
HAL Id: tel-00940575
https://theses.hal.science/tel-00940575v1
Submitted on 1 Feb 2014 (v1), last revised 17 Feb 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Markovian approach to distributional semantics
Edouard Grave

To cite this version:
Edouard Grave. A Markovian approach to distributional semantics. Computation and Language
[cs.CL]. Université Pierre et Marie Curie - Paris VI, 2014. English. �NNT : �. �tel-00940575v1�

https://theses.hal.science/tel-00940575v1
https://hal.archives-ouvertes.fr

THÈSE

presentée à

L’UNIVERSITÉ PARIS VI - PIERRE ET MARIE CURIE
ÉCOLE DOCTORALE INFORMATIQUE,

TÉLÉCOMMUNICATIONS ET ÉLECTRONIQUE

par

ÉDOUARD GRAVE

pour obtenir

LE GRADE DE DOCTEUR EN SCIENCES
SPECIALITÉ : INFORMATIQUE

A Markovian approach to
distributional semantics

Directeurs de thèse : FRANCIS BACH ET GUILLAUME OBOZINSKI.

Soutenue le 20 janvier 2014, devant la commission d’examen formée de :

FRANCIS BACH INRIA DIRECTEUR DE THÈSE
DAVID BLEI PRINCETON UNIVERSITY RAPPORTEUR
PATRICK GALLINARI UPMC EXAMINATEUR
GUILLAUME OBOZINSKI ECOLE DES PONTS DIRECTEUR DE THÈSE
BENOÎT SAGOT INRIA EXAMINATEUR
FRANÇOIS YVON CNRS RAPPORTEUR

ii

To my parents

iv

“Il semble que la perfection soit atteinte, non quand
il n’y a plus rien à ajouter mais quand il n’y a plus
rien à retrancher”

— Antoine de Saint-Exupéry, Terre des hommes

vi

ABSTRACT

THIS THESIS, which is organized in two independent parts, presents work on distributional
semantics and on variable selection.

In the first part, we introduce a new method for learning good word representations us-
ing large quantities of unlabeled sentences. The method is based on a probabilistic model of
sentence, using a hidden Markov model and a syntactic dependency tree. The latent variables,
which correspond to the nodes of the dependency tree, aim at capturing the meanings of the
words. We develop an efficient algorithm to perform inference and learning in those models,
based on online EM and approximate message passing. We then evaluate our models on intrin-
sic tasks such as predicting human similarity judgements or word categorization, and on two
extrinsic tasks: named entity recognition and supersense tagging.

In the second part, we introduce, in the context of linear models, a new penalty function to
perform variable selection in the case of highly correlated predictors. This penalty, called the
trace Lasso, uses the trace norm of the selected predictors, which is a convex surrogate of their
rank, as the criterion of model complexity. The trace Lasso interpolates between the `1-norm
and `2-norm. In particular, it is equal to the `1-norm if all predictors are orthogonal and to
the `2-norm if all predictors are equal. We propose two algorithms to compute the solution of
least-squares regression regularized by the trace Lasso, and perform experiments on synthetic
datasets to illustrate the behavior of the trace Lasso.

KEYWORDS: distributional semantics; hidden Markov model; dependency tree; word repre-
sentation; semantic class; variable selection; trace Lasso.

vii

viii

RÉSUMÉ

CETTE THÈSE, organisée en deux parties indépendantes, a pour objet la semantique distri-
butionnelle et la sélection de variables.

Dans la première partie, nous introduisons une nouvelle méthode pour l’apprentissage de
représentations de mots à partir de grandes quantités de texte brut. Cette méthode repose sur
un modèle probabiliste de la phrase, utilisant modèle de Markov caché et arbre de dépendance.
Nous présentons un algorithme efficace pour réaliser l’inférence et l’apprentissage dans un tel
modèle, fondé sur l’algorithme EM en ligne et la propagation de message approchée. Nous éva-
luons les modèles obtenus sur des taches intrinsèques, telles que prédire des jugements de simi-
larité humains ou catégoriser des mots et deux taches extrinsèques : la reconnaissance d’entités
nommées et l’étiquetage en supersens.

Dans la seconde partie, nous introduisons, dans le contexte des modèles linéaires, une nou-
velle pénalité pour la sélection de variables en présence de prédicteurs fortement corrélés. Cette
pénalité, appelée trace Lasso, utilise la norme trace des prédicteurs sélectionnés, qui est une re-
laxation convexe de leur rang, comme critère de complexité. Le trace Lasso interpole les normes
`1 et `2. En particulier, lorsque tous les prédicteurs sont orthogonaux, il est égal à la norme `1,
tandis que lorsque tous les prédicteurs sont égaux, il est égal à la norme `2. Nous proposons deux
algorithmes pour calculer la solution du problème de régression aux moindres carrés regularisé
par le trace Lasso et réalisons des expériences sur des données synthétiques.

MOTS CLÉS : sémantique distributionnelle ; modèle de Markov caché ; arbre de dépendance ;
représentation de mots ; classe sémantique ; sélection de variables ; trace Lasso.

ix

x

ACKNOWLEDGEMENTS

FIRST AND FOREMOST, I would like to thank my two Ph.D. advisors, Francis Bach and
Guillaume Obozinski. During those three years under their guidance, I learnt a lot on

various topics, such as machine learning, numerical optimization or English writing. I am also
very gratful to them for letting me explore my own research interests by working on natural
language processing. They have been very supportive and always enthusiastic about my project.
Working with them was a real pleasure.

I would also like to thank David Blei, Patrick Gallinari, Benoît Sagot and François Yvon
for accepting to be part of my Ph.D. defense jury. It was a great honor to present my work to
them. I am especially grateful to David Blei and François Yvon for reviewing this manuscript
and for their very insightful comments.

Working in the Willow and Sierra teams has been a great pleasure. Indeed, Jean Ponce and
Francis Bach have managed to create an exceptional environment to do research and I have
been very lucky to be part of it during three years. I want to thank all the great people I had
the chance to meet during my almost four years in the Willow and Sierra team, and the nice
moments we shared, such as the retreats. I would like to thank Cécile Espiègle, Marine Meyer
and Lindsay Polienor for their help and kindness. I also want to thank Rodolphe Jenatton,
Nicolas Le Roux and Augustin Lefèvre for all the great discussions we had and for their advices.
I had the great pleasure to share an office during those years with Matthieu Solnon and Nicolas
Flammarion. I also greatly enjoyed the heated discussions I had with Armand Joulin about
football. Finally, I would like to thank Piotr Bojanowski, Vincent Delaitre and Guillaume
Seguin for all the coffee breaks and great moments we shared, at the lab or across Europe.

I also want to thank Michel Colin and Saab Abou-Jaoudé, who were my mathematics pro-
fessors in classes préparatoires. They helped me achieve my goals and become a researcher in
applied mathematics and computer science. I am also grateful to Frédo Durand, with whom I
interned at MIT.

Finally, I want to deeply thank my parents, my sisters and my brother for supporting me
all those years.

xi

xii

CONTENTS

Introduction 1

I Distributional semantics 19

1 A brief introduction to natural language processing 21
1.1 What is a word? . 21

1.1.1 Word, form and lemma . 22
1.1.2 From morphemes to words: a bit of morphology 22
1.1.3 The importance of morphology for NLP . 23
1.1.4 Parts-of-speech . 23

1.2 From words to sentences: syntax . 24
1.2.1 Constituency grammars . 24
1.2.2 Dependency grammars . 25

1.3 Semantics . 26
1.3.1 Lexical semantics . 26
1.3.2 Semantic compositionality . 28

1.4 Distributional semantics . 29
1.4.1 Vector space models . 29
1.4.2 Latent Dirichlet allocation and topic models 32
1.4.3 Brown clustering and other clusterings . 34

2 Hidden Markov tree models for semantic class induction 37
2.1 Model . 37

2.1.1 Markov chain model . 38
2.1.2 Dependency tree model . 39
2.1.3 Brown clustering on dependency trees . 40

2.2 Inference and learning . 40
2.2.1 Online EM . 40
2.2.2 Approximate inference . 41
2.2.3 State splitting . 42
2.2.4 Initialization . 42

2.3 Experiments . 44

xiii

xiv CONTENTS

2.3.1 Datasets . 44
2.3.2 Semantic classes . 44
2.3.3 Transitions between semantic classes . 46
2.3.4 Vectorial representation of words . 48
2.3.5 On optimization parameters . 50

2.4 Relation to previous work . 52
2.5 Conclusion . 52

3 Intrinsic evaluations 55
3.1 Predicting similarity judgements . 55
3.2 BLESS . 57
3.3 Word categorization . 60

3.3.1 Concrete nouns categorization . 62
3.3.2 Abstract v.s. concrete nouns categorization 64
3.3.3 Verbs categorization . 66

3.4 Compositional semantics . 68
3.4.1 Mitchell and Lapata dataset . 69
3.4.2 Grefenstette and Sadrzadeh dataset . 70
3.4.3 Vecchi et al. dataset . 72

4 Semi-supervised learning 75
4.1 Challenges of statistical methods for NLP . 75

4.1.1 A solution: semi-supervised learning . 76
4.2 Experimental setting . 76
4.3 Named entity recognition . 77

4.3.1 Presentation . 77
4.3.2 Experiments . 79

4.4 Supersense tagging . 82
4.4.1 Presentation . 82
4.4.2 Experiments . 82

4.5 Conclusion . 86

5 Conclusion 87

II Structured sparsity 89

6 A brief introduction to statistical learning and variable selection 91
6.1 Empirical risk minimization . 92

6.1.1 Loss functions . 93
6.1.2 Linear models . 94

6.2 Approximation-estimation tradeoff . 95
6.3 Model selection . 97

CONTENTS xv

6.3.1 k-fold cross validation . 97
6.4 Some classical estimators for linear regression . 97

6.4.1 Least squares regression . 98
6.4.2 Ridge regression . 99
6.4.3 Lasso . 99
6.4.4 Elastic net . 101
6.4.5 Pairwise elastic net . 101
6.4.6 Group Lasso . 103

6.5 Optimization algorithms for the Lasso . 103
6.5.1 Homotopy algorithm: LARS . 103
6.5.2 Iteratively reweighted least squares . 105
6.5.3 Proximal methods . 106

7 Trace Lasso: a trace norm regularization for correlated designs 107
7.1 Introduction . 107
7.2 Definition and properties of the trace Lasso . 109

7.2.1 The ridge, the Lasso and the trace Lasso . 110
7.2.2 A new family of penalty functions . 111
7.2.3 Dual norm . 114

7.3 Optimization algorithms . 114
7.3.1 Iteratively reweighted least squares . 115
7.3.2 Alternating direction method of multipliers 116
7.3.3 Choice of λ . 118

7.4 Approximation around the Lasso . 118
7.5 Experiments . 119

7.5.1 Generation of synthetic data . 119
7.5.2 Comparison of optimization algorithms . 119
7.5.3 Comparison with other estimators . 121

7.6 Conclusion . 121

A Some facts about the trace norm 123
A.1 Perturbation of the trace norm . 123

A.1.1 Jordan-Wielandt matrices . 123
A.1.2 Cauchy residue formula . 123
A.1.3 Perturbation analysis . 124

A.2 Proof of proposition 2 . 127
A.3 Proof of proposition 3 . 128

xvi CONTENTS

INTRODUCTION

IN THE LAST twenty years, statistical machine learning has made tremendeous progress and
enjoyed great success. This was possible thanks to different factors. First, the quantity of

data, both labeled and unlabeled, has exploded during this period. Second, the computational
power needed to analyze all of these data is now available and cheap. Finally, statistical and
optimization methods were developed to tackle the challenges arising when dealing with that
volume of data.

In this thesis, I describe two contributions to machine learning. The first one is an applica-
tion to natural language processing. I developed a probabilistic model that automatically infers
the meaning of words, given large quantities of unlabeled textual data. More particularly, using
this model, it is possible to determine that the word cat is closer to dog than banana. The sec-
ond contribution is about variable selection: the explosion of the amount of data also means
that these data live in spaces of higher and higher dimensions. It is thus necessary to develop
methods that can select the important variables to solve the problem.

Semantic class induction

The first part of this thesis present work I carried out on word representation, and more specif-
ically, on how to automatically learn good representations from large quantity of unlabeled
texts. The contributions described in the first part of this thesis were previously published in
(Grave et al., 2013b) and (Grave et al., 2013a).

Motivations

Nowadays, most natural language processing systems are based on machine learning. The first
step in designing such systems is to find a way to represent words as mathematical objects, often
vectors, that can be fed into the machine learning algorithm. The simplest way to represent
words is to associate a different integer to each word of the vocabulary, thus viewing words
as discrete symbols. The word associated to the integer i can also be represented by the high
dimensional vector ei , which is equal to zero everywhere except the i th coefficient which is
equal to one. For large vocabularies, the dimension of vectors associated to words is extremely
high. Indeed, it is now common to deal with several hundreds of thousands of words, or even
several millions of words. Unfortunately, statistical methods would need an unrealistic quantity

1

2 CONTENTS

of labeled data to be trained with such high dimensional representations. A second serious
limitation of this kind of representation is the fact that it is impossible to compare different
words: computing the scalar product, or any other similarity measure, would give the same
result for all the pairs of vectors representing two different words. In particular, this is a problem
for words that were not seen in the training data: at test time, the algorithm has no way of
determining how to model those words.

The first solution to these limitations that was proposed, even before the rise of statistical
methods for natural language processing, is to design word features that capture the information
needed to perform the underlying task. Examples of such features are prefixes and suffixes, such
as un- for the adjective unhappy or -ed for the verb wanted, or shape features, such as features
indicating if the word in capitalized or not, if it contains digits or hyphens, etc. This solution has
proven to be quite effective for a large number of tasks such as part-of-speech tagging, syntactic
parsing or named entity recognition. Unfortunately, for each new task, or each new domain or
language, this set of features has to be redesigned by hand, which is time consuming and requires
expert knowledge. For example, a very efficient feature for named entity recognition in English
is whether a word is capitalized or not. This feature is completely useless for German, in which
all nouns are capitalized, or Arabic, in which there are no capital letters.

A second approach to word representation is to perform word clustering, in order to dras-
tically reduce the size of the vocabulary. The idea is to use large quantity of unlabeled texts
and to cluster words based on their usage patterns and their contexts. The seminal work of
Brown et al. (1992) proposed such a clustering algorithm, known as Brown clustering, which is
still used nowadays and has been successfully applied to tasks such as named entity recognition
or syntactic parsing. In that case, each word belongs to exactly one cluster, and can be rep-
resented by its corresponding cluster symbol. This representation still has some limitations:
words belonging to different clusters still cannot be compared, while words belonging to the
same cluster are considered equivalent. Another important limitation is the fact that each word
only belongs to one cluster, and polysemy is thus ignored.

Following the approach proposed by Brown et al. (1992), we propose a new method to learn
word representations using large quantities of unlabeled texts. Our method take into account
the syntax and polysemy, since they both are important characteristics of natural languages.
Finally, we compare discrete and continuous representations and demonstrate that continuous
ones work better since they allow to compute word similarities.

Hidden Markov tree models for semantic class induction

In Chapter 2, I introduce a new method for learning word representations using large quantities
of unlabeled sentences. This method is based on a probabilistic model of sentences, with latent
classes which aim at capturing the meaning of words. According to our model, these latent
classes are generated by a Markov process on a syntactic dependency tree (De Marneffe and
Manning, 2008). Syntactic dependency trees capture the grammatical relations between words.

CONTENTS 3

In 1805 Beethoven wrote his only opera

c0 c1 c2 c3 c4 c5 c6 c7

w1 w2 w3 w4 w5 w6 w7

Figure 1: Example of a dependency tree and its corresponding graphical model.

Thus, using such trees allows our model to take the syntax into account. More formally, given
a function π such that π(i) is the parent of the i th word of the sentence, the joint probability
distribution on words w= (w1, ..., wK) and semantic classes c= (c1, ..., cK) can be factorized as

p(w, c) =
K
∏

k=1

p(ck | cπ(k)) p(wk | ck),

where both transition and emission probability distributions are multinomial distributions.
Our model is thus a hidden Markov model, built on a dependency tree instead of a linear chain
between the latent classes. See Figure 1 for a graphical representation of our model for the
sentence

In 1805 Beethoven wrote his only opera.

In order to learn the parameters of our hidden Markov models, we consider the maximum
likelihood estimator. Since we want to train our models on very large quantities of sentences,
we use the online variant of the expectation-maximization algorithm, proposed by Cappé and
Moulines (2009). We also want to learn models with large numbers of latent classes, of the
order of 500, and since the complexity of the exact message passing algorithm is quadratic with
respect to the number of latent classes, we propose to use an approximate variant which has a
complexity of O(n log n), where n is the number of classes.

Intrinsic evaluations of our models

In Chapter 3, we evaluate our models on various classical tasks used for the evaluation of distri-
butional models of semantics. The first one is predicting human similarity judgement. Pairs of

4 CONTENTS

words are presented to human subjects who are asked to rate their relatedness on a 0−10 scale.
Then, the vectorial representations obtained using our models are used to compute the similar-
ity between the same pairs of words. The Pearson correlation coefficient between human sim-
ilarity and model similarity scores is then computed to evaluate how well our models capture
word similarity. We compare different similarity measures, such as the cosine, the Kullback-
Leibler divergence or the Hellinger distance. We also evaluate our models on the BLESS dataset,
a dataset introduced in order to determine what kind of semantic relations between words are
favored by distributional models of semantics.

The second task we use to evaluate our models is a word categorization task. Given a set of
words, the goal is to cluster them into groups that are semantically relevant. For example, given
words refering to animals, vehicles and tools, the goal is to find those three clusters. We consider
three datasets on which we evaluate our models, the first one is composed of concrete nouns,
the second one is composed of concrete and abstract nouns and the third one is composed of
verbs.

Finally, we evaluate our models on composition tasks. Natural languages verify the prin-
ciple of compositionality: the meaning of a complex expression is a function of the meaning
of its parts and the syntactic relations between them. It is thus believed that good word rep-
resentations should follow the same principle, and in particular that it should be possible to
compose representations of individual words in order to obtain representations of complex ex-
pressions. For this task, human subjects were presented pairs of phrases, and were asked to rate
their semantic similarity. Our models are then used to compute the similarity between the same
pairs of phrases. Again, the Pearson correlation coefficient is used to determine how well the
models capture the semantic similarity of phrases. We evaluate our models on three datasets,
comprising adjective-noun phrases, noun-noun phrases, verb-object phrases and subject-verb-
object triples.

Semi-supervised learning

In Chapter 4, we evaluate our models on two extrinsic tasks: semi-supervised named entity
recognition and supersense tagging. As we said before, having a good word representation or
good features is essential for supervised machine learning methods applied to natural language
processing. It is thus common to first learn such a word representation on unlabeled data, and
then use it as features for the supervised task.

We conduct experiments on two tasks. The first one, named entity recognition, is a part of
information retrieval and consists in detecting and classifiying named entities, such as names of
places, persons or organizations. Since there is a lot of different entities, many of them were
not seen in training data. It thus helps to learn a word representation to reduce the errors
on those unknown words. The second task, supersense tagging, is a very coarse word sense
disambiguation task. Building a system that can disambiguate all words is challenging because of
the very large number of different word senses. Thus, it was proposed to reduce the number of

CONTENTS 5

word senses by clustering them. Supersenses, also known as lexicographer classes in WordNet,
are an example of such coarse word senses. There is forty five supersenses, mainly for nouns and
verbs. These experiments demonstrate that continuous vectorial representations, sometimes
known as distributed representation, work better than atomic ones. We also show that context
dependent representations usually outperform context independent representation. Finally,
using the syntax slightly improves the results.

Feature selection

The second part of this thesis present the work I did on feature selection. The contributions
described in the second part of this thesis were previously published in (Grave et al., 2011).

Motivations

In most statistical learning methods, the data are described by a set of features, or variables, such
as word frequencies for text data or wavelet coefficients for image data. For some problems, it
is desirable that the learnt or estimated model only depends on a small subset of those variables:
this is the problem of variable or feature selection. Since models are often described by a vector
of parameters, the problem of variable selection is closely related to the concept of parsimony:
in particular, the problem of variable selection often reduces to estimating sparse parameter
vectors. The first motivation for variable selection is interpretability: a model in which only
a few variables are used is easier to understand. This is very important for applications such
as medicine, economics, etc. Another important motivation is the fact that in many cases, the
true model is sparse, or can be approximated by a sparse vector. It is thus more efficient, from
a statistical perspective to estimate a sparse model.

The most natural way to perform variable selection is to constrain the estimator to use
only k variables. This problem, in the case of least squares regression, is known as best subset
selection. Unfortunately, it is a hard combinatorial problem and is intractable in practice. Thus,
greedy approximate algorithms such as matching pursuit were proposed to solve this problem.
Another approach is to replace the constraint on the number of selected variables by its convex
surrogate, which is the `1-norm. In the case of least squares regression, this new estimator is
known as the Lasso, or basis pursuit, and is defined by

ŵ= argmin
w∈Rp

1
2n
‖y−Xw‖2

2+λ‖w‖1.

It was proven that, under certain conditions on the design matrix X and the support of the
true vector w∗, this estimator can recover the exact support of w∗, even if the dimension of the
problem is much larger than the number of observations.

Unfortunately, those conditions are not met in practice for certain problems, and in partic-
ular for problems where certain features are highly correlated. In that case, the Lasso can be

6 CONTENTS

unstable, selecting randomly one variable out of a group of highly correlated variables. In par-
ticular, this makes the interpretation of results difficult, or even misleading. We thus introduce
a new estimator performing variable selection, in the case of highly correlated variables.

Trace Lasso

In Chapter 7, we propose a new penalty function to perform variable selection in the case of
highly correlated variables. It is based on the trace norm ‖M‖∗, which is equal to the sum of the
singular values of the matrix M. More precisely, this new penalty ΩX is called the trace Lasso
and is equal to

ΩX(w) = ‖XDiag(w)‖∗,

where X ∈ Rn×p is the design matrix of the problem and Diag(w) ∈ Rp×p is a matrix whose
diagonal is equal to w and which is equal to zero everywhere else. Multiplying the design matrix
X by Diag(w) is equivalent to multiply each column of X by the corresponding coefficient
of w. The idea behind the trace Lasso is the fact that another measure of complexity of a
model, besides the number of selected variables, is the rank of the selected variables. In that
case, adding a variable which is in the span of the already selected variables does not increase
the complexity of the model. Since the trace norm is a convex surrogate of the rank, the trace
Lasso is a convex surrogate of the rank of the selected variables.

The trace Lasso estimator has interesting properties that we now describe. First, the value
of the trace Lasso regularizer only depends on the matrix X>X. If all the variables are orthog-
onal, then the trace Lasso regularizer is equal to the `1-norm. On the other hand, if all the
variables are equal, then the trace Lasso regularizer is equal to the `2-norm. The group Lasso
with non-overlapping groups can also be expressed as a special case of the trace Lasso regular-
izer. Moreover, the trace Lasso regularizer is a norm that is always comprised between the `1
and the `2-norms, meaning that it interpolates between those two norms, based on the corre-
lation structure of the design matrix. In order to illustrate this behavior, we plotted in Figure 2
the unit balls for the trace Lasso norm for different values of X>X:

X>X=

1.0 ρ ρ
ρ 1.0 ρ
ρ ρ 1.0

 ,

where ρ ∈ {0.0, 0.5, 0.7, 0.9, 1.0}. We observe that the unit ball is smoothly deformed, from
the `1-ball to the `2-ball.

Second, if the loss function ` : (x>i w, yi) 7→ `(x>i w, yi) used with the trace Lasso regularizer
is strongly convex with respect to its first argument, then, the minimum of the regularized
empirical risk minimization problem is unique. This is not the case for the Lasso, and we
believe this is a first step towards stability. In particular, the trace Lasso regularizer is strongly
convex in the flat directions of the loss function, that is, the directions belonging to the kernel
of the design matrix X.

CONTENTS 7

Figure 2: Unit balls of the trace Lasso norm for various value of X>X. See the text for details.

8 CONTENTS

We also introduce two algorithms to compute the optimum of least squares regression prob-
lems regularized by the trace Lasso norm. The first one is based on a variational formulation
of the trace norm and belongs to the class of iteratively reweighted least squares algorithms.
The second one is based on the alternating direction method of multipliers. We then perform
experiments to compare those two optimization methods and to compare the trace Lasso with
other estimators in the case of highly correlated designs.

RÉSUMÉ

DURANT CES vingt dernières années, l’apprentissage statistique a fait des progrès considé-
rables et a connu de grands succès. Cela fut possible grâce a différent facteurs. Premiè-

rement, la quantité de données, à la fois étiquetées et non-étiquetées, a explosé pendant cette
période. Deuxièmement, la capacité de calcul nécessaire pour analyser toutes ces données est
maintenant disponible à bas coût. Enfin, de nouvelles méthodes statistiques et de nouveaux al-
gorithmes pour l’optimisation ont été dévelopées afin de pouvoir traiter ces grands volumes de
données.

Dans cette thèse, je présente deux contributions que j’ai realisées dans le domaine de l’ap-
prentissage automatique. La première est appliquée au traitement automatique de la langue na-
turelle. J’ai développé un modèle probabiliste permettant d’inférer le sens des mots automati-
quement, à partir de grandes quantités de texte brut. Plus précisément, il est possible, grâce à
ce modèle, de déterminer que le mot chat est plus proche de chien que de banane. La deuxième
contribution concerne la sélection de variables : en effet, le nombre de variables utilisées pour
décrire les données a explosé, parallélement à la quantité des données. Il est donc important de
développer des méthodes qui sélectionnent automatiquement les variables importantes pour
résoudre un problème.

Induction de classes sémantiques

La première partie de cette thèse présente le travail que j’ai effectué sur la représentation de
mots, et plus précisément, sur l’apprentissage automatique de telles représentations à partir de
grandes quantités de texte brut.

Motivations

De nos jours, la plupart des systèmes de traitement automatique des langues reposent sur l’ap-
prentissage automatique. La première étape dans la création de tels systèmes est de trouver un
moyen de représenter les mots comme des objets mathématiques qui peuvent être traités par
un algorithme d’apprentissage automatique. La manière la plus simple de représenter les mots
est d’associer un entier différent à chacun des mots du vocabulaire. Il est alors possible de re-
présenter le mot associé à l’entier i par le vecteur de la base canonique ei . La dimension d’une
telle représentation est extrêmement élevée pour de grands vocabulaires. En effet, il n’est pas

9

10 CONTENTS

rare d’avoir des centaines de milliers, voir des millions, de mots différents dans un vocabulaire.
Malheureusement, la quantité de données nécessaire pour entrainer un système fondé sur l’ap-
prentissage statistique est beaucoup trop importante lorsque la dimension des données est aussi
grande. Une autre limite importante de ce type de représentations est le fait qu’il est impos-
sible de comparer différents mots : en effet, calculer le produit scalaire, ou toute autre mesure
de similarité, donne le même résultat quelque soient les mots considérés. C’est un problème
important pour les mots non observés dans les données utilisées pour l’apprentissage. Il est en
effet impossible pour l’algorithme de savoir comment traiter de tels mots inconnus.

La première solution qui fut considérée, est de créer des représentations pour les mots à la
main, ces représentations encodant l’information nécessaire pour résoudre la tache considérée.
Par exemple, de telles représentations peuvent être le préfixe ou le suffixe du mot, comme in-
pour l’adjectif invariable ou -ment pour l’adverbe automatiquement. Elles peuvent aussi enco-
der la forme du mot, comme le fait que le mot commence par une majuscule, contienne des
chiffres ou non, etc. Cette solution fut utilisée avec succès pour des taches telles que l’étique-
tage morpho-syntaxique, l’analyse syntaxique ou encore la reconnaissance d’entités nommées.
Malheureusement, pour chaque nouvelle tache, pour chaque nouveau domaine ou pour chaque
nouvelle langue, cet ensemble de traits doit être redéfini à la main, ce qui demande du temps
et de l’expertise. Par exemple, l’un des traits les plus efficaces pour la reconnaissance d’entités
nommées en anglais est le fait qu’un mot commence par une majuscule ou non. Ce trait est
complétement inutile en allemand car tous les noms ont une majuscule, ou en arabe, car aucun
mot n’a de majuscule.

Une deuxième approche pour représenter les données textuelles consiste à regrouper les
mots similaires au sein de classes, afin de fortement réduire la taille du vocabulaire. De grandes
quantités de texte brut sont utilisées pour déterminer quels mots doivent être regroupés, en
fonction des contextes dans lesquels ils apparaissent. Le travail de Brown et al. (1992) propose
un tel algorithme, connu sous le nom de Brown clustering, qui est encore largement utilisé au-
jourd’hui. Dans ce cas, chaque mot appartient à exactement un groupe qui peut être utilisé pour
représenter le mot. Cette représentation souffre encore de certaines limites : deux mots appar-
tenant à des groupes différents ne peuvent toujours pas être comparés tandis que deux mots du
même groupe sont considérés égaux. Une autre limite importante est le fait que la polysemie
soit ignorée, car chaque mot appartient à un seul groupe.

Inspiré par l’approche suivie par Brown et al. (1992), nous proposons une nouvelle méthode
permettant d’apprendre automatiquement à représenter les mots à partir de grandes quantités
de texte brut. Cette méthode tient compte de caractéristiques importantes des langues natu-
relles, telles que la syntaxe et la polysémie. Enfin, nous comparons des représentations discrètes
et des représentations continues et montrons que ces dernières donnent de meilleurs résultats.
Cela est dû au fait qu’il est possible de comparer différents mots avec des représentations conti-
nues et non avec des représentations discrètes.

CONTENTS 11

Beethoven a composé son seul opéra en 1805

c0 c1 c2 c3 c4 c5 c6 c7 c8

w1 w2 w3 w4 w5 w6 w7 w8

FIGURE 3 – Exemple d’arbre de dépendance et notre modèle graphique associé.

Modèles de Markov cachés pour l’induction de classes sémantiques

Dans le chapitre 2, j’introduis une nouvelle méthode pour apprendre une représentation des
mots à partir de grandes quantités de texte brut. Cette méthode repose sur un modèle proba-
biliste de la phrase, dans lequel des variables latentes représentent le sens des mots. Dans notre
modèle, ces variables latentes sont générées à l’aide d’un processus de Markov sur un arbre
de dépendance syntaxique. Les arbres de dépendance représentent les relations grammaticales
existant entre les mots. L’utilisation de tels arbres permet de prendre en compte la syntaxe.
Plus formellement, étant donné une fonction π telle que π(i) est le parent du ième mot de la
phrase, la probabilité jointe des mots w= (w1, ..., wK) et des classes sémantiques c= (c1, ..., cK)
se factorise en :

p(w, c) =
K
∏

k=1

p(ck | cπ(k)) p(wk | ck),

où les probabilités de transition et d’émission suivent toutes deux une distribution multino-
miale. Notre modèle est donc juste un modèle de Markov caché, dans lequel la chaîne entre les
variables latentes est remplacée par un arbre de dépendance. Voir la figure 3 pour une représen-
tation graphique de notre modèle pour la phrase

Beethoven a composé son seul opéra en 1805.

Nous utilisons l’estimateur du maximum de vraisemblance afin d’apprendre les paramètres de
notre modèle de Markov caché. Nous utilisons la variante en ligne de l’algorithme espérance-
maximisation, proposé par Cappé and Moulines (2009), afin de pouvoir entrainer notre modèle
en utilisant un grand nombre de phrases. Nous souhaitons aussi entrainer des modèles avec un

12 CONTENTS

grand nombre d’états cachés, tel que 512, et comme la complexité de l’algorithme pour l’infé-
rence exacte est quadratique par rapport au nombre d’états cachés, nous proposons d’utiliser
un algorithme approché, qui a une complexité de O(n log n), où n est le nombre d’états cachés.

Evaluations intrinsèques de notre modèle

Dans le chapitre 3, nous évaluons notre modèle sur diverses taches classiques, utilisées pour éva-
luer les modèles de sémantique distributionnelle. La première consiste à prédire des jugements
de similarité humains. Des paires de mots sont présentées à des sujets humains, qui doivent no-
ter leur similarité sur une échelle de 0 à 10. La représentation obtenue à l’aide de notre modèle
est alors utilisée pour calculer la similarité entre les mêmes paires de mots. Le coefficient de
corrélation de Pearson est alors calculé entre les similarités humaines et les similarités obtenues
à l’aide du modèle, afin de déterminer si la similarité obtenue fait sens. Nous comparons diffé-
rentes mesures de similarité, telle que le cosinus, la divergence de Kullback-Leibler ou encore
la distance d’Hellinger. Nous évaluons aussi notre modèle sur le jeu de donnée BLESS, afin de
déterminer quel type de relations entre mots est favorisé par notre modèle.

La deuxième tache que nous utilisons pour évaluer notre modèle est une tache de catégori-
sation. Étant donné un ensemble de mots, le but est de trouver une partition de ces mots qui
soit sémantiquement cohérente. Par exemple, étant donnés des mots faisant référence à des ani-
maux, des véhicules et des outils, le but est de retrouver ces trois groupes sémantiques. Nous
considérons trois jeux de données, le premier comprenant des noms faisant référence à des en-
tités concrètes, le deuxième comprenant des noms faisant référence à des entités concrètes et
abstraites et le dernier comprenant des verbes.

Enfin, nous evaluons notre modèle sur des taches utilisant la composition. Les langues na-
turelles vérifient le principe de compositionnalité : le sens d’une expression complexe peut être
obtenu en fonction du sens de ses parties et des relations syntaxiques entre elles. Il est donc
communément admis qu’une bonne représentation des mots doit suivre le même principe, et
donc qu’il soit possible de composer les représentations des mots afin d’obtenir des représen-
tations d’expressions complexes. Pour cette tache, des paires de groupes nominaux ou verbaux
ont été présentées à des sujets humains qui ont noté leur similarités. Notre modèle est alors uti-
lisé pour comparer les mêmes expressions. De nouveau, le coefficient de corrélation de Pearson
est utilisé pour déterminer la qualité de la mesure de similarité obtenue. Nous évaluons notre
modèle sur trois jeux de données comprenant : des groups nominaux et verbaux et des triplets
sujet-verbe-objet.

Apprentissage semi-supervisé

Dans le chapitre 4, nous évaluons notre modèle sur deux tache extrinsèques : la reconnaissance
d’entités nommées et l’étiquetage en super-sens. Comme nous l’avons souligné précédemment,
avoir une bonne représentation des mots ou de bons traits est essentiel pour l’apprentissage
supervisé appliqué au traitement des langues naturelles. Il est donc commun d’apprendre une

CONTENTS 13

telle représentation de manière non-supervisée dans un premier temps et de se servir de cette
représentation dans l’algorithme supervisé dans un second temps.

La première tache considérée, la reconnaissance d’entités nommées, fait partie du domaine
de la recherche d’information. Elle consiste à détecter et classifier les entités nommées telles
que noms de lieux, de personnes ou d’organisations. Un grand nombre de ces entités nommées
ne sont pas observées dans les données d’apprentissage et il est donc très utile d’apprendre une
représentation des mots pour réduire les erreurs commises sur ces mots inconnus. La seconde
tache, l’étiquetage en super-sens, est une tache de désambiguation très grossière. Créer un sys-
tème pouvant désambiguer tous les mots est compliqué car il y a un très grand nombre de sens
différents. Il fut donc proposé de réduire le nombre de sens par regroupement. Les super-sens
sont un exemple de tel regroupement. Il y a quarante-cinq super-sens différents, principalement
pour les noms et les verbes. Nous montrons que les représentations continues obtiennent de
meilleurs résultats que les représentations atomiques. De même, dans la plupart des cas, l’uti-
lisation d’un arbre de dépendance améliore les performances par rapport à l’utilisation d’une
chaîne.

14 CONTENTS

1 2 3 4 5 6 7

Paris art président an blanc publier dire
Londres histoire directeur mois noir écrire penser
Rome économie membre jours rouge sortir savoir
Berlin science professeur heure petit jouer noter
Lyon recherche ministre minute vert enregistrer estimer

Marseille musique secrétaire semaine bleu apparaître considérer
Montréal cinéma député année jaune composer affirmer

TABLE 1 – Exemples de classes sémantiques obtenues. (Corpus : Wikipedia français).

1 2 3 4 5 6 7

Roma filosofia presidente anno conquistare bianco scrivere
Milano arte direttore giorno lasciare nero interpretare
Venezia storia membro mese occupare colore suonare
Torino scienze capo tempo sconfiggere rosso pubblicare
Firenze medicina professore ora attaccare blu cantare
Parigi teologia segretario minuto distruggere scuro realizzare
Napoli arti generale episodio abbandonare verde fare

TABLE 2 – Exemples de classes sémantiques obtenues. (Corpus : Wikipedia italien).

1 2 3 4 5 6

membrane cell association treatment analyze increase
nucleus lymphocyte relationship exposure evaluate change
surface fibroblast correlation stimulation assess reduction

cytoplasm macrophage difference injection examine decrease
tissue progenitor interaction administration determine difference

structure xenograft relation transfection investigate improvement
matrix hepatocyte link incubation measure variation

TABLE 3 – Exemples de classes sémantiques obtenues. (Corpus : articles biomedicaux).

CONTENTS 15

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

plane

bus

boat
carship

train

cat
dog

cow
duck

hope

fearbelief

pain microsoft
compaqoracle cisco

banana

peartomato

pizza

chicken

sell
buy

acquire

drinkeat

huge big
largesmall

tiny

FIGURE 4 – Représentation vectorielle des mots obtenue à l’aide de notre modèle.

FIGURE 5 – Matrice de transition entre les classes sémantiques.

16 CONTENTS

Sélection de variables

La seconde partie de cette thèse présente le travail que j’ai effectué sur la sélection de variables.

Motivations

Dans la plupart des algorithmes d’apprentissage statistique, les données sont représentées par
un ensemble de variables, ou traits, telles que la fréquence des mots pour les données textuelles
ou les coefficients de la transformée en ondelettes pour les images. Pour certains problèmes, il
est désirable que le modèle appris ne depende que d’un petit sous-ensemble de ces variables :
c’est le problème de sélection de variables. Comme les modèles sont souvent décrits par un vec-
teur de paramètres, le problème de selection de variables est souvent équivalent à un problème
d’estimation avec une contrainte de parcimonie sur le vecteur de paramètres. Une motivation
importante pour la sélection de variables est l’interprétabilité : un modèle dans lequel seule-
ment un petit nombre de variables sont utilisées est plus facile à interpréter et à comprendre.
Cela est très important pour des applications telles que l’économie ou la médecine. Une autre
motivation importante est le fait que dans de nombreux cas, le vrai modèle est effectivement
parcimonieux, ou peut être approché par un modèle parcimonieux. Dans ce cas, il est plus effi-
cace, d’un point de vue statistique, d’estimer un modèle parcimonieux.

La méthode la plus naturelle pour la sélection de variables est de contraindre le modèle à
n’utiliser que k variables. Dans le cas de la régression aux moindres carrés, ce problème s’appelle
best subset selection. Malheureusement, en général, c’est un problème combinatoire difficile qu’il
est impossible de résoudre en pratique. C’est pourquoi des algorithmes approchés gloutons, tels
que matching pursuit, ont été proposés pour résoudre ce problème. Une autre approche consiste
à relacher la contrainte sur le nombre de variables sélectionnées en utilisant une contrainte
convexe faisant intervenir la norme `1 du vecteur de paramètres. Dans le cas de la régression
aux moindres carrés, ce nouvel estimateur est connu sous le nom de Lasso ou basis pursuit et est
défini par :

ŵ= argmin
w∈Rp

1
2n
‖y−Xw‖2

2+λ‖w‖1.

Il est possible de démontrer que, sous certaines conditions sur la matrice de design X et le sup-
port du vrai vecteur w∗, cet estimateur peut retrouver le support exact de w∗, même dans le cas
où le nombre d’observations est beaucoup plus petit que la dimension du problème.

Malheureusement, ces conditions ne sont pas vérifiées en pratique pour certains problèmes,
et en particulier pour les problèmes dans lesquels certaines variables sont fortement corrélées.
Dans ce cas, le Lasso peut être instable, selectionnant au hasard une variable d’un groupe de
variables fortement corrélées. En particulier, cela rend l’interprétation des modèles obtenus
difficile voir même dangereuse. C’est pourquoi, nous introduisons un nouvel estimateur faisant
de la sélection de variables en présence de prédicteurs fortement corrélés.

CONTENTS 17

Trace Lasso

Dans le chapitre 7, j’introduis une nouvelle pénalité qui sélectionne les variables en présence
de fortes corrélations entre les prédicteurs. Cette pénalité repose sur la norme trace ‖M‖∗, qui
est égale à la somme des valeurs singulières de la matrice M. Plus précisement, cette nouvelle
pénalité ΩX s’appelle trace Lasso et est définie par :

ΩX(w) = ‖XDiag(w)‖∗,

où X ∈ Rn×p est la matrice de design et Diag(w) ∈ Rp×p est une matrice dont la diagonale
est égale à w. Multiplier X par Diag(w) est équivalent à multiplier chaque colonne de X par le
coefficient de w correspondant. L’intuition derrière cette pénalité est la suivante : une mesure
de complexité d’un modèle autre que le nombre de variables sélectionnées est la dimension
du sous-espace engendré par ces variables, autrement dit, leur rang. Or la norme trace est une
relaxation convexe du rang.

Le trace Lasso a des propriétés intéressantes que nous décrivons maintenant. Premièrement,
la valeur de cette pénalité dépend uniquement de la matrice X>X (et de w évidemment). Si toutes
les variables sont orthogonales, alors le trace Lasso est égal à la norme `1. Au contraire, si toutes
les variables sont égales, alors le trace Lasso est égal à la norme `2. Le group Lasso peut aussi
s’écrire comme un cas particulier du trace Lasso. De plus, le trace Lasso est toujours compris
entre la norme `1 et la norme `2. Cela signifie qu’il interpole ces deux normes, en fonction de
la structure de corrélation des variables. Afin d’illustrer ce comportement, j’ai représenté les
boules unités du trace Lasso pour différentes valeurs de X>X :

X>X=

1.0 ρ ρ
ρ 1.0 ρ
ρ ρ 1.0

 ,

oùρ ∈ {0.0, 0.5, 0.7, 0.9, 1.0}, à la figure 6. Nous observons que la boule unité est continuement
déformée, de la boule `1 à la boule `2.

Deuxièmement, si la fonction de perte ` : (x>i w, yi) 7→ `(x>i w, yi) utilisée avec le trace
Lasso est fortement convexe, alors le minimum du risque empirique regularisé est unique. Cela
n’est pas le cas pour la norme `1, et je pense que c’est une première étape vers la stabilité. En
particulier, le trace Lasso est fortement convexe dans les directions plates de la fonction de perte,
c’est à dire, les directions appartenant au noyau de la matrice de design X.

Finalement, je présente deux algorithmes pour calculer le minimum du problème de régres-
sion aux moindres carrés regularisé par le trace Lasso. Le premier repose sur une formulation
variationnelle de la norme trace et appartient à la classe d’algorithmes connus sous le nom
d’iteratively reweighted least squares. Le deuxième repose sur la méthode alternating direction
method of multipliers. J’ai réalisé des expériences sur des données synthétiques, afin de compa-
rer les deux algorithmes d’optimisation et le trace Lasso avec d’autres estimateurs classiques.

18 CONTENTS

FIGURE 6 – Boules unité du trace Lasso pour diverses valeurs de X>X. Voir le texte pour les
détails.

PART I

DISTRIBUTIONAL SEMANTICS

19

CHAPTER 1
§

A BRIEF INTRODUCTION TO NATURAL
LANGUAGE PROCESSING

LANGUAGES (both natural and artificial) can be modelled as being formed by combining a
lexicon and a grammar. A lexicon is a set of words and the specific information associated

to each word, such as its irregular forms. Sometimes, for natural languages, it also includes
idiomatic expressions. A grammar, on the other hand, can be thought as the set of rules that
describe how words can be assembled together to form complex units such as phrases or sen-
tences. Depending on the formalism being used, the quantity of information belonging to the
lexicon or the grammar can be more or less important. Lexicons, grammars and their asso-
ciated concepts are essential tools for designing natural language processing systems, and we
thus describe them in greater details in the following. We also discuss a remarkable property of
natural languages: while the lexicon and the grammar can be considered finite, it is possible to
express a potentially infinite number of ideas. Finally, we introduce the field of distributional
semantics, which is the study of methods that aim at learning automatically the meaning of
natural language expressions, based on large quantities of textual data. We refer the reader to
Jurafsky and Martin (2000) or Manning and Schütze (1999) for more detailed introductions to
natural language processing.

1.1 What is a word?

This question might seem rather naive, but properly defining what is a word, and other related
concepts, is essential to develop natural language processing systems. The smallest grammat-
ical element of a natural language is called a morpheme, while a word, which is made up of
one or multiple morphemes is the smallest grammatical element of a language that can be used
alone. For example, the word seeking is made up of two morphemes: seek and -ing. The mor-
pheme seek, which can be used independently as a word, is called a free morpheme, while the
morpheme -ing, which cannot be used independently as a word, is called a bound morpheme.
Finally, the stem is the main morpheme of a word, the one from which the meaning is derived.

21

22 CHAPTER 1. A BRIEF INTRODUCTION TO NLP

The stem of the word seeking is the morpheme seek. Stems are not necessarily words: for ex-
ample, the stem of the French verb supprimer is the morpheme supprim-, which is not a word.
Given a word, determining its corresponding stem is called stemming.

1.1.1 Word, form and lemma

Now, a new question arises: are bird and birds the same word? What about be, is and was? In
fact, bird and birds are different surface forms of the same lexeme: a lexeme is a set of words,
which are inflected variants of the same word, and thus share the same meaning. In a dictionary,
a lexeme corresponds to an entry of the dictionary: for example each verb only have one entry,
and not one for each of its inflected form. Each lexeme is represented by a particular form, called
the lemma, for example the infinitive for verbs. Given a form, determining its corresponding
lemma is called lemmatization.

It is important to note that lemmatization and stemming are two different operations, even
if they are often used for the same purpose: reducing the size of the dictionary. For example
was and are have the same lemma, be, but different stems. On the other hand, unhappy and
happiness have the same stem, happy, but different lemmas.

1.1.2 From morphemes to words: a bit of morphology

Studying how morphemes assemble together to form words is called morphology, and is part of
the grammar of a language. There are four main ways to combine morphemes to obtain words:
inflection, derivation, compounding and cliticization. We will now present each of these four
constructions.

Inflection occurs when a word is modified in order to express a grammatical category such
as the number, the gender, the case, the tense or the voice. Inflection for verbs is known as
conjugation, while inflection for nouns is known as declension. For example in english, the
verb to look can be inflected as looks to express the third person singular or as looked to express
the past. These two examples follow rules: the third person singular is obtained by using the
suffix -s, while the past is obtained by using the suffix -ed. Sometimes, inflection does not follow
rules, and is known as irregular inflection. An example of irregular inflection is the past of the
verb to drink which is drank. Some words, such as adjectives in english, are never inflected:
these words are known as invariant.

Derivation occurs when a word, a verb for example, is used to construct a new word, a
noun for example, whose meaning is different but related to the meaning of the initial word.
Examples of derivation is constructing the noun computation from the verb to compute or the
french adverb invariablement from the adjective invariable. The adjective invariable is itself
derived from the adjective variable, and thus derivation can happen between words of the same
class. Derivation often implies adding a suffix, such as -ation or -ment in the previous examples
or a prefix, such as in-.

1.1. WHAT IS A WORD? 23

Using two stems, such as cat and walk, to construct a new word, catwalk, is known as com-
pounding. It is opposed to derivation by the fact that a compound is obtained by composing
two stems (which are free morphemes), while derivation involves bound morphemes, such as
-ly to form adverbs or un- to form antonyms. Finally cliticization is obtained by combining a
word with a clitic. A clitic is a morpheme that has the syntactic role of a word: for example in
the English sentence he’s tall, the verb is is reduced to the clitic ’s. Or in the French sentence
J’ai un frère, the subject je is reduced to the clitic j’.

1.1.3 The importance of morphology for NLP

The extent to which different languages use inflection, derivation and compounding vary a
lot. For example, in modern Chinese, words are almost never inflected, but a lot of them
are compounds. English is weakly inflected: only nouns and verbs are inflected, and they do
not have more than five different inflected forms. Latin languages, such as French, Italian or
Spanish, are a bit more inflected: adjectives are also inflected and each verb can have more than
forty different inflected forms. Finally, Slavic languages, such as Russian, Czech or Serbian are
highly inflected. Each noun or adjective have six or seven cases and as much as three genders.

Thus, for moderately or highly inflected languages, the number of surface forms is greatly
superior to the number of lemmas. Treating each surface form as a different word type leads
to an explosion in the number of parameters and increase the problem of data sparsity. That
is why most natural language processing pipelines start by doing some sort of morphological
analysis of the words, that is, given a surface form, try to identify the corresponding lemma and
the different grammatical categories, such as the gender, the case, the tense or the part-of-speech.
We introduce parts-of-speech in the next section.

1.1.4 Parts-of-speech

Parts-of-speech, also known as word classes are grammatical categories of words based on syn-
tactic functions played by the words and their morphological behavior. Example of parts-of-
speech are noun, adjective, article, verb, adverb, pronoun, conjunction and participle. Some of
this classes are called open classes, since new words can appear in those classes. For example,
in English or French, the noun and verb classes are open. The other classes are called closed
classes, since no new words can appear. For example, the class of coordinating conjunctions in
French is closed (mais, ou, et, donc, or, ni, car). Finally, words with little semantic meaning and
which mainly serve a grammatical purpose are called function words, as opposed to content
words, which carry most of the meaning. Nouns, verbs or adjectives are examples of content
words.

Given a sentence, finding the parts-of-speech associated to the words forming that sentence
is called part-of-speech tagging. Looking up the words in a lexicon or a dictionnary is usually
not sufficient because many words belong to different grammatical classes. For example, the
English word dive can be either a noun or a verb, depending on the context. Similarly, the

24 CHAPTER 1. A BRIEF INTRODUCTION TO NLP

French word beau can be either a noun or an adjective. Resolving such ambiguities cannot be
done for each word independently since parts-of-speech depend on the syntax of the sentence.
Morphological analysis and part-of-speech tagging are sometimes performed together, since the
possible morphological interpretations of a word depends on its part-of-speech.

1.2 From words to sentences: syntax

In the previous section, we introduced various concepts applicable to words, taken as indepen-
dent units of the language. Assembling words together to form valid sentences follows some
rules, known as the syntax of the language. We will now discuss the two main formalisms
used to describe the syntax that are widely used in natural language processing: constituency
grammars and dependency grammars.

1.2.1 Constituency grammars

Constituency grammars are based on the notion of constituent, and how these constituents
assemble together to form larger constituents. For example, the sentence

My cat is chasing a mouse.

is formed by assembling the noun phrase My cat and the verb phrase is chasing a mouse. Both
these constituents can in turn be decomposed into simpler constituents: for example, the noun
phrase My cat can be decomposed into the preposition My and the noun cat. Constituency
grammars thus define rules on how this constituents might assemble together. For example, in
English, a noun phrase might be formed by assembling a preposition and a noun, such as in the
previous example or by assembling a determiner, an adjective and a noun such as in the noun
phrase a red apple. On the other hand, a noun phrase cannot be formed by assembling a noun
and a determiner. Thus, man the is not a valid noun phrase.

One way to formalize constituency grammars is by using context free grammars, that where
first introduced by Chomsky (1956) for natural languages and rediscovered by Backus (1959) in
the field of programming languages design. In the following definition, we formally introduce
context free grammars.

Definition 1. A context free grammar G is quadruple G = (N ,Σ, R, S) where:

• N is a set of non-terminal symbols,

• Σ is a set of terminal symbols,

• R⊂N×(N ∪Σ)∗ is a set of rewriting rules of the form X → Y1...Yk , where X ∈N and each
Yi ∈N ∪Σ,

• S ∈N is a special symbol called the start symbol.

1.2. FROM WORDS TO SENTENCES: SYNTAX 25

In the case of natural language, the set of non-terminal symbols are symbols representing
the various constituents, such as S for sentence, NP for noun phrase, VP for verb phrase or NN
for common noun, while the set of terminal symbols Σ are the words in the vocabulary of the
language. Then, the rewriting rules encode what are the valid way to assemble constituents
together. For example, the fact that noun phrases can be formed by a determiner and a noun
corresponds to the rule

NP→ DET NN

and the fact that the word cat is a noun corresponds to the rule

NN→ cat.

Then, the set of strings that can be obtained by using the context free grammar defines the valid
sentences of the language. Let us now describe more formally how the CFG is used to generate
sentences.

Definition 2. A left-most derivation is a sequence of strings s1→ ...→ sn where:

• s1 = S, i.e. the first string is equal to the start symbol,

• sn ∈Σ∗, i.e. the last string only contains terminal symbols,

• Each si , i ∈ {2, ..., n} is derived from si−1 by replacing the left-most non terminal symbol X
by Y1...Yk where the rule X → Y1...Yk belongs to the set of rewriting rules R.

The valid sentences of the language are then defined as the set of string s ∈Σ∗ made of words
of the vocabulary such that there exists a left-most derivation s1→ ...→ sn = s generating the
sentence. Derivations are often represented as trees, where the root of the tree is the start
symbol S, each internal node of the tree is a non-terminal symbol and the leaves of the tree are
terminal symbols. The children of each node are the symbols that are obtained by applying the
rewriting rule to the corresponding node. Given a sentence, finding a left-most derivation that
generates that sentence is called syntactic analysis or syntactic parsing.

In context free grammars encoding natural languages, there exist multiple derivations that
generate the same sentence, because of ambiguity. It is thus necessary to introduce probabilistic
context free grammar (PCFG) to resolve these ambiguities. In a PCFG, each rewriting rule has
a certain probability of being applied given the most-left non terminal symbol. The probabil-
ity of a derivation is thus the product of the probabilities of the rules that are applied during
the derivation. Given an ambiguous sentence that has multiple possible derivations, it is thus
possible to choose the most probable one, in order to resolve the ambiguity.

1.2.2 Dependency grammars

Dependency grammars are based on the concept of dependency relations between words, and
are heavily inspired by the work of the French linguist Tesnière (1959). In the case of syntax,1

1Dependency grammars are not only used for syntax. For instance, they can also be used to encode semantic
relations.

26 CHAPTER 1. A BRIEF INTRODUCTION TO NLP

those dependency relations are binary relations that capture the grammatical relations that ex-
ists between those words. For example, in the sentence

The blonde girl is riding a red bike.

a syntactic dependency grammar will encode the fact that the noun girl is the subject of the verb
riding, or the fact that the adjective blonde is modifying the word girl. Thus, in dependency
grammars, the structure of a sentence is not captured by the constituents that appear in the
sentence, but is captured by the binary syntactic relations that exists between the words. Those
binary relations are not symmetric (think about the subject relation), and for each relation,
there is a head word and a dependent word. In the case of the relation between riding and girl,
the head word is the verb riding while the dependent word is the noun girl. We note relations
using the following notation

nominal_subject(riding, girl)

adjective_modifier(girl, blonde)

determiner(girl, the)

where the first word is the head word and the second word is the dependent word. Words
of a sentence and the corresponding syntactic relations form a directed acyclic graph (DAG),
where words are the vertices and syntactic relations are the edges. Many representations often
enforces that this DAG must be a tree, by removing some syntactic relations. We refer the
reader to De Marneffe and Manning (2008) for an exposition of different representations of
syntactic dependencies.

1.3 Semantics

Semantics is the subfield of linguistics focussing on the study of meaning. It is a very broad
area of research in both linguistics and computational linguistics, and providing an extensive
presentation of that field is out of the scope of this thesis. We thus restrict our presentation to
notions that will be usefull in the following. We start by introducing lexical semantics, that is,
the study of the meaning of words, before briefly discussing semantic compositionality.

1.3.1 Lexical semantics

Natural languages are highly ambiguous: a word can belong to different grammatical classes, a
sentence can be parsed in different ways and of course, a given word can have different meanings.
For example, consider the word bridge in the two following sentences:

1. He likes to play bridge during his holidays.

2. The Pont Neuf is the oldest bridge in Paris.

1.3. SEMANTICS 27

The blonde girl is eating a red apple

DT JJ NN VBZ

VBG

DT JJ NN

NP

NP

VP

VP

S

The blonde girl is eating a red apple

La jeune fille blonde mange une pomme rouge

D A N AP VN

D N AP

NP

NP

VP

S

La jeune fille blonde mange une pomme rouge

Figure 1.1: Example of a PCFG parse tree (top) and a dependency tree (bottom) for the English
sentence: The blonde girl is eating a red apple and the French sentence: La jeune fille blonde mange
une pomme rouge.

28 CHAPTER 1. A BRIEF INTRODUCTION TO NLP

Dependending on the context, a bridge can refer to a card game or a structure for carrying traffic
over water. To each different sense corresponds a different lexeme, and we note them by using
superscript: bridge1 and bridge2. Thus, a lexeme is a pair of a meaning and a set of words which
are inflected variants of the same lemma. The relation between those two lexemes, bridge1

and bridge2, is called homonymy: they share the same orthographic form, bridge, but refer to
unrelated things. Now, consider the word university in the two following sentences:

a. Everyday, he goes to university by car.

b. He is a university professor in computer science.

In the first sentence, the word university refers to the place, while in the second, it refers to the
institution. Thus, the word university has two different, but related meaning, corresponding to
two lexemes that we note universitya and universityb. The relation between those two lexemes is
called polysemy. Given a surface form and a context, finding the corresponding lexeme is called
word sense disambiguation. It is a very hard task and is still considered an open problem.

Car, vehicle, engine and automobile are four related words. More precisely, those words
belong to lexemes that have a related meaning. The senses associated to those words are not
all related in the same way: for example the relation between car and vehicle is not the same
as the relation between car and engine. We now introduce the different semantic relations that
exist between word senses and lexemes. First, car and automobile share the same sense: in that
case, we say that the corresponding lexemes are synonyms, and the relation is called synonymy.
Second, a car is a kind of vehicle. In that case, car is a hyponym of vehicle, while vehicle is a
hypernym of car. Two senses sharing the same hypernym are called co-hyponyms, for example
the senses associated to truck and plane. Third, since an engine is a part of a car, we say that
engine is a meronym of car and that car is a holonym of engine. Finally, two senses that have
opposite meanings, such as hot and cold are called antonyms.

1.3.2 Semantic compositionality

In the previous section, we discussed the meaning of individual words (possibly in context). A
crucial characteristic of natural languages is their ability to express a potentially infinite number
of different ideas while only using a finite number of words and their associated meanings. This
is possible thanks to the principle of semantic compositionality. This principle, often attributed
to German logician Gottlob Frege, states that the meaning of a complex expression, such as a
sentence, is a function of the meaning of its lexical parts and the way they are arranged together.
In two seminal articles (Montague, 1970, 1973), Richard Montague applied the principle of
compositionality to natural languages by introducing a theory of semantics in which meaning
is represented by logical forms based on predicate logic and lambda calculus. He dicussed the
relation between this kind of semantic representation and the syntax, and demonstrated how
this could be applied to English. A large body of work has built upon the work of Montague,
trying to parse natural language sentences into representations based on formal logic.

1.4. DISTRIBUTIONAL SEMANTICS 29

1.4 Distributional semantics

Distributional semantics methods aim at capturing words meanings (or the meaning of other
linguistic units, such as morphemes, phrases or documents) based on the contexts in which they
appear and their usage patterns. It is indeed believed that words appearing in similar contexts
share similar meanings (Harris, 1954), an idea known as the distributional hypothesis which
can be summarized as follow (Firth, 1957):

“You shall know a word by the company it keeps”.

Thus distributional semantics methods extract distributional information about words from
vast quantities of unlabeled data, and builds a representation based on this information. We
now present the main approaches proposed in distributional semantics.

1.4.1 Vector space models

In vector space models, words are represented as vectors in a high-dimensional space, with the
underlying assumption that the similarity between words can be approximated by the similar-
ity between the corresponding vectors. Combined with the distributional hypothesis, it means
that these vectors can be obtained from large quantity of unlabeled text, by extracting distribu-
tional information about word usage and context. A corpus is represented as a word-by-context
matrix, where each line of the matrix represents a unique word and each column represents a
context in which words appear. Three choices have to be made when designing a vector space
representation for words: first, what is the context of a word, second, given distributional infor-
mation, how to build the word-by-context matrix from that information, third, what similarity
measure to use between vectors.

One of the first applications of vector space models was in information retrieval, and in
particular to document retrieval (Salton et al., 1975). In order to obtain document represen-
tations, Deerwester et al. (1990) introduced latent semantic analysis (LSA), where contexts are
defined as documents in which the word appears: the corpus is thus represented as a word-by-
document co-occurence matrix and the coefficient (i , j) of that matrix is the number of times
the word i appears in document j . The main contribution of LSA was to propose to apply a
dimension reduction technique, namely principal component analysis, on that matrix before
computing document similarity. Landauer and Dumais (1997) later proposed to use the same
kind of representation to compute word similarity (and not document similarity), and apply it
to multiple-choice synonym test. In that case, contexts were not whole documents but para-
graphs.

In order to compute word similarity, Schutze (1992) and Lund and Burgess (1996) proposed
to consider word-word co-occurences, instead of word-document co-occurence. In that case,
the contexts that are considered are the words that appear in the neighbourhood of the tar-
get word, for example in the same sentence or in a fixed-size window arount the target word.
Thus, the corpus is represented as a word-by-word co-occurence matrix and the coefficient (i , j)

30 CHAPTER 1. A BRIEF INTRODUCTION TO NLP

considerable body of songs and piano music , as well as symphonic suites
hed a reputation in Vienna as a piano virtuoso , but he apparently with
nd guitar , Darcy on guitar and piano , and Ollie Murphy on drums .
nist , and Birdy learned to play piano at the age of seven , and began writ

I e Distacco II ” for voice and piano on a text by Ranieri Gnoli , “ Verrà
musicians : Niels Lan Doky (piano) , Niels-Henning Ørsted

sson practice , giving lessons in piano playing , arranging , general
ning early , beginning with the piano at the age of four and continuing
n on drums , Chris Gardner on piano , Danny Brittain on lead vocals
eek , Jose met with the nun for piano lessons and having no piano at
his short pieces , sonatina , for piano , enjoyed great popularity both

st compositions were songs and piano pieces inspiBrickRed by these European
piece that originated from Lisa ’s piano and vocal compositions , but was

to be released as a single , and a piano break was edited out , and the edited
I ’d learned a few chords on the piano , maybe two , so I ’d already tried

ist , and won numerous amateur piano competitions while working as
of drumming , with additional piano , percussions , synthesizers
was born to them in 1833 (the piano pedagogue Charles-Wilfrid de

instruments including trumpet , piano , flute , harp , bassoon , percussion
bass ; Spiewak and Capps played piano and organ ; and Sara Jean Kelley

to play instruments such as the piano and bass at an early age .
ek gig , that included Holler on piano , Jimmy Clanton on lead guitar

accompany singers , while the piano was all the rage throughout Europe
several major international piano competitions and regularly teaches

eighty arrangements for organ , piano and chamber ensembles on works
works ; five concertos (2 for piano ; 1 for violin ; 1 for cello ; 1 for

sonatas for violin and cello , a piano quintet and a string quartet for
sisted of : Walt Gates on grand piano , Artie Singer on upright bass
his first music achievement , a piano duet , at age of nine .
in addition to Holopainen on piano , Marco Hietala performs vocals

Table 1.1: Examples of usage pattern of the word piano.

1.4. DISTRIBUTIONAL SEMANTICS 31

of that matrix is the number of times that the word i appears in the same context as the word j .
Once again, dimension reduction is performed on that matrix before computing word similar-
ity. This method was successfully applied to word sense disambiguation (Schutze, 1992), word
categorization and lexical priming (Lund and Burgess, 1996).

One of the main limitation of the previous models is the fact that they do not take syn-
tax into account. Several models have been proposed to address this shortcoming by using the
syntactic dependencies to define the context of the target word (Lin, 1998; Curran and Moens,
2002; Turney, 2006; Padó and Lapata, 2007; Van de Cruys, 2010). For building those represen-
tations, syntactic dependencies are extracted from the corpus, and two words are considered
in the same context if there exists a dependency between them, or a path in the dependency
graph. Some models, such as the ones considered by Padó and Lapata (2007) simply discard the
type of the dependencies, while other models represent context not by using words but pairs
of word and syntactic relation (Lin, 1998; Curran and Moens, 2002). This allows, for example,
to distinguish between subjects and objects for verbs and thus to capture finer information. Ba-
roni and Lenci (2010) proposed to store the distributional information in a third-order tensor
and then to apply different kind of matricizations to recover various vector space models.

Another active area of research in semantic space models is the problem of how to combine
the representations of words to form good representations of larger linguistic units such as
phrases or sentences. For example, given the two vectors representing the noun agency and the
adjective federal, how to combine them to get a good representation of the noun phrase federal
agency. Indeed, natural languages are extremely compositional, meaning that in many cases it
is possible to get the meaning of a linguistic unit based on the meaning of its parts.2 Mitchell
and Lapata (2008) proposed simple ways to compose vector representations, such as addition,
componentwise multiplication, tensor product or dilation, and evaluated them on a dataset of
adjective-noun, noun-noun and verb-noun pairs, introduced by Mitchell and Lapata (2010).

Another approach to semantic composition is to learn the function that combines vector
representations using a supervised method. First, a semantic space is built where both the
phrases and their constituents appear. For example, federal, agency and federal_agency all have
a corresponding vector. Then, the goal is to learn a function that maps representations of the
constituents onto the representation of the phrase. Guevara (2010, 2011) proposed to use partial
least square regression, while Baroni and Zamparelli (2010) proposed to learn a matrix A for
each adjective such that the vector p corresponding to the adjective-noun pair can be obtained
from the vector b corresponding to the noun by

p=Ab.

This model was later generalized by Socher et al. (2012): a matrix in Rn×n and a vector in Rn

are associated to each word of the vocabulary. Then given two matrix-vector pairs (A, a) and

2This is not always true. Consider the following multi-word expressions: White House, by the way, to look
something up...

32 CHAPTER 1. A BRIEF INTRODUCTION TO NLP

(B, b) representing words, a new matrix-vector (P, p) pair representing the composition of the
two words is obtained by

P=WM

�

A
B

�

and

p= g
�

W
�

Ab
Ba

��

,

where WM ,W ∈Rn×2n and g is an elementwise non linear function. The idea is that the word
matrices A and B will capture the compositional effects of words, while the vectors a and b will
capture their meaning. The matrices WM and W capture general composition functions that
apply to every words. Moreover, thanks to them, P and p live in the same space as A and a,
allowing to recursively apply this composition. The authors propose to do so for every node
in a parse tree.

Vectorial representations of words can also be learnt from large amount of raw text using
artificial neural networks. In a seminal paper, Bengio et al. (2003) proposed a language model
based on artificial neural networks. In that model, each word is associated to a vectorial repre-
sentation that is learnt simultaneously with the parameters of a probability function for word
sequences, which is based on those vectorial representations. Mnih and Hinton (2008) pro-
posed a scalable hierarchical language model based on artificial neural networks. Collobert
and Weston (2008); Collobert et al. (2011) proposed a common convolutional network for per-
forming multiple NLP tasks besides language modelling. Again, vectorial representations are
associated to words. Recently, Mikolov et al. (2013) proposed a very simple way to train such
distributed representations, making it possible to learn them on datasets with billions of tokens
very rapidly.

1.4.2 Latent Dirichlet allocation and topic models

Probabilistic latent semantic analysis (pLSA) is a probabilistic model of documents proposed
by Hofmann (1999) and inspired by latent semantic analysis. The fact that pLSA does not
define a proper generative model for new documents once fitted on a training set, led Blei et al.
(2003) to propose latent Dirichlet allocation (LDA), a generative model of documents. The idea
behind latent Dirichlet allocation (and other topic models such as pLSA), is that each document
can be viewed as a mixture of k topics, where each topic is a distribution over the words of
the vocabulary. Topics are shared among all the documents of a corpus, and can be seen as
the underlying structure of the documents. We now present how a document w is generated,
according to the LDA model:

1. Draw the length N of the document from a Poisson distribution:

N | ξ ∼ Poisson(ξ),

1.4. DISTRIBUTIONAL SEMANTICS 33

2. Draw the mixture of topics θ from a Dirichlet distribution:

θ | α∼Dirichlet(α),

3. For each word Wi , i ∈ {1, ...,N} of the document:

(a) Draw the topic indicator Zi from a multinomial distribution:

Zi | θ∼Multinomial(θ),

(b) Draw the word Wi from the topic γZi
:

Wi | Zi , γ1..k ∼Multinomial(γZi
).

The random variable θ represents the proportion of each topic in the document, while the
variable Zi indicates from which topic the word Wi is coming. Bothθ and Z are latent variables,
meaning that, given a document, they are not observed and have to be infered. The topic
parameters γ1..k are shared among the different documents of the corpus and have to be learnt.
Depending on the value of the parameters α of the Dirichlet prior over topic distributions, the
mixture of topics θwill be more or less concentrated over a few topics, meaning that for a given
document, words come from a more or less larger number of topics. Recently, Hoffman et al.
(2013) proposed a stochastic variational inference algorithm, making it possible to train latent
Dirichlet allocation models on millions of documents.

Latent Dirichlet allocation can be seen as a dimension reduction technique: each document
of a corpus can be represented by its mixture of topic θ instead of the word frequencies. Since
the number of topics is usually much smaller than the number of words, this greatly reduces
the dimension of the representation. Moreover, probabilistic latent semantic analysis, latent
Dirichlet allocation and non-negative matrix factorization are closely related (Buntine, 2002;
Gaussier and Goutte, 2005). Indeed, when the latent variables Zi have been marginalized out,
the generation of a document resumes to:

θ∼Dirichlet(α),
W ∼Multinomial(Γθ,N),

where Γ = [γ1, ...,γk] is the matrix representing topics and N is the number of words of the doc-
ument. Thus, latent Dirichlet allocation can be viewed as the analogue of principal component
analysis for discrete and positive variables, and thus as a probabilistic model for non-negative
matrix factorization. Blei et al. (2003) used a LDA model with 50 topics for document classifica-
tion, showing that when the number of labeled documents is small, using the topic proportions
θ performs better than using the word frequencies. A word can also be represented by the cor-
responding posterior distribution over the topics (Chrupala, 2011).

Many variants and extensions of latent Dirichlet allocation have been proposed in the last
decade, in order to address its limitations. For example, in LDA, topic proportions are indepen-
dent of one another which is clearly not the case in practice: in news articles, the politics topic

34 CHAPTER 1. A BRIEF INTRODUCTION TO NLP

is much more likely to co-occur with the economics topic than with the science topic. Thus, Blei
and Lafferty (2006) proposed the correlated topic model, where the Dirichlet distribution for
the mixture of topics is replaced by the logistic normal distribution that capture correlations
between the mixture components. A second possible extension, proposed by Blei et al. (2004),
is to consider that the topics forms a hierarchy. The topics are thus arranged in a tree, and for
each document a path from the root to a leaf of the tree is chosen, and only topics from that
path can appear in the given document. Finally, in most topic models, words inside a document
are considered exchangeable, leading to the bag of words representation. Griffiths et al. (2005)
proposed to address this limitation by using a hidden Markov model to capture transitions be-
tween words, and in particular between function words and content words, the latter being
generated by a topic model.

Topic models have been applied to a lot of different tasks in natural language processing.
For example, an extension of LDA was proposed by Toutanova and Johnson (2007) for semi-
supervised POS tagging: in that case, LDA is used to model the contexts of words. Another
extension of LDA was proposed for word sense disambiguation by Boyd-Graber et al. (2007).
In that case, topics are not used directly to generate words, but instead defines random walks
in WordNet, that in turn, generate words. Misra et al. (2009) proposed to use LDA to perform
the task of text segmentation, which consists in dividing unlabeled textual data into meaning-
ful segments. Eisenstein et al. (2010) proposed a latent topic model that aims at capturing ge-
ographic lexical variations, while Séaghdha (2010) proposed to use LDA to capture selectional
preferences. More recently, Titov and Klementiev (2012) proposed a topic model for semantic
role induction, while O’Connor et al. (2013) designed a probabilistic topic model to detect and
extract events from political contexts.

1.4.3 Brown clustering and other clusterings

Our tour of distributional semantic methods ends with clustering methods, and more particu-
larly, the one introduced by Brown et al. (1992) and known as Brown clustering. This method
aims at finding a functionC that maps words to clusters, and which maximizes the likelihood
of the data, assuming the following model for a sentence w:

p(w) =
∏

k

p(wk | C (wk)) p(C (wk) | C (wk−1)).

This corresponds to a generative model of sentences, where words are generated sequentially,
according to the following process. First, the clusters are generated according to a Markov
chain. Then for each k, knowing the cluster C (wk), the corresponding word wk is generated
independently from the other words.

Maximizing this likelihood is equivalent to maximize the mutual information between ad-
jacent clusters, and only depends on the counts c(wk , wk+1) of bigrams. Brown et al. (1992)
proposed a bottom-up greedy agglomerative algorithm to find the clustering C . At the be-
ginning of the algorithm, each word belongs to its own cluster. Then, at each iteration of the

1.4. DISTRIBUTIONAL SEMANTICS 35

algorithm, two clusters are merged, such that it least reduces the likelihood. Choosing these
clusters can done in O(n2), where n is the current number of clusters. Since this operation has
to be done V −C times, where V is the size of the vocabulary and C is the final number of
clusters wanted, the overall complexity is O(V 3), which is prohibitive for large vocabularies.
Thus, Brown et al. (1992) proposed to only consider the first C clusters for each merging step,
where the clusters are sorted by frequency. The complexity then becomes O(V C 2), which is
tractable in practice.

Another optimization technique is the one proposed by Kneser and Ney (1993) and called
the exchange clustering algorithm. At each iteration, the current clustering is improved by
trying to switch each word to a new cluster such that it most increases the likelihood of the
data. In order to speed up this algorithm, Uszkoreit and Brants (2008) considered a slightly
different model, which was previously proposed by Goodman (2001), and where the class-to-
class transitions are replaced by word-to-class transitions, giving the following probability of a
word sequence:

∏

k

p(wk | C (wk)) p(C (wk) | wk−1).

Thanks to that modification, Uszkoreit and Brants (2008) designed an efficient variant of the
exchange algorithm, allowing them to train models on very large datasets. This model was later
extended to the multilingual setting by Täckström et al. (2012).

36 CHAPTER 1. A BRIEF INTRODUCTION TO NLP

C
(w

1)
C
(w

2)
C
(w

3)
C
(w

4)
C
(w

5)
C
(w

6)

w
1

w
2

w
3

w
4

w
5

w
6

C
(w

1)
w

1
C
(w

2)
w

2
C
(w

3)
w

3
C
(w

4)
w

4
C
(w

5)
w

5
C
(w

6)
w

6

Figure
1.2:G

raphicalm
odelscorresponding

to
the

clustering
m

odelproposed
by

Brow
n

etal.(1992)(top)and
clustering

m
odel

proposed
by

G
oodm

an
(2001)(bottom

).

CHAPTER 2
§

HIDDEN MARKOV TREE MODELS FOR SEMANTIC
CLASS INDUCTION

IN THIS CHAPTER, we describe a new unsupervised method for semantic class induction.
This is achieved by introducing a generative model of sentences with latent variables, based

on dependency trees and which takes into account homonymy. This model can be seen as a
generalization of Brown clustering taking into account the syntax and homonymy. Then, we
describe an efficient algorithm to perform inference and learning in this model, in order for our
method to be scalable to large datasets containing tens of millions of sentences. This algorithm,
based on approximate message passing and online EM, allowed us to train models with hundreds
of latent states on a dataset with hundreds of millions of tokens in less than two days on a single
core. Finally, we apply the proposed method on two large datasets (108 tokens, 105 words
types), and qualitatively discuss the semantic classes we obtain. Quantitative evaluations are
performed in chapter 3 and 4.

The material of this chapter is based on the following work:

E. Grave, G. Obozinski and F. Bach. Hidden Markov tree models for semantic class induction.
In Seventeenth Conference on Computational Natural Language Learning (CoNLL). 2013.

2.1 Model

In this section, we introduce our probabilistic generative model of sentences. We start by set-
ting up some notations. A sentence is represented by a K -tuple w = (w1, ..., wK) where each
wk ∈ {1, ...,V } is an integer representing a word and V is the size of the vocabulary. Our goal
will be to infer a K -tuple c = (c1, ..., cK) of semantic classes, where each ck ∈ {1, ...,C } is an
integer representing a semantic class, corresponding to the word wk .

37

38 CHAPTER 2. TREE HMM FOR SEMANTIC CLASS INDUCTION

The generation of a sentence can be decomposed in two steps: first, we generate the semantic
classes according to a Markov process, and then, given each class ck , we generate the correspond-
ing word wk independently of other words. The Markov process used to generate the semantic
classes will take into account selectional preference. Since we want to model homonymy, each
word can be generated by multiple classes.

We now describe the Markov process we propose to generate the semantic classes. We as-
sume that we are given a directed tree defined by the function π : {1, ...,K} 7→ {0, ...,K}, where
π(k) represents the unique parent of the node k and 0 is the root of the tree. Each node, except
the root, corresponds to a word of the sentence. First, we generate the semantic class corre-
sponding to the root of the tree and then generate recursively the class for the other nodes.
Classes are conditionally independent given the classes of their parents. Using the language of
probabilistic graphical models, this means that the distribution of the semantic classes factor-
izes in the tree defined by π (See Fig. 2.1 for an example). We obtain the following distribution
on pairs (w, c) of words and semantic classes:

p(w, c) =
K
∏

k=1

p(ck | cπ(k)) p(wk | ck),

with c0 being equal to a special symbol denoting the root of the tree.

In order to fully define our model, we now need to specify the observation probability
distribution p(wk | ck) of a word given the corresponding class and the transition probability
distribution p(ck | cπ(k)) of a class given the class of the parent. Both these distributions will
be categorical (and thus multinomial with one trial). The corresponding parameters will be
represented by the stochastic matrices O and T (i.e. matrices with non-negative elements and
unit-sum columns):

p(Wk = i | Ck = j) =Oi j ,

p(Ck = i | Cπ(k) = j) = Ti j .

Finally, we introduce the trees that we consider to define the distribution on semantic classes.
(We recall that the trees are assumed given, and not a part of the model.)

2.1.1 Markov chain model

The simplest structure we consider on the semantic classes is a Markov chain. In this special
case, our model reduces to a hidden Markov model. Each semantic class only depends on the
class of the previous word in the sentence, thus failing to capture selectional preference of se-
mantic class. But because of its simplicity, it may be more robust, and does not rely on external
tools. It can be seen as a generalization of the Brown clustering algorithm (Brown et al., 1992)
taking into account homonymy.

2.1. MODEL 39

Opposition political parties have harshly criticized the pact

c0 c1 c2 c3 c4 c5 c6 c7 c8

w1 w2 w3 w4 w5 w6 w7 w8

Figure 2.1: Example of a dependency tree and its corresponding graphical model.

2.1.2 Dependency tree model

The second kind of structure we consider to model interactions between semantic classes is a
syntactic dependency tree corresponding to the sentence. A dependency tree is a labeled tree
in which nodes correspond to the words of a sentence, and edges represent the grammatical
relations between those words, such as nominal subject, direct object or determiner. We use the
Stanford typed dependencies basic representations, which always form a tree (De Marneffe and
Manning, 2008).

We believe that a dependency tree is a better structure than a Markov chain to learn se-
mantic classes, with no additional cost for inference and learning compared to a chain. First,
syntactic dependencies can capture long distance interactions between words. See Fig. 2.1 and
the dependency between parties and criticized for an example. Second, the syntax is im-
portant to model selectional preference. Third, we believe that syntactic trees could help much
for languages which do not have a strict word order, such as Czech, Finnish, or Russian. One
drawback of this model is that all the children of a particular node share the same transition
probability distribution. While this is not a big issue for nouns, it is a bigger concern for verbs:
subject and object should not share the same transition probability distribution.

40 CHAPTER 2. TREE HMM FOR SEMANTIC CLASS INDUCTION

A potential solution would be to introduce a different transition probability distribution
for each type of dependency. This possibility will be explored in future work.

2.1.3 Brown clustering on dependency trees

As for Brown clustering, we can assume that words are generated by a single class. In that
case, our model reduces to finding a deterministic clustering functionC which maximizes the
following likelihood:

∏

k

p(wk | C (wk))p(C (wk) | C (wπ(k))).

In that case, we can use the algorithm proposed by Brown et al. (1992) to greedily maximize the
likelihood of the data. This model can be seen as a generalization of Brown clustering taking
into account the syntactic relations between words.

2.2 Inference and learning

In this section, we present the approach used to perform learning and inference in our model.
Our goal here is to have efficient algorithms, in order to apply our model to large datasets (108

tokens, 105 words types). The parameters T and O of the model will be estimated with the
maximum likelihood estimator:

T̂,Ô= argmax
T,O

N
∏

n=1

p(w(n) | T,O),

where (w(n))n∈{1,...,N} represents our training set of N sentences.

First, we present an online variant of the well-known expectation-maximization (EM) algo-
rithm, proposed by Cappé and Moulines (2009), allowing our method to be scalable in term of
numbers of examples. Then, we present an approximate message passing algorithm which has
a linear complexity in the number of classes, instead of the quadratic complexity of the exact
inference algorithm. Finally, we describe a state-splitting strategy to speed up the learning.

2.2.1 Online EM

In the batch EM algorithm, the E-step consists in computing the expected sufficient statistics τ
andω of the model, sometimes referred as pseudocounts, corresponding respectively to T and
O:

τi j =
N
∑

n=1

Kn
∑

k=1

E
�

1{C (n)k = i , C (n)
π(k) = j } |W (n) =w(n)

�

,

ωi j =
N
∑

n=1

Kn
∑

k=1

E
�

1{W (n)
k = i , C (n)k = j } |W (n) =w(n)

�

.

2.2. INFERENCE AND LEARNING 41

On large datasets, N which is the number of sentences can be very large, and so, EM is inef-
ficient because it requires that inference is performed on the entire dataset at each iteration.
We therefore consider the online variant proposed by Cappé and Moulines (2009): instead of
recomputing the pseudocounts on the whole dataset at each iteration t , those pseudocounts are
updated using only a small subsetBt of the data, to get

τ(t)i j = (1−αt)τ
(t−1)
i j +αt

∑

n∈Bt

Kn
∑

k=1

E
�

1{C (n)k = i , C (n)
π(k) = j } |W (n) =w(n)

�

,

and

ω(t)i j = (1−αt)ω
(t−1)
i j +αt

∑

n∈Bt

Kn
∑

k=1

E
�

1{W (n)
k = i , C (n)k = j } |W (n) =w(n)

�

,

where the scalars αt are defined by αt = 1/(a + t)γ with 0.5 < γ ≤ 1. In the experiments, we
used a = 4. We chose γ in the set {0.5,0.6,0.7,0.8,0.9,1.0}.

2.2.2 Approximate inference

Inference is performed on trees using the sum-product message passing algorithm, a.k.a. belief
propagation, which extends the classical α−β recursions used for chains, see e.g. Wainwright
and Jordan (2008). We denote byN (k) the set containing the children and the father of node
k. In the exact message-passing algorithm, the messageµk→π(k) from node k to nodeπ(k) takes
the form:

µk→π(k) = T>u,

where u is the vector obtained by taking the elementwise product of all the messages received
by node k except the one from node π(k), i.e.,

ui =
∏

k ′∈N (k)\{π(k)}
µk ′→k(i).

Similarly, the pseudocounts can be written as

E
�

1{C (n)k = i ,C (n)
π(k) = j } |W (n) =w(n)

�

∝ ui Ti j v j ,

where v is the vector obtained by taking the elementwise product of all the messages received
by node π(k), except the one from node k, i.e.,

v j =
∏

k ′∈N (π(k))\{k}
µk ′→π(k)(j).

Both these operations thus have quadratic complexity in the number of semantic classes.
In order to reduce the complexity of those operations, we propose to start by projecting the
vectors u and v on a set of sparse vectors, and then, perform the operations with the sparse
approximate vectors. We consider two kinds of projections:

42 CHAPTER 2. TREE HMM FOR SEMANTIC CLASS INDUCTION

• k-best projection, where the approximate vector is obtained by keeping the k largest coef-
ficients,

• ε-best projection, where the approximate vector is obtained by keeping the smallest set
of larger coefficients such that their sum is greater than (1− ε) times the `1-norm of the
original vector.

This method is similar to the one proposed by Pal et al. (2006). Another approach, proposed to
learn large scale conditional random fields, is to regularize the coefficients of the model using
the `1-norm and to take advantage of the induced sparsity (Lavergne et al., 2010). The advantage
of the k-best projection is that we control the complexity of the operations, but not the error,
while the advantage of the ε-best projection is that we control the error but not the complexity.
As shown in Fig. 2.2, good choices for ε and k are respectively 0.01 and 16. We use these values
in the experiments.

We also note on Figure. 2.3, that during the first iterations of EM, the sparse vectors obtained
with the ε-best projection have a large number of non-zero elements. Thus, this projection
is not adequate to directly learn large latent class models. This issue is addressed in the next
section, where we present a state splitting strategy in order to learn models with a large number
of latent classes.

2.2.3 State splitting

A common strategy to speed up the learning of large latent state space models, such as ours,
is to start with a small number of latent states, and split them during learning (Petrov, 2009).
As far as we know, there are still no good heuristics to choose which states to split, or how
to initialize the parameters corresponding to the new states. We thus apply the simple, yet
effective method, consisting in splitting all states into two and in breaking the symmetry by
adding a bit of randomness to the emission probabilities of the new states. As noted by Petrov
(2009), state splitting could also improve the quality of learnt models.

2.2.4 Initialization

Because the negative log-likelihood function is not convex, initialization can greatly change
the quality of the final model. Initialization for online EM is done by setting the initial pseudo-
counts, and then performing an M-step. We have considered the following strategies to initialize
our model:

• random initialization: the initial pseudocounts τi j and ωi j are sampled from a uniform
distribution on [0,1],

• Brown initialization: the model is initialized using the (normalized) pseudocounts ob-
tained by the Brown clustering algorithm. Because a parameter equal to zero remains
equal to zero when using the EM algorithm, we replace null pseudocounts by a small
smoothing value, e.g., for observation i , we use 10−5×max j ωi j ,

2.2. INFERENCE AND LEARNING 43

0 2,000 4,000 6,000 8,000 10,000
Iteration

5.95

5.90

5.85

5.80

N
or

m
ali

ze
d

lo
g-

lik
eli

ho
od

k = 128
k = 64
k = 32
k = 16

0 2,000 4,000 6,000 8,000 10,000
Iteration

5.95

5.90

5.85

5.80

N
or

m
ali

ze
d

lo
g-

lik
eli

ho
od

epsilon = 0.0
epsilon = 0.001
epsilon = 0.01
epsilon = 0.1

Figure 2.2: Comparison of the two projection methods for approximating vectors, for a model
with 128 latent classes. The two plots are the log-likelihood on a held-out set as a function of
the iterates of online EM. Green curves (k = 128 and ε = 0) correspond to learning without
approximation.

0 100 200 300 400 500
Iteration

0
10
20
30
40
50
60
70
80

Su
pp

or
t s

ize

epsilon = 0.0001
epsilon = 0.001
epsilon = 0.01
epsilon = 0.1

Figure 2.3: Size of the support of the approximate vector for the ε-best projection.

44 CHAPTER 2. TREE HMM FOR SEMANTIC CLASS INDUCTION

2.3 Experiments

In this section, we present the datasets used for the experiments and we qualitatively evaluate
the proposed model.

2.3.1 Datasets

We considered five datasets: the first one, which we refer to as the music dataset, corresponds
to all the Wikipedia articles refering to a musical artist. They were extracted using the Freebase
database.1 This dataset comprises 2.22 millions sentences and 56 millions tokens. We choose
this dataset because it corresponds to a restricted domain. The second dataset are the articles of
the NYT corpus (Sandhaus, 2008) corresponding to the period 1987-1997 and labeled as news.
This dataset comprises 14.7 millions sentences and 310 millions tokens. The third dataset are
biomedical abstracts from PubMed, obtained by performing a search with the keyword cancer.
This dataset comprises 8.1 millions sentences and 190 millions tokens. The fourth dataset is
all the articles from the French Wikipedia (2013 dump). It comprises 19.6 millions sentences
and 425 millions tokens. The fifth dataset is all the articles from the Italian Wikipedia, made
available by Baroni et al. (2009). It comprises 7.7 millions sentences and 170 millions tokens.

We parsed English datasets using the Stanford parser, and converted parse trees to depen-
dency trees (De Marneffe et al., 2006). We decided to discard sentences longer than 50 tokens,
for parsing time reasons, and then lemmatized tokens using Wordnet. We parsed the French
dataset using the Malt parser as described by Candito et al. (2010). Each word of our vocabu-
lary is then a pair of lemma and its associated part-of-speech. This means that the noun attack
and the verb attack are two different words. Finally, we introduced a special token, -*-, for in-
frequent (lemma, part-of-speech) pairs, in order to perform smoothing. For example, for the
music dataset, we kept the 25,000 most frequent words, while for the NYT corpus, we kept
the 100,000 most frequent words.

2.3.2 Semantic classes

Before moving on to the quantitative evaluation of our model, we discuss qualitatively the in-
duced semantic classes. Examples of semantic classes are presented in Tables 2.1, 2.2 and 2.3.
Tree models with random initialization were used to obtain those semantic classes. First we ob-
serve that most classes can be easily given natural semantic interpretation. For example, class 3
of Table 2.1 contains musical genres, while class 4 contains musical instruments.

Table 2.2 presents groups of classes that contain a given homonymous word; it seems that
the different classes capture rather well the different senses of each word. For example, the
word head belongs to the class 1, which contains words referring to leaders and to the class 2,
which contains body parts.

1www.freebase.com

2.3. EXPERIMENTS 45

1 2 3 4 5 6 7

bach tour rock guitar school win reach
mozart show pop bass university receive peak

liszt concert jazz vocal college sell hit
beethoven performance classical drum hall gain chart

wagner appearance folk keyboard conservatory earn go
chopin gig punk piano academy award debut
brahms date metal saxophone center achieve make

Table 2.1: Selected semantic classes corresponding to the music dataset.

1 2 3 4 5 6 7

president head metal oil stock score kill
member hand gas salt price hit shoot
director face oil sauce index lead arrest

chairman hands paint butter market give die
executive foot steel mixture future take injure

officer knee wood potato oil make found
head shoulder paper heat exchange go wound
friend eyes plastic juice gold run beat
leader hair material sugar commodity get fire

minister back fuel tomato trading shoot release

Table 2.2: Semantic classes containing homonymous words (NYT corpus). Different classes
capture different senses of each word.

1 2 3 4 5 6 7

1,000 work orchestra saudi add country percent
2,000 job music eastern place city or
300 school symphony southern serve area those

10,000 training chamber northern cook town 81/2
3,000 program piano Puerto stir state 8
20,000 class mozart central remove nation 87/8
5,000 education quartet northern cut community 225

Table 2.3: Randomly selected semantic classes corresponding to the NYT corpus.

46 CHAPTER 2. TREE HMM FOR SEMANTIC CLASS INDUCTION

2.3.3 Transitions between semantic classes

We have plotted the transition matrices of a tree model and a chain model, both with 128 latent
classes in Figure 2.4. We notice that the transition matrices are very sparse. An interesting
difference to notice between the two matrices is the fact that for the tree model, the weight
of the diagonal is more important than for the chain model. This means that for tree models,
semantic classes have a higher probability of self transition than for chain models.

We now give some examples of semantic classes, along with the classes that are the most
probably generated after them, in Table 2.4. We observe that our model is able to capture
selectional preferences, for example the fact that team, champion or player can win, play or lose
things such as game, league or series. We also observe that using unlabeled dependency trees
leads to errors, such as putting team in the class containing the words game, league, series and
championship.

win play lose lead beat defeat be make

in for to on at into of from
team champion player winner record
to with by for he on after but
game league series team championship
· win play lose lead beat defeat be make

announce call agree refuse ask begin vote

make have discuss win seek negotiate
plan agreement law bill program proposal
today yesterday also recently tonight
have already never do eventually
court government commission jury judge

sell buy help build use provide make

to from them him how into with it
system program business product
· sell buy help build use provide make
food money equipment supply good
student people worker employee job

rise fell be close offer drop gain

to from at by with for while as
up down compare yield sharply
share bond stock dollar note issue
to 1/2 at 1/4 3/4 1 12 1 1 18
stock price index market future oil

judge attorney justice general secretary

former prime republican democratic
federal state united supreme district
a an such with to for his like
· judge attorney justice general secretary
the both his along our each itself

night season morning day afternoon

this that every three another the
last next few recent earlier later past
friday monday tuesday wednesday
each every ago any two all one some
the on of ’s between itself 37 1967

Table 2.4: Examples of semantic classes and the five most probable classes that are generated
after them.

2.3. EXPERIMENTS 47

Figure 2.4: Transition matrices of a tree model (top) and a chain model (bottom), with 128
latent classes.

48 CHAPTER 2. TREE HMM FOR SEMANTIC CLASS INDUCTION

2.3.4 Vectorial representation of words

The models we introduced can also be used to represent words as vectors. Indeed, we can
associate to each word the corresponding posterior distribution of latent classes, averaged over
all the occurrences of that word in the training corpus. More formally, given a training set of
N sentences (w(n))n∈{1,...,N} and an integer a representing a word type, we define the vector ũ by

ũi =
N
∑

n=1

Kn
∑

k=1

E
�

1{ C (n)k = i , W (n)
k = a} |W (n) =w(n)

�

.

Then, the word type a is represented by the normalized vector

u=
ũ
‖ũ‖1

.

We note that the vector ũ corresponds to the ath line of the sufficient statistics matrixω. Thus,
we use the sufficient statistics computed during learning to extract vectorial representation of
words (even if the model was trained using online EM). We now present some applications
of this vectorial representation of words, such as data visualization or distributional thesaurus
building.

Distributional thesaurus

In a distributional thesaurus, each word of the vocabulary is associated to a list of related words.
Using the vectorial representation of words we just introduced, it is possible to compute the
similarity between two words by computing the similarity between their associated vectors u
and v, for example by using the Bhattacharyya coefficient defined by

BC (u,v) =
∑

i

p
ui vi .

We will compare different distances between probability distributions in Chapter 3. In order
to build a distributional thesaurus, we then associate to each word of the vocabulary its k most
similar terms, according to the similarity measure we have just introduced. We give such exam-
ples in Table 2.5 and Table 2.6. We observe that the similarity induced by our models does not
differentiate between synonyms and antonyms: for example, both sell and buy appear in the
thesaurus entry for the verb purchase. We also notice that for nouns, most of the related terms
are co-hyponyms of the target word. We will investigate what kind of relations are favored by
our models in more details in Chapter 3.

2.3. EXPERIMENTS 49

sunday-n: saturday(0.96), thursday(0.92), friday(0.92), tuesday(0.92)
linguistics-n: biology(0.86), psychology(0.79), mathematics(0.79), physics(0.73)
salt-n: pepper(0.82), flour(0.78), vinegar(0.77), parsley(0.76), garlic(0.76)

red-j: yellow(0.92), brown(0.90), green(0.89), orange(0.87), blue(0.85)
cute-j: pretty(0.87), beautiful(0.80), funny(0.78), nice(0.71), neat(0.69)
stunning-j: remarkable(0.79), dramatic(0.74), impressive(0.71), spectacular(0.71)

purchase-v: sell(0.87), buy(0.85), market(0.79), acquire(0.78), handle(0.74)
cook-v: bake(0.93), saute(0.86), brown(0.82), simmer(0.80), sprinkle(0.80)
nominate-v: elect(0.72), appoint(0.71), name(0.68), resign(0.65), select(0.62)

slowly-a: smoothly(0.90), quickly(0.86), easily(0.82), freely(0.78), rapidly(0.77)
financially-a: economically(0.91), politically(0.84), potentially(0.80), seemingly(0.79)
definitely-a: always(0.93), obviously(0.89), really(0.84), basically(0.83)

Table 2.5: Examples of distributional thesaurus entries of nouns (-n), adjectives (-j), verbs (-v)
and adverbs (-a). The number in parentheses is the similarity score between the term and its
target, induced by our model. A tree model with 512 latent classes trained on the NYT corpus
was used to compute those similarity scores.

dimanche-n: samedi(0.92), mercredi(0.86), jeudi(0.84), vendredi(0.84)
avion-n: hélicoptère(0.82), camion(0.81), voiture(0.79), char(0.78)
ville-n: village(0.84), commune(0.82), localité(0.78), principauté(0.77)

rouge-j: orange(0.90), brun(0.87), bleu(0.85), violet(0.85), jaune(0.85)
chaud-j: doux(0.91), sec(0.87), frais(0.85), sombre(0.84), froid(0.81)
épais-j: mince(0.91), plat(0.89), coloré(0.89), ovale(0.89)

acheter-v: racheter(0.86), louer(0.83), récupérer(0.76), acquérir(0.75)
construire-v: aménager(0.94), édifier(0.94), bâtir(0.94), ériger(0.92)
gagner-v: perdre(0.80), remporter(0.79), obtenir(0.79), décrocher(0.79)

lentement-a: rapidement(0.86), fermement(0.86), volontairement(0.83)
parfois-a: quelquefois(0.93), souvent(0.82), généralement(0.80), simplement(0.80)
pourtant-a: cependant(0.86), toutefois(0.84), certes(0.84), paradoxalement(0.81)

Table 2.6: Examples of distributional thesaurus entries of nouns (-n), adjectives (-j), verbs (-v)
and adverbs (-a). The number in parentheses is the similarity score between the term and its tar-
get, induced by our model. A tree model with 512 latent classes trained on the French Wikipedia
was used to compute those similarity scores.

50 CHAPTER 2. TREE HMM FOR SEMANTIC CLASS INDUCTION

Word visualization

A second application of vectorial representation of words is to visualize words in the two-
dimensional plan. To that end, vectors corresponding to selected words are gathered, and a
dimensionality reduction technique, such as multi-dimensional scaling is applied to these vec-
tors. The 2-dimensional vectors are then plotted, and it is then possible to evaluate which words
are similar, according to the model. We have plotted some vectors corresponding to words in
Figure 2.5. We observe that similar words tend to form clusters: for example, words designing
vehicles (plane, car, bus, etc.) are close together. Ambiguous words, such as duck which can
design the food or the animal are between the two corresponding clusters.

Of course, it is also possible to obtain a vector representing a word in the context of a
sentence, by computing the posterior distribution of latent classes for that token. Given a
sentence w, the vector u representing the k t h token of the sentence is defined by

ui =E [1{ Ck = i} |W =w] .

We computed the posterior distributions of latent classes corresponding to the word head in
the two following sentences, and compared them with posterior distributions representing the
word head out of context and words designing body parts (eye, hand, should, etc.) or leaders
(chairman, director, manager, etc.):

1: A well-known Wall Street figure may join the Cabinet as head of
the Treasury Department.

2: The nurse stuck her head in the room to announce that Dr. Reitz
was on the phone.

First, we observe that the posterior distribution representing the word head is between two
clusters, the first one formed by words designing leaders and the second one formed by words
referring to body parts. Second, we observe that the posterior distribution of latent classes
representing words in context are shifted toward the clusters corresponding to the sense of the
ambiguous word head.

2.3.5 On optimization parameters

We briefly discuss the different choices that can influence the learning efficiency in the pro-
posed models. In practice, we have not observed noticeable differences between ε-best projec-
tion and k-best projection for the approximate inference, and we thus advise to use the latter as
its complexity is controled. By contrast, initialization can greatly change the performance in
semi-supervised learning, in particular for tree models. We thus advise to initialize with Brown
clusters. We will discuss this in greater details in Chapter 4. Finally, as noted by Liang and
Klein (2009), the step size of online EM also has a significant impact on performance.

2.3. EXPERIMENTS 51

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

plane

bus

boat
carship

train

cat
dog

cow
duck

hope

fearbelief

pain microsoft
compaqoracle cisco

banana

peartomato

pizza

chicken

sell
buy

acquire

drinkeat

huge big
largesmall

tiny

Figure 2.5: Out of context words visualization.

0.5 0.0 0.5 1.0

0.5

0.0

0.5

president

manager

executive

chairman

director

chief

hand

face

eye

foot

shoulder

leg

head

head-1

head-2

Figure 2.6: Word representation in context: red dot represent words out of context, while blue
dots represents words in context. See text for details.

52 CHAPTER 2. TREE HMM FOR SEMANTIC CLASS INDUCTION

2.4 Relation to previous work

Brown clustering (Brown et al., 1992) is the most commonly used method for word cluster
induction, and is often used for semi-supervised learning (see Chapter 4). The goal of this
algorithm is to discover a clustering function C from words to clusters which maximizes the
likelihood of the data, assuming the following sequential model of sentences:

∏

k

p(wk | C (wk))p(C (wk) | C (wk−1)).

One of the limitations of this model is the fact that it does not take into account polysemy and
homonymy. Each word of the vocabulary is assigned to a single cluster. This also means that
there is no way to obtain representations of words in context.

In recent work, Huang et al. (2011, 2013) proposed to address this limitation by using a
hidden Markov model to learn word representations for semi-supervised learning. The chain
model we consider is equivalent to their hidden Markov model representation. They also pro-
posed to replace the latent Markov chain by a lattice of K ×N binary variables, K being the
length of the sentence. The motivation is that words have different “features”, such as gender,
number, tense, aspect, semantic role, etc and those features should be captured by the various
binary latent variables. Syntax, that we aimed to take into account, is ignored by both these
models.

Closest to our model is the variant of LDA proposed by Boyd-Graber and Blei (2009), in
which syntactic trees are used to model dependencies between the different topics. Given that
we aim for our classes to capture as much of the word semantics reflected by the syntax, such
as the semantic roles of words, we believe that it is not necessarily useful or even desirable that
the latent variables should be determined, even in part, by topic parameters that are sharing
information at the document level. Moreover, our model being significantly simpler, we were
able to design fast and efficient algorithms, making it possible to use our model on much larger
datasets, and with many more latent classes.

2.5 Conclusion

In this chapter, we considered an arguably natural generative model of sentences for semantic
class induction. It can be seen as a generalization of Brown clustering in two directions. First,
replacing the Markov chain linking the semantic classes by a dependency tree allows our model
to capture the syntax. Second, allowing each word to belong to multiple semantic classes per-
mits to capture homonymy. We developed an efficient algorithm to perform inference and
learning, which makes it possible to train this model on large datasets, such as the New York
Times corpus. We showed that this model induces relevant semantic classes and relations be-
tween them.

2.5. CONCLUSION 53

1 2 3 4 5 6 7

Paris art président an blanc publier dire
Londres histoire directeur mois noir écrire penser
Rome économie membre jours rouge sortir savoir
Berlin science professeur heure petit jouer noter
Lyon recherche ministre minute vert enregistrer estimer

Marseille musique secrétaire semaine bleu apparaître considérer
Montréal cinéma député année jaune composer affirmer

Table 2.7: Example of semantic classes obtained using French Wikipedia as a corpus.

1 2 3 4 5 6 7

Roma filosofia presidente anno conquistare bianco scrivere
Milano arte direttore giorno lasciare nero interpretare
Venezia storia membro mese occupare colore suonare
Torino scienze capo tempo sconfiggere rosso pubblicare
Firenze medicina professore ora attaccare blu cantare
Parigi teologia segretario minuto distruggere scuro realizzare
Napoli arti generale episodio abbandonare verde fare

Table 2.8: Example of semantic classes obtained using Italian Wikipedia as a corpus.

1 2 3 4 5 6

membrane cell association treatment analyze increase
nucleus lymphocyte relationship exposure evaluate change
surface fibroblast correlation stimulation assess reduction

cytoplasm macrophage difference injection examine decrease
tissue progenitor interaction administration determine difference

structure xenograft relation transfection investigate improvement
matrix hepatocyte link incubation measure variation

Table 2.9: Example of semantic classes obtained using biomedical abstracts as a corpus.

54 CHAPTER 2. TREE HMM FOR SEMANTIC CLASS INDUCTION

CHAPTER 3
§

INTRINSIC EVALUATIONS

EVALUATING distributional model of semantics is not easy. Traditionally, people have per-
formed two kinds of evaluation: intrinsic evaluations, in which the quality of the similar-

ity measure induced by the model is evaluated against a gold standard, such as human similarity
judgements or lexical databases such as WordNet, and extrinsic evaluations, in which people in-
vestigate how helpful is their model for solving other tasks, such as part-of-speech tagging or
named entity recognition. In this chapter, we perform intrinsic evaluations of our models,
while extrinsic evalutions are carried out in the next chapter.

3.1 Predicting similarity judgements

In this section, we evaluate our models on a similarity prediction task. In this task, pairs of
words are presented to human subjects, who are asked to rate the relatedness of the two words.
We then compare the human judgements with the distributional similarity induced by our
models by computing the correlation between the two score distributions, for example by using
the Pearson correlation coefficient. We use the WordSim353 dataset, collected by Finkelstein
et al. (2001). This dataset comprises 353 word pairs, which were rated by 13 to 16 human
subjects on a 0− 10 scale, 0 meaning that the two words are completely unrelated, while 10
means that the two words are very much related or identical. Agirre et al. (2009) proposed to
evaluate distributional semantics models on two subsets of the WordSim353 dataset, the first
one grouping words that are similar and the second one grouping word that are related. Similar
words are defined as synonyms, antonyms, and hyperonym-hyponym, while related words are
defined as meronym-holonym and topically related words. See Table 3.1 for examples of word
pairs of the WordSim353 dataset.

Comparison of similarity measures

Each word is represented by its corresponding posterior distribution of latent semantic classes,
averaged on the whole training corpus. Since words are represented by a probability distribu-

55

56 CHAPTER 3. INTRINSIC EVALUATIONS

word 1 word 2 score relation split

tiger tiger 10.00 identical S
dollar buck 9.22 synonymy S
dollar profit 7.38 topic R
smart stupid 5.81 antonymy S
smart student 4.62 topic R
psychology discipline 5.58 hyponymy S
psychology cognition 7.48 topic R
planet moon 8.08 co-hyponymy S
planet galaxy 8.11 meronymy R

Table 3.1: Examples of word pairs from the WordSim353 dataset. The split column indicates
to which subset the word pair belongs: S stands for similar, while R stands for related.

tion, we have considered the following measures to compute the similarity between two words:
the symmetrised Kullback-Leibler divergence

DKL(p, q) =
1
2

n
∑

i=1

pi ln
�

pi

qi

�

+ qi ln
�

qi

pi

�

,

the χ 2-distance

Dχ 2(p, q) =
n
∑

i=1

(pi − qi)
2

pi + qi

,

the Jensen-Shannon divergence

DJ S(p, q) =
1
2

n
∑

i=1

pi ln
�

2 pi

pi + qi

�

+ qi ln
�

2qi

pi + qi

�

and the Hellinger distance:

DH (p, q) =
n
∑

i=1

(
p

pi −
p

qi)
2.

We also included the cosine similarity measure as a baseline, as it is widely used in the field of
distributional semantics. We report results on the whole WordSim353 dataset in Table 3.2, for
various model sizes. Unsurprisingly, we observe that the dissimilarity measures giving the best
results are the one tailored for probability distributions, namely the Jensen-Shannon divergence
and the Hellinger distance. The Kullback-Leibler divergence is too sensitive to fluctuations
of small probabilities and thus does not perform as well as other similarity measures between
probability distributions. In the following, we will use the Hellinger distance, unless otherwise
stated.

3.2. BLESS 57

tree chain
128 256 512 128 256 512

Cosine 0.34 0.35 0.33 0.35 0.33 0.36
KL-divergence 0.34 0.38 0.39 0.31 0.32 0.35
Chi-squared 0.37 0.38 0.38 0.39 0.39 0.39
Jensen-Shannon 0.37 0.38 0.39 0.40 0.39 0.40
Hellinger 0.37 0.39 0.40 0.40 0.39 0.40

Table 3.2: Absolute value of the Pearson correlation coefficient between human relatedness
judgements and distances induced by our models.

Relatedness v.s. similarity

As we mentioned before, words might be rated as related for different reasons and there exist
different relations between related words, such as synonymy, antonymy or meronymy. Words
can even be rated as similar only because they tend to appear in the same contexts, such as guitar
and music, even if there is no relation between them. Such words are refered to as topically
related. In order to determine what kind of relations are captured by our models, we evaluated
them on the two subsets of the WordSim353 dataset proposed by Agirre et al. (2009), namely
related words and similar words. We report results in Table 3.3. We observe that both models
capture similarity much better than relatedness. This is not surprising at all since for both
models, word order or syntactic roles are very important. Thus, these models tend to rate as
similar words that are truly exchangeable, and not topically related words.

tree chain
128 256 512 128 256 512

Relatedness 0.22 0.23 0.23 0.24 0.22 0.21
Similarity 0.57 0.60 0.60 0.60 0.63 0.63

Table 3.3: Absolute value of the Pearson correlation coefficient between human relatedness
judgements and distances induced by our models.

3.2 BLESS

As we saw in the previous section, different relations exist between words and a distributional
semantic model does not necessarily capture all those relations equally well. Determining what
kind of relations are favored by a model is thus as important as evaluating to what extent the
model captures relatedness in general. This lead Baroni and Lenci (2011) to design and publish
the BLESS dataset. The dataset comprises 200 concrete concepts. For each concept, a list of

58 CHAPTER 3. INTRINSIC EVALUATIONS

related words referred to as relatum, is given, with the type of the relation. Five relations are
considered: co-hyponymy, hypernymy, meronymy, attribute and event. The attribute relation
means that the relatum is an adjective expressing an attribute of the concept, while the event
relation means that the relatum is verb designing an activity or event in which the concept is
involved. Finally, random nouns, adjectives and verbs are added, to estimate the preference of
a model towards related terms over random ones. Examples of concept-relation-relatum are
given in Table 3.4.

concept relation relatum

library co-hyponymy restaurant
library meronymy door
library hypernymy institution
library attribute public
library event build
library rand-n crime
library rand-j important
library rand-v surround

Table 3.4: Examples of concept-relation-relatum triples from the BLESS dataset introduced by
Baroni and Lenci (2011).

Comparison of relations captured by our models

We follow the evaluation proposed by the authors: for each concept and each relation, we keep
the score of the closest relatum. Thus, for each concept, we have eight scores, one for each
relation. We normalize these eight scores (mean: 0, std: 1), in order to reduce concept-specific
effects, such as denser neighborhood. We then report these score distributions for each relation
as box plots in Figure 3.1. It is thus possible to analyse which relations are favored by the model
by comparing the score distributions.

We observe that tree models and chain models tend to have the same distributions of sim-
ilarity scores for the different relations, and thus to capture the same kind of lexical informa-
tion. Both models favor the co-hyponymy relation by a large margin. It is followed by the
hypernymy and meronymy relations. The fourth relation is the random-n relation, which is
prefered over the attribute and the event relations. This happens because words with similar
part-of-speech tend to share the same semantic classes, while words with different part-of-speech
appear in disjoint semantic classes. It is thus impossible to compare words with different parts-
of-speech and to capture relation such as the event or the attribute relation as defined by the
BLESS dataset. We now present a way to address this limitation.

3.2. BLESS 59

coord hyper mero attri event randn randj randv
2

1

0

1

2

3 tree 512

coord hyper mero attri event randn randj randv
2

1

0

1

2

3 chain 512

Figure 3.1: Distributions of similarity scores for different relations, for a tree model (top) and
a chain model (bottom) on the BLESS dataset.

60 CHAPTER 3. INTRINSIC EVALUATIONS

Transforming adjectives into nouns and nouns into verbs

In syntactic relations between nouns and adjectives, the noun is the head word and the adjective
is the dependent. Similarly, in syntactic relations between nouns and verbs, most often, the verb
is the head and the noun is the dependent. Given a vector va representing an adjective and a
vector vn representing a noun, it is thus natural to left multiply them by the transition matrix
of the model to obtain a vector ua comparable to nouns and a vector un comparable to verbs:

ua = T>va and un = T>vn.

For chain models, transitions are reversed: there is a transition from adjectives to nouns and a
transition from subject to verbs.1 Thus, we right multiply the vectors va and vn by the transi-
tion matrix to obtain ua and un:

ua = Tva and un = Tvn.

We report the new score distributions obtained when adjective and noun representations are
transformed when compared to nouns and verbs in Table 3.2. We observe that, when using
these transformations, the attribute and event relations are preferred over the random relations,
which was the goal of applying them.

Related words retrieval

A second way to evaluate distributional semantic models using the BLESS dataset is related
words retrieval. In the BLESS dataset, each concept is associated to approximately the same
number of related words and random words. For each concept, the associated words can be
ranked accordingly to their similarity with the concept and the positions of related words in
that ranking indicate how good is the similarity measure: related words should be ranked higher
than random words. We report the precision-recall curves for various models in Figure 3.3: tree
models perform better than chain models and the performance improves with the number of
latent states.

3.3 Word categorization

In this section, we evaluate our models on a word categorization task: given a set of words, the
goal is to cluster them into semantic classes. We considered three datasets, that were used during
the 2008 workshop Bridging the gap between semantic theory and computational simulations.2

The first one is composed of concrete nouns, such as dog, knife or rocket, the second one is
composed of both concrete and abstract nouns, examples of abstract nouns being hope, concept
or hypothesis. Finally, the third dataset is composed of verbs, such as talk, fly or eat.

1We decided to ignore the transitions from verb to object.
2http://wordspace.collocations.de/doku.php/workshop:esslli:start

3.3. WORD CATEGORIZATION 61

coord hyper mero attri event randn randj randv
2

1

0

1

2

3 tree 512

coord hyper mero attri event randn randj randv
2

1

0

1

2

3 chain 512

Figure 3.2: Distributions of similarity for different relations, for a tree model (top) and a chain
model (bottom) on the BLESS dataset.

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

pr
ec

isi
on

chain 256
chain 512
tree 256
tree 512

Figure 3.3: Precision-recall of retrieved terms.

62 CHAPTER 3. INTRINSIC EVALUATIONS

Methodology

As before, we represent a word by the corresponding posterior distribution of semantic classes
over the training corpus and we use the Hellinger distance as a similarity measure between
words. We then use an agglomerative clustering algorithm, with complete linkage. We also
tried single linkage and average linkage, but complete linkage outperforms the two others for
both chain and tree models. Following the guidelines of the shared task from which the dataset
comes from, we evaluate the quality of a clustering using two metrics: entropy and purity.
Given a cluster S, the entropy is equal to

En(S) =− 1
log(C)

C
∑

c=1

fc log (fc) ,

where fc is the proportion of elements from the gold class c appearing in the cluster S and C is
the number of gold classes. It measures how much the cluster S mixes elements from different
classes. The purity of the cluster S is equal to

Pu(S) =max
c

fc .

It measures the proportion of the largest class appearing in S. Both these measures are in the
range [0,1]. The lower the entropy the better, and the higher the purity the better. Finally,
each measure is averaged accross clusters, weighted by the size of each cluster.

3.3.1 Concrete nouns categorization

The concrete nouns dataset comprises forty-four nouns, coming from six fine grained semantic
categories: bird (eagle), ground animal (cow), fruit tree (pear), green good (lettuce), tool (spoon)
and vehicle (helicopter). These categories can be merged into animal, vegetable and artifact,
giving rise to a coarser clustering problem. We will report results on both problems, referred to
as 3-classes and 6-classes. Out of the forty-four nouns, six were removed from the evaluation set,
since they do not appear in our training corpus (NYT corpus). Those six nouns are: peacock,
snail, pineapple, scissors, kettle and chisel.

tree chain
128 256 512 128 256 512

6-classes
Purity 0.66 0.71 0.76 0.58 0.58 0.71
Entropy 0.41 0.28 0.27 0.51 0.47 0.42

3-classes
Purity 0.55 0.87 0.95 0.50 0.63 0.87
Entropy 0.72 0.29 0.16 0.87 0.62 0.34

Table 3.5: Purity and entropy scores for the concrete nouns clustering task.

3.3. WORD CATEGORIZATION 63

First of all, we observe that larger models perform better than smaller ones. Second, for
both problems and both metrics, the tree models, which take syntax into account, outperform
the chain models by a large margin. This phenomenon was also noticed by Van de Cruys (2010).

Cluster 2 3 1 4 5 6

Bird 2 3 1 - - -
Ground animal 1 6 - - - -
Fruit tree - - 3 - - -
Green good - - 5 - - -
Tool - - - 1 9 -
Vehicle 1 - - - - 6

Table 3.6: Confusion matrix of the best clustering for the 6-classes problem.

In order to understand the decisions made by our model, let us examine the errors of the
best clustering for the 6-classes problem. We report the corresponding confusion matrix in
Table 3.6 and clusters in Table 3.7. First, the semantic classes corresponding to food are merged
into cluster 1. The bird appearing in cluster 1 is the word chicken, which is polysemous and
can also refer to food. Similarly, the semantic classes corresponding to animals are merged
into cluster 3. Cluster 2 might seem surprising, consisting of the words penguin, eagle, lion
and rocket. In fact, all those words are names of American sport teams.3 Since our corpus
is composed of news articles, it is not surprising that this sense dominates the other. Finally,
cluster 4 consists of the word telephone alone, which might be seen as an outlier in the semantic
class comprising tools.

Cluster 1: chicken, lettuce, pear, onion, potato, mushroom, corn, banana, cherry

Cluster 2: eagle, lion, penguin, rocket

Cluster 3: duck, dog, cat, cow, swan, owl, elephant, turtle, pig

Cluster 4: bottle, spoon, pencil, knife, screwdriver, hammer, pen, cup, bowl

Cluster 5: telephone

Cluster 6: boat, car, truck, ship, helicopter, motorcycle

Table 3.7: Clusters of the best clustering for the 6-classes problem.

3Pittsburgh Penguins, Philadelphia Eagles, Detroit Lions and Houston Rockets.

64 CHAPTER 3. INTRINSIC EVALUATIONS

3.3.2 Abstract v.s. concrete nouns categorization

The second dataset contains 15 highly concrete nouns, such as truck, turtle or onion, 15 highly
abstract nouns, such as pride, concept or hypothesis and 10 nouns with medium concreteness,
such as pollution, empire or smell. The first task is to cluster the 15 concrete nouns v.s. the
15 abstract nouns, in order to evaluate the ability of a model to make the distinction between
concrete and abstract concepts. We refer to this task as conc/abst. In the second task, the goal
is to cluster all the nouns, including those with medium concreteness, into two clusters and to
examine for each noun with medium concreteness whether it is classified as concrete or abstract,
and analyze why is so. Out of the forty nouns, two were removed from the evaluation set since
they do not appear in our training corpus (jealousy and ache).

tree chain
128 256 512 128 256 512

conc/abst
Purity 1.0 1.0 1.0 0.96 1.0 1.0
Entropy 0.0 0.0 0.0 0.18 0.0 0.0

Table 3.8: Purity and entropy scores for the concrete v.s. abstract nouns clustering.

Results on the conc/abst task are reported in Table 3.8. We observe that, with the exception
of the chain model with 128 latent states, all models perfectly discriminate concrete nouns v.s.
abstract nouns. The only misclassified example by the 128 chain model is the abstract noun
hypothesis. We do not have a compelling explanation for that error.

Let us now discuss the results of the second task. An example of obtained clustering is
reported in Figure 3.4, for the dataset with and without the nouns with medium concreteness.
First of all, we observe that adding the nouns with medium concreteness does not make a big
difference in the obtained clustering. Indeed, clusters of nouns with medium concreteness are
merged at the end of the algorithm, meaning that they are far from concrete and abstract nouns.
The first cluster mixing concrete nouns with mildly concrete nouns is

{ smell, shape, bottle }

at a distance of 0.58.4 The nouns ceremony, invitation, fight, pollution and weather are classified
as abstracts while smell, shape, empire and foundation are classified as concrete. The word smell
and shape are clustered with the artefacts they usually describe. The word empire and foun-
dation are clustered with lion and eagle because one of the dominant sense associated to those
animals are the American sport teams. These are organizations, and it is thus not surprising
that foundation or empire appear in the same cluster.

4We recall that we are using complete linkage agglomerative clustering. Thus, the distance between two clusters
is the maximum distance between two words from each clusters.

3.3. WORD CATEGORIZATION 65

0.00.20.40.60.81.0
chicken
onion
potato
banana
eagle
lion
turtle
bowl
pencil
hammer
bottle
telephone
truck
car
ship
truth
temptation
hypothesis
hope
belief
mystery
concept
wisdom
distraction
insight
mercy
gratitude
pride
luck

0.00.20.40.60.81.0
chicken
onion
potato
banana
eagle
lion
turtle
foundation
empire
bowl
pencil
hammer
bottle
shape
smell
telephone
truck
car
ship
truth
temptation
fight
pollution
weather
hypothesis
hope
belief
mystery
concept
wisdom
distraction
insight
invitation
ceremony
mercy
gratitude
pride
luck

Figure 3.4: Dendrograms of the clustering obtained by using a tree model with 512 latent states,
on the concrete v.s. abstract nouns dataset without mildly concrete nouns (left) and with mildly
concrete nouns (right).

66 CHAPTER 3. INTRINSIC EVALUATIONS

tree chain
128 256 512 128 256 512

verb-9
Purity 0.51 0.55 0.51 0.37 0.51 0.51
Entropy 0.45 0.43 0.44 0.66 0.45 0.49

verb-5
Purity 0.57 0.53 0.71 0.42 0.48 0.53
Entropy 0.58 0.62 0.42 0.82 0.65 0.65

Table 3.9: Purity and entropy scores of verb clustering.

Overall, the proposed models are able to make the distinction between abstract and concrete
concepts. Moreover, the choices made for mildly concrete nouns seem reasonable, and clusters
which are not related to others are among the last ones to be merged.

3.3.3 Verbs categorization

The third dataset is composed of forty-five verbs that can be grouped into nine fine grained
semantic classes: communication (talk), mental state (remember), motion manner (drive), mo-
tion direction (leave), change location (carry), body sense (smell), body action (drink), exchange
(sell) and change state (break). These classes can be merged into the five coarser following classes:
cognition, motion, body, exchange and change state. We refer to these two tasks as verb-9 and
verb-5 respectively.

We report results in Table 3.9. As for the concrete nouns categorization, we observe that
tree models perform better than chain models. Let us now discuss in details the clustering ob-
tained by using a tree model with 512 latent states, on the verb-9 task. We provide the confusion
matrix of this clustering in Table 3.10. The semantic classes with the highest number of mis-
classifactions are communication, motion direction, body sense and change state. Our system
makes true mistakes, such as mixing verbs from the classes mental states, exchange and change
state into the cluster 8:

{ evaluate, acquire, buy, sell, destroy, repair }.

A possible explanation for this cluster is the fact that all those verbs are transitive verbs whose
object could be property or all sorts of manufactured goods.

But it also makes reasonable mistakes, such as confusing verbs from the different motion
classes, classifying smell as a body action and not as body sense or mixing up communication,
body sense and body action into the cluster 2:

{ talk, speak, listen, look, smile, cry }.

Finally, clustering kill and die away from the other change state verbs can be explained by the
fact that they apply to animate thing, while the others apply to inanimate things. Similarly,

3.3. WORD CATEGORIZATION 67

0.00.20.40.60.81.0
suggest
read
remember
forget
notice
know
feel
request
lend
pay
acquire
buy
sell
destroy
evaluate
repair
talk
look
speak
listen
smile
cry
check
run
drive
pull
break
push
move
carry
walk
ride
enter
leave
send
fly
arrive
fall
rise
smell
eat
breathe
drink
kill
die

Figure 3.5: Dendrogram of the clustering obtained by using a tree model with 512 latent states,
on the verb-5 task.

68 CHAPTER 3. INTRINSIC EVALUATIONS

Cluster 3 1 5 6 4 2 7 8 9

Communication 1 2 - - - 2 - - -
Mental state - 3 - - 1 - - 1 -
Motion manner - - 1 - 4 - - - -
Motion direction - - 1 2 2 - - - -
Change location - - - - 5 - - - -
Body sense - 2 - - - 2 1 - -
Body action - - - - - 2 3 - -
Exchange 2 - - - - - - 3 -
Change state - - - - 1 - - 2 2

Table 3.10: Confusion matrix of the clustering obtained by using a tree model with 512 latent
states, on the verb-9 task.

our system decides to cluster fall and rise away from other motion direction verbs, since in our
dataset, these two verbs are mainly used to describe stock prices.

Clustering verbs is a notoriously hard task, and our proposed models fail on this problem
like other methods do. Some of the mistakes they make can be explained by the highly poly-
semous nature of verbs or by the dataset bias. Moreover, there might potentially exist a larger
number of meaningful ways to cluster verbs than nouns. However, we believe there is room
for improvement, since there are still some true system mistakes.

3.4 Compositional semantics

In this section, we evaluate our models on semantic composition tasks. The principle of se-
mantic compositionality, often attributed to the German logician Gottlob Frege, is the essen-
tial property of natural languages that the meaning of a complex unit such as a sentence, can be
deduced from the meaning of its parts and the syntactic relations between them. This allows
to express a potentially infinite number of ideas with a finite vocabulary. So far, we have only
evaluated how well our models were able to capture the meaning of words taken as individual
units. We now investigate how well our models capture the meaning of short phrases, such as
adjective-noun, verb-object, compound noun or subject-verb-object phrases.

Composition functions

Several ways to combine vectors representing individual words have been previously consid-
ered. Mitchell and Lapata (2008) considered vector functions such as addition, Hadamard
product, convolution, Kronecker product or dilation. Baroni and Zamparelli (2010) represents
nouns by vectors and adjectives by matrices and considered matrix-vector multiplication to
combine the representations. We now introduce the composition functions we will consider
in the following.

3.4. COMPOSITIONAL SEMANTICS 69

Let u be the vector representing the head word, and v be the vector representing the depen-
dent word. The goal is to find a vector p that captures the meaning of the phrase formed by
the two words. Following Mitchell and Lapata (2008), the two first functions we consider to
combine u and v are the addition

pad d = u+ v

and the Hadamard product (a.k.a. elementwise product)

pmu l t = u⊗ v.

We also consider to first multiply the vector v representing the dependent word by the transi-
tion matrix of our Markov model, before using the addition

pT−ad d = u+T>v

and the Hadamard product
pT−mu l t = u⊗

�

T>v
�

.

We denote these methods by T-add and T-mult. As a baseline, we also consider to just compare
the vectors representing the head words, without taking the dependent words into account. In
that case, we have

pbas e l i ne = u.

3.4.1 Mitchell and Lapata dataset

The first dataset we consider was introduced by Mitchell and Lapata (2010), and is composed
of pairs of adjective-noun, compound-noun and verb-object phrases, whose similarities were
evaluated by human subjects on a 1− 7 scale. Example of such phrases are given in Table 3.11.
The goal is to predict the similarity judgements.

type phrase 1 phrase 2 score

adjective-noun national government cold air 1
adjective-noun small house little room 4
adjective-noun special circumstance particular case 6

compound noun oil industry railway station 2
compound noun assistant secretary company director 5
compound noun state control government intervention 7

verb-object shut door provide datum 1
verb-object develop technique use method 5
verb-object stress importance emphasise need 7

Table 3.11: Examples of phrase pairs from the Mitchell and Lapata (2010) dataset.

70 CHAPTER 3. INTRINSIC EVALUATIONS

tree 512 chain 512
AN NN VN AN NN VN

Baseline 0.41 0.13 0.32 0.37 0.07 0.23

Add 0.46 0.35 0.38 0.43 0.30 0.31
Mult 0.04 0.31 0.01 0.01 0.18 0.05
T-add 0.43 0.30 0.40 0.42 0.33 0.35
T-mult 0.47 0.30 0.38 0.39 0.19 0.32

Mitchell and Lapata 0.46 0.49 0.38 0.46 0.49 0.38
Humans 0.52 0.49 0.55 0.52 0.49 0.55

Table 3.12: Pearson correlation coefficients between human similarity judgements and sim-
ilarity computed by our models on the Mitchell and Lapata (2010) dataset. AN stands for
adjective-noun, NN stands for compoundnoun and VN stands for verb-object.

We report the results for tree and chain models with 512 latent states in Table 3.12. The
Hadamard product (Mult), which is one of the best composition function for traditional se-
mantic vector space (Mitchell and Lapata, 2010), does not work at all for our representation for
adjective-noun and verb-noun pairs. The reason is that latent states associated to words with
different part-of-speech are often disjoint. Thus, when taking the Hadamard product of the
two vectors, all coefficients are set to a value near zero. The second observation is that there is
no clear winner between between the remaining three methods. In particular, the Add method
is surprisingly competitive. We believe this is the case because for most examples of the dataset,
it is sufficient to independently compare both words of the phrases to evaluate their similarity,
and not to compare them as phrases.

3.4.2 Grefenstette and Sadrzadeh dataset

The second dataset we consider was introduced by Grefenstette and Sadrzadeh (2011). Each
example of this dataset consists in a triple of subject-verb-object, forming a small sentence,
and a landmark verb. Human subjects were then asked to evaluate the similarity between the
verb and its landmark in the context of the small sentences formed with the subject and the
object. Since both verbs share the same context, the baseline, which only compares the non-
contextualized verbs, is equivalent to comparing the words independently. Examples of triples
and their associated landmarks are given in Table 3.13.

Following Van de Cruys et al. (2013), we compare the contextualized verb with the non-
contextualized landmark, because it is believed to better capture the compositional ability of
a model and it works better in practice. We report results for tree and chain models with 512
latent states in Table 3.14. First, we observe that the results for the tree and the chain models
are comparable. Second, we observe that the T-mult composition function outperforms the
three other functions by a large margin.

3.4. COMPOSITIONAL SEMANTICS 71

subject verb object landmark score

scholar write book publish 7
writer write book spell 3
user write word spell 5
user write word publish 2

people run company operate 7
people run company move 1
people run round operate 1
people run round move 7

Table 3.13: Examples of subject-verb-object triples and associated landmarks from the Grefen-
stette and Sadrzadeh (2011) dataset.

tree 512 chain 512

Baseline 0.22 0.23

Add 0.22 0.24
Mult 0.03 0.01
T-add 0.24 0.24
T-mult 0.37 0.36

Van de Cruys et al. 0.37
Humans 0.62

Table 3.14: Pearson correlation coefficients between human similarity judgements and similar-
ity computed by our models on the Grefenstette and Sadrzadeh (2011) dataset.

72 CHAPTER 3. INTRINSIC EVALUATIONS

3.4.3 Vecchi et al. dataset

The last dataset we consider to evaluate the compositional ability of our models was introduced
by Vecchi et al. (2011) in order to determine if distributional semantic models are able to detect
semantic deviance, that is expressions which are nonsensical. It consists of adjective-noun pairs
that are unattested in the ukWaC corpus,5 a 2009 dump of Wikipedia and the British National
corpus. The authors classified these pairs as either acceptable or deviant. Examples of adjective-
noun pairs from the dataset are given in Table 3.15

adjective noun class

parliamentary celebration acceptable
parliamentary mountain deviant
printed anecdote acceptable
printed avenue deviant
innovative biker acceptable
innovative centimetre deviant

Table 3.15: Examples of acceptable and deviant adjective-noun pairs from the Vecchi et al.
(2011) dataset.

Let us now present how we evaluate our models on that dataset. For each pair of adjective
and noun, we compute a score indicating how much the pair is nonsensical according to our
model. We then compare the score distributions for pairs rated as deviant and pairs rated as
acceptable, and in particular estimate how much those are different. Let u be the vector rep-
resenting the noun and v the vector representing the adjective. The measure of acceptability s
we consider is:

s = v>T u.

We then perform a Welch’s t -test to determine if the two distributions have the same mean.
For a tree model with 512 latent states, the t -statistics is equal to −4.76, corresponding to a p-
value of 2.5e−6, while for a chain model with 512 latent states, the t -statistics is equal to−4.88,
correponding to a p-value of 1.34e−6. We can thus conclude that both models are able to capture
semantic deviance.

5http://wacky.sslmit.unibo.it/doku.php?id=corpora

3.4. COMPOSITIONAL SEMANTICS 73

deviant acceptable0.000

0.005
0.010

0.015
0.020

0.025 tree 512

deviant acceptable0.000

0.005
0.010

0.015
0.020

0.025 chain 512

Figure 3.6: Distributions of acceptability score for deviant pairs and acceptable pairs, for a tree
model (left) and a chain model (right).

74 CHAPTER 3. INTRINSIC EVALUATIONS

CHAPTER 4
§

SEMI-SUPERVISED LEARNING

NOWADAYS, most state-of-the-art methods in natural language processing are based on su-
pervised machine learning. Despite recent advances in statistical learning, those methods

still suffer from limitations such as data sparsity and domain shift. It is thus common to learn a
word representation on unlabeled data, in order to use it as features for the supervised task. In
this chapter, we give some motivations for the use of semi-supervised learning methods in natu-
ral language processing and then evaluate our models when used to obtain word representations
for two semi-supervised tasks: named entity recognition and supersense tagging.

4.1 Challenges of statistical methods for NLP

Since the mid nineties, statistical learning methods have encountered great success in compu-
tational linguistics but they still face significant challenges. First, labeling data for natural lan-
guage processing is usually very expensive, because it requires expert knowledge in linguistics.
Thus, most languages do not have as much labeled data as English. Second, a characteristic of
natural languages is the fact that the distribution of words roughly follows a Zipf law, mean-
ing that most words appear very infrequently. It is therefore very likely to encounter words at
test time that were not seen in the training data. For example, more than ten percent of the
tokens of the test section of the Penn treebank (Marcus et al., 1993) are not observed in the
train section. This phenomenom is referred to as data sparsity. Finally, statistical methods are
quite sensitive to domain shift: if a model is trained on labeled data distributed according to a
given probability distribution, and tested on data distributed according to a different distribu-
tion, the performance usually degrades. This happens for example when a syntactic parser or a
part-of-speech tagger is trained on labeled data from the Wall Street Journal and then tested on
data such biomedical articles or electronic mails. For example, a syntactic dependency parser
trained on Wall Street Journal data achieves 89.4% accuracy when tested on news articles, but
only 78.8% when tested on a web corpus (Petrov and McDonald, 2012).

75

76 CHAPTER 4. SEMI-SUPERVISED LEARNING

4.1.1 A solution: semi-supervised learning

On the one hand, labeling large amount of data for each new task, new domain or new language
is unconceivable because it is too expensive. On the other, acquiring unlabeled data is almost
free. It is thus natural to try to address the shortcomings of supervised methods we previously
described by using a vast amount of available unlabeled data, through semi-supervised meth-
ods. One of the easiest way to do so is by learning a word representation using an unsupervised
algorithm on the unlabeled data and to use this representation for the supervised task. This
scheme has proven to be effective for various tasks such as named entity recognition (Freitag,
2004; Miller et al., 2004; Liang, 2005; Faruqui et al., 2010), part-of-speech tagging (Li and Mc-
Callum, 2005; Huang et al., 2011, 2013), syntactic chunking (Turian et al., 2010), Chinese word
segmentation (Li and McCallum, 2005) or syntactic dependency parsing (Koo et al., 2008; Haf-
fari et al., 2011; Tratz and Hovy, 2011). It was also successfully applied for transfer learning of
multilingual structure by Täckström et al. (2012).

The most commonly used clustering method for semi-supervised learning is the one pro-
posed by Brown et al. (1992), and known as Brown clustering. According to Turian et al. (2010),
it is still a very competitive word representation for semi-supervised learning, and will thus be
used as a baseline in the following. In recent work, Huang et al. (2011, 2013) also proposed to
use a hidden Markov model to learn word representations for semi-supervised learning. The
chain model we described in Chapter 2 is equivalent to their HMM model.

4.2 Experimental setting

Before moving to the extrinsic evaluation of our models on named entity recognition and su-
persense tagging, let us briefly describe the experimental settings we have considered and how
to represent words given a hidden Markov model.

Experimental settings. We have decided to test our models in the two following settings:

• Unlexicalized setting: in this setting, words are not used as features,

• Lexicalized setting: in this setting words are used as features (in addition to a vectorial
semantic class representation).

The unlexicalized setting allows us to evaluate how much information is captured by our models
and emphazises the differences between models. On the other hand, the lexicalized setting
evaluates how useful the considered representations are for real problems, and in particular
how redundant they are compared to the words themselves.

Word representations. Given a hidden Markov model (on chain or tree), there are several
ways to use it in order to represent words. We decided to compare three representations that
we now describe.

4.3. NAMED ENTITY RECOGNITION 77

• Viterbi: this is the most commonly used solution in the literature. It consists in com-
puting the most probable sequence of latent states by using Viterbi decoding, and to use
this sequence as features. In that case, each word is represented by a integer. This repre-
sentation is context dependent.

• Posterior-Token: the second possibility is to compute the posterior distribution of la-
tent states associated to each token of the sentence and use this distribution as features. In
that case, each word is represented by a distribution over latent states. This representation
is also context dependent.

• Posterior-Type: finally, the last possibility is, given a word type, to use the posterior
distribution of latent states averaged over all the occurrences of that word type in the
training corpus. Each word is thus represented by a distribution over latent states, which
is context independent.

The advantage of the Posterior-Type representation is that it does not need decoding or infer-
ence at test time. We also believe that this representation should be more robust, for example
to errors in the dependency trees. The advantage of the Viterbi representation is the fact that
it is sparse, and thus can lead to faster learning algorithms for the supervised step.

4.3 Named entity recognition

The first semi-supervised task on which we evaluate the different models we described in Chap-
ter 2 is named entity recognition. We now briefly present this task before evaluating our mod-
els.

4.3.1 Presentation

Named entity recognition, sometimes abbreviated as NER, is an information extraction task
whose goal is to detect and classify all the mentions of named entities in unstructured text. A
named entity is anything that can be referred to with a proper name, such as people or places.
We now give an example of a sentence where the named entities were annotated. This example
is taken from the MUC7 dataset:

The seven-month re-examination of why [U.S.]
LOC

forces were caught
off-guard by the Japanese attack was done at the request of Sen. [Strom
Thurmond]

PER
, R-[S.C.]

LOC
, chairman of the [Senate Armed Services

Committee]
ORG

, and members of the [Kimmel]
PER

family.

The types of named entities depends on the domain of application. For news articles, the goal
is traditionally to detect mentions of people (PER), locations (LOC) and organizations (ORG). For
abstracts of biomedical articles, the goal is to detect mentions of genes, proteins or cancers.
Named entities can also be products, such as iPhone 4 or Xbox One, movies, such as The King’s
Speech or Taxi Driver or novels, such as Les Misérables or The Great Gatsby.

78 CHAPTER 4. SEMI-SUPERVISED LEARNING

Named entity recognition is a difficult task because of ambiguity. For example, the name
Charles de Gaulle can refer to the former French president but also to one of the Paris’ airport
or to the French navy aircraft carrier, or to a subway stop in Paris. Thus, the same name can
be classified, depending on the context, as a person, as a location or as a ship. Another source
of ambiguity is the frequent use of metonymy to refer to an organization by using the location
where it is hosted. For example, the name White House can either refer to the building, such as
in

The President of the United States lives in the White House.

or can refer to the President and his administration, such as in

The White House is confident on winning Hill support on Syria.

Named entity recognition is often cast as a sequence labeling problem. Each word is labeled
with a tag that captures both the type and the boundaries of the named entities, by using the
IOB notation. For each type of entity, there are two tags, one starting with B- and one starting
with I-. For example, for locations there is two tags: B-LOC and I-LOC. Tags starting with B-

are used to label words that begin a named entity, tags starting with I- are used to label words
that are inside a named entity while the tag O are used to label words that are not part of a named
entity. For example, let us consider the sentence

U.S. Air Force AWACS surveillance plane circled high over the Straits
of Florida.

Using the IOB notation, this sentence is labeled as:

U.S. B-ORG

Air I-ORG

Force I-ORG

AWACS O

surveillance O

plane O

circled O

high O

over O

the O

Straits B-LOC

of I-LOC

Florida I-LOC

. O

State of the art named entity recognition systems are based on conditional random fields (Laf-
ferty et al., 2001), using various word-level features such as: the surface form, the corresponding
lemma, the part-of-speech, the words that appear in a fixed size window around the word, the
fact that the word appear in a list of known named entities (a.k.a. gazetteer) or features based
on the shape of the word. Those shape features encode the fact that the word is capitalized, the
fact that the word contains a hyphen or numbers, etc.

4.3. NAMED ENTITY RECOGNITION 79

4.3.2 Experiments

Following state of the art NER systems, we cast this problem as a sequence tagging problem,
and thus use a linear conditional random field (CRF) (Sutton and McCallum, 2012; Lafferty
et al., 2001) as our supervised classifier. Beside the representation derived from our models,
the other features we use for both the lexicalized and unlexicalized setting are binary features
indicating if the word is capitalized or not and the part-of-speech of the word. We perform
experiments on the MUC7 dataset, evaluating our systems on the dryrun. The baseline for
this task is assigning named entity classes to word sequences that occur in the training data.

Comparison of word representations

We start by comparing Brown clusters with the different word representations derived from
hidden Markov models and described in section 4.2. We performed experiments using a tree
model with 256 latent states and report the results for both the lexicalized and the unlexicalized
setting in Table 4.1.

Tree 256
PR RE F1

Unlexicalized

Brown Clusters 70.3 70.0 70.1
Viterbi 73.2 69.6 71.3
Posterior-Type 77.9 77.4 77.6
Posterior-Token 81.5 76.8 79.1
Posterior-Both 84.1 80.9 82.5

Lexicalized

Brown Clusters 85.8 79.0 82.2
Viterbi 87.9 81.9 84.8
Posterior-Type 89.3 80.9 84.9
Posterior-Token 88.9 84.6 86.7
Posterior-Both 89.0 84.4 86.7

Table 4.1: Comparison of different word representations for named entity recognition. PR
stands for precision and RE stands for recall.

For the unlexicalized setting, the Brown clusters and the features obtained by using Viterbi
decoding are outperformed by the other features. This is the case because it leads to a poor
representation of words, compared to posterior methods: each word is represented only by an
integer. The second interesting thing to observe is that representations which use the context,
Viterbi and Posterior-Token, performs slightly better than their counterparts which do not
use the context. This is especially true for the precision measure, meaning that some disam-
biguation is performed by context-dependent methods. Finally, combining the two posterior
representations gives the best results overall, on both precision (84.1%) and recall (80.9%).

For the lexicalized setting, the story is a bit different. In that case, the features obtained us-

80 CHAPTER 4. SEMI-SUPERVISED LEARNING

ing Viterbi decoding perform essentially as well as the Posterior-Type representation. On
the other hand, the Viterbi representation performs significantly better than Brown clus-
ters. Similarly, the Posterior-Token representation performs significantly better than the
Posterior-Type method. This means that in the lexicalized case, context is more important
than the richness of the representation. Finally, combining both posterior representations gives
similar results than Posterior-Token, attaining a precision of 89.0% and a recall of 84.4%.

Since combining both posterior representations produces the best results overall, we will
use this representation in the following experiments.

Influence of model size and initialization

In this section, we conduct experiments to study the influence of the number of latent states
on performance, and if initializing hidden Markov models by using Brown clustering actually
yields better results. We performed experiments using tree models with 128, 256, 512 and 1024
latent states. We report the F1 scores obtained in Figure 4.1.

128 256 512 1024
latent states

65

70

75

80

85

90

F1
 sc

or
e

Unexicalized setting

Brown clusters
HMM (rand init)
HMM (Brown init)

128 256 512 1024
latent states

80

82

84

86

88

90

F1
 sc

or
e

Lexicalized setting

Brown clusters
HMM (rand init)
HMM (Brown init)

Figure 4.1: F1 scores obtained by our NER system for various number of latent classes. Blue
curves are for tree Brown clusters, while red curves are for tree hidden Markov models. Dashed
curves are for random initialization, while solid curves are for Brown initialization.

First, we observe that for Brown clustering and hidden Markov models, increasing the num-
ber of latent states improves the performance, for both the unlexicalized and the lexicalized

4.3. NAMED ENTITY RECOGNITION 81

setting. Second, we observe that for the unlexicalized setting, the initialization does not play
an important role, while it seems that it improves the performance for the lexicalized setting.
In the following, we will thus use models that were initialized with Brown clusters.

Influence of syntax

We finally perform experiments to investigate the influence of syntax, and in particular to deter-
mine if using dependency tree models leads to better semantic classes. We perform experiments
on models with 512 latent classes and report the results in Table 4.2.

512
PR RE F1

Unlexicalized

Chain Brown 73.5 73.2 73.3
Tree Brown 74.9 73.7 74.3
Chain HMM 85.8 82.7 84.0
Tree HMM 86.2 82.0 84.1

Lexicalized

Chain Brown 86.6 78.2 82.2
Tree Brown 88.4 81.0 84.6
Chain HMM 90.4 85.9 88.1
Tree HMM 91.6 86.0 88.7

Table 4.2: Precision, recall and F1 scores obtained by our NER system for different models:
chain and tree Brown clustering, chain and tree hidden Markov models.

For Brown clustering, using dependency trees instead of linear chains improves the results
for unlexicalized and lexicalized setting, by 1.0 and 2.4 points respectively. For hidden Markov
models, the influence of syntax is less important. Indeed, for the unlexicalized setting, the
results are comparable for tree and chain models while for the lexicalized setting, using depen-
dency trees slightly improves (0.6 points) the results over a linear hidden Markov model.

82 CHAPTER 4. SEMI-SUPERVISED LEARNING

4.4 Supersense tagging

The second semi-supervised task used to evaluate the different models described in Chapter 2
is supersense tagging. We now briefly present this task before evaluating our models.

4.4.1 Presentation

Word sense disambiguation (WSD) is the task of determining, for ambiguous words, which
sense is used given the context. WordNet, which was introduced by Miller (1995), is the most
used resource for word sense disambiguation. It is a lexical database of English that groups
words into sets of synonyms (known as synsets) that express the same concept. There is more
than 117,000 synsets in the current version of WordNet, and it is thus very hard to design a
supervised disambiguation method that covers all the senses defined by WordNet. Moreover,
it might be argued that for some applications, the synsets as defined by WordNet are too fine-
grained. Thus, researchers on WSD have mainly concentrated on two subtasks:

• lexical sample WSD: in this task, the goal of a WSD system is to disambiguate a small
number of chosen ambiguous words. Usually, there is only one word per sentence to
disambiguate.

• coarse-grained all-words WSD: in this task, the goal of a WSD system is to disambiguate all
the content words of a sentence. But the set of possible senses is greatly reduced compared
to the one of WordNet, for example by clustering the synsets.

We refer the reader to Navigli (2009) for a survey on word sense disambiguation.

The task proposed by Ciaramita and Altun (2006) and known as supersense tagging is an
extremely coarse-grained word sense disambiguation task. In WordNet, synsets are grouped
into forty-five lexicographer classes, based on part-of-speech and logical grouping. Ciaramita
and Altun (2006) thus proposed to use these classes, which they call supersenses, as coarse word
senses (see Table 4.3 for the list of supersenses). They argue that due to the limited number of
supersenses, it is possible to develop broad coverage disambiguation systems based on sequence
labeling tools and thus to model dependencies between the supersenses of a given sentence, as
opposed to disambiguating words independently. Moreover, since the supersense tagset com-
prises the classes group, location and person, supersense tagging can also be considered as a
generalization of named entity recognition.

4.4.2 Experiments

We decided to evaluate our models on this task to determine the effect of homonymy. We
cast supersense tagging as a classification problem and use word representation induced by our
models as features for a support vector machine with the Hellinger kernel, defined by

K(p,q) =
C
∑

c=1

p
pc qc ,

4.4. SUPERSENSE TAGGING 83

Supersenses for nouns
Tops, act, animal, artifact, attribute, body,
cognition, communication, event, feeling,

food, group, location, motive, object, person,
phenomenon, plant, possession, process,

quantity, relation, shape, state, substance, time.

Supersenses for verbs
body, change, cognition,

communication, competition,
consumption, contact, creation,
emotion, motion, perception,

possession, social, stative, weather.

Table 4.3: Supersense tagset.

where p and q are normalized word representations. We train and test the SVM classifier on
the sections A, B and C of the Brown corpus, tagged with Wordnet supersenses (SemCor).

Comparison of word representations

We start by comparing the different word representations introduced in section 4.2. We report
results for the unlexicalized and the lexicalized settings obtained by using a tree model with 128
latent classes in Table 4.4.

tree 128
noun verb both

Unlexicalized

Brown clusters 52.6 43.4 49.8
Viterbi 53.0 36.8 48.0
Posterior-Token 59.7 43.9 54.9
Posterior-Type 65.3 55.8 62.4
Posterior-Both 68.0 55.8 64.3

Lexicalized

Brown clusters 70.7 56.9 66.5
Viterbi 71.5 56.0 66.7
Posterior-Token 74.5 58.5 69.6
Posterior-Type 73.1 60.1 69.2
Posterior-Both 76.1 60.2 71.3

Table 4.4: Classification accuracies of supersense tagging for various word representations. Re-
sults obtained using a tree model with 128 latent classes.

For the unlexicalized setting, we observe that the Posterior-Type representation outper-
forms all other representations by a large margin, even the Posterior-Token representation,
which is quite surprising. Moreover, combining the two posterior representations does not
improve the classification accuracy for verbs over the Posterior-Type representation. This
means that contextualized representations does not help for verb disambiguation, which is quite
disappointing.

84 CHAPTER 4. SEMI-SUPERVISED LEARNING

For the lexicalized setting, the two posterior representations yield similar results and out-
perform the two other representations, Brown Clusters and Viterbi. For this setting, the
Posterior-Token representation leads to better results than Posterior-Type on nouns, mean-
ing that disambiguation helps. On the other hand, it gets worst results on verbs, and combining
the two posterior representations still does not improve verb classification.

Influence of model size and initialization

We now investigate the influence of the model size on the accuracy of supersense tagging. We
consider tree models with 128, 256, 512 and 1024 latent classes. We report the classification
accuracy as function of the model size in Figure 4.2.

128 256 512 1024
latent states

50

55

60

65

70

75

80

Ac
cu

rac
y

Unlexicalized setting

both (rand init)
verb (rand init)
noun (rand init)

128 256 512 1024
latent states

50

55

60

65

70

75

80
Ac

cu
rac

y
Lexicalized setting

both (brown init)
verb (brown init)
noun (brown init)

Figure 4.2: Classification accuracy for supersense tagging as a function of the number of latent
classes for tree models. Accuracy for verbs is in blue, for nouns is in red and for both is in orange.
Dashed lines are for random initialization, while plain lines are for Brown initialization.

We observe that for nouns, increasing the number of latent classes leads to a better classifi-
cation accuracy. However, for verbs, the best classification accuracy is obtained for the model
with 512 latent classes, for both the unlexicalized and the lexicalized setting and decreases for
the model with 1024 classes. Moreover, we observe that random initialization is outperformed
by Brown initialization for large models, and especially for verbs classification accuracy.

4.4. SUPERSENSE TAGGING 85

Influence of syntax

We finally perform experiments to determine the influence of syntax on semantic class induc-
tion for supersense tagging. We compare Brown clustering and hidden Markov models on trees
and chains, with 512 latent classes and report the results in Table 4.5.

noun verb both

Unlexicalized

Chain Brown 59.8 51.0 57.1
Tree Brown 63.4 51.1 59.6
Chain HMM 74.1 62.8 70.6
Tree HMM 74.2 63.8 71.0

Lexicalized

Chain Brown 71.5 58.4 67.5
Tree Brown 73.6 58.4 69.0
Chain HMM 76.8 63.0 72.5
Tree HMM 77.6 64.4 73.6

Table 4.5: Classification accuracies for supersense tagging for different models: chain and tree
Brown clustering, chain and tree hidden Markov models.

First, we observe that using the syntax improves the quality of Brown clusters for supersense
tagging for both the unlexicalized (+2.5 point) and the lexicalized (+1.5 points) settings. For
hidden Markov models, taking into account the syntax slightly helps in the unlexicalized setting
(+0.4 point). Most of the improvement is due to better verbs classification. For the lexicalized
setting, the improvement due to the syntax is more important, going from an accuracy of 72.5%
to 73.6%.

It should be noted that these results might seem a bit contradictory with the one reported
in Grave et al. (2013b). Indeed, in that article, it was reported that chain HMM representation
was yielding better results for verbs than tree HMM, which is not the case here. This is be-
cause of the word representation that was used by Grave et al. (2013b): the Posterior-Token
representation, while here we use the Posterior-Both one. We report in Table 4.6 the results
for the unlexicalized setting with the Posterior-Token representation, in order to have results
comparable with those of Grave et al. (2013b).

noun verb both

Unlexicalized Chain HMM 64.7 55.4 61.9
Tree HMM 66.8 53.1 62.6

Table 4.6: Classification accuracies for supersense tagging for chain and tree hidden Markov
models, using the Posterior-Token representation.

86 CHAPTER 4. SEMI-SUPERVISED LEARNING

We observe that the results reported in Table 4.6 are coherent with the ones reported in
Grave et al. (2013b). We believe that the Posterior-Token representation does not work well
for trees because verbs have a lot of children in dependency trees. Thus, the estimated poste-
rior distribution of latent classes for verbs is more noisy than for chains. Moreover, since it
depends on the context, it is more sensitive to errors in parse trees. Using the Posterior-Type
representation, in addition to the Posterior-Token one, makes the classifier more robust.

4.5 Conclusion

In this section, we compared Brown clustering on both chains and trees and hidden Markov
models, on both chains and trees. We also compared different word representations obtained
using hidden Markov models, based on Viterbi decoding and posterior distributions over la-
tent classes. First, we noted that continuous representations, based on posterior distributions,
outperform discrete representations, such as Brown clustering or Viterbi decoding. Second,
we observed that for most cases, using contextualized and non-contextualized representations
together yields better results than using either one of them alone. Finally, using a dependency
tree leads to better results than using a chain between the latent classes.

CHAPTER 5
§

CONCLUSION

IN THIS FIRST PART, we introduced a simple and natural probabilistic model of sentences,
based on dependency trees and hidden Markov models. We presented an efficient method

to train such models on large quantities of unlabeled data. This allowed us to train models
on datasets with tens of millions of sentences and hundreds millions of tokens in a day on
a single core. We applied our model on various domains, such as news articles, biomedical
abstracts or Wikipedia articles about musicians and diverse languages, such as English, French
or Italian. We evaluated our model on tasks such as predicting human similarity judgements
or word categorization. We also evaluated our model on two extrinsic tasks, named entity
recognition ans supersense tagging.

We showed that for most of the considered tasks, using the syntactic dependency trees was
helpful, compared to a regular hidden Markov chain model. However, one limitation of our
model, which must be addressed in future work, is the fact that we do not use the labels of the
dependency trees. As a consequence, it happens that agents and subjects of a given verb (or
class of verbs) get mixed up in this same class. For example, we observed that the words guitar
and guitarist sometimes appear in the same semantic class. It would also be interesting to train
and test our model on languages which have more flexible word order than English, such as the
Slavic languages. Indeed, using syntactic dependency trees should lead to larger improvements
over a regular hidden Markov chain.

As far as we know, we are the first to propose to use hidden Markov models for distribu-
tional semantics. It is now possible to train such models on the large quantities of data used
by researchers in distributional semantics thanks to the online expectation-maximization algo-
rithm (Cappé and Moulines, 2009) and the approximate message passing algorithm (Pal et al.,
2006; Grave et al., 2013b). In particular, the first one makes it possible to scale linearly in term
of the number of sentences, while the second makes it possible to consider models with a large
number of latent classes. We demonstrated that this approach seems to be competitive with
state-of-the-art vector space models of semantics, even if our models were trained on a medium

87

88 CHAPTER 5. CONCLUSION

sized specific corpus (300 millions tokens, only from news articles), leading to some dataset
bias. It would thus be interesting to train our models on a more general and larger corpus, such
as the WaCky corpus (3 billions tokens from the Web, Wikipedia and Brown corpus).

Most of the recent work in distributional semantics uses vector space models to represent
words. One of the advantages of using a probabilistic model compared to previous approaches,
is the fact that it makes it easier to interpret the obtained representations, and thus gives prin-
cipled ways to use them for various tasks. For example, in section 3.4, the fact that we have a
probabilistic model provides a very natural way to combine word representations in order to
compare more complex linguistic units such as adjective-noun phrases or subject-verb-object
triples. It is also very natural to obtain contextualized word representations.

Finally, since non-negative matrix factorization is closely related to probabilistic latent se-
mantic analysis and latent Dirichlet allocation (Buntine, 2002; Gaussier and Goutte, 2005), and
has been proposed as a dimensionality reduction technique for building vector space models of
semantics based on bigrams (Van de Cruys, 2010), it would be interesting for future work to
give a probabilistic interpretation of those models. Moreover, it would be interesting to study
the similarities and differences between the hidden Markov models proposed in this thesis and
the tensor factorization method proposed by Jenatton et al. (2012) and the one proposed by
Van de Cruys et al. (2013). Indeed, a hidden Markov model can be viewed as a way to factorize
the tensor of trigrams, and can also be learnt using tensor decompositions (Anandkumar et al.,
2012).

PART II

STRUCTURED SPARSITY

89

CHAPTER 6
§

A BRIEF INTRODUCTION TO STATISTICAL
LEARNING AND VARIABLE SELECTION

THE GOAL of supervised statistical machine learning is to automatically learn to make pre-
dictions from data. For example, given some emails labeled as spam or non spam, a ma-

chine learning algorithm can learn to classify new mails as spam or non spam. Or given some
pictures of cats and some pictures of dogs, a machine learning algorithm can learn to differen-
tiate pictures of cats from pictures of dogs.

It is very easy to design an algorithm that will make no error on the training examples, but
will behave very badly on new data. Thus, a good learning algorithm must find some kind of
regularity in the training data, in order to generalize well to unseen data. A way to achieve this
kind of regularities (among others), is to perform variable selection. The data that is fed into the
learning algorithm is described by variables, and some of these variables might be irrelevant.
In the example of email classification, an email can be described by the frequency of the words
that appear in the text of the email, and thus each word frequency corresponds to a variable.
But some words, such as the or is might be irrelevant to classify emails as spam or non spam.
Thus, a good decision rule should not use these variables to make its prediction.

Another important motivation for variable selection is model interpretability. In some
cases, understanding how the algorithm makes its predictions is essential. Let us consider an
example from biomedical research, the problem of identifying which genes influence or are
related to the development of certain diseases such as cancers. One way to do so is to collect a
large number of gene expression levels from patients that suffer from cancer and from healthy
people. This data is then used to learn a decison rule that predicts if a patient suffer from cancer
or not, using variable selection. The variables that are selected by the algorithm are then more
likely to be correlated with the development of cancer and research can be focused on those.

In the context of statistical learning, the concept of parsimony, also known as sparsity, is
closely related to variable selection. Indeed, many learning algorithms reduce to estimating a

91

92 CHAPTER 6. STATISTICAL LEARNING AND VARIABLE SELECTION

parameter vector that describes the decision rule. Performing variable selection can then be
achieved by setting some of the coefficients of this vector to zero. In that case, the correspond-
ing variables have no influence on the decision rule. In many cases, the problem of variable
selection is equivalent to estimating a sparse parameter vector, i.e. a vector with many coeffi-
cients that are equal to zero.

As we just saw, the problem of variable selection has two main motivations:

• For some problems, it is believed that some variables are irrelevant, thus, an algorithm
that do not use those variables will make fewer mistakes on new data. This assumption is
essential for high dimensional problems, that is, problems where the number of variables
is much larger than the number of observations (n� p).

• For some problems, understanding the decision rule is important. A model with fewer
selected variables is easier to interpret.

In the following, we formalize statistical machine learning and we present how the variable
selection problem can be formulated in that setting, through the use of sparsity inducing regu-
larizers.

6.1 Empirical risk minimization

Let us now introduce more formally what is statistical learning and how it was formalize by
Vapnik (1998). The goal of a supervised statistical learning algorithm is to automatically learn
a function f :X 7→Y , that predicts a response variable y ∈Y , given an input variable x ∈X .
For example, the setX can be the set of electronic mails, and the setY can be equal to {−1,1},
y being equal to 1 if the corresponding email is spam and−1 otherwise. We suppose that there
exists a joint probability distribution P on the pairs (x, y) and that we are given a loss function
` : X ×X 7→ R+. The real `(ŷ, y) represents the loss suffered by the algorithm if it predicts
ŷ instead of y. For the email classification example, this loss can be equal to 1 if the predicted
label is not equal to the true label and 0 otherwise. The goal of a statistical learning algorithm is
then to find the function f that has the smallest loss in expectation, meaning that it minimizes
the Bayes risk R, defined as:

R
�

f
�

=E(X ,Y)∼P

h

`(f (X),Y)
i

.

Unfortunately, the algorithm does not have direct access to the probability distribution P of the
data, and it is thus impossible to compute the Bayes risk R. But the algorithm has access to a set
of n examples, (xi , yi)i∈{1,...,n}, called the training set, where each pair (xi , yi) is independently
drawn according to the probability distribution P . The Bayes risk of a function f can then be
estimated by the empirical risk R̂(f), defined as

R̂(f) =
1
n

n
∑

i=1

`(f (xi), yi).

6.1. EMPIRICAL RISK MINIMIZATION 93

Trying to find the function that minimizes the empirical risk R̂ is not a good idea in general.
Indeed, it is very easy to construct a function f that has a zero empirical risk (if the minimum
of ` is 0), but will behave arbitrarily bad on unseen pairs (x, y). This phenomenon is called
overfitting. In order to generalize well to new data, it is thus necessary to restrict the set of
functions on which we minimize the empirical risk, such as smooth functions, or functions that
use a small subset of the variables (variable selection). We denote by F this set of functions,
and callF the model. Empirical risk minimization then reduces to the following optimization
problem:

f̂ ∈ argmin
f ∈F

1
n

n
∑

i=1

`(f (xi), yi). (6.1)

When trying to solve a new problem using statistical machine learning, a practitioner has two
decisions to make: the first one is the choice of the loss function ` and the second one is the
choice of the set of prediction functionsF . We will now briefly discuss those.

6.1.1 Loss functions

The choice of the loss function depends on the kind of problem one is trying to solve, and in
particular, depends on the type of the response variable y. We thus discuss the two main kind
of supervised learning problems, namely classification and regression.

Classification. Classification problems arise when the set of response variablesY is discrete.
An example of such problem is trying to classify emails into spams v.s. non-spams. In that case,
the set Y is equal to {−1,1}, y being equal to 1 if the mail is a spam and −1 otherwise. This is
an example of binary classification, since there are only two classes. Another example is digit
recognition: in that case, the setX is the set of scanned images of digits, while the setY is equal
to the set {0,1,2,3,4,5,6,7,8,9}. This is an example of multiclass classification. A natural loss
function for classification is the 0− 1-loss, defined by

`0−1(ŷ, y) =
§

0 if ŷ = y,
1 if ŷ 6= y.

Unfortunately, this loss function leads to very hard optimization problems when used for em-
pirical risk minimization, Eq. 6.1, and is thus hard to use in practice. For binary classification
problems (where Y = {−1,1}), practitioners usually replace it by one of its convex surrogate,
the hinge loss:

`hinge(f (x), y) =max(0,1− y f (x)),

or the logistic loss
`logistic(f (x), y) = log2(1+ exp(−y f (x))).

Multiclass classification can be reduced to a set of binary classifications problems, by using the
one-v.s.-all or one-v.s.-one strategies.

94 CHAPTER 6. STATISTICAL LEARNING AND VARIABLE SELECTION

Regression. When the response variable lives in a continuous space, such as the set of real
numbers R, the supervised learning problem is called a regression problem. Many such prob-
lems arise in economics for example, where researchers try to predict continuous variables such
as consumption spending, labor demand or gross domestic product, or in image and sound pro-
cessing. The most natural loss function for regression problems is the squared loss, defined by

`square(f (x), y) =
1
2
(f (x)− y)2.

In the remainder of this thesis, we will mainly focus on regression problems, even if most of
our discussion and contributions are not restricted to this setting.

2 1 0 1 2
y f(x)

0

1

2

3
square
hinge
logistic
0/1

Figure 6.1: Various loss functions.

6.1.2 Linear models

One of the simplest, yet useful and powerful setF of prediction functions are the linear func-
tions. If the input variable x is a vector x ∈ Rp living in a p-dimensional vector space, there
exists an isomorphism betweenF and Rp , and the application of f to x can be written as the
dot product between a vector w and x:

f (x) =w>x.

Linear models can be used for binary classification. In that case, the predicted label ŷ is equal
to sign(w>x). In the remainder of this thesis, we will mainly be interested in linear models.
Another classical set of function classes are reproducing kernel Hilbert space, that we do not
discuss here. We refer the interested reader to Shawe-Taylor and Cristianini (2004) for an intro-
duction to reproducing kernel Hilbert spaces.

6.2. APPROXIMATION-ESTIMATION TRADEOFF 95

6.2 Approximation-estimation tradeoff

When choosing which modelF to use, a practitioner wants to know how this choice influences
performance on new data. In particular, it is interesting to know what is the performance of
the learnt prediction function f̂ is compared to the best possible prediction function f ∗ called
the Bayes estimator, and defined by

f ∗ = argmin
f ∈Y X

E(X ,Y)∼P

h

`(f (X),Y)
i

.

The classical measure of performance is the excess risk of f̂ , which is how much loss will be
suffered by the function f̂ compared to f ∗, in expectation. The excess risk is thus equal to
R(f̂)−R(f ∗), and can be decomposed as

R(f̂)−R(f ∗) =
�

R(f̂)−R(f̃)
�

+
�

R(f̃)−R(f ∗)
�

, (6.2)

where the function f̃ is the best possible function in our modelF and is thus defined by1

f̃ =min
f ∈F
E(X ,Y)∼P

h

`(f (X),Y)
i

.

Let us now discuss the two terms that appear in the decomposition of the excess risk, defined
in Eq. (6.2). Both of these terms are non negative. The first one, equal to

R(f̂)−R(f̃) =E(X ,Y)∼P

h

`(f̂ (X),Y)
i

−min
f ∈F
E(X ,Y)∼P

h

`(f (X),Y)
i

,

is called the estimation error. The estimation error depends on the training set (xi , yi)i∈{1,...,n},
and in particular, will decrease when the size n of the training set increases, because the empir-
ical risk becomes a better estimator of the true risk. On the other hand, when the size of the
modelF increases, the estimation error also increases, because the search space is larger.

The second term, which is equal to

R(f̃)−R(f ∗) =min
f ∈F
E(X ,Y)∼P

h

`(f (X),Y)
i

− min
f ∈Y X
E(X ,Y)∼P

h

`(f (X),Y)
i

,

is called approximation error. The approximation error does not depend on the training set.
It is a measure of how well the model F is able to approximate the best possible prediction
function f ∗. In particular, when the size of the model F increases, the approximation error
decreases.

1We make the simplifying assumption that this infimum is attained, and thus a minimum.

96 CHAPTER 6. STATISTICAL LEARNING AND VARIABLE SELECTION

Model size

Ri
sk

Estimation error
Approximation error
Risk

Figure 6.2: Illustration of the approximation-estimation tradeoff.

We thus see that there is a tradeoff in the choice of the modelF : the bigger the size of the
model is, the bigger is the estimation error but the smaller is the approximation error. This
is called the approximation-estimation tradeoff, since when the approximation error increases,
the estimation error decreases. It thus suggests that we should consider models of various sizes.
For example, we can impose a constraint on the smoothness of the functions we consider. For
linear models, this corresponds to imposing a constraint on the norm of the parameter vector w:

FB = {w ∈R
p | ‖w‖ ≤ B}.

In the setting of variable selection, larger models correspond to decision functions with more
selected variables. For linear models, this correspond to imposing a constraint on the number
of non-zero coefficients. We will come back to that in section 6.4.3.

Another way to address the approximation-estimation tradeoff, instead of adding constraints
to the empirical risk minimization problem, defined in Eq. (7.1), is to add a regularizer to the
objective function. A regularizer will penalize prediction functions that are not smooth. In the
case of linear models, regularizers are often norms of the parameter vector w. We obtained the
following optimization problem, called regularized empirical risk minimization:

argmin
w∈Rp

1
n

n
∑

i=1

`(w>xi , yi)+λ‖w‖,

where λ ∈ R+ is called the regularization parameter. If the loss ` and the regularizer are both
convex, the constrained and the regularized empirical risk minimization problems are equiv-
alent. It is often simpler to deal with the regularized version, from an optimization point of

6.3. MODEL SELECTION 97

view. Constraining or regularizing the norm of the prediction function adds a free parameter
B or λ that has to be chosen. This is called model selection, and we will briefly discuss how to
address it in the following section.

6.3 Model selection

The goal of model selection is to pick the regularization parameter λ or model FB , such that
the corresponding learnt prediction function achieves the smallest possible risk. Usually, the
regularization parameter λ is chosen from a finite grid that discretized the set of non-negative
real numbers R+. One of the easiest way to select the best λ from this finite set is to train a
model for each value of λ, and estimate its risk on a validation set containing the data points
(xi , yi)i∈{n+1,...,m} that were not used for training. Since we assume that the data points are drawn
independently from the probability distribution P , this means that the quantity

1
m− n

m
∑

i=n+1

`(f̂ (xi), yi)

is a good estimator of the (true) risk of the function f̂ learnt on the training set (xi , yi)i∈{1,...,n}.
This method is very simple to apply, but unfortunately, this means that the data points of the
validation set are not used for training. Since more data points means smaller estimation error
and smaller risk, all the available data should be used for learning the prediction function. We
now introduce another model selection method that makes this possible.

6.3.1 k-fold cross validation

The idea of k-fold cross validation is to split the available data into a training set and a validation
set, and repeat this operation multiple times. The estimated risk for each λ is then averaged over
the multiple runs, and the best λ is then kept to learn a prediction function using all the available
data. More formally, the training data is partitioned into k subsets (S1, ..., Sk). Then, for each
subset S j of the partition, a prediction function is learnt on the k−1 remaining subsets, and its
risk is estimated using S j . For each λ, the estimated risk is averaged over the k validation sets,
and the best one is kept for learning a function on all the data. Usually, k is equal to 5 or 10.
If k is equal to the size of the training set n, this means that each validation set correspond to
one data point and in that case, it is called leave-one-out cross validation. The main drawback
of k-fold cross validation is the fact that it is computationally expensive.

6.4 Some classical estimators for linear regression

In this section, we introduce some classical estimators for linear regression. We present differ-
ent regularizers, based on different norms of the parameter vector, and we discuss how these

98 CHAPTER 6. STATISTICAL LEARNING AND VARIABLE SELECTION

different regularizers affect the property of the estimated vector, and in particular its sparsity.
We also discuss how the structure of the problem can be used to design better regularizers.

In the following, we will assume that the data is actually generated by a linear model. This
means that for each pair (xi , yi) ∈Rp ×R, we have

yi = x>i w∗+ εi ,

where εi is a zero-mean sub-Gaussian random variable, with variance σ2. We further assume
that the noise variables εi are uncorrelated, meaning that for i 6= j , we have E[εiε j] = 0.

6.4.1 Least squares regression

When combining linear models with the squared loss for regression, we obtain the well known
ordinary least squares estimator. Let (xi , yi)i∈{1,...,n} be the training set, where each xi ∈Rp and
yi ∈ R. We note X = [x1, ...,xn]

> ∈ Rn×p and y = [y1, ..., yn]
> ∈ Rn. Then, the empirical risk

minimization criterion is

min
w∈Rp

1
2n

n
∑

i=1

(w>xi − yi)
2.

It can be rewritten in the more concise and practical form:

min
w∈Rp

1
2n
‖y−Xw‖2

2. (6.3)

Finding the optimal vector w is done by taking the derivative of the empirical risk defined in
Eq. (6.3) and setting it to zero. This yields the following linear system:

X>Xw=X>y. (6.4)

Thus, finding the optimal vector w for least squares regression problem is equivalent to solving
a p × p linear system. In the particular case where the design matrix X is equal to the identity
I, the coefficients ŵi of the solution of the least squares problem and the coefficients yi of the
response vector verify the following very simple identity:

ŵi = yi .

While this observation seems rather trivial for ordinary least squares, we will also make it for
the following estimators since it will provide a good insight at the properties the corresponding
regularizers.

Eq. (6.4) also means that the solution ŵ of the least squares problem is a linear function of
the response variables y. A famous result in statistics, the Gauss-Markov theorem, states that
among the unbiased linear estimators, the least squares estimator is the one with the smallest
variance. However, as discussed in section 6.2, it is often better to have a biased estimator,
since slightly augmenting the bias can greatly decrease the variance, and thus the risk. We will
consider such biased estimators by adding a regularizer to the ordinary least squares objective
function.

6.4. SOME CLASSICAL ESTIMATORS FOR LINEAR REGRESSION 99

6.4.2 Ridge regression

As we said before, when the training set is small and especially when the sample size n is smaller
than the dimension p of the parameter space, minimizing the empirical risk leads to overfitting,
even for linear models. It is thus beneficial to favor parameter vectors with small norms. The
most natural norm to consider is the Euclidian `2-norm, and regularizing by the squared `2-
norm is called Tikhonov regularization (Tikhonov, 1963). When used with the squared loss for
linear regression, the corresponding estimator is called ridge regression (Hoerl and Kennard,
1970) and is defined by

ŵ= argmin
w∈Rp

1
2n
‖y−Xw‖2

2+
λ

2
‖w‖2

2.

As for ordinary least squares, introduced in the previous section, the solution of the optimiza-
tion problem can be computed in closed form, by solving a linear system. Indeed, computing
the derivative of the regularized empirical risk and setting it to zero yields the linear system:

�

X>X+λI
�

w=X>y.

As for ordinary least squares, finding the optimal parameter vector for ridge regression is thus
very efficient. We also observe that, as for ordinary least squares, the solution of the ridge
regression problem is a linear function of the response variables y, but the ridge regression is a
biased estimator. Finally, in the case where X= I, the coefficients of the solution are given by:

ŵi =
yi

1+λ
.

We thus observe that Tikhonov regularization shrinks the coefficients of the parameters vector
toward zero, and that the larger coefficients are more shrunk that the small ones. This is not
surprising, since the large coefficients are more penalized than the small ones. This also means
Tikhonov regularization does not perform variable selection.

6.4.3 Lasso

We now discuss how to estimate sparse vectors in order to perform variable selection. In the
framework of regularized empirical risk minimization, we should use a regularizer that favor
vectors with many coefficient equal to zero, or in other words that penalizes more vectors
with many non zero coefficients. The most natural regularizer is thus the number of non zero
coefficients, sometimes known as the “`0-norm”, although it is not a norm, and which is equal
to

‖w‖0 = #{wi 6= 0} ,
where # denotes the cardinal of the set. The corresponding estimator, known as best subset
selection for the constrained version, is defined by

ŵ= argmin
w∈Rp

1
2n
‖y−Xw‖2

2+λ‖w‖0. (6.5)

100 CHAPTER 6. STATISTICAL LEARNING AND VARIABLE SELECTION

Unfortunately, it is a very hard problem to solve: it was shown by Davis et al. (1997) that it
is actually an NP-hard problem for some design matrices X. This lead to the development of
greedy approximate algorithms to solve this problem, such as matching pursuit (Mallat and
Zhang, 1993b) or orthogonal matching pursuit (Pati et al., 1993; Davis et al., 1994). Another
common solution is to replace the `0-penalty by its convex surrogate, the `1-norm. The corre-
sponding estimator, known as the Lasso in the statistics community (Tibshirani, 1996) and as
basis pursuit in the signal processing community (Chen and Donoho, 1994; Chen et al., 1998)
is defined by

ŵ= argmin
w∈Rp

1
2n
‖y−Xw‖2

2+λ‖w‖1. (6.6)

The solution of this optimization problem cannot be expressed in closed form, and contrary
to the ridge regression, it is not a linear function of the response variables y. We will present
algorithms to compute the optimal solution of the Lasso in section 6.5. In the particular setting
where X= I, the coefficients of the solution are equal to

ŵi = sign(yi)
h

|yi | −λ
i

+
,

where [a]+ is the positive part of the real number a. We observe that the `1-regularization
also shrinks the coefficients towards zero, but in a very different way than the Tikhonov reg-
ularization. In particular, the amount of shrinkage, λ, is the same for all coefficients, and if a
coefficient is smaller than λ, it is then set to zero. This operator is thus called soft-thresholding
operator (Donoho and Johnstone, 1994), and since some coefficients are set to zero, this means
that the `1-regularization, and in particular the Lasso, will perform variable selection.

When one is interested in variable selection, support recovery is another measure of perfor-
mance besides the Bayes risk of the estimator (which measures how well the prediction function
performs on new data). In that case, it is assumed that the true vector w∗ is sparse, and the goal
of a good algorithm is to recover the true sparsity pattern of the vector w∗. Under certain con-
ditions on the design matrix X and the support of the true vector w∗, it can be shown that the
Lasso will recover the true support with high probability. One of the tightest conditions is the
irrepresentable condition (Zhao and Yu, 2006; Zou, 2006; Yuan and Lin, 2007; Wainwright,
2009), defined by

‖X>SC XS(X
>
S XS)

−1‖∞ ≤ 1−δ,

where S is the support of the true vector w∗ and ‖ ‖∞ is the operator norm subordinated to
the `∞-norm. This condition is also a necessary condition, meaning that if it is not met, there
exists some vector w∗ whose sparsity pattern cannot be recovered exactly.

Unfortunately, the design matrices X of many real problems do not verify those conditions,
and often exhibit strong correlations between the different predictors (the columns of X). In
that particular case, the Lasso can be quite unstable: let us consider the extreme case where two
predictors are equal. Then, the Lasso will select either of these two predictors indifferently,
or even both, since all those solutions are equivalent. Even if this instability is not a big issue

6.4. SOME CLASSICAL ESTIMATORS FOR LINEAR REGRESSION 101

for prediction, it is a big problem for model interpretation. We thus believe that a more stable
estimator for variable selection should be considered for certain cases.

6.4.4 Elastic net

Unlike the Lasso, the ridge regression estimator tends to shrink coefficients of the parameter
vector towards each other. In particular, in the extreme case where two predictors are equal, the
corresponding coefficients of the solution of the ridge regression will also be equal. It is thus
natural to consider a regularizer which is a convex combination of the `1-norm for variable
selection and the squared `2-norm for the stability. This estimator was proposed by Zou and
Hastie (2005) and is called the Elastic net:

ŵ= argmin
w∈Rp

1
2n
‖y−Xw‖2

2+λ1‖w‖1+
λ2

2
‖w‖2

2. (6.7)

This optimization problem is equivalent to

ŵ= argmin
w∈Rp

1
2n
‖ỹ− X̃w‖2

2+λ1‖w‖1,

where the new design matrix X̃ and the new response variables ỹ are equal to

X̃=
�

X
nλ2I

�

and ỹ=
�

y
0

�

.

We thus see that the effect of the elastic net estimator, compared to the Lasso, is to “decorrelate”
the predictors of the design matrix X. Moreover, this formulation, which is similar to a Lasso
problem, allows to reuse the efficient optimization algorithms that were designed for the Lasso.
In the setting where X= I, we have

ŵi =
sign(yi)

h

|yi | −λ1

i

+

1+λ2

.

We thus observe that elastic net combines both effects of the ridge regression and the Lasso.
One of the drawback of this estimator is the added free parameter to chose.

6.4.5 Pairwise elastic net

One of the limitations of the elastic net is the fact that it ignores the correlation structure of the
predictors. In particular, groups of strongly correlated predictors should be more regularized
by the `2-norm, while almost orthogonal predictors should be more regularized by the `1-
norm. The pairwise elastic net (Lorbert et al., 2010) was proposed towards this goal: having a
regularizer that tends to group highly correlated predictors, while performing variable selection
for uncorrelated variables.

102 CHAPTER 6. STATISTICAL LEARNING AND VARIABLE SELECTION

2 1 0 1 22

1

0

1

2
Ridge

2 1 0 1 22

1

0

1

2
Lasso

2 1 0 1 22

1

0

1

2
Elastic net

Figure 6.3: Thresholding operators corresponding to the ridge regression (left), the Lasso (cen-
ter) and the elastic net (right).

Before introducing the proposed regularizer, let us note that the squared `2-norm and the
squared `1-norm of a vector w ∈ Rp , can be expressed using the vector |w|, i.e., the vector
obtained by applying the elementwise absolute value function. Indeed, we have

‖w‖2
2 = |w|

>Ip |w|

and
‖w‖2

1 = |w|
>11>|w|.

The authors then proposed the pairwise elastic net estimator, which is defined by

ŵ= argmin
w∈Rp

1
2n
‖y−Xw‖2

2+λ |w|
>P|w|, (6.8)

where P ∈ Rp×p is a symmetric, positive semi-definite matrix with nonnegative elements.
These conditions on the matrix P ensure that the corresponding regularizer is convex. The
authors proposed to use the following matrix:

P= Ip + 11>−X>X.

In that case, the pairwise elastic net regularizer is equal to ‖w‖2
2+ ‖w‖2

1− |w|>X>X|w|, which
gives the Lasso estimator in the case of orthogonal predictors and the ridge regression in the
case of equal predictors. The third term can thus be viewed as a tradeoff between the `1 and
`2-norms, based on the pairwise correlations. Unfortunately, this matrix is not always positive
semi-definite, and the authors thus proposed to replace it by:

P= Ip +(1−θ)11>− (1−θ)X>X,

where θ is chosen to ensure positive semi-definiteness.

6.5. OPTIMIZATION ALGORITHMS FOR THE LASSO 103

6.4.6 Group Lasso

Let us finish our tour of classical estimators for linear regression with the group Lasso regu-
larizer. When one has more knowledge about the data, for example clusters of variables that
should be selected together, the group Lasso (Yuan and Lin, 2006) is an efficient way to use this
knowledge to improve quality of the estimated parameter vectors. Given a partition (Si)i∈G of
the set of variables, the group Lasso penalty is the sum of the `2-norms of the coefficient vectors
wSi

restricted to the groups Si :

ŵ= argmin
w∈Rp

1
2n
‖y−Xw‖2

2+λ
∑

i∈G

p

#Si ‖wSi
‖2. (6.9)

The effect of this regularizer is to introduce sparsity at the group level: variables in a group are
selected altogether and thus, the support of the solution is the union of a subset of the groups
(Si). This regularizer was later extended to nested groups (Zhao et al., 2009) and to general
overlapping groups (Jacob et al., 2009; Jenatton et al., 2011).

6.5 Optimization algorithms for the Lasso

In this section, we briefly review algorithms that were proposed to solve the Lasso optimization
problem, defined by:

ŵ= argmin
w∈Rp

+

1
2n
‖y−Xw‖2

2+λ‖w‖1.

This problem is in fact a quadratic optimization problem. It can thus be solved using generic
quadratic solver. However, because of the particular structure of the problem, faster algorithms
can be derived, that we now present. We refer the interested reader to the survey on optimiza-
tion for sparsity inducing norms by Bach et al. (2012).

6.5.1 Homotopy algorithm: LARS

The first algorithm we will present to compute the optimal solution of the Lasso is an algo-
rithm called Least Angle Regression (LARS), and proposed by Efron et al. (2004). Under some
assumptions on the design matrix X, the solution of the Lasso is unique and we note ŵ(λ) its
solution associated to the regularization parameter λ. The function λ 7→ ŵ(λ) is called the
regularization path, and it was shown that for the Lasso, the regularization path is piecewise
linear. The LARS algorithm exploits this property to compute the entire regularization path,
by computing its kinks.

Let us start by stating the optimality conditions for the Lasso. A vector w is solution of the

104 CHAPTER 6. STATISTICAL LEARNING AND VARIABLE SELECTION

3 2 1 0 11.0

0.5

0.0

0.5

1.0

1.5

Figure 6.4: Example of regularization path of the Lasso. The coefficients of ŵ are plotted as a
function of log(λ).

Lasso if and only if for all i ∈ {1, ..., p}:
�

�

�X>i (y−Xw)
�

�

� ≤ nλ if wi = 0,
X>i (y−Xw) = nλ sign(wi) if wi 6= 0.

(6.10)

We denote by S the support of w, i.e. the set {i : wi 6= 0}. We observe that as long as for the
variables i ∈ S c , the condition

�

�

�X>i (y−Xw)
�

�

� < nλ is verified and for the variables i ∈ S, wi

does not change sign, we have a closed form solution for w:

wS = (X
>
S XS)

−1(X>S y− nλsS), (6.11)
wS c = 0, (6.12)

where s is defined by si = sign(wi). The idea of the LARS algorithm is then to start from
λ = 1

n max j |X>j y|, for which we have the trivial solution w = 0, S = ; and s = 0 and then to
follow the regularization path ŵ(λ) using the closed form solution defined by Eq. (6.11), which
is linear in λ, until the optimality conditions defined by Eq. (6.10) are violated. This happens
either when

• for a variable i ∈ S, the corresponding coefficient wi hits zero. Then update S by remov-
ing i and set si = 0.

6.5. OPTIMIZATION ALGORITHMS FOR THE LASSO 105

• for a variable i ∈ S c , we have
�

�

�X>i (y−Xw)
�

�

� = nλ. Then update S by adding i and set

si = sign(X>i (y−Xw)).

In particular, the first variable to enter the set S is i = argmax j |X>j y|. The λ at which variables
are added or removed from the support of w, which are the kinks of the regularization path,
can be easily computed in closed form from previous kink using Eq. (6.10) and Eq. (6.11).

6.5.2 Iteratively reweighted least squares

The term iteratively reweighted least squares (IRLS) was traditionally used to describe the New-
ton optimization method applied to the logistic regression, since each Newton step is then
equivalent to solving a reweighted least squares problem. Now, IRLS designes a large family of
algorithms (Grandvalet and Canu, 1999; Daubechies et al., 2010), where each step consists in
solving a least squares problem, regularized by a reweighted `2-norm. These kind of formula-
tions arise when a non smooth regularizer is approximated by a smooth reweighted `2-norm by
using a variational formulation. In the case of the `1-norm, we have the following variational
formulation, sometimes known as the η-trick:

Proposition 1. Let w ∈Rp . The `1-norm of w is equal to:

‖w‖1 =min
η∈Rp

1
2

p
∑

i=1

|wi |2

ηi

+ηi ,

and the infimum is attained for ηi = |wi |.
Using the variational formulation of the `1-norm introduced in proposition 1, the Lasso

problem can be reformulated as

min
w∈Rp

min
η∈Rp

+

1
2n
‖y−Xw‖2

2+
λ

2

p
∑

i=1

|wi |2

ηi

+ηi .

This new optimization problem is jointly convex in (w,η), and the iteratively reweighted least
squares algorithm consists in alternating the minimization over w and η. Some care must be
taken, since the objective function is not continuous around η with coefficients equal to zero,
and thus, the alternating minimization algorithm is not convergent. In order to have a conver-
gent algorithm, a smoothing term λµ

2

∑p
i=1

1
ηi

is added to the objective function2. In that case,
minimization over η still has a closed form solution, equal to

ηi =
Æ

|wi |2+µ

while the minimization over w is equivalent to solving the following least squares problem
regularized by a reweighted `2-norm:

min
w∈Rp

1
2n
‖y−Xw‖2

2+
λ

2

p
∑

i=1

1
ηi

|wi |
2.

2The level sets of the objective function are then compact, ensuring the convergence of the algorithm.

106 CHAPTER 6. STATISTICAL LEARNING AND VARIABLE SELECTION

This method, which is quite simple to implement, has one main limitation: the obtained solu-
tion ŵ is not sparse, because of the added smoothing term.

6.5.3 Proximal methods

Proximal methods (Combettes and Pesquet, 2011) were designed to solve convex optimization
problems where the objective function is the sum of a smooth function f and a “simple” non-
differentiable function g . What we call simple non differentiable functions are the functions
for which we can easily compute their associated proximity operator, that we now define.

Definition 3. Let g be a convex function defined onRp . The proximity of operator of the function
g , noted proxg , is defined for all vectors v ∈Rp by

proxg (v) = argmin
u∈Rp

1
2
‖u− v‖2

2+ g (u).

The proximity operator of the `1-regularizer is the soft-thresholding operator we have al-
ready introduced in section 6.4.3, and whose i th coefficient is equal to

�

proxλ‖ ‖1(v)
�

i
= sign(vi)

h

|vi | −λ
i

+
.

We will now present a simple proximal method to compute the optimal solution of the
Lasso, introduced by Wright et al. (2009). For clarity, we will note f (w) = 1

2n‖y−Xw‖2
2. Then

at each iteration t , the smooth function f is linearized around the current estimate wt :

wt+1 = argmin
w∈Rp

f (wt)+∇ f (wt)
> (w−wt)+λ‖w‖1+

L
2
‖wt −w‖2

2.

The quadratic term is added to ensure that the next estimate wt+1 stays in the neighborhood of
wt . This minimization problem is then equivalent to

wt+1 = argmin
w∈Rp

λ

L
‖w‖1+

1
2

�

wt −
1
L
∇ f (wt)

�

−w

2

2
.

The solution of this optimization problem is exactly the proximity operator of the `1-regularizer,
rescaled by 1

L and applied to the vector wt −
1
L∇ f (wt):

wt+1 = prox λ
L ‖ ‖1

�

wt −
1
L
∇ f (wt)

�

.

We observe that if the non smooth term is equal to zero, its proximity operator is equal to the
identity and the proximal method update is equal to the standard gradient descent update. For
function f with Lipschitz-continuous gradient (and thus for the Lasso), its convergence rate is
O
�

1
t

�

. An accelerated version of this algorithm, called fast iterative soft thresholding algorithm

(FISTA), was proposed by Beck and Teboulle (2009) and has a better convergence rate of O
�

1
t 2

�

.

CHAPTER 7
§

TRACE LASSO: A TRACE NORM REGULARIZATION
FOR CORRELATED DESIGNS

USING THE `1-norm to regularize the estimation of the parameter vector of a linear model
leads to an unstable estimator when covariates are highly correlated. In this chapter, we

introduce a new penalty function which takes into account the correlation of the design matrix
to stabilize the estimation. This norm, called the trace Lasso, uses the trace norm of the selected
covariates, which is a convex surrogate of their rank, as the criterion of model complexity. We
analyze the properties of our norm, describe an optimization algorithm based on reweighted
least-squares, and illustrate the behavior of this norm on synthetic data, showing that it is more
adapted to strong correlations than competing methods such as the elastic net.

The material of this chapter is based on the following work:

E. Grave, G. Obozinski and F. Bach. Trace Lasso: a trace norm regularization for correlated
designs. Advances in Neural Information Processing Systems (NIPS), 2011.

7.1 Introduction

The concept of parsimony is central in many scientific domains. In the context of statis-
tics, signal processing or machine learning, it takes the form of variable or feature selection
problems, and is commonly used in two situations: first, to make the model or the predic-
tion more interpretable or cheaper to use, i.e., even if the underlying problem does not admit
sparse solutions, one looks for the best sparse approximation. Second, sparsity can also be
used given prior knowledge that the model should be sparse. Many methods have been de-
signed to learn sparse models, namely methods based on combinatorial optimization (Mallat
and Zhang, 1993a; Zhang, 2008), Bayesian inference (Seeger, 2008) or convex optimization (Tib-
shirani, 1996; Chen et al., 1998).

107

108 CHAPTER 7. TRACE LASSO

In this chapter, we focus on the regularization by sparsity-inducing norms. The simplest
example of such norms is the `1-norm, leading to the Lasso, when used within a least-squares
framework. In recent years, a large body of work has shown that the Lasso was performing op-
timally in high-dimensional low-correlation settings, both in terms of prediction (Bickel et al.,
2009), estimation of parameters or estimation of supports (Zhao and Yu, 2006; Wainwright,
2009). However, most data exhibit strong correlations, with various correlation structures,
such as clusters (i.e., close to block-diagonal covariance matrices) or sparse graphs, such as for ex-
ample problems involving sequences (in which case, the covariance matrix is close to a Toeplitz
matrix (Golub and Van Loan, 1996)). In these situations, the Lasso is known to have stability
issues: although its predictive performance is not disastrous, the selected predictor may vary
a lot. Typically, given two correlated variables, the Lasso will only select one of the two, at
random, based on the fluctuation of the noise.

9 8 7 6 5 4 3 20.3

0.2

0.1

0.0

0.1

0.2

0.3

Figure 7.1: Example of regularization path of the Lasso, in the case of highly correlated predic-
tors.

Several remedies have been proposed to this instability. First, the elastic net, proposed by
Zou and Hastie (2005) adds a strongly convex penalty term (the squared `2-norm) that will
stabilize selection (typically, given two correlated variables, the elastic net will select the two
variables). However, it is blind to the exact correlation structure, and while strong convexity
is required for some variables, it is not for other variables. Another solution is to consider the
group Lasso, proposed by Yuan and Lin (2006), which will divide the predictors into groups and
penalize the sum of the `2-norm of these groups. This is known to accomodate strong correla-
tions within groups (Bach, 2008b); however it requires to know the groups in advance, which
is not always possible. A third line of research has focused on sampling-based techniques (Bach,
2008a; Liu et al., 2010; Meinshausen and Bühlmann, 2010).

An ideal regularizer should thus be adapted to the design (like the group Lasso), but without
requiring human intervention (like the elastic net); it should thus add strong convexity only

7.2. DEFINITION AND PROPERTIES OF THE TRACE LASSO 109

where needed, and not modifying variables where things behave correctly. In this chapter, we
propose a new norm towards this end.

More precisely we make the following contributions:

• We propose in Section 7.2 a new norm based on the trace norm (a.k.a. nuclear norm) that
interpolates between the `1-norm and the `2-norm depending on correlations.

• We show that there is a unique minimum when penalizing with this norm in Section 7.2.1.

• We provide optimization algorithms based on reweighted least-squares and alternating
direction method of multipliers in Section 7.3.

• We study the second-order expansion around independence and relate to existing work
on including correlations in Section 7.4.

• We perform synthetic experiments in Section 7.5, where we show that the trace Lasso
outperforms existing norms in strong-correlation regimes.

Notations. Let M ∈Rn×p . The columns of M are noted using superscript, i.e., M(i) denotes
the i -th column, while the rows are noted using subscript, i.e., Mi denotes the i -th row. For
M ∈Rp×p , diag(M) ∈Rp is the diagonal of the matrix M, while for u ∈Rp , Diag(u) ∈Rp×p is
the diagonal matrix whose diagonal elements are the ui . Let S be a subset of {1, ..., p}, then uS
is the vector u restricted to the support S, with 0 outside the support S. We denote by Sp the
set of symmetric matrices of size p. We will use various matrix norms, here are the notations
we use:

• ‖M‖∗ is the trace norm, i.e., the sum of the singular values of the matrix M,

• ‖M‖o p is the operator norm, i.e., the maximum singular value of the matrix M,

• ‖M‖F is the Frobenius norm, i.e., the `2-norm of the singular values, which is also equal
to
p

tr(M>M),

• ‖M‖2,1 is the sum of the `2-norm of the columns of M: ‖M‖2,1 =
p
∑

i=1

‖M(i)‖2.

7.2 Definition and properties of the trace Lasso

We consider the problem of predicting y ∈R, given a vector x ∈Rp , assuming a linear model

y =w>x+ ε,

110 CHAPTER 7. TRACE LASSO

where ε is (Gaussian) noise with mean 0 and varianceσ2. Given a training set X= (x1, ...,xn)
> ∈ Rn×p

and y = (y1, ..., yn)
> ∈ Rn, a widely used method to estimate the parameter vector w is the pe-

nalized empirical risk minimization

ŵ ∈ argmin
w

1
n

n
∑

i=1

`(yi ,w
>xi)+λ f (w), (7.1)

where ` is a loss function used to measure the error we make by predicting w>xi instead of yi ,
while f is a regularization term used to penalize complex models. This second term helps avoid-
ing overfitting, especially in the case where we have many more parameters than observations,
i.e., n � p.

7.2.1 The ridge, the Lasso and the trace Lasso

In this section, we show that Tikhonov regularization and the Lasso penalty can be viewed as
norms of the matrix XDiag(w). We then introduce a new norm involving this matrix.

The solution of empirical risk minimization penalized by the `1-norm or `2-norm is not
invariant by rescaling the predictors X(i), so it is common to normalize the predictors. When
normalizing the predictors X(i), and penalizing by Tikhonov regularization or by the Lasso,
people are implicitly using a regularization term that depends on the data or design matrix X.
In fact, there is an equivalence between normalizing the predictors and not normalizing them,
using the two following reweighted `2 and `1-norms instead of the Tikhonov regularization
and the Lasso:

‖w‖2
2 =

p
∑

i=1

‖X(i)‖2
2 w2

i and ‖w‖1 =
p
∑

i=1

‖X(i)‖2 |wi |. (7.2)

These two norms can be expressed using the matrix XDiag(w):

‖w‖2 = ‖XDiag(w)‖F and ‖w‖1 = ‖XDiag(w)‖2,1,

and a natural question arises: are there other relevant choices of functions or matrix norms? A
classical measure of the complexity of a model is the number of predictors used by this model,
which is equal to the size of the support of w. This penalty being non-convex, people use its
convex relaxation, which is the `1-norm, leading to the Lasso.

Here, we propose a different measure of complexity which can be shown to be more suited
in model selection settings (Hastie et al., 2001): the dimension of the subspace spanned by the
selected predictors. This is equal to the rank of the selected predictors, or also to the rank of the
matrix XDiag(w). As for the size of the support, this function is non-convex, and we propose
to replace it by a convex surrogate, the trace norm, leading to the following penalty that we call
“trace Lasso”:

Ω(w) = ‖XDiag(w)‖∗.

7.2. DEFINITION AND PROPERTIES OF THE TRACE LASSO 111

The trace Lasso has some interesting properties: if all the predictors are orthogonal, then, it is
equal to the `1-norm. Indeed, we have the decomposition:

XDiag(w) =
p
∑

i=1

�

wi‖X
(i)‖2

� X(i)

‖X(i)‖2

e>i ,

where ei are the vectors of the canonical basis. Since the predictors are orthogonal and the ei
are orthogonal too, this gives the singular value decomposition of XDiag(w) and we get

‖XDiag(w)‖∗ =
p
∑

i=1

‖X(i)‖2|wi |= ‖XDiag(w)‖2,1.

On the other hand, if all the predictors are equal to X(1), then

XDiag(w) =X(1)w>,

and we get ‖XDiag(w)‖∗ = ‖X(1)‖2‖w‖2 = ‖XDiag(w)‖F , which is equivalent to the Tikhonov
regularization. Thus when two predictors are strongly correlated, our norm will behave like
the Tikhonov regularization, while for almost uncorrelated predictors, it will behave like the
Lasso.

Always having a unique minimum is an important property for a statistical estimator, as
it is a first step towards stability. The trace Lasso, by adding strong convexity exactly in the
direction of highly correlated covariates, always has a unique minimum, and is much more
stable than the Lasso.

Proposition 2. If the loss function ` is strongly convex with respect to its second argument, then the
solution of the empirical risk minimization penalized by the trace Lasso, i.e., Eq. (7.1), is unique.

The technical proof of this proposition is in appendix A.2, and consists in showing that in
the flat directions of the loss function, the trace Lasso is strongly convex.

7.2.2 A new family of penalty functions

In this section, we introduce a new family of penalties, inspired by the trace Lasso, allowing us
to write the `1-norm, the `2-norm and the newly introduced trace Lasso as special cases. In fact,
we note that ‖Diag(w)‖∗ = ‖w‖1 and ‖p−1/21>Diag(w)‖∗ = ‖w>‖∗ = ‖w‖2. In other words, we
can express the `1 and `2-norms of w using the trace norm of a given matrix times the matrix
Diag(w). A natural question to ask is: what happens when using a matrix P other than the
identity or the line vector p−1/21>, and what are good choices of such matrices? Therefore, we
introduce the following family of penalty functions:

Definition 4. Let P ∈Rk×p , all of its columns having unit norm. We introduce the norm ΩP as

ΩP(w) = ‖PDiag(w)‖∗.

112 CHAPTER 7. TRACE LASSO

Proof. The positive homogeneity and triangle inequality are direct consequences of the linear-
ity of w 7→ PDiag(w) and the fact that ‖ · ‖∗ is a norm. Since all the columns of P are not equal
to zero, we have

PDiag(w) = 0⇔w= 0,

and so, ΩP separates points and is a norm.

As stated before, the `1 and `2-norms are special cases of the family of norms we just intro-
duced. Another important penalty that can be expressed as a special case is the group Lasso,
with non-overlapping groups. Given a partition (S j) of the set {1, ..., p}, the group Lasso is
defined by

‖w‖GL =
∑

S j

‖wS j
‖2.

We define the matrix PGL by

PGL
i j =

�

1/
p

|Sk | if i and j are in the same group Sk ,
0 otherwise.

Then,

PGL Diag(w) =
∑

S j

1S j
Æ

|S j |
w>S j

. (7.3)

Using the fact that (S j) is a partition of {1, ..., p}, the vectors 1S j
are orthogonal and so are the

vectors wS j
. Hence, after normalizing the vectors, Eq. (7.3) gives a singular value decomposition

of PGL Diag(w) and so the group Lasso penalty can be expressed as a special case of our family
of norms:

‖PGL Diag(w)‖∗ =
∑

S j

‖wS j
‖2 = ‖w‖GL.

In the following proposition, we show that our norm only depends on the value of P>P.
This is an important property for the trace Lasso, where P=X, since it underlies the fact that
this penalty only depends on the correlation matrix X>X of the covariates.

Proposition 3. Let P ∈Rk×p , all of its columns having unit norm. We have

ΩP(w) = ‖(P
>P)1/2 Diag(w)‖∗.

We plot the unit ball of our norm for various values of P>P (see figure (7.2)). We plot the
unit balls of the special cases corresponding to the ridge regression (a), the Lasso (b) and the
group Lasso (c). We also plot unit balls of our norm, for the following values of P>P:

1 ρ 0.1
ρ 1 0.1

0.1 0.1 1

 and

1 ρ ρ2

ρ 1 ρ
ρ2 ρ 1

7.2. DEFINITION AND PROPERTIES OF THE TRACE LASSO 113

(a) :

1 1 1
1 1 1
1 1 1

 (b) :

1 0 0
0 1 0
0 0 1

 (c) :

1 1 0
1 1 0
0 0 1

(d) :

1 0.5 0.1
0.5 1 0.1
0.1 0.1 1

 (e) :

1 0.7 0.1
0.7 1 0.1
0.1 0.1 1

 (f) :

1 0.9 0.1
0.9 1 0.1
0.1 0.1 1

(g) :

1 0.5 0.25
0.5 1 0.5
0.25 0.5 1

 (h) :

1 0.7 0.49
0.7 1 0.7
0.49 0.7 1

 (i) :

1 0.9 0.81
0.9 1 0.9
0.81 0.9 1

Figure 7.2: Unit balls for various value of P>P.

114 CHAPTER 7. TRACE LASSO

for ρ ∈ {0.5, 0.7, 0.9}. The first case corresponds to a group of two correlated variables (d, e,
f). The second case correspond to a Toeplitz design matrix (g, h, i).

We can lower bound and upper bound our norms by the `2-norm and `1-norm respectively.
This shows that, as for the elastic net, our norms interpolate between the `1-norm and the `2-
norm. But the main difference between the elastic net and our norms is the fact that our norms
are adaptive, and require a single regularization parameter to tune. In particular for the trace
Lasso, when two covariates are strongly correlated, it will be close to the `2-norm, while when
two covariates are almost uncorrelated, it will behave like the `1-norm. This is a behavior close
to the one of the pairwise elastic net (Lorbert et al., 2010).

Proposition 4. Let P ∈Rk×p , all of its columns having unit norm. We have

‖w‖2 ≤ΩP(w)≤ ‖w‖1.

7.2.3 Dual norm

The dual norm is an important quantity for both optimization and theoretical analysis of the
estimator. Unfortunately, we are not able in general to obtain a closed form expression of the
dual norm for the family of norms we just introduced. However we can obtain a bound, which
is exact for some special cases:

Proposition 5. The dual norm, defined by Ω∗P(u) = max
ΩP(v)≤1

u>v, can be bounded by:

Ω∗P(u)≤ ‖PDiag(u)‖o p .

Proof. Using the fact that diag(P>P) = 1, we have

u>v= tr
�

Diag(u)P>PDiag(v)
�

≤ ‖PDiag(u)‖o p‖PDiag(v)‖∗,

where the inequality comes from the fact that the operator norm ‖ ·‖o p is the dual norm of the
trace norm. The definition of the dual norm then gives the result.

As a corollary, we can bound the dual norm by a constant times the `∞-norm:

Ω∗P(u)≤ ‖PDiag(u)‖o p ≤ ‖P‖o p‖Diag(u)‖o p = ‖P‖o p‖u‖∞.

Using proposition (4), we also have the inequality Ω∗P(u)≥ ‖u‖∞.

7.3 Optimization algorithms

In this section, we introduce two algorithms to estimate the parameter vector w. The first one
belongs to the family of iteratively reweighted least square algorithm (IRLS), and thus requires

7.3. OPTIMIZATION ALGORITHMS 115

that the square loss is used. The second algorithm that we propose is based on the alternat-
ing directions method of multipliers (ADMM), and only requires the loss to be convex and
differentiable. In the following, we will present both algorithms for the trace Lasso, but it is
straighforward to extend them to the family of norms indexed by a matrix P.

We recall that the problem we consider is

min
w

1
2
‖y−Xw‖2

2+λ‖XDiag(w)‖∗.

We could optimize this cost function by subgradient descent, but this is quite inefficient: the
rate of convergence of subgradient descent is quite slow and computing the subgradient of the
trace Lasso is expensive. Indeed, the following proposition implies that at each step of the
subgradient descent for the trace Lasso, the singular value decomposition of an n × p matrix
has to be computed:

Proposition 6. Let UDiag(s)V> be the singular value decomposition of XDiag(w). Then, the
subgradient of the trace Lasso regularization is given by

∂ Ω(w) =
�

diag
�

X>(UV>+M)
�

| ‖M‖2 ≤ 1,U>M= 0 and MV= 0
	

.

7.3.1 Iteratively reweighted least squares

The first optimization algorithm we consider belongs to the family of iteratively reweighted
least-squares methods. First, we need to introduce a well-known variational formulation for
the trace norm (Argyriou et al., 2007):

Proposition 7. Let M ∈Rn×p . The trace norm of M is equal to:

‖M‖∗ =
1
2

inf
S�0

tr
�

M>S−1M
�

+ tr (S) ,

and the infimum is attained for S=
�

MM>�1/2.

Using this proposition, we can reformulate the previous optimization problem as

min
w

inf
S�0

1
2
‖y−Xw‖2

2+
λ

2
w>Diag

�

diag(X>S−1X)
�

w+
λ

2
tr(S).

This problem is jointly convex in (w, S) (Boyd and Vandenberghe, 2004). In order to optimize
this objective function by alternating the minimization over w and S, we need to add a term
λµi

2 tr(S−1). Otherwise, the infimum over S could be attained at a non invertible S, leading to a

non convergent algorithm. The infimum over S is then attained for S=
�

XDiag(w)2X>+µiI
�1/2.

Optimizing over w is a least-squares problem penalized by a reweighted `2-norm equal to
w>Dw, where D=Diag

�

diag(X>S−1X)
�

. It is equivalent to solving the linear system

(X>X+λD)w=X>y. (7.4)

116 CHAPTER 7. TRACE LASSO

Due to the structure of the matrix A = X>X+ λD, a rank deficient matrix plus a diagonal
matrix, computing the product of the matrix A with a vector is quite cheap. Thus, the best
choice for solving the linear system 7.4 is to use an iterative method only using matrix vector
multiplication, such as the conjugate gradient algorithm (Golub and Van Loan, 1996). We now
summarize the algorithm:

IRLS ALGORITHM FOR ESTIMATING w

Input: the design matrix X, the initial guess w0, number of iteration N , sequence µi .
For i = 1...N :

• Compute the eigenvalue decomposition UDiag(sk)U
> of XDiag(wi−1)2X>.

• Set D=Diag(diag(X>S−1X)), where S−1 =UDiag(1/
p

sk +µi)U
>.

• Set wi by solving the system (X>X+λD)w=X>y.

For the sequence µi , we use a decreasing sequence converging to ten times the machine
precision.

Complexity of the IRLS algorithm.

1. The first step has a complexity of O
�

n2(n+ p)
�

: computing the matrix product has a
complexity of pn2 and computing the eigenvalue decomposition of an n× n matrix has
a complexity of n3.

2. Computing the product X>U has a compexity of O (n2 p), while the other operations
have a complexity of O (n p).

3. The complexity of computing a matrix-vector multiplication (X>X+ λD)w is O (n p).
Moreover, using the conjugate gradient algorithm to solve the system Ax = b, where
A= I+E and E is a positive definite matrix of rank r takes at most r + 1 iterations (see
Golub and Van Loan, 1996, Theorem 10.2.5). Hence, preconditioning by D−1/2 ensures
that the complexity of this step is at most O (n2 p). The use of warm restart can even
speed up this step.

The complexity of one iteration of our IRLS algorithm is thus O (n2 p), if p ≥ n.

7.3.2 Alternating direction method of multipliers

We now introduce a second optimization technique for the trace Lasso, based on the alternating
direction method of multipliers (See Boyd et al., 2011, for an introduction). Even if this method

7.3. OPTIMIZATION ALGORITHMS 117

can be used with any convex and differentiable loss, we will present it using the square loss. We
first introduce the dummy variable M ∈Rn×p and obtain the following equivalent optimization
problem:

(

min
w,M

1
2n
‖y−Xw‖2

2+λ‖M‖∗
such that M=XDiag(w).

The corresponding augmented Lagrangian is

Lρ(w, M, Λ) =
1

2n
‖y−Xw‖2

2+λ‖M‖∗+ tr(Λ>(XDiag(w)−M))+
ρ

2
‖XDiag(w)−M‖2

F .

Then, the alternating direction method of multipliers, which is an extension of the augmented
Lagrangian consists of the iterations:

w(k+1) = argmin
w

L (w, M(k), Λ(k)),

M(k+1) = argmin
M

L (w(k+1), M, Λ(k)),

Λ(k+1) =Λ(k)+ρ
�

XDiag(w(k+1))−M(k+1)� .

Optimization w.r.t. w. The optimization problem with respect to w is equivalent to

min
w

1
2n
‖y−Xw‖2

2+ tr(Λ>XDiag(w))+
ρ

2
tr(Diag(w)X>XDiag(w)− 2M>XDiag(w)),

which is equivalent to

min
w

1
2n
‖y−Xw‖2

2+
ρ

2
w>w+ diag

�

(Λ−ρM)>X
�>

w.

Thus, computing the optimal w is easily done by solving the linear system:
�

X>X+ρI
�

w=X>y− diag
�

(Λ−ρM)>X
�

.

Optimization w.r.t. M. The optimization problem with respect to M is equivalent to

min
M

λ‖M‖∗− tr(Λ>M)+
ρ

2
‖XDiag(w)−M‖2

F ,

which is equivalent to

min
M

λ‖M‖∗+
ρ

2
‖(XDiag(w)+

1
ρ
Λ)−M‖2

F .

This problem is the proximal operator of the trace norm, which has a closed form solution
requiring to compute a singular value decomposition.

118 CHAPTER 7. TRACE LASSO

Complexity of the ADMM algorithm.

1. Solving the linear system to minimize the Lagrangian with respect to w has a complexity
of O (n2 p). Indeed, this linear system has the same structure as the linear system of the
IRLS algorithm, and thus can be solved in the same way.

2. Computing the optimal matrix M is equivalent to taking the proximal operator of the
trace norm of an n× p matrix. This proximal operator is computed by taking the SVD
of that matrix, whose complexity is O (n2 p).

3. The gradient step with respect to Λ has a complexity of O (n p).

Thus, like the IRLS algorithm, one step of the ADMM algorithm has a complexity of O (n2 p),
if p ≥ n.

7.3.3 Choice of λ

We now give a method to choose the regularization path. In fact, we know that the vector 0 is
solution if and only if λ ≥ Ω∗(X>y) (Bach et al., 2012). Thus, we need to start the path at λ =
Ω∗(X>y), corresponding to the empty solution 0, and then decrease λ. Using the inequalities
on the dual norm we obtained in the previous section, we get

‖X>y‖∞ ≤Ω
∗(X>y)≤ ‖X‖o p‖X

>y‖∞.

Therefore, starting the path at λ= ‖X‖o p‖X>y‖∞ is a good choice.

7.4 Approximation around the Lasso

In this section, we compute the second order approximation of our norm around the special
case corresponding to the Lasso. We recall that when P = I ∈ Rp×p , our norm is equal to the
`1-norm. We add a small perturbation∆ ∈ Sp to the identity matrix, and using proposition 8,
we obtain the following second order approximation:

‖(I+∆)Diag(w)‖∗ = ‖w‖1+ diag(∆)>|w|+
∑

|wi |>0

∑

|w j |>0

(∆ j i |wi | −∆i j |w j |)2

4(|wi |+ |w j |)
+
∑

|wi |=0

∑

|w j |>0

(∆i j |w j |)2

2|w j |
+ o(‖∆‖2).

We can rewrite this approximation as

‖(I+∆)Diag(w)‖∗ = ‖w‖1+ diag(∆)>|w|+
∑

i , j

∆2
i j (|wi | − |w j |)2

4(|wi |+ |w j |)
+ o(‖∆‖2),

using a slight abuse of notation, considering that the last term is equal to 0 when wi = w j = 0.
The second order term is quite interesting: it shows that when two covariates are correlated, the

7.5. EXPERIMENTS 119

effect of the trace Lasso is to shrink the corresponding coefficients toward each other. Another
interesting remark is the fact that this term is very similar to pairwise elastic net penalties,
which are of the form |w|>P|w|, where Pi j is a decreasing function of∆i j .

7.5 Experiments

In this section, we perform experiments on synthetic data to illustrate the behavior of the trace
Lasso and other classical penalties when there are highly correlated covariates in the design
matrix. First, we present how the synthetic data is generated, we then perform experiments in
order to compare the two proposed optimization algorithms, and finally we compare the trace
Lasso with other sparsity inducing norms.

7.5.1 Generation of synthetic data

The support S of w is equal to {1, ..., k}, where k is the size of the support. For i in the support
of w, wi , is independently drawn from a uniform distribution over [−1,1]. The observations
xi are drawn from a multivariate Gaussian with mean 0 and covariance matrix Σ. For the first
setting, Σ is set to the identity, for the second setting, Σ is block diagonal with blocks equal to
0.2I+ 0.811> corresponding to clusters of eight variables, finally for the third setting, we set
Σi j = 0.95|i− j |, corresponding to a Toeplitz design. Finally, we generate the response variables
yi according to

yi =w>xi + εi ,

where εi is a zero mean Gaussian random variable with its variance set such that the signal-to-
noise ratio is equal to 11.

7.5.2 Comparison of optimization algorithms

In this section, we compare the speed of convergence of the various algorithms we introduce
to optimize the trace Lasso. For all experiments, we have p = 256, n = 128 and the support
size k = 16. We consider a low correlations setting, corresponding to Σ = I, and a strong
correlations setting, corresponding to the Toeplitz setting. In the case of the ADMM algorithm,
we use a conjugate gradient algorithm to optimize with respect to w, as for the IRLS algorithm.
We replicate the experiment over 10 runs, where only the noise vector ε changes.

Comments. First, we observe that subgradient descent method is extremely slow to converge,
and is thus not usable in practice. Second, we observe that there is not clear winner between
the iteratively reweighted least-squares algorithm and the alternative direction method of mul-
tipliers. IRLS algorithm speed of convergence is slower during the first iterations, but then it
converges faster to a high accuracy solution. ADMM should thus be preferred if high accuracy
is not needed, and IRLS should be preferred otherwise. It should be noted that performance

120 CHAPTER 7. TRACE LASSO

0 20 40 60 80 100
Number of iterations

5

4

3

2

1

0

1

D
is

ta
nc

e
to

 o
pt

im
um

IRLS
ADMM
SGD

0 20 40 60 80 100
Number of iterations

8

6

4

2

0

D
is

ta
nc

e
to

 o
pt

im
um

IRLS
ADMM
SGD

(a) Low corr., high reg. (b) Low corr., low reg.

0 20 40 60 80 100
Number of iterations

4

3

2

1

0

1

D
is

ta
nc

e
to

 o
pt

im
um

IRLS
ADMM
SGD

0 20 40 60 80 100
Number of iterations

10

8

6

4

2

0

2

D
is

ta
nc

e
to

 o
pt

im
um

IRLS
ADMM
SGD

(c) High corr., high reg. (d) High corr., low reg.

Figure 7.3: Top: low correlations, bottom: strong correlations. Left: strong regularization,
right: low regularization. IRLS stands for iteratively reweighted least squares, ADMM stands for
alternating direction method of multipliers and SGD stands for subgradient descent. The scale
for the distance to optimum is logarithmic.

7.6. CONCLUSION 121

of ADMM might be improved by varying the parameter ρ during the optimization (See Boyd
et al., 2011, section 3.4.1 for an example of such scheme).

7.5.3 Comparison with other estimators

We now compare the trace Lasso with the ridge regression estimator, the Lasso, the elastic
net and the pairwise elastic net. For each method, we choose the best λ. We perform a first
sequence of experiments (p = 1024, n = 256) for which we report the estimation error. For the
second serie of experiments (p = 512, n = 128), we report the Hamming distance between the
estimated support and the true support.

Comments. In all six graphs of Figure 7.4, we observe behaviors that are typical of the Lasso,
ridge and elastic net: the Lasso performs very well on very sparse models but its performance
degrades for denser models. The elastic net performs better than the Lasso for settings where
there are strongly correlated covariates, thanks to its strongly convex `2 term. In setting 1, since
the variables are uncorrelated, there is no reason to couple their selection. This suggests that the
Lasso should be the most appropriate convex regularization. The trace Lasso approaches the
Lasso when n is much larger than p, but the weak coupling induced by empirical correlations
is sufficient to slightly decrease its performance compared to that of the Lasso. By contrast, in
settings 2 and 3, the trace Lasso outperforms other methods (including the pairwise elastic net)
since variables that should be selected together are indeed correlated. As for the pairwise elastic
net, since it takes into account the correlations between variables, it is not surprising that in
experiments 2 and 3 it performs better than methods that do not. We do not have a compelling
explanation for its superior performance in experiment 1.

7.6 Conclusion

We introduce a new penalty function, the trace Lasso, which takes advantage of the correlation
between covariates to add strong convexity exactly in the directions where needed, unlike the
elastic net for example, which blindly adds a squared `2-norm term in every directions. We
show on synthetic data that this adaptive behavior leads to better estimation performance. In
the future, we want to show that if a dedicated norm using prior knowledge such as the group
Lasso can be used, the trace Lasso will behave similarly and its performance will not degrade too
much, providing theoretical guarantees to such adaptivity. Finally, we will seek applications of
this estimator in inverse problems such as deblurring, where the design matrix exhibits strong
correlation structure.

122 CHAPTER 7. TRACE LASSO

0 20 40 60 80 100
Size of the support

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Es
tim

at
io

n
er

ro
r

Estimation error (setting 1)

ridge
lasso
e-net
pen
trace

0 5 10 15 20 25 30 35 40 45
Size of the support

0
5

10
15
20
25
30
35
40
45

Ha
m

m
in

g
di

st
an

ce

Support recovery (setting 1)

lasso
e-net
pen
trace

0 20 40 60 80 100
Size of the support

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

Es
tim

at
io

n
er

ro
r

Estimation error (setting 2)

ridge
lasso
e-net
pen
trace

0 5 10 15 20 25 30 35 40 45
Size of the support

0

5

10

15

20

25

30

35
Ha

m
m

in
g

di
st

an
ce

Support recovery (setting 2)

lasso
e-net
pen
trace

0 20 40 60 80 100
Size of the support

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Es
tim

at
io

n
er

ro
r

Estimation error (setting 3)

ridge
lasso
e-net
pen
trace

0 5 10 15 20 25 30 35 40 45
Size of the support

0

5

10

15

20

25

30

35

40

Ha
m

m
in

g
di

st
an

ce

Support recovery (setting 3)

lasso
e-net
pen
trace

Figure 7.4: Left: estimation error (p = 1024, n = 256), right: support recovery (p = 512,
n = 128). (Best seen in color. e-net stands for elastic net, pen stands for pairwise elastic net
and trace stands for trace Lasso. Error bars are obtained over 20 runs.)

CHAPTER A
§

SOME FACTS ABOUT THE TRACE NORM

A.1 Perturbation of the trace norm

We follow the technique used in Bach (2008c) to obtain an approximation of the trace norm.

A.1.1 Jordan-Wielandt matrices

Let M ∈ Rn×p of rank r . We note s1 ≥ s2 ≥ ... ≥ sr > 0, the strictly positive singular values of
M and ui , vi the associated left and right singular vectors. We introduce the Jordan-Wielandt
matrix

M̃=
�

0 M
M> 0

�

∈R(n+p)×(n+p).

The singular values of M and the eigenvalues of M̃ are related: M̃ has eigenvalues si and s−i =−si
associated to eigenvectors

wi =
1
p

2

�

ui
vi

�

and w−i =
1
p

2

�

ui
−vi

�

.

The remaining eigenvalues of M̃ are equal to 0 and are associated to eigenvectors of the form

w=
1
p

2

�

u
v

�

and w=
1
p

2

�

u
−v

�

,

where ∀ i ∈ {1, ..., r }, u>ui = v>vi = 0.

A.1.2 Cauchy residue formula

Let C be a closed curve that does not go through the eigenvalues of M̃. We define

ΠC (M̃) =
1

2iπ

∫

C
λ(λI− M̃)−1dλ.

123

124 APPENDIX A. SOME FACTS ABOUT THE TRACE NORM

We have

ΠC (M̃) =
1

2iπ

∮

∑

j

λ

λ− s j

w j w
>
j dλ

=
1

2iπ

∮

∑

j

�

1+
s j

λ− s j

�

w j w
>
j dλ

=
∑

s j∈C
s j w j w

>
j .

A.1.3 Perturbation analysis

Let ∆ ∈ Rn×p be a perturbation matrix such that ‖∆‖o p < sr/4, and let C be a closed curve
around the r largest eigenvalues of M̃ and M̃+∆̃. We can study the perturbation of the strictly
positive singular values of M by computing the trace of ΠC (M̃+ ∆̃)−ΠC (M̃). Using the fact
that (λI− M̃− ∆̃)−1 = (λI− M̃)−1+(λI− M̃)−1∆̃(λI− M̃− ∆̃)−1, we have

ΠC (M̃+ ∆̃)−ΠC (M̃) =
1

2iπ

∮

λ(λI− M̃)−1∆̃(λI− M̃)−1dλ

+
1

2iπ

∮

λ(λI− M̃)−1∆̃(λI− M̃)−1∆̃(λI− M̃)−1dλ

+
1

2iπ

∮

λ(λI− M̃)−1∆̃(λI− M̃)−1∆̃(λI− M̃− ∆̃)−1dλ.

We note A and B the first two terms of the right hand side of this equation. We have

tr(A) =
∑

j ,k

tr(w j w
>
j ∆̃wkw>k)

1
2iπ

∮

C

λdλ
(λ− s j)(λ− sk)

=
∑

j

tr(w>j ∆̃w j)
1

2iπ

∮

C

λdλ
(λ− s j)2

=
∑

j

tr(w>j ∆̃w j)

=
∑

j

tr(u>j ∆v j),

and

tr(B) =
∑

j ,k ,l

tr(w j w
>
j ∆̃wkw>k ∆̃wl w

>
l)

1
2iπ

∮

C

λdλ
(λ− s j)(λ− sk)(λ− sl)

=
∑

j ,k

tr(w j ∆̃wkwk∆̃w j)
1

2iπ

∮

C

λdλ
(λ− s j)2(λ− sk)

.

A.1. PERTURBATION OF THE TRACE NORM 125

If s j = sk , the integral is nul. Otherwise, we have

λ

(λ− s j)2(λ− sk)
=

a
λ− s j

+
b

λ− sk

+
c

(λ− s j)2
,

where

a =
−sk

(sk − s j)2
,

b =
sk

(sk − s j)2
,

c =
s j

s j − sk

.

Therefore, if s j and sk are both inside or outside the interior ofC , the integral is equal to zero.
So

tr(B) =
∑

s j>0

∑

sk≤0

−sk(w
>
j ∆̃wk)

2

(s j − sk)2
+
∑

s j≤0

∑

sk>0

sk(w
>
j ∆̃wk)

2

(s j − sk)2

=
∑

s j>0

∑

sk>0

sk(w
>
j ∆̃w−k)

2

(s j + sk)2
+
∑

s j>0

∑

sk>0

sk(w
>
− j ∆̃wk)

2

(s j + sk)2
+
∑

s j=0

∑

sk>0

(w>j ∆̃wk)
2

sk

=
∑

s j>0

∑

sk>0

(w>− j ∆̃wk)
2

s j + sk

+
∑

s j=0

∑

sk>0

(w>j ∆̃wk)
2

sk

.

For s j > 0 and sk > 0, we have

w>− j ∆̃wk =
1
2

�

u>j ∆vk −u>k∆v j

�

,

and for s j = 0 and sk > 0, we have

w>j ∆̃wk =
1
2

�

±u>k∆v j +u>j ∆vk

�

.

So

tr(B) =
∑

s j>0

∑

sk>0

(u>j ∆vk −u>k∆v j)
2

4(s j + sk)
+
∑

s j=0

∑

sk>0

(u>k∆v j)
2+(u>j ∆vk)

2

2sk

.

Now, letC0 be the circle of center 0 and radius sr/2. We can study the perturbation of the
singular values of M equal to zero by computing the trace norm of ΠC0

(M̃+ ∆̃)−ΠC0
(M̃). We

126 APPENDIX A. SOME FACTS ABOUT THE TRACE NORM

have

ΠC0
(M̃+ ∆̃)−ΠC0

(M̃) =
1

2iπ

∮

C0

λ(λI− M̃)−1∆̃(λI− M̃)−1dλ

+
1

2iπ

∮

C0

λ(λI− M̃)−1∆̃(λI− M̃)−1∆̃(λI− M̃)−1dλ

+
1

2iπ

∮

C0

λ(λI− M̃)−1∆̃(λI− M̃)−1∆̃(λI− M̃− ∆̃)−1dλ.

Then, if we note the first integral C and the second one D , we get

C =
∑

j ,k

w j w
>
j ∆̃wkw>k

1
2iπ

∮

C0

λdλ
(λ− s j)(λ− sk)

.

If both s j and sk are outside i nt (C0), then the integral is equal to zero. If one of them is inside,
say s j , then s j = 0 and the integral is equal to

∮

C0

dλ
λ− sk

Then this integral is non nul if and only if sk is also inside i nt (C0). Thus

C =
∑

j ,k

w j w
>
j ∆̃wkw>k 1{} s j ∈ i nt (C0)1{} sk ∈ i nt (C0)

=
∑

s j=0

∑

sk=0

w j w
>
j ∆̃wkw>k

=W0W
>
0 ∆̃W0W

>
0 ,

where W0 are the eigenvectors associated to the eigenvalue 0. We have

D =
∑

j ,k ,l

w j w
>
j ∆̃wkw>k ∆̃wl w

>
l

1
2iπ

∮

C0

λdλ
(λ− s j)(λ− sk)(λ− sl)

.

The integral is not equal to zero if and only if exactly one eigenvalue, say si , is outside i nt (C0).
The integral is then equal to −1/si . Thus

D =−W0W
>
0 ∆̃W0W

>
0 ∆̃WS−1W>−WS−1W>∆̃W0W

>
0 ∆̃W0W

>
0

−W0W
>
0 ∆̃WS−1W>∆̃W0W

>
0 ,

where S =Diag(−s, s). Finally, putting everything together, we get

A.2. PROOF OF PROPOSITION ?? 127

Proposition 8. Let M = UDiag(s)V> ∈ Rn×p , the singular value decomposition of M, with
U ∈Rn×r , V ∈Rp×r . Let∆ ∈Rn×p . We have

‖M+∆‖∗ = ‖M‖∗+ ‖Q‖∗+ tr(VU>∆)+
∑

s j>0

∑

sk>0

(u>j ∆vk −u>k∆v j)
2

4(s j + sk)
+
∑

s j=0

∑

sk>0

(u>k∆v0 j)
2+(u>0 j∆vk)

2

2sk

+ o(‖∆‖2),

where

Q=U>0∆V0 − U>0∆V0V
>
0∆

>UDiag(s)−1

− Diag(s)−1V>∆>U0U
>
0∆V0 − U>0∆VDiag(s)−1U>∆V0.

A.2 Proof of proposition 2

In this section, we prove that if the loss function is strongly convex with respect to its second
argument, then the solution of the penalized empirical risk minimization is unique.

Let ŵ ∈ argminw
∑n

i=1 `(yi ,w
>xi)+λ‖XDiag(w)‖∗. If ŵ is in the nullspace of X, then ŵ= 0

and the minimum is unique. From now on, we suppose that the minima are not in the nullspace
of X.

Let u,v ∈ argminw
∑n

i=1 `(yi ,w
>xi) + λ‖XDiag(w)‖∗ and δ = v− u. By convexity of the

objective function, all the w = u+ tδ, for t ∈]0,1[are also optimal solutions, and so, we can
choose an optimal solution w such that wi 6= 0 for all i in the support of δ. Because the loss
function is strongly convex outside the nullspace of X, δ is in the nullspace of X.

Let XDiag(w) = UDiag(s)V> be the SVD of XDiag(w). We have the following develop-
ment around w:

‖XDiag(w+ tδ)‖∗ = ‖XDiag(w)‖∗+ tr(Diag(tδ)X>UV>)+
∑

si>0

∑

s j>0

tr(Diag(tδ)X>(uiv
>
j −u j v

>
i))

2

4(si + s j)
+
∑

si>0

∑

s j=0

tr(Diag(tδ)X>uiv
>
j)

2

2si

+ o(t 2).

We note S the support of w. Using the fact that the support of δ is included in S, we have
XDiag(tδ) =XDiag(w)Diag(tγ), where γi =

δi
wi

for i ∈ S and 0 otherwise. Then:

‖XDiag(w+ tδ)‖∗ = ‖XDiag(w)‖∗+ tγ> diag(VDiag(s)V>)+

∑

si>0

∑

s j>0

t 2 tr
�

(si − s j)Diag(γ)viv
>
j

�2

4(si + s j)
+
∑

si>0

∑

s j=0

t 2 tr
�

si Diag(γ)viv
>
j

�2

2si

+ o(t 2).

128 APPENDIX A. SOME FACTS ABOUT THE TRACE NORM

For small t , w+ tδ is also a minimum, and therefore, we have:

∀ si > 0, s j > 0, (si − s j) tr
�

Diag(γ)viv
>
j

�

= 0, (A.1)

∀ si > 0, s j = 0, tr
�

Diag(γ)viv
>
j

�

= 0. (A.2)

This could be summarized as

∀ si 6= s j , v>i (Diag(γ)v j) = 0. (A.3)

This means that the eigenspaces of Diag(w)X>XDiag(w) are stable by the matrix Diag(γ).
Therefore, Diag(w)X>XDiag(w) and Diag(γ) are simultaneously diagonalizable and so, they
commute. Therefore:

∀ i , j ∈ S, σi jγi = σi jγ j (A.4)

where σi j = [X
>X]i j . We define a partition (Sk) of S, such that i and j are in the same set Sk if

there exists a path i = a1, ...,am = j such that σan ,an+1
6= 0 for all n ∈ {1, ..., m− 1}. Then, using

equation (A.4), γ is constant on each Sk . δ being in the nullspace of X, we have:

0= δ>X>Xδ (A.5)

=
∑

Sk

∑

Sl

δ>Sk
X>XδSl

(A.6)

=
∑

Sk

δ>Sk
X>XδSk

(A.7)

=
∑

Sk

‖XδSk
‖2

2. (A.8)

So for all Si , XδSi
= 0. Since a predictor Xi is orthogonal to all the predictors belonging to

other groups defined by the partition (Sk), we can decompose the norm Ω:

‖XDiag(w)‖∗ =
∑

Sk

‖XDiag(wSk
)‖∗. (A.9)

We recall that γ is constant on each Sk and so δSk
is colinear to wSi

, by definition of γ . If δSi

is not equal to zero, this means that wSi
, which is not equal to zero, is in the nullspace of X.

Replacing wSi
by 0 will not change the value of the data fitting term but it will strictly decreases

the value of the norm Ω. This is a contradiction with the optimality of w. Thus all the δSi
are

equal to zero and the minimum is unique.

A.3 Proof of proposition 3

For the first inequality, we have

‖w‖2 = ‖PDiag(w)‖F

≤ ‖PDiag(w)‖∗.

A.3. PROOF OF PROPOSITION 3 129

For the second inequality, we have

‖PDiag(w)‖∗ = max
‖M‖o p≤1

tr
�

M>PDiag(w)
�

= max
‖M‖o p≤1

diag
�

M>P
�>

w

≤ max
‖M‖o p≤1

p
∑

i=1

|M(i)>P(i)| |wi |

≤ ‖w‖1.

The first equality is the fact that the dual norm of the trace norm is the operator norm and
the second inequality uses the fact that all matrices of operator norm smaller than one have
columns of `2 norm smaller than one.

130 APPENDIX A. SOME FACTS ABOUT THE TRACE NORM

BIBLIOGRAPHY

Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Pa̧sca, M., and Soroa, A. (2009). A study on
similarity and relatedness using distributional and wordnet-based approaches. In Proceedings
of Human Language Technologies: The 2009 Annual Conference of the North American Chapter
of the Association for Computational Linguistics, pages 19–27. Association for Computational
Linguistics.

Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., and Telgarsky, M. (2012). Tensor decompo-
sitions for learning latent variable models. arXiv preprint arXiv:1210.7559.

Argyriou, A., Evgeniou, T., and Pontil, M. (2007). Multi-task feature learning. Advances in
neural information processing systems, 19:41.

Bach, F. (2008a). Bolasso: model consistent Lasso estimation through the bootstrap. In Pro-
ceedings of the 25th international conference on Machine learning, pages 33–40. ACM.

Bach, F. (2008b). Consistency of the group Lasso and multiple kernel learning. The Journal of
Machine Learning Research, 9:1179–1225.

Bach, F. (2008c). Consistency of trace norm minimization. The Journal of Machine Learning
Research, 9:1019–1048.

Bach, F., Jenatton, R., Mairal, J., and Obozinski, G. (2012). Optimization with sparsity-
inducing penalties. Foundations and Trends in Machine Learning, 3(2-3).

Backus, J. W. (1959). The syntax and semantics of the proposed international algebraic lan-
guage of the zurich acm-gamm conference. Proceedings of the International Comference on
Information Processing, 1959.

Baroni, M., Bernardini, S., Ferraresi, A., and Zanchetta, E. (2009). The wacky wide web: a
collection of very large linguistically processed web-crawled corpora. Language resources and
evaluation, 43(3):209–226.

Baroni, M. and Lenci, A. (2010). Distributional memory: A general framework for corpus-
based semantics. Computational Linguistics, 36(4):673–721.

Baroni, M. and Lenci, A. (2011). How we blessed distributional semantic evaluation. In Pro-
ceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics,
pages 1–10. Association for Computational Linguistics.

131

132 BIBLIOGRAPHY

Baroni, M. and Zamparelli, R. (2010). Nouns are vectors, adjectives are matrices: Represent-
ing adjective-noun constructions in semantic space. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing, pages 1183–1193. Association for Compu-
tational Linguistics.

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural probabilistic language
model. Journal of Machine Learning Research, 3:1137–1155.

Bickel, P., Ritov, Y., and Tsybakov, A. (2009). Simultaneous analysis of Lasso and Dantzig
selector. The Annals of Statistics, 37(4):1705–1732.

Blei, D., Griffiths, T., Jordan, M., and Tenenbaum, J. (2004). Hierarchical topic models and the
nested chinese restaurant process. Advances in neural information processing systems, 16:106–
114.

Blei, D. M. and Lafferty, J. D. (2006). Correlated topic models. In Advances in neural informa-
tion processing systems, pages 147–154.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. The Journal of
Machine Learning Research, 3:993–1022.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foundations and
Trends in Machine Learning, 3(1):1–122.

Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge Univ Pr.

Boyd-Graber, J., Blei, D. M., and Zhu, X. (2007). A topic model for word sense disambiguation.
In EMNLP.

Boyd-Graber, J. L. and Blei, D. (2009). Syntactic topic models. In Koller, D., Schuurmans,
D., Bengio, Y., and Bottou, L., editors, Advances in Neural Information Processing Systems 21,
pages 185–192.

Brown, P. F., deSouza, P. V., Mercer, R. L., Della Pietra, V. J., and Lai, J. C. (1992). Class-based
n-gram models of natural language. Computational linguistics, 18(4):467–479.

Buntine, W. (2002). Variational extensions to em and multinomial pca. In Machine Learning:
ECML 2002, pages 23–34. Springer.

Candito, M., Nivre, J., Denis, P., and Anguiano, E. H. (2010). Benchmarking of statistical
dependency parsers for french. In Proceedings of the 23rd International Conference on Com-
putational Linguistics: Posters, pages 108–116. Association for Computational Linguistics.

BIBLIOGRAPHY 133

Cappé, O. and Moulines, E. (2009). On-line expectation–maximization algorithm for la-
tent data models. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
71(3):593–613.

Chen, S. and Donoho, D. (1994). Basis pursuit. In Signals, Systems and Computers, 1994. 1994
Conference Record of the Twenty-Eighth Asilomar Conference on, volume 1, pages 41–44. IEEE.

Chen, S. S., Donoho, D. L., and Saunders, M. A. (1998). Atomic decomposition by basis
pursuit. SIAM journal on scientific computing, 20(1):33–61.

Chomsky, N. (1956). Three models for the description of language. Information Theory, IRE
Transactions on, 2(3):113–124.

Chrupala, G. (2011). Efficient induction of probabilistic word classes with lda.

Ciaramita, M. and Altun, Y. (2006). Broad-coverage sense disambiguation and information
extraction with a supersense sequence tagger. In Proceedings of the 2006 Conference on Empir-
ical Methods in Natural Language Processing, pages 594–602, Sydney, Australia. Association
for Computational Linguistics.

Collobert, R. and Weston, J. (2008). A unified architecture for natural language processing:
Deep neural networks with multitask learning. In International Conference on Machine
Learning, ICML.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. (2011). Natu-
ral language processing (almost) from scratch. Journal of Machine Learning Research, 12:2493–
2537.

Combettes, P. L. and Pesquet, J.-C. (2011). Proximal splitting methods in signal processing.
In Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pages 185–212.
Springer.

Curran, J. R. and Moens, M. (2002). Scaling context space. In Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics, pages 231–238. Association for Com-
putational Linguistics.

Daubechies, I., DeVore, R., Fornasier, M., and Güntürk, C. S. (2010). Iteratively reweighted
least squares minimization for sparse recovery. Communications on Pure and Applied Mathe-
matics, 63(1):1–38.

Davis, G., Mallat, S., and Avellaneda, M. (1997). Adaptive greedy approximations. Constructive
approximation, 13(1):57–98.

Davis, G., Mallat, S., and Zhang, Z. (1994). Adaptive time-frequency decompositions with
matching pursuit. Optical Engineering, 33(7).

134 BIBLIOGRAPHY

De Marneffe, M. C., MacCartney, B., and Manning, C. D. (2006). Generating typed depen-
dency parses from phrase structure parses. In Proceedings of LREC, volume 6, pages 449–454.

De Marneffe, M. C. and Manning, C. D. (2008). The Stanford typed dependencies represen-
tation. In Coling 2008: Proceedings of the workshop on Cross-Framework and Cross-Domain
Parser Evaluation, pages 1–8. Association for Computational Linguistics.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. (1990). In-
dexing by latent semantic analysis. Journal of the American society for information science.

Donoho, D. L. and Johnstone, J. M. (1994). Ideal spatial adaptation by wavelet shrinkage.
Biometrika, 81(3):425–455.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. The
Annals of statistics, 32(2):407–499.

Eisenstein, J., O’Connor, B., Smith, N. A., and Xing, E. P. (2010). A latent variable model for
geographic lexical variation. In EMNLP.

Faruqui, M., Padó, S., and Sprachverarbeitung, M. (2010). Training and evaluating a German
named entity recognizer with semantic generalization. Semantic Approaches in Natural Lan-
guage Processing.

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., and Ruppin, E.
(2001). Placing search in context: The concept revisited. In Proceedings of the 10th interna-
tional conference on World Wide Web, pages 406–414. ACM.

Firth, J. R. (1957). A synopsis of linguistic theory, 1930-1955.

Freitag, D. (2004). Trained named entity recognition using distributional clusters. In Proceed-
ings of the 2004 Conference on Empirical Methods in Natural Language Processing.

Gaussier, E. and Goutte, C. (2005). Relation between plsa and nmf and implications. In Pro-
ceedings of the 28th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 601–602. ACM.

Golub, G. and Van Loan, C. (1996). Matrix computations. Johns Hopkins Univ Pr.

Goodman, J. T. (2001). A bit of progress in language modeling. Computer Speech & Language,
15(4):403–434.

Grandvalet, Y. and Canu, S. (1999). Outcomes of the equivalence of adaptive ridge with least
absolute shrinkage. Advances in Neural Information Processing Systems 11: Proceedings of the
1998 Confernce, 11:445.

Grave, E., Obozinski, G., and Bach, F. (2013a). Domain adaptation for sequence labeling using
hidden Markov models. In Proceedings of the NIPS Workshop: new directions in transfer and
multi-task: learning across domains and tasks.

BIBLIOGRAPHY 135

Grave, E., Obozinski, G., and Bach, F. (2013b). Hidden Markov tree models for semantic class
induction. In Proceedings of the Seventeenth Conference on Computational Natural Language
Learning, pages 94–103, Sofia, Bulgaria. Association for Computational Linguistics.

Grave, E., Obozinski, G. R., and Bach, F. (2011). Trace lasso: a trace norm regularization for
correlated designs. In Advances in Neural Information Processing Systems (NIPS).

Grefenstette, E. and Sadrzadeh, M. (2011). Experimental support for a categorical composi-
tional distributional model of meaning. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 1394–1404. Association for Computational Linguistics.

Griffiths, T. L., Steyvers, M., Blei, D. M., and Tenenbaum, J. B. (2005). Integrating topics and
syntax. Advances in Neural Information Processing Systems, 17:537–544.

Guevara, E. (2010). A regression model of adjective-noun compositionality in distributional
semantics. In Proceedings of the 2010 Workshop on GEometrical Models of Natural Language
Semantics, pages 33–37. Association for Computational Linguistics.

Guevara, E. (2011). Computing semantic compositionality in distributional semantics. In
Proceedings of the Ninth International Conference on Computational Semantics (IWCS 2011),
pages 135–144. Citeseer.

Haffari, G., Razavi, M., and Sarkar, A. (2011). An ensemble model that combines syntactic and
semantic clustering for discriminative dependency parsing. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics.

Harris, Z. S. (1954). Distributional structure. Springer.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The elements of statistical learning.

Hoerl, A. and Kennard, R. (1970). Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67.

Hoffman, M., Blei, D., Wang, C., and Paisley, J. (2013). Stochastic variational inference. Journal
of Machine Learning Research, 14:1303–1347.

Hofmann, T. (1999). Probabilistic latent semantic analysis. In Proceedings of the Fifteenth con-
ference on Uncertainty in artificial intelligence.

Huang, F., Ahuja, A., Downey, D., Yang, Y., Guo, Y., and Yates, A. (2013). Learning represen-
tations for weakly supervised natural language processing tasks. Computational Linguistics.

Huang, F., Yates, A., Ahuja, A., and Downey, D. (2011). Language models as representations
for weakly supervised nlp tasks. In Proceedings of the Fifteenth Conference on Computational
Natural Language Learning, pages 125–134, Portland, Oregon, USA. Association for Com-
putational Linguistics.

136 BIBLIOGRAPHY

Jacob, L., Obozinski, G., and Vert, J.-P. (2009). Group lasso with overlap and graph lasso. In
Proceedings of the 26th Annual International Conference on Machine Learning, pages 433–440.
ACM.

Jenatton, R., Audibert, J.-Y., and Bach, F. (2011). Structured variable selection with sparsity-
inducing norms. The Journal of Machine Learning Research, 12:2777–2824.

Jenatton, R., Le Roux, N., Bordes, A., Obozinski, G., et al. (2012). A latent factor model for
highly multi-relational data. In NIPS 2012-Neural Information Processing Systems.

Jurafsky, D. and Martin, J. H. (2000). Speech and language processing: An introduction to natural
language processing, computational linguistics, and speech recognition. Prentice Hall.

Kneser, R. and Ney, H. (1993). Improved clustering techniques for class-based statistical lan-
guage modelling. In Third European Conference on Speech Communication and Technology.

Koo, T., Carreras, X., and Collins, M. (2008). Simple semi-supervised dependency parsing. In
Proceedings of ACL-08: HLT.

Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. Proceedings of the 18th International Con-
ference on Machine Learning.

Landauer, T. K. and Dumais, S. T. (1997). A solution to plato’s problem: The latent semantic
analysis theory of acquisition, induction, and representation of knowledge. Psychological
review, 104(2):211.

Lavergne, T., Cappé, O., and Yvon, F. (2010). Practical very large scale crfs. In Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics, pages 504–513.
Association for Computational Linguistics.

Li, W. and McCallum, A. (2005). Semi-supervised sequence modeling with syntactic topic
models. In Proceedings of the National Conference on Artificial Intelligence.

Liang, P. (2005). Semi-supervised learning for natural language. Master’s thesis, Massachusetts
Institute of Technology.

Liang, P. and Klein, D. (2009). Online EM for unsupervised models. In Human Language
Technologies: The 2009 Annual Conference of the North American Chapter of the Association
for Computational Linguistics, pages 611–619.

Lin, D. (1998). Automatic retrieval and clustering of similar words. In Proceedings of the 17th
international conference on Computational linguistics-Volume 2, pages 768–774. Association
for Computational Linguistics.

Liu, H., Roeder, K., and Wasserman, L. (2010). Stability approach to regularization selection
(stars) for high dimensional graphical models. Advances in Neural Information Processing
Systems, 23.

BIBLIOGRAPHY 137

Lorbert, A., Eis, D., Kostina, V., Blei, D. M., and Ramadge, P. J. (2010). Exploiting covariate
similarity in sparse regression via the pairwise elastic net. JMLR - Proceedings of the 13th
International Conference on Artificial Intelligence and Statistics, 9:477–484.

Lund, K. and Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical
co-occurrence. Behavior Research Methods, Instruments, & Computers.

Mallat, S. and Zhang, Z. (1993a). Matching pursuits with time-frequency dictionaries. Signal
Processing, IEEE Transactions on, 41(12):3397–3415.

Mallat, S. G. and Zhang, Z. (1993b). Matching pursuits with time-frequency dictionaries. Signal
Processing, IEEE Transactions on, 41(12):3397–3415.

Manning, C. D. and Schütze, H. (1999). Foundations of statistical natural language processing,
volume 999. MIT Press.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a large annotated
corpus of english: The penn treebank. Computational linguistics, 19(2):313–330.

Meinshausen, N. and Bühlmann, P. (2010). Stability selection. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 72(4):417–473.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed represen-
tations of words and phrases and their compositionality. In Burges, C., Bottou, L., Welling,
M., Ghahramani, Z., and Weinberger, K., editors, Advances in Neural Information Processing
Systems 26, pages 3111–3119.

Miller, G. A. (1995). Wordnet: a lexical database for english. Communications of the ACM,
38(11):39–41.

Miller, S., Guinness, J., and Zamanian, A. (2004). Name tagging with word clusters and dis-
criminative training. In Proceedings of HLT-NAACL.

Misra, H., Yvon, F., Jose, J. M., and Cappe, O. (2009). Text segmentation via topic modeling:
an analytical study. In Proceedings of the 18th ACM conference on Information and knowledge
management, pages 1553–1556. ACM.

Mitchell, J. and Lapata, M. (2008). Vector-based models of semantic composition. In ACL,
pages 236–244.

Mitchell, J. and Lapata, M. (2010). Composition in distributional models of semantics. Cogni-
tive Science, 34(8).

Mnih, A. and Hinton, G. E. (2008). A scalable hierarchical distributed language model. In
Advances in neural information processing systems, pages 1081–1088.

Montague, R. (1970). Universal grammar. Theoria, 36(3):373–398.

138 BIBLIOGRAPHY

Montague, R. (1973). The proper treatment of quantification in ordinary english. In Approaches
to natural language, pages 221–242. Springer.

Navigli, R. (2009). Word Sense Disambiguation: a survey. ACM Computing Surveys, 41(2):1–69.

O’Connor, B., Stewart, B. M., and Smith, N. A. (2013). Learning to extract international
relations from political context. In Association of Computational Linguistics.

Padó, S. and Lapata, M. (2007). Dependency-based construction of semantic space models.
Computational Linguistics, 33(2):161–199.

Pal, C., Sutton, C., and McCallum, A. (2006). Sparse forward-backward using minimum di-
vergence beams for fast training of conditional random fields. In ICASSP 2006 Proceedings.,
volume 5, pages V–V. IEEE.

Pati, Y. C., Rezaiifar, R., and Krishnaprasad, P. (1993). Orthogonal matching pursuit: Recur-
sive function approximation with applications to wavelet decomposition. In Signals, Systems
and Computers, 1993. 1993 Conference Record of The Twenty-Seventh Asilomar Conference on,
pages 40–44. IEEE.

Petrov, S. (2009). Coarse-to-Fine Natural Language Processing. PhD thesis, University of Cali-
fornia at Bekeley, Berkeley, CA, USA.

Petrov, S. and McDonald, R. (2012). Overview of the 2012 shared task on parsing the web.
Notes of the First Workshop on Syntactic Analysis of Non-Canonical Language (SANCL).

Salton, G., Wong, A., and Yang, C.-S. (1975). A vector space model for automatic indexing.
Communications of the ACM, 18(11):613–620.

Sandhaus, E. (2008). The New York Times annotated corpus. Linguistic Data Consortium,
Philadelphia, 6(12):e26752.

Schutze, H. (1992). Dimensions of meaning. In Supercomputing’92. Proceedings, pages 787–796.
IEEE.

Séaghdha, D. O. (2010). Latent variable models of selectional preference. In Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics, pages 435–444. Associ-
ation for Computational Linguistics.

Seeger, M. (2008). Bayesian inference and optimal design for the sparse linear model. The Journal
of Machine Learning Research, 9:759–813.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge
university press.

BIBLIOGRAPHY 139

Socher, R., Huval, B., Manning, C. D., and Ng, A. Y. (2012). Semantic compositionality
through recursive matrix-vector spaces. In Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and Computational Natural Language Learning,
pages 1201–1211. Association for Computational Linguistics.

Sutton, C. and McCallum, A. (2012). An introduction to conditional random fields. Founda-
tions and Trends in Machine Learning, 4(4).

Täckström, O., McDonald, R., and Uszkoreit, J. (2012). Cross-lingual word clusters for direct
transfer of linguistic structure. In Proceedings of the 2012 Conference of the North American
Chapter of the Association for Computational Linguistics.

Tesnière, L. (1959). Eléments de syntaxe structurale, volume 1965. Klincksieck Paris.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58(1):267–288.

Tikhonov, A. (1963). Solution of incorrectly formulated problems and the regularization
method. In Soviet Math. Dokl., volume 5, page 1035.

Titov, I. and Klementiev, A. (2012). A Bayesian approach to unsupervised semantic role induc-
tion. In Proceedings of the Conference of the European Chapter of the Association for Computa-
tional Linguistics, Avignon, France.

Toutanova, K. and Johnson, M. (2007). A bayesian lda-based model for semi-supervised part-
of-speech tagging. In NIPS, pages 1521–1528.

Tratz, S. and Hovy, E. (2011). A fast, accurate, non-projective, semantically-enriched parser. In
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing.

Turian, J., Ratinov, L., and Bengio, Y. (2010). Word representations: a simple and general
method for semi-supervised learning. In Proceedings of the 48th Annual Meeting of the Associ-
ation for Computational Linguistics.

Turney, P. D. (2006). Similarity of semantic relations. Computational Linguistics, 32(3):379–
416.

Uszkoreit, J. and Brants, T. (2008). Distributed word clustering for large scale class-based lan-
guage modeling in machine translation. Proceedings of ACL-08: HLT.

Van de Cruys, T. (2010). Mining for Meaning. The Extraction of Lexico-Semantic Knowledge from
Text. PhD thesis, University of Groningen, The Netherlands.

Van de Cruys, T., Poibeau, T., and Korhonen, A. (2013). A tensor-based factorization model
of semantic compositionality. In Proceedings of NAACL-HLT, pages 1142–1151.

Vapnik, V. N. (1998). Statistical learning theory. Wiley.

140 BIBLIOGRAPHY

Vecchi, E. M., Baroni, M., and Zamparelli, R. (2011). (linear) maps of the impossible: Capturing
semantic anomalies in distributional space. In Proceedings of the Workshop on Distributional
Semantics and Compositionality, pages 1–9, Portland, Oregon, USA. Association for Com-
putational Linguistics.

Wainwright, M. (2009). Sharp thresholds for noisy and high-dimensional recovery of sparsity
using `1-constrained quadratic programming (lasso). IEEE Transactions on Information The-
ory, 55(5):2183–2202.

Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families, and varia-
tional inference. Foundations and Trends in Machine Learning, 1(1-2):1–305.

Wright, S. J., Nowak, R. D., and Figueiredo, M. A. (2009). Sparse reconstruction by separable
approximation. Signal Processing, IEEE Transactions on, 57(7):2479–2493.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped vari-
ables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67.

Yuan, M. and Lin, Y. (2007). On the non-negative garrotte estimator. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 69(2):143–161.

Zhang, T. (2008). Adaptive forward-backward greedy algorithm for sparse learning with linear
models. Advances in Neural Information Processing Systems, 22.

Zhao, P., Rocha, G., and Yu, B. (2009). The composite absolute penalties family for grouped
and hierarchical variable selection. The Annals of Statistics, 37(6A):3468–3497.

Zhao, P. and Yu, B. (2006). On model selection consistency of lasso. The Journal of Machine
Learning Research, 7:2541–2563.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American statistical
association, 101(476):1418–1429.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320.

BIBLIOGRAPHY 141

Abstract: This thesis, which is organized in two independent parts, presents work on distributional
semantics and on variable selection.

In the first part, we introduce a new method for learning good word representations using large
quantities of unlabeled sentences. The method is based on a probabilistic model of sentence, using a
hidden Markov model and a syntactic dependency tree. The latent variables, which correspond to the
nodes of the dependency tree, aim at capturing the meanings of the words. We develop an efficient
algorithm to perform inference and learning in those models, based on online EM and approximate
message passing. We then evaluate our models on intrinsic tasks such as predicting human similarity
judgements or word categorization, and on two extrinsic tasks: named entity recognition and supersense
tagging.

In the second part, we introduce, in the context of linear models, a new penalty function to perform
variable selection in the case of highly correlated predictors. This penalty, called the trace Lasso, uses the
trace norm of the selected predictors, which is a convex surrogate of their rank, as the criterion of model
complexity. The trace Lasso interpolates between the `1-norm and `2-norm. In particular, it is equal to
the `1-norm if all predictors are orthogonal and to the `2-norm if all predictors are equal. We propose
two algorithms to compute the solution of least-squares regression regularized by the trace Lasso, and
perform experiments on synthetic datasets to illustrate the behavior of the trace Lasso.

KEYWORDS: distributional semantics; hidden Markov model; dependency tree; word representation;
semantic class; variable selection; trace Lasso.

Résumé : Cette thèse, organisée en deux parties indépendantes, a pour objet la semantique distribu-
tionnelle et la sélection de variables.

Dans la première partie, nous introduisons une nouvelle méthode pour l’apprentissage de repré-
sentations de mots à partir de grandes quantités de texte brut. Cette méthode repose sur un modèle
probabiliste de la phrase, utilisant modèle de Markov caché et arbre de dépendance. Nous présentons
un algorithme efficace pour réaliser l’inférence et l’apprentissage dans un tel modèle, fondé sur l’algo-
rithme EM en ligne et la propagation de message approchée. Nous évaluons les modèles obtenus sur des
taches intrinsèques, telles que prédire des jugements de similarité humains ou catégoriser des mots et
deux taches extrinsèques : la reconnaissance d’entités nommées et l’étiquetage en supersens.

Dans la seconde partie, nous introduisons, dans le contexte des modèles linéaires, une nouvelle péna-
lité pour la sélection de variables en présence de prédicteurs fortement corrélés. Cette pénalité, appelée
trace Lasso, utilise la norme trace des prédicteurs sélectionnés, qui est une relaxation convexe de leur
rang, comme critère de complexité. Le trace Lasso interpole les normes `1 et `2. En particulier, lorsque
tous les prédicteurs sont orthogonaux, il est égal à la norme `1, tandis que lorsque tous les prédicteurs
sont égaux, il est égal à la norme `2. Nous proposons deux algorithmes pour calculer la solution du pro-
blème de régression aux moindres carrés regularisé par le trace Lasso et réalisons des expériences sur des
données synthétiques.

MOTS CLÉS : sémantique distributionnelle ; modèle de Markov caché ; arbre de dépendance ; représen-
tation de mots ; classe sémantique ; sélection de variables ; trace Lasso.

	Introduction
	I Distributional semantics
	A brief introduction to natural language processing
	What is a word?
	Word, form and lemma
	From morphemes to words: a bit of morphology
	The importance of morphology for NLP
	Parts-of-speech

	From words to sentences: syntax
	Constituency grammars
	Dependency grammars

	Semantics
	Lexical semantics
	Semantic compositionality

	Distributional semantics
	Vector space models
	Latent Dirichlet allocation and topic models
	Brown clustering and other clusterings

	Hidden Markov tree models for semantic class induction
	Model
	Markov chain model
	Dependency tree model
	Brown clustering on dependency trees

	Inference and learning
	Online EM
	Approximate inference
	State splitting
	Initialization

	Experiments
	Datasets
	Semantic classes
	Transitions between semantic classes
	Vectorial representation of words
	On optimization parameters

	Relation to previous work
	Conclusion

	Intrinsic evaluations
	Predicting similarity judgements
	BLESS
	Word categorization
	Concrete nouns categorization
	Abstract v.s. concrete nouns categorization
	Verbs categorization

	Compositional semantics
	Mitchell and Lapata dataset
	Grefenstette and Sadrzadeh dataset
	Vecchi et al. dataset

	Semi-supervised learning
	Challenges of statistical methods for NLP
	A solution: semi-supervised learning

	Experimental setting
	Named entity recognition
	Presentation
	Experiments

	Supersense tagging
	Presentation
	Experiments

	Conclusion

	Conclusion

	II Structured sparsity
	A brief introduction to statistical learning and variable selection
	Empirical risk minimization
	Loss functions
	Linear models

	Approximation-estimation tradeoff
	Model selection
	k-fold cross validation

	Some classical estimators for linear regression
	Least squares regression
	Ridge regression
	Lasso
	Elastic net
	Pairwise elastic net
	Group Lasso

	Optimization algorithms for the Lasso
	Homotopy algorithm: LARS
	Iteratively reweighted least squares
	Proximal methods

	Trace Lasso: a trace norm regularization for correlated designs
	Introduction
	Definition and properties of the trace Lasso
	The ridge, the Lasso and the trace Lasso
	A new family of penalty functions
	Dual norm

	Optimization algorithms
	Iteratively reweighted least squares
	Alternating direction method of multipliers
	Choice of

	Approximation around the Lasso
	Experiments
	Generation of synthetic data
	Comparison of optimization algorithms
	Comparison with other estimators

	Conclusion

	Some facts about the trace norm
	Perturbation of the trace norm
	Jordan-Wielandt matrices
	Cauchy residue formula
	Perturbation analysis

	Proof of proposition 2
	Proof of proposition 3

