
HAL Id: tel-00940413
https://theses.hal.science/tel-00940413v1

Submitted on 31 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Epistemic View of Concurrency Theory
Sophia Knight

To cite this version:
Sophia Knight. The Epistemic View of Concurrency Theory. Logic in Computer Science [cs.LO].
Ecole Polytechnique X, 2013. English. �NNT : �. �tel-00940413�

https://theses.hal.science/tel-00940413v1
https://hal.archives-ouvertes.fr

The Epistemic View of Concurrency

Theory

Sophia Knight

September 2013

1

i

Abstract

This dissertation describes three distinct but complementary ways

in which epistemic reasoning plays a role in concurrency theory. The

first and perhaps the one least explored so far is the idea of using

epistemic modalities as programming constructs. Logic program-

ming emerged under the slogan “Logic as a programming language”

and the connection was manifest in a very clear way in the concurrent

constraint programming paradigm. In the first part of the present

thesis, we explore the role of epistemic, and closely related spatial

modalities, as part of the programming language and not just as part

of the meta-language for reasoning about protocols.

The next part explores a variant of dynamic epistemic logic

adapted to labelled transition systems. In contrast to the previ-

ous part, one might be tempted to think that everything that can

be said on this topic has already been said. However, the new ingre-

dient that we propose is a tight connection between epistemic logic

and Hennessy-Milner logic: the logic of labelled transition systems.

We provide an axiomatization and prove a weak completeness theo-

rem. This proof follows the general plan that one uses for logics like

dynamic logic but requires some non-trivial adaptations.

The final part of the thesis focuses on the study of interact-

ing agents in concurrent processes. We present a game semantics

for agents’ interaction which makes manifest the role of knowledge

and information flow in the interactions between agents, and makes

it possible to control the information available to the interacting

agents. We use processes as the game board and define strategies for

the agents so that two agents interacting according to their strate-

gies determine the execution of the process, replacing the traditional

scheduler. We show that different restrictions on the strategies rep-

resent different amounts of information being available to the sched-

uler. These restrictions on the strategies have an explicit epistemic

flavour, and we present a modal logic for strategies and a logical

characterization of several different possible restrictions on strate-

gies.

ii

These three approaches to the analysis and representation of epis-

temic information in concurrency theory provide a new way to un-

derstand agents’ knowledge in concurrent processes, which is vital in

today’s world of ubiquitous distributed multi-agent systems.

iii

Résumé

Le raisonnement epistémique joue un rôle en théorie de la concur-

rence de plusieurs manières distinctes mais complémentaires; cette

thèse en décrit trois. La première, et presque certainement la moins

explorée jusqu’à présent, est l’idée d’utiliser les modalités épistémiques

comme éléments d’un langage de programmation. La programma-

tion logique émergea sous le slogan «la logique en tant que langage

de programmation» et dans le paradigme de la programmation con-

currente par contraintes, le lien est manifeste de manière très claire.

Dans la première partie de cette thèse, nous explorons le rôle des

modalités épistémiques, ainsi que celui des modalités spatiales qui

leur sont étroitement liées, en tant que partie intégrante du langage

de programmation et non simplement en tant que partie du meta-

langage du raisonnement à propos des protocoles.

La partie suivante explore une variante de la logique épistémique

dynamique adaptée aux systèmes de transitions étiquetées. Con-

trairement à la partie précédente, on serait tenté de croire que tout

ce qu’on pouvait dire à ce sujet a déjà été dit. Cependant, le nou-

vel ingrédient que nous proposons est un lien étroit entre la logique

épistémique et la logique de Hennessy-Milner, cette dernière étant

la logique des systèmes de transitions étiquetées. Plus précisément,

nous proposons une axiomatisation et une preuve d’un théorème de

complétude faible, ce qui est conforme au principe général qu’on

utilise pour des logiques telles que la logique dynamique mais nécessite

des adaptations non triviales.

La dernière partie de la thèse se concentre sur l’étude d’agents

en interaction dans les processus concurrents. Nous présentons une

sémantique des jeux pour l’interaction d’agents qui rend manifeste le

rôle de la connaissance et du flux d’information dans les interactions

entre agents, et qui permet de contrôler l’information disponible aux

agents en interaction. Nous utilisons les processus comme support

de jeu et définissons des stratégies pour les agents de telle sorte

que deux agents qui interagissent conformément à leurs stratégies

respectives déterminent l’exécution du processus, remplaçant ainsi

iv

l’ordonnanceur traditionnel. Nous démontrons que des restrictions

différentes sur les stratégies réprésentent des quantités d’information

différentes disponibles à l’ordonnanceur. Ces restrictions sur les

stratégies ont un aspect épistémique explicite, et nous présentons

une logique modale pour les stratégies et une caractérisation logique

de plusieurs restrictions possibles sur les stratégies.

Ces trois approches d’analyse et de représentation de l’information

épistémique en théorie de la concurrence apportent une nouvelle

manière de comprendre la connaissance des agents dans des proces-

sus concurrents, ce qui est vital dans le monde d’aujourd’hui, dans

lequel les systèmes distribués composés de multiples agents sont om-

niprésents.

v

Acknowledgments

I am deeply grateful to my supervisors, Frank Valencia and Catus-

cia Palamidessi. Frank has been incredibly supportive and dedicated.

I greatly appreciate his encouragement and enthusiasm, and the time

he has spent working with me, always listening to my ideas and help-

ing me to realize them, and providing excellent guidance and wisdom

about how to approach problems. I would like to thank Catuscia for

her constant advocacy and help. I have benefitted greatly from her

indispensable insight and expertise. Working in the team of Catuscia

and Frank has been a unique and wonderful experience. I would also

like to thank Prakash Panangaden for being deeply involved in the

work presented here. Prakash is an inspiring person and has always

been willing to help me and answer all my questions and I have been

lucky and grateful to be able to work with him.

I would like to express my gratitude to the members of my jury

for their careful evaluation and their many insightful and useful

questions and comments which allowed me to improve this disser-

tation. Thanks to Jean-Pierre Jouannod, Stéphane Lengrand, and

Hans van Ditmarsch. And I am especially grateful to Larry Moss,

Vijay Saraswat, and Björn Victor, who took the time to read and

critique my thesis in great detail and write detailed and helpful re-

ports. I am honored to have had the chance to have such a qualified

jury.

Many other people have helped me with this work. Thanks

to Monica Dinculescu, Julia Evans, Sardaouna Hamadou, Kamal

Marhubi, Mathieu Petitpas and Luis Pino for carefully reading my

drafts and helping me to improve them greatly. Thanks to Matteo

Cimini, Thomas Given-Wilson and Tobias Heindel for helping me to

practice my defense and asking me so many questions. Thanks to

Kostas Chatzikokolakis, Raluca Diaconu and Matteo Mio for numer-

ous interesting and productive discussions of different aspects of this

work. Thanks to Nico Bordenabe and Marco Stronati for helping me

to organize the defense. Thanks to Marie-Jeanne Gaffard and Valérie

Berthou for helping me deal with problems and adjust to living in

vi

France. And thanks to Mario Alvim, Andrés Aristizabal, Alex Lang,

Norm Ferns, Lili Xu, Agnes, and Rose for providing much needed

moral support during my PhD.

Finally, I would like to thank my family, and most of all my

husband Justin Dean. I couldn’t have done this without you.

Contents

Abstract i

Résumé iii

Acknowledgments v

Contents vii

List of Figures xi

1 Introduction 1

1.1 Context . 2

1.1.1 Epistemic Logic . 2

1.1.2 Concurrency . 3

1.2 This Thesis: Epistemic Reasoning in Concurrent Systems . . 7

1.3 Outline and Contributions 8

1.3.1 Part I- Epistemic Logic as a Programming Language 9

1.3.2 Part II- How Knowledge Evolves 9

1.3.3 Part III- Epistemic Strategies for Concurrent Processes 9

1.4 Publications . 10

2 Preliminaries on Modal Logic 11

2.1 Relational Structures and the Semantics of Modal Logic . . 11

2.2 Validity, Soundness and Completeness 15

2.3 Specific Modal Logics . 20

2.3.1 Kn . 20

vii

CONTENTS viii

2.3.2 S4 . 21

2.3.3 S5 . 21

I Epistemic Logic as a Programming Language:
Epistemic Modalities in Process Calculi 24
Introduction . 25

3 Preliminaries 28

3.1 Domain theory . 28

3.2 Concurrent constraint programming 32

3.2.1 Constraint systems 32

3.2.2 Processes . 33

4 Space and Knowledge in Constraint Systems 37

4.1 Spatial Constraint Systems. 37

4.1.1 Inconsistency Confinement. 39

4.2 Epistemic Constraint Systems. 42

4.3 Examples. 44

5 Space and Knowledge in Processes 51

5.1 Syntax . 52

5.1.1 Basic Processes . 52

5.1.2 Spatial Processes . 53

5.1.3 Epistemic Processes 54

5.1.4 Infinite Processes . 55

5.2 Reduction Semantics . 56

5.2.1 Operational Semantics for SCCP 56

5.2.2 Operational Semantics for ECCP 59

6 Observable Behaviour of Space and Knowledge 61

6.1 Observing Limits. 62

6.2 Observing Barbs . 64

6.3 Denotational Semantics. 68

CONTENTS ix

7 Future Work and Conclusions 77

7.1 Compact Approximation of Space and Knowledge 77

7.2 Related Work . 79

7.3 Future Work . 82

7.4 Conclusion . 83

II How Knowledge Evolves: Epistemic Logic for
Labelled Transition Systems 84
Introduction . 85

8 Histories 88

8.1 Labelled transition systems with agents 89

8.2 History Systems . 93

9 The Logic and its Semantics 96

9.1 Syntax and Models . 96

9.2 Semantics . 97

9.3 An example . 99

10 A Complete Axiomatization 102

10.1 Axioms . 102

10.2 Soundness and Completeness 104

Conclusions and Related Work 117

III Knowing What You Are Doing: Epistemic Strate-
gies for Concurrent Processes 119
Introduction . 120

11 Background 125

12 Games and Strategies 128

12.1 Valid Positions . 128

12.2 Strategies . 131

CONTENTS x

12.3 Execution of Processes According to Strategies 134

12.4 Epistemic Restrictions on Strategies 136

13 Correspondence between Strategies and Schedulers 143

13.1 Background on Schedulers 143

13.2 Correspondence Theorem . 147

14 Games for Processes with Probabilistic Choice 155

14.1 Syntax and Semantics . 155

14.2 Games, Valid Positions and Strategies 157

14.2.1 Valid Positions . 157

14.2.2 Strategies . 159

14.2.3 Execution of a probabilistic process with a strategy . 159

15 A Modal Logic for Strategies 163

15.1 Syntax and Semantics . 164

15.2 Basic Properties Captured in Modal Logic 166

15.3 Logical Characterization of Indistinguishability Relations . . 167

15.4 Properties Following from Logical Characterizations of Equiv-

alence Relations . 172

Conclusions and Related Work 173

16 Conclusion 175

Bibliography 178

Index 187

List of Figures

3.1 Herbrand Constraint System . 34

3.2 Structural operational semantics for CCP 36

5.1 Structural operational semantics for SCCP 57

5.2 Structural operational semantics for ECCP 60

6.1 Denotational semantics for SCCP 73

6.2 Denotational semantics for ECCP 73

10.1 Axiomatization of Epistemic Logic for Labelled Transition Systems103

11.1 Operational Semantics for Labelled Process Calculus 126

13.1 Operational semantics for labelled processes with schedulers . . 145

14.1 Operational semantics for labelled processes with probabilistic

choice . 156

xi

One

Introduction

This thesis describes the role that epistemic reasoning can play in concurrent

systems. Concurrent processes are a natural and widely used model of

interacting agents. Epistemic logic, on the other hand, is a formalism for

reasoning about the knowledge of agents in such situations. Epistemic logic

has played a central role in the analysis of distributed systems, [HM84,

FHMV95] but in the area of concurrent processes, it has only been employed

in a few specific ways. Work has been done using epistemic logic to analyze

process calculi, for example [CDK09, DMO07, HS04] but to the best of our

knowledge, this is the only way that epistemic logic has been applied to

concurrent processes.

In this thesis, we explore three new ways of applying epistemic reasoning

and modal logic to problems in concurrency theory. First, we develop a pro-

cess calculus which uses epistemic modalities as programming constructs,

allowing the expression of epistemic information within the process calcu-

lus. Second, we introduce a variant of dynamic logic adapted to labelled

transition systems, enabling us to analyze the effects of actions on agents’

knowledge in transition systems. Finally, we present a game semantics for

interacting agents in concurrent processes. This semantics makes it possi-

ble to model agents with different epistemic capabilities, and the effect that

their epistemic information has on the actions they are able to take. We

hope to convince the reader that these three approaches to epistemic infor-

1

1.1. Context

mation in concurrent systems are interesting and applicable to problems in

distributed systems.

1.1 Context

Before introducing the main material in this thesis we give some context

about the areas of study.

1.1.1 Epistemic Logic

Epistemic logic is a species of modal logic where the basic modality is of the

form “Agent i knows fact phi”: it is the logic of knowledge. Philosophers

from all cultures, particularly Indian and Chinese Buddhist philosophers,

Aristotle and other Greeks, the Port-Royal modal logicians of the middle

ages and modern analytic philosophers, such as Chisholm, Ayer and Gettier,

have debated the meaning of knowledge. The kind of epistemic logic that we

consider is a philosophically simple variant that is nevertheless well adapted

to the computational situations that we consider in our applications. For

these applications it is not necessary to enter into the philosophical issues

of what constitutes human knowledge: it suffices to consider a very simple

notion of knowledge that justifies certain actions being taken at certain

states of a protocol.

Although epistemic logic was discussed as a variety of modal logic ear-

lier, particularly by von Wright [vW51], the specific form of epistemic logic

we focus on was first really developed by Jaakko Hintikka [Hin62] and was

based on Saul Kripke’s so-called “possible worlds” semantics for modal log-

ics. Hintikka’s presentation was essentially semantic and it was an observa-

tion by Lemmon that this was an example of one of the well-known modal

logics.

Epistemic logic began to be applied to computer science in the 1980s

[HM84, FHMV95], when it was realized that epistemic concepts were in-

volved in many important coordination and agreement protocols in dis-

tributed systems. Epistemic logic is usually used to verify that protocols

2

1.1. Context

respect desired properties and as such form a powerful adjunct to other pro-

gram logics. The kind of properties that are particularly well captured by

epistemic logic are those related to agreement and coordination as already

mentioned, but also to security properties when it becomes important to

know what information is potentially being leaked out of a system in the

course of the execution of a protocol.

1.1.2 Concurrency

The first models of computation, for example Turing Machines [Tur37], were

fundamentally sequential: there was no ambiguity about the order in which

computational steps could occur. The sequential computation paradigm

evolved around some key central concepts: the λ-calculus as the basic uni-

fying formalism and the notion of state and state transformation as the

basic semantic framework. This framework accommodates a rich variety of

developments: types and higher-type computation, program logics, oper-

ational semantics and denotational semantics to mention a few examples.

The world of concurrent computation, by contrast, lacks a single central

unifying concept like the λ-calculus.

Concurrency theory involves a much greater variety of possible phe-

nomena than sequential computation. Once there are multiple autonomous

processes functioning independently it is possible that these processes coop-

erate, compete for resources, act simultaneously, communicate but remain

autonomous, or synchronize. The very basic temporal notions that we take

so much for granted in sequential computing become major decision points

when setting up a framework for concurrent computing. These features

make concurrent systems quite general and allow them to be a relevant

model of systems that are now common, but they also necessitate more

decisions about the models of computation. Originally, concurrency was

concerned mainly with operating systems, but now that new types of dis-

tributed systems such as social networks, interacting mobile devices, and

cloud computing have become ubiquitous, concurrency theory is even more

relevant and important.

3

1.1. Context

Models of Concurrent Systems

Since concurrent systems are both widespread and inherently different from

sequential systems of computation, many efforts have been made to develop

accurate and understandable models for them. Ideally, these models are

simple but still able to capture all the essential aspects of concurrent sys-

tems, and are also capable of being formally analyzed, to allow reasoning

about the systems, as well as proofs of desired properties.

The first well known model of concurrent systems was Petri nets, which

represent systems as a kind of graph with resources or tokens enabling

transitions between states [Pet63]. Since then, there has been a wide variety

of models of concurrent systems. For example, a labelled transition system

is an extremely simple model of a concurrent system, consisting only of

states and actions which may transition from one state to another.

Communication between agents is one of the fundamental aspects of

concurrent systems, and models treat communication in one of two ways:

synchronous or asynchronous. In a synchronous system, agents synchronize

and communicate together at the same time, like in a telephone call. In

asynchronous communication, one agent sends a message, which is later

received by the other agent at an unspecified time. Email communication,

for example, is asynchronous.

An early asynchronous model of concurrent systems was Jack Den-

nis’ data flow model [Den74]. This model had a fixed network of au-

tonomous computing agents with unidirectional communication channels

linking them. The processes could read from and write to the communica-

tion channels, but if a process tried to read from an empty channel, where

no message had yet arrived, it was blocked until it received a message on

this channel. As we shall see later, the Concurrent Constraint Programming

(CCP) paradigm has exactly this kind of asynchronous communication.

On the other hand, process calculi are another important class of models,

on which we shall focus in this thesis. Besides a few exceptions, such as CCP,

process calculi use synchronous communication. They are quite diverse, but

the general idea is to represent computing agents or processes as algebraic

4

1.1. Context

terms built from simple operators, and to provide an operational semantics

defining the computational steps a process can take, based on its semantic

form. Once a system is represented as a process calculus term, it should be

easy to reason about important aspects of its behaviour, for example, what

other systems it can be considered as equivalent to, and what behaviours

it may or may not do.

One of the earliest process calculi was Robin Milner’s Calculus of Com-

municating Systems, or CCS [Mil80]. This process calculus is quite simple

but includes features that became common to many future process calculi,

such as basic actions defined based on the intended application, nondeter-

ministic choice between subprocesses, parallel execution of subprocesses,

communication between two subprocesses, recursion, and restricting a sub-

process from interacting with its environment in specific ways. CCS allows

all of these kinds of behaviours but still is simple and general, so it became

an important calculus for modelling computations. However, the simplicity

of CCS masked a semantic complexity that took a long time to understand.

Semantic models of CCS were slow to develop and, in the end were very

operational in character.

Besides CCS, many other process calculi were developed for different

purposes and with different advantages. For example, Hoare’s Communicat-

ing Sequential Processes (CSP) was another early process calculus [Hoa85],

with a more restricted notion of choice than in CCS. The Pi-Calculus is

another process calculus [MPW92]. Pi-Calculus introduced the notion of

mobility : instead of a fixed network of communicating agents, in the Pi-

Calculus, channel names can be communicated over channels, making it

possible for the communication structure between agents to change during

the execution of a process. There have also been process calculi developed

for specific purposes, such as the Spi-calculus [AG99], an extension of the

Pi-calculus with built in cryptographic primitives such as encryption and

decryption of messages. Innovation continues to occur in process calculi,

for example, the family of process calculi known as Ambient Calculi allow

a more general notion of mobile processes, to be better able to model mod-

ern computational situations such as mobile computing devices [CG00]. A

5

1.1. Context

recent development is the Psi-Calculus [BJPV09], a process calculus with

nominal data types which is general enough to encompass all the calculi

mentioned above, and can model both synchronous and asynchronous com-

munication.

Concurrent Constraint Programming

For this thesis, the process calculus called Concurrent Constraint Program-

ming (CCP) [SRP91] is one of our main areas of interest. CCP is another

formalism for concurrency, more closely based on logic than other process

calculi. It was the first process calculus with asynchronous communication.

In CCP, communication between agents occurs through shared variables in

a store. The store contains partial information about variables: rather than

simply assigning values to variables, the store can contain more complex in-

formation, called constraints, for example, “X > 5” or “X + Y is even.”

Agents in CCP processes can add information to the store or ask the store

for information, allowing a kind of synchronization between agents, because

asking agents cannot continue until the store entails the information they

are asking for.

In fact, the action of the process on the store is one of the most important

aspects of CCP. The structure underlying the store is called the constraint

system and is in fact a complete lattice. One of the important properties of

basic CCP is confluence, meaning in essence that all reasonable computa-

tions of the same process will eventually reach the same outcome. A process

can, therefore, be viewed as a function on the underlying constraint system,

taking the original store as input and returning the final store that results

from the execution of the process. Furthermore, CCP processes can only

add information to a store, never remove it, and the final store of a process

is a fixed point for that process: even if the process executed again starting

from this store, it would not change it. These properties of CCP mean

that processes can in fact be viewed as closure operators on the constraint

system. Thus, there is a simple and elegant mathematical semantics for

CCP. These results are presented in detail in Section 3.2, but the essential

6

1.2. This Thesis: Epistemic Reasoning in Concurrent Systems

point is that the asynchronous nature of CCP and its close ties to logic

make elegant mathematical characterizations of its behaviour possible.

1.2 This Thesis: Epistemic Reasoning in

Concurrent Systems

The goal of this thesis is to develop formalisms for concurrent systems

that make epistemic information directly accessible within the formalism.

Recently, concurrent systems have changed substantially with the advent of

phenomena such as social networks and cloud computing. In past research

on concurrent distributed systems [Lyn96] the emphasis has mostly been on

consistency, fault tolerance, resource management and related topics; these

aspects were all characterized by interaction between processes. The new

era of concurrent systems is marked by the importance of managing access

to information to a much greater degree than before.

Although this kind of analysis has not been common in process calculus

research, epistemic concepts have long been understood to be crucial in

distributed computing scenarios. Their importance was realized as early as

the mid 1980s with Halpern and Moses’ groundbreaking paper on common

knowledge [HM84]. These ideas led to a flurry of activity in the following few

years [FHMV95] with many distributed protocols being understood from an

epistemic point of view. The impact of epistemic ideas in the concurrency

theory community has been slower in coming.

There has been, however, some work concerning epistemic ideas in con-

currency theory. For example, the goal of [CP07] was to restrict the epis-

temic information available to the scheduler in a probabilistic variant of the

Pi-calculus, in order to avoid security problems of information leakage in

the execution of processes. But even though epistemic ideas are central to

this paper, formal epistemic logic is not used. Epistemic logic has, however,

been used to analyse concurrent systems, for example in [CDK09], an epis-

temic logic is developed whose models are terms in the applied Pi-calculus.

Similarly, [DMO07] presents a temporal epistemic logic for reasoning about

7

1.3. Outline and Contributions

terms in a certain process calculus. In [HS04], a method is presented for

formalizing information hiding properties in many process calculi, which

is more general than the two approaches mentioned above, but still falls

into the category of using an epistemic logic to analyze the properties of

a term in a process calculus. In fact, as far as we know, all applications

of epistemic logic to process calculi have consisted of using epistemic logic

to analyze process calculus terms which are completely outside of the epis-

temic logic. In this thesis, we will present several approaches to including

epistemic information directly within process calculi. This will allow us

to encode agents’ knowledge directly within processes, control information

flow, analyze the effects of actions on agents’ knowledge, and limit the ac-

tions agents are able to take based on the epistemic information available

to them.

1.3 Outline and Contributions

This thesis has three parts. In Part I, we introduce a new constraint pro-

cess calculus that allows the expression of epistemic information within the

calculus. We also develop a notion of modal constraint system, underlying

the process calculus and enabling us to use epistemic information to do

computations, and we discuss characterizations of observable behaviour for

these processes. In Part II, we present a variant of dynamic epistemic logic

adapted to labelled transition systems. This logic allows us to examine the

effects of actions on agents’ knowledge in labelled transition systems. We

give a sound and complete axiomatization of the logic. Finally, in Part III,

we describe a game semantics for agents’ interaction which makes mani-

fest the role of knowledge and information flow in the interactions between

agents, and makes it possible to control the information available to the

interacting agents.

Besides these three parts, there are two introductory chapters, the first

being the present introduction. Chapter 2 introduces some preliminary

information about modal logic, which will be used throughout the rest of

the thesis.

8

1.3. Outline and Contributions

1.3.1 Part I- Epistemic Logic as a Programming

Language

In Chapter 3 we review some notions in domain theory and concurrent con-

straint programming. Next, in Chapter 4, we introduce domain-theoretical

structures to represent spatial and epistemic information. In Chapter 5,

we present two new process calculi, based on the above-mentioned under-

lying constraint systems: Spatial CCP, with a new operator to represent

a computation happening in a space belonging to an agent, and Epistemic

CCP, with a new operator to represent an agent’s knowledge of a compu-

tation. We also give an operational semantics for this process calculus. In

Chapter 6, we present three notions of behaviour for the processes we have

defined: limits, barbs, and denotational semantics. We prove that these

three notions of behaviour coincide. Finally, in Chapter 7, we present some

preliminary work on methods of approximating common knowledge as a

compact or finite element, rather than as an infinite limit.

1.3.2 Part II- How Knowledge Evolves

This part of the thesis is concerned with a dynamic epistemic logic for a

new kind of labelled transition systems which include epistemic equivalence

relations for agents. In Chapter 8, we begin by defining the models for

our dynamic epistemic logic as all the possible paths through a labelled

transition system, maintaining the agents’ equivalence relations on these

paths. In Chapter 9, we define our dynamic epistemic logic and its seman-

tics. In Chapter 10, we give an axiomatization for our logic and prove the

completeness of the axiomatization.

1.3.3 Part III- Epistemic Strategies for Concurrent

Processes

This part of the thesis presents a way of representing independent agents

within a process calculus, and limiting the actions they can take based on

their knowledge. In Chapter 11 we present a process calculus where each

9

1.4. Publications

action is labelled, and there is an independent choice operator representing

a subprocess that is executed independently from the execution of the rest

of the process. We give the syntax and labelled operational semantics for

this process calculus. In Chapter 12, we present a game semantics for these

processes, defining two player games with a process as the game board.

We define strategies with epistemic restrictions on these games. The two

players’ choices of strategy define the execution of the process. In Chapter

13, we review a notion of syntactic schedulers in processes from [CP07],

and then we prove that a certain class of the strategies defined in the last

chapter corresponds exactly to these schedulers. In Chapter 14, we extend

the results from the earlier sections to similar processes, but with an added

probabilistic choice operator. In Chapter 9, we present some preliminary

work on a modal logic for reasoning about the games we have defined in

Chapter 12. This logic allows us to discuss formally the players’ knowledge

and the actions that are available to them.

1.4 Publications

Most of the results in this thesis have already appeared in scientific publi-

cations. More specifically:

• Part I is based on the paper Spatial and Epistemic Modalities

in Constraint-based Process Calculi [KPPV12] that appeared in

the proceedings of the 23rd International Conference on Concurrency

Theory (CONCUR 2012).

• Part II is based on the paper Combining Epistemic Logic and

Hennessy-Milner Logic [KMP12], which was published in Logic

and Programming Semantics in 2012.

• Part III is based on the paper Epistemic Strategies and Games

in Concurrent Processes [CKPP12] that appeared in ACM Trans-

actions on Computational Logic in 2012.

10

Two

Preliminaries on Modal Logic

In this chapter we present some basic information about modal logic, which

will be relevant to the rest of this dissertation, mostly based on [BdRV01].

Of course, modal logic is a vast and complicated subject, but we will focus

only on normal modal logics of relational structures. This relatively simple

and well defined approach to modal logic is already quite expressive and has

a wide range of applications. We only present a very brief overview here,

for more details, see, for example, [BdRV01], or for the history of modal

logic, see [Gol03].

2.1 Relational Structures and the

Semantics of Modal Logic

We begin with the basic definitions of the models and semantics for modal

logics of relational structures: what modal formulas are, and what struc-

tures they are intended to be interpreted over.

Definition 2.1.1 (Relational structure). A relational structure is a pair

(W, {Ri}i∈I) where W is any set, called the set of states, and each Ri is a

binary relation on W , that is, Ri ⊆ W ×W .

In principle, W and I may be arbitrary sets, but in this dissertation

we only consider relational structures with countable sets of states and

11

2.1. Relational Structures and the Semantics of Modal Logic

relations. When (v, w) ∈ Ri, we write vRiw.

Relational structures, sometimes also called Kripke structures, are ubiq-

uitous in computer science, mathematics, and other fields. We present a

few simple examples to illustrate the concept briefly.

Example 2.1.2. The natural numbers, (N,≤) are a relational structure,

with N as the set of states and ≤ as the single relation on N.

Example 2.1.3. Consider a relational structure (S, { a−−→}a∈A), where S is

a set of states and { a−−→}a∈A is a family of binary relations on S. If A

represents a set of potential actions, then (S, { a−−→}a∈A) is called a labelled

transition system. When w1
a−−→ w2, we say w1 transitions to w2 on action

a.

Example 2.1.4. If we consider the set T to be moments in time, and

define for t1t2 ∈ T , t1Bt2 only if t1 is strictly before t2, and t1At2 only if t1

is strictly after t2, then (T, {B,A}) is a relational structure.

Now we will discuss modal languages and the logic of relational struc-

tures.

Definition 2.1.5 (Modal language). A modal language Φ is a set of modal

formulas parametric in a set of propositions, P and a family of relations I,

called the modalities of Φ. The modal formulas φ, φ1, φ2 of the language are

defined as follows:

φ ::== p | > | ¬φ | φ1 ∧ φ2 | 〈i〉φ

where p ∈ P and i ∈ I.

Definition 2.1.6 (Model). A model for a modal language with proposi-

tions P and modalities I is a tuple M = (s,W, {Ri}i∈I , V) where s ∈ W ,

(W, {Ri}i∈I) is a relational structure, and V : W −→ P(P) is called a valu-

ation function. It maps states to sets of propositions.

The valuation function tells what formulas hold at what states. If p ∈
V (s), we say that p holds at s or p is true at s.

12

2.1. Relational Structures and the Semantics of Modal Logic

Definition 2.1.7. We now introduce the notion of Kripke semantics. If

M = (s,W, {Ri}i∈I , V) is a model for a modal language Φ and φ is a modal

formula such that φ ∈ Φ then we define M satisfying φ, denoted M |= φ as

follows

M |= p iff p ∈ V (s)

M |= > always

M |= ¬φ iff M 6|= φ

M |= φ1 ∧ φ2 iff M |= φ1 and M |= φ2

M |= 〈i〉φ iff ∃t ∈ W such that sRit and t |= φ

In situations where the relational structure (W, {Ri}i∈I) and the valua-

tion V are clear, we often omit these and write

s |= φ

to mean

(s,W, {Ri}i∈I , V) |= φ.

Also, for a set of formulas Γ, if for all γ ∈ Γ M |= γ, then we write

M |= Γ.

We can also define some standard derived operators.

Definition 2.1.8. The following are some useful derived operators in modal

logic.

⊥ ≡ ¬>

φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2)

φ1 ⇒ φ2 ≡ ¬φ1 ∨ φ2

[i]φ ≡ ¬〈i〉¬φ

φ1 ⇔ φ2 ≡ (φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1)

13

2.1. Relational Structures and the Semantics of Modal Logic

Theorem 2.1.9. The derived operators defined above are satisfied by a

model M = (s,W, {Ri}i∈I , V) in the following cases

M |= ⊥ never

M |= φ1 ∨ φ2 iff M |= φ1 or M |= φ2

M |= φ1 ⇒ φ2 iff M |= ¬φ1 or M |= φ2

M |= [i]φ iff for all t ∈ {t | sRit}, t |= φ

M |= φ1 ⇔ φ2 iff either M |= φ1 ∧ φ2 or M |= ¬φ1 ∧ ¬φ2

The proof follows directly from Definition 2.1.7 and the definitions of

the derived operators.

Here is a simple example of a relational structure and some formulas

that are true at some of the states.

Example 2.1.10. The picture shows a labelled transition system. The

states are {s0, s1, s2, s3, s4, s5, s6, s7, s8} and the actions are {a, b, c}. The

relations are shown below as arrows. We assume the set of propositions is

empty, so the only possible valuation maps every state to the empty set of

propositions.

s0

a

��

a

��
s1

b

��

s2

c

��
s3 s4

s5

a

��
s6

b

��
s7

c

��
s8

Here are some formulas that are satisfied at certain states:

s0 |= 〈a〉> s0 |= 〈a〉〈b〉> ∧ 〈a〉¬〈b〉>

s0 |= 〈a〉〈b〉> ∧ 〈a〉〈c〉> s5 |= 〈a〉 (〈b〉> ∧ 〈c〉>)

s1 |= ¬〈c〉> s5 |= [a]〈b〉>

s0 |= 〈a〉¬〈c〉> s0 |= ¬[a]〈b〉>

14

2.2. Validity, Soundness and Completeness

This kind of modal logic, especially when considered over finitely branch-

ing labelled transition systems, is known as Hennessy-Milner logic [HM80].

It is best known for its relationship with bisimulation.

Definition 2.1.11. Consider a labelled transition system (S, { a−−→}a∈A). A

relation B ⊆ S × S is a bisimulation if the following three conditions hold:

• B is symmetric,

• Whenever (s, t) ∈ B, if s
a−−→ s′ then there exists t′ such that t

a−−→ t′

and (s′, t′) ∈ B,

• Similarly, whenever (s, t) ∈ B, if t
a−−→ t′ then there exists s′ such that

s
a−−→ s′ and (s′, t′) ∈ B.

We say that states s and t are bisimilar if and only if there is a bisimulation

B such that (s, t) ∈ B.

The following theorem says that Hennessy-Milner logic characterizes

bisimulation.

Theorem 2.1.12. In a finitely branching labelled transition system, states

s and t are bisimilar if and only if for all formulas φ in Hennessy-Milner

logic, s |= φ if and only if t |= φ.

2.2 Validity, Soundness and Completeness

First we will define a certain set of formulas called a normal modal logic. In

the following definitions, we assume a certain set of modalities I that can

occur in our formulas.

Definition 2.2.1 (Modus ponens). A set S of formulas is closed under

modus ponens if whenever α ∈ S and α⇒ β ∈ S, β ∈ S.

Definition 2.2.2 (Uniform substitution). A set S of formulas is closed

under uniform substitution if whenever α ∈ S, if β results from substituting

a specific formula for every instance of a specific propositional variable in

α, then β ∈ S.

15

2.2. Validity, Soundness and Completeness

Definition 2.2.3 (Generalization). A set S of formulas is closed under

generalization if whenever α ∈ S then [i]α ∈ S, for all i ∈ I.

Definition 2.2.4 (Normal modal logic). A set of modal formulas Λ is a

normal modal logic if Λ contains all tautologies from propositional logic, the

formulas [i](p1 ⇒ p2)⇒ ([i]p1 ⇒ [i]p2) for all i ∈ I, and it is closed under

modus ponens, uniform substitution, and generalization.

Proposition 2.2.5. For any set of modal formulas A, there is a smallest

normal modal logic Λ such that A ⊆ Λ.

Definition 2.2.6 (Logic generated by a set). If A is a set of modal formu-

las, we call the smallest normal modal logic Λ such that A ⊆ Λ the logic

generated by A.

Definition 2.2.7 (Proof). Consider a finite set of modal formulas A. A

proof of φn from A is a finite sequence φ1, φ2, ..., φn of modal formulas so

that for each i ∈ {1, ..., n} one of the following is true:

1. φi ∈ A.

2. φi is a propositional tautology.

3. There exists j < i and k < i such that φk = φj ⇒ φi.

4. φi is the result of uniformly substituting a formula for every instance

of a proposition in φj where j < i.

5. φi = [m]φj where m is a modality and j < i.

Notice that a normal modal logic Λ contains all the formulas that can

be proved from finite subsets of Λ.

Definition 2.2.8 (Validity for a state). Consider a modal language Φ with

propositions P and modalities I, let M = (W, {Ri}i∈I) be a model for Φ,

and let s be a state in W . Let φ be a formula in Φ. We say that φ is valid

at s in M if for all valuations V : W −→ P(P),

(s,W, {Ri}i∈I , V) |= φ.

16

2.2. Validity, Soundness and Completeness

We write this as

(s,M) |= φ.

Definition 2.2.9 (Validity for a structure). Consider a modal language Φ

with propositions P and modalities I, and let M = (W, {Ri}i∈I) be a model

for Φ. Let φ be a formula in Φ. We say that φ is valid for M if for all

s ∈ W ,

(s,M) |= φ.

We write this as

|=M φ.

In other words, a formula is valid for a relational structure if the formula

is true at every state, regardless of the valuation on the structure.

Definition 2.2.10 (Validity for a class). Let M be a class of relational

structures. For a modal formula φ, we say that φ is valid for M if for all

M ∈M, φ is valid for M . We write this as

|=M φ.

Definition 2.2.11 (Soundness). Consider a set of modal formulas A and a

class of relational structures M. Let Λ be the normal modal logic generated

by A. If for every φ ∈ Λ, φ is valid for M, then we say that A is sound for

M.

Definition 2.2.12 (Deducibility in a logic). If Λ is a normal modal logic,

we say that a formula φ is deducible in Λ if φ ∈ Λ. We denote this as

`Λ φ.

Notice that with this notation, the soundness of normal modal logic Λ

for a class of relational structures M can be expressed as

if `Λ φ then |=M φ.

17

2.2. Validity, Soundness and Completeness

Definition 2.2.13 (Deducibility from a set). If Λ is a normal modal logic

and Γ is a set of formulas, we say that a formula φ is deducible from Γ in

Λ if there are formulas γ1, ..., γn ∈ Γ such that

`Λ (γ1 ∧ γ2 ∧ ... ∧ γn)⇒ φ.

We denote this as

Γ `Λ φ.

Definition 2.2.14 (Local semantic consequence). Let M be a class of rela-

tional structures, let Γ be a set of formulas and let φ be a formula. We say

that φ is a local semantic consequence of Γ in M if for all (W, {Ri}i∈I) ∈M,

for all s ∈ W and for all valuations V , if whenever

(s,W, {Ri}i∈I , V) |= Γ

then

(s,W, {Ri}i∈I , V) |= φ.

We denote this as

Γ |=M φ.

Definition 2.2.15 (Strong completeness). Let M be a class of relational

structures, let A be a set of formulas, and let Λ be the normal modal logic

generated by A. We say that A is strongly complete for M if for all sets

of formulas Γ and all formulas φ,

if Γ |=M φ then Γ `Λ φ.

In other words, A being strongly complete for M means that if any φ is

a local semantic consequence of any Γ in M then φ is deducible from Γ in

the normal modal logic generated by A.

Definition 2.2.16 (Weak completeness). Let M be a class of relational

structures, let A be a set of formulas, and let Λ be the normal modal logic

generated by A. We say that A is weakly complete for M if for any formula

φ,

if |=M φ then `Λ φ.

18

2.2. Validity, Soundness and Completeness

So A is weakly complete for M if every formula that is valid for M

is deducible in the logic generated by A. Note that strong completeness

implies weak completeness.

We need the following definitions for an important result about com-

pleteness.

Definition 2.2.17 (Satisfiability for a formula). Consider a relational struc-

ture M = (W, {Ri}i∈I) and a formula φ. φ is satisfiable in M if there exists

a state s ∈ W and a valuation V such that

(s,W, {Ri}i∈I , V) |= φ.

Definition 2.2.18 (Satisfiability for a set). Consider a relational structure

M = (W, {Ri}i∈I) and a set of formulas Γ. Γ is satisfiable in M if there

exists a state s ∈ W and a valuation V such that

(s,W, {Ri}i∈I , V) |= Γ.

Definition 2.2.19 (Consistency). Let Λ be a normal modal logic and let

Γ be a set of formulas. We say that Γ is Λ-consistent if Γ 6`Λ ⊥. For a

formula φ, we say that φ is Λ-consistent if the set {φ} is Λ-consistent.

The following result provides useful characterizations of both strong and

weak completeness.

Proposition 2.2.20. Let Λ be a normal modal logic and let M be a class

of relational structures.

• Λ is strongly complete for M if and only if for every Λ-consistent set

of formulas Γ, there exists M ∈M such that Γ is satisfiable in M .

• Λ is weakly complete for M if and only if for every Λ-consistent for-

mula φ, there exists M ∈M such that φ is satisfiable in M .

The proof can be found for example in [BdRV01].

19

2.3. Specific Modal Logics

2.3 Specific Modal Logics

The notions of soundness and completeness allow us to use a set of axioms to

characterize a class of structures. In this section, we present several specific

modal logics based on certain structures, and the axioms that characterize

them. We say that a set of axioms characterizes a class of structures if the

normal modal logic generated by the set of axioms is sound and (strongly

or weakly) complete for that class of structures. The proofs for all of the

results in this section can be found in [BdRV01] or [FHMV95].

2.3.1 Kn

First we discuss a very general normal modal logic, Kn, where n ∈ N. It is

based on instances of the K axiom, which stands for Kripke, and it is the

smallest normal modal logic for a set of n modalities.

Definition 2.3.1 (K axiom). For a modality i, the K axiom is

[i](p⇒ q)⇒ ([i]p⇒ [i]q).

In fact, for technical reasons we already defined a normal modal logic for

modalities I already to contain axiom K for all i ∈ I. But we also include

it as an axiom to simplify some of the following results.

Definition 2.3.2 (Kn). Kn is the normal modal logic generated by the

axioms

[1](p⇒ q)⇒ ([1]p⇒ [1]q)

[2](p⇒ q)⇒ ([2]p⇒ [2]q)
...

[n](p⇒ q)⇒ ([n]p⇒ [n]q)

Theorem 2.3.3. Let Mn be the class of all relational structures with modal-

ities {1, ..., n}. Kn is sound and strongly complete for Mn.

20

2.3. Specific Modal Logics

2.3.2 S4

Definition 2.3.4 (T axiom). For a modality i, the T axiom is

p⇒ 〈i〉p.

Definition 2.3.5 (T). T is the normal modal logic generated by the T

axiom.

Definition 2.3.6 (Reflexivity). A relation R ⊆ W ×W is reflexive if for

all w ∈ W , wRw.

Theorem 2.3.7. Let Mr be the class of all relational structures with a

single, reflexive relation. T is sound and strongly complete for Mr.

Definition 2.3.8 (4 axiom). For a modality i, the 4 axiom is

[i]p⇒ [i][i]p.

Definition 2.3.9 (K4). K4 is the normal modal logic generated by the 4

axiom.

Definition 2.3.10 (Transitivity). A relation R ⊆ W ×W is transitive if

for all w1, w2, w3 ∈ W , whenever w1Rw2 and w2Rw3, it follows that w1Rw3.

Theorem 2.3.11. Let Mt be the class of all relational structures with a

single, transitive relation. K4 is sound and strongly complete for Mt.

Definition 2.3.12 (S4). S4 is the normal modal logic generated by the set

consisting of the T axiom and the 4 axiom.

Theorem 2.3.13. Let Mrt be the class of all relational structures with a

single relation which is transitive and reflexive. S4 is sound and strongly

complete for Mrt.

2.3.3 S5

Definition 2.3.14 (B axiom). For a modality i, the B axiom is

p⇒ [i]〈i〉p.

21

2.3. Specific Modal Logics

Definition 2.3.15 (B). B is the normal modal logic generated by the B

axiom.

Definition 2.3.16 (Symmetry). A relation R ⊆ W ×W is symmetric if

for all w1, w2 ∈ W , if w1Rw2 then w2Rw1.

Theorem 2.3.17. Let Ms be the class of all relational structures with a

single symmetric relation. B is sound and strongly complete for Ms.

Definition 2.3.18 (S5). S5 is the normal modal logic generated by the set

consisting of the T, 4, and B axioms.

Definition 2.3.19 (Equivalence relation). A relation R is an equivalence

relation if and only if R is reflexive, transitive, and symmetric.

Theorem 2.3.20. Let Mrst be the class of all relational structures with a

single relation which is an equivalence relation. S5 is sound and strongly

complete for Mrst.

S5 is often used to represent epistemic logic. In this case, there is a set

of agents often labelled i, j, ... and the box modality is written as K, where

the formula Kiφ means agent i knows φ. In this case, there is a relation

for each agent, and it may be referred to as the agent’s indistinguishability

relation. The relation for agent i is usually denoted ∼i, and the idea is that

if s1 ∼i s2, then agent i cannot distinguish state s1 from state s2. So if s1

is the state of the system, agent i believes that s2 may in fact be the actual

state. We demonstrate these ideas with the following simple example.

Example 2.3.21. Consider a system where it may be cold or not cold, and

raining or not raining. There are two agents, t and w. t of them can only

see a thermometer, and w can only look out the window. Our propositions

will be c for cold and r for raining. We name our states s1 through s4.

s1
c, r

s2

c

s3

r
s4

w w

t

t

22

2.3. Specific Modal Logics

In state s1, agent w thinks either state s1 or s3 is possible. This is

because he can see out the window that it is raining, so he knows states s2

and s4 are impossible, but he cannot tell whether it is cold or not. Mirroring

this intuition, s1 |= Kwr. On the other hand, s1 |= ¬Kwc. Similarly,

s3 |= Kt¬c, and s2 |= (Ktc) ∧ (¬Kwc).

23

Part I

Epistemic Logic as a

Programming Language:

Epistemic Modalities in

Process Calculi

24

Introduction

The goal of the present part of the thesis is simple: to put epistemic con-

cepts in the hands of programmers rather than just having them appear

in post-hoc theoretical analyses. One could imagine the incorporation of

these ideas in a variety of process algebraic settings, but what is par-

ticularly appealing about the concurrent constraint programming (CCP)

paradigm [Sar89, SJPR91] is that it was designed to give programmers ex-

plicit access to the concept of partial information and, as such, had close

ties with logic [PSSS93, MPSS95]. This makes it ideal for the incorporation

of epistemic concepts by expanding the logical connections to include modal

logic [Kri63]. In particular, agents posting and querying information in the

presence of spatial hierarchies for sharing information and knowledge, such

as friend circles and shared albums in social networks or shared folders in

cloud storage, provide natural examples of managing information access.

These domains raise important problems such as the design of models to

predict and prevent privacy breaches, which are now commonplace.

Contributions

In CCP [Sar89, SJPR91] processes interact with each other by querying and

posting information to a single centralized shared store. The information

and its associated partial order are specified as a constraint system, which

can be seen as a Scott information system without consistency structure

[AJ94b]. The centralized notion of store, however, makes CCP unsuitable

for systems where information and processes can be shared or spatially dis-

tributed among certain groups of agents. In this thesis we enhance and

25

Introduction

generalize the theory of CCP for systems with spatial distribution of infor-

mation.

In Chapter 4 we generalize the underlying theory of constraint systems

by adding space functions to their structure. These functions can be seen

as topological closure operators and they provide for the specification of

spatial and epistemic information. In Chapter 5 we extend CCP with a

spatial and epistemic operator. The spatial operator can specify a process,

or a local store of information, that resides within the space of a given

agent (for example an application in some user’s account, or some private

data shared with a specific group). This operator can also be interpreted

as an epistemic construction to specify that the information computed by

a process will be known to a given agent. In many process calculi, it is

traditional to refer to processes as agents. It is crucial to understand that

in our setting processes and agents are completely different things. The

processes are programs, they are mindless and do not “know” anything;

the agents are separate, primitive entities in our model that can be viewed

as spatial locations (a passive view) or as active entities that control a locus

of information and interact with the global system by launching processes.

This distinction will become more clear in Chapter 5.

It is also worth noting that the CCP concept of local variables can-

not faithfully model what we are calling local spaces, since in our spatial

framework we can have inconsistent local stores without propagating their

inconsistencies towards the global store.

In Chapter 6 we give a natural notion of observable behaviour for spatial

and epistemic processes. Recursive processes are part of our framework, so

the notion of observable may involve limits of the spatial information in

fair, possibly infinite, computations. These limits may result in infinite

or, more precisely, non-compact objects involving unbounded nestings of

spaces, or epistemic specifications such as common knowledge. We then

provide a finitary characterization of these observables which avoids com-

plex concepts such as fairness and limits. We also provide a compositional

denotational characterization of the observable behaviour. Finally, in Chap-

ter 7 we present some preliminary work on the technical issue of giving finite

26

Introduction

approximations of non-compact information.

27

Three

Preliminaries

In this chapter we present the preliminaries for this section: a brief overview

of basic domain theory as well as the concurrent constraint programming

formalism.

3.1 Domain theory

Here we will briefly review some definitions from basic domain theory. For

a complete exposition, see for example [AJ94b].

Definition 3.1.1 (Partially ordered set). For a set S with a binary relation

v, we say that (S,v) is a partially ordered set, or a poset, if the following

three properties hold for all x, y, z ∈ S:

1. Reflexivity: x v x.

2. Transitivity: if x v y and y v z then x v z.

3. Antisymmetry: if x v y and y v x then x = y.

If S with relation v is a partially ordered set then v is called a partial

order.

Definition 3.1.2 (Upper bound). If (S,v) is a poset and A ⊆ S, then u

is an upper bound for A if for all a ∈ A, a v u.

28

3.1. Domain theory

Definition 3.1.3 (Least upper bound). If (S,v) is a poset and A ⊆ S,

then u is the supremum or least upper bound of A if u is an upper bound

for A and for all u′ ∈ S, if u′ is an upper bound for A then u v u′. We

denote the least upper bound of a set a A as
⊔
A, and we denote the least

upper bound of the set {a1, a2} as a1 t a2. We also refer to a1 t a2 as the

join of a1 and a2.

Proposition 3.1.4. For (S,v) a poset and A ⊆ S, if A has a supremum

then it is unique.

Proof. Suppose u1 and u2 are suprema of A. Then by definition, u1 and u2

are both upper bounds for A, and so u1 v u2, since u1 is the least upper

bound of A, and similarly u2 v u1. Therefore by reflexivity, u1 = u2.

Definition 3.1.5 (Directed set). Suppose (S,v) is a poset, and D ⊆ S.

We say that D is directed if for all a, b ∈ D there exists c ∈ D such that

a v c and b v c.

Definition 3.1.6 (Directed-complete partial order). Suppose (S,v) is a

poset. (S,v) is a directed-complete partial order, or dcpo, if every directed

subset of S has a least upper bound.

Definition 3.1.7 (Compact element). Suppose (S,v) is a dcpo and d ∈ S.

d is a compact element of S if whenever D is a directed subset of S and

d v
⊔
D then there exists d∗ ∈ D such that d v d∗.

Proposition 3.1.8. If (S,v) is a dcpo and C is a finite set of compact

elements of S, then if
⊔
C exists, it is a compact element of S as well.

Proof. We only prove that the join of two compact elements is compact.

The result for finite sets of compact elements follows by induction.

Let d1 and d2 be compact elements of S, and suppose d1 t d2 exists.

Suppose there is a directed set D ⊆ S such that d1 t d2 v
⊔
D. It follows

that d1 v
⊔
D and d2 v

⊔
D. Since d1 and d2 are compact by assumption,

there must be d∗1, d
∗
2 ∈ D such that d1 v d∗1 and d2 v d∗2. And since D is

directed, there must be d∗ ∈ D such that d∗1 v d∗ and d∗2 v d∗. But this

29

3.1. Domain theory

means that d1 v d∗ and d2 v d∗, and therefore d1 t d2 v d∗. So we have

shown that if d1 and d2 are compact, then for an arbitrary directed set D,

if d1 t d2 v
⊔
D, then there exists d∗ ∈ D such that d1 t d2 v d∗. This

proves that d1 t d2 is compact.

Definition 3.1.9 (Algebraic). Suppose (S,v) is a dcpo. Let K(S) denote

the compact elements of S. (S,v) is algebraic if for every a ∈ S,

a =
⊔
{d | d v a and d ∈ K(S)}.

Definition 3.1.10 (Complete lattice). (S,v) is a complete lattice if (S,v)

is a poset and for every subset A of S, A has a least upper bound.

Note that a complete lattice is always a dcpo.

Proposition 3.1.11. Every complete lattice has a unique greatest element

and a unique least element.

Proof. Suppose (S,v) is a complete lattice. Since ∅ ⊆ S, there must exist⊔
∅, which we will call bot. Now, for an arbitrary element s ∈ S, s is an

upper bound for ∅ since s is above any element of ∅. So, because bot is the

least upper bound of ∅, bot v s by definition of least upper bound. So bot

is a least element of S, and from reflexivity it follows that bot is the unique

least element of S.

Similarly, S ⊆ S, so S must have a least upper bound which we will call

top. Since top is an upper bound for S, for any s ∈ S, s v top. And since

top ∈ S, it follows from reflexivity that top is the unique greatest element

of S.

Now we will discuss some kinds of functions on complete lattices which

will be important later.

Definition 3.1.12 (Monotone function). Let (S,v) be a complete lattice

and consider a function f : S −→ S. f is monotone if for all a, b ∈ S, if

a v b then f(a) v f(b).

30

3.1. Domain theory

Definition 3.1.13 (Fixed point). Let (S,v) be a complete lattice and con-

sider a function f : S −→ S. a ∈ S is a fixed point for f if f(a) = a.

Theorem 3.1.14 (Knaster-Tarski Theorem). If (S,v) is a complete lattice

and f is a monotone function, then the set of fixed points of f is also a

complete lattice.

The proof can be found in [Tar55] or in [GKK+03].

Definition 3.1.15 (Closure operator). Let (S,v) be a complete lattice and

consider a function f : S −→ S. f is a closure operator on S if the following

three conditions hold:

• f is extensive: for all a ∈ S, a v f(a)

• f is monotone: for all a, b ∈ S, if a v b then f(a) v f(b)

• f is idempotent: for all a ∈ S, f(a) = f(f(a)).

For the next theorem, we need to define the greatest lower bound func-

tion on a complete lattice.

Definition 3.1.16. First, note that on a complete lattice (S,v), we can

define a greatest lower bound operator
d

for X ⊆ S as follows:
l

X =
⊔
{s ∈ S | ∀x ∈ X, s v x}.

It is easy to see that this is the correct definition of the greatest lower

bound of a set, and that it is defined for all sets in a complete lattice.

Theorem 3.1.17. Let (S,v) be a complete lattice with a function f : S −→ S.

If f is a closure operator, then f is determined by its set of fixed points. If

we let C ⊆ S be the set of fixed points of f . We claim that for any s ∈ S,

f(s) =
l
{c ∈ C | s v c}.

Proof. To show that this definition of f is correct, first note that if c ∈ C
and s v c then by monotonicity f(s) v f(c) but since c ∈ C, c = f(c). So

for all c ∈ C, f(s) v c, and therefore

f(s) v
l
{c ∈ C | s v c}.

31

3.2. Concurrent constraint programming

On the other hand, by idempotence, f(s) = f(f(s)), so f(s) ∈ C, and by

extensiveness, s v f(s), so f(s) ∈ {c ∈ C | s v c} and therefore

l
{c ∈ C | s v c} v f(s).

This two inequalities prove that f(s) =
d
{c ∈ C | s v c}, which means

that f is determined by its set of fixed points.

3.2 Concurrent constraint programming

Before presenting our models of spatial and epistemic CCP, we briefly

present traditional CCP. The first complete presentation of concurrent con-

straint programming was [Sar93]. CCP is a model for concurrency based

on logic and partial information. Processes communicate asynchronously

through shared variables in a store, which contains constraints, assertions

consisting of partial information about these variables. For example, the

constraint X + Y < 10 gives some information about the variables X and

Y without assigning them a specific value. The processes in CCP commu-

nicate with one another only by asking and telling information from the

store: the tell operator allows a process to add information to the store,

and the ask operator allows a process to query the store and take actions

based on the results of the query.

3.2.1 Constraint systems

Formally, the CCP model is parametric in a constraint system specifying

the structure and interdependencies of the information that processes can

add to and ask about from the central shared store.

Definition 3.2.1 (Constraint system). C = (Con,Con0,v,t, true, false)
is a constraint system (cs) if (Con,v) is a complete algebraic lattice, Con0

is the set of compact elements of (Con,v), t is the least upper bound oper-

ation, true is the least element of (Con,v), and false is the greatest element

of (Con,v).

32

3.2. Concurrent constraint programming

The elements of Con are called constraints and they represent partial

information. v is the information ordering or reverse entailment relation,

because c v d means that d entails c, or d contains more information than c.

The top element false represents inconsistent information, and the bottom

element true is the empty constraint. The least upper bound, t of a set

represents the combination of all the information in that set.

Example 3.2.2. We briefly present an example based on the Herbrand con-

straint system from [Sar89, SJPR91]. This constraint system is built from

a first-order alphabet L with countably many variables x, y, . . . and equality

=. The constraints are equivalence classes of equalities over terms, quo-

tiented by logical equivalence. For example, {x = t, y = t} is a constraint,

and we consider it to be the same constraint as {x = t, y = t, x = y}. The

relation c v d holds if the equalities in c follow logically from those in d, for

example, {x = y} v {x = t, y = t}. The constraint false is the equivalence

class of inconsistent sets of equalities, and and true is the equivalence class

of the empty set. The compact elements are the equivalence classes of finite

sets of equalities. The least upper bound is the equivalence class of the set

union (see [Sar89, SJPR91] for full details). Figure 3.1 is an instance of

this constraint system with two variables, x and y, and two constants, a and

b, with a 6= b.

3.2.2 Processes

Now we briefly present the process calculus CCP. We will discuss the syntax

and semantics of CCP processes.

Definition 3.2.3 (CCP process). Assume a constraint system

C = (Con,Con0,v,t, true, false), and a countable set of variables V ars =

{X, Y, ...}. The terms are given by the following syntax:

P ::== 0 | tell(c) | ask (c) → P | P ‖ Q | X | µX.P

where c ∈ Con0 and X ∈ V ars.

33

3.2. Concurrent constraint programming

Figure 3.1: A Herbrand constraint system

true

{x = a} {y = a} {x = y} {y = b} {x = b}

{
x = a,

y = a

} {
x = a,

y = b

} {
x = b,

y = a

} {
x = b,

y = b

}
false

A term T is said to be closed if every variable X in T occurs in the

scope of an expression µX.P . We refer to closed terms as processes and

use Proc to denote the class of all processes.

In most presentations of CCP, for example [Sar89], there is also a hiding

operator, denoted ∃xP . To simplify our presentation, we omit this operator,

because we believe is it orthogonal to the extensions of CCP that we are

going to present.

Before giving the semantics of processes, we give some intuitions about

their behaviour. First, processes execute in the context of a store, which

contains certain information, and to which the processes may sometimes add

information. The basic processes are tell, ask, and parallel composition.

Intuitively, tell(c) in a store d adds c to d to make c available to other

processes with access to this store. This addition, represented as d t c, is

performed whether or not dt c = false. The process ask(c)→ P in a store

e may execute P if c is entailed by e, i.e., c v e . The process P ‖ Q stands

for the parallel execution of P and Q. Also, given I = {i1, . . . , im} we use

34

3.2. Concurrent constraint programming

∏
i∈I Pi as a shorthand for Pi1 ‖ . . . ‖ Pim . Finally, µX.P is a recursive

process, in which X is a variable itself representing a process.

To give an idea of the behaviour of a CCP process, we present a simple

example. Variations of the following example will be referred to throughout

the paper.

Example 3.2.4. Let us take P = tell(c) and Q = ask(c)→ tell(d). In the

execution of the process P ‖ Q, first Q will be blocked and P will execute,

adding c to the store, and then Q will be able to act and d will be added to

the store. So the end result will be c t d in the store.

We now define a structural operational semantics (sos) for CCP. But

the behaviour of a process depends on the information in the store, so the

operational semantics must be described in terms of processes and stores,

as defined below.

Definition 3.2.5 (Configuration). Let C = (Con,Con0,v,t, true, false)
be a constraint system, P a process over C, and c ∈ Con0. The pair 〈P, c〉 is

a configuration. We denote the set of all configurations over C as Conf (C),

or just Conf when C is evident or irrelevant.

We often use γ, γ′, γ1, γ2, ... to represent configurations.

Definition 3.2.6 (Operational semantics of CCP). For a constraint system

C, the CCP transition relation −→ ⊆ Conf (C) × Conf (C) is defined in

Table 3.2.

35

3.2. Concurrent constraint programming

T 〈tell(c), d〉−→ 〈0, d t c〉

A c v d
〈ask (c) → P, d〉−→ 〈P, d〉

PL
〈P, d〉−→ 〈P ′, d′〉

〈P ‖ Q, d〉−→ 〈P ′ ‖ Q, d′〉

PR
〈Q, d〉−→ 〈Q′, d′〉

〈P ‖ Q, d〉−→ 〈P ‖ Q′, d′〉

R
〈P [µX.P/X], d〉−→ γ
〈µX.P, d〉−→ γ

Figure 3.2: Structural operational semantics for CCP.

36

Four

Space and Knowledge in Constraint

Systems

In this chapter we introduce two new notions of constraint systems for

reasoning about distributed information and knowledge in CCP.

4.1 Spatial Constraint Systems.

A crucial issue in distributed and multi-agent scenarios is that agents may

have their own spaces for their local information and for performing their

computations. We address this issue by introducing a notion of space for

agents directly into our constraint systems. In our approach each agent i

has a space si. We consider si(c) to be an assertion stating that c holds

within a space attributed to agent i. Thus, given a store s = si(c)t sj(d)t e
we may think of c and d as holding within the spaces that agents i and j

have in s, respectively. Similarly, si(sj(c)) can be viewed as a hierarchical

spatial specification stating that c holds within the space that the agent i

attributes to agent j.

An n-agent spatial constraint system (n-scs) is a constraint system para-

metric in n structure-preserving constraint mappings s1, . . . , sn capturing

the above intuitions.

37

4.1. Spatial Constraint Systems.

Definition 4.1.1 (scs). An n-agent spatial constraint system (n-scs) C is a

constraint system equipped with n lub and bottom preserving maps s1, . . . , sn

over its set of constraints Con. More precisely,

C = (Con,Con0,v,t, true, false, s1, . . . , sn)

where (Con,v) is a complete algebraic lattice with compact elements Con0,

least upper bound operation t, bottom element true, and top element false,

and furthermore, each si : Con→ Con satisfies the following properties:

S.1 si(true) = true

S.2 si(c t d) = si(c) t si(d)

From now on, for an n-scs C, we refer to each si as the space (function)

of agent i in C. Also, we write only “scs” when n is unimportant.

Intuitively, S.1 states that the minimal piece of information, true, holds

in every agent’s space. S.2 says that agents can join together the pieces of

information in their spaces. From S.2 it follows immediately that the space

functions are monotone: Property S.3 below says that if c can be derived

from d then any agent can derive c from d within its own space.

Corollary 4.1.2. Let C be an n-scs with space functions s1, . . . , sn. Then

for each si the following property holds:

S.3 If c v d then si(c) v si(d).

Proof. If c v d then d = c t d so si(d) = si(c t d) = si(c) t si(d). But if

si(c) t si(d) = si(d) then si(c) v si(d).

We should discuss here some differences between our notion of informa-

tion holding in an agent’s space and the earlier notion of a variable which

is local to an agent in CCP. It is true that traditional (non-spatial) CCP

agents may have local information within the global store by using local vari-

ables. Formally, this is achieved by using the elegant notion of a cylindric

constraint system [SRP91]. A cylindric constraint system is a constraint

system with variable hiding operations of the form ∃X(.) : Con→ Con that

38

4.1. Spatial Constraint Systems.

act much like existential quantifiers. The constraint ∃X(c) represents the

constraint c where the variable X is hidden. Intuitively, the information in

c about X is only available to the agent that locally declared X.

Nevertheless, in CCP local variables cannot be used to model the fact

that in some distributed systems agents may produce inconsistent informa-

tion within their own spaces, for example as the result of a failed com-

putation, without rendering the global store inconsistent. This is because

any cylindric constraint system requires ∃X(false) = false. This suggests

that the use of local variables does not fully provide for local computational

spaces since local inconsistencies cannot be confined to an agent’s space. A

closely related issue is that a given agent may compute information about

a global object, that is inconsistent with that of other agents. For example,

given a global system variable X an agent may compute in its own space

that X = 42 while another agent may compute that X > 42. In previous

CCP approaches this could be modelled at best indirectly, for example by

treating “agent 1 believes that X = 42” as a proposition.

4.1.1 Inconsistency Confinement.

In a spatial constraint system nothing prevents us from having si(false) 6=
false. Intuitively, inconsistencies generated by an agent may be confined

within the agent’s own space. It is also possible to have si(c)t sj(d) 6= false

even when ctd = false; i.e. we may have agents whose information is incon-

sistent with the information of other agents. This reflects the distributive

nature of the agents as they may have different information about the same

incident. The following definitions capture these situations.

Definition 4.1.3. [Space Consistency] An n-scs

C = (Con,Con0,v,t, true, false, s1, . . . , sn)

is said to be (i, j) space consistent with respect to (c, d) ∈ Con×Con if and

only if si(c)tsj(d) 6= false. Also, C is said to be (i, j) space consistent if and

only if it is (i, j) space consistent with respect to each (c, d) ∈ Con × Con.

39

4.1. Spatial Constraint Systems.

Furthermore, C is space consistent if and only if it is (i, j) space consistent

for all i, j ∈ {1, . . . , n}.

We will see an important class of logical structures characterized as

space consistent spatial constraint systems in section 4.3. From the next

proposition we conclude that to check (i, j) space-consistency it is sufficient

to check that si(false) t sj(false) 6= false.

Proposition 4.1.4. Let C be an n-scs with space functions s1, . . . , sn. Then

1. C is (i, j) space consistent if and only if si(false) t sj(false) 6= false

and

2. If C is (i, j) space consistent then si(false) 6= false.

Proof. 1. C is (i, j) space consistent if and only if si(false) t sj(false) 6=
false

First, if C is (i, j) space consistent then by definition

si(false) t sj(false) 6= false.

To prove the other direction, suppose that si(false)t sj(false) 6= false.

Then for any c, d ∈ Con, c v false and d v false, so by property S.3,

si(c) v si(false) and sj(d) v sj(false), so

si(c) t sj(d) v si(false) t sj(false) 6= false,

and since false is the top element of the lattice it follows that

si(c) t sj(d) 6= false.

This means that C is (i, j) space consistent.

2. If C is (i, j) space consistent then si(false) 6= false.

Proof by contradiction: if si(false) = false, then si(false) t sj(d) =

false for any d ∈ Con, which would contradict (i, j) space consistency.

Therefore, si(false) 6= false.

40

4.1. Spatial Constraint Systems.

Distinctness preservation.

Analogous to inconsistency confinement, a spatial constraint system may

have si(c) = si(d) for c 6= d. Depending on the intended model, this could

be interpreted as meaning that agent i cannot distinguish c from d. For

example, in a model r and g may represent that a certain object is red or

green. In this situation, it makes sense to have si(r) = si(g) for a colour-

blind agent i. For some applications, however, it may be necessary for the

space functions to preserve distinctness:

Definition 4.1.5. [Distinctness preservation] An n-scs C preserves dis-

tinctness if and only if for all i ∈ {1, ..., n} and for all c, d ∈ Con, si(c) =

si(d) if and only if c = d. In other words, all the space functions are injec-

tive.

Shared and Global Information.

We conclude by introducing constructions capturing the intuition that a

given constraint holds in a shared space for a certain group of agents, and

that a constraint holds globally, or globally for a certain group.

Definition 4.1.6 (Group Space). Let C be an n-scs. For a set of agents

G ⊆ {1, ..., n}, a group-space for G sG(·) is defined as

sG(c) =
⊔
i∈G

si(c)

Definition 4.1.7 (Global Information). Let C be an n-scs. For a set of

agents G ⊆ {1, ..., n}, we define global information for G, gG(·) as

gG(c) =
∞⊔
j=0

sjG(c),

where s0
G(c) = c and sk+1

G (c) = sG(skG(c)). If gG(c), then we say that infor-

mation c holds globally for group G

Recall that a spatial constraint system is a complete lattice, so the global

information operator is well defined. It is easy to see that the constraint

41

4.2. Epistemic Constraint Systems.

gG(c) entails c and si1(si2(. . . (sim(c)) . . .)) for any sequence of i1, . . . , im ∈
G. Thus this operator realizes the intuition that c holds globally with

respect to G: c holds in each nested space involving only the agents in G.

4.2 Epistemic Constraint Systems.

We now wish to use si(c) to represent not only information that holds in

an agent’s space, but rather a fact that an agent knows. Representing

knowledge necessitates additional properties of the space functions in the

constraint system. In fact, the domain theoretical nature of constraint

systems allows for a simple and elegant characterization of knowledge by

requiring our space functions to be Kuratowski closure operators [MT44]:

closure operators that preserve least upper bounds and bottom (true).

Definition 4.2.1 (n-ecs). An n-agent epistemic constraint system (n-ecs)

C is an n-scs whose space functions s1, . . . , sn are also closure operators.

Thus, the space functions must satisfy all of the following properties:

S.1 si(true) = true

S.2 si(c t d) = si(c) t si(d)

E.1 c v si(c)

E.2 si(si(c)) = si(c)

Intuitively, in an n-ecs, si(c) states that the agent i knows information

c. The axiom E.1 says that knowledge is accurate: if agent i knows c then c

must be true, hence si(c) entails c. The epistemic principle that an agent i is

aware of its own knowledge (the agents know what they know) is realized by

E.2. The epistemic assumption that agents are idealized reasoners follows

from S.3 in Corollary 4.1.2; if d entails c (c v d) then if d is known to agent

i, so is c (si(c) v si(d)).

42

4.2. Epistemic Constraint Systems.

Common Knowledge.

Epistemic constructions such as “agent i knows that agent j knows c” can

be expressed as si(sj(c)). Group knowledge of a fact c for a group of agents

G means that all the agents in G know c. This can be represented as sG(c)

as in Definition 4.1.6. Similarly, common knowlege of a fact c in a group

G happens when all the agents in G know c, they all know that they know

c, and so on ad infinitum. This is captured by the construction gG(c) in

Definition 4.1.6.

Remark 4.2.2. Consider an n-ecs C whose compact elements Con0 are

closed under the space functions: i.e., if c ∈ Con0 the si(c) ∈ Con0. By

proposition 3.1.8, Con0 is closed under group knowledge sG(c) since G is

finite. It is not necessarily closed under common knowledge gG(c), however,

because, in general,
⊔∞
j=1 s

j
G(c) cannot be finitely approximated. Neverthe-

less, in Examples (Section 4.3) we shall identify families of scs’s where Con0

is closed under common knowledge, and in Section 7 we address the issue

of using suitable over-approximations of common knowledge.

The following proposition states two distinctive properties of epistemic

constraint systems: They are not space consistent and those with space

functions other than identity do not preserve distinctness. We use id to

denote the identity space function.

Proposition 4.2.3. Let C be an n-ecs with space functions s1, . . . , sn. For

each i, j ∈ {1, . . . , n}:

1. C is not (i, j)-space consistent

2. If there is i ∈ {1, ..., n} such that si 6= id then C does not preserve

distinctness.

Proof. 1. Since C is an ecs, false v si(false) by E.1, and false is the top

element so si(false) = false. Recall from Proposition 4.1.4 that if C is

(i, j) space consistent then si(false) 6= false. So C is not (i, j) space

consistent and therefore not space consistent at all.

43

4.3. Examples.

2. Recall from Definition 4.1.5 that C preserves distinctness if all the

space functions are injective. Suppose there is some i ∈ {1, ..., n} so

that si 6= id, so there is some c ∈ Con such that c 6= si(c). But by E.2,

si(c) = si(si(c)). So, even though c 6= si(c), si(c) = si(si(c)), meaning

that si is not injective. Therefore, C is distinctness preserving if and

only if all the space functions are the identity.

4.3 Examples.

We now illustrate two important families of spatial constraint systems. The

families reveal meaningful connections between our spatial constraint sys-

tems and models of knowledge and belief [FHMV95].

Aumann Constraint Systems

Aumann structures [FHMV95] are an event-based approach to modelling

knowledge. An Aumann structure is a tuple A = (S, P1, ..., Pn) where S is

a set of states and each Pi is a partition on S for agent i: for each agent i,

Pi = {Si1 , Si2 , ..., Siki}, where S =
⋃iki
j=i1

Sj and for all ij, ik, Sij ∩ Sik = ∅.
We call these partitions information sets. If two states t and u are in the

same information set for agent i, it means that in state t agent i considers

state u possible, and vice versa. An event in an Aumann structure is any

subset of S. For example, an event could be “I am wearing a red shirt,”

which would consist of all the states where I am wearing a red shirt. Event

e holds at state t if t ∈ e. The conjunction of two events is their intersection

and knowledge of an event is itself an event: for i ∈ {1, ..., n}, the knowledge

operator Ki : P(S) −→ P(S) is defined as

Ki(e) = {t ∈ S | Pi(t) ⊆ e}

where Pi(t) denotes the cell that t is in in the partition Pi.

Thus, we can define group knowledge for group G as

EG(e) =
⋂
i∈G

Ki(e).

44

4.3. Examples.

And we can define common knowledge of event e for group G as

CG(e) =
∞⋂
j=1

EjG(e).

Definition 4.3.1 (Aumann Constraint System). We define the Aumann

n-ecs C(A) as follows: The constraints are the events: Con = {e | e ⊆ A},
the order is the reverse inclusion order: e1 v e2 iff e2 ⊆ e1, the least upper

bound of a set of events is just the the set intersection of the events, true

is the entire set, S, and false is the empty event, ∅. The space function for

each agent i is given by si(e) = Ki(e).

Theorem 4.3.2. For any Aumann structure A = (S, P1, ..., Pn), C(A) is

an n-ecs.

Proof. This proof has several parts: we must prove that C(A) is a complete

algebraic lattice, and we must prove that the si functions satisfy the four

properties of an ecs.

Complete algebraic lattice : It is a standard result that the reverse

inclusion ordering on the powerset of a set is a complete algebraic

lattice; the compact elements are the co-finite subsets of S (the sets

t ⊆ S such that S\t is a finite set), and it is easy to see that every set

is equal to the intersection of the cofinite sets that it is included in, so

the lattice is algebraic, and it is also easy to see that the intersection

of sets is their least upper bound, and that is the top element and S

is the bottom element.

S.1 : Now we must show that si(true) = true, which is equivalent to

Ki(S) = S. Recall that Ki(e) = {t ∈ S | Pi(t) ⊆ e}, so Ki(S) =

{t ∈ S | Pi(t) ⊆ S}, which is of course equal to S.

45

4.3. Examples.

S.2 : We want to show that si(c t d) = si(c) t si(d).

si(c t d) = Ki(c ∩ d)

= {t ∈ S | Pi(t) ⊆ c ∩ d}

= {t ∈ S | Pi(t) ⊆ c and Pi(t) ⊆ d}

= {t ∈ S | Pi(t) ⊆ c} ∩ {t ∈ S | Pi(t) ⊆ d}

= Ki(c) ∩ Ki(d)

= si(c) t si(d)

E.1 : We want to show that c v si(c). To prove this, first note that for

any state t, t ∈ Pi(t) (because Pi(t) denotes t’s cell in the partition

Pi). So, if Pi(t) ⊆ c then t ∈ c. Therefore, Ki(c) = {t | Pi(t) ⊆ c} ⊆ c.

This is equivalent to c v si(c).

E.2 : We must show that si(si(c)) = si(c). This is the same as showing that

Ki(Ki(c)) = Ki(c), or {r | P (r) ⊆ {t | P (t) ⊆ c}} = {u | P (u) ⊆ c},
which is true.

Aumann constraint systems are epistemic constraint systems, thus they

are not space consistent (Proposition 4.2.3). We shall now identify a mean-

ingful spatial constraint system that is space consistent.

Kripke Constraint Systems.

Recall that a Kripke structure, also called a relational structure, is a set

of states and a family of relations on the states indexed by the agents.

We denote the relations as s
i−→ t if s is related to t, and they can be

thought of as accessibility relations for the agents: if s
i−→ t then in state

s, agent i considers t possible. An epistemic Kripke structure is a Kripke

structure where the accessibility relations are equivalence relations (reflex-

ive, transitive, and symmetric). In the following spatial constraint system,

the constraints are sets of pointed Kripke structures : sets of pairs (M, s)

46

4.3. Examples.

where M is a Kripke structure and s is a state of M . In the definition

below we consider multiple Kripke structures, so we index the relations by

the structure they belong to: if s and t are states in M and s is related to

t, we denote this as s
i−→M t.

Definition 4.3.3 (Kripke Constraint System). Consider a set of Kripke

structures M over agents {1, ..., n}. Let ∆M be the set {(M, t) | M ∈
M and t ∈ St(M)} where St(M) denotes the set of states of M . Define an

n-scs C(∆M) as follows:

• Let Con = P(∆M),

• Con0 is the set of cofinite sets, that is, if ∆M\c is a finite set, then c

is a compact element in the lattice,

• c1 v c2 iff c2 ⊆ c1,

• c1 t c2 is the set intersection of c1 and c2,

• true is the set ∆M,

• false is ∅,

• and finally, define

si(c) = {(M, t) ∈ ∆M | ∀t′ ∈ St(M)
[
t
i−→M t

′ ⇒ (M, t′) ∈ c
]
}.

Notice that the definition of the space functions is reminiscent of the se-

mantics of the box modality in modal logic [Pop94].

The following theorem gives us a taxonomy of spatial constraint systems

for the above construction.

Theorem 4.3.4. Let M be a non-empty set of Kripke structures over agents

{1, ..., n},

1. C(∆M) is an n-scs for any M,

2. If M is the class of all n agent pointed Kripke structures, then C(∆M)

is a space consistent n-scs, and

47

4.3. Examples.

3. If M is a set of n-agent pointed Kripke structures whose accessibility

relations are equivalences then C(∆M) is an n-ecs.

Proof. There are three parts to the proof. Again, we omit the proof that

the powerset lattice with the reverse subset ordering is a complete algebraic

lattice, with the compact elements, least upper bound operation, and top

and bottom elements as defined, because this is a standard and straight-

forward proof. We prove below that the space functions meet the required

properties in each case. Recall that the space functions are defined as

si(c) = {(M, t) ∈ ∆M | ∀t′ ∈ St(M)
[
t
i−→M t

′ ⇒ (M, t′) ∈ c
]
}.

1. S.1 We must show that si(true) = true. Recall that true = ∆M. So

si(∆M) = {(M, t) ∈ ∆M | ∀t′ ∈ St(M)
[
t
i−→M t

′ ⇒ (M, t′) ∈ ∆M

]
}.

And since ∆M is the entire set of pointed Kripke structures under

consideration, every (M, t′) ∈ ∆M, so si(∆M) = ∆M as desired.

S.2 This part is straightforward:

si(c t d) = {(M, t) | ∀t′ ∈ St(M)
[
t
i−→M t

′ ⇒ (M, t′) ∈ c t d
]
}

= {(M, t) | ∀t′ ∈ St(M)
[
t
i−→M t

′ ⇒ (M, t′) ∈ c ∩ d
]
}

= {(M, t) | ∀t′ ∈ St(M)
[
t
i−→M t

′ ⇒ (M, t′) ∈ c
]
}

∩ {(M, t) | ∀t′ ∈ St(M)
[
t
i−→M t

′ ⇒ (M, t′) ∈ d
]
}

= si(c) ∩ si(d)

= si(c) t si(d)

2. We must show that if M is the class of all pointed Kripke structures,

then C(∆M) is a space consistent n-scs. Recall that C is space con-

sistent if and only if C is (i, j) space consistent for all i, j ∈ {1, ..., n},
and that from Proposition 4.1.4, a spatial constraint system is (i, j)

space consistent if and only if si(false)t sj(false) 6= false. So we will

show that for all i, j ∈ {1, ..., n}, si(false) t sj(false) 6= false.

Since we are considering the class of all pointed Kripke structures over

n agents, this includes the Kripke structure we will call M∗, which we

48

4.3. Examples.

define as having a single state s∗, and every relation
i−→ empty. Now,

notice that

si(false) = {(M, t) | ∀t′ ∈ St(M)
[
t
i−→M t

′ ⇒ (M, t′) ∈ ∅
]
}

Since s∗ is not related to any other states by the
i−→M∗ relation,

(M∗, s∗) ∈ si(false), and similarly (M∗, s∗) ∈ sj(false). Thus, si(false)t
sj(false) is nonempty, and so C(∆M) is space consistent.

3. Now we must show that if M is a set of n-agent pointed Kripke

structures whose accessibility relations are equivalence relations then

C(∆M) is an n-ecs. It follows from the first item that C(∆M) is an

scs, so we must prove that the space functions respect properties E.1

and E.2. Since we are now discussing equivalence relations, instead

of s
i−→M t, we will write s ∼iM t.

E.1 We must show that for all c, c v si(c), which is equivalent to

si(c) ⊆ c. Now, if (M, t) ∈ si(c), then ∀t′ ∈ St(M), if t ∼iM t′

then (M, t′) ∈ c. But ∼iM is reflexive, so t ∼iM t, and it follows

that (M, t) ∈ c. Thus, c v si(c).

E.2 We want to show that si(si(c)) = si(c). The fact that si(c) ⊆
si(si(c)) follows from E.1. The fact that si(si(c)) ⊆ si(c) fol-

lows from the transitivity of ∼i. We omit the details, which are

straightforward but tedious.

Remark 4.3.5. Consider a modal language Φ over propositions P and

family of relations I. Consider the modal formulas given by

φ := p | φ1 ∧ φ2 | [i]φ,

where p is a basic proposition, with the corresponding usual notion of satis-

faction over Kripke models for propositions, conjunction and the box modal-

ity, as defined in Chapter 2. We abuse the notation and use a formula φ

to denote the set of all pointed Kripke structures that satisfy φ. With the

49

4.3. Examples.

help of the above theorem, one can establish a correspondence between the

n-scs satisfying the premise in (2) and the modal system Kn [FHMV95] in

the sense that φ is above φ′ in the lattice if and only if we can derive in Kn

that φ implies φ′ (written `KN
φ ⇒ φ′). Similarly, for the n-scs satisfying

(3) and the epistemic system S4n [FHMV95].

We conclude this chapter with a brief discussion of compactness in the

constraint system C(∆M). We will see in the following chapter that compact

elements of the constraint system are particularly important in the context

of the process calculi we will define, so it may be useful to have a constraint

system that consists entirely of compact elements.

Corollary 4.3.6. If ∆M is a finite set (this occurs if M is a finite set of

finite state Kripke structures), then every element of the constraint system

is compact.

This result follows immediately from the fact that in Theorem 4.3.4, we

showed that the compact elements of C(∆M) are the cofinite subsets of ∆M.

If ∆M is a finite set, then every subset of ∆M is cofinite, and therefore each

element of the lattice is compact, even gG(c) (Remark 4.2.2).

50

Five

Space and Knowledge in Processes

In this chapter we introduce two CCP variants: Spatial CCP (SCCP) and

Epistemic CCP (ECCP). Spatial CCP is a conservative extension of CCP

to model agents with spaces, possibly nested, in which they can store in-

formation and run processes. Its underlying constraint system is a spatial

constraint system. Epistemic CCP extends the Spatial CCP with addi-

tional rules to model agents that interact by asking and computing knowl-

edge within the spatial information distribution. Its underlying constraint

system is an epistemic constraint system. In this chapter we will give the

syntax of both spatial and epistemic processes, and we will discuss intuitions

about their behaviour and the meanings of the different operators. We be-

gin by defining two properties of constraint systems which are necessitated

by the syntax of the processes.

For semantic reasons, we require our spatial constraint systems to have

the following two properties from now on.

Definition 5.0.7 (Continuous). An n-scs

C = (Con,Con0,v,t, true, false, s1, . . . , sn)

is said to be continuous if and only if for every directed set S ⊆ Con and

every si, si(
⊔
S) =

⊔
e∈S si(e).

Definition 5.0.8 (Space-compact). An n-scs

C = (Con,Con0,v,t, true, false, s1, . . . , sn)

51

5.1. Syntax

is said to be space-compact if and only if for every si, if c ∈ Con0 then

si(c) ∈ Con0.

The examples of constraint systems we discussed in the last chapter (Ap-

plications, Section 4.3) can be shown to be continuous. Aumann ecs’s are

space-compact under the additional condition that every set in each parti-

tion is finite. A Kripke scs is space-compact if the inverse of the accessibility

relation is finitely-branching. In the special case of Kripke ecs’s this is the

same as requiring each agent’s accessibility relation to be finitely-branching

since these relations are reflexive.

5.1 Syntax

The following syntax of processes will be common to both calculi.1

Definition 5.1.1. Let C = (Con,Con0,v,t, true, false, s1, . . . , sn) be a

continuous and space compact n-scs. Let A = {1, ..., n} be the set of agents.

Assume a countable set of variables Vars = {X, Y, . . .}. The terms are given

by the following syntax:

P,Q . . . ::= 0 | tell(c) | ask(c)→ P | P ‖ Q | [P]i | X | µX.P

where c ∈ Con0, i ∈ A, and X ∈ Vars. A term T is said to be closed iff

every variable X in T occurs in the scope of an expression µX.P . We will

refer to closed terms as processes and use Proc to denote the class of all

processes.

Notation. Given I = {i1, . . . , im} we use
∏

i∈I Pi to represent for

Pi1 ‖ . . . ‖ Pim .

5.1.1 Basic Processes

Before giving semantics to our processes, we give some intuitions about their

behaviour. The basic processes are tell, ask, and parallel composition and

1For the sake of space and clarity, we dispense with the local/hiding operator.

52

5.1. Syntax

they are defined as in standard CCP [SJPR91]. Recall that a process exe-

cutes in the context of a store, from which it can get information and which

the process can also update by adding information. Intuitively, tell(c) in

store d adds c to d to make c available to other processes with access to

this store. This addition, represented as dt c, is performed whether or not

d t c = false. The process ask(c) → P in a store e may execute P if c is

entailed by e, i.e., c v e . The process P ‖ Q stands for the parallel exe-

cution of P and Q. Variants of the following basic example will be referred

to throughout the paper.

Example 5.1.2. Let P = tell(c) and Q = ask(c) → tell(d). From the

above intuitions, in the execution of the process P ‖ Q starting with the

empty store true, first c will be added to the store by P , and then Q will be

able to execute and add d to the store, resulting in the final store of c t d.

5.1.2 Spatial Processes

Our spatial CCP variant can be thought of as a shared-spaces model of

computation. Each agent i ∈ A may have computational spaces of the

form [·]i where processes as well as other agents’ spaces may exist. It also

has a space function si representing the information stored in its spaces.

Recall that si(c) states that c holds in the space of agent i. Similarly,

si(sj(c)) means that c holds in the store that agent j has within the space

of agent i. Unlike any other CCP calculus, it is possible to have agents

with inconsistent information since ct d = false does not necessarily imply

si(c) t sj(d) = false (see space consistent constraint system in Definition

4.1.3).

The spatial construction [P]i represents a process P running within the

space of agent i. Any information c that P produces is available to processes

that lie within the same space.

Notation. We will use [P]G, whereG ⊆ A, as an abbreviation of
∏

i∈G [P]i.

Example 5.1.3. Consider the process [P]i ‖ [Q]i with P = tell(c) and

Q = ask(c) → tell(d) as in Example 5.1.2. From the above intuitions we

53

5.1. Syntax

see that [P]i will act first, adding c to the store of agent i, and then [Q]i
will be able to execute and add d to the store of agent i, so in the end we

will have si(c)t si(d). Similarly, [P ‖ Q]i will end up producing ct d in the

store of agent i, i.e., si(c t d) which from the scs axioms is equivalent to

si(c)tsi(d). In fact, for any processes P1 and P2, [P1]i ‖ [P2]i and [P1 ‖ P2]i
have the same behaviour.

On the other hand, consider the process [P]j ‖ [Q]i for i 6= j. In this

case, d will not be added to the space of i because c is not made available for

agent i. Also in P ‖ [Q]i, d is not added to the the space of i. In this case,

however, we may view the c told by P as being available at an outermost

space that does not belong to any agent. This does not mean that c holds

everywhere, i.e., globally (Def. 4.1.6).

We also allow nesting of the space operator: for the process [[P]i]j, the

execution will result in sj(si(c)) being added to the store. This represents c

holding in the agent i’s space within the space of agent j.

Finally, consider [P]{i,j} ‖ [[Q]i]j. Here, si(c) and sj(c) will both be added

to the store, but d will not necessarily be added to agent i’s space within agent

j’s space because in an scs although si(c) and sj(c) hold, sj(si(c)) may not

hold.

5.1.3 Epistemic Processes

For our epistemic CCP variant, we shall further require that the underly-

ing constraint system be an epistemic constraint system. This gives the

operator [·]i additional behaviour. From an epistemic point of view, the

information c produced by P not only becomes available to agent i, as in

the spatial case, but also it becomes a fact. This does not necessarily mean,

of course, that c will be available everywhere, as there are facts that some

agents may not know. It does mean, however, that unlike the spatial case,

we cannot allow agents’ spaces to include inconsistent information, as facts

cannot be contradictory : in an ecs, ctd = false implies si(c)tsj(d) = false.

Operationally, [P]i causes any information c produced by P to become

available not only in the space of agent i but also in any space in which

54

5.1. Syntax

[P]i is included. This is because epistemically si(c) = ct si(c) so if sj(si(c))

holds, then sj(c t si(c)) also holds, as does c t sj(c t si(c)). This can be

viewed as saying that c propagates outward in space.

Example 5.1.4. Consider [Q ‖ [P]i]j with P = tell(c) and Q = ask(c)→
tell(d) as in Example 5.1.2. Notice that from executing P we obtain sj(si(c)).

In the spatial case, Q will not necessarily tell d because in a spatial con-

straint system, sj(si(c)) may not entail sj(c). On the other hand, in the epis-

temic case, Q will tell d since in an epistemic constraint system, sj(si(c)) =

sj(c t si(c)) which entails sj(c) by property S.2.

5.1.4 Infinite Processes

Unbounded behaviour is specified using recursive definitions of the form

µX.P whose behaviour is that of P [µX.P/X], i.e., P with every free occur-

rence of X replaced with µX.P. We assume that recursion is ask guarded :

i.e., for every µX.P , each occurrence of X in P occurs under the scope of

an ask process. For simplicity we assume an implicit “ask(true) → ” in

unguarded occurrences of X.

Recursive definitions allow us to represent complex spatial and epistemic

situations, like the following.

Definition 5.1.5 (Global process). Given G ⊆ A and a basic process P we

define

global(G,P)
def
= P ‖ µX. [P ‖ X]G .

Intuitively, in global(G,P) any information c produced by P will be avail-

able at any space or any nesting of spaces involving only the agents in G.

Example 5.1.6. Consider the process global(G,P) ‖
[
[. . . [Q]km . . .]k2

]
k1

where G = {k1, ..., km} ⊆ A, with P = tell(c) and Q = ask(c)→ tell(d) as

in Example 5.1.2. The process global(G,P) eventually makes c available in

the (nested) space
[
[. . . [·]km . . .]k2

]
k1

and thus Q will tell d in that space.

55

5.2. Reduction Semantics

5.2 Reduction Semantics

We now define a structural operational semantics (sos) for SCCP and ECCP.

We begin with the structural operational semantics for the spatial case.

The structural operational semantics for the epistemic case extends the

spatial one with an additional rule and the assumption that the underly-

ing constraint system is epistemic. From now on we will use the following

convention:

Convention 1. The following sections assume an underlying continuous

and space-compact spatial constraint system

C = (Con,Con0,v,t, true, false, s1, . . . , sn).

Definition 5.2.1 (Configuration). A configuration is a pair 〈P, c〉 ∈ Proc×
Con where c represents the current spatial distribution of information in

P . We use Conf with typical elements γ, γ′, . . . to denote the set of config-

urations.

Convention 2. Since we have two process calculi, SCCP and ECCP, with

different transition relations, sometimes index the transitions with “s” if

they are interpreted for SCCP, and with “e” if they are interpreted for

ECCP. We often omit the index when it is irrelevant or obvious.

5.2.1 Operational Semantics for SCCP

The structural operational semantics for SCCP is given by means of a tran-

sition relation between configurations −→s ⊆ Conf× Conf in Table 5.1.

The rules A, T, PL, and R for the basic processes and recursion are

standard in CCP and it is easy to see that they realize the intuitions dis-

cussed above (see [SJPR91]). The rule S for the new spatial operator is

more involved and we explain it below. First we introduce the following

central notion defining the projection of a spatial constraint c for agent i.

Definition 5.2.2 (Views). The agent i’s view of c, ci, is given by ci =⊔
{d | si(d) v c}.

56

5.2. Reduction Semantics

T 〈tell(c), d〉−→ s〈0, d t c〉
A c v d
〈ask (c) → P, d〉−→ s〈P, d〉

PL
〈P, d〉−→ s〈P ′, d′〉

〈P ‖ Q, d〉−→ s〈P ′ ‖ Q, d′〉
R
〈P [µX.P/X], d〉−→ sγ
〈µX.P, d〉−→ sγ

S
〈P, ci〉−→ s〈P ′, c′〉

〈[P]i , c〉−→ s〈[P ′]i , c t si(c
′)〉

Figure 5.1: Rules for SCCP. The projection ci is given in Definition 5.2.2.
The symmetric right rule for PL, PR, is omitted.

Intuitively, ci represents all the information the agent i may see or have

when c is true. For example if c = si(d) t sj(e) then agent i sees d, so

d v ci. Notice that if si(d) = si(d
′) then (si(d))i entails both d and d′. This

is intended because si(d) = si(d
′) means that agent i cannot distinguish d

from d′. The constraint ci enjoys the following property which will be useful

later on.

Proposition 5.2.3. For any constraint c, c t si(c
i) = c.

We need a lemma to prove this proposition.

Lemma 5.2.4. The set {d | si(d) v c} is directed.

Proof. We prove that the set satisfies the stronger property of being closed

under joins. If si(a) v c and si(b) v c, then c is an upper bound for si(a)

and si(b), so si(a)tsi(b) v c, but since si distributes over joins, si(atb) v c,

so a t b ∈ {d | si(d) v c}.

Now we can prove that c t si(c
i) = c.

Proof. To show that c t si(c
i) = c it is sufficient to show that si(c

i) v c.

Now, si(c
i) = si(

⊔
{d | si(d) v c}), and since we just proved that this is a di-

57

5.2. Reduction Semantics

rected set, from continuity of si we conclude that si(c
i) =

⊔
{si(d) | si(d) v

c}, which is clearly below c.

Now we explain the S rule for the spatial operator. First, in order for

[P]i with store c to make a reduction, the information agent i sees or has

in c must allow P to make the reduction. Hence we run P with store ci.

Second, the information d that P ’s reduction would add to ci is what [P]i
adds to the space of agent i as stated in Proposition 5.2.5 below.

Proposition 5.2.5. If

〈P, ci〉 −→ 〈P ′, ci t d〉

then

〈[P]i , c〉 −→ 〈[P
′]i , c t si(d)〉.

Proof. From the S rule in the operational semantics, if 〈P, ci〉 −→ 〈P ′, citd〉
then 〈[P]i , c〉 −→ 〈[P]′i , c t si(c

i t d)〉. Since si distributes over joins,

c t si(c
i t d) = c t si(c

i) t si(d), and by Proposition 5.2.3 above, this con-

straint is equal to c t si(d), completing the proof.

The following corollary shows that the store for [P]i only changes in a

given transition if the store for P changes in the corresponding transition.

Corollary 5.2.6. If 〈P, ci〉 −→ 〈P ′, ci〉 then 〈[P]i , c〉 −→ 〈[P ′]i , c〉.

Proof. Follows immediately from Proposition 5.2.5.

Next we show an instructive reduction involving the use of the S rule.

Example 5.2.7. Take [P]i ‖ [Q]i with P = tell(c) and Q = ask(c) →
tell(d) as in Example 5.1.2. One can verify that

〈[P]i ‖ [Q]i, true〉 −→ 〈[0]i ‖ [Q]i, si(c)〉 −→ 〈[0]i ‖ [0]i, si(c) t si(d)〉.

Recall that si(c)tsi(d) = si(ctd). A more interesting example is [tell(c′)]i ‖ [Q]i
under the assumption that si(c) = si(c

′). We have

〈[tell(c′)]i ‖ [Q]i, true〉 −→ 〈[0]i ‖ [Q]i, si(c
′)〉 −→ 〈[0]i ‖ [0]i, si(c

′) t si(d)〉.

58

5.2. Reduction Semantics

At first glance, it may seem strange that Q is allowed to execute when c′

holds in i’s store, rather than c. But actually, this is the desired behaviour

because si(c) = si(c
′), so c and c′ are regarded as equivalent by i, and so a

process in i’s space must behave the same way whether c′ or c is in i’s store.

5.2.2 Operational Semantics for ECCP

Now we present the operational semantics for the epistemic case. The

ECCP structural operational semantics assumes that the underlying con-

straint system is an epistemic constraint system. As explained earlier, in

the epistemic setting, for the process [P]i, the information c produced by

P not only becomes available to agent i but also becomes a fact within the

hierarchy of spaces in which [P]i is included. This means that c is available

not only in the space of agent i but also in any space in which [P]i is in-

cluded. We can view this as saying that c propagates outward through the

spaces [P]i is in and this is partly realized by the equation si(c) = c t si(c)
which follows from E.1 (Definition 4.2.1). Mirroring this constraint equa-

tion and epistemic reasoning, the behaviour of [P]i and P ‖ [P]i must also be

equated, since [P]i can only produce factual information. This makes [P]i
somewhat reminiscent of the replication/bang operator in the π-calculus

[MPW92]. For ECCP we include the new E Rule in Table 5.2. As illus-

trated in Example 5.2.8, Rule E is necessary for the behaviour of [P]i and

P ‖ [P]i to be the same, corresponding to the epistemic principles we wish

to represent.

The structural operational semantics of ECCP is given by the transition

relation between configurations −→e ⊆ Conf × Conf defined in Table 5.2

and assuming the underlying constraint system to be epistemic.

Example 5.2.8. Let R = [P ‖ [Q]i]j and T = [P ‖ [Q]i ‖ Q]j with P =

tell(c) and Q = ask(c) → tell(d) as in Example 5.1.2. Our operational

semantics allows us to equate R and T , which mimics epistemic principles.

Even assuming an epistemic constraint system, with only the rules of SCCP

(i.e., without Rule E), T can produce sj(d), d in the store of agent j, but

R is not necessarily able to do this: One can verify that there are T ′, e′ s.t.

59

5.2. Reduction Semantics

T 〈tell(c), d〉−→ e〈0, d t c〉
A c v d
〈ask (c) → P, d〉−→ e〈P, d〉

PL
〈P, d〉−→ e〈P ′, d′〉

〈P ‖ Q, d〉−→ e〈P ′ ‖ Q, d′〉
R
〈P [µX.P/X], d〉−→ eγ
〈µX.P, d〉−→ eγ

S
〈P, ci〉−→ e〈P ′, c′〉

〈[P]i , c〉−→ e〈[P ′]i , c t si(c
′)〉 E

〈P, c〉−→ e〈P ′, c′〉
〈[P]i , c〉−→ e〈[P]i ‖ P

′, c′〉

Figure 5.2: Rules for ECCP (see Convention 2). Recall that the projection
ci =

⊔
{d | si(d) v c} as in Definition 5.2.2. The symmetric right rule for

PL, PR, is omitted.

〈T, true〉 −→∗s 〈T ′, e′〉 and sj(d) v e′, while, in general, for all R′, e′′ such

that 〈R, true〉 −→∗s 〈R′, e′′〉 we have sj(d) 6v e′′. With the rules of ECCP,

however, one can verify for each e′ such that 〈T, true〉 −→∗e 〈T ′, e′〉 there

exists e′′, 〈R, true〉 −→∗e 〈R′, e′′〉 such that e′ v e′′ (and vice-versa with the

roles of R and T interchanged).

60

Six

Observable Behaviour of Space and

Knowledge

A standard notion of observable behaviour in CCP involves infinite fair

computations and information constructed as the limit of finite approxi-

mations. For our calculi, however, these limits may result in infinite (or

non-compact) objects involving arbitrary nesting of spaces, or epistemic

specifications such as common knowledge. In this chapter we provide tech-

niques useful for analyzing the observable behaviour of such processes using

simpler finitary concepts and compositional reasoning.1

The notion of fairness is central to the definition of observational equiv-

alence for CCP. We introduce this notion following [FGMP97]. To define

fairness we need several subsidiary definitions. First, note that any deriva-

tion of a transition involves an application of Rule A or Rule T.

Definition 6.0.9 (Active). We say that P is active in a transition t =

γ−→ γ′ if there exists a derivation of t where rule A or T is used to produce

a transition of the form 〈P, d〉−→ γ′′.

Definition 6.0.10 (Enabled). We say that P is enabled in γ if there exists

γ′ such that P is active in γ−→ γ′.

Now we can define a fair computation.

1See Convention 2.

61

6.1. Observing Limits.

Definition 6.0.11 (Fair Computation). A computation

γ0−→ γ1−→ γ2−→ . . .

is said to be fair if for each process P enabled in some γi there exists j ≥ i

such that P is active in γj.

Note that a finite fair computation is guaranteed to be maximal, namely

no outgoing transitions are possible from its last configuration.

6.1 Observing Limits.

A standard notion of observables for CCP is the result computed by a

process for a given initial store. The result of a computation is defined as

the least upper bound of all the stores occurring in the computation, which,

thanks to the monotonic properties of our calculi, form an increasing chain

(this is easy to verify by looking at the operational semantics). Here is the

formal definition.

Definition 6.1.1 (Result of a computation). Let ξ be a computation (finite

or infinite) of the form

〈Q0, d0〉−→ 〈Q1, d1〉−→ 〈Q2, d2〉−→ . . .

We define the result of ξ as

Result(ξ) =
⊔
i

di.

In our calculi all fair computations from a configuration have the same

result.

Proposition 6.1.2. Let γ be a configuration and let ξ1 and ξ2 be two com-

putations of γ. If ξ1 and ξ2 are fair, then Result(ξ1) = Result(ξ2).

This means that we can define the result of a process, rather than just

a computation.

62

6.1. Observing Limits.

Definition 6.1.3 (Result of a process). Now, for a configuration γ, if ξ is

any fair computation of γ, we can set

Result(γ)
def
= Result(ξ).

Now we can define the observation function, which also takes the initial

store into account.

Definition 6.1.4 (Observation). The observation is a function

O : Proc→ Con0 → Con mapping a process and an initial store to a final

store. For a process P and an initial store d, we define

O(P)(d) = Result(〈P, d〉).

Example 6.1.5. The observation we make of the recursive process

global(G, tell(c)) on input true is the limit gG(c) (Definition 4.1.6). In

other words,

O(global(G, tell(c)))(true) = gG(c).

Now we define an equivalence between processes based on the observa-

tion function.

Definition 6.1.6 (Observational equivalence). We say that P and Q are

observationally equivalent, written P ∼o Q, if and only if for all d ∈ Con0,

O(P)(d) = O(Q)(d).

Example 6.1.7. Let P = tell(c) and Q = ask(c) → tell(d) as in Ex-

ample 5.1.2. Let R = [P]i ‖ [Q]i, and let T = [P ‖ Q]i. R and T are

observationally equivalent, that is, R ∼o T .

The relation ∼o can be shown to be a congruence, that is, it is preserved

under arbitrary contexts. Recall that a context C is a term with a hole •, so

that replacing it with a process P yields a process term C(P). For example,

if C = [•]i then C(tell(d)) = [tell(d)]i.

Theorem 6.1.8. P ∼o Q if and only if for every context C, C(P) ∼o C(Q).

63

6.2. Observing Barbs

We will not prove this theorem, because at the end of the chapter it will

follow directly from some other results.2

6.2 Observing Barbs

In the next section we will show that the above notion of observation has

pleasant and useful closure properties like those of basic CCP. Some readers,

however, may feel uneasy with observable behaviour involving notions such

as infinite fair computations and limits, as well as possibly non-compact

elements in the constraint system. Fortunately, we can give a finitary char-

acterization of behavioural equivalence for our calculi, involving only finite

computations and compact elements.

Definition 6.2.1 (Barb). In the constraint system

C = (Con,Con0,v,t, true, false, s1, . . . , sn),

A barb is an element of Con0.

Definition 6.2.2 (Barb satisfaction). We say that γ = 〈P, d〉 satisfies the

barb c, written γ ↓c, if and only if c v d. We also say that c is a strong

barb for P .

Definition 6.2.3 (Weak barb satisfaction). We say that the configuration

γ weakly satisfies the barb c, written γ ⇓c, if and only if there is a sequence

of configurations γ1, γ2, ..., γn such that

γ −→ γ1 −→ γ2 −→ ... −→ γn

and γn ↓c. We also say that c is a weak barb for P .

Example 6.2.4. Consider the process R = ask c → [tell(d)]i and the

configuration 〈R, c〉. Notice that 〈R, c〉 ↓c and also 〈R, c〉 ⇓si(d).

2This theorem follows from Theorem 6.3.9 which says that two processes are observa-
tionally equivalent if and only if their denotations are the same, and since the definition
of denotation is completely computational, it is a congruence.

64

6.2. Observing Barbs

On the other hand, 〈R, true〉 ↓true and also 〈R, true〉 ⇓true, and these are

the only weak or strong barbs for this configuration.

Finally, 〈tell(c) ‖ R, true〉 ⇓c and 〈tell(c) ‖ R, true〉 ⇓si(d), even though

the only weak barb for this configuration is true.

Definition 6.2.5 (Barb equivalence). P and Q are barb equivalent, written

P ∼b Q, if and only if for all stores, P and Q weakly satisfy the same

barbs: ∀c, d ∈ Con0,

〈P, d〉 ⇓c ⇐⇒ 〈Q, d〉 ⇓c .

We now establish the correspondence between our process equivalences.

First we recall some notions from domain theory central to our proof of the

correspondence.

Definition 6.2.6 (Chain). In a partial order (S,v) we call a totally ordered

subset of S with a least element a chain. That is, D ⊆ S is a chain if

D = {d0, d1, d2, ...} where

d0 v d1 v d2 v ... v dn v ...

Definition 6.2.7 (Cofinal). Two (possibly infinite) chains d0 v d1 v · · · v
dn v . . . and e0 v e1 v · · · v en v . . . are said to be cofinal if for all di

there exists an ej such that di v ej and vice versa.

The following lemma is very useful for the correspondence between our

process equivalences.

Lemma 6.2.8. Consider a complete lattice (S,v), and chains D,E ⊆ S.

The following results hold:

1. If D and E are cofinal, then they have the same limit,, that is
⊔
D =⊔

E.

2. If all elements of D and E are compact and
⊔
D =

⊔
E, then the

two chains are cofinal.

65

6.2. Observing Barbs

Proof. Let D = {d0, d1, ...} and E = {e0, e1, ...} such that

d0 v d1 v d2 v ... v dn v ...

and

e0 v e1 v e2 v ... v en v ...

1. For each di ∈ D, there exists eki ∈ E such that di v eki . Define

fl =
⊔l
i=0 eki . Then for all l, dl v fl and f0 v f1 v f2 v

So the chain d0, d1, d2, ... is dominated by the chain f0, f1, f2, ... and

therefore
⊔
D v

⊔
i∈N fi. However

⊔
i∈N fi =

⊔
i∈N eki =

⊔
E, proving

that
⊔
D v

⊔
E. But we can prove in exactly the same way that⊔

E v
⊔
D, so we have that

⊔
D =

⊔
E.

2. If
⊔
D =

⊔
E then for arbitrary di, since di v

⊔
D,di v

⊔
E, and

since di is compact, by definition there must be ej such that di v ej.

The same reasoning can be used to prove that for every ei, there exists

dj with ei v dj. Therefore D and E are cofinal.

Now we are almost ready to show that two processes are observation-

ally equivalent if and only if they are barb equivalent. The proof of this

correspondence shows that the stores of any pair of fair computations of

equivalent processes form pairs of cofinal chains. But it also uses the fol-

lowing result about a relation between weak barbs and fair computations.

Lemma 6.2.9. Let 〈P0, d0〉−→ 〈P1, d1〉−→ . . . −→ 〈Pn, dn〉−→ . . . be a

fair computation. If 〈P0, d0〉 ⇓c then there exists a store di s.t., c v di.

Proof. Since 〈P0, d0〉 ⇓c, it means that there exists a computation

〈P0, d0〉−→ 〈P ′1, d′1〉−→ ...−→ 〈P ′n, d′n〉

such that c v d′n. Any finite computation can be extended to a fair compu-

tation which is either finite and maximal or infinite. We only include the

66

6.2. Observing Barbs

proof for the case where the computation is infinite, because the finite case

is similar. So let

ξ = 〈P0, d0〉−→ 〈P ′1, d′1〉−→ ...−→ 〈P ′n, d′n〉−→

be an infinite fair computation. Then

Result(〈P0, d0〉) = Result(ξ) =
⊔
i∈N

d′i

and c v d′n v
⊔
i∈N d

′
i. But we know that all fair computations have the

same results, so Result(〈P0, d0〉) =
⊔
i∈N di also, and c v

⊔
i∈N di. Finally,

since c is a barb, c is compact, and so there is some di such that c v di.

Lemma 6.2.10. For a process P and c, d ∈ Con0,

〈P, d〉 ⇓c if and only if c v O(P)(d).

Proof. From Lemma 6.2.9 it follows that if 〈P, d〉 ⇓c then c v O(P)(d). On

the other hand, suppose that

〈P, d〉−→ 〈P1, d1〉−→ . . . −→ 〈Pn, dn〉−→ . . .

is a fair computation. If c is compact and c v O(P)(d) =
⊔
i∈N di it follows

from c’s compactness that for some di ∈ {d, d1, d2, ...}, c v di, and therefore

〈P, d〉 ⇓c.

With these observations we can show that two processes are not ob-

servationally equivalent on a given input if and only if there is a compact

element that tells them apart.

Theorem 6.2.11. Observational equivalence and barb equivalence corre-

spond: for all P,Q ∈ Proc,

P ∼o Q⇐⇒ P ∼b Q.

Proof. Recall that our constraint systems are complete algebraic lattices,

and that algebraicity means that every element is the supremum of the

67

6.3. Denotational Semantics.

compact elements below it. Since all barbs are compact elements, it follows

from Lemma 6.2.10 that for any process P and any d ∈ Con0,

O(P)(d) =
⊔
{c ∈ Con0 | 〈P, d〉 ⇓c}.

It follows immediately that if P ∼b Q then P ∼o Q.

On the other hand, since Lemma 6.2.10 says that if c v O(P)(d) then

〈P, d〉 ⇓ c, it follows that if P ∼o Q then P ∼b Q.

6.3 Denotational Semantics.

Now we give a denotational characterization of observable behaviour that

allows us to reason compositionally about our spatial and epistemic pro-

cesses. First we can show that the behaviour of a process P , O(P), is a

closure operator on v. The importance of O(P) being a closure operator

on v is that a closure operator is fully determined by its set of fixed points,

as discussed in Chapter 3. This property will later allow us to define the

behaviour of a process compositionally.

Lemma 6.3.1. For every P , O(P) is a closure operator on v.

Before the proof of the lemma, we need several more lemmas which will

be used in the idempotence part of the proof.

Lemma 6.3.2. If

〈Q, d〉−→ 〈Q′, d′〉

and d′ v e then

〈Q, e〉−→ 〈Q′, e〉

Proof. We prove this lemma by structural induction on Q. The cases for

tell, parallel, and ask are the same as in standard CCP, so we only discuss

the case where Q = [P]i for some P .

In SCCP, if 〈[P]i , d〉 has a transition available, the derivation must be

of the form
〈P, di〉−→ 〈P ′, d′′〉

〈[P]i , d〉−→ 〈[P ′]i , d t si(d′′)〉

68

6.3. Denotational Semantics.

Now since we assume that d′ v e and we know that d v d′ because

〈Q, d〉−→ 〈Q′, d′〉, we know that d v e, so clearly di v ei. Furthermore,

d′ = d t si(d
′′) v e so clearly d′′ v ei. So by induction hypothesis,

〈P, ei〉−→ 〈P ′, ei〉. Now we can conclude that

〈P, ei〉−→ 〈P ′, ei〉
〈[P]i , e〉−→ 〈[P ′]i , e t si(ei)〉

Of course, we already know that for any e, e t si(e
i) = e, so we conclude

that if 〈[P]i , d〉−→ 〈[P ′]i , d′〉 and d′ v e then 〈[P]i , e〉−→ 〈[P ′]i , e〉.
Now, in the ECCP case, where Q = [P]i for some P , there are two

possibilities. If 〈[P]i , d〉−→ 〈[P ′]i , d′〉 then the reasoning is exactly the

same as above. If, on the other hand, 〈[P]i , d〉−→ 〈[P]i ‖ P ′, d′〉, then the

derivation must be as follows:

〈P, d〉−→ 〈P ′, d′〉
〈[P]i , d〉−→ 〈[P]i ‖ P ′, d′〉

So if d′ v e then by induction hypothesis, it is immediate that 〈P, e〉−→ 〈P ′, e〉,
and we can make the following derivation:

〈P, e〉−→ 〈P ′, e〉
〈[P]i , e〉−→ 〈[P]i ‖ P ′, e〉

This completes the proof of the lemma.

Lemma 6.3.3. If 〈P, e〉−→ 〈P ′, e′〉 then there exists c ∈ Con0 such that

c v e and 〈P, c〉−→ 〈P ′, c′〉 for some c′.

Proof. The proof is by structural induction on P . Since the other cases are

the same as in standard CCP, we only include the case where P = [Q]i for

some Q.

In SCCP or ECCP, if P ’s transition is justified by the S rule then there

is a derivation of the form

〈Q, ei〉−→ 〈Q′, e′〉
〈[Q]i , e〉−→ 〈[Q′]i , e t si(e′)〉

So by the induction hypothesis, there must be c ∈ Con0 such that c v ei

and 〈Q, c〉−→ 〈Q′, c′〉 for some c′. Now, since si is a compactness preserving

69

6.3. Denotational Semantics.

function, si(c) ∈ Con0. Furthermore, we know that c v (si(c))
i so the

following derivation holds:

〈Q, (si(c))i〉−→ 〈Q′, x〉
〈[Q]i , si(c)〉−→ 〈[Q′]i , si(c) t si(x)〉

for some x. Since si(c) ∈ Con0, this proves the lemma in this case.

If we are in the ECCP case and the transition of 〈[Q]i , e〉 is justified by

the E rule, then we have that

〈Q, e〉−→ 〈Q′, e′〉
〈[Q]i , e〉−→ 〈[Q]i ‖ Q′, e′〉

so by the induction hypothesis, there exists c ∈ Con0 such that

〈Q, c〉−→ 〈Q′, c′〉. Then of course we can conclude that

〈Q, c〉−→ 〈Q′, c′〉
〈[Q]i , c〉−→ 〈[Q]i ‖ Q′, c′〉

which completes the proof of the lemma for this case.

Lemma 6.3.4. If

ζ1 = 〈P, c0〉−→ 〈P1, c1〉−→ 〈P2, c2〉−→ . . . −→ 〈Pn, cn〉−→ . . .

is a fair computation, c0 ∈ Con0, and e =
⊔
i ci, then

ζ2 = 〈P, e〉−→ 〈P1, e〉−→ 〈P2, e〉−→ . . . −→ 〈Pn, e〉−→...

is also a fair computation.

Proof. First, recall that a computation γ0−→ γ1−→ . . . −→ γn−→ . . . is

fair if for each process enabled in some γi, there exists j ≥ i such that the

process is active in γj.

Next, note that it is easy to verify from the operational semantics that

whenever 〈P, c〉−→ 〈P ′, c′〉 and c ∈ Con0, c′ ∈ Con0. So we know that for

all i ∈ N, ci ∈ Con0.

Suppose a process P ∗ is enabled in some 〈Pi, e〉. From Lemma 7, it

follows that there is some d ∈ Con0 such that d v e and the P ∗ is enabled

in 〈Pi, d〉. Now since d is a compact element and d v e =
⊔
i ci, there

70

6.3. Denotational Semantics.

exists j such that d v cj. Therefore P ∗ is enabled in 〈Pj, cj〉, and since

ζ1 is a fair computation, this means that for some k ≥ j P ∗ is active in

〈Pk, ck〉−→ 〈Pk+1, ck+1〉. Furthermore, it it easy to see that P ∗ must also

be active in the transition 〈Pk, e〉−→ 〈Pk+1, e〉. This proves that ζ2 is a fair

computation.

Proof. Finally we can prove that O(P) is a closure operator. We must

prove three properties: extensiveness, monotonicity and idempotence.

1. c v O(P)(c).

First, note that whenever 〈P, c〉−→ 〈P ′, c′〉, c v c′. This is easy to see

because the only rules that directly change the store are the T, and

S, rules, and in this case the store goes from c to ct c′, and of course

c v c t c′. The rules PL, R, and E may change the store but only if

the store in the hypothesis is similarly changed, so the stores in the

hypothesis must also be increasing. The A rule does not change the

store. Therefore, from the fact that a transition can only increase the

store, it follows from the induction of O(P) that c v O(P)(c).

2. If c v d then O(P)(c) v O(P)(d).

We will show by structural induction on the derivation tree for the

transition that if 〈P, c〉−→ 〈P ′, c′〉 and c v d then 〈P, d〉−→ 〈P ′, d′〉
and c′ v d′. It is clear that this fact implies the result.

• If the transition follows from the T, A, PL or R rule, the proof

is the same as in standard CCP.

• If the transition follows from the S rule, then the process must be

of the form [P]i. If c v d then ci v di, so if 〈P, ci〉−→ 〈P ′, c′〉 then

〈P, di〉−→ 〈P ′, d′〉 where c′ v d′ by the induction hypothesis.

Then since si is order-preserving by assumption, si(c
′) v si(d

′),

and therefore c t si(c
′) v d t si(d

′).

• If the transition follows from the E rule, then the process is of

the form [P]i, and if 〈[P]i , c〉−→ 〈[P]i ‖ P ′, c′〉 then we know

71

6.3. Denotational Semantics.

that 〈P, c〉−→ 〈P ′, c′〉. From the induction hypothesis, if c v d

then 〈P, d〉−→ 〈P ′, d′〉 and c′ v d′. Of course this means that

〈[P]i , d〉−→ 〈[P]i ‖ P ′, d′〉, proving the desired property.

3. O(P)(c) = O(P)(O(P)(c)).

We prove this property for the case of a process with an infinite exe-

cution. The proof for a process with finite execution is similar.

Assume that P has a fair computation (let c = c0)

〈P, c0〉−→ 〈P1, c1〉−→ 〈P2, c2〉−→ . . . −→ 〈Pn, cn〉−→ . . .

Let e = O(P)(c) =
⊔
i ci.

From Lemma 6.3.2, it follows that

〈P, e〉−→ 〈P1, e〉−→ 〈P2, e〉−→ . . . −→ 〈Pn, e〉−→ . . .

From lemma 6.3.4 we know that this is a fair computation. There-

fore O(P)(e) = e. Since e = O(P)(c), this means that O(P)(c) =

O(P)(O(P)(c)), so O(P) is an idempotent function.

Now we recall the definition of the fixed points of the observation func-

tion.

Definition 6.3.5. For a process P , the set of fixed points of O(P) is defined

as

fix(O(P)) = {d ∈ Con | O(P)(d) = d}.

Proposition 6.3.6. The observation function is defined by its set of fixed

points:

O(P)(c) =
l
{d ∈ Con | c v d and d ∈ fix(O(P))}.

This proposition is just an instance of Theorem 3.1.17.

Corollary 6.3.7. O(P) = O(Q) iff fix(O(P)) = fix(O(Q)).

72

6.3. Denotational Semantics.

DX [[X]]I = I(X)

DP [[P ‖ Q]]I = [[P]]I ∩ [[Q]]I

D0 [[0]]I = {d | d ∈ Con}
DT [[tell(c)]]I = {d | c v d}
DA [[ask(c)−→P]]I = {d | c v d and d ∈ [[P]]I} ∪ {d | c 6v d}
DR [[µX.P]]I =

⋂
{S ⊆ P(Con) | [[P]]I[X:=S] ⊆ S}

DS [[[P]i]]I = {d | di ∈ [[P]]I}

Figure 6.1: Denotational Equations for SCCP. I : Var→ P(Con).

DX [[X]]I = I(X)

DP [[P ‖ Q]]I = [[P]]I ∩ [[Q]]I

D0 [[0]]I = {d | d ∈ Con}
DT [[tell(c)]]I = {d | c v d}
DA [[ask(c)−→P]]I = {d | c v d and d ∈ [[P]]I} ∪ {d | c 6v d}
DR [[µX.P]]I =

⋂
{S ⊆ P(Con) | [[P]]I[X:=S] ⊆ S}

DE [[[P]i]]I = {d | di ∈ [[P]]I} ∩ [[P]]I

Figure 6.2: Denotational Equations for ECCP. I : Var→ P(Con).

We now give a compositional denotational semantics [[P]] that exactly

captures the set of fixed points of O(P). More precisely, let I be an assign-

ment function from Var, the set of process variables, to P(Con). Given a

term T , [[T]]I is meant to capture the fixed points of T under the assign-

ment I. Notice that if T is a process P , i.e., a closed term, the assignment

is irrelevant so we simply write [[P]]. The denotation for processes in SCCP

is given by the equations DX, D0, DT, DA, DP and DS in Table 6.1. The

denotation for the processes in ECCP is given by the same rules except that

the rule DS is replaced with the rule DE in Table 6.2.

The denotations of the basic operators are the same as in standard CCP

[SJPR91] and are given by equations D0, DT, DA and DP. For example,

DA says that the set of fixed points of ask c → P are those d that do not

73

6.3. Denotational Semantics.

entail c (these are fixed points because the ask process is blocked so the

store can no longer change) or that if they do entail c then they must be

fixed points of P . The denotation of a term X under I is I(X) (see DX).

The equation DR for µX.P follows from the Knaster-Tarski theorem in the

complete lattice (P(Con),⊆).

The denotation of [P]i in the spatial case is given by equation DS. It

says that d is a fixed point for [P]i if di ∈ [[P]]. Recall that di is i’s view of

d, so if di ∈ [[P]], then i’s view of d is a fixed point for P . In the operational

semantics, the S rule is the only applicable rule for this case. We can use

Lemma 5.2.3, which says that d = d t si(d
i), to prove that if di is a fixed

point for P then d is a fixed point for [P]i.

The denotation of [P]i in the epistemic case is given by DE instead of

DS. It says that d is a fixed point for [P]i if di ∈ [[P]], as in the spatial case,

and d is also a fixed point of P . The additional requirement follows from

the operational semantics rule E which amounts to running [P]i in parallel

with P .

The above observations suggest that [[P]] = fix(O(P)), which we will

now prove formally.

Lemma 6.3.8. For any P , [[P]] = fix(O(P)).

Proof. We prove the proposition by structural induction on P .

• The proofs for the cases P = 0, P = ask (c) → P ′, P = tell(c), and

P = P1 ‖ P2 are the same as in traditional CCP, so we omit these

proofs.

• In SCCP, for the P = [P ′]i case, first assume that d ∈ [[[P ′]i]]. Then

di ∈ [[P ′]]. So by the induction hypothesis, O(P ′)(di) = di, and there-

fore by definition of O, if 〈P ′, di〉−→ 〈P ′′, d′〉 then d′ = di. So the

derivation for the transition of [P ′]i must look like this:

〈P ′, di〉−→ 〈P ′′, di〉
〈[P ′]i , d〉−→ 〈[P ′′]i , d t si(di)〉

Finally, in lemma 5.2.3 we showed that d t si(d
i) = d, so therefore

d ∈ fix(O(P)).

74

6.3. Denotational Semantics.

Now assume that d ∈ fix(O(P)). If 〈[P ′]i , d〉 has a transition available,

this derivation must hold:

〈P ′, di〉−→ 〈P ′′, d′〉
〈[P ′]i , d〉−→ 〈[P ′′]i , d t si(d′)〉

But since d ∈ fix(O(P), d = d t si(d
′), which means that si(d

′) v d.

Recall that di =
⊔
{c | si(c) v d}, meaning, therefore, that d′ v di.

However, we know that if 〈P ′, di〉−→ 〈P ′′, d′〉 then di v d′. So we

conclude that di = d′, and since we considered any arbitrary transition

available to 〈P ′, di〉, we conclude that di ∈ fix(O(P ′)). From the

induction hypothesis, therefore, di ∈ [[P ′]], so by D4, d ∈ [[P]].

• In ECCP, for the P = [P ′]i case, first assume that d ∈ [[[P ′]i]].

Then di ∈ [[P ′]] and d ∈ [[P ′]]. So by the induction hypothesis,

O(P ′)(di) = di and O(P ′)(d) = d, and therefore by definition of

O, if 〈P ′, di〉−→ 〈P ′′, d′〉 then d′ = di, and if 〈P ′, d〉−→ 〈P ′′, d′〉 then

d′ = d. So there are two choices for the derivation of the transition:

First,
〈P ′, d〉−→ 〈P ′′, d〉

〈[P ′]i , d〉−→ 〈[P ′]i ‖ P ′′, d〉
.

In this case, we immediately have that d ∈ fix(O(P)). The second

possibility is
〈P ′, di〉−→ 〈P ′′, di〉

〈[P ′]i , d〉−→ 〈[P ′′]i , d t si(di)〉
As above, d t si(d

i) = d, so d ∈ fix(O(P)).

Now assume that d ∈ fix(O(P)). If 〈[P ′]i , d〉 has a transition available,

it may be of the form

〈P ′, di〉−→ 〈P ′′, d′〉
〈[P ′]i , d〉−→ 〈[P ′′]i , d t si(d′)〉

.

In this case, since d ∈ fix(O(P)), d = d t si(d
′), which means that

si(d
′) v d. As in the SCCP case, this means that di = d′, di ∈

fix(O(P ′)). From the induction hypothesis, therefore, di ∈ [[P ′]], but

we must also prove that d ∈ [[P ′]]. Because of the induction hypothesis,

to do this it is sufficient to prove that d ∈ fix(O(P ′)). If 〈P ′, d〉 has

75

6.3. Denotational Semantics.

no transitions available, then d ∈ fix(O(P ′)) vacuously. On the other

hand, if 〈P ′, d〉−→ 〈P ′′, d′〉 then we can use the E rule to conclude

that
〈P ′, d〉−→ 〈P ′′, d′〉

〈[P ′]i , d〉−→ 〈[P ′]i ‖ P ′′, d′〉
but since we assumed that d ∈ fix(O(P)), d′ = d, and therefore

d ∈ fix(O(P ′)) and d ∈ [[P ′]]. Note that the above reasoning also

holds if [P ′]i only has a transition available according to the E rule

and no transition available according to the S rule, so in all cases, if

d ∈ fix(O([P ′]i)) then di ∈ [[P ′]] and d ∈ [[P ′]], so therefore d ∈ [[[P ′]i]].

So now we can prove

From Corollary 6.3.7 we obtain a compositional characterization of ob-

servational equivalence, and thus from Theorem 6.2.11 also for barb equiv-

alence.

Theorem 6.3.9. P∼oQ if and only if [[P]] = [[Q]].

This theorem follows directly from Lemma 6.3.8 and 3.1.17.

76

Seven

Future Work and Conclusions

In the first section of this chapter, we present some preliminary results

about future work we hope to accomplish concerning the representation of

common knowledge in our process calculi. Next, we provide a more in-depth

discussion of other work related to ours, and finally our conclusions.

7.1 Compact Approximation of Space and

Knowledge

In this section we present some preliminary, but we hope interesting, ideas

about the expression of common knowledge (or global information) in our

process calculi.

An important semantic property of global information or common knowl-

edge gG(c) (Definition 4.1.6) in the underlying spatial constraint system is

that it preserves the continuity of the space functions. Thus, one can verify

that gG(
⊔
D) =

⊔
d∈D gG(d) for any directed set D ⊆ Con.

Theorem 7.1.1. Let (Con,Con0,v,t, true, false, s1, . . . , sn) be an n-agent

continuous and space-compact scs. Then for any G ⊆ {1, . . . , n}, gG(·) in

Definition 4.1.6 is continuous: gG(
⊔
D) =

⊔
d∈D gG(d) for any directed set

D ⊆ Con.

77

7.1. Compact Approximation of Space and Knowledge

In contrast gG(c) does not preserve the compactness of the space func-

tions (Remark 4.2.2). This means that, although, the limit of infinite com-

putation may produce gG(c), we cannot have a process that refers directly

to gG(c) since processes can only ask and tell compact elements. The reason

for this syntactic restriction is illustrated below:

Example 7.1.2. Suppose we had a process P = ask gG(c) → tell(d)

asking whether group G has common knowledge of c and if so posting d.

Note that O(P)(true) = true and O(P)(gG(c)) = gG(c) t d. Now for Q =

global(G, tell(c)) we have O(Q)(true) = gG(c). But one can verify that

O(P ‖ Q)(true) = gG(c), and thus O(P ‖ Q)(O(P ‖ Q)(true)) = O(P ‖
Q)(gG(c)) = gG(c) t d. This would mean that the observation function is

not idempotent, contradicting the fact that O(P) is a closure operator, a

crucial property for full abstraction of our denotational semantics.

Nevertheless, asking and telling information of the form gG(c) could be

useful in certain protocols to state in one computational step, rather than

computing as a limit, common knowledge or global information about cer-

tain states of affairs c (for example, mutual agreement). To address this

issue we extend the underlying spatial constraint system with compact ele-

ments of the form aG(c) which can be thought of as (over-)approximations

of gG(c). The approximation aG(c) can then be used in our processes to

simulate the use of gG(c). We refer to aG(c) as a announcement of c for

the group G to convey the meaning that gG(c) is attained in one step as

in a public announcement. We can only define the announcements over

a finite subset of compact elements S, since an infinite set would conflict

with the continuity of aG(·). We only consider announcements for the entire

set of agents A (for arbitrary groups the construction follows easily). The

above-mentioned extension of a spatial constraint system C1 into a spatial

constraint system C2(S) with announcement over S is given below:

Definition 7.1.3. Let C1 = (Con1,Con1
0,v1, s

1
1, . . . , s

1
n) be a spatial con-

straint system over agents A = {1, . . . , n}. For S ⊆fin Con1
0, define lattice

C2(S) = (Con2,Con2
0,v2, s

2
1, . . . , s

2
n) as follows. The set Con2 is given by

two rules:

78

7.2. Related Work

1. Con1 ⊆ Con2,

2. For any finite nonempty indexing set I, if ci ∈ S for all i ∈ I then

aA(
⊔
i∈I c) ∈ Con2.

The ordering v2 is given by the following rules:

1. v1 ⊆ v2,

2. d v2 aA(
⊔
i∈I ci) if d ∈ Con1 and d v1 gA(

⊔
i∈I ci), and

3. aA(
⊔
i∈I ci) v2 aA(

⊔
j∈J cj) if gA(

⊔
i∈I ci) v1 gA(

⊔
j∈J cj).

Furthermore, for all i ∈ A, for any aA(d) ∈ Con2, s2
i (aA(d)) = aA(d) and

for each e ∈ Con1, s2
i (e) = s1

i (e).

The next theorem states the correctness of the above construction. Intu-

itively, the lattice C2(S) above must be a spatial constraint system and the

announcement of a certain fact in c ∈ S must behave similarly to common

knowledge or global information of the same fact.

Theorem 7.1.4. Let C1 = (Con1, Con1
0,v1, s

1
1, ..., s

1
n) be a continuous

space-compact n-scs (n-ecs) and let S ⊆fin Con
1
0. Let

C2(S) = (Con2, Con2
0,v2, s

2
1, ..., s

2
n)

as in Def. 7.1.3, then

1. C2(S) is a continuous, space-compact n-scs (n-ecs),

2. ∀aA(c) ∈ Con2, aA(c) ∈ Con2
0, and

3. ∀d ∈ Con1, ∀aA(c) ∈ Con2, d v2 aA(c) iff d v1 gA(c).

7.2 Related Work

There is a huge volume of work on epistemic logic and its applications to

distributed systems; [FHMV95] gives a good summary of the subject. This

work is all aimed at analyzing distributed protocols using epistemic logic

79

7.2. Related Work

as a reasoning tool. While it has been very influential in setting the stage

for the present work it is not closely connected to the present proposal to

put epistemic concepts into the programming formalism.

Epistemic logic for process calculi has been discussed in [CDK09, DMO07,

HS04]. In [CDK09], an epistemic logic is presented for the applied calculus.

While we find their approach to epistemic logic for the applied pi-calculus

compelling, it is quite different from our work because their epistemic logic is

defined outside of the process calculus, whereas our processes have epistemic

(or spatial) logic terms within the constraint system, as well as knowledge

or space constructions on the processes. Furthermore, their epistemic logic

only concerns the agent “intruder.” While this is satisfactory for the prob-

lems they are considering, our calculus enjoys the ability to deal with an

arbitrary finite set of agents. Furthermore, we consider both general modal

logic, with the modalities interpreted as “spaces,” and epistemic logic, and

we believe our constraint system could easily be adapted to other specific

modal logics, particularly temporal logic. The paper of Dechesne, Mousavi

and Orzan [DMO07] also takes an interesting approach to combining epis-

temic logic and process calculus. Again, their processes provide a model

for their logic, rather than having epistemic operators within the process

calculus. Furthermore, they deal with a specific temporal epistemic logic

which is different from either of the logics we consider. [HS04] combines

epistemic logic and process calculi using function views representing partial

information. Like ours, this paper presents a domain-theoretical character-

ization of knowledge in process calculi. Again, however, this paper uses the

processes as models for the logic, rather than including modal constructs

in the process calculus.

In all of these works, the epistemic logic is defined outside of the process

calculus, with the processes as models for the logic, whereas our processes

have epistemic (or spatial) logic terms within the constraint system, as well

as knowledge or space constructions on the processes.

The issue of extending CCP to provide for distributed information has

been previously addressed in [Rét98]. In [Rét98] processes can send con-

straints using communication channels much like in the π-calculus. This in-

80

7.2. Related Work

duces a distribution of information among the processes in the system. The

extended processes, however, do not have the traditional (closure-operator)

denotational semantics of CCP which is one of the sources of its elegance

and simplicity. By using a logical approach to the problem of common and

distributed information, rather than an operational one based on channel

communication, we have a framework faithful to the declarative nature of

CCP.

Another closely related work is the Ambient calculus [CG00], an im-

portant calculus for spatial mobility. Ambient allows the specification of

processes that can move in and out within their spatial hierarchy. It does

not, however, address posting and querying epistemic information within

a spatial distribution of processes. Adding Ambient-like mobility to our

calculi is a natural research direction.

One very interesting approach related to ours in spirit – but not in con-

ception or details – is the spatial logic of Caires and Cardelli [CC03, CC04].

In this work they also take spatial location as the fundamental concept and

develop modalities that reflect locativity. Rather than using modal logic,

they use the name quantifier which has been actively studied in the the-

ory of freshness of names in programming languages. Their language is

better adapted to the calculi for mobility where names play a fundamental

role. In effect, the concept of freshness of a name is exploited to control

the flow of information. It would be interesting to see how a name quanti-

fied SCS would look and to study the relationship with the Caires-Cardelli

framework.

Finally, the process calculi in [BJPV09, BM07, FRS01] provide for the

use of assertions within π-like processes. They are not concerned with

spatial distribution of information and knowledge. These frameworks are

very generic and offer several reasoning techniques. Therefore, it would be

interesting to see how the ideas here developed can be adapted to them.

81

7.3. Future Work

7.3 Future Work

One important item that we have already begun is the development of the

theory from lower level concepts. In the same way that domains and com-

plete algebraic lattices arise from information systems [Sco82] we have de-

veloped modal information systems where the various axioms for constraint

systems arise from a structure closer to the logic.

One natural extension of these ideas is to develop the combination of

epistemic and mobile constructs. It would be exciting if this would lead

to a new epistemic perspective on the spatial logics of Caires and Cardelli.

It would also be important to demonstrate that these epistemic concepts

extend to calculi beyond CCP.

There are a number of application areas that are important. One im-

mediate task is to explore how well one can capture distributed systems

protocols in the ECCP language. In the late 1980s Panangaden and Tay-

lor [PT92] developed concurrent common knowledge to capture agreement

in asynchronous systems and showed how various protocols, for example the

Chandy-Lamport checkpointing algorithm, were effectively protocols for at-

taining concurrent common knowledge. There are many examples in this

vein in the literature which we need to explore to see whether “putting epis-

temic concepts in the hands of the programmer” leads to more perspicuous

presentations of known algorithms or indeed new algorithms.

Finally, there are a number of theoretical ideas to explore. One of the

founding fathers of topos theory [Joh02], Lawvere, stated that the point of

the geometric logic developed by topos theorists is to capture a modality

of the form “it is locally the case that..” Remarkably, these ideas have

been present in sheaf theory and categorical semantics since the 1970s but

they have not had a direct impact on programming language semantics.

Considering the importance in computer science of local information, lo-

cal computations, mobility, and the flow of information between locations,

unravelling this connection is certain to enrich our understanding of the

subject, and to provide important theoretical tools for modelling these con-

cepts.

82

7.4. Conclusion

7.4 Conclusion

We have presented constraint systems and process calculi for working with

spatially distributed or epistemic information and computation. We believe

that our process calculi are relevant to modern problems in computation,

because systems with many users and large amounts of information with

complicated structures of access to the information are becoming more and

more common. In the next part of the thesis, we will see another approach to

understanding agents’ epistemic states in the context of changing systems.

83

Part II

How Knowledge Evolves:

Epistemic Logic for Labelled

Transition Systems

84

Introduction

Concurrency theory has been built upon the implicit assumption of omni-

science of all the agents involved, but for many purposes – notably security

applications – it is crucial to incorporate and reason about what agents

“know” or do not know. Tracking the flow of information is the essence

of analyses of security protocols. Equally crucial is the idea that different

participants may have different views of the system and hence know dif-

ferent things. The purpose of this part of the thesis is to meld traditional

concurrency concepts with epistemic concepts and define a logic with both

dynamic and epistemic modalities.

In the previous part of this thesis, we presented a way to incorporate

epistemic modalities directly into the process calculus. In the dynamic

processes we looked at, the epistemic information was updated through

actions taken by these processes. In this section, however, we present a

different way of representing knowledge in dynamic multi-agent systems,

by introducing a dynamic epistemic logic of transition systems. Whereas

previously we focused on systems with asynchronous agent communication

and actions that mainly added information to the store, in the following

chapters our models do not include explicit communication between agents.

However, an essential and somewhat novel aspect of our systems is that we

allow fact changing actions. This means that our actions do not just reveal

information but may also change the state of the system. For example, a

system may start out with a certain fact true, like “it is not raining,” and

then after an action this fact may change, and “it is raining” will hold.

We model these types of situation by taking labelled transition systems

as our basic structures, and consider the problem of adding Kripke-style

85

Introduction

agent equivalence relations to the structures. Our logic is particularly well

adapted to analyzing the effects of the actions in the labelled transition

systems because it is closely tied not only to epistemic logic but also to

Hennessy-Milner logic, the essential logic of labelled transition systems.

Thus, in this part of the thesis we are again investigating epistemic

concepts in a concurrent setting. Epistemic logic has been a major theme

within distributed systems ever since the groundbreaking paper of Halpern

and Moses [HM84], but has been strangely slow to influence concurrency

theory. A few investigations have appeared but, as far as we know, there has

not been a thorough integration of epistemic concepts with the traditional

theory of labelled transition systems. Typically, one sees a multimodal logic

closely tied to the syntax of some particular process calculus with reason-

ing principles that are not proven complete in any sense [CDK09]. Such

logics are interesting and useful, but their close ties to a particular process

formalism obscure the general principles. Another closely related strand is,

of course, dynamic epistemic logic [vDvdHK08] which, as the name sug-

gests, is all about how knowledge evolves. However, the bulk of this work

is about actions that communicate information, perhaps through messages

or announcements, rather than about general transitions that could change

basic facts about the state. A few papers indeed deal with so-called fact-

changing actions but, as far as we know, the theory is still geared toward

communication actions. Our goals are to develop the theory for a suitably

general class of labelled transition systems and to formulate axioms that

are provably complete with respect to this class of models. We provide

more detailed comparisons with related work in a later section, after the

presentation of our framework.

The standard route to modelling epistemic concepts is to use Kripke

models: these are sets of states equipped with indistinguishability (equiva-

lence) relations [FHMV95]. We will equip the states with a labelled transi-

tion system structure as well and impose coherence conditions between the

two kinds of relations. The resulting modal logic is a blend of Hennessy-

Milner logic, epistemic logic and temporal modalities. The essential point

is that one can reason about how knowledge changes as transitions occur.

86

Introduction

There are many variations that one could contemplate and the particular

formalism that we have developed is geared toward representing the un-

folding of a labelled transition system through time, taking into account

different agents’ contrasting views of the labelled transition system.

The background material on labelled transition systems and Hennessy-

Milner logic has already been presented in Chapter 2. This part of the thesis

is organized as follows. In Chapter 8 we define the class of transition systems

that we work with; they are called history labelled transition systems and

are unfoldings of the usual labelled transition systems, with the addition

of equivalence relations on states. In Chapter 9 we define the logic and its

semantics. In Chapter 10 we prove the weak completeness theorem. There

is an easy argument, which we present in Chapter 10, that shows that

a strong completeness theorem is not possible. The final sections discuss

related work and conclusions.

87

Eight

Histories

The main contribution of this part of the thesis is to study how an agent’s

knowledge changes as transitions occur in a labelled transition system. The

basic picture is that even when an agent knows the overall structure of a

labelled transition system, they have a limited view of the current state

of the system. This uncertainty is modelled by an equivalence relation on

the states of the system just as in a Kripke structure. The agent does not

choose the actions to perform but can see which action has happened and

tries to deduce from this where it is. Our temporal-epistemic logic will be

designed to handle this type of reasoning.

The semantics of the formulas will be given in terms of histories or

runs, as with the semantics of Halpern and Moses [HM84, HM90], but we

view the runs as coming from the executions of a labelled transition system

(LTS). In fact, we will view the set of runs as forming a labelled transition

system in its own right. This will give a “branching-time” logic rather

than a linear-time logic. We will use the box and diamond modalities of

Hennessy-Milner logic [HM85] rather than the “always” and “eventually”

modalities of temporal logic. In this chapter, we motivate the need for this

particular combination of modalities.

88

8.1. Labelled transition systems with agents

8.1 Labelled transition systems with agents

The basic setup for a purely epistemic (static) logic is a set of states with

equivalence relations, one for each agent. If we wish to incorporate this into

a given labelled transition system the natural step is to define equivalence

relations on the states of the labelled transition system. If one does this

näıvely one gets situations where one cannot say what an agent has learned

from its history.

Example 8.1.1. Consider the following simple labelled transition system:

s0 s1

s2 s3,p

a

��

i

i

where the wiggly line refers to the indistinguishability equivalence relation

of agent i and the proposition p holds in the state s3 and in no other state.

The agent i in state s0 cannot tell whether he is in s0 or in s1. Similarly,

in s2 he cannot tell whether he is in s2 or in s3. However, if the agent is

in s0 and then observes an a action then he “knows” he must have been in

s0 and further, that he is in s2 now. No purely state-based semantics can

say this. It is only because the agent “remembers” how he got there that

one can say anything. Thus, a purely state-based semantics is not adequate

for even the simplest statements about evolving knowledge for agents with

memory and basic reasoning abilities.

The basic paradigm that we have in mind is that the agent is observing

a transition system: the agent can see the actions and can remember the

actions but cannot control the actions nor see which actions are available

at a given state. The extent to which an agent can “see” the state is what

the indistinguishability relation spells out.

In order to give the semantics of the epistemic modalities we need to

extend the equivalence relation from states to histories. We formalize the

89

8.1. Labelled transition systems with agents

definition of labelled transition systems with agents, and the notion of his-

tories and the extended equivalence relation as follows.

Definition 8.1.2 (Labelled transition system with agents). A labelled tran-

sition system is a set of states, S, a finite set of actions A, and, for every

a ∈ A, a binary relation, written
a−−→, on the states. We write s

a−−→ s′

instead of (s, s′) ∈ a−−→. In addition, there is a finite set of agents, denoted

by letters like i, j, For each agent i there is an equivalence relation,

written ∼i defined on S.

The relation
a−−→ can be nondeterministic and does not have to be image-

finite 1. We also assume that all actions are visible, that is, there are no

hidden actions (commonly denoted by τ).

Definition 8.1.3 (History). A history is a finite alternating sequence of

states and actions

s0a1s1a2s2 . . . ansn,

where, for each l ∈ {0, . . . , n− 1}, sl
al+1−−−→ sl+1.

Given a pair of histories, an agent can tell immediately that they are not

the same if they do not have exactly the same sequence of actions. In order

to say this it will be convenient to define the notation act(h) to mean the

action sequence extracted from the history h; it has an evident inductive

definition. Given a history h, we write h[n] for the nth state in h. Thus

if h = s0a1s1a2s2a3s3, act(h) = a1a2a3 and h[0] = s0 while h[2] = s2. We

write |h| for the length of the sequence of states in h.

Definition 8.1.4 (History Indistinguishability). We say that the histories

h1 and h2 are indistinguishable by agent i, written h1 ∼i h2, if:

1. act(h1) = act(h2) and

2. for all 0 ≤ n ≤ |h1|(= |h2|), h1[n] ∼i h2[n].

1“Image finite” means that for a given s and a the set {s′|s a−−→ s′} is finite.

90

8.1. Labelled transition systems with agents

The use of the same notation for indistinguishability of states and his-

tories should not occasion anxiety for the reader as the context will disam-

biguate which we mean; this usage is meant to emphasize the tight connec-

tion between the concepts.

It is useful to have both past and future modalities. We will define

the syntax precisely in the next chapter, for the moment we note that 〈−〉
means one step in the past and 〈+〉a means possibly after an a-step into the

future (we will see later why the future operator is concerned with possibility

while the past operator is not). Consider the labelled transition system we

have used for our example above. Suppose we introduce the proposition

@s to mean “at the state s” then we want to be able to say things like

s0as2 |= Ki〈−〉@s0. Note that we cannot say s0 |= Ki@s0, so we need the

past operator to express the idea that agent i learns where he was in the

past, or, in general, learns that a fact used to be true. Note that, for this

example, s0as2 |= 〈−〉Ki@s0 does not hold, even though s0as2 |= Ki〈−〉@s0

does.

Note that every history has a beginning and every state has a finite

number of predecessors: in short the prefix order on histories is well founded.

This will cause most of the difficulties in the completeness proof.

Example 8.1.5. Why do we need the Hennessy-Milner like modalities in-

dexed by actions? Consider the following simple labelled transition system:

s0 s1

s2,p s3 s4

a

��
b

��

a

��

i

i

which is like the previous example except for the addition of the extra state

and transitions and the fact that p is true in s2 instead of s3. We would

like to be able to say s0 |= 〈+〉aKip. Note that s4 can be distinguished by i

from any other state.

The logic, though its semantics is given in terms of runs, is actually a

branching time logic. It is applied to a very specific type of transition system

91

8.1. Labelled transition systems with agents

that arises as the set of histories of general labelled transition system. The

“states” are histories and the transitions are of the form

s0a1s1 . . . ansn
a−−→ s0a1s1 . . . ansnas

whenever sn
a−−→ s is a transition of the underlying labelled transition sys-

tem. The key features of these labelled transition systems of histories are

a well-foundedness property for the backward transitions, determinacy for

the backward transitions and a few other properties.2 In the course of the

completeness proof we will spell out these properties and then proceed with

the axiomatization and completeness theorem.

Example 8.1.6. Here is an example about why the identity of actions is

important.

s0

a,c

��

a,b

��

s2s1 ∼i

If this system starts out in s0 and an a action occurs, then agent i will

not know which state the system is in, because s1 and s2 are equivalent for

the agent. But if the system does a b action, then the agent knows it is

in s1 because he observes the b action and knows the overall structure of

the system, so he realizes that s1 is the only state that a b action can lead

to. Similarly, if the system does a c action, then the agent knows that the

system is in s2. �

Example 8.1.7. This example shows why we want to be able to combine

epistemic modalities and (past or future) temporal modalities. Here p rep-

2In fact, such transition systems arise naturally as unfoldings of general labelled
transition systems.

92

8.2. History Systems

resents some proposition.

s0
p

a

��

s1
¬p

a

��

∼i

s2
p

s3
¬p∼i

If the system starts out in s0 or s1, then after an a action, the agent does

not know whether p is true, but he does know that if p is true now, then it

must have been true in the first state, and if p is false now, it must have

been false in the first state. �

Example 8.1.8.
s0
p

a

��

a

��

s1
¬p

a

��

∼i

s2
p

s3
¬p∼i

If this system starts out in s0 or s1 and then an a action occurs, then

after the action, the agent does not know whether p is true, but he knows

that if p is true now, then it was true in the start state. But he also knows

that if p is not true now, then p may or may not have been true in the start

state. �

8.2 History Systems

First we will explain how to translate any LTS with equivalence classes into

an equivalent history LTS: an LTS with designated starting states, where

the entire history of any run starting from a starting state is determined by

its current state.

Definition 8.2.1 (Unfolding). Given the LTS (S0,A, I,−−→
0
,∼0), where S0

is the set of states, A is the set of actions, I the set of agents, −−→
0
⊆ S0×A×

S0 is the transition relation and ∼0⊆ S0×I ×S0 is the indistinguishability

93

8.2. History Systems

relation, inductively construct the unfolding (S1,A, I,−−→
+
,−−→
−
,
∗−−→
+
,
∗−−→
−

,∼1), where −−→
+
⊆ S1 × A × S1, −−→

−
⊆ S1 × A × S1,

∗−−→
+
⊆ S1 × S1 and

∗−−→
−
⊆ S1 × S1, as follows:

1. If s ∈ S0 then s ∈ S1.

2. If s0.a1.s1.a2...sn ∈ S1 and sn
a−−→
0

s then s0.a1...sn.a.s ∈ S1 and

s0.a1...sn
a−−→
+

s0.a1...sn.a.s.

3. If s0.a1...sn, s0.a1...sn.a.s ∈ S1 then s0.a1...sn.a.s
a−−→
−

s0.a1...sn.

4. If s0.a1...sn ∈ S1 then s0.a1...sn
∗−−→
+

s0.a1...sn.

5. If s0.a1...sn, s0.a1...sn.an+1...a.s ∈ S0 then s0.a1...sn
∗−−→
+

s0.a1...sn.an+1...a.s.

6. If s0.a1...sn ∈ S1 then s0.a1...sn
∗−−→
−

s0.a1...sn.

7. If s0.a1...sn, s0.a1...sn.an+1...a.s ∈ S0 then s0.a1...sn.an+1...a.s
∗−−→
−

s0.a1...sn.

8. If s, t ∈ S0 and s ∼0
i t then s ∼1

i t.

9. If s, t ∈ S1 and s ∼1
i t and s

a−−→
+

s.a.s′ and t
a−−→
+

t.a.t′ and s′ ∼0
i t
′

then s.a.s′ ∼1
i t.a.t

′.

Definition 8.2.2 (History-LTS). An LTS with agent equivalence classes

and with transition relations −−→
+
⊆ S1 × A × S1, −−→

−
⊆ S1 × A × S1,

∗−−→
+
⊆ S1 × S1 and

∗−−→
−
⊆ S1 × S1 is called a history-LTS if it satisfies the

following properties:

1. Forward and backward transitions are converse: s
a−−→
+

t iff t
a−−→
−

s.

2. There is only one way to reach each state: if s
a−−→
+

t then for all

states s′ and all actions b, if s′
b−−→
+

t then s = s′ and a = b.

94

8.2. History Systems

3. If we let −−→
+

=
⋃
a∈A

a−−→
+

, then
∗−−→
+

is the transitive reflexive closure

of −−→
+

.

4. If we let −−→
−

=
⋃
a∈A

a−−→
−

, then
∗−−→
−

is the transitive reflexive closure

of −−→
−

.

5. There are no infinite backward paths: it is impossible to have an infi-

nite chain s0 −−→− s1 −−→− ... −−→
−

sn −−→−

6. ∼i is transitive, reflexive and symmetric for each agent i.

7. If s1 ∼i t1 and there exists a state s0 and an action a such that s0
a−−→
+

s1 then there exists a state t0 such that t0
a−−→
+

t1 and s0 ∼i t0.

These properties capture the idea that a history LTS is exactly what

we get when we unfold the paths of an LTS with agent equivalence rela-

tions; a formal proof is straightforward. At each stage there is possible

future branching but the past is determined in a particular history. Thus

the past modalities are like LTL modalities but not the future modalities.

The starred modalities give one the power of “always” and “eventually”

operators in temporal logics. A history is assumed to have a starting point

so it must be well-founded.

95

Nine

The Logic and its Semantics

In this chapter we present the logic for history LTS’s. It allows us to discuss

what is true at a certain state, what was true in the past, what agents know

at at the current state, and what may or must be true in the future.

9.1 Syntax and Models

We assume a finite set of agents I, a finite set of actions A, and a countable

set of propositions Q. In the following definition, a ∈ A, i ∈ I, and q ∈ Q.

Definition 9.1.1 (Syntax).

φ := > | q | 〈+〉aφ | 〈−〉aφ | 〈+〉∗φ | 〈−〉∗φ | Kiφ | ¬φ | φ ∧ φ

As usual, we assume the boolean constants ⊥ = p ∧ ¬p and > = ¬⊥
and the boolean operators ⇒,∨, ⇐⇒ . In addition we define

[−]aφ = ¬〈−〉a¬φ [+]aφ = ¬〈+〉a¬φ,

[−]∗φ = ¬〈−〉∗¬φ, [+]∗φ = ¬〈+〉∗¬φ,

〈−〉φ =
∨
a∈A

〈−〉aφ, 〈+〉φ =
∨
a∈A

〈+〉aφ,

[−]φ = ¬〈−〉¬φ, [+]φ = ¬〈+〉¬φ.

In order to define the semantics we consider the (oriented) labeled graphs

over A. These capture sets of histories as we defined them in the previous

96

9.2. Semantics

chapter. The nodes of the graph are states and the transitions are labelled

by actions in A. A path through the graph is a history.

If G = (S,
a−−→)a∈A is a labelled graph, we denote by ⇒ the relation

⋃
a∈A

a−−→ and by ⇒∗ the reflexive-transitive closures of ⇒ respectively.

Definition 9.1.2 (Labelled forest). A labelled forest over A is a labelled

graph G = (S,
a−−→)a∈A such that

1. for arbitrary s, s′, s′′ ∈ S, s′ ⇒ s and s′′ ⇒ s implies s′ = s′′;

2. there exists no infinite sequence s0, s1, .., sk, .. ∈ S such that si+1 ⇒ si

for each i ∈ N; i.e. it is well-founded to the past.

The support of a forest F , denoted by supp(F), is the set of its nodes.

Give a labelled forest F , we say that an equivalence relation ≈⊆ supp(F)×
supp(F) reflects the branching structure if whenever s ≈ t, the existence of

a transition s′
a−−→ s implies the existence of t′ ∈ supp(F) such that t′

a−−→ t

and s′ ≈ t′. Notice that this is a backward bisimulation property; it is a

backward preservation property.

Definition 9.1.3 (Epistemic Frame). Given a set I (of agents), an epis-

temic frame is a tuple E = (F , (≈i)i∈I), where F is a labelled forest over A
and (≈i)i∈I is an indexed set of equivalence relations on supp(F) such that

for each i ∈ I, ≈i preserves the branching structure.

We call the relation ≈i the indistinguishability relation of agent i ∈ I.

Observe that an epistemic frame defines a unique history-LTS and a history-

LTS is supported by a unique epistemic frame.

9.2 Semantics

In the following definition we write s, t, r with or without subscripts for

states, p and variants for propositions, φ, ψ for formulas and a for actions

and i for agents.

97

9.2. Semantics

Definition 9.2.1 (Semantics). The semantics is defined for an epistemic

frame E = (F , (≈i)i∈I), a state s ∈ supp(F) and an interpretation function

Prop : supp(F)⇒ 2P , as follows.

s |= > for all s.

s |= p if p ∈ Prop(s).

s |= 〈+〉aφ if there exists a state t such that s
a−−→ t and t |= φ.

s |= 〈−〉aφ if there exists a state r such that r
a−−→ s and r |= φ.

s |= 〈+〉∗φ if there exist s1, ..., sn ∈ S and a1, ..., an ∈ A such that

s
a1−−→ s1

a2−−→ s2
a3−−→ ...

an−1−−−−→ sn−1
an−−→ sn and sn |= φ.

s |= 〈−〉∗φ if there exist s0, ..., sn−1 ∈ S and a1, ..., an ∈ A such that

s0
a1−−→ s1

a2−−→ ...
an−1−−−−→ sn−1

an−−→ s and s0 |= φ.

s |= Kiφ if for all t such that s ≈i t, t |= φ.

s |= ¬φ if it is not the case that s |= φ.

s |= φ1 ∧ φ2 if s |= φ1 and s |= φ2.

Now we have defined our basic operators. For convenience, we also

define other operators as shorthand for certain combinations of these basic

operators:

〈+〉φ :=
∨
a∈A

〈+〉aφ

〈−〉φ :=
∨
a∈A

〈−〉aφ

[+]aφ := ¬〈+〉a¬φ

[−]aφ := ¬〈−〉a¬φ

[+]φ :=
∧
a∈A

[+]aφ

[−]φ :=
∧
a∈A

[−]aφ

[+]∗φ := ¬〈+〉∗¬φ

[−]∗φ := ¬〈−〉∗¬φ

98

9.3. An example

Liφ := ¬Ki¬φ

Note that [+]φ = ¬〈+〉¬φ and [−]φ = ¬〈−〉¬φ. The semantics of these

derived operators are:

s |= ⊥ never.

s |= [+]aφ iff for any t ∈ supp(F) s.t. s
a−−→ t, t |= φ,

s |= [−]aφ iff for any t ∈ supp(F) s.t. t
a−−→ s, t |= φ,

s |= [+]∗φ iff for any t ∈ supp(F) s.t. s⇒∗ t, t |= φ,

s |= [−]∗φ iff for any t ∈ supp(F) s.t. t⇒∗ s, t |= φ.

If we have an epistemic frame E , a valuation is a map ρ : supp(F)⇒ 2P

which provides an interpretation of the propositions in the states of E . If a

formula φ is true in a given epistemic frame E and state s with a valuation ρ

we write E , s, ρ |= φ and we say that (E , s, ρ) is a model of φ. In this case we

say that φ is satisfiable. Given an arbitrary φ ∈ L, if for any epistemic frame

E = (F , (≈i)i∈I), any state s ∈ supp(F) and any valuation ρ, E , s, ρ |= φ

we say that φ is valid and write |= φ. We also write E , s, ρ |= Φ, where Φ is

a set of formulas if it models every formula in the set Φ. We write Γ |= φ

if any model of Γ is a model of φ.

9.3 An example

Example 9.3.1. Here is a more complicated example with multiple agents

which we describe as an illustration of our logic.

The situation is as follows: There are three agents, one diamond, and

a bag. The diamond can either be held by one of the agents or it can be in

the bag. Each agent can perform two actions: reach into the bag and take

the diamond if it is there, and drop the diamond into the bag, or pretend to

drop it. After dropping or pretending to drop the diamond, the agent shows

the other agents that his hands are empty, so it is impossible to keep the

diamond while pretending to drop it. On the other hand, if the agent does

not have the diamond, he can still pretend to drop it in the bag. If the agent

99

9.3. An example

reaches into the bag to take the diamond, he will take it if it is there, and

will not take it if it is not there.

Here is the transition system:

I

Di

��

Pi,Pj ,Pl,Dj ,Dl

��

N

Pi

HH

Pj

��
Pl

rr Di,Dj ,Dl

SS

J

Dj

ZZ

Pi,Pj ,Pl,Di,DlssL

Dl

33

Pi,Pj ,Pl,Di,Dj

33

The agents are i, j, and l. In state N , no one has the diamond, and in

states I, J , and L, agents i, j, and l respectively have the diamond. Action

Pi represents agent i picking up or pretending to pick up the diamond and

action Di represents agent i dropping or pretending to drop the diamond.

The equivalence classes are as follows:

N ∼i J ∼i L
N ∼j I ∼j L
N ∼l I ∼l J .

We use as propositions @I, @J , @L and @N ; each proposition is true

only in the corresponding state and in each state only the corresponding

proposition is true. For example, the only proposition true in state I is @I.

We write Prop for this set of 4 propositions. Now we consider the formulas

φ1 =
∧

X∈Prop

X ⇒ KlX

φ2 = 〈−〉Pl
@N

100

9.3. An example

φ3 =
∨

X∈Prop

KlX

The first formula says that if any of the propositions are true then l knows

it: in short l knows where the diamond is. Of course this formula is not

universally true, it might or might not be true depending on the situation.

The second formula is true for a history where the immediately preceding

action is Pl (l picks up the diamond) and in the immediately preceding state

nobody had the diamond (i.e. it was in the bag). In other words φ2 describes

the situation where the diamond was in the bag and l has just picked it up.

The formula φ3 says whatever the state happens to be, l knows it. Here are

two formulas that are true in every state of the unfolded labelled transition

system (the history LTS):

φ2 ⇒ [+]∗φ1 and φ3 ⇒ [+]∗φ1.

The first is true because l has picked up the diamond and can now track

its movements precisely for all future moves since all actions are visible

to him. The second statement is slightly more general, it says that once l

knows where the diamond is he can track its future exactly.

Here is another example of reasoning within this system. We define φ4

to be like φ1 except that we have Ki instead of Kl and φ5 is like φ1 except

that Kj replaces Kl. Now we can conclude that the following formula is

true in every state

〈−〉Di
〈−〉Dj

〈−〉Dl
⇒ [+]∗(φ1 ∧ φ4 ∧ φ5).

What we cannot say in this logic is that the location of the diamond is

common knowledge. �

101

Ten

A Complete Axiomatization

In this chapter we will present an axiomatization for our logic, prove that

it is complete, and we will also discuss why our logic is weakly complete

and not strongly complete.

10.1 Axioms

We assume the axioms and rules of classical propositional logic. Because we

have 5 independent modalities in our logic (Ki, 〈+〉a, 〈−〉a, 〈+〉∗ and 〈−〉∗)
we expect to have, in addition, five classes of axioms (one for each modal-

ity) reflecting the behaviour of that modality in relation to Booleans. In

addition, we will have a few other classes of axioms describing the relations

between various modalities. For instance, 〈+〉a and 〈−〉a are in a certain

duality supported by our intuition about time, so we expect to have some

axioms relating these two. Similarly between 〈+〉∗ and 〈−〉∗. We also have

some clear intuition about the relation between time transition and knowl-

edge update that will be characterized by some axioms combining dynamic

and epistemic operators.

The axioms of L are presented in Figure 10.1.

102

10.1. Axioms

(A1): ` [+]aφ ∧ [+]a(φ⇒ ψ)⇒ [+]aψ

(A2): If ` φ then ` [+]aφ

(B1): ` [−]aφ ∧ [−]a(φ⇒ ψ)⇒ [−]aψ

(B2): If ` φ then ` [−]aφ

(B3): ` 〈−〉a> ⇒
∧
a6=b[−]b⊥

(B4): ` 〈−〉aφ⇒ [−]φ

(AB1): ` φ⇒ [+]a〈−〉aφ
(AB2): ` φ⇒ [−]a〈+〉aφ

(C1): ` [+]∗φ ∧ [+]∗(φ⇒ ψ)⇒ [+]∗ψ

(C2): If ` φ then ` [+]∗φ

(C3): ` [+]∗φ↔ (φ ∧ [+][+]∗φ)

(C4): ` [+]∗(φ⇒ [+]φ)⇒ (φ⇒ [+]∗φ)

(D1): ` [−]∗φ ∧ [−]∗(φ⇒ ψ)⇒ [−]∗ψ

(D2): If ` φ then ` [−]∗φ

(D3): ` [−]∗φ↔ (φ ∧ [−][−]∗φ)

(D4): ` [−]∗(φ⇒ [−]φ)⇒ (φ⇒ [−]∗φ)

(BD1): ` 〈−〉∗[−]⊥

(E1): ` Kiφ ∧Ki(φ⇒ ψ)⇒ Kiψ

(E2): If ` φ then ` Kiφ

(E3): ` Kiφ⇒ φ

(E4): ` Kiφ⇒ KiKiφ

(E5): ` ¬Kiφ⇒ Ki¬Kiφ

(BE1): ` 〈−〉aKiφ⇒ Ki〈−〉aφ

Figure 10.1: Hilbert-style axiomatization for L

103

10.2. Soundness and Completeness

10.2 Soundness and Completeness

Many of the lemmas apply generically to 〈〉 or [] modalities and the proofs

are essentially identical for the different variants. To streamline some

proofs, we use the tuple of symbols (3,2) to represent an arbitrary tu-

ple of type (〈−〉a, [−]a), (〈+〉a, [+]a), (〈−〉, [−]), or (〈+〉, [+]). Similarly,

(3∗,2∗) represents (〈+〉∗, [+]∗) or (〈−〉∗, [−]∗). We also use (3x,2x) to

represent an arbitrary tuple of type (〈−〉a, [−]a), (〈+〉a, [+]a), (〈−〉, [−]),

(〈+〉, [+]), (〈+〉∗, [+]∗) or (〈−〉∗, [−]∗). With these notations, the axioms

(A1),(A2), (B1), (B2), (C1), (C2) and (D1), (D2) can be regarded as in-

stances of (X1), (X2). Similarly, (C3), (C4) and (D3), (D4) are instances

of (X3), (X4).

(X1): ` 2xφ ∧2x(φ⇒ ψ)⇒ 2xψ

(X2): If ` φ then ` 2xφ

(X3): ` 2∗φ↔ (φ ∧22∗φ)

(X4): ` 2∗(φ⇒ 2φ)⇒ (φ⇒ 2∗φ)

From (X1) and (X2) alone we can prove a lemma which can be instan-

tiated to all the particular instances. This is a standard lemma of modal

logic.

Lemma 10.2.1. 1. If ` φ⇒ ψ, then ` 2xφ⇒ 2xψ and

` 3xφ⇒ 3xψ.

2. If ` φ⇒ ψ, then ` Kiφ⇒ Kiψ.

3. ` 〈−〉aφ⇒ [−]aφ and ` 〈−〉φ⇒ [−]φ.

Proof. 1. From (X2), ` φ ⇒ ψ implies ` 2x(φ ⇒ ψ). If we use this with

` 2x(φ ⇒ ψ) ⇒ (2xφ ⇒ 2xψ), which is equivalent to (X1), we obtain

` 2xφ⇒ 2xψ.

To prove the second implication, we start from ` ¬ψ ⇒ ¬φ and apply

the first result which gives us ` 2x¬φ ⇒ 2x¬ψ. Using De Morgan we

derive ` 3xφ⇒ 3xψ.

2. It is proved in the same way as 1; in fact K is a box-like modality.

104

10.2. Soundness and Completeness

3. From (B4) we have ` 〈−〉aφ ⇒
∧
a

[−]aφ which implies ` 〈−〉aφ ⇒

[−]aφ. The same axiom implies `
∧
a

(〈−〉aφ⇒ [−]φ) which is equivalent to

`
∨
a

〈−〉aφ⇒ [−]φ which implies ` 〈−〉φ⇒ [−]φ.

As usual, we say that a formula φ ∈ L is provable, denoted by ` φ, if

it can be proved from the axioms in Table 10.1 and boolean rules. We say

that φ is consistent, if ¬φ is not provable from the axioms.

Given Φ,Ψ ⊆ L, Φ proves Ψ if from the formulas of Φ and the axioms

we can prove each ψ ∈ Ψ; we write Φ ` Ψ. Let [Φ] = {ψ ∈ L | Φ ` ψ};
this is the deductive closure of Φ. Φ is consistent if it is not the case that

Φ ` ⊥.

For a sublanguage L ⊆ L, we call Φ L-maximally consistent if Φ is

consistent and no formula of L can be added to it without making it incon-

sistent. The following lemma follows directly from the definition of maximal

consistency.

Lemma 10.2.2. If Γ is a consistent set of formulas then the following

assertions are true.

1. if 3x> ∈ [Γ] and 3xφ 6∈ [Γ], then {ψ ∈ L | 2xψ ∈ [Γ]}∪{¬φ} is consistent.

2. if 2xφ 6∈ [Γ], then {ψ ∈ L | 2xψ ∈ [Γ]} ∪ {¬φ} is consistent.

Proof. Let Λ = {ψ ∈ L | 2xψ ∈ [Γ]}. Suppose that Λ∪{¬φ} is inconsistent.

Then there is a finite set {f1, .., fn} ⊆ Λ s.t. ` f1 ∧ .. ∧ fn ⇒ φ. Hence,

` 2x(f1 ∧ .. ∧ fn) ⇒ 2xφ implying further ` (2xf1 ∧ .. ∧ 2xfn) ⇒ 2xφ.

Hence, 2xφ ∈ [Γ].

1. If 3x> ∈ [Γ], from 2xφ ∈ [Γ] we obtain 3xφ ∈ [Γ] - contradiction.

2. 2xφ 6∈ [Γ] is again contradictory.

A basic theorem that holds for the axiom system is the soundness prop-

erty.

105

10.2. Soundness and Completeness

Theorem 10.2.3 (Soundness). The axiomatic system of L is sound, i.e.,

for any φ ∈ L,

` φ implies |= φ.

The proof is a routine structural induction. It is sufficient to prove that

each axiom is sound and that each rule preserves the soundness.

The more interesting result is the completeness of the axiom system.

Moreover, we will show that for each consistent formula a finite model can

be constructed.

Recall that there are two notions of completeness: strong completeness

and weak completeness. Strong completeness says that

Γ |= φ ⇐⇒ Γ ` φ.

An important easy consequence of strong completeness is the so-called com-

pactness property. A logic is said to be compact if every inconsistent set

of formulas has a finite inconsistent subset. Our logic is not compact. For

example, the set of formulas

{p, [+]p, [+][+]p, [+]3p, . . . ,¬[+]∗p}

is not consistent but any finite subset is consistent. Therefore we cannot

hope to prove strong completeness. Instead we prove weak completeness

|= φ ⇐⇒ ` φ.

Many of the basic completeness proofs in the literature are strong complete-

ness proofs and are much easier than weak completeness proofs. The proof

that we present shares many of the features of the weak completeness proof

for Propositional Dynamic Logic (PDL) [Pra76].

Before proceeding with these proofs we establish some notation that will

be useful for future constructions.

We extend, canonically, all the logical operators from formulas to sets

of formulas. Thus for arbitrary Φ,Ψ ⊆ L, Φ∧Ψ = {φ∧ ψ | φ ∈ Φ, ψ ∈ Ψ},
〈+〉aΦ = {〈+〉aφ | φ ∈ Φ}, and so on for all the modal operators.

106

10.2. Soundness and Completeness

If Φ ⊆ L is finite, we use Φ to also denote
∧
φ∈Φ φ; it should be clear

from the context when Φ denotes a set of formulas and when it denotes the

conjunction of its elements.

A key step in the proof is the construction of models by using maximally

consistent sets as states. However, because we are trying to prove a weak

completeness theorem we have to ensure that we are constructing finite

sets of formulas. The liberal notion of maximal consistency used in strong

completeness proofs is not available to us. If we wish to construct a model

of a formula φ, we need to define a special family of formulas associated with

φ from which we will construct maximal consistent subsets. Furthermore

we need to ensure that the collection of formulas we construct is finite. We

adapt a construction due to Fischer and Ladner [FL79] developed in the

context of PDL.

For an arbitrary φ ∈ L, let ∼ φ = ψ whenever φ = ¬ψ and ∼ φ = ¬φ
otherwise.

For an arbitrary φ ∈ L, let kiφ = φ whenever φ = Kiψ or φ = ¬Kiψ and

kiφ = Kiφ otherwise.

Definition 10.2.4. The (Fischer-Ladner) closure of φ, written FL(φ), is

defined as a set of formulas such that:

• φ, 〈−〉ap, 〈−〉a> ∈ FL(φ),

• if ψ ∈ FL(φ), then ∼ ψ ∈ FL(φ), kiψ and any subformula of ψ is in

FL(φ),

• if 〈−〉aψ ∈ FL(φ) or 〈+〉aψ ∈ FL(φ), then 〈−〉ψ, 〈+〉ψ ∈ FL(φ),

• if 3∗ψ ∈ FL(φ), then 33∗ψ ∈ FL(φ).

The following lemma is immediate but important to state because we

have to ensure that we always have finite sets of formulas when we construct

models out of sets of formulas.

Lemma 10.2.5. For any φ ∈ L, FL(φ) is finite.

107

10.2. Soundness and Completeness

In what follows we fix a consistent formula θ ∈ L and we construct

a finite model for θ. This means that we construct an epistemic frame

Eθ = (Fθ, (≈i)i∈I), a valuation ρ : supp(Fθ) ⇒ 2P and we will identify a

state s ∈ supp(Fθ) such that s |= θ.

Let Ωθ be the set of FL(θ)-maximally consistent sets. Because FL(θ) is

finite, Ωθ and any Γ ∈ Ωθ are finite sets. In the construction of the model

we will use Ωθ as the support set for Fθ. The transitions on Ωθ are defined

as follows. For each a ∈ A, let
a−−→⊆ Ωθ × Ωθ be defined by

Γ
a−−→ Γ′ iff for any ψ ∈ L, [+]aψ ∈ [Γ] implies ψ ∈ [Γ′].

Now we prove a few properties of these transitions that will be important

for the rest of the proof.

Lemma 10.2.6. For arbitrary Γ,Γ′ ∈ Ωθ the following are equivalent:

1. for any φ ∈ L, [+]aφ ∈ [Γ] implies φ ∈ [Γ′],

2. for any φ ∈ L, [−]aφ ∈ [Γ′] implies φ ∈ [Γ].

Proof. (1) implies (2): Suppose that [−]aφ ∈ [Γ′]. Then, ` Γ′ ⇒ [−]aφ and

using axiom (AB1), ` 〈+〉aΓ′ ⇒ φ. If we prove that 〈+〉aΓ′ ∈ [Γ], then

φ ∈ [Γ] and the proof is done. Observe that 〈+〉a> ∈ [Γ] because otherwise

¬〈+〉a> ∈ [Γ] implying [+]a⊥ ∈ [Γ] and from the hypothesis we obtain

⊥ ∈ [Γ′] - impossible. Hence, 〈+〉a> ∈ [Γ] and if 〈+〉aΓ′ 6∈ [Γ], from Lemma

10.2.2 instantiated to 2x = [+]a, we obtain that {ψ | [+]aψ ∈ [Γ]} ∪ {¬Γ′}
is consistent. But this is impossible because, from the hypothesis, {ψ |
[+]aψ ∈ [Γ]} ⊆ [Γ′].

(2) implies (1) Suppose that [+]aφ ∈ [Γ]. Then, ` Γ ⇒ [+]aφ implying

` 〈−〉aΓ ⇒ 〈−〉a[+]aφ. Now (AB2) guarantees that ` 〈−〉aΓ ⇒ φ. In any

normal modal logic we have that ` (2ψ ∧ 3>) ⇒ 3ψ. We use this with

the previous formula and we obtain ` ([−]aΓ ∧ 〈−〉a>)⇒ φ.

Note that 〈−〉a> ∈ Γ′ because otherwise [−]a⊥ ∈ Γ′ and, from the

hypothesis we obtain that ⊥ ∈ [Γ] - impossible. Now, if we prove that

[−]aΓ ∈ [Γ′], then φ ∈ [Γ′] and the proof is done. Now note that [−]aΓ 6∈
[Γ′] implies, using Lemma 10.2.2 instantiated with 2x = [−]a, that {ψ |

108

10.2. Soundness and Completeness

[−]aψ ∈ [Γ′]}∪{¬Γ} is consistent. But this is impossible because, from the

hypothesis, {ψ | [−]aψ ∈ [Γ′]} ⊆ [Γ].

This lemma tells us that we can define the transitions either using [+]

or [−].

Lemma 10.2.7. For arbitrary Γ ∈ Ωθ and [+]aφ ∈ FL(θ),

1. [+]aφ ∈ Γ iff for any Γ′ ∈ Ωθ, Γ
a−−→ Γ′ ⇒ φ ∈ Γ′;

2. 〈+〉aφ ∈ Γ iff there exists Γ′ ∈ Ωθ such that Γ
a−−→ Γ′, φ ∈ Γ′;

3. [−]aφ ∈ Γ iff for any Γ′ ∈ Ωθ such that Γ′
a−−→ Γ, φ ∈ Γ′;

4. 〈−〉aφ ∈ Γ iff there exists Γ′ ∈ Ωθ such that Γ′
a−−→ Γ, φ ∈ Γ′.

Proof. 1. (⇒:) From the definition of
a−−→.

(⇐:) Let φ be such that φ ∈ [Γ′] for each Γ′ ∈ Ωθ with Γ
a−−→ Γ′. We need

to prove that [+]aφ ∈ [Γ]. Note that a formula that is in [Γ] and also in

FL(θ) is automatically in Γ.

Let ∆ = {Γ′ ∈ Ωθ | Γ
a−−→ Γ′} and let δ =

∨
Γ′∈∆

Γ′. Obviously, ` δ ⇒ φ

implying ` [+]aδ ⇒ [+]aφ. Now, if we prove that [+]aδ ∈ [Γ], the proof is

done.

Suppose that [+]aδ 6∈ [Γ]. Lemma 10.2.2 implies that Λ ∪ {¬δ} is con-

sistent, where Λ = {ψ | [+]aψ ∈ [Γ]}. But [+]aψ ∈ [Γ] implies ψ ∈ Γ′ for

each Γ′ ∈ ∆ and this proves that Λ ∪ {¬δ} cannot be consistent.

(2) is the De Morgan dual of (1).

(3) and (4) are proved in the same way as (1) and (2).

We draw the reader’s attention to a minor subtlety in the proof because

it recurs in several later proofs. We showed that a formula in FL(θ), say

φ, is in the deductive closure of a maximally consistent subset, say Γ, of

FL(θ), in other words we showed that φ ∈ [Γ]. From the fact that φ is itself

in FL(θ) we were able to deduce that φ is in Γ itself precisely because Γ is

maximal consistent as a subset of FL(θ).

109

10.2. Soundness and Completeness

We now need to establish the analogous results for the starred modal-

ities. In what follows, let −→=
⋃
a∈A

a−−→ and −→∗ be its reflexive-transitive

closure. This means that Γ−→∗Γ′ if there exists a sequence Γ1, . . . ,Γk ∈ Ωθ

such that

Γ = Γ1 −→ Γ2 −→ . . . −→ Γk−1 −→ Γk = Γ′;

Because −→∗ is reflexive, k can be 1.

Lemma 10.2.8. For arbitrary Γ,Γ′ ∈ Ωθ the following are equivalent

1. for any φ ∈ L, [+]∗φ ∈ [Γ] implies φ ∈ [Γ′],

2. for any φ ∈ L, [−]∗φ ∈ [Γ′] implies φ ∈ [Γ],

3. Γ −→∗ Γ′.

Proof. (1) =⇒ (3): Let ∆ = {Λ ∈ Ωθ | Γ −→∗ Λ} and δ =
∨

Λ∈∆

Λ.

By construction, if [+]φ ∈ [Λ] for some Λ ∈ ∆, there exists Λ′ ∈ ∆ such

that φ ∈ [Λ′]. This entails ` δ ⇒ [+]δ which guarantees that ` [+]∗(δ ⇒
[+]δ). Using axiom (C4), we obtain ` δ ⇒ [+]∗δ. But Γ ∈ δ (because −→∗

is reflexive), consequently ` Γ ⇒ δ. From here and the previous we derive

` Γ⇒ [+]∗δ implying [+]∗δ ∈ [Γ]. Now using 1., δ ∈ [Γ′] implying Γ′ ∈ ∆.

(3) ⇒ (1): Suppose that Γ = Γ1 −→ . . . −→ Γk = Γ′ and [+]∗φ ∈ [Γ].

Axiom (C3) guarantees that φ ∈ [Γ1] and [+][+]∗φ ∈ [Γ1]. Hence [+]∗φ ∈
[Γ2] from the definition of −→. The same argument can be repeated for the

k cases eventually giving [+]∗φ ∈ [Γk] = [Γ′] which implies, using axiom

(C3), φ ∈ [Γ′].

(2)⇔ (3): It is proved in the same way using the axioms (D1) and (D2)

in instances of Lemma 10.2.1 and (D3), (D4) respectively.

Lemma 10.2.9. For arbitrary Γ ∈ Ωθ and [+]∗φ ∈ FL(θ),

1. [+]∗φ ∈ Γ iff for any Γ′ ∈ Ωθ such that Γ −→∗ Γ′, φ ∈ Γ′;

2. 〈+〉∗φ ∈ Γ iff there exists Γ′ ∈ Ωθ such that Γ−→∗Γ′, φ ∈ Γ′;

3. [−]∗φ ∈ Γ iff for any Γ′ ∈ Ωθ such that Γ′−→∗Γ, φ ∈ Γ′;

110

10.2. Soundness and Completeness

4. 〈−〉∗φ ∈ Γ iff there exists Γ′ ∈ Ωθ such that Γ′−→∗Γ, φ ∈ Γ′.

Proof. (1) ⇒: From Lemma 10.2.8.

(⇐:) Let φ be such that φ ∈ [Γ′] for each Γ′ ∈ Ωθ with Γ−→∗Γ′. We need

to prove that [+]∗φ ∈ [Γ].

Let ∆ = {Γ′ ∈ Ωθ | Γ−→∗Γ′} and let δ =
∨

Γ′∈∆

Γ′. Obviously, ` δ ⇒ φ

implying ` [+]∗δ ⇒ [+]∗φ. Now, if we prove that [+]∗δ ∈ [Γ], the proof is

done.

Suppose that [+]∗δ 6∈ [Γ]. Lemma 10.2.2 implies that Λ ∪ {¬δ} is con-

sistent, where Λ = {ψ | [+]∗ψ ∈ [Γ]}. But [+]∗ψ ∈ [Γ] implies ψ ∈ Γ′ for

each Γ′ ∈ ∆ and this proves that Λ ∪ {¬δ} cannot be consistent.

(2) is equivalent to (1).

(3) and (4) are proved in the same way.

Now we can proceed with our construction of the model for θ. We start

by showing that (Ωθ,
a−−→)a∈A is a forest. For this we need to verify that the

past is unique and that the graphs have no loops. The precise statement is

given in the following theorem.

Theorem 10.2.10. If f ∈ L is consistent, then Fθ = (Ωθ,
a−−→)a∈A is a

forest over A.

The proof of this theorem is broken down into two lemmas.

Lemma 10.2.11. For arbitrary Γ,Γ1,Γ2 ∈ Ωθ, if Γ1
a−−→ Γ and Γ2

b−→ Γ,

then a = b and Γ1 = Γ2.

Proof. To prove that a = b it is sufficient to observe that 〈−〉a>∧ 〈−〉b> is

inconsistent, result that is a direct consequence of axiom (B3).

Now, from Γ1
a−−→ Γ and Γ2

a−−→ Γ we prove that Γ1 = Γ2. Suppose that

there exists φ ∈ FL(θ) s.t. φ ∈ Γ1 and ¬φ ∈ Γ2. Then, from axiom (AB1)

we obtain that [+]a〈−〉aφ ∈ [Γ1] and [+]a〈−〉a¬φ ∈ [Γ2]. Now Γ1
a−−→ Γ

guarantees that 〈−〉aφ ∈ [Γ] while Γ2
a−−→ Γ guarantees that 〈−〉a¬φ ∈

[Γ]. Further, using axiom (B4) we obtain that [−]φ, [−]¬φ ∈ [Γ] implying

[−]⊥ ∈ [Γ]. On the other hand, 〈−〉aφ ∈ [Γ] implies 〈−〉a> ∈ [Γ] which is

equivalent to ¬[−]⊥ ∈ [Γ] - contradicts the consistency of [Γ].

111

10.2. Soundness and Completeness

Now we prove that in the graph (Ωθ,
a−−→)a∈A there are no backwards

infinite sequences; this will conclude the proof that (Ωθ,
a−−→)a∈A is a forest

over A.

Lemma 10.2.12. There exists no infinite sequence Γ1, . . . ,Γk, . . . ∈ Ωθ

such that

. . .Γk −→ Γk−1 −→ . . . −→ Γ1 = Γ.

Proof. Suppose that there exists such a sequence. Axiom (BD1) guarantees

that 〈−〉∗[−]⊥ ∈ [Γ] and using Lemma 10.2.9 we obtain that there exists

Γ′ ∈ Ωθ such that Γ′ −→∗ Γ and [−]⊥ ∈ Γ′. Lemma 10.2.11 guarantees

that Γ′ is one of the elements of our sequence, hence ¬〈−〉> ∈ Γ′. But this

implies that there exists no Γ′′ ∈ Ωθ such that Γ′′ −→∗ Γ′, this contradiction

establishes the result.

To complete the construction of the model for θ we need to define the

indistinguishability relations on Ωθ that will eventually organize our forest

as an epistemic frame.

For each i ∈ I, let ≈i⊆ Ωθ × Ωθ be defined as follows:

Γ ≈i Γ′ iff for any φ ∈ L, Kiφ ∈ [Γ] iff Kiφ ∈ [Γ′].

By construction, ≈i is an equivalence relation. Now, to finalize our

construction, we must prove that for each i ∈ I, ≈i preserves the branching

structure of Fθ and finally that we have an epistemic frame.

Theorem 10.2.13. Eθ = (Fθ, (≈i)i∈I), where Fθ = (Ωθ,
a−−→)a∈A and ≈i

are defined as before, is an epistemic frame.

The proof is broken into a number of lemmas. The first lemma that we

need is the following.

Lemma 10.2.14. For arbitrary Γ,Γ′ ∈ Ωθ, if for any φ, Kiφ ∈ [Γ] implies φ ∈
[Γ′], then for any φ, Kiφ ∈ [Γ] implies Kiφ ∈ [Γ′].

Proof. Suppose that for any φ, Kiφ ∈ [Γ] implies φ ∈ [Γ′] and let Kiψ ∈ [Γ].

From our hypothesis we obtain that if Kiψ 6∈ [Γ′], then KiKiψ 6∈ [Γ]. From

112

10.2. Soundness and Completeness

the axioms (E3) and (E4), ` Kiψ ↔ KiKiψ. Hence, Kiψ 6∈ [Γ], this

contradiction completes the proof.

Now we can prove that for each i ∈ I, ≈i preserves the backwards

branching structure of Fθ.

Theorem 10.2.15. For arbitrary Γ,Γ′ ∈ Ωθ, if Γ ≈i Γ′ and there exists

Γ0 ∈ Ωθ such that Γ0
a−−→ Γ, then there exists Γ′0 ∈ Ωθ such that Γ′0

a−−→ Γ′

and Γ′0 ≈i Γ0.

Proof. Because ` >, using (E2) we obtain ` Ki>. Because Ki> ∈ [Γ0], we

obtain that 〈−〉aKi> ∈ [Γ] and axiom (BE1) implies Ki〈−〉a> ∈ [Γ]. Now,

from Γ ≈i Γ′, 〈−〉a> ∈ [Γ′]. From Lemma 10.2.7 we obtain that there exists

Γ′0 ∈ Ωθ such that Γ′0 −→ Γ′.

We prove now that Γ′0 ≈ Γ0. Suppose that Kiφ ∈ [Γ0]. Then, 〈−〉aKiφ ∈
[Γ] and axiom (BE1) implies Ki〈−〉aφ ∈ [Γ]. Now from Γ ≈i Γ′, 〈−〉aφ ∈
[Γ′]. Now axiom (B4) implies [−]φ ∈ [Γ′] and because Γ′0 −→ Γ′, Lemma

10.2.7 implies φ ∈ [Γ′0].

Hence, Kiφ ∈ [Γ0] implies φ ∈ [Γ′0] and Lemma 10.2.14 concludes that

Kiφ ∈ [Γ0] implies Kiφ ∈ [Γ′0]. Similarly can be proved that Kiφ ∈ [Γ′0]

implies Kiφ ∈ [Γ0].

Lemma 10.2.14 also establishes the next result that is needed for the

proof of the theorem.

Lemma 10.2.16. For arbitrary Γ ∈ Ωθ and Kiφ ∈ FL(θ),

Kiφ ∈ Γ iff for any Γ′ ∈ Ωθ such that Γ ≈i Γ′, φ ∈ Γ′

Proof. (⇒) This follows directly from Lemma 10.2.14.

(⇐) Let φ be such that Kiφ ∈ FL(θ) and φ ∈ Γ′ for each Γ′ ∈ Ωθ with

Γ ≈i Γ′. We need to prove that Kiφ ∈ Γ.

Let ∆ = {Γ′ ∈ Ωθ | Γ ≈i Γ′}, let Λ = {f1, . . . , fn} =
⋂

Γ′∈∆

Γ′ and let

F = f1 ∧ . . . ∧ fn. Then ` F ⇒ φ implying ` KiF ⇒ Kiφ. Consequently,

if we prove that KiF ∈ [Γ], the proof is done.

113

10.2. Soundness and Completeness

Suppose that KiF 6∈ [Γ]. Then, there exists ft ∈ Λ such that Kift 6∈ Γ.

Then, ¬Kift ∈ Γ and axiom (E5) implies Ki¬Kift ∈ [Γ]. The definition of

≈i guarantees that for any Γ′ ∈ ∆, Ki¬Kift ∈ [Γ′] and axiom (E3) entails

that for any Γ′ ∈ ∆, ¬Kift ∈ Γ′. Hence, ` F ⇒ ¬Kift which is equivalent

to ` Kift ⇒ ¬F . But ` F ⇒ ft implying ` KiF ⇒ Kift. Consequently,

` KiF ⇒ ¬F . But from axiom (E3), ` KiF ⇒ F , implying ` ¬KiF . But

Λ is consistent and KiF 6∈ [Λ], then a similar argument with the one used

in Lemma 10.2.2 (notice that Ki is a normal modal operator of type 2)

shows that Λ ∪ {¬F} is consistent, which is impossible.

This completes the proof of the theorem.

We are now ready to complete the construction of the model of θ. Eθ is

the epistemic frame of the model and the we define a valuation ρθ : Ωθ −→ 2P

by ρθ(Γ) = {p ∈ P | p ∈ Γ}. With this definition we prove the Truth

Lemma.

Lemma 10.2.17 (Truth Lemma). If θ ∈ L is consistent, Eθ and ρθ are

defined as before, then for any φ ∈ FL(θ) and Γ ∈ Ωθ,

φ ∈ Γ if and only if Γ |= φ.

Proof. Induction on φ.

Case φ = p ∈ P : from definition of Propθ.

Case φ = ¬ψ : (=⇒) Suppose that Γ 6|= ¬ψ. Then Γ |= ψ and from the

inductive hypothesis, ψ ∈ Γ, hence φ 6∈ Γ.

(⇐=) Suppose that Γ |= ¬ψ and ¬ψ 6∈ Γ. Then, ψ ∈ Γ and the

inductive hypothesis guarantees that Γ |= ψ - contradiction.

Case φ = φ1 ∧ φ2 : φ1 ∧ φ2 ∈ Γ iff φ1, φ2 ∈ Γ which is equivalent, using

the inductive hypothesis, to [Γ |= φ1 and Γ |= φ2], equivalent to

Γ |= φ1 ∧ φ2.

Case φ = 〈+〉aψ : (=⇒) If 〈+〉aψ ∈ Γ, Lemma 10.2.7 implies that there

exists Γ′ ∈ Ωθ such that Γ
a−−→ Γ′ and ψ ∈ Γ′. From the inductive

114

10.2. Soundness and Completeness

hypothesis, Γ′ |= ψ, implying Γ |= φ.

(⇐=) Γ |= 〈+〉aψ implies that there exists Γ′ ∈ Ωθ such that Γ
a−−→ Γ′

and Γ′ |= ψ. From the inductive hypothesis, ψ ∈ Γ′ and Lemma 10.2.7

implies 〈+〉aψ ∈ Γ.

Case φ = 〈−〉aψ : (=⇒) If 〈−〉aψ ∈ Γ, Lemma 10.2.7 implies that there

exists Γ′ ∈ Ωθ such that Γ′
a−−→ Γ and ψ ∈ Γ′. From the inductive

hypothesis, Γ′ |= ψ, implying Γ |= φ.

(⇐=) Γ |= 〈−〉aψ implies that there exists Γ′ ∈ Ωθ such that Γ′
a−−→ Γ

and Γ′ |= ψ. From the inductive hypothesis, ψ ∈ Γ′ and Lemma 10.2.7

implies 〈−〉aψ ∈ Γ.

Case φ = 〈+〉∗ψ : (=⇒) If 〈+〉∗ψ ∈ Γ, Lemma 10.2.9 implies that there

exists Γ′ ∈ Ωθ such that Γ −→∗ Γ′ and ψ ∈ Γ′. From the inductive

hypothesis, Γ′ |= ψ, implying Γ |= φ.

(⇐=) Γ |= 〈+〉∗ψ implies that there exists Γ′ ∈ Ωθ such that Γ −→∗ Γ′

and Γ′ |= ψ. From the inductive hypothesis, ψ ∈ Γ′ and Lemma 10.2.9

implies 〈+〉∗ψ ∈ Γ.

Case φ = 〈−〉∗ψ : (=⇒) If 〈−〉∗ψ ∈ Γ, Lemma 10.2.9 implies that there

exists Γ′ ∈ Ωθ such that Γ′ −→∗ Γ and ψ ∈ Γ′. From the inductive

hypothesis, Γ′ |= ψ, implying Γ |= φ.

(⇐=) Γ |= 〈−〉∗ψ implies that there exists Γ′ ∈ Ωθ such that Γ′ −→∗ Γ

and Γ′ |= ψ. From the inductive hypothesis, ψ ∈ Γ′ and Lemma 10.2.9

implies 〈−〉∗ψ ∈ Γ.

Case φ = Kiψ : (=⇒) If Kiψ ∈ Γ, Lemma 10.2.16 implies that for any

Γ′ ∈ Ωθ such that Γ ≈i Γ′, ψ ∈ Γ′. From the inductive hypothesis,

Γ′ |= ψ, implying Γ |= φ.

(⇐=) Γ |= Kiψ implies that for any Γ′ ∈ Ωθ such that Γ ≈i Γ′,

Γ′ |= ψ. From the inductive hypothesis, ψ ∈ Γ′ and Lemma 10.2.16

implies Kiψ ∈ Γ.

115

10.2. Soundness and Completeness

A direct consequence of Truth Lemma is the finite model property.

Theorem 10.2.18 (Finite model property). For any consistent formula

φ ∈ L there exists a finite model. Moreover, the size of the model is bound

by the structure of φ.

The finite model property in this context has two important conse-

quences: the weak completeness of the axiomatic system and the decid-

ability of the satisfiability problem.

Theorem 10.2.19 (Weak completeness). The axiomatic system of L is

complete, i.e., for any φ ∈ L,

|= φ implies ` φ.

Proof. The proof is based on the fact that any consistent formula has a

model. We wish to show that |= φ implies ` φ. Now we have shown that

if φ is consistent it has a model. Clearly then, if ¬φ is consistent there is

a model of ¬φ. The last statement is equivalent to saying that if 6` φ then

¬φ is satisfiable. If ¬φ is satisfiable it follows that not every model models

φ, i.e. 6|= φ. Thus we have 6` φ implies 6|= φ, or taking the contrapositive,

|= φ implies ` φ.

Observe that in the previous construction, the size of Ωθ depends on the

number and type of operators that θ contains. In what follows we refer to

the cardinality |Ωθ| of Ωθ as the size of θ.

The satisfiability problem is the problem of deciding, given an arbitrary

formula φ ∈ L, if φ has at least one model. The finite model property

entails that the satisfiability problem for our logic is decidable.

Theorem 10.2.20 (Decidability). The satisfiability problem for L is de-

cidable.

Proof. We have proved that θ has at least one model iff it is consistent.

And if θ is consistent we have proved that it has a model of size |Ωθ| ∈ N.

But the class of models of size k ∈ N is finite. Consequently, we can decide

in a finite number of steps if θ does or does not have a model by checking

all the models of the appropriate sizes.

116

Conclusions and Related Work

Related Work

The ground breaking paper of Halpern and Moses [HM84, HM90] showed

the importance of common knowledge as a way of formalizing agreement

protocols in distributed systems. Very quickly variants of common knowl-

edge were developed [NT87, PT88] and many new applications were ex-

plored [NT90]. Extensions to probability [HT89] and zero-knowledge pro-

tocols [HMT88] quickly followed. The textbook of Fagin et al. [FHMV95]

made these ideas widely accessible and stimulated even more interest and

activity. There are numerous recent papers by Halpern and his collabo-

rators, Parikh and his collaborators and students, van Benthem and the

Amsterdam school and by several other authors as well. Applications of

epistemic concepts range across game theory, economics, spatial reasoning

and even social systems.

In the concurrency theory community there is very little work on this

topic. Two striking examples are a recent paper by Chadha, Delaune and

Kremer [CDK09] and one by Dechesne, Mousavi and Orzan [DMO07]. The

former paper defines an epistemic logic for a particular process calculus, a

variant of the π-calculus and uses it to reason about epistemic situations.

The latter paper explores the connection between operational semantics

and epistemic logic and is closer in spirit to our work which is couched in

terms of labelled transition systems. Neither of these paper really integrate

Hennessy-Milner logic and epistemic logic. A recent paper by Pacuit and

Simon [PS11] develops a PDL-style logic for reasoning about protocols.

They also prove a completeness theorem for their logic; it is perhaps the

117

Conclusions and Related Work

closest in spirit to our work.

Conclusion

Despite their similar subjects, there is often a divide between concurrency

theory and distributed systems theory. This is unfortunate because ap-

proaches which are effective in one area could often be applicable to the

other. Epistemic logic, for example, is one of the areas where the dis-

tributed systems community got an early start [FHMV95] in the mid 1980s

whereas the concurrency theory community is only just starting to use these

ideas. One of the goals of this thesis is to make epistemic logic and reason-

ing more readily accessible to the concurrency theory community. This part

of the thesis is particularly relevant to this goal, addressing it by providing

a combination of epistemic logic with the Hennessy-Milner logic that the

concurrency community is accustomed to using.

118

Part III

Knowing What You Are

Doing: Epistemic Strategies

for Concurrent Processes

119

Introduction

So far in this thesis we have presented a process calculus that includes

epistemic information and a logic for reasoning about agents’ knowledge

in changing concurrent systems. Now we will discuss another role epis-

temic information plays in concurrency theory. We will present a process

calculus where the agents themselves choose the actions the system takes.

Traditional process calculi use the notion of a scheduler to resolve nondeter-

ministic choices, but this can lead to problems arising from the scheduler’s

knowledge. We will show how to use game semantics, a powerful computa-

tion paradigm, to represent restrictions on agents’ knowledge in resolving

nondeterministic choices.

As we have seen, concurrent processes are a natural and widely used

model of interacting agents. Process algebra combines an operational se-

mantics for processes with equational laws of process behaviour. The most

commonly used equivalence is bisimulation. There is also a modal logic

which exactly characterizes bisimulation. This combination of algebraic

and logical principles is powerful for reasoning about concurrency.

However, process algebra - as traditionally presented - has no explicit

epistemic concepts, making it difficult to discuss what agents know and

what has been successfully concealed. Epistemic concepts and indeed modal

logics capturing “group knowledge” have proven very powerful in distributed

systems [HM84, FHMV95], but it has taken a long time for these ideas to

surface in the process algebra community.

Epistemic concepts play a striking role in the resolution of nondetermin-

istic choices. Typically one introduces a scheduler (or adversary) to resolve

nondeterminism. This scheduler represents a single global entity that re-

120

Introduction

solves all the choices. Furthermore, traditional schedulers are effectively

omniscient: they may use the entire past history as well as all other infor-

mation in order to resolve the choices. This approach is reasonable when

one is reasoning about correctness in the face of an unknown environment.

In this case one wants a quantification over all possible schedulers in order

to deliver strong guarantees about process behaviour.

In security, however, one comes across conditions where omniscient

schedulers are unreasonably powerful, creating circumstances where one

cannot establish security properties. The typical situation is as follows.

One wants to set up protocols that conceal some action(s) from outside

observers. If the scheduler is allowed to see these actions and reveal them

through perverse scheduling decisions, there is no hope for designing a pro-

tocol that conceals the desired information. For example, randomness is

often used as a way of concealing information; if the scheduler is allowed to

see the results of random choices and code these outcomes through schedul-

ing policies then randomness has no power to obfuscate data.

Consider, for instance, a voting system which collects people’s votes for

candidate a or b, and outputs, in some arbitrary order, the list of people

who have voted – for example, to check whether everyone has voted – but

is required to do so in a way that does not reveal who voted for whom.

Among the possible schedulers, there is one that lists first all the people

who voted for a. Clearly, this scheduler completely violates the desired

anonymity property. Usually when we want a correctness property to hold

for a nondeterministic system we require that it holds for all choices of the

scheduler: there is no way such universally quantified statements will be

true if we permit such omniscient schedulers.

How then is process algebra traditionally used to treat security issues?

In fact scrutiny reveals that they do not have a completely demonic sched-

uler all the time. For example, Schneider and Sidiropoulos [SS96] argue that

a system is anonymous if the set of (observable) traces produced by one

user is the same as the set of traces produced by another user. This is, in

fact, an extremely angelic view of the scheduler. A perverse scheduler can

most definitely leak information in this case by ensuring that certain traces

121

Introduction

never appear in one case even though the operational semantics permits

them. Even a probabilistic (hence not overtly demonic) scheduler can leak

information as discussed by Bhargava and Palamidessi1[BP05]. Anonymity

is a problem where these issues manifest themselves particularly sharply.

Even bisimulation, a notion often used in the analysis of security proper-

ties, does not treat non-determinism in a purely demonic way. If one looks

at its definition, there is an alternation of quantifiers: s is bisimilar to t if

for every s
a−−→ s′ there exists t′ such that t

a−−→ t′ ... This definition implies

that the scheduler that chooses the a transition for s is demonic whereas

the scheduler that chooses the corresponding transition for t is angelic.

One approach to solving the problem of reasoning about anonymity in

the presence of demonic schedulers has been suggested in [CP07]: the

interplay between the secret choices of the process and the choices of the

scheduler is expressed by introducing two independent schedulers and a

framework that allows one to switch between them.

The ideas of demonic versus angelic schedulers, the idea of independent

agents and the presence of epistemic concepts all suggest that games are a

unifying theme. In this part of the thesis we propose a game-based semantic

restriction on the information flow in a concurrent process. We introduce a

turn-based game that is played between two agents and define strategies for

the agents. The game is played with the process as the “playing field” and

the players’ moves roughly represent the process executing an action. The

information to which a player does not have access appears as a restriction

on its allowed strategies. This is in the spirit of game semantics [AJ94a,

HO00, AJM00] where restrictions on strategies are used to describe limits

on what can be computed. The restrictions we discuss have an epistemic

character which we model using Kripke-style indistinguishability relations.

We show that there is a particular epistemic restriction on strategies that

exactly captures the syntactic restrictions developed by Chatzikokolakis

and Palamidessi [CP07]. It should be noted that this correspondence is

significant since it only works with one precise restriction on the strategies,

1They do not explicitly talk about schedulers in their paper but the import is the
same.

122

Introduction

which characterizes the knowledge of the schedulers. This restriction is an

important achievement because although Chatzikokolakis and Palamidessi

showed that these schedulers solve certain security problems, this is the first

time that the epistemic qualities of these schedulers have been made explicit.

In their paper certain equations are shown to hold and it is informally

argued that these equations suggest that the desired anonymity properties

hold.

The advantage to thinking in terms of strategies is that it is quite easy

to capture restrictions on the knowledge of the agents as restrictions on the

allowed strategies. For example, if one were to try to introduce some entirely

new restriction on what schedulers “know” one would have to rethink the

syntax and the operational semantics of the process calculus with schedulers

and work to convince oneself that the correct concept was being captured.

With strategies, one can easily add such restrictions and it is clear that

the restrictions capture the intended epistemic concept. For instance, our

notion of introspection makes completely manifest what the agents know

since it is couched as an explicit statement of what the moves can depend on.

Indeed, previously one only had an intuitive notion of what the schedulers

of [CP07] “knew” and it required some careful design to come up with the

right rules to capture this in the operational semantics. Thus, strategies

and restrictions are a beneficial way to model interaction and independence

in process algebra.

Related work

There are many kinds of games used in mathematics, logic and computer

science. Games are also used widely in economics, although these are quite

different from the games that we consider. Even within logic there is a

remarkable variety of games. The logical games most related to our games

are Lorenzen games. Lorenzen games are dialogues that follow certain rules

about the patterns of questions and answers. There is a notion of winning

and the main results concern the correspondence between winning strate-

gies and the existence of constructive proofs. The idea of dialogue games

123

Introduction

appears in programming language semantics culminating with the deep and

fundamental results of Abramsky, Jagadeesan, Malacaria [AJM00] and Hy-

land and Ong [HO00] on full abstraction for PCF. These games do not

have a notion of winning. Rather the games simply delineate sets of pos-

sible plays and strategies are used to model programs. This has been a

fruitful paradigm to which many researchers - far too many to enumerate -

have contributed. It has emerged that games of this kind form a semantic

universe where many kinds of language features coexist. Different features

are simply modelled by different conditions on the strategies.

The games that we describe are most similar to these kinds of games in

spirit, but there are crucial differences. Our games are not dialogue games

and there is no notion of question and answer, as a result, conditions like

bracketing have no meaning in our setting. There is no notion of winning

in our games either. Our games are specifically intended to model multiple

agents working in a concurrent language. While there have been some

connections drawn between concurrent languages like the π-calculus and

dialogue games [HO00] these are results that say that π-calculus can be

used to describe dialogue games, not that dialogue games can be used to

model π-calculus. The latter remains a fundamental challenge and one that

promises to lead to a semantic understanding of mobility.

“Innocence” is an important concept pervading game semantics [HO00,

DH01]. This is a very particular restriction on what the players know. In

order to define innocence much more complex structures come into play;

one needs special indicators of dependence (called “justification pointers”)

that are used to formalize a concept called the “view” of each process.

In the end innocence, like our introspection concept, is a statement about

what knowledge the agents have. Our games have much less complicated

structure because there are no issues with higher types and the introspection

notion is relatively simple to define.

124

Eleven

Background

We begin by introducing a process calculus with actions labelled by an

additional token and a protection operator. The labels on actions allow us

to control what is visible about an action; if two actions have the same label

then they are indistinguishable to an agent controlling the execution of the

process. The protection operator, represented by curly brackets, indicates

that the choice of the top-level action in the protected subprocess must be

made independently from the choices concerning unprotected actions in the

process. This idea is explained in more detail below.

We let l, j, and k represent labels, a and b actions, ā and b̄ co-actions, τ

the silent action, and α and β generic actions, co-actions, or silent action.

The syntax for a process is as follows:

P,Q ::= l : α.P | P |Q | P +Q | (νa)P | l : {P} | 0

The operational semantics for this process calculus is shown in Fig. 11.1.

The transition relation in the operational semantics includes both the ac-

tion and the label for the action. In the case of synchronization, the labels

for both synchronizing actions are included in the transition, and for the

SWITCH rule, two labels are also included, one representing the fact that

the protected process was chosen and one representing the action taken

within the protected process. All the labels have an X or Y subscripted to

them, denoting whether the label was part of a protected choice (Y) or not

(X). There are corresponding right rules for + and |; these operators are

125

both associative and commutative. All of the rules are analogous to those

of traditional process algebra, except for the rule SWITCH, which requires

that protected processes do a silent action. The reason for this restriction

on the SWITCH operator is that this operator is intended to represent

choices made independently from the other choices in the process. For ex-

ample in the process (l1 : a + l2 : b) | l3 : {k1 : τ . l4 : a + k2 : τ . l4 : b},
the left and right choices are represented as independent. This means that

whatever agent controls whether the left part of the process performs an a

or b action does not control how the choice on the right side of the process

is resolved. This choice is resolved by an entity independent from the tra-

ditional scheduler. Therefore, we require that the protected subprocess do

a silent action, because any other action would be observable to the outside

world, and therefore observable to the scheduler, allowing it to base its deci-

sions on the outcome of the protected choice, which would make this choice

dependent on other choices. This independence is not a part of the opera-

tional semantics; rather, it represents the idea that the protected subprocess

makes decisions independently from the main process. Furthermore, requir-

ing the protected subprocess to do a silent action prevents synchronization

between protected and unprotected parts of the process, since these two

parts of the process should be independent.

ACT
l : α . P

α−−−→
lX

P
RES

P
α−−→
s

P ′ α 6= a, ā

(νa)P
α−−→
s

(νa)P ′ SUM1
P

α−−→
s

P ′

P +Q
α−−→
s

P ′

PAR1
P

α−−→
s

P ′

P |Q α−−→
s

P ′|Q
COM

P
a−−−→
lX

P ′ Q
ā−−−→
jX

Q′

P |Q τ−−−−−→
(l, j)X

P ′|Q′ SWITCH

P
τ−−−→
jX

P ′

l : {P} τ−−−−−→
lX .jY

P ′

Figure 11.1: Operational semantics

From now on, we will only consider deterministically labelled processes:

processes where there can never be more than one action available with the

same label.

126

Definition 11.0.21 (Deterministically Labelled). P is deterministically

labelled if the following conditions hold:

1. It is impossible for P to make two different transitions with the same

labels: for all strings s, if P
α−−→
s

P ′ and P
β−−→
s

P ′′ then α = β and

P ′ = P ′′.

2. If P
τ−−−−→

lX .jY
P ′ then there is no transition P

α−−→
lX

P ′′ for any α or

P ′′.

3. If P
α−−→
s

P ′ then P ′ is deterministically labelled.

Note that any blocked1 process is deterministically labelled, so since we

only consider finite processes without recursion, this concept is well defined.

Roughly, this means that two enabled actions never have the same label.

For example, P = l : a + l : b is not deterministically labelled because

P
a−−→
lX

0 and P
b−−→
lX

0 but a 6= b, violating the first condition. Also,

P = l1 :a + l1 :{l2 : τ} is not deterministically labelled since P
τ−−−−−→

l1X .l2Y
0

and P
a−−→
l1

0, violating the second condition. Further, no process with this

as a (reachable) subprocess is deterministically labelled. However, l1 :a . l3 :

b + l2 :c . l3 :d is deterministically labelled even though l3 occurs twice, since

there is no series of transitions that will result in both l3’s being available

simultaneously.

Also, l1 : a | l2 : b . l1 : c is not deterministically labelled because it can

transition to l1 :a | l1 :c which is not deterministically labelled.

Note, however, that l :a . P + l :a . P is deterministically labelled. Even

though l is available twice, l : a . P + l : a . P
a−−→
l

P is the only transition

available labelled with l, so P is deterministically labelled.

1A process is blocked if it cannot make any transition.

127

Twelve

Games and Strategies

In this chapter we define two-player games on deterministically labelled

processes. One game is defined for each deterministically labelled process.

The two players are called X and Y . The moves in the game are labels and

pairs of labels. Moves represent an action being taken by the process. The

player X controls all the unprotected actions, and the player Y is in charge

of all the top level actions within the protected subprocesses. This makes it

possible to represent the independent resolution of the two kinds of choice,

by carefully defining the appropriate strategies for these games. A strategy

is for one player and determines the moves the player will choose within the

game. Games and strategies are both made up of valid positions, discussed

in the next section.

12.1 Valid Positions

Valid positions are defined on a process and represent valid plays or execu-

tions for that process, with player X moving first. Every valid position is

a string of moves (labels or pairs of labels from the process), each of which

is assigned to a player X or Y , with player X moving first. The set of all

valid positions for a process represents all possible executions of the process,

including partial, unfinished executions.

128

12.1. Valid Positions

Definition 12.1.1 (Move). A move is anything of the form lX , lY , (l, j)X ,

or (l, j)Y where l, and j are labels. lX and (l, j)X are called X-moves and

lY and (l, j)Y are called Y -moves.

To define valid positions, we must define an extension of the transition

relation.

Definition 12.1.2. This extends the transition relation to multiple transi-

tions, ignoring the actions for the transitions but keeping track of the labels.

1. For any process P , P −−→
ε
P .

2. If P
α−−→
s

P ′ and P ′ −−→
s′

P ′′ then P −−−→
s.s′

P ′′.

Now we define valid positions.

Definition 12.1.3 (Valid position). If P −−→
s

P ′ then every prefix of s

(including s) is a valid position for P .

In order for the set of valid positions to be prefix closed, we must ex-

plicitly include prefixes in the definition because of the SWITCH rule. For

example, for the process l :{j :τ}, the set of valid positions is {ε, lX , lX .jY },
but if the condition about prefixes were not included in the definition of valid

positions, lX would not be a valid position, because the process does not

have any transition with this label alone.

Example 12.1.4. Consider the process

P = (νb)
(
l1 :{k1 :τ . l2 :a . l3 :b+ k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d+ l6 :e)

)
.

Here are some of the valid positions for P :

l1X .k1Y .l2X .(l3, l4)X .l5X

l1X .k1Y .l2X .(l3, l4)X .l6X

l1X .k2Y .l2X .(l3, l4)X .l5X

l1X .k2Y .l2X .(l3, l4)X .l6X

The prefixes of these valid positions are also valid positions.

129

12.1. Valid Positions

It is easy to see that the valid positions form a tree structure. The tree

of valid positions will be our game tree, on which we will eventually define

strategies and plays of the game.

Definition 12.1.5 (Game tree). Let V be the set of valid positions for

process P . The game tree for P is a tree where the nodes are the valid

positions for P and the edges are moves. Specifically, the root of the game

tree is ε, and for a node s, the children of s are all valid positions of the

form s.m.

Now, for notational convenience, we define the set of children of a valid

position.

Definition 12.1.6. Let V be the set of valid positions for a process. For

s ∈ V , we define ChV (s) = {s′ ∈ V | s′ = s.m for some move m}. If the

set V is clear, we will use the notation Ch(s).

We also define a partial function Pl : V −→ {X, Y }, the player whose

turn it is at V .

Definition 12.1.7. Let V be the set of valid positions for a process. For

s ∈ V , Z ∈ {X, Y }, Pl(s) = Z if and only if there is some s′ ∈ Ch(s) such

that s′ = s.lZ. If Pl(s) = Z, we say that s belongs to Z.

Note that a position can belong to at most one player, since a process

never has both X and Y moves enabled at the same time. Furthermore,

the leaves of the tree, where the process is blocked, do not belong to either

player.

Example 12.1.8. Here is the game tree for

P = (νb)
(
l1 :{k1 :τ . l2 :a . l3 :b+ k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d+ l6 :e)

)
.

130

12.2. Strategies

ε

l1X

k2Y

l2X

(l3, l4)X

l6Xl5X

k1Y

l2X

(l3, l4)X

l6Xl5X

The node in bold belongs to Y ; all the other nodes except the leaves,

which belong to neither player, belong to X. At each level, we write only

the last move in the valid position to save space. For example, the bottom

left node actually represents the valid position l1X .k1Y .l2X .(l3, l4)X .l5X .

12.2 Strategies

A strategy for a certain player is a special subtree of the game tree. The

idea behind a strategy is that it tells a player what move to make whenever

it is his turn. We will only consider deterministic, complete strategies (also

called functional strategies): strategies that tell the player of the strategy

exactly one move to make at any possible execution of the game.

From now on, when we use m without a subscript to denote a move, it

will mean a move including its player: a move of the form lX , (l1, l2)X , lY ,

or (l1, l2)Y . When we use mX , mY , or mZ to denote a move, it means a

move with the specified subscript, where Z represents X or Y .

Definition 12.2.1 (Strategy). Let Z stand for either X or Y , and let Z̄

stand for the opposite player. In the game for P , a strategy for Z is a

subtree T of the game tree for P meeting the following three conditions:

1. ε ∈ T

2. If s ∈ T and Pl(s) = Z, then exactly one of the children of s is in T .

131

12.2. Strategies

3. If s ∈ T and Pl(s) = Z̄, then Ch(s) ⊆ T .

So, a strategy for player Z is a tree where whenever it is Z’s turn, all but

one of the children has been pruned, but whenever it is the other player’s

turn all continuations are included. Thus, Z can respond to any possible

move of Z̄, and Z will always have exactly one move available when it is

his turn.

Example 12.2.2. For

P = (νb)
(
l1 :{k1 :τ . l2 :a . l3 :b+ k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d+ l6 :e)

)
,the boxed

nodes show a subtree which is a strategy for X:

ε

l1X

k2Y

l2X

(l3, l4)X

l6Xl5X

k1Y

l2X

(l3, l4)X

l6Xl5X

Here, the circled nodes show a strategy for Y :

ε

l1X

k2Y

l2X

(l3, l4)X

l6Xl5X

k1Y

l2X

(l3, l4)X

l6Xl5X

132

12.2. Strategies

Here is a non-strategy for X:

ε

l1X

k2Y

l2X

(l3, l4)X

l6Xl5X

k1Y

l2X

(l3, l4)X

l6Xl5X

This is not a strategy for X because it contains l1X and Pl(l1X) = Y

but it does not contain all the children of this position.

Here is an example of something that is not a strategy for Y :

ε

l1X

k2Y

l2X

(l3, l4)X

l6Xl5X

k1Y

l2X

(l3, l4)X

l6Xl5X

This is not a Y -strategy for two reasons. First, since Pl(l1X) = Y , this

node must have exactly one child. Second, no strategy can ever exclude all

the children of any node; at least one child of every node that is not a leaf

must be included in the strategy.

133

12.3. Execution of Processes According to Strategies

12.3 Execution of Processes According to

Strategies

In this section we define the execution of a process with two strategies- one

for each player.

Proposition 12.3.1. In the game for some process P , if S1 is a strategy for

X and S2 is a strategy for Y , then S1 ∩ S2 = {ε,m1,m1.m2, ...m1.m2...mk}
for some moves m1, ...,mk, and the valid position m1.m2...mk is a leaf in

the game tree for P .

Proof. First, ε ∈ S1 ∩ S2 because every strategy contains ε.

Now we will show that for every valid position t ∈ S1 ∩ S2, either t is

a leaf in the game tree for P or there is exactly one move m such that

t.m ∈ S1∩S2. This is true because if t is not a leaf, then t belongs either to

X or to Y . If Pl(t) = X, then by definition of X-strategy, exactly one of

the children of t is in S1, and by definition of Y -strategy, all of the children

of t are in S2, so t has exactly one child in S1 ∩ S2. Similarly, if Pl(t) = Y ,

then all the children of t are in S1 and t has exactly one child in S2, so t

has exactly one child in S1 ∩ S2.

Since ε ∈ S1 ∩S2, and every non-leaf element of S1 ∩S2 has exactly one

child in S1 ∩ S2 and the game tree for P is finite, S1 ∩ S2 must be of the

form

{ε,m1,m1.m2, ...m1.m2...mk}, and m1.m2...mk must be a leaf in the game

tree for S1 ∩ S2, since it has no child in S1 ∩ S2.

Definition 12.3.2 (Execution). Define the execution of a process P with

X-strategy S1 and Y -strategy S2 as follows: Let s be the deepest (leaf)

element in the subtree S1 ∩ S2. The execution of P according to S1 and S2

is the sequence of processes P, P1, ..., Pn such that s = s1s2...sn where each

si is either a single X move of an X move followed by a Y move, and

P
α1−−→
s1

P1
α2−−→
s2

P2
α3−−→
s3

...
αn−1−−−−→
sn−1

Pn−1
αn−−−→
sn

Pn

134

12.3. Execution of Processes According to Strategies

for some α1, ..., αn. This represents the sequence of moves that will be cho-

sen and processes that will be reached if labels are chosen according to the

strategies S1 and S2.

We already proved that S1∩S2 is of the form {ε,m1,m1.m2, ...,m1.m2...mk}:
exactly one entire branch in the game tree. Thus, there is a unique maximal

element, and it defines the execution of P with S1 and S2.

Example 12.3.3. For the process discussed above,

P = (νb)
(
l1 :{k1 :τ . l2 :a . l3 :b+ k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d+ l6 :e)

)
we will show the execution corresponding to the following pair of strategies,

S1 the X-strategy on the left, S2 the Y -strategy in the middle, and the

intersection on the right:

ε

l1X

k2Y

l2X

(l3, l4)X

l6Xl5X

k1Y

l2X

(l3, l4)X

l6Xl5X

ε

l1X

k2Y

l2X

(l3, l4)X

l6Xl5X

k1Y

l2X

(l3, l4)X

l6Xl5X

ε

l1X

k2Y

l2X

(l3, l4)X

l6Xl5X

k1Y

l2X

(l3, l4)X

l6Xl5X

The maximal element of S1 ∩S2 is the position l1X .k2Y .l2X .(l3, l4)X .l6X .

This gives the execution

(νb)
(
l1 :{k1 :τ . l2 :a . l3 :b+ k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d+ l6 :e)

) τ−−−−−−→
l1X .k2Y

(νb)
(
(l2 :c . l3 :b) | l4 : b̄ . (l5 :d+ l6 :e)

) c−−−→
l2X

(νb)
(
l3 :b | l4 : b̄ . (l5 :d+ l6 :e)

)
τ−−−−−−→

(l3, l4)X
(νb) (l5 :d+ l6 :e)

e−−−→
l6X

0

This example shows why, in the definition of the execution, we set s =

s1s2...sn where each si is either a single X move of an X move followed by

135

12.4. Epistemic Restrictions on Strategies

a Y move. In the first step of the execution, l1X and k2Y together define

one transition for the process. Neither a switch move nor a Y -move alone

gives a process transition according to the operational semantics; the two

must be combined to produce a single transition.

12.4 Epistemic Restrictions on Strategies

Now that we have shown how properly specified strategies determine the

execution of a process, we can consider epistemic restrictions on strategies,

representing agents’ actions when their knowledge is limited. In general, we

impose epistemic conditions on strategies first by determining what knowl-

edge is appropriate for each agent, that is, which sets of executions should

be indistinguishable for him, in the form of an equivalence relation on valid

positions. Once the correct notion of the agent’s knowledge is determined,

we can define strategies that respect that condition.

Definition 12.4.1. Given an equivalence relation E ⊆ V × V , we say that

a strategy T respects E for player Z if for all s1, s2 ∈ T , if (s1, s2) ∈ E

and Pl(s1) = Pl(s2) = Z, then for every move m, s1.m ∈ T if and only if

s2.m ∈ T . We call this an epistemic restriction.

In other words, Z must choose the same move whether s1 or s2 describes

the execution of the process so far, because it does not know whether s1 or s2

has occurred- they are indistinguishable for him. Note that we quantify only

over the player’s own positions; all children of the other player’s positions

must be in the strategy, as always.

For example, we could require that an agent only have knowledge of his

own past moves, or only know what moves are currently available to him, or

only remember his past three moves. In order to formalize these epistemic

restrictions on strategies, we need the following subsidiary definitions:

Definition 12.4.2. Let V denote the set of valid positions for a process P .

If s is a valid position for P , enabled(s) represents the set of moves available

after s: define enabled(s) = {m | s.m ∈ V }. Also define the X and Y

136

12.4. Epistemic Restrictions on Strategies

moves available after s as, respectively, enabledX(s) = {mX | s.mX ∈ V }
and enabledY (s) = {mY | s.mY ∈ V }.

Definition 12.4.3. If s is a valid position for P and Z is a player, let

Z̄ denote the other player. We define Z(s), the string of Z moves in s,

inductively as follows:

1. Z(ε) = ε.

2. Z(s.mZ) = Z(s).mZ.

3. Z(s.mZ̄) = Z(s).

Now we can formally define the epistemic restriction for an agent only

remembering his own past moves. In this case, it is useful to define an

equivalence relation for each agent.

Definition 12.4.4. We will define the equivalence relation HZ as HZ =

{(s1, s2) | Z(s1) = Z(s2)}.

In a strategy that respects this condition for its player, the player re-

sponds the same way no matter what the other player does, because it does

not have knowledge of the other player’s actions.

Example 12.4.5. In the following process, for readability, we replace labels

with superscript numbers preceding actions: 1a.P represents l1 :a . P . As a

simple example, consider the process

P = 1{ 3τ + 4τ}+ 2{ 3τ + 4τ}

the Y -strategy on the left respects HY , but the Y -strategy on the right does

not:

ε

l2X

l4Yl3Y

l1X

l4Yl3Y

ε

l2X

l4Yl3Y

l1X

l4Yl3Y

137

12.4. Epistemic Restrictions on Strategies

The second strategy does not respect HY because Y (l1X) = Y (l2X) = ε,

so (l1X , l2X) ∈ HY , and both these positions are in the strategy and belong to

Y , so they should be indistinguishable to Y and have the same continuation,

but they do not.

Note that in for some equivalence relations, for certain processes there

are no strategies respecting the equivalence relation. This occurs if there

are two indistinguishable positions that do not have any enabled moves

in common. Here is a simple example of a process where no X-strategy

respects HX , the equivalence based on X’s past actions.

Example 12.4.6. For the process 0{ 1τ . (3a +4 b) +2 τ . 5a}, with the

game tree below, there is no X-strategy respecting HX . Any X-strategy

must contain the boxed nodes by definition, since it must contain exactly

one child of every X position and all children of every Y position. But

X(l0X .l1Y) = X(l0X .l2Y) = l0X , so (l0X .l1Y , l0X .l2Y) ∈ HX and these two

positions must contain the same continuations in the strategy. However,

enabled(l0X .l1Y) ∩ enabled(l0X .l2Y) = ∅, so there is no possible strategy re-

specting this epistemic restriction.

ε

l0X

l2Y

l5X

l1Y

l4Xl3X

Although some epistemic restrictions cannot be respected on certain

processes, some epistemic restrictions can be respected on any process. For

equivalence relation E, if (s1, s2) ∈ E ⇒ enabled(s1) = enabled(s2), then it

is evident that for any process there is a strategy respecting E.

Example 12.4.7. We can require that an agent only know what moves

are currently available to him. We will call this equivalence relation AvZ:

(s1, s2) ∈ AvZ ⇔ enabledZ(s1) = enabledZ(s2). As discussed above, for any

process it will be possible to find a strategy that respects this condition.

138

12.4. Epistemic Restrictions on Strategies

We now single out a very important epistemic restriction, called intro-

spection. An introspective strategy allows a player to “remember” not only

his own history of moves, but also the moves that were available to him

at every point in the past, including the current step. Introspective strate-

gies are important because they exactly capture the intended independence

requirement for the protection operator.

Definition 12.4.8. For player Z, positions s1 and s2 are called introspec-

tively Z-equivalent, denoted (s1, s2) ∈ IZ, if they satisfy the following con-

ditions:

1. Pl(s1) = Pl(s2) = Z

2. Z(s1) = Z(s2)

3. enabledZ(s1) = enabledZ(s2).

4. For all prefixes s′1 of s1 and s′2 of s2, if Pl(s′1) = Pl(s′2) = Z and

Z(s′1) = Z(s′2), then enabledZ(s′1) = enabledZ(s′2).

In this definition, two positions are indistinguishable if the player made

the same series of moves to arrive at both positions, and at any point in the

past where it had made a certain series of moves in both positions and had

moves available, it had the same set of moves available in both positions.

The introspection condition corresponds to perfect recall of the moves

that an agent made as well as the moves that it could have made but did

not. However, it is not aware of opponent moves except insofar as such

moves determine its own choices. One can imagine restrictions where an

agent has only the ability to recall a bounded amount of its past history,

but these type of restrictions are not relevant to the particular situation in

which we are interested.

For the rest of this section, we will only discuss the introspective equiv-

alence condition, so when we say that two positions are indistinguishable

for Z, we mean that the are introspectively Z-equivalent.

139

12.4. Epistemic Restrictions on Strategies

Definition 12.4.9 (Introspection). Given a process P , and S a strategy for

player Z on P , S is introspective if it respects the introspection equivalence

relation for Z.

In other words, the player chooses the move it makes at each step based

on his past moves, the moves that are available to him, and the moves that

were available to him at each point in the past. If these conditions are all

the same at two positions, the player cannot distinguish them, so it makes

the same move at both positions.

Example 12.4.10. For

P = (νb)
(
l1 :{k1 :τ . l2 :a . l3 :b+ k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d+ l6 :e)

)
the strategy given above for X,

ε

l1X

k2Y

l2X

(l3, l4)X

l6Xl5X

k1Y

l2X

(l3, l4)X

l6Xl5X

is not introspective. This is because in order to satisfy the introspec-

tion condition, l1X .k1Y .l2X .(l3, l4)X and l1X .k2Y .l2X .(l3, l4)X should have the

same moves appended to them in S, since they are X indistinguishable.

However,

l1X .k1Y .l2X .(l3, l4)X .l5X ∈ S and l1X .k2Y .l2X .(l3, l4)X .l5X 6∈ S, and simi-

larly, l1X .k2Y .l2X .(l3, l4)X .l6X ∈ S and l1X .k2Y .l2X .(l3, l4)X .l5X 6∈ S.

An example of an introspective strategy for X is this:

140

12.4. Epistemic Restrictions on Strategies

ε

l1X

k2Y

l2X

(l3, l4)X

l6Xl5X

k1Y

l2X

(l3, l4)X

l6Xl5X

Here is an example showing why the prefixes of the valid positions are

discussed in the definition of introspective. For readability, labels are re-

placed with superscript numbers preceding actions: 1a.P represents l1 :a . P .

Example 12.4.11. Consider

P = 0{ 1τ .(3c .(6f + 7g) + 4d) + 2τ .(3c .(6f + 7g) + 5e)}.

Let X’s strategy be the boxed nodes:

ε

l0X

l1Y

l3X

l6X l7X

l4X

l2Y

l3X

l6X l7X

l5X

This strategy is introspective. Even though X(l0X .l1Y .l3X) = X(l0X .l2Y .l3X)

and

enabledX(l0X .l1Y .l3X) = enabledX(l0X .l2Y .l3X), it is acceptable that the two

strings have different moves appended to them, because enabledX(l0X .l1Y) =

{l3X , l4X} and enabledX(l0X .l2Y) = {l3X , l5X}. This can be thought of

141

12.4. Epistemic Restrictions on Strategies

as X being able to distinguish between the two positions l0X .l1Y .l3X and

l0X .l2Y .l3X because it remembers what moves were available to him earlier

and is able to use this information to tell apart the two positions.

The essence of the introspection condition is that a player knows what

moves it has made in the past and knows what moves, if any, were available

to it at each point in the past, but cannot see any moves that its opponent

has made. Thus, each player must choose its moves based solely on its

own past moves, the past moves that were available to it, and the moves

available to it now.

142

Thirteen

Correspondence between Strategies

and Schedulers

In this chapter, we first review the syntactic schedulers defined in [CP10a]

and then prove that introspective strategies correspond exactly to these

schedulers. This result is important because these schedulers are defined

purely syntactically, without any explicit reference to knowledge or equiv-

alence between executions. Since the players’ knowledge is explicit in the

definition of introspective strategies, this equivalence explains the knowl-

edge requirements underlying the syntactic schedulers, which had not been

discussed before.

13.1 Background on Schedulers

The process calculus with schedulers uses the syntax for processes discussed

above, with the protection operator, but also adds a new ingredient: ex-

plicit syntax for a pair of independent schedulers. The schedulers use labels,

rather than actions, to interact with a process, making it possible to use

labels to control a scheduler’s “view” of a process. The schedulers choose a

sequence of labels, to execute actions, or pairs of labels, to synchronize pro-

cesses, and also can check whether a label or synchronization is available,

using an if... then... else... construct. The two schedulers operate inde-

143

13.1. Background on Schedulers

pendently and do not communicate with one another, and each scheduler

controls certain choices in the process. This makes it possible to represent

independent choices in the process calculus. A complete process is an ordi-

nary process augmented with a pair of schedulers. In this section, we also

add the notion of general labels, either a single ordinary label or a pair of

ordinary labels. This convention is useful because an ordinary label and

a pair of synchronizing ordinary labels both represent a single action by a

scheduler. We let l and k represent ordinary labels and L and K represent

general labels. The notations σ(L), σ(l), and σ(l, k) are used to designate

a choice made by a scheduler: σ(l) means a single action will be executed,

σ(l, k) means that the scheduler will synchronize two actions, and σ(L) can

represent either of these cases. We let a and b represent actions, ā and

b̄ co-actions, τ the silent action, α and β generic actions, co-actions, or

silent action, P and Q processes, and ρ and η schedulers. The syntax for a

complete process is as follows:

P,Q ::= l : α.P | P |Q | P +Q | (νa)P | l : {P} | 0

L ::= l | (l, k)

ρ, η ::= σ(L).ρ | if L then ρ else η | 0

CP ::= P ‖ ρ, η

The first scheduler is called the primary scheduler and the second sched-

uler is the secondary scheduler.

The rules for the operational semantics of the process calculus with

schedulers are in Fig. 13.1. Using the if then else construct (rules IF1,

IF2), the scheduler can check whether a move is available and choose what

to do based on that information. The SWITCH rule says that the curly

brackets indicate a point where the secondary scheduler makes the next

choice. After making this choice, control reverts to the primary scheduler.

The choice made by the secondary scheduler must result in a τ observation

because the process is encapsulated and cannot interact with the environ-

ment at this point. Of course, once control reverts to the primary scheduler,

interactions with the external environment can indeed take place. The order

144

13.1. Background on Schedulers

ACT
l : α.P ‖σ(l).ρ, η

α−−→
lX

P ‖ ρ, η

RES
P ‖ ρ, η α−−→

s
P ′ ‖ ρ′, η′ α 6= a, ā

(νa)P ‖ ρ, η α−−→
s

(νa)P ′ ‖ ρ′, η′

SUM1
P ‖ ρ, η α−−→

s
P ′ ‖ ρ′, η′ ρ 6= if L then ρ1 else ρ2

P +Q ‖ ρ, η α−−→
s

P ′ ‖ ρ′, η′

PAR1
P ‖ ρ, η α−−→

s
P ′ ‖ ρ′, η′ ρ 6= if L then ρ1 else ρ2

P |Q ‖ ρ, η α−−→
s

P ′|Q ‖ ρ′, η′

SWITCH
P ‖ η, 0 τ−−→

jX
P ′||η′, 0

l : {P} ‖σ(l).ρ, η
τ−−−−→

lX .jY
P ′ ‖ ρ, η′

COM
P ‖σ(l).0, 0

a−−→
lX

P ′ ‖ 0, 0 Q ‖σ(j).0, 0
ā−−→
jX

Q′ ‖ 0, 0

P |Q ‖σ(l, j).ρ, η
τ−−−−−→

(l, j)X
P ′|Q′ ‖ ρ, η

IF1
P ‖ ρ1, η

α−−→
s

P ′ ‖ ρ′1, η′ P ‖σ(L).0, θ
β−−→
s′

P ′′ ‖ 0, θ′ for some scheduler θ

P ‖ if L then ρ1 else ρ2, η
α−−→
s

P ′ ‖ ρ′1, η′

IF2
P ‖ ρ2, η

α−−→
s

P ′ ‖ ρ′2, η′ P ‖σ(L).0, θ 6−→ for all schedulers θ

P ‖ if L then ρ1 else ρ2, η
α−−→
s

P ′ ‖ ρ′2, η′

Figure 13.1: Operational semantics for processes with schedulers

in which the schedulers are written indicates which one is to be regarded

as primary. In the rules SUM1 and PAR1, we require that the primary

scheduler not be of the form if L then ρ1 else ρ2 because the if then else

construct allows a scheduler to check whether a label is available. Thus, the

behaviour of a process P with primary scheduler if L then ρ1 else ρ2 may

be different than the behaviour of process P +Q with the same scheduler if

the label L is available in process Q. The same condition applies to PAR1.

The rules IF1 and IF2 check whether a process can execute any transition

with the one step primary scheduler σ(L) and any secondary scheduler. If

there is any transition that can occur for this complete process, then the

first branch of the primary scheduler is activated, otherwise, the second

145

13.1. Background on Schedulers

branch occurs.

Clearly, if a process is blocked, then no transition is possible with any

schedulers. On the other hand, it is possible for a process that is not blocked

to have no transitions available with certain schedulers. For example, the

process l :a is not blocked, but no transitions are available for the complete

process l : a ‖σ(j), 0. Thus, it is useful to define the notion of a pair of

schedulers being nonblocking for a certain process.

Definition 13.1.1 (Nonblocking Schedulers). For a process P which is not

blocked, a pair of schedulers ρ, η are inductively defined as nonblocking if

P ‖ ρ, η α−−→ P ′ ‖ ρ′, η′ for some α, P ′, ρ′, and η′, and if P is not blocked,

then ρ′ and η′ are non-blocking for P ′.

Since we consider only finite processes, this inductive definition charac-

terizes all nonblocking scheduler pairs for processes that are not blocked.

We have defined a nonblocking scheduler pair as, essentially, a pair of

schedulers that choose a move for the process whenever one is available.

Now we define the concept of a single scheduler being nonblocking. We

would like to say that a single primary or secondary scheduler for a process

is nonblocking if it can be paired with any nonblocking secondary or pri-

mary scheduler (respectively) for the process and not cause the process to

be blocked. Obviously, this would be a circular definition, so we define non-

blocking first inductively for a secondary scheduler, and then for a primary

scheduler, with reference to nonblocking secondary schedulers.

Definition 13.1.2. If P is a deterministically labelled process and is not

blocked, then a scheduler η is a nonblocking secondary scheduler for P if

for every general label L such that for some η1,

P ‖σ(L), η1
α−−→
s

P ′ ‖ 0, η′1

(for some α, s, P ′, and η′1), then

P ‖σ(L), η
β−−→
s′

P ′′ ‖ 0, η′

(for some β, s′, P ′′ and η′), and if P ′′ is not blocked, η′ is a nonblocking

secondary scheduler for P ′′.

146

13.2. Correspondence Theorem

If P is blocked, then any secondary scheduler is defined to be nonblocking.

First, note that this is a complete inductive definition because we only

consider finite processes, so any process will be blocked after some finite

number of steps. The meaning of this definition is the following: if there is

a label that can be chosen by the primary scheduler and execute an action

in conjunction with some arbitrary secondary scheduler, then a nonblocking

secondary scheduler must also be able to execute an action in conjunction

with the primary scheduler that chooses this label.

For a blocked process, all schedulers are considered to be nonblocking

because it is not the scheduler that is preventing an action from occurring,

but the process itself, so the scheduler is nonblocking.

Definition 13.1.3. If P is a deterministically labelled process that is not

blocked, then primary scheduler ρ is primary nonblocking if for any non-

blocking secondary scheduler η,

P ‖ ρ, η α−−→
s

P ′ ‖ ρ′, η′

(for some α, s, P ′, ρ′, η′) and if P ′ is not blocked, then ρ′ is a nonblocking

primary scheduler for P ′.

In other words, a primary scheduler is one that will schedule an action

for the process no matter what nonblocking secondary scheduler it is paired

with.

13.2 Correspondence Theorem

The main correspondence theorem can now be stated.

Theorem 13.2.1. Given a deterministically labelled process P , a nonblock-

ing primary scheduler ρ for P , and a nonblocking secondary scheduler η for

P , there is an introspective X strategy S depending only on P and ρ, and

an introspective Y strategy T depending only on P and η, such that the

execution of P ‖ ρ, η is identical to the execution of P with S and T .

147

13.2. Correspondence Theorem

Furthermore, given a deterministically labelled process P , an introspec-

tive X strategy S for P , and an introspective Y strategy T for P , there is

a nonblocking primary scheduler ρ depending only on S and P and a non-

blocking secondary scheduler η depending only on T and P such that the

execution of P with S and T is identical to the execution of P ‖ ρ, η.

Before we discuss the proof we make some observations on the quantifier

structure of the statement of the theorem. One could imagine stating the

first part as follows:

∀P, ρ∃S s.t. ∀η∃T . . .

This is apparently stronger and certainly clearer than the original version

which uses the clumsy phrase “depending only on...” However, this is not

the case; it is actually weaker. The “new improved” version allows T to

depend on ρ, which the version stated in the theorem does not allow. There

is in fact a formal logic called “Independence Friendly” (IF) logic which

allows quantifiers to be introduced with independence statements; this is

just what the version in the statement of the theorem does, without, of

course, dragging in all the formal apparatus of IF logic. In fact, it can be

proved that there are statements of IF logic than cannot be rendered in

ordinary first-order logic; the statement of the theorem is an example.

In order to prove the theorem we need this definition:

Definition 13.2.2. A move l in process P is called a switch move if it

chooses a label of the form l : {P ′} in P . Otherwise, it is called an ordinary

move.

Proof. There are several steps involved in the proof, so we begin by provid-

ing an outline.

1. We prove that every scheduler has an equivalent introspective strat-

egy, in the following way

a) We provide a translation from a scheduler to a strategy

b) We prove that the translation does indeed yield a strategy

148

13.2. Correspondence Theorem

c) We prove that the strategy is equivalent to the scheduler

d) We prove that the strategy is introspective

2. We prove that every introspective strategy has an equivalent scheduler

in the following steps

a) We provide a translation from a strategy to a scheduler

b) We prove that the scheduler is equivalent to the strategy

c) We prove that the translation yields a nonblocking scheduler

Translation from a scheduler to a strategy

We will give a procedure that takes a scheduler and returns a strategy.

It is an inductive procedure so it also has an argument keeping track of

where it is in the tree of valid positions. Thus, for scheduler ρ, Strat(ρ, ε)

is the corresponding strategy.

Note that the translation only works with respect to a specific process.

It must take the tree of valid positions into consideration. Z stands for X

if it is a primary scheduler and Y if it is a secondary scheduler. Let sZ

denote the position s where Pl(s) = Z, and let sZ̄ be the position s where

Pl(s) = Z̄, and sl denote the position s where s is a leaf.

Strat(σ(l).ρ, sZ) = {sZ} ∪ Strat(ρ, sZ .lZ)

Strat(if l then ρ1 else ρ2, sZ) =

 Strat(ρ1, sZ) if sZ .lZ ∈ Ch(sZ)

Strat(ρ2, sZ) otherwise

Strat(ρ, sZ̄) = {sZ̄} ∪
⋃

s′∈Ch(sZ̄)

Strat(ρ, s′)

Strat(ρ, sl) = {sl}

The case for Strat(0, sZ) is not defined because we assume nonblocking

schedulers, so they will always schedule an action when it is Z’s turn, and

therefore the scheduler 0 cannot occur at a position belonging to Z.

Now, note that s ∈ Strat(ρ, s), for any ρ and any s. This is true be-

cause the only case where s is not specifically added to the strategy is

149

13.2. Correspondence Theorem

Strat(if l then ρ1 else ρ2, sZ). But this is equal to either Strat(ρ1, sZ) or

Strat(ρ2, sZ), so eventually sZ will be added to the strategy.

Proof that the translation yields a strategy

In order to prove that this translation yields a strategy, we must check

that for any nonblocking scheduler ρ, Strat(ρ, ε) contains ε, contains ex-

actly one child of every Z position in Strat(ρ, ε) and contains every child of

any Z̄ position in Strat(ρ, ε). We already showed that Strat(ρ, ε) contains

ε. And every time the algorithm encounters a Z̄ position, it adds all its

children to the strategy, since it adds Strat(ρ, s′) to the strategy for each

child s′, and s′ ∈ Strat(ρ, s′). Finally, every time the translation encoun-

ters a Z position, it adds the strategy for exactly one child of this position

and the corresponding subscheduler. Thus, this child will be added to the

strategy, and there is no way for any other child of this position to be added

to the strategy.

Proof that the strategy is equivalent to the scheduler

Now we show that the strategy given by the translation is equivalent to

the scheduler, in the sense that given process P , if S is the translation of ρ

and T is the translation of η, then the execution of P with S and T is iden-

tical to the execution of P ‖ ρ, η. Since we have shown that the procedure

does indeed produce a strategy, it is straightforward to see that it is correct.

At any position where it is Z’s turn, the function has two choices: first, it

can go to the child in the game tree which is required by the scheduler,

meaning that this position will be added to the strategy at the next step.

The other option is testing an if statement and applying the proper sub

scheduler at the current position in the game tree. Since the schedulers and

game trees are finite, it is clear that this gives the correct strategy in the end.

Proof that the strategy is introspective

Assume that (s1, s2) ∈ IZ , and s1 and s2 are in Strat(ρ, ε). We will

prove that s1.m ∈ Strat(ρ, ε) if and only if s2.m ∈ Strat(ρ, ε). We must

also prove by induction on the number of Z-moves in s1 that in calculating

150

13.2. Correspondence Theorem

Strat(ρ, ε), for all schedulers ρ′, Strat(ρ′, s1) will be reached as a subcase of

the recursive definition of Strat(ρ, ε) iff Strat(ρ′, s2) be reached as a subcase

of the recursive definition of Strat(ρ, ε).

Base Case: s1 has 0 Z-moves. So s1 is a string of 0 or more Z̄-

moves, and s2 must also be a string of 0 or more Z̄-moves. It is easy to see

that Strat(ρ, s1) and Strat(ρ, s2) will both be called, since Strat(ρ, sZ̄) just

calls Strat(ρ, s′) for children of sZ̄ , without changing ρ, until Strat(ρ, s1)

and Strat(ρ, s2) are both added to the strategy. At this point, if ρ is of

the form σ(l).ρ′, then Strat(ρ′, s1.lZ) and Strat(ρ′, s2.lZ) will be called.

On the other hand, ρ could be of the form if l then ρ1 else ρ2. But

we know that (s1, s2) ∈ IZ , so s1.lz ∈ Ch(s1) iff s2.lZ ∈ Ch(s2). Thus,

for ρi either ρ1 or ρ2, Strat(ρi, s1) will be called iff Strat(ρi, s2) is called.

Furthermore, this will be repeated until the function has gone through all

the “if ... then ... else ...” statements, and reached a scheduler of the form

σ(l).ρ′, and the same scheduler will always be called for both s1 and s2.

Induction Step: s1 has n Z-moves, and therefore s2 also has n Z-

moves. Thus, s1 = s′1.t1, and s2 = s′2.t2, where (s′1, s
′
2) ∈ IZ and t1 and t2

are both strings of 0 or more Z̄ moves. So, by the induction hypothesis, s′1

and s′2 were added to the strategy by the recursive definition Strat even-

tually reaching two subcases of the form Strat(ρ′, s′1) and Strat(ρ′, s′2) for

the same sub scheduler ρ′. After this point, the same thing occurs as in

the induction hypothesis when the positions belong to Z̄, and the recursive

definition eventually reaches the point Strat(ρ′, s1) and Strat(ρ′, s2) and as

in the base case, the same move must be added to the strategy as a con-

tinuation of both s1 and s2. Thus, after any two introspectively equivalent

positions, the same move is added, so the strategy is introspective.

Translation from a strategy to a scheduler

Now we give a procedure to get a scheduler corresponding to an intro-

spective strategy. Let P be a deterministically labelled process, S a strategy

for player Z, and V the set of valid positions for P .

First we introduce a new piece notation in schedulers which is an en-

coding of a more complicated scheduler term.

151

13.2. Correspondence Theorem

Consider the set of all labels in process P , l1, ..., lk. We want to encode

an “if” statement that checks whether exactly a certain subset of moves is

enabled, and no others. Logically, we want to encode a statement along the

lines of “If (
∧
i∈I li ∧

∧
i 6∈I ¬li) then ρ1 else ρ2.”

First note that we can encode “If (l1 ∧ l2) then ρ1 else ρ2” as

If l1 then (If l2 then ρ1 else ρ2) else ρ2. It is easy to see that the second

scheduler is equivalent to the intuitive meaning of the first one.

Similarly, we can encode “If ¬l then ρ1 else ρ2” as

If l then ρ2 else ρ1.

Finally, we can encode “If l1∧¬l2 then ρ1 else ρ2” as if l1 then (if l2 then ρ2 else ρ1) else ρ2.

We can combine an arbitrary number of conjunctions of labels and negations

of labels in the same way.

If the set of labels for a process is L, we will use the notation if =

L1 then ρ1 else ρ2 for the scheduler that executes ρ1 if exactly the set

of moves L1 is enabled, and none of the moves in L\L1 are enabled, and

executes ρ2 otherwise.

Now we can give the procedure for translating a strategy to a scheduler.

The idea is, roughly, that for strategy S, we have a recursive function ρS

that takes a set of introspectively equivalent valid positions as its input and

gives the scheduler corresponding to the strategy’s behavior on that set of

valid positions. Then ρS({ε} will be the scheduler corresponding to the

strategy’s behavior starting from beginning of the process. We need several

subsidiary definitions in order to give the function.

Definition 13.2.3. For R ⊆ V , define

extZ(R) = {r.s ∈ V | r ∈ R,Z(s) = ε and Pl(r.s) = Z}.

This is the set of descendants of elements of R that are the first descen-

dants where it is Z’s turn. This function is useful because the scheduler

only acts when it is Z’s turn, so it allows us to skip forward to the next part

of the strategy where we will have to define the corresponding scheduler.

Definition 13.2.4. extZ(R)/IZ is the quotient of extZ(R) by the introspec-

tive equivalence relation.

152

13.2. Correspondence Theorem

R will be a set of introspectively equivalent positions, but extZ(R) may

extend elements of R to positions that are in different equivalence classes.

The scheduler can distinguish between these classes and can act differently

on each class, corresponding to the strategy.

Definition 13.2.5. If R is a set of introspectively equivalent valid positions,

define en(R) as enabled(s) where s ∈ R. Since all the positions in R are

introspectively equivalent, they all have the same set of enabled moves, so

this definition is consistent.

This definition will be used to allow the scheduler to distinguish be-

tween different equivalence classes of valid positions at a certain point in

the execution, using the scheduler construction discussed above.

Definition 13.2.6. Let S be an introspective strategy for Z and let A be a

set of introspectively equivalent valid positions. If S∩A 6= ∅, define mvS(A)

as the move m such that s ∈ A and s.m ∈ S. This is a consistent definition

since all introspectively equivalent positions must be followed by the same

move in an introspective strategy.

We use this definition to define the move that the scheduler schedules

for a given equivalence class.

We need one more piece of notation.

Definition 13.2.7. If R is a set of introspectively equivalent positions and

m ∈ en(R), then define R �m as {r.m | r ∈ R}. Note that if R ⊆ V and

m ∈ en(R) then R�m ⊆ V .

Finally, here is the recursive function SchS that turns a strategy S into

a scheduler, SchS({ε}).

SchS(R) =

0 If extz(R) = ∅

if = en(R1) then σ(mv(R1)).SchS(R1 �mv(R1)) else

if = en(R2) then σ(mv(R2)).SchS(R2 �mv(R2)) else

...

if = en(Rk−1) then σ(mv(Rk−1)).SchS(Rk−1 �mv(Rk−1))

else σ(mv(Rk)).SchS(Rk �mv(Rk)) Otherwise

where extZ(R)/IZ = {R1, R2, ..., Rk}.

153

13.2. Correspondence Theorem

Proof that the scheduler is equivalent to the strategy

A formal proof of the correctness would be tedious, so we just provide

an argument in words. We must show that the execution of the process P

with any X-strategy S and any Y -strategy T is the same as the execution

of P ‖SchS({ε}), SchT ({ε}).
First, note that when we start out with SchS({ε}), any time there is

a recursive call to the function SchS(R), R will be a set of introspectively

equivalent valid positions. This would be easy to prove by induction, since

in the case where there are recursive calls to the SchS function, it is al-

ways after quotienting the set extZ(R) by IZ , the introspective equivalence

relation, and the argument to the function is an equivalence class.

The scheduler is correct because at each step, the function takes all the

continuations of all the elements of the equivalence class where it was last

Z’s turn. This set is divided into equivalence classes based on the introspec-

tive equivalence relation. For each equivalence class R, we add an if clause

to the scheduler, so that this clause will only be true in the equivalence

class R and not in any other equivalence class. Inside each if clause, the

correct move according to the strategy is scheduled (σ(mv(R))) and then

the correct scheduler is recursively computed as the continuation after this

move. On the other hand, if extZ(R) = ∅, then the corresponding sched-

uler is 0, because this means there are no continuations of any position in

R where it is Z’s turn again. Thus, the scheduler should not schedule any

further actions.

Proof that the scheduler is nonblocking

Since we showed that the scheduler is equivalent to the strategy that it

translates, and we know that by definition the strategy provides a move in

every possible situation, the scheduler must in fact be nonblocking.

154

Fourteen

Games for Processes with Probabilistic

Choice

In this chapter, we discuss labelled processes equipped with a probabilistic

choice operator and a single scheduler or player that resolves all nonprob-

abilistic choices. In some ways, this situation is similar to the two-agent

situation; the single nondeterministic agent interacts with the outcomes of

probabilistic choices in much the same way as it interacts with the outcome

of choices made by the other player in the two-player situation. On the

other hand, the probabilistic choice cannot be said to be resolved accord-

ing to a strategy since it is, of course, resolved completely probabilistically,

according to the distributions built into the process definition.

We begin by giving background on probabilistic processes. Next, we dis-

cuss games, strategies and epistemic restrictions for these processes. Finally,

we prove that these introspective strategies for processes with probabilis-

tic choice are equivalent to the schedulers for processes with probabilistic

choice defined in [CP10b].

14.1 Syntax and Semantics

The syntax of these processes is almost the same as the syntax of processes

with an independence operator. The only difference is that the brackets

155

14.1. Syntax and Semantics

signifying an independent choice are replaced with a labelled probabilistic

choice operator.

P,Q ::= 0 | l : α.P | P +Q | l :
∑
i

li : piPi | P |Q | (νa)P

For a process of the form l :
∑

i li : piPi, we also require that
∑

i pi = 1.

The operational semantics for labelled processes with probabilistic choice,

shown in Fig. 14.1, is generally similar to the operational semantics without

probability, but with two significant changes. First, each transition between

two processes now has a probability assigned to it, in addition to an action

and string of labels like in the other operational semantics. Second, the

SWITCH rule is replaced with the PROB rule, representing probabilistic

choice; the choice is resolved by the process doing a silent transition to one

of the subprocesses, with the probability indicated in the original process.

The other rules are straightforward analogues of the traditional process al-

gebra rules. Note that only a τ transition can have a probability other than

one. This is why in the COM rule we require that the transitions taken by

P and Q have probability one; in fact, this is the only possibility for these

transitions. In the strings of labels, a label can either have a subscript X, if

it is not a label on a branch of a probabilistic choice, or no added subscript,

if it is a label on a branch of a probabilistic choice.

ACT
l : α . P

α−−→
lX 1

P
PROB

l :
∑
i

li : piPi
τ−−−−→

lX .li pi

Pi

SUM1

P
α−−→
λ p

P ′

P +Q
α−−→
λ p

P ′
PAR1

P
α−−→
λ p

P ′

P |Q α−−→
λ p

P ′|Q

COM

P
a−−→
lX 1

P ′ Q
ā−−−→
jX 1

Q′

P |Q τ−−−−−→
(l, j)X 1

P ′|Q′
RES

P
α−−→
λ p

P ′ α 6= a, ā

(νa)P
α−−→
λ p

(νa)P ′

Figure 14.1: Operational semantics for processes with probabilistic choice

We will only consider deterministically labelled processes: processes

where every transition has a unique string of labels.

156

14.2. Games, Valid Positions and Strategies

Definition 14.1.1 (Deterministically Labelled). A probabilistic process P

is deterministically labelled if the following conditions hold:

1. It is impossible for P to make two different transitions with the same

labels: if P
α−−→
s p1

P ′ and P
β−−→
s p2

P ′′ then α = β, p1 = p2, and

P ′ = P ′′.

2. If P
τ−−−−→

lX .l
′
p

P ′ then there is no transition P
α−−→
lX

P ′′ for any α or p

or P ′′.

3. Whenever P
α−−→
s p

P ′ then P ′ is deterministically labelled.

Finally, since we are considering probabilities, we must discuss how they

are composed in transition sequences of process. To construct transition

sequences, we assume that the probabilities at every step are independent

from one another. Thus, the probability of a sequence of transitions is just

the product of the probabilities of each transition in the sequence. This is

formalized below.

14.2 Games, Valid Positions and Strategies

In this section, we define games and strategies on probabilistic labelled

processes. The construction of games and strategies is similar to the two

player construction, since the player interacts with the probabilistic choices

in a way similar to the way the two players interact in the nonprobabilistic

case.

14.2.1 Valid Positions

First we define the extension of the transition relation to allow sequences

of transitions, by concatenating the label strings and multiplying the prob-

abilities.

Definition 14.2.1. For any process P , P −−→
ε 1

P , and if P
α−−→
s p1

P ′ and

P ′ −−→
s′ p2

P ′′, then P −−−→
s.s′ p1·p2

P ′′.

157

14.2. Games, Valid Positions and Strategies

Now we define valid positions.

Definition 14.2.2 (Valid Position). If P −−→
s p

P ′ then every prefix of s,

including s, is a valid position for P .

Now we define the game tree for P . Because of the combination of

nondeterministic and probabilistic choice in the tree, we do not define a

probability measure on the game tree. Instead, the game tree represents all

possible executions, without taking the probability of each execution into

account. The probability measure on valid positions is defined later with

respect to a strategy that resolves the nondeterministic choices.

Definition 14.2.3. Let V be the set of valid positions for probabilistic pro-

cess P . The game tree for P is a tree where the root is epsilon and the

other nodes are the other valid positions for P . For a node s, the children

of s are all the positions of the form s.m.

As in the nondeterministic case, we define the set of children of a valid

position.

Definition 14.2.4. Let V be the set of valid positions for a process. For

s ∈ V , we define Ch(s) = {s′ ∈ V | s′ = s.m for some move m}.

We define the partial function Pl : V −→ {X, prob}, the function that

says whether at a valid position it is the player’s turn or a probabilistic

choice point.

Definition 14.2.5. Let V be the set of valid positions for a process. For

s ∈ V , Pl(s) = X if and only if there is some s′ ∈ Ch(s) such that s′ = s.lX .

Pl(s) = prob if and only if there is some s′ ∈ Ch(s) and Pl(s) 6= X. If

Pl(s) = X, we say that s belongs to the player or is a player position, and

if Pl(s) = prob we say that s is a probabilistic position. The leaves in the

game tree are neither player positions nor probabilistic positions.

158

14.2. Games, Valid Positions and Strategies

14.2.2 Strategies

Besides there only being one player, the definition of a strategy and the

restrictions on strategies are quite similar to the two player case. We recall

all the definitions here only for convenience.

We start by defining player moves and probabilistic moves.

Definition 14.2.6. If s.mX is a valid position for P , then mX is a player

move in this valid position. If s.l is a valid position for P , then l is a

probabilistic move in this valid position.

Now we can define strategies.

Definition 14.2.7 (Strategy). In the game for a process P , a strategy S

is a subtree T of the game tree for P meeting the following three conditions:

1. ε ∈ T

2. If s ∈ T and Pl(s) = X then exactly one of the children of s is in T .

3. If s ∈ T and Pl(s) = prob then Ch(s) ⊆ T .

14.2.3 Execution of a probabilistic process with a

strategy

Since a strategy resolves all the nonprobabilistic choices in a probabilistic

process, a process paired with a strategy gives a normalized distribution on

possible executions of the process.

We cannot define a probability measure on the set of all valid positions

for several reasons. First, the probability assigned to a valid position must

be based on the probability of that execution of the process occurring, but

not all valid positions actually represent possible executions. For example,

for the process

l : (l1 : 1
2
(l′ :a) + l2 : 1

2
(l′′ :b))

lX is a valid position, but there is no reasonable way to assign a probability

to this valid position because alone, it does not represent a partial execution

159

14.2. Games, Valid Positions and Strategies

of the process. Furthermore, the fact that some valid positions represent

partial executions and the combination of probabilistic and nonprobabilistic

choice means that the sum of the probabilities of all the valid positions will

usually be more than one. Thus, we will only define the probability measure

on a special, restricted set of valid positions.

First, we define the notion of a final valid position: a valid position with

no possible continuations.

Definition 14.2.8. Let V be the set of all valid positions for a process.

Define the set of final valid positions as Vf = {s | s ∈ V and Ch(s) = ∅}.
s is a final valid position if s ∈ Vf .

Next we will consider the set of final valid positions in a strategy S.

Definition 14.2.9. Let V be the set of valid positions for a process P and

let S be a strategy for P . Define

final(S) = {s ∈ Vf | s ∈ S}.

Since a strategy resolves all nonprobabilistic nondeterminism, and tak-

ing only the final valid positions removes all partial executions, this defini-

tion gives us a set on which a probability measure can be defined.

Definition 14.2.10. If S is a strategy for process P , define µP : final(S)

−→ [0, 1] as follows: for s ∈ final(S), if P −−→
s p

P ′, then µP (s) = p.

We will prove that µP is indeed a probability measure, but first we need

an auxiliary definition.

Definition 14.2.11. For S a strategy, define

S/s = {s′ | s.s′ ∈ S}.

Theorem 14.2.12. If S is a strategy for P , then µP : final(S) −→ [0, 1] is

a probability measure.

160

14.2. Games, Valid Positions and Strategies

Proof. Since µP is defined on singletons and then extended in the evident

way to arbitrary sets and the overall space is finite it is clear that µP is

additive. Thus, all we have to show is that

µP (final(S)) =
∑

s∈final(S)

µP (s) = 1

This will be proved by induction on the length of the maximal element in

final(S).

Base Case : P is blocked. Then ε is the only valid position for P , so

ε ∈ Vf and S = {ε} by definition of strategy, so final(S) = {ε}. And

for any process P , P −→
ε 1

P , so µP (ε) = 1.

Case : S starts by choosing a move m that does not label a probabilistic

choice, resulting in P going to P ′. Then it is easy to see that S/m is

a strategy for P ′, so by the induction hypothesis, µP ′(final(S/m)) =

1. Note, that every element of final(S) is of the form m.s where

s ∈ final(S/m), since from the definition of strategy, S can only

contain one child of m. Furthermore, since P −−→
m 1

P ′, we see from

the definition of µP that if m.s ∈ final(S) then µP (m.s) = µP ′(s).

Therefore, µP (final(S)) = µP ′(final(S/m)) = 1.

Case : S starts by choosing a label l of a probabilistic move of the form

l :
n∑
i=1

li : piPi. For i = 1 to n, let

Si =

 S/(l.li) if Pi is not blocked

{ε} otherwise

Then since S must by definition of strategy contain all children of l,

it is easy to see that for each i, Si must be a strategy for Pi. Now,

for a string s and a set S ′, let s� S ′ = {s.s′|s′ ∈ S ′}. Then it can be

shown that

final(S) =
n⋃
i=1

l.li � final(Si).

161

14.2. Games, Valid Positions and Strategies

Furthermore,

µP (l.li � final(Si)) =
∑

s′∈final(Si)

µP (l.li.s
′),

but since P −−−→
l.li pi

Pi, by definition 14.2.1, we have that µP (l.li.s
′) =

pi · µPi
(s′). So altogether,

∑
s∈final(S) µP (s) =

∑n
i=1 µP (l.li � final(Si))

=
∑n

i=1 pi · µPi
(final(Si))

=
∑n

i=1 pi by induction hypothesis

= 1 by definition

Finally, we would like to point out that epistemic restrictions on strate-

gies are defined in the probabilistic case just exactly as they are in the

nondeterministic, two-player case. For example, a player strategy that re-

spects the introspective equivalence relation would correspond to a player

or scheduler that does not see the outcomes of probabilistic choices, but has

all the information about the moves he has made and the moves that have

been available to it.

162

Fifteen

A Modal Logic for Strategies

In this section we present a modal logic intended to reason about games on

processes, particularly knowledge, information flow, and the effects of ac-

tions on knowledge. This is not intended to be the final word on the subject;

this is a version developed for this particular game-semantics application.

One of the advantages of this logic is that it allows us to characterize certain

useful equivalences on positions using classes of formulas. This characteri-

zation is intended to be in the spirit of the Hennessy-Milner-van Benthem

theorem which gives a modal characterization of bisimulation. Of course,

our characterization result is much less general than this theorem, because

the equivalences we are characterizing are less general than bisimulation,

and because our relations are characterized only by specific classes of formu-

las, rather than by all formulas in the logic, as in the Hennessy-Milner-van

Benthem theorem.

We consider two-player processes with a switch operator rather than

probabilistic processes because we wish to avoid probabilistic logic, the

subtleties of which are largely orthogonal to our present considerations. We

take the tree of valid positions for a process as our set of states. Our logic

will allow us to discuss several aspects of any given valid position. These

aspects are intended to be natural possibilities for a player’s perceptions of

what is occurring in the execution of the game.

• Which player made the last move and what the last move was,

163

15.1. Syntax and Semantics

• What moves are available and what player they belong to,

• What formulas are satisfied by specific continuations of the current

valid position,

• What formulas are satisfied by specific prefixes of the current valid

position,

• The knowledge of each player in the current state, according to an

equivalence relation on the set of states, independent from the logic,

and

• What formulas were satisfied by the state immediately after either

player’s last move.

15.1 Syntax and Semantics

As mentioned above, we take the tree of valid positions for a certain process

as our model, and a specific valid position as our state. For V the tree of

valid positions for a process, a valid position s ∈ V and a formula φ, we say

that (V, s) |= φ if φ is true at s in the game tree V . When it is unambiguous

from the context what the model is, we omit the V and write s |= φ.

Let L represent a general label (a single label or a synchronizing pair of

labels), m a move (a general label together with a player), let X and Y be

the two players, and let Z represent either X or Y .

φ ::= CZ(L) | AZ(L) | ©m φ | ©- φ | KZφ | @Zφ | φ ∧ φ | ¬φ | >.

We give the semantics for the operators first and explain them after-

wards.

1. (V, s.LZ) |= CZ(L).

2. (V, s) |=©- φ if for some position s′, s ∈ ChV (s′)t and (V, s′) |= φ.

3. (V, s) |= @Zφ if s = s′.LZ and (V, s) |= φ or s = s′.LZ .L
1
Z̄
.L2

Z̄
...Ln

Z̄
and

(V, s′.LZ) |= φ.

164

15.1. Syntax and Semantics

4. (V, s) |= KZφ if for all s′ ∼Z s, (V, s′) |= φ.

5. (V, s) |= φ1 ∧ φ2 if (V, s) |= φ1 and (V, s) |= φ2.

6. (V, s) |= ¬φ if it is not the case that (V, s) |= φ.

7. (V, s) |= > for all s and all V .

8. (V, s) |= AZ(L) if s.LZ ∈ ChV (s).

9. (V, s) |=©mφ if (V, s.m) ∈ ChV (s) and (V, s.m) |= φ.

Some of these operators require discussion. The first three deal with

the history of the current position, and the last two deal with possible

continuations of the current position. CZ(L) just says that the last move

chosen was L, and it was chosen by player Z. Similarly, ©- φ removes the

last move from the current position and checks whether φ held at that point.

@Zφ is more complicated. According to the formal definition, it holds

when φ holds at the most recent position where it was Z’s turn before the

current position. This operator appears contrived at first glance, but in

the setting of agents who may have limited knowledge, it has significance

beyond just being used to characterize introspection. After an agent moves,

it may not know what the other agent has done, and indeed whether the

other agent has done anything at all, until it is again the original agent’s

turn. Thus, it may know what the conditions were in the game at the

last time that it was its turn, without knowing what they are now, and this

kind of information is exactly what the @Z operator captures. The fact that

this operator is reasonable and natural in the setting of agents interacting

with limited knowledge of the overall execution of the process, will be made

clearer when we show that it turns out to be useful in discussing other

reasonable limitations of agents’ knowledge in different settings.

The knowledge operator is standard from epistemic logic. Its semantics

requires the definition of the equivalence relation ∼Z , which is given as part

of the model. The idea behind this operator is that an agent considers

several states possible when it is in a certain state. This is the agent’s

165

15.2. Basic Properties Captured in Modal Logic

uncertainty about what state the system is in. The agent only knows a fact

if it is true in all the states that it considers possible from the current state.

AZ(L) means that from the current position, it is agent Z’s turn and

it has the option to choose move L. ©mφ is similar to the familiar 〈a〉φ
operator in Hennessy-Milner Logic, or the Xφ operator in Linear Temporal

Logic. It means that move m is available and if it occurs next, then φ will

be true. Since we require our processes to be deterministically labelled, if

φ may hold after m and m is available, then φ will certainly hold after m.

The move can only lead to one state, because of deterministic labelling.

Finally, note that in the syntax and semantics we only discuss the tradi-

tional logical connectives ∧ and ¬, so that the notation is concise. However,

from now on we will use φ1∨φ2 as shorthand for ¬(¬φ1∧¬φ2), φ1 ⇒ φ2 for

¬φ1 ∨ φ2, and φ1 ⇔ φ2 for (φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1). On the other hand, we

do not actually need the operator AZ(L) since it is equivalent to©LZ
> but

we leave it in our syntax and semantics anyway, to make the explanations

simpler.

15.2 Basic Properties Captured in Modal

Logic

This section discusses formulas that capture some basic properties. Many

of them hold in most modal logics while some others are specific to our

case. These kinds of formulas often arise in the course of giving a complete

axiomatization for a modal logic.

1. ©mφ⇒ ¬©m ¬φ.

This formula is true because we require our processes to be deter-

ministically labelled. Thus, there is at most one state that any valid

position can transfer to for any given move m, and any formula that

can possibly hold after m therefore must hold after m.

2. φ⇒ ¬©m ¬©- φ.

166

15.3. Logical Characterization of Indistinguishability Relations

This formula is true because our states have a tree structure: there is

at most one immediate previous state for any valid position.

3. CZ(L)⇒©- AZ(L).

This formula says that if a move was chosen in the previous state, it

must have been available there.

4. AZ(L)⇒©LZ
CZ(L).

This formula says that if a move is enabled, then there is a next state

where that move was chosen. The last two formulas seem obvious,

but formal expressions of the relationships between the operators are

often useful, and are necessary to give a complete axiomatization for

the logic.

Since we define knowledge using an equivalence class on states in the

normal Kripke way, we automatically know that the knowledge axioms as

discussed, for example, in [Kri63], are true:

1. KZφ⇒ φ.

This can be interpreted as saying that knowledge is true.

2. KZφ⇒ KZKZφ.

This means that the agents are aware that they know what they know.

3. (KZ(φ⇒ ψ) ∧KZφ)⇒ KZψ.

Agents can reason and form new knowledge from what they know.

4. ¬KZφ⇒ KZ¬KZφ.

If an agent does not know something, it is aware of this fact.

15.3 Logical Characterization of

Indistinguishability Relations

In the section about epistemic restrictions on strategies, we discussed several

possible indistinguishability (uncertainty) relations on valid positions. We

167

15.3. Logical Characterization of Indistinguishability Relations

will show that this logic can be used to characterize all of the equivalences

we discussed. That is, for each equivalence relation E we discussed, we will

show that there is a class of formulas ΦE such that for valid positions s and

t, sEt if and only if for all φ ∈ ΦE, s |= φ⇔ t |= φ. This kind of result could

because, for example, it means that given a logically definable equivalence

relation or a definition of an agent’s perception, it means that anytime an

agent can distinguish two states, we can come up with a specific formula

that the agent knows to be true at one state and false at the other state.

Furthermore, in many situations it may be more convenient or intuitive to

describe an agent’s equivalence relation by giving a class of formulas that

equivalent states agree on. This class of formulas can be thought of as the

class of formulas that the agent is aware of: at any state, the agent knows

whether any formula in this class is true or false. The following examples

will make this discussion clearer.

Example 15.3.1. Recall from Definition 12.4.4 that s1HZs2 iff Z(s1) =

Z(s2), that is, each player only remembers his own moves. Let Φ be the class

of all formulas of the form (@Z©-)n@ZCZ(L), for n ≥ 0. Then s1HZs2 if

and only if for any φ ∈ Φ, s1 |= φ⇔ s2 |= φ. This is because s |= @ZCZ(L)

if and only if L is the last Z move in s, and s |= @Z©- @ZCZ(L′) if and only

if L′ is the second to last Z move in s, and so on. So if two valid positions

agree on all such formulas, they must have the same Z moves in the same

order.

The above example also serves as justification for the @ operator. Even

though this operator may seem strange, it is natural from the point of view

of a player, who may only be aware of what happens when it is his turn to

move, but cannot distinguish between the other player not moving at all

and it being the first agent’s turn again immediately, or the other player

making one move before it is the first player’s turn again, or the other player

making many moves before it is again the first player’s turn.

Example 15.3.2. Recall from Example 12.4.7 that s1AvZs2 iff AvZ(s1) =

AvZ(s2). Clearly, the set of formulas that characterizes this equivalence

relation is the set of all formulas of the form AZ(L).

168

15.3. Logical Characterization of Indistinguishability Relations

We will also give a few new examples of equivalences that were not

discussed earlier as well.

Example 15.3.3. Consider the equivalence relation n where (s1, s2) ∈ n iff

the last n moves in s1 are the same as the last n moves in s2. This relation

is the same for either player. It describes agents who see all the moves that

occur but only have finite memory. The class of formulas characterizing this

equivalence relation is the class {©- k(CZ(L)) | k < n, Z ∈ {X, Y }, and L is any move}.

Example 15.3.4. Similarly, we could say that two positions are indistin-

guishable for player Z if Z made the same last n moves in both positions.

We call this equivalence nZ, and the class of formulas characterizing it is

{(@Z©-)k@ZCZ(L) | k < n}.

Finally, we can characterize the introspective indistinguishability rela-

tion we discussed above. Recall from Definition 12.4.8 that s1IZs2 if all of

the following conditions hold:

1. Z(s1) = Z(s2)

2. enabledZ(s1) = enabledZ(s2)

3. For all s′1 ≤ s1, s2 ≤ s′2, if Z(s′1) = Z(s′2) then enabledZ(s′1) =

enabledZ(s′2) or enabledZ(s′1) = ∅ or enabledZ(s′2) = ∅.

Proposition 15.3.5. sIZt if and only if s and t agree on all formulas of

the form

(@Z©-)n@ZCZ(L)

for n ≥ 0, and for any L, and also agree on all formulas of the form

(@Z©-)nAZ(L)

for n ≥ 0 and for any L.

Proof. First, as discussed above, s and t agreeing on all formulas of the

form (@Z©-)n@ZCZ(L) is equivalent to Z(s) = Z(t). Similarly, s and t

agreeing on all formulas of the form AZ(L) (i.e. (@Z©-)0AZ(L)) means

169

15.3. Logical Characterization of Indistinguishability Relations

that enabledZ(s) = enabledZ(t). Finally s and t agreeing on all formulas of

the form (@Z©-)nAZ(L) is equivalent to the third condition in the defini-

tion of the introspective relation. This is because we have already ensured

that Z(s) = Z(t) so (@Z©-)n means counting backwards n Z moves and n

contiguous series of Z̄ moves, and then checking that enabledZ is the same

in the two strings. This shows that two valid positions agree on all formulas

of the specified forms if and only if they are Z-indistinguishable.

Example 15.3.6. To make this idea clearer, we show how the logic works

with one of the processes discussed earlier. For

P = (νb)
(
l1 :{k1 :τ . l2 :a . l3 :b+ k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d+ l6 :e)

)
ε

l1X

k2Y

l2X

(l3, l4)X

l6Xl5X

k1Y

l2X

(l3, l4)X

l6Xl5X

(l1X .k1Y .l2X , l1X .k1Y .l2X) ∈ IX and therefore, these two positions agree

on all formulas of the form (@X©-)n@XCX(L) and (@X©-)nAX(L). For

example we will unfold one such formula with the semantics,

l1X .k1Y .l2X |= @X©- AX(l2) because

l1X .k1Y .l2X |= ©- AX(l2) because

l1X .k1Y |= AX(l2) because l1X .k1Y .l2X ∈ Ch(l1X .k1Y)

Similarly, l1X .k2Y .l2X |= @X©- AX(l2). Furthermore, these two positions

agree on all other formulas in the characterizing class.

170

15.3. Logical Characterization of Indistinguishability Relations

As another example, in the same process,

(l1X .k1Y .l2X .(l3, l4)X , l1X .k2Y .l2X .(l3, l4)X) ∈ IX

Both of these positions model the following formulas in the characterizing

class:

AX(l5) AX(l6)

@XCX((l3, l4)) @X©- AX((l3, l4))

@X©- @XCX(l2) @X©- @X©- AX(l2)

@X©- @X©- @XCX(l1) @X©- @X©- @X©- AX(l1)

and neither of them models any other formula in the characterizing class.

Example 15.3.7. Consider the process

P = 0{ 1τ .(3c .(6f + 7g) + 4d) + 2τ .(3c .(6f + 7g) + 5e)}.

ε

l0X

l1Y

l3X

l6X l7X

l4X

l2Y

l3X

l6X l7X

l5X

The positions l0X .l1Y .l3X and l0X .l2Y .l3X are not introspectively equiva-

lent for X. l0X .l1Y .l3X |= @X©- AX(l4) but l0X .l2Y .l3X 6|= @X©- AX(l4). Fur-

thermore, l0X .l1Y .l3X 6|= @X©- AX(l5) whereas l0X .l2Y .l3X 6|= @X©- AX(l4).

171

15.4. Properties Following from Logical Characterizations of Equivalence
Relations

15.4 Properties Following from Logical

Characterizations of Equivalence

Relations

When we are in a setting where we have a logical characterization of the

desired indistinguishability relation for agents, we can conclude that certain

logical formulas about their knowledge hold universally in the system. This

result has interesting implications for our logic. Let ∼Z be the indistin-

guishability relation for Z.

Theorem 15.4.1. If Φ characterizes ∼Z, that is, if s1 ∼Z s2 if and only if

s1 and s2 agree on all formulas in φ, then for any φ ∈ Φ, φ −→ KZφ, and

¬φ −→ KZ¬φ. Furthermore, for any formula φ ∈ Φ, every state satisfies

KZφ ∨KZ¬φ.

Proof. Assume V is the set of valid positions and Φ characterizes ∼Z . For

any position s, if s |= φ, then for all t ∼Z s, t |= φ. So, by the semantics

of KZ , this means that s |= KZφ. Similarly, if s |= ¬φ, then for all t ∼Z s,
t |= ¬φ, so s |= KZ(¬φ). Thus, at all states, for any formula φ ∈ Φ, φ

−→ KZφ and ¬φ −→ KZ(¬φ). Finally, since φ ∨ ¬φ holds at any state, we

can conclude that KZφ ∨KZ¬φ holds at any state.

172

Conclusions and Related Work

Now we present the conclusions and related work for this part of the thesis,

and in the next chapter we present the conclusions for the whole thesis.

In this part of the thesis we have given a semantic treatment of a process

algebra with two kinds of choice in terms of games and strategies. This gives

a semantic understanding of the “knowledge” possessed by schedulers when

they resolve choices. This epistemic aspect is captured by restrictions on

what the schedulers can see when they execute their strategies. We have

also introduced a modal logic with dynamic and epistemic modalities to

capture more precisely what agents know.

This work is a first step toward a systematic game semantic exploration

of concurrency. We plan to continue this line of research in several direc-

tions. First of all, we would like to develop a process algebra which is more

naturally adapted to games and perhaps also to multi-agent games. This

will lead to richer notions of interactions between agents than synchroniza-

tion and value or name passing.

In an interesting paper published in 2003 [MW03], Mohalik and Walukiewicz

explored distributed games from the viewpoint of distributed controller syn-

thesis. In that work the goal is to synthesize a finite-state controller that

will model a finite set of independent concurrent agents interacting with an

adversarial environment. The question addressed there, the synthesis prob-

lem, has a long history in both concurrency theory and control theory. In

the work just cited, there is also a restriction of agents’ strategies to what

they can see locally. Though not expressed as epistemic restrictions that is

clearly what is intended and the paper even cites the distributed systems

model of Halpern and Moses [HM84] as an explicit acknowledgment of the

173

Conclusions and Related Work

epistemic aspects of their work. It is a very suggestive connection and we

look forward to exploring this in future work.

Second, we would like to enrich further the epistemic aspects of the sub-

ject. In particular, we would like to move toward an explicit combination

of modal process logic and epistemic logic so that we can describe in a com-

positional process-algebraic way how agents learn and exchange knowledge.

The idea is to move towards a more general logic that would capture how

agents learn as transitions occur in a labelled transition system equipped

with additional equivalence relations. This goal is closely related to the

second part of this thesis, and we would like to make stronger connections

between the logic developed there and a specific process calculus which

is more naturally adapted to include local information specific to certain

agents, as well as game-like interaction.

Third, we would like to explore more subtle notions of transfer of control

between the agents. Thus, for example, there could be a protracted dia-

logue between the agents before they decide on a process move. This could

conceivably be fruitful for incorporating higher-order or mobile processes.

Of course, the theory of higher-order processes is much more complicated

and game semantics for it will involve the complexities that are needed

for models of the λ-calculus [HO00]. However, it might be illuminating to

understand restrictions on strategies, such as innocence, explicitly in epis-

temic terms. Of course, many of the restrictions will not be epistemic, for

example, well-bracketing.

Finally, we would like to combine the epistemic and probabilistic notions

using ideas from information theory [Sha48]. These information theoretic

ideas have been used for an analysis of anonymity [CPP08], indeed it was

that investigation that sparked the research reported in [CP10b] and which

ultimately led to the present work. As far as we know, the only paper

looking at epistemic logic and information theory is by [KNP90] where the

amount of information shared when agents possess common knowledge is

quantified. Of course, these ideas are speculative at this point.

174

Sixteen

Conclusion

In this thesis, we presented three new ways of analyzing epistemic infor-

mation in concurrent settings. In Part I of the thesis, we focused on de-

veloping modalities as programming constructs in Concurrent Constraint

Programming. We added epistemic and spatial modalities as new combina-

tors, making it possible to view multi-agent modal logic as a programming

language. In Part II, we developed a dynamic epistemic logic of multi-

agent labelled transition systems with fact changing actions. This allowed

us to analyze the effects of actions on agents’ knowledge. In Part III, we

introduced a process calculus with independent agents taking actions, and

a game semantics to replace the traditional scheduler. The advantage of a

game semantics for a process calculus is that it provides an elegant way to

model the effect of agents’ limited knowledge on the actions they can take.

A great deal of future work remains to be done on these issues. Cur-

rently, our ideas for future work are mainly focused on SCCP. We are partic-

ularly interested in extensions of SCCP that would make it more applicable

to solving real-world problems in distributed systems. SCCP is particularly

adapted to resolving issues of unreliable agents or agent failure, hierarchies

of agents communicating with one another, large systems of agents act-

ing in parallel, and problems of information flow, information change, and

security threats. Extending this work to include a temporal modality and

more general mobility would make it even more effective for modelling these

175

systems.

Quantitative reasoning Currently, SCCP does not include any notion of

quantitative information or weighted belief. An extension with this

feature is obviously crucial for modelling real-world systems with epis-

temic information. We plan to generalize the SCCP notion of knowl-

edge to a form of probabilistic measure on epistemic statements to ex-

press notions of confidence, uncertainty, or weighted belief, enabling

the formalism to express more meaningful and faithful epistemic infor-

mation, as well as more subtle changes in an agent’s epistemic state.

Scalability SCCP assumes a fixed number of agents. This is a typical

restriction in epistemic formalisms [FHMV95] but it limits our model

considerably, since we aim to model systems with an unbounded, con-

tinually growing number of users. We plan to introduce an operator

for dynamically creating new agents.

Spatial mobility The SCCP model only allows a very restricted notion of

mobility: the ability of agents and programs to change from one space

to another. This is a common feature in the distributed systems un-

der consideration. In mobile systems, users and programs can change

their communication structure, move around, and exchange informa-

tion. Using ideas from dynamic epistemic logic [KMP12], temporal

logic [Pnu77], and process calculi such as Ambients [CG00], we expect

to be able to express spatial changes over the temporal evolution of

distributed systems.

Temporal extension Timed CCP (TCCP) [SJG94] is a well-established

extension of CCP which follows the paradigms of synchronous lan-

guages such as ESTEREL [BMT92]. Thus, TCCP is useful for mod-

elling real-time reactive systems that maintain a permanent inter-

action with their environment. TCCP is used to model real-time

controllers, communication, and other reactive phenomena. On the

other hand, temporal logic is a well-established and practical subfield

of modal logic, e.g. [Pnu77], showing that time can effectively be

176

treated as a modality. This suggests that we should be able to add a

temporal modality to SCCP in a similar way to adding the spatial and

epistemic modalities. By adding a temporal modality to SCCP in the

spirit of TCCP, we can make it more suitable for formal modelling of

wireless sensor networks, since these networks have temporal aspects

such as constant communication and waiting for one event to trigger

or suppress another event.

Coalgebraic approach The coalgebraic setting for modal logic provides a

general framework allowing one to reason about a variety of different

modal logics in a uniform way [Mos99]. Using coalgebraic methods

may allow us to extend our existing results in several ways. This

research goal should tie together several of our other research goals,

since we hope that it will make it possible to use unified reasoning

techniques to deal with quantitative reasoning and spatial mobility as

natural extensions of the modalities we already have in our calculus.

177

Bibliography

[AG99] Mart́ın Abadi and Andrew D. Gordon. A calculus for crypto-

graphic protocols: The spi calculus. Inf. Comput., 148(1):1–

70, 1999.

[AJ94a] S. Abramsky and R. Jagadeesan. Games and full completeness

for multiplicative linear logic. J. Symbolic Logic, 59(2):543–

574, 1994.

[AJ94b] S. Abramsky and A. Jung. Domain theory. In

T. S. E. Maibaum S. Abramsky, D. M. Gabbay, editor, Hand-

book of Logic in Computer Science, vol. III. Oxford University

Press, 1994.

[AJM00] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstrac-

tion for PCF. Information and Computation, 163:409–470,

2000.

[BdRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema.

Modal Logic. Number 53 in Cambridge Tracts in Theoreti-

cal Computer Science. Cambridge University Press, 2001.

[BJPV09] Jesper Bengtson, Magnus Johansson, Joachim Parrow, and

Björn Victor. Psi-calculi: Mobile processes, nominal data,

and logic. In LICS, 2009.

[BM07] Maria Grazia Buscemi and Ugo Montanari. Cc-pi: A

constraint-based language for specifying service level agree-

ments. In ESOP, pages 18–32, 2007.

178

Bibliography

[BMT92] Dave Berry, Robin Milner, and David N. Turner. A semantics

for ml concurrency primitives. In Proceedings Of The 19th An-

nual ACM Symposium On Principles Of Programming Lan-

guages, pages 119–129, 1992.

[BP05] Mohit Bhargava and Catuscia Palamidessi. Probabilistic

anonymity. In Proc. of CONCUR, volume 3653 of LNCS,

pages 171–185. Springer, 2005.

[CC03] Lúıs Caires and Luca Cardelli. A spatial logic for concurrency

(part i). Information and Computation, 186(2):194–235, 2003.

[CC04] Lúıs Caires and Luca Cardelli. A spatial logic for concurrency

- ii. Theor. Comput. Sci., 322(3):517–565, 2004.

[CDK09] Rohit Chadha, Stéphanie Delaune, and Steve Kremer. Epis-

temic logic for the applied pi calculus. In David Lee, Antónia

Lopes, and Arnd Poetzsch-Heffter, editors, Proceedings of

IFIP International Conference on Formal Techniques for Dis-

tributed Systems (FMOODS/FORTE’09), Lecture Notes in

Computer Science, pages 182–197. Springer, June 2009.

[CG00] Luca Cardelli and Andrew D. Gordon. Mobile ambients.

Theor. Comput. Sci., 240(1):177–213, 2000.

[CKPP12] Konstantinos Chatzikokolakis, Sophia Knight, Catuscia

Palamidessi, and Prakash Panangaden. Epistemic strategies

and games on concurrent processes. ACM Trans. Comput.

Log., 13(4):28, 2012.

[CP07] Konstantinos Chatzikokolakis and Catuscia Palamidessi.

Making random choices invisible to the scheduler. In In-

ternational Conference on Concurrency Theory, CONCUR,

Lecture Notes In Computer Science 4703, pages 42–58, 2007.

179

Bibliography

[CP10a] Konstantinos Chatzikokolakis and Catuscia Palamidessi.

Making random choices invisible to the scheduler. Informa-

tion and Computation, 208(6):694–715, 2010.

[CP10b] Konstantinos Chatzikokolakis and Catuscia Palamidessi.

Making random choices invisible to the scheduler. Informa-

tion and Computation, 208(6):694–715, 2010.

[CPP08] Konstantinos Chatzikokolakis, Catuscia Palamidessi, and

Prakash Panangaden. Anonymity protocols as noisy chan-

nels. Inf. and Comp., 206(2–4):378–401, 2008.

[Den74] JackB. Dennis. First version of a data flow procedure lan-

guage. In B. Robinet, editor, Programming Symposium, vol-

ume 19 of Lecture Notes in Computer Science, pages 362–376.

Springer-Verlag, 1974.

[DH01] Vincent Danos and Russell Harmer. The anatomy of inno-

cence. Lecture Notes in Computer Science, 2142:188–202,

2001.

[DMO07] F. Deschesne, M.R. Mousavi, and S. Orzan. Operational and

epistemic approaches to protocol analysis: Bridging the gap.

In 14th International Conference on Logic for Programming

Artificial Intelligence and Reasoning: LPAR’07, Springer-

Verlag Lecture Notes in Computer Science, pages 226–241,

2007.

[FGMP97] Moreno Falaschi, Maurizio Gabbrielli, Kim Marriott, and

Catuscia Palamidessi. Confluence in concurrent constraint

programming. Theor. Comput. Sci., 183(2):281–315, 1997.

[FHMV95] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reason-

ing About Knowledge. MIT Press, 1995.

180

Bibliography

[FL79] Michael Fischer and Richard Ladner. Propositional dynamic

logic of regular programs. Journal of Computer and System

Sciences, 1979.

[FRS01] François Fages, Paul Ruet, and Sylvain Soliman. Linear con-

current constraint programming: Operational and phase se-

mantics. Inf. Comput., 165(1):14–41, 2001.

[GKK+03] G.Gierz, K.H.Hoffman, K.Keimel, J.D.Lawson, M.Mislove,

and D.S.Scott. Continuous lattices and domains. Number 93

in Encyclopedia of Mathematics and its Applications. Cam-

bridge University Press, 2003.

[Gol03] Robert Goldblatt. Mathematical modal logic: A view of its

evolution. J. Applied Logic, 1(5-6):309–392, 2003.

[Hin62] J. Hintikka. Knowledge and Belief. Cornell University Press,

1962.

[HM80] Matthew Hennessy and Robin Milner. On observing non-

determinism and concurrency. In J. W. de Bakker and Jan

van Leeuwen, editors, ICALP, volume 85 of Lecture Notes in

Computer Science, pages 299–309. Springer, 1980.

[HM84] J. Y. Halpern and Y. Moses. Knowledge and common knowl-

edge in a distributed environment. In Proceedings of the Third

A.C.M. Symposium on Principles of Distributed Computing,

pages 50–61, 1984. A revised version appears as IBM Research

Report RJ 4421, Aug., 1987.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondetermin-

ism and concurrency. Journal of the ACM, 32(1):137–162,

1985.

[HM90] J. Halpern and Y. Moses. Knowledge and common knowledge

in a distributed environment. JACM, 37(3):549–587, 1990.

181

Bibliography

[HMT88] Joseph Y. Halpern, Yoram Moses, and Mark R. Tuttle. A

knowledge-based analysis of zero knowledge. In Proceedings

of the 20th ACM Symposium on Theory of Computing, pages

132–147, 1988.

[HO00] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for

pcf: I. models, observables and the full abstraction problem,

ii. dialogue games and innocent strategies, iii. a fully abstract

and universal game model. Information and Computation,

163:285–408, 2000.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes.

Prentice-Hall, 1985.

[HS04] Dominic Hughes and Vitaly Shmatikov. Information hid-

ing, anonymity and privacy: a modular approach. Journal

of Computer Security, 12(1):3–36, 2004.

[HT89] Joseph Y. Halpern and Mark R. Tuttle. Knowledge, prob-

ability and adversaries. In Proceedings Of The Eighth An-

nual ACM Symposium On Principles of Distributed Comput-

ing, pages 103–118. ACM, 1989.

[Joh02] Peter Johnstone. Sketches of an Elephant: A Topos Theory

Compendium I,II. Number 43,44 in Oxford Logic Guides.

Oxford University Press, 2002.

[KMP12] Sophia Knight, Radu Mardare, and Prakash Panangaden.

Combining epistemic logic and hennessy-milner logic. In

Robert L. Constable and Alexandra Silva, editors, Logic and

Program Semantics, volume 7230 of Lecture Notes in Com-

puter Science, pages 219–243. Springer, 2012.

[KNP90] Paul Krasucki, Gilbert Ndjatou, and Rohit Parikh. Proba-

bilistic knowledge and probabilistic common knowledge. In

ISMIS 90, pages 1–8. North Holland, 1990.

182

Bibliography

[KPPV12] Sophia Knight, Catuscia Palamidessi, Prakash Panangaden,

and Frank D. Valencia. Spatial and epistemic modalities in

constraint-based process calculi. In Maciej Koutny and Irek

Ulidowski, editors, CONCUR, volume 7454 of Lecture Notes

in Computer Science, pages 317–332. Springer, 2012.

[Kri63] S. Kripke. Semantical analysis of modal logic. Zeitschrift fur

Mathematische Logik und Grundlagen der Mathematik, 9:67–

96, 1963.

[Lyn96] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann

Publishers, 1996.

[Mil80] Robin Milner. A Calculus of Communicating Systems, vol-

ume 92 of Lecture Notes in Computer Science. Springer, 1980.

[Mos99] Larry S. Moss. Coalgebraic logic. Annals of Pure and Applied

Logic, 96:277–317, 1999.

[MPSS95] N. P. Mendler, P. Panangaden, P. J. Scott, and R. A. G. Seely.

A logical view of concurrent constraint programming. Nordic

Journal of Computing, 2:182–221, 1995.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile

processes i and ii. Information and Computation, 100:1–77,

1992.

[MT44] J. C. C. McKinsey and Alfred Tarski. The algebra of topology.

The Annals of Mathematics, second series, 1944.

[MW03] Swarup Mohalik and Igor Walukiewicz. Distributed games. In

Paritosh Pandya and Jaikumar Radhakrishnan, editors, FST

TCS 2003: Foundations of Software Technology and Theo-

retical Computer Science, volume 2914 of Lecture Notes in

Computer Science, pages 338–351. Springer Berlin, Heidel-

berg, 2003.

183

Bibliography

[NT87] G. Neiger and S. Toueg. Substituting for real time and com-

mon knowledge in asynchronous distributed systems. In Pro-

ceedings of the Sixth A.C.M. Symposium on Principles of Dis-

tributed Computing, pages 281–293, 1987.

[NT90] Gil Neiger and Mark R. Tuttle. Common knowledge and con-

sistent simultaneous coordination. In J. van Leeuwen and

N. Santoro, editors, Proceedings of the Fourth International

Workshop on Distributed Algorithms, volume 486 of Lecture

Notes In Computer Science, pages 334–352. Springer-Verlag,

1990.

[Pet63] Carl Adam Petri. Fundamentals of a theory of asynchronous

information flow. In Proc. of IFIP Congress 62, pages 386–

390, Amsterdam, 1963. North Holland Publ. Comp.

[Pnu77] A. Pnueli. The temporal logic of programs. In The Eighteenth

Annual IEEE Symposium on Foundations of Computer Sci-

ence, pages 46–57, 1977.

[Pop94] Sally Popkorn. First Steps in Modal Logic. Cambridge Uni-

versity Press, 1994.

[Pra76] V. Pratt. Semantical considerations on floyd-hoare logic. In

Proceedings of the Seventeenth Annual IEEE Symposium on

Computer Science, pages 109–121. IEEE Press, 1976.

[PS11] Eric Pacuit and Sunil Simon. Reasoning with protocols un-

der imperfect information. The Review of Symbolic Logic,

4(3):412–444, September 2011.

[PSSS93] P. Panangaden, V. Saraswat, P.J. Scott, and R.A.G. Seely. A

hyperdoctrinal view of concurrent constraint programming.

In J.W. de Bakker et al, editor, Semantics: Foundations and

Applications; Proceedings of REX Workshop, number 666 in

Lecture Notes In Computer Science, pages 457–476, 1993.

184

Bibliography

[PT88] P. Panangaden and K. E. Taylor. Concurrent common knowl-

edge. In Proceedings of the Seventh Annual ACM Symposium

on Principles f Distributed Computing, pages 197–209, 1988.

[PT92] P. Panangaden and K. E. Taylor. Concurrent common knowl-

edge. Distributed Computing, 6:73–93, 1992.

[Rét98] Jean-Hugues Réty. Distributed concurrent constraint pro-

gramming. Fundam. Inform., 1998.

[Sar89] Vijay A. Saraswat. Concurrent Constraint Programming Lan-

guages. PhD thesis, Carnegie-Mellon University, January

1989.

[Sar93] Vijay A. Saraswat. Concurrent constraint programming. ACM

Doctoral dissertation awards. MIT Press, 1993.

[Sco82] D. S. Scott. Domains for denotational semantics. In Ninth

International Colloquium On Automata Languages And Pro-

gramming. Springer-Verlag, 1982. Lecture Notes In Computer

Science 140.

[Sha48] Claude Shannon. A mathematical theory of communication.

Bell System Technical Journal, 27:379–423,623–656, July and

October 1948.

[SJG94] V. A. Saraswat, R. Jagadeesan, and V. Gupta. Foundations

of timed concurrent constraint programming. In Proceedings

of the Ninth Annual IEEE Symposium On Logic In Computer

Science, Paris, 1994, pages 71–80. IEEE Press, 1994.

[SJPR91] V. A. Saraswat, R. Jagadeesan, P. Panangaden, and M. Ri-

nard. Semantic foundations of concurrent constraint program-

ming. In L. Augstsson et. al., editor, Proceedings of the Baas-

tad 91 workshop on Concurrency, number 63 in Programming

Methodology Group Chalmers University of Technology and

Goteborg University, pages 385–427, 1991.

185

Bibliography

[SRP91] V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic

foundations of concurrent constraint programming. In Pro-

ceedings of the Eighteenth Annual ACM Symposium on Prin-

ciples of Programming Languages, 1991.

[SS96] Steve Schneider and Abraham Sidiropoulos. CSP and

anonymity. In Proc. of ESORICS, volume 1146 of LNCS,

pages 198–218. Springer, 1996.

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its

applications. Pacific journal of Mathematics, 5(2):285–309,

1955.

[Tur37] Alan M. Turing. Computability and lambda-definability. J.

Symb. Log., 2(4):153–163, 1937.

[vDvdHK08] Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi.

Dynamic Epistemic Logic. Number 337 in Synthese Library.

Springer-Verlag, 2008.

[vW51] G.H. von Wright. An essay in modal logic. Studies in logic and

the foundations of mathemathics. North-Holland Publishing

Company, 1951.

186

Index

⇓, 64⊔
, see Supremum

↓, 64

∼o, 63

∼b, 65

t, see Supremum

4 axiom, 21

Active process, 61

Algebraic, 30

Aumann constraint system, 45

Aumann structure, 44

B, 22

B axiom, 21

Barb, 64

satisfaction, 64

strong, 64

weak, 64

weak satisfaction, 64

Barb equivalence, 65

CCP process, 33

Chain, 65

Children, 130

Closure operator, 31

Cofinal, 65

Compact element, 29

Complete lattice, 30

Completeness

strong completeness, 18

weak completeness, 18

Configuration, 35, 56

Consistency, 19

Constraint system, 32

Continuity, 51

Dcpo, see Directed-complete par-

tial order

Deducible, 17, 18

Deterministically labelled, 126

probabilistic processes, 157

Directed set, 29

Directed-complete partial order, 29

Distinctness preservation, 41

ECCP

Operational semantics, 59

syntax, 52

Ecs, see Epistemic constraint sys-

tem

Enabled Process, 61

Epistemic constraint system, 42

187

Index

Equivalence relation, 22

Execution, 134

Fairness, 62

Fixed point, 31

Forest

labelled, 97

gG, 41

Game tree, 130

Generalization, 16

Generation, 16

Global information, 41

Global process, 55

Greatest lower bound, 31

Group space, 41

Hennessy-Milner logic, 15

Herbrand constraint system, 33

History, 90

History-LTS, 94

Introspection, 139

Join, 29

K axiom, 20

K4, 21

Kn, 20

Knaster-Tarski theorem, 31

Kripke constraint system, 47

Kripke semantics, 13

Kripke structure, 12

Labelled forest, 97

Labelled transition system, 12

with agents, 90

Least upper bound, 29

Local semantic consequence, 18

Modal language, 12

Model, 12

Modus ponens, 15

Monotone function, 30

Move, 128

Nonblocking scheduler, 146, 147

Normal modal logic, 16

O, 63

Observation, 63

Observational equivalence, 63

Operational semantics of CCP, 35

Partially ordered set, 28

Poset, see Partially ordered set

Proof, 16

Reflexivity, 21

Relational structure, 11

Result

of a computation, 62

of a process, 63

si, 37

S4, 21

S5, 22

Satisfiability, 19

SCCP

operational Semantics, 56

syntax, 52

Scs, see Spatial constraint system

188

Index

Soundness, 17

Space consistency, 39

Space-compactness, 51

Spatial constraint system, 37

Strategy, 131

probabilistic process, 159

Supremum, 29

Symmetry, 22

T, 21

T axiom, 21

Transitivity, 21

Unfolding, 93

Uniform substitution, 15

Upper bound, 28

Valid position, 129

probabilistic processes, 158

Validity, 16, 17

View, 56

189

	Abstract
	Résumé
	Acknowledgments
	Contents
	List of Figures
	Introduction
	Context
	Epistemic Logic
	Concurrency

	This Thesis: Epistemic Reasoning in Concurrent Systems
	Outline and Contributions
	Part I- Epistemic Logic as a Programming Language
	Part II- How Knowledge Evolves
	Part III- Epistemic Strategies for Concurrent Processes

	Publications

	Preliminaries on Modal Logic
	Relational Structures and the Semantics of Modal Logic
	Validity, Soundness and Completeness
	Specific Modal Logics
	Kn
	S4
	S5

	Epistemic Logic as a Programming Language: Epistemic Modalities in Process Calculi
	Introduction
	Preliminaries
	Domain theory
	Concurrent constraint programming
	Constraint systems
	Processes

	Space and Knowledge in Constraint Systems
	Spatial Constraint Systems.
	Inconsistency Confinement.

	Epistemic Constraint Systems.
	Examples.

	Space and Knowledge in Processes
	Syntax
	Basic Processes
	Spatial Processes
	Epistemic Processes
	Infinite Processes

	Reduction Semantics
	Operational Semantics for SCCP
	Operational Semantics for ECCP

	Observable Behaviour of Space and Knowledge
	Observing Limits.
	Observing Barbs
	Denotational Semantics.

	Future Work and Conclusions
	Compact Approximation of Space and Knowledge
	Related Work
	Future Work
	Conclusion

	How Knowledge Evolves: Epistemic Logic for Labelled Transition Systems
	Introduction
	Histories
	Labelled transition systems with agents
	History Systems

	The Logic and its Semantics
	Syntax and Models
	Semantics
	An example

	A Complete Axiomatization
	Axioms
	Soundness and Completeness

	Conclusions and Related Work

	Knowing What You Are Doing: Epistemic Strategies for Concurrent Processes
	Introduction
	Background
	Games and Strategies
	Valid Positions
	Strategies
	Execution of Processes According to Strategies
	Epistemic Restrictions on Strategies

	Correspondence between Strategies and Schedulers
	Background on Schedulers
	Correspondence Theorem

	Games for Processes with Probabilistic Choice
	Syntax and Semantics
	Games, Valid Positions and Strategies
	Valid Positions
	Strategies
	Execution of a probabilistic process with a strategy

	A Modal Logic for Strategies
	Syntax and Semantics
	Basic Properties Captured in Modal Logic
	Logical Characterization of Indistinguishability Relations
	Properties Following from Logical Characterizations of Equivalence Relations

	Conclusions and Related Work
	Conclusion
	Bibliography
	Index

