Conclusions

Isolement acoustique de parois aux basses fréquences : programmation d'outils prédictifs et confrontations expérimentales dans le cas de planchers solivés en bois

Antonin TRIBALEAU

Soutenance de thèse de doctorat en acoustique LAUM - CrittBois

Chargé de recherche au CIRAD, HDR

Professeur des Universités, CNAM-LMSSC

Professeur des Universités. CUGCE

Chercheur au FCBA-Efiaconsulting

Professeur des Universités. LAUM

Professeur des Universités. LAUM

Ingénieur au CrittBois (Épinal)

Maître de Conférences, LAUM

Maître de Conférences, LAUM

Loïc BRANCHERIAU Frédéric DUBOIS Romain BRÉVART Jean-Francois DEÜ Jean-Luc KOUYOUMJI Bruno BROUARD Olivier DAZEL Jean-Michel GÉNEVAUX Najat TAHANI

Rapporteur Rapporteur Examinateur Examinateur Examinateur Co-encadrant de thèse Directeur de thèse Co-encadrant de thèse

Contexte & introduction

Sources acoustiques

Méthodes numériques

Caractérisation expérimentale

Conclusions

Contexte de la construction et du matériau bois

- Préoccupations internationales (écologie et environnement),
- Développement de systèmes constructifs légers.

Légèreté : avantage et inconvénient

- Soulagement des structures porteuses,
- Sensibilité aux B.F. → logements collectifs et ERP.

Plancher solivé en bois = une structure bois répandue

Sensibilité aux basses fréquences

Exemple aux bruits d'impacts :

Contexte scientifique

État de l'art :

- Rapport VINNOVA Acoustics in wooden buildings state of the art 2008,
- Méthodes courantes de résolution en moyennes fréquences : SEA, matrice de transfert,
- Projet ACOUBOIS.

Bibliographie en lien direct :

- J.L. Kouyoumji Caractérisation des parois courantes et des liaisons structurales pour la prévision de l'isolement acoustique d'une construction en bois - Thèse soutenue en 2000 (Fr),
- A. Bolmsvik Structural-acoustic vibrations in wooden assemblies - Thèse soutenue en 2013 (Sw),
- K.A. Dickow Prediction of Noise Transmission in Lightweight Building Structures - Thèse en cours (Dk).

Besoins :

- Modélisation du problème aux basses fréquences → méthode des éléments finis,
- Compréhension des transmissions latérales : caractérisation et modélisation des assemblages et jonctions,
- Développement de connecteurs innovants pour réduire les transmissions latérales.

Contexte & introduction Sources acoustiques	Méthodes numériques	Caractérisation expérimentale	Conclusions
Objectifs et plan			
Plan		Objectifs	
0 Contexte et introduction			
1 Modèle de sources acoustiques	d	Développer un moyen 'excitation des structures	· ·
2 Résolution de problèmes vibro-acoust	p iques des planchers é le	Mise en place d'un outil rédictif Utilisation de la méthode léments finis Applications et études sur es planchers solivés bois	
3 Modèle numérique d'une solive et d'u	un connecteur a	Modélisation d'un ssemblage courant	
4 Conclusions et perspectives			

4 / 35

Modèle de sources acoustiques Méthodologie

Construction d'un champ diffus acoustique discret

- → excitation homogène de la structure sans dépendre de l'angle d'incidence
- → implémentation dans un code numérique comme source acoustique

Champ diffus théorique : superposition d'ondes planes avec une équiprobabilité de directions et de phases aléatoires

- → Quelle technique choisir?
- → Quelle méthode de répartition spatiale?
- → Quel choix et critère de convergence?
- → Combien de sources réparties et à quelles fréquences ?

Modèle de sources acoustiques Discrétisation des intensités acoustiques et répartitions des sources

Du modèle théorique vers un modèle numérique

- → 3 types de répartition testés de points sources : révolution, géodésique, aléatoire,
- → Résultats exprimés comme le ratio $\left(\frac{v_{num}}{v_{theo}}\right)$,
- → Paramètres d'entrée : type de répartition, nombre de sources (N), nombre de tirages, ratio d/λ.

Modèle de sources acoustiques Critère de choix de la méthode de répartition des sources : cartographies

Connaître la directivité du champ diffus numérique

- Rotation de l'angle d'écoute des sources dans un hémisphère,
- → Résultats par cartographies du ratio des intensités, $I_{analyt} \approx 3.8 \cdot 10^{-3} \, \text{W.m}^{-2}$ pour $A = 1 \, \text{Pa}$

Résultat numérique :

→ Couleur : écart / théorie.

Critère de choix de la méthode de répartition des sources : cartographies

Connaître la directivité du champ diffus numérique

Géodésique

- Test des paramètres : type de répartition, nombre de sources,
- Nombre de tirages : 100,
- $d/\lambda = 1.5$.

Type

114 sources :

Critère de choix de la méthode de répartition des sources : écart-type de l'intensité moy.

Connaître la convergence des cartographies

- Test des paramètres : Nombre de tirages, type de répartition
- Nsources Ntirages d/lambda

Construction de la fonction $N(d/\lambda)$: convergence de l'intensité fonction du nombre de sources

Combien de sources réparties par la méthode géodésique?

- Test des paramètres : Nombre de sources, d/λ ,
- Type de répartition : géodésique,
- Nombre de tirages : 100.

Construction de la fonction $N(d/\lambda)$: fonction associée aux points caractéristiques

Une fonction $N(d/\lambda)$ associée au nombre optimal de sources ?

- Détermination des coordonnées des points caractéristiques,
- Estimation d'une fonction de lissage,
- Type de répartition : géodésique,
- 1 tirages pour 1 calcul.

- \checkmark f \rightarrow \checkmark N,
- Limitation à 1000 sources : $\sigma_n < 2\%$.

f	d	N sources	ratio I	σ_n
Hz	m	-	-	-
20	5	14	1.15	0.29
500	5	pprox 1e+11	1.00	0.04
500	5	1000	1.02	0.02

Contexte & introduction

Sources acoustiques

Méthodes numériques

Caractérisation expérimentale

Conclusions

Modèle de sources acoustiques Rappel du plan

Ρl	an	
----	----	--

Objectifs

Modèle de sources acoustiques	 Développer un moyen d'excitation des structures 	
Résolution de problèmes vibro-acoustiques des planchers	 Mise en place d'un outil prédictif Utilisation de la méthode éléments finis Applications et études sur les planchers solivés bois 	

Résolution de problèmes vibro-acoustiques Problèmes d'interaction fluide / structure

Quels sont les différents types de problème en acoustique du bâtiment ?

Résolution de problèmes vibro-acoustiques Choix de la méthode de résolution

Pourquoi la méthode des éléments finis?

- Méthode adaptée aux basses fréquences résonances distinctes,
- Liberté de la géométrie du problème,
- Méthodes SEA et matrices de transfert : non exploitable dans le régime modal.

Pourquoi avoir choisi de travailler avec FreeFem++?

- Logiciel libre, ouvert et en développement constant depuis 1987,
- Possibilités : résolution 2D et 3D, mailleur intégré, différentes fonctions d'interpolation, intégration numérique, parallélisation des calculs.
- Utilisation sous forme de scripts.

Résolution de problèmes vibro-acoustiques Problème couplé fluide / structure : fondements

Formulation faible associée et intégration dans le code Freefem++

$$\begin{split} \int_{\Omega_{\boldsymbol{s}}} \sigma(u_{i}) &: \epsilon(\delta u_{i}) \,\mathrm{d}\Omega_{\boldsymbol{s}} - \omega^{2} \,\rho_{\boldsymbol{s}} \int_{\Omega_{\boldsymbol{s}}} \delta u_{i} \,u_{i} \,\mathrm{d}\Omega_{\boldsymbol{s}} \\ &+ \frac{1}{\tilde{\rho}_{f}} \int_{\Omega_{\boldsymbol{F}}} \frac{\partial p}{\partial x_{i}} \frac{\partial \delta p}{\partial x_{i}} \,\mathrm{d}\Omega_{\boldsymbol{F}} - \frac{\omega^{2}}{\tilde{\rho}_{f} \,\tilde{c}_{f}^{2}} \int_{\Omega_{\boldsymbol{F}}} p \,\delta p \,\mathrm{d}\Omega_{\boldsymbol{F}} \\ &+ \int_{\Gamma_{\boldsymbol{s}}/\boldsymbol{F}} (u_{i} \cdot n_{i}^{\boldsymbol{F}}) \delta p \,\mathrm{d}\Gamma + \int_{\Gamma_{\boldsymbol{s}}/\boldsymbol{F}} p(n_{i}^{\boldsymbol{F}} \cdot \delta u_{i}) \,\mathrm{d}\Gamma \\ &+ \int_{\Gamma_{\boldsymbol{s}}} \delta u_{i} \,f_{i} \,\mathrm{d}\Gamma = 0 \quad . \end{split}$$

Exemple concernant la partie structure :

```
1 // Formulation variationnelle
2 varf km([u1,u2,u3],[uk1,uk2,uk3]) =
3 int3d(Th)((A*e(u1,u2,u3))'*e(uk1,uk2,uk3)) // K
4 - int3d(Th)(omega^2*rhos*(u1*uk1+u2*uk2+u3*uk3)) // M
5 + on(0,u1=0,u2=0,u3=0); // Conditions aux limites
```

Résolution de problèmes vibro-acoustiques Problème découplé F/S - affaiblissement

Affaiblissement acoustique d'une plaque finie

M.E.F. + F.I.

• $R = 10 \log_{10}(W_i/W_t)$,

- Dimensions représentatives : $4 \times 2.5 \,\mathrm{m}^2$,
- Excitation par champ diffus et rayonnement en champ libre,

•
$$p(\vec{r},\omega) = \frac{i\omega\rho_0}{2\pi} \int_{S_0} \frac{\tilde{v_n}(\vec{r_0}) e^{-ikR}}{R} dS_0$$

M.E.F.

Résolution de problèmes vibro-acoustiques Problème couplé F/S : isolement

Isolement acoustique d'une plaque finie

- $D = 10 \log_{10}(W_i/W_t),$
- Dimensions identiques et $h = 3 \,\mathrm{m}$,
- Cavité aux parois parfaitement rigides,
- Excitation par champ diffus et rayonnement en champ clos.

Résolution de problèmes vibro-acoustiques Problème couplé et découplé F/S : deux approches de la problématique

Comparaison du rayonnement acoustique selon les deux méthodes de résolution

M.E.F.

- Résultats sur la pression quadratique moyenne rayonnée,
- Excitation par onde plane normale,

•
$$p_{\omega}(\vec{r}) = \iint_{\boldsymbol{S}} G_{\omega}(\vec{r}, \vec{r_0}) \hat{U}(\vec{r_0}) dV,$$

$$G_{\omega}(\vec{r},\vec{r}_{0}) = \sum_{m'}^{\checkmark N' = 250;500} \frac{\Psi_{m'}(\vec{r}_{0})}{k_{m'}^{2} - k_{0}^{2}} \Psi_{m'}(\vec{r}) \quad , \quad \vec{r} \in \Omega_{F}$$

18 / 35

Résolution de problèmes vibro-acoustiques Du problème couplé au problème découplé et optimisé

Résolution de problèmes vibro-acoustiques Optimisation du calcul en champ clos : formulation intégrale réduite

Matrice de la pression quadratique moyenne liée à la F.I.

 $G_{\omega}(\vec{r},\vec{r_0}) = \sum_{m'}^{M'} \rightarrow \sum_{m''} N''$

2 sélections testées :

Résolution de problèmes vibro-acoustiques Optimisation du calcul en champ clos : formulation intégrale réduite

Comparaison des résultats entre différentes sélections ? $\left<\left|p_{t}\right|^{2}\right>({\rm dB})$

Caractérisation expérimentale Rappel du plan

	Plan	Objectifs	
0	Contexte et introduction		
1	Modèle de sources acoustiques	 Développer un moyen d'excitation des structures 	
2	Résolution de problèmes vibro-acoustiques des planchers	 Mise en place d'un outil prédictif Utilisation de la méthode éléments finis Applications et études sur les planchers solivés bois 	
3	Modèle numérique d'une solive et d'un connecteur	 Modélisation d'un assemblage courant 	

Contexte & introduction

Sources acoustiques

Méthodes numériques

Caractérisation expérimentale

Conclusions

Caractérisation expérimentale Méthodologie

Caractérisation expérimentale

Description du matériau et des solives - principe et choix du modèle mécanique

Différentes lois de comportement selon l'échelle du matériau

Modèle	Matrice C _{ijkl}	Échelle
Orthotrope		er er
lsotrope transverse (Orthotrope cylindrique)		Crew Control of the second sec
lsotrope		

Quel comportement pour nos solives ? Quelle approche ? Eurocode 5 / D.Guitard

Caractérisation expérimentale Comportement de modèles numériques de solives

Contexte & introduction

Sources acoustiques

Méthodes numériques

Caractérisation expérimentale

Conclusions

Caractérisation expérimentale <u>Modélisation n</u>umérique d'une solive : protocole expérimental

Caractérisation expérimentale Modélisation numérique d'une solive : méthode de recalage

Contexte & introduction

Sources acoustiques

Méthodes numériques

Caractérisation expérimentale

Conclusions

Caractérisation expérimentale Modélisation numérique d'une solive : comparaison des réponses |A/F|

Caractérisation expérimentale

Modélisation numérique d'une solive : anisotropie et visco-élasticité

- Matériau bois = visco-élastique,
- Hypothèse d'évolution globale de la matrice de comportement,
- Anisotropie suivant le rayon de croissance.

Contexte & introduction

Sources acoustiques

Méthodes numériques

Caractérisation expérimentale

Conclusions

Caractérisation expérimentale Rappel de la méthodologie

Caractérisation expérimentale Modélisation numérique simplifiée d'un assemblage : sabot métallique

Choix de la jonction et de son modèle mécanique équivalent

Sabot métallique : connecteur courant dans la jonction du solivage avec les parois verticales

Raideurs et dissipations selon les 3 directions de l'espace : $\tilde{k}_x, \tilde{k}_y, \tilde{k}_z$

Caractérisation expérimentale Modélisation numérique d'une solive : méthode de recalage

Méthodologie identique pour les autres raideurs : $\tilde{k}_{y} = \tilde{k}_{z} = 1 \cdot 10^{10} \, \mathrm{N.m^{-1}}$

Caractérisation expérimentale

Modélisation numérique d'une solive : comparaison des réponses |A/F|

Conclusions

 \clubsuit Modélisation d'un champ diffus numérique discret

→ Développement d'une résolution mixte par M.E.F. et F.I.
 → Calcul d'affaiblissement et d'isolement

→ Optimisation du calcul dans F.I.

→ Caractérisation et modélisation une solive en bois massif

- → Développement d'une procédure de caractérisation d'un élément d'assemblage
- → Modélisation d'un connecteur de type sabot métallique

Sources acoustiques

Méthodes numériques

Caractérisation expérimentale

Conclusions

Perspectives

→ Intégration de l'ensemble des chemins de propagation,

→ Quantification des différents types de transmissions, en fonction de paramètres physiques et géométriques (masses, surfaces, angles...)

→ Vérification de la répétabilité des mesures sur le système assemblé,

→ Thèse en cours de D. BLON : modélisations à l'échelle du bâtiment.