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Résumé

Le fretting et I'usure sont des problemes récurrents dans le domaine de I'aéronautique.
Les contacts aube/disque au niveau du compresseur ou de la turbine haute pression des
moteurs d’avion, par exemple, sont soumis a d’'importantes sollicitations de fretting a
de fortes températures. L'enjeu des industriels est d’optimiser la durée de vie de ces
composants et d’étre capable de prévoir 'amorcage de fissures.

Afin d’améliorer la tenue des piéces, des revétements sont utilisés pour les protéger.
Leurs propriétés mécaniques et matériaux ont un impact direct sur le contact et la durée
de vie. Les choix de matériaux, du nombre de couches, de I'épaisseur, de l'ordre sont
donc primordiaux.

De par leur composition (fibres, mono-cristaux), leur élaboration (extrusion) ou leur
mode de déposition, I'hypothese de considérer des matériaux homogenes isotropes s’avere
trop réductrice. L'anisotropie est un parameétre important a prendre en compte au niveau
du dimensionnement. Les matériaux composites sont de plus en plus utilisés dans I'aéro-
nautique.

Dans cette optique, cette thése a pour objectif I'étude du comportement des matéri-
aux homogeénes anisotropes, en s’intéressant a I'influence des principaux paramétres mé-
caniques caractéristiques d’un matériau afin de mieux appréhender leurs effets. On s’at-
tardera sur le module de Young (ou module d’élasticité), le module de Coulomb (ou mo-
dule de cisaillement) et le coefficient de Poisson, et leurs valeurs selon les différentes
directions.

Comme attendu, le module de Young dans la direction normale au contact joue un role
prépondérant dans la détermination du profil de pression. Néanmoins, I'influence du mo-
dule de Young dans le plan tangent au contact n’est pas a négliger, il modifie aussi la forme
de I'aire de contact. L'orientation du matériau par rapport au contact est par conséquent un
parameétre a prendre en considération, il peut directement atténuer ou accentuer I'effet du
module de Young dans une direction privilégiée. Les module de Coulomb et coefficient
de Poisson ont aussi été analysés. Il en résulte gu'ils influent significativement sur le
contact.

Ces résultats se confirment dans le cas d’un massif revétu, a la différence que les effets
du revétement et du substrat peuvent se compenser. L'impact des propriétés du revétement
sera d’autant plus important que celui-ci sera épais.

L'échelle du contact par rapport aux matériaux utilisés importe aussi sur les profils de
pression. Une comparaison entre le modéle anisotrope homogéne et un modele isotrope
hétérogéne a été réalisée. A I'échelle mesoscopique, le composite est composé d’'une
matrice avec des fibres qui induisent des pics de pression alors qu’'a I'échelle macro-
scopique, le matériau composite est percu comme un matériau homogeéne, les profils de
pression sont lissés.
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Introduction

Modeling of engineering problems is becoming more complex when trying to reduce the
gap between the model and the actual application. It means that less restrictive assump-
tions should be formulated, or in other words more physics should be implemented in the
model. Among the challenges to succeed in such a task, the material properties should
be considered accurately. Supposing the material is isotropic is not enough. For most
composite and mono-crystal materials, their composition or the elaboration and man-
ufacturing processes imply that it exists one or two main directions or even a general
anisotropy. Moreover, coatings are often used to prevent or control wear. Coatings do
not have, generally, the same properties than the substrate and may have various thick-
nesses. The influence of the anisotropy orientations (in the coating and in the substrate)
has to be taken into account to better predict the distribution of the contact pressure and
the subsurface stress-field in order to optimize the service life of industrial components.

The purpose of this work is the extension of the semi analytical model developed at
the laboratory Lamcos to analyse mechanical contacts between homogeneous anisotropic
materials.

The first chapter presents the context and motivations. This thesis is part of an in-
dustrial project which aims to develop innovative coatings with a good temperature resis-
tance. Several methods have proven their efficiency in mechanical contact. Semi analyti-
cal methods have the privilege to be fast and accurate methods.

The second chapter sets out the theoretical and numerical part of this work. The
elementary solutions for an anisotropic material subjected to a unit point load are demon-
strated. The influence coefficients, which link the loading to the displacements or to the
strains, for an anisotropic material, are obtained using Green’s functions. These coef-
ficients are validated through a comparison performed under Hertzian loading between
results obtained for an isotropic material using Hertz solutions and those corresponding
to an orthotropic material based on the Finite Element Method (FEM).

The third chapter deals with parametric studies. A rigid sphere is loaded normally
against an anisotropic half space, coated or not. The main material characteristics are
considered, as the Young’s modulus along the principal directions, the Poisson’s ratio or
the Coulomb’s modulus. The orientation of the material is also studied. The stress field is
analysed for different cases of anisotropy.

Finally, the fourth chapter presents a comparison with an isotropic heterogeneous
model, which takes explicitly into account the fibers in composite materials. The ho-
mogenization method, to obtain the homogenized properties of an equivalent material

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0014/these.pdf
© [C. Bagault], [2013], INSA de Lyon, tous droits réservés



Introduction

from an isotropic heterogeneous material, is described.pféssure profile for different
cases and the stresses are analysed.
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Chapter 1

Contact mechanics

This chapter is an introduction to contact problems
encountered in aeronautic with anisotropic materials.
Modeling in contact mechanics is briefly exposed.
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1. Contact mechanics

1.1 Context and motivations

1.1.1 Industrial project

This doctoral thesis is part of the French FUI project INNOLUB (INNOvation for LU-
Brification at high temperature) which began in November 2009.

S E—
INNOLUB

The friction and wear are recurring problems in the field of hagics and especially
in aeronautics. The project provides innovative solutions to address the problems of fret-
ting, fatigue and fretting wear at high temperature for aeronautical structures such as
fasteners blade / disk in compressors and turbines at high temperature, fasteners mast /
motor, bearings and knuckles bleed air systems. These issues are very diverse in terms of
thermomechanical stresses and contact geometry.

It is now necessary to develop coatings resistant to high temperatures and with good
behavior in sliding friction under load while having a wear rate controlled to provide
good tribological properties. In order to remain competitive, it is important to reduce the
number of unscheduled maintenance operations, to reliable tribological scenarios, to pool
specific and innovative resources and to take into account an eco-design into the project.
The purpose of this partnership is manifold:

- development and optimization of innovative coatings and processes,

- delay the boot up in fretting / fatigue, minimize wear,

- taking into account the extreme thermomechanical conditions,

- evolution of tribological tests at high temperature,

- advanced modeling of life in fretting / fatigue.

The project consists of five major industrial groups (Airbus, Liebherr, SKF, Snecma,
Turboméca), four medium-size enterprises (APS, CITRA, Mecaprotec, Orapi) and six
laboratories and research organizations (ARMINES, CIRIMAT, ENISE, LAMCOS, LMI,
LTDS).

SR Ll SKF | 7%,  LIEBHERR

Groupe SAFRAN Groupe SAFRAN
AIRBUS

D aps” RELLLIEN rrcarrorec

S Crrrr . ENGINEERED SOLUTIONS WORLDWIDE
minsTiTUT ! 3 / &9 7%
CARNOT e L]:BS— ENISE = f?y/'-aM‘(,M:E’,§ ;j
x CIRIMAT |t ‘ —= 8 " MNesems

The LaMCoS, laboratory of contact and structure mecharsca joint research unit
INSA Lyon / CNRS, whose main research interests are tribology, structural mechanics,
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Context and motivations

system dynamics, damage and fatigue. The team involveddsiptbject is the team MSE
(solid and damage mechanics) whose activity is intended to explain and predict behavior,
damage and failure in the mechanical parts subjected to extreme stress, under develop-
ment or in service. This team has developed over the last twenty years some contact
models based on semi-analytical methods that rely on basic analytical solutions. These
models are based on numerical techniques adapted to specific tribological applications.

The project is organized into seven tasks. The LaMCoS is involved in three of these
tasks: Task 2 (development of tools for characterization and modeling), task 5 (elementary
tribological characterization of new coatings) and task 6 (specific tribological characteri-
zation: technology demonstrators and modeling). The contribution of the MSE team will
consist of:

- carry out theoretical and numerical developments necessary to apply these models
to the problem of high temperature coated contacts,

- validation of these models compared to the experience,

- compare and analyze the performance of these methods versus the finite element
method.

1.1.2 Applications

The mechanical connections are omnipresent elements in aerospace structures. Their role
is to introduce the degrees of freedom in rotation in the mechanism in which they are
integrated. They can eliminate the degrees of hyperstatism in mechanical assemblies and
intervene also at the kinematic assembly of mechanical subgroups. The functionality of
the bond is conditioned by the good behaviour of its interface. Generally, the two main
problems on connections in service are:

- the jamming of the pieces caused by unfavourable slip conditions leading to the
transmission of unwanted effort in the mechanical environment of the connection,

- a significant wear of the pieces, causing an abnormality in the functioning of mech-
anism.

The service life of the connection is related to the behaviour of the contact. Also, it
should be selected for this interface a tribological material couple suitable for the appli-
cation in order to minimize friction, jamming and wear and thus to optimize the lifetime
of the connection.

Figure 1.1: Blade of high pressure compressor
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1. Contact mechanics

Contacts between blade and disk at the high pressure corapf{€ssHP) of the tur-
bojet engine (see Fig. 1.1) are subjected to stresses of fretting at temperatures between
200°C and 450 €. The materials used in this part of the engine are composed with ti-
tanium. The blades at the contact area are coated with a specific material layer. Figure
1.2 shows the prints due to fretting that occurs on the contact surfaces of the blade in
the CoHP of a high power engine. Note that the four pictures of this part come from the
industrial groups of this project.

Figure 1.2: Blade root of CoHP from an engine high power subjected to high temperature
fretting

Contacts between blade and disk of the high pressure turbine (TuHP) are composed
by nickel on nickel. Operating temperatures vary between &80érd 750 T. The speci-
ficity of TuHP joints lies in their design of type "foot fir" with a double contact on both
sides of the blade. Currently, the contact area of blades in TUHP are not coated. Figure
1.3 shows the prints due to fretting that occurs in the contact zone of the disk in the TUHP
of helicopter’s engine.

Figure 1.3: Contact zone of the disk in the TuHP subjected to fretting in temperature

Aeronautical joints are also particularly affected by this issue.

The connection between the shaft and the engine has the distinction of being sub-
jected to high temperatures. Figure 1.4 shows the damage related to fretting in the ball
joints. This environmental context can lead to a loss of functionality resulting in a jam-
ming at the spherical interface of the ball and socket joint. This product can undergo
two types of loading: a radial loading and an axial loading, while allowing movements
of rotation. The most important movements in terms of amplitude occur during engine
starting and shutting off, with a rotation angle amplitude up.®degres. In flight, the
joint will suffer from engine vibrations, these movements causing the fretting at the joint.
Currently, the temperature reached in the environment of these joints during the flight
is 160 °C. Changes made to the new generations of engines should raise this tempera-
ture up to 570 C. These joints must withstand and be efficient at these extremely hot
temperatures but also they must be used on the ground in very cold regioriC).
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Context and motivations

Figure 1.4: Outer ring ball damaged by fretting in temperature

The joints of the valves located in a hot zone around the aircraft engine in the plat-
form are also subjected to these problems. The thermal and vibration environment around
aircraft engines becoming more severe. The air-conditioning systems, and in particular
the valves which permit the extraction of the air on the engines, are among the first vic-
tims of the increasing severity in service. These joints are used to support heavy loads
while allowing rotational movements. Parts are subject to severe constraints in term of
pressure, amplitude of movement and also temperature @60 570 °C). The current
trends in engine design aircraft (increased engine power) suggest a significant increase of
temperature in the immediate vicinity of the joints. It is therefore essential to anticipate
this problem.

The development of new coatings aimed at protecting the part more efficiently, with
an improved resistance to high temperatures and good tribological properties (wear and
friction), using lighter and more environmentally friendly new technologies.

The main aim in using these new coatings is an extension of the lifespan that would
lead to a reduction in maintenance costs and benefits of designing with reductions in
volume and mass. Indeed, they delay the initiation of fretting, fatigue, wear and thus
improve the reliability and lifetime. We expect a multiplication of their current life by
two or even by four for some components, with, as a consequence, the same lifetime
extension of the coated parts. It is also possible to estimate a minimum of 25% earned
over a cycle disassembly - reassembly and divide by two the number of inspections of
certain areas in the life of an engine. Greater load capacity in the ball joints allow a
reduction in the size of the bearing, thereby reducing the weight of the whole equipment
of the order of 2%.
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1. Contact mechanics

1.2 Methods used in contact mechanics

1.2.1 Analytical solutions

Hertzian contact Contact mechanics dates back to 1882 with the original work of Hein-
rich HertzOn the contact of elastic solidslER 82] . Hertz solved the problem involv-

ing contact between two elastic bodies with curved surfaces, called the Hertzian contact.
Surfaces are supposed continuous and non-conforming. The following assumptions are
retained:

- the contact zone is elliptical,

- the problem does not account for friction,

- half-spaces are considered.

- the area of contact must be much smaller than the characteristic dimensions of the
bodies so that stresses are concentrated in the contact region and are not altered by bound-
ary conditions.

Because half-spaces are considered, theory of elasticity in elastic half-spaces can be
used. Hertzian theory is quite restrictive because of those assumptions but is still relevant
and provides a description of the contact pressure, contact dimension, displacements and
stresses within the mating bodies.

Non-Hertzian contacts Additional complications arise when some or all these assump-
tions are violated and such contact problems are usually called non-Hertzian. Those non-
Hertzian contacts have been extensively studied and are presented in [JOH 87]. Many so-
lutions exist for conforming geometries, when contacts are not elliptical, even if solutions
are still based on half-space theory. Some solutions exist for contact against a sheet or
a shell. Finally, many solutions are given when geometric discrepancies are considered,
such as sharp edges, etc. However, many of those solutions are only two-dimensional.
Most of three-dimensional solutions are limited to axisymetric geometries or other par-
ticular geometries. When Hertzian assumptions are removed, solutions often have to be
found using cutting edge mathematics. It is the case when considering « singular inte-
gral equations » used by Muskhelishvili [MUS 53] , then by Mikhlin [MIK 57], Galin
[GAL 53] and Aleksandrov [ALE 86]. « Integral transforms » are also used, such as the
Fourier transform [SNE 51]. Westergaard [WES 39] used it in rough contacts if rough-
ness is a sine function. Greenwood & Willamson [GRE 66] proposed a theory of elastic
contact mechanics of rough surfaces which is today the foundation of many theories in
tribology (friction, adhesion, thermal and electrical conductance, weatr, etc.).

Non-elastic behavior or non-homogeneous bodiesAnalytical solutions for a uniform
thickness coating do exist, if both the coating and the substrate are elastic homogeneous
and isotropic [MEI 68]. Integral methods are also used [GLA 80]. Non-elastic behaviors,
such as plasticity, are also studied. However, most analytical studies are limited and con-
sider a perfectly plastic behavior. Indentation process is particularly studied and solutions
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Methods used in contact mechanics

exist for a conical, spherical and pyramidal tip indenterHJ&Y]. But spatial displace-
ments in the media are assumed to be radial. It is clear that fully analytical methods are
limited when considering inelastic behaviors and non-uniform coatings.

Frictional contacts Coulomb’s law of friction is used in most existing analytical so-
lutions. When contact is considered fully sliding, shears are directly obtained from the
hertzian pressure. Stresses for a cylindrical contact are given by McEwen [MCE 49]
while stresses for a spherical contact are given by Hamilton [HAM 63]. Those solutions
are extended to elliptical contacts by Sackfields & Hills [SAC 83]. Cattaneo [CAT 38]
and Mindlin [MIN 49] considered a sphere normally and tangentially loaded. Tangential
force is lower or equal to the limit fixed by the Coulomb’s law in fully-sliding conditions.
Because the Coulomb’s law must be observed at each point within the contact area, slid-
ing will appear at the edge of the contact creating a slip annulus. Mindlin & Deresiewicz
[MIN 53] also studied this spherical contact when tangential force is a linear function of
the normal force. The very popular Cattaneo-Mindlin Concept has been extented to any
two dimensional geometry by Ciavarella [CIA 98a, CIA 98Db], but analytical solutions are
still limited when dealing with any three-dimensional geometry and loading.

1.2.2 Numerical methods

Finite element method The finite element method (FEM) is a numerical technique for
determining approximate solutions of partial differential equations (PDE) as well as of in-
tegral equations. It is largely used in mechanics for complicated domains changing over
time, and several modern FEM packages also include specific components (dynamic, ther-
mal, electromagnetic, plasticity [PEI 05], viscosity [CHA 96], friction [RAO 99], etc).
Anciaux [ANC 09] presented a multi scale coupling method to address contact problem.

But computation costs can be important, depending on the level of accuracy required.
When contacts and inclusions are considered, using a finer mesh at the two body interface,
imposed by the gradients that are expecting, drastically increases the computing time.
Moreover, for multi scale problems, it is difficult to model at pertinent scales both the
structure (macro scale) and the contact area (micro scale) while dealing with wear or
cracking surface. For these reasons, FEM was not selected for solving complex contact
problems.

Semi-analytical methods When analytical solutions are ways too complicated, it is
possible to discretize the full-problem in a sum of elementary problems. Then, the so-
lution is the numerical summation of analytical solutions for each elementary problem.
Semi analytical methods, or SAM, have been intensively used in contact mechanics but
numerical techniques can be different from an author [KAL 90] (Newton-Raphson algo-
rithm) to an other [JAE 04] (Gauss-Seidel Algorithm). The multigrid techniques which
enable fine mesh sizes coupled with local refinement techniques can deal with macro-
scopic and microscopic aspects, for heterogeneous material [BOF 12a] or moving heat
source [BOF 12h].
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1. Contact mechanics

Today, Fast Fourrier Transform (FFT) techniques [POL 00, Q0J and a Conjugate
Gradient Method (CGM) algorithm [POL 99] are widely used to perform computations.
Domains are large enough to consider the roughness of contacts [Al 99], elastic coatings
of uniform thickness are even possible [PLU 98]. Frictional [GAL 07a], thermo-elastic
[LIU 01, LIU 02], plastic [JAC 01, SAI 02, ANT 04, ANT 05, NEL 06] and thermal-
elastic-plastic analysis [BOU 04, BOU 05] have been investigated and proved the SAM
efficiency. Contact dimensions, coating thickness or even material properties can be
scanned wide ranges without any convergence issue and in a reasonable computation time
according to this method.

1.2.3 The contact solver

The model developed at the LaMCoS is based on the numerical summation of elementary
analytical solutions (also called semi analytical method or SAM). The Finite Element
(FE) method is used here only to validate SAM solutions.

Several methods can be used for contact simulation of anisotropic materials. SAM
main advantage is the small computing time compared to the one required using FE
method that is however widely used for many contact problems.

The contact problem solution in contact mechanics consists in finding the actual con-
tact area, the contact pressure, the shear and slip distributions. The origin of all the theory
is the famous paper of Heinrich Hertz, which gives the solution of the elastic contact
between two ellipsoidal bodies without friction.

The semi analytical method consists in the summation of elementary solutions known
analytically. One of the difficulties is the derivation or the identification of these ele-
mentary analytical solutions, such as the well known Boussinesq and Cerruti solutions in
isotropic elasticity, available in [JOH 87]. The framework of the three dimensional prob-
lem is simplified here by assuming the contact between one anisotropic elastic half space
and a rigid body. The contact area is small in comparison to the dimensions of bodies
justifying the assumption of half spaces. The curvatures of the surfaces in contact are
also small. Each point of the surface is assigned a value of the pressure corresponding
to the total load divided by the surface area (Fig. 1.5). Analytical solutions giving the
contributions of normal and tangential loading assumed uniform over a single rectangular
element will be used. By summation, the elastic deflection at each point within and near
the contact area will be derived.

The elastic displacements are expressed by a double discrete convolution product be-
tween influence coefficients and the pressure or shear at the contact surface. The normal
problem and the tangential problem in partial slip are therefore solved. The solutionis per-
formed by minimizing the complementary energy, so the contact pressure is constrained
to be positive everywhere and there is no interpenetration. An algorithm is developed
based on the conjugated gradient method (CGM). To accelerate the calculation, the Fast
Fourier Transforms (FFT) are used to perform the double convolution product between the
pressure and the influence coefficient matrix, at each iteration of the CGM (Eq. 1.1). The
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Methods used in contact mechanics

7

(a) line contact (b) point contact

Figure 1.5: Pressure distribution discretized in cells of uniform pressure

discretized problem must have a mesh of constant size along all three space directions.
Consequently, no mesh reduction in areas of interest is possible.
Once the contact problem is solved, the strains in the half space are calculated.

Nx Ny

Uz(X;,Yj) = kz |2 P(Xi, YK (X =i, Y —Yj) (1.1)
=1l=1

General algorithm Two bodies are considered. A concentrated load or a rigid body
displacement is imposed in one or several increments (in case of non linear constitutive
law). The elastic contact is solved (CGM, FFT) which gives pressure distributions and
elastic stresses. Small strain assumption is made. Then by a return mapping, plastic
strains and residual stresses are calculated, if they exist. Residual stresses lead to residual
displacements, so the surface geometry must be updated. The contact surface is modified
to take into account residual displacements until convergence occurs. Finally the load or
the interference is updated until end of loading. The general algorithm is presented in Fig.
1.6.

Historical development of the code The semi analytical contact solver is based on the
pioneering work of Jacq et al. [JAC 02] for elastic-plastic contacts. The solver has since
been developed and improved in several ways. Boucly et al. [BOU 05] and Chen et al.
[CHE 08] introduced thermal aspects. Fulleringer and Nelias [FUL 10] focused on the
influence of a cuboid of uniform plastic strain in a half space, on the normal and tangen-
tial displacements of surface points, and derived the corresponding Green'’s functions in
an analytical form. Then Leroux et al. [LER 10] and Zhou et al. [ZHO 11] studied the ef-
fects of the presence of inhomogeneous inclusions within a half-space, both on the contact
pressure distribution and on the corresponding subsurface stress field. Discrete Convolu-
tion (DC) and 3D FFT have been since then widely used in the contact solvers. Leroux
and Nelias [LER 11] worked also on the stick-slip problem for a sphere in contact with a
flat half-space containing unidirectional cylindrical fibers. Gallego et al. [GAL 10b] pro-
posed an algorithm based on the CGM to account for the coupling between normal and

11
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1. Contact mechanics

tangential effects, which is required for frictional cortacoblems between elastically
dissimilar materials. The same group of researchers also improved the contact algorithm
in several ways so that it becomes affordable to simulate wear for 3D contact problems,
cycle after cycle [NEL 06, GAL 06, GAL 07b]. Note that SAM could be also linked with
the FE method and used as a zoom on the contact to account for the effect of rough-
ness or simulate wear [GAL 10a]. More recently Chaise and Nelias [CHA 11a] improved
the numerical model to account for kinematic and isotropic hardening and analyzed the
problem of a rolling load versus indentation. They also proposed a method to predict
the coefficient of restitution when an elastic or rigid sphere is impacting an elastic-plastic
half-space [CHA 11D].

This PhD is based on Jacq, Gallego, Boucly and Fulleringer semi analytical codes
developed at the LaMCoS, in the programming language Fortran. Structures of contact
algorithms and numerical methods remain unchanged and are not detailed in this docu-
ment (see [GAL 07a] and [FUL 11]). However, the new influence coefficients used for
anisotropic materials, with or without coating, are detailed.

12
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Figure 1.6: General algorithm of the contact solver by the semi analytical method
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1. Contact mechanics

1.3 Materials in contact

1.3.1 Anisotropic materials

Motivations Most substrates are assumed isotropic as a first approach. However for
most composite and monocrystal materials their compositions or the elaboration and man-
ufacturing processes imply that it exists one or two main directions or even a general
anisotropy. In aerospace applications hot parts such as turbine blades have special crys-
tallographic directions and so behave as anisotropic materials. The material properties
should be considered accurately to optimize the service life of industrial components.

Characterization In this thesis, materials are assumed homogeneous. The validity of
this assumption depends on the scale at which the model is used. Although a composite
is by definition heterogeneous, it is generally possible to use a homogeneous model if the
scale of interest is much larger than that of heterogeneities [ROS 07].

Anisotropic materials are defined by the elastic stiffness te@ggtr which satisfies
the full symmetryCiji = Cjii = Cxiij. This tensor links stresses to strains according to
the relationship

Gij = Cijk & (1.2)

Under symmetry constraints, the stresses and strains are reduced =0
(011 022 033 012 013 023) " ande = (€11 €22 €33 2612 2613 2€23) .

The materials used are often isotropic, cubic or orthotropic. Depending on these fam-
ilies of materials, two, three or nine parameters are necessary for defining completely the
elastic tensor. A general anisotropic material has twenty one independent parameters

Ci111 Ci122 C1133 Cr112 Cri2z Crizn

Co222 Cp233 Co212 Co223 Coo31

- Cs333 Cz312 Cz323 Cs331
C—

Ci212 Ci223 Ci231

Sym Co3z23 C2331

Cai131

For an isotropic material, wite = E/(2(1+V)), or a cubic material the elastic stiff-
ness tensor can be written as

E(1-v) Ev Ev
(14+v)(1-2v) (14v)(1-2v) (1+v)(1-2v)
(14+v)(1-2v) (14v)(1-2v)
E(1-v)
C= Tv)(1-2v)
Sym G

G

E represents the Young’s modul@the Coulomb’s modulus andthe Poisson’s ratio.
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Materials in contact

For an orthotropic material, the tengdis defined by

E1(1—v23v32)0 Ej(v21+V31v23)0 E1(V31+V21v32)d
Ex(1—v13v31)0 Ez(Va2+Vi2v31)d
E3(1—V12V21)5

Sym Gz3

with & = 1/(1—V12V21 — V23V3p — V31V13 — 2V21V3pv13) andvij /Ei = v;i /Ej. E1, E; and
E3 are the Young’s moduli along the three main directidBs,;, Go3 and Gz, the shear
moduli andv1y, Vo3 andvss the Poisson’s ratio.

Composite materials are designed to provide greater resistance under certain condi-
tions. There are three main classes; composites with polymer matrix, metal matrix or
ceramic matrix. For single crystals, the anisotropy comes from the organization of atoms
in a unit cell. Wood and bones are anisotropic natural materials, because of their origin.
Determining the mechanical constants can be done experimentally. Tensile tests can be
carried out different main directions, allowing to obtain Young’s moduli and Poisson’s
ratios. Shear tests can be performed to identify Coulomb’s modulus. These parameters
can change versus the temperature or even humidity in the room.

Orientation of the material Due to the anisotropy it is possible to modify materials
according to local loading conditions, which allows a significant reduction of the quan-
titative material and therefore weight, a vital criterion in aeronautics. In this work, the
depth corresponds to direction 3, which means that the surface is defined by directions
1 and 2. Note also that the main directions or axes of symmetry are not necessarily the
same than those of the contact ones. In such a situation a basis change has to be carried
out. Supposing the elastic stiffness tensor in the material basishe tensoc in the

contact basisy, is obtained by

Crmnop= C’Eijkl (8am) (éj an) (&) (8 ap)-

By using the Euler angles, the transformation matrimcan be written as

cosycosp— cossingsing  cosPsing+ cosbcospsing  sinysind
Tm= | —sinycosp— cosBsinpcosy — sinPsing+ cosbcospcosy cosPsind |,
sin@sing —sinBcosy coso

with @ the first angle of rotation aroures, 6 the second angle of rotation aroundakis
andy the third angle of rotation aroureg, as shown in Fig. 1.7.

Thereafter, we consider only one rotation aroene- a;, or = 0, = 0 and8 any
angle. The transformation matrix is simplified.

1 0 0
Tm= |0 co¥ sind
0 —sin® coso
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1. Contact mechanics

as e,

Figure 1.7: Euler anglesg;exe3 the material system araj araz the contact system

In the literature The Green'’s functions of a point force applied to an isotropic in-
finite space was first solved by Kelvin [KEL 48]. Boussinesq [BOU 85] derived sur-
face Green'’s functions for a force normal to the free surface, in isotropic solids. Then,
Mindlin [MIN 36], by adding a complementary part of the solution, reduced the Kelvin's
infinite space functions to the half space Green’s functions. Ting and Lee [TIN 97] de-
veloped an explicit expression of the Green’s functions in terms of the Stroh eigenval-
ues [STR 58, STR 62], for an anisotropic infinite space. Also using the Stroh formal-
ism, Ting [TIN 96] obtained the anisotropic Green’s functions of a point force in a half
space in the Fourier transformed domain. With inverse fast Fourier Transforms, solu-
tions can be finally obtained in the physical domain. Pan and Yuan studied the three
dimensional Green’s functions of point forces in anisotropic bimaterials [PAN 00], in
anisotropic trimaterials [YAN 02] and also at the interface of an anisotropic bimaterial
[PAN 03]. Ciavarella et al. [CIA 01] presented a method for solving 3D contact problem
for anisotropic materials by using the standard Hertzian solution. Li and Wang [LI 06]
worked also with the Hertzian solution in order to analyze the contact problem for two
anisotropic piezoelectric bodies pressed together. Borodich [BOR 00] solved some con-
tact problems of anisotropic elastodynamics by applying his method of integral charac-
teristics of solutions to boundary-initial value problems. Swanson [SWA 04] used the
procedure outlined by Willis [WIL 66], a numerical contour integration to determine the
contact area and the pressure distribution, combined with the Pagano solution [PAG 70]
to obtain detailed stress fields. Aizikovich et al. [AlZ 02] worked on the influence of
the elastic properties variation along the depth on the contact area and stresses. Gao and
Pharr [GAO 07] were interested on the effective moduli of elastically anisotropic solids
under normal and tangential contacts. In their books, Rand and Rovenski [RAN 05] fo-
cused on the procedure of obtaining analytical solutions in anisotropic elasticity and Galin
[GAL 08] dealt with contact problems and got onto contact problems for an anisotropic
half plane. Lin and Ovaert [LIN 04] studied the rough surface contact for anisotropic ma-
terials in 2D. Then He and Ovaert [HE 08] developed a 3D contact model between a rough
rigid sphere and a semi-infinite anisotropic elastic body, by applying the line integral of
Barnett-Lothe tensors [BAR 75] on oblique planes. Another method, the Boundary Ele-
ment Method, is used by Blazquez et al. [BLA 06] for generalized plane problems and
by Rodriguez-Tembleque et al. [ROD 11] in 3D to study contact problems in anisotropic
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Materials in contact

solids.

1.3.2 Coated materials

Motivations Coatings can protect mechanical parts from oxidation, corrosion, temper-
ature extremes, abrasion... They are often used to prevent or control wear which slowly
modifies geometries of parts, affects the aerodynamic efficiency of engines and involves
important servicing costs because of premature part changes. In many engineering appli-
cations, protective coatings are increasingly used to extend the fatigue life of mechanical
components in contact and to provide low friction coefficients and wear resistance of tri-
bological surface. In consequence, the study of protection against wear and corrosion
induced by the use of coatings is an important research field in aeronautical engineering.

Characterization In many cases, coatings are used to improve surface properties of the
substrate and extend the life span. They may be applied as liquids, gases or solids. The
application processes for applying coatings are multiple; application of coatings in liquid
form on a flat substrate or on a substrate of any shape, the electroplating (coating depo-
sition method in ionic form on conductive coatings), the methods of vacuum deposition
of thin films (physical or chimical vapor deposition, sol-gel process, epitaxy), extrusion
coating, powder coating (deposition of coatings in the form of polymer melts)...

Coatings do not have, generally, the same properties as the substrate. They are more
or less compliant, rigid and resistant to high pressure and high temperature, with various
friction coefficient. In this document, we will study the influence of the Young’s modulus
in the different main directions (in surface or along the depth), the Poisson’s ratio and the
Coulomb’s modulus in the coating with an isotropic substrate or in the substrate when
the coating is isotropic (Fig. 1.8). The anisotropy of material can also be oriented. The
coating and the substrate do not have necessarily the same orientation.

Coatings may have various thicknesses. Depending on this parameter, the role played
by the coating will change. Larger is the layer, more its properties will be predominant
on the contact mechanics but the initial geometry of the part will be modified.

In order to protect components from fretting and improve performance, coatings (its
properties, its thickness) have to be optimized.

In the literature  The contact in the layered materials is an important and interesting
subject. Meijers [MEI 68] dealt with the contact problem of a rigid cylinder on an elastic
layer. King and O’Sullivan [KIN 87a, KIN 87b, O’S 88] looked into the sliding contact
on a layered elastic half space. Plumet and Dubourg [PLU 98] investigated the sliding
contact between 3D deformable body and multilayered elastic half space. Aizikovich et
al. [AlZ 02] worked on analytical solutions for a non homogeneous half space. More
recently, the anisotropic elastic layer was the subject of many articles. The rigid inden-
ter contact was studied by Batra and Jiang [BAT 08] with an anisotropic linear elastic
layer bonded to a rigid substrate and by Kuchytsky-Zhyhailo and Rogowski [KUL 10]
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1. Contact mechanics
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Figure 1.8: Parameters used for a spheric indenter in contact with an layered half space

with a layered elastic half space. Kahya et al. [KAH 07] worked on the plane reced-
ing contact problem and Argatov [ARG 11] focused on the depth-sensing indentation.
Brock and Georgiadis [BRO 07] presented a class of multiple-zone sliding contact prob-
lems, including frictional and thermal effects on an anisotropic half space. Clements and
Ang [CLE 09] solved some contact problems for inhomogeneous anisotropic elastic ma-
terials and Boffy et al. [BOF 12a] presented contact solution between 3D deformable
bodies loaded normally and tangentially against graded layers bonded to heterogeneous
substrates.
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Chapter 2

A semi analytical method for contact
between anisotropic materials

A contact model using semi analytical methods, relying on
elementary analytical solutions, has been developed. The aim
of this work is to extend this model to the consideration of the
anisotropy, by quantify displacements and stresses of a coated

anisotropic material contacting both an isotropic or
anisotropic material.
This chapter presents the influence coefficients and their

validations.
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Introduction

2.1 Introduction

According the semi analytical model developed by Nelias’ team, the contact problem is
solved for isotropic materials. The influence coefficients, which link the elastic displace-
ment to the load, are those developed by Boussinesq and Cerruti. To study anisotropic
materials, these coefficients need to be replace. It is the aim of this work.

This chapter is devoted to the formulation of anisotropic influence coefficients and
to their numerical expressions. First, the explicit expressions of the Green’s functions
for anisotropic infinite space by Ting and Lee [TIN 97] are recalled. They are used as
starting point to express the half space anisotropic contribution. Functions for anisotropic
half space are a sum of infinite space Green'’s functions and a complementary part which
accounts for the free surface of the half-space, similarly to the Mindlin’s superposition
method. The influence coefficients for anisotropic half space are obtained with the three
dimensional Green’s functions for anisotropic bimaterials [PAN 00]. And starting from
the three dimensional Green’s functions in anisotropic trimaterials [YAN 02], these func-
tions are derived for layered anisotropic half space. The Green’s functions for anisotropic
infinite space have an explicit expression whereas the complementary part needs to be
integrated numerically. Finally, the validation of both cases, contact for an anisotropic
half-space with or without coating, is led.
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2. A semi analytical method for contact between anisotroitenials

2.2 Influence coefficients for anisotropic space

The influence coefficients, which link the loading to the displacements or to the strains,
for an anisotropic material, are obtained with the Green’s functions. The infinite part
[TIN 97] determines these elements for the anisotropic infinite space.

Let u be the displacement vector in a three dimensional anisotropic elastic material.
A concentrated forcé= (f1, fo, f3) is applied at the origin of the reference frames 0.
The equation of equilibrium in terms of displacemeniss written as

Cijii Uk 1] = —0(X1)3(X2)3(x3) fi, (2.1)

whered(x) is the Dirac function. Applying Fourier transforms to this equation with re-
spect toxy, X2, X3, solving for the transformedy, and then back transforming leads to

U= ﬁ / / / Q 1(n*)fe M *dridnsdr 2.2)
where
Qik(n*) = Cijunin;. (2.3)
Equation 2.2 is reduced to
1
U= / Q 1(n*)fds (2.4)
S

wherer =| x | and the integral is taken around a unit circlé |= 1 on the plane normal
to x. If we write

u= (2.5)

G(x)f,
G(x) = ler/Q‘l(n*)ds. (2.6)

whereG(x) is the Green'’s function for the infinite space.

Let n andm be two orthogonal unit vectors in the oblique plane whose normal is the
position vectox. The vectorgn, m,x/r| form a right handed triad. The unit vectort in
the oblique plane can then be represented as

n* = ncosy + msiny, (2.7)
wherey is an arbitrary parameter. Equation 2.3 can be written as
Qik(W) = Cijii (nj cos + mj siny) (ny cosy + my siny), (2.8)
and a€Q(y) is periodic ing with periodicityy, Eq. 2.9 becomes

2n /2
_ 1 -1 _ 1 -1
G(X) = 5 O/ QHY)dy = //ZQ (W)dy. 2.9)
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Influence coefficients for anisotropic space

Three matrices & 3 are defined with the elastic stiffness ten€gk . Q, R andT are
the double projections of the elastic stiffness tensor, independgnt of

Qik = Cijiinjni, Rk = Gijia njmy, Ty = Cijia mym. (2.10)

Qik(W) in Eqg. 2.8 reduces tQj in Eq. 2.10 whenp = 0. In view of Eq. 2.10, Eq. 2.8
can be written as

Q(Y) = Qcog P+ (R+RT)cospsiny + TsiP P = cog YI'(p), (2.11)
with
I'(p) = Q+ p(R+R") + p?T, p=tany. (2.12)
Six distinct eigenvaluep are obtained by calculating the roots of the sextic equation
in p
det(I'(p)) = 0. (2.13)
The roots are three pairs of conjugate complex numbers
pj=a;+iBj,Bj>0(j=1,2,3, (2.14)

with oj and; real coefficientsp; the conjugate of;. The determination of the roots’
sextic equation is made numerically.

If we define "
1
H == [ @ waw, 2.15)
—T1/2
Eq. 2.9is
1
G(x) = HH [X]. (2.16)

H[x] is independent of the direction &f not on its magnitude.
With the use of Egs. 2.11 and 2.12, Eq. 2.15 can be written as

1 -1 21 f‘(p)
Hm_ilr(mw_il&ﬁﬂww. 2.17)
T is the adjoint off’ such that
I'(p)T(p) = det(T'(p))!. (2.18)

| represents the identity matrix. Le} be the roots with a positive imaginary part. The
integral can be replaced by a contour integral over the upper half of the complex plane p.
Using Cauchy'’s theory of residues we obtain

(2.19)
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2. A semi analytical method for contact between anisotroitenials

wheredet(T'(py))’ = d(det(T'(py)))/dp. It can be written explicitly by observing from
Eq. 2.12 that

det(T'(p)) = det(T) f(p), (2.20)
f(p) = (pP—p1)(P—P1)(P—P2)(P—P2)(P— P3)(P—Pa3). (2.21)

Hence N
H[x] 2 i L(pv (2.22)

det )& T (py

wheref’(p) =df(p)/dp. Since

f'(p1) = (P1—P1)(P1— P2)(P1—P2)(P1— P3)(P1— Pa) (2.23)

and similar expressions exist féf(p2) and f'(ps3), Eq. 2.22 has the expression

1 (p1)
H[x] = — — ... ). (2.24)
M= derm) {Bl(pl— P2)(P1—P2) (P1— P3)(P1—Ps) }
The three dots represent two more terms obtained from the first term by a cyclic permu-
tation of the subscripts. The tenddfx] in Eq. 2.24 is not valid for the degenerate cases
p1 = p2 andp1 = p2 = ps3. An alternative expression is presented below, which is clearly

real and which remains valid for the degenerate cases.
The adjoint matrix(p) is a polynomial of degree four in p

4
L'(p)=YS pT" (2.25)
2
with T'(" the real matrices which are independent ofifix] can be written as

HIx] =

4
£
ToT) n;an . (2.26)

The coefficients), are defined by

_ p7
= {Bl(pl_ P2)(P1—P2)(P1— P3)(P1—P3) +} ' (2.27)

It remains to computg, which should be real. The first term in Eq. 2.27 is

—pi(p2 —P2)(P3 —P3)

4BaBoBaP1— P2) (P1— Po) (P1— Pa) (P1—Ps) (2:28)
By writing the numerator as
= P1l(p2— P1) + (P1—P2)][(Ps — P1) + (P —P3)], (2.29)
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Influence coefficients for anisotropic space

the first term becomes

—p] 1 B 1

481[32[33{ (P1—P2)(PL—P3)  (P1—P2)(PL—Ps3)
1 1
+ — — : 2.30
(P1—P2)(P3— p1) (pl—pz)(ps—pl)} (239
Similar expressions are obtained for the second and third terms in Eq. 2.27. It is then not
difficult to compute the coefficienty,. The result can be summarize as

-1 pn
2B1B2B3 Re{ (pl—bz)(lpl—_ps) T } ~ On2

Pl 2p,ps
Re oo e T

= forn= 0,1,2
= M= 2,34

Y

-1
2B1B2PB3 —On2
wheredn, = 1 if n=2 andd,, = 0 if n# 2. g» has two alternative expressions. It can be
noticed that for an isotropic materiad = gz = 0.

The infinite part of the stresses is deduced from

0Oij = Cijks€ks
1 (2.31)
= écijks(uk,s‘f‘ Usk)-

Note about programming The general expression of the coefficientsdef(T'(p)),
which is a polynomial of degree six in p, andf}(p), a polynomial of degree four in p,
is obtained with the commercial computer algebra system Maple.

The difficulty consists in computing accurately the roots of these influence functions.
For this, routines from Numerical Recipes, a book on algorithms and numerical analysis,
are used. Results were compared to the ones obtained with the software library LAPACK
(Linear Algebra PACKage) and they are similar.
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2. A semi analytical method for contact between anisotroitenials

2.3 Influence coefficients for anisotropic half space

2.3.1 Green’s functions

The influence coefficients, which link the loading to the displacements or to the strains,
for an anisotropic material, are obtained using the Green'’s functions. The calculation
of the displacements and the stressas anywhere in the material is carried out in two
stages. An infinite part [TIN 97] determines these elements for the anisotropic infinite
space and a complementary part [PAN 00] is used to correct this solution for the presence
of the free surface.

{ U= U+ Ucomp (2.32)
O = 0w+ Ocomp

These complementary functions can be described explicitly in the Fourier domain,
whereas it is more complicated to obtain their formulation in the physical domain due to
the general anisotropy of the material. They are therefore obtained in the physical domain
by applying the inverse Fourier transform to the explicit formulas of the Fourier domain.

A concentrated forcé = (f1, fo, f3) is applied at the origin of the reference frame,
which is located on the surface of the anisotropic elastic half space (). In the
absence of body forces, the equations of equilibrium in terms of displacemeats
written as

Cijkl Uklj = 0. (2.33)

The two dimensional Fourier transforms are applied

G (Y1, Y2, X3) = / / Uk (X1, %2, X3)€Y X dxq dxp, (2.34)

wherey* = (y1,Y2) is the transformed vectax; = (x1,x2) andy*x* = y1x1 + y2x2. In the
transformed domain, Eqg. 2.33 becomes for the subsicegtals 1 to 3 (the character
which is not a subscript is the imaginary unit)

3 2 2

> > > CiakpYa¥plik +1(Ciaks + Ciska) Yo Uk 3 — Ciakalias = 0. (2.35)
Erds1is

Three matrices & 3 are defined with the elastic stiffness tenSgg and the vectors
n andm, which form a right handed triad with the position vectorQ, R andT are the
double projections of the elastic stiffness tensor.

r cosfsing coso 0
) ) ) N cosb
X= | rsinBsing |,n=1| sin@ |, m={( 0 |,y :n( . ) (2.36)
sin®
r cosp 0 1
Qik = GijksNjns, Rik = Cijksnjms, Tik = CijksM; M. (2.37)
A general solution of Eq. 2.35 can then be expressed as
(Y1, Y2, X3) = axe™P1e, (2.38)
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Influence coefficients for anisotropic half space

The six distinct eigenvalugsare obtained by calculating the roots of
det(T'(p)) = det(Q + p(R+RT) + pT) = 0. (2.39)

They are either complex or purely imaginary (two by two conjugate) by the positive strain
energy density requirement (shown by [ESH 53] and [TIN 96]). The complex eigenvec-
torsa are obtained with Eq. 2.40. They are not trivial solutions.

[Q+p(R+RT)+ p?Tla=0. (2.40)

The traction vectot on the planexg=constant and the in-plane stress vedare
deduced from

t = (013,023,033) = (CrasUk s; Coasl s, CazsUi s) (2.41)
S= (011,012, 022) = (C11ksUks, C12ksUi s, CooksUk ) - (2.42)

Using the displacement solution (Eq. 2.38), the transformed traction and in-plane
stress vectors can be found as

fu = —inbee PPs, (2.43)
§ = —incee 'PWs, (2.44)
The eigenvectorb are derived by Eq. 2.67
b= (R +pT)a= —%(QerR)a, (2.45)
and the eigenvectorsby
c=Da. (2.46)

The matrixD is defined by

D1j = Ci1jaNa + pCrjs,
D2j = C12jaNa + PCi2j3,
D3j = Co2jaNa + pPCo2j3,
with j,a=1,2,3. (2.47)

If pj, 3 andb; (j =1, 2, ... , 6) are the eigenvalues and the associated eigenvectors, it
is defined that

Im(pj) >0(j=1,2,3, pj+3=TD;
g+3 =79, bj43=Dj, G3=T,
A = [a,ap,ag], B = [b1,b2,b3], C = [c1,C2, C3]. (2.48)
Supposing that the eigenvalues are distinct, it is helpful to normalize the eigenvectors

so thata andb satisfy:
biTaj +a,-Tbj = §jj (2.49)
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2. A semi analytical method for contact between anisotroitenials

with &;j the Kronecker delta, then the Green’s functions are obtained by superposing the
six eigensolutions of Eq. 2.38.

G(y1,y2,X3) = lw —in 1A < e P > GATF

T(y1,y2,%3) =T — B < € P8 > GATF

&(y1,y2,X3) = & — C < & P > GATf
(2.50)

with < e P8 > — diag[e PP, g 1P21Xs e~ 1Ps5], The matrixG is determined with

G=B'B. (2.51)

In order to obtain the Green'’s functions in the physical domain, the inverse Fourier
transform is applied to Eq. 2.50.

U (X1, X2, X3) = Uco (X1, X2, X3) — 4|—n2// {n‘lﬂ < e P 5 GATe 10av1xy2) } dydysf

(2.52)
To handle the double infinite integrals, the polar coordinate transfprea () cost, y» =
nsin anddy;dy, = ndedn) is introduced so that the infinite integral with respect to the
radial variable can be carried out exactly. Thus, the final Green’s functions in the physical
domain can be expressed in terms of a regular line-integral ov2rj[0OAs the method
is the same for the displacements and the stresses, only the displacement solution will be
detailed. So, Eq. 2.52 becomes

. 27T o
i _ . . .
U(X1, X2, X3) = Ueo (X1, X2, X3) — yr //A < e P 5 GATe INxacosdHxesindyy | f
00

(2.53)
Since the matrice& and G are independent of the radial variabie the integral
with respect tay can be performed analytically. Assumirg+ 0, the displacements are
reduced to

2mn
1 -
U(X17X27X3> = u°°(X17X27X3> + H /'A‘(;U'A‘Tde f (254)
0

where the matrixG, is defined by

. (G)ij
(Gu)ij = —PiX3 — (X1 COSB + X2 Sind)” (2.55)
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Influence coefficients for anisotropic half space

Similarly, the Green'’s stresses can be written as

" 21
1 =T
t = teo (X1, X2, | | BGA dB| f
(X1,%2,X8) = tes (X1, X2, X3) + 7 5 / t
_'21_[ _
01,2, Xs) = (0. X2.%a) + 75 | [ CGeA"dB| 1 (2.56)
with the matrixG; as
(G)ij

(Gr)ij = (2.57)

[—PiX3 — (X1c0S0 + X2 Sin6)]2°

If the studied point is at the surface of the anisotropic half-space Q), the formu-
lation is slightly different because of a singularity in the complementary part. Equation
2.53 becomes:

. 21T
u(xl,XZ,O):uw(xl,XZ,O)—4l—]T2 //KGATe‘i”(choseJ“X?Si”edr] f (2.58)
00
By introducing the polar coordinate transform for the field point=r cosBy and

X2 = SinBp, we obtainx; cosB + x2sin@ =r cog 0 — Bp). And by carrying out the integral
with respect tay using relation ([BAR 75])

00

/ e gy — —1k +B(K) (2.59)
0
Equation 2.58 can be written as

U(X1,X%2,0) = Uo (X1, X2, 0) {/A { - s(e eo)+n6(rcos(9—eo))] de »f

(2.60)
By virtue of ([BAR 75])

5(6— 6o+ 11/2)
r[sin(6—6o)|

o(rcog6—0p)) = (2.61)

the Green’s displacement on the surface of the half space can be finally expressed as

n T

1 J1 AGA o T

u(x1,X2,0) :u0<,(x1,x2,0)——4]_[r {n/cos(eeo)de+l[AGA ]eeoﬂ/z}f (2.62)
0
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2. A semi analytical method for contact between anisotroitenials

with the integral being understood as the Cauchy principllevalf x = 0, the function
d(X) is equal to 1, if not it is a null function.

Green's stresses, where the integral is defined by the Hadamard finite part, can be
derived as

an = T = T
B 1 |1 BGA _d[BGA |
t(x1,X2,0) —to<,(x1,xz,0)+41_[r2 {T[O/co§(eeo)de$lde GBO:tT[/Z}f (2.63)

S(X1,X2,0) = S0 (X1, X2, 0)

Tt

n - T — T
1 {1/ CGA 40 _d[CGA ]
0

Tz \ 1/ cos(e-80) qE'dee%ﬂﬂ}f- (269

There are some materials for which the general procedure outlined here breaks down,
for instance isotropic materials. In an attempt to substitute materials constants corre-
sponding to an isotropic material into the formulas AoandB, the term in the matrices
are infinite. Some fully anisotropic materials may exhibit the same degeneracy. [CHO 03]
have found a way to rewrite the complex variable formulation for isotropic materials
into a form that is identical in structure to the Stroh formulation. This approach is very
useful, because it enables to solve problems involving interfaces between isotropic and
anisotropic materials. [BOW 09] deals with this problem too.

Note about programming The general expression of eigenvectors is obtained with
Maple and the eigenvalues are calculated with the routines of the Numerical Recipes. The
calculation of integrals is made numerical®is taken fromrt/100 to% +11/100

with a step equals tor2 100.

2.3.2 Cauchy principal value

In mathematics, the Cauchy principal value is a method for assigning values to certain
improper integrals which would otherwise be undefined.
Consideringc as a singularity of an one real variable functibmnd supposing that
a < ¢ < b, the following limit
c—¢ b
lim [ f(x)dx+lim [ f(x)dx=L < 4o

e—0 n—o0
a c+n

exists and is finite. So, we say that the improper integrdl(®f on the interval exists and
its value is defined by..

If the above limit does not exist, it is possible that it exists whamdn tend to zero
simultaneously, that is if the limit

c—€ b
liﬂ‘o(/ f(x)dx+/f(x)dx):L
a C+E€
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Influence coefficients for anisotropic half space

exists and is finite. In this case, the linkitis called the Cauchy principal value of the
improper integral, what is written

b

V. p. /f(x)dx: L.

a

The definition extends easily to the case withingularitiesa < xi, ..., X, < b. If for

X1—€ b
€ > Otheintegrals [ f(x)dxand [ f(x)dxexistand are finite, and the limit
a Xn+E€
X1—¢€ b
Iim(/ F(X)dX+ ... + / F(x)dx) = L
e—0
a Xn+E€

exists, we have :
b

V.p. /f(x)dx: L.

a

7(:0@%6;0) de can be calculated by avoiding the singularities

equal toBp + 11/2 modulon. The difficulty is to determine the value of

21
So, the improper integraf
0

2.3.3 Hadamard finite part

The integral in the sense of Hadamard shows how to calculate an integral that has multiple
singularities, as shown below.
If the Cauchy principal value of the improper integral

b b
/(tf_(t)z)zdt:ym / v dt+/ f(t)i gt — 21X
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2. A semi analytical method for contact between anisotroitenials

2.4 Influence coefficients for coated anisotropic half
space

2.4.1 General formulation

The method is similar to this for influence coefficients for anisotropic half space. We
work with the Green'’s functions in the Fourier domain to obtain analytical expressions.
The main steps are recalled.

In the absence of body forces, the equations of equilibrium in terms of displacements
Uy are written aij U j = 0. Three matrices 3 3 are defined with the elastic stiffness
tensorCijq and the vectors andm, which form a right handed triad with the position
vectorx = (xl,xz,X3)T. Q, R andT are the double projections of the elastic stiffness
tensor.

Qik = GijksNjns, Rik = Cijksnjms, Tik = CijksM; M. (2.65)

[Q+pi(R+RT)+p?Tla = 0. (2.66)

The subscripfT denotes transpose of a vector or matrix. Six pairs of eigenvalues
pi and eigenvectors; are obtained by solving Eq. 2.66. Only three pairs of them are
independent4 = (ai,ap,a3) andp; with Im(p;) > 0 andi = 1,2, 3), the three others are
their complex conjugatesA(and ;). MatricesB = (by,by,b3) andC = (cy,¢p, C3) are
related to the matri by

1
bi = _E<Q+ piR)a, (2.67)
|
with the normalization relatiob; g +aTb; = &, and

¢ = Dig;, with
Dkji = CikjaNa + PiCukjz for k=1, 2, (2.68)
D3ji = Co2jaNa + piCo2j3.

gij is the Kronecker delta. The matriis different from the fourth-rank elastic stiffness
tensorCijq , which is always written in its component form in the text. The two matrices
M andN are defined by the following expressions.

M=BA 1, N=CA™L (2.69)

The fundamental solution, also called Green’s functions, are denotefi(kyfor the
displacement and]!‘ki (x) for the stress. The concentrated fofca vector, is applied at the
origin of the reference frame, which is located on the surface of the anisotropic coating
(x3 > 0). The direction of the force is indicated by the last subscrifolutions at field
pointx due to a point force can be written as

uj(x) = uji (x) fi, ojk(x) = o]-‘ki (x) fi. (2.70)
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Influence coefficients for coated anisotropic half space

While u is a vector an@ a tensor of second ranki; is a tensor of the second rank and
o* is a tensor of the third rank.

The boundary conditions, at the interface= Zc, require that the displacement and
the traction vectort = o(0,0,1)T, are continuous. Therefore the six stress components
are divided in two parts t* the traction (out-of-plane stress) vector aidhe in-plane
stress vector. The fundamental stress solutions can be expressed with the derivatives of
displacement, taken with respect to the field pairds

(013,0%3,033) = (Craa Ui, Caa Ui, Caa Ui ) )

(011,012, 925) = (Caaki Uiy, Caaki Ui, Co2ki Ui ) -

t*
S*

The Green’s functions in Fourier transformed domain (denoted by the tilde) can be
written in the following series forms, wityy andy, the transform coordinates,

i (Y1, Y2:%8) = O™ (V. Y2, %6) + 3 Ok (Y1, Y2, %),

=1

8 >

~—Q
*

B (v, Y2.6) = T (Y1, Y2,38) + S Tk (Y1, Y2, %3), (2.72)

=)
Il
[

8

~k oo)

& (Y1, Y2,%a) = S (Y1, Y2, %) +

*

%" (y1,y2,%3).

1

=]
Il

The subscriptn defined the material in which the studied point is, O for the coating or 2
for the substrate. The infinite part of the displacement and the stress need to be carry out
only for the coating, where the concentrated force is applied. In the substrate, this part is
equal to zero, as no force is appliagh*®), to*(*), 55*(**) are obtained by [TIN 97] and

the complementary parts by [YAN 02].

The displacement in the coating, wher:&3 < Zc, is decomposed in two parts.

GZ(N) (X3) = GZ;&N) (X3) + GS(ZN) (x3) with
g (xa) = Ag < e Pos > KoV (0) and (2.73)

00V (xa) = Ag < e Ponls—2Z) 5 AG- 15V (75),

According to the value of the order N, first ords8r= 1 or superior ordeiN =
2,3,...,, the displacements ixs = 0 andxz = Z¢ have different expressions.

it (0) = —Mo Moy (0),

0 Mo Mol (2.74)
Go(lN) (O) = _MO 1M O~0(2N 1) (0)
Tz (Ze) = (M2 —Mo) (Mo —M2)g ™' (o). 2.79)
lip (Z0) = (M2 —Mo) ™ (Mo —M2)tig" " (Ze)
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2. A semi analytical method for contact between anisotroitenials

The infinite part of displacement fag = 0 andxs = Zc can be written explicitly as

65 (0) = Ag < € P00 5 Ag (Mo —Mo) ™,

() o n _ 4 o (2.76)
CIO (Zc) =Ap < g 'PoN%c - Ao (Mo— Mo)_l.

The stresses are also expressed in two parts and derived expressly from the displace-
ment.

~+(N ~+(N ~(N
T (xa) = TtV (xa) + Ty (Xa)
N

= —inMotior ™™ (xa) — iNMotieaY (x),
N xg) = &M (x5) + &N (xg)
— —inNotior ™" (xa) - iNNotio (xa)-

(2.77)

~k

Whenxz > Z¢, the studied pointis in the substrate. The displacement can be expressed

as

with, depending on the ord&t

;" (Ze) = (M2~ Mo) (Mo~ Mo)ig ™) (Zc),

N - o N (2.79)
GZ(N)(ZC> _ (MZ— M0>_1(M0— MO)GOg_N 1)(ZC>
The formulation for the stress is
5™ (xa) = —inMti, ™ (xa),
(N) N (2.80)
S, (xg) = —inNzli2 ' (x3).

The transformed displacement, traction and in-plane stress tensors can be written as a
sum of terms with each term having the following form

0 = o) + % in"tna<e ™S gy <e s g < e s g,

’t“*

fr(e) 4 %JNJA <@ ™S gy <™ s g < el > Jo, (2.81)

g =54 %JNH <@ ™S gy <@ s g < eifon s g,

0%, t* and3" do not share necessarily the same veatprand tensorg,, see Tabs. 2.2 to
2.4.

By inserting expressions in Eg. 2.81 into the inverse-transform operator, the displace-
mentu*, the stresses ands* are obtained. The in-plane stres$ias a similar expression
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Influence coefficients for coated anisotropic half space

than the traction stregs.

co 2T

u* = u( +% //nu ) Ya(Xa=xa)dndo

@ 2" (2.82)
+% //lJN+1<e”N”>JN L<e ™S g

< e iron 5 g eVal Xﬂ X“)dr]de

and

o 21T

+% //nt* )@lYaXa—%a) gy d

- 1 o o _ | (2.83)
_ y#(o0 —ir —irp
=t +%WO/O/nJN+1<e NS Jy---<e ™ > g,

< e Mon 5 JpeVa(a—xa)gn de.

Jn andry are functions oB but independent afl. As shown in Eq. 2.81, the trans-
formed displacement and stress are written as the multiplication of a series of exponential
functions ofn and a factor of). The double integrals are reducible to a 1D integral by
carrying out the integral in. The reduced integrals are given by

ui = Ui +% o2 /G“ o +i8(s™))de, (2.84)

* 1 o
th =t +% / (= rz +18 (M), (2.85)

whered(k) is the Dirac delta, and the prime indicates the first derivative with respéct to
with

N
G = (Fw N+ 2Tk N~ (g )n = (T o

N . (2.86)
SN = (rg N+ (T )n -+ (kg )0 + X1.COS + XoSind.

Here, for the contact between a rigid sphere and an anisotropic substrate with a coat-
ing, the orderN will be limited to N = 3, which gives a good approximation. Yang
[YAN 02] studied the error for different orders and for this case, the dider4 does not
provide any further significant contribution. This was also numerically verified using the
present model. The calculation details are addressed in the following part.
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2. A semi analytical method for contact between anisotroitenials

2.4.2 Specific formulation

As discussed just above, for the case of the contact between a rigid sphere and an
anisotropic substrate with a coating, the orewill be limited toN = 3.
For 0< X3 < Zc, Egs. 2.84 and 2.85 are reduced to
ﬂ;g_l) (Xg) = il’]_lﬂo < e‘iﬁor"@ > Ko_l(—mO_lM o)ﬁz(m)(O)
= il’]_lﬁo < g Ponxs Ko_l(—mO_lM o)Ko < e Pon0 5 Ko_l(Mo —Mo)_l,
68(21) (X3) = in_lAO < @ Pon(xe—2Zc) - A0—1<m2 B MO)_l(MO _MZ)GS(“)(ZC)
=in"tAg < e PoN0e=Ze) > AL (M, — Mo) (Mo —M3)Ag

< e—iﬁoan > Ko_l(l\/lo _Mo)_l.
(2.87)
loy” (xa) = in~*Ag < & Pae > Ao (—Mo "Mo)ligy (0)
—in Ay < e Poe = Ay (Mo "Mo)Ag < e PoN(-Ze) 5 AL
_ P, o o
(M2—Mo)™(Mo—M2)Ag < &™'Po1% > Ag (Mo —Mo) %, (2.88)

G;g) (xa) = in~tAg < e PoNCe=20) 5 AG~L(M, — M) L (Mo — Mz)ﬂg(ll) (Zc)

05 (xa) = in~Ag < e P > Ag™H (Mo "Mo)ligy (0)
—in 1Ay < e Poe = Ay (Mo TMg)Ag < e PoN(-Ze) -
Ao L (My— M) Y(Mo—Mp)Ag < e PoZe > Ay
(—Mo "Mo)Ag < e PO = Ay~ (Mg — M) 2,

o5 (1) = i~ g < & PN 20) > Ag (M, —Mo) A (Mo — W2) 8 (Zc)
—=in"tAg < e PoN0e—Zc) 5 A0~ (M, — Mg) LMo —
< PonZe » Ay (Mo Mo)Ag < e PNZ0) 5 AgL(M, — M)~ L

(Mo —MZ)KO < g 'PonZe > Ko_l(Mo —Mo)_l.
(2.89)

(2.90)
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Influence coefficients for coated anisotropic half space

f?;é“” (xa) = —iNMolioz" ™ (x3),

59" (xa) = —inNolioz ™ (xq).
Forxs > Zc, Eqgs. 2.84 and 2.85 give

(2.91)

u;(l)( )=in 1A, <e iP2N (3 —Zc) > A, 1~*(1)(ZC)
—in 1A, < e PN06=Z0) S AL, N M, — Mo) H(Mo—Mo)Ay  (2.92)
< e P 5 Ay (Mo —Mo) L,

052 (xg) = in 1Az < e P2N020) > Ay TP ()
—in 1A, < e P2N06-Z0) S AL, (M, — M)~ H(Mo— Mo)Ag (2.93)
< e PonZ > Ko_l(—MO_lM O)KO < g Pon0 Ko_l(l\/lo —VO)‘l,
0 05) =N *Ap < &P > Ay 0% 20
=in 1A2 < g 1P2N(s—Zc) > Ay (Mz— Mo)_l(mO— Mo)Ko

- S | (2.94)
< e P 5 A (=Mg "Mg)Ag < e Pon(=Z) 5 pp~1
(Mg — Mo)_l(MO —Mz)ﬂo < e‘iﬁonZC > Ko_l(Mo —Mo)_l
B () = —inMzi2"" (x3) 2.95
«*(N) C— . x(N) (2.95)
S, (xg) = —inNalz " (X3).

The following tables summarize the relevant coefficients to obtain the displacements.

N=1 | G = Uj)%” (Geoko)1 (B )
Y = (1) + (1) + X109 + xind

N=2 G<2> Uike)s Fake)Y Fegh) L (Feai))

s<2) (Mg )<2) + (i, )(2) +(rk1)( ) | %.c0D + XpSind
N=3 | G = (G,)s (o) (i) (Jete)t (Jei)y
5(3) (rk4)(3) (rk3)<3>+(rk2)<

\"3

b (rkl)< ) + X109 + XoSind

Table 2.1: CoefficientsGEi'\') andsN)
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2. A semi analytical method for contact between anisotroitenials

N=1] 3W =~ i =poxs
J]_(l) :K07 (7M0 Mo)ﬂo I’o(l) =0
JoM =Ag "(Mg—Mg)?

N=2 | 3@ =A, r2? = poxa
J,® :Koil(*mo Mo)Ao r1® = —poZc
1@ =Ag 1 (M2 —Mo) 1 (Mo —M2)Ag | 10? =poZc
3@ =Ry *(Mo—Mg)

N=3 | 3,0 =A, r3® = poxa
35 :Koil(*m Mo)Ao r2® = —poZc
32® = Ao (M2 —Mo) 2 (Mo —M2)Ag | 11® =poZc
31O =Ry H(-Mo "Mo)Ao ro®=0
Jo® = Koil(M 0o—Mg™?

Table 2.2: Coefficients forli,;

N=1] 3" =Ao r1® =po(xs — Zc)
3 = Ao (Mo —Mo) 2 (Mo~ M)A | 1o =poZc
3o® =Ag {(Mo—Mp) L

N=2 [ 5@ =Ag r2@ = po(xs — Zc)
32® = Ao (M —Mo) 2 (Mo —M2)Aq | 1@ =poZc
J]_(z) :A07 (7M0 Mo)Ao I’o<2) =0
Jo® =Ag "(Mg—Mp)~*

N=3 [ 3% =Ao r3® =po(xs —Zc)
J3®) = Ag (M —Mo) 2 (Mo—M2)Aq | 12¥ =poZc
3, =&y (~Mo "Mo)Ao r1® = —poZc
31 =Ag (M2 —Mq)L(Mo—M2)Ao | rol® =poZc
3 =&y H(Mo—Mg)

Table 2.3: Coefficients forli,

N=1] ,T=A, N =p,y(xs - Z)
3@ =AMy —Mo){(Mo—Mo)Ao | ro® =PpoZc
JoM) = Koil(M 0o—Mg™?

N=2 33<2) e Kz I’2<2) = ﬁZ(x'i - ZC)
3, =R, My —Mo) {(Mo—Mo)Ao | 1@ =poZc
32 =&y H (Mo *Mo)Ag ro®=0
Jo® = Koil(M 0o—Mp)?

N=3 J4<3) e Kz I’3<3) = ﬁZ(x'i - ZC)
330 = Ay (M —Mo) (Mo —Mo)Ao | 12® =poZc
3, =Ry (=Mo "Mo)Ao r1® = —poZc
31 =Ag H(M2—Mq) (Mo —M2)Ag | rol® =poZc
3 =Ry (Mo —Mg)

Table 2.4: Coefficients forli;
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Validations of the contact solution

2.5 Validations of the contact solution

The half space is defined by the coordinate system z) wherez represents the depth

and so(x,y) the surface. As the material can be oriented to the contact, an other system
(1,2,3) is defined for the material properties. If the an@lgis equal to O, then the
direction 3 corresponds to the depth, as shown in Fig. 2.1.

x, 1

/

es
‘9;[, m [ 2

3 2

Figure 2.1: Coordinate systems

2.5.1 Coefficients for anisotropic half space

This section deals with the validation of the influence coefficients derived for anisotropic
half space. The material is assumed to be isotropic or orthotropic.

Validation for an isotropic case The first validation is a comparison between the results
obtained using the anisotropic model when dealing with an isotropic half space submitted
to an Hertzian loading and the analytical solution given in Egs. 2.96 and 2.97. Assuming
a rigid indenter, with a spherical tip of radi,qenter IN CcONtact with an isotropic half
space, the Hertz pressufgertz and the Hertz contact radiaseri; Can be written as

3P
Phertz = (2.96)
2T o1,
3P 1-v2 .
Bertz = ( R“degtgilid z0id) 113 (2.97)

P represents the load andv are the Young’s modulus and the Poisson’s ratio of
the isotropic half space, respectively. The material is assumed cubic, almost isotropic.
It is not possible to adress isotropic materials with the anisotropic formulation based
on the Stroh’s formalism. It leads to a degenerate case where repeated roots occur
from the characteristic equation of the material. Solution of Eq. 2.39 leads to double
roots responsible for singularities. The Coulomb’s modulus is equal to the isotropic
Coulomb’s modulus plus.@%. The following properties afe = 120GPa v = 0.3 and
G = 4650MPa.

Two meshes are studied (the two first numbers refer to the directions parallel to the
surface and the third one to the depth):
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2. A semi analytical method for contact between anisotroitenials

- a so-called standard mesh, 447 x 25 elements leading to 2323 elements within
the contact area,
- a so-called refined mesh, 995 x 50 elements leading to #4171 elements within
the contact area.
Note that for contact problems it is usually admitted that 10 points are usually sufficient
to accurately describes a specific wavelength.

The differences between the anisotropic model results and the reference Hertz solution
are:

- 0.6% for the refined mesh,

- 2.1% for the standard mesh.
The (anisotropic) numerical solution tends towards the (isotropic) analytical solution for
isotropic properties.

Element number

in the contact area 23x 23 71x 71
Mesh 47 x 47 x 25 | 95x 95 x 50
CPU isotropic model 15s 1min49s

CPU anisotropic mode|] 2min37s 20min25s

Table 2.5: The influence of the mesh and the model on the CPU time

The difference between computing time with isotropic and anisotropic models stems
from the calculation of the influence coefficients, whose calculation is more complex and
lengthy for the latter model. Note that the influence coefficients are computed only once
for a given anisotropic material, and stored to be used for further simulations. According
to Tab. 2.5 and Fig. 2.2, the standard mesh is a good compromise, it gives accurate results
in a reasonable computing time with a personal compmt&el@ Core"™2 Duo CPU
T9600 @ 2.80GHz 1.59GHz, 3.48Go RAM). This standard will be used in the following
parts.

Validation for an anisotropic case A finite element model has been developed with the
commercial FE package Abaqus (version 6.9), in order to validate the anisotropic semi
analytical method; a ball on plane contact is considered.

An isotropic sphere, with Young’s modulus 6L@imes larger than the half space
Young’s modulus and identical Poisson’s ratio, is in contact with a semi infinite homoge-
neous orthotropic half space. The mesh is shown in Fig. 2.3 and described in Tab. 2.6. It
includes semi infinite elements CIN3D8 on the edges of the body (dofhgito mimic
nil displacements like those obtained within the half space assumption, and quadratic el-
ements with 20 nodes and 27 integration points (C3D20) in the contact area (d@main
for more precision. To decrease the computation cost, the model is discretized with other
elements between this two areas. Elements in contact with semi infinite elements have
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Validations of the contact solution

P/Pper, IN the plane x=0

Hertz solution
- - - SAM
————— SAM, refined mesh| |

15

y/ aHer‘rz

Figure 2.2: Validation of the pressure profile for an isotropic case by comparison with
the Hertz solution

to be parallelepiped, so C3D8R are used (donfaihand tetraedral elements (domain

Q>) enable to reduce the number of elements and so the number of nodes and integra-
tion points. In order to respect the Hertz conditions, the sphere radius is 30 times larger
than the contact radius. To optimize the computation time, properties of symmetry along

direction 1 are used. Nil displacements are imposed at the bottom of the body.

Figure 2.3: Finite element model with a detailed view of the contact area

The first step consists in validating the FE mesh though a comparison of the contact
solution obtained for an hertzian loading. The difference between the SAM pressure
distribution (i.e. on the maximum pressure and the contact radius) and the FEM solution
is smaller than @1%.

Then, two anisotropic cases are studied. The half space is considered orthotropic, with
the following elastic propertie€, = 120GPa, the same Poisson’s ratio= 0.3 and the
same Coulomb’s moduluG = 4650M Pa.

Note thataertz cOrresponds to the half width of the contact obtained for an isotropic

41

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0014/these.pdf
© [C. Bagault], [2013], INSA de Lyon, tous droits réservés



2. A semi analytical method for contact between anisotroitenials

Area Type | Quantity| LxIxh

Sphere| C3D10 | 22276 R=40
Q C3D20 | 54000 3x6x3
Qo C3D4 49 656 | 10x 20x 10
Q3 C3D8R | 22942 | 29x58x 29
Qq CIN3D8 | 3448

Table 2.6: Number and type of elements in the FE model

material with Young’s modulE; = E» = E3 = 120GPaandv = 0.3.

- First case: the Young’s modulus along direction 3 (the depth) is twice larger than
the Young’s moduli in directions 1 and Ez = 240GPa The FE and SAM pressure
distributions are plotted in Fig. 2.4(a), in the plante 0. The difference on the maximum
pressure is lower than2%.

- Second case: the Young's modulus along direction 1 (on the surface) is twice larger
than those in directions 2 and B; = 240GPa A difference of 22% for the maximum
pressure is observed in Fig. 2.4(b), where the pressure is represented in the-plane

— SAM || — SAM

.
g

.
2s

* Abaqus||
--- Hertz

* Abaqus
--- Hertz |

P/PHertz
P/PHertz

L
05

*0‘5 [ 0‘5 1 *;: *0‘5 [
Yiayerz Ylaen,

(a) Es =2E; (b) E1 =2E

Figure 2.4: Validation of the pressure profile for an orthotropic material. Comparison
between FE and SAM results.

As the results obtained for an anisotropy along the surface are not so close, a compar-
ison for the finite element model between the two main directions of the surface has been
carried out (see Fig. 2.5). The pressure profile is plotted in the plan@ in Fig. 2.5(a)
and in the plang = 0 in Fig. 2.5(b). Two main points can be observed; results are dif-
ferent depending on the direction of the anisotropy along the surface (1 and 2) and results
are the same for both cutting plane whereas the anisotropy along the surface has an effect
on the contact area shape. After several verification, this difference is still misunderstood
but we assume that it comes from the properties of symmetry used to simplify the model.
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+ E =2E, Lttt + E;=2E;
T o;Antxﬂt\mA;. A E,=2Eg|| i ,;Anﬁnzmh;_ A E,=2E,||
K %, |--- Hertz o AL, |--- Hertz

*1 *0‘5 0 U‘S 1 -1 *0‘5 0 U‘S 1
Ylayerz Xayers

(a) Planex=0 (b) Planey =0

Figure 2.5: FEM and SAM pressure profiles. Comparisonfar= E, = 2Es.

By using this finite element model presented hereabove, results for an anisotropic half
space are obtained with a CPU time of 144 hours on the same class of personal computer
used for the SAM.

2.5.2 Coefficients for coated anisotropic half space

This second section aims to validate the influence coefficients for coated anisotropic half
space. Two cases are studied, the first one when the coating and the substrate are isotropic
and the second one when the half space is orthotropic, without coating.

The discretization of the half space using SAM is the so-called standard mesh, as
described previously.

Validation for an isotropic substrate with an isotropic coating This validation con-

sists in comparing the results obtained using the layered anisotropic model when dealing
with a layered isotropic half space submitted to an Hertzian loading and the results given
by [O’S 88].

Es, Ec andvs, vc are the Young’s moduli and the Poisson’s ratio of the isotropic
substrate and the isotropic coating, respectively. P represents the load. As in [O’S 88],
the indenter radiuRngenter Was taken to be 10 times the coating thickness. Materials are
assumed cubic, almost isotropic, because isotropic materials lead to double roots which
create singularities. The Coulomb’s modulus is equal to the isotropic Coulomb’s modulus
more or less 1%.

The gap between the O’Sullivan solutions and the numerical solutions for the pressure
are inferior to 4%, except for the caBe = 0.25Es where the difference reaches 6%, see
Fig. 2.6 in the plang = 0. It can be concluded that the (anisotropic) numerical solution
tends towards the (isotropic) analytical solution for isotropic properties, as expected.

43

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0014/these.pdf
© [C. Bagault], [2013], INSA de Lyon, tous droits réservés



2. A semi analytical method for contact between anisotroitenials

T
x  SAM

—— OSullivan

EC:4ES

2r . EC:2 ES

x Ec: ES

+ E05Eg
r = H

15 . . EC—O.25 ES

x|

L E s SR TR R R e

0 0.4 0.8 12 1.6
X/aHr-.‘r(z

Figure 2.6: Comparison of the pressure profile for layered isotropic medium. Compari-
son between O’Sullivan ’s solutions and SAM ones.

Validation for an anisotropic half space The validation is done by comparison with
the finite element model used in the precedent sectidnl(R

An anisotropic case is hence studied. The half space is considered orthotropic, with
the same Poisson’s ratio and the same Coulomb’s modulus. The Young’s modulus along
direction 3 (the depth) is twice larger than the Young’s moduli in directions 1 and 2. In the
numerical solution, the coating and the substrate are composed with the same material.
Note thatayert; corresponds to the contact half width obtained for an isotropic half space
with E; = Ex = E3. The FE and SAM pressure distributions are plotted in the plané
in Fig. 2.7. The error on the maximum value of the pressure is lower t12.0A very
good agreement is obtained for this case between SAM and FE results.

SAM
* Abaqus
12 ---Hertz |

|
LY S

y/ Aertz

Figure 2.7: Validation of the pressure profile for orthotropic material when the coating is
in the same material than the substrate by comparison with FE niggdel 2E,
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Conclusion

2.6 Conclusion

The influence coefficients for an anisotropic half space with or without coating are ob-
tained with anisotropic Green'’s functions and by using the superposition method. They
are expressed as a sum of an infinite part and a complementary part which extends the
formulation to the half space case. These coefficients are deduced from the functions
for anisotropic bimaterials or trimaterials. The three main points of the methods are the
double projection of the elastic stiffness tensor according to the principal axes, the deter-
mination of eigenvalues and eigenvectors from an equation of degree six (solutions are in
the complex domain) and the use of the Fourier transforms.

The model is validated by comparison with the Hertz solution for isotropic materials,
with a FE model for anisotropic materials and with the results of O’Sullivan for layered
isotropic materials. Isotropic materials can be studied by assuming the material cubic and
modified lightly (of the order of 1%) the Coulomb’s modulus, to avoid singularities.

The method is very efficient. The computation time is mainly required for the quan-
tification of the influence coefficients. Note that an alternative is to compute them once
for a given configuration and to store them. In Tab. 2.7, the CPU times, with or with-
out the computation of the influence coefficients, are given. The mesh is composed by
77 x 77 x 40 elements and the contact area by<Eb elements.

Solving the contact problem| With influence coefficients Without influence coefficients
CPU isotropic model 1min23 33

CPU anisotropic model 38min 2min26
CPU layered anisotropic mode 6h40 17min

Table 2.7: Contact problem CPU time, with and without the influence coefficient com-
putation
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Chapter 3

Normal contact for anisotropic
materials

This chapter highlights the effects of anisotropy on the normal
contact solution between anisotropic materials, the pressure
distribution and the contact area (size and shape) and the

corresponding stresses.
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3. Normal contact for anisotropic materials

3.1 Parametric studies for anisotropic half space

The influence of the properties of an elastic anisotropic half space which is in contact with
a rigid indenter, with a spherical tip, is studied here ([BAG 12]). The contact parameters,
i.e. the contact area and the pressure distribution, will be more specifically investigated.
For the material properties, the depth corresponds to direction 3, which means that the
surface is defined by directions 1 and 2. Nevertheless, the coordinate axes may be different
from the material directions, as defined in Fig. 3.1. Except for the study of orient@gion,

is equal to 0. The parallelepiped is discretized usingc @7 x 50 elements and 5353
elements in the contact area.

In these examples, materials are orthotropic, with the identical Poisson’s ratio and the
identical Coulomb’s modulus along the three directions. The material data used in the
numerical simulations are synthesized in Tab. 3.1. Note that all the result are normalized
with respect to Hertzian parameteas; iz, P4ertz) Obtained for an isotropic material with
E=E; =E,=Ezandv =vi2 =Vi3=V>3.

es
‘9;[, m [ 2

3 2

Figure 3.1: Coordinate and material axes

Figs. 2.4(a), 3.4,3.6 | Figs. 2.4(b), 3.2, 3.3, 3.5 Figs. 3.11, 3.12
Figs. 3.9,3.10 (FoB—0°)
Ei/E,—1 Ei/E,Z1 E
Es/Ep# 1 Es/Ep =1
V12 = V13 = V23, Vij = Vji.Ei /E; v
G2 =G13= G =E>/(2(1+V12)) G

Table 3.1: Elastic properties of studied materials

3.1.1 The Young’s modulus

Contact pressure and contact area The influence oE; andEs on the contact pressure
distribution is shown in Figs. 3.2 to 3.4. It is observed that a change of the Young’s
modulus along a direction parallel to the surfaég biere) has a moderate effect (Fig.
3.2). The maximum contact pressure is increased by 3% whendoubled. Moreover it

can be observed that the contact area is no more circular (Fig. 3.3) but becomes elliptical.
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Parametric studies for anisotropic half space

The effect of the Young’s modulus along the degdih)(is more pronounced: increase of
32% of the maximum contact pressure and decrease of the contact radius by 11% when

the Young’s modulus is increased by a factor 2 (Fig. 3.4).

08

P/Prertz

041

0.2

y/ Aertz

Figure 3.2: Influence ofE; on the contact pressure, in the plane 0

15 T T T T T
E,=E

isotropic

-=- E1:8 Eisotropic

-15
15

. . . . .
-15 -1 -0.5 0 05 1

X/aHertz

Figure 3.3: Influence ofE; on the contact area

Maximum pressure Figures 3.5 and 3.6 summarize the influence of the Young’s modu-
lus on the maximum pressure. A slight modificatiorEefaroundEisetropic does not have

a significant effect, conversely t€y that does have a pronounced effect. Nevertheless, a
monotonic increase of the maximum contact pressure is observediyliecreases (see
Fig. 3.5). The maximum pressure drops quickly wikgrdecreases (see Fig. 3.6).
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Figure 3.4: Influence ofE3 on the contact pressure, in the plane 0
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-
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Figure 3.5: Influence ofE; on the maximum pressure

Indentation curve Finally it is also interesting to have a look on the effect of the
anisotropy on the normal load versus displacement response, as monitored during an in-
dentation test. It is confirmed in Fig. 3.7 that a change of the Young’s modulus along a di-
rection parallel to the surface hardly affects the load-displacement curve. Conversely one
may observed a very significant modification of the indentation curve when the Young'’s
modulus along the direction corresponding to depth is varying, see Fig. 3.8. Note that the
use of the equivalent Young’s modulus as proposed by Swanson [SWA 04] does not allow
to reproduce these indentation curves.

3.1.2 The material’'s orientation

The effect of the material’s orientation in the plane normal to the contact is shown in
Fig. 3.9. Here the Young’s modulus of the material in direction 3 is equékte 3
Eisotropic but the material main direction is different from that of the contact. The angle
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Figure 3.6: Influence ofEz on the maximum pressure
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Figure 3.7: Influence of the Young’s modulus along axis 1 (parallel to the surface) on the
indentation curve

Bm is rotated from 0 to 90 degrees around the 1-axis. The numerical solution converges
progressively to the solution corresponding to an anisotropic material along the surface, as
seen previously wheB; # Eisotropic: This is confirmed in Fig. 3.10, where the maximum
pressure is plotted versus the angle, for different ratios bet&g@mdEisctropic. HENCe,

the method is valid whatever the orientation angle compared to the surface.

3.1.3 The Poisson’s ratio and the Coulomb’s modulus

In Figs. 3.11 and 3.12, the influence of the Poisson’s ratod the Coulomb’s modulus

G are observed more precisely. The studied material is cubic. Dividing (multiplying) by

2 the Poisson’s ratio increases by 6% (decreases by 14%) the contact radius. In terms of
contact area it corresponds to an increase of 12% or a decrease of 30% for the contact
area, respectively. A modification of the Coulomb’s modulus by a factor 2 changes the
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Figure 3.8: Influence of the Young’s modulus along axis 3 (normal to the surface) on the
indentation curve
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Figure 3.9: Influence of the material’s orientation on the contact pressurebwjth, = 3

contact radius by 6% & > Gisetropic O 11% if G < Gisotropic. Thereforev andG have a
significant influence.
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Figure 3.10: Influence of the material’s orientation on the maximum pressure
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Figure 3.11: Influence of the Poisson’s ratio on the contact area
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Figure 3.12: Influence of the Coulomb’s modulus on the contact area
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Parametric studies for layered anisotropic half space

3.2 Parametric studies for layered anisotropic half space

An elastic anisotropic half space with an anisotropic coating is in contact with a rigid
indenter, with a spherical tip ([BAG 13]). The influence of the material’'s properties are
studied here. The contact parameters, i.e. the contact area and the pressure distribution,
will be more specifically investigated. The depth corresponds to direction 3, which means
that the surface is defined by directions 1 and 2. But the material main directions can be
different from that of the contact by the andlg (see Fig. 3.13). We considép, = 0,

except when the material orientation is studiédy, z) corresponds to the contact refer-

ence axes an(ll, 2, 3) to the material main direction system. The subscript C represents
the coating and S the substrate.

X, 1
> Y
e i
Ec Gm/ m ]2
ANS
3 2

Figure 3.13: Coordinate systems

In the first part, materials for the coating are orthotropic and the substrate is cubic, with
the same Poisson’s ratio and the same Coulomb’s modulus. The Coulomb’s modulus is
slightly modified relative to an isotropic materi& & Gisotropic += 1%), in order to avoid
singularities. In the second part, roles are reversed, the coating is cubic, almost isotropic,
and materials which defined the substrate are orthotropic.

The model is discretized using %777 x 50 elements and 58 53 elements in the
contact area.

3.2.1 An anisotropic coating on an isotropic substrate

The Young’s modulus The influence ofc1 andEcz on the contact pressure distribu-
tion is analysed foEc; /Es andEc3/Es ratios ranging from @5 to 6 (or 8). Results are
plotted in Figs. 3.14 to 3.16. The coating thickness is equal to the half of the Hertz con-
tact radiusZc = 0.5a4¢rtz- It is observed that a change of the coating Young’s modulus
along a direction parallel to the surfade-f here) has a limited influence (Fig. 3.14) on
the maximum contact pressure with an increase by 2% \lEaeis doubled and by 8%
whenEc; is multiplied by 6, but has a more pronounced effect on the shape of the contact
area. From circular it becomes elliptical (Fig. 3.15).

The effect of changing the coating Young’s moduli&gd) in the depth direction is
more pronounced: increase of 14% of the maximum contact pressure and decrease of the
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Figure 3.14: Influence ofEc; on the contact pressure (anisotropic coating over isotropic

substrateZc = 0.5ayert2)
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Figure 3.15: Influence ofc1 on the contact area shape (anisotropic coating over isotropic

substrateZc = 0.5aHert2)

contact radius by 8% when the Young’s modulus is increased by a factor 2 (Fig. 3.16).

The material’'s directions The effect of the material’s directions within the coating
relative to the contact can be observed in Fig. 3.17. The material main directions are
different from those of the contact. The maximum pressure is plotted versus the angle,
for different ratios betweekcz andEs. When6,,, angle around the 1-axis increases up
to 90°, the numerical solution converges progressively to the solution corresponding to
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Figure 3.16: Influence ofEcs on the contact pressure (anisotropic coating over isotropic
substrateZc = 0.5aHert2)

Ecs = Es andEc> = 3Es. So the influence of small angles is important because of the

effect of the anisotropy along the depth, whereas when the angle increases, the influence
decreases since the effect of the Young’s modulus along a direction parallel to the surface
is moderate. Hence, the method is valid whatever the orientation angle compared to the

surface.

- = Eg=05Eg
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Figure 3.17: Influence of the material’s direction on the maximum pressure (anisotropic
coating over isotropic substrat&; = 0.5ayert2)

The coating thickness Figures 3.18 and 3.19 show the effect of the coating thickness
on the contact pressure distribution. In the first case (Fig. 3.18), the Young’s Modulus of
the coating in direction 3 is equal r3 = 2Es. The cas&c = Oayertz COrresponds to a

half space without any coating (an isotropic half space) and theZaseoay e, to the

half space whose properties are those of the coating (an orthotropic half space). When
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3. Normal contact for anisotropic materials

the thickness of the coating increases, the influence of thgngpbecomes predominant
relative to the influence of the substrate as already observed for isotropic layered bodies
([KUL 10]). As Ecs > Es, the maximum contact pressure increases with the coating
thickness.

In the second figure (Fig. 3.19), the normalized maximum pressure versus the coat-
ing thickness is plotted for differerics/Es ratios, when the coating is orthotropic (Fig.
3.19(a)), or differentec /Es ratios, when the coating is cubic almost isotropic (Fig.
3.19(b)). The maximum pressure increases quickly for small valueg dhen from
Zc = apertz the curve tends slowly to an horizontal asymptote. When the coating is
isotropic, the asymptote corresponds g / Es)z/ 3. For the case of an orthotropic coat-
ing, the asymptote is different but its determination will require further investigations.

T T T T T T T T
15 270 e, ||
- ZC=O'2 aHeYlZ
- - - 2705 a,,,
Zc:l' Bentz
—— Zc=15 ayen,

—— Zc= @ By,

p/ PHertz

05r-

Figure 3.18: Influence ofZc on the contact pressure (anisotropic coating over isotropic
substratelcs = 2Es)

3.2.2 Anisotropic coating on an anisotropic substrate

The Young’s modulus The influence oEs andEss, the Young’s modulus of the sub-
strate, on the contact pressure distribution is investigated here and results are summarized
in Figs. 3.20 and 3.21. The coating thickness is equal to the half of the Hertz contact
radius,Zc = 0.5apertz. It can be first observed that the effectd; is limited. When

Es is doubled, the maximum pressure increases.@ydonly. If it is multiplied by 8,

the maximum pressure is raised by 3%. Conversely the effect of the Young’s modulus of
the substrate along the depthss, is more pronounced. The maximum pressure is 13%
higher wherEg; is twice thanEgs = Es. In addition the profile pressure is more rounded
when the coating is anisotropic, whereas it is rather domed for the case of an isotropic
coating.

The coating thickness Figure 3.22 shows the effect of the thickness of an isotropic
coating on an anisotropic substrate on the pressure distribution. The Young’s modulus
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Figure 3.19: Influence ofZc on the maximum pressure (isotropic substrate)

of the substrate along direction 3 is twice the one of the coakgg= 2Ec. When the
thickness of the coating increases, the layered half space tends to behave as an isotropic
half space. Since hele: < Ess, one may observe a decrease in the maximum contact
pressure with the coating thickness. It can be also observed thaZfram2ayert,, the
difference between the maximum pressure of the isotropic half space and the layered half
space is less than 1%, the coating erases the anisotropy effect of the substrate.
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Figure 3.20: Influence ofEg on the contact pressure (isotropic coating over an
anisotropic substrat@c = 0.5aHert7)

16

Figure 3.21: Influence ofEgs on the contact pressure (isotropic coating over an
anisotropic substrat@c = 0.5aHert2)

It can be concluded that, for a normal and frictionless contact, the coating and/or
substrate anisotropy along the direction normal to the interface has a strong influence on
the contact solution. The influence of the coating increases with increasing thickness,
both on the pressure distribution and on the contact area (shape and size). Conversely
a change of the Young’s modulus along a direction parallel to the surface has a limited
effect on the maximum contact pressure, however it affects the shape of the contact area
that is no longer circular but becomes elliptical. It reaches its maximum from a thickness
greater than the contact radius. Therefore the elastic properties, the direction of anisotropy
and the thickness of the coating have to be carefully chosen - and chosen together in a
complementary manner - to efficiently protect the substrate.
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Figure 3.22: Influence oZ: on the contact pressure (isotropic coating over an anisotropic
substratefEss = 2E¢)

61

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0014/these.pdf
© [C. Bagault], [2013], INSA de Lyon, tous droits réservés



3. Normal contact for anisotropic materials

3.3 Stress field

This section analyses the stress field in an anisotropic material without coating in a first
part and with a coating in a second part. After a validation, a parametric study is per-
formed. Results are normalized with the Hertz parameters.

3.3.1 Coefficient for anisotropic half space

Validation of an isotropic case First, the comparison between the isotropic model and
the anisotropic model (with a cubic, almost isotropic, material) is carried out. The half
space is submitted to an Hertzian loading. The profiles of the dimensionless stress com-
ponents are plotted along versus deifagert) either at the contact center£ y = 0),

Fig. 3.23, or at an offset poink & 0.5ayertz Y = 0.25a4ert2) In Fig. 3.24.

The numerical values are identical except g very close to the surfacez &
0.2anertz) at the contact center only, and foy, when the dimensionless depth ranges
between 0 and.8 whatever the surface point considered is. The reason why the numer-
ical values diverge from the analytical solution near the surface is not clear. It looks like
one bug remains in the calculation of tbig stress tensor component. For thg com-
ponent, it seems that the integral formulation becomes singular wtestds to zero for
x=y=0.

Validation of an orthotropic case Now a comparison between the FE model presented
in the previous section (2.1) and the anisotropic SAM is done for the orthotropic case
Es = 2E;, (Fig. 3.25).

As for the comparison with the analytical solution in the isotropic case the error on
the oy, component remains whereas the onesgpis amplified. In addition a difference
is also noticed for theyx andoyy components, with also a slight difference between them
while they should be identical since hdte= E,. Again the reason(s) why there is some
differences is not clear. It will require further investigations.

Table 3.2 summarises the components of the stress which need further investigations.

Anisotropic model is not in a good agreement for
Isotropic material Oy, for z < 0.8aer,
04 for z< 0.2ayert,
Orthotropic material Oxx, Oyy, Ozz Oy

Table 3.2: Summary of stresses’ validation from anisotropic model
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3. Normal contact for anisotropic materials

3.3.2 Coefficient for coated anisotropic half space

Validation of an isotropic half space Coating and the substrate are here assumed
anisotropic. They are made with the same material, a cubic oneGnVtIGisotropic = 1%.
The results are presented here for two values of the coating thickness, a first one equals
to zero and a second one chosen arbitrary equalg 0 0.5a4e1tz. The numerical results
obtained with SAM with the isotropic influence coefficients are considered as the refer-
ence solution. They are compared to the ones calculated with SAM with the anisotropic
influence coefficients.

The normalized stresses are presentedkfery = 0 in Fig. 3.26. The stresses are
validated excepted foo,; which, again here, differs near the surfa@2e<( 0.2ayertz).
Note that the problem with the,, component vanishes when using the formulation with
a coating.

Validation of an orthotropic half space The coating is still taken in the same material
than the substrate but their properties are orthotropic, with the same Poisson’s ratio and
the same Coulomb’s modulus. For the first case (Fig. 3.27), the Young’s modulus in
direction 1 is twice larger than the Young’s moduli in direction 2 and 3. For the second
case (Fig. 3.28)3 is twice larger than the two other Young’s moduli. Solutions obtained
with the SAM are compared with solutions of the FEM presented in chapter 2. Two
coating thicknesses are chosgg,— 0 andZc = 0.5ay¢rt2.

Results are in a good agreement, except for the stgseear the surfaceZt <
0.2aHertz). Moreover, a difference can be observed according to the value of the thickness.
A small difference can also be observed fgg and oy, components between the SAM
and FEM numerical results.

Table 3.3 summarises the components of the stress which are not validated and which
need further investigations.

Coated anisotropic model is not in a good agreement ffor
Isotropic material 0z for z < 0.2anertz
Orthotropic material 0z for z < 0.2anertz
(Better results witlZc = 0)
Coated orthotropic material invalidated

Table 3.3: Summary of stresses’ validation from coated anisotropic model
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are compared to the Hertz solution.
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3. Normal contact for anisotropic materials

Oxx/Phertz

077/PHertz

Oxz/Phertz

— Zc=0

--- Zc=0.5 ayepy|l

+ Abaqus

05

1

2l Ajertz

15

2

25

--- Zc=0.5 ayepy|l
+ Abaqus
o5 1 15 2
2/ Aertz
— 70
--- Zc=0.5 ayepy|l
+ Abaqus
0‘5 1 1‘5 2‘
2/ Aertz

Oyy/Phert;

Oxy/Phert;

Oyz/Pherz

— Zc=0

--- Zc=0.5 ayepy|l

+ Abaqus

0‘5 ‘1 1‘5
2l Ajertz

2

25

— Zc=0

T ZC:0'5 Ajertz |

+ Abaqus

0‘5 ‘1 1‘5
2l Ajertz

— Zc=0

--- Zc=0.5 ayepy|l

+ Abaqus

0‘5 1 1‘5
2l Ajertz
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3. Normal contact for anisotropic materials

Parametric studies In this paragraph, the coated anisotropic model is used. Materials
of the coating and substrate are identicaliEgp = Es) = E1, Eco = E = Ez andEcs =

Ess = E3. The thickness of the coating is taken equal to zero, so it corresponds to a
homogeneous media.

In Figs. 3.29 and 3.30, the influencebf andEs is studied on each stress compo-
nents: Oxy, Oyy, Ozz Oxy, Oxz, Oyz If 1 is the direction studied, the ratio betwegnand
E, is 0.25, 05, 1, 15, 2, 4. The stress components are normalized with the Hertz pres-
sure, corresponding to an isotropic half space with Young’s modtlas,. Results are
plotted versus the depth normalized by the Hertz's radius-aty = 0. The scale is the
same for all figures except for the stresg, in order to see the difference between the
configurations.

The Young’s modulugk; affects particularly the stressy (the one in direction 1).
The maximal value is multiplied by.& betweerE; = 0.25E3 andE; = 4E3, whereas it
is multiplied by 21 betweenEs = 4E; andE3 = 0.25E;. The influence oE; is more
important thariEz influence oroyy. Moreover, increasing; causes an increasedgy too
whereas increasings causes a drop iayy.

The effect of the Young's moduluss is shown in Fig. 3.30. The principal change
occurs for theo,, component, which increases by 29% whenis multiplied by two at
the depthz = 0.3anertz. NOte that as discussed earlier the numerical valuesfpare
incorrect between the surface and the depth0.3ayert2

In Figs. 3.31 and 3.32, we analyse the influence of the material orientation relative
to the contact, witl®,, =0°,30°,60°,90°. The Young's modulus in direction 3 (the
depth wherf,, = 0° and the surface whedy, = 90°) is twice the Young’'s modulus in
direction 1 and 2. Stresses are presented in the plan® and they are normalized by
the Hertz's pressure.

The study of the influence of the material orientation is similar to that of the influence
of Young’s modulus. Indeediyy is higher when the Young’s modulus along the surface
is more important. It is the same foyy. Similar results are also obtained oy, Over
the angle increases (Young’'s modulus along the depth decreases), the maximum value is
lower and decreasing stress in depth is faster.
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Stress field
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3. Normal contact for anisotropic materials
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Conclusion

3.4 Conclusion

The semi analytical model developed for the contact problem of elastic materials is used
to study the effect of anisotropy. It is found that, for a normal and frictionless contact, the
stiffness along the normal to the contact, in the coating or in the substrate, has a strong
influence on the contact solution in terms of pressure distribution and contact size; an
increase irkz leads to a higher maximum contact pressure and a smaller contact radius.
Conversely a change of the Young’s modulus along a direction parallel to the surface
(plane (1,2)) does not significantly affect the contact pressure distribution, however the
contact area is no more circular but becomes elliptical. The pressure profile is different,
more or less domed, if the anisotropy affects the coating or the substrate.

The thickness of the coating changes also the pressure distribution. It should be em-
phasized that, when the coating thickness exceeds the contact radius, the effect of the
substrate anisotropy vanishes quickly.

The performance of the method is highlighted by analysing the effect of the orientation
of the material main directions compared to the surface normal.

Therefore the elastic properties, the direction of anisotropy and the thickness of the
coating have to be carefully chosen - and chosen together in a complementary manner -
to efficiently protect the substrate.

The stress components are also studied. They can not be all validated, some issues
remain. Nevertheless, it is observed that the Young’s modulus along the surface affects
particularly the stresgyy and the one along the depth has an important influenag on
Results are confirmed by the ones on the influence of the material orientation.
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Chapter 4

Comparison with an isotropic
heterogeneous model

In this last part, the anisotropic homogeneous semi analytical
model is compared with an isotropic heterogeneous model,
which describes the fibers in composite materials.
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4. Comparison with an isotropic heterogeneous model

4.1 Introduction

The aim of this part is to compare the anisotropic homogeneous model, presented in
this thesis, to an isotropic heterogeneous model, developed in parallel by J. Leroux in
the framework of his PhD thesis [LER 13]. The latter considers an isotropic half space,
also called the matrix, with isotropic heterogeneities which form fibers. The study of
composite materials is then possible at the mesoscopic scale. In order to compare both
approaches, macroscopic and mesoscopic, properties of the heterogeneous material need
to be homogenized to obtain an equivalent homogeneous material.

4.2 Brief introduction to the model with inclusions

During his PhD, Leroux [LER 13] worked on the semi analytical model and improved itin
order to take into account inhomogeneities and simulate contact problem with composite
materials which are composed by an isotropic matrix and isotropic fibers.

The Eshelby’s equivalent inclusion method is considered to quantify the surrounding
material stresses. An iterative process is implemented to determine the displacements
and stress fields caused by the eigenstrains of all inclusions, accounting for interactions
between close inclusions. Each heterogeneity can be made of a single inclusion of sim-
ple shape (cuboid, sphere, ellipsoid) or discretized in many inclusions of simple shape.
Curved cylindrical fibers are here reproduced by a series of oblate ellipsoidal inclusions.
For more details on the method and algorithm the reader may refer to [LER 13]. The pro-
posed method can be seen as an enrichment technique for which the effect of heteroge-
neous inclusions is superimposed on the homogeneous solution. 3D and 2D Fast Fourier
Transforms are utilized to improve the computational efficiency. Displacements and pres-
sure relationships account for this contribution, as well as the coupling between the nor-
mal and tangential contact problems. It is found that the presence of heterogeneities in
the vicinity of the surface contact affects significantly the contact pressure distribution
and subsequently the distribution of shear and slip at the interface.

In the article [LER 10], configurations such as stringer and cluster of spherical inclu-
sions are analysed. The effects of Young’s modulus, Poisson’s ratio, size and location
of the inhomogeneities are also investigated. From a numerical point of view the role of
Poisson’s ratio is found very important. One of the findings is that a relatively "soft" and
nearly incompressible inclusion - for example a cavity filled with a liquid - can be more
detrimental for the stress state within the matrix than a very hard inclusion with a classical
Poisson’s ratio of (B.

The stick-slip contact problem was investigated, [LER 11], when at least one of the
contacting bodies behaves as an ideal composite material with long fibers perpendicular to
the direction of movement. Cylindrical inhomogeneous inclusions within a homogeneous
media and with axes parallel to the contact surface are considered.
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Homogenization method for composite materials

4.2.1 Fiber volume fraction

The parameteV; determines the ratio of fibers in the matrix, in term of volume. It is an
important parameter, it affects directly the effective properties of the composite.

The material is often composed by a cylindrical fiber piled very disorderly. Local
properties of a composite are strongly influenced by the distance between fibers. Mod-
els based on a perfect arrangement of fibers (square or hexagonal arrangement) are not
able to take into account this variability and remain inadequate. Couegnat [COU 08] has
implemented a program named GENCELL, to characterize the "disorder"” in the arrange-
ment of fibers from the analysis of covariance, in order to determine the minimum size of
a representative elementary volume (REV).

4.2.2 Fiber orientation

While the fiber volume fraction is primarily responsible for global mechanical behavior of
the composite, the anisotropy directions are due to the orientation of fibers. Experimen-
tal measurements are based on the geometrical properties of fibers, which have circular
section. Thus, by measuring the length of the axis’ elliptical sections of inclined fibers,

it is possible to obtain the fiber orientation [GOM 98, MAY 92]. This laborious method
suggests that the fibers stay parallel to the midline.

4.3 Homogenization method for composite materials

To determine the effective elastic properties of the composite, two analytical approaches
are often used for particulate reinforced composites and short fibers: the Mori-Tanaka
method and the self-consistent method. Whatever the method used, the effective be-
haviour of the composite is given by:

n
ceff=c™+ § vf(C?—CMA? (4.1)
a=1

whereC®'' is the effective stiffness tensor of the composi&,the strain concentration
tensor for an ellipsoidal inclusiom, V{ the volume fraction ofi, C® the stiffness tensor
of the inclusions an€™ the stiffness tensor of the matrix.

The strain concentration tensor takes a different form depending on the homogeniza-
tion method used. These methods are based on the Eshelby transformation principle.
Some equations useful for the developments of different homogenization methods are re-
called. The strain field induced by one ellipsoidal heterogereftywith elastic tensor
C% in an infinite elastic matrix defined @™, subjected to strain at infinit§”, is given
by:

e3 (X) = S el Yx € QY (4.2)
&j (X) = Dijiy (X) &iji» VX ¢ Q. (4.3)
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4. Comparison with an isotropic heterogeneous model

€%(x) is the strain due to the inclusi@nat the pointx ande®* is the eigenstrain of the
inclusiona. This latter traduces the differences in the material properties between the
inclusion and the matrix, it is as a strain of "incompatibility8® is the Eshelby tensor

of the inclusiona. It depends only on the Poisson’s coefficient of the matrix and on the
geometry of the inclusion. It is expressed in the inclusion’s base. This tensor is constant
if:

- the matrix is infinite, elastic and isotropic,

- the inclusion has an ellipsoidal shape (a sphere, a cylinder, a flat disc, a prolate or an
oblate ellipsoid),

- the strain field at infinity is uniform.

Thus, € and €** are uniform. As the Eshelby tensor exists only for points inside
the inclusion, an other tensor, the influence coefficiéhtss defined for outside points,
depending on the coordinate of this point.

These two equations enable to establish the following equivalence equation:

Ciiki (& + SamnEmn) = Cijla (€ + SimrEmn—&ki*) (4.4)

or also
€% = [CH(S" — 1) —CoS¥H(CT—C™M) ™. (4.5)

4.3.1 Mori-Tanaka model

The approach proposed by Mori-Tanaka considers a volume fraction of incligiais

same shape and same orientation inside an infinite matrix [MOR 73]. The elastic stiffness
tensorC is not necessarily the same for each inclusion. Inclusions can be subdivided
into subfamilies such ag V¢ =V;. The method to estimate the effective moduli of
the material consists, for each family of inclusions, in considering an equivalent single
ellipsoidal inclusion in the matrix, assumed to be infinite, presupposing that this inclusion
is subjected at the infinite to an homogeneous strain field equal to the average strain field
in the matrixe™.

| €
o L !
: g ,n\ Equivalence
' y \ | < —

[ QB

‘\ /// Qm

Figure 4.1: Equivalence between a material composed with heterogeneities and a mate-
rial composed with inclusions by adding eigenstrains

We seek to determine the average strain field in an inclusjsurrounded by — 1
inclusions (see Fig. 4.1).

n
€¥ =S z SR P (4.6)
p—{Pta
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Homogenization method for composite materials

where 5 ;
q}kl = Djjiy (x%). (4.7)

%% js the Eshelby tensor which represents the effect of the inclusion on #5&lfs the
Eshelby tensor which represents the effect of the incluBion the inclusiora. The total
strain field in the area composed by the matrix anah byclusions is expressed as:

n
Vi'em+ 3 Vi'e® =0. (4.8)
a=1

€™ represents the average strain field of the matfkandV;" are the volume fraction of
the inclusions and the matrix, respectively.

n
Vi + > Vi =1 (4.9)
a=1

The last term of Eq. 4.6 represents additional disturbances induced by neighbouring
inclusions on the inclusioa. Itis also called image strai™. In the Mori-Tanaka model,
it is considered equal everywhere, in all the inclusions and in the matrix. In other words,
all the inclusions are subjected to the same average strain field, although their elasticity
tensor can be different.

€Y =€”+ em (4.10)
€3 = €® S 4 M (4.11)
¥ = (S") T (ed — ) (4.12)

Figure 4.2: The strain concentration tensors

The first step in this process of homogenization is to define a concentration tensor and
a dilute concentration tensor (see Fig. 4.2). The concentration tensor connects all strains
induced in the inclusion relative to the strain applied at infinity.

€3 =A%” (4.13)

The dilute concentration tensor connects the total strain in the inclusion relative to the
strain of the matrix.
€3 = Aqey (4.14)
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4. Comparison with an isotropic heterogeneous model

From Eq. 4.8, an explicit expression of the concentratiosders established
n
A% =AY (vfml +y VFA,%) . (4.15)
=1

The dilute concentration tensor is obtained from the combination of Eqs 4.4 and 4.12 such
that

AY — [l +S%(cm~L(ce —cm)} - (4.16)

Interactions between inclusions are taken into account indirectly through an average
of strain and are independent of the considered inclusions. Each inclusion is affected
indirectly by the presence of adjacent inclusions through the total strain in the matrix. So,
the maximum value of the fiber volume fraction should be less¥an 0.5, to avoid too
many interactions between fibers.

4.3.2 Self-consistent model

This method [HIL 65], originally developed for aggregates (polycrystals), establishes a
concentration law by considering each phase of the material as an ellipsoidal inclusion
interacting with a fictive matrix, infinite and homogeneous, which has the behaviour of
intended effective homogeneous material, characterize@®bj. The resolution of the
equation is performed by an iterative procedure on the effective material ©fSor

by the effective material tensor is initialized by the value of the matrix material tensor
ce't=cm

- the Eshelby tensd@®“ is calculated for each individual inclusion. Its value depends
on the effective material properties of the matrix,

- the strain concentration tensaf is determined by:

-1
n
A% =AY (vfml +y VFA%) (4.17)
B=1
where 1
-1 -
A% — {| 4@ (ceff) (c“—ce”)} , (4.18)
- the tensor of the effective composite material updated is calculated:
n
ceff—cefy 3 v (e —ceff) A, (4.19)
a=1

- an iteration over the effective material tensor is done until convergence of the latter.

Convergence is relatively fast, except for situations involving inclusions of material
properties very different. The self-consistent approximation takes into account with a
global way the interactions between inclusions of an aggregate with the hypothesis of
"perfect disorder". In comparison, the Mori-Tanaka method considers them patrtially.
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Results and discussions

4.4 Results and discussions

To model the contact of a composite material, two methods are possible:

- taking into account explicitly heterogeneities of the material in contact,

- use of anisotropic material properties obtained by homogenization technique.
The first criterion to choose between both methods is the characteristic dimension of the
heterogeneities with respect to the dimensions of the contact area.

To compare these two models in the case where heterogeneities have a size which can
not be neglected compared to the contact scale, a frictionless normal indentation is per-
formed on an isotropic elastic half space, composed with identical isotropic unidirectional
cylindrical fibers (see Fig. 4.3). A normal lo&d = 10kN is applied to a rigid sphere of
radiusR = 40mm The Young's modulus and Poisson’s ratio of the half space which is
the matrix of the composite material are taken equdto= 120GPaandv,, = 0.3. For
an isotropic homogeneous material without inclusions or fibErs-Eny andv = vyy),
the Hertz theory gives a contact radaiset; = 1.315mmand a maximal contact pressure
Puertz = 276MPa. In what follows each center of cylindrical fiber will be at the same
position. The diameter of fibers changes with the fiber volume fraction. The first layer
of fibers is located at the depih= 0.120mm (position of the center). Note that the di-
mension and location of the fibers does not affect the global homogenized behaviour in
an infinite space. However, they do affect the contact pressure distribution and subsurface
stress field in the heterogeneous model.

The results for anisotropic homogeneous materials are obtained with the influence
coefficients for coated anisotropic half space. Coating and substrate have the same prop-
erties and the thickness of the coating is nil.

Phertz

~
N
~
N
{\

-
T
o

3 O 0007

DO 0OOO
O,
Do O
O
“H-0--©-0-0F
DO 0OO0OOo
DbO0OO0OO
DO OO
boood

Figure 4.3: Normal indentation on an elastic half space composed with unidirectional
cylindrical fibers, evenly distributed

Two parametric studies are carried out: one on the gatibthe Young's modulus of
the fiber and the matrix, and another one on the volume fraction of filpe®he Poisson’s
ratio for the fibers and the matrix are equal= 0.3. Concerning the geometry features of
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4. Comparison with an isotropic heterogeneous model

the fibers, ordered arrangement, circular geometry in thegglayz) and assumed infinite
length in thex direction (the contact dimension) allow us to use a square REV. The Mori-
Tanaka algorithm presented above provides effective homogenized material properties at
the macro scale. The maximum value of the fiber volume fraction is lessvtharD.5.

This value defines the validity domain of the Mori-Tanaka method. Beyond this limit, the
interactions between fibers are too high and make this method inadequate. The solution is
to use the self-consistent algorithm but it can cause convergence problems for low ratios
of Young’s moduli.

x, 1, L

y, 2, T

2,3, T
Figure 4.4: Coordinate systems for a transverse isotropic material

The homogenization of this configuration generates a transverse isotropic material
due to the symmetry properties. The elastic mechanical properties of the material are
determined by five independent elastic constakis= E;, ET = Ex = E3, G.1 = G12,

VLT = V12 andvTT = V23. The coordinate systems are recalled in Fig. 4.4. The values
obtained by homogenization are listed in Tab. 4.1 for the study of the Young’s modulus
ratioy = Ef /Em and in Tab. 4.2 for the study of the fiber volume fraction.

n’ Yy Vi E[MPa] Er[MPa] G.r[MPa] vir  vrt

1-1 1/20 04 74373 48133 43262 .800 Q303
1-2 1/10 04 76776 54114 46797 .8B00 Q307
1-3 1/2 04 96000 90539 70588 .8B00 Q304
isotropic 1 0.4 120000 120000 46154 D 0.3

1-4 2 04 167971 155478 120714 .3D0 Q307
1-5 10 Q4 549622 226825 182164 .3D0 Q361
1-6 20 Q4 1021466 243706 197073 .30 Q380

Table 4.1: Material parameters for the influence study of the Young’s modulus ratio

Recall that it has been shown previously that= Et has a great influence on the con-
tact parameters (pressure and contact agga)a combination of; andEr influences.

For each configuration, contact pressure and contact area are analysed and compared
for the two models, the first one considering an equivalent anisotropic homogeneous ma-
terial and the second one considering explicitly the heterogeneities in the material. Fig-
ures 4.5 and 4.6 show the influence of the ratio between Young’s modulus on the contact
pressure in the plan@y2 and the evolution of the contact area for either fibers more
compliant or rigid than the matrix.

In the case where fibers are more compliant than the matrixl(), the homogeneous
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Results and discussions

transverse isotropic behaviour tends to minimize the looatact pressure. The contact

area obtained using the homogeneous model is greater than that obtained with the hetero-
geneous model. It is further no more circular as obtained for homogeneous isotropic half
space and becomes slightly shrinked in the direction where the Young’s modulus is higher
(always alongk or L here). In the casg= 0.5, the homogeneous model gives an aver-

age value of the fluctuation pressure produced by heterogeneities. Contact areas obtained
by the two approaches are very similar. This is also explained by the close valdgs of
andEr, and the Poisson’s ratiog T andvtT. For both approaches, the contact area is
enlarged compared to that obtained in the Hertz case, which represents a softer material
than the Hertz reference case.

Conversely, in the case where fibers are more rigid than the matrixl{, the ho-
mogeneous transverse isotropic behaviour gives the upper limit of the contact pressure
distribution which surrounded pressure peaks obtained by the heterogeneous approach.
The contact area obtained with the homogeneous model is markedly reduced in all direc-
tions, again with the contact ellipse slightly elongated in the transverse direction (direction
y or T). These differences can be explained by the numerical value of the longitudinal
modulusk. much higher than the transverse modktite itself higher than the one of the
matrix, and a Poisson’s ratiort greater thaw 1 for ratiosy = 10 andy = 20.

o

n Y Vi E[MPa] Er[MPa] G.r[MPa] vt vrt

2—-1 10 01 227111 142047 108767 .30 Q344
2—2 10 Q2 334417 165320 128447 .30 Q357
2—3 10 Q4 549622 226825 182164 .30 Q361

Table 4.2: Material parameters for the influence study of fiber volume fraction

Figure 4.7 shows the influence of the fiber volume fraction on the distribution of con-
tact pressure in the plan®y2 as well as on the contact area. For both models, the
contact area alongis reduced when the fiber volume fraction increases. However, only
the homogeneous model tends to have a reduced length along the fiber dixeatioch
is more remarkable for high volume fraction. Moreover, increasing the fiber volume frac-
tion raises the amplitude of pressure peaks. For small fiber volume fractions, the contact
pressure is overestimated by the approach of homogenization.

A comparison is now carried out for the stresses. A normal Fpad 20kN, more im-
portant than previously, is applied to the spherical rigid indenter. The material properties
of the matrix are identical to the one considers in the previous case sthgies20GPa
andvy, = 0.3). In the case of homogeneous material, the Hertz theory prescribes a contact
radiusapert; = 1.657mmand a maximum contact presstig. ., = 3478VIPa. Fibers are
twice harder than the matriy & 2) with a Poisson’s ratio; = 0.3 and the fiber volume
fraction isVs = 0.4. Figure 4.8 shows the distribution of normal stressgg, Oyy, 027)
along the depth for both models. Section planes are: the plan®, the planey = 0
and the plane = 0.22ayert; Which cuts across the center of the fibers constituting the
second layer parallel to the contact surface. The homogenized anisotropic material tends
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4. Comparison with an isotropic heterogeneous model

to be more constrained than the heterogeneous isotropicielafes discussed earlier we
encountered some difficulties in the calculation of some stress components for the layer
close to the surface. That corresponds to the thick red lines in the left plots of Fig. 4.8.
With the observations above, it may be interesting to analyse these differences with
a macroscopic point of view by looking at the indentation curve for configuration n® 1-5
(y = 10). Figure 4.9 shows the variation of the normal force normalizeBH%2,enior
relative to the displacement response normalize®enier When the effort increases,
an important difference can be observed between both models. This is coherent with
those previously done for the micro scale as the contact area is smaller for the homoge-
neous approach than for the heterogeneous approach. Conversely, and surprisingly, for
the heterogeneous model the contact area becomes very elongated along the longitudinal
direction & or L) along which fibers are lying and for which the Young’s modulus is the
higher. It means that the geometrical features of the composite reinforcement dominates
the behaviour, compared to the anisotropic elastic properties. However, this large differ-
ence between the two curves may come from the homogenisation method. Indeed, the
Mori-Tanaka method assumes an infinite space composed by a matrix and heterogeneities
which is reduced to a REV with a uniform or random heterogeneities distribution. To
simulate the contact between two bodies, the condition of semi-infinite space imposes a
restrictive framework, particularly in homogenization approaches where boundary condi-
tions are obsolete. The Mori-Tanaka method has therefore limitations to its application in
this kind of study. Further reflection and future developments will be required to introduce
the concept of half-space in the homogenization method.
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Figure 4.5: Comparison between anisotropic homogeneous and isotropic heterogeneous
materials: influence of the Young's modulus ragie 1, with Vs = 0.4.
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Figure 4.6: Comparison between anisotropic homogeneous and isotropic heterogeneous
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(f) n°1-6 (y= 20): Contact area

materials: influence of the Young’s modulus ragio 1, withV; = 0.4.
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Figure 4.7: Comparison between anisotropic homogeneous and isotropic heterogeneous
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(f) n° 2-3 (Vs = 0.4): Contact area

materials: influence of the fiber volume fractigp with y= 10.
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Figure 4.8: Comparison between anisotropic homogeneous and isotropic heterogeneous
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materials: normal stresses in the section plane®,y = 0 andz = 0.22a4¢(t7 (the center
of the second layer of unidirectional fibers).
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Figure 4.9: Indentation curve for anisotropic homogeneous and isotropic heterogeneous
materialsy = 10.
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4. Comparison with an isotropic heterogeneous model

4.5 Conclusion

The anisotropic homogeneous model presented in this thesis is compared to an isotropic
heterogeneous model which takes into account the inhomogeneities into the half space.
Two methods are described to obtain the homogenized material properties from the prop-
erties of the heterogeneous materials. For the comparison, the Mori-Tanaka model is used.
The volume fraction of fibers is taken inferior td&50

The influence of the Young’s modulus ratio between the matrix and fibers has been
investigated on the contact pressure and the contact area. When fibers are softer than the
matrix, the homogeneous model tends to minimize the contact pressure and maximize
the contact area. Inversely, when the fibers are harder, the homogeneous model tends to
maximize the contact pressure. The homogeneous model gives smooth profile pressure
whereas with the inhomogeneous model, the fibers can be visualized, the profile pressure
presents some peaks and grooves. Interestingly it has been noticed that, while the con-
tact area becomes elliptical with the semi-minor axis lying along the direction where the
Young’s modulus is the larger (directionor L here) with the anisotropic homogenized
model, the shape of the contact area with the isotropic heterogeneous model is mostly
driven by the orientation of unidirectional fibers. The fiber volume fraction affects also
the homogenized material properties. An increase on the fiber volume fraction raises up
the amplitude of the pressure peaks.

It has been observed that the results obtained using these two models can be notably
different, both at the mesoscopic scale (i.e. at the contact scale) and at the macroscale
(i.e. for the indentation curve). This can be explained by the limitation of the Mori-
Tanaka model that is valid for a representative element volume with symmetrical bound-
ary conditions, which does not hold anymore near the contact surface (or close to any free
surface).

Regarding the subsurface stress pattern, it is obvious that the isotropic heterogeneous
model is the only one than could accurately describes the stress distribution within the
material.
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Conclusion and Perspectives

The semi analytical contact solver developed at the LaMCoS laboratory has been im-
proved by introducing the anisotropy of the material, for uncoated and coated surfaces.

The influence coefficients linking the elastic displacements to the surface load have
been formulated using the anisotropic Green'’s functions. Starting from three dimensional
Green’s functions established for anisotropic infinite bimaterials and trimaterials, these
functions were rewritten for anisotropic half space and coated half space, respectively.
The Fourier transforms are used and solutions are expressed in the complex domain.
According to these new improvements, it is possible to address the normal contact of
anisotropic half space, with or without an anisotropic coating. Contact solutions obtained
for indentation conditions have been compared to those obtained with a finite element
code (Abaqus version 6.9) and a very good agreement was found, which validates the in-
fluence coefficient formalism. Regarding the corresponding internal stresses, some com-
ponents need more investigations since they present some divergence in the near surface.
The source of this error remains to be identified.

Parametric studies have been performed on the effect of the Young’s modulus along
different directions, on the Poisson’s ratio, on the Coulomb’s modulus, on the material
orientation relative to the contact normal, both for the substrate and the coating, and on the
coating thickness. The pressure distribution, the contact area and the stresses have been
analysed. It is observed that the Young’s modulus in the direction normal to the contact
has a strong influence on the contact parameters (pressure distribution and subsequently
subsurface stresses, size of the contact area). In addition a difference in the Young’s
modulus along the directions parallel to the surface results in a change of the contact
shape, which becomes elongated in the direction where the Young’s modulus is higher
and shrunk in the perpendicular direction (i.e. for a spherical indentation the contact area
is no more circular but becomes elliptical).

The manuscript ends with a comparison between two models, the anisotropic homo-
geneous model detailed here and an isotropic heterogeneous model developed in parallel
by J. Leroux in his PhD thesis. An application to an idealized composite material is car-
ried out, i.e. a matrix reinforced by unidirectional and cylindrical fibers parallel to the
surface. The homogenized anisotropic properties have been derived through the Mori-
Tanaka model. According to the scale of the contact, composite materials can be seen as
heterogeneous materials (which create fluctuations in the pressure and in stresses) or as
anisotropic homogeneous materials (the pressure profile and stresses are smooth). It has
been observed that the results obtained using these two models can be notably different,
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Conclusion and Perspectives

both at the mesoscopic scale (i.e. at the contact scale) dhd atacroscale (i.e. for the
indentation curve). This can be explained by the limitation of the Mori-Tanaka model
that is valid for a representative element volume with symmetrical boundary conditions,
which does not hold anymore near the contact surface (or close to any free surface).

This work will be extended in order to deal with the effect of the temperature. In sev-
eral engineering applications, parts in contact are subjected to thermal loading or exposed
at high temperature, which may affect material properties, and in case of coating/substrate
a mismatch of thermal properties may induce localized strains and stresses. Future devel-
opments would be to account for plasticity for anisotropic material. Simulating the wear
due to fretting would be also an interesting point to look at.
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RESUME:

Le fretting et I'usure sont des problémes récurrents dans le domaine de I'aéronautique. Les contacts aube/disque a
compresseur ou de la turbine haute pression des moteurs d’avion, par exemple, sont soumis a d’'importantes sollig
fretting a de fortes températures. L'enjeu des industriels est d’optimiser la durée de vie de ces composants et d'étre
prévoir 'amorcage de fissures.

Afin d’améliorer la tenue des pieces, des revétements sont utilisés pour les protéger. Leurs propriétés mécaniques €
ont un impact direct sur le contact et la durée de vie. Les choix de matériaux, du nombre de couches, de I'épaisseur
sont donc primordiaux.

De par leur composition (fibres, mono-cristaux), leur élaboration (extrusion) ou leur mode de déposition, I'hypothése d
érer des matériaux homogenes isotropes s’avére trop réductrice. L'anisotropie est un paramétre important a prendrg
au niveau du dimensionnement. Les matériaux composites sont de plus en plus utilisés dans I'aéronautique.
Dans cette optique, cette thése a pour objectif I'étude du comportement des matériaux homogéenes anisotropes, en 9
a l'influence des principaux parametres mécaniques caractéristiques d’'un matériau afin de mieux appréhender leurg
s'attardera sur le module de Young (ou module d’élasticité), le module de Coulomb (ou module de cisaillement) et le ¢
de Poisson, et leurs valeurs selon les différentes directions.

Comme attendu, le module de Young dans la direction normale au contact joue un role prépondérant dans la détern
profil de pression. Néanmoins, I'influence du module de Young dans le plan tangent au contact n’est pas a négliger,
aussi la forme de I'aire de contact. L'orientation du matériau par rapport au contact est par conséquent un parametre |
considération, il peut directement atténuer ou accentuer I'effet du module de Young dans une direction priviligiée. Le

de Coulomb et coefficient de Poisson ont aussi été analysés. Il en résulte gu'ils influent significativement sur le contadt.

Ces résultats se confirment dans le cas d’un massif revétu, a la différence que les effets du revétement et du substral
compenser. Limpact des propriétés du revétement sera d’autant plus important que celui-ci sera épais.

L'échelle du contact par rapport aux matériaux utilisés importe aussi sur les profils de pression. Une comparaison entre
anisotrope homogene et un modeéle isotrope hétérogene a été réalisée. A I'échelle mesoscopique, le composite €
d’'une matrice avec des fibres qui induisent des pics de pression alors qu’a I'échelle macroscopique, le matériau con
percu comme un matériau homogene, les profils de pression sont lissés.
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