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Abstract

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia encountered
in clinical practice, and one of the main causes of ictus and strokes. Despite the advances
in the comprehension of its mechanisms, its thorough characterization and the quantifi-
cation of its effects on the human heart are still an open issue. In particular, the choice of
the most appropriate therapy is frequently a hard task. Radiofrequency catheter ablation
(CA) is becoming one of the most popular solutions for the treatment of the disease. Yet,
very little is known about its impact on heart substrate during AF, thus leading to an
inaccurate selection of positive responders to therapy and a low success rate; hence, the
need for advanced signal processing tools able to quantify AF impact on heart substrate
and assess the effectiveness of the CA therapy in an objective and quantitative manner.
This approach would help understand which patients could effectively benefit from abla-
tion, thus avoiding unnecessary and expensive procedures, and helping in the selection of
a patient-tailored therapy.

Valuable information about AF can be provided by multilead electrocardiogram (ECGQG)
recordings of heart electrical activity in a noninvasive and cost-effective manner. However,
most of standard ECG processing techniques are affected by several shortcomings. First,
some CA outcome predictors are manually determined on surface ECG, thus affected by
low repetitiveness. In addition, several parameters are merely computed in one ECG lead,
therefore neglecting potential information about AF and its spatial distribution coming
from the other leads.

This doctoral thesis aims at exploiting the multi-lead character of the standard ECG
to enhance CA outcome prediction accuracy and the ability of the extracted features
to characterize CA. Application of multivariate signal decomposition techniques, such
as principal component analysis (PCA), weighted PCA (WPCA) and nonnegative matrix
factorization (NMF), allow enhancing the most discriminant components of ECG content.
Features determined in this multivariate framework will act as classifiers for distinguishing
between successful and failing CA procedures prior to their performance.

Spatial variability of the standard ECG can be exploited to highlight some properties
of the ECG signal typically observed during AF. In particular, the role of fibrillatory wave
(f-wave) amplitude as a predictor of AF termination by CA is effectively enhanced in a
multilead framework based on the PCA of the observed data matrix. Higher amplitude
values prove to be correlated with CA success, and drawbacks of traditional methods,
such as manual computation and single-lead analysis, are overcome. Variations in this
parameter measured between the beginning and the end of the procedure are also able to
quantify CA effects on AF dynamics, related to ablation outcome.

Similarly, some multivariate signal decomposition techniques are employed to assess
the predictive power of AF spatio-temporal variability (STV) on the 12-lead ECG. Pre-
vious studies have demonstrated the correlation between single-lead STV measures and
AF organization. The present study exploits the multivariate character of standard ECG
enhanced by WPCA and underlines the ability of multilead STV descriptors to predict
long-term CA outcome in persistent AF: the more irregular and dispersive the AF pattern,
the less likely AF termination by CA. To the same extent, the NMF method proves to be
an effective tool for processing STV variability content of the ECG.

The aforementioned ECG properties can be also exploited for a combined analysis of
AF content by means of the logistic regression (LR) technique. This model condenses in a



unique index the most relevant contributions provided by surface recordings by selectively
enhancing the most content-bearing ECG leads, while reducing the influence of the other
electrodes. LR measures can effectively assess AF termination by CA at several follow-up
periods.

Further contributions to AF analysis are provided by information theory, which actu-
ally helps exploring surface ECG spatial variability by assessing the degree of similarity
between AF patterns observed on different leads. These regularity measures also prove
to quantify CA effectiveness, and a link between the degree of interlead correlation and
the procedural success is demonstrated.

Another line of investigation focuses on the analysis of the ventricular response, as
changes in atrioventricular (AV) node function and its refractoriness during AF are re-
flected on the irregularity of the RR interval (RRI) distribution. Heartbeat occurrences
are modeled as a point process, and effects of sino-atrial (SA) node response to sym-
pathetic and parasympathetic inputs from the autonomous nervous system are taken
into account in this probabilistic framework. Such a method allows for the extraction of
heart rate variability (HRV) indexes which effectively highlight asymmetry and dispersion
characteristics of the RRI distribution in presence of AF.

Résumé

La fibrillation auriculaire (FA) est la trouble cardiaque la plus courante, ainsi que
une des causes principales des accidents vasculaires cérébraux. Malgré le progres dans
la compréhension de cette pathologie, les mécanismes a la base de la FA ses effets sur
le coeur humain ne sont pas encore tres clairs. D’ou il vient le probleme du choix de la
stratégie de traitement la plus appropriée. La thérapie d’ablation par cathéter (CA) est
de plus en plus utilisée pour traiter la FA, mais ses effets sur le substrat cardiaque ne sont
pas suffisamment compris, d’ou un taux de réussite tres variable et le besoin d’outils du
traitement des signaux capables de quantifier cette action. Cette approche perméttrait
de traiter par CA seulement les sujets qui peuvent béneficier de cette thérapie.

L’électrocardiogramme (ECG) a 12 voies représente un outil non invasif peu cotiteux
pour caractériser la FA & partir de l'activité électrique du coeur. Cependant, les pré-
dicteurs classiques de l'issue de la CA présentent plusieurs inconvénients, notamment leur
calcul manuel sur une seule voie de 'ECG, qu’amene a négliger I'information sur la FA
présente sur les autres dérivations.

Cette these exploite explicitement le caractere multi-capteur de 'ECG au moyen de
techniques de décomposition multivariées, par exemple, I'analyse en composantes prin-
cipales (PCA), la PCA pondérée (WPCA), la factorisation en matrices non négatives
(NMF), démontrant qu’elles peuvent améliorer la puissance prédictive de certaines pro-
priétés de 'ECG dans le cadre de la CA.

La variabilité spatiale de 'ECG standard peut étre exploitée pour souligner certaines
proprietés du signal ECG qui sont typiquement observées en présence de la FA. En parti-
culier, 'amplitude des ondes fibrillatoires est corrélée avec le résultat de la CA, et traitée
par une méthode multi-capteur basée sur la PCA. Valeurs plus élévées de ce parametre
prédisent la réussite de I’ablation, et les inconvenients des méthodes classiques (en par-
ticulier, le calcule manuel sur une seule dérivation) sont eliminés. Les variations de ce
déscripteur mésurée entre le début et la fin de I'ablation sont également capables de
quantifier les effets de la CA sur la dynamique de la FA, en rélation avec le résultat de
I’ablation.



D’autres techniques comme la WPCA et la NMF peuvent aussi quantifier la variabilité
spatio-temporelle (STV) de la FA sur 'ECG. Des études précedents ont démontré une
corrélation entre des mésures de la STV sur une seule voie et la complexité de la FA. Cette
these souligne la valeur prédictive de cette mésure obténue dans un cadre multicapteur au
moyen de la WPCA. Formes d’onde plus varaibles et irrégulieres sont associées a 1’échec
de la CA. Résultats similaires sont obténus en utilisant la NMF. Ces propriétés de 'ECG
peuvent aussi étre combinées par la régression logistique (LR), qui mets en valeur les
contributions les plus significatives pour la caractérisation du résultat de I’ablation.

La théorie de I'information permet également d’estimer le niveau de corrélation entre
les voies de 'ECG, mis en relation avec le résultat de la CA grace a des approches multi-
capteurs.

Enfin, une derniere ligne de recherche concerne la réponse ventriculaire manifestée sur
la variabilité cardiaque. L’approche paramétrique de processus ponctuel est capable de
quantifier les effets de la réponse vagale sur le noeud sino-atriale, et souligner certaines
propriétés de cette variabilité, améliorant ainsi la caractérisation de la FA.
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INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

Atrial fibrillation (AF) is currently the most common sustained cardiac arrhythmia,
responsible for serious long-term issues, such as ictus and stroke. Unlike other cardiac
diseases, despite advances in its understanding, AF mechanisms are not clear yet, and still
need to be elucidated. Accordingly, several theories about its generation and maintenance
have been put forward. Such a variety of hypotheses have given rise to several therapeutic
approaches, mainly dependent on AF chronicity, as well as patient’s clinical background.
One of the most recurrent strategies in persistent AF treatment is represented by ra-
diofrequency catheter ablation (CA), aiming at cauterizing abnormal rhythm sources in
the atrial myocardium.

Despite its increasing employment and the higher efficacy with respect to traditional
cardioversion therapies, results obtained in clinical centers are still quite disparate and
hardly comparable, due to the multiplicity of modalities and methodologies applied for
ablation performance. Indeed, as AF causes are not known yet, it is equally hard to
establish an effective protocol, applicable under any circumstances. By contrast, in med-
ical centers CA performance is mainly guided by clinician’s considerations, related to
the pratictioner’s experience and subjectivity. One of the main AF management lines
consists in identifying potential positive responders to CA therapy, so as to exclusively
treat patients who will benefit from CA and avoid unnecessary and potentially harmful
procedures. Nevertheless, also in this case most of patient’s evaluation is frequently biased
by clinician’s subjectivity, with no assessment of AF condition by means of quantitative
and measurable parameters.

To this extent, some efforts have been made so as to search for any potential descrip-
tors of heart electrical activity during AF, which can shed some light on CA effectiveness,
thus revealing which patients can be treated by CA without risk of AF recurrence in
the follow-up. Standard electrocardiogram (ECG) is widely employed in medical centers
for recording heart electrical activity by means of some electrodes positioned on patient’s
body and monitoring his conditions. It is characterized by several advantages: it is nonin-
vasive, rapid, cost-effective, easy to acquire and provides potential diagnostic information
about a wide variety of cardiac diseases. This tool is suitable for AF analysis, whose
presence can be even visually detected on standard ECG, for instance, through the ab-
sence of P waves, replaced by irregular fibrillatory waves (f-waves), and the more irregular
RR interval (RRI) distribution. Accordingly, several attempts have been made in order
to define novel ECG-based features to be combined with patient’s clinical characteristics
and quantify CA effects on heart substrate in the presence of AF. Nevertheless, most
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of these parameters present several drawbacks. In particular, some of them are manu-
ally obtained on the standard ECG, thus affecting repeatability of the measure, which is
operator-dependent, and increasing error probability. In addition, such indices are usually
computed in only one ECG lead, thus discarding the remaining ones. However, such an
approach lacks robustness to lead selection, as spatial variability of surface ECG is not
taken into account. ECG content can considerably change with respect to the heart plane
and orientation considered, and so can the parameters measured at that specific location.
Most of the traditional techniques are not able to process ECG content from all ECG
leads at the same time, and they are therefore subject to the lead choice constraint.

1.2 OBJECTIVES

The present thesis takes a step from these preliminary considerations, and it is moti-
vated by the research for novel multilead measures extracted from the 12-lead ECG which
can predict AF termination by CA. Our investigation aims at yielding ECG-based pa-
rameters which take into account contributions from all ECG leads, and which are herein
compared with classical methods for AF analysis and CA outcome assessment. To this
end, standard ECG content is properly processed by multivariate techniques that are able
to enhance the most content-bearing components while reducing the influence of polluting
and/or redundant elements. This strategy presents the potential of examining the whole
multilead recording at once, with no need for an a priori selection of the ECG leads to be
analyzed, since the most significant contributions are automatically emphasized.

One of the main goals of this work is characterizing some classical indices determined
on the standard ECG in a multilead framework, and corroborating the correlation with
CA clinical outcome. These objectives motivate the multivariate description of f-wave
amplitude, widely regarded as a predictor of AF termination by CA. To the same extent,
information about spatio-temporal variability (STV) of AF coming from surface ECG,
which is usually exploited for rendering AF complexity, is herein applied to distinguish
between successful and failing CA procedures. Combination of these heterogeneous fea-
tures is also applied to prediction of AF recurrence after CA at several follow-ups. Another
line of research investigates the predictive accuracy of other features, based on information
theory (IT). These measures render the degree of AF regularity in terms of spatial corre-
lation between ECG leads. Finally, AF analysis and CA outcome prediction are envisaged
from another perspective, based on the analysis of the ventricular response. Changes in
RRI variability due to AF impact are characterized in a parametric probabilistic scenario,
modeling as well the dependence of RRI length on dynamic vagal inputs to the sinoatrial
(SA) node is modeled as well.

1.3 THESIS OVERVIEW AND SUMMARY OF CONTRIBUTIONS

The remaining of this thesis consists of 8 chapters (Chapters [2] - @ divided in 3 main
parts. In the first part, a general overview about the main themes envisaged in this
dissertation is provided. In particular, in Chapter [2| we focus on some basic clinical
concepts, which help understanding the anatomy and the electrophysiology of the heart,
with particular attention to the conduction system, responsible for heart electrical activity
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propagation. The informative content of the standard FC'G and its clinical application are
then illustrated, after indicating its main characteristics, both in healthy and pathologic
conditions, and the processing modalities prior to information extraction.

Then, Chapter [3| introduces the AF problem. AF pathophysiology is herein defined,
and the main theories about its generation and maintenance are summarized, as well
as the criteria for classifying its complexity, which are crucial for therapeutic choices.
Particular attention is paid to AF chronicity effects, altering atria structure and function
through electromechanical remodeling. The most current AF therapies are then described
in our dissertation. Pharmacological and electrical cardioversion are illustrated, and their
advantages and drawbacks are reviewed. The final part of this chapter focuses on ra-
diofrequency CA, regarded as a new frontier in persistent AF treatment; its performance
modalities, as well as some of the protocols adopted, are explained. Issues derived from
this therapy prompts the search for criteria allowing the selection of the most suitable
candidates to be treated by CA. Hence, it motivates the analysis of standard ECG and
the extraction of some measures conventionally regarded as predictors of procedural AF
termination, yet affected by some critical drawbacks, such as their manual computation
in a single lead.

The central part of this thesis concerns the contributions and the methods developed
to fulfill the objectives highlighted in the previous section. The principal lines of inves-
tigation of this thesis can be graphically summarized in Fig. [I.1. The main goals of this

ECG FEATURES |
I | I
F-WAVE | RRVARIABILITY ]
y
y v | POINT PROCESS |
AMPLITUDE STV SPATIAL -
REGULARITY (IT) ;
1
. _._l_- _.__Jr__ _._l__ v :
i PCA | i PCA | (WPCA, | NMF | i _PCA | :
— 3 . '
I- S £ -I 1 1
i LR | i v
fmmmmeeoo- ¥ . i~ LONG/SHORT-TERM CA 1
i1— LONG/SHORT-TERM CA OUTCOME PREDICTION 1OUTCOME PREDICTION ,
L_SELECTION OF CEE CANDIDATES AFTER CA __ | '~ AF PATTERN_ RECOGNITION

Figure 1.1: Explicative diagram of the main parts composing the thesis study. Sections
referring to ECG features are contained in solid-line boxes. The multivariate techniques
employed are included in dash-dot boxes. Clinical applications tested are marked in
dashed boxes. Meaning of acronyms: AF: atrial fibrillation; CA: catheter ablation; CEE:
electrical cardioversion; ECG: electrocardiogram; f-wave: fibrillatory wave; IT: informa-
tion theory; LR: logistic regression; NMF: nonnegative matrix factorization; PCA: prin-
cipal component analysis; STV: spatio-temporal variability; WPCA: weighted PCA.

work are the multilead assessment and enhancement of ECG features having remarkable
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predictive properties for CA outcome definition. Accordingly, we mainly focused on 2
ECG characteristics, namely, fibrillatory waves (f-wave) and RR variability. First, in
Chapter (4| the predictive role of f~wave amplitude in CA of persistent AF, traditionally as-
sessed in only one lead on surface ECG, is herein automatically computed and extended to
multiple ECG leads. This is achieved by means of reduced-rank approximations to the AA
signal determined by principal component analysis (PCA), which enhance the maximum-
variance components of the AA signal, and show to improve CA outcome prediction. This
is demonstrated at different follow-up lengths, by properly combining contributions from
all ECG leads through suitable statistical descriptors (e.g., the median amplitude).

Then, in Chapter [5| we investigate another ECG feature, depicting the spatio-temporal
variability (STV) of the AF pattern. Some single-lead measures of this AF property re-
cently proposed are correlated with AF complexity, traditionally assessed on endocardial
recordings, for instance, by means of Wells’ and Konings’ criteria. In this thesis we provide
a multilead characterization of such indices, thus assessing not only the extent of temporal
repetitiveness of the atrial pattern, but also its spatial distribution over ECG leads. To
this extent, several multivariate signal processing techniques, such as PCA, weighted
PCA (WPCA), nonnegative matrix factorization (NMF), have been tested for AA signal
processing. The measures output by the algorithms developed are able to discriminate
between effective and failing CA procedures at several follow-up periods.

In Chapter [6| we combine heterogeneous ECG features for assessing AF therapy out-
come. Unlike previous chapters, we examine information about f-wave amplitude and
STV properties presented in Chapter 4l and Chapter [5| coming from all ECG leads at the
same time. Multivariate characterization of such measures is performed by the logistic
regression (LR) model, which properly weights contributions provided by the ECG leads
examined. Such selective action allows for enhancing components which are most relevant
to CA outcome prediction, which has been effectively performed at different follow-up mo-
ments.

In Chapter [7] we ezplore the potential predictive role of several indices typical of the
information theory (IT) domain, which quantify the level of coupling between leads, and
thus the degree of spatial correlation. This concepts have been borrowed from the theory
of telecommunication systems, whose objective is assessing the amount of information
exchanged between transmitter and receiver, and thus the percentage of data loss. To our
knowledge, they are applied for the first time to CA outcome prediction in persistent AF
and characterized in a multivariate framework. The link of AF regularity as measured by
these parameters with clinical outcome of CA therapy is emphasized on multiple ECG
leads, thanks to the compressing properties of PCA, enhancing the most relevant com-
ponents of AA signal. Regularity assessment is first carried out on 2 ECG leads, and a
multilead extension is provided as well.

In Chapter [8 we approach another perspective for AF analysis, based on the charac-
terization of the ventricular response. RRI distribution is modeled in a parametric prob-
abilistic framework, not yet applied in the framework of AF, which takes into account the
effects of the dynamic vagal inputs to the SA node on the RRI length. Features describing
the RRI variability in terms of distribution dispersion and asymmetry depend on model
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characteristics and their predictive power in CA outcome assessment is investigated. Such
indices are subsequently exploited in AF pattern recognition, and differences between AF
and SR conditions are explored.

The final part of the manuscript includes Chapter [9, which summarizes the main
results presented in this thesis and sheds some light on potential new perspectives for AF
investigation and CA outcome prediction.
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2 ELECTROPHYSIOLOGY OF THE HEART AND

ELECTROCARDIOGRAPHY

2.1 INTRODUCTION

The first part of this doctoral thesis aims at providing a general description of heart
anatomy, its structure and leading steps of the cardiac cycle, responsible for distribution
of oxygen to all parts of the human body. The main goal of this section is helping com-
prehension of heart activity in healthy conditions so as to better understand alterations
and complications deriving from cardiac diseases. Particular attention is paid to the
electrical conduction system, enabling the propagation of electrical potentials throughout
the cardiac tissue, and thus the blood pumping action intrinsic to the electromechanical
coupling function. Recording heart electrical activity is essential for a rapid diagnosis of
certain cardiac diseases, as well as a deeper understanding of their triggering causes. To
this goal, the 12-lead ECG represents a noninvasive and cost-effective tool increasingly
employed in clinical centers; hence, the increasing interest in developing sophisticated sig-
nal processing techniques able to extract valuable clinical information, especially under
pathological conditions. Accordingly, after introducing the clinical background around
the heart and its main functions, we give a general description of the standard ECG and
its main characteristics. More precisely, in Sec. [2.2] we provide a general overview of heart
anatomy. Subsequently, we focus on the electrical conduction system in Sec. [2.3] Stan-
dard ECG is then introduced in Sec. 2.4} Finally, an overall summary of our description
is reported in Sec. [2.5]

2.2 ANATOMY OF THE HEART

Most of this chapter refers to [55] [96] [114] 143]. The human heart is an organ that
pumps blood throughout the body via the circulatory system. It is located under the
ribcage in the center of body chest between right and left lungs. It is widely known that
the heart can be regarded as a pump propelling blood throughout the body and consisting
of 4 chambers, made entirely of muscle. The upper chambers are referred to as atria,
whereas the lower ones are named ventricles (see Fig. [2.1]). These hollow compartments
are delimited by heart walls, composed of cardiac muscle, called myocardium. A wall of
muscle named the septum separates the right and the left side of the heartﬂ

Ihttp://www.texasheartinstitute.org/HIC/Anatomy/anatomy2.cfm
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Figure 2.1: Anatomy of the heart [

Moving from the outermost heart tissue layers, a double-walled sac called the peri-
cardium encases the heart, so as to protect and anchor it inside the chest. It is formed
by 3 layers, as shown in Fig. [2.2] and between them some pericardial fluid flows so as
to lubricate the heart during contractions and movements of the lungs and diaphragm.
The innermost pericardium component is referred to as the epicardium, which represents
the external membrane enclosing the heart. Then we meet the myocardium, the thickest
layer, consisting of cardiac muscle inducing contraction. Finally, the innermost layer, or
endocardium, is the epithelial tissue lining in contact with the blood.

The heart can be regarded as an ensemble of 2 pumps connected in series. Indeed, it
pumps blood through 2 circuits: the pulmonary circuit and the systemic circuit. The first
one, the right ventricle (RV), receives blood from the right atrium (RA), after coming from
superior and inferior venous cavae (SVC and IVC, respectively), and propels deoxygenated
blood via the pulmonary artery. Blood reaches the lungs, absorbs oxygen and goes back
to the left atrium (LA) and then to the left ventricle (LV) through the pulmonary veins
(PVs). This pathway represents the pulmonary circuit. In the second pathway, the
systemic circuit, oxygenated blood leaves the body via the aortic valve to the aorta,
and from there enters the arteries and capillaries of the systemic circulation, where it
supplies the body’s tissues with oxygen. Deoxygenated blood returns via the veins to the
venae cavae (VC), re-entering the heart’s RA, so that the cycle can start again. Blood
flow through the heart is unidirectional, thanks to the cardiac valves, whose opening
and closure are enabled by proper pressure gradients. Between the RA and RV lies the
tricuspid valve (TV), and between the LA and LV there is the mitral valve (MV). The
pulmonary valve separates RV and the pulmonary artery, while the aortic valve lies in
the outflow tract of the LV, and separates the RV from the aorta. All the aforementioned
components of the heart are displayed in Fig.[2.1 A graphical representation of the blood
circuits is provided in Fig. [2.3]

’http://histologyolm.stevegallik.org/node/347
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Figure 2.2: Section of the heart wall showing the components of the outer pericardium
(heart sac), muscle layer (myocardium), and inner lining (endocardium)?.
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Figure 2.3: Schematic representation of the pulmonary and the systemic circuits with
their main components [81].
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2.3 'THE ELECTRICAL CONDUCTION SYSTEM AND THE ELEC-
TROMECHANICAL COUPLING

The electrical conduction system of the heart, shown in Fig. [2.6], allows for the gener-
ation and propagation of impulses via a specialized conduction pathway, which stimulate
the heart to contract and pump blood. In contrast with other kinds of muscles, heart
muscle fibers are self-excitatory. It turns out that potential generation can occur without
any nerve signal triggers. The anatomy of cardiac muscle is such that the initiation of
an action potential in a fiber would result in the action potential excitation of all the
muscle fibers. Even though any part of the heart can generate impulses, the sinoatrial
(SA) node serves as a natural pacemaker, since it exhibits the highest intrinsic frequency,
thus it sets the activation frequency of the whole heart. It is located in the RA where
VC terminates, and its firing rate is usually around 70 bpm. Even though its function is
quite autonomous, we must mention that its pacing is also influenced by information sent
by the sympathetic and the parasympathetic inputs of the autonomic nervous system.
Indeed, the former increases the heart rate (HR), whereas the latter induces the opposite
effect.

The cardiac cycle is created when such impulse propagates through the conduction
system, so as to trigger the mechanical force. As a consequence, the electrical event always
precedes the mechanical action. When RA is triggered to contract, it pumps the blood
collected from all the parts of the body into the RV. When it is completely filled, blood is
forced into the lungs for oxygenation and then returned to the LA through the PVs. Blood
is finally emptied to the LV, so as to be spread throughout the body. As previously stated,
all these mechanical events are triggered by electrical stimuli. Each cardiac cycle consists
of 2 mechanical phases, contraction and relaxation, whose electrical counterparts are
referred to as depolarization and repolarization, respectively. Depolarization is induced
by a variation in the resting membrane potential of myocardial cells (from —90 to 20 mV),
which rapidly spreads throughout the myocardium. The self-depolarization of the SA
node enables a rhythmic series of action potentials, which spread throughout the RA and
LA. This induces atria contraction, and blood is pumped into ventricles (diastole). The
action potential propagates through the atria at a relatively slow velocity (0.3 —0.4 m/s).
Depolarization wavefront then reaches the atrioventricular (AV) node, which provides
atria with a conductive pathway to ventricles. Since its natural frequency is lower than
SA firing rate (i.e., about 50 bpm), the AV node spontaneously follows SA frequency. The
action potentials propagates from the atrium to the AV node, thus allowing time for the
atria to pump blood into the ventricles. The AV node is a pathway of muscle fiber which
introduces a short delay of about 11 ms into the impulse propagation to the ventricles,
so that atria can effectively contract and completely empty blood into ventricles. Signal
transmission from the AV node to the ventricles is ensured by a specialized conduction
system. It consists of a bundle, i.e., the bundle of His, which then ramifies into two
bundle branches, which in turn divide into Purkinje fibers, directly connected to the
inner ventricular walls. Such components are themselves large muscle fibers whose action
potentials propagate at a velocity of 1.5 — 2 m/s. The depolarization wavefronts then
spread through the ventricular wall, from endocardium to epicardium, enabling ventricular
contraction. Once each ventricle cell has depolarized, repolarization allows for relaxation
of the myocardial muscle, and the cardiac cycle can start again. This slow process gives
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rise to a plateau in the cardiac action potential which can be observed in Fig. 2.6 in
contrast with nerve and skeletal action potentials. This plateau allows the muscle fibers
to contract in synchronism resulting in a forceful pumping action. The ECG signal,
picked up by the surface electrode on the body surface is a superposition of these action
potentials.

2.4 THE STANDARD 12-LEAD ECG

Due to their conductive nature, heart nerves and cells can be regarded as a source
of electrical charges in motion during depolarization and repolarization processes within
a volume conductor, i.e., the thorax. Indeed, the sum of cardiac cell potentials can
be represented by a unique heart electrical vector in a first-order approximation, whose
magnitude and direction change in time according to pulse wavefront propagation and
strength. The electrical field generated by these charges can be thus detected on its
equipotential lines on thorax surface. This electrical activity signal can be acquired by
means of electrodes positioned on the subject’s thorax and then amplified and recorded by
the electrocardiograph. Electrocardiography is a commonly used, noninvasive procedure
for recording heart electrical activity. The signal recorded, named electrocardiogram
(ECG or EKG), graphically shows the series of waves associated with electrical phenomena
of depolarization and repolarization of the heart during the cardiac cycle, and represents
the summation in space of the action potentials generated by the myocadial cells at
each time instant. The first practical ECG was invented in 1903 by Einthoven, who
was awarded with the Nobel Prize in Medicine in 1924 for it. He refined the string
galvanometer used for measuring the heart’s rhythms, and he also paid attention to wave
terminology definition and examination of some cardiac disorders on ECG [49]. ECG leads
thus report the instantaneous difference in potential between electrodes. The signals are
detected by means of metal cutaneous electrodes attached to the extremities and chest
wall, and they are then amplified and recorded by the electrocardiograph. A difference of
voltage can be measured between each pair of electrodes, named lead, whose amplitude
and direction depend on electrodes’ configuration. ECG signal values are generally quite
low, ranging from a few microvolt up to 1 V, therefore acquisition system always includes
an amplifier.

As it is a noninvasive, rapid and cost-effective test, ECG is a valuable and highly
versatile tool in clinical practice for detecting several heart dysfunctions by inspection of
alterations in ECG pattern shape or duration of wave intervals.

Electrocardiography is a starting point for detecting many cardiac problems, such as
angina pectoris, ischemic heart disease, arrhythmias, myocardial infarction. In addition,
it may reveal other findings related to life-threatening metabolic disturbances (e.g., hy-
perkalemia) or increased susceptibility to sudden cardiac death (e.g., QT prolongation
syndromes). It is routinely employed for monitoring surgeries and exercise tolerance
tests (e.g., stress tests), as well as evaluating certain symptoms (for instance, chest pain,
shortness of breath, palpitations).

As previously stated, the ECG records the complex spatial and temporal summation
of electrical potentials from multiple myocardial fibers conducted to the surface of the
body [55]. Each group of cells depolarizing at the same time can be represented as an
equivalent current dipole vector. Each vector describes the dipole’s time-varying position,
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orientation, and magnitude. The vectors related to all these groups can be summed to give
a dominant vector which describes the main direction of the electrical impulse throughout
the heart. In order to better understand the generation of the ECG signal, Fig. [2.4]displays
the sequence of the instantaneous heart wavefront vectors at each step of the cardiac cycle.
Each phase of the depolarization and repolarization processes are reflected on ECG by
the following characteristic points, also shown in Fig. 2.5}

e P wave: it describes simultaneous depolarization of left and right atria. The normal
atrial depolarization vector is oriented downward and toward the subject’s left, as it
reflects the wavefront moving from the SA to the RA and then the LA myocardium.

e QRS complex: it represents ventricular depolarization. As ventricles have larger
mass compared to the atria, the QRS complex usually has a much larger amplitude
than the P wave. The process can be divided into 2 major, sequential phases. The
first one concerns the depolarization of the interventricular septum from the left to
the right and anteriorly. The second phase includes the simultaneous depolarization
of RV and LV. The QRS pattern in the extremity leads may vary considerably from
one normal subject to another depending on the electrical axis of the QRS, whose
mean orientation is referred to the 6 frontal plane leads. In healthy conditions, the
QRS axis ranges between —30° and +100°. Any deviation outside the lower (upper)
bound is referred as to left (right) axis deviation. It may occur as a normal variant
of heart condition, but sometimes it can also be symptom of more serious diseases.

e T wave: it is associated with ventricular repolarization, and its representative
vector is oriented roughly concordant with the mean QRS vector (within about 45°
in the frontal plane). The interval from the beginning of the QRS complex to the
apex of the T wave is referred to as the absolute refractory period, whereas the
terminal part of the T wave reflects the relative refractory period.

Atrial repolarization is usually too low in amplitude to be detected, but it may become
apparent in some conditions, e.g., acute pericarditis or atrial infarction. The QRST
waveforms of the standard ECG correspond in a general way with the different phases
of simultaneously obtained ventricular action potentials, depicting the activity of single
myocardial fibers. With reference to Fig. [2.6] the rapid upstroke of the action potential
corresponds to the QRS onset. This is followed by the plateau phase, corresponding to
the isoelectric ST segment, and then completed by the active repolarization, represented
by the inscription of the T wave on ECG.

ECG baseline (the flat horizontal segments) is measured between the end of the T wave
and the beginning of the next P wave. It represents the resting potential of the myocardial
cells. Also in the PR and ST segments we encounter ECG baseline. In SR conditions, the
baseline is equivalent to the isoelectric line (0 mV). By contrast, in presence of certain
diseases there could be drifts from zero due to injury currents flowing when the ventricles
are at rest.

In clinical practice, some intervals are also studied on ECG, knowing that alterations
in their duration can be symptom of certain pathologies. In particular we mention:

e RR interval: the mean distance between two consecutive R peaks provides a HR

measure, ranging between 60 and 100 bpm at rest.

e PR interval: starting at the beginning of the P wave up to the beginning of the
QRS complex, it indicates the time of propagation of the potential action from the
SA to the AV node, thus rendering a good estimate of AV node function.

e QT interval: extending from the beginning of the QRS complex up to the end of
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Figure 2.4: Sequence of the instantaneous heart wavefront vectors at each step of the
cardiac cycle [96].
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Figure 2.6: The heart conduction system with its main components, their typical potential
waveforms and the corresponding points on surface ECG [96].
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the T wave. A prolonged duration is predictive of ventricular tachyarrhythmias and
sudden death.

The choice of a unique, standard system of lead position for ECG acquisition derives
from the need to compare cardiac potentials recorded in different subjects, and examine
signals acquired in the same subject, but at different times and places. In the standard
ECG 12 leads are employed. More precisely, 10 electrodes are placed at standardized
positions of the body surface. As explained later, some potentials are linearly dependent
between them. Since the voltages recorded in the leads are regarded as projections of the
heart electrical vector on the particular lead, any two of the leads may be used to plot
the instantaneous magnitude and direction of the cardiac vector in the plane they form.

The ECG leads can be subdivided into two general types, namely, bipolar leads and
unipolar leads [I09]. A bipolar lead consists of two electrodes placed at two distinct sites,
so as to register the difference in potential between them. The actual absolute potential
at either electrode is not known, and only the difference between them is recorded. One
electrode is designated as the positive input; the potential at the other, or negative,
electrode is subtracted from the potential at the positive electrode to yield the bipolar
potential. Unipolar leads, in contrast, measure the absolute electrical potential at one
site, with respect to a reference potential, which is deemed to be zero. In clinical elec-
trocardiography, a specially designed electrode configuration is adopted for the 12-lead

ECG, detailed in Sec. 2.4.3

2.4.1 FEINTHOVEN’S LEADS

The first 3 leads are defined by Einthoven’s triangle. Fach lead measures the difference

in potential between electrodes at 2 of the 3 extremities (right arm; left arm; left leg), as
displayed in Fig. Potentials are thus defined as:

[ =&, — by (2.1)
1] = §p — Oy (2.2)
IIT = ®p — &y, (2.3)

where I, IT and III stand for potential of lead I, IT and III, respectively, &1, g and ®p
represent the potentials at the left arm, the right arm and the left foot. As these leads
form a closed circuit, each of them can be expressed as a linear combination of the other
ones:

IT=T+1II (2.4)

What is more, since these 3 electrodes are positioned at the corners of a equilateral
triangle, containing the human heart at the center, such a leads’ configuration registers
heart electrical activity on the frontal plane, and each direction differs from the other one
of 60°. Note that the right leg acts as a ground potential.

"http://www.nottingham.ac.uk/nursing/practice/resources/cardiology/function/bipolar_
leads.php
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aVg

Figure 2.7: Frontal ECG leads: Einthoven’s leads, and Goldberger’s (augmented) leads”.

2.4.2 (GOLDBERGER’S LEADS

In addition to the bipolar limb leads, there are 3 augmented limb leads, also known as
Goldberger’s leads. Potential of these leads is measured by assuming the central Wilson’s
terminal (or indifferent electrode) as a reference. This ground electrode is referenced
against a combination of the other limb electrodes, from which they are shifted of 30°.
Hence, these potentials aVg, aVy, and aVy, are considered unipolar and are electrically
augmented by 50% by omitting the resistance from the Wilson central terminal, which
is connected to the measurement electrode. Potentials measured are mathematically ex-
pressed as:

I—1I1
GVR = (25)
2
1
aVp=1- ;11 (2.6)
1
aVp=11-31 (2.7)

2.4.3 PRECORDIAL LEADS

The limb leads take into account direction of depolarization in the frontal plane.
However, as the heart is not parallel to this plane, related leads give information about
the inferior and lateral walls but do not distinguish between other areas, in particular
septal and anterior and lateral heart walls. The precordial, unipolar leads are positioned
in specific sites on the rib cage and record potentials transmitted onto the horizontal plane
(see Fig. . In particular, leads V; and V, are positioned at the 4th intercostal space,
to the right and the left of the sternum, respectively. Lead V3 is placed midway between
V, and V4, which is in turn located on the midclavicular line, at the 5th intercostal
space; lead Vj is on the anterior axillary line, at the same level as V4. Finally, lead Vg is
positioned on the midaxillary line, at the same level as V4 and Vs.

2.4.4 INFORMATION CONTENT OF THE STANDARD ECG

In this framework, all the aforementioned electrodes provide a three-dimensional rep-
resentation of heart electrical activity in the cardiac cycle. Most of the heart’s electric
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Figure 2.9: The projections of the lead vectors of the standard ECG system in 3 orthogonal
planes. The volume conductor is assumed to be spherical homogeneous and the cardiac
source centrally located [96].

activity can be characterized with a dipole source model. Under this hypothesis, 3 linearly
independent leads (2 limb leads and a precordial one) are sufficient to describe heart elec-
trical activity temporal evolution. Indeed, in the 12-lead system, there is a redundancy
of 4 leads. The limb leads and the augmented leads can be expressed as a function
of 2 independent potential differences, therefore standard ECG includes 8 independent
leads. The interest in considering also the other leads can be explained by the standard
ECG ability to detect further nondipolar components, which have diagnostic significance
because of their proximity to the frontal part of the heart.

The main reason for recording also redundant leads is that it enhances pattern recogni-
tion. Indeed, it allows comparing the projections of the resultant vectors in two orthogonal
planes and at different angles. For instance, right precordial leads, V3R and V4R, are
useful in detecting evidence of acute right ventricular ischemia. In Fig. 2.9, ECG lead
projections are displayed in 3 perpendicular planes.
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Figure 2.10: Examples of IEGM. HRA: high right atrial IEGM; HIS p and HIS d: proximal
and distal HIS-bundle IEGM; CS1 -2, CS3—-4,CS5—-6,CS7—8, CS9—10: distal
bipole 1 — 2, bipole 3 — 4, bipole 5 — 6, bipole 7 — 8, proximal bipole 9 — 10, respectively;
RVa = RV apex IEGM; Stim 2 = stimulus channel. These signals are induced by straight
atrial pacing with a drive-cycle length of 340ms and acquired by means of a decapolar
catheter in the CS and quadripolar catheters in the high RA, His-bundle region and RV
apex, according to the protocol described in [51].

2.4.5 QOTHER FORMS OF HEART ELECTRICAL ACTIVITY RECORDING

For the sake of completeness, even though our investigation merely focuses on standard
ECG, it is worth to provide a few notions about other kinds of signals depicting heart
electrical activity, whose description can help comprehension of other sections of this
dissertation, in particular those concerning AF organization and type classification.

INTRACARDIAC ELECTROGRAMS

An intracardiac electrogram (IEGM) is a record of timing or sequence of activation
of specific cardiac locations (e.g., the distal CS or the left upper PV), as measured with
electrodes directly placed within the heart via endocardiac catheters. They are generally
employed for recording electric potentials of sites that cannot be assessed by body surface
electrodes, for instance, the bundle of His, which is too small to produce sufficiently
high voltages to register on the surface ECG [162]. Furthermore, it is widely know how
difficult is to correlate heart electrical events recorded at body surface with in-depth
activity, therefore knowledge about ECG content needs to be supported by intracardiac
signals.

There are two types of IEGMs, namely, bipolar and unipolar signals. Bipolar signals
are produced when the voltages on the two recording electrodes both vary with time - as
is the case when each is positioned within the heart. By contrast, unipolar signals are
produced when one varying signal is compared with a constant (or indifferent) reference
placed outside the heart. In general, clinical practice refers to bipolar signals, as they
reduce far-field signals and they are less prone to electrical noise [162]. Examination of
unipolar signals is motivated by interest in signals from each pole of a catheter separately.
In Fig. [2.10] some examples of IEGMs are shown.

This kind of recordings allows electrophysiologists to follow the propagation of electri-
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Figure 2.11: Example of electroanatomic voltage map [I16]. LIPV: left inferior PV. RIPV:
right inferior PV. RSPV right superior PV.

cal activation by noting the order of the signals in time. When an electrical impulse passes
the tissue close to an electrode, depolarization of cardiac cells takes place, as reflected by
steep deflections, named activations, in the recording. This attention to the activation
sequence represents the main difference between IEGM and ECG, which rather focuses
on signal morphology.

Such a local approach makes IEGM highly reliable, since it is barely influenced by
other biological signals, such as surrounding muscular activity or electrical activity of
other tissues and organs. On the other hand, the invasivity of this analysis increases the
risks of infections and other side-effects (e.g., thromboembolic accidents), and requires a
careful management of signal acquisition.

In AF investigation, these kind of signals are widely employed for understanding the
mechanisms of triggering and maintenance of this arrhythmia, for instance, under guided
tissue stimulation or by mapping heart electrical activity. Moreover, they are currently
used in CA for positioning the ablation catheter in combination with a visual mapping
system (e.g. CARTO system, see Fig. and then checking whether the arrhythmia
has been terminated at the end of the procedure.

BODY SURFACE POTENTIAL MAPPING

Despite the multiple advantages of the ECG system, the reduced number of record-
ing spots on the chest can sometimes makes it quite hard to detect small variations in
heart electrical activity and investigate certain diseases. As a consequence, body surface
potential mapping (BSPM) systems are increasingly employed so as to perform a higher
resolution analysis of heart electrical activity as seen by a higher number of sites on the
entire surface of the chest and the back of patient’s body. The number of acquisition leads
ranges between 32 and 240. This kind of system enables the generation of a torso map of
electrical activity, in which we can follow the flow of electricity related to a heartbeat. An
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Figure 2.12: BSPM system. Left: An example of map [I55]. Right: Position of BSPM
leads [93].

example of BSPM map is displayed in Fig. besides the a schematic representation
of leads’ location.

AF comprehension has considerably taken benefit from BSPM analysis. In [57] dif-
ferent patterns of atrial activation have been observed in surface in several subjects by
means of this system. In [58], noninvasive localization of AF trigger sites is accomplished
by the BSPM system. The study led in [I8] demonstrates that it is possible to assess AF
spatio-temporal organization on BSPM maps by means of PCA.

Despite its valuable clinical content, BSPM has not been adopted yet as a routine
tool for cardiac diagnosis. This can be explained by several factors, such as the longer
time of signal acquisition, the more difficult equipment installation and the unsuitability
to be used during surgery. Accordingly, standard ECG represent a proper trade-off be-
tween invasive recordings and high-resolution surface potential mapping and it is generally
preferred for daily clinical practice.

2.4.6 ECG PROCESSING

ECG acquisition can be hampered by different types of noise and artifacts which can
profoundly alter and/or hide useful information about heart electrical activity. Hence,
the importance of an adequate ECG signal processing prior to information extraction
and further computational steps. In general, some preprocessing actions are required for
noise filtering. Understanding the causes of noise can help choosing the proper filter,
and keeping signal properties as most unaltered as possible, since any changes in voltage
amplitude, phase, frequency, morphology can notably influence ECG interpretation and
alter final diagnosis about the presence/absence of a disease.

Some sources of noise are technical. For instance, potential interference can come from
power line interference (50 — 60 Hz), owed to improper grounding of the ECG equipment
and interference from other equipment close to the ECG acquisition system. Other types
of noise can have a physiological origin. For instance, we mention baseline wander, with
spectral content below 1 Hz, which can be caused by respiration or body movements.
Another source of interference is the electromyographic noise, due to the electrical activity
of skeletal muscles during contraction. Unlike baseline wander, the range of its frequency
components is comparable with that of the QRS complex. It turns out that suppressing
this kind of noise is not a trivial task, as there is the risk of introducing signal distortion.
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Similar issues are encountered when electrodes are not correctly positioned or they get
disconnected, as contact impedance of the skin around the electrode is altered.

Another preprocessing task which is particularly useful in cardiac disease diagnosis
is the automatic detection of ECG fiducial points and intervals. Such inspection can
also help isolating certain components on the ECG (for example, distinguishing ventric-
ular and atrial activity, VA and AA). The interest in developing automatic tools makes
ECG processing operator-independent and provides rapid and objective measures of ECG
properties.

Preprocessing operations strongly depend on signal properties, as well as the goal of
the investigation on ECG. The preprocessing tools employed in this doctoral thesis will
be presented in more detail later for AF characterization in the Contributions’ part of the
manuscript.

2.5 SUMMARY AND CONCLUSIONS

This introductory chapter renders a general overview of cardiac electrophysiology.
Basic anatomy and physiology concepts and definitions are provided so as to facilitate
comprehension of the main problems around AF, its treatment and the technical tools
developed in the Contributions’ section. Special attention is paid to the heart conduction
system, since the knowledge about its activity and any alterations are fundamental for
understanding and tackling the AF problem. We focused on non invasive tools for AF
diagnosis and treatment as provided by the ECG analysis, a cost-effective and rapid
approach, which is increasingly employed in clinical centers for recording heart electrical
signal evolution. All these concepts will help understanding AF pathology and envisaging
potential diagnostic and therapeutic strategies.
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ATRIAL FIBRILLATION

3.1 INTRODUCTION

In Chapter [2] we have described some concepts about heart anatomy and functions,
and we have illustrated the role of standard ECG for examining heart electrical activity.
In this chapter we introduce the AF problem and we provide some elements which help
understanding this arrhythmia. First, in Sec. we provide a general definition of atrial
arrhythmia, then we move to AF description in Sec. [3.3] Several AF treatment strategies
are discussed in Sec. [3.4] with particular attention to the CA therapy in Sec. [3.5 whose
outcome prediction techniques are dealt with in Sec. [3.60 Main conclusions are finally
summarized in Sec.

3.2 DEFINITION OF ATRIAL ARRHYTHMIAS

Arrhythmias are defined as dysfunctions in the normal beating action of the heart, and
are generally divided into two categories: ventricular and supraventricular. The irregular
beats can either be too slow (bradycardia) or too fast (tachycardia). Ventricular arrhyth-
mias occur in the lower chambers of the heart, namely, the ventricles. Supraventricular
arrhythmias (SVA) are heart rhythm disorders affecting the upper part of the heart, i.e.,
the atria or the atrial conduction pathways [16]. In particular, they generally involve
the atria, the AV junction, or vessels directly communicating with the atria, such as the
vena cava or PVs. All cardiac arrhythmias are produced by several mechanisms, including
disorders of initiation and propagation of potential impulses, respectively defined as auto-
matic and re-entrant. Cardiac cells affected by abnormal automaticity exhibit an increase
in firing rate, and they can overdrive the SA node, the natural heart pacemaker, if the rate
of the ectopic focus is higher. The most current types of supraventricular arrhythmias
include:

e Premature atrial contractions (PACs): occurring when the atria contract too
soon, causing the heart to beat out of sequence.

e Paroxysmal supraventricular tachycardia (PSVT): a rapid but regular heart
rhythm which originates in the atria and speeds up the heart rate up to 150 — 250
bpm. The word “paroxysmal” refers to a non-permanent condition, and it means
occasional or occurring from time to time.

e Accessory pathway tachycardias (e.g., Wolff-Parkinson-White, WPW,
syndrome): a group of abnormalities caused by extra, abnormal muscle pathways
between the atria and the ventricles. The pathways cause the electrical signals to
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arrive at the ventricles too soon, and the signals are sent back to the atria. The
result is a very fast heartbeat. People with WPW may also be more likely to have
PSVT episodes.

e AV nodal re-entrant tachycardia (AVNRT): a rapid rhythm caused by mul-
tiple pathways passing through the AV node.

e Atrial tachycardia (AT): a rapid heart rhythm coming from the atria.

e Atrial fibrillation (AF): consisting in the chaotic generation of electrical impulses
in the atria which propagate through the AV node in a irregular and rapid manner.
Further details are provided in the following sections.

e Atrial flutter (AFL): similarly to AF, AFL is induced by one or more rapid
circuits in the atria, but it is generally characterized by the presence of a more
organized electrical circuit. The activation usually originates within the RA and
produces characteristic saw-toothed waves on the ECG.

3.3 ATRIAL FIBRILLATION

3.3.1 DEFINITION AND PATHOPHYSIOLOGY

It is estimated that 2.2 million adults in the United States have intermittent or chronic
AF, making it the most common sustained arrhythmia [133]. It increases in prevalence
with age, and affects up to 5% of the population older than 69 years, and 8% of the pop-
ulation older than 80 years. AF is associated with a 5-fold increase in risk of stroke [132].

AF is a supraventricular tachyarrhythmia inducing a disorganized generation of elec-
trical signals in the atria and consequent deterioration of mechanical function [53]. More
precisely, the atria beat in a chaotic and irregular manner, out of coordination with the
ventricles (see Fig. . Consequently, the atria risk to empty blood into the ventricles
during their contraction in an incomplete manner, thus increasing the probability of pool-
ing or clotting. These clots can break off and travel downstream, and if they lodge in an
artery in the brain, this can cause a stroke. In general, AF is associated with increased
rates of death, stroke and other thrombo-embolic events, heart failure and hospitalizations,
degraded quality of life, reduced exercise capacity, and LV dysfunction [53].

AF is thought to be caused by atrial fibrosis, and lost of atrial muscle mass, due to
several factors, such as aging, chamber dilatation, inflammatory processes, and genetic
causes. Dilatation of the atria can derive from any structural abnormalities of the heart
that cause a rise in the intra-cardiac pressures. This includes valvular heart disease
(such as mitral stenosis, mitral and tricuspid regurgitation), hypertension, and congestive
heart failure. Atria dilatation activates several molecular pathways, which induce atrial
remodeling and fibrosis, with loss of atrial muscle mass, and may also involve the SA node
and the AV node, with changes in electrical refractoriness [53].

3.3.2 ECG ASPECTS OF AF

Standard ECG is more and more exploited for AF understanding and treatment,
for its noninvasivity, cost-effective acquisition and all the other advantages presented in

3http://www.saintvincenthealth.com/services/heart/heart-resource-library/
atrial-fibrillation/default.aspx
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Figure 3.1: Heart electrical wavefront propagation during SR (left) and AF (right) and
their effects on ECG pattern 3.

Chapter [2 Indeed, AF impact on heart electrical activity can be even visually detected
on ECG recording, as shown in Fig. During AF, no regular P waves are identifiable,
but thy are replaced by multiple, irregular f-waves firing at rate of 150-300 bpm on the un-
dulating baseline, rendering alterations in the atrial depolarization. Ventricular response
variability is also affected by higher dispersion compared with SR, and it is reflected in
RR interval distribution on ECG, though the QRS contour is usually normal [96].

3.3.3 MECHANISMS OF AF TRIGGERING AND MAINTENANCE

Despite advances in the understanding of this disease, very little is known about the
mechanisms responsible for AF triggering and maintenance. To this end, several theories
about AF initiation and perpetuation have been put forward as to help its monitoring and
guide treatment strategies. Indeed, AF triggers may be focal targets for ablative therapy.

AF induction is now thought to involve an interaction between initiating triggers and
an abnormal atrial tissue substrate capable of maintaining the arrhythmia. Such triggers
are often in the form of rapidly firing ectopic foci located in muscular sleeves extending
from the LA into the proximal parts of PVs and overriding the normal impulses generated
by the SA node. Although structural heart disease underlies many cases of AF, the
pathogenesis of AF in apparently normal hearts is less well understood [97]. According
to [54], two major theories have been put forward to explain AF genesis and maintenance
(see Fig. [3.2), namely:

1) single or multiple rapidly firing atrial ectopic foci;

2) circuit re-entry and multiple wavelets.

EcToPIC FOCI HYPOTHESIS

The ectopic foci hypothesis deals with a single or small number of reentrant source(s)
giving rise to fibrillatory conduction. Ectopic foci arise when electrical impulses rapidly
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Figure 3.2: Models of AF mechanisms.
Models of AF mechanisms. a. Ectopic foci. b. Single reentry circuit. ¢. Multiple reentry

circuits [I19].

discharge in areas outside the SA node, widely known to be the heart natural “pace-
maker”, as explained in Sec. This can come from a steepening of the diastolic phase
of the action potential in cells that normally show automaticity, causing them to reach
their threshold potential earlier and generate ectopic firing [119]. Alternatively, ectopic
foci can sometimes arise just after the main action potential, due to alterations in ionic
exchange current flows, which can activate cells again, and induce ectopic firing. More
recently, however, in [62] 69] it has been shown that some ectopic foci sources triggering
and sustaining AF can be identified around the PVs. This discover opened new ther-
apeutic possibilities aiming at interfering with the ability of the re-entering circuits to
perpetuate themselves, for instance the maze operation developed in [38]. Because of
shorter refractory periods and the abrupt changes in fiber orientation, PVs are widely
known to be potentially responsible for AF uncoordinated activity. Targeted destruction
of ectopic foci is usually accomplished by surgery or catheter-based techniques.

CIRCUIT RE-ENTRY AND MULTIPLE WAVELET THEORY

Re-entries occur when a signal loops back and activates cells that has already triggered.
Under these circumstances, different areas can continuously reactivate each other, thus
giving rise to one or more circuits. One of the first model is referred to as “leading-circle
model” in [8] and encompasses re-entry propagation around an anatomical obstacle, such
as a vein orifice. One of the basic ideas of this theory is the concept of “wavelength of
re-entry”. This wavelength represents the distance covered by the electrical impulse in
one refractory period, and it is equal to the product of the refractory period and the
conduction velocity. According to this theory, if the pathway of the potential circuit
is shorter than this characteristic wavelength, the impulse will traverse the circuit and
return to its starting point in a time shorter than the refractory period, thus it will
encounter refractory cells and will be extinguished. Therefore, the wavelength is the
shortest electrical pathway able to sustain re-entry. The other impulses will have longer
revolution times, and will therefore be dominated by the faster activity of the “leading
circle”. As a result, this model assumes that the number of circuits that can be main-
tained depends on atrial size and the refractory wavelength. The lower the conduction
wavelength, the lower the minimum circuit size, the higher the number of circuits that
can be accommodated for perpetuating AF. The number of wavelets depends on the
refractory period, conduction velocity, and mass of atrial tissue. Increased atrial mass,
shortened atrial refractory period, and delayed intra-atrial conduction increase the number
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of wavelets and promote sustained AF [53, 97]. Re-entry within the atrial myocardium is
facilitated by conduction slowing and shortening of the refractory period, with increased
dispersion of refractoriness further contributing to arrhythmogenesis. The role of other
functional regions, for instance, the LA posterior free wall, superior and inferior vena
cava, coronary sinus (CS), and interatrial septum, has also been taken into account in AF
pathogenesis. Even though the distinction described is not strict, it is hypothesized that
PV sources may play a dominant role in younger patients with short paroxysms of AF,
whereas an abnormal atrial tissue substrate may play a more important role in patients
with structural heart disease and persistent or permanent AF. The so-called “multiple
wavelet hypothesis”, assessed for the first time in [I10], can also be ascribed to this group
of theory concerning AF maintenance and generation. This recent model rather involves
multiple randomly propagating wavelets instead of closed loop re-entry. This process is
thought to maintain AF regardless of its triggering source, as perpetuated by continuous
conduction of several independent wavelets of excitation [30], varying in size and velocity,
irregularly wandering through atria, which collide, mutually annihilate, coalesce, or give
rise to new wavelets in a self-sustaining turbulent process [159).

Before concluding this section, it is worth noting some more recent hypotheses, which
represent a basis for some of the most employed AF therapeutic strategies, in particular
in relation with ablation. The study led in [I16] points to the role of complex fractionated
atrial electrograms (CFAE) as the substrate responsible for AF maintenance. In [147] the
potential application of CFAE analysis to AF ablation is investigated. In [I18] it is stated
that AF may be sustained by localized electrical rotors and focal impulses. Wavelets and
multiple re-entry circuits can be suppressed by drugs that prolong the refractory period
and inhibit re-entry, and by ablating areas of the re-entrant pathway.

3.3.4 ATRIAL ELECTRICAL REMODELING

AF can produce changes in atrial function and structure, which explain the gradual
worsening with time of this arrhythmia [7]. Atrial remodeling consists in any persistent
change in atrial structure or function, increasing the tendency to triggering or sustaining
AF [120], either through rapid ectopic firing or reentry mechanisms. It has been shown
that long-term rapid atrial pacing or maintenance of AF led to a progressive increase
in the susceptibility to AF: “AF begets AF" [I19]). This phenomenon was explained
by a shortening in atrial impulse wavelength. When the wavelength is short, small ar-
eas of intra-atria conduction block may already serve as a site for initiation of reentry,
thus increasing the vulnerability to AF. This condition is also expected to increase the
tendency to AF maintenance, since it allows more reentering wavelets to coexist in the
available atrial surface. Clinical evidence shows that patients with more prolonged AF
may develop increasing problems with time and are less likely to experience SR restoration
and maintenance [7]. Several mechanisms and effects are implied in the atrial remodeling.
First, ionic exchanges are profoundly altered by this phenomenon, in particular a gradual
inactivation of the calcium current subsequent to intracellular overload [120]. In turn,
this action reduces the action potential duration and atrial refractory period, responsible
for sustaining AF. Such phenomena cause atrial contractility loss, since calcium current
abnormalities induce atrial dilation, which further promotes reentry, and facilitates atrial
fibrosis occurrence. Assessment of remodeling effects has a fundamental clinical value for
AF treatment and its successful outcome [7]. Hence, the importance of a deep under-
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standing of AF mechanisms.

3.3.5 AF CLASSIFICATION

Several criteria are adopted for AF study and management. Clinical guidelines illus-
trated in [28] ascribes AF cases to 5 categories according to the presentation and duration
of the arrhythmia:

e First-diagnosed AF': it concerns every subject presenting an AF episode for the

first time, regardless of its duration or the presence and severity of other symptoms.

e Paroxysmal: it is a self-terminating AF form, usually within a 48 hour temporal
window. Below this limit, spontaneous AF termination is more likely. In this type
of AF, triggered activity seems to be the dominant factor, therefore suppressing the
firing source should terminate the arrhythmia.

e Persistent: it is either characterized by recurrent AF episodes or longer than 7
days, and must be treated by cardioversion, either pharmacological or electrical.
Such advanced forms of AF exhibit a certain degree of electrical remodeling, pro-
portional to arrhythmia progress.

e Long-standing persistent: AF episodes last longer than 1 year, and a rhythm
control strategy is required.

e Permanent: patients are affected by ongoing long-term episodes, with failed or no
attempt at cardioversion.

An alternative criterion leading AF classification takes into account the degree of its
organization, traditionally assessed on invasive cardiac signal recording, dependent on the
number of fibrillating wavelets and the chronification of the disease. This concept will be
explained in detail in Sec. In the literature, we can find two reference systems for AF
classification from invasive recordings. The Wells’ system put forward in [161] takes into
account the morphology of single bipolar atrial electrograms. Four distinct AF types are
encompassed by this criterion:

e Type I, AF1: characterized by discrete beat-to-beat atrial electrogram complexes
of variable morphology and cycle-length, alternating to isoelectric baseline segments
free from perturbation.

e Type II, AF2: beat-to-beat complexes are similar to those typical of Type 1. By
contrast, the baseline is not isoelectric and it is affected by multiple perturbations.

e Type III, AF3: AF pattern presents a higher degree of disorganization, with no
clear isoelectric intervals.

e Type IV, AF4: resulting from the alternation between the Type II and Type III
patterns.

For the sake of clarity, some representative pattern examples are displayed in Fig. for
the first three types.

The second paradigm is the Konings’ system [7§], aiming at classifying patterns of hu-
man RA activation during electrically induced AF. According to the number of wavelets
activating the atrial wall and mapped by high-density epicardial recordings, we can en-
counter three different types of AF.

e Type I: single broad wave fronts propagate uniformly across the RA.

e Type II: presenting 1-2 nonuniformly conducting wavelets

e Type III: RA activation is highly fragmented and exhibits 3 or more wavelets with

variable direction of propagation.



35 ATRIAL FIBRILLATION

200 ms
p—

AF1 «nJr — ]I[—» '”\r" —A— _.,..UAII_ 5

N/ '.ﬁw‘l VL-"-I Pf'l‘r\‘-;

AF2 l’ |'I' the A J

i .
AF3 |,

i | | A
] \ LT i
MV Laf J\J‘\ ./.,,AL“ ﬂr‘ ".A;‘}‘ JW'LA*J "’J'f\llww* l‘-lml

Figure 3.3: Classification of bipolar atrial recordings during AF according to Wells’ cri-
terion: Type I (AF1), Type II (AF2) and Type III (AF3) [10].

In general, Wells’ classification is more frequently adopted, since it can be acquired
more easily during clinical electrophysiological studies.

3.4 OVERVIEW OF THE MAIN AF THERAPIES

AF management strategies aim at relief of symptoms and prevention of severe com-
plications associated with AF at the same time [28]. For this purpose, antithrombotic
therapy, control of ventricular rate, and treatment of concomitant cardiac pathologies are
generally performed.

In patients with short paroxysms of AF, curative strategies should generally concen-
trate on providing control of the arrhythmia itself. By contrast, in patients with persistent
AF, it is not trivial to decide whether to try to restore and then maintain SR (rhythm
control), or to accept the arrhythmia and control the ventricular rate (rate control) [97].
In rate control strategies, the arrhythmia is allowed to continue. Even though the control
of ventricular rate allows for improving symptoms, the risk of thromboembolism per-
sists and ventricles are passively filled, without any active atrial contraction, since atria
are still in fibrillation. On the other hand, rhythm control aims at SR restoration and
AF suppression, but the pharmacological treatment adopted is prone to provoke serious
thromboembolic complications. Therefore, regardless of the arrhythmia pattern, and in
the absence of contraindications, such a therapy should be combined with anticoagulation.
The choice of one of these approaches strongly depends on several factors, such as AF
history and severity of additional disturbances.

3.4.1 CARDIOVERSION OF PERSISTENT AF

In the rhythm control therapies’ scenario, cardioversion procedure refers to the process
of SR restoration in the presence of an abnormal rhythm. Indeed, the objective of this
kind of therapies is “resetting” AF irregular fibrillatory rate and restore the physiological
SR, either by pharmacological or electrical means. Cardioversion is used most frequently
for those who are symptomatic or newly diagnosed. Broadly speaking, cardioversion is
generally applied to two patients’ categories: those who are affected by AF symptoms and
those who present with AF for the first time [I38]. Symptoms can be quite different in
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terms of severity, such as hypotension, uncontrolled ischemia, or angina, or palpitations,
fatigue. However, any AF symptoms caused by atrial fibrillation warrant consideration of
cardioversion as a management option. Also patients exhibiting AF for the first time are
generally treated by cardioversion, so as to slow disease progression. Another group of
patients who may benefit from cardioversion are those who have postoperative AF. Indeed,
it can occur in the first days after surgery, when anticoagulation may be undesirable.
Many episodes of postoperative AF resolve spontaneously. Patients who do not experience
spontaneous AF termination may undergo cardioversion before an AF duration of 48 hours
in order to avoid coagulation. It is important to remember that all types of cardioversion
can present some side-effects related to embolic risks. Thromboembolism (blood clot
traveling through the bloodstream) can occur after cardioversion if a thrombus (blood
clot) becomes dislodged from the atria as the heart begins to beat normally. Blood clots
can form within the atria during AF since blood flow is slowed. Accordingly, patients
are usually given an anticoagulant and their monitoring during and after the procedure
is strongly recommended.

3.4.2 PHARMACOLOGICAL TREATMENT

Several pharmacological agents may be used for acute cardioversion in AF patients
with AF, including oral and intravenous medications [42]. Pharmacological cardiover-
sion is generally employed in subjects affected by short AF episodes with little or no
structural heart disease. Indeed, it can be suitable for the treatment of AF of recent
onset, but efficacy is dramatically reduced in patients with AF persisting for more than
48 hours [97]. It also serves as a complementary therapy in combination with electrical
cardioversion either after the procedure (to stabilize SR restoration effects) or prior to
its performance (in order to increase its success probability). Several drug categories are
generally administered to AF patients, including oral and intravenous medications.

SR conversion rate of chemical cardioversion is generally lower than with electrical
cardioversion, but it does not require conscious sedation or anasthesia, and may facilitate
the selection of proper antiarrhythmic drug therapies to prevent AF recurrence [53].

3.4.3 ELECTRICAL CARDIOVERSION

Because of the relative simplicity and high efficacy, electrical cardioversion (CEE)
is more frequently performed than its chemical counterpart [42]. This therapy consists
in applying a synchronized, low-voltage electric current to convert AF rhythm back to
normal SR [I38]. The electric current enters the body through metal paddles or patches
applied to the skin of the chest, either in anteroposterior or anterolateral configuration,
as in Fig. A cable connects the pads to an external defibrillator, which allows for
monitoring patient’s heart rhythm and applying the necessary energy to restore SR. CEE
is usually accompanied by sedation or total anesthesia, as the shock may be uncomfort-
able. The delivered shock causes all the heart cells to contract simultaneously, thereby
interrupting and terminating the abnormal electrical rhythm. If initial shocks do not
succeed in restoring SR, cardioversion is repeated after changing paddle position, and/or
delivering higher energy. Then, according to the protocol adopted, procedure can be
repeated until AF termination or is interrupted. It is important to avoid rupture of blood
clots which may become dislodged from the heart and cause a stroke. Therefore, during
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Figure 3.4: CEE procedure for conversion of AF to normal SR [14§].

the procedure, anticoagulants are usually given to the patient prior to its performance.
It is generally preferred to chemical cardioversion not only for the higher success rate,
but also for the shorter duration of the procedure and the reduced risk of causing other
arrhythmia. Success probability is inversely related to the AF duration and LA size [89).
Furthermore, since adequate current delivery determines its successful accomplishment,
it is essential to ensure an effective contact of paddles to patient’s body, so as to reduce
electrical impedance and facilitate energy delivering.

3.4.4 SOME CONSIDERATIONS ABOUT CARDIOVERSION LIMITATIONS

Even though more than 90% of cardioversion interventions prove to be effective, they
can be affected by several drawbacks occurring in the postoperative phase. Success prob-
ability increases if electrical and pharmacological cardioversion are combined, which pre-
vents reverting back to AF. Indeed, cardioversion can sometimes be responsible for other
arrhythmias or problems of impulse conduction.

As stated above, since quivering atria do not contract vigorously in AF patients,
blood clots can form and can be dislodged from the heart when applying CEE, thus
increasing the risk of a heart attack or a stroke [I38]. Fortunately, most blood clots
can be prevented by previous anticoagulation therapy, thus thinning the blood before
cardioversion. Furthermore, concerning CEE, some precautions must be adopted when
setting energy of electrical shocks and the number of their attempts so as to avoid tissue
damage.

In general, cardioversion effectiveness depends on several factors, such as patient’s
AF history, episode duration, presence and severity of additional symptoms. If disease
chronification is quite advanced, both types of cardioversion can fail restoring SR. As a
consequence, persistent and chronic forms of AF are more likely to be successfully cured
by other kinds of strategies, in particular ablative therapies.
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Figure 3.5: An example of a Maze lesion in the atria from a posterior perspective. The
4 PVs are visible on the LA. The black hatched lines are incisions and the white lines
ablation lesions [45].

3.5 ABLATION THERAPY FOR AF TREATMENT

3.5.1 INTRODUCTION

In AF treatment framework, ablation is an invasive technique aiming at destroying
the sources of abnormal rhythm and modifying atrial conduction properties so that AF
cannot be maintained even when triggered. First ablation attempts were made by James
Cox in 1987, who introduced a surgical intervention (the Maze procedure) aiming at
preventing AF propagation by means of strategic incisions in the atria [39]. Hereinafter,
procedure noninvasivity became one of the main clinical goals, thus incisions were not
performed anymore during an open-heart surgery, but catheters delivering energy were
introduces so as to burn fibrillatory targets. The key to the success of any catheter or
surgical ablation of AF is the correct choice of lesions and the production of adequate
transmural lesions, which can even yield more effective results than those obtained with
electrical and/or pharmacological cardioversion. A 5-year study has demonstrated that
after a single procedure more than half of patients experience SR restoration [125].

3.5.2 MAZE ABLATION

Maze ablation is a procedure accomplished during an open-heart surgery in which
several incisions are performed in several atria critical locations by means of a scalpel,
such that a maze is created and AF wavefronts cannot propagate [26]. This surgical
strategy assumed that reentry mechanisms illustrated in Sec. are the main cause of
AF triggering and maintenance. The atrial incisions, shown in Fig. [3.5] act as anatomic
barriers which prevent atrial reentry and allow sinus impulses to activate the entire atrial
myocardium, thereby preserving atrial transport function postoperatively [39]. Irrigated
radiofrequency ablation can be sent through a bipolar clamp or endocardially using a
monopolar pen. Since its introduction, the procedure has gone through three iterations
(Maze I, II, and III) based on cut-and-sew techniques that ensure transmural lesions
to isolate the PVs, connect these dividing lines to the mitral valve annulus, and create
electrical barriers in the RA that prevent macroentrant rhythms.

In order to reduce intervention invasivity, as well as its duration, a tendency to de-
crease the number of lesions has been pursued, by keeping the same mechanistic goals
aforementioned. In some studies it was remarked that LA is usually the source of AF
wavefronts, whereas RA acts as a bystander. Accordingly, Cox introduced the so-called
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Minimaze procedure. Indeed, he discovered that in most subjects AF conduction can be
prevented by a lesion set isolating all PVs, a line between the isolated PV line to the
mitral valve annulus (which ideally encircles the CS at that point) and a right atrial line
across the TV-IVC.

Secondly, new energy sources for ablation have been developed so as to replace cut-and-
sew techniques. Cryoablation and radiofrequency ablation are the most common methods,
which use hand-held probes applied endocardially by direct vision. Alternatively, clamp
devices hold the atrial wall between 2 jaws, and send radiofrequency energy to produce
a complete lesion. Newer energy sources (e.g., laser, microwave, and ultrasound) have
the advantage of generating transmural lesions even when applied epicardially. A further
development of this technique is the use of a limited thoracic incision and thorascopically
guided procedure.

Despite the quite high long-term success rate, Maze ablation is not considered as a
first-line strategy in AF treatment, since it requires a cardiopulmonary bypass in a open-
heart surgery. Several severe side-effects can occur in the postoperative phase, including
stroke, pneumonia, myocardial infarction or other arrhythmias. Accordingly, it is usually
performed subsequently to other therapies’ failure (both cardioversion and/or catheter-
ablation treatment) or during other urgent heart surgery, for instance, coronary artery
bypass surgery or heart valve repair. Some people could need a pacemaker implanted
after the procedure.

3.5.3 RADIOFREQUENCY CATHETER ABLATION

In this paragraph, most of the description of CA procedure refers to [92]. Radiofre-
quency CA is a nonsurgical procedure for treating AF aiming at the electrical isolation
of abnormal AF sources so as to avoid irregular rhythm conduction throughout heart
tissue [44]. Nowadays, CA is regarded as a first-line therapy, as it can directly eliminate
the abnormal sources responsible for AF and offers the possibility of a lasting cure [157].
Early radiofrequency CA techniques take a step from the Maze procedure by performing
linear lesions in the atrial endocardium. In this procedure thin, flexible catheters are
inserted into the femoral vein in the groin and threaded up through the vena cava (VC)
and into the heart. An electrode at the tip of the wires delivers radiofrequency energy
to the fibrillating heart tissue. Once the catheter is positioned, some small electrodes are
inserted in different areas of the heart. They allow for the detection of heart areas altering
physiological electrical activity. Once the source of the problem has been found, one of
the catheter lines is used to send electrical energy to the selected area. Subsequently, a
small scar is created, thus electrically “disconnecting” fibrillating sources from healthy
heart regions and stopping abnormal rhythm conduction. Catheter positioning, as well
as the anatomy of the PVs and LA, are confirmed by fluoroscopy, pulmonary venography;,
3-dimensional electroanatomical mapping, intracardiac echocardiography, computed to-
mography, remote guidance using magnetic resonance imaging, or combinations of these
techniques. An injury is likely to be induced to the myocardium by the application of
thermal energy - most commonly by radiofrequency or cryothermy.

Some initial successful attempts to stop AF have been obtained by creating linear
incisions in the atria, as in the surgical Cox-Maze procedure, and replicating these lesions
with radiofrequency CA. Electrical isolation of PVs from the rest of the atrium, performed
around the origin of the veins, is the cornerstone of most CA procedures [69], based on
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the ectopic foci hypothesis explained in Sec. [3.3.3] Furthermore, vagal inputs may also
influence mechanisms of AF triggering and maintenance, and many of them are located
close to the PV-LA junction [27]. The study in [I16] introduces the concept of CFAES,
which are signals with rapid deflections and short cycle lengths corresponding to areas of
wavebreak, vagal innervation, slow conduction, or re-entry. They were originally defined
as either atrial electrograms that have fractionated electrograms composed of two or more
deflections, and /or perturbation of the baseline with continuous deflection of a prolonged
activation complex, or atrial electrograms with a very short cycle length (< 120 ms).
In [99] CFAEs in RA and LA have been regarded as an ablation target, hence the interest
in their role in AF management. According to [I17], ablation of such sources could restore
SR definitively with no risk of AF recurrence. By ablating these areas the propagating
random wavefronts are progressively restricted until the atria can no longer support AF.
In [I15] freedom from AF following a single has been reported in 70% of permanent AF
patients.

By contrast, more recent studies claim that other sites can trigger the arrhythmia,
such as LA posterior wall, SVC, CS. Moreover, further modifications of the procedures
have incorporated linear LA ablation, or mitral isthmus ablation, or both for certain
patients. Accordingly, initial approaches aiming at eliminating isolated foci in the PVs
has progressively evolved to circumferential electrical isolation of the entire PVs’ tissue.

CA seems to be more effective in restoring SR than conventional anti-arrhythmic
drugs, by reporting a success rate of 85% of cases at 1 year and 52% at 5 years [50].
Unlike other therapies, if the patient proves to be a positive responder to CA therapy,
procedural SR restoration is durable and the subject can be considered completely free
from the arrhythmia.

3.5.4 OBJECTIVES AND PROTOCOLS

Due to uncertainty about its outcome, criteria defining the main CA steps as well as
its endpoint are not strictly systematic, thus leading to different medical protocols. The
ideal approach depends on individual patient characteristics and AF chronicity, and may
require a combination of strategies.

The limited available studies suggest that catheter-based ablation offers benefit to
selected patients with AF, but these studies do not provide convincing evidence of ab-
solute rates of therapy effectiveness. Heterogeneity in the methods of published trials
limits the ability to compare different techniques. Outcomes may have been influenced
by the different patient populations studied, ablative techniques and end points utilized,
and number of repeat ablations. Other confounding factors are prevalence of structural
heart disease, the length of follow up, the use of antiarrhythmic drugs, SR restoration
modalities [45]. More specifically, one of the main issues in CA characterization is the
definition of procedural success itself, varying among groups practicing this therapy.

All therapeutic strategies generally aim at either SR restoration or AF conversion to
an intermediate arrhythmia, such as AFL. While conversion to SR during ablation of
persistent AF has been often associated with excellent outcomes, it is not clear whether
this endpoint is a sufficient condition for long-term freedom from AF recurrence [46,
89], since acute AF termination does not necessarily imply durable therapeutic success.
Using similar stepwise ablation protocols, results have varied for termination of persistent
AF during ablation from 48% to 85% despite similar long-term outcomes. This implies
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either that AF termination is not necessary for good long-term outcomes or that, if all
drivers/sources were not terminated at the first session, they can be addressed during
another session. In other words, the cumulative effect of multiple ablation procedures
may be equivalent to AF termination during the first session. At a follow-up of 1-2 years,
approximately 85% of patients undergoing one or more CA procedures were reported to
be arrhythmia-free without antiarrhythmic medications.

Different contrasting theories about therapy combination have been put forward. In
some centers ablation target is SR restoration immediately after the procedure as well as in
the follow-up. Other groups do not necessarily aim at arrhythmia termination within the
procedure, but they also exploit complementary therapies (i.e., cardioversion) to achieve
long-term AF freedom and stabilize CA effects. The study carried out in [61] shows that
most patients undergoing CEE after CA experience AF recurrences. Conversely, in [40]
it is stated that acute AF termination by CA has no influence over the long-term out-
come, thus justifying the use of complementary curative strategies. The main procedural
endpoints may depend on the type of AF and include completion of a predetermined
lesion set, depending on technical choices. Some groups aim at AF termination during
ablation [63], while other rather address noninducibility of AF after CA [70]. In any
case, there is still debate surrounding the predictive value of such endpoints, and various
approaches are currently adopted in medical practice.

In addition, follow-up length is highly variable as well, as AF can be observed in
several moments of the postoperative phase, especially when treating a persistent form.
At follow-up visits, a 12-lead ECG should be recorded to document the rhythm and
rate, and to investigate disease progression. The assessment of clinical intermediate and
long-term outcome after CA is still a subject of discussion. Symptom-based follow-up
may be sufficient, as symptom relief is the main aim of AF ablation [28]. The most
recent HRS Expert Consensus Statement guidelines for CA trials in [27] recommend that,
immediately after CA performance, there be a 3-month “blanking period” during which
any fibrillatory episodes are seen as a physiological reaction during recovery from CA,
and not as AF recurrence episodes. After this blanking period, if the patient remains
free of arrhythmia recurrences, CA can be considered effectively accomplished. Expert
consensus recommends an initial follow-up visit at 3 months, with 6 monthly intervals
thereafter for at least 2 years.

3.5.5 INTRODUCTION TO THE CLINICAL PROTOCOLS AND THE ECG DATABASES EM-
PLOYED IN THE STUDY EXPERIMENTAL SETUP

As evinced in previous sections, multiple paradigms can be used for assessing CA
procedural success. According to the procedural success criterion examined, ECG param-
eters proposed in this doctoral thesis have been examined and validated on different ECG
databases. In each chapter, we examine one-minute 12-lead surface ECG signals recorded
at a sampling rate of 1 kHz. Standard ECG is acquired in each patient undergoing CA
at the beginning of the procedure. We generally refer to such signals when dealing with
prediction tasks. In other experimental parts, for instance, in Sec. [4.6] we will examine
the same kind of recordings acquired in other moments of the procedure, in particular
close to the end of ablation.

One on the main difficulties encountered throughout our work has been the manage-
ment of a database whose size has changed in time, as patients involved in our study did



3.5. ABLATION THERAPY FOR AF TREATMENT 42

..................................

: SHORT-TERM ! i LONG-TERM ;
. CAOUTCOME | . CAOUTCOME ,
. PREDICTION . +  PREDICTION .
ACUTE AF SELECTION OF AF VS SR SR VS AF
TERMINATION CEE CANDIDATES AND OTHER SVAs AND OTHER SVAs

Figure 3.6: Schematic diagram of the ECG databases employed for the experimental vali-
dation of our methods. Each dataset refers to a different clinical criterion for CA outcome
assessment and its size is also reported. Meaning of acronyms: AF': atrial fibrillation; CA:
catheter ablation; CEE: electrical cardioversion; SR: sinus rhythm; SVA: supraventricular
arrhythmia.

not undergo CA all at the same time. As a consequence, clinical conditions of some sub-
jects have been evaluated later in time. This explains the employment of different datasets
throughout the dissertation; they are graphically represented in the diagram in Fig. [3.6]
The subjects involved in our study undergo stepwise CA [25], starting with circumferential
PV ablation with LASSO-guided disconnection, followed by fragmented potentials, non-
PV triggers, roof line and mitral isthmus line right atrial ablation. Some patients received
a pharmacological treatment subsequent to CA procedure, mainly amiodarone (for some
patients, solatol and flecaine). Some of them underwent a second ablation. In this case,
only ECG signals related to the first procedure are taken into account in our study.

We globally deal with two main criteria for CA outcome prediction, which differ for the
length of the follow-up length, when postoperative AF screening is carried out. Indeed,
looking at the short-term outcome means evaluating CA procedure effectiveness, whereas
in longer follow-ups clinicians more generally focus on patient’s conditions and take AF
history into account. As a result, the short-term ECG dataset is related to a certain
number of CA procedures, whereas the long-term database concern a group of distinct
AF patients. If we look at the diagram in Fig. from left to right, we can summarize
such datasets according to the clinical task of interest as follows:

1) Acute AF termination by CA: The dataset includes 28 patients, whose procedural
outcome is considered in a very short-term temporal window within the blanking pe-
riod. During this period, no clinical evaluation about definitive freedom from AF can
be put forward, since any kind of fibrillatory activity within this temporal window is
generally part of the postoperative reaction, in combination with other phenomena,
such as edemas and inflammations. As a consequence, examining ablation outcome
in this time interval exclusively provides a preliminary perspective of immediate
CA effectiveness right after the procedure. Acute AF procedural termination was



43

ATRIAL FIBRILLATION

2)

3)

4)

defined as the conversion either directly to SR or intermediate SVAs, either directly
by ablation or by CA followed by CEE. Three patients who did not experience AF
termination after a first procedure underwent a second ablation, making a total of
np = 31 procedures. Accordingly, ng = 26 procedures are considered successful,
whereas np = 5 procedures failed.

Selection of CEE candidates: In line the CA procedural protocol adopted in this
study, cardiologists perform a certain number of steps during the procedure aiming
at AF termination. However, if they are not able to effectively stop fibrillatory
activity at the end of the intervention, they usually perform CEE so as to restore
SR and stabilize ablation effects. In the light of these considerations, cardioversion
performance in the short-term postoperative phase can be regarded as a criterion
of ablation procedural failure, hence the importance of properly choose positive
responders to CEE. Accordingly, 54 ECG recordings have been included in our
analysis (3 subjects out of 51 experienced a double procedure). In 37 procedures, AF
was not terminated by CA only, and CEE was applied immediately after ablation.
In the remaining cases, AF was terminated either by CA exclusively or accompanied
by pharmacological treatment in the follow-up.

AF vs SR and other SVAs: We move now to a longer follow-up interval, be-
ginning after the aforementioned blanking period, whose duration must be at least
about 6 months. As we said before, this retrospective analysis of patient’s clinical
conditions must take into account a multiplicity of factors which can influence the
final procedural outcome, with particular attention to complementary CEE thera-
pies or additional ablations. If multiple procedures are performed, signals acquired
during the first intervention are examined. The main endpoint is AF termination
in the long-term follow-up; the arrhythmia can be converted either directly to SR
or to intermediate arrhythmias. In this framework, supraventricular arrhythmias
(SVAs) are considered as an evolution of AF uncoordinated electrical activity to
more organized and regular waveforms, which are likely to be more easily treated
by other therapies. Twenty patients (19 males, 60 + 11 years) with a median persis-
tent AF episode duration of 4.5 months (2 to 84) form this ECG dataset. After a
median follow-up of 9.5 months, CA was successfully accomplished in ng = 13 out
of np = 20 patients (65%), whereas np = 7 procedures were not effective.

SR vs AF and other SVAs: The ECG recordings forming this set have been ac-
quired in 36 patients. More precisely, ng = 29 subjects experienced AF termination
by CA and durable SR restoration in the long-term follow-up (84 months), whereas
the remaining ones (ngp = 7) did not. In case of repeat ablations, ECG recordings
related to the first CA procedure are included into the analysis. Unlike the previous
therapy success definition, despite the same temporal follow-up window, a stricter
criterion for assessing AF termination is imposed. Indeed, long-term CA success is
defined as freedom from ECG /Holter-documented sustained AF recurrence (> 30 s)
at follow-up after at least 6 months subsequent to the blanking period. Therefore,
at a certain moment of the long-term follow-up clinicians verify whether durable SR
restoration has been achieved. Accordingly, any SVA form is regarded as a procedu-
ral failure. As opposed to previous studies [17, [121], termination of AF during CA
was generally not achieved in all patients. Nevertheless, this is not detrimental to
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our study, since AF termination by CA is not predictive of long-term outcome [46],
which is the event with clinical interest.

Assessment of CA procedural outcome has been carried out according to criteria 1 and 4
throughout the Contributions’ parts (Chapters [il6)). ECG features’ ability to generalize
prediction results at each follow-up is attempted, and significant results are commented
and explained. Despite the clinical interest of criterion 3, the gold standard [25] seems
to privilege definitive freedom from every kind of arrhythmia as a clinical endpoint (as in
Criterion 4), so as to guarantee durable SR and healthier conditions to the patient and
make him free from AF therapy. Concerning the selection of CEE candidates according
to criterion 2, its performance has not only a therapeutic value, but it also represents an
important technical contribution of this thesis, since in Chapter [6] we will merge some of
the ECG features of interest and test such combined measures for this therapeutic task.
However, as we deal with persistent form of AF, CEE is not generally able to restore SR
permanently, and usually plays the role as a complementary therapy.

3.5.6 RISKS AND LIMITATIONS

It is important to remember that treating AF by ablation implies some potential risks.
The main clinical goals are abolishing or reducing symptoms, improving LV function by
restoring both electrical and mechanical atrial systole, and finally reducing the risk of
stroke [45].

CA risks in persistent AF are somewhat higher than with ablation for other cardiac
arrhythmias [50]. This is due to several factors, such as the longer duration of the pro-
cedure, the greater extent of the scars, as well as their location (e.g., near the PVs).
Post-procedural stroke can occur in up to 2% of the treated patients. PV damage (which
can produce lung problems leading to severe shortness of breath, cough, and recurrent
pneumonia) occurs in up to 3%. Damage to other blood vessels (in particular, those
through which the catheters are inserted) affect 1 — 2% of ablated patients. Also bleeding
from the cauterized sites must be taken into account. In general, both the success of the
procedure and the risk of complications improve when the ablation is conducted by an
electrophysiologist with extensive experience in ablating AF.

Recently, new and very advanced 3-D mapping systems have been developed for use
in ablation procedures, and allow cardiologists to create ablation scars with a high level of
precision. In spite of these advances, CA is still a lengthy (4 or more hours) and difficult
procedure, and its success rate is quite uncertain. Even with modern mapping systems,
ablation procedures work best in patients who have relatively brief AF episodes, which
is the case of paroxysmal AF. Success rate is lower in patients affected by chronic or
persistent AF forms, or by critical underlying cardiac disease, such as heart failure, or
heart valve disease. Initial reports described success rates between 22% and 85%, with
better results observed for patients with paroxysmal rather than persistent or permanent
AF. Long term results are limited by follow-up of generally no more than 1 year in most
trials [92]. The arrhythmia recurs in at least 15 — 20% within 1 year, and in 25 — 50%
within 3 to 5 years. Furthermore, it is important to continue with anticoagulant therapy
to prevent strokes, whose risk remains elevated even after CA.

As pointed out in Sec. the lack of a unique technical protocol and differences
in procedural endpoints makes it hard results’ comparison. The existence of such a wide
variety of techniques is due to the inability to generalize procedure results: the same
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method can lead to different procedural outcomes in more patients. Since very little is
known about AF generation, it is equally difficult to clearly assess CA mechanisms and
quantify its effects on heart substrate. CA effectiveness still strongly relies on operator’s
experience, and evaluation of patient’s conditions before and during CA. Since not all
subjects seem to positively respond to ablation therapy, one of the main current tendencies
is attempting to select patients who are more likely to experience AF termination by CA,
thus allowing an improved patient-tailored management of AF. In such a manner, the
success rate of the therapy would increase, and the number of failing CA procedures
minimized. This strategy would help avoiding unnecessary procedures, and reducing
hospitalization costs and duration, and potential complications to patients who would
not actually benefit from this therapy.

3.6 PREDICTING CA ouTCOME FROM ECG ANALYSIS

Remarks made in Sec. about the important role played by the ECG in AF man-
agement justify the attempt of identifying any potential ECG-based descriptors, whose
value can discriminate between successful and failing CA procedures, thus helping selec-
tion of patients who can be effectively treated by cardioversion or CA and experience
durable SR restoration.

Recent research led in [52] demonstrates that some clinical factors, such as right atrial
dimension, AF duration and patient’s weight, can predict AF recurrence after CEE. Some
attempts have also been made in [2, 3], based on sample entropy measures determined on
surface ECG, whose tuning parameter values have been attentively set. The study carried
out in [I54] reveals that tracking AA frequency and its harmonics on certain precordial
ECG leads can help prediction of CEE procedural failure in persistent AF.

In [124] the predictive power of some clinical features is corroborated. More precisely,
AF termination by CA is more easily achieved in patients with a shorter history of AF,
a smaller LA dimension, and a longer baseline AF cycle length (AFCL), measured in
the left atrial appendage (LAA). Similar findings are confirmed by [98]. The same study
also confirmed that AFCL measured on surface ECG is not only correlated with the
endocardial measure, but it is also predictive of CA success. In [I65] the decrease in
AF dominant frequency between the baseline and instant of procedural AF termination is
proved to be predictive of SR maintenance after CA in the follow-up. Even though no links
with procedural success are proved, the study in [I9] demonstrates that the impact of CA
on heart substrate can be assessed in terms on AF spatio-temporal complexity, regardless
of the outcome reported. The concept of AF organization and its characterization in a
multivariate framework represents one of the main contributions of this doctoral thesis,
and it will be developed in detail in Sec. . In [121], the value of the peak-to-peak
f-wave amplitude measured in leads II and V; seems to predict CA outcome: the higher
its value, the more likely AF termination by CA. Furthermore, the amplitude measured
in lead II and V; was correlated with younger age and shorter AF history, and in lead II
only it was correlated with a smaller LA.

Despite this evidence, all these features are affected by several shortcomings. First,
some parameters, such as f-wave amplitude and AFCL [98] [121], are manually acquired,
therefore their measure is quite subjective and is operator-dependent, thus more prone
to errors. This could significantly affect prediction performance, due to the low values
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of the parameters cited (the order of mV for amplitude, ms for AFCL). Secondly, all
these parameters are merely computed in one ECG lead, while neglecting other leads.
Even though it is widely known that lead V; exhibits the highest atrial-to-ventricular
activity ratio [129], lead selection is not driven by any systematic criteria, and clinicians
generally choose leads in which it is easier to inspect wave properties. However, standard
ECG is characterized by a high degree of spatial variability, i.e., AA signal features may
vary considerably from a lead to another, thus affecting prediction performance derived
thereof. Furthermore, due to its location, lead V; may represent RA activity predom-
inantly, therefore lacking sufficient information to describe LA activity. Accordingly, a
parameter value could sensitively vary from one electrode to another one. Finally, this
kind of approach lacks robustness, since the measure obtained could not be reliable, e.g.,
if an ECG lead gets loose or disconnected.

Such background motivates our research, which intends to avoid the shortcomings
linked to the intrinsic spatial variability of the atrial signal on surface recordings. To this
end, we aim at determining multivariate measures which combine contributions from all
leads and exploit ECG spatial diversity to predict CA outcome.

3.7 SUMMARY AND CONCLUSIONS

This chapter has provided a global description of AF. In particular, we defined this
arrhythmia and its main causes. Several theories about its generation and maintenance
mechanisms have been proposed in the literature, and they have been summarized herein.
The long-term effects and the electromechanical remodeling performed by AF have been
discussed as well. Subsequently, the therapeutic scenario has been characterized. We first
focused on cardioversion, both pharmacological and electrical, whose long-term effective-
ness rate is quite low in persistent and permanent AF. Particular attention has been paid
to CA, whose performance has yielded more promising results, but whose effect assessment
is currently an open challenge, due to the disparate protocols and techniques, as well as
the difficulty in giving a procedural success definition. With the intent to achieve a trade-
off between invasivity and risks on the one hand, and therapeutic efficiency on the other
hand, clinical centers are increasingly involved in exploring the predictive power of surface
ECG. This would allow for an a priori selection of positive responders to CA, and the
reduction in the number of failing procedures. Since most of the measures obtained on the
standard ECG are either manually computed or determined in only one ECG lead, our
research aims at determining novel parameters which are able to condense contributions
from all ECG leads and discriminate between successful and failing CAs at each follow-up
moment. The next chapter begins to summarize the main contributions of this thesis.
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4: F-WAVE AMPLITUDE AS A PREDICTOR OF CA

OUTCOME IN A MULTI-LEAD FRAMEWORK

4.1 INTRODUCTION

It is widely known that AF effects on the cardiac cycle are reflected on ECG pattern.
As explained in Sec. [3.3.2] one of the main alterations is represented by the absence
of the physiological P wave, which is replaced by small, irregular, rapid deflections in
the ECG waveform, varying in amplitude, shape, and timing. Such oscillations from
ECG baseline are referred to as fibrillatory waves (f-waves) and they are displayed in
Fig. [4.1l This visual evidence serves as a powerful clinical tool for straightforward AF
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Figure 4.1: Example of ECG recording during AF and its characteristic waves. Boxes highlight
TQ intervals where f-waves can be observed.

detection. In addition, its content has been so far exploited in the framework of CA
description. Indeed, several works have demonstrated its correlation with procedural
outcome. However, f-wave amplitude measure assessment is still operator-dependent and
lacks a unique, standard definition. As a consequence, multilead ECG content is not
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adequately exploited. Moreover, standard signal processing approaches for f-wave am-
plitude characterization do not entirely exploit ECG content, in particular components
expressing its interlead spatial variability [12I]. Our work aims at extracting information
about f-wave amplitude in an automatic and quantitative framework taking into account
all ECG leads. Spatial variability of standard ECG is properly exploited to enhance f-
wave predictive power in the noninvasive assessment of CA outcome in persistent AF.
The main results of this chapter have been published in [I02-104), [106] and investigated
in more detail in this doctoral thesis. The chapter is structured as follows. In Sec.
the concept of f-wave peak-to-peak amplitude and its role in AF analysis is illustrated.
Multivariate characterization of this feature is then explained in Sec. [£.3] The method
proposed is based on an interpolation algorithm which is able to automatically compute
mean f-wave amplitude on a certain lead. Such algorithm represents the starting point for
a multilead extension based on principal component analysis (PCA), as it can be applied
to each lead of the AA signal low-rank approximation, detailed in the next sections. At the
final step, contributions to f~-wave amplitude description from all ECG leads are properly
combined in a single parameter and applied in different contexts. Such an index can act
as a binary classifier of CA outcome prediction, thus distinguishing between successful
and failing CA procedures immediately before their performance at different follow-ups.
The techniques developed are first applied to prediction of acute AF termination by CA
in Sec. [£.4l Variations of this parameter are also able to quantify CA impact over AF
activity within the ablation procedure, which is highly correlated with the procedural
outcome; details are provided in Sec. 4.6 The main conclusions of this chapter are finally
summarized in Sec.

4.2 CLINICAL ASSESSMENT OF F-WAVE AMPLITUDE

4.2.1 ETIOLOGY AND CLINICAL INTERPRETATION

As stated in Sec. [3.3.2] the P wave observed on ECG under SR conditions reflects
atrial depolarization. The depolarization wavefront propagates in a regular and organized
fashion from the SA node toward the AV node, thus resulting in a coordinated atrial
contraction and pumping of blood into the ventricles.

By contrast, during AF atrial contraction is irregular and chaotic, due to the multi-
ple fibrillatory impulses propagating and colliding throughout the heart. These random
phenomena of wavefront sum and cancellation result in the generation of f-waves, whose
amplitude, repetition rate and shape vary according to the degree of evolution of the
disease and other patient’s conditions. More specifically, f-wave amplitude on ECG is
function of the magnitude of the underlying cell voltage, which in turn renders the de-
gree of conduction viability of the atrial myocardial tissue mass. In addition, it is also
influenced by impedance between the electrode and the atria, as well as the directionality
and cancellation of wavefronts. Typically in early stages of the disease (e.g., paroxysmal
forms), the AF pattern can resemble atrial flutter (AFL), when it exhibits regular f-waves
with high amplitude, while in other cases, especially more chronic forms of AF (e.g., long-
standing persistent AF), the opposite characteristics can be observed. Both patterns can
be also found in the same subject at different moments.

AF is generally referred to as coarse if f-waves peak-to-peak amplitude in lead V; is
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higher than 0.1 mV, fine otherwise [I129]. This distinction is usually not strict, as both
patterns can be found in the same patient and multiple factors influence this parameter.
Yet, most of the medical community agrees with the correlation between AF coarseness
and LA function, especially when dealing with certain forms of AF (e.g., rheumatic,
arteriosclerotic). More specifically, AF coarseness could derive from the progressive LA
enlargement caused by atrial remodeling, and the consequent decrease in tissue compliance
induces atrial contractile dysfunction [12§].

Richness of f-wave amplitude content has spurred the development of different analysis
approaches in the context of AF treatment, which take a step from the analysis of single-
lead atrial amplitude led in [121].

4.2.2 STANDARD METHODS OF F-WAVE ANALYSIS AND THEIR LIMITATIONS

Valuable information can be extracted from the f-wave amplitude feature to explain
CA effects on heart substrate and differentiate patients according to procedural outcome.
Medical community widely recognizes the predictive power of f-wave amplitude, which
is shown to be correlated with AF termination by CA. Indeed, high amplitude values
result from multiple atrial cells depolarizing at the same instant, thus rendering a more
organized and coordinated AF activity, which is easier to be treated by CA. This empirical
observation is confirmed by several studies. In [31] the correlation between f-wave size
and procedural success is demonstrated in lead V; and aVg. Similar conclusions can be
drawn in [I121], where maximal and mean f-wave amplitude measured in leads V; and II
are examined.

Different methods have been proposed to compute f-wave peak-to-peak amplitude.
In [I63] it is computed as the mean value of the 4 maximum-amplitude f-waves over the
whole ECG recording. In [I21] it is defined as the mean value over 10 (or 30) consecutive
f-waves. In all these studies f~-wave amplitude is manually determined on the surface ECG.
Therefore, index accuracy is highly affected by operator’s subjectivity and more prone to
errors, due to the lower measure repeatability.

Moreover, these results seem to demonstrate f-wave size predictive value only in certain
leads examined separately, thus disregarding potentially useful information from other
leads. It has been demonstrated that lead V; exhibits the maximum atrial-to-ventricular
amplitude ratio [129]. Yet, due to its proximity to the right atrial wall, valuable in-
formation about other areas responsible for AF triggering and maintenance (e.g., LA,
PVs) may not be taken into account [62]. Therefore, not only these approaches do not
consider contributions coming from multiple ECG leads, but selection of single electrodes
is not driven by further systematic criteria. As we will see, our multilead approach not
only avoids the drawbacks associated with the spatial variability of the atrial signal in
surface recordings, but is able to effectively exploit this variability to improve prediction
performance and robustness to electrode selection.
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4.3 MULTILEAD CHARACTERIZATION OF F-WAVE AMPLI-
TUDE BY MEANS OF PRINCIPAL COMPONENT ANALYSIS

4.3.1 ECG PREPROCESSING AND ATRIAL ACTIVITY EXTRACTION

Before introducing some multivariate processing techniques of the AA signal, let us first
illustrate how this signal is actually defined and extracted. Unless differently specified,
this preprocessing stage will be accomplished throughout this work prior to ECG feature
extraction.

ECG recordings are first processed by a fourth-order zero-phase type II Chebyshev
bandpass filter with —3 dB attenuation at 0.5 Hz and 30 Hz cut-off frequencies. The
filter selected is able to accurately reduce the influence of noisy components typically
encountered in ECG analysis without deforming signal shape [143], [153]. The choice of
this pass-band is consistent with the typical range of AF dominant frequency, between
3 and 12 Hz, and suppresses baseline wander and high frequency noise (e.g., myoelectric
artifacts), besides 50 Hz power line interference.

In order to exclusively extract AA, removal of QRS complexes and segmentation of
TQ intervals are carried out after automatically detecting ECG fiducial points. R waves
are located on lead V; by means of the Pan-Tompkins’ algorithm [127], whereas Q wave
onset and T wave offset are detected with an improved version of Woody’s method [24].
TQ intervals, which actually contain f-waves, are then mean-corrected and concatenated
on each lead ¢ = 1,..., L, thereby representing AA in an (L x N) matrix Yaa:

Yap = [yAA(l)yAA(N)] S RI*N (41)
where vector yaa(n) = [yi(n),...,yr(n)]" stands for the multilead AA signal at sample
index n, L is the number of leads used, and N the number of samples of the AA signal y,(n)
foreachlead ¢ = 1,2, ..., L. All residual artifacts and spurious peaks due to concatenation

have been automatically removed by means of signal first-derivative thresholding.

Depending on the application and the type of feature extracted, we chose either to
process the full standard ECG, thus setting L = 12, or examine a subset of ECG leads.
Indeed, as explained in Sec. Einthoven’s standard leads (or limb leads, I, II, III) and
Golbderger’s augmented leads (aVg, aV, aVg) are derived from the same 3 measurement
points, and are thus redundant (linearly related, see Eq. — ) Accordingly, lead
ITI, aVg, aVy and aVg can be discarded by our analysis, as I and II are sufficient to
characterize heart electrical activity on the frontal plane. Finally, all precordial leads
have been introduced too, in order to record the cardiac electric potential in a cross
sectional plane, for a total of L=8 leads, that is, I, II, V{-Vg. The number of ECG leads
retained in our analysis will be clearly indicated in each section.

4.3.2 AUTOMATIC F-WAVE AMPLITUDE COMPUTATION

According to previous studies, successful CA procedures can be predicted by higher
values of f-wave peak-to-peak amplitude on the surface ECG [12I]. Nevertheless, pre-
diction accuracy is so far affected by amplitude manual computation, leading to higher
error probability, especially in the presence of irregular and complex patterns. Similar
shortcomings can occur when dealing with different operators performing the acquisition
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Figure 4.2: Single-lead atrial waveform interpolation algorithm. Upper and lower en-

velopes enax and eyn pass through the local extrema of the input signal y,; their sub-
traction yields eppp.

of such a parameter, so its measure is not uniquely defined. In this framework, we de-
velop an automatic procedure for computing the mean amplitude value of the AA signal
ye(n) on a specific lead ¢ = 1,2,..., L. More precisely, its local maxima of y,(n) are
detected so that an upper envelope eyax(n) passing through them can be determined
by the shape-preserving piecewise cubic Hermite interpolating polynomial (PCHIP) [74].
Similarly, a lower envelope eyn(n) is computed as well, once detected the local minima
of the signal. PCHIP interpolation reduces the negative effect of local spurious peaks
and signal artifacts, and the global trend of the curve is exclusively taken into account.
Peaks located near the edge between two consecutive T(Q) intervals are discarded from
the computation. The difference epprp(n) = |emax(n) — enan(n)| between the two curves

outlines the general trend of the main oscillations of f-waves, and its temporal mean over
the AA signal length N:

D(y) = ]17 ; eprrr (1) (4.2)

represents the final output of our algorithm. An example is shown in Fig. [£.2] The
operator D(+) is characterized by an offset-invariance property:

D(ky + ) = |k|D(y), Vk,a€R. (4.3)

Index D condenses the information about f-wave over the whole recording and its peak-
to-peak amplitude pattern in a single objective parameter computed in a fully automated
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manner.
4.3.3 PRINCIPAL COMPONENT ANALYSIS: DEFINITION AND DERIVATION OF PRINCI-
PAL COMPONENTS

The rationale of our approach is the intrinsic variability of the surface ECG across
leads, as they are all measured from different points of the patient’s body. Assuming
that the AA signal extracted from the standard ECG Y can be considered as a surface
mixture of a certain number of unknown sources supports the application of PCA. This
decomposition can express multivariate data as a linear combination of these uncorrelated,
orthogonal, most descriptive sources, the so-called principal components (PCs) [29], with
the highest percentage of input data information as explained by their energy. Other
techniques are also employed in blind source separation for orthogonal component ex-
traction. For instance, independent component analysis (ICA) allows the computation
of such sources by taking into account their statistical independence constraint, and it
has been widely employed for several biomedical applications, such as fetal ECG sepa-
ration [41) 167, 169] and electro-magnetic brain signal analysis [71]. ICA requires that
the components are not only orthogonal, but also statistically independent. This stronger
assumption weakens the orthogonality constraint of mixing matrix columns. However, we
aim at searching for any signal components which are not only common to all observations,
but exhibit also the highest energy content. This goal motivates PCA application, since
linear filtering highlights information shared by all the AA observations. Owing to the
relation between energy and amplitude, we aim at investigating whether dominant PCs
can retain the information necessary for an accurate characterization of f~-wave on surface
ECG. Most of the PCA theoretical description that follows is inspired by [168].

OBSERVATION MODEL

The key idea of PCA is to reduce the dimensionality of input multivariate data in a
few components, while retaining most of the information as measured by variance [73].
It is worth introducing the general concept of spatial filtering, as an optimal tool for
recovering a certain signal of interest from the ensemble of observations [152]. Indeed,
a multivariate set of observations Y, with L components can be represented at each
time instant by applying a generic linear transformation M, formed by projection column
vectors my:

X =M"Yyu (4.4)

yielding a set of transformed variables X. According to PCA rationale, large variances
have important structure, therefore PCs with larger associated variances represent inter-
esting structure, while those with lower variances are typically associated with noise [139].

COMPUTATIONAL MODEL

The core of PCA is searching for a linear combination of the observations, whose
variance is maximized. Let us consider a generic one-dimensional signal or component
x € R derived as a linear combination of the observations yss € R* [168]:

T = mTyAA (45)
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According to the PCA rationale, the first principal direction m; is the unit-norm vector
maximizing the variance of Eq. (4.5]) as measured by the function:

E[z*] = m"E[lyy"jm = m"R,m (4.6)

where {-}7 represents the transpose operator and R, = E[yaayi,) stands for the co-
variance matrix of input data. In order to determine the first dominant direction my,
maximization of Eq. can be accomplished by means of the Lagrange’s multipliers’
technique, consisting in working on the criterion:

J=m{R,m; — A\(m{m; — 1) (4.7)

where )\ represents the Lagrangian multiplier and the constraint mym] = 1 is introduced
to guarantee a unique solution. J is the Lagrange’s function; its gradient is zero at the
optimal solution, corresponding with local stationary points. To this end, we derive J
with respect to m; and we impose it is equal to zero.

lej = 2Rym1 — 2)\m1 == 2(Ry — )\IL)ml =0 (48)

where I, is the identity matrix of order L. Eq. (4.8)) highlights that X is actually an
eigenvalue of R, and m; the corresponding eigenvector:

Rym1 = )\ml (49)
By multiplying both sides of Eq. (4.9) by m! we obtain:
m{R,m; = \m{m,; = \ (4.10)

since mI'm; = 1. Substituting Eq. into Eq. yields J = \. It turns out that the
selection of the eigenvector maximizing variance must be performed by taking A as large
as possible. This condition is fulfilled when m; is the normalized dominant eigenvector of
Ry, and A the corresponding eigenvalue. The second principal direction msy is the unit-
norm maximizer of criterion in Eq. (4.6)), lying orthogonal to the first principal direction
my, i.e., mim; = 0. At the generic kth step, the kth principal direction my, is the unit-
norm maximizer of Eq. lying orthogonal to the previous principal directions {m;}*=!,
i.e., m{m; = 0, for i < k. The principal components {xy,zs,..., 73}, are obtained by
replacing m with the corresponding principal directions in Eq. .

4.3.4 ALGORITHMS FOR COMPUTING PCA

PCA performance requires an eigenvalue decomposition (EVD) of the data covariance
matrix Ry, which yields:
R, = TAT” (4.11)

where I is a (L x L) orthonormal matrix containing the eigenvectors of Ry, whereas A is
a diagonal matrix containing the corresponding eigenvalues. With reference to the PCA
definition introduced in Eq. (#.4), knowing that I'T? = T'7T = I, for the orthonormality
property, we can compute the PCA factors as:

M=T (4.12)



4.3. MULTILEAD CHARACTERIZATION OF F-WAVE AMPLITUDE BY MEANS OF
PRINCIPAL COMPONENT ANALYSIS 56

Uniqueness of the solution is guaranteed only if additional constraints are introduced,
as orthonormality of the columns of M in PCA. Sources’ variance is normalized to 1 by
means of the factor A~2.

The main issues of this algorithm is that processing R, can induce a loss of precision
and lead to numerical instability. As a consequence, it is generally preferred avoiding the
explicit computation of this matrix and running the singular value decomposition (SVD)
of the input matrix Y, which yields:

Y = UsSV? (4.13)

where U is an (L x L) orthonormal matrix whose columns represent the left singular
values of Y, V is a (/N x L) matrix containing the right singular values, and S is a L-sized
diagonal matrix whose elements represent the corresponding rank-ordered, nonnegative
singular values. By plugging these factors into R, expression, we obtain:

1 r_ 1 TvaTTT L yreey T
R, = TYY = TUSV VS 'U" = TUS U (4.14)
By keeping in mind the EVD of Ry given in Eq.(4.11]), we can verify the following iden-
tities:

Uu=r (4.15)
1 2

— A 4.1

TS (4.16)

It turns out that the PCA factors can also be directly determined from the SVD of the
data matrix Y as:
M=U (4.17)

The last equation in (4.16) clarifies the relation between eigenvalues of the covariance
matrix R, and the singular values of input data Y.

4.3.5 REDUCED-RANK PCA FOR AA APPROXIMATION

Knowing that the first source retains most of the AA signal variance, we investigate
whether it is possible to exploit this property to characterize f-wave spatial distribution.
Consequently, we search for a linear function of the maximum-variance elements of y =
vaa. The PCA algorithm yields the dominant source as:

Tr1 = mlTyAA, (418)

thus isolating the contribution of z; to yaa from that coming from other sources. As ex-
plained in Sec. [£.3.3] the first principal direction m; maximizes the variance of 1, achieved
when m,; is the normalized dominant eigenvector (related to the highest eigenvalue) of R,,.
We find m; such that x; is the most descriptive source, i.e., each lead y; is represented by
the term m;z; with the minimal global error, where m;; = [M];;. The output function
in Eq. can clearly be seen as a weighted average of the observed variables. As a
result, contributions from all leads are taken into account in the computation of z;.
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Figure 4.3: The multilead AA signal Yaa (continuous line) and its rank-1 estimation by
PCA (dashed line). Top: lead II. Middle: lead V;. Bottom: lead V3.

More generally, the truncation of the model Yan = MX yields the rank-R approxi-
mation:

yaa(n) = ]; myx(n) (4.19)

with R < L. Note that yss has the same size as yaa. In Fig. an example of AA
signal reconstruction through PCA iss reported in some ECG leads.

4.3.6 MULTILEAD F-WAVE AMPLITUDE DESCRIPTOR

Once AA signal approximation is carried out, f-wave amplitude in each ECG lead is
computed as explained in Sec. [4.3.2] This results in an L-component vector Dy, whose
entries represent the temporal mean of the f-wave amplitude envelope values on every
electrode:

Dy = [dy,do, ..., d]". (4.20)

Generally speaking, in a rank-R approximation ?AA, we compute amplitude entries as
der = D(mgz,) =|my|D(z,), r = 1,..., R, according to the property in Eq. . The
entries of Dy, are then sorted in increasing order, so as to determine their median value
Dy, in the final step. The choice of the median is justified by its ability to describe overall
data distribution without loss of generality, with a higher degree of robustness to outliers,
compared to other statistical descriptors such as the mean value. The sequence of the
algorithm steps is justified by the need for capturing as most of input signal energy as pos-
sible and effectively rendering f-wave amplitude properties. Experimental evidence shows
that reversing signal interpolation and PCA decomposition does not provide comparable
results in multi-lead f-wave characterization. Indeed, interpolation induces a consider-
able loss of energy, which can not be effectively captured by PCA, thus disregarding
information essential to atrial amplitude description. Parameter D; can be considered
as a descriptor of the global spatial distribution of f-wave amplitudes over the observed
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leads. Its clinical significance in the context of CA outcome prediction is assessed in the
remaining of this chapter.

4.4 PREDICTION OF ACUTE AF TERMINATION BY CA

4.4.1 ECG DATA AND CA SUCCESS CRITERION

AA signal Yapa is processed by our algorithm once selected a reduced subset of 8
leads of the standard ECG, consisting of the precordial ECG leads and the Einthoven’s
leads I and II. This choice has been previously justified in Sec. [2.4.4] In order to describe
the most representative components of AA signal for f-wave amplitude representation,
input data are approximated by the dominant PC exclusively, that is to say, by setting
R =1 in Eq. (4.19). In the experimental section benefits from this technical choice
are detailed. With reference to Sec. [£.3.6] it is worth noting that when R = 1, my =
[my |, is the ¢th component of the dominant direction m;. We examine the 31-procedure
database employed for predicting acute AF termination by CA and previously presented
in Sec. [3.5.5 It is worth to mention that the reduced number of failing CA procedures
(np = 5) can limit the generalization power of experimental results. This issue mainly
affects several parts of this thesis, especially the early stages, when the number of patients
involved in the study is still quite limited and CA outcome sometimes is not known yet.
The impact of such factor has been verified throughout this thesis by testing our predictors
on new patients enrolled in the study.

4.4.2 STATISTICAL ANALYSIS

According to this protocol, categories under examination are referred to as “AF termi-
nation” and “non AF termination” by CA. All the ECG parameters defined in the sequel
are expressed as mean + standard deviation in Table [{.I] Data normal distribution is

Table 4.1: Interclass statistical analysis for AF procedural acute termination assessment.

AF Non AF

termination termination p value
Dy 0.038 £0.019 | 0.015+0.007 | 9.56 - 10~4

Dyq 0.030 + 0.012 | 0.015 4 0.006 8-1073

Dg 0.042 +£0.023 | 0.022 £+ 0.01 6.4-1072

Dy 0.049 £ 0.070 | 0.022 £ 0.01 5.0-1072
D(Vy) 0.068 £0.022 | 0.054 £0.017 | 1.85-107!
RMS(V;) 0.075£0.110 | 0.027 £0.017 | 1.55-107!
SampEn( Ly, rgl)) 0.299 +0.063 | 0.218 £0.107 | 2.67-107!
SampEn(L,, ) || 0.143 4 0.029 | 0.106 + 0.052 | 3.25- 10!
RMSg 0.016 £ 0.009 | 0.009 £ 0.006 | 1.40-10~!
RMS;, 0.024 +£0.015 | 0.016 £ 0.008 | 1.40-107!
RMSg 0.021 £0.016 | 0.021 £0.021 | 3.76-10~!
RMS;, 0.037 £0.048 | 0.026 +£0.024 | 2.48-107!

first verified through the Lilliefors’ test. Interclass differences are then evaluated through
an unpaired Student’s t-test if data follow a normal distribution, a two-sample Wilcoxon
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rank sum test otherwise, under a confidence level a=0.05; p values associated with each
unpaired test are reported in Table as well. The predictive power of our model is
measured by the area under curve (AUC) of its receiver operating characteristic (ROC)
curve, based on the maximization of sensitivity and specificity, i.e., the rate of true pos-
itives and true negatives, respectively. The generalization ability of our analysis to an
independent dataset is assessed by a leave-one-out cross-validation (LOOCV) technique.
More specifically, AUC values are computed several times by keeping a sample of 30 pro-
cedures out of 31 and thus discarding one case at each iteration, so as to compute their
average value at the final step. AUC values of each descriptor are displayed in Table [4.2}
in addition, we report the corresponding average of optimal cut-off values determined by
LOOCV, associated with the maximization of the sum of true positive and true negative
cases determined over the 31-procedure database.

Table 4.2: CA outcome prediction performance for AF procedural acute termination
assessment.

AUC || Best cut-off
Dy 0.98 0.023
D1, 0.91 0.022
Dy 0.77 0.027
Dy, 0.78 0.027
D(V,) 0.68 0.060
RMS(V,) 0.71 0.013
SampEn(L,, r(V) || 0.75 0.289
SampEn(L,, r®) || 0.72 0.139
RMSg 0.72 0.005
RMS;5 0.72 0.011
RMSg 0.63 0.012
RMS;, 0.67 0.014

4.4.3 RESULTS

Our multilead method is first compared with a classical single-lead descriptor of f-wave
amplitude, namely, its mean value in lead V; output by the algorithm previous proposed,
denoted D(V1). Another classical single-lead method focusing on AA signal magnitude
has been considered, namely, the root mean square value (RMS) on the lead Vj, i.e.,
RMS(V;). Finally, a non-linear complexity index, the sample entropy SampEn [I30], is
also examined on the same electrode. This feature depends on two parameters: L, and
rs. Parameter L, represents the length of the sequences the ECG recording is split in.
Such sequences are then compared, and the tolerance for accepting matches is denoted
by the parameter rs. This threshold is chosen as a fraction of the AA input signal
standard deviation in Vy, denoted oy, so as to assure the translation and scale invariance
of SampEn. Both parameters have been set according to the guidelines given in [80],
yielding L, = 2 besides two values of r,, namely, 7{!) = 0.10y, and r{?) = 0.20v; .

In the multilead framework, the discriminative power of our descriptor D, has been
assessed both on the ensemble of 8 linearly independent ECG leads (L = 8), as defined
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in Sec. , and on the full standard ECG (L = 12), yielding indices Dg and Dy,
respectively. The same comparison is carried out by replacing the median with the mean
value when combining the entries of vector Dy, in Eq. (#.20)), thus giving Ds and D12 as
output. More precisely, the index D, has been already proposed in [102], but in this study
PCHIP is applied instead of cubic spline interpolation. Accordingly, the ability of PCHIP
interpolation to effectively render f-wave peak-to-peak amplitude is also examined and
compared with the spline interpolation technique. For the sake of comparison with our
algorithm, after PCA application and rank-1 approximation, the RMS value is computed
on every row of the data matrix Yan resulting from Eq. . This feature is computed

both on 8 and 12 ECG leads, so as to compute the median (P/{M/Sg, P/{K/I/Slz) and mean
values (RMSg, RMS;5). N

Robustness of our multilead predictor D, to ECG lead selection has also been tested.
For each value of lead-subset size L ranging from 1 up to 8, the proposed multilead
predictor has been run on all 8!/((8 — L)!L!) possible lead combinations. CA outcome
prediction performance has then been assessed for each combination of ECG leads from
the corresponding values of Dy, using the LOOCV technique. In this manner, the min-
imum, maximum and mean AUC values over all L-lead subset combinations have been
obtained as a function of the subset dimension L; their corresponding intervals are dis-
played in Fig. [£.4] The lead combinations providing the best prediction performance for

1 = T I

3 e
0.9 T { .
— )
0.8 = o |
- T )
0077 [0) - f > T
= o +
<0.6* 1 .
0.5r 1 - i
0.4r L4 i
< AA
| | | | | | | | © PCA
1 2 3 4 5 6 7 8

Figure 4.4: Dy prediction performance as a function of the size L of the subset of the
8 independent ECG leads. Vertical lines represent the range of AUC values between
the minimum and the maximum obtained for each L; mean values are highlighted with
markers. AA: measuring Dy, directly from the observed AA signal. PCA: measuring Dy,
from approximation in Eq. with R = 1.

each subset dimension are shown in Table[4.3l In order to demonstrate PCA effectiveness
in filtering and enhancing content-bearing information from the AA signal, the same
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Table 4.3: ECG lead subsets with optimal prediction performance based on parameter
Dy

Number of leads (L) Leads
1 Vs
2 IT, V,u
3 I, Vg, Vyu
4 IT, Vi, V4, Vs
5 I, Vi, V3, V5, Vg

[Iu 117 V17 V37 V57 Vﬁ]

6 [L, II, Va, V4, Vs, V)
I, Vi, Vs, Vy, V5, V)
; [1, 11, Vi, Va, Vu, Vs, Vi

[IL v17 v27 V3a V4a VS; Vﬁ]

analysis is repeated by combining all amplitude contributions from each of the leads of a
L-sized subset directly computed on the AA signal, without previous PCA approximation.
Benefits from PCA compression into the most descriptive PCs are demonstrated by results
in Fig. 1.5} showing the AUC values assessing our algorithm performance for each value
of the approximation rank R, ranging from 1 (the value adopted in our algorithm) to 8
(full-rank reconstruction of the input data). Each analysis based on AUC evaluation is
further validated by the LOOCYV technique.

4.4.4 DISCUSSION
BENEFITS FROM AUTOMATIC COMPUTATION OF F-WAVE AMPLITUDE

The predictive value of f-wave amplitude for CA of persistent AF has been scrutinized
in previous studies [I2I]. However, not only it has been manually obtained, but only
one ECG lead has been considered in its computation. By contrast, a method aiming at
automatically computing f-wave peak-to-peak amplitude on a single lead is proposed in
our study (Sec.[£.3.2). As in the study led in [I21], the higher f-wave amplitude, the more
likely AF termination by CA. Values of these parameters are very close to those obtained
in [121] (0.08 £0.03 mV for successful CA procedures, 0.05+0.03 mV for the failing ones,
p < 0.01, AUC = 0.77) However, no significant interclass differences can be highlighted
by D(V1), as reported in Table [4.1]

COMPARISON WITH OTHER ATRIAL SIGNAL PARAMETERS

Single-lead methods for computing f-wave amplitude do not prove to be adequate for
CA outcome prediction. For instance, like D(V}), no significant differences are highlighted
by the RMS value, whose prediction performance is rather inaccurate. Non-linear analysis
is neither capable of distinguishing between successful and failing CA procedures. Indeed,
not only sample entropy SampEn in V; does not prove to be an effective predictor of
CA outcome, but our results show that this index exhibits lower values when dealing
with failing CA procedures. By contrast, lower values of this index were associated with
higher probability of CEE success in [5]. Indeed, these results contradict our hypothesis
about a positive correlation between the sample entropy and AA signal spatio-temporal
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Figure 4.5: Classification performance for the 8 linearly independent ECG leads. AUC of
Dg as a function of R, the number of PCs retained in approximation (4.19)).

complexity. One would actually expect that more organized AA waveforms as measured
by lower SampEn values render a less critical disease profile, easier to be treated by CA.
Yet, this hypothesis is not verified in our study, regardless of the threshold r, chosen.
Finally, not only the computational load demanded by SampEn is notably higher than
that of other predictors, but its parameters must be also tuned, which requires further
assumptions on the AF model.

MULTILEAD ATRIAL SIGNAL AMPLITUDE MEASUREMENT

The method presented is able to exploit spatial variability as a tool for f-wave am-
plitude characterization in CA outcome prediction framework. Regarding this multilead
perspective, features based on RMS values computed on several leads do not seem to be
able to quantify f-wave amplitude content. Indeed, no significant interclass differences
are underlined by these descriptors, and AUC values in Table [1.2] are quite weak too,
especially those related to the prediction performance of RMSg and RMS;5. By contrast,
descriptors defined in our PCA-based multilead framework are more robust and reliable
than their single-lead counterparts and than classical multilead approaches. The novel
predictor Dy effectively discriminates between successful and failing CA procedures, as
shown in Table [1.1] and its values are directly correlated with CA success, in conformity
with results of previous studies [121]. We also confirmed the advantages derived from
multilead analysis, as we can see in Fig. [£.4] that the mean AUC increases as the number

of ECG leads do.
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BENEFITS OF PCA-BASED ECG SIGNAL APPROXIMATION

A further advantage of our multilead approach over the direct examination of AA signal
amplitude is proved in Fig.[4.4l Indeed, AUC mean values associated with our method are
generally higher than those obtained without PCA preprocessing. In addition, the higher
the number of leads, the larger the difference between the two methods, as AUC intervals
partially or completely overlap only when L is sufficiently low. Moreover, additional
benefits derive from PCA compression. As shown in Fig. [4.5] displaying the AUC index
as a function of the PCA approximation rank R, the fewer PCs are retained, the higher
the discriminative power of the predictor. Indeed, PCA ascribes noisy and/or spurious
signal components to the least significant PCs, which seems to enable the extraction of the
information about f-wave amplitude shared by observations when retaining the dominant

PC of the atrial ECG data.

ECG-LEAD PRESELECTION

The use of all 12 leads of the ECG in standard clinical practice is justified by clinicians’
necessity to compare the projections of heart electrical vectors in two orthogonal planes
and at different angles, so as to increase pattern recognition accuracy [96]. However,
as stated in the Introduction of the present thesis, linear relations between limb and
augmented leads do not add further information which can be effectively exploited for
CA outcome prediction. Conversely, it seems that selecting the 8 independent leads
boosts PCA filtering action, as redundant elements are already partially removed before
the decomposition, and the relevant components are put into evidence more easily. This
may explain why Dg outperforms its 12-lead counterpart.

Table (4.3 shows leads helping discrimination between successful and failing CA proce-
dures for a certain subset size L chosen. Note that some ECG lead combinations recur in
each subset. In particular, the optimal L-lead subset typically includes leads of smaller
optimal subsets, together with a new electrode. The presence of leads representing heart
electrical activity on multiple planes confirms again the hypothesis that clinical informa-
tion coming from multiple electrode locations can improve ablation outcome prediction.It
is also worth noting that lead V; starts giving effective contribution when more than 4
leads are considered, in contrast with standard medical practice for AF analysis focusing
on feature extraction in this electrode for single-lead analysis [129]. This result can be
probably explained by the fact that this lead is not close enough to the PVs and the LA,
therefore it is not able to sufficiently characterize information from these sites.

COMBINING CONTRIBUTIONS FROM MULTIPLE ECG LEADS

In this section further attention is paid to the computation modalities of the multilead
descriptor of f-wave amplitude, i.e., how single-lead contributions coming are combined
with each other. Such feature should provide a measure of central tendency of the dataset,
namely, the value which is roughly equidistant from all the elements of the set considered.
Experimental evidence reveals that the median value statistic (-) performs better than
the mean (-) on our signal database, since it is less sensitive to outliers. Furthermore,
the median is more suitable for skewed data distributions, this being often the case of
f-wave amplitude, whose visibility and magnitude can depend on lead location as well

as on AF characteristics in the patient examined. Hence, the low accuracy affecting CA
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outcome predictors D5 and Dg. These results do not seem to generalize evidence reported
in [102]. This phenomenon can be probably explained by the fact that the mean value Dy,
indistinctly takes contributions from all leads into account. On the contrary, the median
Dy, exclusively highlights the role played by the middlemost elements in the sequence of
contributions. In this manner, the global trend of f-wave amplitude is effectively depicted,
while neglecting the extrema of Dy, which are generally not representative enough to
summarize the main characteristics of this spatial distribution.

CONCLUSIONS

The method put forth in this section is able to predict CA outcome in persistent AF
by exploiting information about spatial distribution of f-wave amplitude. Such knowledge
is effectively characterized on standard ECG by means of reduced-rank approximation to
AA signal determined by PCA, which filters out the least significant components of the
signal while enhancing the most discriminative contributions. An algorithm for f-wave
amplitude computation based on PCHIP interpolation is also presented. This automatic
approach yields results comparable with those reported in [121I] and helps overcoming
the shortcomings of manual measures. Combination of interpolation operations and PCA
approximation, followed by the averaging of lead contributions, effectively improves CA
outcome prediction quality. The proposed method overcomes traditional classification
approaches and proves to be more robust to lead selection, which can be an advantage in
practical settings where, e.g., electrodes may become loose or get disconnected from the
patient’s skin.

4.5 MEASURES OF CENTRAL TENDENCY FOR LONG-TERM
CA OUTCOME PREDICTION

The predictive power of the proposed descriptor of f-wave amplitude is now investi-
gated so as to verify whether it can be extended to long-term CA outcome prediction.
As explained in Sec. [3.5.5] changes in classification criterion do not only concern the
duration of the follow-up, but also the evaluation of procedural success, merely defined as
AF conversion to SR in the long-term follow-up, namely after 6 months [25]. In addition,
we do not aim at evaluating the specific ablation intervention, but the patient’s condi-
tion in a more general framework, which takes into account every factor of AF history
and evolution after ablation. Accordingly, complementary cardioversion therapies (either
electrical or pharmacological) and /or additional CA procedures can also contribute to the
final outcome of ablation.

4.5.1 METHODS AND RESULTS

In this experimental section, we are going to test our method on the ECG database of
np = 36 patients presented in Sec. [3.5.5] Freedom from AF recurrence is investigated in
a long-term follow-up period of at least 6 months. As in the short-term analysis, also in
this case we have to deal with unbalanced categories, since the database is characterized
by a low number of failing CA procedures (np = 7). The influence of this factor on pre-
diction performance needs to be more clearly elucidated. Accordingly, unpaired statistical
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analysis is led as explained in Sec. results are displayed in Table 4.4 Table [4.5] also

Table 4.4: Interclass statistical analysis: extension of amplitude measures to the long-term

follow-up.

AF Non AF
termination termination p value
Dg || 0.033£0.020 | 0.034 £0.016 | 9.5-107!
D15 || 0.0304+0.013 | 0.031 +£0.015 | 7.8 - 107!
Dg || 0.03540.022 | 0.048 +0.026 | 1.9- 1071
Dy || 0.032£0.017 | 0.042 4+ 0.021 | 2.0- 107!

reports classification performance results.

Table 4.5: CA outcome prediction performance: extension of amplitude measures to the
long-term assessment of AF termination by CA.

AUC || Sensitivity || Specificity || Best cut-off
Dg || 0.49 0.59 0.57 0.033
Dy || 0.51 0.62 0.57 0.030
Dg || 0.63 0.21 0.86 0.045
D1y || 0.65 0.21 0.86 0.036

4.5.2 DISCUSSION AND CONCLUSIONS

Our investigation demonstrates that each of the amplitude features previously pro-
posed can not accurately discriminate the categories of interest and generalize our results
to long-term prediction of CA outcome. This can be probably explained by the mul-
tiplicity of confounding factors (e.g. cardioversion, additional ablations), whose impact
may be not adequately reflected on the atrial amplitude index. Owing to the risk of
arrhythmic episodes and the application of complementary therapies after CA over the
long-term follow up (namely, chemical or electrical cardioversion), these two criteria can
return different results for the same patient.

By contrast, multivariate RMS-based parameters now seem to be able to effectively
predict AF termination by CA in the long-term followup, in contrast with evidence related
to prediction of acute procedural success. This can be probably explained by the impos-
sibility for these parameters to capture certain effects immediately after CA performance,
which may be hidden by inflammations and other postoperative reactions. The impact of
such factors probably decreases after several months, whereas the role of other elements,
such as atrial remodeling and auxiliary therapies, becomes more important.

As explained in Sec. [4.4.4] each ECG lead yields its own contribution to the character-
ization of the heart electrical vector in terms of magnitude and orientation, thus providing
a different perspective of AF activity. As a consequence, such a specificity may be lost
when simply averaging single-lead terms into a unique f-wave descriptor. This observation
led us to explore other techniques which can selectively enhance the most content-bearing
ECG leads so as to improve long-term CA outcome prediction. This line of investigation
will be illustrated later in Chapter [6]
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4.6 ASSESSMENT OF THERAPY EFFECTS ON AF DYNAMICS
DURING CA

4.6.1 INTRODUCTION

In this section we examine the ability of the f-wave amplitude index proposed in Sec.
to describe changes in AF pathophysiology during CA. We now investigate whether f-
wave amplitude information can be used to quantify CA impact on AF by considering
the evolution of heart electrical activity throughout the intervention. More precisely, we
aim at assessing ablation effects by looking for a relation between the initial and the final
part of the procedure and observing how f-wave amplitude varies within this temporal
window.

This parameter highlights variations in f-wave amplitude for each patients’ category,
and allows the quantification of the ablation effects at different follow-up lengths. More
specifically, we will demonstrate that a decline in f-wave amplitude between the beginning
and the end of the procedure can be remarked in patients experiencing AF termination
by CA, for the two follow-up windows considered in this study.

4.6.2 ECG DATA AND CA OUTCOME CRITERIA ASSESSMENT

According to the guidelines provided by HRS Expert Consensus Statement guidelines
for CA trials [25] and introduced in Sec. [4.4.1] for each AF patient we can examine pro-
cedural success according to multiple criteria, which differ from each other, for instance,
for the observation time and the endpoint of the procedure.

Following these guidelines, two different criteria of procedural success have been in-
troduced into our study. Short-term CA outcome is verified on the dataset of 31 CA
procedures defined in Sec. . Long-term CA success is assessed on the 20-subject
dataset described in the same section. Under this hypothesis, AF termination has been
observed in 13 patients out of 20. The smaller size of the second dataset is due to the fact
that some ablations were accomplished not long before this study, so long-term outcome is
still unknown. For each sample of both datasets, one-minute surface 12-lead ECG signals
acquired at the beginning and at the end of the CA procedure are examined.

4.6.3 MULTILEAD DESCRIPTOR OF F-WAVE AMPLITUDE

The single-lead contributions to f-wave amplitude spatial distribution characterization
are computed on the rank-1 AA signal PCA-approximation as explained in Sec. by
Eq. (4.20), and they are finally averaged so as to yield the index:

L L
>de X ma|D(z:) |
- =1 _ 4=l

jmy ||
D, = = = D 4.21
L L L L (1) ( )

In [102], the role of Dy, as a CA outcome predictor has been evidenced in a multivariate
framework, as explained in Sec. [£.3.6} the higher its value, the more likely procedural AF
termination. In this section, a further role is herein ascribed to D; as a descriptor of AF
evolution during CA, reflected on f-wave amplitude temporal variations which are negative
for successful procedures, positive otherwise, regardless of the observation period during
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Figure 4.6: Example of a scatter plot of random data, the regression line y = Sz + I and
discrepancies d; between estimated and real data

follow-up. Such variations are quantified by means of the linear regression analysis [14].
Generally speaking, given an observation ¢, this approach models the interaction between
an independent (or control, or predictor) variable z; and the effect (or response) variable
y; by means of the linear law:

where S stands for the slope of the straight-line relationship and I the intercept with
the y axis, computed by the least squares (LS) method, which takes into account the
discrepancies d; between real observations y; and their estimation Sx; + I, as shown in
Fig. Mathematical demonstration is provided in Appendix[A.1 The additional term
e represents the unknown error component superimposed on the true linear relation, due
to the measurement system or random disturbances. With reference to our application,
we aim at modeling CA therapeutic impact as rendered by changes in f-wave amplitude
measured between the beginning of CA (START) and its completion (END). Accordingly,
in our application the index Dygparr represents the regression independent variable, and
we investigate whether any linear law can describe its relation with the dependent variable

DLEND'

4.6.4 STATISTICAL ANALYSIS AND RESULTS

Values of all parameters are expressed as mean + standard deviation for each category
in Table Subscripts SUCC and FAIL refer to successful and failing CA procedures,
respectively, according to the protocols above presented, whereas subscripts ST and LT
are related to the length of the observation followup (short-term and long-term period,
respectively); headings START and END are associated with the moment of the acqui-
sition of the ECG recordings during the procedure. In this experimental session, in line
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Table 4.6: Regression analysis of the parameters Dy, D(V}), Dy (mV) and NMSE (n.u.:

normalized units).

START END Rp S Ps P,
(Di)svcost || 0.049=0.070 | 0.046 % 0.060 | 0.982 0836 | | o 1 18 | 509 10—
(Dy)pamsr || 0.022+0.010 || 0.033 £ 0.027 || 0.900 | 2.422
(Dp)sucear || 0.055 +0.100 || 0.051 = 0.085 || 0.998 || 0.849 s o
(Di)eamor || 0.039 +0.020 | 0.036+0.023 | 0.894 | 1.008 | 352710 47610
(Du)sucest || 00800012 [0.029£0.014 [ 0.448 [0.527 [ oo o [ ga 0t
(Dp)pamwsr || 0.01540.006 || 0.016 +0.010 || 0.788 || 1.381 | '
(Du)svccar || 00260000 [ 0.027£0.010 [ 0.725 0701 [ o0
(Dy)pampr || 0.035+0.013 || 0.031+0.021 || 0.561 | 0.878 | '
D(Vi)svecst || 0.068 £0.022 [ 0.067 =0.022 [ 0.789 [ 0.802 [ oo 5 [, 01 10
D(Vi)pamwsr || 0.054 % 0.018 || 0.048 +0.012 || 0.665 || 0.446 | :
D(Vi)sucorr || 0076 £0.024 | 0.070£0.023 | 0.883 | 0834 | o o || o g
D(Vi)pamrr || 0.05440.012 || 0.062 +0.020 || 0.840 || 1.392 || :
(NMSEs)sucest || 154+159 || 14.0+14.1 [ 0.092 || 0.082 s o
(NMSEs)pamsr | 187169 | 35.5+20.7 | 0813 || 1.428 | 24010 6.72-10
(NMSEs)succrr | 980 £9.65 | 8.50+7.80 || 0.476 || 0.384 o o
(NMSEy)eamrr | 251247 | 265+289 | 0251 || 0.204 | 54910 7.54-10

with [103], we set L = 12 so as to take into account all lead contributions in regres-
sion analysis. For each patients’ group (SUCC, FAIL) and follow-up window (ST, LT),
the relation between Dy values computed at the beginning of the ablation (independent
variable X') and those obtained at its completion (dependent variable Y') is assessed by
the linear regression analysis. The value of Pearson’s correlation coefficient Rp, defined
in Appendix [A.]] is computed so as to assess the validity of linearity hypothesis. We
assume that the value of the slope S of each regression law Y = SX + I can quantify
CA effects over patients’ heart substrate and their temporal dynamics, knowing that the
intercept I has small values. In addition, statistical differences between slope values have
been assessed through a parallelism test [I56] for each couple of regression lines (SUCC,
FAIL); p values output by such test are computed as explained in [I56] and are referred to
as Pg and Py in Table[4.6] In first approximation, we assume that intercept value is close
to zero and can be neglected. Then, in order to confirm the validity of our hypothesis,
we perform a further test to assess statistical differences between the intercepts of each
linear law, quantified by the p value P;. If the slopes are significantly different, there is no
point comparing intercepts. If the slopes are indistinguishable, the lines could be either
parallel with distinct intercepts, or identical (i.e., same slopes and intercepts) [166].

The scatter plots in Fig. display the distribution of D}, values acquired after the
completion of the ablation ((Dr)gnp) as a function of those describing the beginning of
the procedure ((Dy)srarr) for each criterion of procedural success (short-term success
and long-term success, respectively); the regression laws related to each category are also
represented. Statistical analysis has been carried out under a confidence level a equal to
0.05.

A comparison with previous works has been drawn as well. F-wave peak-to-peak
amplitude D(V}) has been studied on lead V; [102, 121]. In addition, the NMSE;3 index
defined in [19] as the NMSE between the AA signal and its rank-3 PCA-approximations
on Vi is examined as well. This index will be further studied in Chapter 5} It has also
been computed for each CA step and analyzed according to the aforementioned protocol.
Finally, in order to assess the ability of the mean value to properly condense ECG leads’
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Figure 4.7: Scatter plot of (Dp)pyp as a function of (Dp)gpagry and data regression lines
associated with each category (successful CA: 'O’ continuous line; failing CA: ’x’, dotted
line.). (Left) Short-term follow-up; (Right) Long-term follow-up.

contributions in a unique measure, the proposed index Dy has been compared with the
median f-wave amplitude as rendered by D and defined in [106].

4.6.5 DISCUSSION AND CONCLUSIONS

Results of our analysis in Table show highly linear correlation between D values
acquired at the beginning of the procedure and those determined at the end. This result
can be generalized for each class of subjects and CA outcome observation time. Ex-
perimental evidence also confirms our assumptions about reduction in f-wave amplitude
within the observation temporal window chosen. Indeed, a significant reduction in f-wave
amplitude is found to be associated with CA success, quantified by a value of the slope S
lower than unity. By contrast, when CA procedures are ineffective, the index D increases
or remains unchanged, which can be a clue of disease presence even after the ablation.
Moreover, statistically significant differences can be observed for S values between the
groups under examination (SUCC, FAIL) at each time of follow-up. Such results con-
firm the robustness of the ECG-based feature proposed even in presence of outliers. For
example, even when we remove the point (Dy)pam st = (0.036,0.079) in the regression
analysis, values obtained do not invalidate conclusions drawn by previous experiments
(R=0.99, S =1.34, Ps = 0.037). This evidence shows the ability of our descriptor to
evaluate CA impact over AF evolution, which are specific for each group of subjects. Mean
f-wave amplitude on V; (D(V7)) provides statistically significant inter-class differences,
but its short-term value decreases after CA whether the procedure is effective or not.
This outcome is not consistent with our initial assumption, as we expect a reduction
in f-wave amplitude only when CA is successful. Moreover, the linearity assumption is
not as reliable as for our descriptor. Single-lead amplitude seems to distinguish between
the categories considered (SUCC, FAIL) more accurately in the long-term than in the
short-term follow-up. However, its discrimination ability is clearly outperformed by that
of our multilead descriptor, since interclass differences are quantified by lower Pg values.
Regarding NMSE3, even though significant differences are reported for the short-term CA
outcome examination, the linearity hypothesis proves to be quite weak, especially when
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dealing with successful procedures, as proved by the low R values in regression analysis.
Similarly, analysis over longer periods shows no significant differences between regres-
sion line slopes. Moreover, our investigation merely focuses on Vi, the lead classically
employed in clinical practice for AF analysis in surface ECG. Even if it is well known
that this is the lead with the largest atrial-to-ventricular signal amplitude ration [129],
contributions from other leads are not analyzed at all by this classical approach. Some
pertinent information is neglected, thus leading to a partial comprehension of the disease.
Concerning the median operator D, despite the capability of effectively predicting of
acute AF termination by CA [106], it seems not be able to differentiate successful and
failing CA procedures when looking at f-wave amplitude dynamics, since the regression
laws are not significantly different between each other. Moreover, data distribution is not
accurately described by a linear law, as proved by the low regression coefficients values.
This result could be explained by the fact that averaging single-lead atrial amplitude con-
tributions better preserves information about CA dynamics. Indeed, it is more sensitive
to amplitude variations, in particular those of extrema values (i.e., very low and/or very
high amplitude values). By contrast, the median operator rejects outliers more easily, and
this probably leads to discarding contributions describing amplitude dynamics.

To summarize, we corroborated the ability of the index D to quantitatively evaluate
CA impact on AF dynamics during its performance through a multilead characteriza-
tion of f-wave amplitude variations. A linear correlation between the beginning and the
end of the procedure has been demonstrated. In particular, a reduction in D; values
can be associated with successful procedures, thus showing CA efficacy in progressively
suppressing f-waves, regardless of the length of the postoperative followup. Experimental
evidence proves that AF pathophysiology is deeply influenced by CA performance, and
its modifications can be noninvasively quantified by f-wave amplitude variations in the

standard ECG.

4.6.6 FURTHER DEVELOPMENTS

In this section, we investigate whether these results can be extended over a larger
database in a longer follow-up. Therefore, we repeat AF dynamics analysis on the 36-
patient database introduced in Sec. in the framework of long-term CA outcome
prediction. Furthermore, we compare the measures of central tendency presented in this
chapter, namely, mean value of the f-wave amplitude descriptor D and the median D;.
Both the 8-lead subsets and the full standard ECG are examined. Finally, we examine
the AA signal interpolation techniques presented in [I03] and [106], i.e., the cubic spline
method and the PCHIP algorithm, respectively.

In Table [4.7] we can generally remark that it is hard to generalize our initial assump-
tions over the database considered.

For instance, as in the previous analysis, despite the significant differences between
the related linear laws, Table [4.7| underlines that mean amplitude D(V}) always decreases
within CA performance time regardless of the procedural outcome. The NMSE index
is also affected by several drawbacks, including the lack of linearity of the relation hy-
pothesized. Generalization of previous results obtained on the parameter D;, cannot be
effectively accomplished on this database. When applying the spline technique, not only
linearity assumption seems not to be correct, but the hypothesis that f-wave amplitude
decreases only when CA is effective is not verified anymore. Similar conclusions can be
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Table 4.7: Linear regression of f-wave amplitude: statistical analysis and results over the
36-patient ECG database.

START END Rp S Ps P,

(Diz)suceseuine | 0039 % 0.028 | 0.0546 %+ 0.071 | 0.676 | 1726 | | oo 1055 || o1 191
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(Ds)ramspLve || 0.061 £ 0.039 || 0.08640.055 | 0.882 | 1.241 || '
(Dio)succseuine || 0036 %0.020 [ 0.030 £0.026 [ 0.735 [[0.913 [ oy 1051 [ 7 15 190
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Ds 1.24-1072 | 1.08- 10
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(Diz)succ.pemp || 0.082%0.017 [[ 0.045£0.062 [ 0538 [ LOTL [ (o0 5o [ 5 4= 10
(Dis)parpere || 0.04240.021 | 0.048 +0.026 | 0.629 || 0.782 || '
(Ds)sucopcme | 0.085%0.022 | 0.034£0.018 | 0635 |[0.524 || oo 055 ([ og 1t

(Ds)pampcue || 0.048 +0.026 || 0.061 +0.036 || 0.663 || 0.907 | = '
(Dis)succpene | 0.020%0.013 [ 0.033£0.030 [ 0330 [[0.740 [ oo 0o o059t
(Dya)pampere || 0.031 4 0.015 || 0.033+0.024 || 0.500 || 0.776

(Ds)succpcrme || 0.033£0.019 | 0.032£0.017 [ 0359 | 0.306 || o 20 104 || 916 10-2

(Dg)paipeap || 0.034 £ 0.016 || 0.04540.034 || 0.726 || 1.502

D(Vi)succ 0.065 £ 0.028 || 0.064 £0.028 [ 0.860 [[ 0.839 [ "o [l 2 0 (g3
D(Vi)rarL 0.075 + 0.040 || 0.078 £0.033 | 0.920 || 0.758 || - '
(NMSEs)suce || 10.2+10.0 96+10.6 | 0.362 || 0.382 o o
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drawn when the PCHIP interpolation is introduced into the atrial amplitude algorithm.
However, we can interestingly remark that the parameter Dgpcprp presented in [106] and
herein discussed in Sec. [£.3] is able to effectively quantify CA impact over AF dynamics
as assessed in Sec. .6.4] since median f-wave amplitude descriptor decreases if CA is
effective, otherwise it rises. The linear relationships computed are statistically different
from each other, despite the lack of linearity of these features, which can be due to the
limited number of sample (especially in the group of failing CA procedures) and the
influence of certain outliers (among patients experiencing procedural AF termination), as
shown in Fig. . For the sake of completeness, regression analysis of mpo 1p has been
also performed in the short-term follow-up context. Indeed, in Fig. we can remark
that also in shorter follow-up windows actual amplitude data are not accurately fitted
by a linear law. In addition, slope values are lower than 1 both when dealing with suc-
cessful CA procedures (CA beginning: (Ds)start pcmp = 0.038 +0.019; CA conclusion:
(Ds)exp,porrp = 0.0320.09) and failing interventions ((Ds)starr,pcrp = 0.015 = 0.007,
(Eg)ENDPCHIp = 0.019 + 0.009), thus contradicting our hypothesis about the link be-
tween f-wave amplitude variations and procedural outcome. This experimental session
also highlights how difficult it is to generalize AF dynamics during CA due to the wide
variety of factors differentiating the short-term follow-up period (such as postoperative
inflammations, edemas, anesthesia) from the long-term phase (complementary cardiover-
sions therapies, atrial remodeling). In addition, similarly to classification tasks, regression
analysis is hampered by the examination of unbalanced categories, thus the need to vali-
date these results on larger databases, in particular with more data related to failing CA
procedures.
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Figure 4.8: Scatter plot of (Eg)START’PCHIP as a function of (Eg)END’PCHIP and data
regression lines associated with each category (successful CA: ’O’; continuous line; failing
CA: ’x’, dotted line). (Left) Short-term follow-up; (Right) Long-term follow-up.

4.7 SUMMARY AND CONCLUSIONS

In this chapter, the role of f-wave amplitude as a predictor of CA outcome in per-
sistent AF has been investigated. In particular, its spatial distribution has been as-
sessed on standard ECG, thus exploiting its multilead properties and overcoming the
limited perspective of traditional single-lead methods. In addition, amplitude measures
are uniquely determined and objective, since the algorithms proposed are fully automatic.
Indeed, the introduction of signal interpolation techniques considerably improves ampli-
tude computation accuracy, and f-wave global trend is effectively rendered. In addition,
we demonstrated that reduced-rank approximations determined by PCA are able to cap-
ture the most descriptive components of the AA signal, which are relevant to f-wave
amplitude characterization. Statistical measures of this ECG feature are found to be
able to discriminate between successful and failing CA procedures, thus predicting acute
AF termination, as illustrated in Sec. [£.3] The extension of such results to long-term
CA outcome prediction is then carried out in Sec. [4.5 Finally, spatial diversity of f-wave
peak-to-peak amplitude has been probed on standard ECG in combination with temporal
dynamics within CA procedural time. Linear regression analysis allows for quantification
of CA effects on heart substrate, which are found to be correlated with CA outcome, as
demonstrated in Sec. 4.6l

Despite the effectiveness of our methods for f-wave amplitude characterization a CA
outcome prediction, they merely extract an average information about f-wave amplitude
without taking signal variability into account. To this goal, an attempt in this direction
has been made in Sec. by characterizing AF evolution between two distinct procedural
moments. However, combining spatial information with knowledge about temporal AF
variability could be of interest for our application, as we could expect a relation between
signal variability and ablation results. In the next chapter, we investigate whether it is
possible to assess AF temporal variability also within a specific moment of ablation (in
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particular, the early beginning) and attempt to exploit such information to perform CA
outcome prediction.
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5 MULTILEAD DECOMPOSITIONS OF ECG SIGNAL FOR

STV FEATURE DEFINITION IN CA OUTCOME PREDICTION

5.1 INTRODUCTION

As we recalled in Sec. the mechanisms underlying AF are not yet fully under-
stood. Indeed, AF has a complex pathophysiology, with various substrates and mecha-
nisms interacting in a complex fashion. This arrhythmia has long been described as a
disorganized or “random” phenomenon [78, TT11]. However, more recent works have high-
lighted the existence of an underlying structure behind the apparent chaos [22], depending
on myocardium anatomy, electrophysiological properties, and autonomic innervation [94].
Several factors influence this activity, including age, simultaneous occurrence of other
pathologies and effects of atrial remodeling due to disease chronification. Knowledge
about AF organization has a crucial clinical value, as it can help clinicians determining the
mechanisms triggering AF and choosing the most suitable therapy [47, 53]. Furthermore,
spatiotemporal mapping of AF organization could enhance recognition of wave patterns
and evaluate their correlation with atrial functional and structural properties [94].

Several attempts at quantifying AF organization have been made in previous studies.
However, most of them focus on endocardial recordings, which are invasively acquired
and mainly provide quite a local perspective of heart electrical activity [21) 48]. Other
works 4], [I8, 150] have rather explored surface recording properties so as to assess AF
complexity noninvasively. Nevertheless, analysis is usually led in only one ECG lead,
therefore potential clinical information from other leads could not be taken into account.
Yet in [19] it has been demonstrated that atrial spatial variability manifests itself, and
thus can be measured, on surface recordings. AF variability has been explained not only
according to its temporal evolution, namely, in terms of the temporal repetitiveness of
its pattern, but also by taking into account its spatial distribution over heart substrate,
which can be easily observed on surface ECG signals, due to the different locations of
recording electrodes.

So far, information about AF organization and its intrinsic variability has not been
directly exploited for assessing AF therapy effects, in particular CA outcome. In fact, we
could expect that CA treatment could influence the degree of pattern complexity when
converting AF to SR or other more organized arrhythmia (for instance, AFL). Conversely,
we could also suppose that more variable and irregular atrial waveforms hint more complex
in-depth phenomena, which are more difficult to be treated by CA, whose effectiveness
strongly depends on the correct detection of AF sources.

In the light of these considerations, this chapter tries to shed some light on spatio-
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temporal variability (STV) of AF as assessed on the 12-lead ECG and investigate its links
with AF therapy outcome. Henceforth, after an overview about classical methods for STV
characterization in Sec. [5.2] we develop our multilead framework and their application
to CA outcome prediction in persistent AF. Several multivariate techniques have been
investigated for characterizing AF STV content in CA outcome prediction, with particular
attention to PCA, weighted PCA (WPCA) and nonnegative matrix factorization (NMF)
in Sec. [5.3] Sec. and Sec. [5.5] respectively. Some general conclusions about AF STV
investigation are drawn in Sec. [5.7]

5.2 MOTIVATION AND LINKS WITH AF ORGANIZATION

Since a unified definition of AF organization has not been given yet, this concept has
been widely employed to characterize different but complementary properties of heart
electrical activity during AF, such as the repetition rate of atrial activations, correlation
among atrial electrograms, and the level of morphology similarity of waveforms recorded
at several atrial sites [94].

Measures of STV content have been mainly applied to classification of AF organi-
zation into different categories after visual inspection of waveform size, shape, polarity,
amplitude, and beat-to-beat intervals, first observed on atrial electrograms (AEG). The
degree of organization of AF wavefronts propagating inside the atria has been tradition-
ally examined on intracardiac recordings. In [I61] bipolar atrial electrogram signals have
been classified on the basis of the AEG morphology and the nature of its baseline into 4
types, presented in Sec. [3.3.5 The same section also recalled another classification system
widely employed in clinical centers and put forward in [78], based on the evaluation of
AF frequency and irregularity by means of high resolution epicardial mapping of the RA
free wall, as well as the incidence of continuous electrical activity and reentry.

As stated in Sec. [3.3.3] other models also tried to explain AF activity as the result
of interactions between multiple wandering atrial wavelets [I11]. Further studies have
then confirmed the potential role of pulmonary veins (PVs) as an important source of
spontaneous electrical activity initiating AF [62, [69).

The need for a systematic and quantitative evaluation of AF organization has prompted
the development of several mathematical tools. As a consequence, different criteria and
measures have so far been proposed for assessing this characteristic of AF pathology. The
rationale is to investigate evidence of some underlying structure in atrial activity during
AF. The wide variety of methods proposed in the literature makes it difficult to compare
and interpret such indices.

In [21] the level of spatial correlation between multiple activation sequences is cor-
related with AF presence, and enables selection of antiarrhythmic drug therapy for SR
maintenance. In [48], AF morphology characterization based on PCA and automatic
clustering provides a quantitative tool for AF classification. The study described in [123]
also proposes more advanced techniques for feature extraction and SVM-classification to
perform the same task. Other approaches focus on temporal regularity of atrial acti-
vations and assess AF complexity according to the level of beat-to-beat variability [95].
More recently, time-frequency analysis has been applied to intracardiac recordings for
paroxysmal AF analysis in [126]. Despite their effectiveness, such approaches are all inva-
sive. Furthermore, even though information provided by endocardial recordings is local,



MULTILEAD DECOMPOSITIONS OF ECG SIGNAL FOR STV FEATURE DEFINITION IN
77 CA OUTCOME PREDICTION

thus very accurate, in certain cases AF analysis could benefit from a wider perspective of
heart electrical activity, accounting for multiple sites and their interaction. Noninvasive
recordings can render a global vision of AF dynamics and noninvasively provide measures
of heart electrical activity. Some nonlinear measures based on sample entropy [130] com-
puted on surface ECG have also been exploited to predict spontaneous paroxysmal AF
termination [4]. This study also claims that more organized AF patterns as quantified by
this index predict AF termination by CEE. The main drawback of these indices is that
they are computed in only one ECG lead, thus potential information about AF complexity
provided by the remaining leads is not exploited.

Recent attempts to exploit ECG spatial properties have been made in [I50] by com-
bining frequency and complexity measures, in order to discriminate between persistent
and long-standing AF. Also, in [57] wavefront propagation maps extracted on BSPM
recordings have been used for visual classification of AF complexity types according to
Konings’ criteria [78]. This research prompted a quantitative multilead analysis in [18],
and underlines that AA spatio-temporal organization can be effectively represented by the
first few PCs determined by PCA, retaining most of the total variance, thus quantifying
the similarity between the principal subspaces of the AA signal along consecutive time
segments.

An attempt of assessment of AF therapy effects by means of complexity measures has
been subsequently performed in [19], which demonstrated that AF complexity estimated
in lead V; decreases after CA performance. Nevertheless, analysis is still limited by the
single-lead perspective and therefore most of multilead ECG spatial content is not entirely
exploited. Furthermore, no correlation with procedural outcome has been demonstrated.

In this chapter we take a step from past works focusing on AF complexity in order
to outline this property in a multilead framework, thus stressing the descriptive power of
spatial diversity typical of standard ECG. Indeed, it is widely known that measures of
AF organization depict its level of chronification, which profoundly influences the choice
of the therapy. On the other hand, the therapy itself modifies the heart substrate, and
thus the degree of complexity of the arrhythmia, as confirmed by [60]. In this thesis
we show that therapy-induced changes are reflected on STV content as measured by our
noninvasive multilead indices. We also demonstrate that such indices, measured before
CA, can predict its outcome, hence they can be a useful tool for an improved patient-
tailored management of AF.

As stated in the previous section, PCA decomposition has already been applied both
to endocardial [48] and surface recordings for AF analysis [19, 67]. In Sec. PCA
has been performed on standard ECG in order to describe f-wave amplitude spatial
distribution. Similarly, PCA could help estimating how AF organization is distributed
over heart substrate thanks to different lead locations. Such complexity can be ren-
dered by its temporal evolution along ECG recording, namely, by evaluating the de-
gree of temporal repetitiveness of signal patterns. To this end, we split the multi-
lead AA signal Yaa in Eq. in a fixed number S of equal-length segments (see
Fig. , each containing Ng = [N/S] samples, so that Yaa = [YN, Y® . YO,
with Y® = [y((s — 1)Ng + 1),y((s = 1)Ng + 2),...,y(sNs)], s=1,...,5. We can
thus fix a reference segment r # s, so as to assess the persistence or repetitiveness of the
components of the AA signal Y over the length of the whole recording.

In the next sections, some multivariate approaches for extracting STV content from
the AA signal are illustrated. We explain how such information can be mathematically
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Figure 5.1: Repartition of the multilead AA signal in segments for STV content extraction.

assessed on the 12-lead ECG, and results of their application to CA outcome prediction
in persistent AF are also provided and discussed.

5.3 MULTILEAD STV PREDICTORS IN THE PCA FRAME-
WORK

Taking a step from [I8], we assume that components of the reference segment r in the
ECG signal can be extracted by applying a linear transformation:

Y@ = MIx ) (5.1)

Subsequently, a fixed number n of columns M(") is extracted from the mixing matrices
M) computed by PCA in this reference interval. Such columns, the so-called principal
directions, weight the relative spatial contribution of the PCs to the ECG leads. After
these steps, AA signal is estimated in all other segments s # r by projecting Y) on the
subspace spanned by the columns of M) computed in r, thus yielding;:

Yer — MOMO MO MOy (5.2)

n n

that is, the orthogonal projection of Y on the span of M("). In the light of these
considerations, we expect that the closer the estimation as defined in Eq. to the
reference signal, the more persistent this atrial component throughout the recording, thus
suggesting a sort of repetitiveness of the pattern, hence a higher level of organization.
Therefore, the approximation quality can be generally evaluated by means of the normal-
ized mean square error NMSEES’T) between the actual signal yés) (t) on the ¢th lead and its
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estimation yés (1)

*Ns (s) t) — ~(s,7) t 2
X ) =g ()]
NMSE(S r) (871)N5+1 (5 3)
sNg B ’
S e
t=(s—1)Ns+1
with £ =1,---, L. In [I8] it was shown that more organized AA waveforms needed fewer

PCs to be approximated with an adequate level of accuracy. Consequently, for sufficiently
low values of n, an inverse relationship between NMSE and AF organization was remarked,
since the higher the NMSE value, the more disorganized AA. That study investigated the
recurrence of the components related to the first segment, therefore the mean NMSE
is computed by setting » = 1, and averaging Eq. over the remaining segments
(s = 2,...,5). Nevertheless, this index has been computed in only one fixed ECG
lead, Vi, which exhibits the largest atrial-to-ventricular amplitude ratio, as previously
stated [129]. Yet its proximity to the right atrial free wall may neglect useful information
about other sites, in particular the left atrium and the PVs, which play a crucial role in
AF initiation and maintenance [62]. This observation prompts us to consider other leads
in order to yield a global view of AA evolution.

5.3.1 COMBINATION OF NMSE INDICES IN A MULTILEAD FRAMEWORK

After PCA performance, we investigate how to properly combine NMSE values com-
puted on each ECG lead so as to extract predictive information about AF therapy out-
come. To overcome issues affecting previous studles We propose computing the mean
value p,, and the standard deviation oy, of NMSEZ »” values over all possible combina-
tions of estimated and reference segments (s, r), for each lead ¢ [I01]. Index s, offers a
global perspective of segment estimation performance, whereas oy, gives a measure of AF
inter-segment variability along the recording. Contributions from the L leads analyzed
are thereby combined into the interlead NMSE weighted sum:

ApcA, = an/z = (5.4)

=1%n

whose weights are represented by NMSE inverse variance values U% per lead; contribu-
Ln

tions coming from ECG leads rendering more regular and less dispersive patterns are thus
considered to be more relevant. A further interpretation of oy, can be given in terms of
uncertainty: low standard deviation values render a more stable reconstruction across time
segments, whereas high values denote higher projection error uncertainty. Accordingly,
leads guaranteeing a more robust AA content characterization have a stronger influence
in the computation of the output descriptor. The choice of such weights can be further
justified if we assume that the complexity information is reflected on the ensemble of
ECG leads as a set of independent random variables. The best linear minimum-variance
unbiased estimator of the complexity descriptor will thus be given by the weighted mean
of Eq. [75]. As a result, greater weight is given to values coming from lower-variance
distributions. The flow chart in Fig. summarizes the main processing stages of our
method.
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