
HAL Id: tel-00940511
https://theses.hal.science/tel-00940511v1

Submitted on 1 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Erasable coercions: a unified approach to type systems
Julien Cretin

To cite this version:
Julien Cretin. Erasable coercions: a unified approach to type systems. Programming Languages
[cs.PL]. Université Paris-Diderot - Paris VII, 2014. English. �NNT : �. �tel-00940511�

https://theses.hal.science/tel-00940511v1
https://hal.archives-ouvertes.fr

Université Paris Diderot (Paris 7)
École doctorale 386 : Sciences Mathématiques de Paris Centre

Équipe Gallium, Inria

Doctorat
Informatique

Coercions e�açables :
une approche uni�ée des systèmes de types

english title:

Erasable coercions:
a uni�ed approach to type systems

Julien Cretin

(�nal version)

Thèse dirigée par Didier Rémy
et soutenue le 30 janvier 2014 devant le Jury composé de :

Président Roberto Di Cosmo
Rapporteurs Mariangiola Dezani-Ciancaglini

Stephanie Weirich

Examinateurs Jean-Christophe Filliâtre
Paul-André Melliès

Directeur Didier Rémy

2

Abstract

Functional programming languages, like OCaml or Haskell, rely on the λ-calculus for their
core language. Although they have di�erent reduction strategies and type system features,
their proof of soundness and normalization (in the absence of recursion) should be factor-
izable. This thesis does such a factorization for theoretical type systems featuring recursive
types, subtyping, bounded polymorphism, and constraint polymorphism. Interestingly, sound-
ness and normalization for strong reduction imply soundness and normalization for all usual
strategies. Our observation is that a generalization of existing coercions permits to describe
all type system features stated above in an erasable and composable way. We illustrate this by
proposing two concrete type systems: �rst, an explicit type system with a restricted form of
coercion abstraction to express subtyping and bounded polymorphism; and an implicit type
system with unrestricted coercion abstraction that generalizes the explicit type system with
recursive types and constraint polymorphism�but without the subject reduction property. A
side technical result is an adaptation of the step-indexed proof technique for type-soundness
to calculi equipped with a strong notion of reduction.

3

4

Remerciements

Avant de commencer, j'aimerais remercier les personnes sans qui je n'aurais pu terminer cette
thèse. Il y a tout d'abord les personnes qui m'ont initié à l'informatique, en particulier Gilles
Dowek, Luc Maranget, François Pottier et Benjamin Werner lors de ma formation à l'X. Je
remercie également Benjamin Pierce, Nate Foster et Michael Greenberg avec qui j'ai découvert
l'environnement de la recherche pendant mon stage à UPenn. C'est d'ailleurs pendant ce stage,
grâce à Davi Barbosa et suite à une discussion avec Mike, que j'ai découvert Haskell qui �nira
par devenir un motif récurrent dans ma thèse.

Je remercie aussi mes professeurs du MPRI qui m'ont beaucoup apporté. C'est d'ailleurs
pendant le MPRI que j'ai rencontré Didier qui a successivement été mon professeur, mon direc-
teur de stage de master, et en�n mon directeur de thèse. Je le remercie tout particulièrement
pour son suivi et ses idées.

Je remercie Inria, Gallium et Xavier Leroy pour mon environnement de travail à Rocquen-
court. Les navettes ont fait en sorte que ce ne soit pas si loin de Paris. Et la verdure et l'espace
en ont fait un cadre de travail très agréable. Je remercie en particulier Nicolas Pouillard qui
a été mon voisin de bureau pendant ma première année de thèse et avec qui j'ai beaucoup
appris par nos discussions sur Haskell, Agda, les lieurs, Bitcoin, etc.

Je remercie Simon Peyton Jones, Stephanie Weirich et Dimitrios Vytiniotis pour m'avoir
o�ert une pause dans toute cette théorie. J'ai pu en particulier découvrir en détail le fonction-
nement d'un compilateur pour Haskell.

J'ai passé une grande partie de ma dernière année de thèse à écrire mes preuves en Coq, un
outil que je ne maîtrise pas. L'aide de Jacques-Henri Jourdan, Thomas Braibant et François
Pottier m'a été très utile et je les en remercie grandement. Indirectement, les idées d'Arthur
Charguéraud sur la formalisation en Coq m'ont aussi été utiles.

Je remercie mes deux rapporteurs Mariangiola Dezani-Ciancaglini et Stephanie Weirich
pour leur lecture attentive et leurs commentaires enrichissants. Je remercie aussi Gabriel
Scherer pour sa lecture anticipée et ses nombreux commentaires qui m'ont permis d'éditer
la première version du manuscrit. Je remercie en�n Thibaut Balabonski pour son aide pré-
cieuse à la mise au point de mes slides1.

Il y a en�n toutes les personnes sans lien direct avec la science de cette thèse mais qui ont
tout de même contribué à son déroulement. Je remercie mes parents, ma s÷ur, ma copine,
ma troupe et mes amis pour les bons moments même s'ils ont parfois pu déborder sur ma
thèse :-) Merci à Maëlle, Marie, Tomô, Barbara, Pauline, Muriel, Sophie, Stéphanie, Louis,
Manu, Jacques, Antoine (RIP), Xavier, Flora, Claire, Xavier, Amandine, Mica, Guillaume,
Chloé, Séb, Anakin, et ceux que j'oublie.

1disponibles sur mon site de thèse : http://phd.ia0.fr/slides.pdf

5

http://phd.ia0.fr/slides.pdf

6

Résumé

Les systèmes de types permettent de véri�er qu'un programme véri�e certaines propriétés avant
toute exécution. La propriété de programme la plus commune est la correction : un programme
est correct si son exécution ne rencontre pas d'erreurs. Une autre propriété intéressante est
la terminaison, car les algorithmes sont des programmes corrects qui terminent : ils renvoient
un résultat après un temps �ni. Les systèmes de types classi�ent les programmes avec des
invariants de comportement pour rejeter ceux qui sont potentiellement incorrects et conserver
exclusivement ceux qui sont corrects. Les systèmes de types sont rarement complets : ils
rejettent parfois des programmes corrects. Mais ils sont toujours corrects : ils ne valident que
des programmes corrects. On dit qu'ils sont conservatifs. Puisque les invariants des systèmes de
types précisent le comportement d'un programme, ils peuvent aussi servir de documentation.

Puisqu'un système de types classi�e les programmes, il repose donc sur un langage de
programmation. En revanche, un langage de programmation n'a pas besoin d'être muni d'un
système de types. Et lorsqu'il est muni d'un système de types, celui-ci n'est pas exclusif.
Il arrive d'ailleurs qu'un même langage de programmation ait plusieurs systèmes de types.
C'est par exemple le cas du λ-calcul (Chapitre 2). Le λ-calcul simplement typé (Section 3.1),
System F (Section 3.2), System Fη (Section 3.4), MLF (Section 3.5), System F<: (Section 3.6),
pour n'en citer que quelques uns, sont des systèmes de types du λ-calcul. Chacun de ces
systèmes est indépendemment prouvé correct et normalisant (tous les programmes terminent).
Il serait donc intéressant d'étudier si ces systèmes de types ne sont pas uni�ables a�n de
factoriser leur preuve de correction et de terminaison en l'absence de récursion.

Comme les systèmes de types sont conservatifs, il existe une relation d'ordre entre les
systèmes d'un même langage de programmation. Un système de types T contient un autre
système S si tous les programmes acceptés par S le sont aussi par T . Les propriétés de T
peuvent donc être récupérées par S. Si un programme est accepté par S, il est accepté par T ,
et véri�e donc les propriétés de T (par exemple la correction ou la terminaison). Dans les
systèmes du Chapitre 3, le système Fη contient le systeme F, qui contient à son tour le λ-
calcul simplement typé. Il su�t donc de prouver les propriétés qui nous intéressent pour le
système Fη.

Cette thèse présente un framework de coercions qui uni�e les systèmes du Chapitre 3, et
qui les contient donc. Les coercions peuvent être vues comme une extension de la notion de
sous-typage des types aux typings e�açables (une paire d'un environnement e�açables et d'un
type) comme décrit dans la Section Sous-typage. Ce travail distingue les types de calcul des
types e�açables. Les premiers ont à faire au calcul et sont donc introduits et éliminés dans le
judgement de typage des termes. Chaque règle correspond à un n÷ud du calcul. En revanche,
les types e�açables ont à voir avec le typage. Ils sont introduits et éliminés avec des coercions
et donc de manière e�açable car les coercions sont e�açables (Section Bisimulation). Cette
distinction se voit clairement dans les règles de typage des termes. Les �gures 4.10 et 5.10

7

contiennent six règles de calcul pour les types de calcul et une règle de retypage TermCoer
pour tous les types e�açables.

Ce document étudie en particulier l'abstraction de coercion (Section Abstraction de coer-
cions). Celle-ci est vue comme une abstraction sur du contenu e�açable, à savoir les types et
les coercions. Cette abstraction doit être cohérente pour être e�açable. Certaines abstraction
sont naturellement cohérentes, comme le polymorphisme de Système F ou le polymorphisme
borné de MLF et Système F<:, alors que d'autres abstractions requièrent une preuve de co-
hérence, comme le polymorphisme contraint de ML avec contraintes. Nous présentons deux
systèmes de types : Système Fpι (Chaptire 4) où les abstractions sont naturellement cohérentes
et Système Fcc (Chaptire 5) où les abstractions requièrent une preuve de cohérence.

Pour conclure, cette thèse présente un framework de coercions e�açables pour décrire les
caractéristiques e�açables des systèmes de types de manière uni�ée. Les types de calcul sont
introduits et éliminés par des termes alors que les types e�açables le sont par des coercions
e�açables. Les types de calcul étudiés sont : la �èche et le produit pour observer la correc-
tion, et le polymorphisme incohérent pour les GADTs. Les types e�açables étudiés sont : les
extrêmes top et bottom pour fermer la relation de coercion, le polymorphisme cohérent sous
ses formes non contrainte, bornée et contrainte, et les types récursifs. Ces caractéristiques
dans un framework avec eta-expansion et coinduction, permettent d'inclure Système Fη, MLF,
Système F<: et ML avec contraintes. Cela permet par exemple d'utiliser côte à côte l'inférence
de MLF et celle de ML avec contraintes en utilisant les types de ML pour l'interface.

Bisimulation

Un système de types est dit explicite, lorsqu'il est muni d'une notion d'objets explicites pour
que les dérivations soient dirigées par la syntaxe. Par exemple, les termes explicites contiennent
les annotations de types et de coercions nécessaires pour reconstruire leur dérivation de typage
à partir de leur environnement initial.

Lorsque les termes explicites sont munis d'une notion de réduction explicite, une question
naturelle est d'étudier le lien entre cette réduction et la réduction implicite. Ce lien est fait à
travers la fonction d'e�acement des annotations et permet de montrer les lemmes de préserva-
tion du typage et de progrès en utilisant leurs analogues explicites. Les versions explicites sont
plus simples à prouver, car la réduction explicite décrit la preuve de préservation du typage.
Ce lien correspond à une bisimulation entre les deux réductions et correspond à la notion
d'e�açabilité. Les annotations de types et de coercions sont e�açables en ce sens.

L'énoncé de ce lemme requiert de distinguer les pas de calcul des pas e�açables dans la
réduction explicite. La réduction implicite simule les pas de calcul de la réduction explicite
et ignore les pas e�açables. Et réciproquement, la réduction explicite simule la réduction
implicite : un pas de réduction implicite correspond à un nombre �ni de pas e�açables suivi
d'un pas de calcul. Voir la Section 4.4.4 pour plus de détails.

Sous-typage

Le sous-typage permet de voir un terme de type τ avec le type σ sous un environnement Γ
pourvu qu'il existe une dérivation de Γ ` τ . σ, à savoir que τ soit un sous-type de σ sous Γ.
Cette relation est une relation d'ordre et elle est donc ré�exive et transitive. Pour illustrer
simplement le sous-typage, il su�t d'enrichir les types avec deux extrêmes, top > et bottom ⊥.

8

Tous les types sont plus petit que top, à savoir Γ ` τ . >, et tous les types sont plus grands
que bottom, à savoir Γ ` ⊥ . τ . On peut étendre la relation de sous-typage par congruence.
En particulier, si τ est un sous-type de τ ′ sous Γ et σ′ est un sous-type de σ sous Γ, alors
τ ′ → σ′ est un sous-type de τ → σ sous Γ (voir Section Eta-expansion pour plus de détails).
L'inversion de sens pour le type de l'argument vient de la contravariance de la �êche sur son
argument.

Les coercions e�açables peuvent être vues comme une extension du sous-typage des types
aux typings e�açables (paires d'un environnement e�açable et d'un type), ou bien comme une
extension du sous-typage qui s'autorise à étendre l'environnement avec des lieurs e�açable. Les
coercions e�açables permettent de voir un terme de type τ sous l'environnement étendu Γ,Σ,
avec le type σ sous l'environnement Γ, pourvu qu'il existe une dérivation de Γ ` (Σ ` τ) . σ,
c'est-à-dire que le typing e�açable Σ ` τ soit inclus dans le type σ sous l'environnement Γ.
L'extension d'environnement Σ ne peut contenir que des lieurs e�açables (de types ou de
coercions). On appelle ces environnements des environnements e�açables. Il est évident que la
relation de sous-typage Γ ` τ . σ est incluse dans la relation de coercion Γ ` (Σ ` τ) . σ en
prenant l'environnement vide ∅ pour l'environnement e�açable Σ de la coercion.

L'illustration la plus simple des coercions e�açables est le polymorphisme. Tout comme
les règles d'introduction et d'élimination de top et bottom étaient exprimées dans la relation
de sous-typage, les règles d'introduction et d'élimination du polymorphisme sont exprimables
dans le relation de coercion. La règle d'élimination était déjà une règle de sous-typage (et
donc de coercion) : le typing e�açable ∅ ` ∀α τ est coercible vers ses instanciations τ [α/σ]
sous l'environnement Γ pour tout type σ bien formé sous Γ. La règle d'introduction du po-
lymorphisme, quant à elle, ne peut être exprimée que dans la relation de coercion : le typing
e�açable ∅, α ` τ est coercible vers ∀α τ sous Γ.

Elim

Γ ` σ type

Γ ` (∅ ` ∀α τ) . τ [α/σ]

Intro

Γ ` (∅, α ` τ) . ∀α τ

Eta-expansion

Une caractéristique très importante du sous-typage et donc des coercions est de pouvoir ap-
pliquer une règle en profondeur dans un type en respectant la variance. Ce mécanisme est
possible par les règles de congruence. Ce sont elles qui dé�nissent la variance des construc-
teurs de type. Ces règles de congruence découlent de la notion d'eta-expansion et donc des
règles d'introduction et d'élimination des constructeurs de types.

Il faut noter que les règles de congruence ne sont nécessaires que pour les types de calcul,
car elles sont dérivables pour les types e�açables. En e�et, puisque les règles d'introduction et
d'élimination des types e�açables sont dans la relation de coercion, il su�t de procéder à une
eta-expansion e�açable. Par exemple, dans le cas du polymorphisme, on peut montrer que le
typing e�açable Σ ` ∀α τ est coercible vers ∀ασ sous Γ pourvu que Σ ne mentionne pas α et
que le typing Σ ` τ soit coercible vers σ sous l'environnement étendu Γ, α. Il su�t pour cela
de composer une élimination, la coercion interne, et une introduction.

Les règles de congruence des types de calcul reposent sur une eta-expansion non e�açable
et doivent donc être rajoutées dans la relation de coercions. Prenons le cas de la congruence
de la �êche, dont l'eta-expansion s'écrit λx []x. Il est possible de placer des coercions à deux
endroits, sur la variable et sur le corps de l'abstraction, qui correspondent respectivement à la

9

coercion sur le type de l'argument et le type de retour de la �êche. On constate alors que la
coercion de la variable se trouve sous la portée des variables e�açables liées par la coercion du
corps de l'abstraction. Si cette dernière coercion s'écrit Γ ` (Σ ` σ′) . σ, alors la coercion de la
variable τ . τ ′ opère sous l'environnement étendu Γ,Σ. Il n'est pas utile que la coercion de la
variable étende l'environnement, car le seul objet dans sa portée est la variable d'eta-expansion
x. Pour plus de détails, voir la description de la règle CoerEtaArr de la Figure 4.11.

Sous-typage

Γ ` τ type
Γ ` τ . τ ′ Γ ` σ′ . σ

Γ ` τ ′ → σ′ . τ → σ

Coercion

Γ ` τ type
Γ,Σ ` (∅ ` τ) . τ ′ Γ ` (Σ ` σ′) . σ

Γ ` (Σ ` τ ′ → σ′) . τ → σ

Abstraction de coercions

L'abstraction de coercions est une abstraction e�açable, tout comme l'abstraction de types,
autrement dit le polymorphisme. Cette thèse dé�nit l'abstraction de coercions à l'aide de
l'abstraction de types, en contraignant l'ensemble des types avec lesquels il sera possible d'ins-
tancier l'abstraction. L'exemple le plus simple est le cas de Système F<: qui abstrait sur des
types plus petits qu'une borne supérieur. Lorsque l'on veut instancier une telle abstraction, il
faut montrer que le type argument est plus petit que la borne. Un exemple plus complet est
le cas de ML avec contraintes qui abstrait sur des types véri�ant un ensemble de contraintes.

Le polymorphisme contraint n'est pas nécessairement cohérent : certaines abstractions de
types ne sont pas instanciables. Ce cas de �gure est discuté dans la Section Polymorphisme
incohérent. Les abstractions de types cohérentes peuvent être classées dans trois catégories
suivant la façon dont le type abstrait est contraint. Ces cas de �gure sont présentés dans la
Section Polymorphisme cohérent.

Polymorphisme cohérent

Le polymorphisme cohérent est la version la plus courante du polymorphisme contraint et
la seule version e�açable. La plupart des systèmes de types avec polymorphisme, comme
Système F, MLF ou Système F<:, ont un polymorphisme cohérent par construction : il n'est pas
possible syntaxiquement d'écrire une abstraction de types incohérente. On peut di�érencier
trois cas de polymorphisme cohérent : le polymorphisme non constraint, le polymorphisme
borné, et le polymorphisme contraint. Chaque version contient les versions précédentes.

Polymorphisme non contraint

Le polymorphisme non contraint est celui que l'on trouve dans Système F. On peut instancier
un type polymorphisme avec n'importe quel type du langage. Les abstractions de types sont
alors cohérentes, car on peut les instancier avec top ou bottom par exemple. Le polymorphisme
non contraint ne permet pas d'abstraire sur des coercions par dé�nition.

Polymorphisme borné

La contrainte de polymorphisme la plus simple qui permette d'abstraire sur des coercions
est la contrainte par une borne unique. Cette borne peut être supérieure ou inférieure. Par
exemple, le polymorphisme de Système F<: est borné par une borne supérieur, alors que celui

10

de MLF possède une borne inférieure. Dans notre système F
p
ι (Chapitre 4), le polymorphisme

peut être, soit non contraint comme dans Système F, soit borné par une borne supérieure
comme dans Système F<:, soit borne par une borne inférieure comme dans MLF.

Tout comme pour le polymorphisme non contraint, le polymorphisme borné est toujours
cohérent. Il est toujours possible d'instancier l'abstraction de types par le type extrème qui
convient : top pour les bornes inférieure et bottom pour les bornes supérieure.

Il est possible qu'une borne fasse référence à la variable de type qu'elle contraint, on parle
alors de borne récursive. Les bornes récursives n'ajoutent aucune di�culté et sont disponibles
dans Système F

p
ι .

Polymorphisme contraint

La contrainte maximale pour le polymorphisme cohérent est la cohérence de contrainte, à
savoir qu'elle soit satis�able au moins une fois. Ce type de polymorphisme est par exemple
présent dans ML avec contraintes et dans notre système Fcc (Chapitre 5). Dans Système Fcc,
on étend la syntaxe des kinds de Système F, qui ne contient alors que la kind étoile, avec
une notion de kind contrainte qui rejette les types ne satis�ant pas la contrainte. Il est alors
possible d'utiliser des contraintes de coercions pour abstraire sur des coercions.

Polymorphisme incohérent

Lorsqu'une abstraction de types est incohérente, la réduction doit être bloquée dans son corps,
sans quoi le système de types accepterait des programmes incorrects. Un contre-exemple serait
de prendre la négation booléenne d'un entier sous une abstraction qui nous garanti qu'un entier
peut être vu comme un booléen. La réduction doit donc être faible sur les abstractions de types
incohérentes, qui deviennent donc non-e�açables à l'inverse de leurs homologues cohérentes.
Le langage noyau de GHC, à savoir Système FC, et notre langage Système Fcc disposent de
polymorphisme incohérent. L'incohérence est une caractéristique nécessaire pour implémenter
les GADTs (Section 5.5).

Types récursifs

Dans cette thèse, les types récursifs sont présentés comme des types iso-récursifs, mais dis-
posent de l'expressivité des types equi-récursifs. Ils sont présentés comme des types iso-
récursifs, car l'introduction et l'élimination des types récursifs sont des coercions : un type
récursif est isomorphe (et non égal) à son dépliement. Cependant, ils ont l'expressivité des
types equi-récursifs car ils sont e�açables, que il existe une coercion de congruence pour tous
les types et donc tous les contextes de types, et en�n car ils disposent des règles de conver-
sion des types equi-récursifs (Section 5.4.4). Le premier point vient du fait que les coercions
sont e�açables. Le second point vient du fait que l'on fournit une règle d'eta-expansion pour
tous les types (Section Eta-expansion) et que la congruence des types e�açables est dérivable.
En�n, le dernier point est possible car Système Fcc dispose d'un mécanisme de coinduction :
il est possible de prouver une coercion avec elle-même pourvu qu'on n'y fasse référence que
sous des types de calcul.

11

Sémantique

Une contribution annexe de cette thèse est l'adaptation à la réduction forte des méthodes de
preuve par step-index en s'inspirant des preuves par candidats de réductibilité. Les preuves
de correction peuvent être faites de di�érentes manières : syntaxiquement par préservation
et progrès, sémantiquement, ou d'autres solutions. Nous avons tenté de faire une preuve syn-
taxique de correction pour Système Fcc (Section 4.6.2), mais cela complique trop le système.
Nous avons donc opté pour une preuve sémantique. Cependant, la présence de types récursifs
casse la preuve usuelle par candidats de réductibilité, qui repose sur la terminaison des termes.
Comme la correction ne dépend que d'un nombre �ni de pas de réduction, une solution est
donc de considérer toutes les réductions �nies des termes, qui terminent par dé�nition. C'est
le principe des step-index : les termes sont munis d'un index qui compte le nombre de pas de
réductions restants. Cependant, cette technique ne permet pas d'étudier la réduction forte.
Notre solution est de remplacer la notion d'index global de terminaison par une notion de terme
indexé : chaque n÷ud du terme a son propre index de contrôle de la réduction (Section 5.2).

12

Contents

1 Introduction 17

2 The λ-calculus 21

2.1 Terminology . 21

2.2 Syntax . 22

2.3 Reduction rules . 23

2.4 Encodings . 26

2.4.1 Booleans . 26

2.4.2 Pairs . 27

2.4.3 Sums . 27

2.5 Properties . 28

2.5.1 Con�uence . 28

2.5.2 Curry�cation . 29

2.5.3 Soundness . 29

2.5.4 Termination . 29

I Type Systems as Usual 31

3 Existing Type Systems 33

3.1 The STLC . 34

3.1.1 De�nition . 34

3.1.2 Properties . 37

3.2 System F . 39

3.2.1 De�nition . 39

3.2.2 Properties . 41

3.3 System Frec . 44

3.3.1 De�nition . 44

3.3.2 Properties . 47

3.4 System Fη . 48

3.4.1 De�nition . 48

3.4.2 Properties . 52

3.5 MLF . 53

3.5.1 De�nition . 53

3.5.2 Properties . 58

3.6 System F<: . 58

13

3.6.1 De�nition . 58

3.6.2 Properties . 62

3.7 Constraint ML . 63

3.8 Existing Coercions . 64

II Type Systems as Coercions 67

4 An explicit calculus of coercions: System F
p
ι 69

4.1 Base system . 71

4.2 Features . 74

4.2.1 Polymorphism . 75

4.2.2 Eta-expansion . 76

4.2.3 Bottom . 77

4.2.4 Top . 78

4.2.5 Lower Bounded polymorphism . 78

4.2.6 Upper Bounded polymorphism . 79

4.3 System F
p
ι . 80

4.4 Properties . 88

4.4.1 Implicit vs. Explicit version . 89

4.4.2 Termination . 90

4.4.3 Con�uence . 92

4.4.4 Bisimulation . 93

4.4.5 Soundness . 95

4.5 Expressivity . 99

4.5.1 System F . 99

4.5.2 System Fη . 100

4.5.3 MLF . 102

4.5.4 System F<: . 103

4.5.5 Summary . 104

4.6 Beyond parametric coercion abstraction . 104

4.6.1 Unrestricted coercion abstraction . 105

4.6.2 Push . 106

5 An implicit calculus of coercions: System Fcc 111

5.1 De�nition . 111

5.2 Semantics . 120

5.2.1 The Indexed Calculus . 121

5.2.2 Bisimulation . 123

5.2.3 Semantic types . 124

5.2.4 Simple types . 125

5.2.5 Intersection types . 127

5.2.6 Recursive types . 127

5.2.7 Semantic judgment . 128

5.3 Soundness . 130

5.4 Expressivity . 135

5.4.1 Surface notations . 135

14

5.4.2 System F
p
ι . 137

5.4.3 Constraint ML . 139
5.4.4 Recursive coercions . 140

5.5 Incoherent Polymorphism . 141
5.6 Coq formalization . 146
5.7 Discussion about the explicit version . 148

6 Discussions 151

6.1 Extensions . 151
6.1.1 Data types . 151
6.1.2 Existentials . 151
6.1.3 Type-level functions . 152
6.1.4 Recursive types at arbitrary kinds . 153
6.1.5 Non-erasable coercions . 154
6.1.6 First-class coercions . 155
6.1.7 Dependent types . 156
6.1.8 Kind coercions . 156
6.1.9 Intersection types . 157
6.1.10 Semantic consistency . 157
6.1.11 Environment actions . 158
6.1.12 Coercion reduction . 158
6.1.13 Side e�ects . 159
6.1.14 Dead code . 159

6.2 Related work . 160
6.2.1 System F<: . 160
6.2.2 System FC . 161
6.2.3 Implicit Coercions . 161
6.2.4 Step-indices . 162

6.3 Applications . 162

7 Conclusion 165

15

16

Chapter 1

Introduction

A type system has exactly one underlying programming language. It classi�es its programs in
order to reject those that may go wrong. Sometimes, it also require programs to terminate.
Type systems do so by de�ning abstractions of program behaviors, which are veri�ed by the
type checker at compile-time. Thus, type systems also play a role for code documentation.
Here, we restrict our attention to type systems for functional programming languages. A
programming language is functional if its programs can take a function as argument or return
a function as a result.

Type systems usually come with some inference mechanism. Inference permits the pro-
grammer to write fewer typing annotations. OCaml and Haskell have a powerful inference
mechanism, while Coq requires more guidance from the user. This di�erence comes from the
fact that Coq has a more expressive type system than these two languages. We call a surface

type system a type system de�ned for the programmer. Surface type systems usually have a
powerful inference mechanism, which makes them easier to program with. We call a kernel

type system a type system de�ned for the language designer. They are usually more concise
in de�nition and built to have fewer, more fundamental features. Sometimes the kernel type
system of a language is simply the fully-explicit version of the surface type system, in which
case the di�erences are mainly syntactical. But sometimes there is some desugaring and term
must be elaborated from the surface type system to the kernel type system. In this case, the
kernel type system usually has fewer constructs, which makes it shorter to formalize. How-
ever, the kernel type system has to be more expressive than the surface one, which on the
opposite usually makes it harder to formalize than the surface language. For instance, the
GHC implementation of Haskell has a surface type system, Haskell with extensions (GADTs,
type families, type classes, etc.), and a kernel type system, called FC (System F with equality
coercions and coercion abstraction). Type classes, GADTs, and type families are surface type
system features, and do not need to be proven sound in FC. However, FC has to deal with
equality coercions and coercion abstraction. It is less fastidious to prove soundness in FC,
although it may be more involved conceptually.

The untyped λ-calculus with constants (pairs, integers, etc.) is the simplest functional
programming language. It has by de�nition no type system, and is thus a programming
language in this sense. The λ-calculus is the underlying language of type systems such as
Coq, Haskell, and OCaml for example. Each of them has its own practical implementation
and its own type system. Although their underlying programming language share the λ-
calculus, none of them is exactly the λ-calculus. For example, Haskell and OCaml provide

17

side e�ects and use a particular reduction strategy. Both use weak reduction, but Haskell uses
a call-by-need strategy while OCaml uses a call-by-value strategy. Coq is pure (without side
e�ects), uses strong reduction, and its type system also ensures strong normalization.

Although these type systems have their own particularities, they still share the λ-calculus
for their core language. As such, it is interesting to study the possibility for the λ-calculus
to have a type system that would ensure the soundness and strong normalization of other
more exciting type systems. The soundness and normalization for strong reduction imply the
soundness and normalization for all usual strategies. As a consequence, studying soundness
and normalization in a strong reduction setting is enough. Studying only the pure λ-calculus
(without side e�ects) still gives a result for languages with side e�ects when the type system
keeps track of side e�ects with a monadic encoding as it is the case in Haskell. Although
dependent type systems are a desire, their design is still a research topic in itself, so we do
not include them here.

To de�ne such general type system for the λ-calculus with strong reduction, we generalize
existing ideas: several type systems use subtyping, containments, or coercions to express some
of their features. For instance, System F<: uses subtyping to retype a term or to constrain
type abstraction. GHC uses equality coercions to implement GADTs and type families from
its surface type system to its kernel type system.

In this document we introduce a framework for de�ning and studying type systems based
on typing coercions. We de�ne typing coercions (which we simply call coercions) as composable
and erasable typing transformations. We instantiate the framework on two type systems where
all features are expressed as coercions on top of the STLC. In particular, we make a distinction
between computational types (usually called simple types) and erasable types. Computational
types are related to the reduction and terms, while erasable types are related to typing.
Coercions introduce and eliminate erasable types, while they can only provide congruence
rules for computational types. Congruence rules for erasable types are derivable from their
introduction and elimination rules. Moreover, we exhibit and explain one fundamental feature
behind all of these type systems: coercion abstraction.

The �rst type system we de�ne, called System F
p
ι , subsumes a few existing functional

type systems: System F<: [5], MLF [19], and System Fη [25]. System F<: features upper
bounded polymorphism and arrow congruence. MLF extends System F with lower bounded
polymorphism to feature a complete inference mechanism as long as term variables used
polymorphically are annotated. System Fη extends System F with η-expansion: a term is
well-typed in System Fη if one of its η-expansion is well-typed in System F. The main par-
ticularity of System Fη, compared to usual type systems with subtyping, is the distributivity
rule ∀α (τ → σ) ≤ (∀α τ) → ∀ασ. Our type system F

p
ι combines the following coercion

features: polymorphism, lower bounded polymorphism, upper bounded polymorphism, and
η-expansion. These features seen as coercions permit to derive the distributivity rule and the
polymorphism congruence rule of System Fη, the upper bounded polymorphism congruence
rule of the most expressive version of System F<:, and the lower bounded polymorphism con-
gruence rules of MLF. Lower and upper bounded polymorphism can be seen as restricted forms
of coercion abstraction. We call this restriction parametric because the abstract coercion has
to be parametric on either its argument type (upper bounded polymorphism) or its result
type (lower bounded polymorphism). This restriction ensures that coercion abstractions are
coherent, i.e. that they do not introduce inconsistencies to the current environment.

The second type system we de�ne, called System Fcc, subsumes additional type systems:
System Frec and Constraint ML [27]. System Frec extends System F with general equi-recursive

18

types. Constraint ML extends ML (prenex polymorphism with complete inference) with sub-
typing and still provides type inference. As a kernel type system the main feature of Constraint
ML is constraint abstraction, which is similar to coercion abstraction. System Fcc combines
coherent polymorphism, η-expansion, and recursive types as coercions. It can also constrain a
set of types to the types satisfying a proposition. Since coercions are one sort of propositions,
this constrained kind feature and polymorphism permit unrestricted coercion abstraction.

Although System Fcc subsumes System F
p
ι , it is not better on every point. System F

p
ι has

an explicit version where explicit terms and explicit coercions capture the essence of typing
derivations. The proof of subject reduction is thus done by reduction of the explicit term
witnessing the derivation. System Fcc has only an implicit version without a subject reduction
property, even though the type system is shown to be sound. This di�erence comes from
the fact that an explicit version of System Fcc with subject reduction would need coercion
decomposition and a push reduction rule. When we have a coercion from τ ′ → σ′ to τ → σ
in-between a redex, we have to decompose it into two coercions in order to progress: one
coercion from σ′ to σ and one from τ to τ ′. The main di�culty with this extension is the
proof of consistency. We managed to show one side of the decomposition, however we do not
know whether the other side holds in our semantics. Moving polymorphism from the coercion
language to the term language may be a solution to restore subject reduction at the cost of
losing deep type and coercion abstraction and instantiation.

Both System F
p
ι and System Fcc can be seen as kernel type systems. The type systems

they subsume can then be seen as associated surface type systems. For instance, type systems
with inference such as MLF or Constraint ML are surface type systems for System Fcc.

In addition to the de�nition of the coercion framework, the main contributions of this
thesis are the study of coercion abstraction, the de�nition of a general η-expansion rule, and
a step-indexed semantics for strong reduction. All this work is done in a strong reduction
setting in order for the soundness result to be applicable to all usual strategies (those included
in strong reduction, like weak reduction and its call-by-value and call-by-need restrictions).
Stating the soundness property in a strong reduction setting also permits to capture more of
the information contained in the type system. For instance, when a term admits a typing
derivation, it is usually sound under term abstractions while the soundness property in weak
reduction does not imply it, since reduction may not look under lambdas. This thesis, by
de�ning a common framework describing several type systems, permits to easily compare the
features of these systems. A common underlying programming language is highly valuable
when comparing two type systems. It is more interesting to say that a type system subsumes
another one, than to say that it encodes the other one. In the �rst case, the same term can
be used from one type system to the other. Finally, a �rst contribution of System F

p
ι was to

prove the strong normalization of MLF.
My thesis is that de�ning erasable type system features as coercions, i.e. composable

inclusions between invariants, naturally gives the most out of a type system feature and its
combination with other coercion features. For instance, combining η-expansion and upper
bounded polymorphism naturally gives a type system more expressive than the most expres-
sive version of System F<:. Once the type system is de�ned as coercions, adding coercion
abstraction as a coercion extends the expressivity even further. Finally, the study of compos-
able type systems in a strong reduction setting gives more information than with a particular
strategy. A composable type system does not distinguish between top-level expressions and
expressions under arbitrary environments. In particular, it does not have specialized rules
for typing top-level closed terms. As a consequence, results for well-typed closed terms are

19

likely to also hold for well-typed open terms. This is, for example, the case for soundness and
normalization.

20

Chapter 2

The λ-calculus

On the one hand, programming languages such as C, C++, or Java, have functions de�ned
at top-level. In other words, functions are statements and not expressions. For instance, it
is not possible to pass a function as argument to another function without using pointers or
wrapper classes. A typical need for this kind of feature is the map function. The map function
takes a transformation function and a collection as arguments. It returns a collection similar
to the original collection where all elements have been transformed using the transformation
function.

On the other hand, functional programming languages use the paradigm of �rst-class func-
tions. In other words, functions are expressions and not statements. It is possible to pass a
function as argument to another function and thus it is possible to de�ne a map function for
all kinds of collections. It is also possible to de�ne an anonymous function for local use, for
example, inside an arithmetical expression.

The λ-calculus is a functional programming language invented by Alonzo Church. It is at
the same time, simple to explain and reason about, and able to describe high-level program-
ming. It is actually used as the foundation of several general-purpose programming languages,
such as OCaml [26] or Haskell [17]. These languages are also functional programming lan-
guages.

All type systems, existing or new, exposed in this document are based on the λ-calculus.
This chapter describes the syntax, the reduction rules, and some properties of the λ-calculus.
We only present the properties we refer to in subsequent chapters, since this calculus satis�es
numerous properties. Moreover, relying on fewer properties shows that our framework for
type systems applies to more calculi. For instance, our results do not rely on the determinism,
con�uence, or standardization of the calculus (see 6.1.2 where standardization may become
necessary).

2.1 Terminology

In the λ-calculus, programs are called terms. So I use programs to refer to programs of
arbitrary languages, and terms to refer to programs of the λ-calculus. As in mathematics we
use the letter x for variables. We use the letters a and b for terms. The notion of execution
is generalized to open terms and called reduction. The result of a good execution is called a
value. The de�nition of a function is called the body of the function.

21

2.2 Syntax

The λ-calculus main characteristic is to place functions at the center of the language by making
them usual programs: functions are terms. In particular in the pure λ-calculus all terms are
functions. However the λ-calculus may be easily extended with additional terms. For instance
we can add pairs, tags, or user-de�ned data-types.

What is a function and how do we use it? A function in programming languages can
be seen, as in mathematics, as a relation between an input and an output, with the property
that each input is in relation with exactly one output. To use a function we need to provide
an input. This input will be substituted in the function body for the input variable.

For instance, f de�ned by f(x) = x + 1 is a mathematical function between natural
numbers. The input natural number x is in relation with a unique output which in this case
is its successor. To use it we need to say with which natural number we want to evaluate it.
To do so, we replace x by the chosen natural number. For instance, f(1) = 2 and f(2) = 3.

But we can also see functions, as in programming languages, as subroutines: a function
is a program where some parts are not yet de�ned. We say that the function abstracts over
these parts. To use such a function we supply it with concrete parts for the abstract parts.
It is actually enough to study functions that abstract over exactly one term using currying,
see 2.5.2.

For instance, f de�ned by f(x) = x + 1 is a function between expressions. The input
expression x is in relation with a unique output which in this case is the expression x+ 1. To
use it we need to say with which expression we want to substitute. To do so, we replace x by
the chosen expression. For instance, f(3× 4) = 3× 4 + 1 and f(f(1)) = f(1) + 1.

According to these de�nitions, the three notions we need to create and use functions are:

• The notion of term abstraction which we write λx a where a is the de�nition, called
body, of the function and x is its abstract part. For instance, λxx+ 1 would be the
de�nition of the function returning x+ 1 for x.

• The notion of term application which we write a b where a is the function and b is the
argument. See below for more details.

• The notion of term variable which we write x. It designates the places where the concrete
argument will be substituted.

It may at �rst seem strange why application is written a b instead of x(a) as it would be
the case in mathematics or other programming languages, where x is the name of the function
and a its argument. In non-functional programming languages and in mathematics, functions
are �rst named, and then used. It is not possible to use a function anonymously, without
giving it a name. In the λ-calculus, since functions are terms and not only de�nitions, they
don't have names by default. We will see in the next paragraph how we can give names to
terms. Since names (variables) are also terms, when we say that applications take a term to
be used as a function we allow both names and functions to be used. See Section 2.3 to see
that we can use even more terms as functions. Finally, we do not need parentheses by default
around the argument. It is only required to add parentheses when something is ambiguous.
Notice that we de�ne a notion of construct precedence in order to have fewer ambiguous terms
(see the paragraph about construct precedence).

22

x, y Term variables

a, b ::= x | λx a | a a | 〈a, a〉 | fst a | snd a Terms

Figure 2.1: Syntax of the λ-calculus

Giving names In mathematics and programming languages we can name objects and func-
tions. The same e�ect is already possible in the pure λ-calculus using only the three con-
structions (abstraction, application, and variable) we de�ned. The construction let x = b in a
can be de�ned as syntactic sugar for (λx a) b, the application of the argument term b to the
function term λx a. To understand why it gives b the name x in a, let's look at its de�nition.
We apply the argument b to the function abstracting over x in a, so b is the concrete term for
the abstract term x in a, which is exactly what we wanted.

Construct precedence Terms can be given either by their abstract syntax tree or as text.
In this latter case some ambiguity might appear. Take the following term a1 a2 a3 for instance.
It is not clear whether it is a1 applied to a2 and a3, namely (a1 a2) a3, or a1 applied to a2

applied to a3, namely a1 (a2 a3). To resolve this ambiguity we let the application constructor
be left associative: the �rst form is the right one in the absence of parentheses. Similarly the
term λx a b can either be λx (a b) or (λx a) b. To resolve this last ambiguity we give precedence
to the application: the �rst form is the right one in the absence of parentheses.

Pairs The soundness property de�ned in Section 2.5.3 is only meaningful when we extend
the pure λ-calculus with other constructors, since otherwise it trivially holds. To keep things
simple, we add pairs to the λ-calculus, but other constructors could be added as well: records,
variants, etc. To construct the pair of a and b we write 〈a, b〉. To extract the �rst component
from a pair a we write fst a and to extract its second component we write snd a.

Summary All these de�nitions are summarized in Figure 2.1. We write x and y for variables
and a and b for terms. The set of terms is inductively de�ned. Terms can be either variables
x, abstractions λx a, applications a a, pairs 〈a, a〉, or projections fst a or snd a.

2.3 Reduction rules

Programs can be executed. This either returns a result or loops inde�nitely. The same
mechanism applies for the λ-calculus, even if we do not study side-e�ects. The notion of
execution is called reduction. Reduction is a relation between terms, written a b, which
means that the term a reduces on the term b in one step. This relation is not a function,
which means reduction is a priori non-deterministic.

In mathematics expressions are evaluated. For instance, to evaluate f(2), we look for the
de�nition of f , say f(x) = x + 1, and we substitute x in the de�nition by its value. We get
2 + 1 which in turn evaluates to 3. In programming languages programs are executed. Most
of the time it is a list of instructions to be executed sequentially. When an instruction is a
call to a subroutine, the list of instructions in the subroutines are prepended to the remaining
instructions. The same mechanism applies to the λ-calculus. When a function is applied to an
argument as in (λx a) b, it can reduce the body of the function, namely a, after the variable x
has been substituted by the argument b. We use the notation a[x/b] to denote the substitution

23

RedCtx

a b

E [a] E [b]

RedApp

(λx a) b a[x/b]
RedFst

fst 〈a, b〉 a
RedSnd

snd 〈a, b〉 b

Figure 2.2: Reduction relation

E ::= λx [] | [] a | a [] | 〈[], a〉 | 〈a, []〉 | fst [] | snd [] Evaluation contexts

p ::= x | p v | fst p | snd p Prevalues

v ::= p | λx v | 〈v, v〉 Values

r ::= E [r] | 〈a, a〉 a | fst (λx a) | snd (λx a) Errors

Figure 2.3: Notations

of x by b in a. This reduction rule can then be written (λx a) b a[x/b]. We call this rule
RedApp and give it in Figure 2.2.

Notice that the substitution to make sense, has to be capture avoiding. This means that if
the argument b contains free variables (variables not bounded by an abstraction), they should
remain free after the substitution a[x/b]. Concretely, if a is λy y x and b is y, the substitution
(λy y x)[x/y] should return λy1 y1 y and not λy y y. We renamed the variable y with the fresh
variable y1 in a. This operation is called α-conversion. It does not modify the meaning of the
term and is always possible. We say that λy y x is α-equivalent to λy1 y1 x. In the following
we treat terms up to α-equivalence.

We also have two rules for pairs: one for the �rst projection of a pair and one for the
second one. The �rst projection of a pair, namely fst 〈a, b〉, reduces on the �rst component of
the pair, namely a. We write this reduction rule fst 〈a, b〉 a and name it RedFst. We have
a similar rule for the second projection.

Finally, we want reduction to occur anywhere in the term. This is called strong reduction.
Properties that hold for strong reduction also holds for reduction considering less evaluation
contexts. In particular the soundness property for any smaller reduction relation is a con-
sequence of the soundness property for strong reduction. Evaluation contexts are de�ned in
Figure 2.3. They are terms where exactly one subterm was replaced by a hole, written [].

We can now give all reduction rules in Figure 2.2. Rule RedCtx is the context reduction
rule. If a subterm a reduces to b under the evaluation context E , then the term E [a], where
the hole of the evaluation context E was replaced by the subterm a, reduces to E [b]. We
write a + a the transitive closure of the reduction relation a a. And we write a ? a its
re�exive and transitive closure. We call a redex the left-hand side of rules RedApp, RedFst,
and RedSnd.

In the absence of side e�ects, the goal of reduction is to reach a value. For instance, in
mathematics, when we evaluate an expression, we want the evaluation to terminate and return
a result. We will talk about termination in Section 2.5.4 but we can already talk about results
in the λ-calculus. When the reduction of a term terminates, it reaches an irreducible term.
Irreducible terms are terms that cannot reduce. Irreducible terms are results of reduction, but
they are not necessarily values. Some irreducible terms are values, some are errors.

Errors can either be immediate errors or errors under an evaluation context. An immediate
error looks like a redex but it is not a redex. To de�ne what looks like a redex we need to de�ne

24

the notions of constructors and destructors. A constructor is either an abstraction or a pair,
while a destructor is either an application context or a projection context. Redexes are usually
a destructor applied to an associated constructor. For instance, the redex (λx a) b applies the
constructor λx a to the destructor [] b. The term 〈a1, a2〉 b looks like a redex because it applies
the constructor 〈a1, a2〉 to the destructor [] b. However pairs are not associated to applications
and the given term cannot be reduced: it is an immediate error. Similarly, abstractions are
not associated to projections and fst (λx a) and snd (λx a) are immediate errors too. We write
r for errors and Ω for the set of errors. Errors are given in Figure 2.3. We call valid, a term
which is not an error. We write

Ω

for the set of valid terms. It is by de�nition the complement
of Ω.

Values are valid irreducible terms. Because they are valid they should not contain errors.
And because they are irreducible, they should not contain redexes or they would not be
irreducible. As a consequence, values are terms that do not contain errors or redexes. Because
errors and redexes are constructors applied to destructors, we isolate the values that do not
start with a constructor and call them prevalues. We de�ne the set of values and prevalues
inductively in Figure 2.3. We write p for prevalues and v for values. We call neutrals terms,
the terms that do not start with a constructor and head normal forms those that do. These
two sets of terms are complement of each other. So prevalues are neutral values.

Prevalues contain variables, because they are valid irreducible neutral terms. Prevalues
also contain applications of prevalues to values p v, because both p and v do not contain errors
or redexes by induction, and the application itself is not an error or a redex as p is neutral.
Finally, prevalues contain projections of prevalues fst p and snd p, because p does not contain
redexes of any sort and the projection itself is not an error or a redex as p is neutral. Values
contain prevalues by de�nition and constructors applied to values: λx v and 〈v, v〉. We can
unfold these de�nitions and say that values are a series of constructors followed by a series of
destructors applied to variables.

Examples Let's consider the following example: let y = λxx in y y. We give the name y
to the term λxx, and then we apply it to itself. In order to reduce this term we �rst need to
unfold the let sugar. We look at its de�nition. The expression let x = b in a stands for (λx a) b,
which reduces to a[x/b]. So we have that let x = b in a reduces to a[x/b]. So our example
reduces to (λxx) (λxx) which itself reduces to λxx. We observe that λxx always returns its
argument, we call this term the identity function and use id as sugar for it:

id , λxx

Another interesting term is the looping combinator omega de�ned as sugar:

omega , let y = λxxx in y y

Let's see how it reduces. We �rst unfold its de�nition, then unfold the let-de�nition. We
can now reduce it by rule RedApp. We α-rename the �rst abstraction from x to y. We can
now fold the let-de�nition and omega-de�nition:

omega , let y = λxxx in y y , (λy y y) (λxxx)

 (λxxx) (λxxx)
α
= (λy y y) (λxxx) , let y = λxxx in y y , omega

25

As a conclusion we have omega omega, so the looping combinator reduces on itself in one
step and this is the only reduction it can do. This is an example of a non-terminating term:
it has no result (good or bad). But it never reaches an error either.

Strategies It is possible to choose a subrelation of the reduction relation that would be a
partial function. This is the case for most real-life programming languages. Almost all pro-
gramming languages use weak reduction, which consists in removing the abstraction context
λx []. They also reduce pairs from left to right by modifying the evaluation context 〈a, []〉 to
〈v, []〉. Then most programming languages use what is called a call-by-value strategy, while
some languages use a call-by-name (or its call-by-need optimization) strategy. Each time eval-
uation contexts or the reduction relation are modi�ed, the set of values has to be changed
too.

In call-by-value we modify the evaluation context a [] to (λx a) []. In other words we only
reduce the argument of an application if its function is an abstraction. We also restrain
rule RedApp to values, which is why we call this strategy call-by-value. The rule becomes
(λx a) v a[x/v]. Notice that the set of values has changed. It contains abstractions λx a,
and pairs of values 〈v, v〉.

In call-by-name we remove the evaluation context a []. The set of values is the same as
those of call-by-value.

2.4 Encodings

Although we can extend the pure λ-calculus with pairs, naturals, booleans, etc., we can already
reason with them with encodings. These encodings are not as fast as their analog extensions
(the typical example is for natural subtraction), but they can simulate the computations.
Another di�erence with the pure λ-calculus is that extensions of it may contain errors and
terms that reduce on errors, while the pure λ-calculus contain no errors. This is why we
study the λ-calculus with pairs instead of the pure λ-calculus, when we are interested in the
soundness property. The pure λ-calculus contain no errors because there is only one sort of
constructor and one sort of destructor, and they are associated.

2.4.1 Booleans

Booleans come with two constructors, namely true and false, and one destructor, namely the
if-statement, written if a then a else a. In the expression if b then a1 else a2, we say that b is
the conditional and it should evaluate to a boolean. The term a1 is the term to evaluate if
the conditional is true, while a2 is evaluated when the conditional is false. The two reduction
rules are thus:

RedTrue

if true then a else b a
RedFalse

if false then a else b b

We can encode these three constructs in the pure λ-calculus as follows:

• true , λxλy x

• false , λxλy y

• if b then a1 else a2 , b a1 a2

26

Let's verify that the two expected reduction rules work:

• if true then a else b , (λxλy x) a b (λy a) b a

• if false then a else b , (λxλy y) a b (λy y) b b

We can now de�ne additional functions:

• not , λx if x then false else true

• and , λxλy if x then y else false

• or , λxλy if x then true else y

2.4.2 Pairs

Pairs can also be encoded in the pure λ-calculus as follows:

• 〈a, b〉 , λy if y then a else b

• fst a , a true

• snd a , a false

Let's verify that the two expected reduction rules work:

fst 〈a, b〉 , (λxx true) ((λx1 λx2 λy if y then x1 else x2) a b)

 (λx1 λx2 λy if y then x1 else x2) a b true

 (λx2 λy if y then a else x2) b true

 (λy if y then a else b) true

 if true then a else b

 a

snd 〈a, b〉 , (λxx false) ((λx1 λx2 λy if y then x1 else x2) a b)

 (λx1 λx2 λy if y then x1 else x2) a b false

 (λx2 λy if y then a else x2) b false

 (λy if y then a else b) false

 if false then a else b

 b

2.4.3 Sums

Sums come with two constructors, namely the injections, and one destructor, namely the case
operator. The left injection is written inl a and the right injection is written inr a. The case
operator is written case a of {inlx1 7→ b1 | inr x2 7→ b2}. If the argument a is of the form inl a1,

27

then the �rst branch b1 is evaluated with x1 substituted with a1. But if a is of the form inr a2,
a similar evaluation happens with the second branch b2. There two reduction rules are thus:

RedInl

case inl a of {inlx1 7→ b1 | inr x2 7→ b2} b1[x1/a]

RedInr

case inr a of {inlx1 7→ b1 | inr x2 7→ b2} b2[x2/a]

We can encode these constructs in the pure λ-calculus as follows:

• inl a , λy1 λy2 y1 a

• inr a , λy1 λy2 y2 a

• case a of {inlx1 7→ b1 | inr x2 7→ b2} , a (λx1 b1) (λx2 b2)

Let's verify that the two expected reduction rules work:

case inl a of {inlx1 7→ b1 | inr x2 7→ b2} , (λy1 λy2 y1 a) (λx1 b1) (λx2 b2)

 (λy2 (λx1 b1) a) (λx2 b2)

 (λx1 b1) a

 b1[x1/a]

case inr a of {inlx1 7→ b1 | inr x2 7→ b2} , (λy1 λy2 y2 a) (λx1 b1) (λx2 b2)

 (λy2 y2 a) (λx2 b2)

 (λx2 b2) a

 b2[x2/a]

2.5 Properties

We present some properties of the λ-calculus, like con�uence and curry�cation. These prop-
erties are for the whole programming language. On another side, some properties are about
terms, and all terms of the λ-calculus do not satisfy these properties. For example, soundness
and termination are not true for all terms. Notice however that the pure λ-calculus is sound:
all its term are sound. This comes from the fact that there is only one sort of constructor and
one sort of destructor, and they are associated. There is syntactically no errors in the pure
λ-calculus.

2.5.1 Con�uence

A reduction relation is con�uent if any two reduction paths starting from the same term can
be joined. More precisely if a reduces in zero or more steps to a1 and if it also reduces in zero
or more steps to a2, then there is a term b such that a1 and a2 reduce in zero or more steps
to b.

28

De�nition 1 (Con�uence). A relation a a is con�uent if it satis�es the following property.

If a ? a1 and a ? a2 hold, then there is b such that a1 ? b and a2 ? b hold.

The λ-calculus with pairs is con�uent. Other extensions of the λ-calculus are also con�uent,
but we focus on the λ-calculus extended with pairs in this document. The λ-calculus is also
locally con�uent. Local con�uence is similar to con�uence but its hypotheses do exactly one
reduction step.

De�nition 2 (Local con�uence). A relation a a is locally con�uent if it satis�es the

following property. If a a1 and a a2 hold, then there is b such that a1 ? b and a2 ? b
hold.

2.5.2 Curry�cation

In the λ-calculus, functions take exactly one argument and return exactly one result. However
using pairs, it is possible to take several arguments and return several results. For instance, a
swap function that takes two arguments at the same time and returns them swapped, could
be written:

swap , λx 〈snd x, fst x〉

It is however more convenient to use functions over several arguments like λ(x, y) 〈y, x〉
although we still have to return a pair. Functions taking several arguments can also be
curry�ed. This means that instead of abstracting over a series of arguments, the term abstracts
the �rst component of the series and returns an abstraction over the second component of
the series, and so on. More precisely λ(x1, . . . , xn) a can be curry�ed as λx1 . . . λxn a and
reciprocally for uncurry�cation. A similar mechanism applies for multi-application. The
application of a series of argument a (b1, . . . , bn) becomes (a b1) . . . bn. The parentheses are
not necessary.

2.5.3 Soundness

Any powerful enough programming language allows somehow to write programs that go wrong.
For instance, null pointer exceptions or segmentation faults are consequences of programs that
went wrong. In the pure λ-calculus, programs cannot go wrong since no errors can appear
syntactically. However when we extend it, errors may appear, which is why we added pairs.

A term a is sound if and only if none of its reduction paths yield to an error (or all its
reduction paths yield to valid terms).

De�nition 3 (Sound terms). A term a is sound if ∀b, a ? b⇒ b ∈

Ω

.

2.5.4 Termination

Any powerful enough programming language allows some kind of looping mechanism (while-
loops, for-loops, recursive functions, etc.) hence non-termination. The λ-calculus does not
di�er on this point, for instance the omega term loops inde�nitely on itself. When we use a
program to implement an algorithm, we are usually interested in its termination to obtain the
resulting value. So we are interested into the termination of its reduction paths.

A term a is strongly normalizing if all of its reduction paths are �nite.

29

30

Part I

Type Systems as Usual

31

Chapter 3

Existing Type Systems

In this chapter, we describe some existing type systems: one type system per section. All
these type systems will be uni�ed and subsumed by our �nal type system in Chapter 5,
namely System Fcc. Understanding all these type systems in detail is not necessary, however
it is important to notice the di�erences in their de�nition, presentation, and set of features.
At a �rst glance, it is not obvious that they may be uni�ed and that the features of one type
system are compatible with the features of another type system.

Since this chapter presents a series of existing type systems, it may be boring to read for
readers familiar with these notions. Each type system can be skipped independently, whether
the reader know them or not. The only new content, which may thus be of interested to
experienced readers, is the explicit version of System Fη in Section 3.4. However this extension
comes without surprises.

In the previous chapter we saw that for powerful enough programming languages, some
interesting properties about terms, like soundness and termination, do not hold for every term.
We want a way to know when they hold to avoid buggy programs or looping algorithms. The
�rst approach is to mathematically prove the properties we are interested in each time we
consider a term. If we write a lot of programs this can quickly become not tractable. Moreover,
this is neither modular, nor resilient to code changes. The second approach would be to use
more automation. One way would be to use an automatic prover and help it when needed.
But another successful approach is to use type systems. Besides, as said in the introduction,
type systems are also a good starting point for code documentation.

A type system is a small syntactic language which objects can be interpreted as proofs.
The main object is the term judgment, which is usually of the form Γ ` a : τ and tells that
a is sound and in some type systems that it also terminates. These objects can either be
completely written by the programmer, partially inferred or totally inferred. In the present
document we do not discuss the inference issue and only look at the type system once all
inference is done. Said otherwise we only study kernel type systems.

Type systems can either be implicit or explicit. Explicit type systems have an additional
syntactical class called explicit terms. They are partial typing derivations and contain all
necessary annotations for the typing derivations to be unique under some conditions. The
types are then unique for each initial environment. The explicit version simply gives a name to
each rule and is thus uniquely de�ned by the implicit version. Moreover, explicit type systems
de�ne a notion of reduction over these explicit terms that bisimulates the term reduction, up
to erasable steps. This reduction is directly used to show the subject reduction property by

33

M,N ::= x | λ(x : τ)M |MM | 〈M,M〉 | fstM | sndM Explicit terms

τ, σ, ρ ::= τ → τ | τ × τ Types

Γ ::= ∅ | Γ, (x : τ) Environments

Figure 3.1: STLC syntax

reduction of the typing derivation. This is a very strong property that all type systems do
not necessarily have. On the other side, implicit type systems contain no explicit terms and
thus no type annotations and no explicit reduction. Type systems always have an implicit
version since it can be deduced from the explicit version by erasing type annotations. As a
consequence, we assume the de�nition of the explicit version by default. Terms will refer to
explicit terms, reduction to explicit reduction, and so on. In case of ambiguity, we will specify
whether we are referring to the implicit or explicit version.

In this chapter, we give as much as possible the explicit and implicit version of the con-
sidered type systems. For System Fη, there is no explicit version in the literature, however we
de�ne one very naturally. For Constraint ML the case is worse, an explicit version would be
very hard to write since the typing rules are not local: the consistency of constraints is checked
at top level. An explicit version of Constraint ML would need to reduce the consistency proof
of the top-level set of constraints.

When de�ning type systems, we factorize both versions by writing the judgments in the
following form E ⇒ J where E is an explicit element witnessing the judgment J . The
witness E is a syntactic representation of the derivation of J . For instance, the explicit term
judgment is of the form M ⇒ Γ ` a : τ where M is an explicit term which is a partial proof
that the term a has type τ under environment Γ. It is a partial proof because it only contains
enough information to rebuild the term a, and enough information to rebuild the type τ given
an environment Γ. Explicit judgments are equivalent to implicit judgments. For instance,
M ⇒ Γ ` a : τ holds for some M if and only if Γ ` a : τ holds.

3.1 The STLC

The Simply Typed Lambda Calculus (abbreviated as STLC) is the most simple type system.
It provides both soundness and termination and illustrates all there is to know about the
λ-calculus.

3.1.1 De�nition

The STLC de�nes syntactical types, described on Figure 3.1. Types are written τ , σ, or ρ.
They contain arrows τ → τ and products τ × τ . Arrow types are used to type functions,
while product types are used to type pairs. A term of type τ → σ is a function with a domain
represented by τ and a range represented by σ. While a term of type τ × σ is a pair of a
term of type τ and a term of type σ. Base types (leaves for the syntax tree of types), like
int or bool, are necessary to write any type at all, but since they are neither necessary nor
interesting to the theory, we leave them aside and use meta-variables in a generic way.

In order to type functions we need the notion of environments, written Γ. They assign a
type to each free term variable. They are lists of bindings of the form (x : τ). The order does
not matter yet, but it will in later type systems.

34

E ::= λ(x : τ) [] | []M |M [] | 〈[],M〉 | 〈M, []〉 | fst [] | snd [] Evaluation contexts

p ::= x | p v | fst p | snd p Prevalues

v ::= p | λ(x : τ) v | 〈v, v〉 Values

Figure 3.2: STLC notations

RedCtx

M β N

E [M] β E [N]

RedApp

(λ(x : τ)M)N β M [x/N]
RedFst

fst 〈M,N〉 β M
RedSnd

snd 〈M,N〉 β N

Figure 3.3: STLC reduction relation

Terms of the STLC mainly correspond to the terms of the λ-calculus and are given on
Figure 3.1. They are written M or N and contain variables x, abstractions λ(x : τ)M
where the term variable x is annotated with its type τ , applications MM , pairs 〈M,M〉, and
projections fstM and sndM .

We also have to de�ne some notations, which are given on Figure 3.2. These notations
are about the reduction of terms. Since the λ-calculus uses strong reduction, we need to use
strong reduction for explicit terms too. And thus we de�ne evaluation contexts, prevalues,
and values for explicit terms in strong reduction.

Evaluation contexts, using the overloaded notation E , resemble those of the λ-calculus
modulo the type annotation for term abstraction. They are one-hole contexts of depth one.
Prevalues, again using the overloaded notation p, are variables or destructors applied to values
but where a constructor is expected, in which case only a prevalue is applied. And values,
using the overloaded notation v, are prevalues or constructors applied to values.

We de�ne the reduction rules of explicit terms. These are given on Figure 3.3. We write
M β N to say that M reduces on N . Reduction rules resemble those of the λ-calculus
modulo type annotations, which are ignored. Rule RedCtx is the context rule of strong
reduction. Rule RedApp tells that the application of a term N to an abstraction λ(x : τ)M
reduces to the substitution of x by N in M , which we write M [x/N]. Finally, rules RedFst
and RedSnd tell that �rst and second projections of a pair reduce to the �rst and second
elements of the pair respectively.

The implicit judgment Γ ` a : τ tells that the term a has type τ under environment Γ.
The rules to derive this judgment are given on Figure 3.4. In the explicit version we add the
term M witnessing the derivation: M ⇒ Γ ` a : τ . This notation is actually coherent with
our more general notion of explicit judgments written E ⇒ J where E is a witness of the
derivation of the judgment J . We reuse this notation later for coercions G⇒ Γ ` τ . σ where
the coercion G witnesses the coercion judgment Γ ` τ . σ.

Rule TermVar tells that the term variable x has type τ under the well-formed environ-
ment Γ if the variable x is associated to the type τ in the environment Γ. The term witnessing
this proof is the term variable x itself. Rule TermLam gives the function λx a the type τ → σ
under environment Γ, if the term a has type σ under the extended environment Γ, (x : τ).
The environment is extended because x is now free in a and we need to say how it behaves.
If we name M the term for Γ, (x : τ) ` a : σ, then the term we use for the conclusion is
λ(x : τ)M since the type τ cannot be guessed by looking at the term M only. Rule TermApp

35

TermVar

Γ env (x : τ) ∈ Γ

x⇒ Γ ` x : τ

TermLam

M ⇒ Γ, (x : τ) ` a : σ

λ(x : τ)M ⇒ Γ ` λx a : τ → σ

TermApp

M ⇒ Γ ` a : τ → σ N ⇒ Γ ` b : τ

M N ⇒ Γ ` a b : σ

TermPair

M ⇒ Γ ` a : τ N ⇒ Γ ` b : σ

〈M,N〉 ⇒ Γ ` 〈a, b〉 : τ × σ

TermFst

M ⇒ Γ ` a : τ × σ
fstM ⇒ Γ ` fst a : τ

TermSnd

M ⇒ Γ ` a : τ × σ
sndM ⇒ Γ ` snd a : σ

Figure 3.4: STLC term judgment relation

TypeArr

Γ ` τ type Γ ` σ type

Γ ` τ → σ type

TypeProd

Γ ` τ type Γ ` σ type

Γ ` τ × σ type

EnvEmpty

∅ env

EnvTerm

x /∈ dom(Γ) Γ ` τ type

Γ, (x : τ) env

Figure 3.5: STLC well formedness relations

tells that if a is a function of type τ → σ under environment Γ and b is a term of type τ under
environment Γ, then the application of b to a is of type σ under Γ. The environments are
unchanged since the free variables of a b contain those of a and b. The term we use is M N ,
given the terms for the premises were M for the function and N for the argument.

The next three rules are about pairs and the environment does not play a role since no
abstractions take place. Rule TermPair tells that the pair 〈a, b〉 has type τ ×σ if a has type τ
and b has type σ. The term is similar to the lambda term. Rule TermFst (resp. TermSnd)
tells that the �rst (resp. second) projection fst a (resp. snd a) of a has type τ (resp. σ) if a
has type τ × σ. The term is similar to the lambda term.

The judgment Γ ` τ type tells that the type τ is well-formed under environment Γ.
And judgment Γ env tells that the environment Γ is well-formed. The rules to derive these
judgments are given on Figure 3.5. A type is always well-formed and an environment is
well-formed if it binds its variable at most once and their types are well-formed.

Rule TypeArr (resp. TypeProd) tells that τ → σ (resp. τ × σ) is well-formed under
environment Γ if both types τ and σ are well-formed under Γ. The empty environment ∅ is
well-formed by EnvEmpty and the extension of the environment Γ with the binding (x : τ) is
well-formed, by rule EnvTerm, if x is not already bound in Γ and τ is well-formed under Γ.

36

bxc = x
bλ(x : τ)Mc = λx bMc

bM Nc = bMc bNc

b〈M,N〉c = 〈bMc, bNc〉
bfstMc = fst bMc
bsndMc = snd bMc

Figure 3.6: STLC drop function

3.1.2 Properties

In an explicit type system, a judgment has to be unique according to its explicit entity. For
instance, when the explicit term judgmentM ⇒ Γ ` a : τ holds, we know that a is determined
by M only and τ is a function of the term M and the environment Γ.

Lemma 4 (Uniqueness). The following assertions hold.

• If M ⇒ Γ1 ` a1 : τ1 and M ⇒ Γ2 ` a2 : τ2 hold, then a1 = a2 holds.

• If M ⇒ Γ ` a : τ1 and M ⇒ Γ ` a : τ2 hold, then τ1 = τ2 hold.

Actually a is a function of M even if M is not well-typed. We call this function the drop
function and we write it bMc. It is simply de�ned by dropping all type decorations in M .
The formal de�nition is given on Figure 3.6. This lemma explains why we usually omit a in
explicit term judgments.

Lemma 5. If M ⇒ Γ ` a : τ holds, then a = bMc holds.

Although we can write Γ `M : τ instead of M ⇒ Γ ` a : τ , we will not do so in order to
keep similar notations between all type systems. In particular, some type systems have other
explicit judgments than the term judgment and the notation E ⇒ J where E is an explicit
entity and J is an implicit judgment will be used for them.

The next lemma gives the equivalence between the implicit and explicit version of the type
system. It tells thatM is actually a function of the implicit typing derivation. In other words,
we can extract from a derivation of Γ ` a : τ the term M such that M ⇒ Γ ` a : τ holds.
And reciprocally that the term M is only a decoration and the validity of the judgment does
not depend on it.

Lemma 6 (Equivalence). Γ ` a : τ holds if and only if M ⇒ Γ ` a : τ holds for some M .

We have some simulation properties about the explicit term reduction. If an explicit term
can reduce, then its dropped lambda term can do the same reduction. And reciprocally, if the
dropped lambda term of an explicit term can reduce, then the explicit term can do it too.

Lemma 7 (Bisimulation). The following assertions hold.

• If M β N holds, then bMc bNc holds too.

• If bMc b holds, then there is an N such that M β N and b = bNc hold.

• If M is a value, then bMc is a value too.

Contrary to the untyped reduction relation of the λ-calculus, the explicit reduction relation
is strongly normalizing for well-typed terms. And by bisimulation, well-typed lambda terms
strongly normalize too.

37

Lemma 8 (Termination). If M ⇒ Γ ` a : τ holds, then M strongly normalizes.

Corollary 9. If Γ ` a : τ holds, then a strongly normalizes.

Similarly to the reduction relation of the λ-calculus, the explicit reduction relation is
con�uent. If an explicit term can reduce in two manners, then there is a term that joins these
two reduction paths.

Lemma 10 (Con�uence). The explicit reduction is con�uent.

The STLC type system obeys some usual syntactical properties. The �rst property is
called weakening. It tells that a well-formed type (resp. a well-typed term) under the en-
vironment Γ is also well-formed (resp. well-typed with the same type) under a well-formed
extended environment Γ′. This property is in part used to prove the substitution lemma.

Lemma 11 (Weakening). If Γ ⊆ Γ′ and Γ′ env hold, then the following assertions hold:

• If Γ ` τ type holds, then Γ′ ` τ type holds.

• If M ⇒ Γ ` a : τ holds, then M ⇒ Γ′ ` a : τ holds.

Corollary 12. If Γ env and (x : τ) ∈ Γ hold, then Γ ` τ type holds.

The second property is called substitution. It tells that the substitution a[x/b] of x by b
in a has type σ under environment Γ extended with Γ′ if the argument b has type τ under Γ
and the body a has type σ under Γ extended with x associated to τ and Γ′. This lemma is
used to prove the subject reduction property for the RedApp case.

Lemma 13 (Substitution). If M ⇒ Γ, (x : τ),Γ′ ` a : σ and N ⇒ Γ ` b : τ hold, then

M [x/N]⇒ Γ,Γ′ ` a[x/b] : σ holds.

The next property is called extraction. It tells that the subcomponents of a judgment
are well-formed. We can extract the well-formedness of the type and environment of a term
judgment, and we can extract the well-formedness of the environment of a type judgment.

Lemma 14 (Extraction). The following assertions hold:

• If Γ ` τ type holds, then Γ env holds.

• If Γ ` a : τ holds, then Γ ` τ type holds.

The explicit reduction preserves typing. When a term a has type τ under environment Γ
with witness M which reduces to N , then the term N actually witnesses that bNc has type τ
under Γ. By bisimulation we deduce the subject reduction property for the well-typed lambda
terms. If the term a is well-typed and reduces to b, then it is still well-typed with the same
typing (environment and type).

Lemma 15 (Explicit subject reduction). If M ⇒ Γ ` a : τ and M β N hold, then

N ⇒ Γ ` b : τ holds where b = bNc.

Corollary 16 (Subject reduction). If Γ ` a : τ and a b hold, then Γ ` b : τ holds.

38

The subject reduction property usually goes with the progress property. Both properties
together show type soundness. Progress tells that if a term a is well-typed then it either
reduces or it is a value. The same property holds for the explicit language. Progress is usually
shown for closed terms. Since we are in a strong reduction setting, we state the progress
lemma for all terms, including open terms. The result for closed term is a corollary. The
proof of progress relies on a classi�cation lemma, that gives the form of the typing derivation
of values according to their type.

Lemma 17 (Explicit progress). If M ⇒ Γ ` a : τ holds and M is not a value, then there is

an term N such that M β N holds.

Lemma 18 (Progress). If Γ ` a : τ holds and a is not a value, then there is a term b such
that a b holds.

And �nally, the STLC type system obeys the soundness property: well-typed terms are
sound. A term is sound if all its reductions do not encounter an error. This proposition relies
on subject reduction and the fact that well-typed term are valid terms.

Proposition 19 (Soundness). If Γ ` a : τ holds, then a is sound.

3.2 System F

The STLC type system is sound but quite limited. For instance, the encodings we used in
Section 2.4 cannot be given a generic type in the STLC, but they admit one in System F.
A more simple example is the following sound and terminating term, which is typable in
System F but not in the STLC:

let x = λy y in xx

According to the body of the let-construct, the type of x has to be an arrow type and the
left-hand side of the arrow type has to be again the type of x. As a consequence we would
need some sort of in�nite type. One solution is to use recursive types as in System Frec (see
Section 3.3), while another one is to use polymorphism as described in this section.

Types are used to show particular properties (like soundness, termination, etc.) but they
can also be used by the programmer to describe the behavior of a term, as documentation.
For instance a term of type τ → σ takes any term of type τ and returns a term of type σ.
The type syntax of the STLC is quite poor to be used as documentation, we might want
to extend it. A useful and powerful extension is polymorphism. The STLC extended with
polymorphism is called System F.

Let's consider the identity term written id which de�nition is λxx. The most we can say
is that it takes a term and returns it as is. In the STLC we can say that for some type τ , if it
takes a term of type τ , it returns a term of type τ . However it is true for any type τ but we
cannot say it in the syntax of types. We need to introduce a new type constructor that does
not have a computational content but only a typing (and documentation) content.

3.2.1 De�nition

System F extends the syntax of the STLC with a class of type variables, written α or β. Syn-
tactical types are also extended with type variables α and polymorphic types ∀α τ . Bindings

39

α, β Type variables

M,N ::= x | λ(x : τ)M |MM | 〈M,M〉 | fstM | sndM Explicit terms

| ΛαM |M [τ]

τ, σ, ρ ::= α | τ → τ | τ × τ | ∀α τ Types

Γ ::= ∅ | Γ, (x : τ) | Γ, α Environments

Figure 3.7: System F syntax

E ::= λ(x : τ) [] | []M |M [] | 〈[],M〉 | 〈M, []〉 | fst [] | snd [] Evaluation contexts

| Λα [] | [][τ]

p ::= x | p v | fst p | snd p | p[τ] Prevalues

v ::= p | λ(x : τ) v | 〈v, v〉 | Λα v Values

Figure 3.8: System F notations

are extended with type bindings α. Terms are extended with type abstractions ΛαM and
type applications M [τ]. All these changes are formally given on Figure 3.7.

Notations for System F follow the same logic as the λ-calculus or the STLC. They are
given on Figure 3.8. Evaluation contexts are all one-hole terms of depth one and correspond
to strong reduction. Prevalues are variables or destructors applied to values but where a
constructor is expected, in which case only a prevalue is applied. And values are prevalues or
constructors applied to values. The new prevalue is p[τ] since type application is a destructor
and the new value is Λα v since type abstraction is a constructor.

Reduction rules for System F are given on Figure 3.9. We writeM β N whenM reduces
to N with a computational content andM ι N whenM reduces on N without changing the
computational content of M . We use the meta-variable βι to stand for β or ι. This labeling
is used in the bisimulation property when linking the explicit reduction and the λ-calculus
reduction.

The �rst four rules are those of the STLC. The last rule, namely RedFor, is new and about
polymorphism. Hence it is a ι-reduction rule while the STLC reduction rules were β-reduction
rules. When a type application follows a type abstraction, reduction substitutes the term to
which they are applied replacing the type variable with the type argument.

The term judgment relation is de�ned on Figure 3.10. The �rst six rules are those of
the STLC. The last two rules are about polymorphism. Rule TermGen tells that if a has
type τ under the environment Γ extended with the type variable α, then it can also be typed
∀α τ under Γ. The witness used for this typing rule is ΛαM when M is the witness for the
unique premise. Rule TermInst does the contrary, it instantiates a type variable. If a has
polymorphic type ∀α τ and σ is a well-formed type, then a also has type τ where all free
occurrences of α are substituted with σ, namely τ [α/σ]. The witness of the rule is M [σ]
where M is the witness of the unique term judgment premise.

Finally the well-formedness relations are given on Figure 3.11. Rule TypeVar tells that a
type variable is well-formed if it is bound in the environment, which has to be well-formed.
Rule TypeArr (resp. TypeProd) tells that τ → σ (resp. τ × σ) is well-formed if both τ and
σ are well-formed. The polymorphic type ∀α τ is well-formed if its body τ is well-formed in
the same environment extended with α, according to rule TypeFor.

40

RedCtx

M βι N

E [M] βι E [N]

RedApp

(λ(x : τ)M)N β M [x/N]
RedFst

fst 〈M,N〉 β M
RedSnd

snd 〈M,N〉 β N

RedFor

(ΛαM)[τ] ι M [α/τ]

Figure 3.9: System F reduction rules

TermVar

Γ env (x : τ) ∈ Γ

x⇒ Γ ` x : τ

TermLam

M ⇒ Γ, (x : τ) ` a : σ

λ(x : τ)M ⇒ Γ ` λx a : τ → σ

TermApp

M ⇒ Γ ` a : τ → σ N ⇒ Γ ` b : τ

M N ⇒ Γ ` a b : σ

TermPair

M ⇒ Γ ` a : τ N ⇒ Γ ` b : σ

〈M,N〉 ⇒ Γ ` 〈a, b〉 : τ × σ

TermFst

M ⇒ Γ ` a : τ × σ
fstM ⇒ Γ ` fst a : τ

TermSnd

M ⇒ Γ ` a : τ × σ
sndM ⇒ Γ ` snd a : σ

TermGen

M ⇒ Γ, α ` a : τ

ΛαM ⇒ Γ ` a : ∀α τ

TermInst

M ⇒ Γ ` a : ∀α τ Γ ` σ type

M [σ]⇒ Γ ` a : τ [α/σ]

Figure 3.10: System F term judgment relation

The empty environment is always well-formed, rule EnvEmpty. An environment extended
with a term binding is well-formed, by rule EnvTerm, if its term variable is not already
bound and its type is well-formed. A well-formed environment extended with a type binding
is well-formed, by rule EnvType, if its type variable is not already bound.

3.2.2 Properties

System F obeys almost the same properties as the STLC. The explicit term assures the unique-
ness of the implicit term and its type when the term is well-typed. Concretely, ifM ⇒ Γ ` a : τ
holds, then a is a function of M only and τ is a function of both M and Γ.

Lemma 20 (Uniqueness). The following assertions hold.

• If M ⇒ Γ1 ` a1 : τ1 and M ⇒ Γ2 ` a2 : τ2 hold, then a1 = a2 holds.

• If M ⇒ Γ ` a : τ1 and M ⇒ Γ ` a : τ2 hold, then τ1 = τ2 hold.

Similarly to the STLC, a is a function ofM even ifM is not well-typed. We de�ne the drop
function of System F on Figure 3.12. The drop function drops the typing annotations. Type
abstractions and type applications are erased. This lemma explain why we usually omit a in
explicit term judgments.

41

TypeVar

Γ env α ∈ Γ

Γ ` α type

TypeArr

Γ ` τ type Γ ` σ type

Γ ` τ → σ type

TypeProd

Γ ` τ type Γ ` σ type

Γ ` τ × σ type

TypeFor

Γ, α ` τ type

Γ ` ∀α τ type

EnvEmpty

∅ env

EnvTerm

x /∈ dom(Γ) Γ ` τ type

Γ, (x : τ) env

EnvType

α /∈ dom(Γ) Γ env

Γ, α env

Figure 3.11: System F well-formedness relations

bxc = x
bλ(x : τ)Mc = λx bMc

bM Nc = bMc bNc

b〈M,N〉c = 〈bMc, bNc〉
bfstMc = fst bMc
bsndMc = snd bMc

bΛαMc = bMc
bM [τ]c = bMc

Figure 3.12: System F drop function

Lemma 21. If M ⇒ Γ ` a : τ holds, then a = bMc holds.

System F also comes with an equivalence lemma as the STLC. The term M is a function
of the implicit typing derivation. And the judgment holds also in absence of the explicit term.

Lemma 22 (Equivalence). Γ ` a : τ holds if and only if M ⇒ Γ ` a : τ holds for some M .

Lemma 23 (ι-termination). The ι-reduction terminates.

Proof. The number of explicit term nodes strictly decreases at each ι-reduction step. Only
the types get bigger.

The bisimulation property is now more interesting. If a term can reduce with a β-step,
then its dropped lambda term can do the same reduction. If a term can reduce with a ι-step,
then its dropped term remains the same. Reciprocally, if a dropped lambda term can reduce,
the term can do a series of ι-steps to do the same β-step. However, the term now has to be
well-typed since we need a classi�cation lemma about ι-normal forms.

Lemma 24 (Bisimulation). The following assertions hold.

• If M β N holds, then bMc bNc holds too.

• If M ι N holds, then bMc = bNc holds.

• If M ⇒ Γ ` a : τ and a b holds, then there is an N such that M ?
ι β N and

b = bNc hold.

• If M is an explicit value (see Figure 3.8), then bMc is an implicit value.

System F is strongly normalizing. The proof of this result is quite involved and initially
due Girard [16]. Our proof of soundness for System Fcc in Chapter 5 is actually based on the
ideas of this proof. The proof is semantic and interprets types as sets of strongly normalizing
terms. If a term is well-typed, it is in its semantic type, and thus strongly normalizes.

42

Lemma 25 (Termination). If Γ ` a : τ holds, then a strongly normalizes.

Corollary 26. If M ⇒ Γ ` a : τ holds, then M strongly normalizes.

The explicit reduction of System F is also con�uent. The proof can be done using strong
normalization and local con�uence, which holds since there are no critical pairs.

Lemma 27 (Con�uence). The explicit reduction is con�uent.

System F also has a weakening lemma. It tells that a well-formed type (resp. a well-typed
term) under Γ is also well-formed (resp. well-typed with the same type) under an extended
environment Γ′.

Lemma 28 (Weakening). If Γ ⊆ Γ′ and Γ′ env hold, then the following assertions hold.

• If Γ ` τ type holds, then Γ′ ` τ type holds.

• If M ⇒ Γ ` a : τ holds, then M ⇒ Γ′ ` a : τ holds.

The term substitution lemma tells that the substitution a[x/b] has type σ under Γ if the
argument b has type τ under Γ and the body a has type b under Γ extended with x associated
to τ .

Lemma 29 (Term substitution). If N ⇒ Γ ` b : τ and M ⇒ Γ, (x : τ),Γ′ ` a : σ hold, then

M [x/N]⇒ Γ,Γ′ ` a[x/b] : σ holds.

There is a similar property for types, called type substitution. If a type σ is well formed
under environment Γ, then well-typed terms (resp. well-formed types) under Γ, α,Γ′ are well-
typed (resp. well-formed) under Γ,Γ′[α/σ] after type substitution replacing occurrences of
α by type σ. Notice that we have to substitute in the remaining environment too as type
variable α may appear there too.

Lemma 30 (Type substitution). If Γ ` σ type holds, then the following assertions hold.

• If Γ, α,Γ′ ` τ type holds, then Γ,Γ′[α/σ] ` τ [α/σ] type holds.

• If M ⇒ Γ, α,Γ′ ` a : τ holds, then M [α/σ]⇒ Γ,Γ′[α/σ] ` a : τ [α/σ] holds.

The extraction property tells that the subcomponents of a judgment are well-formed.
This is similar to the STLC. We can extract environment well-formedness from type well-
formedness, and type well-formedness from term derivations.

Lemma 31 (Extraction). The following assertions hold:

• If Γ ` τ type holds, then Γ env holds.

• If Γ ` a : τ holds, then Γ ` τ type holds.

System F has also an explicit and implicit subject reduction properties which tell that if
a term M has type τ under environment Γ and reduces on term N , then N also has type τ
under Γ. Similarly for implicit terms when a reduces on b.

Lemma 32 (Explicit subject reduction). If M ⇒ Γ ` a : τ and M βι N hold, then

N ⇒ Γ ` b : τ holds where b = bNc.

43

α, β Type variables

M,N ::= x | λ(x : τ)M |MM | 〈M,M〉 | fstM | sndM Explicit terms

| ΛαM |M [τ] | foldµα τ M | unfoldM

τ, σ, ρ ::= α | τ → τ | τ × τ | ∀α τ | µα τ Types

Γ ::= ∅ | Γ, (x : τ) | Γ, α Environments

rec ::= NE |WF well-foundedness

Figure 3.13: System Frec syntax

Lemma 33 (Subject reduction). If Γ ` a : τ and a b hold, then Γ ` b : τ holds.

This property usually goes with the progress property. Both properties together show type
soundness. Progress tells that if a term a is well-typed then it either reduces or is a value.
This property holds for both the explicit and implicit version.

Lemma 34 (Explicit progress). If M ⇒ Γ ` a : τ holds and M is not a value, then there is

a term N such that M N holds.

Lemma 35 (Progress). If Γ ` a : τ holds and a is not a value, then there is a term b such
that a b holds.

And �nally, System F obeys the soundness property. We recall that a type system is sound
if all its well-typed terms are sound. And a term is sound if it cannot reduce to an error as
de�ned in Figure 2.3.

Proposition 36 (Soundness). If Γ ` a : τ holds, then a is sound.

3.3 System Frec

System F can be extended with recursive types (Chapter 21 of [29]). For instance the type
µα τ × α, which corresponds to the in�nite type τ × (τ × . . .), contains terms that behave as
streams of type τ . However one precaution has to be taken when dealing with recursive types:
all recursive types do not necessarily have a meaning. For instance µαα has no structure, it
is an ill-formed recursive de�nition. Recursive type µα τ has a meaning only if the functor
associating α to τ is well-founded, i.e. occurrences of α occur only under a computational
type. Computational types, de�ned in the introduction, are related to the reduction and
terms, while erasable types are related to typing. Computational types classify head normal
forms and are thus those of the STLC.

3.3.1 De�nition

System Frec extends the syntactical types of System F with recursive types µα τ . The syntax
of terms is also extended with foldings foldµα τ a and unfoldings unfold a. Finally, we add
a syntactic class for well-foundedness: NE are for non-expansive functors, and WF for well-
founded ones (see Figure 3.17). All these are formally given on Figure 3.13.

Notations for System Frec follow the same logic as for System F. They are given on Fig-
ure 3.14. Evaluation contexts are all one-hole terms of depth one and correspond to strong

44

E ::= λ(x : τ) [] | []M |M [] | 〈[],M〉 | 〈M, []〉 | fst [] | snd [] Evaluation contexts

| Λα [] | [][τ] | foldµα τ [] | unfold []

p ::= x | p v | fst p | snd p | p[τ] | unfold p Prevalues

v ::= p | λ(x : τ) v | 〈v, v〉 | Λα v | foldµα τ v Values

Figure 3.14: System Frec notations

RedCtx

M βι N

E [M] βι E [N]

RedApp

(λ(x : τ)M)N β M [x/N]
RedFst

fst 〈M,N〉 β M
RedSnd

snd 〈M,N〉 β N

RedFor

(ΛαM)[τ] ι M [α/τ]
RedRec

unfold (foldµα τ M) ι M

Figure 3.15: System Frec reduction rules

reduction. Prevalues are variables or destructors applied to values but where a constructor is
expected, in which case only a prevalue is applied. And values are prevalues or constructors
applied to values. The new prevalue is unfold p since unfolding is a destructing operation,
while foldµα.τv is the new value since it is a constructor (see the reduction rule RedRec).

Reduction rules for System Frec are given on Figure 3.15. The �rst �ve rules are those
of System F. The last rule, namely Rule RedRec, is new and about recursive types. When
a term has its type folded and unfolded, it is like nothing happened. It is a ι-reduction rule
since it does not change the computational content of its term.

The term judgment relation is de�ned on Figure 3.16. The �rst eight rules are those of
System F. The last two rules are about recursive types. They allow to fold and unfold the
de�nition of a recursive type µα τ . As for polymorphism these rules are implicit since they
do not change the computational content of the term they are typing, but only its invariant.
Rule TermFold tells that a term a with type τ [α/µα τ] has also type µα τ by folding the
recursive de�nition. Notice that the explicit version of the term needs a type annotation to
know which recursive type it has to fold. Rule TermUnfold does the opposite: a term a of
type µα τ has also type τ [α/µα τ].

Compared to System F, we need a judgment about the well-foundedness of functors, which
we use to tell when a recursive type is well-formed. This judgment is written α 7→ τ : rec and
means that the functor associating the type variable α to the type τ is non-expansive (resp.
well-founded) if rec is NE (resp. WF). Intuitively, a well-founded functor uses its variable only
under computational types, while a non-expansive functor may use its variable anywhere. The
well-foundedness relation is given on Figure 3.17.

Rule RecVar tells that the identity functor is non-expansive. Rule RecCst tells that
constant functors are well-founded. They do not use their variable, which means that they
do not have a role in the recursive de�nition containing them. Rule RecSub tells that well-
founded functors are also non-expansive: we can forget their well-foundedness. Rules RecArr
and RecProd tell that functors, which head type constructors are arrows and products, are
well-founded if their subfunctors are non-expansive. This comes from the fact that arrows
and products are computational types. Finally, rules RecFor and RecMu tell that functors,

45

TermVar

Γ env (x : τ) ∈ Γ

x⇒ Γ ` x : τ

TermLam

M ⇒ Γ, (x : τ) ` a : σ

λ(x : τ)M ⇒ Γ ` λx a : τ → σ

TermApp

M ⇒ Γ ` a : τ → σ N ⇒ Γ ` b : τ

M N ⇒ Γ ` a b : σ

TermPair

M ⇒ Γ ` a : τ N ⇒ Γ ` b : σ

〈M,N〉 ⇒ Γ ` 〈a, b〉 : τ × σ

TermFst

M ⇒ Γ ` a : τ × σ
fstM ⇒ Γ ` fst a : τ

TermSnd

M ⇒ Γ ` a : τ × σ
sndM ⇒ Γ ` snd a : σ

TermGen

M ⇒ Γ, α ` a : τ

ΛαM ⇒ Γ ` a : ∀α τ

TermInst

M ⇒ Γ ` a : ∀α τ Γ ` σ type

M [σ]⇒ Γ ` a : τ [α/σ]

TermFold

M ⇒ Γ ` a : τ [α/µα τ]

foldµα τ M ⇒ Γ ` a : µα τ

TermUnfold

M ⇒ Γ ` a : µα τ

unfoldM ⇒ Γ ` a : τ [α/µα τ]

Figure 3.16: System Frec term judgment relation

RecVar

α 7→ α : NE

RecCst

α /∈ fv(τ)

α 7→ τ : WF

RecSub

α 7→ τ : WF

α 7→ τ : NE

RecArr

α 7→ τ : NE α 7→ σ : NE

α 7→ τ → σ : WF

RecProd

α 7→ τ : NE α 7→ σ : NE

α 7→ τ × σ : WF

RecFor

α 7→ τ : rec

α 7→ ∀β τ : rec

RecMu

β 7→ τ : WF α 7→ τ : rec

α 7→ µβ τ : rec

Figure 3.17: System Frec well-foundedness judgment relation

which head type constructors are polymorphic types or recursive types, are non-expansive
(resp. well-founded) if their subfunctor is non-expansive (resp. well-founded). These type
constructors are erasable and not computational. Additionally for the functor ending with a
recursive type, an additional premise is necessary for the recursive type to be also well-founded.

Finally the well-formedness relations are given on Figure 3.18. Rule TypeVar tells that
a type variable is well-formedness if it is bound in the environment, which has to be well-
formed. Rule TypeArr (resp. TypeProd) tells that τ → σ (resp. τ × σ) is well-formed if
both τ and σ are well-formed. The polymorphic type ∀α τ is well-formed if τ is well-formed
in the same environment extended with α, according to rule TypeFor. Rule TypeMu tells
that a recursive type is well-formed if its functor is well-founded and its body is well-formed
under its environment extended with its type variable.

The empty environment is always well-formed, rule EnvEmpty. An environment extended
with a term binding is well-formed, by rule EnvTerm, if its term variable is not already

46

TypeVar

Γ env α ∈ Γ

Γ ` α type

TypeArr

Γ ` τ type Γ ` σ type

Γ ` τ → σ type

TypeProd

Γ ` τ type Γ ` σ type

Γ ` τ × σ type

TypeFor

Γ, α ` τ type

Γ ` ∀α τ type

TypeMu

Γ, α ` τ type α 7→ τ : WF

Γ ` µα τ type

EnvEmpty

∅ env

EnvTerm

x /∈ dom(Γ) Γ ` τ type

Γ, (x : τ) env

EnvType

α /∈ dom(Γ) Γ env

Γ, α env

Figure 3.18: System Frec well-formedness relations

bound and its type is well-formed. A well-formed environment extended with a type binding
is well-formed, by rule EnvType, if its type variable is not already bound.

3.3.2 Properties

System Frec obeys almost the same properties as System F. The main di�erence is about
termination. While every well-typed terms of System F strongly normalize, some well-typed
terms of System Frec may loop inde�nitely. However these terms remain sound. One example

is the omega term omega
def

= (λy y y) (λxxx). For any well-formed type τ under environment Γ,
we de�ne the term N as λ(y : µα (α→ τ)) (unfold y) y and the term M as N (foldµα (α→τ)N).
We have bMc = omega. We can easily see that the termM de�nes a derivation for Γ ` omega :
τ . We did not only prove that omega is well-typed, but that it accepts any well-formed type,
in particular ∀αα, which we usually call the bottom type.

Despite the non-termination of some terms, the ι-reduction still strongly normalizes for
all terms even for ill-typed ones. This property is useful to prove the backward simulation
property, which can be used to prove subject reduction for the explicit version.

Lemma 37. The ι-reduction strongly normalizes.

Proof. The number of explicit term nodes strictly decreases during reduction.

It has been shown that with restricted forms of recursion [23], System Frec may recover
strong normalization. The most simple restriction is to consider positive recursion, where
recursive type variables may only be used in covariant occurrences.

Besides the di�erent restrictions on recursive types to recover strong normalization, there
is another notion about recursive types which is subject to variants. System Frec can be
presented with equi-recursive types or iso-recursive types. The version of this section has iso-
recursive types: recursive types are isomorphic to their unfolding. With equi-recursive types,
recursive types are equal to their unfolding. This last notion is more general and subsumes
the �rst notion. See Section 5.4.4 for a discussion about equi- and iso-recursive types.

47

α, β Type variables

M,N ::= x | λ(x : τ)M |MM | 〈M,M〉 | fstM | sndM Explicit terms

| ΛαM |M [τ] | G〈M〉
τ, σ, ρ ::= α | τ → τ | τ × τ | ∀α τ Types

G ::= ♦ | G ◦G | Λα | • τ | G τ→ G | G×G | ∀αG | dist Explicit containments

Γ ::= ∅ | Γ, (x : τ) | Γ, α Environments

Figure 3.19: System Fη syntax

3.4 System Fη

As types are approximations of terms and some approximations are �ner than others (fewer
terms satisfy them), we may want to have an order between types related to the order between
approximations. Giving a syntax in the type system for this ordering is called subtyping or type
containment. This mechanism was studied along polymorphism in System Fη by Mitchell [25].
Since System Fη was described implicitly, we adapt the presentation for our explicit version.
The main di�erence is for the distributivity rule which was ∀α (τ → σ) . (∀α τ) → ∀ασ and
is now ∀α (τ → σ) . τ → ∀ασ, given that α is not free in τ . The original rule is derivable in
our setting. We also add product types.

We want our ordering to satisfy the fact that, if a type τ is smaller than σ under Γ with
proof G, written G ⇒ Γ ` τ . σ, then all terms of type τ under Γ also have type σ under
Γ. In the explicit version the term M has to be annotated with the proof G, written G〈M〉,
when such retyping occurs.

Mitchell proved that the implicit version of this type system is equivalent to a version
without the containment relation and the containment typing rule, but with an additional
typing rule about η-expansion. This typing rule allows to type a function by actually typing
its η-expansion. We can extend this idea to product types as well. In other words, a also
has type τ → σ under Γ, if its η-expansion λx ax has the same type τ → σ under the same
environment Γ. The typing rule follows:

TermEtaArr

Γ ` λx ax : τ → σ x /∈ fv(a)

Γ ` a : τ → σ

TermEtaProd

Γ ` 〈fst a, snd a〉 : τ × σ
Γ ` a : τ × σ

This version actually explains the name of System Fη. This rule implies that a term a has
type τ under Γ in System Fη, if there is a term b of type τ under Γ in System F such that b
η-reduces to a.

3.4.1 De�nition

System Fη extends System F . The syntax of terms is extended with containment applications
G〈M〉. A new syntactical class for containment proofs is added. Containment proofs are
written G and contain the re�exivity proof ♦, transitivity proofs G ◦ G, free generalizations
Λα, type applications • τ , arrow subtypings G

τ→ G, product subtypings G×G, polymorphism
congruences ∀αG, and distributivity proofs dist. These changes with respect to System F are
formally given on Figure 3.19.

48

E ::= λ(x : τ) [] | []M |M [] | 〈[],M〉 | 〈M, []〉 | fst [] | snd [] Evaluation contexts

| Λα [] | [][τ] | G〈[]〉
p ::= x | p v | fst p | snd p | p[τ] | (∀αG)〈p〉 Prevalues

| dist〈p〉 | dist〈Λαp〉 | (G τ→ G)〈p〉 | (G×G)〈p〉
v ::= p | λ(x : τ) v | 〈v, v〉 | Λα v Values

Figure 3.20: System Fη notations

RedCtx

M β N

E [M] β E [N]

RedApp

(λ(x : τ)M)N β M [x/N]
RedFst

fst 〈M,N〉 β M
RedSnd

snd 〈M,N〉 β N

RedFor

(ΛαM)[τ] ι M [α/τ]
RedRefl

♦〈M〉 ι M
RedTrans

(G2 ◦G1)〈M〉 ι G2〈G1〈M〉〉

RedTLam

Λα〈M〉 ι ΛαM
RedTApp

• τ〈M〉 ι M [τ]

RedArr

(G1
τ→ G2)〈λ(x : τ ′)M〉 ι λ(x : τ)G2〈M [x/G1〈x〉]〉

RedProd

(G1 ×G2)〈〈M1,M2〉〉 ι 〈G1〈M1〉, G2〈M2〉〉
RedCongr

(∀αG)〈ΛαM〉 ι ΛαG〈M〉

RedDistArr

dist〈Λαλ(x : τ)M〉 ι λ(x : τ) ΛαM
RedDistProd

dist〈Λα 〈M1,M2〉〉 ι 〈ΛαM1,ΛαM2〉

Figure 3.21: System Fη reduction rules

The syntax of evaluation contexts, prevalues, and values for System Fη follow the same
schema as System F. They are given on Figure 3.20. Evaluation contexts are all one-hole terms
of depth one and de�ne a strong notion of reduction. Prevalues are variables or destructors
applied to prevalues. And values are prevalues or constructors applied to values. There
are only new prevalues since containments proofs are only destructors in this setting. The
polymorphism congruence waits for a type abstraction to reduce, so (∀αG)〈p〉 is a prevalue.
The distributivity proof waits for a type abstraction followed by a computational constructor
(like a term abstraction or a pair). So both dist〈p〉 and dist〈Λαp〉 may not reduce and are
prevalues. Finally computational subtypings wait a computational constructor, so both (G

τ→
G)〈p〉 and (G×G)〈p〉 are prevalues.

Reduction rules for System Fη are given on Figure 3.21. The �rst �ve rules are those of
System F. The next rules are new: one for each containment proof. The distributivity proof
has two reduction rules since it has one reduction rule per computational type: arrow and
product types in our setting. Rule RedRefl shows that the re�exivity proof does not modify
a term and hence its typing. Rule RedTrans shows that coercing the term M with G2 ◦G1

is like coercing M with G1 and then coercing the result with G2. The typing modi�cations
are done in sequence. Rules RedTLam and RedTApp simply unfold the de�nition of the

49

TermVar

Γ env (x : τ) ∈ Γ

x⇒ Γ ` x : τ

TermLam

M ⇒ Γ, (x : τ) ` a : σ

λ(x : τ)M ⇒ Γ ` λx a : τ → σ

TermApp

M ⇒ Γ ` a : τ → σ N ⇒ Γ ` b : τ

M N ⇒ Γ ` a b : σ

TermPair

M ⇒ Γ ` a : τ N ⇒ Γ ` b : σ

〈M,N〉 ⇒ Γ ` 〈a, b〉 : τ × σ

TermFst

M ⇒ Γ ` a : τ × σ
fstM ⇒ Γ ` fst a : τ

TermSnd

M ⇒ Γ ` a : τ × σ
sndM ⇒ Γ ` snd a : σ

TermGen

M ⇒ Γ, α ` a : τ

ΛαM ⇒ Γ ` a : ∀α τ

TermInst

M ⇒ Γ ` a : ∀α τ Γ ` σ type

M [σ]⇒ Γ ` a : τ [α/σ]

TermCont

M ⇒ Γ ` a : τ G⇒ Γ ` τ . σ
G〈M〉 ⇒ Γ ` a : σ

Figure 3.22: System Fη term judgment relation

generalization and instantiation containment proofs.

Rule RedArr expects a function and applies G2 to its body and G1 to its arguments. In
doing so the type annotation of the abstraction changes from τ ′ to τ , which is why we had to
annotate the arrow subtyping coercion. Rule RedProd expects a pair and applies G1 to its
�rst component and G2 to its second one. Finally, rule RedCongr applies its subcontainment
proof to the body of the type abstraction it is applied to. Rule RedDistArr swaps type and
term abstractions. And rule RedDistProd swaps type abstraction and pairs.

The term judgment relation is de�ned on Figure 3.22. The �rst eight rules are those of
System F. The new rule is the last one about containment, named TermCont. It tells that
if a term a has type τ under Γ with witness M , then it also has type σ under the same
environment Γ with witness G〈M〉, given that G witnesses the containment proof that τ is
smaller than σ under Γ.

This containment relation is actually a particularity of System Fη. Its judgment is written
G⇒ Γ ` τ . σ and means that G is a containment proof that the type τ is smaller than the
type σ under the environment Γ. The rules are given on Figure 3.23. Notice that the extraction
property for this judgment (Lemma 40) is quite particular, not only the well-formedness of Γ
is an input, but also the well-formedness of Γ ` τ type (which implies the well-formedness of
Γ) is given as an input. This explains why premises about the well-formedness of τ are absent.
This extraction property also explains how we can factorize the distributivity proofs for the
arrow and product types in one proof: if the input type is an arrow then dist stands for the
arrow distributivity rule, and if the input type is a product then dist stands for the product
distributivity rule. This factorization permits to have fewer type annotations on coercions and
thus on terms.

Rule ContRefl de�nes ♦ as the containment proof that any type is contained in itself.
Similarly rule ContTrans de�nes G2 ◦ G1 as the proof for containment transitivity. If G1

proves that τ2 contains τ1 and G2 proves that τ3 contains τ2, then G2 ◦ G1 proves that τ3

contains τ1 by transitivity.

Rule ContTLam tells that we can add a forall quanti�er on any well-formed type as long

50

ContRefl

♦⇒ Γ ` τ . τ

ContTrans

G1 ⇒ Γ ` τ1 . τ2 G2 ⇒ Γ ` τ2 . τ3

G2 ◦G1 ⇒ Γ ` τ1 . τ3

ContTLam

α /∈ dom(Γ)

Λα⇒ Γ ` τ . ∀α τ

ContTApp

Γ ` σ type

• σ ⇒ Γ ` ∀α τ . τ [α/σ]

ContArr

Γ ` τ type G1 ⇒ Γ ` τ . τ ′ G2 ⇒ Γ ` σ′ . σ
G1

τ→ G2 ⇒ Γ ` τ ′ → σ′ . τ → σ

ContProd

G1 ⇒ Γ ` τ ′ . τ G2 ⇒ Γ ` σ′ . σ
G1 ×G2 ⇒ Γ ` τ ′ × σ′ . τ × σ

ContCongr

G⇒ Γ, α ` τ . σ
∀αG⇒ Γ ` ∀α τ . ∀ασ

ContDistArr

Γ ` τ type

dist⇒ Γ ` ∀α (τ → σ) . τ → ∀ασ

ContDistProd

dist⇒ Γ ` ∀α (τ × σ) . ∀α τ × ∀ασ

Figure 3.23: System Fη containment judgment relation

as the type variable was not already bound. Said otherwise, we can quantify over any fresh
type variable. This rule resemble TermGen with the main di�erence that, in TermGen,
the type variable may be bound prior to quanti�cation, whereas the containment rule only
quanti�es over fresh type variables. This di�erence will actually be removed in type systems
System F

p
ι and System Fcc (see Part II). Rule CoerTLam in Figure 4.11 has no restriction on

the generalized type variable α, and is thus equivalent to rule TermGen. This is a crucial
point if we want to de�ne type systems as coercions, which is the technique we use in order to
unify all the type systems of this chapter. Rule TermGen is about an erasable type, namely
the polymorphic type, and should thus be in the coercion judgment and not in the typing
judgment for terms.

Rule ContTApp is the analog of rule TermInst. It adds the instantiation typing rule in
the containment relation and this time there is no loss of power. A polymorphic type is smaller
than any of its instantiations as long as the argument type is well-formed.

Rule ContArr is a standard rule in type systems with subtyping. It is the arrow congru-
ence rule, which means that it tells when an arrow type is smaller than another arrow type.
Type τ ′ → σ′ is smaller than τ → σ under Γ if τ is smaller than τ ′ under Γ and σ′ is smaller
than σ under Γ. Notice the inversion of inclusion for the domain types, this comes from the
contravariance of the domain of the arrow type. This rule needs an additional premise for
well-formedness: type τ has to be well-formed under Γ. Notice that the containment proof
for this rule needs a type annotation. This annotation is needed for reduction to rebuild the
abstraction type annotation in rule RedArr. Rule ContProd is similar. Type τ ′ × σ′ is
smaller than τ × σ under Γ if τ ′ is smaller than τ under Γ and σ′ is smaller than σ under Γ.

Rule ContCongr is a congruence rule for the polymorphic type. If G is a proof that τ
is contained in σ under the extended environment Γ, α, then ∀αG is a proof that ∀α τ is
contained in ∀ασ under Γ. This rule is the only rule binding a variable for a subproof.

The distributivity rule ContDistArr is quite particular to System Fη. Most type systems
with subtyping do not have this rule. It tells that we can permute type abstraction and
term abstraction as long as the term abstraction type does not depend on the abstract type.

51

TypeVar

Γ env α ∈ Γ

Γ ` α type

TypeArr

Γ ` τ type Γ ` σ type

Γ ` τ → σ type

TypeProd

Γ ` τ type Γ ` σ type

Γ ` τ × σ type

TypeFor

Γ, α ` τ type

Γ ` ∀α τ type

EnvEmpty

∅ env

EnvTerm

x /∈ dom(Γ) Γ ` τ type

Γ, (x : τ) env

EnvType

α /∈ dom(Γ) Γ env

Γ, α env

Figure 3.24: System Fη well-formedness relations

This rule, if applied to a term of type ∀α τ → σ under Γ, can actually be seen as a weakening
lemma to add the term binding (x : τ) and the type binding α to get environment Γ, (x : τ), α,
followed by a type instantiation with α to get type τ → σ, followed by an application rule on
term x to get type σ, followed by a generalization over α to get type ∀ασ under Γ, (x : τ),
and �nally followed by an abstraction rule over x of type τ to get τ → ∀ασ under Γ as
expected by the containment rule. These explanations can be summed up in the following
typing derivation. We see in the �nal term λ(x : τ) Λα[]αx that we permute the term and
the type abstraction.

[]⇒ Γ, (x : τ), α ` [] : ∀α τ → σ

[]α⇒ Γ, (x : τ), α ` [] : τ → σ x⇒ Γ, (x : τ), α ` x : τ

[]αx⇒ Γ, (x : τ), α ` []x : σ

Λα[]αx⇒ Γ, (x : τ) ` []x : ∀ασ
λ(x : τ) Λα[]αx⇒ Γ ` λx []x : τ → ∀ασ

Rule ContDistProd is similar but for the product type. It allows to permute a type
abstraction and a pair. A polymorphic pair of expressions can be seen as a pair of polymorphic
expressions. These two distribution rules are derivable in our type systems as a consequence
of our rule CoerTLam which generalizes rule ContTLam by generalizing over bound type
variable and not only fresh type variables.

Finally the well-formedness relations are given on Figure 3.24. These rules are exactly the
same as those of System F.

3.4.2 Properties

The properties of System Fη are similar to those of System F. However a few lemma have to be
extended to the new containment judgment. The �rst lemma is about the uniqueness of the
implicit judgment according to its explicit entity. Notice that only the type on the right-hand
side of the containment judgment is unique, the rest of the judgment has to be given along
the proof G. This explains why a single distributivity proof dist is su�cient.

Lemma 38 (Uniqueness). The following assertions hold.

• If M ⇒ Γ1 ` a1 : τ1 and M ⇒ Γ2 ` a2 : τ2 hold, then a1 = a2 holds.

• If M ⇒ Γ ` a : τ1 and M ⇒ Γ ` a : τ2 hold, then τ1 = τ2 holds.

52

• If G⇒ Γ ` τ . σ1 and G⇒ Γ ` τ . σ2 hold, then σ1 = σ2 holds.

The equivalence lemma also has to be extended. However, this extension is much more
natural, because it follows our schema about explicit entities witnessing judgments. From an
implicit containment judgment, we can create a proof G witnessing this judgment.

Lemma 39 (Equivalence). The following assertions hold.

• Γ ` a : τ holds if and only if M ⇒ Γ ` a : τ holds for some M .

• Γ ` τ . σ holds if and only if G⇒ Γ ` τ . σ holds for some G.

Finally, the extraction lemma is extended for containments. A containment derivation can
transform the well-formedness of its left-hand type to the well-formedness of its right-hand
type.

Lemma 40 (Extraction). The following assertions hold:

• If Γ ` τ type holds, then Γ env holds.

• If M ⇒ Γ ` a : τ holds, then Γ ` τ type holds.

• If G⇒ Γ ` τ . σ and Γ ` τ type hold, then Γ ` σ type holds.

3.5 MLF

An important feature for surface type systems, which are type systems for the programmer,
is inference. Inference allows programmers to avoid writing all the typing derivations but
only parts of them. Ideally and without any documentation consideration, we might want
the programmer to write only the lambda term he wants to run. And at most we want him
to write the explicit term. While previous type systems (but the STLC) have no complete
inference, MLF which is more expressive than System F has a complete inference as long as the
function parameters that are used polymorphically are annotated. However, we do not present
MLF in its surface type system version[18], but in its kernel version[32], which is posterior.

3.5.1 De�nition

MLF extends the STLC with instance-bounded polymorphism (which we may also refer to as
lower bounded polymorphism) and bottom type. The polymorphic type of MLF abstracts over
a type variable that is an instance of a lower bound type, instead of just abstracting over a
type variable as it is the case in System F. We recover the polymorphic type ∀α τ of System F

by using an instance-bounded polymorphic type ∀(α / ⊥) τ with a particular lower bound
called bottom. All types are instance of the bottom type, and thus we can instantiate a lower
bounded polymorphic type with bound bottom ∀(α / ⊥) τ with any type σ as we can do in
System F, because we have ⊥ . σ. So MLF is an extension of System F by its features and an
extension of the STLC by its syntax.

MLF adds type and instance variables to the STLC. Type variables are written α or β,
while instance variables are written cα. All instance variables are linked to a unique type
variable. Terms are extended with lower bounded abstraction Λ(α / c : τ)M and instance
application G〈M〉. Lower bounded abstraction abstracts over both the type variable α and

53

α, β Type variables

cα Instance variables

M,N ::= x | λ(x : τ)M |MM | 〈M,M〉 | fstM | sndM Explicit terms

| Λ(α / c : τ)M | G〈M〉
τ, σ, ρ ::= α | τ → τ | τ × τ | ∀(α / τ) τ | ⊥ Types

G ::= ⊥τ | cα | ∀(/ G) | ∀(α / c :)G | & |

&

| G ◦G | ♦ Instantiations

Γ ::= ∅ | Γ, (x : τ) | Γ, α | Γ, (cα : τ . τ) Environments

Figure 3.25: MLF syntax

E ::= λ(x : τ) [] | []M |M [] | 〈[],M〉 | 〈M, []〉 | fst [] | snd [] Evaluation contexts

| Λ(α / c : τ) [] | G〈[]〉
p ::= x | p v | fst p | snd p | &〈p〉 Prevalues

| (∀(α / c :)G)〈p〉 | (∀(/ G))〈p〉 | ⊥τ〈p〉 | cα〈v〉
v ::= p | λ(x : τ) v | 〈v, v〉 | Λ(α / c : τ) v Values

Figure 3.26: MLF notations

the instance variable c of instance type τ . α. The instance variable c is associated to the
type variable α, and we refer to it as cα to enhance this association. The instance application
uses an instance proof G of type τ . σ to retype the term M from type τ to σ. Types are
extended with type variables α, lower bounded polymorphic types ∀(α / τ) τ , and the bottom
type ⊥. A syntactic class for instantiation proofs is added and written with the letter G.
They contain bottom instantiations ⊥τ , variables cα, inside instantiations ∀(/ G), under
instantiations ∀(α / c :)G, elimination instantiations &, introduction instantiations

&

, and
the usual transitivity G ◦G and re�exivity ♦. Finally, we extend environments with type and
instance bindings. Type bindings are similar to System F, while instance bindings are new.
In the implicit version, we remember that type σ is an instance of type τ by writing (τ . σ).
However, for the explicit version, we need to give a name to the proof that σ is an instance of
τ , so we write (cα : τ . σ). All these changes are summed up on Figure 3.25.

Evaluation contexts, prevalues, and values for MLF are given in Figure 3.26. Prevalues are
extended with instance applications to a prevalue of the elimination instantiation, the under
instantiation, the inside instantiation, the bottom instantiation, and instantiation applications
to a value of a instance variable. Values are extended with lower bounded abstraction of a
value.

Reduction rules for MLF are given on Figure 3.27. The �rst four rules are those of the
STLC. The next rules are new: one for each instantiation proof. Notice however that rules
RedRefl and RedTrans are exactly like those of System Fη. All the new rules are ι-reduction
rules since they do not modify the computational content of the term to which they apply.

Rule RedIntro is similar in spirit to rule RedTLam of System Fη. However, in System Fη,
the type variable is syntactically present, while in MLF it has to be generated. In both cases
the variable has to be fresh. In MLF it is generated fresh, while in System Fη it is fresh by
typing. So an abstraction with a bottom lower bound can be freely added to a term.

Rule RedElim is again similar to the rule RedFor of System Fη: both are instantiation
rules. However, there are two main di�erences. In System Fη, the instantiation argument is

54

RedCtx

M β N

E [M] β E [N]

RedApp

(λ(x : τ)M)N β M [x/N]
RedFst

fst 〈M,N〉 β M
RedSnd

snd 〈M,N〉 β N

RedRefl

♦〈M〉 ι M
RedTrans

(G2 ◦G1)〈M〉 ι G2〈G1〈M〉〉

RedIntro

cα, α /∈ fv(M)

&

〈M〉 ι Λ(α / c : ⊥)M

RedElim

&〈Λ(α / c : τ)M〉 ι M [α/τ][cα/♦]
RedUnder

(∀(α / c :)G)〈Λ(α / c : τ)M〉 ι Λ(α / c : τ)G〈M〉

RedInside

(∀(/ G))〈Λ(α / c : τ)M〉 ι Λ(α / c : G(τ))M [cα/cα ◦G]

Figure 3.27: MLF reduction rules

cα(τ) = α
(⊥τ)(⊥) = τ
♦(τ) = τ

(G2 ◦G1)(τ) = G2(G1(τ))

&

(τ) = ∀(α / ⊥) τ with α /∈ fv(τ)
&(∀(α / τ)σ) = σ[α/τ]

(∀(/ G))(∀(α / τ)σ) = ∀(α / G(τ))σ
(∀(α / c :)G)(∀(α / τ)σ) = ∀(α / τ)G(σ)

Figure 3.28: MLF update function

given separately, while in MLF it defaults to the bound τ . The second di�erence is that the
instance variable has also to be substituted in MLF. Since the instance variable is taken equal
to the bound, the re�exivity proof witnesses that τ is an instance of τ .

Rule RedUnder is very close to rule RedCongr of System Fη: both are congruence rules
for the polymorphic type. The only di�erence is anecdotal: MLF handles a lower bound while
System Fη does not. Notice that, similarly to System Fη, the two instance variables have to
be the same and the two type variables have to be the same too. If this is not the case, one
of them must be renamed before the reduction can occur. The �rst two variables bind in the
instance proof G, while the last two variables bind in the term M .

Finally, rule RedInside has no counter-part in System Fη since it is about the bound. If
a lower bound abstraction Λ(α / c : τ)M encounters an inside instantiation ∀(/ G), the
instantiation proof G modi�es the lower bound according to the previous bound τ , written
G(τ) and de�ne in Figure 3.28, and the instance variable cα is updated in order to apply the
instantiation G before itself. Together with rule RedElim it allows arbitrary instantiations
with any instance of the lower bound, since it applies a �rst instantiation followed by an
application of the resulting bound.

The term judgment relation is de�ned on Figure 3.29. The �rst six rules are those of the
STLC. The last two rules are new. However the last one, named TermTApp, resembles the
rule TermCont of System Fη. It explains how an instantiation is used: when a term a has
type τ with proof M and σ is an instance of τ with proof G, then the term a has also type σ
with proof G〈M〉. All of this happens under the environment Γ because no bindings occur.

Rule TermTAbs is the abstraction rule for lower bounded polymorphism. If a term a
has type σ under the environment Γ extended with the type variable α and its associated

55

TermVar

Γ env (x : τ) ∈ Γ

x⇒ Γ ` x : τ

TermLam

M ⇒ Γ, (x : τ) ` a : σ

λ(x : τ)M ⇒ Γ ` λx a : τ → σ

TermApp

M ⇒ Γ ` a : τ → σ N ⇒ Γ ` b : τ

M N ⇒ Γ ` a b : σ

TermPair

M ⇒ Γ ` a : τ N ⇒ Γ ` b : σ

〈M,N〉 ⇒ Γ ` 〈a, b〉 : τ × σ

TermFst

M ⇒ Γ ` a : τ × σ
fstM ⇒ Γ ` fst a : τ

TermSnd

M ⇒ Γ ` a : τ × σ
sndM ⇒ Γ ` snd a : σ

TermTAbs

M ⇒ Γ, α, (cα : τ . α) ` a : σ

Λ(α / c : τ)M ⇒ Γ ` a : ∀(α / τ)σ

TermTApp

M ⇒ Γ ` a : τ G⇒ Γ ` τ . σ
G〈M〉 ⇒ Γ ` a : σ

Figure 3.29: MLF term judgment relation

InstBot

Γ ` τ type

⊥τ ⇒ Γ ` ⊥ . τ

InstUnder

G⇒ Γ, α, (cα : τ . α) ` σ1 . σ2

∀(α / c :)G⇒ Γ ` ∀(α / τ)σ1 . ∀(α / τ)σ2

InstAbstr

(cα : τ . α) ∈ Γ

cα ⇒ Γ ` τ . α

InstInside

G⇒ Γ ` τ1 . τ2

∀(/ G)⇒ Γ ` ∀(α / τ1)σ . ∀(α / τ2)σ

InstIntro

α /∈ dom(Γ)

&

⇒ Γ ` τ . ∀(α / ⊥) τ

InstComp

G1 ⇒ Γ ` τ1 . τ2 G2 ⇒ Γ ` τ2 . τ3

G2 ◦G1 ⇒ Γ ` τ1 . τ3

InstElim

&⇒ Γ ` ∀(α / τ)σ . σ[α/τ]
InstId

♦⇒ Γ ` τ . τ

Figure 3.30: MLF instance judgment relation

instance variable cα witnessing that α is an instance of τ , then it also has type ∀(α / τ)σ
under environment Γ. The term witnessing this rule is Λ(α / c : τ)M .

The instance relation of MLF is similar in some points to the containment relation of
System Fη. Its judgment is written G ⇒ Γ ` τ . σ, as in System Fη, and means that G is a
proof that the type σ is an instance of the type τ under the environment Γ. The rules are
given on Figure 3.30. Similarly to System Fη, the extraction property for this judgment takes
the well-formedness of its left-hand type as an input. Rules InstId and InstComp are exactly
the rules ContRefl and ContTrans of System Fη. Rule InstIntro is very similar to rule
ContTLam of System Fη since it generalizes over a free type variable. The di�erence is about
the bound, but since the bound is the bottom type, it behaves exactly as a polymorphic type.

Rule InstElim resembles rule ContTApp of System Fη since it is about instantiation. The
di�erence is that the instance type argument is not provided but defaults to the lower bound
τ . We see in this rule that MLF does not allow recursive bounds. With recursive bounds α

56

TypeVar

Γ env α ∈ Γ

Γ ` α type

TypeArr

Γ ` τ type Γ ` σ type

Γ ` τ → σ type

TypeProd

Γ ` τ type Γ ` σ type

Γ ` τ × σ type

TypeFor

Γ ` τ type Γ, α, (cα : τ . α) ` σ type

Γ ` ∀(α / τ)σ type

TypeBot

Γ env

Γ ` ⊥ type

EnvEmpty

∅ env

EnvTerm

x /∈ dom(Γ) Γ ` τ type

Γ, (x : τ) env

EnvType

α, cα /∈ dom(Γ) Γ ` τ type

Γ, α, (cα : τ . α) env

Figure 3.31: MLF well-formedness relations

would be free in τ and the substitution σ[α/τ] would be ill-formed. With recursive bounds
the solution would be to instantiate with the recursive type µα τ and the proof that µα τ is an
instance of τ [α/µα τ] would be the unfolding coercion (see rule CoerUnfold in Figure 5.6).

Rule InstAbstr looks for an instance hypothesis in the environment. If the type variable
α is an instance of the type τ by hypothesis in environment Γ with name cα, then cα is a proof
that α is an instance of τ under Γ. By rule InstBot, any well-formed type τ is an instance of
the bottom type ⊥ with proof ⊥τ .

Rule InstUnder is the body congruence rule for the lower bounded polymorphic type,
while rule InstInside is the bound congruence rule. A lower bounded polymorphic type is an
instance of another lower bounded polymorphic type if they have the same bound and the
body of the �rst is an instance of the body of the second under the same environment extended
with the assumption of the mutual bound. Said otherwise: if the type σ2 is an instance of
type σ1 under the environment Γ extended with the type variable α and the assumption that
α is an instance of τ , then the lower bounded polymorphic type ∀(α / τ)σ2 is an instance
of the lower bounded polymorphic type ∀(α / τ)σ1. Similarly for the bound congruence,
two lower bounded polymorphic types are in the instance relation if their bounds are also
in the instance relation in the same order. If the bound τ2 is an instance of the bound τ1

under the environment Γ (because recursive bounds are not allowed), then the lower bounded
polymorphic type ∀(α / τ2)σ is an instance of the lower bounded polymorphic type ∀(α / τ1)σ
under the same environment Γ.

Finally the well-formedness relations are given on Figure 3.31. The �rst three rules for type
well-formedness are the same as those for System F. The next two rules are new. Rule TypeFor
is an adaptation of the System F rule of the same name. A lower bounded polymorphic type is
well-formed if its body type is well-formed under the environment extended with its binding,
namely the type variable α and the instance assumption that α is an instance of the lower
well-formed bound τ . Rule TypeBot tells that the bottom type is well-formed under any
well-formed environment.

The �rst two rules of the environment well-formedness are the same as those of the STLC.
The last rule, namely EnvType, is new. The extended environment Γ, α, (cα : τ . α) is well-
formed if τ is well-formed under the environment Γ. Besides, the instance variable cα and the
type variable α must not already be bound in Γ.

57

α, β Type variables

c Subtyping variables

M,N ::= x | λ(x : τ)M |MM | 〈M,M〉 | fstM | sndM Explicit terms

| Λ(α . c : τ)M |M [τ . G] | G〈M〉
τ, σ, ρ ::= α | τ → τ | τ × τ | ∀(α . τ) τ | > Types

G ::= ♦ | G ◦G | c | > | G τ→ G | G×G | ∀(α . c : τ)[G,G] Explicit subtypings

Γ ::= ∅ | Γ, (x : τ) | Γ, α | Γ, (c : τ . τ) Environments

Figure 3.32: System F<: syntax

3.5.2 Properties

The properties of MLF are similar to those of System F with some modi�cations about the
bounds. The type substitution lemma of System F is replaced by a lower bound substitution
lemma.

Lemma 41 (Lower bound substitution). If Γ ` σ type and G ⇒ Γ ` τ . σ hold, then the

following assertions hold.

• If Γ, α, (cα : τ . α),Γ′ ` ρ type holds, then Γ,Γ′[α/σ] ` ρ[α/σ] type holds.

• If M ⇒ Γ, α, (cα : τ . α),Γ′ ` a : ρ holds, then M [α/σ][cα/G]⇒ Γ,Γ′[α/σ] ` a : ρ[α/σ]
holds.

• If G′ ⇒ Γ, α, (cα : τ . α),Γ′ ` ρ . ρ′ holds, then G′[α/σ][cα/G]⇒ Γ,Γ′[α/σ] ` ρ[α/σ] .
ρ′[α/σ] holds.

3.6 System F<:

System F<: is another extension of System F dealing with the notion of subtyping. However,
there are two main di�erences with System Fη. On the one hand, System F<: lacks the dis-
tributivity rule. However on the other hand, System F<: enjoys upper bounded polymorphism,
which can be seen as an analog of the lower bounded polymorphism of MLF. The analogy only
holds for the syntax of types: lower bounded polymorphism in MLF is fully composable, while
upper bounded polymorphism is shallow in F<:. We detail these ideas with coercions in Sec-
tion 4.5.4. The polymorphic type of System F<: abstracts over a type variable smaller than an
upper bound type. We recover the polymorphic type of System F by using a particular upper
bound called top. All types are smaller than the top type, and thus we can instantiate an
upper bounded polymorphic type with bound top with any type we want as we can already do
in System F. This is why System F<: is an extension of System F in terms of features. But we
actually prefer to see it as a syntactical extension of the STLC with subtyping, the top type,
and upper bounded polymorphism. We will see in Section 4.5.4 that System F<: is actually
not complete according to how it extends the STLC.

3.6.1 De�nition

System F<: extends the STLC syntax with type variables, written α or β, and subtyping
variables, written c. Subtyping variables are only necessary in the explicit version of the

58

E ::= λ(x : τ) [] | []M |M [] | 〈[],M〉 | 〈M, []〉 | fst [] | snd [] Evaluation contexts

| Λ(α . c : τ) [] | [][τ . G] | G〈[]〉
p ::= x | p v | fst p | snd p | p[τ . G] | (∀(α . c : τ)[G,G])〈p〉 Prevalues

| (G
τ→ G)〈p〉 | (G×G)〈p〉 | c〈v〉

v ::= p | λ(x : τ) v | 〈v, v〉 | Λ(α . c : τ) v | >〈v〉 Values

Figure 3.33: System F<: notations

RedCtx

M β N

E [M] β E [N]

RedApp

(λ(x : τ)M)N β M [x/N]
RedFst

fst 〈M,N〉 β M
RedSnd

snd 〈M,N〉 β N

RedFor

(Λ(α . c : τ)M)[σ . G] ι M [α/σ][c/G]
RedRefl

♦〈M〉 ι M
RedTrans

(G2 ◦G1)〈M〉 ι G2〈G1〈M〉〉

RedArr

(G1
τ→ G2)〈λ(x : τ ′)M〉 ι λ(x : τ)G2〈M [x/G1〈x〉]〉

RedProd

(G1 ×G2)〈〈M1,M2〉〉 ι 〈G1〈M1〉, G2〈M2〉〉

RedCongr

(∀(α . c : τ ′)[G1, G2])〈Λ(α . c : τ)M〉 ι Λ(α . c : τ ′)G2〈M [c/G1]〉

Figure 3.34: System F<: reduction rules

type system. Types are extended with type variables α, upper bounded polymorphic types
∀(α . τ) τ , and the top type >. Terms are extended with upper bounded type abstractions
Λ(α . c : τ)M , upper bounded type applications M [τ . G], and subtyping applications
G〈M〉. A new class for subtypings is added. Subtypings are written G and contain re�exivity
♦, transitivity G ◦ G, variables c, top subtypings >, arrow congruence G

τ→ G, product
congruence G × G, and upper bounded congruence ∀(α . c : τ)[G,G]. Finally, we extend
environments with type and subtyping bindings. Type bindings are similar to System F, while
subtyping bindings are new. In the implicit version, we remember that type τ is a subtype of
type σ by writing (τ . σ). However, for the explicit version, we need to give a name to the
proof that τ is a subtype of σ, so we write (c : τ . σ). These modi�cations can be found on
Figure 3.32.

Notations for System F<: follow the same logic as the STLC. They are given on Figure 3.33.
Evaluation contexts are all one-hole terms of depth one and correspond to strong reduction.
Prevalues are variables or destructors applied to values but where a constructor is expected,
in which case only a prevalue is applied. And values are prevalues or constructors applied to
values. The new prevalues are: upper bounded application since it waits an upper bounded
abstraction, congruences because they wait their constructor (abstraction or pair), and sub-
typing variables applied to a value. The new values are upper bounded abstraction, and the
top subtyping.

Reduction rules for System F<: are given on Figure 3.34. The �rst four rules are those of

59

TermVar

Γ env (x : τ) ∈ Γ

x⇒ Γ ` x : τ

TermLam

M ⇒ Γ, (x : τ) ` a : σ

λ(x : τ)M ⇒ Γ ` λx a : τ → σ

TermApp

M ⇒ Γ ` a : τ → σ N ⇒ Γ ` b : τ

M N ⇒ Γ ` a b : σ

TermPair

M ⇒ Γ ` a : τ N ⇒ Γ ` b : σ

〈M,N〉 ⇒ Γ ` 〈a, b〉 : τ × σ

TermFst

M ⇒ Γ ` a : τ × σ
fstM ⇒ Γ ` fst a : τ

TermSnd

M ⇒ Γ ` a : τ × σ
sndM ⇒ Γ ` snd a : σ

TermGen

M ⇒ Γ, α, (c : α . τ) ` a : ρ

Λ(α . c : τ)M ⇒ Γ ` a : ∀(α . τ) ρ

TermInst

M ⇒ Γ ` a : ∀(α . τ) ρ Γ ` σ type G⇒ Γ ` σ . τ [α/σ]

M [σ . G]⇒ Γ ` a : ρ[α/σ]

TermSub

M ⇒ Γ ` a : τ G⇒ Γ ` τ . σ
G〈M〉 ⇒ Γ ` a : σ

Figure 3.35: System F<: term judgment relation

the STLC. The next rules are new: one for each subtyping proof. Notice however that rules
RedRefl, RedTrans, RedArr, and RedProd are exactly like those of System Fη. So we only
focus on the two new rules RedFor and RedCongr, which are actually ameliorations of the
System Fη rules of the same name. All these rules are ι-reduction rules since they do not
modify the computational content of the term on which they apply.

Rule RedFor matches an upper bounded application over an upper bounded abstraction.
This is a regular scheme for abstraction constructs. It reduces to a substitution. In the current
case, we not only substitutes the type variable α with the argument type σ as it is done in the
System F rule, but we also substitute the subtyping variable c with the argument subtyping
proof G.

Finally, rule RedCongr applies a subtyping proof under an upper bounded abstraction.
This is more technical than in System Fη since now the bounds may be modi�ed too. The
binding (c : α . τ ′) is the new binding, G2 is the subproof to apply on the term body and
G1 is the subtyping proof to update the bound from τ to τ ′ and replaces the old subtyping
variable c.

The term judgment relation is de�ned on Figure 3.35. The �rst six rules are those of the
STLC. The last three rules are new. However the last one, named TermSub, resembles the
rule TermCont of System Fη. It explains how a subtyping proof is used: when a term a has
type τ with proof M and τ is a subtype of σ with proof G, then the term a has also type σ
with proof G〈M〉. All of this happens under the environment Γ because no bindings occur.

Rules TermGen and TermInst are ameliorations of the System F rules of the same name.
The abstraction and application are now for upper bounded types. If a term a has type ρ
under an extended environment Γ, α, (c : α . τ), where c is a subtyping proof that α is a
subtype of τ , with witness M , then it also has type ∀(α . τ) ρ under environment Γ with

60

SubRefl

♦⇒ Γ ` τ . τ

SubTrans

G1 ⇒ Γ ` τ1 . τ2 G2 ⇒ Γ ` τ2 . τ3

G2 ◦G1 ⇒ Γ ` τ1 . τ3

SubVar

(c : τ . σ) ∈ Γ

c⇒ Γ ` τ . σ

SubTop

> ⇒ Γ ` τ . >

SubArr

Γ ` τ type G1 ⇒ Γ ` τ . τ ′ G2 ⇒ Γ ` σ′ . σ
G1

τ→ G2 ⇒ Γ ` τ ′ → σ′ . τ → σ

SubProd

G1 ⇒ Γ ` τ ′ . τ G2 ⇒ Γ ` σ′ . σ
G1 ×G2 ⇒ Γ ` τ ′ × σ′ . τ × σ

SubCongr

Γ, α ` τ ′ type G1 ⇒ Γ, α, (c : α . τ ′) ` α . τ G2 ⇒ Γ, α, (c : α . τ ′) ` σ . σ′

∀(α . c : τ ′)[G1, G2]⇒ Γ ` ∀(α . τ)σ . ∀(α . τ ′)σ′

Figure 3.36: System F<: subtyping judgment relation

witness Λ(α . c : τ)M . This witness binds c in M and α in τ and M . As a consequence,
unlike for MLF, upper bounds are recursive in System F<:. If a term a has type ∀(α . τ) ρ
under environment Γ with witness M , then it also has type ρ[α/σ] under environment Γ by
instantiation with the well-formed type σ and the proof G that σ is a subtype of τ [α/σ]. The
type variable α may appear in the type τ , since we allow recursive type. This is why the
right-hand type of the subtyping proof is not simply τ .

The subtyping relation of System F<: is similar in some points to the containment relation
of System Fη. Its judgment is written G ⇒ Γ ` τ . σ, as in System Fη, and means that G is
a proof that the type τ is a subtype of the type σ under the environment Γ. The rules are
given on Figure 3.36. Similarly to System Fη, the extraction property for this judgment takes
the well-formedness of its left-hand type as an input. Rule SubRefl, SubTrans, SubArr,
and SubProd are exactly the rules ContRefl, ContTrans, ContArr, and ContProd of
System Fη.

Rule SubVar looks a subtyping hypothesis in the environment. If the type τ is a subtype
of the type σ by hypothesis in environment Γ with name c, then c is a proof that τ is a subtype
of σ under Γ. By rule SubTop, any type τ is a subtype of the top type > with proof >.

Rule SubCongr is a congruence rule for the upper bounded polymorphic type. It is similar
to rule ContCongr of System Fη, but it is more technical and complicated since it has to handle
the bound. If, assuming that type variable α is a subtype of type τ ′, we can show that it is also
a subtype of τ and we can also show that type σ is a subtype of σ′ then we have that ∀(α . τ)σ
is a subtype of ∀(α . τ ′)σ′. The �rst premise about the well-formedness of τ ′ is necessary to
prove the extraction lemma. We can wonder why we need this particular subtyping premise
for the bound. The body subtyping seems natural. Rule SubCongr actually di�ers depending
on the variant of System F<: we consider. We present here two other variants:

Kernel-Fsub

Γ, α, (α . τ) ` σ . σ′

Γ ` ∀(α . τ)σ . ∀(α . τ)σ′

Full-Fsub

Γ ` τ ′ . τ Γ, α, (α . τ ′) ` σ . σ′

Γ ` ∀(α . τ)σ . ∀(α . τ ′)σ′

61

TypeVar

Γ env α ∈ Γ

Γ ` α type

TypeArr

Γ ` τ type Γ ` σ type

Γ ` τ → σ type

TypeProd

Γ ` τ type Γ ` σ type

Γ ` τ × σ type

TypeFor

Γ, α ` τ type Γ, α, (c : α . τ) ` σ type

Γ ` ∀(α . τ)σ type

TypeTop

Γ env

Γ ` > type

EnvEmpty

∅ env

EnvTerm

x /∈ dom(Γ) Γ ` τ type

Γ, (x : τ) env

EnvType

α, c /∈ dom(Γ) Γ, α ` τ type

Γ, α, (c : α . τ) env

Figure 3.37: System F<: well-formedness relations

In Kernel F<:, the bounds τ and τ
′ must be equal, whereas Full F<: only requires the bound

τ ′ to be a subtype of the bound τ . Moreover, α cannot appear free in the bounds τ or τ ′ in
Kernel or Full F<:, while the presented variant, called F-bounded, allows this form of recursion.
The most general assumption, Γ, α, (α . τ ′) ` α . τ is that of F-bounded. Perhaps surprisingly,
this is a slightly more general rule [5] than the more intuitive one Γ, α, (α . τ ′) ` τ ′ . τ . In
summary, we have Kernel F<: ⊂ Full F<: ⊂ F-bounded where all inclusions are strict.

Finally the well-formedness relations are given on Figure 3.37. The �rst three rules for type
well-formedness are the same as those for System F. The next two rules are new. Rule TypeFor
is an adaptation of the System F rule of the same name. An upper bounded polymorphic type
is well-formed if its body type is well-formed under the environment extended with its binding.
Rule TypeTop tells that the top type is well-formed under any well-formed environment. The
�rst two rules of the environment well-formedness are the same as those of the STLC. The
last rule, namely EnvType, is new. The extended environment Γ, α, (c : α . τ) is well-formed
if τ is well-formed under environment Γ extended with α. Besides, the subtyping variable c
and the type variable α must not be already bound in Γ.

3.6.2 Properties

The properties of System F<: are similar to those of System F with some modi�cations about
the bounds. The type substitution lemma of System F is replaced by an upper bound substi-
tution lemma.

Lemma 42 (Upper bound substitution). If Γ ` σ type and G ⇒ Γ ` σ . τ [α/σ] hold, then
the following assertions hold.

• If Γ, α, (c : α . τ),Γ′ ` ρ type holds, then Γ,Γ′[α/σ] ` ρ[α/σ] type holds.

• If M ⇒ Γ, α, (c : α . τ),Γ′ ` a : ρ holds, then M [α/σ][c/G] ⇒ Γ,Γ′[α/σ] ` a : ρ[α/σ]
holds.

• If G′ ⇒ Γ, α, (c : α . τ),Γ′ ` ρ . ρ′ holds, then G′[α/σ][c/G] ⇒ Γ,Γ′[α/σ] ` ρ[α/σ] .
ρ′[α/σ] holds.

62

α, β Type variables

τ ::= α | τ → τ | τ × τ Types

σ ::= τ | ∀α.C ⇒ σ Type schemes

Γ ::= ∅ | Γ, (x : σ) Environments

Figure 3.38: Constraint ML syntax

TermVar

(x : σ) ∈ Γ

C; Γ ` x : σ

TermSub

C; Γ ` a : τ C ` τ . τ ′

C; Γ ` a : τ ′

TermAbs

C; Γ, (x : τ) ` a : τ ′

C; Γ ` λx a : τ → τ ′

TermApp

C; Γ ` a1 : τ1 → τ2 C; Γ ` a2 : τ1

C; Γ ` a1 a2 : τ2

TermPair

C; Γ ` a1 : τ1 C; Γ ` a2 : τ2

C; Γ ` 〈a1, a2〉 : τ1 × τ2

TermFst

C; Γ ` a : τ1 × τ2

C; Γ ` fst a : τ1

TermSnd

C; Γ ` a : τ1 × τ2

C; Γ ` snd a : τ2

TermLet

C; Γ ` a : σ C; Γ, (x : σ) ` a′ : τ ′

C; Γ ` (λx a′) a : τ ′

TermIntro

C ∧D; Γ ` a : τ α /∈ fv(C,Γ)

C ∧ ∃α.D; Γ ` a : ∀α.D ⇒ τ

TermElim

C; Γ ` a : ∀α.D ⇒ τ ′ C ` D[α← τ]

C; Γ ` a : τ ′[α← τ]

Figure 3.39: Constraint ML term judgment relation

3.7 Constraint ML

Constraint ML is an inference type system with constraints in the tradition of the Hind-
ley/Milner type system, where syntactical types are split between simple types and type
schemes. In Constraint ML, type schemes are extended to constrained type schemes. The
presentation we give is inspired from [27]. The reason to choose this presentation rather than
the more general setting of Chapter 10 of [30] is to keep the presentation lighter. We only
de�ne the implicit version of the type system since it does not have an explicit version.

The syntax of Constraint ML is de�ned on Figure 3.38. It extends the STLC with type
variables α or β. Types contain type variables α, arrow types τ → τ , and product types τ ×τ .
Type schemes contain types τ and constrained type schemes ∀α.C ⇒ σ. The constrained type
scheme ∀α.C ⇒ σ quanti�es over the type variables α that satisfy the constraint C, which we
handle in an abstract way. The type variables α are bound in the constraint C and the body
of the type scheme σ. In terms of expressivity, this is the most interesting part of Constraint
ML: constraint abstraction. Of course the inference part is interesting, but since our main
concern are kernel type systems, we only focus on expressivity. Finally, environments are lists
of term bindings of the form (x : σ) binding a term variable x to its type scheme σ.

The term judgment is written C; Γ ` a : σ meaning that the term a has type scheme σ
under environment Γ given the constraint C holds. The rules are given on Figure 3.39. Rule
TermVar looks up in the environment to �nd the type scheme of a term variable. Rule
TermSub allows to change the type of a term from τ to τ ′ under environment Γ with respect

63

to the constraint C, provided τ . τ ′ is a valid constraint with respect to C. We deliberately
leave the notion of constraint abstract, since we want to focus on the mechanisms.

Rule TermAbs and TermApp are the usual typing rules for the arrow type. If a term a has
type τ ′ under an environment extended with (x : τ) then the term λx a has type τ → τ ′. And
if the term a1 has type τ1 → τ2 and the term a2 has type τ1, then the application a1 a2 has
type τ2. Rules TermPair, TermFst, and TermSnd are similar to their STLC alternatives.

Rule TermLet explains how to type the let-binding: (λx a′) a. This rule is not simply
derivable from rules TermAbs and TermApp since the term variable x gets associated to
a type scheme and not simply a type. This comes from the fact that Constraint ML does
inference. Since the abstraction is directly applied, its argument type can be generalized.

Rules TermIntro and TermElim are the two interesting rules. To generalize a type τ over
the type variables α, the usual condition that the type variables α should not be free in the
environment Γ has to be satis�ed. But this is not enough. The generalized type has to gather
enough constraints, denoted as D, in order for the remaining constraint C not to mention
the type variables α. Finally, the conclusion constraint to be satis�ed is not simply C, but
C ∧ ∃α.D. This additional condition is present to make sure that the erasable abstraction
is inhabited: there is an instantiation for the type variables α such that the constraint D
holds for this instantiation. This condition is necessary for soundness. Without it, it would be
possible to abstract over τ1 → τ2 . σ1× σ2 for example. Finally, a quanti�ed type ∀α.D ⇒ τ ′

can be instantiated with types τ , as long as the constraintD[α← τ] holds under the constraint
C.

3.8 Existing Coercions

We de�ne coercions as erasable and composable typing transformations. In particular, co-
ercions do not modify the computational content of the term they are applied to. As a
consequence, coercions are only visible in the explicit version of type systems. This de�nition
is closely related to subtyping, since subtyping de�nes a relation on types which is composable
and do not a�ect computational content. Actually, subtyping is a particular case of coercions:
those that do not alter the typing environment.

Since coercions are composable typing transformations, we may wonder if it would be
possible to have all typing transformations of a type system to be expressed as coercions and
thus be composable. This is our approach in Part II. The introduction and elimination rules
of erasable types are all expressed as coercions. This naturally gives fully access to the con-
cerned type feature: erasable and composable introduction and elimination rule. The typical
counter-example is System F<: which features upper bounded polymorphism only partially: it
is an erasable type feature, but there is no composable introduction and elimination rule (see
Section 4.5.4).

Some existing type systems already use coercions as a tool, even if their whole type system
is not expressed as coercions. System Fη, which we described in Section 3.4 uses containments
as coercions. System F<:, which we de�ned in Section 3.6 uses subtyping as coercions. MLF,
de�ned in Section 3.5, uses instantiations as coercions. However, all three type systems are not
fully expressed as coercions. In particular, erasable abstractions (introduction rules of erasable
types) are not included in the coercion judgment but only accessible to the term judgment.
As a consequence, η-expansion is not su�cient for deep generalization, and distributivity rules
are necessary, like in System Fη. Erasable abstractions are: type abstraction for System Fη,

64

upper bounded abstraction for System F<:, and lower bounded abstraction for MLF. The case
for Constraint ML is worse, because erasable quanti�ers are not even part of types, but only
accessible in type schemes. So there is no hope to use η-expansion to have deep generalization,
because such constraint would have no syntax.

The type systems de�ned in this chapter have distinct sets of features, but it looks like they
rely on more general ideas. As such, we may wonder if we can unify these type systems in a
single framework. This factorization would ease syntactical comparison of these type systems
and give results about the compatibility and orthogonality of their features (Section 4.5.5). It
would also help to understand which features of one type system are missing to another one.
For instance, MLF and System F<: looks similar and di�erent at the same time and we may
wonder whether one can be extended to contain the other one. Both type systems are similar
because they feature bounded polymorphism: upper bounded polymorphism for System F<:

and lower bounded polymorphism for MLF. However, MLF features deep instantiation but
misses subtyping, while System F<: features subtyping but misses deep instantiation. And
�nally, the soundness and strong normalization of this uni�ed type system would imply the
soundness and strong normalization of all the subsumed type systems. For instance, the strong
normalization of MLF has been proved with this approach.

65

66

Part II

Type Systems as Coercions

67

Chapter 4

An explicit calculus of coercions:

System F
p
ι

System F<: and MLF are extensions of System F in somewhat dual ways. They both include
bounded polymorphism, which is a form of coercion abstraction: F<: has upper bounded
polymorphism whileMLF has lower bounded polymorphism. However, they have incompatible
de�nitions. The same argument holds for all pairs of existing type systems described in
Chapter 3. The goal of this chapter is to de�ne a framework where the features of the type
systems described in Chapter 3 are expressed in a uniform way, are orthogonal, and can be
freely combined. We shall see in Section 4.6 why this may not be completely possible in the
explicit version.

A type system can be seen as the following: a syntax for invariants Φ (what we used to call
approximations), typing rules for the language constructs a : Φ, and coercions for invariants
Φ1 . Φ2, which tells us that a : Φ1 implies a : Φ2 for all a, or that Φ1 is a better approximation
than Φ2. Semantically, the invariants Φ are interpreted as sets of terms, typing rules as proofs
of memberships, and coercions as proofs of inclusion. Actually, coercions could be extended to
be any kind of proofs and inclusions would just be a particular kind of proofs, see Chapter 5.

Similarly to Chapter 3, we simultaneously de�ne the implicit and explicit version of the
type system. According to this view of type systems, the explicit version gives witnesses to
the two judgments: the term judgment a : Φ becomes M ⇒ a : Φ and the coercion judgment
Φ1 . Φ2 becomes G ⇒ Φ1 . Φ2. The term M and the coercion proof G witness the implicit
judgments.

As before, we consider strong reduction for two reasons. First, because the soundness
of strong reduction implies the soundness of all other reduction strategies. Only the corre-
spondence between syntactic values and semantic values, which is simple to prove, has to be
rechecked for each reduction strategy. Then, because strong reduction gives a better insight to
the language. Understanding strong reduction is a guarantee that no corner cases have been
forgotten. Finally, strong reduction justi�es some optimization techniques.

The type system containing all the features of this chapter, called System F
p
ι , is given in

Section 4.3. The �rst section describes the bare framework without any additional features and
thus corresponds to the STLC. The next section describes extensions as pairwise orthogonal
features that can be combined at will. We then describe System F

p
ι , give its properties, and

discuss its expressiveness. In this framework, invariants Φ are typings of the form Γ ` τ where
Γ is a list of bindings describing the invariants of the environment in which the term can be

69

α, β Type variables

c Coercion variables

M,N ::= x | λ(x : τ)M |MM | 〈M,M〉 | fstM | sndM | G〈M〉 Explicit terms

τ, σ, ρ ::= α | τ → τ | τ × τ Types

G ::= c | ♦ | G ◦G | ∗G Coercions

Γ ::= ∅ | Γ, (x : τ) | Γ, α | Γ, (c : τ . τ) Environments

Figure 4.1: Base system syntax

Σ ::= ∅ | Σ, α | Σ, (c : τ . τ) Erasable environments

E ::= λ(x : τ) [] | []M |M [] | 〈[],M〉 | 〈M, []〉 | fst [] | snd [] | G〈[]〉 Evaluation contexts

p ::= x | p v | fst p | snd p | c〈v〉 Prevalues

v ::= p | λ(x : τ) v | 〈v, v〉 Values

Figure 4.2: Base system notations

considered and τ is a type describing the invariant of the term.

70

4.1 Base system

The base system for a non-dependent type system1 on the λ-calculus is the STLC. So, the
framework we de�ne is equivalent to the STLC, although its presentation di�ers a little to
better �t in our framework.

The syntax for the base type system is given on Figure 4.1 (we remind the reader that
the language de�nition is given on Figure 2.1). It corresponds to the STLC with two small
di�erences. First, we added variables to all syntactic classes in order to be able to abstract
over them later. Notice that we also added the corresponding binders. Type variables are
written α or β, while coercion variables are written c. Type bindings are written α and
coercion bindings are written (c : τ . τ). Notice that coercion variables only exist in the
explicit version: they are always implicit in the implicit version. The second di�erence is the
new syntactical class of coercions. Currently, it only contains coercion variables c, weakening
∗G, and operations to close coercions by re�exivity ♦ and transitivity G ◦G.

Terms, written M or N , contain variables x, abstractions λ(x : τ)M where the term
variable x is annotated with its type τ , applications MM , pairs 〈M,M〉, projections fstM
and sndM , and the new coercion construct G〈M〉. This construct is used to change the
invariant (called a typing in our framework) of the term M according to the coercion G,
interpreted as a proof of inclusion between invariants.

Types, written τ , σ, or ρ, contain variables α, arrow types τ → τ , and product types τ×τ .
Coercions, written G, contain variables c, re�exivity ♦, transitivity G ◦G, and weakening ∗G.
Environments, written Γ, are lists of bindings. Bindings contain term bindings (x : τ), type
bindings α, and coercion bindings (c : τ . τ). The coercion variable in the coercion binding
is only necessary in the explicit version of the type system. In the implicit version, coercion
bindings can be written (τ . τ), omitting the coercion variable.

We de�ne erasable environments, evaluation contexts, and values in Figure 4.2. We write
Σ the subset of environments that are erasable: they contain type and coercion bindings (all
bindings but the computational ones: term bindings). Erasable environments are used for
typing coercions because coercions may change environments as part of typings.

Evaluation contexts E contain all possible one hole contexts of depth one. We overload
the notation from evaluation contexts of the λ-calculus and make the distinction clear when
necessary.

Prevalues and values are de�ned as usual for strong reduction. Prevalues are either vari-
ables or destructors applied to prevalues. For instance the application is a destructor expecting
a constructor on its left-hand side, so its corresponding prevalue is p v. The case for the coer-
cion construct is special since it can be either a constructor or a destructor depending on its
left-hand side. And depending on this left-hand side, it will expect or not a constructor on its
right-hand side. Re�exivity, transitivity, and coercion variables do not expect a constructor
for their coerced term. However, since re�exivity and transitivity always reduce, they are not
prevalues. And since coercion variables never reduce, they are prevalues. Finally, values are
either prevalues or constructors applied to values. Notice that prevalues are neutral values,
i.e. values that do not start with a constructor. We overload the notation from prevalues and
values of the λ-calculus, but we make the distinction clear when necessary.

Reduction rules are given in Figure 4.3. We label the reduction with two annotations: β for
computational steps and ι for typing steps. Computational steps are those of the λ-calculus,

1see Section 6.1.7 for discussion about dependent type systems

71

RedCtx

M βι N

E [M] βι E [N]

RedApp

(λ(x : τ)M)N β M [x/N]
RedFst

fst 〈M,N〉 β M
RedSnd

snd 〈M,N〉 β N

RedRefl

♦〈M〉 ι M
RedTrans

(G2 ◦G1)〈M〉 ι G2〈G1〈M〉〉
RedWeak

(∗G)〈M〉 ι G〈M〉

Figure 4.3: Base system reduction rules

TermVar

Γ env (x : τ) ∈ Γ

x⇒ x : Γ ` τ

TermLam

M ⇒ a : Γ, (x : τ) ` σ
λ(x : τ)M ⇒ λx a : Γ ` τ → σ

TermApp

M ⇒ a : Γ ` τ → σ N ⇒ b : Γ ` τ
M N ⇒ a b : Γ ` σ

TermPair

M ⇒ a : Γ ` τ N ⇒ b : Γ ` σ
〈M,N〉 ⇒ 〈a, b〉 : Γ ` τ × σ

TermFst

M ⇒ a : Γ ` τ × σ
fstM ⇒ fst a : Γ ` τ

TermSnd

M ⇒ a : Γ ` τ × σ
sndM ⇒ snd a : Γ ` σ

TermCoer

M ⇒ a : Γ,Σ ` τ G⇒ Γ ` (Σ ` τ) . σ

G〈M〉 ⇒ a : Γ ` σ

Figure 4.4: Base system term judgment relation

while typing steps are new and only have to do with typings. We write βι for either β or ι.
The judgment for our reduction is thus written: M βι M .

Rule RedCtx is the context rule for strong reduction. If a term M can do a β (resp. ι)
step to N , then the depth-one evaluation context E �lled with M , namely E [M], can also do
a β (resp. ι) step to E [N]. Rules RedApp, RedFst, and RedSnd are similar to those of the
λ-calculus, modulo the β annotation and the type annotation for the explicit abstraction.

Coercions never modify the computational content, and their reduction rules are thus ι-
steps. Rule RedRefl shows that the re�exivity coercion does not modify a term and hence
its typing. Rule RedTrans shows that coercing the term M with G2 ◦G1 is like coercing M
with G1 and then coercing the result with G2, applying both coercions in sequence. Finally,
rule RedWeak simply removes the weakening coercion making the subcoercion accessible.

The term judgment relation, given in Figure 4.4, is of the form M ⇒ a : Γ ` τ to match
the requested form M ⇒ a : Φ since invariants Φ are typings Γ ` τ . The left part M ⇒
is used for the explicit version only. The �rst six rules are those of the STLC modulo the
di�erent notation (see Section 3.1). The last rule, named TermCoer, is new. It tells that a
term of invariant Γ,Σ ` τ can be seen with invariant Γ ` σ, given a coercion from Γ,Σ ` τ to
Γ ` σ; this is written G⇒ Γ ` (Σ ` τ) . σ.

The coercion judgment relation is written G⇒ Γ ` (Σ ` τ) . σ and de�ned in Figure 4.5.

72

CoerRefl

♦⇒ Γ ` τ . τ

CoerTrans

G1 ⇒ Γ,Σ2 ` (Σ1 ` τ1) . τ2 G2 ⇒ Γ ` (Σ2 ` τ2) . τ3

G2 ◦G1 ⇒ Γ ` (Σ2,Σ1 ` τ1) . τ3

CoerVar

(c : τ . σ) ∈ Γ

c⇒ Γ ` τ . σ

CoerWeak

Γ,Σ env G⇒ Γ ` (Σ ` τ) . σ

∗G⇒ Γ ` τ . σ

Figure 4.5: Base system coercion judgment relation

When the erasable environment Σ is empty we may write G⇒ Γ ` τ . σ instead of G⇒ Γ `
(∅ ` τ) . σ. The intuitive interpretation of G ⇒ Γ ` (Σ ` τ) . σ is that for all term a (and
explicit term M) of typing Γ,Σ ` τ , the term a (and explicit term G〈M〉) has typing Γ ` σ.
This interpretation comes from the fact that the typing rules of our considered extensions are
of the form:

a : Γ,Σ ` τ
a : Γ ` σ

For example, the typing rule for type abstraction is:

a : Γ, α ` τ
a : Γ ` ∀α τ

One may wonder why the coercion judgment is not written Γ1 ` τ1 . Γ2 ` τ2 as one
could expect from our notion of coercion invariants Φ1 . Φ2. The reason is that we don't
know which part of the environment is modi�ed by the coercion, which is however necessary
for weakening and substitution lemmas, for instance. For example, consider the coercion
(Γ, α ` τ) . (Γ, α ` ∀α τ) which is sound, as we may generalize from Γ, α ` τ to Γ ` ∀α τ
and weaken to Γ, α ` ∀α τ . What if we weakened the coercion from Γ, α to Γ, α, (x : α). It
seems correct, but (Γ, α, (x : α) ` τ) . (Γ, α, (x : α) ` ∀α τ) is not. What we actually wanted
to write was Γ ` (α ` τ) . (α ` ∀α τ) specifying that the environment Γ is not modi�ed by
the coercion. However, this notation Γ ` (Σ1 ` τ1) . (Σ2 ` τ2) is subsumed by our current
notation Γ ` (Σ ` τ) . σ using inverse modi�cations (see Section 6.1.11).

Rule CoerRefl de�nes the re�exivity coercion ♦ as the proof that typing Γ ` τ is included
in itself without modifying the environment, which corresponds to the re�exivity closure of the
inclusion relation. We remind that typings are to be interpreted as set of terms and coercions
as inclusion proofs between these sets of terms.

Similarly, rule CoerTrans de�nes the transitivity coercionG2◦G1 as the proof for inclusion
transitivity. If G1 proves that Γ,Σ2,Σ1 ` τ1 is included in Γ,Σ2 ` τ2 by extending Σ1, and
if G2 proves that Γ,Σ2 ` τ2 is included in Γ ` τ3 by extending Σ2, then G2 ◦G1 proves that
Γ,Σ2,Σ1 ` τ1 is included in Γ ` τ3 by transitivity and extending Σ2,Σ1.

Finally, rule CoerVar de�nes the coercion variable c as the proof that τ is included in
σ, given that the environment Γ contains an hypothesis, named c, that τ is included in σ.
And rule CoerWeak de�nes the weakening coercion ∗G as the proof that τ is smaller than σ
without any environment extension, whenever τ is smaller than σ with erasable environment

73

TypeVar

Γ env α ∈ Γ

Γ ` α type

TypeArr

Γ ` τ type Γ ` σ type

Γ ` τ → σ type

TypeProd

Γ ` τ type Γ ` σ type

Γ ` τ × σ type

EnvEmpty

∅ env

EnvTerm

x /∈ dom(Γ) Γ ` τ type

Γ, (x : τ) env

Figure 4.6: Base system well-formedness relations

Σ and witness G. For the rule to be well-formed, the extended environment Γ,Σ has to be
well-formed.

Type and environment well-formedness relations are given on Figure 4.6. We write Γ `
τ type when type τ is well-formed under environment Γ. And environment well-formedness is
written Γ env. Type variable α is well-formed under environment Γ, by rule TypeVar, if it is
bound in Γ and Γ is well-formed. Rules TypeArr and TypeProd tell that τ → σ and τ × σ
are well-formed under Γ if τ and σ are well-formed under Γ.

The empty environment is well-formed according to rule EnvEmpty. Rule EnvTerm tells
that the extended environment Γ, (x : τ) is well-formed if x is not already bound and τ is
well-formed under Γ. Notice that there is an environment well-formedness rule for each kind
of abstraction and not for each kind of variable.

A global note about the syntax of this base system is that features never change any kind
of rules (typing rules, reduction rules, or well-formedness rules). Features may only add types
(with their well-formedness rules), coercions (with their typing, ι-reduction, and environment
rules), prevalues, and values. Finally they do not add more explicit terms, environments,
erasable environments, or evaluation contexts. This non-modi�cation property explains that
the following features can be combined in an orthogonal way: all features rely on the base
system only and no features alter the base system. The base system is su�cient for all
extensions but contains only the expressivity of the STLC.

4.2 Features

Features usually de�ne new invariants in the form of erasable types, like polymorphism which
adds the polymorphic type ∀α τ . We make a distinction between computational types and
erasable types. On the one hand, computational types (or simple types) are de�ned in the base
system which corresponds to the STLC. We call them computational types, because their head
constructor describe a computational behavior. The arrow type constructor classi�es term
abstractions, while the product type constructor classi�es pairs of terms. Computational
types are introduced and eliminated through term typing rules and each rule is associated
to a term construct. These types and rules are already de�ned in the base system and no
features will need a new one. Notice that we only consider type system features: a type
system feature extends the type system but not the programming language. Adding integers
to the programming language is not a type system extension, but a programming language
extension. On the other hand, erasable types are related to typing and are independent from
computation. They are introduced and eliminated through coercions and are thus erasable.

74

All features de�ne an erasable type and its associated coercions. The only feature that
does not add an erasable type is the η-expansion. This feature de�nes coercion rules for the
congruence of computational types. As such, η-expansion could actually be considered in the
base system. But since it adds subtyping, we decided to see it as an extension feature.

Congruence rules are actually only necessary for computational types. Erasable types have
derivable congruence rules from their introduction and elimination rules. The typical case is
using transitivity to eliminate the existing erasable constructor, then using the subcoercion,
and �nally introducing the erasable constructor back. In particular, congruence rules for
polymorphic types and recursive types are derivable. For example, see Section 5.4.4 to see
how to derive the congruence rule for recursive types.

4.2.1 Polymorphism

Polymorphism is the possibility to abstract over types in typing derivations. We make this
new invariant apparent in the syntax with an erasable type. In the implicit version the only
syntactical change is that we add the polymorphic type ∀α τ to the syntax of types. For the
explicit version, besides the polymorphic type, we need to add two coercions: one for type
abstraction Λα and one for type application • τ . We also need to extend prevalues and values
accordingly.

τ, σ, ρ ::= . . . | ∀α τ Types

G ::= . . . | Λα | • τ Coercions

p ::= . . . | • τ〈p〉 Prevalues

v ::= . . . | Λα〈v〉 Values

Reduction rules have to be extended with one additional rule called RedPoly. If a type
application • τ follows a type abstraction Λα, then we can remove these nodes and substitute
α for τ in the term.

RedPoly

• τ〈Λα〈M〉〉 ι M [α/τ]

We add two coercion rules to the existing ones: one for type abstraction and one for type
application. Rule CoerTLam is the most interesting one since it illustrates what there is to
say about the coercion judgment. It can be read with rule TermCoer under hand. If the
term a has typing Γ, α ` τ with witness M , then it also has typing Γ ` ∀α τ with witness
Λα〈M〉. We see that both the type and the environment have been modi�ed by the coercion.
The environment has been extended with the type binding α, while the type gets closed by
type abstraction. Similarly, rule CoerTApp tells that we can instantiate a polymorphic type
∀α τ with a well-formed type σ. In this case, only the type is modi�ed, the environment is
not extended or modi�ed in another way.

CoerTLam

Λα⇒ Γ ` (α ` τ) . ∀α τ

CoerTApp

Γ ` σ type

• σ ⇒ Γ ` ∀α τ . τ [α/σ]

We also add rules to describe when a polymorphic type is well-formed and when an envi-
ronment extended with a type variable is well-formed. A polymorphic type is well-formed if its
body is well-formed under the environment extended with its type binding. An environment

75

extended with a type binding is well-formed if its pre�x is well-formed and the type variable
is not already bound.

TypeFor

Γ, α ` τ type

Γ ` ∀α τ type

EnvType

α /∈ dom(Γ) Γ env

Γ, α env

4.2.2 Eta-expansion

We call η-expansion the extension of coercions with computational type congruence. The
reason why we use this name is because η-expansion derivations give the congruence rules of
computational types. This feature is actually more expressive than the usual congruence rules
we can �nd in type systems with subtyping. Because in our setting, coercions are not only
between types, but between typings (the pair of an environment and a type). So η-expansion
allows us to do subtyping between typings and not only types. We will explain in a few
paragraph how η-expansion works.

This extension does not need any syntactic changes in the implicit version. However, we
need to add two coercions in the explicit version. Actually, we need to add as many coercions
as we have computational types. In our case, we have just two computational types: the arrow
type and the product type. So we have two η-expansion coercions, one for each.

G ::= . . . | G τ→ G | G×G Coercions

These coercions can be intuitively understood as λ(x : τ)G2〈[] (G1〈x〉)〉 for the arrow η-
expansion coercion G1

τ→ G2, and 〈G1〈fst []〉, G2〈snd []〉〉 for the product η-expansion coercion
G1×G2. These are called η-expansion because when we take their image by the drop function
erasing types and coercions, we get the η-expansions λx []x for the arrow type and 〈fst [], snd []〉
for the product type. This gives an idea of why these coercions are erasable and do not modify
the computational content of their hole.

This intuition could be used as an encoding: whenever we want to retype a function, we
can η-expand it. However, the resulting term would be an η-expansion of the initial term, and
this disagrees with our wish of coercions being truly erasable. Moreover, when coercing (or
subtyping) deeply in a type, it is more intuitive to have a notation close to the structure of
the type, than to write the associated η-expansion.

Before we look at the associated coercion rules, we need to extend the prevalues. Sev-
eral choices can be done depending on the reduction rules we want and this is discussed in
Section 4.3 when describing the reductions rules of Fpι . In our case, η-expansions are only
destructors, so they are prevalues.

p ::= . . . | (G τ→ G)〈p〉 | (G×G)〈p〉 Prevalues

Since the η-expansion coercions are destructors, they reduce when they are applied to their
associated constructor in accordance with their intuitive de�nition. In other words, we take
their η-expansion view as terms and �ll the hole with their argument (starting with the correct
constructor) and reduce the created redex at the hole. For instance, for rule RedEtaArr, the

left-hand side (G1
τ ′→ G2)〈λ(x : τ)M〉 can be seen as λ(x : τ ′)G2〈(λ(x : τ)M) (G1〈x〉)〉 which

76

reduces to the right-hand side λ(x : τ ′)G2〈M [x/G1〈x〉]〉.

RedEtaArr

(G1
τ ′→ G2)〈λ(x : τ)M〉 ι λ(x : τ ′)G2〈M [x/G1〈x〉]〉

RedEtaProd

(G1 ×G2)〈〈M1,M2〉〉 ι 〈G1〈M1〉, G2〈M2〉〉

When adding a new feature, the most important part of the de�nition is always the exten-
sion of the coercion relation. Here, the rules follow the intuition of the η-expansion view. Rule
CoerEtaArr tells that an arrow type τ → σ under environment Γ,Σ can be coerced into the
arrow type τ ′ → σ′ under the environment Γ, given that τ ′ can be coerced to τ under the
extended environment Γ,Σ and that σ can be coerced to σ′ under Γ and binding the erasable
environment Σ. Notice the contravariance for the left-hand type of the arrow constructor.
For well-formedness reasons, the type τ ′ has to be well-formed under environment Γ in order
for the type variables bound in Σ to not be used by τ ′. One may wonder why G2 binds Σ in
G1 and why G1 does not bind anything. This can be understood by looking at the erasable
context view λ(x : τ)G2〈[] (G1〈x〉)〉. We see that G1 is actually under the scope of G2, and
that the only thing under the scope of G1 is the term variable x, which does not use anything
from its environment but itself.

Rule CoerEtaProd is easier since the product type is covariant on both arguments. If
the typing Γ,Σ ` τ can be coerced to the typing Γ ` τ ′ and similarly the typing Γ,Σ ` σ can
be coerced to Γ ` σ′, then the product type τ ×σ can be coerced to the product τ ′×σ′ under
the environment Γ and extending with the erasable environment Σ.

CoerEtaArr

Γ ` τ ′ type G1 ⇒ Γ,Σ ` (∅ ` τ ′) . τ G2 ⇒ Γ ` (Σ ` σ) . σ′

G1
τ ′→ G2 ⇒ Γ ` (Σ ` τ → σ) . τ ′ → σ′

CoerEtaProd

G1 ⇒ Γ ` (Σ ` τ) . τ ′ G2 ⇒ Γ ` (Σ ` σ) . σ′

G1 ×G2 ⇒ Γ ` (Σ ` τ × σ) . τ ′ × σ′

Notice that when adding η-expansion and polymorphism to the base system, we get ex-
actly System Fη. This will be shown in Section 4.5.2. However, this presentation di�ers from
the original presentation in [25] by factorizing free generalization, type instantiation, arrow
congruence, distributivity, and polymorphic congruence into type generalization, type instan-
tiation, and arrow η-expansion. This presentation is more economical, which has been made
possible by extending coercions from types to typings.

4.2.3 Bottom

This extension closes the hierarchy of types with a minimum, called bottom and written ⊥.
This extension is useful later when dealing with lower bounded polymorphism. There is also
a similar extension to close the hierarchy of types with a maximum, called top and written >
(see the next section). We extend the syntax of types with the bottom type ⊥. We extend
coercions with the absurd coercion ⊥τ and prevalues with (⊥τ)〈p〉.

77

τ, σ, ρ ::= . . . | ⊥ Types

G ::= . . . | ⊥τ Coercions

p ::= . . . | (⊥τ)〈p〉 Prevalues

There are no reduction rules associated to the bottom type because there is no constructor
of type bottom. But there is a coercion rule CoerBot telling that from the bottom type we
can go to any type. So ⊥ is actually a minimum of all well-formed types in any environment,
according to the coercion relation we are de�ning.

CoerBot

Γ ` τ type

⊥τ ⇒ Γ ` ⊥ . τ

Finally, we need to give the well-formedness rule for the bottom type, namely TypeBot.
The bottom type is well-formed under any well-formed environment.

TypeBot

Γ env

Γ ` ⊥ type

4.2.4 Top

This extension is similar to the preceding one and closes the hierarchy of types with a maxi-
mum, called top and written >. This extension is useful later, and in particular when dealing
with upper bounded polymorphism. We extend the syntax of types with the top type >. We
extend coercions with the forget coercion > and values with the blind value >〈v〉.

τ, σ, ρ ::= . . . | > Types

G ::= . . . | > Coercions

v ::= . . . | >〈v〉 Values

There are no reduction rules associated to the top type because there are no associated
destructors. But there is a coercion rule CoerTop that tells that any type can be coerced to
top. So > is actually a maximum of all well-formed types in any environment.

CoerTop

> ⇒ Γ ` τ . >

Finally, we need to give the well-formedness rule for the top type, namely TypeTop. The
top type is well-formed under any well-formed environment.

TypeTop

Γ env

Γ ` > type

4.2.5 Lower Bounded polymorphism

Lower bounded polymorphism, when paired with the bottom type on top of the base system,
corresponds to MLF . We show in detail how in Section 4.5.3. A small di�erence lies in the
absence of recursive bounds in MLF which are possible in this extension.

78

This extension resembles the extension of the STLC with polymorphism but instead of
abstracting over a type, we abstract over a type greater than another one. In other words, we
abstract over instances of a type, called the lower bound. We say that the bound is recursive
when it may contain occurrences of the abstract type. We extend the syntax of types with
the lower bounded polymorphic type ∀(α / τ) τ . We add two coercions: one for abstraction
Λ(α / c : τ) and one for application •[τ / G]. Notice that in Λ(α / c : τ) we simultaneously
abstract over c and α. We extend the prevalues and values accordingly.

τ, σ, ρ ::= . . . | ∀(α / τ) τ Types

G ::= . . . | Λ(α / c : τ) | •[τ / G] Coercions

p ::= . . . | (•[τ / G])〈p〉 Prevalues

v ::= . . . | Λ(α / c : τ)〈v〉 Values

We extend the reduction rules with rule RedPolyL which is similar to RedPoly; it takes a
lower bounded type abstraction followed by a lower bounded type application, and it reduces
it into a type substitution followed by a coercion substitution.

RedPolyL

•[σ / G]〈Λ(α / c : τ)〈M〉〉 ι M [α/σ][c/G]

The coercion typing rules need also to be extended. Rule CoerTLamL tells that if we can
type a term with ρ under an environment extended with type variable α and coercion variable
c of coercion type τ . α, then this term also has type ∀(α / τ) ρ under the non-extended
environment. Notice that this abstraction extends the environment with two binders and,
although we write α / τ in the syntax of types, we still write τ . α in the coercion binding.
Rule CoerTAppL permits to view a term of type ∀(α / τ) ρ with type ρ[α/σ] whenever σ is
well-formed and an instance of τ [α/σ]. Here, we must substitute α by σ in τ since we allow
recursive bounds.

CoerTLamL

Λ(α / c : τ)⇒ Γ ` (α, (c : τ . α) ` ρ) . ∀(α / τ) ρ

CoerTAppL

Γ ` σ type G⇒ Γ ` τ [α/σ] . σ

•[σ / G]⇒ Γ ` ∀(α / τ) ρ . ρ[α/σ]

Finally, we extend the well-formedness rules. By rule TypeForL, the lower bounded
polymorphic type ∀(α / τ) ρ is well-formed if its body ρ is well-formed under the environment
extended with the type binding α and coercion binding (c : τ . α). So α is bound in ρ
and we know that it is an instance of τ . By rule EnvTypeL, the extended environment
Γ, α, (c : τ . α) is well-formed if the bound variables are not already bound in environment
Γ and τ is well-formed under Γ, α which allows τ to mention α and thus permits recursive
bounds.

TypeForL

Γ, α, (c : τ . α) ` ρ type

Γ ` ∀(α / τ) ρ type

EnvTypeL

c, α /∈ dom(Γ) Γ, α ` τ type

Γ, α, (c : τ . α) env

4.2.6 Upper Bounded polymorphism

Upper bounded polymorphism, when paired with top type and η-expansion on top of the base
system, gives a type system more expressive than the most expressive version of System F<: .
We show in detail how in Section 4.5.4.

79

This extension resembles lower bounded polymorphism but instead of abstracting over a
type greater than another one, it abstracts over a type smaller than another one. We call this
last type the upper bound of the abstract type. We say that the bound is recursive when it
may contain occurrences of the abstract type. We extend the syntax of types with the upper
bounded polymorphic type ∀(α . τ) τ . We add two coercions: one for abstraction Λ(α . c : τ)
and one for application •[τ . G]. We also extend the prevalues and values accordingly and
similarly to the previous extension. Notice that only the triangles are inverted from / to . in
a way to make what were previously lower bounds upper bounds.

τ, σ, ρ ::= . . . | ∀(α . τ) τ Types

G ::= . . . | Λ(α . c : τ) | •[τ . G] Coercions

p ::= . . . | (•[τ . G])〈p〉 Prevalues

v ::= . . . | Λ(α . c : τ)〈v〉 Values

We extend the reduction rules with rule RedPolyU which is similar to RedPolyL since it
reduces an upper bounded type abstraction followed by an upper bounded type application
into a type substitution followed by a coercion substitution.

RedPolyU

•[σ . G]〈Λ(α . c : τ)〈M〉〉 ι M [α/σ][c/G]

The coercion typing rules need also to be extended. Rule CoerTLamU says that if we can
type a term with ρ under an environment extended with type variable α and coercion variable
c of coercion type α . τ , then this term also has type ∀(α . τ) ρ under the non-extended
environment. Notice that this abstraction extend the environment with two binders similarly
to rule CoerTLamL. Rule CoerTAppU permits to view a term of type ∀(α . τ) ρ with type
ρ[α/σ] whenever σ is well-formed and smaller than τ [α/σ]. We substituted α by σ in τ since
we allow recursive bounds.

CoerTLamU

Λ(α . c : τ)⇒ Γ ` (α, (c : α . τ) ` ρ) . ∀(α . τ) ρ

CoerTAppU

Γ ` σ type G⇒ Γ ` σ . τ [α/σ]

•[σ . G]⇒ Γ ` ∀(α . τ) ρ . ρ[α/σ]

Finally, we extend the well-formedness rules. By rule TypeForU, the upper bounded
polymorphic type ∀(α . τ) ρ is well-formed if its body ρ is well-formed under the environment
extended with the type binding α and coercion binding (c : α . τ). So α is bound in ρ and we
know that it is smaller than τ . By rule EnvTypeU, the extended environment Γ, α, (c : α . τ)
is well-formed if the bound variables are not already bound in environment Γ and τ is well-
formed under Γ, α which allows τ to mention α and thus permits recursive bounds.

TypeForU

Γ, α, (c : α . τ) ` ρ type

Γ ` ∀(α . τ) ρ type

EnvTypeU

c, α /∈ dom(Γ) Γ, α ` τ type

Γ, α, (c : α . τ) env

4.3 System Fpι

Now that the base system and the features are presented, we may compose them altogether
into a type system that we call System F

p
ι . This language is described with a slightly di�erent

80

α, β Type variables

c Coercion variables

M,N ::= x | λ(x : τ)M |MM | 〈M,M〉 | fstM | sndM | G〈M〉 Explicit terms

τ, σ, ρ ::= α | τ → τ | τ × τ | ∀α τ | ⊥ | > | ∀(α / τ) τ | ∀(α . τ) τ Types

G ::= c | ♦ | G ◦G | ∗G | Λα | • τ | G τ→ G | G×G | ⊥τ | > Coercions

| Λ(α / c : τ) | •[τ / G] | Λ(α . c : τ) | •[τ . G]

Γ ::= ∅ | Γ, (x : τ) | Γ, α | Γ, (c : τ . τ) Environments

Figure 4.7: System F
p
ι syntax

presentation in a paper [13]. In this framework, we made it clear that coercions act on typings
and not only on types.

We sum up the syntax of the base system and all extensions in Figure 4.7. We write type
variables α or β and coercion variables c. Coercion variables are only necessary in the explicit
version of the type system. Terms are written M or N and only necessary in the explicit
version. They contain variables x, abstractions λ(x : τ)M , applications MM , pairs 〈M,M〉,
projections fstM and sndM , and coercion constructs G〈M〉.

Types are written τ , σ, or ρ. They contain variables α, arrow types τ → τ , product types
τ×τ , polymorphic types ∀α τ , the bottom type ⊥, the top type >, lower bounded polymorphic
types ∀(α . τ) τ , and upper bounded polymorphic types ∀(α / τ) τ . In bounded polymorphic
types ∀(α . τ) ρ and ∀(α / τ) ρ, the type variable α is bound in both the bound τ and the
body ρ. It is bound in ρ because it is a polymorphic type, and it is bound in τ because we
allow recursive bounds. The upper (resp. lower) bound polymorphic type ∀(α . τ) ρ (resp.
∀(α / τ) ρ) can be read as type ρ for all abstract type α such that a coercion from α to τ
(resp. from τ to α) exists.

Coercions are written G and only necessary in the explicit version since they only occur
in the coercion constructs of terms which are by de�nition only necessary in the explicit
version. Coercions contain variables c, the re�exivity coercion ♦, transitivity coercions G ◦G,
weakenings ∗G, type abstractions Λα, type applications • τ , arrow η-expansions G

τ→ G,
product η-expansions G × G, bottom coercions ⊥τ , the top coercion >, lower bounded type
abstractions Λ(α / c : τ), lower bounded type applications •[τ / G], upper bounded type
abstractions Λ(α . c : τ), and upper bounded type applications •[τ . G].

The transitivity coercions have to be read from right to left. The coercion G2 ◦G1 means
that G2 occurs after G1, as we can see in rule RedTrans. The type annotation on the arrow η-
expansion coercion is needed for rule RedArr. Upper and lower bounded abstractions bind the
type variable α and the coercion variable c, which has type α . τ and τ . α respectively. Notice
that for lower bounded abstraction, we write Λ(α / c : τ) with a reverse .. This is because we
want to enhance that both c and α are bound and that c has coercion type τ . α. A similar
reason holds for the lower bounded polymorphic type ∀(α / τ) ρ. Upper and lower bounded
applications are made of three parts: a type instantiation τ , a coercion instantiation G, and a
direction . or / which corresponds to upper or lower bounded application, respectively. The
orientation is the same as its associated abstraction.

Finally, we de�ne environments Γ as lists of bindings. The empty environment is written ∅
and extended environments are written with a comma. Environments extended with a term
binding are written Γ, (x : τ), environments extended with a type binding are written Γ, α,

81

Σ ::= ∅ | Σ, α | Σ, (c : τ . τ) Erasable environments

E ::= λ(x : τ) [] | []M |M [] | 〈[],M〉 | 〈M, []〉 | fst [] | snd [] | G〈[]〉 Evaluation contexts

p ::= x | p v | fst p | snd p | • τ〈p〉 | (G τ→ G)〈p〉 | (G×G)〈p〉 Prevalues

| (⊥τ)〈p〉 | (•[τ / G])〈p〉 | (•[τ . G])〈p〉 | c〈v〉
v ::= p | λ(x : τ) v | 〈v, v〉 | Λα〈v〉 | >〈v〉 | Λ(α / c : τ)〈v〉 | Λ(α . c : τ)〈v〉 Values

Figure 4.8: System F
p
ι notations

RedCtx

M βι N

E [M] βι E [N]

RedApp

(λ(x : τ)M)N β M [x/N]
RedFst

fst 〈M,N〉 β M
RedSnd

snd 〈M,N〉 β N

RedRefl

♦〈M〉 ι M
RedTrans

(G2 ◦G1)〈M〉 ι G2〈G1〈M〉〉
RedWeak

(∗G)〈M〉 ι G〈M〉

RedPoly

• τ〈Λα〈M〉〉 ι M [α/τ]
RedEtaArr

(G1
τ ′→ G2)〈λ(x : τ)M〉 ι λ(x : τ ′)G2〈M [x/G1〈x〉]〉

RedEtaProd

(G1 ×G2)〈〈M1,M2〉〉 ι 〈G1〈M1〉, G2〈M2〉〉
RedPolyL

•[σ / G]〈Λ(α / c : τ)〈M〉〉 ι M [α/σ][c/G]

RedPolyU

•[σ . G]〈Λ(α . c : τ)〈M〉〉 ι M [α/σ][c/G]

Figure 4.9: System F
p
ι reduction rules

and environments extended with a coercion binding are written Γ, (c : τ . τ) in the explicit
version and Γ, (τ . τ) in the implicit version. Term bindings (x : τ) bind the term variable x
to its type τ . A type binding α binds the type variable α. And coercion bindings (c : τ . σ)
bind the coercion variable c to the coercion hypothesis τ . σ. All variables bound in an
environment have to be distinct. We ensure this restriction in the well-formedness judgment
of environments.

We de�ne some notations in Figure 4.8. Erasable environments are environments con-
taining only erasable bindings. Erasable bindings are type or coercion bindings since they
have to do with typing. Non-erasable bindings are term bindings since they have to do with
computation. We write Σ for erasable environments.

We de�ne evaluation contexts, prevalues, and values. All of these are de�ned according
to strong reduction. In strong reduction, evaluation contexts are all one-hole contexts of
depth one. Prevalues are destructors applied to prevalues where a constructor is expected
and values elsewhere. Finally, values are constructors applied to values. For System F

p
ι ,

prevalues contain in particular prevalues applied to a type • τ〈p〉, prevalues applied to an η-
expansion (G

τ→ G)〈p〉 and (G×G)〈p〉, instantiations of absurd prevalues (⊥τ)〈p〉, bounded
type applications of prevalues (•[τ . G])〈p〉 and (•[τ / G])〈p〉, and coerced values with an
abstract coercion c〈v〉. And values contain in particular type abstractions of values Λα〈v〉,
top values >〈v〉, and bounded type abstractions of values Λ(α . c : τ)〈v〉 and Λ(α / c : τ)〈v〉.

We de�ne the reduction rules in Figure 4.9. They are labeled with a β annotation for

82

computational steps and ι annotation for typing steps or erasable steps. We use the meta-
variable βι to designate either of these annotations.

The �rst four rules mimic those of the λ-calculus. Rule RedCtx is the context rule and
simply transfers the annotation from its subreduction to its whole reduction. If M reduces to
N with annotation β (resp. ι), then E [M] reduces to E [N] with annotation β (resp. ι). Rules
RedApp, RedFst, and RedSnd are β-reduction rules since they actually do a computational
step. All following reduction rules are ι-reduction rules and only have to do with typings.

Rules RedRefl and RedTrans have to do with the closure properties of the coercion
relation. The re�exivity coercion closes the coercion relation by re�exivity: typing Γ ` τ is
smaller than typing Γ ` τ by coercion proof ♦. While the transitivity coercion closes the
coercion relation by transitivity: if typing Γ1 ` τ1 is smaller than typing Γ2 ` τ2 by coercion
proof G1 and typing Γ2 ` τ2 is smaller than typing Γ3 ` τ3 by coercion proof G2, then typing
Γ1 ` τ1 is smaller than typing Γ3 ` τ3 by coercion proof G2 ◦G1. This is why ♦〈M〉 ι-reduces
to M since the typing does not change, and why (G2 ◦G1)〈M〉 ι-reduces to G2〈G1〈M〉〉. Rule
RedWeak simply applies the subcoercion.

Rule RedPoly corresponds to the usual rule of System F for polymorphism. A type
abstraction followed by a type application results in a type substitution. In terms of typings
and coercions, if we change the typing of a term M from typing Γ, α ` τ to typing Γ ` ∀α τ
by coercion proof Λα and then from typing Γ ` ∀α τ to typing Γ ` τ [α/σ] by coercion proof
• σ where σ is a well-formed type under environment Γ, then the substitution of the free
occurrences of the type variable α by the type σ, written [α/σ], changes the typing Γ, α ` τ of
the term M to the typing Γ ` τ [α/σ], which is the same as what the original coercions where
doing.

Rules RedEtaArr and RedEtaProd deal with η-expansion. They can be read using the

η-expansion intuition. Coercions are erasable contexts and the η-expansion coercion G1
τ ′→ G2

can be seen as the erasable context λ(x : τ ′)G2〈[] (G1〈x〉)〉. When we �ll this context with
λ(x : τ)M as it is the case in rule RedEtaArr we get λ(x : τ ′)G2〈(λ(x : τ)M) (G1〈x〉)〉 which
reduces to λ(x : τ ′)G2〈M [x/G1〈x〉]〉 which is exactly the right-hand side of the reduction rule.
The same mechanism works for rule RedEtaProd when taking 〈G1〈fst []〉, G2〈snd []〉〉 as the
erasable context for coercion G1 ×G2.

Some additional or alternate rules could have been used instead of rules RedEtaArr and
RedEtaProd. We focus on the arrow type only, since the product type is very similar. The
two additional or alternate rules we consider are RedEtaArr1 and RedEtaArr2.

RedEtaArr1

(G1
τ ′→ G2)〈M〉N ι G2〈M (G1〈N〉)〉

Rule RedEtaArr1 is the analog of rule RedEtaArr in the sense that an η-expansion has
two potential redexes: one with the destructor above its hole, one with the constructor at its
root. Rule RedEtaArr considers the redex under its hole while rule RedEtaArr1 considers
the redex at its root. If we write down the η-expansion view of rule RedEtaArr1 as erasable
contexts we get (λ(x : τ ′)G2〈M (G1〈x〉)〉)N which reduces at its root to G2〈M (G1〈N〉)〉.
Notice that one advantage of this rule on rule RedEtaArr is that the type annotation τ ′ is
not needed and the only reason for this annotation to be present in the syntax is to formulate
rule RedEtaArr. However, rule RedEtaArr1 modi�es the set of prevalues and values and
in particular the classi�cation of irreducible terms according to their type. For instance

(G1
τ ′→ G2)〈λ(x : τ)M〉 is an irreducible well-typed term if we replace rule RedEtaArr with

83

rule RedEtaArr1. Both rules, RedEtaArr and RedEtaArr1, can be used independently or
together.

RedEtaArr2

(G′1
τ ′→ G′2)〈(G1

τ→ G2)〈M〉〉 ι ((G1 ◦G′1)
τ ′→ (G′2 ◦G2))〈M〉

Rule RedEtaArr2 is special and actually problematic. Rule RedEtaArr1 was the analog
of rule RedEtaArr because it was using the other redex of the hidden η-expansion, whereas
rule RedEtaArr2 mixes the root half-redex of one η-expansion with the hole half-redex of
another η-expansion. If we write down the η-expansion view of this rule as erasable contexts
we get:

λ(x : τ ′)G′2〈(λ(x : τ)G2〈M (G1〈x〉)〉) (G′1〈x〉)〉

It reduces to λ(x : τ ′)G′2〈G2〈M (G1〈G′1〈x〉〉)〉〉 which is a reduct of the right-hand side of the
reduction rule. This is where there is a problem since we break our intuition: coercions are
erasable contexts. One way to recover it is to ask the closure reductions to be actually closure
equivalences. In particular, we would have the following equivalence rules.

♦〈M〉 ≡M (G2 ◦G1)〈M〉 ≡ G2〈G1〈M〉〉 G3 ◦ (G2 ◦G1) ≡ (G3 ◦G2) ◦G1

Rule RedEtaArr2 would then be compatible with both RedEtaArr and RedEtaArr1.
However, this rule alone is not enough to ensure progress since it does not act on computational
terms as an η-expansion rule should do. So the six possible con�gurations for the η-expansion
rules of the arrow type are: rule RedEtaArr alone, rule RedEtaArr1 alone, rules RedEtaArr
and RedEtaArr1 together, rule RedEtaArr2 with rule RedEtaArr, rule RedEtaArr2 with
rule RedEtaArr1, and rule RedEtaArr2 with rules RedEtaArr and RedEtaArr1. And each
time we add rule RedEtaArr2 we have to modify the framework to allow term equivalence
and add enough structural equivalence rules. Also, for each situation, the set of prevalues and
values di�er.

Rules RedPolyU and RedPolyL are similar to rule RedPoly. A bounded type abstraction
followed by a similarly bounded type application results in a type substitution followed by a
coercion substitution.

Term typing rules are given on Figure 4.10. The term typing judgment is of the form
M ⇒ a : Γ ` τ where M is a term which is a partial proof that the term a has type τ under
environment Γ. It is a partial proof because it only contains enough information to rebuild
the term a, and enough information to rebuild the type τ given an environment Γ. The term
is necessary only in the explicit version of the type system.

Rule TermVar gives type τ to the term variable x if x is bound to τ in environment Γ.
The term witnessing this rule is the term variable x itself. Since we want derivations of the
judgmentM ⇒ a : Γ ` τ to hold the proof that its type τ is well-formed under its environment
Γ, we have to ask the environment Γ to be well-formed. Rule TermLam gives type τ → σ to
the term λx a under environment Γ if the term a has type σ under the extended environment
Γ, (x : τ) where the term variable x is now bound to the type τ . If we have M the term for
the premise, we write λ(x : τ)M the term witnessing the conclusion. We need to add the
type annotation τ since we cannot rebuild it from M . Rule TermApp gives type σ to the
application of a to b under environment Γ if a has type τ → σ under environment Γ and b has
type σ under environment Γ. If M and N are the terms for a and b respectively, then we use
M N for the term of the conclusion.

84

TermVar

Γ env (x : τ) ∈ Γ

x⇒ x : Γ ` τ

TermLam

Γ ` τ type M ⇒ a : Γ, (x : τ) ` σ
λ(x : τ)M ⇒ λx a : Γ ` τ → σ

TermApp

M ⇒ a : Γ ` τ → σ N ⇒ b : Γ ` τ
M N ⇒ a b : Γ ` σ

TermPair

M ⇒ a : Γ ` τ N ⇒ b : Γ ` σ
〈M,N〉 ⇒ 〈a, b〉 : Γ ` τ × σ

TermFst

M ⇒ a : Γ ` τ × σ
fstM ⇒ fst a : Γ ` τ

TermSnd

M ⇒ a : Γ ` τ × σ
sndM ⇒ snd a : Γ ` σ

TermCoer

M ⇒ a : Γ,Σ ` τ G⇒ Γ ` (Σ ` τ) . σ

G〈M〉 ⇒ a : Γ ` σ

Figure 4.10: System F
p
ι term judgment relation

Rule TermPair gives type τ × σ to the pair 〈a, b〉 under environment Γ if a has type τ
under environment Γ and b has type σ under environment Γ. If M and N are the terms for
a and b respectively, then we use 〈M,N〉 for the term of the conclusion. Rule TermFst gives
type τ to the �rst projection fst a under environment Γ if a has type τ ×σ under environment
Γ. If M is the term for the premise, then we write fstM for the term of the conclusion. Rule
TermSnd gives type σ to the second projection snd a under environment Γ if a has type τ ×σ
under environment Γ. If M is the term for the premise, then we write sndM for the term of
the conclusion.

Finally, rule TermCoer gives typing Γ ` σ to the term a if it also has typing Γ,Σ ` τ and
there is a coercion from typing Σ ` τ to type σ under Γ, written Γ ` (Σ ` τ) . σ. If we name
M the term witnessing a : Γ,Σ ` τ and G the coercion proof, then we write G〈M〉 the term
for the conclusion that a has typing Γ ` σ.

We can now de�ne the coercion typing rules which are given on Figure 4.11. The coercion
judgment is written G ⇒ Γ ` (Σ ` τ) . σ. The coercion proof G witnesses the derivation of
Γ ` (Σ ` τ) . σ. This judgment means that the typing Σ ` τ is smaller than the type σ under
environment Γ, which can also be seen as the polymorphic type ∀Σ τ being smaller than σ
under environment Γ. When the erasable environment Σ is empty, we may write Γ ` τ . σ.

Rules CoerRefl and CoerTrans are about the closure of the coercion relation by re�ex-
ivity and transitivity. The coercion proof ♦ is a witness that type τ is smaller than itself
under environment Γ by rule CoerRefl. Rule CoerTrans tells that if coercion G2 proves
that Σ2 ` τ2 is smaller than τ3 under Γ and coercion G1 proves that Σ1 ` τ1 is smaller than
τ2 under Γ,Σ2 then coercion G2 ◦G1 proves that Σ2,Σ1 ` τ1 is smaller than τ3 under Γ.

Rule CoerVar looks in the environment Γ a coercion hypothesis. In the explicit version
this lookup is done using the name given by the coercion variable c. If c is bound to τ . σ
in Γ, then τ is smaller than σ. Rule CoerWeak forgets that a coercion G used to extend
the environment if the extension is not used by the inner type τ . Concretely, if G witnesses
a coercion from τ to σ extending Σ, then ∗G witnesses a coercion from τ to σ with no
environment extension. This is sound since τ is well-formed under Γ by hypothesis.

85

CoerRefl

♦⇒ Γ ` τ . τ

CoerTrans

G1 ⇒ Γ,Σ2 ` (Σ1 ` τ1) . τ2 G2 ⇒ Γ ` (Σ2 ` τ2) . τ3

G2 ◦G1 ⇒ Γ ` (Σ2,Σ1 ` τ1) . τ3

CoerVar

(c : τ . σ) ∈ Γ

c⇒ Γ ` τ . σ

CoerWeak

Γ,Σ env G⇒ Γ ` (Σ ` τ) . σ

∗G⇒ Γ ` τ . σ

CoerTLam

Λα⇒ Γ ` (α ` τ) . ∀α τ

CoerTApp

Γ ` σ type

• σ ⇒ Γ ` ∀α τ . τ [α/σ]

CoerEtaArr

Γ ` τ ′ type G1 ⇒ Γ,Σ ` τ ′ . τ G2 ⇒ Γ ` (Σ ` σ) . σ′

G1
τ ′→ G2 ⇒ Γ ` (Σ ` τ → σ) . τ ′ → σ′

CoerEtaProd

G1 ⇒ Γ ` (Σ ` τ) . τ ′ G2 ⇒ Γ ` (Σ ` σ) . σ′

G1 ×G2 ⇒ Γ ` (Σ ` τ × σ) . τ ′ × σ′

CoerBot

Γ ` τ type

⊥τ ⇒ Γ ` ⊥ . τ

CoerTop

> ⇒ Γ ` τ . >

CoerTLamL

Γ, α ` τ type

Λ(α / c : τ)⇒ Γ ` (α, (c : τ . α) ` ρ) . ∀(α / τ) ρ

CoerTAppL

Γ ` σ type G⇒ Γ ` τ [α/σ] . σ

•[σ / G]⇒ Γ ` ∀(α / τ) ρ . ρ[α/σ]

CoerTLamU

Γ, α ` τ type

Λ(α . c : τ)⇒ Γ ` (α, (c : α . τ) ` ρ) . ∀(α . τ) ρ

CoerTAppU

Γ ` σ type G⇒ Γ ` σ . τ [α/σ]

•[σ . G]⇒ Γ ` ∀(α . τ) ρ . ρ[α/σ]

Figure 4.11: System F
p
ι coercion judgment relation

Rules CoerTLam and CoerTApp have to do with polymorphism. The �rst is type gener-
alization and the second is type instantiation. We de�ne coercion Λα as a proof that typing
α ` τ is included in type ∀α τ under Γ. And we de�ne coercion • σ as a proof that we can go
from type ∀α τ to type τ [α/σ] under Γ, given type σ is well-formed under Γ.

Rules CoerEtaArr and CoerEtaProd are about η-expansions so to understand the rules

we need to look at their η-expansion views as erasable contexts. The coercion G1
τ ′→ G2 can

be viewed as the erasable context λ(x : τ ′)G2〈[] (G1〈x〉)〉. We can display the following typing
derivation as a graph:

λx

@

x

Γ ` τ ′ → σ′

Γ,Σ ` σ
Γ ` σ′

Γ,Σ ` τ → σ Γ,Σ ` τ ′
Γ,Σ ` τ

86

or as a typing derivation where Γ′ = Γ, (x : τ ′):

[]⇒ [] : Γ′,Σ ` τ → σ

x⇒ x : Γ′,Σ ` τ ′ G1 ⇒ Γ′,Σ ` τ ′ . τ
G1〈x〉 ⇒ x : Γ′,Σ ` τ

[] (G1〈x〉)⇒ []x : Γ′,Σ ` σ G2 ⇒ Γ′ ` (Σ ` σ) . σ′

G2〈[] (G1〈x〉)〉 ⇒ []x : Γ′ ` σ′

λ(x : τ ′)G2〈[] (G1〈x〉)〉 ⇒ λx []x : Γ ` τ ′ → σ′

Rule CoerTop tells that any type is smaller than the top type. And rule CoerBot tells
that any well-formed type is bigger that the bottom type.

Finally, rules CoerTLamU, CoerTAppU, CoerTLamL, and CoerTAppL have to do with
upper and lower bounded polymorphism and are thus similar to rules CoerTLam and Coer-
TApp. Rule CoerTLamU de�nes coercion Λ(α . c : τ) as a proof that typing α, (c : α . τ) ` ρ
is smaller than type ∀(α . τ) ρ under Γ. Notice that this coercion binds two variables: the
type variable α and the coercion variable c with coercion type α . τ . Rule CoerTAppU de�nes
the upper bounded instantiation coercion •[σ . G] as a proof that type ∀(α . τ) ρ is smaller
than ρ[α/σ] under environment Γ given σ is well-formed and coercion G is a proof that σ is
smaller than τ [α/σ].

Similarly, rule CoerTLamL de�nes coercion Λ(α / c : τ) as a proof that typing α, (c : τ .
α) ` ρ is smaller than type ∀(α / τ) ρ under Γ. Notice that this coercion binds two variables:
the type variable α and the coercion variable c with coercion type τ . α. Rule CoerTAppL
de�nes the lower bounded instantiation coercion •[σ / G] as a proof that type ∀(α / τ) ρ is
smaller than ρ[α/σ] under environment Γ given σ is well-formed and coercion G is a proof
that τ [α/σ] is smaller than σ.

It remains to de�ne the well-formedness rules. A type τ is well-formed under environment
Γ, written Γ ` τ type, if it has a derivation using the rules given in Figure 4.12. Similarly, an
environment Γ is well-formed, written Γ env, if it has a derivation using the rules given in the
same �gure.

Rule TypeVar tells that a type variable α is well-formed under environment Γ if it is bound
in the environment. Since we want to extract from a type derivation that the environment is
well-formed, we need to ask the environment Γ to be well-formed. Rule TypeArr tells that
type τ → σ is well-formed under environment Γ, if both τ and σ are well-formed under Γ.
Similarly, type τ × σ is well-formed under environment Γ by rule TypeProd, if both τ and σ
are well-formed under Γ.

Rule TypeFor tells that the polymorphic type ∀α τ is well-formed under environment Γ
if type τ is well-formed under the extended environment Γ, α. The top and bottom types are
well-formed, according to rules TypeTop and TypeBot respectively, if their environment is
well-formed. Rules TypeForU and TypeForL are similar. Type ∀(α . τ) ρ is well-formed
under environment Γ if type ρ is well-formed under the extended environment Γ, α, (c : α . τ).
Similarly, type ∀(α / τ) ρ is well-formed under environment Γ if type ρ is well-formed under
the extended environment Γ, α, (c : τ . α).

Since bindings are related to abstractions and not variables, and since System F
p
ι has

abstractions binding more than one variable, the well-formedness derivation of an environment
has to split the environment as a list of abstractions. System F

p
ι has four kind of abstractions:

term abstractions with binding (x : τ), type abstraction with binding α, upper bounded type
abstraction with binding α, (c : α . τ), and lower bounded type abstraction with binding
α, (c : τ . α).

87

TypeVar

Γ env α ∈ Γ

Γ ` α type

TypeArr

Γ ` τ type Γ ` σ type

Γ ` τ → σ type

TypeProd

Γ ` τ type Γ ` σ type

Γ ` τ × σ type

TypeFor

Γ, α ` τ type

Γ ` ∀α τ type

TypeBot

Γ env

Γ ` ⊥ type

TypeTop

Γ env

Γ ` > type

TypeForL

Γ, α ` τ type Γ, α, (c : τ . α) ` ρ type

Γ ` ∀(α / τ) ρ type

TypeForU

Γ, α ` τ type Γ, α, (c : α . τ) ` ρ type

Γ ` ∀(α . τ) ρ type

EnvEmpty

∅ env

EnvTerm

x /∈ dom(Γ) Γ ` τ type

Γ, (x : τ) env

EnvType

Γ env α /∈ dom(Γ)

Γ, α env

EnvTypeL

c, α /∈ dom(Γ) Γ, α ` τ type

Γ, α, (c : τ . α) env

EnvTypeU

c, α /∈ dom(Γ) Γ, α ` τ type

Γ, α, (c : α . τ) env

Figure 4.12: System F
p
ι well-formedness relations

Once the environment is split by abstractions we proceed by recurrence over this list of
abstractions. Either the list is empty and we have the empty environment ∅ which is always
well-formed by rule EnvEmpty. Or we have a non-empty list of abstractions and we look at
the last one. The remaining list has to be well-formed and the last abstraction has to be well-
formed under the remaining environment. A term abstraction associating the term variable x
to the type τ is well-formed by rule EnvTerm if the type τ is well-formed under the remaining
environment Γ and the term variable x is not already bound in Γ. A type abstraction α is
well-formed by rule EnvType if the type variable α is not already bound in the remaining
environment. Upper and lower type abstractions, α, (c : α . τ) and α, (c : τ . α) respectively,
are well-formed by rules EnvTypeU and EnvTypeL respectively if the type variable α and
coercion variable c are not already bound in the remaining environment Γ and if the type τ
is well-formed under the environment Γ, α since we allow recursive bounds.

4.4 Properties

We �rst describe the properties linking the implicit version and the explicit version of the
type system as we did in Chapter 3. We then prove the strong normalization of the explicit
reduction of well-typed terms by translating our judgments in System F. Using termination
we prove the con�uence of the explicit reduction. We then show how the explicit reduction
corresponds to the implicit reduction in the bisimulation lemma. And we �nally prove that
System F

p
ι is sound and strongly normalizing in both its explicit and implicit versions. We

can conclude from these properties that well-typed terms in System F
p
ι strongly normalize to

a unique value without encountering any error.

88

bxc = x
bλ(x : τ)Mc = λx bMc

bM Nc = bMc bNc

b〈M,N〉c = 〈bMc, bNc〉
bfstMc = fst bMc
bsndMc = snd bMc

bG〈M〉c = bMc

Figure 4.13: System F
p
ι drop function

4.4.1 Implicit vs. Explicit version

We �rst give the expected properties of an explicit type system. A judgment has to be unique
according to its explicit entity. For instance, when M ⇒ a : Γ ` τ holds, then a is determined
by M , and τ is a function of the term M and the environment Γ. For coercions, when we
have G ⇒ Γ ` (Σ ` τ) . σ, then the erasable environment Σ is a function of coercion G and
environment Γ, and the type σ is a function of coercion G, environment Γ, and type τ .

Lemma 43 (Uniqueness). The following assertions hold.

• If M ⇒ a1 : Γ1 ` τ1 and M ⇒ a2 : Γ2 ` τ2 hold, then a1 = a2 holds.

• If M ⇒ a : Γ ` τ1 and M ⇒ a : Γ ` τ2 hold, then τ1 = τ2 hold.

• If G⇒ Γ ` (Σ1 ` τ1) . σ1 and G⇒ Γ ` (Σ2 ` τ2) . σ2 hold, then Σ1 = Σ2 holds.

• If G⇒ Γ ` (Σ ` τ) . σ1 and G⇒ Γ ` (Σ ` τ) . σ2 hold, then σ1 = σ2 holds.

Proof. For each assertion, by induction on the �rst hypothesis and inversion of the second.
The inversion leads to exactly one rule, which is actually the same as the one for the induction.
Rule TermVar uses the fact that a well-formed environment binds each term variable at most
once. All other cases simply use induction hypotheses.

Actually a is a function of M even if M is not well-typed. This is not useful as a result,
but the function in question is useful for the bisimulation properties. We call this function
the drop function and we write it bMc. It is simply de�ned by dropping the annotations in
M . The formal de�nition is given on Figure 4.13. This lemma explains why we usually omit
a in explicit term judgments and write M : Γ ` τ instead of M ⇒ a : Γ ` τ .

Lemma 44. If M ⇒ a : Γ ` τ holds, then a = bMc holds.

Proof. By induction.

The next lemma tells that M is actually contained in the implicit typing derivation. In
other words, from a derivation of a : Γ ` τ we can extract the termM such thatM ⇒ a : Γ ` τ
holds. The environment Γ has to be �lled with distinct coercion variables. Reciprocally, if
M ⇒ a : Γ ` τ holds, we can extract a derivation of a : Γ′ ` τ where Γ′ is obtained from Γ by
removing coercion variables. Similarly for coercions, we can add or remove the witness.

Lemma 45 (Equivalence). The following assertions hold.

• a : Γ ` τ holds if and once if M ⇒ a : Γ ` τ holds for some M .

• Γ ` (Σ ` τ) . σ holds if and only if G⇒ Γ ` (Σ ` τ) . σ holds for some G.

Proof. By induction. The reciprocals are very easy since we only remove information. The
implicit to explicit direction simply uses the induction hypotheses and the syntax of the side
judgments.

89

x̂ = x
̂λ(x : τ)M = λ(x : τ̂) M̂

M̂ N = M̂ N̂

̂〈M,N〉 = 〈M̂, N̂〉
f̂stM = fst M̂

ŝndM = snd M̂

Ĝ〈M〉 = Ĝ[M̂]

Figure 4.14: System F
p
ι term rei�cation function

α̂ = α
τ̂ → τ = τ̂ → σ̂

τ̂ × τ = τ̂ × σ̂
∀̂α τ = ∀α τ̂

>̂ = ∀αα→ α

⊥̂ = ∀αα
̂∀(α . τ) ρ = ∀α (α→ τ̂)→ ρ̂
̂∀(α / τ) ρ = ∀α (τ̂ → α)→ ρ̂

Figure 4.15: System F
p
ι type rei�cation function

4.4.2 Termination

Termination for the explicit version is shown by rei�cation into System F . We reify types,
environments, terms, and coercion proofs into System F. We show that the rei�cation of
System F

p
ι derivations are also valid derivations in System F. So the rei�cation of a well-typed

explicit term of System F
p
ι remains well-typed in System F. We also show a simulation from

the explicit reduction in System F
p
ι to the reduction of System F. Thus a non-terminating

well-typed explicit term in System F
p
ι implies the existence of a non-terminating well-typed

term in System F, which is known to be strongly normalizing. We use a hat to denote the
rei�cation of an object.

We give the rei�cation of explicit terms in Figure 4.14 and write M̂ for the rei�cation of the
termM . Terms of System F

p
ι are rei�ed to terms of System F. Variables are rei�ed to variables,

abstractions to abstractions, applications to applications, pairs to pairs, and projections to
projections, and recursively for subterms. The only interesting case is the coercion application
G〈M〉. Coercions of System F

p
ι are rei�ed to System F multi-hole (but with at least one hole,

see the rei�cation of coercions) contexts. So the rei�cation of the coercion application of G to

the termM is the application of the context Ĝ to the term M̂ , leading to a possible duplication
of M̂ .

We give the rei�cation of types in Figure 4.15. Type variables, arrow types, product types,
and polymorphic types are simply translated to their equivalent in System F. The top type is
rei�ed to the polymorphic identity type. The bottom type is rei�ed to the polymorphic bottom
type ∀αα. Upper and lower bounded polymorphic types are rei�ed to polymorphic arrow
types: abstract coercions are rei�ed to functions. Upper bounded polymorphism rei�cation
�rst abstracts over the type variable α, then over the function α → τ̂ , with body ρ̂. Lower
bounded polymorphism is similar, but since τ is a lower bound, the rei�ed abstract coercion
is a function from τ̂ to α.

The most interesting rei�cation function is for coercions given in Figure 4.16. Coercions
are rei�ed to multi-hole contexts, with at least one hole. We write id for the identity function
λ(x : τ)x of System F at the correct type τ depending of where it is used. There is always
exactly one type, so it lightens the notations. We use id to add extra reduction steps for the
simulation to hold. We also use top for λ(y : τ) Λαλ(x : α)x where τ is the type where top

90

ĉ = xc []

♦̂ = id []

Ĝ2 ◦G1 = id (Ĝ2[Ĝ1])

∗̂G = id Ĝ

Λ̂α = Λα []̂• σ = [][σ̂]
̂

G1
τ ′→ G2 = λ(x : τ̂ ′) Ĝ2[[] (Ĝ1[x])]

Ĝ1 ×G2 = 〈Ĝ1[fst []], Ĝ2[snd []]〉

>̂ = top []

⊥̂τ = [][τ̂]
̂Λ(α . c : τ) = Λαλ(xc : α→ τ̂) []
̂•[σ . G] = [][σ̂] (λ(x : σ̂) Ĝ[x])

̂Λ(α / c : τ) = Λαλ(xc : τ̂ → α) []
̂•[σ / G] = [][σ̂] (λ(x : τ̂ [α/σ̂]) Ĝ[x])

Figure 4.16: System F
p
ι coercion rei�cation function

∅̂ = ∅
̂Γ, (x : τ) = Γ̂, (x : τ̂)

Γ̂, α = Γ̂, α
̂Γ, (c : τ . σ) = Γ̂, (xc : τ̂ → σ̂)

Figure 4.17: System F
p
ι environment rei�cation function

is used, similarly to id. top is used to forget the type of an expression, but still keep it under
hand to reduce inside it for the simulation.

Coercion variables are rei�ed to term variables applied to the hole. We actually partition
the term variables of System F into two parts: one part for the rei�cation of System F

p
ι term

variables, and one for coercion variables. The re�exivity coercion applies the identity function
to the hole in order to have an extra reduction step. The transitivity coercion composes the
two sub-contexts and applies the identity function to add one reduction step. Type abstraction
and application are rei�ed to their equivalent in System F. Arrow and product η-expansions
are rei�ed as computational η-expansions. Arrow η-expansion is λx []x where we add the
two sub-contexts for the argument and body. Product η-expansion is 〈fst [], snd []〉. Similarly
we add the sub-contexts for the �rst and second components. Notice that this is the only
coercion where we create more than one hole. This is not a problem since we only need a
forward simulation from System F

p
ι to System F.

The top coercion is rei�ed to the hole applied to top, which is a way to keep the hole under
hand while the �nal type is the polymorphic identity type, which we use as the rei�cation
for top. The bottom instantiation coercion is rei�ed to System F type instantiation. Upper
bounded type abstraction Λ(α . c : τ) is rei�ed to a type abstraction Λα followed by a function
abstraction λ(xc : α → τ̂) for the abstract coercion (c : α . τ). Conversely, upper bounded
type application •[σ . G] is a type application [σ̂] followed by the application of the function
reifying the coercion λ(x : σ̂) Ĝ[x]. To build this function, we close the context with a term
abstraction and use the variable to �ll the holes of the context. The type annotation of the
term abstraction is the type of the hole of Ĝ which is unique. Lower bounded abstraction and
application are similar.

Finally, environments are rei�ed in Figure 4.17. The empty environment is rei�ed to
the empty environment. Term bindings are rei�ed to term bindings, type bindings to type
bindings, and coercion bindings (c : τ . σ) to term bindings (xc : τ̂ → σ̂) because coercions
are rei�ed to functions.

We write (J)s for judgments in System F
p
ι , because it is the source language. And we

91

write (J)t for the judgments of System F, because it is the target judgment. We show that
derivations of System F

p
ι are rei�ed to valid derivations of System F.

Lemma 46 (Typing preservation). The following properties hold.

• If (Γ env)s holds, then (Γ̂ env)t holds.

• If (Γ ` τ type)s holds, then (Γ̂ ` τ̂ type)t holds.

• If (M ⇒ a : Γ ` τ)s holds, then (M̂ ⇒ Γ̂ ` a : τ̂)t holds.

• If (G ⇒ Γ ` (Σ ` τ) . σ)s and (M ⇒ Γ̂, Σ̂ ` a : τ̂)t hold, then (Ĝ[M] ⇒ Γ̂ ` a : σ̂)t
holds.

Proof. By induction. The only interesting assertion is the last one. Re�exivity, transitivity,
and coercion variable are simple context transformations. The weakening coercion uses the
weakening lemma of System F. Type abstraction and application use their homologous rule.

For rule CoerEtaArr, we �rst abstract over a fresh term variable x. We then use the
induction hypothesis for the body context, which we feed with the application of the hypothesis
weakened with the term binding of x, to x under the context of the argument coercion. Rule
CoerEtaProd is similar without the weakening part because there is no binding.

Bottom instantiation uses the type instantiation rule. The top coercion uses the typing
derivation of top. Upper and lower bounded polymorphic rules are simple uses of type and
term abstractions and applications.

Lemma 47 (Simulation). If M βι N holds, then M̂ + N̂ holds.

Proof. By induction. Rule RedCtx is obvious for all contexts but coercion application. We
know that coercions are rei�ed to multi-hole contexts with at least one hole. So we need to
repeat the steps of the induction hypothesis as many times as there are holes. Rules RedApp,
RedFst, and RedSnd are rei�ed to their analog rules.

Rule RedRefl is rei�ed to id M̂ which reduces to M̂ . Without id, it would not have been
possible to do a reduction step in System F. Rule RedTrans and RedWeak use the same
mechanism. Rule RedPoly rei�es to the analog reduction rule.

For rules RedEtaArr and RedEtaProd we reduce the inner redexes, where the hole was.
Because both rules reduce under coercion contexts, they may duplicate reduction steps. Rules
RedPolyL and RedPolyU use type and term abstraction reduction rules.

Lemma 48 (Termination). If M ⇒ a : Γ ` τ holds, then M strongly normalizes.

Proof. M̂ is well-typed in System F by Lemma 46. Using System F strong normalization
result, we know that reduction of M̂ terminates. If we had an in�nite reduction path for M ,
then by Lemma 47 we would have one for M̂ too, which is a contradiction.

4.4.3 Con�uence

The explicit reduction is locally con�uent and thus con�uent since reduction terminates.

Lemma 49 (Local con�uence). If M βι M1 and M βι M2 hold, then there is a N such

that M1 ?
βι N and M2 ?

βι N hold.

92

Proof. There are no critical pairs.

Corollary 50 (Con�uence). If M ?
βι M1 and M ?

βι M2 hold, then there is a N such that

M1 ?
βι N and M2 ?

βι N hold.

Proof. By Newman's lemma and Lemma 49 and 48.

4.4.4 Bisimulation

This section makes the link between the λ-calculus reduction and the explicit reduction. The
main result is the bisimulation lemma. It helps to show the soundness of the implicit version
but has also its own meaning. In a few words, the bisimulation lemma guarantees that typing
annotations of the explicit term do not alter or block the reduction of its implicit underlying
term. In other words, typing annotations are erasable (see Section 6.1.5 for non-erasability).

In order to show the bisimulation lemma, in particular the backward simulation, we need
to show a classi�cation lemma on ι-normal forms. This lemma also shows consistency of
coercions. Only the �rst assertion of the iota classi�cation lemma is used for bisimulation,
and only the second assertion is used for consistency. The remaining assertions are used for
the induction. We de�ne retyping contexts Q as sequences of coercion applications: Q ::=
[] |G〈Q〉.

Lemma 51 (Iota classi�cation). If Q[λ(x : ρ)M]⇒ λx a : Γ ` τ (resp. Q[〈M,N〉]⇒ 〈a, b〉 :
Γ ` τ) holds and Q[λ(x : ρ)M] (resp. Q[〈M,N〉]) is in ι-normal form, then the following

assertions hold.

• If τ is τ1 → τ2 (resp. τ1 × τ2), then Q = [].

• τ is not τ1 × τ2 (resp. τ1 → τ2).

• If τ is ∀α τ ′, then Q = Λα〈Q′〉.

• If τ is ∀(α . σ) τ ′, then Q = Λ(α . c : σ)〈Q′〉.

• If τ is ∀(α / σ) τ ′, then Q = Λ(α / c : σ)〈Q′〉.

• τ is not ⊥.

• For all α, (c : α . σ) in Γ, τ is not α.

Proof. We detail the arrow case. The product case is similar. We proceed by induction on Q.
If Q is a hole, then all assertions hold. Let's proceed by cases on G when Q is of the form
G〈Q〉.

Re�exivity, transitivity, and weakening contradict the ι-normal form hypothesis. Type
abstraction satis�es all assertions. If Q = • σ〈Q′〉, then Q′[λ(x : ρ)M] is in ι-normal form and
has type ∀α τ ′ for some type τ ′. By induction hypothesis Q′ = Λα〈Q′′〉 which contradicts the
ι-normal form hypothesis.

For the arrow η-expansion, we have Q = (G1
τ ′→ G2)〈Q′〉, so by typing and induction hy-

pothesis we have Q′ = []. This contradicts the ι-normal form hypothesis. Similarly for product
η-expansion. The bottom instantiation is impossible by typing and induction hypothesis. The

93

top coercion satis�es all assertions. Upper and lower bounded abstractions satisfy all asser-
tions, while upper and lower bounded applications break the ι-normal form hypothesis. These
cases are similar to polymorphism.

Finally, coercion variables rely on the fact that the environment Γ is well-formed. For
upper bounded coercion variables (c : α . σ), there is a contradiction using the induction
hypothesis, because Q = c〈Q′〉 and Q′ cannot end with type α. For lower bounded coercion
variables (c : σ . α), all assertions are satis�ed. The only interesting assertion is the last one.
By the well-formedness of Γ, we know that α is bound just before (c : σ . α). Because α
cannot be bound more than once, there is no α, (c′ : α . σ′) bound in Γ.

Notice that the lemma does not require the whole term Q[λ(x : ρ)M] to be ι-irreducible.
The proof only needs the retyping context Q and its interaction with the term abstraction,
Q[λ(x : ρ) ·], to be in ι-normal form. The term M may contain ι-redexes, the proof does not
inspect M .

The forward simulation means that β-reduction corresponds to the λ-calculus reduction
and that ι-reduction is only static: it does not change the computational behavior of the term.
In other words β-steps are steps of the λ-calculus and ι-steps are erasable steps.

Lemma 52 (Forward simulation). The following assertions hold.

• If M β N holds, then bMc bNc holds.

• If M ι N holds, then bMc = bNc holds.

• If the well-typed term M is an explicit value, then bMc is an implicit value.

Proof. By induction for the �rst two assertions. For the last one, it su�ces to see that prevalues
drop on prevalues and values drop on values with one exception: values coerced with a coercion
variable are prevalues. If bc〈v〉c is used as an implicit prevalue and bvc is not a prevalue (it
is either an abstraction or a pair), then by Lemma 51 we have a contradiction. The explicit
value is actually of the form E [Q1[c〈Q2[M]〉]], where M is a computational constructor as
bvc is not a prevalue, and E ends with a computational destructor because bc〈v〉c is used
as a prevalue. We use Lemma 51 with Q1[c〈Q2[M]〉]. If the computational destructor and
constructor correspond, then we are in the �rst assertion and Q1[c〈Q2[[]]〉] is empty. This is
impossible because there is at least c. If the computational destructor and constructor do not
correspond, then we are in the second assertion. Again, this is impossible.

Reciprocally, the backward simulation tells that not only β-reduction steps are λ-calculus
steps, but that they contain all possible λ-calculus steps modulo some erasable ι-reduction
steps. This means that coercions cannot block a λ-calculus redex. For instance, the following
term ((• Int ◦ Λα)〈λ(x : α)x〉) 49, which is the polymorphic identity instantiated with Int and
applied to 49, drops to (λxx) 49 which reduces to 49. However, in order to have access to this
redex in the source term, we need to do two ι-steps: RedTrans and RedPoly.

Lemma 53 (Backward simulation). If bMc b holds and M is well-typed, then there is an

N such that M ?
ι β N and b = bNc hold.

Proof. By Lemma 48 we can assume M in ι-normal form. We proceed by induction. If the
reduction rule is RedCtx, we know that M is of the form G〈E [M ′]〉 with bM ′c b′. By

94

induction hypothesis we �nd N ′ and use G〈E [N ′]〉. We do rule RedApp in details. Rules
RedFst and RedSnd are similar.

We know that bMc = (λx a1) a2 which reduces on a1[x/a2]. By inversion of the drop
function, we know that M is of the form E [Q[λ(x : τ2)M1]M2] with bM1c = a1 and bM2c =
a2. By typing we know that Q[λ(x : τ2)M1] has type τ2 → τ1. By Lemma 51 we know that
Q is []. Hence M contains a redex the term abstraction is right under the application and
reduces to E [M1[x/M2]] which drops on a1[x/a2] which concludes.

4.4.5 Soundness

We prove soundness of the explicit and implicit type systems with the usual subject reduction
and progress lemmas. However, the subject reduction and progress lemmas of the implicit
version are proved using the subject reduction and progress lemmas of the explicit version and
the bisimulation lemma. In order to do these syntactical proofs, we need to prove the usual
syntactical lemma about weakening and substitution.

The weakening lemma tells that if an object is well-formed (resp. well-typed) under en-
vironment Γ, then it is also well-formed (resp. well-typed) under an extended well-formed
environment Γ′.

Lemma 54 (Weakening). If Γ ⊆ Γ′ and Γ′ env hold, then the following assertions hold:

• If Γ ` τ type holds, then Γ′ ` τ type holds.

• If G ⇒ Γ ` (Σ ` τ) . σ holds and dom(Σ) is disjoint from dom(Γ′), then Γ′,Σ env and

G⇒ Γ′ ` (Σ ` τ) . σ hold.

• If M ⇒ a : Γ ` τ holds, then M ⇒ a : Γ′ ` τ holds.

Proof. By mutual induction. We only give the non-trivial and non-similar cases. For rule
TypeVar, if α ∈ Γ then α ∈ Γ′ too. For rule TypeForL, because α could have been renamed
we have that environment Γ′, α is well-formed and by induction hypothesis that Γ′, α ` τ type
holds. We deduce that Γ′, α, (c : τ . α) holds and by induction hypothesis that Γ′, α, (c : τ .
α) ` ρ type holds. For rule TermCoer, we may rename the variables bound in Σ in order to
avoid the domain of Γ′. We �rst use the induction hypothesis on the coercion since we need
Γ′,Σ env to use the induction hypothesis on the term judgment.

If a type σ is well formed under environment Γ and τ is well-formed under Γ, α, C,Γ′

(where C is a potential coercion binding of α), then τ [α/σ] is well-formed under Γ,Γ′[α/σ].
This lemma is called type substitution. The coercion binding C is maximally inserted, which
means Γ′ cannot start with a coercion binding. Notice that we don't ask for Γ ` C[α/σ] to
hold because coercion variables are not used in type well-formedness judgment.

Lemma 55 (Type substitution). If Γ ` σ type holds, then the following assertions hold.

• If Γ, α, C,Γ′ env holds, then Γ,Γ′[α/σ] env holds.

• If Γ, α, C,Γ′ ` τ type holds, then Γ,Γ′[α/σ] ` τ [α/σ] type holds.

Proof. By induction. The only interesting rule is TypeVar. There are two cases depending
on whether the type variable to instantiate is the same as the one of the judgment. If we
have Γ, α,Γ′ ` α type then we have to show that Γ,Γ′[α/σ] ` σ type holds which we do by

95

Lemma 54 and induction hypothesis. If we have Γ, α,Γ′ ` β type for β 6= α, then by induction
hypothesis we have Γ,Γ′[α/σ] ` β type.

The extraction lemma tells when the sub-judgments of a well-formed judgment are also
well-formed. From a type derivation we can extract that the environment is well-formed. From
a coercion derivation, using the hypothesis that its left type is well-formed, we can extract the
well-formedness of its right type. Finally, from a term derivation we can extract that its type
is well-formed under its environment, and hence that the environment itself is well-formed.

Lemma 56 (Extraction). The following assertions hold.

• If Γ ` τ type holds, then Γ env holds.

• If Γ ` (Σ ` τ) . σ and Γ,Σ ` τ type hold, then Γ ` σ type holds.

• If a : Γ ` τ holds, then Γ ` τ type holds.

Proof. By mutual induction. We detail the cases where the conclusion is not in hypothesis (like
rule TypeVar), nor obtained by inversion of the induction hypothesis (like rule TypeFor).
For rule CoerVar, we have that Γ is well-formed by hypothesis from which we extract by
Lemma 54 that σ is well-formed under it. For rule CoerWeak we use Lemma 54 to call the
induction hypothesis. For rules CoerTApp, CoerTAppL, and CoerTAppU, we use Lemma 55.

Term substitution tells that the substitution a[x/b] has type σ under environment Γ if the
argument b has type τ under environment Γ and the body a has type σ under environment Γ
extended with x associated to τ .

Lemma 57 (Term substitution). If N ⇒ b : Γ ` τ hold, then the following assertions hold.

• If Γ, (x : τ),Γ′ env holds, then Γ,Γ′ env holds.

• If Γ, (x : τ),Γ′ ` σ type holds, then Γ,Γ′ ` σ type holds.

• If G⇒ Γ, (x : τ),Γ′ ` (Σ ` σ) . σ′ holds, then G⇒ Γ,Γ′ ` (Σ ` σ) . σ′ holds.

• If M ⇒ a : Γ, (x : τ),Γ′ ` σ holds, then M [x/N]⇒ a[x/b] : Γ,Γ′ ` σ holds.

Proof. By mutual induction. For rule TermVar, we use Lemma 54 when the term variables
correspond. All other rules use induction hypotheses.

If a type σ and a coercion G′ are well formed under environment Γ, then for all well-formed
judgments under Γ, α, (c : τ1 . τ2),Γ′ (where (c : τ1 . τ2) is a potential coercion binding), the
same judgment after the type substitution [α/σ] and coercion substitution [c/G′] is well-
formed under Γ,Γ′[α/σ]. This lemma is called bounded type substitution. The coercion
binding (c : τ1 . τ2) is maximally inserted, which means that Γ′ cannot start with a coercion
binding.

Lemma 58 (Bounded type substitution). If Γ ` σ type and G′ ⇒ Γ ` τ1[α/σ] . τ2[α/σ] hold,
then the following assertions hold.

• If G ⇒ Γ, α, (c : τ1 . τ2),Γ′ ` (Σ ` τ) . τ ′ holds, then G[α/σ][c/G′] ⇒ Γ,Γ′[α/σ] `
(Σ[α/σ] ` τ [α/σ]) . τ ′[α/σ] holds.

96

• If M ⇒ a : Γ, α, (c : τ1 . τ2),Γ′ ` τ holds, then M [α/σ][c/G′]⇒ a : Γ,Γ′[α/σ] ` τ [α/σ]
holds.

Proof. By induction using Lemma 55 for types and environments. The only interesting rule
is CoerVar. There are two cases depending whether the coercion variable to instantiate is
the same as the one of the judgment. If we have c ⇒ Γ, α, (c : τ1 . τ2),Γ′ ` τ1 . τ2 then we
have to show that G′ ⇒ Γ,Γ′[α/σ] ` τ1[α/σ] . τ2[α/σ] holds which we do by Lemma 54. If
we have c′ ⇒ Γ, α, (c : τ1 . τ2),Γ′ ` τ ′1 . τ ′2 then we have to show c′ ⇒ Γ,Γ′[α/σ] ` τ ′1 . τ ′2
which holds.

There are two soundness lemma: one for the explicit version and one for the implicit
version. Both are done using a subject reduction and progress lemma. Subject reduction tells
that if an term M is well-typed and reduces to N , then N is also well-typed with the same
type and environment.

Lemma 59 (Explicit subject reduction). If M ⇒ a : Γ ` τ and M βι N hold, then

N ⇒ b : Γ ` τ holds where b = bNc.

Proof. By induction on M βι N . Rule RedCtx is done by cases on the context E . Rule
RedApp uses Lemma 57 and the fact that the drop function commutes with substitution. Rule
RedWeak uses Lemma 54 to show that M also has type τ under the well-formed extended
environment Γ,Σ. Rules RedPoly, RedPolyL, and RedPolyU use Lemma 58.

For rule RedEtaArr, we have G1 ⇒ Γ,Σ ` τ ′ . τ and G2 ⇒ Γ ` (Σ ` σ) . σ′ for the
coercions andM ⇒ a : Γ,Σ, (x : τ) ` σ for the term. We rename x into a fresh term variable y
in the right-hand side of the reduction. By Lemma 54 we have G2 ⇒ Γ, (y : τ ′) ` (Σ ` σ) . σ′.
It remains to show that M [x/G1〈y〉] ⇒ a[x/y] : Γ, (y : τ ′),Σ ` σ holds. In order to use
Lemma 57, we need to show two subgoals. We �rst use Lemma 54 to show M ⇒ a : Γ, (y :
τ ′),Σ, (x : τ) ` σ. We then show G1〈y〉 ⇒ y : Γ, (y : τ ′),Σ ` τ by Lemma 54 and rules
TermCoer and TermVar. Rules RedEtaProd is similar.

We classify values according to their types in the following lemma. This lemma, called
explicit classi�cation (canonical forms adapted to strong reduction), is used by the progress
lemma, which follows. By looking at the type of a value, we get to know its form. This lemma
is the natural extension of the canonical forms lemma to open terms, as our de�nition of values
is the natural extension of values to open terms.

Lemma 60 (Explicit classi�cation). If v ⇒ a : Γ ` τ holds, then either v is a prevalue or the

following assertions hold.

• If τ is τ1 → τ2, then v is λ(x : τ1) v′.

• If τ is τ1 × τ2, then v is 〈v1, v2〉.

• If τ is ∀α τ ′, then v is Λα〈v′〉.

• If τ is ∀(α . σ) τ ′, then v is Λ(α . c : σ)〈v′〉.

• If τ is ∀(α / σ) τ ′, then v is Λ(α / c : σ)〈v′〉.

• τ is not ⊥.

Proof. By induction on v and inversion of v ⇒ a : Γ ` τ .

97

The progress lemma tells that well-typed terms are either values or reducible. We make
no distinction whether it is a β- or ι-reduction step.

Lemma 61 (Explicit progress). If M ⇒ a : Γ ` τ holds, then either M is a value or there is

N such that M βι N holds.

Proof. Let's assume thatM is not a value. By induction onM ⇒ a : Γ ` τ . Because of strong
reduction, we can assume that all sub-terms of M are values, otherwise, M reduces using rule
RedCtx. Rules TermVar, TermLam, and TermPair are values. Rules TermApp, TermFst,
and TermSnd use Lemma 60 to reduce by rules RedApp, RedFst, and RedSnd, respectively.

For rule TermCoer, we proceed by cases on G ⇒ Γ ` (Σ ` τ) . σ. Rules CoerRefl,
CoerTrans, and CoerWeak reduce by rules RedRefl, RedTrans, and RedWeak. Rules
CoerVar, CoerTLam, CoerTop, CoerTLamL, and CoerTLamU are values. Rules Coer-
TApp, CoerEtaArr, CoerEtaProd, CoerTAppL, and CoerTAppU use Lemma 60 to reduce
by rules RedPoly, RedEtaArr, RedEtaProd, RedPolyL, and RedPolyU, respectively.

The remaining rule is CoerBot which we refute with Lemma 60: there is no value of
type ⊥.

Subject reduction and progress together proves the soundness lemma. An explicit term is
sound if it reduces to a value.

Proposition 62 (Explicit soundness). If M ⇒ a : Γ ` τ holds, then M terminates to a value.

Proof. By Lemma 48 and 50, M terminates to N . By Lemma 59 we have N ⇒ bNc : Γ ` τ .
And by Lemma 61 we have that N is a value.

The same schema for soundness works for the implicit version. We prove subject reduction
and progress for the implicit version from the explicit version using the bisimulation property.

Lemma 63 (Implicit subject reduction). If a : Γ ` τ and a b hold, then b : Γ ` τ holds.

Proof. By Lemma 45 we haveM ⇒ a : Γ ` τ for someM . By Lemma 53 we haveM ?
ι β N

such that bNc = b. By Lemma 59 we have N ⇒ b : Γ ` τ . We conclude with Lemma 45.

The progress lemma for the implicit version of the type system resemble its explicit version.
However, the proof may be short-cut using the bisimulation property and the explicit progress
lemma.

Lemma 64 (Implicit Progress). If a : Γ ` τ holds, then a is a value or there is a term b such
that a b holds.

Proof. Let's assume a is not a value. By Lemma 45 we have M ⇒ a : Γ ` τ for some M . We
proceed by induction on the strong normalization of M (Lemma 48). If M is a value, then a
is a value by Lemma 52 and we are done. If M is not a value, then by Lemma 61 we have
M βι N . If the reduction is a ι-step, we call the induction hypothesis since bNc = bMc = a.
If the reduction is a β-step, then by Lemma 52, we have a bNc.

Now that we have shown explicit subject reduction, we can show the strong normalization
of the implicit reduction. This result is useful to prove the soundness of the implicit language.

Proposition 65 (Implicit termination). If a : Γ ` τ holds, then a strongly normalizes.

98

Proof. By Lemma 45 we have M ⇒ a : Γ ` τ with bMc = a. We proceed by induction on
the strong normalization of M . If a b, by Lemma 53 we have M ?

ι β N with bNc = b.
By Lemma 59, we have N ⇒ x : Γ ` τ , which allows us to call the induction hypothesis to
conclude.

Similarly to the explicit soundness lemma, the implicit soundness lemma tells that well-
typed lambda-terms strongly normalize to a value.

Proposition 66 (Implicit soundness). If a : Γ ` τ holds, then a terminates to a value.

Proof. By Lemma 65, a terminates to b. By Lemma 63 we have b : Γ ` τ . And by Lemma 64
we have that b is a value.

4.5 Expressivity

To prove that a type system T2 is at least as expressive than a type system T1, we need to
show that if a term a is well-typed in T1 then it is also well-typed in T2. This implis that there
are more well-typed terms in the most expressive type-system than the less expressive one.
Keeping in mind that well-typed terms are sound and that type systems are conservative, an
expressive type-system rejects fewer sound terms.

It is su�cient to show the inclusion between the implicit versions since explicit and implicit
versions are equivalent. This simpli�es the notations, but the proofs are mainly the same.

4.5.1 System F

In this section, we show that System F is equivalent to the base system extended with polymor-
phism. For each judgment of System F, we show that the equivalent judgment in System F

p
ι

also holds. Actually, we only need the polymorphism feature on top of the base system to
include System F. And reciprocally, the base system extended with polymorphism is included
into System F. As a consequence System F is equivalent to polymorphism, which is what is
expected.

Lemma 67. We write (J)s for judgments in System F (as source language), see Section 3.2,

and (J)t for those in the base system extended with the polymorphism extension (as target

language). The following assertions hold.

• If (Γ env)s holds, then (Γ env)t holds, and reciprocally.

• If (Γ ` τ type)s holds, then (Γ ` τ type)t holds, and reciprocally.

• If (Γ ` a : τ)s holds, then (a : Γ ` τ)t holds, and reciprocally.

• If (Γ ` (Σ ` τ) . σ)t and (Γ,Σ ` a : τ)s hold, then (Γ ` a : σ)s holds.

Since there is no counter-part of coercions in System F, the last assertion tells that coercions
are translated to term derivations transformation.

Proof. First, we prove the implication from source to target and then we prove the reciprocal
from target to source. Notice that the last assertion only occurs for the reciprocal. For both
directions we proceed by mutual induction on all judgments.

99

For the implication, environment and type well-formedness rules are trivial since they are
exactly the same. The same argument holds for the �rst six term judgment rules (those of
the STLC): TermVar, TermLam, TermApp, TermPair, TermFst, and TermSnd. The two
interesting cases are rules TermGen and TermInst.

For rule TermGen, we have (Γ, α ` a : τ)s and we need to prove (a : Γ ` ∀α τ)t. By
induction hypothesis we have (a : Γ, α ` τ)t. We use rule TermCoer on the preceding
derivation. It remains to prove (Γ ` (α ` τ) . ∀α τ)t which we do with rule CoerTLam.

For rule TermInst, we have (Γ ` a : ∀α τ)s and (Γ ` σ type)s and we need to prove
(a : Γ ` τ [α/σ])t. By induction hypothesis we have (a : Γ ` ∀α τ)t and (Γ ` σ type)t. We use
rule TermCoer on the preceding term derivation. It remains to prove (Γ ` ∀α τ . τ [α/σ])t
which we do with rule CoerTApp.

Let's now prove the reciprocal. Environment and type well-formedness rules are trivial
again since they are exactly the same (notice that we only consider the base system extended
with the polymorphism extension). The same argument holds for the �rst six term judg-
ment rules (those of the STLC): TermVar, TermLam, TermApp, TermPair, TermFst, and
TermSnd. For rule TermCoer, we use the last assertion on the induction hypothesis.

It remains to prove the last assertion. Rule CoerRefl is done by hypothesis. Rule
CoerTrans is done by composition. Rule CoerVar cannot occur since by extraction we have
(Γ env)s which implies that the environment Γ do not contain any coercion variables. Rule
CoerWeak uses the weakening lemma. Finally the two interesting cases are rules CoerTLam
and CoerTApp.

For rule CoerTLam we use rule TermGen and for rule CoerTApp we use rule TermInst.

4.5.2 System Fη

In this section, we show that System Fη is equivalent to the base system extended with poly-
morphism and η-expansion. For each judgment of System Fη, we show that the equivalent
judgment in System F

p
ι also holds. Actually, we only need the polymorphism and η-expansion

features on top of the base system to include Fη. And reciprocally, the base system extended
with polymorphism and η-expansion is included into Fη. As a consequence Fη is equivalent
to polymorphism and η-expansion, or equivalently extends System F with η-expansion as its
name suggests. We write (J)s for judgments in System Fη and (J)t for those in the base system
extended with the polymorphism and the η-expansion extensions. We de�ne ∀Σ τ inductively
on Σ.

∀∅ τ
def

= τ

∀(Σ, α) τ
def

= ∀Σ (∀α τ)

Lemma 68. The following assertions hold.

• If (Γ env)s holds, then (Γ env)t holds, and reciprocally.

• If (Γ ` τ type)s holds, then (Γ ` τ type)t holds, and reciprocally.

• If (Γ ` a : τ)s holds, then (a : Γ ` τ)t holds, and reciprocally.

• If (Γ ` τ . σ)s holds, then (Γ ` τ . σ)t holds.

100

• If (Γ ` (Σ ` τ) . σ)t holds, then (Γ ` ∀Σ τ . σ)s holds.

Since there is no counter-part of coercions in System Fη, but just a notion of type con-
tainment (that do not extend the environment), the last assertion tells that coercions are
translated to type containment where the source type is the type version of the source typing
of the coercion.

Proof. First we prove the implication from source to target and then we prove the reciprocal
from target to source. Notice that the last assertion only occurs for the reciprocal. For both
directions we proceed by mutual induction on all judgments.

For the implication, environment and type well-formedness rules are trivial since they are
exactly the same. The same argument holds for the �rst six term judgment rules (those of the
STLC): TermVar, TermLam, TermApp, TermPair, TermFst, and TermSnd. The next two
cases, namely rules TermGen and TermInst, are similar to the proof for System F inclusion.
Finally, for rule TermCont, we use rule TermCoer.

It remains to show the implication for the containment judgment. Rule ContRefl uses
rule CoerRefl and rule ContTrans uses rule CoerTrans and weakening. Rule ContT-

Lam uses rule CoerTLam. Rule ContTApp uses rule CoerTApp. Rule ContArr uses rule
CoerEtaArr and weakening. Rule ContProd uses rule CoerEtaProd.

For rule ContCongr, we have (Γ, α ` τ . σ)t by induction hypothesis and we show
(Γ ` ∀α τ . ∀ασ)t. At �rst we apply rule CoerWeak which leaves us to show (Γ ` (α `
∀α τ) . ∀ασ)t. We apply a �rst time rule CoerTrans with rule CoerTLam which leaves
us with (Γ, α ` ∀α τ . σ)t to prove. We apply a second time rule CoerTrans with the
induction hypothesis this time. This leaves us (Γ, α ` ∀α τ . τ)t to prove, for which we use
rule CoerTApp with the type argument α.

For rule ContDistArr, we take α fresh. After the use of rule CoerWeak, it remains
to show that (Γ ` (α ` ∀α τ → σ) . τ → ∀ασ)t holds. We apply rule CoerTrans on
(Γ ` (α ` τ → σ) . τ → ∀ασ)t and (Γ, α ` ∀α τ → σ . τ → σ)t. We prove the last one with
rule CoerTApp with type argument α. We prove the �rst one with rule CoerEtaArr, which
gives one goal (Γ, α ` τ . τ)t for the argument type and (Γ ` (α ` σ) . ∀ασ)t for the return
type. We prove the �rst one with re�exivity and the second one with rule CoerTLam. The
coercion witness for dist in System F

p
ι is thus ∗((♦ τ→ Λα) ◦ •α).

Rule ContDistProd is similar. After rule CoerWeak, we show (Γ ` (α ` ∀α τ × σ) .
∀α τ × ∀ασ)t with α a fresh type variable. We �rst instantiate with α then use the product
η-expansion and type abstraction twice.

Let's now prove the reciprocal. Environment and type well-formedness rules are trivial
again since they are exactly the same. The same argument holds for the �rst six term judg-
ment rules (those of the STLC): TermVar, TermLam, TermApp, TermPair, TermFst, and
TermSnd. For rule TermCoer, we use the last assertion on the induction hypothesis.

It remains to prove the last assertion. Rule CoerRefl is done with rule ContRefl. For
rule CoerTrans, we use rule ContTrans on (Γ ` ∀Σ2,Σ1 τ1 . ∀Σ2 τ2)s and (Γ ` ∀Σ2 τ2 . τ3)s.
The last one holds by induction hypothesis. For the �rst one we use rule ContCongr repeat-
edly to get (Γ,Σ2 ` ∀Σ1 τ1 . τ2)s which holds by induction hypothesis. Rule CoerVar cannot
occur since by extraction we have (Γ env)s which implies that the environment Γ does not
contain any coercion variables. For rule CoerWeak we use repeatedly a combination of rules
ContTrans, ContCongr, and ContTLam to show (Γ ` τ . ∀Σ τ)s. Rule CoerTLam uses
rule ContRefl. CoerTApp uses rule ContTApp. The last remaining rules are CoerEtaArr
and CoerEtaProd.

101

For rule CoerEtaArr, we use rule ContTrans on (Γ ` ∀Σ (τ → σ) . ∀Σ (τ ′ → σ))s and
(Γ ` ∀Σ (τ ′ → σ) . τ ′ → σ′)s. For the �rst containment we use rule ContCongr repeatedly to
get (Γ,Σ ` τ → σ . τ ′ → σ)s which we show with rule ContArr and the induction hypothesis.
For the second containment we use rule ContTrans on (Γ ` ∀Σ (τ ′ → σ) . τ ′ → ∀Σσ)s and
(Γ ` τ ′ → ∀Σσ . τ ′ → σ′)s. For the �rst containment we use rules ContTrans, ContCongr,
and ContDistArr. For the second containment we use rules ContArr with the induction
hypothesis. Rule CoerEtaProd is similar.

4.5.3 MLF

In this section, we show that MLF is included in the base system extended with lower bounded
polymorphism and the bottom type. For each judgment of MLF, we show that the equivalent
judgment in System F

p
ι also holds. Actually, we only need the lower bounded polymorphism

and bottom type feature on top of the base system to include MLF. And the reciprocal is
almost true: MLF would include the base system extended with lower bounded polymorphism
and bottom type, if recursive bounds were present in MLF. In other words, MLF is equivalent
to the base system extended with non-recursive lower bounded polymorphism and the bottom
type. We write (J)s for judgments in MLF and (J)t for those in the base system extended
with lower bounded polymorphism and bottom type.

Lemma 69. The following assertions hold.

• If (Γ env)s holds, then (Γ env)t holds.

• If (Γ ` τ type)s holds, then (Γ ` τ type)t holds.

• If (Γ ` τ . σ)s holds, then (Γ ` τ . σ)t holds.

• If (Γ ` a : τ)s holds, then (a : Γ ` τ)t holds.

Proof. We proceed by mutual induction on all judgments. Environment and type well-
formedness rules are trivial since they are exactly the same. The same argument holds for the
�rst six term judgment rules (those of the STLC): TermVar, TermLam, TermApp, TermPair,
TermFst, and TermSnd. Rule TermTAbs is a conjunction of rules CoerTLamL and Term-
Coer. Rule TermTApp uses rule TermCoer.

For the instantiation judgment, rule InstBot uses rule CoerBot. Rule InstId is rule
CoerRefl. And rule InstComp is rule CoerTrans. Rule InstAbstr is rule CoerVar. For
rule InstIntro, we use rule CoerWeak after rule CoerTLamL since the abstract type variable
is not used. Rule InstElim uses rule CoerTAppL with the bound for the argument type and
the re�exivity coercion (rule CoerRefl) for the argument coercion.

For rule InstUnder, we use rule CoerWeak on Γ ` (α, (τ . α) ` ∀(α / τ)σ1) . ∀(α /
τ)σ2, which we prove by using rule CoerTrans twice. First, we prove Γ, α, (τ . α) ` ∀(α /
τ)σ1 . σ1 by rule CoerTAppL with α as the type argument and c as the coercion argument.
Then, we prove Γ, α, (τ . α) ` σ1 . σ2 by induction hypothesis. And we �nally prove
Γ ` (α, (τ . α) ` σ2) . ∀(α / τ)σ2 by rule CoerTLamL.

For rule InstInside, we use rule CoerWeak on Γ ` (α, (τ2 . α) ` ∀(α / τ1)σ) . ∀(α / τ2)σ,
which we prove by using rule CoerTrans. First we prove Γ, α, (τ2 . α) ` ∀(α / τ1)σ . σ
by rule CoerTAppL with α as the type argument. For the coercion argument Γ, α, (τ2 .
α) ` τ1 . α, we use rule CoerTrans with the induction hypothesis and c. Then we prove
Γ ` (α, (τ2 . α) ` σ) . ∀(α / τ2)σ by rule CoerTLamL.

102

We conclude from this inclusion, that MLF is sound and strongly normalizing. The proof
of strong normalization of MLF is actually one of the contribution of this thesis.

4.5.4 System F<:

We remind that the version of System F<: we describe in Section 3.6 corresponds to the
most expressive version of System F<:, namely System F-bounded [5]. For each judgment
of System F<:, we show that the equivalent judgment in System F

p
ι also holds. Actually, we

only need the upper bounded polymorphism, the top type, and η-expansion features on top
of the base system to include F<:. However, unlike for System F and System Fη, and like for
MLF, the reciprocal is not completely true. The base system extended with upper bounded
polymorphism, top, and η-expansion is strictly more expressive than System F<:. We explain
why after the proof. We write (J)s for judgments in System F<: and (J)t for those in the base
system extended with upper bounded polymorphism, the top type, and η-expansion.

Lemma 70. The following assertions hold.

• If (Γ env)s holds, then (Γ env)t holds.

• If (Γ ` τ type)s holds, then (Γ ` τ type)t holds.

• If (Γ ` τ . σ)s holds, then (Γ ` τ . σ)t holds.

• If (Γ ` a : τ)s holds, then (a : Γ ` τ)t holds.

Proof. We proceed by mutual induction on all judgments. Environment and type well-
formedness rules are trivial since they are exactly the same. The same argument holds for the
�rst six term judgment rules (those of the STLC): TermVar, TermLam, TermApp, TermPair,
TermFst, and TermSnd. Rule TermGen is a conjunction of rules CoerTLamU and Term-

Coer. Rule TermInst is a conjunction of rules CoerTAppU and TermCoer. Rule TermSub
uses rule TermCoer.

For the subtyping judgment, rules SubRefl, SubTrans, SubVar, SubTop, SubArr, and
SubProd use rules CoerRefl, CoerTrans, CoerVar, CoerTop, CoerEtaArr, and CoerE-
taProd respectively. For rule SubCongr, we use rule CoerWeak on Γ ` (α, (α . τ ′) ` ∀(α .
τ)σ) . ∀(α . τ ′)σ′ which we prove with two consecutive uses of rule CoerTrans. We �rst
prove Γ, α, (α . τ ′) ` ∀(α . τ)σ . σ with rule CoerTAppU with α for the type argument
and the induction hypothesis Γ, α, (α . τ ′) ` α . τ for the coercion argument. Then we
prove Γ, α, (α . τ ′) ` σ . σ′ with the second induction hypothesis. And we �nally prove
Γ ` (α, (α . τ ′) ` σ′) . ∀(α . τ ′)σ′ with rule CoerTLamU.

The reciprocal does not hold because System F<: misses a distributivity rule like we can
�nd in System Fη. Distributivity naturally comes from polymorphism and η-expansion when
expressed as coercions. System Fη and System F<: resemble each other. They are composed
of two type system features: η-expansion and some sort of polymorphism. However, they
do not handle polymorphism in the same manner. In System Fη, polymorphism is in the
coercion judgment. While in System F<:, (upper bounded) polymorphism is only available in
the term judgment and thus not composable with the other type system features, in our case
η-expansion (called subtyping in System F<:). More concretely, upper bounded instantiation
is not a subtyping rule, but only a typing rule. While in System Fη, type instantiation is a
containment rule.

103

The distributivity rule is not the only rule derivable in System F<: if upper bounded poly-
morphism was in the coercion judgment. The congruence rule for upper bounded polymor-
phism would also be derivable. A general statement about erasable type system features (like
polymorphism, recursive types, coercion abstraction) is that they come with an introduction
and elimination coercion rule, from which we derive their congruence rule and distributivity
rule for those about abstraction.

4.5.5 Summary

We can summarize all these inclusions and equivalences into the following table.

Type system features F Fη MLF)F<: F
p
ι

Polymorphism
√ √

- -
√

Eta-expansion -
√

-
√ √

Bottom - -
√

-
√

Top - - -
√ √

Lower bounded polymorphism - -
√

-
√

Upper bounded polymorphism - - -
√ √

System F is equivalent to the base system extended with polymorphism. System Fη is
equivalent to the base system extended with polymorphism and η-expansion. MLF is equiv-
alent to the base system extended with the bottom type and lower bounded polymorphism.
Actually, the equivalence is almost true, but for recursive bounds. System F<: is included
in the base system extended with η-expansion, the top type, and upper bounded polymor-
phism. System F<:, which corresponds to the most expressive version of System F<: [5], is
in fact strictly included into this extension because the distributivity rule is derivable in the
extended system but not in System F<:. In this sense, System F<: is not complete according to
the features it presents, whereas System F and System Fη are complete with respect to their
features. The reason why the distributivity rule is not derivable is that the upper bounded
polymorphism feature is not a subtyping (or coercion) rule in F<:. It is only a typing rule at
the term level. The subtyping judgment only contains the congruence rule for upper bounded
polymorphism. Finally, System F

p
ι contains all features and thus includes all presented type

systems.

4.6 Beyond parametric coercion abstraction

In this chapter, we have de�ned a coercion type system where all features are expressed as
coercions and thus fully composable and erasable. We called this coercion type system Sys-
tem F

p
ι . We de�ned it as a base system corresponding to the STLC and a series of orthogonal

and composable features. We showed that the STLC, System F, System Fη, MLF, and Sys-
tem F<: can be seen as the base system with some additional features. Notice however that
System F<: is not as expressive as it naturally gets in this approach. As a corollary, all these
type systems are included in System F

p
ι which contains all features.

However, System F
p
ι is not as expressive as we might want. It has some restrictions and as

a consequence it does not contain Constraint ML, even though polymorphism is not even �rst
class in Constraint ML. The cause of this restriction is coercion abstraction. As a matter of

104

fact, upper and lower bounded polymorphism are forms of coercion abstraction, but they have
the particularity that they only abstract over parametric coercions: coercions which are either
from an abstract type or to an abstract type. In order to describe the feature of Constraint
ML we would need an unrestricted coercion abstraction of the form Λ(c : τ . σ). We discuss
this point in Section 4.6.1. Conclusions of this section leads us to a discussion about push in
Section 4.6.2.

4.6.1 Unrestricted coercion abstraction

We could de�ne a type for coercion polymorphism written (τ . σ) ⇒ ρ abstracting over the
coercion τ . σ with body ρ. We would then naturally expect the following associated typing
rules:

CoerCLam

Λ(c : τ . σ)⇒ Γ ` ((c : τ . σ) ` ρ) . (τ . σ)⇒ ρ

CoerCApp

G⇒ Γ ` τ . σ
•G⇒ Γ ` (τ . σ)⇒ ρ . ρ

The problem is that in doing so (without any additional restriction) we break backward
simulation. To see why, let's consider the following explicit term where c is a coercion vari-
able: (c〈λ(x : τ)M〉)N . It drops to (λx bMc) bNc which is a redex, and thus can reduce.
However, without allowing decomposition of abstract coercions (called push and described in
Section 4.6.2), the explicit term is stuck and cannot do the same step as its dropped lambda
term.

With push, backward simulation seems to be restored, but this breaks implicit progress
and termination. Let's consider this non-terminating term (Λ(c1 : α . α → α) ◦ Λ(c2 : α →
α . α))〈a (c2〈a〉)〉 where a = λ(x : α) c1〈x〉x. This is the usual omega term. Its erasure loops,
while this term builds always growing coercions by projection.

Independently of a push reduction rule, when abstracting over coercions, we need to make
sure that we only abstract over consistent coercions. We shouldn't allow to abstract over c of
type τ × σ . τ → σ. Let's consider the term c〈〈M,N〉〉M which is well-typed. It's erasure is
〈bMc, bNc〉 bMc which is stuck therefore breaking the progress lemma.

A solution to avoid considering consistency is to keep coercions during reduction. The
reduction does not go wrong, but coercions are no more erasable. GHC is doing something
related for their �rst-class coercions. They only erase the content of coercions but not their
existence. Besides, they don't reduce under coercion abstraction. Coercions can thus be
represented with 0-bit, i.e. the unit term. We extend our approach with 0-bit coercions in
Section 6.1.5.

GHC adopts another solution for their top-level coercions. They have a consistency lemma
which is needed to prove progress for the implicit language. In our case this lemma is ι-
classi�cation (Lemma 51). In GHC, they have a more restrictive lemma that asks all coercions
not to touch their head type constructor. Our lemma is more subtle since it only ask this
condition for non-erasable type constructors.

The solution used in System F
p
ι is inspired from F<: andMLF. It allows coercion abstraction

only for parametric coercion types. In F<: the parametricity is on the argument type and in
MLF it is on the return type. In System F

p
ι we allow both. This restriction prevents to build a

coercion between two arrow types using a coercion variable. This is proved in the classi�cation
lemma (Lemma 51) which is needed to prove the bisimulation property.

105

The solution we develop in Chapter 5 with System Fcc is to ask all abstract coercions to be
syntactically inhabited, which implies consistency. The minimum requirement for soundness
would be to ask a semantic witness that the abstract coercion is inhabited. This extension is
discussed in Section 6.1.10.

4.6.2 Push

We call abstract, coercions containing coercion variables in places such that reduction cannot
progress with the reduction rules of System F

p
ι .

In our current setting, only concrete coercions are decomposed. For example, an arrow
η-expansion coercion applied to a function can be reduced (with Rule RedEtaArr) into a
new function that coerces its argument and pass it to the previous function and then coerces
the result. Decomposing abstract coercions is not needed, because reduction can always bring
concrete coercions in places where decomposition of coercions would be needed. However, if
we relax our restriction on coercion abstraction, we may have abstract coercions in-between
redexes blocking the reduction that could be performed if the coercion were erased�thus
breaking backward simulation. In this case, backward simulation may be recovered by adding
a decomposition rule for abstract coercions�and associated coercion constructs.

Interestingly, decomposing coercions makes the backward simulation much easier, since
wedges can now be decomposed instead of blocking the evaluation. However, the decom-
position introduces new operations on abstract coercions that must eventually be reduced
when coercions become concrete: proof obligations are just moved elsewhere. Currently,
explicit progress, consistency, and backward simulation are proved using coercion values in
ι-classi�cation. In order to have coercion values with push, we need to add reduction rules for
coercions.

Figure 4.18 shows how a coercion in-between a redex can be decomposed. The initial term
G〈λ(x : τ1)M〉N , on the left, is the application of the function λ(x : τ1)M coerced by G to
the argument N . Its erasure is the application of the erasure of λ(x : τ1)M , namely λx a, to
the erasure of N , namely b, that is, the redex (λx a) b. Can we make the redex apparent on
the source term, without inspecting the coercion G, i.e. in a way that may also work when G
is an abstract coercion (a coercion variable for instance)?

The terms are drawn upside-down to mimic their typing derivations (terms are explicitly
typed and thus isomorphic to their typing derivations). Boxes represent scopes. The coercion
G can extend the environment from Γ2 to Γ1 with the erasable environment Σ1 (Γ1 = Γ2,Σ1).
The blue (dark gray for black and white prints) box delimits the separation between the Γ2

environment (which is outside with a white background color) and the Γ1 environment (which
is inside with a blue background color). This blue part is more precisely the application of
the environment action Σ1 to Γ2 (see Section 6.1.11). The lambda constructor opens a scope
and thus also changes the environment. Its e�ect is to add a term binding. We use a green
(or light gray for black and white versions) background color to show when x is added to the
environment. We add a tick to the environment meta-variable when it is extended with the
binding for x (see the �rst two de�nitions on Figure 4.18).

The coercion G lies on the left-hand side of the application and outside of the abstraction.
It can be moved on other branches of the application node (upward arrow) or inside the
abstraction (downward arrow). The argument is coerced directly in the former case, but
indirectly on each use of the function parameter in the latter case.

In both cases we need to decompose G of type Γ2 ` (Σ1 ` τ1 → σ1) . τ2 → σ2 into RG

106

Γ′1 = Γ1, (x : τ1)
Γ′2 = Γ2, (x : τ2)
M ⇒ a : Γ′1 ` σ1

N ⇒ b : Γ2 ` τ2

G⇒ Γ2 ` (Σ1 ` τ1 → σ1) . τ2 → σ2

@

N

G

λ

G

λ

M

Γ2 Γ1 Γ′1

σ2

τ2τ2 → σ2

τ1 → σ1

σ1

τ1

@

LG

N

λ

MM

λ

@

RG

LG

Γ2 Γ1 Γ′1

σ2

σ1

τ1

τ2

τ1 → σ1

σ1

τ1

@

N

λ

RG

M

LG

λ

M

RG

LG

Γ2 Γ′2 Γ′1

σ2

τ2
τ2 → σ2

σ2

σ1

τ1

τ2

RG

M

LG

N

M

RG

LG

Γ2 Γ1

σ2

σ1

τ1

τ2

Figure 4.18: Push

of type Γ2 ` (Σ1 ` σ1) . σ2 and LG of type Γ1 ` (Σ2 ` τ2) . τ1 (modulo the presence of x
when we push under the lambda) where Σ2 reverses the action of Σ1 (see Section 6.1.11). If
the only actions are bindings, like in System F

p
ι and usual type systems, LG would have type

Γ1 ` τ2 . τ1, binding nothing, and the blue boxes would spread upward the LG node and not
only downward.

Besides, for both reduction rules, the scope of G moves. It starts at RG and ends at LG
(or it ends at the leaves of the typing derivation if we don't use environment actions). We can
actually see this in the condition that Γ2,Σ1,Σ2 (the environment once we leave LG) should
behave as Γ2 (the environment before we enter RG).

Fortunately, the two possible reductions are locally con�uent: both terms reduce with a
β-reduction on the rightmost term where N got substituted in M and both N and M are
coerced with the left and right projections of G�and the whole term remains well-typed.
Therefore, only one of either rule may be retained, indi�erently, or both rules may be o�ered,
simultaneously. It is also possible to add a unique rule doing both steps at the same time. This
rule would then be labeled as a β-reduction rule since its erasure does one step of computation.

107

At this stage, we may consider the following typing rules and reduction rule:

CoerPushRight

G⇒ Γ2 ` (Σ1 ` τ1 → σ1) . τ2 → σ2

RG⇒ Γ2 ` (Σ1 ` σ1) . σ2

CoerPushLeft

G⇒ Γ2 ` (Σ1 ` τ1 → σ1) . τ2 → σ2

LG⇒ Γ2 ` τ2 . τ1

RedPushArr

G〈λ(x : τ)M〉N β RG〈M [x/LG〈N〉]〉

Still, we need further reduction rules to recover con�uence of the language and in particular
have a progress lemma for coercions, because we need coercion values for the ι-classi�cation
lemma and thus implicit progress. Indeed, the decomposition introduced new left and right
destructors for coercions, which must eventually be reduced in order to show that the implicit
language is sound.

We de�ne a γ-reduction written G γ G for coercions (see Section 6.1.12). The goal of
this reduction relation is to give closed coercions a value which has to be a concrete coercion
of System F

p
ι . Some examples for this reduction relation are:

R(G1
τ→ G2) γ G2 R♦ γ ♦

L(G1
τ→ G2) γ G1 L♦ γ ♦

It may be actually quite hard to �nd a complete set of rules, because we need to de�ne
the left and right destructors for all previous coercions. Moreover, this push mechanism
complicates the framework for future coercion extensions.

One example of a di�cult γ-reduction rule is when we want to reduce the left or right
projections of • ρ ◦ Λα, which happens when we instantiate and apply an argument to a poly-
morphic function. This coercion has type Γ ` (α ` τ → σ) . τ [α/ρ]→ σ[α/ρ]. We want to ex-
tract two coercions of type Γ ` (α ` σ) . σ[α/ρ] for the right projection and Γ, α ` τ [α/ρ] . τ
for the left projection. We recognize type instantiation for the right projection and the same
coercion • ρ◦Λα works. For the left projection however the situation is more complicated. We
need the reverse operation of type instantiation.

One solution to this problem is to preserve the link between the right and left projections
and factor the initial coercion. One way to do so is to have the right projection bind the left
projection. The right projection would then be π(c)G and the left would be c. We would then
have the following coercion and reduction rules:

CoerPush

G⇒ Γ2 ` (Σ1 ` τ1 → σ1) . τ2 → σ2

π(c)G⇒ Γ2 ` (Σ1, (c : τ2 . τ1) ` σ1) . σ2

RedPushArr

c is fresh

G〈λ(x : τ)M〉N β (π(c)G)〈M [x/c〈N〉]〉

However, pursuing this path while preserving con�uence, typing, subject reduction, and
progress is one of the main di�culties of coercion decomposition. The other main di�culty is
strong normalization. We cannot reify coercion projections as lambda terms, so our current
proof of termination does not work. We may argue that strong normalization is not necessary,
but it is only true for β-reduction, because the ι-normalization is used in the proof of soundness.
Said otherwise, we need ι-normalization, but we do not need to prove the strong normalization
of the implicit reduction.

In the next chapter, we extend System F
p
ι with unrestricted coercion abstraction. We only

de�ne the implicit version of this extension, called System Fcc. This avoids de�ning the explicit

108

reduction and as a consequence proving that the ι-reduction normalizes. More precisely, we
do not need to exhibit a ι-reduction strategy to clean a redex in order to prove the backward
simulation. We also avoid de�ning typing rules for coercion decomposition. There is however
an underlying explicit version similar to System F

p
ι , but missing backward simulation. We do

not know if it is possible to de�ne an explicit version with subject reduction (see Section 5.7).

109

110

Chapter 5

An implicit calculus of coercions:

System Fcc

In this chapter we de�ne a type system, called System Fcc, with unrestricted but safe erasable
coercion abstractions and unrestricted but safe recursive types. Coercion abstraction is fea-
tured with coherent polymorphism which implies the consistency of abstract coercions. Like
for Constraint ML but unlike for other type systems, we only give an implicit version for Sys-
tem Fcc, since an explicit version is hard to de�ne and prove correct in the very general setting
(see Section 4.6.2). The implicit version is proved sound with a step-index semantics. We
developed a novel approach to step-index proofs, because we use a strong reduction setting
while usual step-index proofs are done in a weak reduction setting. In particular, we put
indices inside terms instead of aside them (see Section 5.2.1).

In this chapter, our approach to type systems is more semantic based. We de�ne three no-
tions: kinds which are interpreted as sets of mathematical objects, types which are interpreted
as mathematical objects (the unit object, pairs of objects, or sets of terms for instance), and
propositions interpreted as mathematical propositions.

We show that System Fcc satis�es the soundness property and is strongly normalizing in
the absence of recursive types (Section 5.3). We show that System F

p
ι can be seen as a sub-

language of System Fcc (Section 5.4.2). And we describe how Constraint ML is included in
System Fcc (Section 5.4.3). The soundness and normalization proofs are actually done in Coq,
but with minor di�erences with the paper that are detailed in Section 5.6.

5.1 De�nition

The de�nition of syntactic classes are given on Figure 5.1. We de�ne a syntactical class,
called kinds and written κ, to classify types. Kinds contain the star kind ? to classify sets of
terms, the unit kind 1 to classify the unit mathematical object, product kinds κ×κ to classify
mathematical pairs, and constrained kinds {α : κ | P} to constrain the set κ to its elements
α satisfying the proposition P. For instance, the constrained kind {α : ? | (∅ ` α) . τ}
corresponds to the set of types σ smaller than τ [α/σ], which also corresponds to the domain
of the upper bounded polymorphic type of System F<: or F

p
ι .

As usual, we de�ne the syntactical class of types, written τ or σ. Types contain variables α,
the unit object 〈〉, pairs 〈τ, τ〉, and projections fst τ and snd τ . Types additionally contain the
arrow types τ → τ , product types τ × τ , polymorphic types ∀(α : κ) τ , recursive types µα τ ,

111

κ ::= ? | 1 | κ× κ | {α : κ | P} Kinds

τ, σ ::= α | 〈〉 | 〈τ, τ〉 | fst τ | snd τ Types

| τ → τ | τ × τ | ∀(α : κ) τ | µα τ | ⊥ | >
P ::= > | P ∧ P | (Σ ` τ) . τ | ∃κ | ∀(α : κ) P Propositions

Σ ::= ∅ | Σ, (α : κ) Type envs

Θ ::= ∅ | Θ,P Proof envs

Γ ::= ∅ | Γ, (x : τ) Term envs

rec ::= NE |WF well-foundedness signs

Figure 5.1: System Fcc syntax

the bottom type ⊥, and the top type >. The types of the previous sentence are interpreted as
sets of terms. We de�ne the projections of pairs equal to the associated components: fst 〈τ, σ〉
is equal to τ and snd 〈τ, σ〉 is equal to σ. Type equality is re�exive, symmetrical, transitive,
and congruent for all syntactical constructs (see the Coq inductive typesystem.jeq for more
details). We could also have added µα τ = τ [α/µα τ] in the equality rules, but this rule needs
typing conditions to ensure that τ is actually of kind ? and we do not have typing conditions
in our syntactical equality rules. We could have de�ned recursive types as µ(α : κ)τ and
then have the given equality, but the semantics of recursive types for arbitrary kinds is more
involved. As a consequence, we have the recursive type equality at the coercion level, where
type kinding is available. See Section 6.1.4 for discussion about arbitrary kind recursive types.

Instead of having only proofs of inclusion between sets of terms, that we call coercions,
we de�ne a general notion of propositions and de�ne a syntactical class, written P, for them.
Propositions contain the true proposition >, conjunctions P ∧ P, coercions (Σ ` τ) . τ ,
coherence propositions ∃κ, and polymorphic propositions ∀(α : κ) P. These propositions
are what we can usually �nd in type systems based on constraints, which gives an intuition
of how System Fcc compares to Constraint ML. Notice that the coherence proposition of the
constrained kind {α : κ | P}, namely ∃ {α : κ | P}, gives the usual existential proposition.
Because coherence corresponds to habitation and a type τ is in the constrained kind {α : κ | P}
if it is in κ and satis�es P by de�nition.

We de�ne environments for types, proofs, and terms. Type environments, written Σ, are
lists of bindings of the form (α : κ) which binds the type variable α to its kind κ. Notice that
since kinds depend upon types, they may refer to type variables, and thus type environments
are dependent and the order really matters. Proof environments, written Θ, collect which
propositions hypotheses are accessible and hence they are lists of propositions. We don't need
a variable to designate the proof since we only de�ne the implicit version of our type system.
Finally, term environments, written Γ, are lists of bindings of the form (x : τ) binding the
term variable x to its type τ . The order in proof and term environments does not matter, but
we still keep them as lists since this is how they are represented in the Coq proof.

Finally, we de�ne the well-foundedness signs NE and WF, which we designate with the
meta-variable rec. These signs are used to know which type functors are non-expansive, for
sign NE, or well-founded, for sign WF.

Similarly to System Frec, we de�ne a well-foundedness judgment, written α 7→ τ : rec, which
is interpreted as the functor associating the type variable α to type τ is non-expansive (resp.
well-founded) if rec is NE (resp. WF). The rules of this judgment are given on Figure 5.2.

112

http://phd.ia0.fr/coq/typesystem.html#jeq

RecVar

α 7→ α : NE

RecArr

α 7→ τ : NE α 7→ σ : NE

α 7→ τ → σ : WF

RecProd

α 7→ τ : NE α 7→ σ : NE

α 7→ τ × σ : WF

RecFor

α 7→ τ : rec α /∈ fv(κ)

α 7→ ∀(β : κ) τ : rec

RecMu

α 7→ τ : rec β 7→ τ : WF

α 7→ µβ τ : rec

RecWF

α /∈ fv(τ)

α 7→ τ : WF

RecNE

α 7→ τ : WF

α 7→ τ : NE

Figure 5.2: System Fcc well-foundedness judgment relation

The identity functor α 7→ α is non-expansive according to rule RecVar. The arrow and
product types are well-founded with respect to the type variable α, if their components are
non-expansive with respect to α, according to rules RecArr and RecProd. Rule RecFor tells
that the polymorphic type ∀(β : κ) τ has the same well-foundedness sign than τ with respect
to the type variable α which has to be di�erent from β. Besides, the kind κ must not mention
the type variable α. Similarly, rule RecMu tells that the recursive type µβ τ preserves the
well-foundedness sign of its body τ with respect to type variable α. The additional condition
is that µβ τ has to be a well-formed recursive type, in other words, the type τ has to be
well-founded with respect to the type variable β. The last two rules are generic ways to prove
well-foundedness or non-expansiveness. Constant functors are well-founded by rule RecWF

and well-founded functors are non-expansive by rule RecNE.

Because most of the judgments in System Fcc are mutually recursive, we give a snapshot
of all possible judgments with their intuition and mathematical interpretation. The only
particularities are the well-foundedness judgment, which we just de�ned, because it has no
dependencies, and the term judgment, because no judgment depends on it. We write Σ κ
when the kind κ is well-formed under the type environment Σ. Similarly, we write Σ P,
Σ Σ, and Σ Θ, for proposition, type environment, and proposition environment well-
formedness, respectively. Well-formedness judgments have no mathematical interpretation.
They are only used for extraction (Lemma 95), which we describe when presenting each
judgment.

The kind judgment Σ ` κ means that the kind κ is well-formed and coherent under Σ.
It is interpreted as the mathematical proposition that the interpretation of κ under interpre-
tations of Σ is inhabited. The type judgment Σ ` τ : κ means that the type τ has kind κ
under environment Σ. Its interpretation is that the interpretation of τ is an element of the
interpretation of κ under interpretations of Σ. When Σ is well-formed, we can extract from
Σ ` τ : κ that κ is well-formed under Σ. The proposition judgment Σ; Θ0; Θ1 ` P means that
the proposition P holds under Σ with accessible coinduction hypotheses Θ0 and protected
coinduction hypotheses Θ1. We use coinduction for recursive types (see Section 5.4.4). Our
notion of productivity comes from computational types (see rule CoerArr for example). The
mathematical interpretation of the proposition judgment is involved and uses step-indices (see
Lemma 100). When Σ is well-formed and both Θ0 and Θ1 are well-formed under Σ, we can
extract from Σ; Θ0; Θ1 ` P that P is well-formed under Σ.

113

Kind

Σ;∅;∅ ` ∃κ Σ κ

Σ ` κ

Figure 5.3: System Fcc kind judgment relation

TypeConv

Σ ` τ : κ κ = κ′ Σ κ′

Σ ` τ : κ′

TypeVar

(α : κ) ∈ Σ

Σ ` α : κ

TypeArr

Σ ` τ : ? Σ ` σ : ?

Σ ` τ → σ : ?

TypeProd

Σ ` τ : ? Σ ` σ : ?

Σ ` τ × σ : ?

TypeFor

Σ κ Σ, (α : κ) ` τ : ?

Σ ` ∀(α : κ) τ : ?

TypeMu

α 7→ τ : WF Σ, (α : ?) ` τ : ?

Σ ` µα τ : ?

TypeBot

Σ ` ⊥ : ?
TypeTop

Σ ` > : ?
TypeUnit

Σ ` 〈〉 : 1

TypePair

Σ ` τ1 : κ1 Σ ` τ2 : κ2

Σ ` 〈τ1, τ2〉 : κ1 × κ2

TypeFst

Σ ` τ : κ1 × κ2

Σ ` fst τ : κ1

TypeSnd

Σ ` τ : κ1 × κ2

Σ ` snd τ : κ2

TypePack

Σ, (α : κ) P Σ ` τ : κ Σ;∅;∅ ` P[α/τ]

Σ ` τ : {α : κ | P}

TypeUnpack

Σ ` τ : {α : κ | P}
Σ ` τ : κ

Figure 5.4: System Fcc type judgment relation

We de�ne in Figure 5.3 when a kind is coherent. A kind κ is coherent with respect to
a type environment Σ, written Σ ` κ, when the kind coherence proposition ∃κ is satis�ed
under Σ. Rule Kind is the only rule for the kind coherence judgment. This means that the
kind judgment is just a notation for the kind coherence proposition (see rule PropExi in
Figure 5.5). Notice that we give no coinduction hypotheses to the proposition, which explains
the two empty proposition environments in the premise.

A type τ has kind κ under type environment Σ, written Σ ` τ : κ, if it satis�es the rules
given in Figure 5.4. Rule TypeConv permits to convert from κ to κ′ the kind of a type τ ,
given both kinds are equal and the �nal kind κ′ is well-formed under the given environment.

Rule TypeVar tells that the type variable α has kind κ under the type environment Σ,
if α is bound to κ in Σ. Arrow and product types have the star kind if their components do
too, by rules TypeArr and TypeProd respectively. The type environment remains the same
since none of these two type constructs binds type variables. One example for type binding
is rule TypeFor for polymorphic types. The polymorphic type ∀(α : κ) τ has the star kind
under the type environment Σ if the body type τ has the star kind under the environment
Σ extended with the type binding (α : κ) associating the type variable α to its well-formed
kind κ. We do not ask κ to be coherent, because this condition is only necessary for the type
generalization coercion rule CoerGen in Figure 5.6.

Rule TypeMu tells that the recursive type µα τ has the star kind if its body has the star
kind under the same environment extended with α bound to the star kind. First, notice that
recursive types are only of the star kind (relaxing this restriction is discussed in Section 6.1.4).

114

PropConv

Σ; Θ0; Θ1 ` P P = P′ Σ P′

Σ; Θ0; Θ1 ` P′

PropVar

P ∈ Θ0

Σ; Θ0; Θ1 ` P

PropTrue

Σ; Θ0; Θ1 ` >

PropPair

Σ; Θ0; Θ1 ` P1 Σ; Θ0; Θ1 ` P2

Σ; Θ0; Θ1 ` P1 ∧ P2

PropFst

Σ; Θ0; Θ1 ` P1 ∧ P2

Σ; Θ0; Θ1 ` P1

PropSnd

Σ; Θ0; Θ1 ` P1 ∧ P2

Σ; Θ0; Θ1 ` P2

PropExi

Σ ` τ : κ

Σ; Θ0; Θ1 ` ∃κ

PropGen

Σ κ Σ, (α : κ); Θ0; Θ1 ` P α /∈ fv(Θ0,Θ1)

Σ; Θ0; Θ1 ` ∀(α : κ) P

PropInst

Σ; Θ0; Θ1 ` ∀(α : κ) P Σ ` τ : κ

Σ; Θ0; Θ1 ` P[α/τ]

PropRes

Σ ` τ : {α : κ | P}
Σ; Θ0; Θ1 ` P[α/τ]

PropFix

Σ P Σ; Θ0; Θ1,P ` P

Σ; Θ0; Θ1 ` P

PropCoer

Σ; Θ0; Θ1 `? (Σ′ ` τ ′) . τ Σ,Σ′ ` τ ′ : ?
Σ; Θ0; Θ1 ` (Σ′ ` τ ′) . τ

Figure 5.5: System Fcc proposition judgment relation

Then, a recursive type has also to be well-founded as a functor to be well-kinded, which is
ensured by hypothesis α 7→ τ : WF. The bottom and top types have kind star according to
rules TypeBot and TypeTop.

By rule TypeUnit, the unit type has the unit kind. The pair of types τ1 and τ2 has the
product kind κ1 × κ2 under type environment Σ, given type τ1 has kind κ1 and type τ2 has
kind κ2 under Σ. This rule is similar to the rule for pairs in terms. And like for terms,
type projections extract their kind from their premise. The �rst projection fst τ and second
projection snd τ have kinds κ1 and κ2 respectively, if the type τ has the product kind κ1× κ2

under the same environment.

Finally, the last two rules are particular since they just change the kind of a type leaving
the type unchanged. In this sense they are similar to coercions but at the kind level (see
Section 6.1.8). This is actually called subkinding since in our case the environment are not
modi�ed. Rule TypePack tells that if a type τ has kind κ and satis�es the well-formed
property P, then it also has the constrained kind {α : κ | P} of types of kind κ satisfying P.
Rule TypeUnpack acts the opposite way: if type τ has constrained kind {α : κ | P}, then it
also has kind κ by forgetting the fact that it also satis�es the property P. The constrained
kind can be seen as a dependent sum of a kind and a proposition. It is built with a type and
a proof that this type satis�es a proposition by rule TypePack. It can be eliminated on its
�rst component by rule TypeUnpack. And it can also be eliminated on its second component
by rule PropRes in Figure 5.5.

The proposition judgment contains logical rules given in Figure 5.5. It is written Σ; Θ0; Θ1 `
P. It tells that the proposition P is true under the type environment Σ, given additional coin-
duction hypotheses in Θ0 and Θ1. The hypotheses in Θ0 are accessible while those in Θ1 will
be accessible only after some productive proof step has been done. Productive proof steps are

115

exclusively done in the η-expansion coercion rules of computational types (see Figure 5.6).
Coinduction hypotheses are extended in the coinduction proof step. These are the only rule
altering the coinduction hypotheses.

Similar to rule TypeConv for types, we can convert the proof of a proposition from P to
P′ under the same environment, given that P is equal to P′ and P′ is well-formed under the
same environment. This rule is named PropConv and given in Figure 5.5.

Rule PropVar tells that a proposition P is true if it is present in the accessible coinduction
hypotheses Θ0. The true proposition is always true, according to rule PropTrue. Rule
PropPair tells that the conjunction proposition P1 ∧ P2 is true if its components P1 and P2

are true under the same environments. If a conjunction proposition P1 ∧ P2 is true, then
its components P1 and P2 are also true under the same environments by rules PropFst and
PropSnd respectively. These conjunction rules resemble those of the product type and the
product kind, except that we are not interested in their proof terms. A coherence proposition
∃κ is true if its kind κ is inhabited, which is our notion of coherence as explained above.

Rule PropGen and PropInst deal with proposition polymorphism. The polymorphic
proposition ∀(α : κ) P holds under the type environment Σ and the coinduction hypotheses Θ0

and Θ1, if its inner proposition P holds under the extended type environment Σ, (α : κ), given
that κ is well-formed under Σ and α is not free in the coinduction hypotheses. To eliminate
such polymorphic proposition, we supply it with a type of the given kind. If ∀(α : κ) P holds
and τ has kind κ, then the substituted proposition P[α/τ] holds under the same environment.

Rule PropRes allows to extract from a type of a constrained kind the fact that the property
holds for this type. This is the second projection rule of the constrained kind�the �rst
being rule TypeUnpack. If τ has kind {α : κ | P}, then P[α/τ] is true under the same type
environment and any coinduction environments. A rule we do not usually �nd in type systems
is rule PropFix: it allows to prove a proposition by coinduction. If P is true assuming P in
the protected coinduction environment, then P is true without this additional hypothesis. We
can derive from this general rule the usual rules about recursive types we can �nd in other
type systems (see Section 5.4.4). Finally, rule PropCoer permits to see a coercion proposition
as a coercion, given that the inner type has kind star.

The coercion judgment is written Σ; Θ0; Θ1
?̀ (Σ′ ` τ ′) . τ . Notice how the turn-style

is annotated with a star in order to di�erentiate the coercion judgment from the proposition
judgment of the coercion proposition. This di�erence matters only for the extraction lemma:
these two judgments have the same interpretation. Coercion rules are given in Figure 5.6.
They resemble very closely to what we already have seen in System F

p
ι . A coercion proposition

(Σ′ ` τ ′) . τ is well-formed under Σ, if its binding environment Σ′ is coherent under Σ (all
its kinds are coherent), its argument type τ ′ has kind star under the extended environment
Σ,Σ′, and its return type τ has kind star under Σ. See rule WfPCoer in Figure 5.8 for the
formal statement.

Coercions can be coercion propositions by rule CoerProp. Coercions are closed by re�ex-
ivity and transitivity since they are interpreted as inclusions. Rule CoerRefl in Figure 5.6
tells that a type τ is smaller than itself. Rule CoerTrans tells that τ1 extended with Σ2,Σ1

is smaller than τ3 under Σ, if τ2 extended with Σ2 is smaller than τ3 under Σ and τ1 extended
with Σ1 is smaller than τ2 under Σ,Σ2. The coinduction environments remain the same, but
the type variables bound in Σ2 should not be free in the coinduction environments. If τ ex-
tended with Σ′ is smaller than σ and τ does not mention the type variables in Σ′, then τ is
smaller than σ by rule CoerWeak.

Rules CoerArr and CoerProd are about η-expansions of computational types. Compu-

116

CoerProp

Σ; Θ0; Θ1 ` (Σ ` τ ′) . τ
Σ; Θ0; Θ1 `? (Σ ` τ ′) . τ

CoerRefl

Σ; Θ0; Θ1 `? (∅ ` τ) . τ

CoerTrans

dom(Σ2) ∩ fv(Θ0,Θ1) = ∅
Σ,Σ2; Θ0; Θ1 `? (Σ1 ` τ1) . τ2 Σ; Θ0; Θ1 `? (Σ2 ` τ2) . τ3

Σ; Θ0; Θ1 `? (Σ2,Σ1 ` τ1) . τ3

CoerWeak

dom(Σ′) ∩ fv(τ) = ∅
Σ; Θ0; Θ1 `? (Σ′ ` τ) . σ

Σ; Θ0; Θ1 `? (∅ ` τ) . σ

CoerArr

dom(Σ′) ∩ fv(Θ0,Θ1, τ) = ∅ Σ ` τ : ?
Σ,Σ′; Θ0,Θ1;∅ `? (∅ ` τ) . τ ′ Σ; Θ0,Θ1;∅ `? (Σ′ ` σ′) . σ

Σ; Θ0; Θ1 `? (Σ′ ` τ ′ → σ′) . τ → σ

CoerProd

Σ; Θ0,Θ1;∅ `? (Σ′ ` τ ′) . τ Σ; Θ0,Θ1;∅ `? (Σ′ ` σ′) . σ
Σ; Θ0; Θ1 `? (Σ′ ` τ ′ × σ′) . τ × σ

CoerGen

Σ ` κ
Σ; Θ0; Θ1 `? (∅, (α : κ) ` τ) . ∀(α : κ) τ

CoerInst

Σ ` σ : κ

Σ; Θ0; Θ1 `? (∅ ` ∀(α : κ) τ) . τ [α/σ]

CoerUnfold

Σ; Θ0; Θ1 `? (∅ ` µα τ) . τ [α/µα τ]

CoerFold

Σ ` µα τ : ?

Σ; Θ0; Θ1 `? (∅ ` τ [α/µα τ]) . µα τ

CoerTop

Σ; Θ0; Θ1 `? (∅ ` τ) . >

CoerBot

Σ ` τ : ?

Σ; Θ0; Θ1 `? (∅ ` ⊥) . τ

Figure 5.6: System Fcc coercion judgment relation

tational types are the only types that need η-expansion coercion rules, because η-expansion
coercion rules for erasable types are derivable from their introduction and elimination rules.
Notice however that the η-expansion of recursive types uses coinduction (see Section 5.4.4).
As η-expansion rules of computational types, rules CoerArr and CoerProd are productive
proofs for the coinduction. This is why the protected coinduction environment, namely Θ1,
of the conclusion is accessible in the premises. If σ′ extended with Σ′ is smaller than σ under
Σ and τ , which has kind star under Σ, is smaller than τ ′ under Σ,Σ′, then τ ′ → σ′ extended
with Σ′ is smaller than τ → σ by rule CoerArr. Similarly if τ ′ extended with Σ′ is smaller
than τ and σ′ extended with Σ′ is smaller than σ, then τ ′ × σ′ extended with Σ′ is smaller
than τ × σ.

Rules CoerGen and CoerInst are about coherent polymorphism. The type τ extended
with the type binding (α : κ) is smaller than the polymorphic type ∀(α : κ) τ , given that κ
is coherent. This coherence condition is an important feature of System Fcc: polymorphism
is erasable (and hence a coercion proposition) only if it is coherent. Notice that the usual
polymorphism for kind star is always coherent, because the star kind is trivially inhabited

117

TEnvNil

Σ ` ∅

TEnvCons

Σ ` Σ′ Σ,Σ′ ` κ
Σ ` Σ′, (α : κ)

Figure 5.7: System Fcc type environment judgment relation

WfKStar

Σ ?
WfKOne

Σ 1

WfKProd

Σ κ1 Σ κ2

Σ κ1 × κ2

WfKRes

Σ κ Σ, (α : κ) P

Σ {α : κ | P}

WfPTrue

Σ >

WfPAnd

Σ P1 Σ P2

Σ P1 ∧ P2

WfPCoer

Σ ` Σ′ Σ,Σ′ ` τ ′ : ? Σ ` τ : ?

Σ (Σ′ ` τ ′) . τ

WfPExi

Σ κ

Σ ∃κ

WfPFor

Σ, (α : κ) P

Σ ∀(α : κ) P

WfHNil

Σ ∅

WfHCons

Σ Σ′ Σ,Σ′ κ

Σ Σ′, (α : κ)

WfYNil

Σ ∅

WfYCons

Σ Θ Σ P

Σ Θ,P

Figure 5.8: System Fcc well-formedness relation

(with the top or bottom type for instance). Notice also that bounded polymorphism is also
trivially coherent (see Section 5.4.2). Without this coherence condition we could give the
term 27 + true (the addition of the integer constant 27 and the boolean constant true) the
type ∀(α : {α : 1 | (∅ ` Bool) . Int}) Int. We simply use rule PropRes to extract from
the abstract type variable α the fact that booleans can be coerced to integers. This kind of
feature is actually useful to deal with GADTs and we present it as a Coq-proved extension
in Section 5.5. Similarly to type generalization, type instantiation is a coercion and the
polymorphic type ∀(α : κ) τ is smaller than its instantiation τ [α/σ] with type σ of kind κ.

Rules CoerUnfold and CoerFold are about recursive types. The well-kinded recursive
type µα τ is equivalent (i.e. smaller and bigger than) to its unfolding τ [α/µα τ]. Finally, rules
CoerBot and CoerTop are about extrema. The bottom type ⊥ is smaller than all types of
kind star and the top type > is bigger than all types of kind star.

The type environment Σ′ is coherent under Σ, written Σ ` Σ′, if its type variables are bound
at most once and the associated kinds are coherent in their preceding type environment. The
rules for type environment coherence are given in Figure 5.7. The empty type environment ∅ is
always coherent according to rule TEnvNil. The extended environment Σ′, (α : κ) is coherent
under Σ if the type variable α is not already bound in Σ,Σ′ and the kind κ is coherent under
the extended environment Σ,Σ′.

We use the notation Σ · for the well-formedness judgment of all syntactical classes
subject to well-formedness rules: kinds, propositions, type environments, and coinduction
environments. The well-formedness judgment has no mathematical interpretation. It is only
use for the extraction lemma (Lemma 95). The well-formedness rules are given in Figure 5.8.
An object is well-formed if its components are well-formed in an extended type environment
when the object behaves as a binder. The only particular rule is for the coercion proposition,
namely rule WfPCoer, because it asks for coherence and well-kindedness instead of well-

118

EnvNil

Σ ` ∅

EnvCons

Σ ` Γ Σ ` τ : ? x /∈ dom(Γ)

Σ ` Γ, (x : τ)

Figure 5.9: System Fcc term environment judgment relation

TermVar

(x : τ) ∈ Γ

x : Σ; Γ ` τ

TermLam

Σ ` τ : ? a : Σ; Γ, (x : τ) ` σ
λx a : Σ; Γ ` τ → σ

TermApp

a : Σ; Γ ` τ → σ b : Σ; Γ ` τ
a b : Σ; Γ ` σ

TermPair

a : Σ; Γ ` τ b : Σ; Γ ` σ
〈a, b〉 : Σ; Γ ` τ × σ

TermFst

a : Σ; Γ ` τ × σ
fst a : Σ; Γ ` τ

TermSnd

a : Σ; Γ ` τ × σ
snd a : Σ; Γ ` σ

TermCoer

dom(Σ′) ∩ fv(Γ) = ∅
a : Σ,Σ′; Γ ` τ ′ Σ;∅;∅ `? (Σ′ ` τ ′) . τ

a : Σ; Γ ` τ

Figure 5.10: System Fcc term judgment relation

formedness. A coercion proposition (Σ′ ` τ ′) . τ is well-formed if Σ′ is coherent and both τ
and τ ′ have kind star under their respective environments.

A term environment Γ is valid under Σ, written Σ ` Γ, if all its term variables are
bound at most once and their associated types have kind star under Σ. The rules are given in
Figure 5.9. The empty term environment is valid under any type environment by rule EnvNil.
The extended term environment Γ, (x : τ) is valid if τ has kind star and the term variable x
is not already bound in Γ, which has to be valid as well, according to rule EnvCons.

Since we separated type environments and term environments, the term judgment changes
a little. We write a : Σ; Γ ` τ when the term a has type τ under the type environment
Σ and the term environment Γ. The rules for the term judgment are given on Figure 5.10.
These are the usual STLC rules plus the additional coercion typing rule. The mathematical
interpretation of this judgment is that for all Σ-instantiation and all Γ-substitution in this
instantiation, the term a after substitution is in the type τ after instantiation. Syntactically,
we can extract from the term judgment that the type has kind star, if the type environment
is well-formed and the term environment is valid.

Rule TermVar tells that the term variable x has type τ under type environment Σ and
term environment Γ if x is bound to τ in Γ. The term abstraction λx a has type τ → σ under
Σ and Γ if its body a has type σ under the extended term environment Γ, (x : τ) and the same
type environment Σ by Rule TermLam. If, under type environment Σ and term environment
Γ, the term a has type τ → σ and b has type τ , then their application a b has type σ.

Rule TermPair tells that if a has type τ and b has type σ under type environment Σ and
term environment Γ, then the pair 〈a, b〉 has type τ × σ. The other way around, if a has type
τ×σ, then its �rst projection fst a has type τ and its second projection snd a has type σ under
the same environments.

119

Finally, the coercion rule TermCoer changes the typing of term a from Σ,Σ′; Γ ` τ ′ to
Σ; Γ ` τ , given there is a coercion proposition (Σ′ ` τ ′) . τ under the type environment Σ.
To respect scoping, the type environment Σ′ should not bind type variables that are free in Γ.
If this is the case, it su�ces to rename these variables in Σ′ and τ ′ with fresh ones.

Strengthening The strengthening rule is not admissible when we allow incoherent type
environments, but it is still admissible with coherent type environments. It is sound to add
the strengthening rule as follows:

TypeStr

Σ ` κ′ Σ, (α′ : κ′) ` τ : κ α′ /∈ fv(τ, κ)

Σ ` τ : κ

PropStr

Σ ` κ Σ, (α : κ); Θ0; Θ1 ` P α /∈ fv(Θ0,Θ1,P)

Σ; Θ0; Θ1 ` P

Rule TypeStr is the elimination rule of the coherence proposition (see rule PropExi).
Coherence proposition actually behaves like an existential: ∃κ means that there is a type τ
of kind κ. Since the kind judgment is actually a notation for the coherence proposition, the
premise Σ ` κ′ is actually Σ;∅;∅ ` ∃κ′ and we are eliminating this existential proposition.
To do so, we use the second premise assuming a type α′ of kind κ′ to prove that τ has kind κ.
Since neither τ or κ mention the witness type α′, we can conclude that τ has kind κ without
the hypothesis about the coherence of κ′.

Again, similarly to the type judgment rule TypeStr, we can eliminate the existential
proposition when proving a proposition by rule PropStr, if the kind κ is coherent under
Σ and the proposition P holds under the extended environment Σ, (α : κ) with coinduction
hypotheses Θ0 and Θ1 given that the type variable α is not free in Θ0, Θ1, and P.

5.2 Semantics

A term is sound if none of its reductions lead to an error (see Figure 2.3). To avoid the
negation, it is easier to reason with valid terms de�ned as the complement of Ω, i.e. terms
that are not errors, which we write

Ω

. To remember these notations, Ω is the omega greek
letter usually used for errors, while

Ω

looks like the letter v for valid terms. Notice also that
they are 180 degrees rotation of one another because they are complement of one another.
Hence, a term is sound if all its reduction paths lead to valid terms. Since this construction
appears repeatedly, we de�ne the expansion of a set of terms R, which we write (?R), the
set of terms a such that any reduction path starting with a leads to a term in R. The set S
of sound terms is the expansion (? Ω

) of valid terms.

Head normal forms ∆ are terms whose root node is a constructor, i.e. abstractions λx a
and pairs 〈a, a〉, while neutral terms ∇ are variables x, applications a a, and projections fst a
and snd a. Notice that ∆ and ∇ are complement of one another, i.e. terms are the disjoint
union of ∆ and ∇. To remember which notation is associated to which notion, we can see ∆ as
stable (it has a large basis) and ∇ as unstable (it has a pointy basis). Stability, in our analogy,
means that we have a head constructor which cannot change by reduction, while instability
means that reduction can modify our root node, to �nally become a head constructor. Notice

120

x, y Term variables

e, f ::= xk | λkx e | (e e)k | 〈e, e〉k | fstk e | sndk e Terms

Figure 5.11: Indexed Calculus syntax

Ek ::= λkx [] | ([] e)k | (e [])k | 〈[], e〉k | 〈e, []〉k | fstk [] | sndk [] Evaluation contexts

s ::= Ek[s] | (〈s, s〉k s)k | fstk (λkx s) | sndk (λkx s) Errors

Figure 5.12: Indexed Calculus notations

also that, as for errors and valid terms, head normal forms and neutrals are 180 degrees of
one another because they are complement of one another.

Progress is a way to double-check the de�nition of the semantics, by de�ning values syn-
tactically and checking that semantic values (irreducible valid terms) are syntactic values.
Prevalues are simply neutral values.

Lemma 71 (Progress). If a ∈

Ω

and a 6 , then a is of the form v.

Proof. By induction on a. For each case, either it is an error, or it can reduce, or it is a
value.

The converse is also true, i.e. values do not contain errors. However, this won't remain
true when we restrict the strategy, e.g. to call-by-value weak reduction. In this case, rede�ning
the grammar of values, progress still holds, but some grammatically well-formed values may
contain �inaccessible� errors, such as errors occurring under an abstraction.

Type soundness states that well-typed terms are sound. We prove this by interpreting
syntactic types as semantic types which are themselves sets of terms. However, since we allow
general recursive types the evaluation of terms may not terminate. This is not a problem,
since type soundness is not about termination, but ruling out unsound terms, which if they
reach an error do so in a �nite number of steps.

The idea of step-indexed techniques is to stop the reduction after a certain number of
steps, as if some initially available fuel (the number of allowed reduction steps) had all been
consumed. Since errors are necessarily reached after a �nite number of steps, we may always
detect errors with some �nite but arbitrary large number of reduction steps.

However, there is a di�culty using step indices in a strong reduction setting, as the usual
semantic of the arrow type is not stable by reduction. We solve this by including the fuel
inside terms, called indexed terms, and block the reduction internally when terms do not have
enough fuel, rather than control the number of reduction steps externally.

5.2.1 The Indexed Calculus

Terms of the Indexed Calculus are terms of the λ-calculus where each node is annotated with
a natural number called its index (or fuel). They are written with letter e or f and formally
de�ned on Figure 5.11. Indexed terms are variables xk, abstractions λkx e, applications (e e)k,
pairs 〈e, e〉k, and projections fstk e and sndk e.

As for the λ-calculus, we de�ne the indexed errors, written s, on Figure 5.12. They contain
terms that contain an error under a context and terms that are the application of a pair or
the projection of an abstraction, similarly to lambda (or undecorated) errors. The indices

121

bxkcj = xkj

bλkx ecj = λkjx becj
b(e f)kcj = (becj bfcj)kj

b〈e, f〉kcj = 〈becj , bfcj〉kj
bfstk ecj = fstkj becj
bsndk ecj = sndkj becj

Figure 5.13: Lower function

are ignored in this de�nition. We write Ek for one-hole context with index k. We have all
contexts since we are in strong reduction. Finally we de�ne neutrals and head normal forms
which are complement of one another according to the set of indexed terms. Neutrals are
variables xk, applications (e e)k, and projections fstk e and sndk e, while head normal forms
are abstractions λkx e and pairs 〈e, e〉k.

We write ∇ for neutrals, ∆ for head normal forms, Ω for indexed errors, and

Ω

for valid
indexed terms, overloading the notation of the λ-calculus, which is never ambiguous because
we use distinct meta-variables for lambda terms and indexed terms. These sets are closely
related, indeed the set of neutral lambda terms and the set of neutral indexed terms are the
same up to the erasure of indices, and similarly for head normal forms, errors, and valid terms.

Intuitively, indices indicate the maximum number of reduction steps allowed under the
given node. We want this invariant to hold during reduction, so reduction has to update
indices. Since redexes usually delete several nodes of the left-hand side and reorganize subterms
for the right-hand side, we must remember the indices of the removed nodes one way or
another on their subterms. The easiest solution is to take the minimum of indices of the
redex nodes and lower their subterms with this minimum. To do so we use an auxiliary
lowering function on indexed terms, written becj , and de�ned on Figure 5.13 (Coq de�nition
Flanguage.lower). We use concatenation of indices to denote the minimum of their values.
This is not ambiguous since we never use multiplication of indices. Lowering simply changes
all indices in the term e with their minimum with j. With this de�nition, the β-reduction
rule now becomes: ((λj+1x e) f)k+1 be[x/f]ckj .

The capture avoiding substitution e[x/f] of term f for variable x in the term e replaces
in e all free occurrences xj of x by bfcj . The de�nition is generalized in the obvious way
to simultaneous substitutions. We use letter γ to range over substitutions. The lowering of
substituted occurrences is necessary to make substitution commute with the lowering function.
In particular, renaming commutes with the lowering function.

Lemma 72. be[x/f]ck = beck[x/f] = beck[x/bfck]

Proof. The �rst equality is proved with the Coq lemma lower_subst and the last equality is
proved with subst_lower in �le Flanguage.v.

The reduction rules of the Indexed Calculus mimic those of the λ-calculus, but with some
index manipulation, as described in Figure 5.14 (Coq inductive Flanguage.red). Reduction
can only proceed when the indices on the nodes involved in the reduction are strictly positive;
the indices are lowered after reduction by the minimum of the involved indices decremented
by one. As a corollary, reduction cannot occur at or under a node with a null index. This
applies both to head reduction rules (RedApp, RedFst, and RedSnd) and to reductions in an
evaluation context (Rule RedCtx). That is, a head reduction can only be applied along a path

of the form Ek11 [. . . E
kp
p [e]] when indices ki's are all strictly positive; they are all decremented

after the reduction.

122

http://phd.ia0.fr/coq/Flanguage.html#lower
http://phd.ia0.fr/coq/Flanguage.html#lower_subst
http://phd.ia0.fr/coq/Flanguage.html#subst_lower
http://phd.ia0.fr/coq/Flanguage.html
http://phd.ia0.fr/coq/Flanguage.html#red

RedCtx

e f

Ek+1[e] Ek[f]

RedApp

((λj+1x e) f)k+1 be[x/f]ckj

RedFst

fstk+1 〈e, f〉j+1 beckj
RedSnd

sndk+1 〈e, f〉j+1 bfckj

Figure 5.14: Indexed Calculus reduction relation

For example, here is a decorated reduction of apply (the lambda term λxλy x y) applied
to two terms e and f :

(((λk3+1xλj1y (xj3 yj4)j2) e)k2+1 f)k1+1

 ((λj1k2k3y (becj3k2k3 yj4k2k3)j2k2k3) f)k1

Since the reduction happens under the external application, it must have some fuel k1 + 1,
which is decreased by one in the result. Then, for the redex to �re, the application must
have some fuel k2 + 1 as well as the abstraction k3 + 1, which are both decreased by one and
combined as k2k3 to lower the result of the reduction. Before that, the term e, which has
been substituted for xj3 has been lowered to j3 in the result. The important feature is that
f has not been lowered, which is an important di�erence with what would happen with the
traditional step-indexed approach when indices are outside terms.

Strong normalization By design, the Indexed Calculus is strongly normalizing, i.e. all
reduction paths of all terms are �nite. In particular, they are bounded by the index of their
root node.

Lemma 73 (Strong normalization). The indexed calculus is strongly normalizing.

Proof. The proof is done in Coq lemma Fnormalization.wf_der and uses the measure that
associates for each indexed term its root index.

5.2.2 Bisimulation

To show that reduction between undecorated terms and decorated terms coincide, we de�ne
bec (without subindex) the erasure of an indexed term e obtained by dropping all indices. We
lift this function to sets of terms: bRc is the set {bec | e ∈ R}. By construction, dropping is
stronger than lowering, i.e. dropping after lowering is the same as dropping, bbecjc = bec. As
for lowering, dropping commutes with substitution: be[x/f]c = bec[x/bfc]. We overload the
notation S for the set of sound indexed terms. Although it is de�ned as for lambda terms as
(? Ω

), the meaning is di�erent since the reduction is now bridled by indices.
The calculus on indexed terms is just an instrumentation of the λ-calculus that behaves

the same up to the consumption of all the fuel. Formally, we show that they can simulate one
another, up to some condition on the indices.

Indexed terms can be simulated by lambda terms. That is, if an indexed term can reduce,
then the same reduction step can be performed after dropping indices.

Lemma 74 (Forward simulation). If e f , then bec bfc.

123

http://phd.ia0.fr/coq/Fnormalization.html#wf_der

Pxk = P k
P (λkx e) = P k ∧ P e
P (e f)k = P k ∧ P e ∧ P f

P 〈e, f〉k = P k ∧ P e ∧ P f

P (fstk e) = P k ∧ P e

P (sndk e) = P k ∧ P e

Figure 5.15: Lifting integer predicates to indexed terms

xk1 ? xk2 = k1 ? k2

(λk1x e1) ? (λk2x e2) = k1 ? k2 ∧ e1 ? e2

(e1 f1)k1 ? (e2 f2)k2 = k1 ? k2 ∧ e1 ? e2 ∧ f1 ? f2

〈e1, f1〉k1 ? 〈e2, f2〉k2 = k1 ? k2 ∧ e1 ? e2 ∧ f1 ? f2

fstk1 e1 ? fstk2 e2 = k1 ? k2 ∧ e1 ? e2

sndk1 e1 ? sndk2 e2 = k1 ? k2 ∧ e1 ? e2

Figure 5.16: Lifting of a binary predicate ? on indices to terms

Proof. The proof is in the Coq lemma Llanguage.red_drop.

In order to make the other direction concise, we lift predicates on integers to predicates
on indexed terms by requiring the predicate to hold for all indices occurring in the term. For
instance, e > 0 means that the index of all the nodes of e are greater than zero while e ≤ k
means that the indices in e are smaller or equal to k. This is formally de�ned on Figure 5.15
(Coq de�nition Flanguage.unary_fuel).

Indexed terms can simulate lambda terms, provided they have enough fuel. This means
that if an indexed term has strictly positive indices and can be reduced after dropping its
indices, then the same reduction step can be performed on the indexed term.

Lemma 75 (Backward simulation). If e > 0 and bec a′, then there exists e′ such that

e e′ and be′c = a′.

Proof. The proof is in the Coq lemma Llanguage.drop_red_exists.

Using this last lemma, we can show that when a sound indexed term e has indices greater
or equal to k, then its erasure can safely do at least k steps. This lemma is crucial to transfer
the soundness result in the indexed calculus to the λ-calculus. A lambda term is sound if it
is sound for any number of steps.

Lemma 76. If e ≥ k and e ∈ S hold, then bec is sound for all paths of size smaller than k
steps.

Proof. The proof is in the Coq lemma Lsoundness.term_ge_OK.

5.2.3 Semantic types

In order to de�ne semantic types concisely, it is convenient to have a few helper operations on
sets of indexed terms. We �rst lift binary properties on indices to indexed terms. This is done
by asking the two terms to share the same skeleton (they drop on the same lambda term)
and the indices of corresponding nodes to be related by the property on indices. A formal
de�nition is given on Figure 5.16 (Coq de�nition Flanguage.binary_fuel).

124

http://phd.ia0.fr/coq/Llanguage.html#red_drop
http://phd.ia0.fr/coq/Flanguage.html#unary_fuel
http://phd.ia0.fr/coq/Llanguage.html#drop_red_exists
http://phd.ia0.fr/coq/Lsoundness.html#term_ge_OK
http://phd.ia0.fr/coq/Flanguage.html#binary_fuel

The interior of a set R is the set R↓ containing all terms smaller than a term in R, i.e.
{f | ∃e ∈ R, f ≤ e} (Coq de�nition Fsemantics.Dec). The contraction of a set R is the set
(R) of all terms obtained by one-step reduction of a term in R, i.e. {f | ∃e ∈ R, e f} (Coq
de�nition Fsemantics.Red).

A pretype is a set of sound terms that contains both its interior and its contraction (Coq
de�nition Fsemantics.C). We write C the set of pretypes.

De�nition 77 (Pretypes). C def

= {R ⊆ S | R↓ ∪ (R) ⊆ R}

Notice that the empty set and the set of sound terms S are pretypes. We restrict pretypes to
sound terms because we wish types to be certain forms of pretypes and types to only contain
sound terms. The closure of pretypes by interior is just technical: if a property holds for
some index, we want it to also hold for smaller indices. The main property of pretypes is to
be closed by reduction. Types are pretypes that are also closed by a form of expansion. As
a �rst approximation, sound terms that reduce to a term in a type R should also be in R.
However, a type R should still not contain unsound terms even if these reduce to some term
in R. Moreover, the meaning of a set of terms R is in essence determined by its set of head
normal forms, which we call the kernel of R. We use concatenation for intersection of sets of
terms. Hence, the kernel of R is ∆R. A type R needs not to contain every head normal form
that reduces to some term in R. Consider for example the term e0 equal to λxx and one of
its expansion is the term e1 equal to λx (λy x) (xx). The sets {e0} and {e0, e1} have quite
di�erent meanings. The second set has additional requirements for the argument: it should
be sound to apply it to itself. Notice that by de�nition, the kernel is an idempotent operation:
∆(∆R) = ∆R.

The expansion-closure of a set of terms R, written ♦R, is the set (?(∇
Ω

]∆R)), which
contains terms of which every reduction path leads to either a valid neutral term or a head
normal form of R. By de�nition, the expansion closure is monotonic: if R ⊆ S, then ♦R ⊆ ♦S;
it is also idempotent: ♦ (♦R) = ♦R.

Finally, semantic types are pretypes that are stable by expansion closure (Coq de�nition
Fsemantics.CE):

De�nition 78 (Semantic types). T
def

= {R ∈ C | ♦R ⊆ R}.

The kernel of a type is a pretype�but not a type. Conversely, the expansion-closure of a
pretype is a type. Actually expansion-closure and kernel are almost inverse of one another: if
R is a type, then ♦ (∆R) = R.

The smallest type, called the bottom type and written ⊥, is equal to ♦{}, that is
(?(∇

Ω

)). The largest type, >, called the top type is the set S of sound terms.

5.2.4 Simple types

We can now de�ne the semantics of arrows and products as semantic type operators. We
overload the arrow and product notations, but there is no ambiguity with the syntactic type
operators since the semantic operators take semantic types R or S, while syntactic type oper-
ators take syntactic types τ or σ as arguments.

De�nition 79 (Arrow and product operators).

R→ S
def

= ♦{λkx e ∈ S | k > 0⇒ ∀f, bfck−1 ∈ R⇒ be[x/f]ck−1 ∈ S}
R× S

def

= ♦
{
〈e, f〉k ∈ S | k > 0⇒ beck−1 ∈ R ∧ bfck−1 ∈ S

}
125

http://phd.ia0.fr/coq/Fsemantics.html#Dec
http://phd.ia0.fr/coq/Fsemantics.html#Red
http://phd.ia0.fr/coq/Fsemantics.html#C
http://phd.ia0.fr/coq/Fsemantics.html#CE

The arrow semantic operator is the expansion closure of sound term abstractions λkx e satis-
fying the following property when the index k is non-zero. For all arguments f such that its
lowering by k − 1 is in the domain R, the lowering by k − 1 of the substitution of x by f in e
has to be in the range S. The product semantic operator is similar. It is the expansion closure
of sound pairs satisfying the following property for non-zero indices k. Each component of the
pair has to be in its associated type after lowering by k − 1.

In order to prove that arrow and product semantic type operators preserve types, we need
to de�ne and prove the following easy properties on indices:

• bbecjck = beckj (Coq lemma Flanguage.lower_lower)

• If k′ ≤ k and e′ ≤ e, then be′ck′ ≤ beck. (Coq lemma Flanguage.le_term_lower)

• If e′ ≤ e and f ′ ≤ f , then e′[x/f ′] ≤ e[x/f]. (Coq lemma Flanguage.le_term_subst)

And this less easy one:

Lemma 80. If e f holds, then for all k, beck+1 f ′ and bfck ≤ f ′ hold for some f ′.

Proof. Coq lemma Flanguage.red_lower

The arrow and product operators preserve types.

Lemma 81. If R and S are types, then so are R→ S and R× S.

Proof. Coq lemma CE_EArr and CE_EProd in Fsemantics.v.

We only detail the proof for the arrow operator, which uses indexed terms in a crucial
way. The proof for the product operator is similar, but easier. Since the arrow operator is
de�ned by expansion-closure, it is a type if its kernel is a pretype. Its kernel contains only
sound terms by de�nition. So it remains to show that the de�nition contains its interior and
contraction.

Let λjx e′ ≤ λkx e (1), λkx e ∈ S (2), and k > 0⇒ ∀f, bfck−1 ∈ R⇒ be[x/f]ck−1 ∈ S (3),
and show that λjx e′ ∈ S (4) and j > 0 ⇒ ∀f, bfcj−1 ∈ R ⇒ be′[x/f]cj−1 ∈ S (5). The �rst
assertion (4) comes easily with (1) and (2) since S contains its interior. To show (5), let j > 0
and bfcj−1 ∈ R (6) and show be′[x/f]cj−1 ∈ S (7). By (1) we have j ≤ k, so k > 0. We also
have bbfcj−1ck−1 = bfcj−1 which is in R by (6). So from (3) we have be[x/bfcj−1]ck−1 ∈ S.
Since S is a type, it contains its interior so be′[x/bfcj−1]cj−1 ∈ S. Since the substitution and
the lowering function commute, we conclude (7).

Let λkx e e1 (8), λkx e ∈ S (9), and k > 0 ⇒ ∀f, bfck−1 ∈ R ⇒ be[x/f]ck−1 ∈
S (10). By inversion of the reduction relation we have k = k′ + 1 and e1 = λk

′
x e′ for

some k′ and e′ such that e e′ (11). We now have to show that λk
′
x e′ ∈ S (12) and

k′ > 0 ⇒ ∀f, bfck′−1 ∈ R ⇒ be′[x/f]ck′−1 ∈ S (13). We show (12) with (8) and (9)
since S contains its contraction. To show (13), let k′ > 0 and bfck′−1 ∈ R (14) and show
be′[x/f]ck′−1 ∈ S (15). We have bbfck′−1ck−1 = bfck′−1 which is in R by (14). So from (10)
we have be[x/bfck′−1]ck−1 ∈ S. Since S is a type, it contains its contraction and interior
so be′[x/bfck′−1]ck′−1 ∈ S by Lemma 80. Since the substitution and the lowering function
commute, we conclude (15).

126

http://phd.ia0.fr/coq/Flanguage.html#lower_lower
http://phd.ia0.fr/coq/Flanguage.html#le_term_lower
http://phd.ia0.fr/coq/Flanguage.html#le_term_subst
http://phd.ia0.fr/coq/Flanguage.html#red_lower
http://phd.ia0.fr/coq/Fsemantics.html#CE_EArr
http://phd.ia0.fr/coq/Fsemantics.html#CE_EProd
http://phd.ia0.fr/coq/Fsemantics.html

5.2.5 Intersection types

The intersection
⋂
i∈I Ri of a nonempty family of types (Ri)

i∈I is a type. As a particular case,
the bottom type ⊥ is also the intersection of all types. We extend this de�nition to the empty
family with the top type, which is the set of sound terms. Because all types are sets of sound
terms, we can de�ne the intersection operator of a family of types as the intersection with the
set of sound terms (Coq de�nition Fsemantics.EFor).

De�nition 82 (Intersection operator). We de�ne ∀I F as the set of terms S ∩
⋂
i∈I F i.

The intersection operator preserves semantic types:

Lemma 83. If for all i ∈ I, F i is a semantic type, then ∀I F is a semantic type.

Proof. Coq lemma Fsemantics.CE_EFor

5.2.6 Recursive types

This section follows the usual description of recursive types using the notion of approximations
as done in [4]. Adding recursive types is the main reason for using a step-indexed technique,
assuming we have a semantics approach (which is itself due to our notion of coherent abstrac-
tion). While recursive types motivate the use of step-indexed semantics, they do not raise any
additional di�culty once the semantics has been correctly set up.

The k-approximation of a set R, written 〈R〉k is the subset {e ∈ R | e < k} of elements of
R that are smaller than k (Coq de�nition Fsemantics.approx). The following properties of
approximations immediately follow from the de�nition: 〈R〉0 is the empty set; a sequence of
approximations is the approximation by the minimum of the sequence: 〈〈R〉j〉k = 〈R〉jk; two
sets of terms that are equal at all approximations are equal: if 〈R〉k = 〈S〉k holds for all k,
then R = S.

De�nition 84 (well-foundedness). A function F on sets of terms is well-founded (resp. non-

expansive) if for any set of terms R, the approximations of F R and F 〈R〉k are equal at rank

k + 1 (resp. k), i.e. 〈F R〉k+1 = 〈F 〈R〉k〉k+1 (resp. 〈F R〉k = 〈F 〈R〉k〉k)

Intuitively, well-foundedness (resp. non-expansiveness) ensures that given a term sound for
k steps, F returns a term sound for k+1 (resp. k) steps. The Coq de�nition of well-foundedness
(resp. non-expansiveness) is given in WF (resp. NE) in Fsemantics.v.

The iteration of a well-founded function F does not look at its argument for terms of small
indices: 〈Fk R〉k is independent of R; in particular, it is equal to 〈Fk⊥〉k. This lemma helps us
to prove the more useful lemmas that allow us to prove that a term is in the k-th iteration of
a well-founded functor, given it is already in the j-th iteration and smaller than both j and
k: 〈Fj R〉kj and 〈Fk R〉kj are equal.

De�nition 85 (Recursive operator). Given a well-founded function F on sets of terms, we

de�ne µF as the set of terms
⋃
k≥0 〈Fk⊥〉k.

The recursive operator preserves semantic types:

Lemma 86. If F is well-founded and maps semantic types to semantic types, then µF is a

semantic type.

Proof. Coq lemma Fsemantics.CE_EMu

127

http://phd.ia0.fr/coq/Fsemantics.html#EFor
http://phd.ia0.fr/coq/Fsemantics.html#CE_EFor
http://phd.ia0.fr/coq/Fsemantics.html#approx
http://phd.ia0.fr/coq/Fsemantics.html#WF
http://phd.ia0.fr/coq/Fsemantics.html#NE
http://phd.ia0.fr/coq/Fsemantics.html
http://phd.ia0.fr/coq/Fsemantics.html#CE_EMu

Moreover, recursive types can be unfolded or folded as expected: if F is well-founded, then
µF = F (µF). This is proved by showing that 〈µF〉k is equal to both 〈Fk⊥〉k and 〈F (µF)〉k
for every k. The proofs are done in Coq lemma Mu_fold and Mu_unfold in �le Fsemantics.v.

The following Lemma, although in a di�erent setting, is stated exactly as with traditional
step-indexed semantics [4]:

Lemma 87. We have the following properties:

• Every well-founded function is non-expansive.

• X 7→ X is non-expansive.

• X 7→ R where X is unused in R (R is constant) is well-founded.

• The composition of non-expansive functors is non-expansive.

• The composition of a non-expansive functor with a well-founded functor (in either order)

is well-founded.

• If F and G are non-expansive, then X 7→ (F X → G X) and X 7→ (F X × G X) are well-

founded.

• If (Fi)
i∈I is a family of non-expansive (resp. well-founded) functors, then the functor

X 7→
⋂
i∈I (Fi X) is non-expansive (resp. well-founded).

• If X 7→ F X Y is non-expansive (resp. well-founded) for every Y and F X is well founded

for every X, then X 7→ µ (F X) is non-expansive (resp. well-founded).

Proof. Lemma NE_id, WF_CST, WF_PArr, WF_PProd, WFj_For, and WFj_Mu in the Fsemantics.v
Coq �le.

Just for illustration X 7→ X→ S is well-founded since X 7→ X is non-expansive and X 7→ S
is constant, thus well-founded, and therefore non-expansive.

5.2.7 Semantic judgment

A binding is a pair (x : R) of a variable and a semantic type. A context G is a set of bindings,
de�ning a �nite mapping from term variables to semantic types. We say that a substitution
γ is compatible with a context G, written γ : G, if dom(γ) and dom(G) coincide and for all
(x : R) in G, the term γ x is in R.

We de�ne the semantic judgment G |= S as the set of terms e such that γ e is in S for any
substitution γ �compatible� with G (Coq de�nition Fsemantics.EJudg).

De�nition 88 (Semantic judgment).

γ : G
def

= ∀(x : R) ∈ G, γ x ∈ R

G |= S
def

= {e | ∀γ : G, γ e ∈ S}

We may now present the semantic typing rules for the STLC.

Lemma 89 (Variable). If R is a type and (x : R) is in G, then xk is in G |= R.

128

http://phd.ia0.fr/coq/Fsemantics.html#Mu_fold
http://phd.ia0.fr/coq/Fsemantics.html#Mu_unfold
http://phd.ia0.fr/coq/Fsemantics.html
http://phd.ia0.fr/coq/Fsemantics.html#NE_id
http://phd.ia0.fr/coq/Fsemantics.html#WF_CST
http://phd.ia0.fr/coq/Fsemantics.html#WF_PArr
http://phd.ia0.fr/coq/Fsemantics.html#WF_PProd
http://phd.ia0.fr/coq/Fsemantics.html#WFj_For
http://phd.ia0.fr/coq/Fsemantics.html#WFj_Mu
http://phd.ia0.fr/coq/Fsemantics.html
http://phd.ia0.fr/coq/Fsemantics.html#EJudg

Proof. Coq lemma Fsemantics.EVar_sem.

Let γ be compatible with G (1). We show that γ xk is in R. Since (x : R) is in G, we have
γ x in R by (1), Being a type, R is closed by lowering. Hence, bγ xck is also in R. By de�nition
of substitution, this is equal to γ xk, which is thus also in R.

Lemma 90 (Abstraction). If R and S are types and e is in G, (x : R) |= S, then λkx e is in

G |= R→ S.

Proof. Coq lemma Fsemantics.ELam_sem.

Let γ be compatible with G (1). We show that γ (λkx e) is in R → S (2). Assume
γ (λkx e) ? e1. Then e1 is necessarily of the form λjx e′ where γ e ? e′.

We �rst show that λjx e′ ∈ S (3). Since γ is compatible with G, γ, x 7→ x is compatible
with G, (x : R) as variables are in all types. Since e is in (G, (x : R) |= S), we have (γ, x 7→ x) e,
i.e. γ e in S. Since S is closed by reduction, we have e′ in S and a fortiori in S. This implies
(3).

Assume j > 0 and bfcj−1 ∈ R. Let γ′ be γ, x 7→ bfcj−1. By construction γ′ : G, (x : R).
Since e is in (G, (x : R) |= S), we have γ′ e in S and, since S is closed by reduction, e′[x/bfcj−1]
is also in S. By decreasing index we have be′[x/bfcj−1]cj−1 ∈ S, from which by Lemma 72
becomes be′[x/f]cj−1 ∈ S. This ends the proof of (2).

Lemma 91 (Application). If R and S are types, e is in G |= R→ S, and f is in G |= R, then
(e f)k is in G |= S for any k.

Proof. Coq lemma Fsemantics.EApp_sem.

Let γ be compatible with G. We show that γ (e f)k ∈ S. By hypotheses we have γ e ∈
R→ S and γ f ∈ R. We prove the more general result that for all k, e, and f , if e ∈ R→ S
and f ∈ R hold, then (e f)k ∈ S also holds. This is proved is by induction over the strong
normalization of e and f using the closure expansion of S.

The term (e f)k is neutral. It is also valid since e and f are sound and, by construction
of R → S, e is an abstraction when in normal form. If (e f)k reduces by a context rule,
we use our induction hypothesis. Otherwise, e must be of the form λj+1x e′ for some j and
e′ and k be of the form k′ + 1 and the reduction is (e f)k be′[x/f]cjk′ . It remains to
show be′[x/f]cjk′ ∈ S (1). We have bfcj ∈ R by stability under decreasing index. So, we
have be′[x/f]cj ∈ S by de�nition of the arrow operator. Then (1) follows by stability under
decreasing index.

Lemma 92 (Pair). If Ri is a type and ei is in G |= Ri, then 〈e1, e2〉k is in G |= R1 × R2.

Proof. Coq lemma Fsemantics.EPair_sem.

Lemma 93 (Projections). If R and S are types and e in G |= R × S, then fstk e is in G |= R
and sndk e is in G |= S.

Proof. Coq lemma EFst_sem and ESnd_sem in �le Fsemantics.v.

Note that when R is a type for all (x : R) ∈ G and S is a type, then G |= S is a pretype.

129

http://phd.ia0.fr/coq/Fsemantics.html#EVar_sem
http://phd.ia0.fr/coq/Fsemantics.html#ELam_sem
http://phd.ia0.fr/coq/Fsemantics.html#EApp_sem
http://phd.ia0.fr/coq/Fsemantics.html#EPair_sem
http://phd.ia0.fr/coq/Fsemantics.html#EFst_sem
http://phd.ia0.fr/coq/Fsemantics.html#ESnd_sem
http://phd.ia0.fr/coq/Fsemantics.html

5.3 Soundness

The soundness proof is not direct. We translate Fcc type system from the λ-calculus to a
temporary type system on the indexed calculus. We prove soundness for the indexed calculus
type system and migrate the result to the λ-calculus type system. The relation between both
type systems is that if a lambda term is well-typed then all indexed terms that drop on this
lambda term are also well-typed. And reciprocally, if an indexed term is well-typed, then its
dropped lambda term is well-typed too. Both directions preserve the typing (the pair of the
environment and type). Notice that only the term judgment needs to be changed since it is
the only one talking about terms.

Syntactically, the indexed term judgment e : Σ; Γ ` τ contains the exact same rules as
those of the lambda term judgment. However index annotations now appear on the term node
we are typing. This annotation has no constraint, which gives us that if a term is typed with
annotations it can be typed without and reciprocally if a term is typed without annotations
it can be typed with any annotations.

Lemma 94. The following assertions hold:

• If e : Σ; Γ ` τ holds, then bec : Σ; Γ ` τ holds.

• If a : Σ; Γ ` τ holds, then e : Σ; Γ ` τ holds for all e such that bec = a.

Proof. Coq lemma jterm_aux and jterm_aux_rev in �le Lsoundness.v.

We show the extraction lemma which is used to prove soundness. It permits to add premises
to some typing rules. These premises have to be present for the induction to work, but are
simple consequences of all rules taken at once. The premises in question are speci�cally marked
with the condition mS v in the de�nition of typesystem.jobj and Ftypesystem.jterm. See
Section 5.6 for more details about the paper version and soundness version of the type system.

Lemma 95 (Extraction). The following assertions hold.

• If Σ ` κ and ∅ Σ hold, then Σ κ holds.

• If Σ ` τ : κ and ∅ Σ hold, then Σ κ holds.

• If Σ; Θ0; Θ1 ` P, ∅ Σ, Σ Θ0, and Σ Θ1 hold, then Σ P holds.

• If Σ; Θ0; Θ1
?̀ (Σ′ ` τ ′) . τ , ∅ Σ, Σ Θ0, and Σ Θ1 hold, then Σ ` Σ′ holds and

if Σ,Σ′ ` τ ′ : ? also holds, then Σ ` τ : ? holds too.

• If Σ ` Σ′ holds, then Σ Σ′ holds.

• If e : Σ; Γ ` τ , ∅ Σ, and Σ ` Γ hold, then Σ ` τ : ? holds.

Proof. Coq lemma jobj_extra and jterm_extra in �le typesystemextra.v. The proof is
done by induction and uses the usual weakening and substitution lemma.

To state and prove the soundness of the indexed type system we interpret (syntactic) kinds,
types, propositions, and typing environments as sets of semantic objects, semantic objects,
semantic propositions, and mappings from type variables to semantic objects respectively. For
each judgment, we also give its semantic interpretation as a mathematical assertion. The Coq

130

http://phd.ia0.fr/coq/Lsoundness.html#jterm_aux
http://phd.ia0.fr/coq/Lsoundness.html#jterm_aux_rev
http://phd.ia0.fr/coq/Lsoundness.html
http://phd.ia0.fr/coq/typesystem.html#jobj
http://phd.ia0.fr/coq/Ftypesystem.html#jterm
http://phd.ia0.fr/coq/typesystemextra.html#jobj_extra
http://phd.ia0.fr/coq/typesystemextra.html#jterm_extra
http://phd.ia0.fr/coq/typesystemextra.html

|?|η = T

|1|η = {〈〉}
|κ1 × κ2|η =

{
〈x1, x2〉 | x1 ∈ |κ1|η ∧ x2 ∈ |κ2|η

}
|{α : κ | P}|η =

{
x ∈ |κ|η | ∀k |P|

k
η,α7→x

}
Figure 5.17: Kind interpretation

|α|η = η(α)

|τ → σ|η = |τ |η → |σ|η
|τ × σ|η = |τ |η × |σ|η

|∀(α : κ) τ |η = ∀ |κ|η (x 7→ |τ |η,α7→x)

|µα τ |η = µ (x 7→ |τ |η,α7→x)

|⊥|η = ⊥
|>|η = >

|〈〉|η = 〈〉
|〈τ, σ〉|η = 〈|τ |η , |σ|η〉
|fst τ |η = fst |τ |η
|snd τ |η = snd |τ |η

Figure 5.18: Type interpretation

interpretation function is Fsoundness.semobj. It is de�ned as a binary relation, but we show
in semobj_eq that it behaves as a function.

We de�ne the interpretation of kinds on Figure 5.17. Kinds are interpreted as sets of
semantic objects under a mapping η from type variables α to semantic objects. The star kind
is interpreted as the set of semantic types T. The unit kind is interpreted as the singleton set
containing the unit object 〈〉. The product kind κ1 × κ2 is interpreted as the set of pairs of
which the �rst component is in the interpretation of κ1 and the second component is in the
interpretation of κ2. Finally the constrained kind {α : κ | P} is interpreted as the subset of
the interpretation of κ for which its elements x satisfy the interpretation of the proposition P
under the extended mapping where α maps to x and for all k.

The interpretation of syntactic types, given in Figure 5.18, are semantic objects, and it
is parametrized over a mapping from type variables to semantic objects written η. Semantic
objects may be semantic types, the unit object 〈〉, or pairs of semantic objects 〈x1, x2〉. The
interpretation of a type variable is its value in the mapping. If it is not present in the mapping,
the unit semantic object is returned. The interpretation of arrow and product types simply
use the arrow and product operators de�ned in 5.2.4. The interpretation of the polymorphic
type ∀(α : κ) τ under η is the intersection of all interpretations of τ under η extended with α
mapping to x in the interpretation of κ under η. This is de�ned using the intersection operator
of Section 5.2.5. The interpretation of the recursive type µα τ under η is the in�nite iteration
of the functor mapping X under the extension of η mapping α to X�which corresponds to
the in�nite unfolding of the recursive type (see Section 5.2.6). Finally, top and bottom are
mapped to their semantic equivalent.

The unit type is interpreted as the unit semantic object. The syntactic pair of types τ
and σ is interpreted as the semantic pair of the interpretations of τ and σ under the same
mapping. Similarly for the projections: fst τ and snd τ are interpreted to the mathematical
projections of respectively the �rst and second component of semantic pairs.

The interpretation of propositions is given on Figure 5.19. A proposition is interpreted to

131

http://phd.ia0.fr/coq/Fsoundness.html#semobj
http://phd.ia0.fr/coq/Fsoundness.html#semobj_eq

|>|kη = >

|P1 ∧ P2|kη = |P1|kη ∧ |P2|kη
|(Σ′ ` τ ′) . τ |kη = ∀e < k (∀η′ ∈ |Σ′|η e ∈ |τ ′|η,η′)⇒ e ∈ |τ |η

|∃κ|kη = ∃x ∈ |κ|η
|∀(α : κ) P|kη = ∀x ∈ |κ|η |P|

k
η,α7→x

Figure 5.19: Proposition interpretation

a mathematical assertion and depends on a mapping η from type variables to semantic objects
and on an index k used to control coinduction. The true and conjunction propositions are
interpreted as the true and conjunction mathematical assertions. The interpretation of the
coercion proposition (Σ′ ` τ ′) . τ under η and k asks ∀ |Σ′|η (η′ 7→ |τ ′|η,η′) to be included in
|τ |η for indexed terms e with indices smaller than k. Because all indexed terms are controlled
by an index k (Coq lemma Flanguage.term_lt_exists), if the inclusion holds for all indices,
then it holds for the speci�c index k, and thus it holds for the term e. The interpretation of
the coherence proposition ∃κ under η (the coinduction index k is not used) is the assertion
that there exists a semantic object x in the interpretation of the kind κ under η. Finally, the
polymorphic proposition ∀(α : κ) P is interpreted under η and k by a quanti�ed assertion that
P has to hold for k and the mapping η extended with α mapped to x for all objects x in the
interpretation of κ under η.

We de�ne the interpretation of type environments as a set of semantic object mappings
(from type variables to semantic objects) in Figure 5.20. The interpretation is parametrized
by a surrounding mapping η. The empty environment is interpreted by the singleton set
containing the empty mapping ∅. The interpretation of an environment Σ extended with a
type binding (α : κ) extends the mapping η′ in the interpretation of Σ under η with α bound
to a semantic object in the interpretation of κ under the extended mapping η, η′. We write
|Σ| to stand for |Σ|∅. The following lemma and corollary demonstrate how mapping extension
relates to type environment concatenation. If η is a mapping of the interpretation of the type
environment Σ and η′ is a mapping of the interpretation of Σ′ under the surrounding mapping
η, then η′ is actually an extension of η for the interpretation of the concatenation Σ,Σ′.

Lemma 96. If η2 ∈ |Σ2|η1 and η3 ∈ |Σ3|η1,η2, then η2, η3 ∈ |Σ2,Σ3|η1.

Corollary 97. If η ∈ |Σ| and η′ ∈ |Σ′|η, then η, η′ ∈ |Σ,Σ′|.

Proof. Coq lemma Fsoundness.Happ_fH

The interpretation of proof environments is given in Figure 5.20. The interpretation |Θ|kη of
the proof environment Θ under the mapping η and with index k is a mathematical proposition.
The interpretation of the empty environment is the tautology proposition, which is always true.
The extension of an environment Θ with proposition P under η with k is the conjunction of
the interpretations of Θ and P under the same arguments η and k. Said otherwise |Θ|kη holds
if and only if all its propositions hold under η and k.

Finally, the interpretation of term environments is given in Figure 5.20. The interpretation
|Γ|η of the term environment Γ under the mapping η is the semantic context G where all
syntactic types have been interpreted to a semantic type R under η.

132

http://phd.ia0.fr/coq/Flanguage.html#term_lt_exists
http://phd.ia0.fr/coq/Fsoundness.html#Happ_fH

|∅|η = {∅}
|Σ, (α : κ)|η =

{
η′, α 7→ x | η′ ∈ |Σ|η ∧ x ∈ |κ|η,η′

}
|∅|kη = >

|Θ,P|kη = |Θ|kη ∧ |P|
k
η

|∅|η = ∅
|Γ, (x : τ)|η = |Γ|η , (x : |τ |η)

Figure 5.20: Environments interpretation

The semantic weakening lemma tells that the interpretation of a syntactical object (a kind,
a type, a proposition, a type environment, a proof environment, or a term environment) under
the mapping η, only looks at the values of η for its free type variables. As a consequence, we
may freely change the mapping η as long as we do not touch the semantic objects associated to
the free type variables of the syntactical object we consider, it will not change its interpretation.

Lemma 98 (Semantic weakening). If η′ and η agree on the free variables of κ (resp. τ , P, Σ,
and Θ), then |κ|η′ = |κ|η (resp. |τ |η′ = |τ |η, |P|

k
η′ = |P|kη for all k, |Σ|η′ = |Σ|η, |Θ|

k
η′ = |Θ|kη

for all k, and |Γ|η′ = |Γ|η) holds.

Proof. Coq lemma Fsoundness.semobj_lift

The semantic substitution lemma relates type substitution with mapping extensions. The
interpretation under η of a semantic object in which we substituted the type variable α with
type σ is equal to the interpretation of the same object without substitution under the exten-
sion of η where α maps to the interpretation of σ under η.

Lemma 99 (Semantic substitution). Let η′ = η, α 7→ |σ|η. The following assertions hold.

• |κ[α/σ]|η = |κ|η′ holds.

• |τ [α/σ]|η = |τ |η′ holds.

• |P[α/σ]|kη = |P|kη′ holds for all k.

• |Σ[α/σ]|η = |Σ|η′ holds.

• |Θ[α/σ]|kη = |Θ|kη′ holds for all k.

• |Γ[α/σ]|η = |Γ|η′ holds.

Proof. Coq lemma Fsoundness.semobj_subst

We can now de�ne and prove the soundness of each syntactic judgment according to its
semantic. If τ is non-expansive (resp. well-founded) with respect to α, then its interpretation
as a functor under any mapping is non-expansive (resp. well-founded). If a kind κ is coherent
under environment Σ, then its interpretation under any mapping η of the interpretation of Σ
is inhabited. If a type τ has kind κ under the environment Σ, then its interpretation is in the
interpretation of its kind, for all mappings η of the interpretation of Σ.

133

http://phd.ia0.fr/coq/Fsoundness.html#semobj_lift
http://phd.ia0.fr/coq/Fsoundness.html#semobj_subst

dxek = xk

dλx aek = λkx daek
da bek = (daek dbek)k

d〈a, b〉ek = 〈daek, dbek〉k
dfst aek = fstk daek
dsnd aek = sndk daek

Figure 5.21: Fill function

If the proposition P holds under Σ, Θ0, and Θ1, then for all mappings η of the interpretation
of Σ and for all indices k, if the interpretation of Θ0 holds under η for all indices j smaller than
or equal to k and the interpretation of Θ1 holds under η for all indices j smaller than k, then
the interpretation of P holds under η with k. We see in the interpretation of the proposition
judgment that Θ0 can be used at level k while Θ1 is only accessible at level k− 1. So in order
for P to use an hypothesis in Θ1, it has to do something constructive in order to decrease the
level and use the hypothesis.

If a type environment Σ′ is coherent under Σ, then its interpretation is inhabited under
any mapping η of the interpretation of Σ. If the term environment Γ is valid under the type
environment Σ, then for all mappings η of the interpretation of Σ the interpretation under η
of the types of Γ are semantic types. If the indexed term e has type τ under Σ and Γ, then
for all type mappings η of the interpretation of Σ the term e is in the semantic judgment
|Γ|η |= |τ |η.

Lemma 100 (Judgment soundness). The following assertions hold.

• If α 7→ τ : NE holds, then ∀η X 7→ |τ |η,α7→X is non-expansive.

• If α 7→ τ : WF holds, then ∀η X 7→ |τ |η,α7→X is well-founded.

• If Σ ` κ holds, then ∀η ∈ |Σ| |κ|η 6= ∅.

• If Σ ` τ : κ holds, then ∀η ∈ |Σ| |τ |η ∈ |κ|η.

• If Σ; Θ0; Θ1 ` P holds, then ∀η ∈ |Σ| ∀k (∀j ≤ k |Θ0|jη) ∧ (∀j < k |Θ1|jη)⇒ |P|
k
η.

• If Σ ` Σ′ holds, then ∀η ∈ |Σ| |Σ′|η 6= ∅.

• If Σ ` Γ holds, then ∀η ∈ |Σ| ∀(x : R) ∈ |Γ|η R ∈ T.

• If e : Σ; Γ ` τ holds, then ∀η ∈ |Σ| e ∈ |Γ|η |= |τ |η.

Proof. Lemma jrec_sound, jobj_sound, and jterm_sound in the Fsoundness.v Coq �le.

To prove the soundness of System Fcc, we need to de�ne the �lling daek of a lambda term a
at rank k as the indexed term obtained by annotating each node of a with index k (Figure 5.21
and Coq de�nition Llanguage.kfill). By construction, we have bdaekc = a. The drop and
�ll functions are used to go back and forth between both type systems.

We can now de�ne and prove the soundness lemma. If a is well-typed under coherent and
valid environments then a is sound.

Theorem 101 (Soundness of System Fcc). If ∅ ` Σ, Σ ` Γ, and a : Σ; Γ ` τ hold, then a ∈ S.

134

http://phd.ia0.fr/coq/Fsoundness.html#jrec_sound
http://phd.ia0.fr/coq/Fsoundness.html#jobj_sound
http://phd.ia0.fr/coq/Fsoundness.html#jterm_sound
http://phd.ia0.fr/coq/Fsoundness.html
http://phd.ia0.fr/coq/Llanguage.html#kfill

Proof. Coq lemma Lsoundness.soundness.

The lambda term a is sound if it is sound for any number of steps k. Let's show that it is
sound for at least k steps. Let e be daek. We have e ≥ k, and by Lemma 76 it su�ces to show
that e is sound. We have e : Σ; Γ ` τ by Lemma 94. By Lemma 95, we have ∅ Σ in a �rst
step and Σ ` τ : ? in a second step. By Lemma 100, |Σ| is inhabited and there is a mapping
η such that η ∈ |Σ|. We also have that all sets in |Γ|η are semantic types. And we also have
that |τ |η is a semantic type. And �nally we have e is in the semantic judgment |Γ|η |= |τ |η,
which is a pretype. We deduce e ∈ S.

Termination in the absence of recursive types Although evaluation may not termi-
nate because of the presence of recursive types, it remains interesting to show that recursive
types are the only source of non-termination. We already know this for System F. We show
that coercions do not themselves introduce non-termination, as long as all types remain non-
recursive. The proof is based on reducibility candidates as for System F and does not raise
any di�culties. It is almost a copy-paste of the soundness proof omitting step-indices. We
thus omit the details.

Theorem 102 (Termination). If ∅ ` Σ, Σ ` Γ, and a : Σ; Γ ` τ hold in the sublanguage

without recursive types, then a strongly normalizes.

Proof. Coq lemma Lnormalization.normalization.

5.4 Expressivity

System Fcc goal was to extend System F
p
ι to gain the expressiveness of Constraint ML. In order

to do so we added both recursive types and coherent coercion abstraction. Recursive types
are necessary because consistency in Constraint ML is only de�ned with recursive types. There
is apparently no simple criteria for consistency implying strong normalization in addition to
soundness. In System Fcc however, it is simple to remove recursive types and thus allow us to
write programs with mechanisms similar to Constraint ML which are sound and terminating.

Coherent coercion abstraction was actually added using the coherent polymorphism type
system feature. Polymorphism permits to abstract over an erasable content as long as it is
coherent. We classify erasable contents, i.e. types, with kinds. We added a particular kind
which permits to restrain an existing kind for types satisfying a proposition, and propositions
contain coercions. In a �rst section, we de�ne some surface notations. In the next two sections
we show how System F

p
ι and Constraint ML are included in System Fcc. We then discuss the

di�erences between equi-recursive types which we provide in System Fcc and iso-recursive
types which we de�ned in System Frec in Section 3.3. The �nal section shows how our notion
of coinduction subsumes existing notions about recursive type equality and recursive type
congruence.

5.4.1 Surface notations

To ease readability, we de�ne a few surface notations that easily desugar to System Fcc.

Type bindings with constrained kinds The �rst notation is about type bindings (α : κ)
when the kind κ is a constrained kind {α′ : κ′ | P′}. The binding is thus written (α : {α′ :

135

http://phd.ia0.fr/coq/Lsoundness.html#soundness
http://phd.ia0.fr/coq/Lnormalization.html#normalization

κ′ | P′}). On the one hand, the type variable α does not bind in the constrained kind and is
thus not free in κ′ and P′. But it binds for what comes next (which is the role of a binder);
if the binder is used for a polymorphic type ∀(α : {α′ : κ′ | P′})σ, it binds in σ; if it is
used in a type environment Σ1, (α : {α′ : κ′ | P′}),Σ2, it binds in Σ2 and what comes after
(coinductive hypotheses or what is after the turnstile). On the other hand, the type variable
α′ binds in P′, but not in what comes after. It also does bind in its kind κ′. Since these
scopes are not ambiguous we may reuse the same type variable for α and α′, and thus write
(α : {α : κ′ | P′[α′/α]}) (which is what happens when using de Bruijn indices).

However these two type variables are essentially the same: they represent the same type.
We may thus simply write (α : κ | P) instead of (α : {α : κ | P}). In other words the con-
strained kind, with parentheses instead of curly braces, becomes a binder for the constrained
kind itself, reusing its type variable for the binding type variable. This notation applies only
when the constrained kind is used where a binder is expect. Here follow two examples: one
for the polymorphic type and one for type environment extension.

∀(α : κ | P)σ
def

= ∀(α : {α : κ | P})σ
Σ, (α : κ | P)

def

= Σ, (α : {α : κ | P})

Existential propositions In type systems with constraints, like Constraint ML, there is
usually an existential proposition. As we saw in rule PropExi, our coherence proposition
∃κ behaves like an existential. It is introduced with a rule forgetting the witness type, and
eliminated with rules TypeStr and PropStr which are similar to existential elimination.
Thus it is no surprise that we can easily encode existential propositions with the coherence
proposition of a constrained kind.

∃(α : κ) P
def

= ∃ {α : κ | P}

The existential proposition ∃(α : κ) P is thus true, if there is a witness type τ in the constrained
kind {α : κ | P}, which by unfolding rule TypePack means that τ has kind κ and satis�es the
proposition P.

Lists of type variables and lists of kinds The reason we added the unit kind and product
kinds was to simplify the Coq development when dealing with lists of types. Our prior version
had a polymorphic type of the form ∀(α, τ1 . τ2)σ, which meant that we abstracted over all
type variables in α satisfying all the coercions in τ1 . τ2 . We eliminated these two uses of
lists using the unit kind and product kind for the type variables, and the true proposition and
conjunction proposition for the coercions. However, a notation of the form {α : κ | P}, and
thus ∀(α : κ | P)σ using the type binding with constrained kind notation, may be useful.

The de�nition of such notation is not local to the binder, but needs access to what is in
the scope of the binder. In the case of the constrained kind {α : κ | P} we need to modify the
proposition P. Similarly, for the polymorphic type ∀(α : κ)σ, we need access to the type σ.
And �nally, for the combination of both ∀(α : κ | P)σ, we need to modify both P and σ.

We will study the situation with the constrained kind polymorphic type, but it applies
for other binding structures. We de�ne the notation ∀(α : κ | P)σ as ∀(α′ : κ′ | P′)σ′,
where κ′, P′, and σ′ are de�ned as follows. The type variable α′ is taken fresh. We de�ne
κ′ as the list κ encoded using the product kind for cons and the unit kind for nil. For
example, the list κ1, κ2 is encoded as κ1 × (κ2 × 1). The proposition P′ and the type σ′ are

136

substitutions of P and σ respectively. We substitute each use of αi (the ith element of the
list α) as the �rst type projection of (i − 1) iterations of the second type projection of the
type variable α′. For example, if the list of type variables was α1, α2, the substitution will be
[α1/fstα′][α2/fst (sndα′)]. When instantiating such kind of notations, we need to de�ne the
encoding of a list of types. The idea is similar to the encoding of the list of kinds. The list of
types τ is encoded as a list where the pair type is used for cons and the unit type is used for
nil. For example, the list τ1, τ2 is encoded as 〈τ1, 〈τ2, 〈〉〉〉.

Here is a list of other places where this notation may be used: polymorphic types ∀(α : κ)σ,
constrained kinds {α : κ | P}, constrained kind polymorphic types ∀(α : κ | P)σ as we saw,
existential propositions ∃(α : κ) P because they use the constrained kind, type extensions
Σ, (α : κ), and constrained kind type extensions Σ, (α : κ | P).

The star kind A very simple notation, but easing readability, is to omit the star kinds
in type bindings. We may for example write: ∀α τ for polymorphic types of the kind star,
∀α τ for polymorphic types over a list of types of the kind star, ∀(α | P)σ for polymorphic
types over a list of types of the kind star satisfying the proposition P, or ∃α P for existential
propositions over a list of type variables of the kind star satisfying the proposition P.

Erasable isomorphisms It is sometime useful to have a notion of isomorphisms, like the
equality coercions in FC [35]. We can encode this notion using two inverse coercions. We
de�ne the isomorphism proposition notation τ ≡ σ as (∅ ` τ) . σ ∧ (∅ ` σ) . τ . However,
this de�nition can only be used with types of kind star, because coercions are only de�ned
at kind star. In order to de�ne a notion of isomorphism at any kind, we lift our notion of
erasable isomorphism at kind star to other kinds by extensionality. We index the notation
τ ≡κ σ with the kind κ of types τ and σ. We could consider heterogeneous isomorphisms,
but we restrict to homogeneous isomorphisms for simplicity. The isomorphism at kind κ is
de�ned inductively on the kind as follows (the last line concerns type-level functions de�ned
in Section 6.1.3):

τ ≡? σ
def

= τ ≡ σ

τ ≡1 σ
def

= >
τ ≡κ1×κ2 σ

def

= (fst τ ≡κ1 fstσ) ∧ (snd τ ≡κ2 sndσ)

τ ≡{α:κ|P} σ
def

= τ ≡κ σ
τ ≡κ1→κ2 σ

def

= ∀(αβ : κ1 × κ1 | α ≡κ1 β) τ α ≡κ2 σ β

5.4.2 System Fpι

There is no surprise that System Fcc extends System F
p
ι . The encoding is simple and not very

interesting. And the proof is not di�cult but it has to be done. We de�ne two translations
from System F

p
ι to System Fcc: one for types and one for environments. We write τ̂ for

the translation of the type τ . We give its de�nition in Figure 5.22. Type variables, arrows,
products, polymorphic types, top and bottom are translated to their equivalent in System Fcc.
Notice that the polymorphic type uses the notation omitting to mention the kind star (see
Section 5.4.1). The bounded polymorphic types are translated to polymorphic types over a
constrained kind (we can use the notations we de�ned in Section 5.4.1). The upper bounded
polymorphic type ∀(α . τ)σ is translated to a polymorphic type with body σ̂ over the type

137

α̂ = α
τ̂ → σ = τ̂ → σ̂

τ̂ × σ = τ̂ × σ̂
∀̂α τ = ∀α τ̂
>̂ = >
⊥̂ = ⊥

̂∀(α . τ)σ = ∀(α | (∅ ` α) . τ̂) σ̂
̂∀(α / τ)σ = ∀(α | (∅ ` τ̂) . α) σ̂

Figure 5.22: System F
p
ι type translation function

∅̂Σ = ∅
̂Γ, (x : τ)

Σ
= Γ̂Σ

Γ̂, α
Σ

= Γ̂Σ, α

̂Γ, α, (τ . σ)
Σ

= Γ̂Σ, (α | (∅ ` τ̂) . σ̂)

∅̂Γ = ∅
̂Γ, (x : τ)

Γ
= Γ̂Γ, (x : τ̂)

Γ̂, α
Γ

= Γ̂Γ

̂Γ, (τ . σ)
Γ

= Γ̂Γ

Figure 5.23: System F
p
ι environment translation function

variable α ranging over the constrained kind {α | (∅ ` α) . τ}. This constrained kind contains
types (of the star kind) satisfying the proposition that α can be coerced to τ , which is exactly
what upper bounded polymorphism requires. Lower bounded polymorphism is similar.

We de�ne the translation for environments in Figure 5.23. Environments can be translated
as type environments, written Γ̂Σ, or as term environments, written Γ̂Γ. The exponent symbol
is not a metavariable but an annotation to di�erentiate the translation. The translation as
term environments simply �lters the term bindings and translates their types. The translation
for type environments translates the sole type bindings to type bindings of the star kind,
and bounded type bindings to type bindings of a constrained kind with the coercion as the
constraining proposition. Again, we use the notations de�ned in Section 5.4.1.

To prove the inclusion of System F
p
ι in System Fcc, we need to prove that if a judgment holds

in System F
p
ι , then its translation holds in System Fcc. We write (J)s for System F

p
ι judgments

and (J)t for System Fcc judgments. From the environment judgment we actually extract two
translated judgments: one for the type environment and one for the term environment which
has to hold under the translated type environment. All types in System F

p
ι have the star

kind as we can see in the second assertion. And all coercions are typed without coinduction
hypotheses as we can see in the third assertion.

Lemma 103. The following assertions hold.

• If (Γ env)s holds, then (∅ ` Γ̂Σ)t and (Γ̂Σ ` Γ̂Γ)t hold.

• If (Γ ` τ type)s holds, then (Γ̂Σ ` τ̂ : ?)t holds.

• If (Γ ` (Σ ` τ) . σ)s and (Γ,Σ ` τ type)s hold, then (Γ̂Σ;∅;∅ ` (Σ̂Σ ` τ̂) . σ̂)t holds.

• If (a : Γ ` τ)s holds, then (a : Γ̂Σ; Γ̂Γ ` τ̂)t holds.

Proof. We proceed by mutual induction. For rule EnvEmpty, the assertion holds because the
empty type environment is well formed, and the empty term environment is well-formed under

138

well-formed type environment. Rules EnvTerm and EnvType hold by induction hypotheses
without di�culties.

Rule EnvTypeL is more involved. This is actually the most interesting part of the proof
because this is where we forge (very simple) witnesses. If we write Σ the translated type
environment by induction hypothesis, then we have to show that Σ ` {α | (∅ ` τ̂) . α} holds.
By rule Kind we have to show Σ;∅;∅ ` ∃α (∅ ` τ̂) . α. We use rule TypePack with the top
type. The well-formedness premise for the proposition Σ, α (∅ ` τ̂) . α uses the induction
hypothesis to show Σ, α ` τ̂ : ?. The top type has kind star by rule TypeTop. We prove the
last premise Σ;∅;∅ ` (∅ ` τ̂ [α/>]) . > by rule CoerTop and the substitution lemma to
show Σ ` τ̂ [α/>] : ?. Rule EnvTypeU is similar with the bottom type as witness.

The second assertion is not di�cult and uses only induction hypotheses. For the third
assertion, proof environments are always empty. Rules CoerRefl, CoerTrans, CoerWeak,
CoerEtaArr, CoerEtaProd, CoerTop, and CoerBot have analog rules.

Rule CoerVar is interesting because it does not use a coercion variable rule, as there
is no such rule. It uses rule PropRes with the instance type equal to the type variable
associated to the coercion, which does exist because the environment is well-formed. For
instance, if the coercion judgment we have to translate is Γ, α, (α . τ),Γ′ ` α . τ then we
have (α : {α | (∅ ` α) . τ̂}) in our translated type environment. With rule TypeVar we derive
Σ ` α : {α | (∅ ` α) . τ̂}. From which using rule PropRes we get Σ;∅;∅ ` (∅ ` α) . τ̂ .

Rules CoerTLam and CoerTApp use rules CoerGen and CoerInst with the star kind.
Rules CoerTLamL, CoerTLamU, CoerTAppL, and CoerTAppU are similar with more elab-
orated kinds. We detail rule CoerTAppU. We have to show that Σ ` σ̂ : {α | (∅ ` α) . τ̂}
holds, if we write Σ the translated type environment. We use rule TypePack. The �rst
premise Σ ` σ̂ : ? is proved by the �rst induction hypothesis. The second premise Σ;∅;∅ `
(∅ ` σ̂) . τ̂ [α/σ̂] is proved by the second induction hypothesis.

The last assertion only contains analogous rules.

5.4.3 Constraint ML

In Constraint ML, the main feature is constraint generalization. We write τ̂ the type translation
of τ . We can translate constraints as propositions. The constraint τ . σ becomes the coercion
(∅ ` τ̂) . σ̂. Constraint conjunctions C1 ∧ C2 are translated to proposition conjunctions

Ĉ1 ∧ Ĉ2. The existential constraints ∃α.C become ∃α Ĉ, which are existential propositions
over a series of type variables (see Section 5.4.1). We translate types in the same manner. In
particular, type schemes ∀α.C ⇒ σ are translated to ∀(α | Ĉ) σ̂. Environments are simply
translated by translating their type schemes.

We translate the term judgment C; Γ ` a : τ into a : ∅, (α | Ĉ); Γ̂ ` τ̂ . The type environ-
ment contains a unique type binding for all the type variables (of the star kind using notations
of Section 5.4.1) in C, Γ, and τ . The type binding has a constrained kind resulting from the
constraint of the Constraint ML judgment. Most term typing rules are simple translations. We
focus on the most interesting ones.

TermSub

C; Γ ` a : τ C ` τ . τ ′

C; Γ ` a : τ ′

Rule TermSub (reminded above) uses rule TermCoer as long as C ` τ . τ ′ can be translated

139

to a derivation of ∅, (α | Ĉ);∅;∅ ` (∅ ` τ̂) . τ̂ ′ which depends on the power of the Constraint
ML constraint judgment.

We remind rule TermIntro:

TermIntro

C ∧D; Γ ` a : τ α /∈ fv(C,Γ)

C ∧ ∃α.D; Γ ` a : ∀α.D ⇒ τ

We use β to designate the type variables of the judgment that are not in α. By induction
hypothesis, we have a : ∅, (βα : {βα : ? × ? | Ĉθ ∧ D̂θ}); Γ̂ ` τ̂ θ, where θ is the substitution
[α/sndβα][β/fstβα]. We now weaken the type environment to ∅, (β | Ĉ ∧ ∃α D̂), (α | D̂).
We clearly have the same type variables with the same kinds (the star kind) because we only
partitioned the existing binding. It remains to show that this partition is still coherent. The
�rst binding is coherent by hypothesis. And the second binding (α | D̂) is coherent under
∅, (β | Ĉ ∧ ∃α D̂) by rules Kind, PropSnd, PropRes, and TypeVar.

Rule TermElim relies on rule TermCoer with CoerInst. We have to show that ∅, (β |
Ĉ) ` τ̂ : {α | D̂} holds. Rule TypePack requires ∅, (β | Ĉ);∅;∅ ` D̂[α/τ̂]. Depending on the
power of Constraint ML constraint judgment, we may have a translation from C ` D[α← τ]
to our judgment.

To conclude, System Fcc features Constraint ML mechanisms for the term judgment. Since
Constraint ML is parametrized over its constraint mechanism, the inclusion is complete if
the constraint judgment implies its translation as a System Fcc proposition. In particular,
constraint implication C ` D should imply its translation, which is the proposition ∅, (α |
Ĉ);∅;∅ ` D̂ where α are the free variables of the constraints C and D. A simple situation
when this implication holds is when the constraint mechanism exhibits type witnesses. These
type witnesses can then be used to build a derivation of the translated proposition.

5.4.4 Recursive coercions

We added recursive types to System Fcc, because the solvability condition of Constraint ML

uses them ([28] and [31]). There are two sorts of recursive types: equi-recursive types and
iso-recursive types. Equi-recursive types leave no traces in terms. They de�ne the unfolding
of recursive types as a type equality. The types µα τ and τ [α/µα τ] are really the same type.
By contrast, these are di�erent types in the iso-recursive view and fold and unfold coercions
allow to change one into the other. The version of System Frec we presented in Section 3.3
uses iso-recursive types.

Equi-recursive types are also stronger than iso-recursive types for two reasons. First,
because the folding and unfolding of equi-recursive types may be used at any depth. Notice
however, that in type systems with subtyping or coercions, this is not a di�erence. Then,
because they may equate two recursive types of di�erent periods. For instance, the types
µα Int→ α and µα Int→ Int→ α are equal with equi-recursive types, but there is no possible
conversion from one to the other with iso-recursive types.

In System Fcc, although recursive types are folded and unfolded in our coercion judgment
(as it is the case with iso-recursive types) and not in the type equality (as it is the case with
equi-recursive types), they have the expressivity of equi-recursive types. This is possible for
two reasons. First, our recursive types do not leave any trace at the term level: they are
erasable. Erasability is a requirement for equi-recursive types. Then, we have the possibility
to prove coercions by coinduction, which is crucial in order to equal periods.

140

We present how to recover the usual rules for reasoning on recursive types [3] by using rule
PropFix. For the usual rule EquivPeriod, we use our notion of erasable isomorphism, which
we also call equivalence, instead of type equality. This is not a problem because equivalence is
interpreted as equality. This rule says that two types τ1 and τ2 are equivalent if each of them
is equivalent to some unfolding by a common well-founded functor α 7→ σ.

EquivPeriod

α 7→ σ : WF Σ; Θ0; Θ1 ` τ1 ≡ σ[α/τ1] Σ; Θ0; Θ1 ` τ2 ≡ σ[α/τ2]

Σ; Θ0; Θ1 ` τ1 ≡ τ2

This rule can be used to show that one-step τ -lists µα 1 + τ × α are equivalent to two-steps
τ -lists µα 1 + τ × (1 + τ × α). It su�ces to take τ1 to be one-step τ -lists, τ2 to be two-steps
τ -lists, and σ to be 1 + τ × (1 + τ × α). To show the �rst equivalence, we have to unfold τ1

twice, and to show the second equivalence, we have to unfold τ2 once.
Rule EquivPeriod is derivable for each type σ because the derivation follows the structure

of σ. We �rst use rule PropFix to memorize the τ1 ≡ τ2 proposition. We then split the
conjunction and show only the side τ1 . τ2, because the other side is similar. We the use both
hypotheses to get σ[α/τ1] . σ[α/τ2]. We now follow the structure of σ using η-expansions to
go under constructors and re�exivity when subtypes are free from the type variable α. When
we reach α, it means that we have to show either τ1 . τ2 or τ2 . τ1 depending on the variance.
But in both cases we went under a computational type constructor, because σ is well-founded
with respect to α, and the τ1 ≡ τ2 hypothesis is now accessible. This remark ends the proof.

The second usual rule about recursive types is CoerEtaMu. It tells when two recursive
types are in the coercion relation. The recursive type µα τ is smaller than µβ σ if τ is smaller
than σ given that α is smaller than β. This rule can be used to prove that τ -lists µα 1 + τ ×α
are smaller than σ-lists µβ 1 + σ × β if τ is smaller than σ. We simply use η-expansions for
the sum and product types, and the hypotheses for τ . σ and α . β.

CoerEtaMu

Σ, (αβ : ?× ? | (∅ ` α) . β); Θ0; Θ1 ` (∅ ` τ) . σ

Σ; Θ0; Θ1 ` (∅ ` µα τ) . µβ σ

This rule is derivable in System Fcc. We use rule PropFix to memorize the µα τ . µβ σ
coercion. We then use fold and unfold to get τ [α/µα τ] . σ[β/µβ σ]. We now use our body
hypotheses and modify its use of α . β by our memorized coercion, which is accessible because
µα τ and µβ σ are well-formed recursive types and thus α 7→ τ and β 7→ σ are well-founded.

5.5 Incoherent Polymorphism

Incoherent polymorphism is a necessity for some type system features, but it may also be a
simpli�cation. First, as described below in Section 6.1.2, incoherent polymorphism is necessary
to describe the kind of existentials used in GADTs (where incoherence is frequent). On the
one hand, coherent polymorphism requires the kind to be coherent, and thus the existence
of a witness type. On the other hand, incoherent polymorphism permits type abstraction for
any well-formed kind: inhabited kinds, potentially inhabited kinds, and empty kinds. In the
polymorphic type ∀(α : κ) τ , the coherence of kind κ may depend over type variables β of the
type environment. Depending on how they are instantiated, the kind κ may or may not be
inhabited. A simple example will follow when illustrating GADTs. Apart from these cases,

141

we may simply omit to prove that the kind κ is coherent to ease the programmers task. The
result will be inaccessible code until the abstraction is instantiated. Since such abstraction is
equivalent to a unit abstraction (see the last paragraph of this section about weak reduction),
we may say it has a zero-bit cost as in FC. Actually, this construct corresponds to the notion
of coercion abstraction in FC. In the rest of this section, we describe how to extend System Fcc
with incoherent polymorphism, and illustrate its use with GADTs. This extension is in the
Coq development and thus proved sound.

We extend the syntax of the λ-calculus with type abstraction ∂a and type application
a♦. Type abstraction does not bind anything. Its only use is to block reduction. Hence, we
only add the evaluation context for type application []♦. The type abstraction context ∂ [] is
not an evaluation context. This is the most important part of this extension. In particular,
∂r, where r is an error, is sound. Notice that removing an evaluation context may break
con�uence, which is the case here. But we can restore it by keeping a list of substitutions at
type abstractions as it is done in [22] or using an type weakening construct as it is done in [8].

Prevalues and values are extended accordingly: p♦ is a prevalue and ∂a is a value. We
do not ask the body a of the type abstraction to be a value because we do not reduce under
type abstraction. Finally, we extend the set of errors with destructors applied to the wrong
constructor.

a, b ::= . . . | ∂a | a♦ Terms

E ::= . . . | []♦ Evaluation contexts

p ::= . . . | p♦ Prevalues

v ::= . . . | ∂a Values

r ::= . . . | (∂a) a | fst (∂a) | snd (∂a) | (λx a)♦ | 〈a, a〉 ♦ Errors

We add one reduction rule for type applications. When a type abstraction occurs right
under a type application, both constructs annihilates and unfreeze the body of the type
abstraction which can now be reduced.

RedTApp

(∂a)♦ a

We now extend the type system. We extend types with incoherent polymorphism Π(α :
κ) τ . The notation di�ers from coherent polymorphism ∀(α : κ) τ only by the ∀ quanti�er
which becomes a Π quanti�er (that has nothing to do with the quanti�er for dependent
products).

τ, σ ::= . . . | Π(α : κ) τ Types

We extend typing rules as follows. We add a rule RecPi to allow recursive type variables
to occur in the body of an incoherent polymorphic type. Because incoherent polymorphic
types are computational, they are well-founded as long as their body is non-expansive. Notice
that we ask the recursive type variable not to be free in the kind of the abstract type variable.
Rule TypePi is similar to rule TypeFor. An incoherent polymorphic type has the star kind
if its body has the star kind under an extended environment.

RecPi

α 7→ τ : NE α /∈ fv(κ)

α 7→ Π(β : κ) τ : WF

TypePi

Σ, (α : κ) ` τ : ?

Σ ` Π(α : κ) τ : ?

142

Rule TermGen is the introduction rule for incoherent polymorphism. There are three
main di�erences between TermGen and CoerGen, which is the introduction rule of coherent
polymorphism. First, TermGen is a typing rule for terms, while CoerGen is a coercion
rule, as their names suggest. This comes from the fact that incoherent polymorphic types
are computational, while coherent polymorphic types are erasable. This implies the second
di�erence: TermGen leaves a mark on the term, while CoerGen is erasable. Finally, TermGen
only requires the kind to be well-formed, while CoerGen needs the kind to be coherent. These
are very important distinctions, because relaxing the coherence condition for rule CoerGen
would be unsound. Rule TermInst is the elimination rule of incoherent polymorphism. The
only di�erence with rule CoerInst is erasability: TermInst leaves a mark while CoerInst is
erasable.

TermGen

Σ κ a : Σ, (α : κ); Γ ` τ α /∈ fv(Γ)

∂a : Σ; Γ ` Π(α : κ) τ

TermInst

a : Σ; Γ ` Π(α : κ) τ Σ ` σ : κ

a♦ : Σ; Γ ` τ [α/σ]

Since computational types have non-erasable introduction and elimination rules, we cannot
derive their η-expansion coercion as we can do with erasable types. Incoherent polymorphic
types are computational and we thus need to add an η-expansion coercion rule CoerPi for
them. Like other η-expansion rules, coinductive hypotheses are made accessible. This is due
to the computational behavior of incoherent polymorphic types.

CoerPi

Σ κ Σ ` Σ′ α /∈ fv(Θ0,Θ1,Σ
′, κ′, τ ′)

Σ, (α : κ); Θ0,Θ1;∅ ` (Σ′ ` τ ′[α′/σ′]) . τ Σ, (α : κ),Σ′ ` σ′ : κ′

Σ; Θ0; Θ1 ` (Σ′ ` Π(α′ : κ′) τ ′) . Π(α : κ) τ

To understand the main ideas of this somewhat complicated rule, we have to draw its
explicit coercion as an η-expansion context. We use the line between nodes for the turnstile:
type environments are on the left and types are on the right. We start to read this typing
derivation from the bottom, which is the resulting typing of the η-expansion Σ ` Π(α : κ) τ .
We �rst use TermGen which moves the type binding from the type to the environment to
get the typing Σ, (α : κ) ` τ . We then use the subcoercion and assume it binds Σ′. We
do not do any assumption about the argument type of the subcoercion to be principal. We
�nd it by using TermInst which gives a type substitution of α′ in τ ′ for some σ′. By typing,
we deduce that we need Σ, (α : κ),Σ′ ` σ′ : κ′. Finally, we realize that we need to use a
weakening rule to remove the extra binding (α : κ) to get the argument typing of the η-
expansion Σ,Σ′ ` Π(α′ : κ′) τ ′. The weakening rule requires α not to be free in Σ′, κ′, and τ ′

(plus the coinduction hypotheses Θ0 and Θ1 which are not drawn).

143

Λ

coer

•

weak

Σ, (α : κ),Σ′ ` σ′ : κ′

Σ Π(α : κ) τ

Σ, (α : κ) τ

Σ, (α : κ),Σ′ τ ′[α′/σ′]

Σ, (α : κ),Σ′ Π(α′ : κ′) τ ′

Σ,Σ′ Π(α′ : κ′) τ ′

The well-formedness of kind κ is for extraction purposes. Notice that we do not require
coherence for the kind κ because this is the η-expansion of the incoherent polymorphic type.
However, we require the coherence of the type environment extension Σ′ under Σ. This is a
very important premise because we do not want the incoherence of κ to leak in Σ′ and thus
under the coercion, because coercions are erasable.

A simple counter-example would be to use rule CoerGen to prove Σ, (α : κ);∅;∅ `
(∅, (β : κ) ` τ) . ∀(β : κ) τ , which holds using α as a witness. We could then give this sub-
coercion to rule CoerPi with instantiation type α to get Σ;∅;∅ ` (∅, (β : κ) ` Π(α : κ) τ) .
Π(α : κ) ∀(β : κ) τ . We could thus build an erasable coercion that extends the environment
with a potentially incoherent binding like (β : 1 | (∅ ` Bool) . Int).

The indexed calculus is extended accordingly to the extensions of the λ-calculus. We
de�ne the interpretation of Π(α : κ) τ under η as a variant of the arrow type and the coherent
polymorphic type, because it is a computational type and it behaves as an intersection in
terms of typing. The main di�erence is that we do not ask the inner term to be sound. All
these extensions are formalized in Coq and thus proved sound and normalizing (Theorem 101
and 102).

|Π(α : κ) τ |η
def

= ♦
{
∂k e | k > 0⇒ ∀x ∈ |κ|η beck−1 ∈ |τ |η,α7→x

}
Let's illustrate a practical case when incoherent polymorphism is useful. Let's �rst de-

�ne existentials by CPS encoding (see Section 6.1.2). Because we have two notions of poly-
morphism, coherent and incoherent, we also have two notions of existentials: coherent and
incoherent. We write ∃(α : κ) τ for coherent existential types and Σ(α : κ) τ for incoherent
existential types with the following de�nitions (using the CPS encodings):

coherent: ∃(α : κ) τ
def

= ∀β (∀(α : κ) (τ → β))→ β

incoherent: Σ(α : κ) τ
def

= ∀β (Π(α : κ) (τ → β))→ β

We de�ne the pack and unpack term syntactic sugar for the coherent existential, and ipack

and iunpack for their incoherent version. Notice that the body of the iunpack sugar is hidden
under an incoherent type abstraction, and as such is allowed to be unsound because it cannot
be reduced.

coherent: pack a
def

= λxx a unpack a asx in b
def

= a (λx b)

incoherent: ipack a
def

= λxx♦ a iunpack a asx in b
def

= a (∂λx b)

Let's assume we have type-level functions (see Section 6.1.3) and sum types as in Section 2.4.3.
We also use the erasable isomorphism notation of Section 5.4.1. We can now de�ne the
following GADT, named Term, and with kind ?→ ?. We �rst give its Haskell syntax:

144

data Term a where

Lam :: (a -> b) -> Term (a -> b)

App :: Term (a -> b) -> Term a -> Term b

In our mathematical syntax, we write:

Termα
def

= Σ(β : ?× ? | α ≡ (fstβ → sndβ))α
+ ∃β Term (β → α)× Termβ

This GADT is the sum of an incoherent existential type and a coherent existential type. The
incoherent existential type asks α to be an arrow type and stores a term of such type. It
also names fstβ the argument type and sndβ its return type. The coherent existential type
adds no constraint on α but stores a pair such that its �rst component applied to its second
component is of type α. It names β the intermediate type. The Term GADT contains two
constructors: one for the left-hand side of the sum injecting functions and one for the right-
hand side of the sum freezing function applications. We can de�ne its two constructors in the
following manner:

Lamx
def

= inl (ipackx) : ∀α ∀β (α→ β)→ Term (α→ β)

App y x
def

= inr (pack 〈y, x〉) : ∀α ∀β Term (α→ β)→ Termα→ Termβ

We can now de�ne a recursive eval function taking a term of type Termα and returning a
term of type α for all type variable α. Said otherwise, eval has type ∀αTermα → α. When
the argument is on the left-hand side of the sum, eval simply unpacks the inside argument and
returns it. When the argument is on the right-hand side of the sum, eval unpacks the inside
argument, which is a pair. It applies the evaluation of the �rst component to the evaluation of
the second component. On the left-hand side, we use the incoherent version of unpack, while
we use the coherent version on the right-hand side.

eval :: Term a -> a

eval arg = case arg of

Lam f -> f -- this branch is potentially incoherent

App f x -> (eval f) (eval x)

evalx = case x of {inlx1 7→ iunpackx1 as y in y

| inr x2 7→ unpackx2 as y in (eval (fst y)) (eval (snd y))}

Let's now suppose that we call eval with a term of type Term (τ×σ). This term is necessarily
from the right-hand side of the sum because τ × σ cannot be equivalent to an arrow type by
consistency. However, in the �rst branch, in the body of the inconsistent unpack, we have
access to the proposition τ×σ ≡ fstβ → sndβ which is inconsistent. This sort of inconsistency
in some branches of case expression on GADTs is frequent. Notice however, that in the second
branch we can reduce for any instantiation of α because we used a coherent existential type:
there is a witness for β for any instance of α.

Weak reduction If the language is equipped (in addition to our current strong term ab-
straction) with a weak term abstraction, i.e. a term abstraction under which reduction is not
allowed, then it is possible to reuse this existing abstraction to implement incoherent type

145

abstraction. Let's write Λx a this weak term abstraction. It can use the existing application
construct, because weak reduction is a property of the abstraction, not the application. We do
not extend evaluation contexts, and in particular we do not add Λx []. We add the value Λx a
for weak term abstractions. And we extend errors accordingly. We extend the type system
with the weak arrow type Π(α : κ)τ ⇒ τ , which does a type abstraction �rst, and then a weak
term abstraction.

a, b ::= . . . | Λx a Terms

v ::= . . . | Λx a Values

r ::= . . . | fst (Λx a) | snd (Λx a) Errors

τ, σ ::= . . . | Π(α : κ)τ ⇒ τ Types

We add a reduction rule similar to RedApp. The main di�erence is in the typing rule of
this term abstraction. We also need to add a typing rule for application of such abstraction.
Rule TermLamWeak tells that Λx a has type Π(α : κ)τ ⇒ σ under Σ and Γ, if α is not free
in Γ and if the body a has type σ after type abstraction (α : κ) and term abstraction (x : τ).
Rule TermAppWeak tells that a b has type τ2[α/σ], if a has type Π(α : κ)τ1 ⇒ τ2, σ has kind
κ, and b has type τ1[α/σ].

RedAppWeak

(Λx a) b a[x/b]

TermLamWeak

Σ κ Σ, (α : κ) ` τ : ? a : Σ, (α : κ); Γ, (x : τ) ` σ α /∈ fv(Γ)

Λx a : Σ; Γ ` Π(α : κ)τ ⇒ σ

TermAppWeak

a : Σ; Γ ` Π(α : κ)τ1 ⇒ τ2 Σ ` σ : κ b : Σ; Γ ` τ1[α/σ]

a b : Σ; Γ ` τ2[α/σ]

We can now simulate type abstraction Π(α : κ) τ with Π(α : κ)1 ⇒ τ and we can also
simulate the usual weak term abstraction τ ⇒ σ with Π(α : 1)τ ⇒ σ. This enhances the
fact that incoherent type abstractions are actually unit weak abstractions. Both views are
actually equivalent for well-typed terms. We can encode the weak abstraction Λx a using type
abstraction and strong abstraction to form ∂λx a. And we can encode the application a b
for weak abstraction (which we know by typing) using type application and application to
form a♦ b. Reciprocally, we can encode the type abstraction ∂a as Λx a for some fresh term
variable x. And we can encode the type application a♦ as a 〈〉, where 〈〉 is the unit term.

5.6 Coq formalization

The Coq [11] formalization has been developed with Coq version 8.4pl2. It can be found online
at http://phd.ia0.fr/. There is a Make�le, so it su�ces to run make to compile the Coq
�les or make html to also build the html version. The formalization merges ideas from strong
normalization proofs of System F and step-indexed techniques. The strong normalization proof
techniques is initially inspired from a strong normalization proof of System F in ATS [14] but
adapted for soundness proofs and step-indices. The step-indexed techniques are inspired from
a soundness proof with unrestricted recursive types and side e�ects [4] but modi�ed for strong
reduction.

The main di�erences between the version of System Fcc presented in this chapter and its
formalization in Coq are the use of de Bruijn indices and the parametrization of the type

146

http://phd.ia0.fr/

system. Using de Bruijn indices makes it a lot easier and cleaner to deal with binders. The
parametrization is necessary to state the results and for the induction to go well.

We will now give a small glimpse of the Coq code for the reader to �nd its way through
the �les, de�nitions, and lemma. Files pre�xed with the capital letter F refer to the indexed
calculus: this letter stands for fuel. Files pre�xed with the capital letter L refer to the lambda
calculus. Files without a pre�x letter are more general, like typesystem.v which factorizes
the type systems for both the indexed calculus and the lambda calculus. We describe the �les
in dependency order.

We �rst have a few independent �les. The �le ext.v de�nes the extensionality axioms
we use. Propositional and functional extensionality are the only axioms used. The other
extensionality rules are lemmas. The �le set.v de�nes a type for potentially in�nite sets as
predicates in Prop. The �le minmax.v de�nes the tactic minmax to deal with indices. The �le
list.v de�nes useful lemmas about lists, which we use for environments and mappings.

Finally, the �le mxx.v de�nes the parametrization of the type system using a value of
type Mode, which is the pair of a boolean and a version. The boolean tells whether we
allow recursive types or not. The soundness proof does not constrain this boolean while the
normalization proof requires the boolean to be false. The version is de�ned by the inductive
Version and contains three possible values: vP, vF, and vS. This manuscript corresponds to
the vP version, which is the natural presentation. The vF version contains additional premises
that are redundant by extraction but necessary for the soundness induction. Finally, the vS

version removes some premises from the vF version which are required for extraction but not
for soundness. The proof of soundness is thus done in the vS version. We de�ne two helpers
to tell whether a premise is required for extraction with mE or for soundness with mS. Finally,
the mR helper tells which rules are about recursive types.

We can now de�ne the indexed calculus in �le Flanguage.v. We de�ne the inductive
term for terms. All constructors of this inductive are pre�xed with a nat representing the
index of the node. We then de�ne a few functions to traverse terms, from which we de�ne
lifting of index predicates to term, and the lift and subst functions for de Bruijn lifting and
substitution. We then de�ne the reduction relation in the inductive red. We �nally de�ne
errors in Err and valid terms V. What follows is a list of lemmas about lifting, substitutions,
lowering, and other functions over indices.

We prove the strong normalization of the pure indexed calculus in �le Fnormalization.v.
This �le is quite simple to follow: we de�ne a measure, prove that it strictly decreases with
reduction in red_measure, and �nally prove that reduction is well founded in wf_der.

We can now de�ne a semantics for this indexed calculus in �le Fsemantics.v. We de�ne
the notion of interior in Dec, the notion of contraction in Red, and the notion of expansion
in Exp. Using expansion, we can de�ne the set of sound terms OK. We de�ne pretypes in C

and types in CE. We de�ne the closure of a set in Cl, in order to de�ne the arrow operator
EArr, product operator EProd, and incoherent abstraction operator EPi. We show that these
operators preserve types in CE_EArr, CE_EProd, and CE_EPi. We also de�ne erasable types
such as the coherent polymorphic type EFor, the top type ETop, the bottom type EBot, or
recursive types EMu. We then de�ne the notions we need to show that recursive types are
equal to their unfolding. And we �nally de�ne the semantic judgment EJudg and the semantic
typing rules of the STLC, such as ELam_sem. We also de�ne a subtyping rule ECoer_sem and
a distributivity rule Edistrib which will be used together to prove rule TermCoer.

Once that the indexed calculus is de�ned, we may de�ne the lambda calculus and the
functions to go back and forth between them in �le Llanguage.v. The structure of this

147

http://phd.ia0.fr/coq/typesystem.html
http://phd.ia0.fr/coq/ext.html
http://phd.ia0.fr/coq/set.html
http://phd.ia0.fr/coq/minmax.html
http://phd.ia0.fr/coq/list.html
http://phd.ia0.fr/coq/mxx.html
http://phd.ia0.fr/coq/mxx.html#Mode
http://phd.ia0.fr/coq/mxx.html#Version
http://phd.ia0.fr/coq/mxx.html#vP
http://phd.ia0.fr/coq/mxx.html#vF
http://phd.ia0.fr/coq/mxx.html#vS
http://phd.ia0.fr/coq/mxx.html#vP
http://phd.ia0.fr/coq/mxx.html#vF
http://phd.ia0.fr/coq/mxx.html#vS
http://phd.ia0.fr/coq/mxx.html#vF
http://phd.ia0.fr/coq/mxx.html#vS
http://phd.ia0.fr/coq/mxx.html#mE
http://phd.ia0.fr/coq/mxx.html#mS
http://phd.ia0.fr/coq/mxx.html#mR
http://phd.ia0.fr/coq/Flanguage.html
http://phd.ia0.fr/coq/Flanguage.html#term
http://phd.ia0.fr/coq/Flanguage.html#lift
http://phd.ia0.fr/coq/Flanguage.html#subst
http://phd.ia0.fr/coq/Flanguage.html#red
http://phd.ia0.fr/coq/Flanguage.html#Err
http://phd.ia0.fr/coq/Flanguage.html#V
http://phd.ia0.fr/coq/Fnormalization.html
http://phd.ia0.fr/coq/Fnormalization.html#measure
http://phd.ia0.fr/coq/Fnormalization.html#red_measure
http://phd.ia0.fr/coq/Fnormalization.html#wf_der
http://phd.ia0.fr/coq/Fsemantics.html
http://phd.ia0.fr/coq/Fsemantics.html#Dec
http://phd.ia0.fr/coq/Fsemantics.html#Red
http://phd.ia0.fr/coq/Fsemantics.html#Exp
http://phd.ia0.fr/coq/Fsemantics.html#OK
http://phd.ia0.fr/coq/Fsemantics.html#C
http://phd.ia0.fr/coq/Fsemantics.html#CE
http://phd.ia0.fr/coq/Fsemantics.html#Cl
http://phd.ia0.fr/coq/Fsemantics.html#EArr
http://phd.ia0.fr/coq/Fsemantics.html#EProd
http://phd.ia0.fr/coq/Fsemantics.html#EPi
http://phd.ia0.fr/coq/Fsemantics.html#CE_EArr
http://phd.ia0.fr/coq/Fsemantics.html#CE_EProd
http://phd.ia0.fr/coq/Fsemantics.html#CE_EPi
http://phd.ia0.fr/coq/Fsemantics.html#EFor
http://phd.ia0.fr/coq/Fsemantics.html#ETop
http://phd.ia0.fr/coq/Fsemantics.html#EBot
http://phd.ia0.fr/coq/Fsemantics.html#EMu
http://phd.ia0.fr/coq/Fsemantics.html#EJudg
http://phd.ia0.fr/coq/Fsemantics.html#ELam_sem
http://phd.ia0.fr/coq/Fsemantics.html#ECoer_sem
http://phd.ia0.fr/coq/Fsemantics.html#Edistrib
http://phd.ia0.fr/coq/Llanguage.html

�le is similar to Flanguage.v with the di�erence that it now contains a drop and kfill

function to translate terms from one language to the other. It also contains the key lemma
drop_red_exists for the bisimulation between the reduction relation of both languages.

Independently from the indexed calculus and the lambda calculus, we can de�ne the type
part of System Fcc: everything but the term judgment. This is done in typesystem.v and is
actually shared by both Ftypesystem.v and Ltypesystem.v, which de�ne the term judgment
for the indexed type system and lambda type system respectively. The last two �les are exactly
the same up to indices. All the syntax is gathered is a single Coq inductive, namely obj. This
simpli�es a lot the treatment of operations on the syntax, such as lifting or substitution, which
are de�ned only once. In order to keep track of syntactical classes, we de�ne a judgment cobj
to classify each object in its grammatical class. In the paper version, we naturally assume
that everything is syntactically well-formed, while we have to state it explicitly in Coq.

We prove the weakening, substitution, and extraction lemmas in typesystemextra.v.
This �le also contains the proof that the vP and vF version are equivalent and that the vS

version is a consequence. This explains why the properties of the vS version also hold for the
vP version.

The proof that each judgment of the indexed type system is sound lies in Fsoundness.v.
We start by de�ning a notion of semantic objects sobj. A semantic object is either a set
of indexed terms, the unit object, or a pair of objects. We then de�ne the signature of the
interpretation of each syntactical class in sem. Kinds are interpreted as sets of semantic
objects, types as semantic objects, propositions as indexed propositions, type environments
as sets of semantic environments (lists of semantics objects because we use de Bruijn indices),
coinduction environments as indexed propositions, and �nally term environments as semantic
term environments (lists of semantic types, when the syntactical environment is valid). All
these interpretation are parametrized by an surrounding semantic environment. We de�ne the
interpretation function Fsoundness.semobj as a binary relation, but we show in semobj_eq

that it behaves as a function. We then prove semantic lifting and substitution properties.
And we �nally prove the soundness of each judgment. The soundness of jfoo is proved in
jfoo_sound (Lemma 100).

We �nally lift this soundness proof from the indexed type system to the lambda type
system in Lsoundness.v. We �rst de�ne when a term a is sound for a least k steps in OKstep

and when it is sound for all number of steps in OK by coinduction. We prove that these two
notions coincide. We then show how to transpose soundness from the indexed calculus to the
lambda calculus in term_ge_OK (Lemma 76). We prove that both type systems coincide and
�nally prove the soundness of System Fcc in soundness (Theorem 101).

The Coq �les Lsemantics.v and Lnormalization.v are similar to the �les Fsemantics.v,
Fsoundness.v, and Lsoundness.v but deal with the strong normalization result instead of
the soundness result.

5.7 Discussion about the explicit version

What System Fcc lacks in order to have an explicit version is subject reduction. A typical
example where we lose subject reduction is inspired from Section 4.6.2 and involves a coercion
variable in-between a redex, which requires decomposing coercions to remain well-typed after
reduction. Let's take the following de�nitions:

• Σ
def

= ∅, (αβ | (∅ ` Int→ α) . Int→ β)

148

http://phd.ia0.fr/coq/Flanguage.html
http://phd.ia0.fr/coq/Llanguage.html#drop
http://phd.ia0.fr/coq/Llanguage.html#kfill
http://phd.ia0.fr/coq/Llanguage.html#drop_red_exists
http://phd.ia0.fr/coq/typesystem.html
http://phd.ia0.fr/coq/Ftypesystem.html
http://phd.ia0.fr/coq/Ltypesystem.html
http://phd.ia0.fr/coq/typesystem.html#obj
http://phd.ia0.fr/coq/typesystem.html#cobj
http://phd.ia0.fr/coq/typesystemextra.html
http://phd.ia0.fr/coq/mxx.html#vP
http://phd.ia0.fr/coq/mxx.html#vF
http://phd.ia0.fr/coq/mxx.html#vS
http://phd.ia0.fr/coq/mxx.html#vS
http://phd.ia0.fr/coq/mxx.html#vP
http://phd.ia0.fr/coq/Fsoundness.html
http://phd.ia0.fr/coq/Fsoundness.html#sobj
http://phd.ia0.fr/coq/Fsoundness.html#sem
http://phd.ia0.fr/coq/Fsoundness.html#semobj
http://phd.ia0.fr/coq/Fsoundness.html#semobj_eq
http://phd.ia0.fr/coq/Lsoundness.html
http://phd.ia0.fr/coq/Lsoundness.html#OKstep
http://phd.ia0.fr/coq/Lsoundness.html#OK
http://phd.ia0.fr/coq/Lsoundness.html#term_ge_OK
http://phd.ia0.fr/coq/Lsoundness.html#soundness
http://phd.ia0.fr/coq/Lsemantics.html
http://phd.ia0.fr/coq/Lnormalization.html
http://phd.ia0.fr/coq/Fsemantics.html
http://phd.ia0.fr/coq/Fsoundness.html
http://phd.ia0.fr/coq/Lsoundness.html

• Γ
def

= ∅, (y : α)

• a def

= (λx y) 3

We �rst need to show that Σ is coherent. To do so, it su�ces to take ⊥ as a witness for α
and > as a witness for β. We have a : Σ; Γ ` β and a y, but we do not have y : Σ; Γ ` β.
We would have to prove α . β from our hypothesis Int → α . Int → β. This decomposition
on the right-hand side of the arrow type is actually semantically valid, and it is possible to
add it and thus restore subject reduction for this example. However, it is unclear whether
the decomposition on the left-hand side holds (see later in this section). We can adapt the
counter-example to subject reduction to use the left-hand side decomposition. We take the
following de�nitions:

• Σ
def

= ∅, (αβ | (∅ ` α→ α) . β → α)

• Γ
def

= ∅, (y : β)

• a def

= (λxx) y

The type environment Σ is coherent by taking > as the witness of α and ⊥ as the witness for
β. We have a : Σ; Γ ` α and a y, but we do not have y : Σ; Γ ` α. We would have to prove
β . α from our hypothesis α→ α . β → α.

We can prove the decomposition for the right-hand side of the arrow type when the coercion
is not binding anything. This means that the initial coercion is simply of the form τ ′ → σ′ .
τ → σ and not of the form (Σ′ ` τ ′ → σ′) . τ → σ. From this coercion we can extract a
coercion from σ′ to σ. If the coercion was binding something, using a distributivity rule prior
to this lemma should work.

Lemma 104 (Push right). If S′ and R are types and R′ → S′ ⊆ R → S holds, then S′ ⊆ S
holds.

Proof. Coq lemma Fsemantics.Push_right_Arr

Let e ∈ S′ and show that e ∈ S. Let k be the greatest index in e. We have e ≤ k. Let x
be a fresh variable, and in particular not free in e. We have λk+1x e ∈ R′ → S′ by de�nition of
the arrow operator and because beck = e. By hypothesis, we also have λk+1x e ∈ R→ S. And
because all semantic types are inhabited, we use the arrow operator de�nition to get beck ∈ S
which concludes.

It is less clear whether or not the decomposition on the left-hand side of the arrow operator
holds. However, we can show that this decomposition does not hold in other semantics, like
in weak reduction for example. Some semantics only consider closed terms and some others
permit semantic types to be empty. One example of a semantics satisfying these two assertions
is when semantic types are sets of closed strong normalizing terms. In this setting, the bottom
type is the empty set. And functions types from inhabited types to the bottom type are empty
too. In particular Int → ⊥ is empty and thus included in Bool → ⊥ which is also empty. If
we could decompose coercions on the left of arrow types, we would get Bool . Int which is
unsound.

So, for some settings, coercion decomposition is unsound. For our setting, this is an open
question, although we have a positive result for the right-hand side of the arrow operator.

149

http://phd.ia0.fr/coq/Fsemantics.html#Push_right_Arr

And �nally, for more restrictive settings, coercion decomposition is sound and thus part of the
system. Such restrictive setting is FC that considers only equality coercions. Equality coercions
enforce structural coercions which simpli�es the framework, as the main di�culty comes from
type generalization and instantiation being coercions. Another less restrictive simpli�cation
would be to remove polymorphism from the coercion judgment and use it only in the typing
judgment. However, we would loose a lot of the current expressivity and generality.

150

Chapter 6

Discussions

This work should be applicable to other programming languages instead of the λ-calculus,
because the idea is to say that once we de�ned approximations (or invariants) for programs,
it is natural to study the order relation between these approximations, de�ne a syntactical
composable judgment to prove inclusions between invariants, and study how to abstract over
this judgment. However what can be done in the λ-calculus has not yet been fully explored.
Several extensions remain to be studied: from new erasable types to changes of the framework.
These extensions are described in Section 6.1. We then discuss related works in Section 6.2,
and applications in Section 6.3.

6.1 Extensions

In this section, we discuss a series of extensions. Some of them are only conjectures, while
some have more technical materials. These materials may either be ideas to further study or
strong candidates waiting to be proved. We detail for each extension in which state it lies and
which parts may be not quite correct as stated.

6.1.1 Data types

The λ-calculus can be extended with sums τ + σ, integers Int, booleans Bool, the unit type
1, and the void type 0. Extending System F

p
ι and System Fcc to handle Int, Bool, and 1 is

anecdotal. The Coq development of System Fcc already enjoys sum types, the unit type, and
the void type.

6.1.2 Existentials

There are two ways to add existentials: one is to use their CPS encoding with polymorphic
types and another one is to give them their own meaning as union. The �rst solution always
work while the second one may raise di�culties.

Existentials as CPS encoding The well-known encoding from existentials with polymor-
phism also works in System Fcc. We can de�ne the type ∃(α : κ) τ and add the following type
equality (or notation): ∃(α : κ) τ = ∀β (∀(α : κ) τ → β)→ β. We can also de�ne pack a as a
sugar for λxx a and unpack a asx in b as a sugar for a (λx b).

151

This easy extension is actually enough to express GADTs using incoherent polymorphism
like in FC. See Section 5.5 for an example of GADTs using incoherent polymorphism, this
encoding of existentials, and sum types.

Existentials as unions By contrast with intersection of types, union of types is not obvi-
ously a type in our semantics. Our semantics is the usual semantics for reducibility candidates
modi�ed with step-indices. Without the expansion-closure, it is not obvious that the union
R ∪ S of two types is a type. The problem is that a term e in ♦ (R ∪ S) could a priori reduce
to both e1 in ∆R \∆S and e2 in ∆S \∆R and then not be in R ∪ S.

In the current setting, where the underlying programming language is the λ-calculus, it
seems that e should always be in R ∪ S by a standardization argument [33]. However, this
argument is already complex in the absence of indices and may not be applicable in the
case of indices�or force us to have a more involved de�nition of indexing compatible with
standardization. This is an interesting question to explore further.

An alternative to the standardization argument, which would also restore subject reduc-
tion, is to use a call-by-constructor strategy allowing destructors to go under redexes. This
reduction is equivalent to strong reduction but only substitutes constructors and can be in-
spired from [2]. Substituting only constructors permit to know that the term is in the kernel
of the semantics and not its closure, which is necessary to know in which side of the union a
term lies.

6.1.3 Type-level functions

Type-level functions and recursive types at arbitrary kinds (Section 6.1.4) are the last element
we need to feature user data-types. User de�ned data-types are usually a recursive type of
a series of type abstractions followed by a sum of products. For instance, the Term GADT
de�ned in Section 5.5 does a recursive call applied to an arrow type in the right side of the
sum. It should be possible to extend System Fcc with type functions, but nothing has been
proved yet.

System Fω (Chapter 30 of [29]) is the simplest type system featuring polymorphism and
type-level functions. In order to extend System Fcc with type-level functions, we need to
extend syntactical types with the type abstraction λ(α : κ) τ and type application τ τ . We
also need to extend syntactical kinds with the arrow kind κ → κ. We add the β-reduction
rule at the type-level as an equality between types: (λ(α : κ) τ)σ = τ [α/σ]. We �nally give
the two kinding rules for type abstraction and application, and the well-formedness rule for
the arrow kind.

TypeLam

Σ κ1 Σ, (α : κ1) ` τ : κ2

Σ ` λ(α : κ1) τ : κ1 → κ2

TypeApp

Σ ` τ : κ1 → κ2 Σ ` σ : κ1

Σ ` τ σ : κ2

WfKArr

Σ κ1 Σ κ2

Σ κ1 → κ2

This is all we need in order to add type-level functions. We can recover subtyping rules
and the notion of variance with the notions we already have: polymorphic propositions and
coercions. We do so by lifting our notion of coercions to higher kinds, as we did with iso-
morphisms in Section 5.4.1. However, the de�nition of subtyping at the arrow kind is not
canonical and depends on the variance we want to consider. So we will index our subtyping
relation with a vkind (variance kind), which is a kind where arrow kinds are annotated with

152

a variance. Type systems with polarized higher-order subtyping [34] have a common notion
for kinds and vkinds. We believe these are two distinct notions and keep them separated.

There are at least four possible variances, written d : + for covariant, − for contravariance,
= for invariance, and ∅ for bivariance. Vkinds, written K, are the star vkind ?, the unit
vkind 1, the product vkind K × K, the constrained vkind {α : K | P}, and the arrow
vkind K [d]→K. We write bKc the function from vkinds to kinds that drops the variance
annotations. The only interesting case is bK1 [d]→K2c which is de�ned by bK1c → bK2c.

We write τ . σ : K to say that τ is smaller than σ at vkind K. Both types τ and σ
have kind bKc. We may consider heterogeneous subtyping later, and focus on homogeneous
subtyping for simplicity. Notice that it makes no sense to talk about binding subtyping (or
coercions) at higher kinds, because the notion of binding is a notion of terms and thus only
relevant at the kind star. The subtyping at vkind K is inductively de�ned. The �rst cases
are straightforward:

τ . σ : ?
def

= (∅ ` τ) . σ

τ . σ : 1
def

= >
τ . σ : K1 ×K2

def

= (fst τ . fstσ : K1) ∧ (snd τ . sndσ : K2)

τ . σ : {α : K | P} def

= τ . σ : K

For the arrow vkind, there is one de�nition for each possible variance:

τ . σ : K1 [+]→K2
def

= ∀(αβ : bK1c × bK1c | α . β : K1) τ α . σ β : K2

τ . σ : K1 [−]→K2
def

= ∀(αβ : bK1c × bK1c | β . α : K1) τ α . σ β : K2

τ . σ : K1 [=]→K2
def

= ∀(αβ : bK1c × bK1c | α . β : K1 ∧ β . α : K1) τ α . σ β : K2

τ . σ : K1 [∅]→K2
def

= ∀(αβ : bK1c × bK1c) τ α . σ β : K2

We recover the usual de�nition that a type τ of kind ?→ ? has variance d if the subtyping
proposition τ . τ : ? [d]→ ? holds, by looking at the diagonal of the subtyping relation. We
can actually see each vkind K as a constrained kind {α : bKc | α . α : K} as it is done
in polarized higher-order subtyping systems. This de�nition permits to talk about the kind
? [+]→ ? of covariant type functions, for instance.

We also recover the well-known facts that a bivariant type is also covariant and contravari-
ant, and that covariant or contravariant types are also invariant. We can actually show in
System Fcc the proposition that bivariance implies covariance (and also the other implications),
which gives us access to variance demoting. The proposition is:

∀(α : 1 | τ . σ : K1 [∅]→K2) τ . σ : K1 [+]→K2

This is a polymorphic proposition over the constrained kind that contains the unit type 〈〉 of
kind 1 if τ is in the bivariance relation with σ at kind K1 → K2. The proof uses rule PropGen
to introduce both (α : 1 | τ . σ : K1 [∅]→K2) and (αβ : bK1c ×bK1c | α . β : K1) in the type
environment. We show τ α . σ β : K2 by �rst fetching α with rule TypeVar, then applying
rule PropRes to extract its proposition ∀(αβ : bK1c × bK1c) τ α . σ β : K2, and �nally using
PropInst with α and β.

6.1.4 Recursive types at arbitrary kinds

Our current version of recursive types is of the form µα τ and only permits to build types of the
star kind. Moreover, the folding and unfolding of recursive types are coercions and not type

153

equalities. We showed in Section 5.4.4 that we do not loose the power of equi-recursive types
by using coercions. But the kind star restriction for recursive types is a real limitation when
the type system has other sorts of kinds. Recursive types at product kinds permit to build
mutually recursive types, while arrow kinds permit to build data-structures (see Section 6.1.3).
We do not know how to exactly extend System Fcc with recursive types of arbitrary kinds, but
we have a privileged path to follow, which we describe below.

Recursive types at arbitrary kind would be written µ(α : κ) τ . Since their unfolding
rule is at kind κ, it cannot be a coercion anymore and has to be de�ned as a type equality
µ(α : κ) τ = τ [α/µ(α : κ) τ]. This implies that the type equality judgment needs to check the
well-foundedness of recursive types, for the folding and unfolding to be sound. The kinding
rule for the recursive type has to be modi�ed to take the kind into account:

TypeMu

α 7→ τ : WF Σ, (α : κ) ` τ : κ

Σ ` µ(α : κ) τ : κ

We also need to extend the notion of well-founded and non-expansive functors to all type
constructs. This extension will follow the intuition that all occurrences of a recursive type
variable have to cross a computational type for the recursive type to be well-formed. To prove
the soundness of such rules, we extend the notion of k-approximations to all mathematical
objects: not only sets of terms in System Fcc, but also to the unit object, pairs of objects, and
functions on objects (see Section 6.1.3). We would also need to de�ne the limit of a series of
objects when k approaches in�nity.

A notion of sort has to be added for mathematical objects: sets, unit, products, and
arrows. This corresponds to a simply-typed object calculus. The k-approximation and limit
operators would depend on the sort of objects we give them. We have four k-approximation:

• 〈R〉setk = {e ∈ R | e < k}

• 〈R〉1k = 〈〉

• 〈R〉s1×s2k = 〈〈fst R〉s1k , 〈snd R〉s2k 〉

• 〈R〉s1→s2k = X 7→ 〈R X〉s2k or X 7→ 〈R 〈X〉s1k 〉
s2
k

We η-expand the objects according to their sort and use the approximation for their subsorts
for their subcomponents. We use the same mechanism for limits. We have not fully explored
this idea and do not know whether or not the details can be worked out. It may also require
that type functions be non-expansive.

Finally, it would be interesting to add the well-foundedness judgment as a proposition
assertion and thus internalize well-foundedness hypotheses. This would permit to write an
abstract module for lists, sets, or mappings and still remember that these functors are well-
founded.

6.1.5 Non-erasable coercions

In this thesis, we have only studied erasable coercions. What would be a more general notion
of coercions? There are several ways to extend erasable coercions to non-erasable ones and
generalize the notion of coercions. We did not study non-erasable coercions, although we
feature incoherent polymorphism.

154

A �rst example of non-erasable coercions is given in FC. Instead of being fully erased, coer-
cions are erased to the unit term. Abstracting over a coercion results in a simple abstraction
without bindings because the unit element contains no information. The information of a
coercion is only present at typing. This view is compatible with type-erasure in the sense that
no type is needed at runtime. However, the unit element has to be present during runtime,
because, although it does not contain information in itself, its sole existence is a proof that
code depending on it behaves correctly. We developed this example of non-erasable coercions
with incoherent polymorphism in Section 5.5.

A second de�nition of non-erasable coercions is to simulate a rich runtime over a poor
runtime. Coercions would be erasable in the rich runtime while non-erasable in the poor one.
An illustration of non-erasable coercions in this setting are record subtyping. A rich runtime
may freely forget additional �elds, while the poor runtime would need to copy the record value
without its additional �elds. For example, in the rich runtime {name = ”bob”; age = 23}
accepts type {age : Int}, while in the poor runtime it only has type {name : String; age : Int}
and needs to be coerced with non-erasable code to have type {age : Int}. OCaml has actually
both forms of coercions. The subtyping for variants and objects is using a rich runtime:
coercions are erasable. And the subtyping for modules uses a poor runtime: coercions copy
the module by η-expansion.

Finally, a loose de�nition is to allow any form of code as coercions. The typing implications
of this de�nition is not obvious, but it may be a framework to de�ne code inference by
restraining the inferred code to be valid according to the coercion judgment. We might expect
the main feature of such coercions to be η-expansion, because it follows the structure of types.
The rule for coercion application would resemble the following typing rule:

TermCoer

M ⇒ Γ,Σ ` a : τ G⇒ Γ ` C : (Σ ` τ) . σ

G〈M〉 ⇒ Γ ` C[a] : σ

This rule di�ers from its preceding version in Figure 4.10 by the presence of a computational
context C in the coercion judgment. Similarly to the computational term a in the term judg-
ment, we now say that the coercion G erases to the context C. And we can see that the erasure
of the coercion application G〈M〉 is now a context application C[a]. It is interesting to study
restrictions of this general setting in the framework of implicit coercions (see Section 6.2.3):
boring coercions could be inferred.

6.1.6 First-class coercions

First-class coercions is the possibility to pass coercions as arguments to functions and to return
coercions as objects. A simple way to achieve this feature is to use incoherent existential types
(see Section 6.1.2 and 5.5). This solution does not permit to reduce parts of terms relying on
�rst-class coercions to preserve soundness.

We actually de�ne �rst-class propositions, which imply �rst-class coercions, because coer-
cions are propositions. We write [P] the �rst-class type for the proposition P. It is a notation
for Σ(α : 1 | P) 1, where 1 is the type containing only the unit term. When we receive a �rst-
class proposition as argument we may unpack it to access the proposition in the constrained
kind. Since we use the incoherent version of the unpack construct, its body cannot be reduced
until we know that the proposition holds, which we know when the associated pack construct

155

is made accessible. We may also return such �rst-class proposition by packing. The incoherent
packing construct has no reduction limitations.

One example of �rst-class propositions is to write a function of type [τ1 ≡ τ2]→ σ which
relies of the fact that τ1 and τ2 are equal to return a term of type σ.

6.1.7 Dependent types

A much more di�cult extension would be to rede�ne the framework starting from the depen-
dently typed λ-calculus instead of the STLC. In a dependently typed setting the return type
of a term abstraction may mention its term argument. As a consequence, terms may appear
in types. Or said otherwise, types may depend on terms, which is why dependent types are
called so. The arrow type changes from τ → σ to Π(x : τ)σ (which should not be confused
with the incoherent polymorphic type Π(α : κ) τ), where the term argument x of type τ is
bound in the return type σ. Rule TermLam shows this new typing for term abstraction. In
rule TermApp, we can see that term application remembers its argument in its type. It is the
return type σ of its function where the term argument variable x has been substituted with
the actual argument b.

TermLam

a : Γ, (x : τ) ` σ
λx a : Γ ` Π(x : τ)σ

TermApp

a : Γ ` Π(x : τ)σ b : Γ ` τ
a b : Γ ` σ[x/b]

The implications of such extension on the framework and the semantics are not negligible.
The following works handle erasable contents in a dependent setting. However, these works
do not take a coercion approach with a distinct composable judgment for erasable typing
transformations. They reuse the term judgment by adding implicit rules as we usually see.

The Implicit Calculus of Constructions (ICC) de�ned in [24] can be seen as an extension
of System Fη to dependent types. The presentation uses the η-expansion term judgment rule,
where a has type τ → σ if λx ax has type τ → σ and x is not free in a. The subtyping
judgment (between types) is derived from the term judgment. System Fcc extended with
dependent types would extends ICC with coercion abstraction. Some major di�culties are
expected when dealing with strong normalization, types (which are terms) inhabitation, and
semantics. A work by Bruno Barras and Bruno Bernardo [6] gives an explicit version to a
restriction of ICC. Large elimination is handled in [1].

Instead of extending the framework to handle dependent types, another solution is to
simulate dependent type features by lifting terms to types and types to kinds, and using
singleton types to link term values to their associated types. This solution is used in System FC

(see Section 6.1.8).

6.1.8 Kind coercions

System FC has kind equality coercions [39]. The goal of such feature is to give GHC a type
system with dependent type features. Actually, they achieve this by merging types and kinds
into the same syntactical class. As a consequence, type equality coercions naturally extend to
kind equality coercions. In System Fcc, studying kind coercions (a form of subkinding) seems
natural, because kinds are sets of types and are thus naturally ordered. In particular the
constrained kind {α : κ | P} is by de�nition a subkind of κ. But we also have that {α : κ | P1}
is a subkind of {α : κ | P2} if P1 implies P2.

156

Notice that we already have a notion of subkinding for coherence: a kind κ is a subkind
of the kind κ′ under the type environment Σ, if the coherence of κ under Σ implies the
coherence of κ′ under Σ. We can prove such propositions with rule PropStr where the
conclusion proposition is Σ;∅;∅ ` ∃κ′ and the kind coherence premise is Σ ` κ. This notion
of subkinding for coherence is limited and cannot be used to rekind a type. However, we
somehow use this idea of coherence propagation with the instance type σ′ in the η-expansion
rule of incoherent polymorphism CoerPi.

There are two alternatives to study kind coercions. The �rst path is to keep types and
kinds distinct and develop a new theory about kind coercions. Another path is to mimic FC

and merge types and kinds and reuse the type coercions mechanism for kinds too. The �rst
solution may look safer, and maybe easier to prove, but it may also imply more duplication
of rules.

6.1.9 Intersection types

We could perhaps add binary intersection types as coercions following the approach of Wells
on branching types [40]. The same way we extended subtyping from types to typings, we could
extend branching types to branching typings, which would be trees of typings where leaves
are usual typings and nodes are chunks of typing environments. We would have the following
grammar for invariants, instead of the usual single typing Γ ` τ .

Φ ::= Γ ` τ | Γ〈Φ ∩ Φ〉 Branching typings

For the intuition, we can de�ne a function b·c from branching typings to sets of usual
typings. We would have bΓ ` τc be the singleton set containing the typing Γ ` τ . And we
would de�ne bΓ〈Φ1 ∩ Φ2〉c as {Γ,Γ′ | Γ′ ∈ bΦ1c ∪ bΦ2c}. Intuitively, if a term accepts the
branching typing Φ, it means that it accepts all the typings in bΦc. In other words, a term is
in the semantics |Φ| if it is in the intersection of the semantics of the elements of bΦc.

We would also need to modify the usual STLC typing rules to act simultaneously on all
leaves. For instance, we would need to de�ne Φ1 × Φ2, where Φ1 and Φ2 are binary trees
with the same structure where only the types at the leaves may change, as the same binary
tree where leaves Γ ` τ1 and Γ ` τ2 become Γ ` τ1 × τ2. Coercions are now between these
branching typings. We also need to add coercions from τ ∩ σ to τ and σ, and a coercion from
the branching typing 〈(∅ ` τ) ∩ (∅ ` σ)〉 to the type τ ∩ σ.

6.1.10 Semantic consistency

In System Fcc, the coherent polymorphism abstraction rule is well-typed when the kind is
inhabited. When the kind is a constrained kind {α : κ | P}, the proposition P has to hold
for at least one inhabitant of κ. Currently, this proof of coherence is done using syntactical
and concrete witnesses. We could extend the logic to prove propositions with more semantic
proofs, or we may delay proof of propositions to top-level and use some algorithm to check
them. We can already model this last feature using polymorphic propositions and a top-
level type environment Σ0 with all the propositions we will ever use in the derivation. For
example, when we need to prove Σ; Θ0; Θ1 ` P, we may add a top-level type binding of the
form (α : 1 | ∀Σ P) in Σ0. Then, instead of proving the coherence of Σ0 using the syntactical
rules of Figure 5.7, we may prove its semantic interpretation using mathematics, or with an
algorithm. This is actually the solution followed in Constraint ML.

157

6.1.11 Environment actions

The framework of coercions de�ned in Part II does not handle coercions that would act on
the environment in other ways than bindings. For instance, the weakening coercion shrinks
the current environment while usual constructs extend the environment.

If we were considering coercions in their generality and not only coercion extending envi-
ronments, how should we present them? They should still be written with the judgment given
in System F

p
ι , namely G ⇒ Γ ` (Σ ` τ) . σ, however, the meaning of the erasable environ-

ments Σ would change to an environment action. An environment action is the modi�cation
a coercion may do on its surrounding environment. For instance, in System F

p
ι with erasable

environments, the two environment actions we have are: type binding and coercion binding.
However we all know that we may come up with more environment actions like: weakening,
binding swapping, or environment shu�ing.

As a consequence of this modi�cation from erasable environment to environment actions,
we need to modify the notion of simple concatenation we had Γ,Σ, to a more subtle environ-
ment actions composition Γ + Σ. For example, if we de�ne Wα the weakening binding for α,
then the following environment actions application Γ, α,Γ′ + Wα evaluates to Γ by removing
the type binding α and all the following bindings that may depend on it. The term typing
rule for coercions now becomes:

TermCoer

M ⇒ a : Γ + Σ ` τ G⇒ Γ ` (Σ ` τ) . σ

G〈M〉 ⇒ a : Γ ` σ

and the coercion typing rules for transitivity becomes:

CoerTrans

G1 ⇒ Γ + Σ2 ` (Σ1 ` τ1) . τ2 G2 ⇒ Γ ` (Σ2 ` τ2) . τ3

G1 ◦G2 ⇒ Γ ` (Σ2,Σ1 ` τ1) . τ3

where Σ2,Σ1 is the concatenation or sequencing of environment actions: we �rst do the actions
of Σ2, followed by the actions of Σ1: Γ + (Σ2,Σ1) evaluates like (Γ + Σ2) + Σ1.

Environment actions subsume the more intuitive notation Γ ` (Σ1 ` τ1) . (Σ2 ` τ2).
Indeed, this last coercion can be encoded as Γ,Σ2 ` (−Σ2 + Σ1 ` τ1) . τ2, where −Σ2 is
the opposite action of Σ2. This coercion can be used in a similar way, because the typing
Γ,Σ2,−Σ2,Σ1 ` τ1 is actually equivalent to Γ,Σ1 ` τ1.

6.1.12 Coercion reduction

When the coercion language gets bigger or when an intensive use of them is done, it becomes
interesting to reduce them to make the typing derivations smaller. Coercion reduction may
also be necessary to prove soundness (see Section 4.6.2) using the fact that coercions strongly
normalize to a coercion value, which we can decompose.

In System F
p
ι , our term reduction relation contains β and ι steps. We never reduce coercions

directly, but only when applied to terms. The reason is that there is no need for doing so
since our coercions can be erased. Moreover, it keeps the presentation simpler.

Still, introducing a reduction relation G γ G between coercions themselves is possible,
and could be interesting in other contexts. For example, coercions in System FC [38] are
elaborated from the surface language, inferred from the constraint solver, and made bigger

158

by term optimizations. In all these cases, coercions may grow very large. Hence, reducing
coercions is a way to make them smaller.

We brie�y describe how to add coercion reduction in our language. Since we use strong
reduction, coercion evaluation contexts are all coercion contexts:

RedIGamma

G1 γ G2

G1〈M〉 ι G2〈M〉

RedGCtx

G1 γ G2

F [G1] γ F [G2]

Rule RedIGamma is the ι-reduction linking γ-reduction to ι-reduction. If a coercion re-
duces, then its application to a term reduces too. Rule RedGCtx is the context rule for
γ-reduction. Then, some obvious reduction rules are pushing transitivity down, pulling re�ex-
ivity up, and reducing coercion redexes:

RedGEtaArr

(G1
τ→ G2) ◦ (G′1

τ ′→ G′2) γ (G′1 ◦G1)
τ→ (G2 ◦G′2)

RedGEtaProd

(G1 ×G2) ◦ (G′1 ×G′2) γ (G1 ◦G′1)× (G2 ◦G′2)
RedGFold

unfold ◦ foldµα.τ γ ♦

Rules RedGEtaArr, RedGEtaProd, and RedGFold are simple transposition of their ι coun-
terparts (which could then be removed). These reduction rules are sound. They are also
incomplete: other rules, which are not derivable could also be added�but they require other
operations on coercions that have not been de�ned yet. For instance, all ι-reduction rules
involving no untyped constructs on their left-hand side could be transformed into the combi-
nation of an equivalent γ-reduction rule and rule RedIGamma. For instance, one remaining
case is rule RedType. If we had a coercion for explicit type substitution, we would be able to
have the following γ-reduction rule:

RedGType

• τ ◦ Λα γ [α/τ]

Notice that one must now prove the termination of γ-reduction rules since they are included
in ι-reduction through rule RedIGamma.

6.1.13 Side e�ects

Extending the λ-calculus with side e�ects is a natural question since real-world programs do
have side e�ects. The main modi�cation is to add a notion of memory and how programs
interact with it. Since this memory has a semantic meaning, invariants have to be stated
according to the memory. Invariants are no longer a pair of an environment and a type, but a
triplet of an environment, a memory invariant, and a type. It should be possible to adapt the
step-indexed semantics according to existing work for weak reduction [4]. We don't expect
existing problems (like value restriction) to disappear with strong reduction.

6.1.14 Dead code

Although incoherent polymorphism is required to express GADTs (see Section 5.5), we might
still want to discriminate between potentially inconsistent branches and always inconsistent
branches. A branch is potentially inconsistent if its coherence depends on the instantiation of

159

its environment, while a branch is always inconsistent if it is incoherent for all its environment
instantiations. For example, the kind {β : 1 | α ≡ Int} in the environment ∅, α, is potentially
incoherent. It is coherent if the type variable α is instantiated with Int, but it is incoherent if
the type variable α is instantiated with Bool. Let's now consider the kind {β : 1 | Bool ≡ Int}
in the empty environment. It is always incoherent, and we might want to either reject terms
generalizing on this kind or warn the user that he is writing dead code. Such type abstraction
is actually not instantiable.

In pedagogical systems [10], an abstraction (such as type abstraction) is useful, if its
domain (such as kinds in the case of type abstraction) is inhabited for some instantiation of
the environment. This condition implies that the abstraction is not dead code and can be
instantiated. We can use this idea to de�ne an alternative version of incoherent polymorphism,
by strengthening its condition from the kind to be well-formed to the kind to be coherent for
some instantiation of the environment. This useful incoherent polymorphic type Π(α : κ) τ
would have the following introduction rule:

TermGenUseful

∃Σκ a : Σ, (α : κ); Γ ` τ α /∈ fv(Γ)

∂a : Σ; Γ ` Π(α : κ) τ

The premise ∃Σ, κ asks the kind κ to be coherent for some instantiation of Σ. This rule is
in the term judgment, because the usefulness does not imply consistency and the abstraction
cannot be erasable. We can reuse the existing type abstraction, which we already use for
incoherent polymorphism, because we can always tell them apart by typing. The other rules
for useful incoherent polymorphic types are identical to the incoherent polymorphic versions.

Such extension would tell us that we cannot reduce under the useful incoherent abstrac-
tion now, but that it is possible to reach this part of the code for some instantiation of the
environment.

Unfortunately, this property is not stable by reduction, because reduction could instantiate
the environment making the kind incoherent for this particular instantiation. If one want this
dead code property to be stable by reduction, he would need to have some form of coherent
polymorphism, which we already have.

6.2 Related work

To the best of our knowledge there is no previous work considering coercions as an inclusion
of typings. However, the use of coercions to study features of type system is not at all new.
This section presents how coercions have been used to study subtyping, GADTs, recursive
types, etc.

Our work on step-indices is greatly inspired from existing works in weak reduction settings.
We actually merged the typical semantic proofs of System F in a strong reduction setting, with
the idea of fuel to limit the reduction of terms.

6.2.1 System F<:

Record subtyping in System F<: may be compiled away into records without subtyping in plain
System F by inserting coercions with computational content [9] that change the representation
of records whenever subtyping is used. Since these coercions are not erasable and can be
inserted in di�erent ways, the soundness of the approach depends on a coherence result to

160

show that the semantics of the translation does not actually depend on the places where
coercions are inserted.

Another method for eliminating subtyping has been used by Crary [12]: bounded polymor-
phism ∀(α . τ)σ is compiled away into an intersection type ∀ασ[α/α ∩ τ] while intersection
types are themselves encoded with explicit erasable coercions. This directly relates to our
work by their canonization, which is similar to our ι-reduction, and their use of bisimulation
up to canonization to show erasability of coercions. Of course, the languages are di�erent,
as we do not consider intersection types while they do have neither coercion abstraction nor
distributivity and only consider call-by-value reduction.

6.2.2 System FC

In System FC [35] (the core language of the Glasgow Haskell Compiler), coercions are bidi-
rectional: they are proofs of equality instead of proofs of inclusion. As a consequence they
are structural: when two types are equal according to an equality coercion, then their head
type constructors are the same. This permits drastic simpli�cations and in particular to han-
dle push much more easily. Notice that consistency already asks the computational head
type constructors of coercions to be equal. In FC, this condition applies to all type construc-
tors, even the erasable ones. As a consequence, the coercion (∀α τ → σ) = (τ → ∀ασ),
when α is not free in τ , is ill-formed, even though these two types are semantically equal:
(∀α τ → σ) ≡ (τ → ∀ασ) holds in System F

p
ι and System Fcc.

Coercion abstractions are not fully erasable in System FC, but they are zero-bit, because
they only have to do with typings and do not modify the computational content of the term
they are applied to. They are not erased because they have to block the reduction, as coercion
abstraction in FC is incoherent. See Section 5.5 to see why incoherent coercion are useful and
how we extend System Fcc with incoherent polymorphism. Only top-level coercion axioms are
checked for consistency, because we have to reduce under them.

In System FC, coercions are not as powerful as in other type systems, since they are only
equality and structural, however they permit to de�ne a number of derivable type system
features such as GADTs, type families, type synonyms, etc.

System FC actually has an heterogeneous equality for coercions and provides an additional
notion of kind equality. This feature permits to lift ([41] and [39]) all sorts of data types
to the type level and use them to index singleton types in order to simulate dependent type
mechanisms.

6.2.3 Implicit Coercions

The notion of implicit objects (implicit terms, implicit coercions, etc.) is a feature of surface
languages and in particular inference. It is orthogonal to the notion of erasability. On the one
hand, an object is erasable if it is present during typing but absent at runtime. For instance,
types and coercions are erasable in System Fcc. On the other hand, an object is implicit if
it is absent in the source code but may be present at runtime. Most of the time, inference
elaborates implicit objects from the surface language to the kernel language. So the study of
implicit objects is the study of inference.

In Coq, coercions are not erasable but they are implicit. They are not added to extend the
expressiveness of the language, but to lighten the source language. They permit to implicitly

161

coerce a term of a particular type to another type, by giving particular computational functions
which may be used in this manner.

Implicit coercions may also be used to express a wide variety of practical features, from
dynamic software updating to provenance tracking [37]. However, the more powerful the
inference of coercions, the greater the possibility of several semantically di�erent elaborations.
As a consequence, trade-o�s between expressiveness and ambiguity have been studied. This
notion of ambiguity can be solved by proving that all rewriting of the source term into a kernel
term with coercions have the same semantics, no matter how they are introduced. This path
is followed by [36] to ease programming with monads. The binds, units, and monad-to-monad
morphisms necessary when programming in a monadic-style, are inferred based on types. This
idea is called coherence in [7], which uses implicit coercions to control logical properties in
pure type systems.

In coercive subtyping [21], a type τ is a subtype of σ whenever there is a unique coer-
cion from τ to σ. Coercive subtyping extends an existing type theory T with a subtyping
judgment C to form a new type system T [C]. The coherence of coercions comes from the
equivalence of T [C] with T [C]∗, which is a version of T [C] where the position of coercions are
marked. As a consequence, coercive subtyping lightens the source code without ambiguity.
This work is done in a dependent type setting and solves the di�culty of Σ-types [20], which
is that the congruence on the �rst component of a Σ-type and the �rst projection of a Σ-type
form a set of incoherent coercions.

This approach of coercions as implicit objects is orthogonal to our work and may thus be
used at the same time, to get the most of both worlds. Implicit coercion inference happens
from the source language to the kernel language, while erasable coercions are a property of
the erasure of the kernel language, which is independent.

6.2.4 Step-indices

Numerous works have been done on step-indices ([4], [15]), and all that we know of are in
a weak-reduction setting. The reason is probably that step indices are usually used to give
a semantics to programming languages with side e�ects, which usually come with a weak
reduction strategy. In all these works there is a distinction between the values of type τ ,
written V[τ], and expressions of type τ , written E [τ] and de�ned by the terms having their
normal form in V[τ] with the remaining fuel. The set of values of arrow type τ → σ is then
the set of term abstractions λx a with index k such that for all indices j smaller than k and
for all values v at j in V[τ], the substitution a[x/v] is E [σ] at j. This de�nition is not stable
by reduction if we reduce under the abstraction. However, step-indices are not only used for
side-e�ects, they are also used for recursive types, which makes perfect sense in a language
with strong reduction, as we do. This is why we use them.

6.3 Applications

There are several applications to this work, although most of them would be more practical
with some of the extensions discussed in Section 6.1. However, we can see System Fcc as a
good starting point for these applications.

Designing features that are easy to merge Our initial theoretical motivation was to
express type systems features in a unique framework and in an orthogonal way. When type

162

system features are written as coercions, they can easily be composed with pre-existing type
system features. Besides the ease of merging, studying type system features as coercions
naturally gives the most out of the fusion of two features. The typical example is for System F<:

which merges η-expansion (called subtyping) with upper bounded polymorphism. Merging
these two features using coercions naturally gives the distributivity rule which is not present
in System F<:.

Extending FC with subtyping A more practical motivation to study coercions in a gen-
eral setting, was the use of type equality coercions in FC to express useful surface features
such as GADTs, type families, and others. There are several main di�erences between Sys-
tem Fcc and FC. On the one hand, our type system only has an implicit version, although
we discuss a possible explicit version in Section 5.7. On the other hand, our type system
features subtyping. A very important and potentially di�cult extension to consider are side-
e�ects (Section 6.1.13). A less important but potentially di�cult extension are kind coercions
(Section 6.1.8).

The other di�erences between both systems are more anecdotal. Zero-bit coercion abstrac-
tions of FC may be added using incoherent polymorphism (Section 5.5). Type-level functions
of FC may be added as explained in Section 6.1.3. Type equality coercions are simply erasable
isomorphisms: τ is equal to σ if there is a coercion from τ to σ and reciprocally. Higher-
kind recursive types are required to de�ne user data-types (Section 6.1.4). Finally, coercion
reduction (see Section 6.1.12) may be considered to optimize the compiler, because surface
language elaboration, constraint solving, and code optimization may build large coercions and
slow down the compilation phase.

Merging inference systems If two type systems with inference rely on the same program-
ming language, and both type systems can be projected into a common kernel type system,
then a program may use one or the other inference system for each of its compilation unit, as
long as the interfaces of the compilation units are in the intersection of both type systems. A
concrete example would be to use MLF and Constraint ML with ML types for interfaces.

MLF and Constraint ML are surface type systems with powerful inference mechanism. Merg-
ing the two inference systems may be a very hard task. However, if one only needs to write
some parts of his program using the MLF inference system and other parts with the Constraint
ML system, he can partition his compilation units according to the inference system he wishes
to use for them. Each compilation unit should have an interface in ML, which is a common
sublanguage of MLF and Constraint ML.

Suppose we have a module M written in MLF with an interface in ML and a module N
written in Constraint ML with an interface in ML. As we showed in Section 5.4, MLF and
Constraint ML are subsumed in System Fcc. So, once M and N have been inferred in their
respective language with the other module interface, we can translate their typing derivations
to System Fcc and then link them to get the �nal program. The linking works correctly since
the interface types are the same.

163

164

Chapter 7

Conclusion

We presented two type systems, System F
p
ι and System Fcc, based on a coercion framework.

Coercions are an extension of subtyping from type ordering to typing ordering. The partic-
ularity of the coercion framework is that all type system features are expressed as coercions.
The underlying programming language we use is the λ-calculus extended with pairs. The main
object of study is coercion abstraction.

Both type systems are sound. They are also strongly normalizing after the removal of
recursive types. A type system is sound (resp. strongly normalizing) when all well-typed
terms are sound (resp. strongly normalizing). A term is sound when it cannot reach an
error state. A term is strongly normalizing when it cannot inde�nitely reduce. When these
properties hold in a strong reduction setting, they also hold in all usual reduction strategies
(weak reduction, call by value, call by need, etc.). We thus described our type systems and
proved these properties in a strong reduction setting.

Coercions are erasable typing transformations in the implicit version and erasable contexts
in the explicit version. System F

p
ι has an implicit and explicit version, while System Fcc only

has an implicit version. With an implicit version, coercions are naturally erasable since they
are not present in the term. With an explicit version, coercions are erasable if they satisfy
the bisimulation lemma, which tells that coercions should not introduce, remove, or block
computational steps. System F

p
ι satis�es the bisimulation lemma.

Both type systems feature polymorphism, η-expansion, and coercion abstraction as coer-
cions. The main di�erence is that coercion abstraction is restricted to parametric coercions
in System F

p
ι , while it is unrestricted in System Fcc. Parametric coercions are coercions where

either the argument type or the return type is an abstract type. Parametric coercion abstrac-
tion can actually be seen as an extension from polymorphism to bounded polymorphism. In
System Fcc, we also extend polymorphism by extending the kinds on which abstract types
may range, with a particular kind constraining the abstract type to satisfy a proposition,
which may be a conjunction of coercions for instance. The η-expansion feature gives both
type systems congruence rules for computational types. This permits to use coercions deeply
in a type according to the variance of the path. This feature is at the root of subtyping and
comes from System Fη.

Both type systems subsume System Fη, MLF, and System F<:. System Fcc additionally
subsumes Constraint ML. As a consequence, MLF and Constraint ML which have particularly
good inference mechanisms, can be seen as surface languages for System Fcc. The main missing
feature, to describe OCaml core type system and FC (GHC core type system), is side e�ects.

165

The remaining features are more anecdotal to study.
Another main di�erence with FC, is that FC has an explicit version with the subject

reduction lemma, while only System F
p
ι does. System Fcc is more expressive than System F

p
ι ,

since it features unrestricted coercion abstraction and unrestricted recursive types. But it only
has an implicit version without subject reduction. Restoring subject reduction and de�ning
an explicit version would require to study coercion decomposition and the push reduction rule.
The main di�culty is the proof of consistency which is not completely clear to hold in our
semantics. Moving polymorphism from the coercion language to the term language may be a
solution to restore subject reduction and the explicit version at the cost of losing deep type
and coercion abstraction and instantiation.

A last di�erence with FC, is that FC has top-level coherent coercion abstraction and local
incoherent coercion abstraction. In System Fcc, we permit also local coherent coercion abstrac-
tion by asking the kind of the type abstraction to be inhabited. We also permit incoherent
coercion abstraction as an extension, which requires blocking abstraction at the computational
level: such as unit abstraction or weak lambdas.

A �nal contribution of this thesis is an adaptation of step-indexed techniques to prove
soundness in a strong reduction setting. Step-indexed techniques are usually studied in a weak
reduction setting due to the presence of side e�ects in the considered languages. However,
the de�nition they use for the arrow type does not work for strong reduction semantics. The
reason comes from the fact that indices, representing the fuel of the terms, are external to
the terms. As a consequence, substitution and reduction do not permute. We restore this
commutation by internalizing the notion of indices inside terms.

166

Bibliography

[1] Andreas Abel and Gabriel Scherer. On irrelevance and algorithmic equality in predicative
type theory. Logical Methods in Computer Science, 8(1):1�36, 2012. TYPES'10 special
issue.

[2] Beniamino Accattoli and Delia Kesner. The structural lambda-calculus. In Anuj Dawar
and Helmut Veith, editors, CSL, volume 6247 of Lecture Notes in Computer Science,
pages 381�395. Springer, 2010.

[3] Roberto Amadio and Luca Cardelli. Subtyping recursive types. ACM TRANSACTIONS

ON PROGRAMMING LANGUAGES AND SYSTEMS, 15(4):575�631, 1993.

[4] Andrew W. Appel and David McAllester. An indexed model of recursive types for founda-
tional proof-carrying code. ACM Transactions on Programming Languages and Systems.,
23(5), September 2001.

[5] Paolo Baldan, Giorgio Ghelli, and Alessandra Ra�aetà. Basic theory of F-bounded quan-
ti�cation. Inf. Comput., 153:173�237, September 1999.

[6] Bruno Barras and Bruno Bernardo. The implicit calculus of constructions as a pro-
gramming language with dependent types. In Proceedings of the Theory and practice of

software, 11th international conference on Foundations of software science and compu-

tational structures, FOSSACS'08/ETAPS'08, pages 365�379, Berlin, Heidelberg, 2008.
Springer-Verlag.

[7] Gilles Barthe. Implicit coercions in type systems. In Stefano Berardi and Mario Coppo,
editors, Types for Proofs and Programs, volume 1158 of Lecture Notes in Computer Sci-

ence, pages 1�15. Springer Berlin Heidelberg, 1996.

[8] Tomasz Blanc, Jean-Jacques Lévy, and Luc Maranget. Sharing in the weak lambda-
calculus. In Aart Middeldorp, Vincent Oostrom, Femke Raamsdonk, and Roel Vrijer,
editors, Processes, Terms and Cycles: Steps on the Road to In�nity, volume 3838 of
Lecture Notes in Computer Science, pages 70�87. Springer Berlin Heidelberg, 2005.

[9] Val Breazu-Tannen, Thierry Coquand, Carl Gunter, and Andre Scedrov. Inheritance as
implicit coercion. Information and Computation, 93:172�221, 1991.

[10] Loïc Colson and Vincent Demange. Investigations on a pedagogical calculus of construc-
tions. CoRR, abs/1203.3568, 2012.

[11] The Coq Proof Assistant http://coq.inria.fr/what-is-coq.

167

http://coq.inria.fr/what-is-coq

[12] Karl Crary. Typed compilation of inclusive subtyping. In Proceedings of the �fth ACM

SIGPLAN international conference on Functional programming (ICFP), pages 68�81,
New York, NY, USA, 2000. ACM.

[13] Julien Cretin and Didier Rémy. On the power of coercion abstraction. In Proceedings

of the 39th annual ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, POPL '12, pages 361�372, New York, NY, USA, 2012. ACM.

[14] Kevin Donnelly and Hongwei Xi. A formalization of strong normalization for simply-typed
lambda-calculus and system F.

[15] Derek Dreyer, Amal Ahmed, and Lars Birkedal. Logical step-indexed logical relations.
In Proceedings of the 2009 24th Annual IEEE Symposium on Logic In Computer Science,
LICS '09, pages 71�80, Washington, DC, USA, 2009. IEEE Computer Society.

[16] Jean H. Gallier and Jean H. Gallier. On Girard's candidats de réductibilité. In Logic and

Computer Science. North, 1990.

[17] The Haskell Programming Language http://www.haskell.org/haskellwiki/Haskell.

[18] Didier Le Botlan and Didier Rémy. Mlf: raising ml to the power of system f. In Proceedings
of the eighth ACM SIGPLAN international conference on Functional programming, ICFP
'03, pages 27�38, New York, NY, USA, 2003. ACM.

[19] Didier Le Botlan and Didier Rémy. Recasting MLF. Information and Computation,
207(6):726�785, 2009.

[20] Yong Luo and Zhaohui Luo. Combining incoherent coercions for sigma-types. In Stefano
Berardi, Mario Coppo, and Ferruccio Damiani, editors, TYPES, volume 3085 of Lecture
Notes in Computer Science, pages 276�292. Springer, 2003.

[21] Z. Luo, S. Soloviev, and T. Xue. Coercive subtyping: Theory and implementation. Inf.
Comput., 223:18�42, February 2013.

[22] Jean-Jacques Lévy and Luc Maranget. Explicit substitutions and programming lan-
guages. In C.Pandu Rangan, V. Raman, and R. Ramanujam, editors, Foundations of

Software Technology and Theoretical Computer Science, volume 1738 of Lecture Notes in
Computer Science, pages 181�200. Springer Berlin Heidelberg, 1999.

[23] Ralph Matthes. Monotone �xed-point types and strong normalization. In Proceedings

of the 12th International Workshop on Computer Science Logic, pages 298�312, London,
UK, UK, 1999. Springer-Verlag.

[24] Alexandre Miquel. The implicit calculus of constructions: extending pure type systems
with an intersection type binder and subtyping. In Proceedings of the 5th international

conference on Typed lambda calculi and applications, TLCA'01, pages 344�359, Berlin,
Heidelberg, 2001. Springer-Verlag.

[25] John C. Mitchell. Polymorphic type inference and containment. Information and Com-

putation, 2/3(76):211�249, 1988.

[26] The OCaml Programming Language http://caml.inria.fr/ocaml/index.en.html.

168

http://www.haskell.org/haskellwiki/Haskell
http://caml.inria.fr/ocaml/index.en.html

[27] Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with constrained
types. Theor. Pract. Object Syst., 5(1):35�55, January 1999.

[28] Jens Palsberg and Patrick O'Keefe. A type system equivalent to �ow analysis. ACM

Trans. Program. Lang. Syst., 17(4):576�599, July 1995.

[29] Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge, MA,
USA, 2002.

[30] Benjamin C. Pierce. Advanced Topics in Types and Programming Languages. The MIT
Press, 2004.

[31] Francois Pottier. Simplifying subtyping constraints. In In Proceedings of the 1996 ACM

SIGPLAN International Conference on Functional Programming, pages 122�133. ACM
Press, 1996.

[32] Didier Rémy and Boris Yakobowski. A church-style intermediate language for mlf. In
Matthias Blume, Naoki Kobayashi, and German Vidal, editors, Functional and Logic

Programming, volume 6009 of Lecture Notes in Computer Science, pages 24�39. Springer
Berlin / Heidelberg, 2010.

[33] Colin Riba. On the stability by union of reducibility candidates. In Proceedings of the 10th
international conference on Foundations of software science and computational structures,
FOSSACS'07, pages 317�331, Berlin, Heidelberg, 2007. Springer-Verlag.

[34] Martin Ste�en. Polarized higher-order subtyping, 1997.

[35] Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin Donnelly.
System F with type equality coercions. In Proceedings of the 2007 ACM SIGPLAN

international workshop on Types in languages design and implementation, TLDI '07,
pages 53�66, New York, NY, USA, 2007. ACM.

[36] Nikhil Swamy, Nataliya Guts, Daan Leijen, and Michael Hicks. Lightweight monadic
programming in ML. In Proceedings of the 16th ACM SIGPLAN international conference

on Functional programming, ICFP '11, pages 15�27, New York, NY, USA, 2011. ACM.

[37] Nikhil Swamy, Michael Hicks, and Gavin M. Bierman. A theory of typed coercions and
its applications. In Proceedings of the 14th ACM SIGPLAN international conference on

Functional programming, ICFP '09, pages 329�340, New York, NY, USA, 2009. ACM.

[38] Dimitrios Vytiniotis and Simon L. Peyton Jones. Evidence normalization in system fc
(invited talk). In Femke van Raamsdonk, editor, RTA, volume 21 of LIPIcs, pages 20�38.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.

[39] Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. System fc with explicit kind
equality. In Proceedings of the 18th ACM SIGPLAN international conference on Func-

tional programming, ICFP '13, pages 275�286, New York, NY, USA, 2013. ACM.

[40] Joe B. Wells and Christian Haack. Branching types. In Proc. of the European Symposium

On Programming Languages and Systems, 2002.

169

[41] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dimitrios Vy-
tiniotis, and José Pedro Magalhães. Giving Haskell a promotion. In Proceedings of the

8th ACM SIGPLAN workshop on Types in language design and implementation, TLDI
'12, pages 53�66, New York, NY, USA, 2012. ACM.

170

List of Figures

2.1 Syntax of the λ-calculus . 23

2.2 Reduction relation . 24

2.3 Notations . 24

3.1 STLC syntax . 34

3.2 STLC notations . 35

3.3 STLC reduction relation . 35

3.4 STLC term judgment relation . 36

3.5 STLC well formedness relations . 36

3.6 STLC drop function . 37

3.7 System F syntax . 40

3.8 System F notations . 40

3.9 System F reduction rules . 41

3.10 System F term judgment relation . 41

3.11 System F well-formedness relations . 42

3.12 System F drop function . 42

3.13 System Frec syntax . 44

3.14 System Frec notations . 45

3.15 System Frec reduction rules . 45

3.16 System Frec term judgment relation . 46

3.17 System Frec well-foundedness judgment relation 46

3.18 System Frec well-formedness relations . 47

3.19 System Fη syntax . 48

3.20 System Fη notations . 49

3.21 System Fη reduction rules . 49

3.22 System Fη term judgment relation . 50

3.23 System Fη containment judgment relation . 51

3.24 System Fη well-formedness relations . 52

3.25 MLF syntax . 54

3.26 MLF notations . 54

3.27 MLF reduction rules . 55

3.28 MLF update function . 55

3.29 MLF term judgment relation . 56

3.30 MLF instance judgment relation . 56

3.31 MLF well-formedness relations . 57

3.32 System F<: syntax . 58

3.33 System F<: notations . 59

171

3.34 System F<: reduction rules . 59

3.35 System F<: term judgment relation . 60

3.36 System F<: subtyping judgment relation . 61

3.37 System F<: well-formedness relations . 62

3.38 Constraint ML syntax . 63

3.39 Constraint ML term judgment relation . 63

4.1 Base system syntax . 70

4.2 Base system notations . 70

4.3 Base system reduction rules . 72

4.4 Base system term judgment relation . 72

4.5 Base system coercion judgment relation . 73

4.6 Base system well-formedness relations . 74

4.7 System F
p
ι syntax . 81

4.8 System F
p
ι notations . 82

4.9 System F
p
ι reduction rules . 82

4.10 System F
p
ι term judgment relation . 85

4.11 System F
p
ι coercion judgment relation . 86

4.12 System F
p
ι well-formedness relations . 88

4.13 System F
p
ι drop function . 89

4.14 System F
p
ι term rei�cation function . 90

4.15 System F
p
ι type rei�cation function . 90

4.16 System F
p
ι coercion rei�cation function . 91

4.17 System F
p
ι environment rei�cation function . 91

4.18 Push . 107

5.1 System Fcc syntax . 112

5.2 System Fcc well-foundedness judgment relation 113

5.3 System Fcc kind judgment relation . 114

5.4 System Fcc type judgment relation . 114

5.5 System Fcc proposition judgment relation . 115

5.6 System Fcc coercion judgment relation . 117

5.7 System Fcc type environment judgment relation 118

5.8 System Fcc well-formedness relation . 118

5.9 System Fcc term environment judgment relation 119

5.10 System Fcc term judgment relation . 119

5.11 Indexed Calculus syntax . 121

5.12 Indexed Calculus notations . 121

5.13 Lower function . 122

5.14 Indexed Calculus reduction relation . 123

5.15 Lifting integer predicates to indexed terms . 124

5.16 Lifting of a binary predicate ? on indices to terms 124

5.17 Kind interpretation . 131

5.18 Type interpretation . 131

5.19 Proposition interpretation . 132

5.20 Environments interpretation . 133

5.21 Fill function . 134

172

5.22 System F
p
ι type translation function . 138

5.23 System F
p
ι environment translation function . 138

173

Index

Notations, see notations
| · |, see interpretation
bec, see drop
bRc, see drop
beck, see lower
daek, see �ll
R↓, see interior
(R), see contraction
(?R), see expansion

♦R, see expansion-closure
〈R〉k, see approximation
R→ S, see arrow operator
R× S, see product operator
∀I F, see intersection operator
µF, see recursive operator
G |= S, see semantic judgment
∆, see head normal form
∇, see neutral
Ω, see error

Ω

, see valid
r, see error
S, see sound
e ≤ k, see lift
e > 0, see lift

approximation, 127
arrow operator, 125, 149

bisimulation, 37, 42, 93
bottom type, 53, 77

coercion, 64, 72, 112
abstraction, 104, 111
decomposition, 106, 148
�rst-class, 155
implicit, 161
non-erasable, 154
reduction, 106, 158

coherence, 111, 114, 117, 143, 160
coinduction, 140

computational type, 74
con�uence, 28, 38, 43, 92
congruence, 75
consistency, 93, 106, 111, 157
Constraint ML, 63, 139
contraction, 125
curry�cation, 29

dependent type, 156
distributivity, 51, 77, 103
drop, 37, 41, 123

equality, 112
equi-recursive type, 47, 140
equivalence, 37, 42, 53, 89
erasable type, 74
error, 24, 25, 122
η-expansion, 48, 76, 86, 116, 143
existential type, 144, 151
expansion, 120
expansion-closure, 125
explicit type system, 33
expressivity, 99, 135
extraction, 38, 43, 53, 96, 130

�ll, 134
fuel, see step-index

GADT, 141

head normal form, 122
head normal form, 120

ICC, see Implicit Calculus of Constructions
Implicit Calculus of Constructions, 156
implicit type system, 33
Indexed Calculus, 121
inference, 53, 63
interior, 125
interpretation, 130
intersection operator, 127

174

iso-recursive type, 47, 140
isomorphism, 137

kind, 111

Lambda Calculus, see λ-calculus
λ-calculus, 21
lift, 124
lower, 122

MLF, 53, 78, 102

neutral, 120, 122
non-expansive, see well-foundedness
notations, 135

omega term, 25, 47

polymorphism, 39, 75
bounded, 53, 58, 78, 79
coherent, 111, 117, 135
incoherent, 141

pretype, 125
product operator, 125
progress, 39, 44, 98, 121
proposition, 112
push, 106, 149

recursive bound, 56, 78�80, 88, 102
recursive operator, 127
recursive type, 44, 111, 127, 140, 153
rei�cation, 90

semantic judgment, 128
semantics, 120
Simply Typed Lambda Calculus, see STLC
sound, 120, 123
soundness, 29, 39, 44, 95, 99, 130, 134
step-index, 111, 121, 127, 162
STLC, 34, 53, 71

semantics, 128
strong normalization, see termination
subject reduction, 38, 44, 98, 148
subtyping, 48, 58, 160
System F, 39, 44, 48, 53, 58, 90, 99
System Frec, 44, 140
System Fη, 48, 100
System F<:, 58, 79, 103
System F

p
ι , 69, 137

System Fcc, 111

termination, 29, 38, 43, 90, 98, 123, 135
top type, 58, 78
type, 125
type equality, see equality
type system, 33

uniqueness, 37, 41, 52, 89

valid, 25, 122
variance, 153

weak reduction, 145
weakening, 73, 85, 116
well-founded, see well-foundedness
well-foundedness, 45, 112

semantics, 127

175

	Introduction
	The Lambda Calculus
	Terminology
	Syntax
	Reduction rules
	Encodings
	Booleans
	Pairs
	Sums

	Properties
	Confluence
	Curryfication
	Soundness
	Termination

	I Type Systems as Usual
	Existing Type Systems
	The STLC
	Definition
	Properties

	System F
	Definition
	Properties

	System F-rec
	Definition
	Properties

	System F-eta
	Definition
	Properties

	MLF
	Definition
	Properties

	System F-sub
	Definition
	Properties

	Constraint ML
	Existing Coercions

	II Type Systems as Coercions
	An explicit calculus of coercions: System F-iota-param
	Base system
	Features
	Polymorphism
	Eta-expansion
	Bottom
	Top
	Lower Bounded polymorphism
	Upper Bounded polymorphism

	System F-iota-param
	Properties
	Implicit vs. Explicit version
	Termination
	Confluence
	Bisimulation
	Soundness

	Expressivity
	System F
	System F-eta
	MLF
	System F-sub
	Summary

	Beyond parametric coercion abstraction
	Unrestricted coercion abstraction
	Push

	An implicit calculus of coercions: System Fcc
	Definition
	Semantics
	The Indexed Calculus
	Bisimulation
	Semantic types
	Simple types
	Intersection types
	Recursive types
	Semantic judgment

	Soundness
	Expressivity
	Surface notations
	System F-iota-param
	Constraint ML
	Recursive coercions

	Incoherent Polymorphism
	Coq formalization
	Discussion about the explicit version

	Discussions
	Extensions
	Data types
	Existentials
	Type-level functions
	Recursive types at arbitrary kinds
	Non-erasable coercions
	First-class coercions
	Dependent types
	Kind coercions
	Intersection types
	Semantic consistency
	Environment actions
	Coercion reduction
	Side effects
	Dead code

	Related work
	System F-sub
	System FC
	Implicit Coercions
	Step-indices

	Applications

	Conclusion

