;

7 }

8 }

9 }

10

11 void read(Fifo *fifo, tokenType *buff, int n) {

12 for(int i=0; i<n, i++) {

13 buff[i] = fifo->content[fifo->rdInd];

14 fifo->rdInd++

15 if(fifo->rdInd == fifo->SIZE) {

16 fifo->rdInd = 0;

17 }

18 }

19 }

Listing 10: FIFO accesses based on circular buffer

6.2.3 Control-Free Communications

Using circular buffer to implement FIFO channels avoids side shuffles of
data after each reading, but implies an advanced management of memory
indexes that can ultimately lead to poor performance. For instance, the up-
date of the indexes may require checking if the end of the buffer is reached
to go back to the beginning.

Avoiding checks on the position of the indexes is however possible us-
ing absolute indexes, as proposed by Wipliez, with the cost of additional
modulo operations. Thus, performing read and write increases the indexes
infinitely until the overflow of the variables.

1 void write(Fifo *fifo, tokenType *buff, int n) {

2 for(int i=0; i<n, i++) {

3 fifo->content[fifo->wrInd % fifo->SIZE] = buff[i];

4 fifo->wrInd++

5 }

6 }

7

8 void read(Fifo *fifo, tokenType *buff, int n) {

9 for(int i=0; i<n, i++) {

10 buff[i] = fifo->content[fifo->rdInd % fifo->SIZE];

11 fifo->rdInd++

12 }

13 }

Listing 11: Control-free FIFO accesses

Since computing the modulo is costly on most processor architectures, it
is translated to a simple right shift by forcing the size of the buffer to a
power of two:

∀ fifoi ∈ FIFO, |chani| = 2n with n ∈N (10)

6.2 optimized communications 85

Paradoxically, such a constraint on the size of the communication channels
does not have a large impact on the memory usage, especially compared to
the large needs of video decoders. Indeed, the initial sizes of our FIFO chan-
nels being reasonable, the round-up to the next power of two is relatively
small.

6.2.4 Multi-rate Communications

One of the high-level features of CAL is its ability to describe multi-tokens
actions [67], i.e. actions reading and writing pools of data at each firing,
such as the transposition of 4x4 block presented in Listing 12 that reads and
writes 16 tokens by firing.

1 transp: action Src:[src] repeat 16 ==> Dst: [dst] repeat 16

2 var

3 int(size=16) dst[16] =

4 [src[4 * column + row] :

5 for int row in 0 .. 3, for int column in 0 .. 3

6]

7 end

Listing 12: Transposition of a 4x4 block in RVC-CAL

Following this semantic, Wipliez has proposed an implementation of DPN-
based programs for GPP [177]. Considering an action, such as the one de-
scribed in Listing 12, the dataflow description is translated into the C code
presented in Listing 13, which is compilable with most of C compilers. In
fact, the function implementing the action body is decomposed into 3 steps
as follows:

1. Reading: Incoming tokens are read in order from the input FIFO chan-
nels and stored into the local variables referenced by the input pattern.
E.g., in Listing 12, 16 tokens are read from the port Src and stored in
the local array src.

2. Processing: The action is processed, as defined in its CAL description,
using the local variables referenced into the input and output patterns
as interfaces. As a consequence, the processing of data is not necessar-
ily described in order.

3. Writing: Outgoing tokens are written in order from local variables ref-
erenced by the output pattern into the output FIFO channels. E.g., in
Listing 12, 16 tokens are written successively from the local array dst

to the port Dst.

While this implementation stays respectful of the FIFO principle, with the
exception of the peeking, it also involves two additional copies between the
circular buffers and the local variables.

86 optimized software implementation of dynamic dataflow programs

1 static void transp() {

2 i16 local_Src[16], local_Dst[16];

3 i32 row, col;

4

5 // Read the input tokens in order

6 read(fifo_Src, local_Src, 16)

7

8 // Transpose the tokens

9 row = 0;

10 while (row <= 3) {

11 col = 0;

12 while (col <= 3) {

13 local_Dst[row * 4 + col] = local_Src[4 * col + row];

14 col = col + 1;

15 }

16 row = row + 1;

17 }

18

19 // Write the output tokens in order

20 write(fifo_Dst, local_Dst, 16);

21 }

Listing 13: Transposition of a 4x4 block generated in C

6.2.5 Copy-Free Communications

Since our FIFO channels are implemented in shared memory without access
restriction, we can remove the additional copies to local buffers by accessing
directly to the content of the FIFO channels within the processing of the
action. So, accesses to input and output variables, such as src and dst, are
replaced by direct accesses to FIFO channels, such as Src and Dst respectively.
Unfortunately, race conditions, i.e. synchronization issues, can occur when
the action processing does not ensure that the FIFO accesses are performed
in order (such as the accesses to src).

But, the DPN model defines an action firing as a quantum of execution
[121], in other words an action firing is an atomic step that cannot be inter-
rupted. Thus, the FIFO indexes can be updated just once at the end of the
action without changing the semantic of the application, such as presented
in Listing 14. Then, the implementation stays respectful of the FIFO princi-
ple. Indeed, other processors cannot access the FIFO rooms involved by this
processing since the FIFO indexes are not updated until the action is entirely
processed.

To summarize, the three first steps of action firing (Reading, processing,
and writing) can be merged together, reducing the memory footprint and
the number of instructions to implement the action, as long as the FIFO

indexes are updated after the action processing, and thus let the other actors
using newly produced data and newly released rooms.

6.2 optimized communications 87

1 static void transp() {

2 i32 ind_Src, ind_Dst;

3 i32 row, i32 col;

4

5 // Transpose the tokens directly from/to the FIFO channels

6 row = 0;

7 while (row <= 3) {

8 col = 0;

9 while (col <= 3) {

10 ind_Src = (fifo_Src->rdInd + (4 * col + row)) % fifo_Src->

SIZE;

11 ind_Dst = (fifo_Dst->wrInd + (row * 4 + col)) % fifo_Dst->

SIZE;

12 fifo_Dst->content[ind_Dst] = fifo_Src->content[ind_Src];

13 col = col + 1;

14 }

15 row = row + 1;

16 }

17

18 // Update indexes

19 fifo_Src->rdInd += 16;

20 fifo_Dst->wrInd += 16;

21 }

Listing 14: Copy-free execution

Furthermore, this optimization is highly simplified by the Pattern class
composing our dataflow IR which links together variables and ports (Section
5.1.6 of Chapter 5). Therefore, when the compiler meets a variable access in
an action body (load or store), it just has to check if the given variable is
contained in one of the patterns associated to the action in order to generate
the access accordingly. For instance in Listing 12, the variable src is associ-
ated to the input port Src by the input pattern of the action, so when the
compiler meets an access to this variable src, it can translate it to a direct
access to the FIFO channel fifo_Src->content.

6.2.6 Efficient Broadcasting of Communications

Now, our dataflow applications also support broadcasting communication
following the 1-producer/N-consumers scheme. Thus, actors can produce data
that are transmitted simultaneously to multiple target actors through a sin-
gle port. In fact, the implementation of the broadcasting is another critical
point of communication in dynamic dataflow programs, especially for our
video decoding applications that have an extensive use of broadcasting.

As a result, the implementation of our communication channels has to be
able to efficiently broadcast the data over several actors, and, to our knowl-
edge, broadcasting tokens can be implemented in three ways that are illus-
trated by Figure 38:

1. Adding a specific actor in charge of copying the data produced to all
targeted actors (Figure 38a), as described by Wipliez in his thesis [177]:
While this implementation is flexible, adding actors complicates the
actor scheduling and involves extra data movement.

88 optimized software implementation of dynamic dataflow programs

2. Asking the source actor to broadcast itself the tokens into multiple
communication channels (Figure 38b): While the implementation is
natural, the data are copied for each target.

3. Using circular buffers with multiple read indexes (Figure 38c), the
smallest one being the global index: While this implementation re-
duces the data movements to maximum, the managing of the FIFO

channels is complicated and all the FIFO channels need to be mapped
on the same address space.

�������

�������

�������

���	��	��

	����

(a) Dedicated actor

����������	

�����

������

�������

�������

���������	

�������

����������	

�����

������

���������	

(b) From source actor

����������

	����������

����

������

������� �������

����������

�������

(c) Extended circular buffer

Figure 38: Three way of broadcasting communications

Knowing the memory architecture of our architecture model (Section 5.2
on Chapter 5), the implementation of the broadcast depends on the reparti-
tion of the actor over the platform. If all target actors are mapped together
on the same processor, the broadcasting can be performed using multiple
read indexes. On the contrary, when the target actors are mapped to dif-
ferent processors, then the broadcast is performed directly by the source in
order to duplicate the data over several address spaces.

6.3 optimized scheduling

In Chapter 3, we have stated that one essential benefit of the DPN model
lies in its strong expressive power, so as to simplify algorithm implemen-
tation for programmers. This expressive power includes: the ability to de-
scribe data-dependent computations through token production/consump-
tion, where production/consumption may vary according to values of to-
kens; the ability to produce time-dependent behaviors that rely on the time
at which tokens are available on the input of an actor; and, the ability to ex-
press non-determinism, which can be used to construct actors that respond
to unpredictable sequences of tokens.

However, when dealing with the scalability of this model, we have stated
that this strong expressive power has a bad influence on the efficiency of its

6.3 optimized scheduling 89

implementation, as several operations may be scheduled at run-time on a
single processing unit. The overhead caused by a scheduling strategy, along
with its variable chance of success between test/validation of a firing rule for
each operation, can lead to inefficient implementation of dataflow programs
or to unsteady performance on their executions.

6.3.1 Scheduling Scheduling

As defined by Lee and Parks [121], the execution of a DPN-based actor is
modeled by the repeated evaluation of the firing rules that are, in case of
a success, followed by the firing of the associated action. This process is
usually defined as the action scheduling.

Apart from this internal scheduling, the execution of a DPN program in a
concurrent environment requires actor scheduling. Section 3.6 of Chapter 3

has presented three models which can execute several actors on a single pro-
cessing unit, and especially two scheduling strategies, known as round-robin
and data-driven / demand-driven, dedicated to DPN-based actors. Both schedul-
ing strategies assume that an actor should not be fired indefinitely without
external contribution (other actors that consume/produce the tokens). So,
the actor currently scheduled will be blocked at some point, with no chance
to be fired anymore, and will exit from the action scheduler to let the actor
scheduler decide the next actor to schedule.

To conclude, the execution of DPN-based programs involves both actor
scheduling and action scheduling (Figure 39). While they are two distinct lev-
els of scheduling, they are intimately related since the success of the action
scheduling within an actor is directly dependent on the production/con-
sumption performed by its predecessors/successors.

���� ���� ���� ���� ���� ���� ���� ���� ����

���������

	����

	�����

�������

��	������

�����

��	������

�������

��	������

�������

��	������

Figure 39: Hierarchical scheduling

6.3.2 Action Scheduling

As we have seen before, the action scheduler evaluates the firing rules so
as to determine the next action to fire. In fact, the firing rules are evaluated
successively according to the partial order defined within the actor (priorities
and FSM). Thus, the action scheduler can be implemented by a simple func-
tion that evaluates the firing rules in order [177] such as presented in Listing
15.

In theory, the scheduler evaluates only two conditions to determine the
fireability of an action: the input pattern, the amount of tokens required in
the input channel, and the guard, the potential condition on the values of
tokens and/or state variables.

90 optimized software implementation of dynamic dataflow programs

In practice, the scheduler has also to evaluate the output pattern so as to
ensure that enough rooms are available in the output channels to allow the
firing of the action without blocking. While the validation of the output pat-
tern is not required by the DPN model, it is necessary when several actors are
executed concurrently on the same processor. Indeed, waiting for the avail-
ability of an output channel, using blocking writes for instance, inevitably
leads to a deadlock if the target of the channel, the consumer, is mapped to
the same processing unit.

1 void Transpose4x4_0_scheduler() {

2

3 while (1) {

4 if (hasTokens(fifo_Src, 16) && isSchedulable_untagged_0) {

5 if (hasRooms(fifo_Dst, 16)) {

6 // Return back to the actor scheduler

7 goto finished;

8 }

9 transp(); // Fire the action

10 } else {

11 // Try to fire the next action, but no others

12 // Return back to the actor scheduler

13 goto finished;

14 }

15 }

16

17 finished:

18 return;

19 }

Listing 15: Action scheduler

6.3.3 Actor Machine

The large number of tests involved in actor execution so as to evaluate the
firing rules, along with their unpredictable chance of success, can ultimately
lead to inefficient implementation of DPN-based actors. Thus, a different ap-
proach, introduced by Janneck and Cedersjö, tries to reduce the number of
tests performed during the evaluation of the firing rules using a new execu-
tion model, called actor machine [101, 46], that also considers the evaluation
results of previous firing rules.

Actor machine deals with the memorization of the test results involved
in the validation of previous firing rules to limit their reproduction. For
instance, let two firing rules Ri and Rj tested successively such as Ri =

[Pi,1, Pi,2] and Rj = [Pj,1, Pj,2] with Pi,1 = Pj,1 = [∗, ∗]; if Ri is evaluated
false such as Ri = [true, false] then Pj,1 could be already known valid
during the evaluation of Rj and the evaluation of Pj,2 should be sufficient.
To do so, the evaluations of previous patterns are preserved by the use of
an automaton mechanism. Several connected actor machines can also be
composed in order to increase the potential reduction [101].

On the one hand, the scheduling of an actor machine could be more ef-
ficient compared to the traditional firing model thanks to the reduction of
the number of tests performed. On the other hand, the translation to the ac-
tor machine execution model induces an explosion of the number of states
in the scheduling algorithm due to the need of memorization. Moreover,
a circular buffer implementation of the communication channel allows a

6.3 optimized scheduling 91

similar test reduction by means of compiler optimization. Indeed, common
sub-expression elimination can search for identical patterns in firing rules
evaluated successively, and can replace them with a single variable holding
the result of their evaluation.

6.3.4 Quasi-Static Scheduling

The challenge when optimizing the execution of a dataflow description is to
conserve the strong expressive power of DPN while reducing the overhead
caused by its required run-time scheduling. Quasi-static scheduling intends
to make scheduling decisions as much as possible at compile-time by deter-
mining all static behaviors and by keeping only the necessary decision for
run-time. The literature has introduced a large panel of methodologies to
perform quasi-static scheduling of dynamic dataflow programs in different
manners [93, 90, 69, 70, 32, 33, 34].

Some of them try to prune all unreachable execution paths to remove all
unnecessary tests using code instrumentation [32, 33, 34] or model check-
ing [69, 70] to determine the possible executions. However, both of them
are limited by their need of input data to perform their analysis. Such a
requirement prevents the full support of all possible execution paths.

D

A

C

B

E A

C

3B-D

E

D

A

C

B

E

1 3 41

1
?

?

?

?
?

? D

A

C

B

E

1 3 41

1
?

?

?

?
?

?

3 4

3

(a) Classification
(b) Clustering

(c) Scheduling

?

?

?

?

?

?

Figure 40: Quasi-static scheduling using actor clustering

Another approach, based on the classification results, tries to reduce the
number of actors that are required to be scheduled at run-time, by clustering
network regions that have a locally static behavior [93, 90]. We mean by one
locally static region a set of connected actors in the description that have
a firing order we can determine statically, regardless the data stored in the
FIFO channels of the description. The actor clustering approach is based on
three existing algorithms that are applied sequentially as follows:

1. The actors with predictable behaviors presented in the dataflow de-
scription are detected using actor classification as described in Section
3.5.1 of Chapter 3.

2. Predictable actors connected to one another are clustered into a single
node, called composite node, to obtain a valid sequence of firing in it that
can be determined at compile-time. As such, an essential condition
to set a composite node is to determine whether such a sequence of
firing is possible, the composition theorem described by Pino [144]. The
resulting cluster becomes a composite node in the graph of the dataflow
description.

3. Actors grouped in a composite node are scheduled at compile-time
using the Single-Appearance Scheduling (SAS) strategy [131], the opti-

92 optimized software implementation of dynamic dataflow programs

mum static scheduling strategy for code minimization where all repe-
titions of a same actor can be found side by side. The other remaining
actors, along with the resulting composite nodes, are scheduled at run-
time.

The methodology is illustrated by the Figure 40 on a dataflow example
containing 5 actors. Each actor is firstly classified to determine, if possible,
its production/consumption rates in order to detect the existing static region
that can finally be scheduled.

6.4 study of rvc-based video decoders

Chapter 3 has introduced the performance of the implementation as a key
point of the widespread adoption of dynamic dataflow programming. We
have also claimed that the two main problematics of software implemen-
tation to achieve the expected performance is the communication and the
scheduling.

Now, this section focuses on the implementation of our RVC-based video
decoders, because understanding the application is the key to getting the
most out of an embedded system [182]. Actually, the identification of the ap-
plication characteristics enables the specialization of the system to perform
powerful optimizations, this is obviously the main interest of application-
specific and domain-specific platforms.

6.4.1 Experimental setup

In order to study the implementation on both desktop and embedded pro-
cessors, we define two different configurations of our experimental setup as
follows:

a. Desktop implementation: In this configuration, the tested software
implementations are generated by use of the C back-end of Orcc (pre-
viously called orcc-c), and the generated C code is compiled with GCC
and executed on an Intel Xeon W3670 clocked at 3.2GHz on top of
Ubuntu GNU/Linux.

b. Embedded implementation: In this configuration, the tested software
implementations are generated by use of the TTA back-end of Orcc (pre-
viously called orcc-tta), then the generated code is compiled by the
TTA compiler for the processor, usually configured as Fast considering
this is our best trade-off between performance and power consump-
tion. Apart from the processor configuration, the multi-core platform
is based on the architecture model defined in Section 5.2. The evalu-
ation is made thanks to the instruction-set simulator including in the
TCE (previously called ttanetsim).

The experiments have been conducted for some of the RVC descriptions
of video decoders that have been introduced in Chapter 4, and using 720P
sequences containing I/P/B frames. Here is the detailed list:

• MPEG-4 Part 2 SP - Old town cross (25fps, 6Mbps) : A custom descrip-
tion (known as Irisa) that has been optimized by hand according to the
execution analysis extracted from our embedded implementation.

• MPEG-4 AVC / H.264 PHP - A Place at the Table (25fps, 6Mbps) : The
normative version that decomposes the processing of each component
(Luma and Chroma).

6.4 study of rvc-based video decoders 93

• MPEG HEVC / H.265 Main - Kristen And Sara (60fps, 1Mbps) : The
normative version that is still being developed but already compliant
with most of HM10.0 bitstreams.

During all our experiments, all the FIFO channels in our applications are
bounded to 8192 elements in order not to impact on the results.

6.4.2 Analysis of Global Performance

First of all, we analyze the global performance of each implementation of
our RVC-based video decoders.

desktop implementation Table 6 presents the frame-rates observed
during the decoding of the 720p video sequences on our desktop processor.
For this experiment, all the actors are mapped to the same processor core
and scheduled using the round-robin strategy.

Decoder Video sequence Frame-rate

MPEG-4 Part 2 SP Old town cross (720P) 33,7 FPS

MPEG-4 AVC PHP A Place at the Table (720P) 4,5 FPS

MPEG HEVC Main Kristen And Sara (720P) 12,7 FPS

Table 6: Maximal frame-rates achieved by our desktop implementation using round-
robin scheduling strategy

The results show a large difference between the performances of the 3

decoders. MPEG-4 Part 2 SP clearly is the most efficient and easily achieves
real-time decoding for 720p sequences: This can be explained by its lower
complexity and by the fact that this specific description is the result of sev-
eral DSEs to improve the performance of the decoder.

But, our implementation of the HEVC decoder surprisingly is more effi-
cient than the one of the MPEG AVC decoder even though the HEVC stan-
dard is much more complex than its predecessor. This can be explained by
the wrong implementation choices that have been taken during the devel-
opment of the RVC-based description of the AVC decoder. As presented in
Table 4 of Chapter 4, the description is composed of many more actors than
the other decoders: This causes a larger scheduling overhead and requires
much more communications to disseminate all the information within the
decoder. In fact, these differences clearly demonstrate the high importance
of the decomposition granularity within DPN-based programs.

As a result, we have deliberately chosen to focus, in the next sections of
this chapter, on the analysis of MPEG-4 Part 2 and MPEG HEVC / H.265

without detailing the analysis of MPEG-4 AVC / H.264.

embedded implementation Now, we evaluate the global performance
of our embedded implementation. First, let us point out that a functional
embedded implementation is much more difficult to obtain than a desktop
implementation. Indeed, debugging dataflow programs within embedded
multi-core platforms is a hard and time-consuming task that requires an ex-
pertize from hardware and software aspects. Moreover, the simulation speed
is rapidly becoming one of the main limitations compared to the execution
speed on desktop processors.

94 optimized software implementation of dynamic dataflow programs

Table 7 summarizes the maximal frame-rates achieved with our embed-
ded implementation on both the MPEG-4 Part 2 decoder and the MPEG
HEVC decoder (Still Picture profile that does not contain the inter-prediction).
The evaluated embedded platforms are composed of Fast TTA-based proces-
sors clocked at 100MHz, wherein each actor is mapped to its own processor.
Thus, there is no need for an actor scheduling strategy: The global schedul-
ing is achieved by the action scheduler that checks repetitively the validity
of the firing rules.

Decoder Video sequence Frequency Frame-rate

MPEG-4 Part 2 SP Foreman (QCIF) 100MHz 175 FPS

N/A (720P) 1GHz 40 FPS1

MPEG HEVC BasketBallPass (240p) 100MHz 4 FPS

N/A (720P) 1GHz 5 FPS1

Table 7: Maximal frame-rates achieved by our embedded implementation using the
Fast configuration clocked at 100MHz. These frame-rates have been eval-
uated during an execution of the entire multi-core platform within the
instruction-set simulator (ttanetsim)

The results clearly demonstrate the functioning of our co-design flow (pre-
sented in Section 5.3). Actually, these results are obtained from a simulated
execution, but let us point out that successful implementations of the MPEG-
4 Part 2 SP decoder [5] has already been synthesized on two different FPGA

boards: Altera Stratix III and Xilinx Virtex 6.
Besides the functional demonstration, the results also show a large differ-

ence of performance between the two decoders, i.e. the frame-rate observed
on MPEG-4 Part 2 is about 40 times better while the tested video sequence
is only 4 times smaller. This can be explained by the performance tuning
that we have already made on the description of MPEG-4 Part 2, along with
the development status of our description of HEVC.

Considering the current performance, our embedded implementation can-
not achieve real-time decoding of high definition sequences. But, these re-
sults open promising perspectives about a more optimized implementation,
and about a generic video decoding platform that could reach higher clock
frequency thanks to integrated circuit technology. To this end, we have ex-
trapolated the results for higher clock frequency (1GHz) and video defini-
tion (720P).

6.4.3 Analysis of Internal Communications

A major interest of dataflow programs is the explicit communication be-
tween the components of the application that makes them easier to analyze.
In DPN-based video decoders, communication rates are usually irregular and
very sensitive to multiple factors (size of the FIFO channels, actor scheduling,
etc). But, communication rates become globally stable when the observed
time-slice is sufficient. Thus, Figure 41 presents the communication rate ob-
served at each output port within the MPEG-4 Part 2 SP and MPEG HEVC

decoders during the decoding of few frames of the tested video sequences.
Figure 41 additionally presents the degree of broadcasting of the ports, i.e.

1 Extrapolated frame-rates

6.4 study of rvc-based video decoders 95

the number of actors to which the ports are connected, in order to highlight
the duplication of data.

We can clearly identify two categories of communications from the results
presented in Figure 41:

video stream This stream is characterized by a large amount of data
that usually goes through the decoder by a single path (For instance
parser_blkexp.QFS in Figure 41a). The stream may be however divided
to increase the data parallelism, by separating the decoding of either
the image components (Luma and Chroma) [124] or the image regions
(like the tiles in HEVC / H.265 [164]).

Besides, broadcasting the video stream involves a large amount of
data duplication but is only performed one or two times (For instance
motion_add.Vid in Figure 41a), when the decoded frames are transmit-
ted to both the display and the image buffer used by the inter pre-
diction. This stream being clearly the largest of the application, this
specific broadcast can be the cause of a data congestion.

control information These communications are characterized by a
small amount of data disseminated through multiple channels within
the video decoder. A typical example is the transmission of the type
of the current block, parseheader.BTYPE in Figure 41a. A major part of
these communications is produced by the parser which extracts the
syntax elements from the input stream to parametrize the actors. As
a result, their behavior of video decoders should match well with the
semantic of quasi-static dataflow MoCs.

As opposed to the video stream, broadcasting the control information
implies a smaller amount of data but more consumers. For example,
control tokens generated by the parser may be transmitted to most of
the next actors, like Algo_Parser.CUInfo in Figure 41b, so even a small
amount of data can introduce a lot of checks to control the state of the
communication channels.

To sum up, the video stream is processed block after block through the
actors which behave according to control data. Moreover, the broadcasting
may be an additional source of bottlenecks, causing either data congestions
or management overheads.

6.4.4 Analysis of the Application Decomposition

Now, let us take a look at the application decomposition which is funda-
mental for targeting multi-core platforms.

workload distribution We start by analyzing the distribution of the
computational workload within the video decoders, i.e the computational
workload of the actors, for both embedded and desktop implementations.
The results for two video decoders, MPEG-4 Part 2 and HEVC, are presented
in Figure 42. On the one hand, the workloads of the embedded implementa-
tion are evaluated for each actor independently in a standalone simulation.
In other words, each actor is simulated on its own processor with all incom-
ing data available, in order to hide the impact of the stream dependences
within the network. On the other hand, the workloads of the desktop imple-
mentation are evaluated when all actors are mapped to the same processor

96 optimized software implementation of dynamic dataflow programs

�

�������

��������

��������

��������

��������

��������

��������

��������

��������

�

�

�

�

�

�

�

	

�

��

���� ���������

�
�
�

�
�
��
�
��
��

�
�
�
�

�
�
�

�
�
��
�
��
��

��
�
��

(a) MPEG-4 Part 2

�

��������

��������

��������

��������

��������

��������

��������

�

�

�

�

�

�

�

	

�

��������

��������

��������

��������

��������

��������

��������

�

�

�

�

�

�

�

	

�
�
�

�
�
��
�
��
��

��
�
��

�
�
�

�
�
��
�
��
��

��
�
��

�
�
�

�
�
��
�
��
��

�
�
�
�

�
�
�

�
�
��
�
��
��

�
�
�
�

(b) MPEG HEVC / H.265

Figure 41: Communication analysis (rates and broadcasting) within RVC-based video
decoders

6.4 study of rvc-based video decoders 97

which may cause an overhead due to the variable chance of success between
test/validation of the firing rules.

��

��

���

���

���

���

���

���

��	�����

�������

(a) MPEG-4 Part 2

��

��

���

���

���

���

���

���

(b) MPEG HEVC / H.265

Figure 42: Repartition of the workload within RVC-based video decoders using both
desktop and embedded implementations

The results clearly show that our description of MPEG-4 Part 2 SP is more
equitably balanced than our description of HEVC. This difference can be par-
tially explained by the fact that the HEVC decoder is still being developed,
especially concerning the complexity of the inter-prediction. Another explana-
tion is the difference between the implementations of the inverse transforms,
designed with 1 actor (the IDCT2D) in MPEG-4 Part 2 and 12 actors (the ITs)
in HEVC.

The results show as well that the repartitions of the workload within
both implementations are very similar, except for the DecodingPictureBuffer
of HEVC that is subject to cache effects with the desktop implementation,
and the SAO filter that is badly compiled by the TTA compiler.

Moreover, it should be noted that the computational workload could be
balanced more equitably by increasing the coarse-grain parallelism in the
decoder. In video decoding, increasing the parallelism is usually achieved
by separating the decoding of the image component or by splitting the im-
age. On the one hand, the separation of the processing of the components
is bounded by the luma processing which is four times the complexity of
each chroma processing. On the other hand, the decomposition of the image

98 optimized software implementation of dynamic dataflow programs

itself is restrained by the spatial and temporal dependences resulting of the
prediction. Actually, parallel processing is one of the main achievement of
the emerging HEVC / H.265 standard [164] that introduces several advanced
decomposition (wavefront, tiles, etc).

internal parallelism Thanks to the flexibility of TTA-based proces-
sors in our embedded implementation, we can also study the potential par-
allelism within the actors. In fact, the predefined processor configurations,
presented in Section 5.2, have all their own parallel processing capability,
which let us study the Instruction-Level Parallelism (ILP) potential within
actors. Therefore, Figure 43 presents the execution speedup of actors of
two video decoders on Custom, Fast and Huge processors according to their
execution time on a Standard processor. In fact, the Standard processor is
equivalent to a RISC processor that can only perform one operation at a time
because of its 3 buses. The actors are again executed in a standalone fashion.

�

�

�

�

�

�

��	���

��	�

����

�
�
�
�
�
��

�

(a) MPEG-4 Part 2

�

�

�

�

�

�

�
�
	
	
�
��

�

(b) MPEG HEVC / H.265

Figure 43: Exploring the parallelism potential of actors composing video decoders
thanks to their execution speedup on TTA-based processors using Custom,
Fast and Huge configurations from a sequential execution with Standard
configuration

The results clearly show two types of actors. On the one hand, actors
that benefit well from the parallel capabilities of TTA-based processors by
presenting impressive speedups that reach factors up to 5.5, such as those
involved in the processing of inverse transforms. We define them as the
compute-intensive actors. On the other hand, actors that do not take advan-
tage from the parallel capabilities of TTA-based processors by presenting

6.4 study of rvc-based video decoders 99

speedups that hardly reach factors of 1.5, such as the ones involved in en-
tropy decoding. We define them as control-intensive actors.

From all these results, we can identify the traditional bottleneck actors of
our RVC-based video decoders: The parser that is controlled by a complex
FSM (e.g. the parser of our HEVC decoder contains about 200 actions), the
buffer which is usually strangled by the number of hardly predictable mem-
ory accesses, and finally the predictions as well as the loop filters that all in-
volve complex processing requiring careful implementations. In conclusion,
video decoders are now complex applications containing heterogeneous al-
gorithms which make their implementation so challenging.

6.4.5 Comparison of the Scheduling Strategies

Finally, we experiment the different scheduling strategies in order to show
their impact on the efficiency of our video decoders.

clustering Quasi-static scheduling (See Section 6.3.4) based on local
regions clustering has been evaluated on the tested video decoders. Table
8 presents the number of clusters found in each description, as well as the
number of actors and FIFO channels affected by the clustering.

Results show that MPEG-4 AVC and HEVC seem much more static than
MPEG-4 Part 2 SP. But, most of static regions come from the inverse trans-
forms, and as seen before the inverse transform of the MPEG-4 Part 2 decoder
is only composed of one actor, the IDCT2D, that results from an early hand-
made clustering [123]. Another important consideration is the current de-
composition of the decoders. While the tested descriptions of the MPEG-4
AVC and MPEG-4 Part 2 decoders process the image components in parallel,
the description of the MPEG HEVC decoder still processes them sequentially.
As a result, HEVC contains a lot less actors since the residual and prediction
parts are not duplicated.

Clusters Actors FIFOs

% # %

MPEG-4 Part 2 3 6/41 15 3/104 3

MPEG-4 AVC / H.264 8 30/114 26 22/404 5

MPEG HEVC / H.265 5 18/34 53 13/109 12

Table 8: Clustering results

To take a more detailed example, we focus on the inverse transform com-
posing the description of the HEVC decoder, see Figure 20 in Chapter 4. This
inverse transform is decomposed in five parallel paths. The first paths are
dedicated to the prediction residual decoding of each existing Transform
Unit (TU) sizes, respectively 4x4, 8x8, 16x16 and 32x32. The last one is used
to compute the inverse Discrete Sine Transform (DST) for 4x4 luma transform
blocks that belong to an intra-coded region.

All actors of the inverse transform are classified SDF except the splitter
and the merger. In fact, the splitter and the merger belong to the PSDF model
(parametrized by the size of the block) but the classifier is not able to detect

100 optimized software implementation of dynamic dataflow programs

them due to the complexity of their firing rules. Therefore, a clustering node
is built for each paths with the schedule presented in Figure 44.

Transp_4x4 IT4x4_1d Transp_4x4 IT4x4_1d

Transp_8x8 IT8x8_1d Transp_8x8 IT8x8_1d

Transp_16x16 IT16x16_1d Transp_16x16 IT16x16_1d

Transp_32x32 IT32x32_1d Transp_32x32 IT32x32_1d

Inv_DST4x4_1st Inv_DST4x4_2nd

Splitter Merger

4x4x1x1x 1x1x 4x4x

8x8x1x1x 1x1x 8x8x

16x16x1x1x 1x1x 16x16x

32x32x1x1x 1x1x 32x32x

1x1x1x1x

Figure 44: Quasi-static scheduling of the inverse transform of MPEG HEVC / H.265

based on graph clustering

desktop implementation First of all, the scheduling strategies are
evaluated with the desktop implementation. The Table 9 summarizes the
results of the sequential execution of the tested video decoders with differ-
ent scheduling approaches, that are the round-robin and data-driven/demand-
driven strategies (called respectively Robin and Driven) with or without clus-
tering of locally static regions. The number of switches, firings and misses is
detailed, additionally to the percentage of misses according to the total num-
ber of switches, as well as the resulting frame-rates. A switch corresponds
to the execution of the next schedulable actor that occurs when the current
actor is not fireable anymore due to the empty/full state of its communica-
tion channels; A firing corresponds to the execution of an action when all its
firing rules are valid; And a miss is a switch that does not result in a firing.

The results show that clustering techniques can permit an impressive re-
duction of misses during the scheduling when the number of static actors is
sufficient, such as in the AVC and HEVC decoders. But, this reduction does
not necessarily induce a large improvement of the global performance of
the application. As we have seen before, the computational workload of the
inverse transforms within our decoders is minimal. Knowing that most of the
detected static regions are localized in these inverse transforms, the impact on
the global performance stays insignificant, expect for the AVC decoder due
to its smaller granularity. Past experimentations [178, 90, 93] have however
presented interesting improvements of the performance by using the same
video decoders which are optimized with static scheduling of locally pre-
dictable regions. This difference can be explained by the high efficiency of
our optimized implementation that masks the improvement induced by the
clustering.

Moreover, the results show that the more advanced strategy, known as
data-driven / demand-driven, reduces drastically the number of misses during
the scheduling, but slightly improves the performance of MPEG-4 Part 2 SP
and HEVC decoders. This can be explained by the fact that the improvement
observed from the test/validation of the firing rules is masked by the execu-
tion overhead implied by the complexity of the strategy. However, we have
shown in previous works [4] that DPN-based programs can benefit from this
more advanced strategy when the number of actors increases.

embedded implementation Now, let us compare the scheduling strate-
gies more precisely thanks to the flexibility of our embedded implementa-

6.5 conclusion 101

Strategy Switch Firing Miss % FPS

Robin 4306 2812677 801 19 33,7

Robin+Cluster 4224 2809683 771 18 34,2

Driven 2420 2812654 252 10 34,6

Driven+Cluster 2324 2809632 232 10 34,8

(a) MPEG-4 Part 2 SP

Strategy Switch Firing Miss % FPS

Robin 522205 12526470 447065 86 4,5

Robin+Cluster 403348 11825273 237835 59 5,4

Driven 52096 12539650 25633 49 7,3

Driven+Cluster 50348 11824252 26369 52 7,6

(b) MPEG-4 AVC PHP

Strategy Switch Firing Miss % FPS

Robin 16389 232752 12855 78 12,7

Robin+Cluster 9929 226807 147 1 12,8

Driven 2808 233057 147 5 13,1

Driven+Cluster 2647 227228 91 3 13,2

(c) MPEG HEVC Main

Table 9: Comparison of static and dynamic scheduling strategies within the desktop
implementation using the tested video decoders. The number of switches,
firings and misses are expressed in 103

tion. Run-time and quasi-static scheduling strategies are again both exper-
imented, but this time we consider them locally on static regions so as to
really compare their efficiency. We consider once more the inverse transform
of the HEVC decoder, described in Figure 44, and especially the first 4 paths.

To do so, we define 2 configurations. On the one hand, the 4 actors com-
posing the path are mapped to the same processor and scheduled dynam-
ically with our dynamic scheduler using round-robin strategy. On the other
hand, the 4 actors are clustered in a composite node that is scheduled using
SAS, then mapped to its own processor. Table 10 summarizes the results for
each TU sizes, respectively the number of incoming tokens, the number of
cycles to process them for both scheduling strategies, and the acceleration
rate resulting from the clustering.

The results clearly show that TTA processors can benefit from static schedul-
ing by presenting interesting acceleration rates depending on the sizes of the
TU. In fact, the compile-time predictability allows much more potential ILP

by removing the test and validation of the firing rules.

6.5 conclusion

As discussed throughout this thesis, although dynamic dataflow program-
ming can be considered as a flexible approach for the development of scal-
able applications, there are still some concerns about its efficiency. Therefore,

102 optimized software implementation of dynamic dataflow programs

Region Tokens Round-robin Clustering Acc

IT4x4 13696 385876 272982 1.41

IT8x8 38848 986408 664708 1.48

IT16x16 42752 2917961 1557331 1.87

IT32x32 19424 1747047 1567697 1.11

Table 10: Comparison of static and dynamic scheduling strategies on the inverse trans-
form of HEVC using our embedded implementation

we have presented in this chapter an optimized software implementation
of dynamic dataflow programs, including details about the communication
and the scheduling. In fact, we have partially solved one of the main chal-
lenges of dynamic dataflow models by demonstrating for the first time, to
our knowledge, that DPN-based video decoders achieves real-time frame-
rate of high-definition sequences on desktop processors.

This demonstration has also given us the chance to deeply analyze the
video decoders that have been developed within the RVC framework. As a
result, we claim that the granularity of the description is the key to achieve
high performance. On the one hand, the application has to be decomposed
in a sufficient number of actors to be balanced equitably on a multi-core plat-
form. On the other hand, the actors have to contain a sufficient amount of
computations to take advantage of the parallel capabilities of each processor
core.

Now, the next Chapter focuses on multi-core scheduling of dynamic dataflow
programs starting from our optimized implementation in order to demon-
strate the scalability of our approach.

7S C A L A B L E M U LT I - C O R E S C H E D U L I N G O F D Y N A M I C
D ATA F L O W P R O G R A M S

Everyone knows Amdahl’s Law,
but quickly forgets it.

— Thomas Puzak, IBM, 2007

The emergence of massively parallel architectures has revived the interest
on dataflow programming. In fact, programming multi-core platforms in-
volves complex and error-prone tasks (Chapter 2), but describing an appli-
cation by means of dataflow programming naturally guarantees its decom-
position in multiple tasks while exposing data dependences (Chapter 3). On
the one hand, the practicality and the expressiveness of dynamic dataflow
languages enable a pragmatic development of complex applications. On the
other hand, dynamic dataflow languages come up with the need of runtime
scheduling decisions in order to achieve performance requirements, espe-
cially on multi-core platforms given the number of parameters involved.
Actually, the mapping of applications has been identified as one of the most
urgent problems to be solved for implementing embedded systems [155].

�
�
�������	

�
�
�������	

�
�
�������	

�
�
�������	

�

�
�

�

�
�

��

�

�

�

�

� �

��

�

� �

� � �

��

�

�
�

�
�

�
�

�
�

	
�

	
�

	
�

	
�

����	�� �������	��

����	�������������� �������������	���	��

����

Figure 45: Multi-core scheduling of dynamic dataflow programs

Chapters 5 and 6 have presented our development environment and a
methodology to translate dynamic dataflow descriptions into optimized
software codes that can be executed on processors. Now, this chapter de-
scribes a set of run-time multi-core scheduling systems (Figure 45) that can
handle the dynamism of our DPN-based programs and achieve scalable per-
formance. In other words, management systems dynamically assign actors
to processors, order actor execution, and run actors, without causing starva-
tion or deadlock. All of our algorithms aim at maximizing data throughput
for applications so as to achieve real-time constraint. Similarly to Chapter 6,
we assume that the communication channels are previously sized by the
application developer.

This chapter makes the following contributions:

1. A runtime system based on genetic algorithms that automatically searches
efficient actor mappings for DPN-based programs.

103

104 scalable multi-core scheduling of dynamic dataflow programs

2. A low-cost actor mapping system for dataflow programs based on
graph partitioning. The low-cost of the approach makes it doable re-
peatedly at runtime to maintain a good load balancing over the tar-
geted platform even with dynamic applications.

3. A runtime actor scheduling system for DPN-based programs that sup-
ports multi-core architecture thanks to a distributed architecture.

This chapter is organized as follows. We start by introducing our actor
mapping systems in Section 7.1. Then, we describe our actor scheduling
systems in Section 7.2. Finally, we present an analysis of the scalability of
the video decoders developed within the RVC framework, which enables the
evaluation of our whole multi-core scheduling system (i.e. actor mapping
and scheduling).

7.1 actors mapping

Executing efficiently programs onto multi-core platforms requires to bal-
ance the computational load over the processor cores so as to limit the con-
sequences of sharing resources on the global performance of the system.

Actually, the load balancing can be achieved either by statically determin-
ing the computational load or by migrating the actors during the execution.
But, in general, the determination of the computational load at compile-time
is made impossible by the strong expressive power of dynamic dataflow
programs. Thus, finding efficient mapping of dynamic dataflow programs
requires run-time analysis. The challenge is then to define low-cost analyses
to limit their execution overhead.

7.1.1 Definition of the metrics

Let us introduce the different parameters that are involved in the actor map-
ping. First, we consider the constraints that restrain the mapping:

• The number of the computational resources is constrained by the plat-
form itself. When the number of available processors on the platform
is inferior to the number of actors composing the description of the
application, several actors have to share the same processor core.

• The interconnections between the processor cores and the memories
are also constrained by the platform itself. When two connected actors
are mapped onto two distinct processors, these two processors must
share a common memory to let the actors communicate.

Then, we define some metrics about the given application and the targeted
platform that help us to determine an efficient actor mapping:

• Knowing that the communications are the common bottleneck of dataflow
applications, the connectivity between actors, as well as the communi-
cation rates, are key factors of the actor mapping. For instance, map-
ping two actors which frequently exchange information onto the same
processor reduces the communications between the processors so as
to limit the pressure on the shared memory and the interconnection
network.

• The performance of a dataflow program is usually characterized by
its throughput, which is limited by the critical path of the program.

7.1 actors mapping 105

Thereby, we need to reduce the impact of the actor mapping on the
critical path and consequently on the global performance. To this end,
we define the workload of an actor, in a given time interval, as the ratio
of the computation time to the total execution time on the targeted
platform. As a result, the workload of a processor is the sum of the
workloads of all its actors plus a small overhead introduced by their
scheduling. When the workload of a processor overcomes its computa-
tion capacity, the critical path may be increased because of the global
data dependence of a dataflow program.

Additional metrics could also be investigated such as the behavior of the
actor along with the processor affinity, either compute-intensive or control-
intensive (Section 6.4), or such as the power consumption of a processor
resulting from the execution of an actor, i.e. the effect on dynamic power
consumption, etc.

Now, starting from this analysis of the constraints and the metrics in-
volved in the partitioning of our dataflow application, we present two dif-
ferent run-time actor mapping systems: The first one based on genetic algo-
rithms and the other one on graph partitioning.

7.1.2 Evolutionary-based Actor Mapping

In general, genetic algorithms are used to determine a set of good solutions
to a given problem in a faster way than exhaustive researches [84], which
are often inapplicable when the number of solutions is too important. In
fact, genetic algorithms are one of the several existing ways to solve an
optimization problem such as integer linear programming.

Genetic algorithms are an analogy of Darwin’s evolution theory and fol-
lows the same evolution steps. To explain them, let us first introduce the
main vocabulary (Figure 46):

gene A part of the solution to solve. Here, a gene is the assignment of an
actor to a specific core of the platform.

individual Any possible solution to the problem. Here, an individual is
the partitioning of all the actors composing the application over the
multi-core platform.

population A group of individuals, in other words a set of distinct par-
titioning solutions. The population regularly evolves in a new genera-
tion that intends to contain better solutions to the problem.

� � � �

�� ���� ��

�

��

� � � �

�� ���� ��

�

��

� � � �

�� ���� ��

�

��

� � � �

�� ���� ��

�

��

� � � �

�� ���� ��

�

�� 	���

���������� �����

���������

Figure 46: A population considering the mapping of the actors A, B, C, D and E onto
the processors P1 and P2

Now, let us introduce the proceeding of our evolutionary-based actor
mapping system. Our genetic algorithm is composed of the 4 consecutive

106 scalable multi-core scheduling of dynamic dataflow programs

���������	�������
��������	�������������

������	������
�������������������

�����	������
�������������������

������	�����
���������������������

�����������
�����

��������

Figure 47: Proceeding of our evolutionary-based actor mapping system

steps that are performed repeatedly, such as presented in Figure 47. This
process continues until a suitable solution has been found or until a prede-
fined number of generations have passed:

1. Initialization: First, the individual contained in the initial population
are produced randomly, except for a set of predefined ones used to
speed-up the resolution. For instance, a specific individual that maps
all actors to a single core is added to serve as the lower bound during
the selection. Besides, the size of the population is an important param-
eter of generic algorithm: It has to be large enough to find interesting
solutions, but small enough not to slow down the research.

2. Evaluation: Then, the individuals composing the population are suc-
cessively evaluated. In other words, the application is partitioned over
the platform according to the individual specification, and is executed
during a given time-slice to evaluate its efficiency. In our case, the eval-
uation considers the throughput, i.e. the frame-rate after decoding few
frames of the video sequence. This process is applied repeatedly until
the whole population has been evaluated, that is why the choice of the
size of the population is important.

3. Selection: Next, a set of interesting individuals is selected. In our im-
plementation the selection is made by a one-turn tournament, i.e. two
individuals are randomly chosen and the one with the better evalua-
tion is kept.

4. Evolution: Finally, a new generation of population is created thanks to
evolutionary mechanisms. Selected individuals are crossed and mutated
so as to find better solutions (Figure 48). The cross-over (a) is done by
cutting two individuals at a randomly chosen position so that the left
side of one gene is joined with the right side of the other one and vice
versa, producing two new individuals. The mutation (b) is a random
modification of a randomly-chosen gene of a given individual.

Genetic algorithms are well-known for their applicability to multi-objective
optimizations [78]. Thus, our evolutionary-based actor mapping could be ex-
tended with additional objectives like power consumption.

7.1.3 Graph Partitioning problem

The mapping of an actor-based application onto a multi-core platform is
equivalent to the partitioning of the dataflow graph describing the applica-
tion.

Given a platform composed of k processors and an application graph
G = (V, E) with V a set of vertices modeling the actors and E a set of edges
representing the communication channel between the actors. We define |V |

the number of vertices and w a function assigning weights to each vertex

7.1 actors mapping 107

� � � �

������ ��

�

��

� � � �

�� ���� ��

�

��

� � � �

�� ���� ��

�

��

� � �

���� ��

�

����

�

	�����������	�������������

��������

���������

�

���

��������

Figure 48: 2-ways evolution of the population from generation N to N+ 1: New in-
dividuals are created either by (a) cross-over or by (b) mutation.

v ∈ V such that the weight of a vertex corresponds to the workload of the
actor represented by the vertex.

The k-way graph partitioning problem is to partition V into k subsets
V1, V2, ..., Vk, with Vi ∩ Vj = ∅ for i �= j and

⋃
i Vi = V , such that the

sum of the vertex-weights in each subset is balanced and the number of
edges whose incident vertices belong to different subsets is minimized. Con-
sequently, the actors will be balanced onto the processors according to their
workload in order to minimize the critical path of the whole system. Fur-
thermore, since the algorithm minimizes the edge-cut, the communications
between the processors are also minimized.

7.1.4 Graph partition methodology

The graph partitioning problem is NP-complete but some algorithms find
high quality partitions in short time using multilevel scheme. A k-way par-
tition is solved by recursive bisection, i.e. the graph is successively split into
two balanced partitions. Basically, the bisection is performed using a multi-
level algorithm based on the three following phases:

1. Coarsening phase: First, the graph G is successively transformed into
a series of smaller graphs G0, .., Gm such that |V | > |V0| > ... >

|Vm|. Each of them is the result of the contraction of some edges from
the previous graph. For instance, contracting an edge (a, b) ∈ E is
performed by creating a new vertex c ∈ N with a weight w(c) equal to
the sum of the weight of the edge w(a, b) plus the one of each vertex
w(a) and w(b). And, in case the vertice a and b are both connected
to the same vertex d, a new edge (c, d) is created such as w(c, d) =

w(a, d) +w(b, d).

2. Partitioning phase: Then, a bisection of the latest graph Gm is per-
formed, i.e. the coarser graph is partitioned in two balanced partitions.
Since the reasonable size of the coarser graph, well-known bisection
methods such as the Kerninghan-Lin heuristic [112] can find satisfy-
ing solutions in a reasonable time.

108 scalable multi-core scheduling of dynamic dataflow programs

3. Uncoarsening phase: Finally, the resulting partitions are projected
back to the original graph by following each transformation made
during the coarsening phase, i.e. building successively the equivalent
partitions in each intermediate graphs G0, .., Gm. Between each step, a
refinement of the partitioning is performed using the Kerninghan-Lin
heuristic [112].

Such an algorithm has been implemented in a tool called Metis [111].
This tools is able to partition a graph with millions vertices into hundreds
parts in a few seconds, but does not support constraints on the partitioning
(interconnection network, core affinity, etc).

7.1.5 Mapping Flow

Our metrics-based mapping flow maps an application based on a dynamic
dataflow model onto a multi-core platform. Since the dynamic behavior of
our application makes it unpredictable in most cases, our approach is based
on a low-cost profiling analysis of the execution. Consequently, we assume
that minimal profiling mechanisms are available on the targeted platform.

��

�

�

�

�

��
��

��

�

����������	

��������

�����������
���		���

�������������

�������������
���		��� ����������������

����������������

��	��������	������	����

���� ��������

Figure 49: Actor mapping flow based on graph partitioning

Figure 49 shows the main steps of our mapping flow. The flow starts from
the compilation of the application for the targeted platform by using an ini-
tial mapping (a), e.g. executing all actors on the same processor core. Then,
the application is run on the platform (b) during a predefined time-slice that
has to be long enough to match the full behavior of the application. After
that, the execution profile is analyzed (c) to find out the workload of each
actor, and thus to get a weighted application graph. For now, the commu-
nication rates are not considered, only the connectivity of the graph, i.e. all
the edges are weighted by 1. Next, the graph partitioning is performed (d)
to determine an efficient mapping of the actor onto the available cores of
the platform. Finally, the application is recompiled, or reconfigured, accord-
ing to the computed mapping (e) to enable its efficient execution (f) on the
targeted platform.

Finding an optimal mapping of an unpredictable application over a multi-
core platform is an NP complete problem. This is why we solve an equiv-
alent graph partitioning problem by using reputed heuristics that are able

7.2 actor scheduling 109

to find an interesting solution in few milliseconds. Moreover, this mapping
flow is doable at regular time to keep a good balance of the application
over the processor cores, and thus to get an efficient processing during the
execution of the application.

7.2 actor scheduling

Being able to partition the actor network over the multi-core platform is
not sufficient, we need to schedule the actor execution on each processor
core. Thus, this section describes a distributed and lock-free scheduling system
that can use round-robin and data-driven / demand-driven strategies to execute
dynamic dataflow programs onto multi-core platforms.

7.2.1 Distributed Scheduler

We consider a distributed scheduler in charge of the execution of our DPN-
based programs over multi-core platform. Thus, our scheduler is composed
of multiple local schedulers that are executed in parallel, each one being
assigned to its own processor core. As a result, we avoid the design of a
centralized scheduling scheme that might be performed by a dedicated core.
Indeed, the centralization of the scheduling decision would not scale well
with the increasing number of cores, especially with the fine-granularity of
the scheduling within DPN-based programs.

Beside the architectural aspect, we assume here that all the actors have
previously been mapped over the platform, either by hand or by using an
automated actor mapping system such as the ones presented in Section 7.1.
We also assume that the actors remain attached to the processor core to
which they are assigned, during the execution of our distributed scheduler.
In fact, migrating stateful actors among the cores might imply a large over-
head to the execution. That is why, we claim that the migration should be
allowed only at given reconfiguration points which could occur at regular
intervals of time in order to maintain the load balancing.

7.2.2 Multi-core Scheduling Strategies

Now, let us take a look at the way to apply dynamic scheduling strategies
within our distributed scheduler. We have presented, in Section 3.6 of Chap-
ter 3, two dynamic scheduling strategies dedicated for DPN-based programs,
known as round-robin and data-driven / demand-driven, both executing an ac-
tor until it cannot fire anymore.

On the one hand, the round-robin strategy simply goes over a list of all the
actors that are statically ordered. Thus, realizing the round-robin strategy
within our distributed scheduling just requires splitting this list among the
local schedulers in accordance with the actor mapping, such as presented in
Figure 50.

On the other hand, the data-driven / demand-driven strategy dynami-
cally orders the execution of the actors, that requires communications be-
tween the local schedulers. In fact, this strategy uses a dynamic list that
contains the next schedulable actors. When the current actor cannot fire
anymore, its predecessors/successors are added to the list depending on
the reason of the blocking. But, these predecessors and successors can pos-
sibly be assigned to a different core than the one of this actor. Thus, this
strategy requires communications among the local schedulers, that are in-

110 scalable multi-core scheduling of dynamic dataflow programs

�

�

�

�

�

�
�

�

	

�����������������������

������ ������������

	

�

� �

�

� �

�

�

Figure 50: Distributed scheduler onto a multi-core platform using round-robin

vestigated in Section 7.2.3. For example in Figure 50, if C is blocked during
its execution because its common FIFO channel with F is full, then the sched-
uler has to add C to the list of schedulable actors. However C is managed
by another scheduler so an inter-scheduler communication is needed.

Moreover, we propose a new scheduling strategy that both combines
round-robin and data-driven / demand-driven to avoid starvation of our lo-
cal schedulers. Indeed, distributed data-driven / demand-driven strategy can-
not guarantee the non-emptiness of the schedulable list. Thus, our com-
bined strategy initially applies data-driven and demand-driven principles,
but switches to the static list when the schedulable list is empty, as pre-
sented in Listing 16.

1 void CombinedScheduling(Scheduler *sched) {

2 Actor *actor;

3 while(1) {

4 if(sched->ddd_next_schedulable == sched->ddd_next_entry) {

5 // Round-robin when the schedulable list is empty

6 actor = sched->actors[sched->rr_next_schedulable];

7 sched->rr_next_schedulable++;

8 if (sched->rr_next_schedulable == sched->num_actors) {

9 sched->rr_next_schedulable = 0;

10 }

11 } else {

12 // Data-driven / demand-driven otherwise

13 actor = sched->schedulable[sched->ddd_next_schedulable %

MAX_ACTORS];

14 actor->in_list = 0; // not a member of the list anymore

15 sched->ddd_next_schedulable++;

16 }

17 actor->sched_func(); // Execute the next actor

18 }

19 }

Listing 16: Combined scheduling algorithm

7.2.3 Lock-Free Scheduling Communications

Lock-free communications between distributed schedulers are used to avoid
the synchronization of local schedulers. Indeed, the fine granularity of the
actors makes the actor scheduler a critical part of the execution so that the
smallest overhead can have disastrous consequences on the performance.
Moreover, it is essential to order remote schedulers to add new schedulable
actors to their schedulable lists: Otherwise, a deadlock could occur during
the execution. In other words, if this scheduling information is not com-

7.3 scalability analysis of rvc-based video decoders 111

municated, a self-contained cycle can appear and cause a deadlock of the
application.

Another kind of FIFO channels called scheduling-fifos is used to communi-
cate between schedulers without synchronization. Lamport has proved that
locks are not necessary in the case of single producer, single consumer FIFO

[115]. However it is important not to confuse the two types of FIFO which
work with the same mechanism but have two distinct uses: the FIFO channels
are used to carry on the application stream and the scheduling-fifo channels
are used to share scheduling informations (in our case a set of next schedu-
lable actors).

��������	�������
���������	��	����	����������	��	����	�

�������
�������	

�����

����	��������������
�����	����������

�������
�������	

�����

Figure 51: Lock-free scheduling communication for data-driven / demand-driven
strategy on multi-core platforms

Figure 51 shows the inter-core communication mechanism. When an actor
execution is blocked, the scheduler adds the predecessor or the successors
of the blocking FIFO channels to its schedulable list. In some cases this actor
is not executed by the current scheduler so this actor is sent to its associated
scheduler by a scheduling-fifo channel.

We propose two kinds of communication network topology (Figure 52):

• A fully-connected topology that interconnects the schedulers using a
bidirectional communication channel between each couple of sched-
ulers. As a consequence, the communication overhead is limited since
the schedulers communicate directly, but the number of scheduling-fifos
increases exponentially according to the number of cores.

• A ring-connected topology that interconnects the schedulers with a
limited number of scheduling-fifos: On a N-core processor, N scheduling-
fifos are needed. However, with this topology the communication could
cross N− 2 schedulers in the worst case before the targeted scheduler
receives it. For example in Figure 52b, when the scheduler on core
1 wants to communicate with the other one mapped on core 4, the
schedulers on cores 2 and 3 are used as intermediaries.

7.3 scalability analysis of rvc-based video decoders

In Chapter 6, we have analyzed the implementation of RVC-based video
decoder onto desktop and embedded platforms. Now, this section focuses
on the scalability of these implementations. Thus, we have realized a set of
experiments to demonstrate this scalability using our mapping/scheduling
algorithms.

112 scalable multi-core scheduling of dynamic dataflow programs

���������

	�

�	����

���������

	�

�	����

���������

	�

�	����

���������

	�

�	����

(a) Fully-connected

���������

	�

�	����

���������

	�

�	����

���������

	�

�	����

���������

	�

�	����

(b) Ring-connected

Figure 52: Topologies of the interconnection network of the distributed scheduling
management

7.3.1 Experimental setup

Similarly to Chapter 6, we study our multi-core scheduling strategies on
video decoders using both the desktop and embedded implementations that
have been specified in Section 6.4. However, we need to introduce some
details concerning our parallel implementations:

a. Desktop implementation: This implementation is still generated with
the C back-end of Orcc (orcc-c). The multi-core ability of this imple-
mentation is achieved thanks to multi-threading upon the operating
system: One thread is created for each local scheduler and forced to be
run only on its associated core processor. Besides, we have both imple-
mented round-robin and combined scheduling strategies in the runtime
library (previously called orcc-lib).

Concerning the platform that has been used during these experiments,
our Intel Xeon W3670 is composed of 6 homogeneous cores sharing
12MB of L3 cache.

b. Embedded implementation: This implementation is still generated
with the TTA back-end of Orcc (orcc-tta). As opposed to the desktop
one, our embedded implementation does not require multi-threading.
Indeed, the processor cores execute their own binaries and communi-
cate thanks to common address-spaces withing the shared memories.
As a result, the execution cannot be disturbed by processes external to
the tested application.

However, for now, our embedded implementation supports only the
round-robin scheduling strategy because of its simplicity. Additionally,
our embedded implementation does not support arbitration between
concurrent accesses to the shared memories. In other words, the pro-
cessor cores are directly connected to each others through dual-port
block RAMs of the FPGA board on which the platform is synthesized
(See Section 5.3 to get more details about the co-design flow).

A global view of the experimental flow integrating our automated actor
mapping system is presented in Figure 53. After compiling the application

7.3 scalability analysis of rvc-based video decoders 113

for one of the multi-core platforms, its execution is profiled by using pro-
filing tools, e.g. Valgrind, or by computing the decoding frame-rate. This
profiling is made, depending on the targeted platform, either during an
instrumented execution for the desktop implementation or during an in-
strumented simulation for the embedded implementation. Then, our actor
mapping system, known as orcc-map, interacts either with our genetic algo-
rithm or with Metis, the external tool used for partitioning the graphs [111],
in order to determine a new mapping. Finally, the application is recompiled
or reconfigured according to the computed mapping.

��������
����������	��

���������������	��	��

���������
����	�������	��

�����		�

������	� ��	�

��	��
����������	�	��	��

���������

���������
�����	��������������

�������������
�������

	����������	��

��������
	����������	��

���
��������	���

	����
�� �����	���

!��	�	"��
����	��

����������
���	�������
���	����

����	��
���	������
���������

#����$��������	�$���	��#����$�����������$�	��

� �

�����	�������	���

�����	�����	

��	������	����

��������

������

��������

Figure 53: Experimental flow to analyze the scalability of RVC-based applications on
both desktop (A) and embedded (B) multi-core platforms

Our implementations have been experimented on the same descriptions
of video decoders, as well as the same video sequences, as those we have
previously used.

7.3.2 Desktop Multi-core Implementation

We start by analyzing the scalability of our implementation of RVC-based
video decoders onto a desktop multi-core processor.

actor mapping First, let us compare the different approaches to map
the actors composing our video decoders onto the processor cores. To do
so, we have evaluated the execution of the MPEG-4 Part 2 decoder over 2

processors after applying either hand-made or automated mapping method-
ologies, both by using the round-robin scheduling strategy. On the one hand,
our hand-made mappings try to balance the application over the multi-core
platform in natural ways, either by separating the decoding of the image
components (chroma/luma) or by pipelining the decoding steps (parsing,
residual, prediction). One the other hand, we have applied our automated
mapping system using our genetic algorithm and using the graph partition-
ing. Table 11 summarizes the observed frame-rates, as well as the acceler-

114 scalable multi-core scheduling of dynamic dataflow programs

ation factor compared to the execution with one processor core, for each
configuration.

Table 11: Comparison of our approach with handmade mappings of MPEG-4 Part 2

executed on 2 processor cores

Actors mapping Frame-rate Speed-up

Handmade Luma/Chroma 39 fps 1.15x

Handmade Pipelining 45 fps 1.33x

Genetic Algorithm 56 fps 1.66x

Graph partitioning 58 fps 1.72x

The results show the difficulty to find pertinent mapping solutions by
hand, even with a simple problem (2 cores and 41 actors). Thus, this diffi-
culty demonstrates the interest of an automated approach.

Additionally, the results highlight the difference between our two actor
mapping systems, based either on the genetic algorithm or on the graph
partitioning. On the one hand, the performance achieved using both method-
ologies are very similar. On the other hand, our genetic algorithm requires
much more time to find a good solution because of its iterative methodol-
ogy, and its resolution time increases exponentially with the complexity of
the problem. Moreover, the system simply evaluates the global performance,
by means of the throughput, without considering the communications. But,
these communications quickly become the main limitation when the num-
ber of actors and processors grows. All of these makes our genetic algorithm
hardly usable at run-time. As a result, the next experiments consider only
our actor mapping system based on graph partitioning.

actor scheduling Now, Table 12 summarizes the decoding frame-
rates obtained for each application using our different scheduling strategies,
i.e. the round-robin strategy and the combined strategy, the latter using both
the ring-connected topology and the fully-connected topology.

First, the results clearly show the bounded scalability of the tested RVC-
based descriptions of video decoders onto a desktop multi-core processor.
Indeed, these descriptions present acceleration factors from 1, 37 to 3, 16
with 6 processor cores available. This can be explained by the limited de-
composition and the data dependences within our decoders, and by the
overhead caused by the inter-core communications due to cache effects. As
presented in Figure 42 of Chapter 6, the highest actor workloads go up to
around 20% and 30% of the total workload of the decoder. In theory, the
maximum speed-up would be up to around 3.3x and 5x. In practice, the
parallelism is limited by the cost of the communications between the cores,
and by the data dependences between the actors, such as the loop reaction
of the data stream between the image buffer and the inter prediction which
is a known bottleneck of dataflow-based video decoders.

Moreover, at first glance the results surprisingly show that MPEG-4 Part
2 SP and MPEG-4 AVC are more scalable than MPEG HEVC. On further ex-
amination, this can be explained by the development status of our HEVC

description that does not yet parallelize the video decoding beyond the
common decomposition (i.e. parsing, residual decoding, prediction and fil-
tering), and by the current high complexity of the inter-prediction (about
30% of the global workload). However, the HEVC / H.265 standard has been

7.3 scalability analysis of rvc-based video decoders 115

Strategy RR C/R C/F

Nb cores FPS Acc. FPS Acc. FPS Acc.

1 33,7 - 34,6 - - -

2 58,1 1,72 58,4 1,68 - -

3 80,5 2,39 80,8 2,34 80,3 2,32

4 94,6 2,81 92,2 2,66 93,2 2,69

5 95,4 2,83 92,5 2,67 90,7 2,62

6 93,1 2,76 90,1 2,60 90,3 2,61

(a) MPEG-4 Part 2 SP

Strategy RR C/R C/F

Nb cores FPS Acc. FPS Acc. FPS Acc.

1 4,5 - 7,3 - - -

2 6,7 1,49 12,4 1,69 - -

3 10,6 2,36 16,3 2,23 16,0 2,19

4 12,0 2,44 16,9 2,32 17,0 2,32

5 13,1 2,91 19,0 2,60 18,8 2,58

6 14,2 3,16 19,2 2,63 19,3 2,64

(b) MPEG-4 AVC PHP

Strategy RR C/R C/F

Nb cores FPS Acc. FPS Acc. FPS Acc.

1 12,7 - 13,1 - - -

2 16,4 1,29 18,0 1,37 - -

3 17,4 1,37 17,3 1,32 17,2 1,31

4 15,3 1,20 15,6 1,19 15,8 1,21

5 15,2 1,19 14,9 1,14 15,1 1,15

6 10,4 0,82 9,3 0,71 10,4 0,79

(c) MPEG HEVC Main

Table 12: Bounded scalability of the RVC-based video decoders according to decod-
ing frame-rates (FPS) obtained on a desktop multi-core processor. The de-
coders are first mapped using our dedicated system based on graph parti-
tioning, then scheduled using different strategies, respectively round-robin
strategy (RR) and combined strategy with either ring topology (C/R) or
fully-connected topology (C/F).

designed to take advantage of the increasing parallelism potential of the de-
coding platforms [164]. Thus, future versions should be much more scalable
thanks to the new advanced decomposition (wavefront, tiles, etc).

Finally, the results show that the combined strategy is more interesting
when the application contains a large numbers of actors. For instance, the
MPEG-4 AVC decoder, which contains many more actors (114) than the oth-
ers (41 and 34), always obtains its best frame-rates using the combined strat-
egy. However, the results also show that the round-robin strategy becomes

116 scalable multi-core scheduling of dynamic dataflow programs

more interesting when the number of cores increases. This can be explained
by the fact that the improvement of the performance brought from a more
advanced strategy is hidden by the larger scheduling overhead. Indeed, the
potential of improvement decreases because the mapping reduces in general
the number of actors on each core.

Furthermore, even if the fully-connected schedulers show better results
than ring-connected one, the slight difference demonstrates the interest of
the ring-based topology.

7.3.3 Embedded Multi-core Implementation

Now, let us take a look at our embedded implementation. As said previously,
the actor are mapped by our automated system based on graph partitioning
and scheduled by the round-robin strategy. Figure 54 presents the influence
of the number of processors on the frame-rate of the MPEG-4 Part 2 SP
decoder. In this case, we consider the decoding of a video sequence with
a smaller definition, i.e. foreman at QCIF resolution, to reduce the simula-
tion time and to reduce the size of the framebuffer. Actually, the results can
be extrapolated for higher definition sequences by dividing the frame-rate
according to the size of the video. The decoding is simulated onto our TTA-
based multi-core platform clocked at 100MHz, using the Fast configuration
for the processors.

We do not present the results with the other decoders for the following
reasons: On the one hand, the MPEG HEVC / H.265 decoder is still being
developed, and the inter-prediction is currently a major bottleneck to any
parallelization. One the other hand, the development of the embedded im-
plementation of the MPEG-4 AVC / H.264 decoder would require too much
work (test, debugging, tuning, etc) in view of the perspectives.

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

120

140

160

180

200

Number of processors

F
P

S

Figure 54: Influence of the number of processors on the performance of MPEG-4 Part
2 Simple Profile decoder

The form of the curve clearly shows the limit of the coarse-grain par-
allelism (task-level) of the application. Actually, the maximum decoding
frame-rate of our MPEG-4 Part 2 SP decoder is reached with 16 proces-
sors. Increasing further the number of processors does not provide higher
decoding frame-rate.

7.4 conclusion 117

Thus, the maximum speedup in comparison with the single processor ex-
ecution is 8.2x, and achieved with 16 processors. Therefore, the maximum
speedup achieved with our embedded implementation is much bigger than
the maximum speedup achieved with our desktop implementation (which
seems to be around 3x). This can be mainly explained by the fact that the
communications between the cores within our embedded implementation
do not induce any overhead. To conclude, these results demonstrate the in-
terest of the dedicated memory organization that we have designed specifi-
cally for our embedded multi-core platforms (see Section 5.2).

7.4 conclusion

In this chapter, we have presented a set of algorithms so as to schedule dy-
namic dataflow programs over multi-core platforms. We have also proposed
an automated and low-cost metric-based actor mapping system, which is
doable at run-time in order to overcome the unpredictability of our applica-
tions. The mapping is described as an equivalent graph partitioning prob-
lem both considering the architectural constraints and the profiling informa-
tion. Then, the graph partitioning problem can be solved using dedicated
tools in order to balance the workload of the whole application.

Starting from our work on multi-core scheduling, we have then analyzed
the scalability of RVC video decoders, including the one based on the new
HEVC standard. As a result, this scalability seems mainly limited by the cost
of the communication between the cores, which is not really surprising.

The next and final chapter concludes this document by summarizing the
work we have presented all along this thesis. Finally, we detail a set of
promising perspectives for future work that could take advantage of our
work to improve the development of dynamic dataflow programs, and es-
pecially video codecs.

8C O N C L U S I O N S A N D O U T L O O K

If you want a happy ending,
that depends, of course,

on where you stop your story.

— Orson Welles

To achieve both the high constraints of today embedded systems and the
time-to-market pressure, the electronic market is clearly turned to the design
of heterogeneous platforms, known as MPSoCs, integrating more and more
specialized processors onto a single chip in order ononto bridge the gap
between hardware efficiency and software flexibility. But, surprisingly, few
applications, like video codecs, are still performed by dedicated hardware
components in most of current MPSoCs. The work presented in this thesis
takes place in a context of increasing demand for multimedia applications
along with the lack of flexibility of embedded devices with video codecs.

8.1 summary

As presented in Chapter 2, expressing an algorithm so as to exploit all its
parallelism is already a complex and error-prone task, and the variety of
parallel platforms makes the task incredibly harder. As regards to the com-
plexity of parallel programming, embedded computing has to move towards
programming methodologies based on higher level of abstraction to achieve
their high constraints of efficiency and reliability.

Chapter 3 focuses on a particular programming solution, known as dataflow
programming, which relies on MoC formalism defining semantic rules to
compose and connect concurrent components, the actors, with a dataflow
graph, the network. Tonhen, we demonstrate that the dynamic dataflow
model, also known as DPN, is the best trade-off considering the practical
point of view of programmers. But, the DPN model also raises the challenge
of efficient implementations.

MPEG attempts to improve the standardization process of video coding
standards by following the same methodology, as described in Chapter 4.
Thus, MPEG has introduced an innovative development framework, called
RVC, which exploits dynamic dataflow programming to provide modular-
ity, scalability and portability to video coding tools. While the efficient im-
plementation of DPN-based programs is still challenging, tools and applica-
tions included in the RVC framework have now reached enough maturity
to demonstrate the viability of this development approach for real-world
applications.

Starting from this state-of-the-art, we have built an entire co-design flow
(presented in Chapter 5), integrating an advanced simulation infrastructure,
which relies upon an architecture model dedicated to dataflow programs.
Building this co-design flow has also given the opportunity to enhance the
reliability and the flexibility of the underlying compilation infrastructure by
way of modern software engineering techniques.

Furthermore, we have partially solved one of the main challenges of dy-
namic dataflow models by presenting in Chapter 6 our optimized software

119

120 conclusions and outlook

implementation of DPN-based programs. Indeed, our implementation is the
first one, to our knowledge, that demonstrates video decoders achieving
real-time frame-rate of high-definition sequences on desktop processors.
Our implementation has also showed encouraging results on embedded
multi-core platforms. Moreover, we have demonstrated the scalability of our
implementation of DPN-based programs in Chapter 7 with a set of efficient
actor mapping/scheduling algorithms that can handle the dynamism of our
applications.

In our point of view, it appears important to point out that all contri-
butions made during this thesis including our co-design flow, as well as
the experimented applications, are available under open-source licenses and
documented [134, 166].

8.2 perspectives

All the work made during this thesis can serve as basis for future researches.
We detail here some perspectives based on our development environment
dedicated to dataflow programming, on our software implementation of
dynamic dataflow programs, and on embedded platforms dedicated to RVC-
based programs.

8.2.1 An Even More Advanced Development Environment

The development of our complete IDE for dataflow programming is a labo-
rious task that is clearly open to new perspectives that could promote the
development of new applications within the RVC framework.

assisted development Our development environment includes an ed-
itor for hierarchical graphs that takes advantage of the visual programming
ability of the dataflow paradigm. But, our editor suffers from its underly-
ing technology, such as the automatic layout feature that offers poor results
on complex graphs. Actually, we could benefit from dedicated meta-tools,
such as Eclipse’s Graphiti [63] and Spray [64], in order to develop a state-of-
the-art graph editor. Moreover, the generative approach of these meta-tools
could greatly simplify the development and the maintenance of our user
interfaces.

Debugging RVC applications from our IDE is usually achieved by generat-
ing the C code for the host platform in order to use traditional debuggers,
e.g. GDB. But, applications already rely on many implementation choices
that can complicate the debugging. For example, the inspection of FIFO chan-
nels based on circular buffers is quite challenging during the debugging. As
a result, integrating a debugger directly in our IDE could greatly facilitate
the development of complex applications.

design flow The availability of new SoCs that embeds programmable
logic (for example the Xilinx Zynq SoC), along with the ability of our com-
piler to target multiple platforms, enables the development of a design flow
targeting complex heterogeneous systems (MPSoCs) including ARM proces-
sors, TTA-based processors and hardware accelerators.

Such an heterogeneity introduces however new challenges to our design
flow. First, the simulation infrastructure should interconnect multiple sim-
ulators to handle the co-simulation of the whole system. Then, targeting
heterogeneous platforms would imply the development of an advanced ac-

8.2 perspectives 121

tor mapping process considering both hardware and software components.
Finally, a multi-target build-system would be required to simplify the inter-
action with an increasing number of third-party tools.

8.2.2 An Even More Optimized Software Implementation

The efficiency of the implementation is clearly the central problematic of dy-
namic dataflow programming. Even if a big progress has been made since
the introduction of the RVC framework, there is still a long way to go before
the adoption of dynamic dataflow programming by industrials. But, we al-
ready have several perspectives that require future investigations to improve
the performance of our state-of-the-art implementation.

communications The optimized implementation of communications,
described in Chapter 6, prevents potential word-level parallelism due to ab-
solute indexes. In fact, the accesses to the circular buffer could be vectorized
since the width of FIFO channels within our applications are often inferior
to 32 bits (usually 8 or 16 bits), but the compiler cannot know if the access
are aligned in the memory or if the end of the circular buffer is reached.
Thus, we are currently investigating a more advanced implementation of
multi-rate communications. Multi-tokens actions are generated in two ver-
sions, standard and vectorized, that are executed according to the current
position in circular buffer.

scheduling The results presented in Chapter 6 have clearly shown that
our application does not really benefit from quasi-static scheduling. The
main reason comes from the limits of our current classifier. Our classifier
does not interpret the communication between actors, so it cannot perform
network-level analyses. Moreover, our classifier is unable to extract complex
behavior within a single actor, such as indirect dependences between guards
and tokens. A solution would be the utilization of dedicated third-party
tools to perform a more reliable abstract interpretation.

1 package devel.org.sc29.wg11.mpegh.part2.main.IT;

2

3 actor IT_Splitter()

4 int(size=16) Coeff,

5 @Classif=param // Annotation

6 int(size=7) Size

7 ==>

8 int(size=16) Coeff_4x4_DST,

9 int(size=16) Coeff_4x4_IT,

10 int(size=16) Coeff_8x8,

11 int(size=16) Coeff_16x16,

12 int(size=16) Coeff_32x32,

13 int(size=16) Coeff_skip:

14

15 // Body

16

17 end

Listing 17: Directive-based actor classification

Another solution would be the introduction of dedicated directives, sim-
ilarly to the ones used for the assisted parallelization scheme described in
Chapter 2. The developer could help the compiler to find quasi-static be-

122 conclusions and outlook

havior within its application by adding specific directives to the description.
In fact, a directive simply contains additional information that may not be
determined automatically by the compiler. For instance, Listing 17 presents
an actor in which the input port Size has been annotated as a parameter.

To summarize, we provide a quasi-static semantic to our dataflow pro-
gramming language that is initially dynamic. The challenge would then be
to identify what information would be useful to help the actor classification.
While this approach would be unsatisfying from a practical point of view,
it would represent another step to bridge the gap between the expressive
power of dynamic models and the efficiency of static/quasi-static models.

8.2.3 Towards a Platform Dedicated to RVC-based Video Decoders

This thesis targeted initially the investigation of an MPSoC-based platform,
combining both hardware and software components, dedicated to video
coding applications that benefit from the RVC framework. While the design
of such a platform is not achieved yet, our design flow already enables the
DSE of dedicated embedded multi-core platforms based on our architecture
model. So, we are now investigating a generic platform dedicated to all RVC-
based codecs that opens many interesting perspectives for future works. In
fact, several studies [98, 20, 31] have already investigated RVC-specific em-
bedded platforms, but none has really demonstrated the viability of its pro-
posal.

heterogeneity As shown during this thesis, video decoders are com-
plex applications composed of components with very different types of be-
havior. On the one hand, the results of our experiments have clearly demon-
strated the interest of VLIW-like processors to take advantage of the internal
parallelism of actors. On the other hand, the results have highlighted the
weakness of TTA-based processors for handling the high dynamism of cer-
tain actors within our applications. A solution would be the addition to our
architecture model of another type of processor including a branch predic-
tor, the LatticeMico32 soft-core for instance. Thus, we would design ded-
icated platforms that could handle efficiently both compute-intensive and
control-intensive actors composing our video decoders.

The heterogeneity of the platform would however introduce additional
challenges to our co-design flow such as seen earlier. The heterogeneity
would also introduce new constraints to the actor mapping. On the one
hand, compute-intensive actors (e.g. the inverse-transform) should be mapped
to TTA processors. On the other hand, control-intensive actors (e.g. the parser)
should be mapped to the other processors. As a result, a dedicated analysis
would be required to identify the behavior of actors.

clustering As described in Chapter 4, all video decoders share a com-
mon structure that globally matches with the application graph of their RVC

description. Thus, they are usually decomposed in 4 subnetworks: parser,
residual, prediction and filters. In fact, the interconnections between these sub-
networks are also quite similar in all decoders. Starting from this observa-
tion, we are investigating a dedicated memory architecture which clusters
processors to fit with the global structure of video decoders. An early spec-
ification based on a two-level shared memory hierarchy is presented in Fig-
ure 55.

8.2 perspectives 123

�� �� �� ��

�������

��	���

�� �� �� �� �� �� �� ��

��������

��	���

�������

����������

�������

��	���������

�������

������������

�������������

�	������������

������

��������

����������

��������

��������

�	������������

������

��������

�����	��

��������

Figure 55: Dedicated clustered architecture based on video decoders structure

Moreover, we can also identify the actors that require large amounts of
memory, such as the frame-buffer, and map them to dedicated processors
that have access to the external memory via caches or scratch-pads.

adaptivity Previous works in our research group have already demon-
strated the functioning of an adaptive video codec called Jade using the RVC

framework. As described in Chapter 4, Jade exploits mechanisms of the vir-
tual machine available in LLVM, such as just-in-time compilation, to provide
a universal decoder. In fact, the decoder is configured on-the-fly according
to a configuration encapsulated with the video stream and thanks to a li-
brary of components (i.e. the VTL). Thus, the incoming stream configures
the decoder according to the encoding format of the video stream.

���������
�	��������

������������

���������	�����
���������

�������
������

�������
������

����������
	������

��������	�������

����

�����������
�����	�������

����

��������������	�������
�������	������

������������������	�������
�������	������

��������	
�����������

Figure 56: Hardware Adaptive Decoder Engine

So far, Jade is executable exclusively on GPP (x86 and ARM) which is not
energy efficient. Thus, we could couple the GPP with our dedicated multi-
core platform as a co-processor in charge of the video decoding, such as
presented in Figure 56. To do so, Jade would be extended with a host/-
client feature wherein the GPP would configure the multi-core co-processor
which would perform the decoding. And, at the reception of an incoming
stream, Jade would cross-compile the actors for the multi-core co-processor
and would determine an initial mapping. Latter, the multi-core co-processor

124 conclusions and outlook

would send back to Jade some profiling information to allow the determina-
tion of an optimized mapping.

Part III

A P P E N D I X

AR É S U M É E N F R A N Ç A I S

Qani lezu gidès, ainkhan él mart ès.

“Autant tu connais de langues,
autant de fois tu es un homme.”

— Proverbe arménien

Cette thèse étudie les approches pragmatiques de programmation d’ap-
plications du monde réel pour les systèmes embarqués actuels et à venir. En
fait, l’expérience de programmation est devenue un problème central pour
l’informatique embarquée. D’une part, les systèmes embarqués sont deve-
nus des systèmes matériels complexes, connus sous le nom Multi-Processor
System-on-Chip (MPSoC), qui contiennent de plus en plus d’éléments assez
hétérogènes sur une seule puce afin d’augmenter les fonctionnalités du pro-
duit et pour répondre aux attentes du marché. D’autre part, la complexité
du logiciel déployé sur ces appareils ne cesse de croître de manière exponen-
tielle, car ces derniers sont utilisés pour résoudre des problèmes techniques
de plus en plus difficiles. En conséquence, les programmeurs doivent déve-
lopper des applications de plus en plus complexes et les implémenter sur
des appareils eux aussi de plus en plus complexes, tout en respectant des
exigences de coûts et de temps de production.

Cette thèse vise à fournir un ensemble d’outils pour faciliter, d’un point de
vue pragmatique, le développement d’applications réelles pour des plates-
formes embarqués de type MPSoC. Ainsi, nous mettons en œuvre et évaluons
un ensemble de méthodologies pour la conception de systèmes embarqués,
de la spécification d’application à la mise en œuvre de la plate-forme. Afin
de bénéficier de tout le parallélisme présent dans les algorithmes, les appli-
cations sont décrites par avance sous une forme décomposée, appelé Data-
flow Process Network (DPN), au moyen d’un langage de programmation flux
de données héritant de CAL Actor Language. Les applications sont ensuite
exécuté sur des processeurs de type Very Long Instruction Word qui sont
capables d’exécuter plusieurs opérations en même temps. Nous évaluons
notre suite d’outils à l’aide de décodeurs vidéo provenant de l’état de l’art,
dont l’un basé sur la nouvelle norme HEVC.

Maintenant, jetons un coup d’œil sur le paysage de l’informatique em-
barquée afin de comprendre la complexité de la problématique auquel cette
thèse est confrontée.

a.1 systèmes embarqués

Les systèmes embarqués sont aujourd’hui largement utilisés, bien plus que
d’autres systèmes informatiques avec des milliards vendus chaque année,
inondant le marché des ordinateurs à usage général. De récentes analyses
ont montré une baisse des ventes d’ordinateurs de bureau en faveur de
smartphones, tablettes et autres appareils embarqués. Par opposition aux
ordinateurs à usage général, les systèmes embarqués doivent répondre à
des objectifs quantifiables : la performance en temps réel, la consommation

127

128 résumé en français

d’énergie et le coût du marché. Ainsi, la conception des systèmes embar-
qués est entièrement guidée par ces objectifs quantifiables qui la rendent
beaucoup plus difficile que la conception des ordinateurs à usage général.

a.1.1 Matériels embarqués

Jusqu’à ces dernières années, les systèmes embarqués étaient conçus autour
d’un processeur unique associé à un ensemble de périphériques et d’ac-
célérateurs matériels. Cependant, la demande croissante de flexibilité du
marché de l’embarqué a entraîné une migration du matériel vers le logiciel.
En d’autres termes, les fonctionnalités qui étaient directement implémen-
tées par le matériel sont désormais effectuées par des processeurs program-
mables.

Pour gérer des applications de plus en plus exigeantes, la conception
de processeurs plus performants a été réalisé, jusqu’à ces dernières années,
grâce à l’augmentation de la fréquence de calcul. Mais, comme pour les ordi-
nateurs à usage général, les systèmes embarqués ont atteints les limites de la
technologie des semi-conducteurs, ce qui oblige les fabricants de puces à se
tourner vers des architectures multi-cœurs pour améliorer la performance
globale du système. En conséquence, les systèmes embarqués intègrent des
processeurs de plus en plus programmable, mais contrairement aux ordi-
nateurs à usage général, la plupart de ces processeurs sont adaptés à des
tâches spécifiques afin de combler l’écart entre l’efficacité du matériel et la
flexibilité du logiciel.

Les systèmes embarqués sont désormais des plates-formes multi-cœurs
hétérogènes complexes avec un nombre croissant de cœurs de processeurs
afin de répondre à l’exigence de performance. Par exemple, les plates-formes
commerciales comme l’Intel SCC, le TILE de Tilera ou la SThorm de STMi-
croelectronics [22] contiennent déjà des centaines de cœurs programmables.
L’augmentation du nombre de cœurs de processeur a cependant soulevé de
nouvelles questions sur la conception de composants matériels, tels que l’or-
ganisation de la mémoire et le réseau d’interconnexion, et sur la façon de
programmer de telles architectures.

a.1.2 Logiciels embarqués

Les premières formes de logiciels embarqués étaient de petits programmes
habituellement écrites en assembleur afin d’obtenir des performances maxi-
males. Ils peuvent maintenant être de complexes applications contenant de
multiples algorithmes [183]. En outre, la nature des calculs effectués dans
les différentes parties de l’application peut varier considérablement (types
d’opérations, l’exigence de mémoire, parallélisme, etc.) En fait, cette varia-
bilité correspond bien aux architectures hétérogènes. Par exemple, compte
tenu de la structure de décodeurs vidéo modernes [150] , la compensation
de mouvement est clairement la plus grande exigence dans l’espace de mé-
moire et de bande passante, tandis que le décodage résiduel et la prédiction
intra sont plutôt calculatoire.

Le marché de l’embarqué est actuellement entraînée par les exigences
des utilisateurs qui augmentent la complexité des logiciels embarqués. Par
exemple, d’une part, le nouveau standard de compression vidéo à savoir
HEVC réduit ses exigence de débit de 50 % avec la même qualité d’image
que son prédécesseur, et permet ainsi de vidéo à haut définition. D’autre
part, la norme HEVC augmente la complexité de calcul de 1,6 x par rapport à

A.2 approche et contributions 129

son prédécesseur [171]. Les applications complexes sont souvent limitées à
certains domaines d’application, comme le multimédia et la communication.
Par exemple dans un téléphone 3G, plus de 60 % de la puissance de calcul
et plus de 90 % de la performance disponibles sont consommés par des
applications de radio et multimédia [170].

Au-delà de l’hétérogénéité et la complexité des applications, les plates-
formes multi-cœur soulèvent de nouvelles questions concernant les logiciels
embarqués, tels que la décomposition de l’application en tâches parallèles
ainsi que le placement et l’ordonnancement de ces tâches sur la plate-forme
en question.

a.1.3 Conception de systèmes embarqués

Aujourd’hui, l’informatique embarquée est confronté à une évolution tech-
nologique rapide et une grande diversité de systèmes informatiques. Par
conséquent, des processus de conception très souples sont nécessaires. En
fait, la conception de systèmes embarqués peut être décomposée en trois
aspects (architecture, l’application et la méthodologie).

Puisque le logiciel et le matériel sont étroitement couplés dans la concep-
tion de systèmes embarqués, les concepteurs de systèmes embarqués doivent
tenir compte de tous les aspects architecturaux, y compris l’organisation des
composants matériels (processeurs, mémoires, interconnexions), la décom-
position du logiciel en tâches afin de bénéficier autant que possible parallé-
lisme, et la correspondance entre le matériel et le logiciel pour obtenir les
meilleures performances. En outre, les concepteurs doivent comprendre en
profondeur leurs applications pour tirer parti de toutes les optimisations
possibles. Enfin, les méthodes sont essentielles pour la conception de sys-
tèmes embarqués efficaces. La modélisation permet une haute abstraction,
nécessaire pour gérer la complexité croissante des systèmes embarqués. En
ce qui concerne la difficulté d’analyser et déboguer les plates-formes maté-
rielles, la simulation et l’analyse sont nécessaires pour déterminer l’efficacité
et le coût de la conception. La conception assistée par les modèles nécessite
des outils de synthèse traduisant les spécifications de haut niveau dans des
implémentations optimisées. En outre, les processus de vérification automa-
tique sont également essentielles pour atteindre le niveau de fiabilité requis
à un coût minime.

En conclusion, les outils sont particulièrement importants dans la concep-
tion de systèmes embarqués. Les outils permettent de concevoir rapidement
des systèmes embarqués pour faire face à la pression du temps d’accès au
marché tout en réalisant leurs contraintes élevées d’efficacité et de fiabilité.

a.2 approche et contributions

L’émergence des architectures massivement parallèles, ainsi que le besoin
de modularité dans la conception de logiciels, a ravivé l’intérêt dans la pro-
grammation de flux de données. En effet, la programmation flux de données
offre une approche de développement flexible qui permet de construire des
applications complexes tout en exprimant concurrence et parallélisme ex-
plicitement. Paradoxalement, la plupart des études reste concentrée sur la
programmation par flux de données statique, même si un processus de dé-
veloppement pragmatique nécessite l’expressivité et la praticité offerte par
programmation par flux de données dynamique.

130 résumé en français

MPEG a toutefois mis en place un cadre innovant, appelé Reconfigurable
Video Coding (RVC), qui peut être considérée, à notre connaissance, comme
la première expérimentation à grande échelle de la programmation par flux
de données dynamique. RVC a été initialement mis en place pour pallier le
manque d’interopérabilité entre les différents codecs vidéo déployés sur le
marché. Le cadre permet le développement d’outils de codage vidéo, entre
autres applications, de façon modulaire et réutilisable grâce à l’inclusion
d’un sous-ensemble du langage de programmation CAL.

��������
	����������	��

����	���	��
����	�	���	��

���	�������
����	���	�����	�����	��

�������	�����
����	�����	��

����

����	�������
�����

����	������������	��

�

�

�

����

Figure 57 – Contributions of this thesis on dataflow-based embedded system design

Tout au long de cette thèse, nous étudions toutes les étapes du dévelop-
pement de décodeurs vidéo basée sur RVC (Figure 3), de leur spécification
basée sur le paradigme de flux de données à leur mise en œuvre sur les
plates-formes multi-core embarqués. Cette thèse apporte les contributions
suivantes :

• Contribution 1 [5, 7? , 3] : Un flot de conception pour développer
des applications basées RVC sur des plates-formes multi-core embar-
qués. Le flot de co-conception repose sur un processus de simulation
de pointe et un modèle d’architecture dédié. En outre, l’infrastructure
de compilation sous-jacent notre flot de co-conception a été amélioré
grâce à des techniques de génie logiciel modernes tels que l’ingénieu-
rie dirigée par les modèles et la programmation orientée aspect.

• Contribution 2 [8, 1] : Une implémentation logicielle optimisée des
programmes flux de données dynamiques basée sur des techniques
de communication efficaces qui limitent les accès à la mémoire, et sur
des stratégies d’ordonnancement avancées qui réduise le coût de l’ex-
pressivité.

• Contribution 3 [4, 6] : Un ensemble d’algorithmes d’ordonnancement
et de projection d’acteur exécutable lors de l’exécution afin de gérer
le comportement imprévisible des programmes de flux de données
dynamiques, et d’atteindre des performances passant à l’échelle sur
des plates-formes multi-cœur, que ce soit des processeurs multi-cœur
de bureau ou embarqués.

En plus de la spécification de notre processus de développement basé sur
le paradigme de programmation flux de données, nous évaluons l’efficacité
de cette contribution en utilisant un ensemble de décodeurs vidéo qui ont
été mis en œuvre dans le cadre de RVC, y compris un décodeur basé sur la
nouvelle norme HEVC.

Tout ce travail a été mis en place dans les deux logiciels open-source
suivant : un environnement de développement basé sur le paradigme flux
de données connu sous le nom de Orcc [134], et un ensemble d’outils de
co-design appelé TCE [166] utilisant TTA comme architecture modèle.

A.3 état de l’art 131

a.3 état de l’art

Comme présenté dans le chapitre 2, exprimer un algorithme afin d’exploi-
ter l’ensemble du parallélisme est déjà une tâche complexe et sujette aux
erreurs, mais la diversité des plates-formes parallèles rend la tâche incroya-
blement plus difficile. Par conséquent, l’informatique embarquée doit se
tourner vers des méthodologies de programmation basée sur des niveaux
d’abstraction plus élevés afin d’atteindre les contraintes d’efficacité et de
fiabilité inhérentes au domaine.

a.3.1 Programmation flux de données

Le chapitre 3 se concentre sur une solution de programmation particulière,
connue sous le nom de programmation flux de données, qui s’appuie sur
le formalisme des modèles de calcul pour définir des règles sémantiques
permettant de décrire des composants, les acteurs, et de les connecter avec
un graphe de flux de données, le réseau.

Un modèle de calcul est une spécification abstraite de la façon dont un
calcul peut progresser. Un modèle de calcul est utile pour définir la séman-
tique d’un modèle de programmation, à savoir le type d’éléments qu’il peut
contenir et la manière dont ils interagissent [152]. Les exemples classiques
de modèles de calcul sont la machine de Turing et le lambda-calcul. Au
cours des vingt dernières années, des dizaines de modèles de calcul flux
de données ont été étudiés en raison de l’utilisation intéressante de pro-
grammation de flux de données pour le développement d’applications de
traitement du signal.

Les modèles de calcul flux de données existant peuvent être divisés en
deux catégories principales : Les modèles statiques qui ne peuvent décrire
que des comportements prévisibles, permettant de faire l’ordonnancement
au moment de la compilation. Les modèles dynamiques qui ont un compor-
tement dépendant des données. La plupart des études sur l’implémentation
des programmes de flux de données ce concentre sur les modèles statiques
en raison de l’efficacité des techniques de synthèse sur ces modèles en raison
de leur analysabilité. Malheureusement, ils ne prennent pas en considéra-
tion la flexibilité et l’expressivité offerte aux programmeurs par les modèles
flux de données dynamiques.

Le modèle DPN [121], également connu sous le nom de DDF, est étroite-
ment liée aux réseaux de Kahn [110]. Le modèle DPN est Turing-complet, ce
qui signifie qu’il peut modéliser n’importe quel algorithme, même non dé-
terministe. Dans ce modèle, une application est représentée par un graphe
dont les sommets / processus sont appelés acteurs. En plus des réseaux de
Kahn, il introduit la notion de tir. Un tir de l’acteur, ou de l’action, est une
quantum indivisible d’exécution qui correspond à une fonction de corres-
pondance entre des jetons d’entrée et des jetons de sortie qui est appliquées
de manière répétée et séquentiellement sur un ou plusieurs flux de données.
Cette fonction est composée de trois étapes ordonnées et indivisible : lecture
des données, calculs, et enfin écriture des données. Ces fonctions sont gar-
dées par un ensemble de règles de tir qui spécifie quand un acteur peut être
tiré, c’est à dire le nombre et la valeur des jetons qui doivent être disponibles
sur les ports d’entrée pour déclencher l’acteur.

Ensuite, nous démontrons que le modèle de flux de données dynamique,
aussi connu sous le nom DPN, est le meilleur compromis compte tenu du

132 résumé en français

point de vue pratique des programmeurs, mais le modèle DPN soulève éga-
lement le défi d’implémentations efficaces (Figure 58).

Expressiveness Practicality Efficiency Analyzability

SDF

CSDF

DPN

SADF

KPN

PSDF

BDF

πSDF

high

low

HDF

Figure 58 – Comparaison de modèles de calcul flux de données, étendant la classifi-
cation de Stuijk et al. [163], qui met en avant le côté pratique du modèle
DPN

a.3.2 Reconfigurable Video Coding

MPEG tente d’améliorer le processus de normalisation des normes de codage
vidéo en suivant la méthodologie flux de données, telle que décrite dans le
chapitre 4. Pour pallier le manque d’interopérabilité entre les normes de
compression vidéo déployées sur le marché, MPEG a mis en place un cadre
innovant, appelé RVC [125, 29, 126], qui exploite la programmation flux de
données dynamique pour fournir la modularité, l’évolutivité et la portabilité
nécessaire aux outils de codage vidéo.

MPEG RVC définit deux normes qui ont été produites par le groupe de
travail RVC :

• La représentation de configuration du codec (ISO / IEC 23001-4 ou
MPEG-B pt. 4) [10] décrit le format avec lequel un décodeur RVC peut
être défini comme un réseau de blocs de calcul, ainsi que d’un langage
textuel pour la définition des blocs de codage vidéo (Section 4.3).

• Une bibliothèque d’outils vidéo (ISO / IEC 23002-4 ou MPEG-C pt. 4)
[11] qui standardise les acteurs nécessaires pour décrire les normes
de codage vidéo existants (Section ??), actuellement MPEG-4 part 2 et
MPEG-4 part 10.

En fait, RVC ne fournit pas seulement un nouveau processus de normali-
sation qui dépasse les limites du processus de normalisation en cours, mais
introduit également un cadre qui favorise le développement multimédia, en
offrant tous les avantages de la programmation par flux de données avec le
pragmatisme requis par le développement d’applications complexes. Alors
que l’implémentation efficace des programmes basés DPN reste difficile, les
outils et les applications incluses dans le dossier RVC cadre ont maintenant
atteint une maturité suffisante pour démontrer la viabilité de cette approche
de développement pour des applications réelles.

Depuis sa création, le groupe de travail RVC a standardisé l’implémenta-
tion de 3 décodeurs vidéo détaillés ci-dessous :

A.4 environnement de développement dédié 133

mpeg -4 part 2 La norme MPEG-4 part 2, également connu sous le nom de
MPEG-4 visual, a été publié en 1999 par la consortium commun ISO/ITU.
Les codecs DivX et Xvid populaires, qui ont largement contribué au
développement du partage de vidéo sur Internet, sont des implémen-
tations de cette norme. En fait, le simple profile du décodeur MPEG-4
Part 2 a été la première application standardisée par le groupe de
travail RVC. Compte tenu de la nouveauté de l’approche, le décodeur
a été la source de plusieurs dizaines d’expériences qui ont mené au
développement de plusieurs versions d’un décodeur avec granularité
variable.

mpeg -4 part 10 Introduit en 2003, MPEG-4 Part 10, également connu sous
le nom MPEG-4 AVC / H.264 est une norme vidéo largement utilisé
depuis l’avènement de la haute définition dans l’usage quotidien [176].
En fait, AVC est actuellement l’une des normes les plus exploitées au
sein des services vidéo commerciaux, allant de web de streaming à la
radiodiffusion numérique, y compris l’enregistrement de la caméra.

�����
����	��	��

��������
���������

�������
��

�����
����	��	��

�	�����
������

������
���

�����
��

������
���

�����
��

������
���

�����
��

������
���

�����
��

������
�����

�������
��

������
�����

�������
��

������
�����

�������
��

������
�����

�������
��

��� ����� ��� �����

���	����
!��"��

 �#
�$%

��������

	���������

������

	
�
�
�
�
�

Figure 59 – Description basé sur RVC d’un décodeur vidéo implémentant le stan-
dard HEVC

mpeg -h part 2 MPEG-H Part 2 , également connu sous le nom MPEG HEVC

/ H.265 , est la dernière norme de codage vidéo, développé conjointe-
ment par l’ISO et l’ITU, en tant que successeur MPEG-4 AVC / H.264 .
HEVC améliore le taux de compression des données, ainsi que la qua-
lité d’image, afin de gérer les contraintes de vidéo modernes tels que
les hautes résolutions d’image 4K (3840x2160) et 8K (7680x4320) [164].
Une autre caractéristique clé de cette nouvelle norme de codage vi-
déo est sa capacité de traitement parallèle qui offre des performances
évolutives sur les architectures parallèles à la mode [164] .

Ces capacités parallèles offrent une grande opportunité de prouver
l’intérêt de l’ approche RVC. Par conséquent, le groupe de travail RVC

a développé , en parallèle avec le processus de normalisation , une
implémentation d’un décodeur HEVC en utilisant le cadre RVC, qui est
présentée dans la figure 59. Cet effort commun a permis la démons-
tration d’une version fonctionnelle lors de la 103ème réunion MPEG en
Janvier 2013. Au même moment, la version finale du standard HEVC a
été approuvé.

a.4 environnement de développement dédié

Partant de cet état de l’art, nous avons construit un flot de co-conception
complet ciblant les plates-formes multi-cœur embarquées (présenté dans le

134 résumé en français

chapitre 5). Notre flot de conception intégre une infrastructure de simulation
avancée et repose sur un modèle d’architecture dédié aux programmes flux
de données. Construire ce flot de conception a également donné l’occasion
d’améliorer la fiabilité et la flexibilité de l’infrastructure de compilation sous-
jacente au moyen de techniques modernes de génie logiciel.

a.4.1 Infrastructure de programmation flux de données

À partir du travail initial de Wipliez [177] , nous proposons une infrastruc-
ture de compilation améliorée des programmes de flux de données qui tire
profit de la méta-modélisation et de la programmation orientée aspect.

L’infrastructure de compilation pour les programmes de flux de données,
inclus dans Orcc [134] , sur lequel nous avons travaillé au cours de cette thèse
est présentée par la figure 60. Créée par Wipliez [177], cette infrastructure
de compilation est un trans-compilateur, aussi appelé un compilateur source-
à-source, qui traduit des descriptions de programmes flux de données dans
des codes sources plus traditionnelles, au lieu de générer directement du
code machine comme beaucoup compilateurs.

Dans sa thèse [177], Wipliez décrit la mise en œuvre d’une représenta-
tion intermédiaire (IR) dédiée aux compilateurs flux de données et montre
qu’une telle IR, spécifique à un domaine précis, est bien adaptée pour effec-
tuer analyses et optimisations avancées sur les programmes flux de données.
Maintenant, nous montrons comment les techniques modernes de génie lo-
giciel, tels que le méta-modélisation et la programmation orientée aspect,
peut améliorer la manipulation de cette IR et l’ensemble du flot de compila-
tion.

���������
��������	��

������

��������

���������

��������

��������

������������

�����������

���������

���������	�����	�������������

���������	�������������

�������	������������

���������	����	�������

��� ���

����

����

�������
���������

������	����

������
����	������
�������	���

�������
���������

�����	������

������	�
�	�������

������	�
�	����	��

��������
��������

Figure 60 – Infrastructure de compilation multi-cibles

a.4.2 Modèle d’architecture dédié

Le développement d’un flot de conception ciblant ces plateformes néces-
site la définition d’un modèle d’architecture qui correspond au comporte-
ment de la plate-forme ciblée, tout en gardant un haut niveau d’abstraction
et suffisamment de liberté de configuration pour permettre l’exploration
de l’espace de conception. Compte tenu de la complexité des architectures
multi-core, ainsi que de l’efficacité et de la fiabilité requise par les systèmes
embarqués, nous proposons de spécialiser notre modèle d’architecture pour
la réalisation des programmes de flux de données dynamiques afin de ti-
rer parti de la connaissance inhérente à notre domaine d’application, de la
même manière que les DSLs.

A.4 environnement de développement dédié 135

Les cœurs de processeur sous-jacent à notre plate-forme abstraite est basé
sur une architecture de type VLIW connue sous le nom de TTA [55]. Cette
architecture particulière a été choisi pour les raisons suivantes :

• Les processeurs TTA sont en mesure de tirer profit de la seule forme
de parallélisme qui n’est pas inhérente au modèle flux de données.
Les processeurs TTA ressemblent VLIW processeurs dans le sens où ils
vont pouvoir exécuter plusieurs instructions par cycle d’horloge. Une
différence importante, cependant, est que les processeurs TTA n’ont
qu’une seule instruction : Move, qui transfère simplement les données
d’un endroit interne du processeur à l’autre.

• Les processeurs TTA sont idéaux pour cibler les systèmes embarqués.
En fait, la programmation directe du transport des données permet de
réduire le trafic au niveau de la file de registre par rapport aux proces-
seurs VLIW [55], mais cependant la conception du compilateur assez
difficile, car c’est le compilateur qui planifie le transport des données
et fait en sorte que les conflits soient évités. Comme le compilateur
prend ces décisions lors de la conception, le système d’exécution est
simplifiée et donc il ya des économies sur le nombre de portes logiques
nécessaire par le processeur et donc de la consommation d’énergie.

• Les processeurs TTA sont extrêmement configurables. Le concepteur
peut faire le processeur minuscule et économes en énergie ou, le cas
échéant, d’augmenter le parallélisme d’instructions du processeur. Nous
présentons 4 configurations prédéfinies qui ont été utilisés lors des ex-
périences.

Maintenant, nous introduisons une architecture de mémoire hybride spé-
cialement conçue pour les programmes flux de données. Pour limiter le tra-
ditionnel goulot d’étranglement lié aux accès mémoire , notre modèle d’ar-
chitecture contient des mémoires privées et partagées, comme le montre la
figure 61, ce qui rend l’architecture de mémoire, un mélange d’organisation
UMA et NORMA (définies dans le chapitre 2). Ainsi, les processeurs sont asso-
ciés à leur mémoires privées utilisés pour l’exécution de leurs acteurs, mais
également reliées, à travers d’un réseau d’interconnexion, à un ensemble de
mémoires partagées consacrés aux communications inter-processeurs.

����������

����	�
��������

�������
��������

�
�

�
� ���

�� �� ��

�����������������������

�
�

�
� ���

�
�

�
� ���

�
�

���
�

�
�

�������
�����������	�
������	�����������

�������
�������������
�����!����"� �
������		�������

������	�
�����#�����
������

Figure 61 – An hybrid memory architecture dedicated to DPN-based programs

136 résumé en français

a.4.3 Co-conception de systèmes embarqués

La difficulté de programmer efficacement les plates-formes embarquées multi-
cœur, telle que présenté dans le chapitre 2, fait que le processus de concep-
tion est toujours un défi ouvert. C’est pourquoi nous présentons un flot
de co-conception automatisée, conçue à partir de zéro au cours de cette
thèse, qui se destine à la mise en œuvre de programmes basés DPN sur des
plates-formes multi-cœr dédiées. Ce flot de co-conception a été utilisé pour
effectuer la plupart des expériences présentées ici, ce qui en fait un élément
clé de cette thèse [5] .

��������	�����������

��������
�	���������
���	������

��������
�����������������

�����������

��������
������

�������

����	����

����

���

�����

����

���������
�����������������

�����������

���

�����	����

��������
��������

�����	��	�����

���������
 ��������	�����!	

����	�������

���������
"��#����!
$%����%���

���������
��&��	

�����������

�������
���������
���������

��������

���������
�����	���������

���	������

����	�'

(()*
�����+�,

���������
�����������

�����������	�����������

�

�

�

���

����
���������

�����

���������	��-��	������+������

���������	������+������

�����
���������

�.%�

�����
���	������

���-���	�����
���	�������

"��%���	������+�����

���������
��������
������

/�.������	����	������%

Figure 62 – Infrastructure de co-conception de plates-formes multi-cœur embar-
quées

Le flot de co-conception est mis-en-œuvre autour de deux projets open-
source appelé respectivement Orcc [134] et TCE [166]. En fait, Orcc peut être
considéré comme un front-end flux de données pour TCE , et inversement
TCE peut être considéré comme un back-end spécifique au processeur pour
Orcc. En fait, Orcc effectue la partie haut niveau du flot de conception et four-
nit un simulateur fonctionnel, et les deux sont totalement indépendants de
l’architecture des processeurs. Pour sa part, TCE effectue la partie bas niveau
du flot de conception et fournit un simulateur de jeu d’instructions. Comme
le montre la figure 62, notre flux de co-conception s’effectue en plusieurs
étapes : D’abord, l’étape spécifique à la modélisation flux de données (a) est
mise en œuvre dans Orcc. Ensuite, l’étape spécifique au processeur (b) est
mise en œuvre dans la suite d’outils TCE. Et enfin, le stade spécifique au ma-
tériel (c) est réalisée par des outils tiers, mais automatisée par un ensemble
de scripts et fichiers de projets générés par l’étape précédente.

a.5 implémentation logicielle des programmes flux de don-
née

Le principal défi auquel les programmes flux de données dynamiques doivent
faire face est la démonstration d’implémentations efficaces qui peuvent at-
teindre les contraintes de performance imposées par les applications mo-
dernes. Par exemple, les décodeurs vidéo doivent permettre l’affichage en

A.5 implémentation logicielle des programmes flux de donnée 137

temps réel de séquences vidéo haute définition, à partir de 25 FPS pour le
format 720p sur des terminaux mobiles à 50 FPS dans le format 8K sur les
écrans de cinéma. Alors que l’efficacité des programmes décrits à l’aide des
langages de programmation traditionnels est le résultat de 50 années de tra-
vail sur les compilateurs afin d’exploiter la localité mémoire, l’abandon du
paradigme de localité des données en faveur du paradigme flux de données
nécessite le développement de nouvelles techniques de compilation pour
profiter pleinement de l’architecture du processeur. En outre, l’attrait des
modèles de flux de données plus restreintes a souvent détourné l’attention
de la programmation basée DPN.

a.5.1 Implémentation optimisée

En outre, nous avons partiellement résolu l’un des principaux défis des
modèles flux de données dynamiques en présentant notre implémentation
logicielle optimisée pour les programmes basés sur le modèle DPN. Notre
implémentation vise notamment l’exécution efficace des décodeurs vidéo
sur plates-formes multi-cœur embarquées, mais la plupart des principes
peuvent être appliqués à tous les programmes basés DPN et toutes les plates-
formes multi-cœur. Notre implémentation est purement logicielle mais com-
prend autant l’optimisation des communications que celui de l’ordonnance-
ment. Veuillez noter que notre implémentation a été intégré dans notre flot
de co-conception, que nous avons introduit dans le chapitre 5, de sorte que
toutes les expériences présentées ci-dessous sont pris en charge par notre
flot de compilation.

De plus, notre implémentation est la première, à notre connaissance, ayant
démontré sa capacité à réaliser le décodage temps réel de séquences vi-
déos haute définition sur des processeurs de bureau (Table 13). Notre implé-
mentation a également montré des résultats encourageants pour des plates-
formes multi-core embarquées (Table 14).

Decoder Video sequence Frame-rate

MPEG-4 Part 2 SP OldTownCross (720P) 33,7 FPS

MPEG-4 AVC PHP PlaceAtTheTable (720P) 4,5 FPS

MPEG HEVC Main KristenAndSara (720P) 12,7 FPS

Table 13 – Fréquence d’image maximale atteinte sur notre processeur généraliste en
utilisant la stratégie d’ordonnancement round-robin

Decoder Video sequence Frame-rate

MPEG-4 Part 2 SP Foreman (QCIF) 175 FPS

MPEG HEVC Still Picture BasketBallPass (240p) 4 FPS

Table 14 – Fréquence d’image maximale atteinte sur notre plate-forme embarquée
en utilisant le configuration de processeur Fast cadencé à 100MHz

138 résumé en français

a.5.2 Implémentation extensible

De plus, nous avons décrit dans le chapitre 7 plusieurs systèmes de pro-
jection pour exécution multi-cœur qui peuvent gérer le dynamisme de nos
programmes basés sur le modèle DPN et d’atteindre des performances évo-
lutives. En d’autres termes, nos systèmes d’ordonnancement assigne les ac-
teurs aux processeurs, ordonne l’exécution des acteurs, et exécute les acteurs,
sans causer de famine ou blocage. Tous nos algorithmes visent à maximiser le
débit des données pour les applications de manière à atteindre la contrainte
temps réel. Ce chapitre décrit :

1. Un système d’exécution basé sur un algorithme génétique qui recherche
automatiquement les projections efficaces d’acteurs sur n’importe quelle
architecture multi-cœur pour les programmes basés sur le modèle
DPN.

2. Un système de projection d’acteur à bas coût pour les programmes de
flux de données basé sur un système de partitionnement de graphe.
Le faible coût de l’approche le rend faisable à plusieurs reprises lors
de l’exécution de maintenir un bon équilibrage de la charge sur la
plate-forme ciblée, même avec des applications dynamiques.

3. Un système de d’ordonnancement de l’exécution des acteurs pour pro-
grammes flux de données qui prend en charge l’architecture multi-
cœurs grâce à une architecture distribuée.

Enfin, nous avons démontré l’extensibilité de notre implémentation des
programmes flux de données basés sur le modèle DPN en utilisant les algo-
rithmes d’ordonnancement décrits dans le chapitre 7. En effet, nous avons
évaluer l’évolution des performances en fonction du nombre de cœurs de
processeur utilisés pour notre processeur de bureau (Table 15) et notre plate-
forme embarquée (Figure 63).

Décodeurs 2 cœurs 4 cœurs 6 cœurs

MPEG-4 Part 2 SP 58,1 FPS 94,6 FPS 93,1 FPS

MPEG-4 AVC PHP 12,4 FPS 17,0 FPS 19,0 FPS

MPEG HEVC Main 18,0 FPS 15,8 FPS 10,4 FPS

Table 15 – Influence du nombre de processeurs sur la performance du decodeur
MPEG-4 Part 2 Simple Profile sur notre processeur généraliste

a.6 conclusion et perspectives

Pour supporter à la fois les contraintes élevées de systèmes embarqués d’au-
jourd’hui et la pression du marché sur les délai de production, le marché
électronique est clairement tourné vers la conception de plates-formes très
hétérogènes, connu sous le nom MPSoCs, intégrant des processeurs de plus
en plus spécialisés sur une seule puce afin de combler le fossé entre l’effica-
cité du matériel et de la flexibilité du logiciel. Mais, étonnamment, certaines
applications, comme les codecs vidéo, sont toujours effectuées par des com-
posants matériels dédiés dans la plupart des MPSoCs. Le travail présenté
dans cette thèse s’inscrit dans un contexte de demande croissante pour les

A.6 conclusion et perspectives 139

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

120

140

160

180

200

Number of processors

F
P

S

Figure 63 – Influence du nombre de processeurs sur la performance du decodeur
MPEG-4 Part 2 Simple Profile sur notre plate-forme embarquée

applications multimédia ainsi qu’un manque de flexibilité des systèmes em-
barqués pour le décodage vidéo.

Les travaux réalisés au cours de cette thèse peut servir de base pour de
futures recherches. Nous détaillons ici quelques perspectives sur la base de
notre environnement de développement dédié à la programmation flux de
données, sur notre implémentation logicielle de programmes flux de don-
nées dynamiques, et sur une plateforme embarquée dédiée aux programmes
RVC.

a.6.1 Environnement de développement avancé

Le développement d’un IDE dédié à la programmation flux de données est
une tâche laborieuse qui est clairement ouverte à de nouvelles perspectives
afin de promouvoir le développement de nouvelles applications dans le
cadre de RVC.

développement assisté Notre environnement de développement in-
clut un éditeur de graphes qui tire parti de la capacité de programmation
visuelle du paradigme de flux de données . Mais, notre éditeur souffre de sa
technologie sous-jacente, comme la fonction de mise en page automatique
qui offre des résultats médiocres sur des graphiques complexes. En fait,
nous pourrions bénéficier de méta-outils dédiés, tels que Graphiti d’Eclipse
[63] et Spray [64], afin de développer un éditeur graphique à l’état de l’art.
En outre, l’approche générative de ces méta-outils pourrait grandement sim-
plifier le développement et le maintien de nos interfaces utilisateur.

Le débogage des applications RVC au sein de notre IDE est généralement
obtenue par la génération du code C pour la plate-forme d’accueil afin de
pouvoir utiliser les débogueurs traditionnels, par exemple GDB. Mais, les
applications générées sont déjà le résultat de nombreux choix d’implémen-
tation compliquant le débogage. Par exemple, l’inspection des canaux de
communication basés sur des tampons circulaires est assez difficile pen-
dant le débogage. En conséquence, l’intégration d’un débogueur directe-

140 résumé en français

ment dans notre IDE pourrait grandement faciliter le développement d’ap-
plications complexes.

flot de conception La disponibilité de nouveaux systèmes sur puce
intégrant de la logique programmable (par exemple le Xilinx Zynq SoC),
associé à la capacité de notre compilateur pour cibler de multiples plates-
formes, permettrait le développement d’un flot de conception visant les
systèmes complexes et hétérogènes (MPSoCs), comprenant des processeurs
ARM, des processeurs basés TTA et des accélérateurs matériels .

Une telle hétérogénéité introduit cependant de nouveaux défis à notre flot
de conception. Tout d’abord, l’infrastructure de simulation devrait intercon-
necter plusieurs simulateurs afin de gérer la co-simulation de l’ensemble
du système. Puis, cibler des plates-formes hétérogènes impliquerait le dé-
veloppement d’un processus avancé de projection des acteurs considérant
à la fois les composants matériels et logiciels. Enfin, un système de scripts
de compilation automatique et multi-cible serait nécessaire pour simplifier
l’interaction avec un nombre croissant d’outils externes.

a.6.2 Implémentation logicielle optimisée

L’efficacité de l’implémentation est clairement la problématique centrale de
programmation basée sur des modèles de données flux de données dyna-
miques. Même si un grand progrès ont été réalisés depuis l’introduction du
framework RVC, il y a encore un long chemin à parcourir avant l’adoption
de la programmation flux de données dynamique par les industriels. Mais,
nous avons déjà plusieurs perspectives qui nécessitent des travaux futures
pour améliorer la performance de notre implémentation à l’état-de-l’art.

communications La mise en œuvre optimisée des communications,
décrit dans le chapitre ??, empêche le potentiel parallélisme de mots à cause
des indices absolus. En fait, les accès à la mémoire tampon circulaire pour-
raient être vectorisés puisque la largeur de canaux au sein de nos appli-
cations sont souvent inférieurs à 32 bits (généralement 8 ou 16 bits), mais
le compilateur ne peut pas savoir si l’accès sont alignés dans la mémoire
ou si la fin de la mémoire tampon circulaire est atteinte. Ainsi, nous étu-
dions actuellement une implémentation plus avancée de communications.
Les actions dîtes multi-jetons sont générés en deux versions, l’une standard
et l’autre vectorisée, qui sont exécutées en fonction de la position actuelle
dans le tampon circulaire.

ordonnancement Les résultats présentés dans le chapitre ?? ont claire-
ment montré que nos applications n’ont pas vraiment bénéficier de l’ordon-
nancement quasi-statique. La raison principale vient des limites de notre
classificateur à l’heure actuelle. Notre classificateur n’interprète pas la com-
munication entre les acteurs, de sorte qu’il ne peut pas effectuer des analyses
au niveau du réseau. En outre, notre classificateur est incapable d’extraire
des comportements complexes au sein d’un seul acteur, comme des dépen-
dances indirectes entre les gardes et les jetons. Une solution serait l’utili-
sation d’outils tiers dédiés pour effectuer une interprétation abstraite plus
fiable.

Une autre solution serait la mise en place de directives spécifiques, à l’ins-
tar de celles utilisées pour la parallélisation assistée décrit dans le chapitre 2.
Le développeur pourrait aider le compilateur à trouver les comportements

A.6 conclusion et perspectives 141

quasi-statiques dans son application en ajoutant des directives spécifiques à
la description. En effet, une directive contient simplement des informations
supplémentaires qui ne peuvent être déterminées automatiquement par le
compilateur.

Pour résumer, nous rajoutons une sémantique quasi-statique à notre lan-
gage de programmation de flux de données qui est initialement dynamique.
Le défi serait alors d’identifier quelle information serait utile pour aider à la
classification de l’acteur. Bien que cette approche serait peu satisfaisant d’un
point de vue pratique, cela représenterait une nouvelle étape pour combler
l’écart entre la puissance expressive des modèles dynamiques et l’efficacité
des modèles statiques et quasi-statiques.

a.6.3 Plate-forme dédiée aux codecs vidéo RVC

Cette thèse visait initialement l’étude d’une plate-forme basée MPSoC , com-
binant à la fois des composants matériels et logiciels, dédié aux applications
de codage vidéo qui héritent du cadre RVC . Alors que la conception d’une
telle plate-forme n’est pas encore atteint, notre flot de conception permet
déjà l’exploration architecturale de plates-formes dédiées multi-cœr embar-
quées basées sur notre modèle d’architecture. Ainsi, nous étudions actuel-
lement une plate-forme générique dédié à tous les codecs basés sur RVC

ouvrant de nombreuses perspectives intéressantes pour des travaux futurs.
En fait, plusieurs études [98, 20, 31] ont déjà étudié des plateformes embar-
quées spécifiques à RVC, mais aucune d’entre elles n’a réellement démontré
la viabilité de sa proposition.

hétérogénéité Comme indiqué au cours de cette thèse, les décodeurs
vidéo sont des applications complexes composées d’éléments ayant des com-
portements très différents. D’une part, les résultats de nos expériences ont
clairement démontré l’intérêt des processeurs de type VLIW pour profiter du
parallélisme interne des acteurs. D’autre part, les résultats ont mis en évi-
dence la faiblesse de processeurs basés TTA pour la maîtrise du dynamisme
de certains acteurs au sein de nos applications. Une solution serait l’addition
à notre modèle d’architecture d’un autre type de processeur comprenant un
prédicteur de branchement, le processeur LatticeMico32 par exemple. Ainsi,
nous pourrions concevoir des plates-formes dédiées capable de gérer effica-
cement les deux types d’acteurs qui composent nos décodeurs vidéo, calcul
intensif et contrôle intensif.

L’hétérogénéité de la plate-forme amène toutefois des défis supplémen-
taires à notre flot de co-conception comme vu précédemment. L’hétérogé-
néité introduit également de nouvelles contraintes au niveau de la projec-
tion des acteurs. D’une part, les acteurs réalisant des calculs intensifs (par
exemple, le transformation inverse) doit être projeté sur des processeurs TTA.
D’autre part, les acteurs contenant beaucoup de contrôle (par exemple, le
parser) doivent être projeté sur les autres processeurs. En conséquence, une
analyse spécifique serait nécessaire pour identifier le comportement des ac-
teurs.

partitionnement Comme décrit dans le chapitre 4, tous les décodeurs
vidéo partagent une structure commune qui correspond globalement avec le
graphe de l’application de leur description RVC. Ainsi, ils sont généralement
décomposés en 4 sous-réseaux : parser, residual, prediction et filter . En fait, les
interconnexions entre ces sous-réseaux sont également très similaire dans

142 résumé en français

tous les décodeurs. Partant de ce constat, nous étudions une architecture
de mémoire dédiée qui partitionne les processeurs en groupe (ou cluster)
pour s’adapter à la structure globale de décodeurs vidéo. Une spécification
précoce, basée sur une hiérarchie de mémoire partagée à deux niveaux est
présentée dans la figure 64.

�� �� �� ��

�������

��	���

�� �� �� �� �� �� �� ��

��������

��	���

�������

����������

�������

��	���������

�������

������������

�������������

�	������������

������

��������

����������

��������

��������

�	������������

������

��������

�����	��

��������

Figure 64 – Architecture mémoire dédiée aux décodeurs videos

En outre, nous pouvons également identifier les acteurs qui nécessitent
de grandes quantités de mémoire, comme le frame-buffer, et les projeter sur
des processeurs dédiés qui ont accès à la mémoire externe.

adaptivité Des travaux antérieurs de notre groupe de recherche ont
déjà démontré le fonctionnement d’un codec vidéo adaptatif appelé Jade

utilisant le framework RVC. Comme décrit dans le chapitre 4, Jade exploite
les mécanismes de la machine virtuelle disponible dans LLVM, comme la
compilation just-in-time, afin de fournir un décodeur universel. En effet, le
décodeur est configuré à-la-volée selon une configuration encapsulé avec le
flux vidéo et grâce à une bibliothèque de composants (i.e. la VTL). Ainsi, le
flux entrant peut configurer le décodeur conformément au format de codage
du flux vidéo.

���������
�	��������

������������

���������	�����
���������

�������
������

�������
������

����������
	������

��������	�������

����

�����������
�����	�������

����

��������������	�������
�������	������

������������������	�������
�������	������

��������	
�����������

Figure 65 – Hardware Adaptive Decoder Engine

Jusqu’à présent, Jade est exécutable exclusivement sur processeurs géné-
ralistes (x86 et ARM) qui ne sont pas économe en énergie. Ainsi, nous

A.6 conclusion et perspectives 143

pourrions coupler un processeur généraliste avec notre plate-forme multi-
cœr dédiée sous la forme d’un co-processeur en charge du décodage vi-
déo, telle que présentée dans la figure 65. Pour ce faire, Jade serait étendu
avec une fonction hôte / client où le processeur généraliste configurerait le
co-processeur multi-core qui effectuer le décodage. Et, à la réception d’un
flux entrant, Jade pourrait cross-compiler les acteurs pour le co-processeur
multi-core et permettrait de déterminer une projection initiale. Finalement,
le co-processeur multi-core renverrait à Jade les informations de profilage
pour permettre la détermination d’une projection plus optimisée.

TA B L E D E S F I G U R E S

Figure 1 Generic MPSoC-based platform 2

Figure 2 Aspects of embedded system design (adapted from
Wolf’s analysis [182]) 3

Figure 3 Contributions of this thesis on dataflow-based em-
bedded system design 4

Figure 4 Processor architectures characterizing multi-core plat-
forms . 12

Figure 5 Memory architectures characterizing multi-core plat-
forms . 13

Figure 6 Hierarchical memory organization for multi-core plat-
forms . 14

Figure 7 Hardware versus software implementation of hierar-
chical memories . 15

Figure 8 The first dataflow representation, the graphical rep-
resentation of an arithmetic computation, that was
introduced by Sutherland in 1966 [165] 23

Figure 9 A dataflow network of five processes, the vertices
named from A to E, that communicate through a set
of communication channels, represented by the di-
rected edges . 24

Figure 10 The dataflow representation is modular by offering
hierarchical ability, re-usability and reconfigurability. 25

Figure 11 Parallelizing the dataflow program presented in Fig-
ure 9 from a sequential execution (11a) to parallel
execution using different strategies (11b, 11d, 11c). . . 26

Figure 12 A self-contained actor with its own state, actions and
firing rules . 28

Figure 13 Comparison of dataflow MoCs, extending the clas-
sification system introduced by Stuijk et al. [163],
which shows that DPN is the most suitable model for
a practical programming language 31

Figure 14 Round-robin scheduling of the actor of the dataflow
network presented in Figure 9 35

Figure 15 Behavior of the dynamic list of next schedulable actor
used by data-driven / demand-driven scheduling . . 36

Figure 16 Multiplication of the video compression standards . . 42

Figure 17 RVC vision . 46

Figure 18 Visual representation of dataflow network 47

Figure 19 RVC-based description of the MPEG-4 Part 2 SP decoder 52

Figure 20 RVC-based description of the MPEG-H Part 2 SP decoder 53

Figure 21 Performance evolution of an RVC-based video decoder.
Frame-rates of the foreman sequence (QCIF) using the
normative description of the MPEG-4 Part 2 Simple-
Profile decoder executed on mono-processor desktop
computers [151, 180, 93]. 58

Figure 22 Multi-target trans-compilation infrastructure 63

Figure 23 Compilation flow based on meta-tools 63

Figure 24 Class diagram of Graph 64

145

146 Table des figures

Figure 25 Class diagram related to Procedure 66

Figure 26 Class diagram related to Instruction 67

Figure 27 Class diagram related to Expression and Type 68

Figure 28 Class diagram related to Network 69

Figure 29 Class diagram related to Actor 69

Figure 30 A simple processor based on Transport-Trigger Ar-
chitecture . 71

Figure 31 Fast TTA-based processors target high clock-frequency
implementation [71]. 73

Figure 32 An hybrid memory architecture dedicated to DPN-
based programs . 73

Figure 33 Designing embedded multi-core platforms following
the flexible Y-chart approach [113] 75

Figure 34 Multi-stage co-design flow 75

Figure 35 Two-step compilation flow 77

Figure 36 Processor simulation in standalone fashion by way of
FIFO simulators . 79

Figure 37 Concurrency-safe implementation of FIFO channels
in shared-memory . 83

Figure 38 Three way of broadcasting communications 88

Figure 39 Hierarchical scheduling 89

Figure 40 Quasi-static scheduling using actor clustering 91

Figure 41 Communication analysis (rates and broadcasting) within
RVC-based video decoders 96

Figure 42 Repartition of the workload within RVC-based video
decoders using both desktop and embedded imple-
mentations . 97

Figure 43 Exploring the parallelism potential of actors compos-
ing video decoders thanks to their execution speedup
on TTA-based processors using Custom, Fast and Huge
configurations from a sequential execution with Stan-
dard configuration . 98

Figure 44 Quasi-static scheduling of the inverse transform of MPEG
HEVC / H.265 based on graph clustering 100

Figure 45 Multi-core scheduling of dynamic dataflow programs 103

Figure 46 A population considering the mapping of the actors
A, B, C, D and E onto the processors P1 and P2 . . . 105

Figure 47 Proceeding of our evolutionary-based actor mapping
system . 106

Figure 48 2-ways evolution of the population from generation
N to N+ 1: New individuals are created either by (a)
cross-over or by (b) mutation. 107

Figure 49 Actor mapping flow based on graph partitioning . . 108

Figure 50 Distributed scheduler onto a multi-core platform us-
ing round-robin . 110

Figure 51 Lock-free scheduling communication for data-driven
/ demand-driven strategy on multi-core platforms . 111

Figure 52 Topologies of the interconnection network of the dis-
tributed scheduling management 112

Figure 53 Experimental flow to analyze the scalability of RVC-
based applications on both desktop (A) and embed-
ded (B) multi-core platforms 113

Table des figures 147

Figure 54 Influence of the number of processors on the perfor-
mance of MPEG-4 Part 2 Simple Profile decoder . . . 116

Figure 55 Dedicated clustered architecture based on video de-
coders structure . 123

Figure 56 Hardware Adaptive Decoder Engine 123

Figure 57 Contributions of this thesis on dataflow-based em-
bedded system design 130

Figure 58 Comparaison de modèles de calcul flux de données,
étendant la classification de Stuijk et al. [163], qui met
en avant le côté pratique du modèle DPN 132

Figure 59 Description basé sur RVC d’un décodeur vidéo implé-
mentant le standard HEVC 133

Figure 60 Infrastructure de compilation multi-cibles 134

Figure 61 An hybrid memory architecture dedicated to DPN-
based programs . 135

Figure 62 Infrastructure de co-conception de plates-formes multi-
cœur embarquées . 136

Figure 63 Influence du nombre de processeurs sur la perfor-
mance du decodeur MPEG-4 Part 2 Simple Profile
sur notre plate-forme embarquée 139

Figure 64 Architecture mémoire dédiée aux décodeurs videos . 142

Figure 65 Hardware Adaptive Decoder Engine 142

L I S T E D E S TA B L E A U X

Table 1 Parallelism is multi-form and multi-level 10

Table 2 Comparison of interconnection networks 16

Table 3 Dynamism-based taxonomy of mapping and schedul-
ing approaches, run-time or compile-time, from Lee
and Ha’s work [118] 21

Table 4 Statistics about the RVC-CAL description of several MPEG

video decoders . 53

Table 5 Comparison of 4 predefined processor configurations 72

Table 6 Maximal frame-rates achieved by our desktop imple-
mentation using round-robin scheduling strategy . . 93

Table 7 Maximal frame-rates achieved by our embedded im-
plementation using the Fast configuration clocked at
100MHz. These frame-rates have been evaluated dur-
ing an execution of the entire multi-core platform
within the instruction-set simulator (ttanetsim) 94

Table 8 Clustering results . 99

Table 9 Comparison of static and dynamic scheduling strate-
gies within the desktop implementation using the tested
video decoders. The number of switches, firings and
misses are expressed in 103 101

Table 10 Comparison of static and dynamic scheduling strate-
gies on the inverse transform of HEVC using our em-
bedded implementation 102

Table 11 Comparison of our approach with handmade map-
pings of MPEG-4 Part 2 executed on 2 processor cores 114

Table 12 Bounded scalability of the RVC-based video decoders
according to decoding frame-rates (FPS) obtained on
a desktop multi-core processor. The decoders are first
mapped using our dedicated system based on graph
partitioning, then scheduled using different strate-
gies, respectively round-robin strategy (RR) and com-
bined strategy with either ring topology (C/R) or
fully-connected topology (C/F). 115

Table 13 Fréquence d’image maximale atteinte sur notre pro-
cesseur généraliste en utilisant la stratégie d’ordon-
nancement round-robin 137

Table 14 Fréquence d’image maximale atteinte sur notre plate-
forme embarquée en utilisant le configuration de pro-
cesseur Fast cadencé à 100MHz 137

Table 15 Influence du nombre de processeurs sur la perfor-
mance du decodeur MPEG-4 Part 2 Simple Profile
sur notre processeur généraliste 138

148

L I S T I N G S

Listing 1 One simple directive to parallelize a loop 18

Listing 2 Textual representation of dataflow network 47

Listing 3 XML-based intermediate representation of dataflow
network . 47

Listing 4 Header of an actor . 48

Listing 5 Procedural code . 49

Listing 6 An action that transposes 4x4 blocks 49

Listing 7 Guard and pattern . 49

Listing 8 FSM and priorities . 50

Listing 9 Software data structure of FIFO channels 83

Listing 10 FIFO accesses based on circular buffer 84

Listing 11 Control-free FIFO accesses 84

Listing 12 Transposition of a 4x4 block in RVC-CAL 85

Listing 13 Transposition of a 4x4 block generated in C 86

Listing 14 Copy-free execution . 87

Listing 15 Action scheduler . 90

Listing 16 Combined scheduling algorithm 110

Listing 17 Directive-based actor classification 121

149

A C R O N Y M S

3ac Three-Address Code

adf Architecture Definition File

adm Abstract Decoder Model

alu Arithmetic and Logic Unit

api Application Programming Interface

asic Application-Specific Integrated Circuits

asip Application-Specific Instruction-Set Processor

ast Abstract Syntax Tree

avc Advanced Video Coding

avs Audio Video Standard

bdf Boolean Data-Flow

bpdf Boolean Parametric Data-Flow

bsdl Bitstream Syntax Description Language

cal CAL Actor Language

cbp Constrained Baseline Profile

cfg Control-Flow Graph

cisc Complex Instruction Set Computer

csdf Cyclo-Static Data-Flow

ddf Dynamic Data-Flow

dpn Dataflow Process Network

dse Design-Space Exploration

dsl Domain-Specific Language

dsp Digital Signal Processor

dst Discrete Sine Transform

emf Eclipse Modeling Framework

fifo First-In-First-Out

fnl Functional unit Network Language

fpga Field-Programmable Gate Array

fsm Finite State Machine

fu Functional Unit

150

acronyms 151

gpgpu General-Purpose Processing on GPUs

gpp General-Purpose Processor

gpu Graphics Processing Unit

hdf Heterochronous Dataflow

hdl Hardware Description Language

hevc High Efficiency Video Coding

hls High-Level Synthesis

hpc High Performance Computing

ibsdf Interface-Based Synchronous Dataflow

ide Integrated Development Environment

iec International Electrotechnical Commission

ilp Instruction-Level Parallelism

ir Intermediate representation

isa Instruction Set Architecture

iso International Organization for Standardization

itu International Telecommunication Union

jade Just-in-time Adaptive Decoder Engine

jpeg Joint Photographic Experts Group

kpn Kahn Process Network

llvm Low Level Virtual Machine

lsu Load/Store Unit

mde Model-Driven Engineering

mimd Multiple Instruction Multiple Data streams

misd Multiple Instruction Single Data streams

moc Model of Computation

mpeg Moving Picture Experts Group

mpi Message Passing Interface

mpsoc Multi-Processor System-on-Chip

noc Network-on-Chip

norma NO Remote Memory Access

numa Non-Uniform Memory Access

ocl Object Constraint Language

omg Object Management Group

152 bibliographie

orcc Open RVC-CAL Compiler

php Progressive High Profile

pimm Parameterized and Interfaced Dataflow Meta-Model

πsdf Parameterized and Interfaced Synchronous Dataflow

ppn Polyhedral Process Network

psdf Parameterized synchronous dataflow

ram Random Access Memory

rf Register File

risc Reduced Instruction Set Computer

rom Read-Only Memory

rtl Register Transfer Level

rvc Reconfigurable Video Coding

sadf Scenario Aware Dataflow

sas Single-Appearance Scheduling

sdf Synchronous Data-Flow

simd Single Instruction Multiple Data streams

sisd Single Instruction Single Data streams

soc System-on-Chip

spdf Schedulable Parametric Dataflow

ssa Static Single Assignment

tce TTA-based Co-design Environment

tta Transport-Trigger Architecture

tu Transform Unit

uma Uniform Memory Access

vceg Video Coding Experts Group

vliw Very Long Instruction Word

vtl Video Tool Library

xdf XML Dataflow Format

xml eXtensible Markup Language

P U B L I C AT I O N S

[1] D. de Saint Jorre, J. Gorin, J.-F. Nezan, M. Raulet, N. Siret, M. Wipliez,
and H. Yviquel. MPEG / M20074 : Report on Performance of Generated
Code (C, LLVM, and VHDL) from RVC Descriptions, 2010.

[2] J. Gorin, H. Yviquel, F. Prêteux, and M. Raulet. Just-in-time adaptive
decoder engine. Proceedings of the 19th ACM international conference on
Multimedia - MM ’11, page 711, 2011.

[3] J. Heulot, K. Desnos, M. Pelcat, H. Yviquel, J.-F. Nezan, M. Raulet, P.-
L. Lagalaye, and J.-C. Le Lann. An experimental toolchain based on
high-level dataflow models of computation for heterogeneous MPSoC.
In Design and Architectures for Signal and Image Processing (DASIP), 2012
Conference on, 2012.

[4] H. Yviquel, E. Casseau, M. Wipliez, and M. Raulet. Efficient multicore
scheduling of dataflow process networks. In Signal Processing Systems
(SiPS), 2011 IEEE Workshop on, pages 198–203, 2011.

[5] H. Yviquel, J. Boutellier, M. Raulet, and E. Casseau. Automated design of
networks of Transport-Triggered Architecture processors using Dynamic
Dataflow Programs. Signal Processing Image Communication, 28(10) :1295–
1302, 2013.

[6] H. Yviquel, E. Casseau, M. Raulet, P. Jääskeläinen, and J. Takala. Towards
run-time actor mapping of dynamic dataflow programs onto multi-core
platforms. In Image and Signal Processing and Analysis (ISPA), 2013 8th
International Symposium on, 2013.

[7] H. Yviquel, A. Lorence, K. Jerbi, A. Sanchez, G. Cocherel, and M. Raulet.
Orcc : Multimedia development made easy. In Proceedings of the 21st
ACM international conference on Multimedia, 2013.

[8] H. Yviquel, M. Wipliez, J. Gorin, M. Raulet, and E. Casseau.
Classification-based optimization of dynamic dataflow programs. In Ad-
vancing Embedded Systems and Real-Time Communications with Emerging
Technologies. IGI Global, 2014.

153

B I B L I O G R A P H Y

[9] International Standard ISO/IEC FDIS 23001-5 : MPEG systems tech-
nologies - Part 5 : Bit-stream Syntax Description Language (BSDL),
.

[10] International Standard ISO/IEC FDIS 23001-4 : MPEG systems tech-
nologies - Part 4 : Codec Configuration Representation, .

[11] International Standard ISO/IEC FDIS 23002-4 : MPEG video techno-
logies - Part 4 : Video tool library., .

[12] M. Abid, K. Jerbi, M. Raulet, O. Déforges, and M. Abid. System Level
Synthesis Of Dataflow Programs : HEVC Decoder Case Study. In
Electronic System Level Synthesis Conference (ESLsyn), 2013, 2013.

[13] K. Agrawal, J. T. Fineman, J. Krage, C. E. Leiserson, and S. Toledo.
Cache-conscious scheduling of streaming applications. Proceedinbgs of
the 24th ACM symposium on Parallelism in algorithms and architectures -
SPAA ’12, page 236, 2012.

[14] J. J. Ahmad. Secure Computing with the MPEG RVC Framework. PhD
thesis, Universität Konstanz, 2012.

[15] J. J. Ahmad, S. Li, A. Sadeghi, and T. Schneider. CTL : A Platform-
Independent Crypto Tools Library Based on Dataflow Programming
Paradigm. In 16th International Conference on Financial Cryptography and
Data Security (FC 2012), volume 3, 2011.

[16] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers : principles,
techniques, and tools. 2007.

[17] M. A. Arslan, J. W. Janneck, and K. Kuchcinski. Partitioning and Map-
ping Dynamic Dataflow Programs. In Signals, Systems and Computers
(ASILOMAR), 2012 Conference Record of the Forty Sixth Asilomar Confe-
rence on, pages 1452–1456, 2012.

[18] O. Avissar and R. Barua. An optimal memory allocation scheme for
scratch-pad-based embedded systems. ACM Transactions on Embedded
Computing Systems (TECS), 1(1) :6–26, Nov. 2002.

[19] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel.
Scratchpad memory : a design alternative for cache on-chip memory
in embedded systems. In Proceedings of the Tenth International Sympo-
sium on Hardware/Software Codesign. CODES 2002, pages 73–78, 2002.

[20] C. Beaumin, O. Sentieys, E. Casseau, and A. Carer. A coarse-grain
reconfigurable hardware architecture for RVC-CAL-based design. In
Design and Architectures for Signal and Image Processing (DASIP), 2010.

[21] V. Bebelis, P. Fradet, A. Girault, and B. Lavigueur. BPDF : A Statically
Analyzable DataFlow Model with Integer and Boolean Parameters. In
Embedded Software (EMSOFT), 2013 Proceedings of the International Confe-
rence on, 2013.

155

156 bibliographie

[22] L. Benini, E. Flamand, D. Fuin, and D. Melpignano. P2012 : Building
an ecosystem for a scalable, modular and high-efficiency embedded
computing accelerator. In 2012 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 983–987, 2012.

[23] E. Bezati, M. Mattavelli, and M. Raulet. RVC-CAL dataflow imple-
mentations of MPEG AVC/H. 264 CABAC decoding. In Design and
Architectures for Signal and Image Processing (DASIP), pages 207–213,
2010.

[24] E. Bezati, S. C. Brunet, M. Mattavelli, and J. W. Janneck. Synthesis and
Optimization of High-Level Stream Programs. In Electronic System
Level Synthesis Conference (ESLsyn), 2013, 2013.

[25] E. Bezati, M. Mattavelli, and J. W. Janneck. High-level synthesis of
dataflow programs for signal processing systems. In Image and Si-
gnal Processing and Analysis (ISPA), 2013 8th International Symposium
on, pages 750–754, 2013.

[26] B. Bhattacharya and S. S. Bhattacharyya. Parameterized Dataflow Mo-
deling for DSP Systems. IEEE Transactions on Signal Processing, 49(10) :
2408–2421, 2001.

[27] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. APGAN and RPMC :
Complementary Heuristics for Translating DSP Block Diagrams into
Efficient Software Implementations. Design Automation for Embedded
Systems Journal, 2(1) :1–33, 1997.

[28] S. S. Bhattacharyya, G. Brebner, J. W. Janneck, J. Eker, C. Von Platen,
M. Mattavelli, and M. Raulet. OpenDF : a dataflow toolset for re-
configurable hardware and multicore systems. SIGARCH Computer
Architure News, 36(5) :29–35, 2009.

[29] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mattavelli,
and M. Raulet. Overview of the MPEG Reconfigurable Video Coding
Framework. Journal of Signal Processing Systems, 63(2) :251–263, July
2009.

[30] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cvclo-Static
Dataflow. IEEE Transactions on Signal Processing, 44(2) :397 – 408, 1996.

[31] J. Boutellier and O. Silvén. Towards Generic Embedded Multiproces-
sing for RVC-CAL Dataflow Programs. Journal of Signal Processing
Systems, 73(2) :137—-142, 2013.

[32] J. Boutellier, C. Lucarz, S. Lafond, V. M. Gomez, and M. Mattavelli.
Quasi-static scheduling of CAL actor networks for reconfigurable vi-
deo coding. Journal of Signal Processing Systems, 63(2) :191–202, 2009.

[33] J. Boutellier, O. Silvén, and M. Raulet. Scheduling of CAL actor net-
works based on dynamic code analysis. In Acoustics, Speech and Signal
Processing (ICASSP), 2011 IEEE International Conference on, pages 1609–
1612, 2011.

[34] J. Boutellier, M. Raulet, and O. Silvén. Automatic Hierarchical Dis-
covery of Quasi-Static Schedules of RVC- CAL Dataflow Programs.
Journal of Signal Processing Systems, 71(1) :35–40, 2013.

bibliographie 157

[35] G. E. P. Box and N. R. Draper. Empirical model-building and response
surface. John Wiley & Sons, Inc., New York, NY, USA, 1986.

[36] S. C. Brunet, M. Mattavelli, and J. W. Janneck. Profiling of Dataflow
Programs using Post Mortem Causation Traces. In IEEE Workshop on
Signal Processing Systems (SiPS), pages 220–225, 2012.

[37] S. C. Brunet, M. Mattavelli, C. Alberti, and J. W. Janneck. Representing
Guard Dependencies in Dataflow Execution Traces. In Computational
Intelligence, Communication Systems and Networks (CICSyN), 2013 Fifth
International Conference on, pages 291–295, 2013.

[38] S. C. Brunet, M. Mattavelli, and J. W. Janneck. Buffer Optimization
Based on Critical Path Analysis of a Dataflow Program Design. In Cir-
cuits and Systems (ISCAS), 2013 IEEE International Symposium on, pages
1384 – 1387, 2013.

[39] S. C. Brunet, M. Mattavelli, and J. W. Janneck. TURNUS : a design
exploration framework for dataflow system design. In Circuits and
Systems (ISCAS), 2013 IEEE International Symposium on, pages 654–654,
2013.

[40] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan. Brook for GPUs : stream computing on graphics
hardware. ACM Transactions on Graphics (TOG), 23(3) :777–786, 2004.

[41] J. T. Buck. Scheduling dynamic dataflow graphs with bounded memory
using the token flow model. PhD thesis, University of California, Berke-
ley, 1993.

[42] J. T. Buck and E. A. Lee. Scheduling dynamic dataflow graphs with
bounded memory using the token flow model. In IEEE International
Conference on Acoustics, Speech, and Signal Processing, 1993. ICASSP-93.,
pages 429–432, 1993.

[43] A. Carlsson, J. Eker, T. Olsson, and C. Von Platen. Scalable parallelism
using dataflow programming. Ericsson Review, 2(1) :16–21, 2010.

[44] J. Castrillon. Programming Heterogeneous MPSoCs : Tool Flows to Close
the Software Productivity Gap. PhD thesis, RWTH Aachen university,
2013.

[45] J. Castrillon, R. Leupers, and G. Ascheid. MAPS : Mapping Concur-
rent Dataflow Applications to Heterogeneous MPSoCs. IEEE Transac-
tions on Industrial Informatics, X(X) :1–19, 2011.

[46] G. Cedersjö and J. W. Janneck. Toward Efficient Execution of Dataflow
Actors. In Signals, Systems and Computers (ASILOMAR), 2012 Confe-
rence Record of the Forty Sixth Asilomar Conference on, pages 1465–1469,
2012.

[47] J. Ceng, J. Castrillon, W. Sheng, R. Leupers, G. Ascheid, H. Meyr, T. Is-
shiki, and H. Kunieda. MAPS : An Integrated Framework for MP-
SoC Application Parallelization. In Design Automation Conference, 2008.
DAC 2008. 45th ACM/IEEE, pages 754–759, 2008.

[48] P. Chandraiah and R. Domer. Code and Data Structure Partitioning for
Parallel and Flexible MPSoC Specification Using Designer-Controlled
Recoding. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 27(6) :1078–1090, June 2008.

158 bibliographie

[49] I. Chukhman, W. Plishker, and S. S. Bhattacharyya. Instrumentation-
driven model detection for dataflow graphs. In 2012 International Sym-
posium on System on Chip (SoC), pages 1–8, 2012.

[50] A. Cilio, H. J. M. Schot, J. A. A. J. Janssen, P. Jääskeläinen, and L. Laa-
sonen. Architecture Definition File : Processor Architecture Definition
File Format for a New TTA Design Framework. Technical report, Tam-
pere University of Technology, Tampere, 2007.

[51] M. I. Cole. Algorithmic skeletons : structured management of parallel com-
putation. 1989.

[52] D. Cordes and P. Marwedel. Multi-objective aware extraction of task-
level parallelism using genetic algorithms. In 2012 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 394–399, 2012.

[53] D. Cordes, P. Marwedel, and A. Mallik. Automatic parallelization of
embedded software using hierarchical task graphs and integer linear
programming. In Proceedings of the eighth IEEE/ACM/IFIP internatio-
nal conference on Hardware/software codesign and system synthesis - CO-
DES/ISSS ’10, page 267, New York, New York, USA, 2010. ACM Press.

[54] D. Cordes, M. Engel, P. Marwedel, and O. Neugebauer. Automatic ex-
traction of multi-objective aware pipeline parallelism using genetic al-
gorithms. In Proceedings of the eighth IEEE/ACM/IFIP international confe-
rence on Hardware/software codesign and system synthesis - CODES+ISSS
’12, page 73. ACM Press, 2012.

[55] H. Corporaal. Microprocessor Architectures : from VLIW to TTA. John
Wiley & Sons, Chichester, UK, 1997.

[56] P. Cousot and R. Cousot. Abstract interpretation : a unified lattice mo-
del for static analysis of programs by construction or approximation
of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN sympo-
sium on Principles of programming languages, pages 238–252, 1977.

[57] L. Dagum and R. Menon. OpenMP : an industry standard API for
shared-memory programming. IEEE Computational Science and Engi-
neering, 5(1) :46–55, 1998.

[58] J. B. Dennis. First Version of a Data Flow Procedure Language. In
B. Robinet, editor, Programming Symposium, pages 362–376. Springer
Berlin Heidelberg, 1974.

[59] J. B. Dennis and D. P. Misunas. A preliminary architecture for a basic
data-flow processor. In In Proceedings of the 2nd Annual Symposium on
Computer Architecture, pages 126–132, 1975.

[60] K. Desnos, M. Pelcat, S. S. Bhattacharyya, and S. Aridhi. PiMM : Para-
meterized and Interfaced Dataflow Meta-Model for MPSoCs Runtime
Reconfiguration. In Embedded Computer Systems (SAMOS), 2013 Inter-
national Conference on, 2013.

[61] A. V. Deursen, P. Klint, and J. Visser. Domain-specific languages : An
annotated bibliography. ACM Sigplan Notices, 2000.

[62] R. Dolbeau, S. Bihan, and F. Bodin. HMPP : A Hybrid Multi-core Pa-
rallel Programming Environment. In First Workshop on General Purpose
Processing on Graphics Processing Units, pages 1–5, 2007.

bibliographie 159

[63] Eclipse. Graphiti : A Graphical Tooling Infrastructure, . URL http:

//www.eclipse.org/graphiti/.

[64] Eclipse. Spray : A Quick Way of Creating Graphiti, . URL https:

//code.google.com/a/eclipselabs.org/p/spray/.

[65] S. Efftinge and M. Völter. oAW xText : A framework for textual DSLs.
In Workshop on Modeling Symposium at Eclipse, volume 32 of Abruf am
07.07.2012, 2006.

[66] S. Efftinge, M. Eysholdt, J. Köhnlein, S. Zarnekow, W. Hasselbring,
R. von Massow, and M. Hanus. Xbase : implementing domain-specific
languages for Java. In Proceedings of the 11th International Conference
on Generative Programming and Component Engineering, pages 112–121,
2012.

[67] J. Eker and J. W. Janneck. CAL language report : Specification of
the CAL actor language. Technical report, University of California,
Berkeley, Berkeley, 2003.

[68] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong. Taming Heterogeneity - The Ptolemy
Approach. Proceedings of the IEEE, 91(1) :127–144, 2003.

[69] J. Ersfolk, G. Roquier, F. Jokhio, J. Lilius, and M. Mattavelli. Schedu-
ling of dynamic dataflow programs with model checking. In Signal
Processing Systems (SiPS), 2011 IEEE Workshop on, pages 37–42, 2011.

[70] J. Ersfolk, G. Roquier, J. Lilius, and M. Mattavelli. Scheduling of dy-
namic dataflow programs based on state space analysis. In IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing, 2012.
ICASSP-12., pages 1661–1664, 2012. ISBN 9781467300469.

[71] O. Esko, P. Jääskeläinen, P. Huerta, C. S. de La Lama, J. Takala, and J. I.
Martinez. Customized Exposed Datapath Soft-Core Design Flow with
Compiler Support. In Proceedings of the 2010 International Conference on
Field Programmable Logic and Applications, pages 217–222, 2010.

[72] S. M. Farhad, Y. Ko, B. Burgstaller, and B. Scholz. Profile-guided de-
ployment of stream programs on multicores. Proceedings of the 13th
ACM SIGPLAN/SIGBED International Conference on Languages, Compi-
lers, Tools and Theory for Embedded Systems - LCTES ’12, pages 79–88,
2012.

[73] W. M. Farmer. Chiron : A Multi-Paradigm Logic. In R. Matuszewski
and A. Zalewska, editors, From Insight to Proof : Festschrift in Honour of
Andrzej Trybulec, pages 1–19. University of Bialystok, 2007.

[74] P. H. Feiler, D. P. Gluch, and J. J. Hudak. The architecture analysis &
design language (AADL) : An introduction. Technical report, Carne-
gie Mellon University, 2006.

[75] E. Fernandez-Alonso, D. Castells-Rufas, J. Joven, and J. Carrabina. Sur-
vey of NoC and Programming Models Proposals for MPSoC. Interna-
tional Journal of Computer Science Issues, 9(2) :22–32, 2012.

[76] A. Floch, T. Yuki, C. Guy, S. Derrien, B. Combemale, S. Rajopadhye,
and R. B. France. Model-driven engineering and optimizing compi-
lers : a bridge too far ? In International Conference on Model Driven
Engineering Languages and Systems, 2011.

http://www.eclipse.org/graphiti/
http://www.eclipse.org/graphiti/
https://code.google.com/a/eclipselabs.org/p/spray/
https://code.google.com/a/eclipselabs.org/p/spray/

160 bibliographie

[77] M. J. Flynn. Some Computer Organizations and Their Effectiveness.
IEEE Transactions on Computers, C-21(9) :948–960, Sept. 1972.

[78] C. M. Fonseca and P. J. Fleming. Genetic Algorithms for Multiobjec-
tive Optimization : FormulationDiscussion and Generalization. In Pro-
ceedings of the 5th International Conference on Genetic Algorithms, pages
416—-423, 1993.

[79] M. P. I. Forum. MPI : A Message-Passing Interface Standard. Technical
report, 2012.

[80] P. Fradet, A. Girault, and P. Poplavkoy. SPDF : A schedulable para-
metric data-flow MoC. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2012, pages 769–774, 2012.

[81] M. R. Gary and D. S. Johnson. Computers and Intractability : A Guide
to the Theory of NP-completeness. W. H. Freeman and Company, San
Francisco, Califoriania, USA, 1979.

[82] M. Geilen and T. Basten. Requirements on the Execution of Kahn Pro-
cess Networks. In Proc. of the 12th European Symposium on Programming,
ESOP 2003, 2000.

[83] A. Girault, L. Bilung, and E. A. Lee. Hierarchical finite state machines
with multiple concurrency models. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 18(6) :742–760, June
1999.

[84] D. E. Goldberg and J. H. Holland. Genetic algorithms and machine
learning. Machine learning, 3(2-3) :95–99, 1988.

[85] H. Gonzalez-Vélez and M. Leyton. A survey of algorithmic skele-
ton frameworks : high-level structured parallel programming enablers.
Software : Practice and Experience, 40(12) :1135–1160, 2010.

[86] J. Gorin. Machine Virtuelle Universelle pour Codage Vidéo Reconfigurable.
PhD thesis, Telecom Sud Paris, 2011.

[87] J. Gorin, M. Raulet, Y.-L. Cheng, H.-Y. Lin, N. Siret, K. Sugimoto, and
G. G. Lee. An RVC dataflow description of the AVC Constrained
Baseline Profile decoder. In Image Processing (ICIP), 2009 16th IEEE
International Conference on, pages 753–756. IEEE, 2009.

[88] J. Gorin, M. Wipliez, F. Prêteux, and M. Raulet. A portable video
tool library for MPEG reconfigurable video coding using LLVM repre-
sentation. In Design and Architectures for Signal and Image Processing
(DASIP), 2010 Conference on, 2010.

[89] J. Gorin, M. Wipliez, F. Prêteux, and M. Raulet. LLVM-based and
scalable MPEG-RVC decoder. Journal of Real Time Image Processing, 6

(1) :59—-70, 2011.

[90] J. Gorin, M. Raulet, and F. Prêteux. Optimized dynamic compilation
of dataflow representations for multimedia applications. Annals of tele-
communications - Annales des télécommunications, 68(3-4) :133–151, 2012.

[91] T. Grandpierre and Y. Sorel. From algorithm and architecture specifi-
cations to automatic generation of distributed real-time executives : a

bibliographie 161

seamless flow of graphs transformations. In Formal Methods and Mo-
dels for Co-Design, 2003. MEMOCODE ’03. Proceedings. First ACM and
IEEE International Conference on, 2003.

[92] P. Greenhalgh. Big.LITTLE Processing with ARM Cortex-A15 &
Cortex-A7. Technical Report September, ARM, 2011.

[93] R. Gu, J. W. Janneck, M. Raulet, and S. S. Bhattacharyya. Exploiting
Statically Schedulable Regions in Dataflow Programs. Journal of Signal
Processing Systems, 63(1) :129–142, Jan. 2010.

[94] W. Haid, L. Schor, K. Huang, I. Bacivarov, and L. Thiele. Efficient exe-
cution of Kahn process networks on multi-processor systems using
protothreads and windowed FIFOs. In 2009 IEEE/ACM/IFIP 7th Work-
shop on Embedded Systems for Real-Time Multimedia, pages 35–44, 2009.

[95] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data flow programming language LUSTRE. Proceedings of the IEEE, 79

(9) :1305–1320, 1991.

[96] M. Hall, D. Padua, and K. Pingali. Compiler research : the next 50

years. Communications of the ACM, 2009.

[97] M. Hind. Pointer analysis : haven’t we solved this problem yet ? In
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, pages 54–61, 2001.

[98] J.-M. Hsiao and C.-J. Tsai. Analysis of an SOC Architecture for MPEG
Reconfigurable Video Coding Framework. In 2007 IEEE International
Symposium on Circuits and Systems, pages 761–764, 2007.

[99] P. Jääskeläinen. Instruction Set Simulator For Transport Triggered Ar-
chitectures. Technical report, Tampere University of Technology, 2005.

[100] P. Jääskeläinen, E. Salminen, C. S. de La Lama, J. Takala, and J. I. Mar-
tinez. TCEMC : A co-design flow for application-specific multicores.
In Embedded Computer Systems (SAMOS), 2011 International Conference
on, pages 85–92, 2011.

[101] J. W. Janneck. A machine model for dataflow actors and its applica-
tions. In Signals, Systems and Computers (ASILOMAR), 2011 Conference
Record of the Forty Fifth Asilomar Conference on, pages 756–760, Nov.
2011.

[102] J. W. Janneck, I. D. Miller, and D. B. Parlour. Profiling dataflow pro-
grams. In Multimedia and Expo, 2008 IEEE International Conference on,
pages 1065–1068, June 2008.

[103] J. W. Janneck, I. D. Miller, D. B. Parlour, G. Roquier, M. Wipliez, and
M. Raulet. Synthesizing Hardware from Dataflow Programs. Journal
of Signal Processing Systems, 63(2) :241–249, July 2009.

[104] K. Jerbi. High Level Hardware Synthesis of RVC Dataflow Programs. PhD
thesis, INSA of Rennes, 2012.

[105] K. Jerbi, M. Abid, M. Raulet, and O. Déforges. Automatic Generation
of Synthesizable Hardware Implementation from High Level RVC-
CAL Description. In International Conference on Acoustics, Speech, and
Signal Processing, volume 2012, pages 1–20, 2012.

162 bibliographie

[106] J.-M. Jézéquel, B. Combemale, S. Derrien, C. Guy, and S. Rajopadhye.
Bridging the chasm between MDE and the world of compilation. Soft-
ware & Systems Modeling, 11(4) :581–597, Aug. 2012.

[107] W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances in dataflow
programming languages. ACM Computing Surveys, 36(1) :1–34, Mar.
2004.

[108] J. Joven, F. Angiolini, and D. Castells-Rufas. QoS-ocMPI : QoS-aware
on-chip Message Passing Library for NoC-based Many-Core MPSoCs.
In 2nd Workshop on Programming Models for Emerging Architectures
(PMEA’10), 2010.

[109] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy. Introduction to the Cell multiprocessor. IBM Journal of
Research and Development, 49(4.5) :589–604, July 2005.

[110] G. Kahn. The semantics of a simple language for parallel program-
ming. Information processing, 74 :471–475, 1974.

[111] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs. SIAM Journal on Scientific Computing,
20(1) :359–392, Jan. 1998.

[112] B. Kernighan and S. Lin. An efficient heuristic procedure for partitio-
ning graphs. Bell system technical journal, 1970.

[113] B. Kienhuis, E. F. Deprettere, K. Vissers, and P. Van Der Wolf. An
approach for quantitative analysis of application-specific dataflow ar-
chitectures. In Proceedings IEEE International Conference on Application-
Specific Systems, Architectures and Processors, pages 338–349, 1997.

[114] D. E. Knuth. Computer programming as an art. Communications of the
ACM, 17(12) :667–673, 1974.

[115] L. Lamport. Specifying Concurrent Program Modules. ACM Transac-
tions on Programming Languages and Systems, 5(2) :190–222, Apr. 1983.

[116] C. Lattner and V. Adve. LLVM : A compilation framework for lifelong
program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004., number c, pages 75–86,
2004. ISBN 0-7695-2102-9.

[117] P. Le Guernic, M. Le Borgne, T. Gautier, and C. Le Maire. Program-
ming real time applications with SIGNAL. Proceedings of the IEEE, 79

(9) :1321–1336, 1991.

[118] E. A. Lee and S. Ha. Scheduling strategies for multiprocessor real-time
DSP. In Global Telecommunications Conference and Exhibition ’Communi-
cations Technology for the 1990s and Beyond’ (GLOBECOM), 1989. IEEE,
pages 1279–1283, 1989.

[119] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings
of the IEEE, 75(9) :1235–1245, 1987.

[120] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous
data flow programs for digital signal processing. IEEE Transactions on
Computers, C-36(1) :24–35, 1987.

bibliographie 163

[121] E. A. Lee and T. Parks. Dataflow process networks. Proceedings of the
IEEE, 83(5) :773–801, 1995.

[122] F. Li, A. Pop, and A. Cohen. Automatic Extraction of Coarse-Grained
Data-Flow Threads from Imperative Programs. IEEE Micro, 32(4) :19–
31, July 2012.

[123] C. Lucarz. Dataflow programming for systems design space exploration
targeting heterogeneous platforms. PhD thesis, 2011.

[124] C. Lucarz, M. Mattavelli, and J. W. Janneck. Optimization of portable
parallel signal processing applications by design space exploration of
dataflow programs. In 2011 IEEE Workshop on Signal Processing Systems
(SiPS), pages 43–48. Ieee, Oct. 2011.

[125] M. Mattavelli, I. Amer, and M. Raulet. The Reconfigurable Video Co-
ding Standard [Standards in a Nutshell]. Signal Processing Magazine,
IEEE, 27(3) :159–167, 2010.

[126] M. Mattavelli, M. Raulet, and J. W. Janneck. MPEG reconfigurable
video coding. In S. S. Bhattacharyya, E. F. Deprettere, R. Leupers, and
J. Takala, editors, Handbook of Signal Processing Systems, pages 281–314.
Springer, New York, NY, USA, 2013.

[127] I. D. Miller. XLIM : An XML Language-Independent Model. Technical
report, Xilinx DSP Division, 2007.

[128] C. Miranda, A. Pop, P. Dumont, A. Cohen, and M. Duranton. Er-
bium : A Deterministic, Concurrent Intermediate Representation to
Map Data-Flow Tasks to Scalable, Persistent Streaming Processes. In
International Conference on Compilers Architectures and Synthesis for Em-
bedded Systems (CASES’10), 2010.

[129] J.-F. Nezan, N. Siret, M. Wipliez, F. Palumbo, and L. Raffo. Multi-
purpose systems : A novel dataflow-based generation and mapping
strategy. In 2012 IEEE International Symposium on Circuits and Systems,
pages 3073–3076, May 2012.

[130] H. Nikolov, M. Thompson, T. Stefanov, A. D. Pimentel, S. Polstra,
R. Bose, C. Zissulescu, and E. F. Deprettere. Daedalus : toward com-
posable multimedia MP-SoC design. In Proceedings of the 45th annual
Design Automation Conference, pages 574–579, 2008.

[131] H. Oh, N. Dutt, and S. Ha. Single appearance schedule with dyna-
mic loop count for minimum data buffer from synchronous dataflow
graphs. In Proceedings of the 2005 international conference on Compilers,
architectures and synthesis for embedded systems - CASES ’05, pages 157–
165, 2005.

[132] H. Oh, N. Dutt, and S. Ha. Memory optimal single appearance sche-
dule with dynamic loop count for synchronous dataflow graphs. In
Asia and South Pacific Conference on Design Automation, 2006., volume 3,
pages 497–502, 2006.

[133] OpenACC. The OpenACC Application Programming Interface. Tech-
nical report, 2013.

[134] Orcc. The Open RVC-CAL Compiler : A development framework for
dataflow programs. URL http://orcc.sourceforge.net.

http://orcc.sourceforge.net

164 bibliographie

[135] F. Palumbo, D. Pani, E. Manca, L. Raffo, M. Mattavelli, and G. Ro-
quier. RVC : A multi-decoder CAL Composer tool. In Design and
Architectures for Signal and Image Processing (DASIP), 2010 Conference
on, number Mdcc, pages 144–151, 2010.

[136] F. Palumbo, N. Carta, and L. Raffo. The Multi-Dataflow Composer
tool : A runtime reconfigurable HDL platform composer. In Design
and Architectures for Signal and Image Processing (DASIP), 2011 Confe-
rence on, 2011.

[137] H.-w. Park. Library Support in Actor-based Software Design for Multi-
processor Embedded Systems. PhD thesis, Seoul National University,
2011.

[138] H.-w. Park, H. Oh, and S. Ha. Multiprocessor SoC Design Methods
and Tools. IEEE Signal Processing Magazine, (November) :72–79, 2009.

[139] T. Parks. Bounded scheduling of process networks. PhD thesis, University
of California, Berkeley, 1995.

[140] M. Pelcat, J.-F. Nezan, J. Piat, J. Croizer, and S. Aridhi. A system-level
architecture model for rapid prototyping of heterogeneous multicore
embedded systems. In Design and Architectures for Signal and Image
Processing (DASIP), 2009 Conference on, 2009.

[141] M. Pelcat, J. Piat, M. Wipliez, S. Aridhi, and J.-F. J.-F. Nezan. An Open
Framework for Rapid Prototyping of Signal Processing Applications.
EURASIP Journal on Embedded Systems, 2009(1), 2009.

[142] M. Pelcat, S. Aridhi, J. Piat, and J.-F. Nezan. Physical Layer Multi-Core
Prototyping : A Dataflow-Based Approach for LTE eNodeB. Springer, 2012.

[143] J. Piat, S. S. Bhattacharyya, and M. Raulet. Interface-based hierarchy
for synchronous data-flow graphs. In Signal Processing Systems, 2009.
SiPS 2009. IEEE Workshop on, 2009.

[144] J. L. Pino and E. A. Lee. Hierarchical static scheduling of dataflow
graphs onto multiple processors. In 1995 International Conference on
Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., pages 2643–
2646, 1995.

[145] A. Pop and A. Cohen. A stream-computing extension to OpenMP.
Proceedings of the 6th International Conference on High Performance and
Embedded Architectures and Compilers - HiPEAC ’11, page 5, 2011.

[146] K. Pouget, M. Santana, P. L. Cueva, and J.-F. Mehaut. A novel ap-
proach for interactive debugging of dynamic dataflow embedded ap-
plications. In Proceedings of the 28th Annual ACM Symposium on Applied
Computing, pages 1547–1549, 2013.

[147] J. Protit, M. Tomasevit, and V. Milutinovit. Distributed shared me-
mory : concepts and systems. Parallel Distributed Technology : Systems
Applications, IEEE, 4(2) :63–71, 1996.

[148] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Ama-
rasinghe. Halide : a language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines. In Procee-
dings of the 34th ACM SIGPLAN conference on Programming language
design and implementation, pages 519–530, 2013.

bibliographie 165

[149] M. Raulet, J. Piat, C. Lucarz, and M. Mattavelli. Validation of bitstream
syntax and synthesis of parsers in the MPEG Reconfigurable Video
Coding framework. In Signal Processing Systems, 2008. SiPS 2008. IEEE
Workshop on, 2008.

[150] I. E. G. Richardson. H.264 and MPEG-4 Video Compression : Video Coding
for Next-generation Multimedia. John Wiley & Sons, Inc., New York, NY,
USA, 2003.

[151] G. Roquier, M. Wipliez, M. Raulet, J. W. Janneck, I. D. Miller, and
D. B. Parlour. Automatic software synthesis of dataflow program :
An MPEG-4 simple profile decoder case study. In Signal Processing
Systems, 2008. SiPS 2008. IEEE Workshop on, pages 281–286, 2008.

[152] J. E. Savage. Models of computation : exploring the power of computing.
Addison-Wesley Pub, 1998.

[153] L. Schor, I. Bacivarov, D. Rai, H. Yang, S.-H. Kang, and L. Thiele.
Scenario-based design flow for mapping streaming applications onto
on-chip many-core systems. In Proceedings of the 2012 international
conference on Compilers, architectures and synthesis for embedded systems,
pages 71–80, 2012.

[154] A. K. Singh, A. Kumar, and T. Srikanthan. A hybrid strategy for map-
ping multiple throughput-constrained applications on MPSoCs. In
Proceedings of the 14th international conference on Compilers, architectures
and synthesis for embedded systems, pages 175–184, 2011.

[155] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel. Mapping on
multi/many-core systems : survey of current and emerging trends.
In Proceedings of the 50th Annual Design Automation Conference, pages
1 :1—-1 :10, 2013.

[156] O. Sinnen. Task Scheduling for Parallel Systems. Wiley Series on Parallel
and Distributed Computing. John Wiley & Sons, Inc., Hoboken, NJ,
USA, Apr. 2007.

[157] N. Siret. Étude de l’implémentation automatisée sur plateforme mixte maté-
rielle/logicielle d’applications de traitement du signal. PhD thesis, INSA of
Rennes, 2011.

[158] N. Siret, M. Wipliez, J.-F. Nezan, and F. Palumbo. Generation of Effi-
cient High-Level Hardware Code from Dataflow Programs. In Procee-
dings of Design, Automation and Test in Europe (DATE), 2012.

[159] T. B. Sousa. Dataflow Programming Concept, Languages and Appli-
cations. In Doctoral Symposium on Informatics Engineering, 2012.

[160] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF : Eclipse
Modeling Framework. The Eclipse Series. Addison-Wesley Professional,
2008.

[161] P. Stenstrom. A survey of cache coherence schemes for multiproces-
sors. Computer, 23(6) :12–24, 1990.

[162] S. Stuijk, M. Geilen, and T. Basten. A Predictable Multiprocessor De-
sign Flow for Streaming Applications with Dynamic Behaviour. In
Proceedings of the 13th Euromicro Conference on Digital System Design :
Architectures, Methods and Tools, pages 548–555, Sept. 2010.

166 bibliographie

[163] S. Stuijk, M. Geilen, B. Theelen, and T. Basten. Scenario-aware da-
taflow : Modeling, analysis and implementation of dynamic applica-
tions. In 2011 International Conference on Embedded Computer Systems :
Architectures, Modeling and Simulation, pages 404–411, July 2011.

[164] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand. Overview of the
High Efficiency Video Coding (HEVC) Standard. IEEE Transactions on
Circuits and Systems for Video Technology, 22(12) :1649–1668, Dec. 2012.

[165] W. R. Sutherland. The on-line graphical specification of computer proce-
dures. PhD thesis, Massachusetts Institute of Technology, 1966.

[166] TCE. The TTA-based Co-design Environment. URL http://tce.cs.

tut.fi/.

[167] B. Theelen, M. Geilen, T. Basten, J. Voeten, S. Gheorghita, and S. Stuijk.
A scenario-aware data flow model for combined long-run average and
worst-case performance analysis. In Fourth ACM and IEEE Internatio-
nal Conference on Formal Methods and Models for Co-Design, 2006. ME-
MOCODE ’06. Proceedings., pages 185–194, 2006.

[168] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt : A language
for streaming applications. In Compiler Construction, pages 179—-196,
2002.

[169] A. Vajda. Programming Many-Core Chips. Springer US, Boston, MA,
2011.

[170] C. H. van Berkel. Multi-core for mobile phones. In Proceedings of the
Conference on Design, Automation and Test in Europe, pages 1260–1265.
Ieee, Apr. 2009.

[171] M. Viitanen, J. Vanne, T. D. Hämäläinen, M. Gabbouj, and J. Lainema.
Complexity Analysis of Next-Generation HEVC Decoder. In Circuits
and Systems (ISCAS), 2012 IEEE International Symposium on, pages 20–
23, 2013.

[172] C. von Platen and J. Eker. Efficient realization of a cal video deco-
der on a mobile terminal. In 2008 IEEE Workshop on Signal Processing
Systems, pages 176–181, Oct. 2008.

[173] C. von Platen, J. Eker, A. Nilsson, and K.-E. Arzén. Static Analysis
and Transformation of Dataflow Multimedia Applications. Technical
report, Lund University, 2012.

[174] I. Watson and J. Gurd. A prototype data flow computer with token
labelling. In Proceedings of the National Computer Conference, pages 623–
628, 1979.

[175] D. B. West. Introduction to Graph Theory. Pearson, 2001.

[176] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of
the H. 264/AVC video coding standard. IEEE Transactions on Circuits
and Systems for Video Technology, 13(7) :560–576, 2003.

[177] M. Wipliez. Compilation infrastructure for dataflow programs. PhD thesis,
INSA of Rennes, Dec. 2010.

http://tce.cs.tut.fi/
http://tce.cs.tut.fi/

bibliographie 167

[178] M. Wipliez and M. Raulet. Classification and transformation of dyna-
mic dataflow programs. In Design and Architectures for Signal and Image
Processing (DASIP), 2010 Conference on, 2010.

[179] M. Wipliez and M. Raulet. Classification of Dataflow Actors with Satis-
fiability and Abstract Interpretation. International Journal of Embedded
and Real-Time Communication Systems, 3(March) :49–69, 2012.

[180] M. Wipliez, G. Roquier, and J.-F. Nezan. Software Code Generation
for the RVC-CAL Language. Journal of Signal Processing Systems, 63(2) :
203–213, June 2009.

[181] M. Wipliez, N. Siret, N. Carta, F. Palumbo, and L. Raffo. Design IP
Faster : Introducing the C˜ High-Level Language. Design & Reuse,
2013.

[182] W. Wolf. High-performance embedded computing : architectures, applica-
tions, and methodologies. 2010.

[183] W. Wolf, A. A. Jerraya, and G. Martin. Multiprocessor System-on-Chip
(MPSoC) Technology. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 27(10) :1701–1713, Oct. 2008.

[184] G. Yang. Hybrid Decoder Reconfiguration of AVS-P7 and MPEG-4
/AVC in the Reconfigurable Video Coding Framework. International
Journal of Image, Graphics and Signal Processing, 4(8) :57–65, Aug. 2012.

[185] M. Young, A. Tevanian, R. Rashid, D. Golub, and J. Eppinger. The dua-
lity of memory and communication in the implementation of a multi-
processor operating system. In Proceedings of the eleventh ACM Sympo-
sium on Operating systems principles - SOSP ’87, pages 63–76, 1987.

[186] C. Zebelein, J. Falk, C. Haubelt, and J. Teich. Classification of General
Data Flow Actors into Known Models of Computation. In 2008 6th
ACM/IEEE International Conference on Formal Methods and Models for
Co-Design, pages 119–128, June 2008.

	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Landscape of Embedded Computing
	1.1.1 Embedded Hardware

	1.3 Outline

	Background
	2 Embedded Parallel Programming
	2.1 Parallelism is Everywhere
	2.2 Embedded Parallel Platforms
	2.2.1 Homogeneous versus Heterogeneous
	2.2.2 Memory Architecture
	2.2.3 Memory Hierarchy

	2.3 Parallel Programming Models
	2.3.1 General-Purpose Parallel Programming
	2.3.2 Assisted Parallel Programing
	2.3.3 High-level Parallel Programming

	2.4 Mapping and Scheduling
	2.5 Conclusion

	3 Dataflow Programming
	3.1 Definition of a Dataflow Program
	3.2 Dataflow Paradigm to Enhance Programming
	3.2.1 Modular Programming
	3.2.2 Parallel Programming

	3.3 Model of Computation
	3.3.1 Kahn Process Network
	3.3.2 Dataflow Process Network
	3.3.3 Static Dataflow Models
	3.3.4 Quasi-Static Dataflow Model

	3.4 Comparing Dataflow MoCs
	3.4.1 Characterization of Dataflow MoCs
	3.4.2 Taxonomy of Dataflow MoCs

	3.5 Dynamic Modeling Requires Dynamic Analysis
	3.5.1 Classification
	3.5.2 Critical Path Analysis

	3.6 Execution Models
	3.6.1 Multi-Threading
	3.6.2 Dynamic Scheduling
	3.6.3 Static Scheduling
	3.6.4 Multi-core scheduling

	3.7 Existing Dataflow-based Languages and Tools
	3.8 Conclusion

	4 Reconfigurable Video Coding
	4.1 Limits of the Standardization Process
	4.1.1 Multiplication of the Standards
	4.1.2 Monolithic Specifications of the Standards

	4.2 An Innovative Development Framework
	4.2.1 Dataflow to Enhance Multimedia Development
	4.2.2 Towards the RVC Vision

	4.3 Multimedia-Specific Languages
	4.3.1 From Text to Visual Network Programming
	4.3.2 Actor Programming Made Easy

	4.4 Applications
	4.4.1 Video Codecs

	4.5 Existing Tools Supporting RVC
	4.5.2 Orcc

	4.6 Advances and Challenges of the RVC Framework
	4.6.1 Tools Development
	4.6.2 Applications Development
	4.6.3 Platform Implementation

	4.7 Conclusion

	Contributions
	5 Advanced Development Environment for Dataflow Programming
	5.1 Enhanced Dataflow-specific Compilation Infrastructure
	5.1.1 Multi-Target Compilation Infrastructure
	5.1.4 Separation of Concerns
	5.1.5 Procedural Aspect of the Intermediate Representation

	5.2 Architecture Model for Dedicated Embedded Multi-Core Platforms
	5.2.3 Dataflow-specific Memory Architecture

	5.3 Dataflow Compiler for Embedded Multi-core Platforms
	5.3.1 Multi-stage Co-design Flow
	5.3.2 Hardware Synthesis
	5.3.4 Simulation Infrastructure

	6 Optimized Software Implementation of Dynamic Dataflow Programs
	6.1 Implementation of Dataflow Process Networks
	6.2 Optimized Communications
	6.2.1 To Be or Not To Be FIFO Channels
	6.2.3 Control-Free Communications
	6.2.4 Multi-rate Communications
	6.2.5 Copy-Free Communications
	6.2.6 Efficient Broadcasting of Communications

	6.3 Optimized Scheduling
	6.3.3 Actor Machine
	6.3.4 Quasi-Static Scheduling

	6.4 Study of RVC-based Video Decoders
	6.4.1 Experimental setup
	6.4.2 Analysis of Global Performance
	6.4.3 Analysis of Internal Communications
	6.4.4 Analysis of the Application Decomposition
	6.4.5 Comparison of the Scheduling Strategies

	6.5 Conclusion

	7 Scalable Multi-core Scheduling of Dynamic Dataflow Programs
	7.1 Actors Mapping
	7.1.1 Definition of the metrics

	7.2 Actor Scheduling
	7.2.1 Distributed Scheduler
	7.2.2 Multi-core Scheduling Strategies

	7.3 Scalability Analysis of RVC-based Video Decoders
	7.3.3 Embedded Multi-core Implementation

	7.4 Conclusion

	8 Conclusions and Outlook
	8.1 Summary
	8.2 Perspectives
	8.2.1 An Even More Advanced Development Environment
	8.2.2 An Even More Optimized Software Implementation
	8.2.3 Towards a Platform Dedicated to RVC-based Video Decoders

	Appendix
	A Résumé en français
	A.1 Systèmes embarqués
	A.1.1 Matériels embarqués
	A.1.2 Logiciels embarqués
	A.1.3 Conception de systèmes embarqués

	A.2 Approche et contributions
	A.3 État de l'art
	A.3.1 Programmation flux de données
	A.3.2 Reconfigurable Video Coding

	A.5 Implémentation logicielle des programmes flux de donnée
	A.5.1 Implémentation optimisée
	A.5.2 Implémentation extensible

	A.6 Conclusion et perspectives
	A.6.1 Environnement de développement avancé
	A.6.2 Implémentation logicielle optimisée
	A.6.3 Plate-forme dédiée aux codecs vidéo RVC

	Table des figures
	Liste des tableaux
	Listings
	Acronyms

	Publications
	Bibliography

