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Résumé en francais

Cette thése s’articule autour de problématiques liées au récent domaine de I'anatomie
numeérique dont 'objet est de fournir des cadres a la fois mathématiques et numériques
pour estimer la variabilité statistique au sein de populations de formes anatomiques.
De tels modéles constituent une étape importante pour de nombreuses applica-
tions, notamment la détection automatique de pathologies en imagerie biomédicale.
En termes mathématiques, ces problémes ont pu étre formalisés en grande partie
via les travaux de Grenander et la notion d’espace de formes (ensemble d’objets
géomeétriques sur lequel agit transitivement un groupe de transformations), puis par
Iintroduction du modéle LDDMM pour définir des groupes de ’grandes déforma-
tions’ et des métriques invariantes a droite sur ces groupes.

Dans ce travail, on s’intéresse dans un premier temps au cas d’espaces de formes
donnés par un ensemble de courbes, de surfaces ou sous-variétés avec pour premier
objectif de définir une représentation et des termes d’attache aux données adéquats
pour mesurer la dissimilarité entre objets dans les problémes de recalage par grande
déformation. Ce probléme a été une premiére fois abordé, en anatomie numérique,
par Glaunés & Vaillant (2005) dans le cas d’objets orientés en adaptant le concept
de courant de la théorie géométrique de la mesure. La premiére contribution de ce
travail est de proposer une extension de ces idées pour des formes géométriques non-
orientées via la représentation des varifolds, issue & nouveau de la théorie géométrique
de la mesure. On montre en particulier I'intérét de ces représentations non-orientées
dans plusieurs situations bien distinctes.

Dans un second temps, ce travail se penche sur ’étude d’objets géométrico-fonctionnels
aussi baptisés 'formes fonctionnelles’; c¢’est & dire de fonctions ou de signaux définis
sur des supports géométriques variables entre les individus. Ces types de données
sont de plus en plus fréquents en anatomie numérique mais, & notre connaissance, la
plupart des approches standards commencent par normaliser la géométrie des objets
pour se ramener au cas d’images plus classiques définies sur un support fixe. L’'un
des problémes importants sur lequel se concentre cette thése est de donner un cadre
pour modéliser et analyser géométrie et signal conjointement. Pour cela, on définit
notamment la notion de métamorphoses géométrico-fonctionnelles pour généraliser
celles de grande déformation et de métriques invariantes a droite & ce contexte ainsi
que la notion de courant fonctionnel pour mesurer la dissimilarité entre deux formes
fonctionnelles. Ceci débouche assez naturellement sur un tout nouveau cadre math-
ématique et algorithmique permettant d’étendre les outils usuels de recalage.

La derniére partie de la thése s’intéresse & la situation plus générale de l'estima-
tion et l'analyse d’atlas pour des populations de telles structures. On propose en
particulier une formulation mathématique bien posée pour de tels problémes ainsi
qu'un algorithme d’estimation simultanée géométrie/fonction de ces atlas. L’étape
qui suit est naturellement I'analyse statistique de la variabilité des atlas : dans ce but,
nous adaptons les outils classiques de PCA pour I'analyse des modes propres d’une
part et de LDA pour la classification d’autre part. Toutes ces méthodes sont enfin
illustrées sur des applications & quelques jeux de données synthétiques et d’autres
issues de 'imagerie biomédicale.
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1.1 Introduction

The work presented in this thesis can be articulated, for its essential part, around
a recent problematic that arose in the field of computational anatomy following
the increasing appearance of a new type of data structures that can be described as
geometrico-functional. Computational anatomy has focused historically on the study
of geometrical shapes as sets of points, curves and surfaces on the one side or classical
images on the other. Yet the case of signals supported on variable geometrical shapes,
as for instance activation maps on cortical surfaces in functional MRI, has been
rarely addressed in its generality. We call functional shapes or fshapes such kind of
structures made of a shape that carries a certain signal function.

The ultimate goal of computational anatomy, as we shall explain with more details
in the next section, is to analyze the anatomical variability among a population of
different subjects. Several frameworks have been already developed to achieve this
for usual shapes. In this thesis, we intend to provide or at least initiate a complete
theoretical and numerical framework for treating fshapes. The main challenge is to
define a setting that can analyze both geometrical and signal variability together,
as opposed to previous approaches that rather intend to normalize geometries of
the subjects in the first place to then compare the signals. One of the most crucial
point is thus the question of representation of the set of fshapes and the definition
of appropriate metrics that can account for the geometrico-functional variability.
The objective of this first chapter is double. We introduce, in the two first sec-
tions, the general context and framework of computational anatomy. This is also
the occasion to present all the mathematical concepts on which this work rely in
large part. In the first section, we present what is related to the construction of
large deformation groups including the geodesic formalism for diffeomorphisms and
reproducing kernels for the definition of Hilbert metrics on vector fields. The second
section deals with the issues of shape dissimilarity measures for inexact matching. In
particular, we make a brief summary of the theory of currents, that shall be a cen-
tral concept in this thesis. In the second place (section 1.4), we analyze the specific
problematics related to functional shapes themselves by initiating the construction
of a Riemannian framework for a simple class of fshapes and present the challenging
issue of dissimilarity measures for these objects, that constitute the topic of the next
chapters.

1.2 Computational Anatomy and deformation groups

1.2.1 General issues

One of the major origin of the present work is the development of the recent and very
active discipline named Computational Anatomy. If the term was originally coined
by Grenander and Miller in [45], this domain can be rooted to earlier works in biol-
ogy related to morphogenesis that we can trace up to the pioneer study of D’Arcy
Thompson [80]. The problematics were to understand and model the anatomical
variations between species and try to explain physically the evolution in the shapes
of certain body structures. In that purpose, D’Arcy Thompson was the first to intro-
duce the idea of simple geometrical transformations underlying the shape variability
as we show on the examples of figure 1.1.

With the more recent development of a wide variety of non-invasive acquisition tech-
niques provided for instance by microscopy, coherence tomography, magnetic res-
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Figure 1.1: Two illustrations from D’Arcy Thompson’s works.

onance imaging (MRI), diffusion tensor imaging (DTI), the accessible anatomical
structures as well as the number of different subjects acquired for each structure has
literally exploded, particularly during the past decade. A lot of different anatomi-
cal parts can be now imaged, giving to scientists a growing number of exploitable
databases. Interestingly, the development of data acquisition technology came along
with new challenges and perspectives at many levels. From the dataset point of view,
the emergence of these new techniques has resulted in a diversification in the variety
of shapes that are to be analysed, going from 2D or 3D images, landmarks, curves,
surfaces, fiber sets... This involves particular modelling issues that we shall discuss
later on. On the other hand, the access to certain complex anatomical structures, the
brain is one of the most emblematic example, has evidenced that shape variability
is not only present at the inter-specie level but can be also very pronounced among
individuals of the same specie. The study of this natural anatomical variability has
thus drawn sustained attention from researchers for the past decades.

Another important reason is that such questions have become of considerable interest
in the field of medical imaging. Indeed, these new technologies have enabled more
advanced studies of abnormal developments of certain organs, paving the way to early
diagnosis of diseases caused or conveyed by unexpected deformations. Yet, in order
to make such detections not simply qualitative and more automatized, the central
issue is thus to estimate numerically what a pathological shape variation means.
This is one the fundamental problematics of computational anatomy : formally, it
consists in estimating statistical models of shape variability for different groups of
subjects and propose statistical tests for discriminating 'natural’ from "pathological’
variations. It is clearly a vast and difficult problem in general. Indeed, even the
simpler question of computing shape variation between two given subjects, which is
called shape registration or matching, has already given birth to many theoretical and
numerical issues, that we shall elaborate in the following. Despite such difficulties,
the existing methods, developed in the field of computational anatomy, have already
proved successful in countless applications : let’s quote, among many others, the
study of the shape of Hippocampus in relation to the evolution of Alzheimer disease
[24, 26, 75, 81], similar works on the planum temporale for schizophrenia [69], Down
syndrome [33], the analysis of brain connectivity based on DTI imaging 30, 85|, or
studies of heart shapes and malformations |13, 56, 60|.
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1.2.2 Principle of shape analysis through group actions

Going back to the intuition of D’Arcy Thompson, the idea of seeing shape differences
through certain transformations of the space was first formalized mathematically
and in its full generality by Grenander in [44]. This formalism allowed the prolific
interactions between anatomy on the one hand and pattern theory and statistics on
the other, giving birth to computational anatomy as we know it.

To briefly present this formalism, we could say that, in this point of view, a shape
space is a homogeneous space consisting of a set M of ’shapes’ living in a domain
R™ (it can be either a set of images, curves, submanifolds etc...) which is acted on
the left by a group G of transformations of the space R™. The fact that we consider
homogeneous spaces imposes that the action of G on M is transitive. Another way
to say so is that we restrict to one particular orbit G.mg with mg € M. Thus all
shapes in the shape space are obtained by transformations of one particular mg (often
called the template) by elements of the group G. The group G may be basically any
subgroup of the group of bijections of R"™ into itself. We generally assume more
regularity by choosing subgroups of Diff(R™), the set of C!-diffeomorphisms of R™.
Here are two classical examples of shape spaces.

Example 1.2.1. Landmarks. We consider the space
M={m=(z1,..,2p) € R")P / Vi # j, x; # z;}

i.e the space of all distinct p landmarks in R™. We define the left group action of
G = Diff(R™) on M by :

Vge G,Vme M, gm = (g(x1), ..., 9(xp))

Forn > 2, the action of G on M is transitive which makes M a shape space in the
previous sense. Following the situation of landmarks, more sophisticated shape spaces
can be also obtained by quotienting M with the group of isometries of R". These are
known as the Kendall spaces and are studied in [51].

Example 1.2.2. Images. Let Q C R™ be a fived domain of R™ and M = L?*(),R) the
set of continuous images on Q2. One can define a left action of the group G = Diff(QQ)
on M by setting :

Vge GVIeM, gl =Tog™ !

Then for any Iy € M, the orbit G.1y is a homogeneous space.

Now, in this modelling, a natural way to compare two shapes mg, m; € M would be
to evaluate the amount of deformation needed to deform mg on m;. Mathematically,
assuming that G is equipped with a distance dg, one wants to induce from dg a
distance on M. This is not totally trivial because for mg and my in M, there can be
several elements g € G such that g.mo = my. In fact, if G,,,, denotes the isotropy
subgroup of my, the set of such g is goG,,, where gyo € G is one transformation such
that go.mo = my. Yet, as shown for example in [86] chapter 16, the following holds :

Theorem 1.2.1. If M is a homogeneous space under the action of G and if dg is
a right-equivariant distance on G, i.e dg(g19,929) = da(g1,92) for all g,g1,92 € G
then :

dar(mo, my) = ;g(f;{d(;(fdvg)/ g.mo =m1} (1.1)

defines a pseudo-distance on M. It is a distance if, in addition, Gy, is closed in G
for the topology induced by dg.
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The previous theorem implies that the construction of a distance on the shape space
can be reduced to the one of defining right-invariant distances on the group G. From
eq.(1.1), we see that the induced distance on M then consists in finding the ’best’
deformation g (in the sense that g is closest to identity for d¢g) that transforms mg
into my. This also means that, formally, the study of shape variability in the set M,
which has a priori no structure, can be done instead in the group G equipped with
its metric dg.

1.2.3 Large deformations

As a consequence of the previous section, we are now lead to focus on the question
of the transformation group G and its metric. A very convenient setting for defining
right-invariant metrics on a group is to assume that G is in addition a Lie group
and to consider the special case of Riemannian metrics. Indeed, one can then define
a metric on the Lie algebra of GG, i.e the tangent space 114G, and extend it to all
tangent spaces by right-invariance. This is a classical construction in the case of
finite-dimensional Lie groups like for instance the group of isometries, similitudes in
R™. Nevertheless, such simple groups are clearly not rich enough in the perspective
of applications to computational anatomy : one needs group of deformations that
can account for complex and localized changes in shapes, which are called rightly
large deformations.

The proper setting is thus to consider potentially infinite-dimensional subgroups of
Diff(R™) and define right-invariant metrics on them. The general study of the ge-
ometry of infinite-dimensional Lie groups, as addressed for instance in [9, 62], is
however much more technical than the finite-dimensional case and do not enter in
the scope of this thesis. Yet, in [14, 27|, was first introduced Large Deforma-
tion Diffeomorphic Metric Mapping (LDDMM), which provides one possible
and more elementary tool to build such groups of diffeomorphisms and their right-
invariant metrics. Since we shall be leaning on this deformation model at several
points in this dissertation, we briefly recap the essential features of LDDMM. More
detailed and complete presentations can be found in e.g [14], [27] or [86].

The principle of LDDMM is to consider diffeomorphisms that are obtained as flows
of time-varying vector fields in R™. One starts by considering the space C}(R™, R")
of C! vector fields u such that u and du vanish at infinity, equipped with the norm

[ull1,00 = llulloo + [ldufloo -

Now, following the notations of [86], one introduces the space x' of time varying
vector fields on the time interval [0, 1], that are assumed to be L? with respect to t.
For any v € x! and ¢ € [0,1], we shall denote by v; the vector field at time t. We
have therefore, by hypothesis :

1
/0 lorll? sodt < oo

Note that this implies in addition, thanks to Cauchy-Schwarz inequality, that fol lv||1,00dt <
oo. Now, the first fundamental result, shown in [86] chapter 12, is the following :

Proposition 1.2.1. Let v € x!. For all z € R", the differential system :

{ y(t) = vi(y) (1.2)
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has a unique solution defined at all time t € [0,1]. Moreover, the flow application
@Y, where ¢¥(x) is the solution of eq.(1.2) at time t, is a C'-diffeomorphism of R™.

Proposition 1.2.1 shows that we can generate diffeomorphisms by integration of
vector fields in y!. From a more geometrical point of view, the Banach space
(CHR™,R™), ||.|[1,00) can be thought formally as the model of tangent space to Id to
such diffeomorphisms. By analogy with the Riemannian idea in finite dimension, we
need to introduce in addition a Hilbert structure on this set of vector fields. This is
formalized by the definition below :

Definition 1.2.1. Let V be a set of vector fields on R™. We say that V is an
admissible space of vector fields if V' is a Hilbert space and if we have a continuous
injection V. — C}(R™,R") i.e there exists a constant cy > 0 such that :

Yu € V, HUHLOO < CVHUHV .

For such V, we introduce, as previously, the Hilbert space of time-varying vector
fields L% = L%([0,1],V) C x'. By definition, for all v € L},

1
/nw@ﬁ<m.
0

We then define :

Gv ={¢} / ve L}
The result of proposition 1.2.1 implies that G is a set of C'-diffeomorphisms of R™.
It is also easily verified [86] that Gy is a group. Now, a right-equivariant metric on
Gy may be obtained as follows :

Theorem 1.2.2. Let V be a space of admissible vector fields and Gy the correspond-
g group of diffeomorphisms. For all ¢ € Gy, let’s define :

d(1d, 6) = inf { (/ 1 HUtH%/dtf e ¢} |

Then the previous infimum is reached for a certain v € L%/ and setting for all ¢, ¢’ €
Gy, d(¢,¢') = d(Id, ¢ o ¢p~1), dg is a right-invariant metric on Gy and (Gy,dg) is
a complete metric space.

This is proved by theorems 12.16 and 12.21 in [86]. The term E(v) = fol |t ||2-dt will
be called the energy : physically, it measures the amount of deformation induced
on the whole space. From a Riemannian perspective, it corresponds to the square of
the total length of the path ¢t — ¢} in Gy. dg can be thus interpreted formally as
a geodesic distance on the Lie group Gy (cf [86]). The existence of a minimizing v
in theorem 1.2.2 shows that there exists geodesics between any two diffeomorphisms
in Gy. For such a minimizing v, we know also ([41] chapter 1) that the quantities
|lve||v are conserved, that is to say :

E(v) = E(v) = ||voll%

If we now summarize the two last subsections, using both theorems 1.2.1 and 1.2.2,
we are able to compare objects on the original shape space M through the distance
induced by dg on M. This distance eventually writes :

1
1 2
dM(m(),ml) = inf {(/ ’UtH%/dt) / d)iljmo = ml} .
veL? 0
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As we see, computing the distance between two shapes mg and m; amounts in
solving a constrained optimization problem over vector fields in L?, which is the
exact matching problem between mg and m;.

1.2.4 The kernel trick

To make the optimization problems underlying the distances dg and dj; more ex-
plicit, one need first to address the issue of building admissible spaces of vector fields
as introduced by definition 1.2.1. To achieve that, we make, in this section, a little
parenthesis and remind the important and classical notion of reproducing ker-
nels, that we shall extensively make use of in this work. Reproducing kernels were
originally introduced in functional analysis by Aronszajn [10] and have become since
then a widespread tool in the field of machine learning [47]. In our context of use,
good presentations of kernels can be found either in [41] and [28] or in [86].

Reproducing kernels : general properties

As opposed to the majority of other applications of kernels that generally consider
only scalar-valued ones, we shall need the more general definition of vector-valued
kernels :

Definition 1.2.2. Let A be a set and E an euclidean space of finite dimension. We
say that K is a positive symmetric kernel on A with values in E (or E-positive kernel
on A in short) if K: Ax A — L(E) and satisfies :

1. For all z,y € A, K(y,z) = K(x,y)T

2. For all N € N*, x1,...,xny € A and oy, ...,any € E, we have :

N

Z ai.(K(xi,mj)aj) 2 0.

3,j=1

An equivalent definition is to say that for all N and z = (z1,...,2x5) € A, the
operator K (x,x) on EN given by the block matrix (K (z;,2;))i j=1.. N is symmetric
positive. In the specific case where E = R, the previous definition gives again the
more usual one of (scalar) positive kernels on A. Throughout the text, we shall
reserve capital letters for vector-valued kernels and small ones for scalar kernels. At
the same time, we define the following notion :

Definition 1.2.3. Let H be a Hilbert space of functions defined on a set A with
values in an euclidean space . Then, H is said to be a Reproducing Kernel Hilbert
Space (RKHS) if for all x € A and o € E, the functional 0 : f € Hw— f(z).ais a
continuous linear form on H.

As one could expect, the two notions of positive kernel and RKHS are closely related.
One of the link is easy to evidence. If H is a RKHS as in definition 1.2.3, then, thanks
to Riesz-Frechet theorem, we know that for all x € A and « € F, there exists an
element Koy € H such that :

\V/f € Hvég(f) - <KH537f>H

In addition since K65 is in H, it is itself a function from A to E that we can write
in the form Kydé¢ = K(z,.)a. The functions K(z,.)a are called the fundamental
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functions of the RKHS. Applying the previous equation to f = K (y,.) we also get :

(K(z,.)o, K(y,.)B)n = o.(K(z,y)B) . (1.3)

It is then straightforward to check that the function K, that we call the reproducing
kernel of H, defines an F-positive kernel on A. In fact, the following central theorem,
due to Aronszajn, shows that we have a converse property, namely :

Theorem 1.2.3. To any positive kernel K on A with values in E, there corresponds
a unique RKHS H of functions from A to E whose reproducing kernel is K.

We refer the reader to [10] or [41] chapter 2 for the proof of this result. The RKHS
H is basically constructed, up to some technicalities, as the completion of the vector
space spanned by the fundamental functions K(z,.)a for all x € A and o € FE.
In particular, this vector space is dense in H. The Hilbertian metric (.,.)g can be
computed in closed form on fundamental functions exactly as in eq.(1.3).

RKHS of admissible vector fields

We now come back more specifically to the construction of spaces of admissible
vector fields. We shall assume, from now on, that kernels are defined on A = R™ and
taking values in £ = R". With theorem 1.2.3, the RKHS generated by such kernels
are Hilbert spaces of vector fields in R™. One only needs the additional continuous
injection property for V. The answer is provided by the following result, that can
be found in [41] :

Proposition 1.2.2. Let p € N. Assume that K is a positive kernel such that K is
continuously differentiable of order 2p and such that all the derivatives of K up to the
order p are bounded. Assume in addition that for any x € R™, the function K(z,.)
and all its derivatives up to order p vanish at infinity. Then, the RKHS associated
to K is continuously embedded into C§(R",R™).

In particular, if a positive kernel K satisfies the hypotheses of the previous propo-
sition for p = 1, we can conclude that its corresponding reproducing space V is
continuously embedded into C}(R™,R") and thus V is automatically an admissible
space of vector fields.

The construction of such kernels is well-detailed in [41]. Certain Sobolev spaces are
examples of admissible RKHS. Another interesting class is provided by radial scalar
kernels, which have the general expression :

K(z,y) = h(|z — y|).Idg~

with h : Ry — R. Schoenberg theorem (cf [86] chapter 13) shows that K is a
positive kernel when the function h is the Laplace transform of a positive Borel finite
measure on R, . The Cauchy kernel given by :

1
K(%Z/):Wld
1+ =7

is for instance one possibility. Yet the most widely used in applications remains the

Gaussian kernel : ,
lz—yl

K(z,y)=e¢ <% .Id.
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Proposition 1.2.2 shows indeed that its associated RKHS is continuously embedded
into CJ(R™,R™) for all p. The parameter o controls the scale at which two points
interact with each other. There are in addition many building tools to create new
kernels from existing ones such as making sums, tensor products (cf lemma 2.2.1
in chapter 2)... The properties of sums of kernels with respect to diffeomorphism
groups, for instance, are studied in [19]. Higher order kernels are also considered and
used in [74].

As we shall see in the coming sections, the interest of using kernels and RKHS in this
context is multiple : it gives Hilbert metrics on vector fields that can be conveniently
computed in practice but the essential point is that the use of RKHS as admissible
spaces of vector fields provide a very powerful reduction principle to parametrize
geodesics in the group Gy, as we detail below in the case of landmarks.

1.2.5 Geodesic equations in the landmark case

At this point, even though we have been able to formulate the shape comparison
problem by defining geodesic distances in groups of diffeomorphisms, the optimiza-
tion problem giving these geodesics is still on the set of all possible time-varying
vector fields, which is infinite-dimensional. As one could intuit, such geodesics could
be described by less degrees of freedom, at least because, by analogy with the finite-
dimensional Riemannian setting, they should be determined only by the vector field
at time 0 thanks to the corresponding Fuler-Lagrange equations. This has been for-
malized precisely, in the general case, by the interpretation of the equations as an
optimal control problem : we refer to [65, 79] or [77]| for more details.

To simplify a little the presentation, we shall restrict ourselves to the simpler case
where the shape mg is made of a finite number of points ¢ = (¢;)i=1,..p, Which is
the landmark situation described above. This shall be generic enough for the cases
we consider in this work since, numerically, all shapes (unlabeled point sets, curves,
surfaces,...) are indeed made of finite number of points (with possible additional
mesh structure). Yet, the vector fields that describe geodesics are a priori still living
in the infinite-dimensional space L%/. Let’s call Ky the positive kernel on vector
fields. The great reduction principle provided by the use of RKHS to model vector
fields is that the optimal vector fields generating geodesics are necessarily of the
form :

D
Uy = Z KV(Qt,i> ~)pt,i (1-4)
i=1

where ¢;; = ¢{(¢;) and the p;; are auxiliary variables in R" called the momenta of
the deformation. This is proved for example in [41], and it is essentially a particular
instance of the general kernel reduction principle on optimization problems from
machine learning. Thus the differential equation that governs the time evolution of
q can be written in a condensed way as :

gt = Kv(qe, q)pe

where Ky (q¢, q¢) is by convention the 3p x 3p matrix made of the blocks Kv (g, ¢t ;)
fori,j=1,..,p.

As we mentioned earlier, the geodesics on Gy should be in addition determined only
by the initial velocity field vy or equivalently by the initial momentum pg. Indeed,
it is well-known from [65] that the momenta p:; are governed by the differential
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equations :
Pri = —(dg, ;1) Pri
which we can write in short :
pt = _(d(hvt)*pt

Interestingly, the set of coupled differential equations on ¢ and p can be interpreted as
a Hamiltonian system of equations by introducing the following reduced Hamiltonian

p
H,.(p.q) = Y _ p{ Kv(zi,z;)p; = p" Ky (z,2)p. (1.5)
ig=1

Observe that H,(pt, q:) equals also the previously defined energy of the vector field
ve at time ¢. The dynamics of the position and momentum variables along a geodesic
can be described by the Hamiltonian system :

i) = 52
| %y (1.6)
pt) = - 90

Note that the Hamiltonian is always conserved during the evolution of p and ¢, which
is exactly the previous conservation property of energy along geodesics that writes :

vt € [0,1], Hy(pi,q) = Hr(po, o) = E(vo).

The Hamiltonian formulation thus completes the theoretical description of geodesics
in Gy by showing in a precise way how all geodesics can be completely parametrized
by a couple (pg,qo) of initial momentum and position. As we shall see in the next
section, this is the fundamental idea behind geodesic shooting procedures to solve
registration problems in practice. Moreover, this parametrization with initial mo-
mentum also enables the statistical analysis of deformations as developed in [79] and
that we shall exploit in chapter 4.

1.3 Inexact registration and shape dissimilarities

1.3.1 Inexact matching formulation

The important assumption in Grenander’s approach of shape spaces, which has not
been discussed so far, is that the action of the deformation group is transitive on
the set of shapes. In terms of metric, this hypothesis enables to nearly forget in a
sense what the shapes in M really are (landmarks, images, curves...) because the
metric is actually computed instead in the group of diffeomorphisms acting on M.
Nevertheless, the transitiveness of the action is clearly not a reasonable assumption
in most practical situations. First, because the groups of deformations we build
with the previous framework do not contain all diffeomorphisms of the space. And
second because one could consider shapes that need not even be diffeomorphic be-
tween each other as a result of noise for instance or because of varying number of
connected components (as for instance when shapes are fiber bundles). Thus, the
exact matching situation considered until now appears insufficient in general to ef-
ficiently estimate shape variations on real datasets. Let’s also mention that, even if
two shapes do belong to the same orbit, exact matching could be still inappropriate.
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The diffeomorphism that maps one on the other might not be relevant from the sta-
tistical analysis point of view because it could be essentially driven by the matching
of high-frequency variations or noise that may have no anatomical meaning at all.
For all these reasons, we generally replace the previous constrained optimization
problem involved in the computation of dj; by an inexact registration in the
shape space M. It simply consists in relaxing the constraint ¢j.mg = mi by solving
instead : .

inf J(v) = / |vs]|3-dt + A(dY.mo, m1). (1.7)

veL? 0
In that expression, A stands for what is generally called the data attachment term,
i.e a function that measures the closeness between elements in M. As opposed to
the previous distance in M based on deformation, the term A aims at driving the
registration by measuring the residual dissimilarity between the deformed source
shape ¢{.mp and the target m;. From a formal point of view, the optimization
problem described by eq.(1.7) looks similar to many others that involve the sum of
an attachment term and a regularization one (which here constrains the deformation
energy).
Setting aside for the moment the construction of these data attachment functionals,
a fundamental question is the existence of a solution to this minimization problem.
This is no more guaranteed in this context. Fortunately, the results shown in [41]
chap.l give a condition on A for the existence of such a minimizer. The general
result is the following :

Theorem 1.3.1. If, for all my and my in M, the functional v — A(¢}.mo,mq) is
weakly continuous from L%/ to R, then the inexact matching problem given by eq.(1.7)
has a solution.

The complementary issue of uniqueness of the minimizer is however totally unknown
at this degree of generality.

1.3.2 Geodesic shooting algorithm

For a given data attachment functional A satisfying the conditions of proposition
1.3.1, an optimal solution v of eq.(1.7) do not map exactly mo on m; anymore but
on ¢}.my, hopefully close enough (in the sense given by A) to the target m;. Yet
the presence of the energy term in the optimized functional guarantees that, in the
space of diffeomorphisms, we still obtain a geodesic path ¢t — ¢{. Thus, we can
restrict the optimization only to geodesic trajectories and, as explained previously,
the dynamics of the deformation can be then described by the initial momentum pg
and the Hamiltonian system of equations. It results in particular that the functional
J(v) can be written instead as a functional of the initial momentum py. The principle
of geodesic shooting algorithms is to optimize directly on pg and ’shoot’ the source
shape with the geodesic equations.

To be more explicit, let’s assume, as in section 1.2.5, that the source shape consists
in a finite set of points i.e that we have gy = (qo,i)i=1,.p- The data attachment
term A(¢p}.mo, m1) is then a function of the final point configuration g; obtained by
shooting through eq.(1.6), that we write g(g1). Then the functional J(pg) equals :

J(po) = Hr(po, ) + 9(q1)

The simplest way to solve this optimization problem is to apply a gradient descent
scheme on pg, as described in [65] and [7|. The gradient with respect to pg of
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H,(po, qo) is straightforward from eq.(1.5). The gradient of the term g(q1) is obtained
by first computing the gradient of the attachment term with respect to qi, i.e Vg, g,
and pull it back on the shape ¢p by backward integration of the linearized
adjoint Hamiltonian system, as explained in [5, 7]. Namely, one introduces the
auxiliary variables P; and @) that satisfies :

Qt = — (07, H,(q1,pt))* Q1 + (07 Hy (a1, pt))* Py
Py = —(02 ,Hy (qt,p0))* Qe + (92 ,Hy (g1, pe))* P, (1.8)
Q1=-Vag, PA=0

and the gradient of J with respect to pg is then given by :

Vpod = Kv(qo,q0)po — Fo -

Thus, at each step, the gradient can be computed by flowing forward the Hamiltonian
system of eq.(1.5) with the current initial momentum pg to get the final point posi-
tions ¢p, then computing V,, g and flowing backward in time the adjoint equations
eq.(1.8). This makes a gradient descent algorithm on py completely achievable as
soon as the dissimilarity function is fixed and that one can compute its differentials.
The registration algorithms built in chapter 2 and 3 are based on this principle.
Let’s also mention that some additional equations can be also derived by expressing
that the variation of .J(v) with respect to any perturbation of v in L2, (not only in the
space of geodesic trajectories) vanishes when the minimum is reached. In particular
(cf |5] chap. 2), one can show that the optimal momentum at time 1 p; satisfies a
transversality equation which is :

b1 + vqlg =0. (19)

This transversality equation can be used as an alternative to gradient descent al-
gorithms : for instance, Allassonniére et al. propose in [5] a Newton algorithm to
compute iteratively p; with eq.(1.9).

1.3.3 Measuring shape dissimilarities

We finally reach the question of defining these dissimilarity functions on shapes,

which is not specific, by the way, to the LDDMM framework, but is a requirement to

most matching algorithms. It must be emphasized that this is not to be necessarily

identified to the problem of building metrics on shape spaces. Here, the dissimilarity

must be thought as related to a notion of residual noise on shapes that links the

observed shapes with the ideal ones all living in a common orbit. In fact, the function

A need not be a distance in all cases. If one intends to give a kind of axiomatic

approach for the construction of such A’s, one would impose that A satisfies the

following general principles :

— A does not depend on a particular representation of shapes (for instance parametriza-
tion for curves or surfaces).

— A(my,mg) = A(mg, my) for all mg,m; € M.

— A(mo,m1) = 0 if and only if mg = m;.

— A smoothly behave with respect to smooth deformations of shape, for instance
¢ — A(¢d.mgy, mq) is differentiable on any diffeomorphism group Gy .

The case where A is a metric on M is thus a stronger assumption but usually quite

convenient. Anyhow, the choice of A must be done in accordance to the nature of
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Figure 1.2: Two distributions of unlabeled points in R2.

the shapes contained in the space M. In the rest of this section, we briefly review
the most usual types of shapes that can be encountered in applications.

The case of landmarks does not pose any particular difficulty in that respect. Indeed,
by definition, landmarks are labeled set of points so that correspondences are known.
Thus, one can measure the dissimilarity between landmarks just by the L? distance.
If 2 = (z1,..,2p) and y = (y1, .., yp) belong to M = (R™)P then :

p

Alz,y) =) lan — il

k=1

where |.| is the L? norm in R”. One can also extend this L? distance by changing
the metric through a covariance matrix as proposed in [50].

For images, the situation is quite similar. If  C R”™ is the domain of the images
then a natural metric to compare two images Iy and I is the L? distance on €, i.e :

A(IO,Il) —/Q(Io—fl)Q(iL‘)dl‘

It has been widely used as an attachment term in most of LDDMM-based registration
applications to images.

More difficulties appear however in the case of unlabeled sets of points. This corre-
sponds to the case where shapes are distribution of points in R™ as in figure 1.2 but,
unlike landmarks, no correspondences are known. Nor do the distributions necessar-
ily have the same number of points. The definition of relevant attachment functionals
in that case is thus not a trivial matter and has fostered efforts in several directions.
In the field of computational anatomy, it has been addressed in particular by Glaunés
in [42], where authors model such point distributions as Borel measures and define
kernel Hilbert metrics on these. This can be actually viewed as a particular case of
currents that we present in more details in the following.

Even more challenging is the case of curves, surfaces and more generally of sub-
manifolds. Indeed, the previous requirement of parametrization-invariance on A
makes it a particularly delicate issue and has lead to many interesting approaches
that it would be hard to present in an exhaustive way. We could mention, among
others, the parametrization-invariant quotient Riemannian setting on the space of
plane curves introduced by Michor & Mumford in [63], dissimilarities based on the
Hausdorff distance as in [23] for compact subsets of R? and R®, or approximations
of the Gromov-Hausdorff distance [61, 18]. Most of these frameworks are however
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specific to certain class of data or are very sensitive to the topology of shapes for
some of them, which can represent an obstacle in using them for attachment metrics
on certain real datasets that are likely to present many topological irregularities.

In contrast, the approach of currents initiated in [43, 28] and inherited from geomet-
ric measure theory, has the advantage of providing a common framework to embed
practically any case of submanifolds in a functional space, which enables the defini-
tion of inner products via the use of reproducing kernels. In terms of applications,
such metrics present the great interest that the resulting attachment terms and their
variations are easily computable and robust to small topological changes as discon-
nections or holes. We recap the main definitions and properties related to currents
in the following section.

1.3.4 The representation by currents

Currents were historically introduced as a generalization of distributions by L. Schwartz
and then G. De Rham in [70]. The theory was later developed and connected to ge-
ometric measure theory in large part by H. Federer [37]. At first, these results found
interesting applications in the calculus of variations as well as differential equations.
However, the use of currents in the field of computational anatomy is more recent,
initially proposed in [41]. Without pretending to make a complete or self-contained
presentation of the vast theory of currents, we try to outline, in this section, the
minimum theoretical background needed for the rest of this thesis.

Rectifiable sets

We start by the notion of rectifiable set. From now on, we fix £ = R" the embedding
space of shapes. Rectifiable subsets can be thought as the proper generalization of
submanifolds in the context of geometric measure theory. We shall use the classical
notation H? for the d-dimensional Hausdorff measure on E. We remind that H? is
defined as an outer measure on F that basically measures the d-dimensional volume
of a subset in F. In particular, we have H"™ = A", the usual Lebesgue measure. If X
is a p-dimensional submanifold of E then H%(X) is rigorously the d-volume of X if
p = d, vanishes if p < d and equals 400 whenever d < p.

Now, let d be an integer between 0 and n. With a slight abuse of definitions, we will
call a d-dimensional rectifiable subset of E what is actually defined as a countable
H-rectifiable subset in [37] 3.2.14, i.e :

Definition 1.3.1. We say that X is a d-dimensional rectifiable subset of E if H(X) <
oo and if there exists a countable family (f;)ien of Lipschitz maps f; : R? — E such

that :
H <X\ U fi(Rd)) =0.
1€eN

In other terms, a rectifiable subset is almost everywhere covered by a countable union
of images of Lipschitz maps from R? to E. Note that this is analogous to the definition
of a d-dimensional submanifold as a graph. The analogy can be pushed further
since, by Rademacher theorem, one knows that a Lipschitz function f : R? — F is
differentiable A% almost everywhere on R? and thus (cf [67]) an equivalent definition
is given by :

Property 1.3.1. A subset X C E is d-rectifiable if and only if H*(X) < oo and H4-
almost all of X is contained in a countable union of d-dimensional C* submanifolds.
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A second very useful structural property is that a rectifiable subset X, as a sub-
manifold, has H%almost everywhere on X a d-dimensional tangent subspace. We
refer to [37] 3.2.16 and 3.2.19 for the associated definitions of approximate tangent
cones and the precise statement of this result. In this context, an orientation of a
rectifiable subset X is simply a choice of an orientation for each of these tangent
spaces, such that  — T, X is H%measurable on X. We will say then that X is
an oriented rectifiable subset. Note that, in this setting, unorientable submanifolds
can be still given an orientation in the sense of rectifiable subsets but, as we shall
examine more carefully in chapter 3, such orientations induce cancellations effects
when represented as currents.

Rectifiable subsets obviously include submanifolds and submanifolds with boundary.
From the structural point of view of measure, these objects actually behave much like
submanifolds. Yet, this notion encompasses a much wider variety of interesting cases.
For instance, all polyhedral curves, surfaces, etc.., which are the actual objects in
computational geometry, are still rectifiable. Despite the previous properties, note
however that rectifiable subsets may actually ’look’ extremely irregular since the
category of rectifiable subsets also contain certain fractal shapes which may not be
a submanifold at any of their points (cf the example related to figure 3.12.2 in [67]).

Currents

We now come to the concept of currents strictly speaking. As mentioned earlier,
currents were originally introduced as extended distributions that were meant to
carry information of local geometry. We will adopt the following notations and
definitions more or less similar to [28] :

- APE (0 < p < n): p-times exterior power of F, which is a vector space of dimension
(;) spanned by the set of simple p-vectors {1A..A&,. We remind that, by construction,
the wedge product operation is bilinear and antisymmetric. Note also that for p =1
orp=n—1, APE=F.

- AP E is equipped with the euclidean metric given for two simple p-vectors & = &1 A..A
&p and n = n1 A.. Anp by the determinant of the Gram matrix (£, 7) = det((&,n;))i;-
In particular, |£| gives the volume of the corresponding parallelotope.

- APE* is the dual vector space and can be also identified ([28] appendix A) to the
space of alternated p-forms on FE.

- Q5(E) = CY(E,APE*) : the set of continuous p-dimensional differential forms on
E vanishing at infinity. If dzl, ..., dz™ is a basis of E*, any w € QF(E) can be written
under the general form :

Ve e B, w,= Z ail,m,ip(ac)d:c“ A . Adz'

1<i1<..<ip<n

where a;, . ;, are continuous functions, vanishing at infinity.
- Qf(E) is equipped with the infinite norm

[wlloo = sup sup wz(§)
2€E |¢]=1
which makes it a Banach space.
- The previous definitions can be extended to k-times continuously differentiable
differential forms. We will call d the classical exterior differentiation operator on
differential forms and denote by ng(E) the space of k-times continuously differen-
tiable w such that w and its differentials up to order k£ vanish at infinity.
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This leads now to the following definition of p-currents :

Definition 1.3.2. The space of p-currents on E is the space Q5 (E)" of all continuous
linear forms on the space of differential forms.

We draw attention on the fact that this definition of currents we adopt in our frame-
work is actually a little more restrictive than the classical one of [37, 67|, where
authors define currents as elements of the dual of the smaller space of C*° compactly-
supported differential forms. One reason for this slight nuance in the definition is
essentially that it defines currents as a strict generalization of finite signed Borel
measures, already introduced in computational anatomy for unlabeled point sets
[41]. Indeed, in the particular case p = 0, the previous definition is exactly the one
of usual distributions on E (dual of the space Cyo(E,R)). Just as for distributions,
simplest examples of currents are given by Dirac currents 8% with 2 € E , £ €ANPE
such that for any differential form w € Qf(E), we have 5§(w) = wy(§).

Now, the relationship between shapes and currents lies fundamentally in the fact that
every d-dimensional oriented submanifold X of E of finite volume can be represented
by an element of Q3(E)'. It is indeed a classical result from integration theory ([16])
that any d-dimensional differential form can be integrated along X and thus :

Tx : wl—>/ w (1.10)
X

defines an element of Qd(E). If, for instance, X is given through a parametrization
given by a certain smooth immersion v : U — E with U an open subset of R?, then
we have explicitly :

oy oy

Observe that a simple application of the change of variables formula shows that this
expression is indeed independent of any positive parametrization. The representation
of X by the current T'x is thus geometric in the sense that it only depends on the
shape itself and not its parametrization.

As one can imagine, the space of d-currents is much larger and contains many other
interesting objects, among them are the oriented rectifiable subsets of E, for which
one has a formula similar to eq.(1.10). Indeed, as explained previously, for any d-
dimensional oriented rectifiable subset X, there exists for H%almost all z € X an
oriented tangent space and thus a unit d-vector 7(x) = 71(z) A ... A 74(z), where
71(), ..., 7q(x) is an orthonormal basis of the tangent space. Then, similarly to the
submanifold case, to X corresponds the d-current :

Ty (w) = /wa(T(:r))de(x). (1.11)

Again, this expression does not depend on the choice of the oriented orthonormal
basis 7, ..., 74 at each point x € X. As easily checked, if two rectifiable subsets X
and Y are such that Tx = Ty, then X and Y coincide up to set of zero Hausdorff
measure.

The transport of currents by diffeomorphisms of E can be easily expressed through
the pull-back and push-forward operations. These are defined for all T € Qd(E) and
¢ € Diff(E) by the relations :

(3T) (W) =T (eﬁﬁw) (1.12)
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where ¢fw is the pull-back of a differential form by ¢ defined for all z € E and
E=&L N ... N e NPE

(60) (€)= wou(dadl€) A A dud (&) (1.13)

dy¢ being the notation we use for the differential of the diffeomorphism at point z.
The reason of such definitions is that it gives a compatibility between the transport
of shapes and the one of currents :

Property 1.3.2. For any rectifiable subset X of E and diffeomorphism ¢ € Dif(E),
we have :

o Tx = Ty(x) -

This is proved by [37] 4.1.30.

Finally, this formalism adapts with no changes to the case of discrete geometry. Any
discrete shape given as a set of points with a mesh (thus a polyhedron) can be tran-
scribed into a current by approximating each cell of the mesh with one Dirac current
located at the center with a simple d-vector encoding the local volume element, as
explained with more details in [28] chapter 1. It results that discrete d-dimensional
shapes can be always approximated by finite sums of Dirac currents of the form

m

i=1

The approximation error can be basically controlled by the maximum diameter of
the mesh cells (cf [28] 1.3.2).

Thus the introduction of currents allows us to embed all rectifiable sets of given
dimension into one common functional space on which one can define more easily a
metric structure.

Metrics on currents

As the dual of the space of differential forms, the space of currents naturally inherits
its operator norm, which is called the mass norm in [37, 67]|. For any current
T € Q4(EY, it equals :
M(T)= sup |T(w)l. (1.14)
[wlloo<1
From eq.(1.11) and (1.14), it is straightforward that, for any rectifiable set X, we
have in particular :

M(Tx) = HY(X)

Yet the mass norm does not induce a satisfying distance between shapes as noticed
in [28] 1.5.1 : for instance, if X and Y are two distinct submanifolds in E then one
easily sees that M (Tx —Ty) = HY(X) +H(Y) no matter how close in distance the
points of X might be from the ones of Y.

This drawback results essentially from the fact that the set of test functions w in
eq.(1.14) is too big. For that reason, the alternative flat norm is often considered
in geometric measure theory. It is defined by :

F(T)= sup |T(w)] (1.15)
[[w] oo <1
[[dew| oo <1
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It restrains the test differential forms to be in Qg’l(E) and adds a control on dw.
It is argued in [67] that the flat norm is much better fitted to shape comparison
because the distance is basically controlled by the (d + 1)-volume delimited by the
two shapes. Unfortunately, the flat norm has no closed form in general which makes
it virtually impossible to use in any numerical purpose.

To overcome this issue, the idea of introducing once again Reproducing Kernel
Hilbert Spaces was proposed in [41]. Instead of considering linear forms on Q4(E),
one intends to restrict to a Hilbert space W embedded into Q4(F). A convenient
setting for building such Hilbert spaces of differential forms is the one of reproducing
kernels presented in section 1.2.4. We shall use the identification of AE* with AYE
based on the inner product defined previously on AE to consider indifferently those
two spaces. That being said, with the terminology of section 1.2.4, we are lead to
consider in this case A?E-kernels on E and we have the exact same property as in
proposition 1.2.2 :

Proposition 1.3.1. Assume that K is a A*E-positive kernel on E such that K
15 continuously differentiable of order 2k and such that all the derivatives of K up
to the order k are bounded. Assume in addition that for any x € E, the function
K(z,.) and oll its derivatives up to order k vanish at infinity. Then, W, the RKHS
associated to K, is continuously embedded into Q&k(E).

If the previous assumptions on the kernel are fulfilled for kK = 0, W is then contin-
uously embedded into the space of differential forms Q&(E). We then obtain the
dual Hilbertian structure on W’ that induces a distance on the space of d-currents
provided W is dense in Q&(E). One can also show a few straightforward control
properties of such metrics. Indeed, the continuous embedding W — QS(E) gives the
existence of a constant cy > 0 such that for all w € W :

[wlloo < ew llwllw
Now, for any 7' € W, since ||T'|ly = supy,|,, =1 [T'(w)], it results easily that :
VT e W' |T|lw < cewM(T) (1.16)
and in the special case of currents Tx where X is a rectifiable subset, we see that :
1Tl < cwHA(X) (1.17)

A gimilar control can be also obtained by the flat norm if one makes the stronger
assumption that K satisfies the hypotheses of proposition 1.3.1 for k = 1, implying
that W — ngl(E). In that case, there is a constant ¢y such that ||w|| + ||dw||ec <
¢wl|w|lw and just as before :

VT e W', ||T||lw < éwF(T) (1.18)

Last but not least, the fact that W is a RKHS implies in particular that the Dirac
currents 65 belong to W’ and the reproducing kernel property gives in addition that
for all 1,20 € E and £1,& € AE

(081,02 wr = (K (z1,.)&1, K (22, ) 62)w
= (&1, K (21, 22)&2) (1.19)
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As a consequence, in the discrete setting where shapes are represented as finite sums
of Dirac, we see that the RKHS distances can be computed in closed form as double
sums of kernel evaluations. Thus, we obtain a corresponding attachment terms
between any shapes X and Y by setting

AXY) = |Tx - Ty |3

It can be both easily computed and differentiated with respect to the point positions
of the shapes (we refer to [41] for the whole extended discrete expressions). The
numerical issues behind such computations are addressed in [28] and will be also dis-
cussed later on in chapter 2. With these attachment terms, the registration problem
between curves, surfaces or submanifolds can be therefore treated by the geodesic
shooting algorithm presented in 1.3.2.

Cartan’s formula and differentiation of the metrics

To conclude this quick presentation of currents, let us mention the important require-
ment of differentiability of the previous metrics on shapes that was evoked above and
will be a recurrent issue in this work. Besides the computations of these gradients
for discretized shapes, that do not pose any special theoretical issue, it seems also
interesting to understand, in the continuous setting, how these metrics behave with
respect to deformations of shapes. In the context of currents, this can be answered
based on Cartan’s formula for differential forms.

Cartan’s formula is a classical result from differential geometry that gives an ex-
pression of the Lie derivative of differential forms with respect to vector fields. For
a given stationary, smooth and compactly supported vector field v on E, we intro-
duce, similarly to section 1.2.3, its flow at time ¢ that we will denote ¢;. Now, if
w e 98,1(E) is a C! d-differential form on E, the Lie derivative of w in the direction
of v is the d-differential form L,w that one can define by :

= = #
Low = d|_, (Pr) w . (1.20)

Cartan’s formula basically connects this notion of derivative with the more usual
exterior differentiation d. For this, one needs to introduce the contraction operator
on differential forms. For a vector field v as previously, the contraction operation
1 : QT (E) — Q4(E) is obtained by :

Yw € QFY(E), (10w)2(€) = wal(v(z) A€) (1.21)
for any = € F and £ € A’E. Now the result is the following :

Proposition 1.3.2. Forallw € 9871(E) and smooth compactly supported vector field
v of F,
Low = 1y(dw) + d(1,w) .

The proof can be done in an elementary way by differentiating directly (¢¢)fw us-
ing eq.(1.13) and reason by induction on the dimension d as done for instance in
[71]. Other proofs based on more abstract constructions can be also found in [52].
This result on differential forms gives an interesting corollary in terms of currents
associated to oriented submanifolds :
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Theorem 1.3.2. Let X be a compact oriented submanifold (possibly with boundary),
v a compactly supported smooth vector field and ¢; its flow. Then for any C' d-
differential w on E :

Ty 0)(w) = / Low = / t(dw) + / T .
t=0 X X 0xX

Proof. 1t is almost straightforward from Cartan’s formula. Indeed, thanks to prop-
erty 1.3.2, we have :

d

dt

To(w) = (T) (@) = Tx(@)) = [ (@)

Since X is compact, one can differentiate inside the integral and get :

tZOTd)t(X)(W):/)(ﬁvw:/)(zv(dw)+/)(d(lvw)’

From Stokes’ theorem, the second term in the sum equals :

[t [ o

which concludes the proof. O

d

dt

Roughly speaking, this result expresses how the current associated to a shape X
varies when X is deformed in the direction of vector field v. It can be thus interpreted
as the gradient of terms T'x(w) with respect to X. In particular, gradients of the
previously defined RKHS metrics are also contained in theorem 1.3.2 ; if the kernel
is such that W — ngl(E), since for any current T € W', (Tx,T)w = Tx(KwT)
(we remind that Ky is the natural isometry between W’ and W), we have then
(Tx,T)w: = Tx(w) where w = KyT € W is a C! d-differential form thanks to the
embedding of W. Thus the previous theorem applies to express variations of norms
and distances between currents.

The interest of such formulas is that they give qualitative properties about the gra-
dients of the metrics we are using, which do not appear obvious at all when writing
the discrete expressions of gradients used in the numerical part. In this case, we first
see the presence of a boundary term signifying a particular behavior for points on
the boundary whereas, in the inside of X, one can see that the first integral in the
formula depends in fact only in the component of v normal to X at each point of X,
showing incidentally that the gradient is orthogonal to the shape at all points of X,
let alone on the boundary. We refer to the following chapters where these remarks
will be treated with more detail.

In summary, we briefly went over the essential advantages of currents and RKHS
norms on currents in building data attachment measures for datasets consisting of
submanifolds. Except for the problem of non-invariance to orientation changes that
shall be the main topic of chapter 3, the resulting distances comply to most the re-
quirements we mentioned. Such attachments have been used in several registration
algorithms like the previous one of geodesic shooting and has been already applied
to datasets of curves |36, 31|, fiber bundles [30] and surfaces |43, 35].
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1.4 Problematics and contributions of this work

Having outlined the general framework of computational anatomy as well as some
of the existing mathematical tools related to the thesis, we now introduce, in this
section, the essential issues that are addressed by this work.

1.4.1 Extension to geometrico-functional data

The central question studied here is the extension of all the previous modelling and
setting for shape analysis to the case of structures that mix both geometry and sig-
nal, which we have named functional shapes (or fshapes in short). As we will see in
chapter 2, such type of objects are of growing frequency in computational anatomy
and more particularly in medical imaging since the apparition of new data acquisi-
tion technologies that extract the shape of the anatomy while measuring additional
functional signal data on these shapes, as for instance fMRI datasets for the brain or
thickness maps for various organs. Contrarily to usual images, geometrico-functional
datasets have varying geometrical support in addition to the variability of the signal
itself, which is challenging at several levels for one to propose a coherent framework
of analysis in the spirit of LDDMM.

Functional shapes and metamorphoses

In this introduction, we will focus on the simplest case of functional shapes, where the
signals carried by shapes are real-valued functions. This notion shall be introduced
in its full generality in chapter 2, notably to encompass situations where signals
are vectors or tensors for instance. In this case, a functional shape can be thought
naively as a real function on a shape X. If we adopt the definitions of the previous
section, we could say more precisely that a d-dimensional functional shape is a couple
(X, f) where X is a d-dimensional rectifiable subset of the vector space E and f is
a real-valued function defined on X. We can assume also the function f to belong
to the space L?(X) i.e that

/ (@) dH () < +oo.
X

Note that the function f is not assumed to be defined on F but only on the geo-
metrical support given by the shape X. This is contrasting with the case of images
where the support is fixed once and for all. Here, we see that the spaces on which
the functions live are not comparable from one functional shape to another (except
if the supports are identical).

Diffeomorphisms of E can act on these functional shapes by simple transport of the
geometrical support. If ¢ € Diff(E), ¢.(X, f) is the functional shape of support ¢(X)
and signal f o ¢!, which we write :

¢-(X, f) = (¢(X), foop™?)

This generalizes the transport of images described in example 1.2.2. In that situ-
ation, the Riemannian setting of LDDMM presented in section 1.2 applies almost
straightforwardly. Nevertheless, this model is limited to purely geometrical changes
of the functional shape and cannot account for some residual signal variations that
are often necessary to consider in several applications. For classical images, such gen-
eralized transformations consisting of both a deformation and residual displacements
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was introduced through the concept of metamorphosis in [78]. It can be generalized
to functional shapes in a natural way. For a fshape (X, f), we consider deformations
(6, ¢) where ¢ € Diff(F) and ¢ € L?(X) that acts on (X, f) by the formula :

(6, O)-(X, f) = (@(X), (f + (oo™, (1.22)

As in the case of images, this action is not transitive on the set of all functional
shapes and one has to restrict to specific orbits. We introduce, as in 1.2.3, a group
Gy of diffeomorphisms of F, V being a Hilbert space of vector fields continuously
embedded into C§(E, E). For a fixed rectifiable subset X of dimension d, we call
Xo = Gy.X the orbit of all the ¢(Xy) for ¢ € Gy and define the following subset
of functional shapes :

F={(X,f)| XX, feI*X)}.

Then it’s straightforward that for all (X, f) and (X', f’) in F, there exists (¢, h) €
Gy x L?(X) such that (X', f') = (¢, h).(X, f).

Now, as for metamorphoses, we can consider these deformations of functional shapes
as resulting from integration of infinitesimal variations. Let (X, f) be a functional
shape in F. For the geometric part, diffeomorphisms ¢ are again generated as the
flow ¢ of a time-varying vector field v € L% while the residual signals can be
constructed as ¢(J = f(f hsds, hs € L?(X) being the instantaneous speed at time s.
We equip these deformations with the following energy measure :

1 1
Ex(v,h) = 7;/0 \vtﬁvdwéf/o /WX)\hto(¢§)—1|2(x)dﬂd(x) (1.23)

where vy and 7 are just ponderation parameters between the geometrical defor-
mation part and the residual one. Note that the inside term in the second integral
can be also rewritten, thanks to the area formula [37] corollary 3.2.20 (or simply a
change of variables in the case where X is a submanifold) :

/ |he o (¢7) P (2)dH (z) = / || ()| do oy £ ()| dH () dt
Y (X) X

where &(x) = & (x) A ... A&y(x) is the unit d-vector representing the tangent space
to X at x and |dy¢y.£(z)| is the norm of the d-vector dg¢f (§1) A ... Adg@f (). Thus
the energy equals also :

1 1
Exto) =% [Cufae+ L [ [ inP@ors@lanaan. 2

It is also a classical control result that there exists an increasing function C': Ry —
R, such that, forall z € E, t € [0,1] and £ = & A ... A&y € AYE, we have

1
4o (€1) A A dadf(E0)] < © ( / Hvtlh,oodt> €A el

eventually obtain the existence of an increasing function C' such that for all (v, h),
we have the following bound on the energy :

1 1 1
v v
Ex(v,h) < 2/0 v |5t + Ef-c (/o \UtH%/dt> /0 1helZ2xydt - (1.25)

We refer to [86] for instance or to 2.2.3 in chapter 2. Since [|v||1,00 < cv|v||lv, we
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A Riemannian framework for fshapes metamorphoses

We can now extend the previous idea of geodesic distances to this situation of fshapes’
metamorphoses. We restrict, as previously, to a set F for which Xy = G. Xy and X
is also assumed to be compact. It implies that for all X € &y, X is compact. We
then define, for all (X, f) and (X', f') in F :

Theorem 1.4.1. The function dr given by eq.(1.26) defines a distance on F ie. is
symmetric, satisfies the triangle inequality and dr((X, f), (X', f")) = 0 if and only
if X = X" and f = f' € L*(X).

Proof. A first point to be verified is that the distance dr is finite between any pair
of fshapes. Indeed, by definition there exists between any X and X’ € X, a path
t — ¢v.X with v € L2([0,1],V). Now, if by = (f' o ¢} — f), we get (v,h) €
L2([0,1],V x L*(X)) and f" = (f + (V) o (¢?)~! so that

d]'—((Xv f)v (X/vf/)) < EX(U,h)1/2 < 0.

The symmetry comes from a usual process of time reversal.

Let (X, f), (X', f') € F and (v,h) € L%([0,1],V x L?(X)) such that

X'=¢1.X, f'=(f+)o (o) (1.27)
If we define 3

3y = —vi_¢ and hy = —hi_4 0 (¢3)7!

for any ¢ € [0, 1], then for X; = ¢7.X (so that Xo = X and X; = X’) we have
o7 Xo =X = 6] 1. X3

and (9,h) € L x L*(X') with

E)((U, h) = EX/<’I~), h) . (1.28)

Since one easily checks that ¢} = —Cf' o (¢V)7! so that if f' = (f +¢P) o (¢}) 7! we
have f = (f' 4+ () o (¢¥)~! with X = ¢?. X’ This gives immediately the symmetry.
As for the triangular inequality, it follows from a usual process of path concatenation.
Let (X, f), (X, f/) and (X", ") be three fshapes in F such that dz((X, f), (X', f")) >
0 and dr((X’, f'), (X", ")) > 0. One easily checks that for (v,h) € L?([0,1],V x
L3(X)) and (v, 1) € L*([0,1],V x L*(X")) with

(X' ) = (@1 X, (f + ) 0 (61) 1) and (X7, ) = (o] X', (f + () o (61) )
then denoting for «, 8 > 1 such that 1/a+1/8 =1 and s € [0, 1]

Cata((v, 1), (v,h))s = B(Us(s—1/ay Pa(s—1/a) © ) Ls>1/a + A(Vas, has)10§s<(1/a |

1.29

with ¢ = ¢?, we have for (#,h) = Cata((v', 1), (v,h)) that (5,h) € L*([0,1],V x
L?(X)) and

(X" 1"y = (65.X, (f + ) o (6D ) (1.30)
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so that )
dr((X, £), (X", f")) < Ex(5,h)"/2. (1.31)

However, for oy, = (Ex (v, h)Y/?2 + Ex:/(v',h/)'/?)/Ex (v, h)'/?, we check easily that
Ex(0,h)Y? = Ex(v,h)"? + E(', h)'/? (1.32)

and the triangle inequality follows immediately.

Now, if dr((X, f),(X’, f')) = 0 then there exists a sequence ¢,, such that ¢,.X =
dn(X) = X" and ¢, — Id on X. In particular, X’ is dense in X. As X’ is compact,
X C X'. By symmetry we get X = X’. Moreover, there exists a sequence (, €
L*(X) such that ¢ — 0in L*(X) and f' = (f + () 0 ¢, ! with ¢n(X) = X. We get

I 2 oh-l _ )2 o h=1)2
J gz gost—prez [(Goat? o
and the result is proved. O

The distance dr extends to fshapes the metamorphosis metrics on images examined
in [78]. A fundamental question is then the existence of minimizing geodesics between
two functional shapes in the orbit F. This is answered by the result below :

Theorem 1.4.2. For any (X, f), and (X', f') in F, there exists (v, h) € L%([0,1],V x
L?(X)) such that Ex(v,h)'/? = dz((X, f), (X', f")). In particular, if

(X0 fi) = (60X, (f + /O hads) o (6) ™) (1.33)

the path t — (Xy, f) can be considered as a minimizing geodesic between (X, f) and

(X7, f1).

Proof. 1t is sufficient to show that (v, h) — Ex (v, h) is lower semi-continuous for the
weak convergence of the space L2([0,1],V x L?(X)).

Indeed, if this is the case, then from any minimizing sequence (v, hy,) such that
Ex(vn, hn) — dr((X, f), (X', f"))? we deduce that v, is bounded on L%(]0,1],V)
and :

1 1
/ / oy () PAH ()t < / (sup [dpt (€())| ) / (e (@)[2) | dad” £ () | dH ()
0 X 0 zeX X

Now, sup,cy |dedy™ £(x)|71 = 1/ infrex |da0i™ £(z)| and, in a similar way as men-
tioned earlier, one can show that there exists a decreasing function C': R, — R%
independent of v such that for all z € E,

!
4ot £(2)] > C ( / Hvtrr%dt) |

It results that there is an increasing function C such that :
1 1
[ [ hes@pai@a < o ([ [ QP ldor o)
0 Jx 0 X
1
<0 ([ lmdtar) Bx(on.i)
0
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and we get that the sequence (hy,) is bounded in L?([0, 1], L?(X)). Hence, by weak
compactness of strong balls in L2([0,1],V x L?(X)), we can assume that, up to
the extraction of a sub-sequence, (vy,h,) weakly converges towards (veo,hoo) €
L?([0,1],V x L?(X)) and by lower semi-continuity of Ex, we deduce that

Ex (voo, hoo) < dr((X, f), (X', )2

We only need to check that (X', f) = (¢7=(X), (f + ;=) o (#7~)~1). This last
results follow from the fact if (v, hy,) weakly converges to (voo, hoo) then ¢7" — 7>
uniformly on any compact sets (which is a well-known result proved in [86] theorem
12.12 for instance) and (f + (™) o (¢%)~! weakly converges to (f + (M) o (¢¥>)~1,
We now come to the proof of the lower semi-continuity of Fx. Considering again a
sequence (vp, hy,) that weakly converges toward (veo, hoo) in L2([0, 11, V x L*(X)),
we first know from a classical result on weak convergence that [ [[veo||Fdt <
liminf,,—seo fol |Un¢|2-dt. Besides, we have

1 1
| st Pl s@lant(@) = im [ b @ihos @)l deti @l @)

n—oo 0

by definition of the weak convergence of (hy,). Now, since dg¢;™ — dz¢;> uniformly
onte0,1] and z € X, we get

1
/ / oot (2) P da 2 € ()| dHA ()
0 X

1
= lim t(T)Neo t\ T z;)n X 1/2 z;joo‘ I1/2 dx
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1/2
< liminf (/Ol/xhn,t(x)ﬂdz p.g(@;d%%@) .
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so that

1 1
| st Pl s@lante) < timint [ [ b a@)Pidei. e a).
(1.34)
]

The results of the two last theorems show that comparison of functional shapes
through metamorphoses can be done within a similar framework as the previous one
for usual shapes : it involves geodesic distances on the space of geometrico-functional
deformations. One could in addition, following the same path as in section 1.2.5,
write the Hamiltonian equations related to the geodesic shooting in this setting.
This framework generalizes, on the one hand, the situation where shapes are only
deformed geometrically, corresponding to the case of an infinite penalty vy — oo
on the residual part of the energy in eq.(1.24). On the other hand, it’s also a
generalization of the metamorphosis idea for images, for which basically all shape
supports equal a fixed domain of the space.
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A tangential model

In the practical cases considered in this work, we shall be dealing with an earlier
model that simplifies a little bit the previous metamorphosis framework on functional
shapes. Instead of considering residual signals on X obtained by integrating velocities
ét = hy and compute an energy along time-dependent spaces L%(X;), we can freeze
the metric to its initial support X, namely replace the residual part of the energy

by : )
/ / o) PaH ()t
0 X

Contrarily to eq.(1.24), this energy does not take into account the variation of support
of the signal (; through the local change of volume |d,¢y.&(x)|. The advantage is
that for a fixed end-point condition { = (q, the optimal path {; for this cost is always
(¢ = t¢ and it results that the energy can be simply written in that case :

1
= 4% g
B0, = % [ eyt + L 161 .- (1.35)
0
Then, one can consider :

RN, )= ot B O | 00/ f) = (X 1)}
(1.36)

Unlike the previous dr function, dr is no more a distance on F (it doesn’t satisfy
symmetry and triangular inequality). Yet it still gives a formulation for the exact
matching problem between two fshapes (X, f) and (X', f’) belonging to a common
orbit F, which amounts in the following constrained optimization :

inf {Ex(v,¢) | (X', f) = (#7(X), (f + ) o (1))} (1.37)

(v,Q)€LE xL2(X)
The good property is that we still get the existence of a minimizer :

Theorem 1.4.3. For any (X, f) and (X', f') in F, there exists (v*,(*) in L} x
L?(X) that minimizes eq.(1.37).

The proof can be done following the same arguments as in theorem 1.4.2 and is even
simplified due to the fact that the function ¢ is no more varying in time. As we
see, the residual signal function ¢ can be now searched directly as a stationary L2
function on X.

Data attachment functionals

Until now, we have been considering the exact matching situation for which func-
tional shapes are assumed to belong to the same orbit F. In realistic cases, as already
noticed in section 1.3, one has to introduce inexact registration to be able to treat
shapes belonging to different orbits. In the context of the previous simplified tangen-
tial setting, inexact registration could be formulated as the optimization problem :

L[ el 4210y + 4 (68, 0060, (X119 | (0:0) € 1 x £2(X)
’ (1.38)
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where A is here a data attachment function on the set of functional shapes. This
is the general registration setting that shall be implemented in chapter 2 (section
2.3.2). Yet, the remaining issue is now to define proper dissimilarity measures in the
case of functional shapes. At first glance, this is clearly not an easy problem, in great
part because the registration formulation that we propose here requires dissimilarity
measures that must take into account geometry and signal simultaneously. In section
1.3, we addressed the question of data attachment functions in the case of geometrical
objects like submanifolds on the one hand or in the case of images on the other, but
the situation of signals that are supported by deformable geometrical support do
involve specific challenges that, to our knowledge, have been rarely treated in that
field. This is one of the subject that we propose to focus on in the present work
and chapter 2 is dedicated to the question of representations and metrics on those
functional shapes, enabling the extension of LDDMM registration algorithms to this
new class of data. The framework that we develop, named functional currents,
follows the ideas of data attachment resulting from currents’ norms and defines its
right extension to embed fshapes.

1.4.2 A non-oriented setting for shape dissimilarity

Still about data attachment metrics, we also address a second issue that deals with
the orientation of shapes when compared through the RKHS norms on currents
presented in 1.3.4. In the first place, this can be thought as a problem independent
to the previous one of geometrico-functional datasets. Focusing on purely geometrical
shapes, it has been indeed a consistent drawback, in some situations, that currents
basically represent oriented rectifiable subset. The orientation is fundamental in that
regard since, if X is for instance a connected submanifold with one orientation and
X is the same submanifold equipped with the opposite orientation, then in the space
of currents, we have Ty = —Tx. In chapter 3, we shall detail the problems that
this poses with respect to the representation of certain types of data. An important
one is that it imposes some kind of consistent orientation of shapes between their
different parts, to avoid non-canonical cancellation effects due to misorientation. Yet,
in the general case of rectifiable subsets, it’s quite obvious that the very notion of
consistent orientation is not relevant at all, particularly in situations where shapes
are made of many disconnected pieces that can technically cross with each other at
many locations.

For these reasons, a non-oriented setting for building dissimilarity measures between
shapes, that would preserve at the same time the essential interests of the currents’
modelling of section 1.3.4, is undoubtedly a valuable tool to add in the arsenal of
LDDMM methods. In the chapter 3 of this thesis, we examine several directions that
were undertaken in the theoretical field of geometric measure theory to address this
issue of orientation. We then focus on the particularly elegant concept of varifolds,
introduced after F. Almgren in his pioneer work of [8]. Their definition generalizes
the idea of measures but in a different way than currents : d-dimensional varifolds
are still usual Borel finite measures but on the augmented space E x G4(F), where
G4(E) is the Grassmann manifold of d-dimensional subspaces of E. This Grassmann
manifold is thus the set of all possible non-oriented tangent spaces of dimension d
in E. Unlike currents, any (non-oriented) d-dimensional rectifiable subset of F can
be represented in the space of varifolds, roughly speaking as a spatial distribution in
E of elements in G4(FE) representing the tangent space at each point. The essential
contribution of chapter 3 is to define metrics in the space of varifolds that provides
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data attachment terms between non-oriented shapes and study registration algorithm
based on this new representation. As a dual of a space of functions, Hilbert metrics
based on kernels can be indeed adapted for varifolds and their properties shall be
thoroughly examined as well.

1.4.3 Organization of the chapters

This thesis is divided into four chapters. Chapters 2 and 3 are addressing the prob-
lems of dissimilarity measures and registration respectively for functional shapes and
for non-oriented shapes. These are widely independent and can be read separately
for the most part. Based upon the setting of functional currents and varifolds, the
last chapter broadens the approach to group-study by introducing a framework for
statistical atlas estimation and analysis of populations of subjects. The contents of
each chapter can be summarized as follows :

e Chapter 2 : this chapter introduces the concept of functional shapes within com-
putational anatomy and gives a wider definition than the one considered in this
introduction. In direct line of the fshape metamorphosis setting presented in 1.4.1,
the main issue that remains for inexact registration is the construction of data attach-
ment terms. The framework we propose in this chapter is an extension of currents,
that we have designated by functional currents, which augments the space of usual
currents with a component in the signal space. These spaces embed the set of oriented
functional shapes. We then explain how, similarly to currents, one can build Hilbert
structures on functional currents, given by reproducing kernels. The distances that
are induced on fshapes allow simultaneous comparison of shape and signal without
ever requiring point-to-point correspondences between the two objects. We show in
addition a few properties of control for these metrics and generalize Cartan’s vari-
ation formula to fcurrents (theorem 2.2.4). The last sections of chapter 2 focus on
the discrete case and detail inexact registration algorithms on fshapes with a few
results. The numerical issues related to kernel computations for diffeomorphisms
and fcurrents’ distances are also discussed.

e Chapter 3 : after exposing the principal orientation issues coming along with
currents, we turn to the alternative concept of varifolds introduced originally in the
context of geometric measure theory. We explain how the space of varifolds can
embed rectifiable subsets of E' without the need of defining an orientation. The rest
of the chapter is devoted to the construction of kernel norms on varifolds and studies
the main properties of these compared to currents. In particular, we show that,
under simple assumptions, norms of rectifiable subsets are bounded below by the
actual volume of the set (theorem 3.4.1 and corollary 3.4.1), which prevents shape
cancellation phenomena occurring with currents. We also derive a variation formula
for varifold norms (theorem 3.4.2). The end of chapter 3 adapts the large deformation
registration algorithm to the case of non-oriented shapes represented as varifolds and
show, on a few simple examples, the potential interest of this framework compared
to the previous one of currents. It concludes by merging this approach with the
one of chapter 2 resulting in the definition of a functional varifold setting to treat
non-oriented functional shapes.

e Chapter 4 : in this chapter, we eventually come to the real heart of the problem-
atic of statistical analysis on populations. The objective is to propose a coherent and
robust framework to model statistically the variability among a group of functional
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shapes both in their geometry and signal. For this purpose, we rely on the tools
developed in the previous chapters and start by extending the simpler situation of
registration of only two subjects to group-analysis. The framework that is developed
estimates in a simultaneous minimization a template functional shape representing
some kind of prototype fshape for the group, together with deformations and residual
signals for each subject. In a second step, we address the problem of learning princi-
pal modes of variations for these sets of deformations and residuals and performing
classification for multi-class datasets based on these. Thereby, we adapt some sta-
tistical learning methods such as PCA and LDA to this situation. Some results of
atlas estimation on both geometric and geometrico-functional datasets from biology,
as well as a few classification results, are also presented in this chapter.
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Figure 2.1: Cortical thickness estimation on several full brains (left figure) and more
specifically on one hippocampus (right).

2.1 Functional shapes in computational anatomy : some
new challenges

2.1.1 State of the art

In the introduction, the focus was made on the analysis of shape, which has caught
the major part of the efforts in computational anatomy since its early stage. Mean-
while, the upcoming of new acquisition processes, in medical imaging amongst other,
has generated new data structures that cannot be described as purely geometrical
objects but instead as shapes that carry in addition some functional information.
Such functions or signals can be for instance activation maps on the cortex in fMRI
as a response to specific stimuli. It can represent thickness estimations on tissues,
as cortical thickness in the study of Alzheimer’s disease (figure 2.1) or thicknesses of
retina layers studied for the evolution of glaucoma (cf chapter 4). Signals can be also
directions in the space as for instance with cells’ direction of division in particular
membranes during growth (figure 2.2), or even diffusion tensors in brains and hearts
as provided by the recent advances in DTI imaging [13, 54, 85].

The growing occurrence of such type of datasets has naturally attracted attention
among researchers both from the signal processing community and computational
anatomy, leading to the emergence of Computational Functional Anatomy (CFA) as
first formalized in [64]. In this article, the authors mention the most important chal-
lenges that remain to be addressed in CFA, which are essentially the generalization
of usual signal processing schemes (as smoothing, interpolation...) to signals that
are no more supported by flat objects as with usual images, and, as a second issue,
the comparison and statistical analysis of functional responses across individuals in a
group. The fact that different subjects do not have the same geometrical support is
a clear obstacle and makes this last problem particularly challenging since we do not
have a point to point correspondence between the subjects to compare their signals.
For this reason, a vast majority of approaches have been trying to build such corre-
spondence maps between anatomical coordinates and transfer functional information
using different transport actions according to the nature of signals, as explained in
[64]. Other methodologies have been normalizing geometries of all subjects by map-
ping on a common coordinate system (e.g a sphere for cortex surfaces, [40, 72|) and
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Figure 2.2: A set of cells’ division directions inside a mouse embryo’s heart (data
courtesy of S. Meilhac’ team in Institut Pasteur).

volume mapping mapping to a sphere sphere to sphere mapping

volume mapping mapping to a sphere sphere to sphere mapping

Figure 2.3: The different steps of SAVOR algorithm.

then finding correspondences from sphere to sphere based on functional informations
and original curvature of shapes. This is basically the principle of SAVOR algorithm
summed up in figure 2.3.

If important applications have been made thanks to the aforementioned works, we
argue that enforcing common coordinate systems for the whole database makes them
specific to a particular type of topology and thus the choice of this normalized coor-
dinate system should be tailored to each dataset. It becomes consequently a delicate
and not canonical step in the approach. Moreover, treating surfaces with small holes
or fiber bundle datasets (as studied in DTI imaging) would become a dramatically
hard problem due to the non-equivalent topologies across subjects. In addition, the
mappings from subject to subject obtained on the normalized sphere model may
have no relevant meaning in the original embedding space of shapes, which makes
transformations themselves difficult to use in any statistical or classification purpose.
The last thing that we can point out is that geometry and function are nearly entirely
decorrelated during such processes. In fact, the question of providing a solid way
of modelling geometry and signal together, to our knowledge, has not been really
addressed yet.
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The objective of this chapter is precisely to provide robust mathematical and nu-
merical frameworks for representing and comparing ’'functional shapes’, the core
idea being to avoid any precomputation of point to point correspondences between
supports. As explained in the introduction chapter, currents’ kernel metrics give dis-
tances between purely geometrical shapes that do not require such correspondences
and they thus constitute interesting candidates. In the following subsections, we
give a precise sense to the idea of functional shapes’. We will then examine two
straightforward possible generalizations of currents to incorporate functional shapes
and show why they are not totally satisfying in our context.

2.1.2 Functional shapes

We start by setting up mathematically the concept of functional shapes in its higher
generality. Those can be thought intuitively either as shapes carrying signals or
images with deformable geometrical support. Although most of the numerical ap-
plications will be dealing with real-valued signals, the theory that we intend to
develop is expected to be general enough to model practically any sort of signal,
from real-valued images to directions and tensors as mentioned earlier. Let E be the
n-dimensional embedding vector space of shapes and M a Riemannian manifold that
we shall call the signal manifold. For images, M = R. In the case where signals are
oriented directions, we would have M = S"~! the unit sphere of E or M = P(E) the
projective space for unoriented directions. Signals could be also symmetric tensors
in which case M = S,,(R). We define functional shapes very naturally as :

Definition 2.1.1. A functional shape of dimension d (or fshape in short) is a cou-
ple (X, f) where X is a d-dimensional rectifiable subset of E and f: X — M a
measurable function on X taking values in the signal manifold M .

Note that we do not assume a priori any particular regularity on the functions f.
As for the geometrical support X, we only assume rectifiability so that it includes
submanifolds of F as well as piecewise submanifolds and polygons and thus encom-
passes shapes both in discrete and continuous representations. Classical images are
also special cases of functional shapes, for which X is a fixed flat domain of R?. For
every functional shape (X, f), by analogy with usual functions, we can consider the
graph Gx 5y = {(z, f(z)), * € X} as a subset of E' x M. With no additional
assumptions, this set has no particular structure. However, if we assume f to be
locally Lipschitz continuous then it’s easy to see from definition 1.3.1 that G(x y)
is a H%rectifiable subset of E x M. With stronger assumptions, namely if X is a
submanifold and f is C?, then G (x,y) 1s even a d-dimensional submanifold of E'x M.
In addition to that, a fundamental question is to define a proper deformation model
on functional shapes, i.e express the group action of deformations on a given class
of fshapes. With respect to pure geometry, this does not pose any particular issue
since a diffeomorphism ¢ € Diff(E) acts on a shape X by simply transporting X by
¢, 1.e .X = ¢(X). However, the action on functions offers far more possibilities de-
pending on the nature of the signals. Such issues of functional transfer are discussed
for instance in |64]. We review a few different situations. The most basic one is the
case of real-valued signals on shapes that are simply transported with their support
by the deformations, namely the deformed functional shape ¢.(X, f) is given by :

¢.(X, f) = (¢(X), foo™) (2.1)
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This corresponds to an action that deforms the geometric support by keeping original
functional values. In the particular case where X is a fixed domain in R? or R3
and we impose that ¢ preserves the domain (¢(X) = X) then we can think of
f as a usual image and eq.(2.1) is exactly the action of deformations on images
(i.e ¢.I = I o ¢ 1), as introduced in original LDDMM algorithms [14]. One could
also enrich the deformations’ group by adding a residual function h : E — R on
X. In that case, the group of transformations would be M(E,R) x Diff(E), with
M(E,R) the set of real-valued Borel measurable functions, the product being given

by (hg2, ¢2) X (h1,¢1) = (h1 + ha o ¢1,¢2 0 ¢1) and the action :
(&, 1) (X, f) = ($(X), (f +h)od™) (2.2)

Such models are well-adapted to the real-valued cases in which there is not a direct
prior relationship between geometry and signal but we see that they become irrel-
evant if signals are, for instance, tangent vectors to X at each point of X, because
the transported signals would not be anymore tangent to the image shape ¢(X). In
that case, we have for all x € X, f(z) € T, X C F and we see that signals should be
also transformed by the differential of ¢ :

¢.(X, f) = (6(X), (dd  f) 0 ¢7) (2.3)

where do¢ * f(x) = dy¢(f(x)). The case of tensor-valued functions, as provided by
DTI, is more involved because it must account for the orientation transformation
on the diffusion matrix that results from the space deformation. A model has been
established for instance in |2, 3|. If f(x) = D, is a symmetric 3 x 3 matrix, then the
action of a diffeomorphism ¢ is given by :

¢.(X, f) = (6(X), (o » f) 0 ¢7") (2.4)

where d¢p x D, = )\173561-71(53;’1)71 + /\273[;535’2(57072)71 + A37méx73(éx73)T in which /\WC are
the eigenvalues of D, e; , the corresponding eigenvectors and €, ; the Gram-Schmidt
orthonormalization of the basis (dy¢(eq,i))-

The previous list is of course not exhaustive but was meant to show that, unlike
classical shapes, there seems to be numerous possibilities of deformation models on
functional shapes, depending on each data type. To have a more unified vision of all
the cases together, one could think of deformations of functional shapes as deforma-
tions of their graph in the space £ x M, considering for instance diffeomorphisms of
Diff(E x M). However, we see that this group is too wide because the deformation of
the graph of (X, f) is not necessarily a graph of another functional shape (for some
deformations, one could create points with multiple functional images). To preserve
the underlying graph structure, a sufficient condition is to restrict to a subgroup H
of transformations in E x M that can be written

Y(x,m) = (Y9 (), 7 (x,m))

where 99 € Diff(E) and 17 is a measurable application from E x M to M. In that
case, the image of G(x y) by ¢ is the graph of a functional shape and the group
action is :

(X, f) = (W (X), 0 (@) fo () 7)) (2.5)
Considering different particular groups H with the action of eq.(2.5) enables to re-

cover all the previous cases, as one can check easily.
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2.1.3 Representation by currents

Starting from the idea of currents presented in the introduction, we evaluate two
different ways of embedding functional shapes (at least in some special cases) in
spaces of currents.

Colored currents

First attempts to include signals supported geometrically through the current rep-
resentation were investigated in [28] with the idea of colored currents. This relies
basically on the fact already mentioned that the set of d-currents is already a big
space that contains a wider variety of objects than d-dimensional submanifolds. In
particular, weighted submanifolds can be considered as currents : if f is a real-valued
function on X then we can associate to (X, f) a d-current in E by considering the
signal as a weight on X :

Tixp)(w) = /X fo

By the previous setting, we embed functional shapes in the space of currents on E
itself. Although this seems to be the most straightforward way to apply currents to
functional shapes, it quickly appears that such a representation suffers from several
important drawbacks. First is the impossibility to generalize colored currents for
signals that are not simply real-valued, particularly if the signal space is not a vector
space. The second point arises when the previous equation is discretized into Dirac
currents, which leads to an expression of the form » , , v f (xk)éﬁ’,j We notice
an ambiguity appearing between the signal and the volume element ¢ since for any
r # 0,
Flar)sk = rf(ap)oS/"

Separating geometry from signal in the discretized version appears as a fundamental
difficulty. In addition, the energy of Dirac terms are proportional to the value of the
signal at the corresponding point which induces an asymmetry between low and high-
valued signals. In this setting, areas having very small signals become negligible in
terms of current, which not justified in general and can drastically affect the matching
of colored currents. We show a simple illustration of this issue when matching two
colored ellipsoids with this approach in figure 2.4. Finally an additional limitation
in using colored currents is the fact that there is no flexibility to treat the signals at
different scale levels than geometry, making this approach highly sensitive to noise.

Currents in product space

Another possible and interesting way to represent a functional shape by a current
is to consider the graph G(x ) as a shape in the product space £/ x M, extending
the idea of seeing a 2D image as a 3D surface. Now, one can consider the graph as
a d-current in the product space E x M. This is not straightforward though. The
case of a general signal manifold M is for instance more difficult to handle in this
setting since it requires to consider differential forms defined on M : for simplicity,
we will assume for the rest of this section that M is a vector space. A second point
mentioned earlier is that we need to impose more regularity on the signal f, for
instance piecewise locally Lipschitz continuous so that G(x y) is rectifiable and can
be represented as a current in Q&(E x M). These difficulties apart, there still are
some important elements to point out. The first one is the increase of dimensionality
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Figure 2.4: An example of registration between two ellipsoids. On the left, the
matching is done by comparing functional shapes with the colored currents’ repre-
sentation. Values of the signals are two diffused stains both on the source ellipsoid
(inside surface) and the target one (exterior shaded surface). We display in blue tra-
jectories of the points. The points compounding to zero-valued area of the signal in
the source shape are not matched to the corresponding points in the target surface.
On the right, we show what should be the expected result. It is obtained through
the approach of functional currents presented in 2.3.2.

of the approach, because, while we are still considering shapes of dimension d, the co-
dimension is higher : the space of d-vectors characterizing local geometry AY(E x M)
is now of dimension (n+di;”(M )), with significant consequences from a computational
point of view. From a more theoretical angle, we see that, in such an approach,
geometrical support and signal play a symmetric role. In this representation, the
modeled topology is no more the one of the original shape because we also take into
account variations within the signal space. Whether this is a strength or a weakness
is not obvious a priori and would depend on the kind of applications. What we can
state is that this representation is not robust to topological changes of the shape :
in practice, the connectivity between all points becomes crucial, which we illustrate
in figure 2.5. Figure 2.6 shows a consequence of that if two curves carrying signals
are matched under this model. It shows that it can actually lead to very unnatural
registration in cases where some disconnections and discontinuities of signals appear.
In the field of computational anatomy, when processing data such as fiber bundles,
where connections between points of the fibers are not always reliable, we argue that
this would be a clear drawback.

To summarize this section, we have investigated two direct ways to see a functional
shape as a current. The colored current setting, although being very close to the
modelling of purely geometrical shapes, is not acceptable mainly because it mixes
geometry and signal in an inconsistent way. As for the second idea of immersing
the functional shape in a product space, we have explained its limits both in terms
of the difficulty in practical implementation, the increase of dimension and of the
lack of robustness with respect to topology of the geometrical support. Somehow,
the space of colored currents is not rich enough to encompass functional shapes
whereas currents in the product is probably too big. These observations constitute
our motivation to redefine a proper class of mathematical objects that would preserve
the usefulness of currents while overcoming the previous drawbacks.
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Figure 2.5: Product currents and topology. On the left, we show a disconnected
2D curve with signal values 0 in blue and 1 in red as well as the connected curve in
dashed line. On the right hand side are the corresponding curves in the 3-dimensional
geometry X signal space. What we want to emphasize here is the fact that no RKHS
norm on product currents would provide a continuity of this representation with
respect to connectivity : the difference between the two curves is the magenta dashed
part which represents a pure variation in the signal domain.

Figure 2.6: LDDMM matching of two planar curves with discontinuous signals and
topological disconnections represented as currents in the product space R x R. Each
curve has two points of functional discontinuity, one of them being also a discon-
nection of the geometrical support (b and b’). The resulting deformation is much
perturbed by the disconnections since the algorithm intends to match connected part
of the source shape on a connected part of the target shape.
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2.2 Functional currents : mathematical considerations

In this section, we propose an extension of the notion of currents to represent func-
tional shapes. The new mathematical objects we introduce, named functional cur-
rents, are not usual currents strictly speaking, as opposed to the methods presented
in 2.1.3. They would rather derive from the very general concept of double current
introduced originally by De Rham in [70].

2.2.1 Definition and basic properties of functional currents

As in the previous section, we will consider functional shapes (X, f), with X a
d-dimensional rectifiable subset of the n-dimensional Euclidean space E and f a
measurable mapping from X to the signal manifold M. In the theoretical framework
that we present here, M can be any Riemannian manifold.

Functional p-forms and functional currents

We define the space of functional currents again as the dual of a space of continuous
forms :

Definition 2.2.1. We call a functional p-form on (E, M) an element of the space
Co(E x M, APE*) which will be denoted by QY (E, M) hereafter. We consider the uni-
form norm on QU(E, M) defined by : ||wllooc = SUD( myepx s |Wam) - A functional
p-current (or fcurrent in short) is defined as a continuous linear form on Qb (E, M)
for the uniform norm. The space of functional p-currents will be therefore denoted

OL(E, M),

From the definition, one sees that functional currents are augmenting usual currents
with positions in the signal domain M. A functional p-form is somehow a field of
differential forms on the space F but spread on the product E x M. Indeed a generic
functional p-form can be written, in a coordinate system (x1, ..., x,) of E,

w= Z Qi,...ip (2, M)dT™ A A ' (2.6)

1<61<..<ip<n

Note, however, the important difference between the space of functional currents
QF(E, M)’ and the space of currents in £ x M, QF(E x M)’ discussed previously.
With functional currents, the local geometry is still the one of the geometrical shape
represented by an element of APE as opposed to the product current setting that
models the geometry of the lifted functional shape in F x M, requiring the higher
dimensional space of p-vectors AP(E x M). Thus the space of functional currents is
bigger than the one of currents on £ but smaller than the space of currents on £ x M.
Now, just as one can establish a correspondence between shapes and currents, to any
functional shape we now associate a fcurrent.

Proposition 2.2.1. Let (X, f) be a functional shape, with X an oriented rectifiable
subset of dimension d and of finite volume and f a measurable function from X to
M. For allw € QY(E, M), x v Wz, f(z)) can be integrated along X. We set :

Cix.plw) = /Xw(x,f(x))' (2.7)

Then C(x ) € Q4(E, M) and therefore (X, f) C(x,f) associates, to any functional
shape, a functional current.
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As for usual currents, an orientation on X is needed for the previous integral to
have any meaning. We remind that X being rectifiable, there exists an oriented
d-dimensional tangent space at almost every point z € X and, if we denote 7(z)
the unit d-vector in AYE associated to the tangent space at x, then the integral in
eq.(2.7) is :

Cx.py(w) = /X oo (7 () A () (2.8)

In the more restricted case where X is a submanifold, then the previous can also be
written through local parametrization with a given partition of the unity of X. If
v : U — E is a parametrization of X with U an open subset of R, then

C(X’f) (w) = /UW(W’(U)JOW(U)) (88’3/1 JARAN aa;/d) duy...dug .
and it’s an easy check that a reparametrization doesn’t change the integral. Of
course, as for regular currents, the previous correspondence between functional shapes
and functional currents is not surjective. For instance, a sum of functional currents
of the form C|x y) do not generally derive from a functional shape. In the functional
current framework, Dirac masses are naturally generalized by elementary functional
currents or Dirac feurrents 85 for x € X, m € M and £ € APE such that

(z;m)
(5(51 m) (W) = W(gm)(§). In the same way as explained in the previous section, one can
give a discretized version of functional currents associated to (X, f) when a mesh is
defined on X. C(x ) is then approximated by a sum of Dirac fcurrents :

~ 3
Coxpy ™ D O ) (2.9)
k=1..N

In the particular case of a triangulated surface, the discretized version of the fcur-
rent can be simply obtained as explained for classical currents and by adding the
‘interpolated value’ of signal at each center point of triangles (or for a general signal
manifold, the Frechet mean in M), as in the example of figure 2.7. In the following
proposition, we try to give a more precise sense to eq.(2.9). We shall assume for sim-
plicity that X is a C'-submanifold of E which admits a parametrization F: Q — F
with © an open subset of R? and F an embedding. Namely, assume that we are
given a d-dimensional mesh on a C'-submanifold X whose faces will be denoted by
(Aj)i=1,.n and that the signal . From the discrete representation, we can observe
that functional currents have a very simple interpretation, which consists in attach-
ing values of the signal f to the usual representation of X as a d-current. In fact, one
could alternatively define functional forms as a tensor product space by making the
identification Q4(E, M) = Q3(E) ® Co(M,R) and thus consider fcurrents as tensor
products of d-currents on E and O-currents (i.e measures) on M, which is closer to
the notions presented in [70].

Diffeomorphic transport of fcurrents

What about diffeomorphic transport of functional currents 7 This question cannot
be addressed as simply as in the classical current setting in its full generality, which
essentially results from the discussion in 2.1.2. As we explained, there are different
possibilities both for the group of transformations that one can choose and the action
of these deformations on the considered class of functional shapes. To remain general,
suppose that a certain class of functional shapes together with a group G C Diff(E x
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Figure 2.7: Dirac fcurrents computed from a triangulated functional surface.

M) and a left group action are fixed, we will note ¢.(X, f) the action of ¢ € G on a
functional shape (X, f). Then,

Definition 2.2.2. We call a deformation model on the space of functional currents
a left action of the group G on QS(E,M)' which s such that for any functional
shape (X, f) and any diffeomorphism ¢, if . stands for the action on feurrents, the
following property holds :

[6+C(x.p)l(w) = Cy(x,5) (W) (2.10)
for all w € Q4(E, M).

Eq.(2.10) is basically a commutation condition between the embedding of fshapes into
feurrents’ space with the deformation transport. With usual currents, this always
holds with the pull-back and push-forward actions. Here, it is necessary to adapt
the definition of the action on fcurrents to be compatible with a given action on
functional shapes.

In practical applications, this is usually not difficult. In the case of real valued signal
data deformed as in eq.(2.1), the action of ¢ € Diff(E) on a functional current C' can
be defined in a very similar way :

$.C(w) = C(¢p*w), Yw € QL(E, M)
where for all Ve € E, me M, £ =& N ... NE € APE (2.11)

(W) (2,m) (&) = W(g(z)m)(ded(E1) A ... Adrd(Ea)) -

It can be easily checked from the previous equations that for all functional shapes
(X, f), we have ¢.C(x 5y = C(4(x),fop-1) @ We expected under this model.

In the case of the group of deformations Diff(E') x M(E,R) acting as in eq.(2.2), we
obtain the corresponding deformation model on fcurrents by setting :

(¢, 1h):C(w) = C((¢,h)*w), Yw € QF(E, M)
where for all Ve € E, me M, { =6 N ... N§ € APE (2.12)

(9, 1) W) (2,m) (€) = Wi (a)m+h(@) (ded(E1) A oo Adei(Ea)) -

These are essentially the two situations that shall be considered in numerical appli-
cations (section 2.3.2). Yet the same thing can be written for the general action on
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fshapes given by eq.(2.5) which translates to functional currents by the relations :
.C(w) = C(YP*w), Yw € QI(E, M)
where for allVz € E, me M, { =6 N ... N§ € APE (2.13)

(V*W) (2,m) (€) = Wep(wm) (dzth? (E1) A o A detp9(Ea)) -

Relationship with other currents

We mentioned earlier that the space of functional currents is ’bigger’ than the one of
usual currents, as we see easily if one takes the signal space as a singleton (M = {m})
and identifies £ x M with E. A more rigorous way to say so is that we have a
surjective application s : Q4(FE, M) — Q4(F) which we obtain by fixing m € M and
associating to w € Q4(E, M),

s(w) =wim(.) € QS(E).
The dual application
j: CeQUE) — [C: w CO(s(w))] € QUE, M)

is a one to one linear map.
However, as we could expect, it’s a ’smaller’ space than the one of currents in the
product £ x M. Indeed, assuming, to simplify, that M is a vector space, we can
embed AYFE into AY(E x M) by setting for & A ... Aég € AE, 1(E1 A ... N&g) =
(€1,0) A ... A (€4,0) € AY(E x M). Thus, we can define the application :

p: QUE x M) — QYE, M)

w > p(w)/ P(W)(z,m) (§) = Wiam) (L(E))

On the other way, there is a surjective application I from AYE x M) to A’E which

is such that for all (§&1,71), ..., (§4,mq) € Ex M, 1((§&1,m) A ... A (€q,ma)) = E1 N ... NEq,
which induces the application :

p: QUE, M) — QYE x M)
w — p(w)/ p(W)(z,m) (&) = Wam) (L))

and we easily see that pop is the identity on Qg(E, M). Tt results that p is a surjective
application. We obtain therefore a dual application :

i: QUE,M) — QUE x M)
C—[i(C) : w— C(p(w))]

that is one to one. In conclusion, we just proved that we have the following diagram :

(Y ——— QB MY QB x MY
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2.2.2 Reproducing Kernel Hilbert Space structures on functional
currents

In this section, we now address the fundamental question of comparing functional
currents through appropriate metrics. For this purpose, we adapt the ideas of RKHS
that were presented briefly for currents in the introduction chapter. In particular, we
propose a generic way to build kernels that embeds functional currents into Hilbert
spaces and provide closed form expressions of the dot product between Diracs.

Kernels’ construction

As we have seen for currents, the theory of RKHS defines an inner product between
currents through a certain kernel function satisfying some regularity and boundary
conditions. We shall take advantage of the idea that functional d-currents can also be
considered as the tensor product of d-currents on E and 0-currents on M. We remind
that for a set A and a finite-dimensional vector space V', we say that K is a V-positive
kernelon Aif K: AxA — L(V), K(d',a) = K(a,ad')* and K satisfies the positivity
property : for all ay,...,any € A and vy,..,oy €V, ijzﬁK(ai,aj)vi,vﬁ > 0. Let’s
first mention the following very general result from kernel theory :

Lemma 2.2.1. Let A and B be two sels and K4 a Va-positive kernel on A, K a
Vi -positive kernel on B where V4 and Vp are two finite dimensional vector spaces.
Then, the tensor product Ko @ Kp defined by :

(Ka® Kp ((a,b), (a',0) ua @ up,va @ vp) = (Ka(a,a )ua,va) (Kp(b,0')up, vp)
is a V4 ® Vp-positive kernel on A x B.

Proof. Let N € N* ay,..,ay € A and by,...,b5y € B, uy,..,uny € V4 and vy, ..,uy €
Vp. We have by definition of the kernel :

N N
> (Ka® Kp ((ai,bi), (a;,b5)) ui @ vi,u; @ vy) = Y (Kalai, a;)u, u;)(Kp(bs, by)vi, v;)
i,j=1 j=1

=Tr(MaMp)

where M4 = ((Ka(as, aj)ui, uj))sj and Mp = ((Kp(bi, bj)vi, vj))i; are both positive
symmetric matrices (because K4 and Kp are positive kernels). Tt is then a well-
known fact that Tr(MaMp) > 0 and thus K4 ® Kp is a positive kernel. O

Note that if Kp is a real kernel (i.e Vg = R) then K4®@ Kp is a VA®R ~ Vy-positive
kernel on A x B. Now, we apply lemma 2.2.1 to the case of functional currents.

Proposition 2.2.2. Let K, : ExXFE — L(AYE) be a positive kernel on the geomelrical
space E and ky : M x M — R a real positive kernel on the signal space M. We assume
that both kernels are continuous, bounded and vanishing at infinity. Then K, ® ky
defines a A*E-positive kernel on E x M whose corresponding reproducing Hilbert
space W is continuously embedded into Q3(E, M).

Proof. From the conditions on both kernels, we know that to Ky and k; correspond
two RKHS W, and Wy that are respectively embedded into Qf(E) and Cy(M,R)
(cf section 1.2.4 in chapter 1). By applying lemma 2.2.1 with A = E, B = M,
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Vi = AF and Vg = R, we get that K = K, ® ky defines a A%E-positive kernel on
E x M. Moreover, since ky is real-valued, we have the following expression for K :

K((azl,ml), (aig,mg)) = k‘f(ml,mz).Kg(fL’l,:Ez) (214)

The kernel K corresponds to a unique RKHS W that is the completion of the vector
space spanned by all the functions {k¢(.,m).Ky(.,x){} forx € E, m € M, & € AE.
Since functions kf(.,m) and K,(.,x) are both continuous and vanishing at infinity
from, this holds for k¢(.,m).K4(.,x)¢ as well, so that W is indeed embedded into
Qg(E, M). Tt only remains to prove that the embedding is continuous, which reduces
to dominate the uniform norm by ||.||w.

Let w € W. For all (x,m) € E x M and &£ € A°E such that |£| = 1, we have

oy (©)] = 185y ()] (2.15)

Since W is a RKHS, all 5@0 m) are continuous linear forms on W. In addition, the

Riesz representation theorem provides an isometry Ky : W/ — W. Then :

<5(€;17m1)’ 5§§2,m2)>wl - <KW(5§;1,m1))’ KW(5§i2,m2))>W
= <kf(.,m1)Kg(.,:B1)§1,kf(.,mQ)Kg(.,x2)§2>W
= ky(my,ma) (Kg(x1,22)81, &2) (2.16)

Now, back to equation (2.15), we have :

IN

165 llw 1ol

<\ Sy (mm) (K, 2)6,€) [wllw

‘w(ac,m) (§)|

Since we assume that m — kg(m,m) and z — Ky(z,z) are bounded we deduce
that \/ky(m, m).(Ky(z, ), €) is bounded with respect to z, m and £ with £ = 1.
Hence, by taking the supremum in the previous equation, we finally get

[wlloo < Cllwllw
which means that the embedding is continuous. O
By duality, we have an application

s QUE, MY — W

that sends any functional current into W’ (which is also a Hilbert space) and we
can thus compare functional shapes with the norm provided by the kernel. However,
it’s important to point out that +* is not necessarily an embedding. If for instance
M = S! and V61,05 € S, kf(01,02) = 1, we see that for € E, £ € AYE and
01,09 € S, we have +* (5(5x’91)) = z*(éfxﬂQ)) and ¢* is not injective. The fact that ¢* is
an embedding is called the Cy-universality property of the kernel and, as proved
in [20], it is equivalent to the property of W being dense in Q3(E, M). This is the
case in particular if both W, and Wy are respectively dense in Q4(E) and Co(M, R).
In [20] are also given a few examples of universal kernels and building techniques in
the general case. Gaussian kernels are the simplest examples, which explains their
wide use in practical applications.

To sum up, proposition 2.2.2 provides a quite natural (but not unique) way to build

26



kernels for functional currents by making the tensor product of kernels defined sep-
arately in the geometrical domain (d-currents in E) and in the signal domain (0-
currents in M). Note that non product kernels could also be used but the product
situation corresponds to an independence assumption between shape and functional
information which is natural when modeling the residual difference between two func-
tional shapes as noise. Moreover, the use of product kernels leads to simpler and
faster computational schemes, as we shall explain later on. We see that, eventually,
everything relies on the specification of kernels on E and M.

Kernels on the vector space E obviously do not raise any additional difficulty in our
approach compared to usual current settings. Among others, we have already men-
tioned radial scalar kernels defined for z,y € E by K(z,y) = k(|z — y|).1dg where
k is a function defined on Ry and vanishing at infinity. This family of kernels is
the only one that induces a RKHS norm invariant for affine isometries. The most
usual is the Gaussian kernel, which is also Cy universal as we said earlier, defined by
K(z,y) = exp (—"1;7;”2) Idg, o being a scale parameter that can be interpreted as
a range of interactions between point positions.

The definition of a kernel on the signal manifold M is often more involved. However,
it is important to note that, in the setting of functional currents, this issue is dras-
tically simplified because we only need to define real-valued kernels on M. This is
contrasting, for instance, with the idea of product space currents of subsection 2.1.3,
that would require kernels living in the exterior product of the fiber bundle of M. If
M is an embedded manifold, one could simply use the following trivial property on
kernels :

Property 2.2.1. Let k be a real-valued positive kernel on a set A. Then, if B is a
subset of A, the function k: B x B — R obtained by restriction is a positive kernel
on B.

In our case, if M is a submanifold of some vector space F', obtaining real-valued ker-
nels on M becomes straightforward by restriction to M of kernels defined on F'. For
vector kernels, this process does not apply because of the non-equal tangent spaces
at different points. A second important fact is that the Cp-universality property
transfers by restriction, i.e :

Property 2.2.2. If k is a real-valued positive Co—um‘ver{al kernel on a Banach space
A and B a closed subset of A then the restricted kernel k is also C°-universal.

This is proved in [20], corollary 3. In practical terms, prop 2.2.2 guarantees that we
can obtain CC-universal kernel on M if we restrict for instance a Gaussian kernel in
F on M. In the case of an abstract signal manifold M for which we don’t have a
canonical embedding into a vector space, the resulting kernels would depend on the
way that M is embedded into a determined space.

Functional currents’ kernel metrics : a few examples

From eq.(2.16), we see that the metric between two Dirac fcurrents is a combination
of geometry comparison through the positions of the two Diracs and the local volume
elements, and signal proximity evaluated by the kernel ky. More generally, one can
write the distance on functional shapes that results from these metrics. If (X, f)
and (Y, g) are two functional shapes to which we associate their functional currents’
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representations Cx y) and C(y,g), then we have :

ICx.1) — Civiglliv: = ICx.pllivr + ICw ) I3y — 2(Cx. 1), Civg) )W
:/ kf(f($1)af($2))-<Kg($1,$2)5X(5E1)7éX($2)>de(x1)de(x2)
XxX

+/Y Ykf(g(yl)ag(y2))-<Kg('!/layZ)éY(yl)>éY(y2)>de<yl)de(y2)

—2 [ R @), 000 (B ) @), b ) ) ) (2.17)
XxY

where €x(z) is the unit d-vector of A’E characterizing the oriented tangent space
to X at . We can also write the exact equivalent of eq.(2.17) for discrete shapes.

. n -EZX m 34
Namely if Cx 5 = > i (5(2?1_7]@1_) and Cyg) = > jo; 6(5167%), then :

ICx.5) = Covgllir =D kp(fir £5) (K g (i, )65, )

i=1 j=1
k=1 1=1
23 k(i) Ky m)€X .60 (218)
=1 k=1

This last equation gives a rather simple closed formula for computing distances be-
tween functional shapes based only on kernel evaluations. We also see that for suf-
ficiently regular kernels, we obtain differentiable distances with respect to position
and functional values, which shall be presented in more details in the next sections.
Now, we try to give a little more insight on how these metrics behave by considering
more specifically the case of real-valued signals M = R. I;et’s also take the kernels
If2—f1
k¢ and K, to be Gaussian kernels, i.e k¢(f1, fo) = e 7 and (Kg(x1,22)€1,82) =
|wp—wq |2

e 5 (£,&). The parameters o4 and oy are the scales of the kernels respectively
in the geometrical and signal domain. The interaction between two diracs decreases
as they lie 'farther’ from each other with respect to o4 or if the difference between
the signals they carry becomes larger compared to oy. In particular, if oy — +o00,
we have kf(f1, fo) = 1 for all fi, fo and the distance we get is exactly the distance
between the purely geometrical shapes X and Y given by currents. On the other
hand, if we let 0, — +00, as if all points were seen by the kernel at the same location
geometrically, eq.(2.17) and eq.(2.18) become somehow a metric between the signal
distributions of the two objects. However, we see that it still takes into account
some of the geometry through the local volume elements and just as for usual cur-
rents, there are some cancellation effects occurring essentially because of orientation,
which causes these metrics to be sensitive only to boundaries of level sets. We shall
be dealing in more details with these questions in the next chapter.

Another interesting subcase that gives a simpler vision of such metrics is the very
special one of 2D images. If ) € R? is the fixed definition domain of images, one can
represent an image I :  — R as a functional current C(q 1) € Q3(R?,R). In that
case, the domain is flat, there are no currents’ cancellation effects as we mentioned in
the previous paragraph, and local geometry is described by the same 2-vector at each
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point, which is simply a surface area and the kernel on the geometrical space can be
considered as a real-valued kernel kq. The distance of eq.(2.17) then becomes :

ICw.) — Ciaglliy: =

/ng kg(@,y).[ky (I (@), 1 (y) + ky(l2(x), I2(y)) — 2k¢(11(2), L2(y))|dxdy
(2.19)

|yl _lg=nl?

— For two Gaussian kernels k,(z,y) =e ¢ and kf(g,h) = e 73 , we see that
the distance we get combines geometric proximity between positions at scale o,
and proximity of the intensities at scale oy, which is actually close to the idea of
bilateral filtering in image processing [76].

— If one takes for kf the linear kernel, kf(g,h) = gh, and let o4 — 0, eq.(2.19)

becomes :

HC(Q,]‘) — C(Q,g)HI%V’ = /911(1')2 + IQ(.T)Q — 2[1(.%)[2(.%)6[1’

_ / (L) — Io(x))2da
Q

and this is the usual L?-distance between images.

— Now, if we look at images at very large geometrical scale by letting o, — +o0,
eq.(2.19) is a distance between the intensities’ distributions of the two images ;
more precisely, it can be interpreted as a metric between the measures y; = Aol 1
and po = Ao I{l, where X is the Lebesgue measure on R?. Indeed, by a change of
variables in the integrals :

ICap = Cnalfir = [ ksl Tiw)ir@)NG)
+/ kp(I2(x), I2(y))dA(z)dA(y)
QxN
) / ky (11 (), Ia(y))dA(x)dA(y)
QxQ

= [ ki) + [ k)i dia )
RxR RxR

2 [yl v (o)

In the discrete setting, representing every pixel as a Dirac fcurrent d(,, r(z,)), these
measures can be thought as intensity histograms counting the number of pixels
having a particular intensity. Thus the metrics we obtain at infinite geometrical
scales are measuring differences in the intensities histograms of the images. For
instance, if ky is Gaussian and we let oy — 0, one can verify that the previous
equation gives exactly the L2-distance between the images’ histograms.
In summary, these last examples show that functional currents’ representation com-
bined with the use of kernels provide a very wide range of possible metrics between
functional shapes, from distances based on pure geometry on one extreme to distances
that simply compare histograms of signals on the other. It also enables analysis at
various scales both in the geometrical and functional domain as well as multi-scale
metrics : one simple way being to make sums of Gaussian kernels with different oy
and oy.
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2.2.3 Properties of kernel norms on fcurrents

We now turn to general properties of the distances we have exhibited previously and
show the theoretical benefits of this approach with respect to the original problem
we set out to handle in this chapter. As in the previous section, we assume that two
kernels K, and k; are given respectively on space £ and manifold M, providing two
RKHS W, and W;. We will also assume, in all this section, that both kernels satisfy
the requirements of proposition 2.2.2.

Control by L'-norm on a fixed geometrical support
We start by the following very simple lemma :

Lemma 2.2.2. For all x1,20 € E, &,& € AYE and my,mg €, the following in-
equality holds :
_5&

(z1,m1)

162

s < 18y llw 11852 — 05wy + 152wy 19ms — Srmallwy - (2.20)

(w2,mz2)
Proof. This is just a consequence of the triangular inequality since :

_ 552

(z2,m1)

162, ) = Oty w7 < 1152

:EQ mg) (I1,m1

e+ (1622

&1
(w2,m2) (w2,m1) 5(11,M1)HW'

and by the expression of the kernel eq.(2.14),

1082, ) = 002, s i = (Kg(a, 22)&0, &) (kp(ma, ma) — 2k p(mr,ma) + ky(ma, m1))

= 11852 113, 19ms — Oy I3,

and similarly we have [[652 - — 6%l = |16, ”W}”&g’; 05 llw - O

(w2,m1) (z1,m1)

Therefore, the RKHS distance between punctual fcurrents is dominated both with
respect to the variation of their geometrical parts and of their functional values. This
is the general idea we will formulate in a more precise way with the two following
propositions. We denote by djs the geodesic distance induced on M by its Rie-
mannian structure. The next proposition examines the case where the geometrical
support is a fixed support X and shows that the variation of the W/'-norm is then
dominated by the L' norm on X.

Theorem 2.2.1. Let X be a d-dimensional oriented rectifiable subset of E of finite
volume and f1 : X = M and fo : X — M two measurable functions defined on X
taking value in M. We assume that Wy is continuously embedded into C&(M, R).
Then, there exists a constant B8 such that :

1Cx. 1) = Clxp)lwr <8 /X drr(fi(z), f2(x))dH (z)

Proof. We recall that for a d-dimensional oriented rectifiable subset there exists for
H%-almost every point x € X a unit d-vector () and by definition :

Clxp(w) = /X (o) (€ (@) dH (& / 54y ) (@)

Now we have by triangular inequality on ||.||w :
ICx.11) = Clx gl < / 156 ) = O o I (2:21)
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From lemma 2.2.2 and eq.(2.20), H(Fi(f} @) 5?;}2 HW’ < |68 x)HW/H%

O (a HW’ Now, for any m1, mo € M and h € W we have
[Omy = Oma)(R)] = [h(m1) = h(ma)|
< [|Dh|sodprr(mi, m2)
<

Cte HhHWfdM(m17 mg)

the last inequality resulting from the continuous embedding Wy — C¢(M,R). There-
fore we get

1052(2) = 1) lwy, < Ctedns (f1(), fo(2)) -

Moreover, since we assume that the kernel K, is bounded, we also have Héﬁ(“”f) HW; <
Cte. Back to equation eq.(2.21), we get from the previous derivations the existence
of a constant 8 > 0 such that :

ICx.1) = Cox, oyl < 8 /X dar(f1(2), folw))dH (z)

which proves the stated result. O

A straightforward consequence of theorem 2.2.1 and the dominated convergence the-
orem is that if f,, is a sequence of functions on X that converges pointwisely to a
function f, then C(x ) = C(x,f)- In other words, pointwise convergence of the
signal implies convergence for the W'-norm. We shall see, with the following
results, that the reverse domination does not hold in general.

Control by deformations’ metrics

The purpose is now to link the W -metrics with functional shapes’ deformations. We
show that we can bagically control the distance in the space of fcurrents between a
functional shape and its deformed version by the amount of deformation. Let’s first
focus the simplest transport model given by 2.1 and assume that diffeomorphisms ¢
are C! and such that |¢(z) — x| — 0 and |d.¢ — Id| — 0| as © — oo. The central
result of this section is the following :

Theorem 2.2.2. Let X be a d-dimensional oriented rectifiable subset of E of finite
volume and f : X — M a measurable function. Assume that Wy is continuously
embedded into C&(E,AdE*), There exists a constant v > 0 depending only on the
kernels K, and ky such that, for all deformation ¢ :

1Cx.5) — Clo(x), foe—1) llwr < YHUX)||¢ — 1d]]1,00

Proof. For the entire proof, we shall use the same notation Cte for writing the suc-
cessive different 'universal’ constants (i.e not dependent on the shape (X, f) and the
deformation ¢). Starting as in theorem 2.2.1, we have :

x dy
ICx.f) = Clo(x),fos ||W’</ \\55( )= ‘1’5 o lwrd () (2.22)

A Eq(x), dpo.£(x) is the transported

where for the volume element &(x ) = £1(x) A (
=do ( 1(z ))/\ Ndpz(Eq(x)). From eq.(2.20)

volume element by ¢, equal to d;¢. 5( )
we get :

da x dy z -
1055y = ) e < 16 oyl I ) = 66
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and since the kernel k; is bounded we have ||5f($)||w} < Cte. Moreover :

d £ z dy (o
||5¢-(f)5( x) 5£< Nw ;< ||5¢(f£ z) W ||W, + ||5¢(x — 88! )IIW§~ (2.23)

Focusing first on the second term, we can write for any w € Wy,
(05 = 05 ()] = |wi(e) (E(x) — wa ()]
< Jdwoo-|$(x) — a].|E(2)].

We have in addition |€(x)| = 1. W, being continuously embedded in C}(E, AZE*),

|dw|so < Ctellw||w,. Thus, we deduce that Hdi((i)) - 5§($)||ng < Ctel|¢p —Id||oo- As for
the first term in eq.(2.22),

- E(x dy E(x)—E(z = =
15545 — 650 oy = (189550 gy < Cheldu(x) — E(a)]

since K, is bounded and, by definition, |d,¢.£(z)—€(x)| < |dp—1d|o.|€| = |dp—T1d|no.
It results that we get eventually :

1Cx. 1) = Clo(x)pofop—1) lwr < Cte.]] /X dH*(z) = Cte. H(X) || —1d]|1,0

which concludes the proof. O

This is somehow the analogous to theorem 2.2.1 for variations of the geometrical
support : it shows that the RKHS norm is Lipschitz regular with respect to defor-
mations. This property is a natural one to expect from a distance in our context, but
note that many usual metrics do not satisfy it. This is notably what happens for LP
distances. Indeed, if we specify the previous to the particular case where ¢ is a small
deformation that leaves X globally invariant (¢(X) = X) and we wish to compare the
initial functional shape (X, f) with the deformed one (¢(X), fo¢™!) = (X, foo™ 1),
then by theorem 2.2.2, we know that, for any function f, the fcurrent’s distance re-
maing small if the deformation ¢ is small. It is no longer true if we compute instead
Jx |f = fo¢™ [P, the LP distance on X (0 < p < co). This is easily seen if we choose
for X the unit circle S' and consider crenelated signals as in figure 2.8. Introducing
the operator 749 that acts on functional shapes by rotation of an angle df, we see
indeed that :

sup ]f—foq—d*e1|P:1
FeL? (SN, fllp<1 /8

whereas, according to theorem 2.2.2

Sup ICx.n — Cx, forgy! 1 llwr = O(do) .
FELP (S1),[IfllLp <1

This eventually shows that W’ norm and LP norm on a fixed geometrical support
are not equivalent in general. This simple example also reveals the limits of some
previous approaches for functional shape comparison that rely on estimating corre-
spondence maps between the geometrical supports before comparing signals. RKHS
norms on fcurrents successfully avoid such issues because shape and function are
compared through one single norm that has enough spatial regularity to compare
functional values at points in a certain neighborhood.
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Figure 2.8: Comparison of the fcurrent’s norm and the LP norm on a fixed geometrical
support : example of crenelations on the unit circle.

We can also draw a few more consequences of theorem 2.2.2. In particular, as already
explained in chapter 1, we can model diffeomorphisms of E as flows of time-varying
vector fields. Namely, we consider vector fields v (¢, x) such that for all ¢ € [0, 1], v(t, .)
is a C! vector field of E such that u and its first order derivatives are vanishing at
infinity. We define |v|1,00 = [v]oo+|dv|eo. Then, x! denotes the space of all such time-
varying vector fields such that fol [v(t,.)]1,00dt < 400 and it is naturally equipped
with the norm [Jul,1 = fol |u(t,.)|1,00dt. As already explained in chapter 1 and [86],
any u € x! gives a flow application ¢¥ : z — ¢?(z) solving the ODE % = v(s,y)
with initial condition y(0) = x € E, and for all t € [0, 1], ¢V is a C!-diffeomorphism
of E such that |¢} (x) — x| — 0 and |dy¢} —Id| — 0| as x — oo. We have in addition
the following lemma (we refer to [41] or [86] for the details) :

Lemma 2.2.3. For all R > 0 there is a constant C(R) > 0 such that, for all u € x*
with |lull,» < R andt € [0,1] :

16 — Id]loo < C(R).||v]ly1, [ldp; — Id]oo < C(R)-||v[ly1-

From theorem 2.2.2 and lemma 2.2.3, we obtain straightforwardly the following con-
trol :

Corollary 2.2.1. Let X be a d-dimensional oriented rectifiable subset of E of finite
volume and f : X — M a measurable function. Assume that Wy is continuously
embedded into C’&(E,AdE*). There exists a constant v > 0 depending only on the
kernels Kg and kg such that, for all v € x' with ||ull,» small enough :

ICx,1) — Can (x), foton) -1 llwr < YHAX) vl

In addition, assuming sufficient spatial regularity on the vector field v, one can show
the important property of weak continuity of W’ norms with respect to v. It relies
on the following lemma, that is proved in [41] chap. 1 or in [86] :

Lemma 2.2.4. Let V' be a Hilbert space of vector fields on E such that V is con-
tinuously embedded into Cg(E, E). Then, if v, is a sequence of vector fields in
L%([0,1],V) = L} such that v, — v weakly in L2, ¢;" and d¢y" converge towards
@7 and doy uniformly on every compact of E.
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We obtain therefore :

Corollary 2.2.2. If V is a Hilbert space of vector fields continuously embedded into
C2(E, E) then, for any fized and bounded rectifiable set X of finite volume and mea-
surable signal f on X, the application v — C'(W(X),fo(qb%)_l) s weakly continuous

from L% to W'.

Proof. Let v, is a sequence that weakly converges toward v in L%/. With lemma
2.2.4, we know that ¢ and d¢j" converge respectively to ¢} and d¢j uniformly
on every compact of E, i.e |[¢]" — ¢V]1,00 — 0 on a neighborhood of X. Then,
thanks to theorem 2.2.2, we are allowed to conclude that C((z)ll)n(X)’fo((blfn)fl) K)
C(M(X)JO(M)A), which proves the weak continuity.

To conclude on this topic, we give a little more general result that encompasses
theorems 2.2.1 and corollary 2.2.1 by controlling fcurrents’ norms both with respect
to variations of the support and the signal values. We consider the general action
of applications ¢ (z,m) = (9(x),4f (x,m)) presented at the end of 2.1.2 and in
eq.(2.5). As we did previously, we can generate such transformations by flowing
vector fields of the form (v9(x),v/(z,m)). We assume that v9 € x! and that v/ is a
time-varying function such that for all ¢ € [0, 1], vgc is a locally Lipschitz continuous
and bounded function from E x M to TM and that [ |[v][|ecdt < co. We shall

denote by
1
follvo = [ leale
0

Theorem 2.2.3. Let X be a d-dimensional oriented rectifiable subset of E of finite
volume and f : X — M a measurable function. Assume that Wy is continuously
embedded into C}(E,AE*) and that Wy is continuously embedded into CE(M,R).
There exists a constant v > 0 depending only on the kernels Ky and ky such that,
for all v = (v9,v7), with v9 a x* vector field of E and v/ a locally Lipschitz bounded
vector field from E x M to T M, we have :

Then, the following holds :

1€y = Coxpliwr < AVoUX) (107l + oo )
Proof. The proof essentially combines the two previous theorems. We remind that

VX, f) = @WI(X), I (9)~Y), f o (9)~1). To lighten the expressions, we shall
denote by /. f the function defined on X by

W f)(@) = ! (@, f(2))
We have, by triangular inequality :

1Cx. 1 = Co.x.pllw < ICx.p) = Coxpr pyllw + 1Cx s 1) = Cox.pyllwe

<Cx.p) = Cixpr pllw + 1Cx s 1) = Clpa )07 fo(wa)—1)llw
(2.24)

Using theorem 2.2.2, the second term is dominated by :
HC(Xﬂpf,f) - C(fwg(X)’wf'fo(d)g)—l) HW’ § Cte.VOI(X)HUgHXl (2.25)
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For the first term, applying theorem 2.2.1, we find that :
ICx. 1) = Cixpr pyllw < Cte/X du (W f) (@), f(z))dH ().

(v9,v7), we can bound, for

Using now usual result on the flow of the vector field v =
< o9 0 + |Jv/ |0 and thus

all (z,m) € E x M, dy (4! (a,m),m) by [|(v7,0/)
we have :

HXO

1€ = Clxws.pllwr < Ce.Vol(X). (vallxo + vaHXO) (2.26)

Since [[v9] o < [[v9][\1, q.(2.25) and (2.26) give the desired result.

Variations’ formula for the metrics

We now go one step further and give a more precise description of the infinitesimal
variation of the W’-metric with respect to the geometrical positions and signal values
of the functional shapes. This shall lead to a generalization of Cartan’s formula that
we stated for usual currents in theorem 1.3.2 of section 1.3.4. In all this section, we
will assume that M is a vector space and that all differential forms have in addition
C* regularity. Similarly to 1.3.4, fixing a functional shape (X, f), we want to express
the variation of Cx y)(w) for any w € Qd(E, M), with respect to X as well as the
signal values f. Therefore, we introduce some smooth and compactly supported
vector field v in £ x M which, as previously, is such that v(z,m) = (ve(x),v¢(x, m))
and its flow at time ¢, ¢ (2, m) = (¥9(z), 7 (x,m)). What we look for is the variation
of C(x,f)(w) when deforming (X, f) in the direction of v, i.e :

d d

@ Coue.nW) = i

Cix,p)(Yrw)

where 1fw is defined as in eq.(2.13). The simplest way to proceed is to use Cartan’s
formula for currents in £ x M and then deduce an equivalent result for functional
currents through the applications introduced in 2.2.1. Let’s call Tz the current in
Q4(E x M) associated to the graph G of (X, f) in E x M. We assume that X is
a C' compact oriented submanifold and that f is C' so that G is itself a compact
oriented submanifold in E x M. For any differential form n € Q4(E x M), we have

Ty, c)(n) = Tg(lbfn) =/ wfn and by Cartan’s formula :

d

dt

Tyy(c)(n) = / 1 (dn) + /(9 qu(n) (2.27)

t=0 G

where 17, is once again the contraction operator on differential forms (in E x M).
To get back to functional forms and currents, we recall from 2.2.1 that we have an
injective linear application p : Q3(E, M) — Q4(E x M) such that p(w)(m)(¢) =
W(z,m)(1(¢)) with I the projection of AY(E x M) on A%(E) defined in 2.2.1.

Lemma 2.2.5. With the previous notations, we have :
Cix.p(w) = Ta(pw)) (2.28)
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Proof. Up to using a partition of unity of X, we can assume, without loss of gener-
ality, that X admits a C'-parametrization v : U — E with U an open subset of R?.
Then I': U — E x M defined by I'(u) = (v(u), f o y(u)) is a parametrization of G
and :

or or

—/w { or A. /\ﬂ duy...du
= - (y(u),foy(u)) au1 g 1...aU%d

r T
By definition of [ and T', we see that [ <§ A A g) = 59—7]1 Ao A E;%. And
Ul Ud
thus :
vy 07
T = o | == A e A=) duy...d
a(p(w)) /U Wiy (), foy(w)) ( Duy aud) Ut dig

=Cx,5)(w)

We have in addition the following commutativity property :
Lemma 2.2.6. For any w € Q&(E, M),
p(¥iw) = Vi (p(w)) (2.29)

Proof. For any (z,m) € ExM and ¢ = (G A...ACq € AYE X M), welet & A...ANEg =
(Gt Ao ANCq). Then :

p(w:w)(m,m) (() = (w;fkw)(a:,m) (El AN gd)
= Wiy (z,m) (axd)g(él) ARTIA 89:7!)?(@))

Now, since O,,%{ = 0, we have in fact Vi € {1,...,d}, 9,%7(&) = dvf(¢;) and
Dpth? (E1) A oo A DY (£q) = U(dapy(C1) A ... A dipi(Cg)), which gives :

PV W) (2,m) (€) = Wy (,m) (L( A (C1) A oo A dipi(Ca)))
= (vir@) . ©

With eq.(2.27),(2.28) and (2.29), we now deduce :

d d «
a|_ Coxn@) =g Coxpliv)
d
== T *
dt|,_, c(p(Yiw))
d
=@, T (Vp(w))

- [+ o

We have thus shown the following proposition :
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Proposition 2.2.3. For X a compact oriented submanifold of E, f a C' function
on X and for any vector field of the form v(z,m) = (vg(z),vs(x,m)) whose flow 1y
exists at time 0 < t < ¢, we have for all C* functional form w € QI(E, M) :

- cunr= [utbn+ [ ) (2.30)

dt t=0 G

We see that the derivatives we look for eventually consist in taking the variation of
the product current Tz associated to the graph but restricted to particular differen-
tial forms p(w) of E x M. We already can draw a few consequences from this, relying
on what was previously done with Cartan’s formula for currents (theorem 1.3.2). In
that case, it shows that in E x M, the gradient of fcurrents’ metrics at each point in
the interior of X is orthogonal to the graph of (X, f). It also involves a term on
the boundary of G where points have gradients that are orthogonal to this boundary
in E x M. If fisa C! function, G is simply the set of {(z, f(x))} for x € X but
we see that this could be generalized to the case where for instance f is piecewise
C', in which case some new boundaries appear on the zones of discontinuities of the
signal.

The previous result is however intrinsically written in the context of currents in
E x M. Starting from eq.(2.30), we can actually go a little further by reinterpreting
the previous terms on the graph G as integrals on X and separate the variations
induced by the field v, from the one induced by vy. For any coordinate systems
(x1,...,xy) and (mq,...,m,) of E and M, a functional form can be written :

W= Z iy, iy (T, m)dz™ A .. A da'd

1<i1 <. <g<n

and then p(w) has the exact same expression in the coordinate system (z1, ..., T, m1, ...

of E x M. We shall denote in short w = as(x, m)dz! for the sum on all multi-indices
in a given coordinate system. Now, since we have assumed that the function f is C :
0G = {(z, f(z)) € Ex M/ x € 90X} which is the graph of the (d — 1)-dimensional
functional shape (0.X, flox). If n: O — E is a parametrization of X (O being an
open subset of R, 7w (n(u), f on(u)) € E x M is a parametrization of G
and :

_ o7 o7
o)) = [ )o@, fontu) A g 520
_ on on
- /Ow(n(U)JOn(u))(Ug(??(U)) A Fur N Far

:/ Ty, W
0X

The case of the integral on G is a little more difficult. Let’s consider some local
coordinate systems (z1,...,2,) of E such that (dz',..,dz?) is a basis of T, X* and
(dz®™*1 .., dx™) is a basis of (T, X*)*. In the same spirit, we will denote by UgT(x)
the component of v, tangent to X at = and ng () the normal component. We then
decompose the vector field as

v = (v},0)+ (v ,0) + (0,vp)

By linearity of the contraction operator, we have :

[rwnte) = [ sz o)+ [ g o)+ [ vopdn). (230
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Now, in the previous coordinate system, we can write the exterior derivative of p(w)
as a differential form of £ x M :

n p
dp(w)] = Z a—xjdx] Ndx' + Z a—mldm Adx
j=1 =1
= dzw + dpw
and introducing a parametrization of X, v: U — F and I' : u +— (y(u), f o y(u))
the corresponding parametrization of G, we have, for the first integral of eq.(2.31) :

or or
_ 1
/Gz(vjvo)dp(w) = /U(dxw + dpw) ((vg (v(u)),0) A Bur Ao A 8ud> du

with

or 0 oy

= d . 2.32
oo = (o) (2.32)
We recall, by definition of exterior product of differential forms, that for all I €
{1,.,p}andu e U :

d _
; ar or or or
Vi rf,L
+ E_ (—=1)'dm <8uz> dx (vg A o A o A 8ud>

1
g

The second one is also null since all differential forms dz! in our case have only
components dz’ in T, X* whereas ng(:c) € T, X" for all x € X. Therefore :

The first term equals zero because (v, (v(u)),0) has only zero components in M.

or or

_ 1
/G’L(vj,O)dp(w) = /dew ((vg (v(w)),0) A o A\ aud> du
vy 0
= [ d, e — — | d
/U w (vg (v(w)) A o Ao A Oud) u
:/%yw (2.33)
b's

the second equality resulting from eq.(2.32) and the fact the (d + 1)-differential form
d,w has no component with respect to the functional coordinates dm!, .., dmP.
Now for the second integral of eq.(2.31), we write :

or or
_ T
/GZ(UJ,O)dp("J) = /U(dww + dpw) <(Ug ,0) A o Ao A ) du .

On the first hand, we have :

or or " day | . or or
T e Il R var , j I T i Rl
dyw <(vg ,0) A o A A aw> 2 oz, dx? N dx <(vg ,0) A o A A Bud>
_ — day j i, 7T, 9 22l
= ]E:l 8xjd:n A dx (Ug A 9us A A Bug
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0 0
and since —- IV is abasis of the tangent space T, (,) X, v; is linearly dependent

8u1 8 Uqg 5 5
to these vectors. Thus v A Y A A Y _ 0 for all v and
E)u1 aud

/Gl(ng,O)de =0.

On the other hand,

ar ar " Bay ar ar
dm T e ) = L d l d I T i et
w ((vg,())/\ AR 8ud> ;aml A da ((vg,O)/\ 5 N T
Ay
Developing A; gives
or or
_ Lo, T
Ay =dm' (v, ,0)d <8u1 A aud)
d
or or or or
1)'d da! T — —
+;( ) m(8u2> ((Q,O)AaulA A g N Aaw>

a Ofi

One can write df; in the same coordinate system as df; = Y §_4 3 dx®, which gives :
xS

d d [
3 of S (- 1)ida? O\ 1t (o7 A9 37 I

d
_ 8fl s I T ﬁ 877 afl s/ T 7 ﬁ ﬁ
Z;E)xsdm A dx (vg A Far NN G Z;axsdx (vg )dz A vy
v 0
_ Ty .1 [ 97 kil
= ey ) <3U1 ot 8Ud>
Oy oy oy o~
Indeed v A 87 AN 67 = 0 since v € TwX and 8u Tud is a basis of

Ty X- Eventually, we obtaln that :

8&1 oy o

Baf 1 Oy O
/ Z (9ml ))d.%’ <(9U1 A 8ud>
001 4\ ot oo
/ Z 8ml A dx (df( ) A s N T
X

69



Figure 2.9: Gradient of the distance between two functional shapes. We represent the
opposite of the gradient with respect to point positions. The gradient is orthogonal
to the curve on the areas of constant signals but not in zones where signal is varying.
Note also the particular behavior on boundaries created by discontinuities of signal.

Finally, for the last integral of eq.(2.31), with the same kind of reasoning, we obtain

easily that :
or or
100 dP(W) = dpw | (0,v0) AN =—A...AN— | du
/C\: (0, f) p( ) /U (( f) aul 8Ud>

and just as previously we can write for all u € U :

or or
Ao ( (0, Rl e
w((o Uf)/\8 1/\ /\aUd)
p
=> 941 1ol p de? ((o,vf) AL A ar)
— omy Up Oouy
p
T (o o
= lz:; mldm (vf).dx <8u1 AN aud>
p
e (01 0
_; mldm (vg).dx (8 1/\ Aaud
p
I N R Kl 97
= Z mldm A dx ((O,vf)/\ o A A g

The second and the last equality result again from the fact that dz’(0,vs) = 0 for
all 7 € {1,..,n}. Consequently :

100 dp(w —/zv dmw . 2.35
[ rwnpive) = [ ., 23)

Grouping eq.(2.33) (2.34) and (2.35) together, we have eventually shown the following
variation’s result for the functional currents’ metrics :

Theorem 2.2.4. For any functional shape (X, f) with X a compact oriented sub-
manifold of E and f a C' function, and for any vector field of the form v(z,m) =
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(vg(z),ve(x,m)) whose flow ¢y exists at time 0 < t < €, we have for all C* functional
d-form w :

d

dt —o th.(X,f) (w) = /X (ngdew + Z(vf_df(v;))dmw) + /aX LW

For the correct understanding of the previous formula, let’s remind that we have
adopted the shortcut notations 2,d,w for z(mo)dxw (when wu is a vector field with
values in E) and 1,dmw for 1y dmw (when u is a vector field with values in M).
This last result gives the variation based only on integrals on X and 0X of several
differential forms obtained by differentiating w. It provides a much more precise
description of the gradient of the metrics than proposition 2.2.3. Indeed, we first see
that the variation with respect to the vector field v, involves both its orthogonal and
tangential components : thus the gradient of C(x y) (w) with respect to displacements
of X is not necessarily orthogonal to X as for usual currents. However, we see
that the only term involving UgT actually depends only in df (ng). In particular,
it vanishes whenever Vf = 0 which implies that the gradient of C(x s (w) will
be orthogonal to X in regions where f is constant. This is illustrated by
figure 2.9. A second important element is the term on the boundary of X that only
affects the variation with respect to the geometry since it only takes into account
the component vy. On points on the boundary, the gradient is orthogonal to
the boundary but not necessarily to X. The presence of integrals on 90X in the
variation is of crucial importance numerically when computing gradients of fcurrents
distances because they induce singularities on the boundary, as we study in more
details in 4.2.1. As we mentioned earlier after proposition 2.2.3, we could generalize
theorem 2.2.4 to piecewise C! functions f, in which case additional boundaries are
created by discontinuities of the signal, inducing again gradient singularities at those
points as one can see on figure 2.9.

2.3 Algorithms based on functional currents

We now illustrate how the theoretical concept of functional currents introduced above
combined with kernel metrics offers a genuine solution to the simultaneous process-
ing of the geometric and signal information. The algorithms we present will focus
exclusively on real-valued signals although, as we mentioned, it could be adapted
to different types of signal spaces. We have explained, from the theoretical point of
view, how Hilbert norms based on kernels share interesting properties with respect
to geometrical and functional perturbations. In addition, the Hilbert space structure
opens the way for various processing algorithms. In this section, we intend to shed
light on the potential of the proposed framework. The first application illustrates
the full potential of the Hilbert structure with the design of redundancy reduction
or compression algorithms for functional shape representations through matching
pursuit schemes on functional currents. The second one, more directly related to
computational anatomy’s issues exposed in the beginning of the chapter, is the de-
sign of a large deformation matching algorithm for the simultaneous geometric and
functional registration of functional shapes under diffeomorphic transport. We post-
pone applications to medical imaging datasets to chapter 4, which will generalize the
framework to atlas estimation procedure for functional shapes.
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2.3.1 Compression with Matching Pursuit on fcurrents

Let us start with the issue of the redundancy of fcurrent representations. The dis-
cretization of a functional shape in punctual fcurrents given by eq.(2.9) will provide
a representation with a number of elements that corresponds to the initial sampling
of the shape. For a surface, this corresponds to the number of triangles in the mesh.
Generally, this representation could be clearly reduced since, for simple functional
shapes with low-frequency geometries and signals, only a few terms should capture
most of the shape. However, the quality of the approximation needs to be quantified
in a meaningful way, especially when the functional part is also involved, through an
appropriate norm for which we have a natural candidate given by the kernel Hilbert
structure. This issue of redundancy reduction or compression is important for in-
stance when making crude means of currents because without further treatment, the
number of Dirac currents involved in the representation of the mean would increase
dramatically. Yet, as we shall see in chapter 4, with more recent atlas estimation
procedures, compression is far less decisive in practice. However, when considering
higher order statistics for the analysis of variability around a mean functional shape
through computations of W'-inner products in LDA or SVM for instance, having
reduced first the number of Diracs in the representations of the data can lead to
substantial gain in computational time. What we propose here is one way to address
the problem by performing compression in the space of functional currents :
it is important to keep in mind that this is not equivalent to more classical mesh
reduction or vertices’s decimation for instance because our output is a general fcur-
rent (a set of Diracs) that does not have an underlying shape structure. This loss
of structure allows in compensation high compression rates with an accuracy that is
directly related to the metric on fcurrents that we use.

As one can expect, the problem of redundancy reduction or compression is deeply
simplified thanks to the Hilbert space structure that has been defined on functional
currents. Indeed, classical matching-pursuit algorithms in general Hilbert spaces
have already been studied by Mallat and Zhang in [59] and later adapted to cur-
rents in [35]. We can proceed in a similar way for functional currents. Considering
a discretized feurrent C' = >, | y 6?;1%
automatically given by the mesh on the submanifold (number of edges for curves,
number of triangles for surfaces,...). This submanifold might have some very regular
regions with low-frequency geometrical and functional variations, which results in
a very redundant representation by fcurrents due to the fact that many adjacent
nodes present the same local geometry and signal. The goal of matching-pursuit is
to find a more appropriate and reduced representation of C in terms of elementary
functional currents. Given a certain threshold € > 0, we want to find II,,(C) such
that C = I1,,(C) + R, (C) and [|R,(C)||w’ < e. R,(C) will be called the residual
of the approximation. Somehow, this is linked to the problem of finding the best
projection of C' on a n-dimensional subspace of W’. This problem is however too
time-consuming computationally for usual applications. Instead, matching pursuit
is a greedy algorithm that constructs a family of approximating vectors step by step.
The result is a suboptimal fcurrent that approximates the functional current C' with
a residual whose energy is below threshold. The algorithm basically proceeds as fol-
lows. We need to specify a 'dictionary’ D of elements in WW’. In our case, we typically
consider the set of all elementary functional currents {5(£x’m)} with ¢ a unit vector

) € W'. N, the number of momenta, is
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f;,, mt) € D that is
17771
best correlated to C. In other words, we try to maximize, with respect to x, m, &, the

quantity :

in AYE. The first step of matching pursuit algorithm is to find &

N
(C, 68,y = €" (Z K ((z,m), (xi,mi))§i> . (2.36)

i=1

Since ¢ is taken among unit vectors, the problem is equivalent to maximizing

‘ Z K((z,m), (xi,mi))&| = |v(z,m)|

i=1.N

with respect to (z,m) and take £ as the unit vector in the direction of v(x, m). We
get a first approximation of C :

C=IL(C)+ ri(C).

where II;(C) = (C, 5(%, m’)>W/5§i’ mry- The algorithm then applies the same pro-
127701 127791
cedure to the residual R;(C'), which provides a second vector 5(%, mt) € D, and a
207072

residual Ro(C'). The algorithm is stopped when the RKHS norm of the residual
decreases below the given threshold e.

In most cases, it appears that the compression is better with the orthogonal ver-
sion of the previous scheme, in which the family of vectors is orthonormalized at
each step, in order to force the projection and the residual to be orthogonal in W’.
The classical algorithm is based on a Gram-Schmidt orthonormalization at each step.
In our case, following the ideas of [35], it is possible to orthogonalize more efficiently
by keeping the values of (2, m]) found during previous steps and simply modify
the vectors &. This is done by imposing the following orthogonality condition. Let
(ex) be the canonical basis of the vector space A°E. If C = I1,,(C) + R,(C) and

IL,(C)=>"i1 6(0;172”1; ) we will add the orthogonality constraint :

5k

(zi,m})

1R, (C) <= (C, 5?;;,m;)>W* - <Hn(C),5(eg’;g7m;)>W*

for all basis vectors e and for all i € {1,..,n}. It is then straightforward to check
that these conditions are equivalent to the following system of linear equations to
find the o :

Vie{l,..,n}, Z (K((:U;,m;), (x;,m;))a?)k = y(xf, m})y . (2.37)
j=1

We can show that the norm of the residual R, (C) monotonically decreases to zero
as n — oo. Hence the algorithm converges and eventually when the residual goes
below the given threshold at a certain step n, we obtain a compressed representation
of C with n orthogonal dirac fcurrents (with generally n < N, as we shall see on the
coming examples).

Let’s give a few comments on the computational complexity of the algorithm, al-
though numerical issues related to fcurrents will be developed in 2.3.3. At each step,
we have to solve a linear system of equations eq.(2.37) which is 3n x 3n if the em-
bedding space is R3 : since n is the number of Diracs of the compressed version
of C, it remains generally small. Instead, the more technical and time-consuming
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part of the algorithm is the optimization of |y(z,m)| with respect to (z,m). In-
deed, the optimum need not be one of the (x;, m;) and thus it requires to compute
~v(x,m) for points on a neighborhood in E x M of the functional shape (because
using Gaussian kernels for instance makes y decreases to zero when (z,m) goes far
from the (z;, f;)). This reduces to the computation of sums of kernels for each point
(z,m), which has a brute force complexity of n times the number of points of the
chosen neighborhood. Usually, one chooses a grid of points in £ x M around the
functional shape whose steps depend on the scales of the kernels o, and o¢. Such
grids can have numerous points especially for small kernels which makes brute force
computation nearly impossible in some cases. In [28, 35| was proposed, for usual
currents, an alternative computation method, expressing everything as convolutions
on the grid of points, which can be computed much more efficiently using FFTs. For
functional currents, such methods still suffer both in memory and speed from the
higher dimension of the space due to the adjunction of signals. A possible way to
handle it is to make alternative maximization between = and m in eq.(2.36), which
can be done by using successively purely geometrical and purely functional grids. We
refer to following section 2.3.3 for a more complete discussion on the numerical topic.

Here are now a few illustrative examples for real valued data on curves or surfaces.
We will always consider kernels on fcurrents that are the tensor product of a Gaus-
sian kernel in R? of scale parameter o4 with a real Gaussian kernel in the signal space
of scale parameter oy. In figure 2.10 and 2.11, we emphasize the influence of both
kernel sizes on the compression factor as well as on the precision of the functional
values of the compressed shape. The bigger the parameter o4, the coarser the scale
of representation is and fewer punctual fcurrents are therefore needed to compress
shapes but more smaller features are lost. In figure 2.12, we focus more precisely on
the compression’s behavior when computing matching-pursuit on a simulated fiber
bundle of 2D curves carrying different signals. The scale o4 is the same for both
figures but we show the results of matching-pursuit for two radically different values
of o¢. In both cases, matching pursuit provides an accurate approximation of the
mean (accordingly to the kernel norm) with a very limited number of Diracs com-
pared to the original sampling. However, note the important influence of o : taking
a larger value for this parameter means that the radius of averaging for the signal
part is higher.

In conclusion, these first examples of functional shape processing were meant to
highlight that the combination of the fcurrent’s representation with the use of RKHS
metrics provides an easy solution to address the issue of redundancy and compression.
The method provides important compression factors and enables scale analysis on
geometry and signal through the kernel parameters o, and oy.
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04 =0.04, 0y =04, 47 Diracs o4 =0.02, oy = 0.4, 170 Diracs o4, =0.01, oy = 0.2, 565 Diracs

o4 =0.04, o0y = 0.2, 57 Diracs 04 =0.02, oy =0.1, 161 Diracs o4,=0.01, oy = 0.1, 571 Diracs

Figure 2.10: Matching pursuit on a “painted” bunny with different parameters oy
and oy. Geometrically, the surface has 0.16 x 0.22 x 0.12 extension in the 3D space
and the signal goes from value zero (blue) to one (red). The original sampling of
the fcurrent representation has 69451 Diracs and we choose a stopping criterion for
the algorithm of € = 5%. The resulting Dirac fcurrents 6(§I£k7mk) are here represented
as colored vectors accordingly to the functional values my. Vectors are all of same
length covering an area proportional to the norm of &. Notice that the sampling
increases as o, is smaller while the vector’s colors are more accurate when oy is

smaller.

y " u g
04=004, 0y =04 o4 =001, 0y =0.1

Figure 2.11: Close up on two of the previous results.

2.3.2 Registration of functional shapes

A second class of applications that can be easily derived from the framework of func-
tional currents is the problem of registration between functional shapes. This is a
recurrent issue in computational anatomy that is often a preliminary step for atlas
estimation algorithms and statistical analysis of the variability (cf chapter 4). The
distances resulting from kernel metrics on fcurrents that we have constructed can
obviously play the role of a data attachment distances between the objects and be
used in basically any inexact matching approach. The one we focus on, in this thesis,
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Figure 2.12: Matching pursuit on a 2D fiber bundle, each fiber carrying one value of
signal represented by the color. On top, the initial object consisting of 300 fibers.
Below, we show two results of matching-pursuit with the same o, but two different
values for oy : oy = 200 for the left figure, oy = 20 for the right one.

is the LDDMM setting presented in the introduction. This will lead to a generaliza-
tion of the curve and surface registration algorithm based on currents to the wider
case of functional shapes. Although, as we mentioned several times, there are no
theoretical limitations to apply fcurrents in various cases of signals, the numerical
implementations that have been done are restricted to real-valued signals in basi-
cally two situations : purely diffeomorphic registration of the support (based on the
deformation model of eq.(2.1)) and with adjunction of a residual signal (modeled as
in eq.(2.2)). The essential practical difference with the previous algorithm on cur-
rents is the computation of the new data attachment distances and their gradients.
We detail that in the following paragraph.

Distances and gradients in the discrete setting

Let’s consider discrete functional shapes : a source (X, f) given by the set of points
(q,f) = (4is fi)i=1,..n, ¢ € E, fi € M = R and a mesh containing the list of faces

(segments for curves, triangles for surfaces) which can be taken, in practice, to be a
1 d+1

list of (d + 1)-oriented simplexes (a},..,af1);21 _, with oF indexes in {1,..,n}, a

target (Y, g) with points (y;, gj)j=1, . given also with mesh (87, .., 84t1);=1 5. From

S and

this, one has first to compute the fcurrent representations Cx y) = oy 5((]' i)

76



Clvg) = Z§:1 5?5]_ 37) of each shape. Indeed, the variables §;, f; and & are themselves

functions of the points (¢;) and signals (f;) of (X, f) respectively as the centers,
interpolated signal value and normal vector of the i** face. More explicitly, for any
1=1,..,m

i = L( + .t )

q; = d 1 qa% qa(_1+1

Fo— (2.38)
fi= T 1(f L S dﬂ)

€ Ah:1 (qOéL qa?"'l )

and similar equations hold for the target shape (Y, g). Now, the data attachment
distance that shall be used in the algorithms is naturally [|C(x ) — C(yg)ll}» which
writes, as in eq.(2.18) :

ICx.5) — Covig = ZZkf (fir F3) (B, 3%, &)

= 1] 1
+szf Gk 91)- (K g (Fie> T1) Mk 1)
k=1 I=1
- 222’% (fir G )- (B g (s )i ) (2.39)
i=1 k=1

Considering only the dependency with respect to the source fshape the previous
distance is a function of the variables ¢;, fl,fz that we will call A. By composition
with eq.(2.38), we see that A(q, f,€) is a function of ¢ and f that we will denote
A(q, f). For registration algorithm, one also needs the gradients of A with respect
to ¢ and f. Those can be computed using chain rule differentiation since :

0g A = Z (6@2.;1 © 0g,Gi + aéi‘zl © aqkfi)
= ) (2.40)

OpA =2, OpAcdpfi
j=

Now, the gradients 8@121, Bﬁfl and 8&.121 are computed easily by differentiating
eq.(2.39), while the g, gi, 8fkfi and 0,4, &; are obtained by differentiation of eq.(2.38).
One notable advantage of expressing the gradients in this way is that it separates
what involves the passage to fcurrents’ variables from what involves only kernels’
computations, allowing to write numerical codes which are very adaptable to various
dimensions and to the use of different kernels.

Registration with geometrical deformations

Now that the data attachment distance and its gradients are explicit, the whole
LDDMM machinery detailed in chapter 1 can be extended to functional shapes
almost straightforwardly. In the first place, we shall be dealing with the situation
where we intend to deform functional shapes only with diffeomorphisms of E, which
is the model of transport given in eq.(2.1). In that case, the optimization problem
in LDDMM writes in general :

min J(v /||vt||vdt+vuqm)fom) Cogllr. (241)

’UEL

77



M
pi
e
oal target

02r

PANS

source

02

[
1
I

I

1117
T
[
T

Figure 2.13: Example of registration of two functional curves (top left) with binary
signal (blue is zero and red is one). On top right, we show the classical matching
with currents on the purely geometrical curves. On bottom left, the same curves are
matched with our extension of LDDMM to functional currents. In both cases, the
deformed curve fits closely to the target one but note the difference of the deformation
field for the functional current’s approach. Finally, on the right, we show the result
of matching we obtain again with fcurrents” LDDMM but with a big value of oy
compared to the signal, in which case the matching is nearly similar to the current
matching.
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Based on the control result of previous sections, one can show existence of solutions
to this variational problem :

Proposition 2.3.1. If W, is conlinuously embedded into CY{E,NE*) and V is
continuously embedded into C3(E,E) then, for any functional shapes (X, f) and
(Y, g), there exists a minimum to the problem of eq.(2.41).

Proof. Thanks to the result of proposition 1.3.1 from chapter 1, we only need to
prove that the application v — [|C(gv(x),fo(gv)-1) — Covglly = A(¢Y) is weakly
continuous on L?. But this is a direct consequence of corollary 2.2.2 from the
previous section. O

Now, in the discrete setting, as we presented in 1.3.2, this problem can be rewritten
as an optimization over the initial momentum pyg, i.e :

r%ion J(po) = E(po) + ’Y||C(¢1(X),fo(¢1)—1) - C(Y,g) ||%/V/ . (2.42)
where E(po) is the energy (or equivalently the reduced Hamiltonian) of the defor-
mation which equals H,(q, po) = pt Kv (g, q)po if the vector fields are generated by a
kernel Ky, ¢1 is the deformation at time 1 obtained by flowing forward the geodesic
shooting equations and + is the trade-off parameter.

The dynamics of the deformation part (basically the forward and backward differ-
ential equations) remain totally identical to the usual currents’ case because in this
model of deformation, the transport of functional information is trivial (i.e f; is con-
stant and equal to f along the geodesic). Note that for more complicated actions like
the one on vector fields or tensors, forward and backward equations would also affect
the signal part. An adaptive step gradient descent is then done on the momentum
Po = (Poi)i=1,.n- The gradient with respect to po is obtained by first flowing the
forward Hamiltonian equation which gives the point positions ¢; and the momentum
py at all times ¢ € [0, 1], the signals f; remaining constantly equals to f. Then, we
obtain :

Vpod = Kv(q,9)po — Fo

with Py an adjoint variable obtained by flowing backward in time the coupled equa-
tion : )
Qi = —(02 ,Hy (g1, p0))* Q¢ + (92 ;Hr (a1, p0))* Py
Pt = 7(8;%,pHT(Qt7pt))*Qt + (8§,pHT(qtvpt))*Pt (243)
Q1=-VaAlq,f), PA=0

where V,, A(qq, f) is basically the gradient of the attachment distance function be-
tween the deformed source fshape and the target, computed as in 2.3.2.

The whole procedure was coded in MATLAB for curves and surfaces, with some
parts in C and GPU, as we will explain in 2.3.3. We present a few results of this
algorithm. As we can expect with this model, the resulting matching is driven both
by the geometry of the shapes and by the functional values they carry, which we
first show on the very simple example of figure 2.13. We also see in that figure
that the attachment of the functionals is controlled by the size of the kernel kf :
indeed, at very coarse scale for oy, the functional are no more taken into account
and the approach is thus identical to usual purely geometrical currents. Now, we draw
attention to the important differences that exists when matching functional shapes
with functional currents instead of the other possible spaces of currents discussed in
2.1.3. This is particularly easy to highlight with colored currents : if we refer again to
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Figure 2.14: Back to the example of figure 2.6, the matching is here performed with
the approach of functional currents.

the surface example of figure 2.4, we can observe that functional currents introduce
no bias between low and high signals as opposed to colored currents. It also gives
significantly different results from currents in the product £ x M in certain situations,
as the example shown in figure 2.14. Functional currents provide robustness to
disconnections of the shape and discontinuities of the signal. This is a particularly
important property when working with fiber bundle type of data like the example
of figure 2.15. Some additional results on medical imaging datasets will be studied
in detail in chapter 4, that generalizes this setting to atlas estimation on a group of
subjects.

Registration with additional functional residuals’ estimation

The deformation model underlying the previous algorithm only transports functional
values by diffeomorphism. It is clear that in many situations, some variations in
the patterns of the signals might exist between the source and target functional
shapes, which are not taken into account nor estimated by the algorithm. This can
also deteriorate the geometrical deformations themselves since regions with different
signal values would have a tendency to be mismatched. One solution to address
such situations is to introduce an enriched deformation group that would involve, in
complement to the diffeomorphism acting on the support, a residual function that
adds to the source shape. We can model this exactly by the transport of functional
shapes expressed in eq.(2.2) and the corresponding action on fcurrents provided by
eq.(2.12). In this setting, the goal would be to estimate both the diffeomorphism
¢ as previously, and the residual function h, by solving therefore an optimization
problem of the form :

min B (po) + MlCs,(x),(r+m0(s1)1) ~ Crvg)lw +72/Xh2(ﬂf)d7id(ﬂf) (2.44)

Observe that a penalty term on the residual function h is added to the criterion in
order to impose a constraint on this function h we intend to estimate. This is impor-
tant to avoid the situation where all the functional variability would be explained by
the function h and not also by the deformation acting on the support (which cannot
modify directly the values of the functional but can change the shape of the level
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Figure 2.15: Example of matching on the case of a fiber bundle with signal. On the
left figure, the source and target functional shapes. On the left, the resulting match-
ing with the deformed shape and the deformation grid for the functional currents’
setting.

sets of signals). The additional weight parameter o precisely controls this. Here,
we choose a rather weak penalty function that is the L?-norm of h on the shape X.
Different choices could be made to impose more regularity to the function h but will
not be discussed here. Neither will be studied the theoretical existence of a minimum
to eq.(2.44) in the general setting, which is not a priori obvious to deduce from the
purely geometrical case and would probably require particular attention.

The numerical scheme we propose for optimizing eq.(2.44) is not fundamentally dif-
ferent from the previous one : we optimize simultaneously in both variables pg and h
by adaptive multi-step gradient descent. The gradient with respect to pg is computed
exactly as we did earlier since the last term does not depend in py. The only new
component is the gradient with respect to h. In the discrete setting, if h; = h(g;)

~ 1
and h; = ——(ho1 + ... + h_a4+1), then the penalty term on A is :

d+1
|l = i he &l (2.45)
i=1
and thus the gradient with respect to h is obtained as :
Vi lhlz = 3 2000, [ (2.46)
i=1

Note that the terms in the previous sum are different from zero only if hj is a vertex
of the it" face of X so that the sum is not actually over all the faces. Registration with
estimation of h can be thus performed as summed up in algorithm 1. This algorithm
somehow generalizes the previous one because taking 2 — oo would enforce the
residuals to remain zero-valued on all the source shape. In figure 2.16 is shown
one result of such a matching : we draw special attention on the balance between
the deformation of existing signal on the source shape (as in the matching model
of subsection 2.3.2) and the residual function that is added to X. This balance is
controlled by the ponderation parmameters v; and 2. Thanks to the use of fcurrents’
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Algorithm 1 Registration of functional shapes with adjunction of residuals
Require: Source shape (X, f) = (qx, fr)k=1,.n, target shape (Y, g), gradient descent
step 4.
1: set pg =0 and h = 0.
2: while Convergence do
3:  Flow (X, f) by forward integration with py and store the deformed template
at time 1 (¢P°, h).(X, f) = (qk.1, fx + hi)-
4:  Compute the fcurrent representations of (Y, g) and (¢P°, h).(X, f).
Compute the gradients of the attachment term A with respect to the final
point configuration g1 eq.(2.40).
Apply the backward flow integration of eq.(2.43) and deduce Fj.
. Compute Vp,J = Ky (q,q)po — Po.
8 Compute the gradient V,A of the attachment term A with respect to the
residual values hy by eq.(2.40) and the gradient of the L? norm by eq.(2.46).
9:  Update variables :

Po < po + 5Vp0J
h<+ h+0VyJ

10:  Compute new functional J(pg, h) and adapt step d by line search.
11: end while
12: return initial momentum of the deformation pg and the functional residual h.

norms to drive the deformations, residuals can be concentrated in regions where the
difference of the signals cannot be explained by deformations.

2.3.3 Numerical considerations

To conclude this chapter, we examine in depth the numerical issues that are specif-
ically induced by the previous algorithms, especially when the number of points on
the shapes gets large, and evaluate a few possible solutions to address them.

Kernel sums’ computations : numerical schemes and theoretical complex-
ities

The overwhelming part of numerical computations of the algorithms presented in
the previous section is taken by evaluation of kernels at each descent step. This
occurs at essentially two spots in the process. First for the dynamics of the de-
formations themselves because it is necessary to integrate forward and backward
differential equations. As we explained in chapter 1, if we fix a kernel Ky for the
vector fields in E (generically a Gaussian kernel of scale oy ), at each time step, a
displacement field generated by the momenta at every point of the source shape need
to be computed at each of the source shape points. Let’s consider for example the
forward equation on ¢ : at each time step, one has to compute the displacement field
Z?:1 Kv(qt,i,qt,5)pr,j for each of the source point positions g;;. As we see, this has
a n? complexity in the number of points of the source shape which has to be then
multiplied by the number of time steps of the integration scheme.
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Figure 2.16: Example of matching with estimation of residual function between two
colored surfaces.

A second bottleneck in terms of computational intensity comes with the fcurrent
data attachment distance and its gradient. This is again an evaluation of kernels
which is this time a tensor product kernel K, ® k¢ living on the bigger product space
E x M. As we see with eq.(2.18), computing the distance is once again quadratic
in the number of Diracs of the source and target. This number of Diracs corresponds
typically to the number of segments if we are working on curves or the number of
triangles for surfaces, which we can consider roughly of the same order as the number
of points of the shapes.

In both cases, we see that the recurrent computations are essentially n kernel 'con-
volutions’, that we can write in general :

Vi=1,.,n, > K(aia;)e; (2.47)
j=1

where a; and «a; are either elements of £ or £ x M. This quadratic complexity
is a clear limitation of the approach when one has to work with highly-sampled
shapes, which is rather frequent in medical imaging datasets. As we will highlight
in the following, brute force computations of kernels in MATLAB on a standard PC
becomes nearly intractable for shapes with more than 2000 points whereas many of
the applications we deal with in this manuscript involve surfaces with more than
10000 points. This is the reason why several alternative numerical methods have
been investigated in the past and are still explored at the present time. Those can
consist either in computing eq.(2.47) using different numerical platforms than Matlab
that would take profit in parallel computing for instance or in finding approximate
but faster numerical schemes. We present a few possibilities : a comparative table
of time computations will be given and commented in the next subsection.

— A first straightforward thing that we tried is to implement all kernel computations
as C++ mex files that can be used in the MATLAB body program. This allows
an eagsy use of parallel computing libraries in C that improve by a substantial
factor the computational time. Another promising alternative is provided by the
recent development of graphics cards. We thus experimented the computation of
eq.(2.47) based on a mex CUDA implementation on GPU and included it also in
our code.

— At the moment, all these methods are exact or nearly exact computation of kernel
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Figure 2.17: Hlustration of the grid-partitioning strategy in 2D. Small black dots are

the original grid points, red crosses correspond to all possible centers of blocks. They

form a regular sur-grid of bigger step (usually of the order 30).

sums. Other methods intend to approximate eq.(2.47). Usually, such methods
are designed for the case of radial scalar kernels. We will assume, to simplify
the presentation, that we are working with a Gaussian kernel with a certain scale
parameter o. A first simple idea is to notice that if points are farther away from
each other than 3o then the value of the kernel is lower than 10~ : thus kernels
need not be evaluated between all pairs of points but only for points lying at a small
enough distance. This suggests that we can save computations of exponentials
especially when ¢ is small compared to the size of the objects. In addition to that,
one could also pre-compute a table of values for the Gaussian on a discretized grid
of distances and then access the corresponding box instead of recomputing it at
each iteration of the loop. The search for points in a the desired neighborhood
of a given position could be also improved computationally by using KD-tree
algorithms.

In the same vein, more sophisticated methods have been also developed for Gaus-
sian kernels, such as the Fast Gauss Transform [84], which was applied later on to
compute distances on currents in [41]. This method combines the idea of clustering
in order to avoid computations of negligible kernel values with the principle of fast
multiple methods (FMM) for accelerating exponentials’ evaluations, leading to an
algorithm that has a theoretical complexity of O(np) where p is the number of
clusters. Yet this number of clusters is directly correlated to the scale o and to the
dimension of the space. Since p is not set up automatically in the algorithm of [84],
one difficulty of the method is to choose it properly to have both a good accuracy
without slowing down computations too much. In practice, although it leads to
fast computations especially for big ¢ and not too high dimension, it makes the
quality of the approximation difficult to evaluate.

Another interesting numerical scheme was investigated in [28], which basically
projects all the momenta «; located at points ¢; on a fixed linearly spaced
grid and then expresses eq.(2.47) as a convolution on this grid which can be
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n 100 1000 | 2000 | 10000 | 50000 | exact computation
MATLAB brute force computation 0.98s | 98.2s | 391.4s 00 00 yes
C++ parallelized computation 0.025s | 0.42s | 1.6s | 40.8s | 1030s yes
Truncation and pre-computation of Gaussian || 0.009s | 0.52s | 2.1s 93.3s | 1931s no
GPU 0.02s | 0.03s | 0.07s | 1.16s | 26.5s yes
FGT 0.035s | 0.36s | 0.72s | 3.94s | 20.5s no
Grid convolution 0.11s | 0.11s | 0.11s | 0.16s | 0.43s no

Table 2.1: Computational time for 20 convolutions with ¢ = 0.3.

computed by FFT and inverse FFT. The projection step is linear in n while the
computation of the convolution in the grid domain is of complexity O(nglogng)
where n, is the number of points of the grid. Now, the grid is chosen as a linearly
spaced set of points delimited by a rectangular parallelepiped containing all the
points and whose sampling is chosen as a fraction of the scale of the Gaussian o.
The accuracy of the approximation can be then controlled by the grid step, as
shown in |28| chapter 2. As for the number of points in the grid, we see that it
grows as s~ where s is the step of the grid and D the dimension of the ambient
space. The interesting thing to observe is that, if we except the projection on
the grid (which is anyhow not limiting), the complexity of the computation does
not depend anymore on the number of points on the shapes but only on the grid
size, which makes it particularly adapted when n is very large. However, the size
of the grid itself grows exponentially with the dimension : in practice it remains
affordable in dimension 3 or less but it becomes rapidly incredibly consuming both
in time and in memory in dimension 4 and more. In the applications we have been
considering so far (with £ = R3), this method is well-adapted for the deformation
part, but we see that fcurrent attachment distances involve computation of kernels
living on E x M = R* In that case, introducing 4D grids that contain all the
points {(z;, fi)} produces huge ny. As we see, this is essentially a problem of
codimension because the points of the functional shapes lives basically on a 2-
dimensional manifold in R*. A possible solution that we implemented to control
the size of the grids is to make block computations based on a partition of the
original grid as illustrated in figure 2.17, which restricts the convolutions to only
overlapping blocks that actually contain points of the shape. Yet, even reduced,
the curse of dimension is still occurring in each block, which makes this approach
barely feasible for 4D but still unthinkable for higher dimensions.

Comparative computational times

To give a more concrete vision of the previous discussion, we show a few computa-
tional time for the different numerical methods that have been evoked previously. All
computations have been performed on a standard quad core laptop with a NVIDIA
NVS 5100 graphics card. We first show the elapsed time for the computation of 20
convolutions as in eq.(2.47) for a 3D Gaussian kernel and with an increasing number
of points n. The positions ¢; were picked randomly in the cube [0,1]3. In table 2.1,
computations are first done for a big kernel (o = 0.3). Brute-force computation in
MATLAB becomes unfeasible with more than 2000 points. We also see that trun-
cation of exponentials is clearly not efficient in that case whereas for a smaller scale
o = 0.1 (table 2.2), we can gain a factor 2 compared to the exact computation in
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n 100 1000 | 2000 | 10000 | 50000 | exact computation
MATLAB brute force computation 0.98s | 98.1s | 392s 00 00 yes
C++ parallelized computation 0.033s | 0.42s | 1.6s 41s | 1039s yes
Truncation and pre-computation of Gaussian || 0.004s | 0.25s | 0.92s | 23.2s | 843s no
GPU 0.02s | 0.03s | 0.078s | 1.16s | 26.7s yes
FGT 0.06s | 0.62s | 1.7s 11.2s | 58.9s no
Grid convolution 1.20s | 1.24s | 1.20s | 1.32s | 1.7s no

Table 2.2: Computational time for 20 convolutions with ¢ = 0.1.

Ng 32000 | 64000 | 260000 | 1000000
Time 0.13s | 0.34s 0.8s 4.7s
Relative error 5% 2.9% 1% 0.4%

Table 2.3: Precision vs time with the grid approach (with o = 0.2)

C++. Note the important acceleration provided by GPU computation in both cases
that outperforms the previous methods as soon as n is bigger than 1000. It is partic-
ularly optimal in the range 1000-10000 points. With larger n, some approximative
methods may become faster. The FGT, for instance, is quite good for large scale
kernels since, to obtain a given precision, the required number p of clusters decreases
with . For smaller kernels, the gain is not as clear. The choice of parameters (p
in particular) is also a not trivial step with FGT. In the experiments we show here,
we made several tries to adapt the number of clusters in order to obtain a relative
precision around 1% for each case.

The grid convolution method is also very efficient. In those examples, we used grids
sampled at o /5 which gives ng =~ 32000 in table 2.1 and ny ~ 260000 in table 2.2. As
already explained and confirmed by numerical simulations, the computational time
is then almost independent of n, which is particularly interesting for highly sampled
shapes (typically n > 10000). However, this is an approximation of the true result.
In table 2.3, we show both time and precision for a computation of convolutions
with o0 = 0.2 using finer and finer grids. Getting a very good approximation requires
more accurate grids and leads to longer computations. This is basically why such
a method is not well-fitted for higher dimension than 3. In 4D for instance, with
o = 0.2, requiring a precision of the order of 1% necessitates the use and storage of
grids with at least n, = 5 x 10 points, with the limitations that this induces in time
and memory.

So which one is the best and how far can we go ?

It is still hard, at this point, to give a definite answer to the numerical issue. The
positive aspect is the fact that there are several possible numerical schemes available
and still some new ones appearing in the literature. Focusing only on the ones we
have experimented on, the previous discussion tends to show that the choice of the
numerical method should be probably tailored to the situation. Working on com-
puters equipped with NVIDIA graphics cards, GPU computation is obviously a very
solid candidate that is adapted to most cases since it provide exact computation
of kernels with limited memory consumption and very competitive computational
times, not mentioning that the times shown in the previous subsection were not ob-
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tained with the most recent and powerful graphics card. Yet, this is still a quadratic
scheme which becomes inevitably limited when the number of points exceed 10000.
For such high resolution shapes, the grid strategy offers a good alternative for the
computations of the diffeomorphisms’ part (involving the kernel Ky which is always
in 3D in our applications) because the computational time is then dependent on the
size of the grid and not the sampling of the shape. However, it does not work as well
with the fcurrent distance computation because of the dimension increase and the
resulting grids’ sizes. A satisfying solution in those cases is to use grid computations
for diffeomorphisms (which is the part that involves in practice the larger number
of convolutions) and GPU for the data attachment term. More recent versions of
the FGT, as in |66, 73| for instance, could be also an interesting track but were not
investigated here.

The implementation we have made integrates all the different methods that were
mentioned, allowing therefore a relative adaptability to many cases. To give an
overall idea, at the present state, a complete registration on a computational server
(100 gradient descent steps) between surfaces with 1000 points takes a few minutes
and less than half an hour with 10000 points using the most adapted method. The
algorithm is also able to run in decent time for shapes with up to 50000 points.

2.4 Conclusion

We have presented in this chapter a way to generalize the notion of currents for the
purpose of integrating functional shapes into a coherent and robust representation.
Functional currents provide a framework to model geometrically-supported signals
of nearly any type and regularity while preserving the advantages of currents to
model the geometry. We have shown that RKHS metrics can be defined in spaces
of functional currents, providing distances between functional shapes that allow the
simultaneous comparison of geometry and signal without requiring any preliminary
exact matching between the geometrical supports. This class of norms also shares
important control properties both with respect to deformations and signal trans-
formations, as well as robustness to small disconnections and changes of topology.
The resulting Hilbert structure on fcurrents opens the way to a very wide class of
applications. We detailed two possible numerical applications that are of usual in-
terest in the field of computational anatomy : a matching pursuit scheme to address
fcurrent compression and averaging and an adaptation of LDDMM algorithm for dif-
feomorphic registration of two functional shapes. A natural and expected extension
of registration is the problem of atlas estimation on a group of functional shapes,
which brings special problematics and will be the subject of chapter 4. From an-
other angle, the question of orientation of shapes that is fundamental with currents
is also transfered to functional currents : this issue is precisely the subject of the
next chapter.
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Chapter 3

Non-oriented shapes and varifolds
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Figure 3.1: Orientation issues on non-orientable surfaces.

3.1 Orientation and limitations of currents

As we mentioned several times in the previous chapters, currents are intrinsically
modelling oriented objects. This means that the process of representing a rectifiable
subset X by its corresponding current C'x as in chapter 1 requires an orientation on
X. If X is typically a connected submanifold, there are two possible orientations
for X. Denoting X and X the two resulting oriented submanifolds, we have by
definition :

Cx =—Cx

When using kernel metrics on currents, the orientation is diffused in space leading
thus to potential cancellations of some parts of shapes. Typically, for a Gaussian
kernel of width o,

185 + 8 €l = 2l¢f? (1= et/ (3.1)

which gets small whenever |z — y| is small compared to o. In several situations, this
orientation dependency and cancellation effect is an important drawback of currents
as first pointed out in geometric measure theory [8, 67| and later on in 28, 41| for the
use of currents in large deformations’ settings. In the following, we list the different
limitations that orientation induces in our context.

3.1.1 Orientation ambiguity

Difficulties can first occur with non-orientable shapes on which integration of differ-
ential forms like in equation 1.10 is not well-defined. If we consider for instance a
Moébius band as in figure 3.1, one could still imagine that we cut the Md&bius band
at some location to obtain a usual orientable band that can be represented as a cur-
rent. Yet, for the kernel metric, due to the presence of opposite orientations within
a certain domain in space and eq.(3.1), we actually cancel a non-zero surface part of
the shape around the cutting curve that depends on the typical width of the kernel.
Thus there is no canonical and satisfying way to represent non-oriented shapes with
currents.

This first drawback remains anecdotal though, since most shapes in computational
anatomy are orientable. However, even if orientable, orientating shapes consistently
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Figure 3.2: An example of white matter fiber bundle estimated from Diffusion Tensor
Imaging (DTI) illustrating the potential difficulty of consistent orientation of all
different fibers.

can be either a difficult or even ill-posed problem in certain datasets. This is notably
the case for fiber bundles in the 2D or 3D space consisting of many different and
possibly disconnected pieces of curves. Indeed, if a given shape has N connected
components, there are 2"V different possible orientations. Using currents with such
objects requires a way to propagate orientation from one part of the shape to all the
rest. Technically, this leads to additional pre-processing which can be particularly
tricky for highly disconnected bundle of curves with many different directions like the
ones corresponding to white matter fibers estimated from DTI in brain imaging, we
show the example of one subject in figure 3.2. This example also emphasizes another
difficulty appearing with sets of curves crossing each other for which the very notion
of ’consistent’ orientation may become meaningless. In such cases, the orientation is
clearly irrelevant and one would like to treat objects as sets of unoriented shapes.

3.1.2 Shape annihilation

Orientation may also represent an obstacle even in the simplest case of usual oriented
and connected submanifolds because structures like sharp spines or tails naturally
lead, when represented in a kernel Hilbert space of currents, to annihilation of some
parts of the shapes. This comes again from equation (3.1), or, to state it in a more
general way, from the fact that, while the W/-norm of a set is always dominated by
its Hausdorff measure as we saw in section 1.3.4 eq.1.17, there exists sets of given
Hausdorff measure but with arbitrarily small W’/ -norm. The plane curve of
figure 3.3 is an example. Indeed, the 1-Hausdorff measure being the length of the
curve : H1(y) = 2(1+¢) > 2. On the other hand, if 7y is parametrized on an interval
I, then we have :

1G5 115 =/ 7' ()T K (v(s),7(8))Y (t)dsdt
IxI

If we assume, to simplify computations, that kernel K is a translation invariant kernel
of the form K (x,y) = k(z —y) Idge with Lipschitz regularity, then, by expanding the
integrals as the sum of the four pieces of curves vy, Yoy, Yhy, VYhe, We can eventually
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Figure 3.3: Counter-example to the reciprocal domination. For all ¢, H!(y) = 2(1 +
€) > 2 whereas ||C,||w- S 0
E—

simplify the result thanks to the translation-invariance, which gives :
1C1fyr = 2(1C, [y = (Coy s Cruyhwr) +2(1Co i = (Cy s Gy ) -

Since [|C., 12, = Cr, 12, = ff[o,l]x[o,l] k(v(s) — v(t))e*dsdt, it is straightforward
that [ Coy, B — (Cop, G s = O(E). Morcover

ICou = (Co s o = [ [k(3(5) = 3(6) = bl (s) = 2(8) = (e, 0)) .
[0,1]x[0,1]

Since the kernel k is assumed to be Lipschitz,

[E(v(s) =7(t) = k(v(s) = (t) — (6,0))] < Ctee

Therefore, we have eventually proved that ||C,|lw+ = O(y/€) whereas for all e,
H'(7) > 2.

If this annihilation can be beneficial in certain situations because it is way to smooth
noise, it also means that some meaningful structures of shapes, modeled as elements
of a RKHS of currents, will vanish in this representation. We will detail, in a coming
section, what important limitations this can induce in matching certain examples of
curves or surfaces having such kind of structures.

Another fundamental corollary to that can be summed up by the motto ’currents
don’t see anything at large scales’. Indeed, if we consider a Gaussian kernel on
the space E and make its characteristic scale tend to oo, i.e k.(z,y) = Idg, then for
any d-dimensional submanifold of X, the norm of the current C'x becomes :

exl = [[ @rew)=(f g [ ¢

Now, from Stokes’ formula, one can check that [y £(z) is a term that only depends
on the boundary of X. Therefore, at large scale, RKHS norms on currents are only

sensitive to the boundaries of objects, and all shapes with no boundary vanish in
w'.
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Figure 3.4: Normal bundles of curves with boundary both in 2D and 3D.

3.1.3 Non-oriented representations in geometric measure theory

The issue of orientation is not new in the field of geometric measure theory and has
drawn attention since its early beginnings. After the definition of currents, several
concepts have been proposed to account for non-orientability.

The closest to the idea of currents is to consider flat chains and currents modulo
2 as introduced in [37] section 4.2.26 and summed up in [67]. The basic idea is to
define a quotient space by identifying rectifiable currents that differs by 2.Q) where
@ is some rectifiable current. In that quotient space, we easily see that Cx = —Cx
for any rectifiable subset X, and thus the representation is insensitive to orientation.
Although several compactness, approximation and existence results were shown for
these objects, they are essentially theoretical at the present time and do not seem to
adapt easily to our type of applications.

Chronologically, the second approach that was proposed is the one of varifolds, as
pioneered by F. Almgren in [8], later developed by W. Allard in [4] and used in various
applications in calculus of variations [17, 55|. We shall focus on this particular one
and present it in detail in this chapter. As we shall see in the following, the essential
step is to define a model of non-oriented tangent spaces, which is the role of the
Grassmann manifold.

Finally, we could also evoke the more recent notion of normal cycle presented in
[39], which was essentially used in computational geometry as a way to define and
compute curvature tensors for discrete polyhedral surfaces and show the convergence
toward the continuous versions [25]. To present it briefly, the idea of normal cycles
is to consider the unit normal bundle of a submanifold X which is defined as

NU(X) = {(z,n(x))/ = € X, n(z) € (T X)", |n(z)|| = 1}

and can be considered as a submanifold of dimension n — 1 in the 2n-dimensional
vector space E x E. The important point is that NU(X) is always orientable (even
if X is not) and can be canonically oriented. It can be roughly identified to a tubular
envelope around X as on the curve examples of figure 3.4. This definition can be
generalized to the case where X is a manifold with boundaries or for polyhedrons
by adding normal cones : we refer to [25] for more details. Now the normal cycle
associated to X is simply the representation as a current in £ x E of the normal
bundle NU(X). In our context of work, this approach does not differ significantly
from currents in the theoretical point of view : kernels could be defined as well and
provide metrics between non-oriented shapes as with usual currents which could be
used to drive matching algorithms. This is presently studied by J. Glaunés and has
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been implemented in the planar curve case. Even though this model is rich and
is not intractable for actual computations, it leads to an important increase in the
dimension of the spaces, first because we are looking at currents in the bigger space
FE x E but also because the actual modeled object is no more X but its unit normal
bundle NU(X) that can be a submanifold of higher dimension (e.g in the 3D curve
case). Thus, it seems unlikely, at the present time, that normal cycle representations
could provide metrics with numerical complexities comparable to currents.

3.2 Varifolds

We now focus exclusively on varifolds. We shall explain in what respect varifolds
offer in our sense a natural and convenient setting to embed non-oriented shapes
in the context of computational anatomy both from the theoretical and numerical
aspect. In this section, we present varifolds first as a theoretical object, following the
original work of Almgren in [8] and later of Allard in [4]. We then explain in detail,
in a spirit very similar to currents, the fundamental relationship between varifolds
and unoriented rectifiable sets and show how this representation can be efficiently
transcribed in a practical way. The construction of kernel metrics on varifolds is
postponed to the next section.

3.2.1 Definitions and basic properties

Varifolds have been first introduced in the context of geometric measure theory as
a way to address Plateau’s problem of finding least area surfaces with a prescribed
boundary. These developments clearly do not enter in the scope of this manuscript.
Our purpose here is rather to connect conveniently varifolds to the framework and
language of computational anatomy. Therefore, in the following, we will focus mainly
on definitions of such objects and explain in what respect these definitions are com-
putationally relevant. The basic idea behind varifolds is to represent any rectifiable
set (orientable or not) as a distribution of unoriented tangent spaces spread in the
embedding space E. As we shall see, varifolds encompass not only manifolds and
rectifiable sets but more generally sets of directions in the space. Let’s take again
the conventions of the previous chapters, F being a vector space of dimension n and
d an integer with 0 < d < n. What we first need is a way to represent tangent spaces
of dimension d in the space E.

Grassmann manifold

The proper space in that regard is precisely the Grassmann manifold defined as :

Definition 3.2.1. The Grassmann manifold of dimension d in E, denoted G4(E), is
the set of all d-dimensional subspaces of E. It can be identified to the quotient space
of all families of d independent vectors of E by the equivalence relation obtained by
wdentifying families that generate the same subspace.

As a quotient space, one can show that G4(F) inherits a structure of compact Rie-
mannian manifold of dimension d(n—d) (cf [16] chap 4 and [83]). It is also a classical
result that G4(E) is a homogeneous space under the action of the group GL(E) and
the subgroup of direct isometries SO(E).
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Remark 3.2.1. Considering the application G4(E) — Gp_q(E), V + V=L, one sees
easily that G4(E) and Gp,—q(E) can be identified with each other. In addition, in the
particular cases where d =1 or d = n — 1, the Grassmann manifold is nothing else
than the real projective space of E.

The geometry of the Grassmann manifold can be also described in a less abstract
way by giving explicit local charts. If V' is an element of G4(F), one can consider
Uy = {W € G4(E) | WnV+ = {0}}, which is an open neighborhood of V in the

Grassmann manifold.

Lemma 3.2.1. Every element W € Uy can be written as W = {v +I(v), v € V}
for a certain linear function 1 € L(V, VL) and | is uniquely determined by W.

Proof. If W € Uy, for dimensionality reason, we have W @ V+ = E and denoting h
the linear projector on V- associated to this decomposition, we deduce that W =
{u—h(u) / u € E}. Now writing for allu € F, u = v+v* withv € V and v+ € V+,
we have

u— h(u) = v+ vt — h(v) = h(vh) = v — h(v)

since h(vt) = vt Thus W = {v+1(v) / v € V} with I = (—h)y and [ is indeed
uniquely determined by W. O

Therefore, we have a bijective map 1y : Uy — L(V, VL), W L.

Proposition 3.2.1. The set of charts (Uy,yv) defines an atlas on the manifold
Gq(F) and, as a consequence, there is a natural isomorphism between the tangent

space Ty Gq(E) and L(V,V1).
Proof. We refer the reader to [68] section 2.2 for the complete proof of that. O

In addition, the Grassmannian can be considered as a submanifold of £(E) by iden-
tifying any V € Gg4(E) with the orthogonal projection py on V which gives the
embedding :

G4(F) — L(E)
V — py (32)

We shall make use of that when defining kernels on G4(FE) (section 3.3). It gives
also a convenient way to identify tangent spaces and compute variations. Indeed, if
Vi for t €] — €, €[ is a smooth curve on the Grassmann manifold then py, is a smooth

d
curve on L(F). Let’s denote dpy = dt‘ pv;. Then, differentiating the relations
t=0

pv, o py, = py, and py, = pi‘/t, we find that :
0pv = Opy o pv + (Gpy 0 pv)°
Moreover, for all v,v' € V, we have :
(opv (v),0') = (dpv (v) + 0Py (v), v') = (pv (v), V') + (v, dpy (V"))
And thus for all v,v" € V, (v, dpy (v")) = 0. We deduce that opy = py -1 o dpy and :
dpv = py 1 0 dpy, 0 pv + (PyL 0 Gy, opv)*.

95



It results that we can identify any element dpy of the tangent space Ty Gy4(E) with
the application

PyL o0y opyv = (pyL o dp, ) v € L(V, vh.

Moreover, if A(t) is a curve in GL(FE) with A(0) = Id and A(¢).V denotes the action
of GL(E) on Gy4(FE), it is a straightforward verification that, under this identification :

d

il A(t).V =po A'(0)y - (3:3)

Finally, let’s mention that the Grassmann manifold can be also linked to the space
of d-vectors used in the definition of currents. This is formulated by the Pliicker
embedding property :

Proposition 3.2.2. The following application is an embedding :

ip: Ga(B) — P(AdE>

vect(vi, ..., vq) —> [v1 A ... Ay

where P (AdE) is the real projective space (i.e the set of all lines) of ACE. It is even
a homeomorphism in the casesd =1 ord=n —1.

As a result, we can think of an unoriented d-dimensional tangent space as an element
of P (AdE), which is however a space of dimension (g) — 1, much bigger in general
than G4(E).

Principle angles

A common and useful notion closely related to Grassmannian is the one of principle
angles between subspaces. We very briefly recall the few properties that shall be
interesting for us in the following. If V,W € G4(E) are two d-dimensional subspaces
of E, the d principle angles 61, ..,0; between them are defined recursively by the
relations :
U Wk .
cos(fy) = 11222%1&12‘}/{‘/(@, @> with
Vi € {1, k= 1}, v Lvg, wi lw;

As we see, the first principle angle is the smallest angle between all pairs of unit
vectors in V' and W. In the case of two lines, it is exactly the non-oriented angle
between them. The next 6;’s are defined in a similar way by restricting to orthogonal
vectors. The angles are all vanishing if and only if V = W and we easily see that
there are at most min(d, n — d) non-zero principle angles.

The central result that we borrow to [83] shows that the principle angles completely
determine the relative position between the two subspaces. In addition, there exists
orthonormal frames (v, .., vq) and (wy, .., wq) of V- and W such that cos(6;) = (v, w;)
and such that the different angle 2-planes Span{v;, w;} are mutually orthogonal to
each other. Be careful that Span{v;, w;} is a degenerate 2-plane whenever 6; = 0.

Definition of varifolds

Following closely [4], varifolds are now defined precisely as distributions of unoriented
tangent spaces in E :
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Definition 3.2.2. A d-dimensional varifold on E is a Borel finite measure (or dis-
tribution) on the product space E x G4(E), i.e an element of Co(E x G4(E))'.

Note that this differs from the original definition of varifolds given by Almgren but
his definition is equivalent to the previous one as explained in the preface of [8].
The relationship between the measure and the distribution point of view is, as usual,
given by Riesz representation theorem :

W£CMEXGA@%uwyiéCH@M@VMMLV)

In particular, Diracs in the space of varifolds are of the form 4, 1) with x € E and
V € Gy4(F) and act on functions of Cy(E x G4(E)) by the relation :

Vw € Co(E x G4(E)), dgv)(w) =w(z,V)

In this context, a Dirac consists in the data of a position z in the space attached to
a d-dimensional (non-oriented) subspace V' that will play the role of tangent space
in the case of rectifiable sets. Note that varifolds differ from the idea of measures
as considered in [41], which are simply elements of the dual of Cy(E). Somehow,
varifolds enrich the measure representation with a notion of local directions.

We also define the additional notion of positive varifold that shall be useful for the
following :

Definition 3.2.3. A wvarifold p is said to be positive if it is in addition a positive
measure on E X Gq(E) or equivalently if for all positive function w € Co(E x G4(FE)),
p(w) = 0.

For a positive varifold u, we will also call the support of p and denote Supp(u) the
smallest closed subset C' C E' x G4(E) such that

n((E x Ga(E)\C) = 0.

3.2.2 Non-oriented shapes as varifolds
Rectifiable varifolds

In section 1.3.4, we have seen that oriented rectifiable sets of dimension d are canon-
ically represented as d-currents. In the case of non-oriented shapes, the right notion
is precisely the one of varifolds. Indeed, let X be a non-oriented rectifiable set of £
of dimension d. To X, one can associate a varifold px, which, in the measure point
of view, is given by : px(A) = H?({z € X | (z,T.X) € A}) for all Borel subset
A C E x G4(F). Now, seen as a continuous linear form on Co(E x G4(FE)), pux
writes, for all w € Cyo(E x G4(E)) :

wx (w) :/ w(x, V)dux (z,V)
ExG4(E)

and since a rectifiable subset of F has a tangent space application x +— T, X defined
for H%-almost all z € X which is also H?¢ measurable (cf section 1.17), we can write :

uﬂw:A@@QMWﬂm. (3.4)
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We will call such special varifolds rectifiable varifolds (note that we do not consider,
in our definition, multiplicities or density functions as in [4]). This last integral
can be also written with a parametrization if X is more simply a smooth compact
submanifold of E given by a parametrization v : U — E with U an open subset of
RY. Then for all w € Co(E x G4(E))

i (w) = /U Wy (), Ty X) | (u1) (3.5)

with the notation 7/(u) = AL ,0v/0u; € AYE), |7/(u)| representing the local d-
volume element. Note that the integral of eq.(3.5) is, as expected, independent of
any reparametrization of X, positively or negatively oriented.

Polygonal meshes

Now, in discrete geometry, shapes are given as polygonal sets of points which are
also encompassed in the category of rectifiable subsets and therefore representable as
varifolds. In the same spirit as with currents and functional currents, any mesh set
can be coded as a finite sum of dirac varifolds of the form ) ;" ; m;.dp, vy Again, n
is the number of cells of the mesh, p; € E are the centers of each cell, V; € G4(E) the
unoriented tangent space to the shape at point p; and m; € R’ the volume of the
i-th cell. More specifically, let’s examine the two most usual examples in practice.
First, consider a curve X given as a set of points {zx}r=1.n and a set of edges
(ff, 3 € {1,..,N}? for i = 1,..,n. Then, with the previous conventions :

{Ef_l ‘l‘lUfQ
Di=——F—" 5 :
Vi=(xpay) (36)
m; = ||z

Let us precise that here (xfilscfiz) denotes the line in G1(R?) that is spanned by the
vector ;W . Note also that all the previous equations remain unchanged if for any
i we take (f2, f}) instead of (f}, f?) as a face, which is consistent with the idea of
non-orientation.

In a similar way, if X is now for instance a triangulated surface in £ = R3 given
by a set of points {xy}r=1.n With a set of n triangles (f}, f2, f3) € {1,..,N}? for
t=1,..,n then we get :

_ Tyl +xfi2 +$‘f?

Di

3

1
m; = §'H$f¢1xff /\.I'fill'f?H .

\

Here |zpixpl, xpasd| denotes the 2—dimensional space generated by xpixy2 and

T 3. Again, all these equations are not dependent on the orientation given to
each triangle.
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Action of diffeomorphisms

A last important point for the following is to be able to express the transport of
varifolds by diffeomorphism in a way that is compatible with the transport of shapes.
Let’s fix a varifold u € Co(E x G4(F))" and ¢ € Diff(E), we define the transport ¢.u
of u by ¢ by pull-back and push-forward operations :

Vw € Co(E X Ga(E)), (¢+p) (W) = p(¢*w) (3-8)

where ¢*w is the pull-back of w by ¢. For any z € E and V € G4(E) a d-dimensional
subspace with orthonormal basis (u, ..., uq), ¢*w is defined by the relation :

(¢*w) (z, V) = |dpd(ur) A ... Ndpd(ug)| w(p(x),dzd.V). (3.9)

In the last equation, d,¢.V denotes the element of G4(FE) that is the image of V
by d;¢, the term |dyd(ur) A ... A dzp(uq)| is the d-dimensional Jacobian of ¢ on the
subspace V and represents the local change of d-dimensional volume of the trans-
formation. With equations (3.8) and (3.9), it is straightforward to compute the
transport of a dirac 0,y :

G:0(z,v) = [dep(ur) A oo A dud(ua)| -0(p(a),dop.v) (3.10)

if (ug, ..., uq) is an orthonormal basis of V. Now, with the previous definitions, we can
show that the varifold representation of a rectifiable set commutes with the transport
by diffeomorphism in the sense given by the following proposition :

Proposition 3.2.3. If X is a d-dimensional rectifiable subset of E and ¢ € Dif(E),
then :

PilX = Hg(X) -

Proof. Tf X is a rectifiable subset of E, with eq.(3.4), we have for all w :

,uX(w)—/ w(x, Ty X)dH(x)
X
and thus

Pipix(w) = px('w)
= [ @m0

- /xw<<z><x>,d@(%X))\dm-TxerHd(w)

where |d;¢.T,X]| is the d-dimensional Jacobian of ¢ along the tangent space T, X,
as previously. For almost all z € X, d,¢(T,X) is a tangent space of ¢(X) and by
the generalization of the change of variables for rectifiable subsets (corollary 3.2.20
in [37]), we obtain :

Puprx (w) = /¢(X) w(y, Typ(X))dH (y) .

Thus, for any w, ¢ujux(w) = pe(x)(w) and we have proved proposition 3.2.3. O
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To conclude this section, varifolds offer a possible framework to represent non-
oriented shapes both from the continuous setting and in the computational cases
of meshed curves, surfaces... Up to this point, we have shown how to represent com-
putationally a meshed shape as a finite set of diracs, each of them carrying a local
information of position, unoriented tangent space and local volume and derive the
equations of varifolds’ transport by deformation. The remaining issue to examine
is the question of the distance in the space of varifolds, which we address in the
following.

3.3 Kernel metrics on varifolds

The use of reproducing kernels is a fundamental step when working with currents
because it provides regularized metrics for the comparison of shapes which has the
additional advantage of having an underlying Hilbert space structure. We have
also mentioned several times that kernels are particularly well-fitted to compute
distances between discretized shapes because of the simple expression of dot product
between two diracs. All these reasons motivate a similar approach in the treatment
of unoriented shapes through the varifold setting that has been presented. It’s worth
mentioning that other approaches could be possible, by working with more general
Riemannian metrics on distribution of tangent spaces, generalizing for instance what
is done for the Grassmann manifold in [1]. We argue however that RKHS metrics are
very convenient from a computational point of view, especially in our applications to
shape matching and analysis. In this section, we propose a generic and simple way
to build relevant reproducing kernels on the space of varifolds, by basically making
tensor products of kernels on E and on G4(E).

3.3.1 Kernels on the Grassmann manifold

The first step is to work on the Grassmannian. Since it is a rather abstract manifold,
the construction of kernels is not a trivial problem and has been the subject of several
recent works related to machine learning, as for instance in [46, 82|. We propose an
alternative way that exploits the different embeddings of G4(FE) into other spaces in
which kernels are more easily defined. We will essentially consider two possibilities :
a construction based on the identification with orthogonal projectors and a second
one using the Pliicker embedding.

Embedding in L(E)

As explained in section 3.2, one can identify any V € Gy4(F) with the orthogonal
projection py € L(E). As a consequence, one can induce straightforwardly a kernel
on G4(E) by restriction of a positive kernel defined on L(E). Since L(FE) is a finite-
dimensional vector space, there are no difficulties in defining such kernels. Typical
choices are given by :

kp(V,W) = (pv, pw)" (3.11)

with £ € N* and (.,.) the usual Frobenius metric in £(E). More generally, any
function P((py,pw)), P being a polynomial with positive coefficients, is a positive
kernel on L£(E). We shall call these polynomial kernels on the Grassmann manifold
and linear kernel the one obtained for k =1 in eq.(3.11), i.e :

k(V,W) = (pv, pw) (3.12)
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Other important possibilities are the kernels induced by Gaussians in £(E), namely :

|pv —pw P
ka(V,W) =e o? (3.13)

Such kernels allow the comparison of subspaces with respect to a certain scale given
by parameter o. Many other could be defined with this method.

It’s also possible to express these kernels using the principle angles introduced in
section 3.2.1. If we denote (v1,..,v4) and (w1, .., wq) the orthonormal frames of V'
and W such that cos(6;) = (vs, w;) and Span(v;, w;) LSpan(v;,w;) for j # i then we
can write :

d
pV7pW ZU ®Uzazw ®UJJ
d
= Z<Uiij>2
ig—1
d

= Z cos?(6;)
i=1

It results that the kernel of eq.(3.11) has the following expression :

d k
— (Z 0052(01')> (3.14)
=1

The Gaussian kernel also has the alternative expression :

d
ka(V, W) = e~ 2 Dim(1meos?(6) _ T oo sin? (3.15)
=1

This formulation with principle angles offers, in our sense, a nicely interpretable way
to understand the behavior of such kernels with respect to the subspaces’ relative
position. In particular, one can better understand the meaning of the width o for
the Gaussian kernel. The general construction we have proposed thus provides a
wide variety of induced kernels on G4(E) that are effectively computable (either by
the expression of the projection matrix or by computing the principle angles).

Embedding in P(AE)

Following a similar path, kernels on the Grassmannian could be also defined based
on the Pliicker embedding mentioned in 3.2.1, that embeds G4(E) into the projective
space P(A®E). The Pliicker application associates to any V = Span{uvi,..,vq} the
line in the exterior product generated by & = v1 A ... Avg which we denoted by [£y].
The idea would be again to induce a kernel on G4(E) from a kernel on P(AYE).

This is however not as trivial as previously since P(A?E) is still not a vector space.
But we can build kernels on this projective space based on the following proposition :

Proposition 3.3.1. Let ky be a real positive kernel on the vector space A°E such
that for all £,&' € AE, ko(—&, —€') = ko(&,€"). Then the application :

awo-tu(§ ) (S5 o
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defines a real positive kernel on P(AYE).

Proof. The first thing to notice is that the application of eq.(3.16) is well-defined on
P(A?E), since it does not depend on the representants ¢ and ¢ in the equivalence

classes [¢],[¢']. The next point is that the application ko(é—', %) is by restriction

a positive kernel on the unit sphere of the vector space AYE. Let’s call H the
corresponding RKHS. H is a Hilbert space of functions on the sphere and we remind
that, by definition of the RKHS,

aien) = (o) = o () o ()
k =k =(k Lk .
0<|£\’|§’\ "\JeT ] \lel ) \el ) / w

Now for any p € N* and any family (¢;)i=1,. , € AF and (a;)i=1, , € R, we have :

&
:;{3 o (i) * o (i )] s
-1 [ (i) + (i) o (i) + (i )] o
L)) n(E ) ()
=i<zo‘ o () i ()] = Z’“O(gﬁ ) () >H

.

2
- el () o (i)
i—1 i i I
The last expression is thus positive. O

Given a kernel as in proposition 3.3.1, we obtain by induction a kernel on the Grass-
mann manifold. This gives again a lot of possibilities. Among them, one could take
ko(€,&") = (€,&)?F for k € N*, which satisfies the hypotheses of the proposition and
get a kernel on G4(E) that writes :

&y Ew \*
kep(V,W) = <7 > (3.17)
1Ev]™ 1Ew]
—le/1g|—¢€" /1g"))2 —l&/1E|+€"/1€")12
Another interesting possibility is to take ko(£,&') = e _ +e e
and we obtain :
€
ko (V,W) = ¢ 72 Z (1 (e e ) *%(H@m ) (3.18)

Again, these expressions can be written as functions of the principle angles be-
tween the subspaces. Introducing, as in the previous subsection, the orthonor-
mal bases vy,...,vq and wi,...,wg of V and W such that cos(#;) = (v;,w;) and
Span(v;, w;) LSpan(v;, w;) for j # 4, we have :

(N vi, AJyw;) = det((vg, wy))ij = [ ] cos(6:)
=1
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and it results that :

d
kep(V,W) = [ [ cos™(6;) (3.19)
i=1
and 2 d 2 d
kGQ(‘/, W) — 6_072<1_Hi:1 COS(G»L')) + 6_0.72(1—"_1—11’:1 COS(G-L')) (320>

Note that the kernel kop of eq.(3.19) gives, for k = 1, the classical Cauchy-Binet
kernel on the Grassmannian, studied for instance in [46].

Which kernels to choose ?

As we see, despite not having defined kernels directly on G4(F) as an abstract
manifold, the two approaches we presented provide a very wide variety of possibilities
that depend obviously on the chosen embedding of the Grassmann manifold. From
a purely theoretical point of view, it’s not easy to answer yet on which one of these
embeddings should be favored.

For high dimension and codimension, we can state that the dimension of the space
P(AYE) grows much faster than £(F) with d and n and so the Grassmannian rep-
resent a very small dimensional submanifold in this big space. A side effect possibly
resulting from it, if we look at the expression of the kernel of eq.(3.19), is that two
subspaces V' and W are orthogonal for the corresponding metric as soon as only
one of their principle angle is a right angle. We could argue that, in such situations,
this kernel is somehow too ’concentrated’ and decays too fast, if we compare it for
instance to the kernel kp of eq.(3.14) obtained with the embedding into £(E). This
kind of behavior in higher dimensions was observed in classifications’ experiments
based on such kernels in [46].

There is a second argument pleading rather in favor of the first approach, that shall
appear more clearly in the next sections when examining the Cy-universality property
of the kernels. Indeed, the definition by quotient with the projective space makes
such properties, at least from our experience, significantly more difficult to deal with.
In a more practical point of view, the cases we shall be looking at in this manuscript
are focused on curves and surfaces in R? or R? and the Grassmann manifolds involved
are essentially G1(R?) and G1(R3) = G2(R?) (with the identification formulated in
the remark of 3.2.1). Thus there is only one principle angle to consider in all these
cases and the kernels kp and kop for instance are identical. In the applications
presented in this chapter, we will use the kernels k7, and kg.

3.3.2 Kernels on varifolds
Tensor products’ construction

The issue of kernels on G4(FE) being addressed, we now move to the case of varifolds.
Since we are considering functions defined on a product space, a natural way to build
appropriate kernels is the tensor product trick. The result of lemma 2.2.1 in chapter
2 shows that the tensor product of a real-valued kernel on a set A and real-valued
kernel on a set B gives a real-valued positive kernel on A x B. In the case of varifolds,
the following holds :

Proposition 3.3.2. Assume that we are given a positive real kernel k. on the space
E such that ke is continuous, bounded and for all x € E, the function ke(x,.) vanishes
at infinity. Assume that a second kernel ki is defined on the manifold G4(E) and
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15 also continuous. Then the RKHS W associated to the positive kernel ke ® ki is
continuously embedded into the space Co(E x G4(E)).

Proof. By definition :
k ((96, V) (y, V)) = ke(,y) ke(V.V) (3.21)

and so, thanks to the assumptions on the kernels, k((x,V),.) is continuous on E X
G4(E) and belongs to Co(E x Gg(FE)). The vector space Wy generated by these
functions is thus included in Co(E x G4(E)). Moreover, if w € Wy :

w(z,V) = 5($,V)(w) = (k((z, V), ')7w>W

With Cauchy-Schwarz inequality : |w(z, V)| < ||k((z, V), )|lw.||w|lw. In addition,
1k((z, V), )lw = Vk((z,V),(z,V)) and both kernels k. and k; are bounded so
that k is also bounded. We conclude that |w|e < +/|k|oo-||w|lw. Thus Cauchy
sequences in Wy for the W-norm are also Cauchy sequence for the infinite norm. It
results that all their limits belong to Co(E x G4(F)) and therefore W is included in
Co(E x Gq(FE)). The previous inequality then holds for all w € W, which shows that
the inclusion embedding 1 : W — Cy(E x G4(FE)) is indeed continuous. O

Consequently, there exists a continuous mapping ¢* of the space of varifolds Cy(E x
G4(E))" into the dual of W. Just as for currents, if we introduce the isometry
Ky : W' — W defined by (Kywp,w)w = u(w) for all p € W' and w € W. By
the reproducing kernel property, we know that Kwd(,,y) = k((z,V),.). Then for all
x1,xo € Fand V1, V5 € Gd(E),

(0(@1,v1) O(aa, Vo) )W = (KW(a, vi)s KWO(as,vi)) W
= Kw(zy,v5)(71, V1)

and thus we have the following expression for the inner product between two Diracs :

<5(331,V1)7 5(952,V2)>W’ = ke(:(}l, .%'2) kt(Vl, Vg) . (3.22)

For any varifolds p and g in Co(E x G4(E))’, the inner product between them
writes :

(p, 1 ywr = (Kwp, Ky )yw
= u(Kwu')

- / Ky (@, V)dp(z, V)
EXGd(E)

= / (Kwi', Kwovy)ywdp(z, V)
EXGd(E)

= / / KI/V&(LV) ($/7 V/)dﬂ',(mla V/) d,u(a:, V)
EXGd(E) EXGd(E)

and gives finally :
i 1 e = / / ke (2, 27) ke (V, V') dpa (e, VY (2, V') (3.23)
(ExGa(B))?
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In the particular case of rectifiable varifolds px and py, we even obtain thanks to
eq.(3.23) and (3.4) :

s iy = /X /Y e, ) e (To X, T, )M (@) dH (y) (3.24)

We have therefore a generic way to build kernels for varifolds which are separable
since such kernels are tensor products of a kernel on the ambient space E with a
kernel on the set of all tangent spaces G4(F). Building kernels on the euclidean
space E raises no difficulties (examples were already given in chapter 1) and we have
presented a way to build kernels on G4(E).

Dual embedding and Cp-universality

However, at this stage, the metric on the space of varifolds remains only a pseudo-
distance because it is still unclear whether the dual application i* : Co(ExG4(E)) —
W' is always an embedding. As we already evoked in chapter 2 section 2.2.2, in gen-
eral, this is actually not the case : although W — Cy(E x G4(FE)) is an embedding,
the dual application need not be injective. For instance, choosing the linear kernel
kr, of eq.(3.12) on the Grassmannian makes i* not injective. Indeed, let’s place our-
selves in the case F' = R? with an orthonormal basis (e1, 1) and (eg, e ) the rotated
vectors by a certain angle 6. Let x be a fixed point in E. For any kernel k. ® kr,,
with k. a kernel on F/, we have :

H(é‘(ze ) + 6(we )) - (5($ eg) + 5(:26 )H%/V’
H( (z,e1) +5 )HW’"’—H((S(:Eeg)"’_&( )||12/V’
2<( .’L‘ 61 + 5(3: (e )) (5(1',69) + 5(:0,eé‘))>w/

ke(l‘,.’lﬁ) |:4 2<p€17p€6> - 2<pell’p€6> - 2<p€17peel> - 2<pell’peé>:|
= ke(w,2) [4— 2 cos?(#) — 2sin?(A) — 2sin*() — 200s2(0)]
0

An therefore 7*((5.,) + 5(%6%)) ©*(O(e9) T Oz, el 1) for all 6.

The fact that ¢* is an embedding is called the Co-unlversallty property of the
kernel and, as proved in [20], it is equivalent to the property of W being dense in
Co(E x G4(F)). In the previous counterexample, the lack of injectivity basically
comes from the presence of several directions of G4(E) located at one single point
x. When representing submanifolds or reunion of submanifolds, it is not something
that could happen except on isolated points. In fact, we can show result of 'weak
injectivity’ that applies for a very wide range of kernels. It is stated in the following :

Proposition 3.3.3. Let k = k. ® ki be a kernel as in proposition 3.3.2. Assume
that kernel ke is Co-universal and that the kernel ky is such that k,(V,V) > 0 for
all Ve G4(E). Let X = Ufil X; andY = U]Ail Y; be two finite union of compact
d-dimensional submanifolds of E. If ||ux — py|lw =0 then X =Y.

Proof. We will denote by W, and W, the RKHS associated to kernels k., and k;. Let’s
start by the case where X is a single submanifold of E. If ||ux — py|lw = 0 and
X #Y, one can find zop € X\Y and there exists r > 0 such that B(zg,r)NY = 0.
Let a € Cy(E,R) be any continuous function such that the support of a is included
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in B(xo,r). Let wy = kt(Ty, X, .) € Wy. For all functions we € We, we @ wy € W and
thus (ux — py)(we @ wy) =0, i.e

/ we (2 )wi (T X )dH (x) — / we (Y)we(T,Y)dH (y) = 0
X Y

Now, since W, is dense in Cy(F,R), we can approximate uniformly a by functions

in We. By uniform convergence in the previous integral and the fact that a = 0 in
Y, we get :

/ a(2)wr (T, X )dH(z) = 0
X

This holds for all continuous functions a supported in B(zg,r), which is clearly
impossible since x — w (T, X) is continuous and

wi(Tpy X)) = ke (Ty X, T X) # 0.

If X is now a finite reunion of compact submanifolds and X # Y then, as previously,
we can find zg € Uf\il X; with B(xg,m0) NY = (. B(xg,79) N X is itself a non-
empty finite reunion of submanifolds. In order to get a similar proof as for the
one submanifold case, we need to show the following : there exists a point & €
B(zg,m0) N X, p > 0 with B(&,p) C B(zo,70) and j € {1,.., N} such that for all
function w supported in B(%,p) x G4(E), px(w) = px;(w). This can be proved
recursively.

Assuming the result for N — 1, we can find x1, 1,71 with B(z1,7r1) C B(zg,ro) and
HUN =1 x, = 1, for functions supported in B(z1,r1). Now, there are two distinct
cases : either B(zq,71) N X, = B(z1,m1) N Xy or we can assume for instance
that there exists xo € B(x1,71) N Xj,, 2 > 0 such that B(xg,r2) C B(z1,71) and
B(x2,72) N Xy = (. In the first case, since Xy coincides with X;, on B(z1,r1), we
have still BN | x, = 14X, for functions supported in B(z1,71) X G4(F) and we take
T =ux1, p=r11,J = j1- In the second case, one can take & = x2, p =19, j = j1 and
the result holds as well. The rest of the proof is then exactly similar to the case of
a unique submanifold. ]

Even though there is no general injectivity for the dual application, proposition 3.3.3
ensures that the metrics we use are at least distances on the set of finite reunion of
submanifolds, which is usually enough for the applications we aim at. We also believe
that the result could be generalized to any rectifiable subsets of E (for which we have
for H%-almost all 2 one tangent space direction) but the proof does not not seem to
follow directly from the previous one : the passage from finite reunion to countable
reunion is for instance not obvious.

In the specific case of the Gaussian kernel on G4(F) given in section 3.3.1, we can
actually recover the injectivity of i* on Cy(E x G4(FE))’ itself, which is stated in the
next proposition :

Proposition 3.3.4. If k = k. ® kg with k. a Cy-universal kernel on E and kg the
restriction of a Gaussian kernel on L(E) given in eq.(3.13), then k is a Co-universal
kernel on E x G4(E).

Proof. The proof is mainly based on two results about RKHS. The first one is the
very well-known property that a Gaussian kernel on a finite dimensional vector space
is Cp-universal. In our context, the Gaussian kernel K defined on L£L(E) x L(E) by
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2
K(ly,ly) = ef% is thus Cp-universal (cf [20]). Now, the kernel kg that we have
defined in eq.(3.13) is the restriction of K to the subset of all orthogonal projections
on d-dimensional subspaces (which is identified to G4(E)). This subset is closed in
L(E) and using property 2.2.2 from chapter 2 section 2.2.2, we deduce that kg is
then a Cp-universal kernel. If W, C Cy(E,R) and W; C Cp(G4(E),R) are the RKHS
corresponding to kernels k. and k¢, it results that we have W, dense in Cy(E,R)
(because ke is assumed to be Cp-universal) and W dense in Co(G4(E),R). 1t is then
clear that W is dense in Cy(E x G4(F),R). O

In summary, we have explained in this subsection how to define Hilbert metrics on
varifolds that are computed from tensor products between kernels on F and kernels
on the Grassmann manifold. This does not provide necessarily real distances on
varifolds because of the possible non-injectivity of the application between the space
of varifolds and the dual of the RKHS W. Yet, we have shown that for a very
wide class of such kernels, the resulting distances are separating finite unions of
submanifolds and we have argued in favor of Gaussian kernels on the Grassmann
manifold for which we obtain the real injectivity and thus distances on the space of
all varifolds. We will elaborate a little more on the interest of such Gaussian kernels
in specific situations in the next section (cf figure 3.5).

3.4 Properties of RKHS norms on varifolds

3.4.1 Dependency on the scales of the kernels

One of the major advantage of kernel metrics is that they allow analysis at different
scales. In the case of varifolds, this can be controlled both in the space E and
the Grassmannian by the widths o, and o; of the Gaussians if one takes Gaussian
kernels. The parameter o, can be thought as representing the typical interaction
distance on the Diracs’ positions in E whereas o; controls the desired correlation in
the directions of the subspaces. An interesting fact is that for very large o, (basically
all points seen at the same position by the kernel), the resulting metric on varifolds
do not become necessarily trivial as with currents (cf the discussion of section 3.1.2).
Indeed for o, — oo, the W'-distance becomes a distance between the distributions
of tangent space directions depending on the kernel k;. More specifically :

lnxlie =[] R(EXTX0d @)
X

= // ky(u,v)dvy (u)dvx (v)
Ga(E)xGa(E)

where vx = H% o Tan~" is the image measure of H? by the application Tan : X —
G4(E), z — T, X. In other words, at infinite scale for ke, ||pux||% represents a metric
on the distribution of the non-oriented tangent spaces to the shape X, which we can
see, in a certain way, as a histogram metric on G4(FE). Therefore, even at infinite scale
for k., something of the shape still remains in the varifold representation contrarily
to currents. In those situations, the choice of the kernel on the Grassmann part of
varifolds is quite decisive. In particular, the Cp-universality issue discussed previously
becomes important. We show an illustration of such phenomenon in figure 3.5 for
the linear kernel kj which is not Cy-universal and the Gaussian kernel kg, which
was proved to be. The figure confirms what was already noticed at the beginning of
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Figure 3.5: Computation of varifolds’ distance between a 2D grid-like shape (in
black) and its rotated version (in magenta) for various rotation angles and for both
the linear kernel eq.(3.12) and the Gaussian kernel of eq.(3.13) on the Grassmann
manifold, all in the case of large-scale kernel on the space E. The graph displays the
ratio between the varifold distances and the norm of the original shape as a function
of the rotation angle. With the linear kernel, the values remain very small for all
angles, and it is nearly unable to distinguish both shapes whereas the Gaussian kernel
shows an expected behavior with a maximum distance for a 45° angle.

section 3.3.2 about the linear kernel. The conclusion that we can be drawn in general
is that Gaussian kernels on G4(F) provide metrics that are obviously more effective
in situations of multiple directions crossing at nearby points, as might appear when
treating fibers or tree-like structures.

On the other hand, if we let o, — oo, we see that ki(u,v) = 1 for all u,v € G4(FE)
and the RKHS norm we find only takes into account the position of the Diracs :
these are exactly the measure distances between shapes introduced by Glaunés in
[41] chap 4.

3.4.2 Control of the volume by W/'-norm

We now come to the problem raised by our discussion related to figure 3.3. We show
in which precise sense RKHS metrics on varifolds successfully avoid the cancellation
phenomenon of currents. This is formulated in the theorem below and its corollary :

Theorem 3.4.1. Let p be a positive d-dimensional varifold of E such that Supp(p) C
B(0,1) x Gq(E). Let k be a reproducing kernel on E x G4(E) and W its RKHS,
defined like in section 3.3.2 by k((z,u), (y,v)) = ke(x,y).kt(u,v) where ke is a re-
producing kernel on E and ki a reproducing kernel on the Grassmannian. We make
the following additional assumptions :

1. ke is a radial scalar kernel so that we can write ke(x,y) = he(|x — yl|). he is
assumed to be a continuous positive function, with he(0) > 0.

2. ki is a continuous and positive function on G4(E) x Ggq(E) such that for all
u € Gg(E), ki(u,u) > 0.

Then there exists a constant Cte independent of n € W' such that :

|ullwr > Cteu(E x Ga(E)).
Proof. For any varifold p € W', we have :

lull? = / / e, y) ke (s o) dpa(, w) dpy, v) (3.25)
(ExGq(E))?
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For the proof of theorem 3.4.1, we shall first examine the case of a constant kernel
for k.

Step 1: We first assume that ke(z,y) = 1 for all x,y. Let’s denote by p : E x
G4(E) — G4(F) the application (z,u) — u. We introduce the image measure
v = pop ! defined on G4(E). Then :

i = /[ ko (t, 0)d () ().
Ga(E)xG4(E)

Note that v(Gq(E)) = u(p~ (Gq(E))) = u(E x G4E). Now, the compact group
SO(E) of direct isometries of F acts transitively on G4(E) by the relation
g.Span(er, .., eq) = Span(g(e1), .., g(eq)), making G4(E) a homogeneous space. Since
SO(E) is a compact group, we can consider its unique bi-invariant Haar measure
which we denote A with the convention A\(SO(FE)) = 1. If we fix a particular element
up € G4(E), X induces in turn a measure on G4(FE) defined for all B by Ag,(B) =
A{g € SO(FE) | g.up € B}). One can check that the right-invariance of X implies
that A\g, does not depend on the choice of uy € G4(F). In the same way, thanks to
the left-invariance of A\, Ag, is invariant by the action of G i.e A\g-(9.B) = Agr(B)
for all g.

A second important element is that, as a homogeneous space under the action of
a compact Lie group (on which there exists a bi-invariant metric), G4(E) can be
equipped by projection with a left-invariant distance with respect to the action of
SO(FE), which we will denote d. Let’s now consider a continuous, positive L' (for
the measure Ag,) function ¢ on G4(E). Since Agr(G4(E)) = A(SO(E)) =1 < +o0,
¢ is also in L? and we assume that ||¢||2 = 1. We can assume in addition that the
support Supp(¢) of ¢ is included in a certain ball of radius ¢ centered at ug. We also
introduce the regularization function ¢ on G4(E) x G4(FE) defined by :

lu,v) = / o(g-u)b(g.0)dA(g)
SO(E)

It’s obvious that ¢ is also a positive continuous function. Now, the definition and
invariance properties of Ag, show that for all u € Gy4(E), if 7, : g — g.u then,
Ao Tu_l = Agr and it results that :

/ o(g.-u)2dN(g) = / o(0) 2Ny (v) = ]2 =1,
SO(E)

Ga(E)

From Cauchy-Schwarz inequality, we have on the other hand

Y(u,v) € Ga(E)?, ¢(u,v) < ( /S o) qﬁ(g.u)?dA(g)) ( /S o) qﬁ(g.v)?dA(g))
< [lo13

therefore ¥ (u,v) < 1. In addition, if d(u,v) > 20, we have d(g.u, g.v) > 2§ for all
g since d is left-invariant. Therefore d(g.u,ug) + d(g.v,ug) > d(g.u,g.v) > 20. It
results that either d(g.u,ug) > § or d(g.v,up) > 0 and anyhow ¢(g.u)p(g.v) = 0.
Consequently, 1 vanishes for d(u,v) > 2§. Now, since k; is positive and 0 < ¢ <1

T / /G e il ) ) ).
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Moreover, k; is also continuous and k¢(u,u) > 0 for all u so, by compactness of
G4(E), there exists & > 0 and an open domain D C G4(F) x G4(E) of the form D =
{(u,v) | d(u,v) < €} such that for all u,v € D, kt(u,v) > a. We can also assume, by
choosing appropriately the function ¢, that 6 < § and therefore ¢(u,v) = 0 outside
D. 1t results that :

2
Iulfy > o [ ey M), (3.26)

Using Fubini’s theorem in the last integral, we can write

//Gd(E)XGd(E) P, v)dv(u)dy(v)

_/ (// cb(g.u)qﬁ(g.v)dl/(u)dv(v)) dA(g)
SO(E) Ga(E)xGa(E)
2
:/ (/ gzﬁ(gu)du(u)) dA(g)
SO(E) \/Ga(E)
2
(/SO - /Gd d(g.u)du( )dA(g)) (3.27)

the last estimate resulting from Cauchy-Schwartz inequality and the fact that A(SO(E)) =
1. Using again Fubini’s theorem,

/SO(E) /Gd P(g.u)dv(u)d(g) = /ad@) (/SO(E) gb(g.u)dA(g)) dv(u).

Making the change of variable 7, : g — g.u in the inside integral and using the same
argument as previously, we obtain that

/ o(gw)dA(g) = / d(w)dArg (w) = ¢ > 0
SO(E) G4(E)
Inserting the previous in equation (3.27),
/ / B, 0)dv(u)di(v) > [8]2(Ga(E))? = [ BI21(E x GaE)?.
Ga(E)xGq4(E)

So that we eventually obtain :

Iullfy: > allglf.p(E x Gak)?

and since B = al|/¢||? is a constant that does not depend on u, this concludes the
proof in that case.

Step 2: We now move to the proof for a general kernel k.. From the hypotheses,
the support of p is included in B(0,1) x G4(FE) and k. is a continuous and positive
radial scalar kernel on E. Thus, there exists a real number § < 1 such that for any
x,y € E with |x —y| < §, we have ke(z,y) > he(0)/2 = k. Let’s now consider a
partition of the space with a set of cubes {C}}i=1. ar of diameter smaller than ¢ such
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that X C Uf\il C;. Then the subsets S; = (C; x G4(E)) N Supp(p) form a partition
of Supp(u). Moreover,

2l —// ke(z,y) ke(u, v)dp(z, u)du(y, v)
(ExGq4(E))?
M
>3 / / kel y) ke, v)dpa(e, u)dpa(y, v)
i=1 SiXSi

M
> &;//Six& ki (u, v)dp(x, u)du(y,v) .

We can apply the result of step 1 to each of these integrals, thus obtaining

M
Il = B p(S:)?
i=1

1 (Y ’
> BR.M (Z H(Si)>
i1

> 08B x By
the second inequality being a discrete Cauchy-Schwartz and the last one resulting
from the fact that {S;} is a partition of Supp(u). This ends the proof because the
constants 8 and k are both independent of u, and so is M which only depends on
the kernel k.. ]

The hypotheses of theorem 3.4.1 on the kernels are mostly technical but are not
particularly restrictive in practice since one can check easily that all the examples of
kernels given in section 3.3.1 comply to the requirements on k;. As a direct corollary,
we also have the following result :

Corollary 3.4.1. Let X be a rectifiable subset of E included in the unit ball. We
make the same hypotheses on the kernel as in theorem 3.4.1. Then there exists a
constant Cte independent of X such that

luxllwr > CteHA(X)

Proof. This is essentially a special case of theorem 3.4.1 for rectifiable varifolds.
Indeed, the support of px is included in B(0,1) x G4(E) and thanks to the theorem,
lux|lws > Cte ux (E x G4(F)). In addition, from the very definition of ux, px(E X
Ga(E)) = H(X). O

This result is theoretically essential because it shows that pathological cases as the
one of figure 3.3 cannot happen when shapes are represented as varifolds. In practical
applications, it ensures the consistency of the kernel norm we use with the actual
volume of the shapes so that artificial elimination of mass during registration process
or template estimation are not likely to occur in this setting. We will show more
specific examples of this in the next section. Note that when X is of codimension one
and is defined as the boundary of a bounded domain, the notion of volume of a shape
X is the area of the boundary of the domain and not the volume of the domain. In
particular, the corollary says that when a plain shape is represented by its boundary,
its norm for generic varifold kernel is larger than the area of its boundary.
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3.4.3 Metric variation formula

A last fundamental issue to mention is the question of the variation of kernel norms
with respect to the geometrical support of shapes, since registration and template
estimation algorithms rely on the computations of gradients of such norms. We shall
detail the technical discrete computations of such gradients in the next section but
it is also very valuable to have a theoretical and general interpretation of how the
metric on shape varies when the support is deformed. Namely, if X is a shape (here
we will assume compact oriented submanifold) and a RKHS W on varifolds is set,
we want to express the variation with respect to X of terms like (ux, p/yy with g/
a certain element of W’. Since (ux, 1/ Ywr = px (Kwp') (cf section 3.3.2), we can
look equivalently for variations of px(w) for a fixed w € W.

What we wish to derive is thus a result corresponding to Cartan’s formula for cur-
rents. The proper formulation is to express the derivative of px(w) for small varia-
tions of X obtained by flowing a vector field from X. With some hypotheses on X
and W, it is possible to derive a formula that generalizes in our context the notion
first variation of a varifold studied in [4]. The result is summed up below :

Theorem 3.4.2. Let X be an orientable compact submanifold and ux its associated
varifold. Let v be any C' vector field with compact support defined on E and consider
the associated one-dimensional subgroup t — ¢ generated by the flow of v. Then,
if X¢ = ¢¢(X) is the transported manifold, we have for any C' function (z,V) —
w(x,V) on E x Gq(FE) :

t:O,uXt(w)—/X<ax dle(@V) wHx|v )—I—/BX@/,wv +<6V’ >>

dt
where v and v denote the tangential and normal part of v along X, v is the unit
outward normal along 0X, and Hx the mean curvature vector to X.

Proof. Even though the objective is similar to Cartan’s formula for currents, the
proof is quite different in the details. We assume that X is a smooth compact
orientable submanifold of E so that we can consider the canonical volume form ox
on X. Given a C! vector field v on E with compact support, we consider the 1-
parameter group of diffeomorphisms ¢; with ¢g = Id and 0;|—o¢¢r = v. The whole
point of the theorem is to compute the variation of px(w) when X is deformed by
vector field v, that is to say :

d

dt

d

Hou0) (W) = — L/w@R&MW@) (3.28)
t=0 t=0 Xt

where X; = ¢+(X). Note that this generalizes the first variation of a varifold com-
puted in [4], for which w = 1. Here, w is any C! function on E x G4(FE). As already

explained in section 3.2.2, we have pg4,(x)(w) = px(d;w) and :
d d d d
D ) = [ @) nxaH @) = [ L LX) @)
t=0 X X
(3.29)

where £,w stands for the Lie derivative of w(z, V') along v. Hereafter, to simplify
the notation, for a function (z,V) — f(z,V), we will simply write [ f instead of
k.xTXWM)

Now, (¢fw)(z,TpX) = |detr.TpX|w(pi(x),dydr (T2 X)). Let us recall that J, =
|dype. T X| is the volume change in the direction of the tangent space 1, X. Taking

t=0
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the derivative inside the integral at t = 0 leads to three terms : differentiate the
function w with respect to position, with respect to the tangent space direction and
differentiate the volume change. The first term is the simplest one and an immediate

computation shows that it equals (g(;\v> The two others are more involved.
Derivative of the volume change : For any vector field u defined on X, we
shall denote by u' and u' the tangential and normal components of u with respect
to the tangent space of X at each point. We also introduce the connection V.- on
the ambient space and an orthonormal frame of tangent vector fields (e;)i=1,. 4 on
X. Now J; = \/det (dyoi(ei), dudi(ej))i; so a simple calculation shows that :

d

Jp = Z(ei, Ve, v)

t=0 i=1

d

dt

Writing v = v + v* provides a first term 3% | (e;, Ve,v") which is the tangential
divergence of the vector field v " denoted usually divx (v'). The second term becomes
Zle(ei, Ve, vt). Forall i = 1,..,d, we have {e;,v) = 0 so that after differentiation
we find that (e;, Ve, vt) = —(V,e;, v1). Therefore :

d

d
Z<eiaveivl> = Z veLeu
=1

g

In this last expression, we recognize the mean curvature vector to the submanifold
X, which is the trace of the Weingarten map and is denoted Hx. As a result, we

find that : J
/w Jt:/ (/JdiVx(UT)—/ w(Hx,vb)
x dt|_g X X

Now, we will show that the first term can be rewritten as a boundary integral.
Indeed, if we denote by @ the function defined on X by @w(z) = w(z,T,X), we
have divx (@v') = @divx(v") + (V@|vT). Applying the divergence theorem on the
orientable manifold X gives :

/deivX(vT):—/X<V(D|UT>—|—/8Xw<1/,UT>

where v is the unit outward normal to the boundary.

Derivative with respect to tangent spaces : We now come to the last term
in equation (3.29), which is the variation of w with respect to the tangent space in
G4(E). As explained in section 3.2.1, we can identify the tangent space to G4(EF) at V'
with the space of linear applications £(V, V+). In addition, if we set V; = dp¢¢ (T X),
we have, thanks to eq.(3.3) :

d
7| Vi=prxeo Volr,x € L(To X, (T X) ™)
=0

d
which we will note more concisely 7 Vi = Vtwu. The space L(T. X, (T,X)")
t=0
being trivially isomorphic to T, X+ ® (T, X)*, we can consider Vv being an element
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Ow
of that space and we introduce —— which we therefore identify to an element of

oV
0
(T, X)) @ T, X : 87‘0; = i—411M; ® @ for (Nat1,..,7n) an orthonormal frame of

T, X+ and (a;) vectors of T, X (as usual n* denotes the linear form (n,.)). Then the
variation we wish to compute is :

Ow Ow -
(av17°0) = (517¢) = 3 ¥y
j=d+1

Ow
If we introduce (8V|U> = > g M (W)a; = 3704 (nj, v)ay which is a tangent

vector field on X, we have :

de( > Z Z ((ei, Ve, ) (nj,v) + (€5, (Ve,n5, v)g) + {eis (0, Ve,v)aj))

i=1 j=d+1

The last term in the sum is also D27 ;. (n;, Va,v), which is nothing else than

Ow
<8V\V1}>. As for the two other terms in the sum, it’s easy to see that it equals :

d

>ofenVe 3 n el | = avx (52

i=1 j=d+1

So get eventually that :

(g;j\w) = divy <§V|v> (divx (gv) |v) (3.30)

Integrating equation (3.30) over the submanifold X and using as previously the
divergence theorem, we find that :

[ (Geroe) = [ o (Gew)- L (2) 0 wa

Synthesis : Grouping all the different terms obtained so far, we get the following :

/X,va - /){(Zc;—dwx (g:;) ]v)—/X(V@\vT)+w<HXUL>
+ b () e

We remind that @(z) = w(z, T, X) so (Valv) = (g::]vT> + (2;;|VUT> and

applying the result of equation (3.30) to v

((‘;‘;WUT) = divy (gv\v ) (divx <§V) [0")

ow 0
Noticing that (8V lv ) = 0 by the expression of % and using the equality v =

v" + v’ we find eventually that :

/ Low = / < _ divy (g;j) _WHX|UL> +/8X<1/, (g;w) + o)

which proves the result of theorem 3.4.2. 0
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We will just make a few qualitative comments since there are a few noteworthy conse-
quences of theorem 3.4.2 to mention. The first important remark is that the variation
of varifold metric is controlled only by the vector field v and not its derivatives. This
is not straightforward since a varifold kernel k((z, V'), (2’, V")) is encoding in an arbi-
trary non-linear way first order information through the inclusion of Grassmannian
variables V' and V’. Interestingly, the result is valid even if the dimension or the
codimension of X is different from 1. In return, we see that the formula involves
some terms on the boundary of X, one of them expressing the tangential extension
of X along its boundary and a second one related to the variation in the tangent
space direction on the boundary in the normal direction v-. The presence of these
boundary terms will appear of particular importance in chapter 4. In the interior
of X, we see that the variation depends only on the orthogonal component v+ of v,
which, in other terms, shows that the gradient of the attachment distance is orthog-
onal to the shape. Note also that we have assumed X is oriented essentially because
the proof makes use of the divergence theorem (that relies on Stokes theorem). Yet,
since we work with varifolds, the integral does not depend on the orientation of X
and so one could presumably remove this hypothesis by just considering partition of
unity and local orientations.

3.5 Large deformation registration algorithm for unori-
ented shapes

At this point, we have defined a theoretical background to represent and compare
unoriented shapes through varifolds and kernels on varifolds. What we have obtained
is a distance (actually a whole class of distances provided by different kernels) be-
tween the objects that can serve as an attachment term in practically any matching
process. As we have done so far in this thesis, we focus on the LDDMM model
for large deformations, which was already exposed in the previous chapters. The
purpose of the following is to derive the equations needed for the numerical imple-
mentation of LDDMM on varifolds and present a few examples of matchings based
on this framework. In all this section, we will now restrict ourselves to the usual
cases of curves and surfaces living in the 3-dimensional euclidean space R3,

3.5.1 Description of the algorithm

We have already presented LDDMM registration both in the context of currents
in chapter 1 and of functional currents in chapter 2. In the case of varifolds, the
principles are basically the same. We again consider a RKHS space V' of admissible
vector fields on E and flows of L? time-varying vector fields v equipped with the
right-invariant metric fol |ut|2,dt. In our situations, we shall focus on RKHS V that
are generated by Gaussian kernels of certain scale oy or by sums of such kernels, as
explained in more detail in chapter 1. The geodesics for that metric are parametrized
by their initial momentum py € V*. Then, considering two unoriented shapes X (the
source) and Y (the target) and their representation pyx and py in a RKHS of varifolds
W', we can formulate similarly the registration problem between X and Y as the
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optimization of :
minpy J(po) = E(po) + 7|l g, (x) — kv [l

%thoéf)t

ot

(3.32)

Up to the change on the attachment term which is now a varifold kernel distance,
this problem has an identical formulation with the geodesic shooting registration on
finite number of points (cf introduction section 1.3.2). With the same notations,
the gradient of J with respect to pg is therefore obtained again by first flowing the
forward Hamiltonian equation which gives the point positions ¢; and the momentum
pe at all times ¢ € [0, 1] and then by :

Vpod = Kv(q,q9)po — Po

with Py an adjoint variable obtained by flowing backward in time the coupled equa-
tions : )
Qi = —(02 ,Hy (g1, p0))* Q1 + (82 ,Hr (g1, p0))* Py
Py = —(02 ,H (1, p0))* Qe + (92 ,Hy(qe, pe))* P (3.33)
Ql == —VqlA(ql), P1 =0

where V4, A(q1) is basically the gradient of the attachment distance function between
the deformed source shape ¢1(X) and the target Y. The only change with respect to
previous algorithm on currents is the attachment quantity A(q;) for the computation
of the total energy and its gradient VA(q) for the initialization of P in the backward
equation. We detail those computations for the case of embedded curves and surfaces
in R? in the next subsection. The rest of the algorithm, similarly to LDDMM for
landmarks or currents, is an adaptive step gradient descent scheme on pg.

3.5.2 Discrete expressions for curves and surfaces

Let’s now focus on the attachment distance term A(gq). In our context of unori-
ented shapes modeled as varifolds, we use distances provided by kernels and their
associated RKHS presented in section 3.3. Those are the tensor product of a kernel
k. on the space R? and a kernel k; on the Grassmann manifold. If W is the RKHS
corresponding to k = k. ® k;, the attachment distance we have is then :

A= lpg,x) = my [l (3.34)

Since ¢1(X) is the transported source object by the vector field at time 1 (repre-
sented by the set of points ¢; with the previous notations), formally the problem
reduces to express explicitly quantities like ||ux — py |3« where X and Y are two
shapes of the same dimension and compute the gradient of such terms with respect
to the points of X.

We assume now that X and Y are two unoriented d-dimensional shapes (possibly
disconnected) given respectively as sets of vertex (qx)k=1,..~, (Yi)i=1,..m together
with sets of unoriented simplexes ( il, o fl-d)i:l,._m and (gjl-, ..,g?)j:17,_7m. The com-
putation of the varifold representations px and py of each shape was explained
in section 3.2.2 and provided by equations (3.6) for curves, (3.7) for surfaces. We
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write px = Y i li-0(p, ;) and py = > Aj.dg, v;). Then the attachment distance
becomes :

A = lux e = 20xs pyyws + [y [
= Y Lilike(pi, p;) ke (Ui, Uy)
ig=Ll.n

-2 Z Z idjke(pi, q5) -kt (Us, Vi)
i=1l.nj=1l..m

+ Z Nidjke(qi, q5)-ke(Vi, Vi) (3.35)

ij=1l..n

Thus, computing the distance between X and Y consists basically in computing
the varifold representation of the shapes from their sets of points and meshes and
compute kernel evaluations between point positions and tangents. It’s important to
note that, in the cases of curves and surfaces, the computation of terms like k; (U, V')
is actually much simplified and does not require to go through projection matrices.
The reason is that the dimension or codimension is always one and so the expression
of the kernels with the principal angles in 3.3.1 show that one simply has :

kp(U,V) = (&, &)
k(U V) = e—g%(l—@wfv)?)

where £y is the unit tangent vector to the segment in the case of curves or the unit
normal to the triangle in the case of surfaces, no matter what orientation to &y is
given.

The more technical part is the computation of the gradient of the previous dis-
tance with respect to the (zy)’s, the points of the first shape. In equation (3.35),
the attachment is a function of the p;, [; and U; but all these terms are themselves
functions of the (x)’s, respectively as the centers, volumes and tangent directions
to every cell of X. The resulting function that we have denoted A((xj)) can be
therefore differentiated as a composition :

Ou, A=Y (D, A0 Duypi + 0, A0 On,li + Oy, Ao 0, Uy) (3.36)

=1

The differentials of A with respect to the p;, I; and U; are easily expressed from
eq.(3.35), involving the differentials of the kernels k. and k;.

Op A = 3771 Lilj[01ke(pi, pj) + O2ke(pj, pi)]- ke (Ui, Uj)
=230 LidjOrke(pi, q5)-Ke (U, V)

O, A =301 lilike(pi, pj)-[01ke(Us, Uj) + Ooke(Uj, Us)] (3.37)
=230 Lidjke(pis q5)-01ke (Ui, V) '
O, A =235y Like(pi, pj) ke (Us, Uj)
—2 E;nzl )\jke(pian)-kt<Ui>‘/j)

where 01 and 0y denotes the derivative with respect to the first and second argument.
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Now, the last step consists in computing derivatives of p;, I; and U; with respect to the
points of X. These depend on the dimension and codimension of the shape. In the
case of curves and surfaces embedded in R?, it can be simply done by differentiating
equations (3.6) for curves or equations (3.7) for surfaces. We give the details for
these two cases below.
(x zpta f2)

In the case of curves, we have p; = —5——,I; = |xf¢2 - a:f1| The tangent space
direction can be represented as a single normalized vector u; = St

foralli e {1,..,n} and k € {1,.., N}

m, which glVeS

Oy, i (5{k 11y T O=s2y)
1 T r2 T rl

T S G Yol X PR

’ ’wf?—xf11’ ‘l'fQ—.I'fl’

: PRI (339)
_|95f127xf21‘ s~ |xf27'1“f1| {k f}
T2, — Tpl T2, —T

afksl' Q(S{ fz}_gd{ _f}

’ ’fo—xfl |.’L'f2_.1'fl‘

In the previous equations, x s denotes the number s coordinate of xj in the em-
bedding space’s canonical basis (es). These equations can be simply interpreted and
implemented as the way to distribute the gradient computed with respect to the

segments over the points of the shape X.
($f1+xf2+wf3)
In the case of triangulated surfaces in R?, we have p; = —+— 1"

li=|(xp2—2p1) A(z3 —x41)| and again the tangent space is snnply encoded by the
/ (@12 2) (@ 2~ 3)
‘(xfll 7xfi2)/\(xfi27$fi3)|

normalized normal vector u; = so that for all i € {1,..,n} and

ke{l,.,N}

1
Do Pi = 3 (Othegty + Opumgzy + Opmpsy)

1
Oy, Ui = T (es A(wgz — ) = <€S Nape —ap), “> “) Ok=rly  (3.39)
+...

Oy, b = <€s Argp—zp), “> O=piy +

We wrote “+...“ to mean that similar terms are obtained for k = f} and k = f2.
Combining the last relations with equations (3.36) and (3.37) provides a full descrip-
tion of the gradient computation in practice.

3.5.3 Numerical complexity

From a purely computational point of view, what appears from the previous discrete
expressions is that the difference between currents and varifolds, in the cases of
3D curves and surfaces, lie entirely in the kernels that operate on the tangent or
normal vectors. Basically, this kernel in currents is always the linear one on the
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tangents, i.e (£,&') whereas, with varifolds offer many other possibilities like for
instance kp = (£,£)?% or kg = e_v%(l_<§’£,>2). In practice, these two methods are
thus very close together and it is easy to design one common code structure to include
both.

Another consequence is the fact that the complexity for doing varifold registration
is of the exact same order than the one of currents. Computing attachment distance
functionals and its gradients by brute force method is also O(N?) for shapes with NV
points. Just as for currents’ metrics, the essential part of computations are kernel
convolutions (here in the product space R?x G1(R?)). Thus the alternative numerical
schemes and tricks for faster kernel evaluations, presented in chap 2. section 2.3.3,
could also be transposed to varifolds as for instance FGT and GPU computations.
We had shown empirically that GPU can perform extremely well up to the limit of
10000-20000 points, and this remains perfectly true for all varifold kernels as well.
For very high N, we had mentioned that the FFT convolution method on grids (as
introduced and implemented in [28]) is probably the most adapted. For currents,
computations of the energy and gradients can be expressed using only discrete con-
volutions in R? of the form Y j ke(zi, x)&. This holds essentially because the kernel
(&,&") can be expanded in coordinates as a product of separate terms in £ and ¢'. In
the case of varifolds, this remains true for the polynomial kernels kp and grid strate-
gies are worth implementing in that case. However, it breaks down for the Gaussian
kernel kg (unless by truncating the Taylor series) for which one would need higher
dimensional grids, usually too memory and time-consuming to be really interesting,
as mentioned in chap 2. 2.3.3.

Finally, to extend a little bit the discussion to larger dimensions and codimensions
(although these have not been subject to implementation yet), it’s worth pointing
out that the space A?E, which is used to represent local geometry in the currents’
setting, becomes very high dimensional when working with submanifolds embedded
in a large vector space F. This space is much bigger than the space of all possible
tangent spaces, which is not the case of the Grassmannian. We argue that this would
result in a much more numerically intensive use of currents than varifolds in those
cases.

3.5.4 Simulations and results

We now come to a few results of varifold LDDMM algorithm, in which we want to
emphasize the benefit in situations that traditionally involve orientation issues when
objects are matched with the currents’ framework. In all the following experiments,

lz—yl?

we chose the Gaussian kernel k.(z,y) = e °¢ on the space E. There are also
many possibilities for the kernel k; on the Grassmann manifold : we have focused
essentially on the linear kernel kj and the Gaussian kernel kg. Even though both
kernels were proved to induce a distance on the set of reunion of submanifolds, we
have also explained why the Gaussian kernel has better separation properties, as
argued before, especially when the scale o, of the kernel on F is chosen to be large.
Still, the polynomial kernel has the advantage of not introducing an additional scale
parameter and also leads to fast numerical computations for shapes with high number
of points.

The example of figure 3.6 shows a situation with pikes’ structures that are typically
not well matched using LDDMM with currents. This example can be also used to
show the robustness of varifolds when we increase the scale parameter of the spatial
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Figure 3.6: Example of registration between 2D curves. The source shape is the
blue circle, the target is the red star with four narrow branches. On the left, the
matching is performed with the approach of currents. On the right, with the approach
of varifolds exposed in section 3.5.1 with the same parameters. We see that the
branches are well recovered with varifolds whereas the current’s metric is nearly
insensitive to them.
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Figure 3.7: The same example for varifolds but performed at different scales o..
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Figure 3.8: Registration result on fibers with the framework of currents (left) and of
varifolds (right). As expected, varifolds can deal efficiently with any orientation of
the different components.

kernel ke, as illustrated in figure 3.7. It is particularly remarkable that even at scales
much larger than the size of the object, the algorithm is still able to capture the
overall description of the target shape, simply based on the distribution of tangent
spaces (cf discussion of section 3.4.1).

In figure 3.8, we show an example where shapes are constituted of many discon-
nected pieces of curves which are not consistently oriented, and show the results
of both methods (currents and varifolds). Other interesting situations are given by
tree-like structures for which orientating the different branches consistently for regis-
tration can become a nearly intractable problem when faced with many intersecting
branches. We give a simple insight of this phenomenon in figure 3.9.

We also present some results of surface matching done with our varifold algorithm.
In figure 3.10, a surface registration is applied between a standard sphere and the
Stanford bunny model with same parameters for both methods. We observe some
mismatch artifacts in the currents’s result : the ears are not fully recovered as well as
some small details in the head and we see the apparition of undesirable membranes at
the basis of the ears. This is due to a 'flattening effect’ of currents that often squeeze
both sides of the surface together in order to artificially eliminate unmatched parts
of the shapes. This has been a consistent lack of currents for many applications. In
contrast, we see that the varifold algorithm matches almost perfectly all parts of the
shapes.

3.6 Discussion, extensions and perspectives

By way of conclusion to this chapter, we wish to provide a few additional comments
and perspectives that naturally arise from all the previous material. We divide it
into three main topics. We first elaborate a little more on the difference of currents
and varifolds with respect to kernel scales and the issue of noise. We then propose,
as a combination of the ideas of chapter 2 and 3, an extension of varifolds to model
unoriented functional shapes. And finally, we briefly mention an alternative notion
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Figure 3.9: Example of registration on trees with currents (left) and varifold (right).
Observe again that, with currents, consistent orientation between the source and the
target is necessary to avoid the unnatural deformation shown on the figure.

of oriented varifold that could be interesting in future studies as well.

3.6.1 Scale and noise

An important difference between currents and varifolds that we have emphasized
several times throughout this chapter is the behavior of kernel metrics when we
increase the width o, of the Gaussian kernel on the space E. The cancellation effects
of currents make such norms become more and more insensitive to anything else
than the boundaries of the objects as noticed in 3.4.1. On the other hand, with
varifolds, we obtain distances between the distribution of tangent spaces of the two
shapes. We showed that, at infinite scale 0., what remains from a shape X is the
image measure H%oTan~'. From the discrete point of view, these can be thought as
histograms on G4(E). If we focus on the special case of planar curves, G1(R?) can be
represented as the unit semi-circle (with identified extremities) and such histograms
can be computed numerically and visualized, as we show on a few examples in figure
3.11. There is of course no one-to-one correspondence between histograms and the
set of all shapes since these objects are totally blind to the localization of the tangent
spaces in E. However, fixing a given histogram still imposes constraints on shape.
When constraints are also added on the set of possible transformations, as we do
in large deformation approaches for instance, it becomes a particularly interesting
question to understand how much attachment distances based only on histograms
could drive registrations ; a topic that we just skimmed through with the example
shown in figure 3.7.

There is however a negative counterpart to the fact that varifolds remain sensitive to
tangent spaces distributions even if the scale o, becomes large. This is the problem of
noisy shapes that can involve important perturbations in the Grassmannian domain.
On the opposite, currents have a regularizing effect that makes the approach robust
to noise for well-chosen o.. We show the result of a matching performed under noise
in figure 3.12. As we see, currents are able to ignore noise quite well since the high-
frequency variations are cancelling for the chosen scale o.. For varifolds, things are
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Figure 3.11: Several plane curves and the histograms of the tangent space directions.
For visualization purposes, we have identified the Grassmannian G (R?) with the unit
semi-circle. The color on each point of the semi-circle represents the density (possibly
singular) for the Hausdorff measure ! of points having a tangent pointing in that
particular direction. The sum of all these densities is precisely the total length of
the curve.
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Figure 3.12: Registration of the blue segment on the noisy shape in red. We show the
deformed source shape in dashed line. Current and varifold algorithms were applied
with both a Gaussian kernel on E of common o, = 0.4. For varifolds, we used the
Gaussian kernel kg of scale oy on the Grassmann part and we show the behavior as
we increase oy.
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more complex and depend on the scale chosen for the Gaussian on G4(E). If o is
too small, the algorithm becomes sensitive to the distorted directions of the tangents
and creates a prominence to account for these directions. One must therefore reduce
this sensitivity by increasing the width o, in order to achieve robustness to noise. In
practical applications, this could be a drawback of the varifold approach, typically if
only some parts of shapes are affected by noise while others are smooth because it
would enforce the choice of a large oy, providing thus only a gross analysis of tangent
directions everywhere.

We could still argue that the issue of noise can be also treated in practice from the
diffeomorphism point of view, for instance by imposing more regularity to the vector
field v of the deformation. This can be done simply by reducing the tradeoff v or
by increasing the typical scale oy of vector fields. Yet the question of finding, in
this context, representations and attachment metrics that could simultaneously avoid
orientation issues while providing a natural robustness to noise is, to our knownledge,
still an open question.

3.6.2 Functional varifolds

The varifold idea to represent non-oriented shapes can be also adapted to the case
of shapes carrying signals, following a similar path as chapter 2 with currents. In
fact, linking the ideas this chapter with the ones of chapter 2, it is even a quite easy
extension of varifolds. We will just briefly sum up the main lines. With the notations
and definitions of chapter 2, we are naturally led to introduce the following definition
of functional varifolds :

Definition 3.6.1. We say that p is a d- dimensional functional varifold on (E, M),
E being the embedding vector space and M the signal manifold, if 1 is a Borel finite
measure on the space E X Gy(E) x M or equivalently if u € Co(E x G¢(E) x M)'.

This is simply augmenting the varifold representation with a signal component. Now,
any functional shape (X, f), with X a d-dimensional rectifiable subset, has an equiv-
alent representation in terms of functional varifolds given by :

e (@) = [ (e X fa)d @) (3.40)
The discretized version of this relation for a polyhedral shape writes

Yoy m;.0(z, v;,f;) With the conventions already explained in previous sections. The
definition of kernel metrics on functional varifolds is also very natural. One can just
consider kernels of the form k. ® k; ® k¢, where k., k; and kjy are real-valued positive
kernels respectively on E, G4(E) and M satisfying enough regularity properties. We
then obtain a Hilbert metric between functional shapes that writes :

(. 1y Vi = / / e, y) k(T X, Ty Y ) ey (f (), () A2 ) dHE ()
XxY

(3.41)
The rigorous study of the properties of these norms, as we did in chapter 2 section
2.2.3 for functional currents, is postponed to a future work, but does not seem, a
priori, to bring additional difficulties.
The implementation of functional varifolds’ metric for computing functional shapes’
distances and registration is very convenient starting from the similar codes on var-
ifolds. Indeed, all it requires is to add the ponderations coming from the kernel
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ky and the functional values and compute the new gradients with respect to point
positions and signals. Thus this framework (in the case M = R) was also included
in our codes as an alternative to functional currents.

Functional varifolds, as far as numerical simulations can tell up to now, successfully
combine the interest of non-orientation (compared to currents) with the possibility
to use signals in registration and estimate functional residuals. To link that with the
previous discussion on the dependency of the metrics with respect to kernels’ scales, it
also appears that functional varifolds, by playing with the three possible parameters
Oe, 0y, 0f (in the case of Gaussian kernels), encompass in a unified framework a
very wide variety of metrics between objects : measures (oy,07 — 00), varifolds
(0§ — 00), directions’ histograms (e, o — 00), signals’ histograms (o, 0y — 00).

3.6.3 Oriented varifolds

Let’s finally mention a last possible track that, we believe, could lead to interesting
developments in shape modelling and analysis, which is called oriented varifolds. This
concept, although less common in geometric measure theory, has a definition very
close to varifolds. It makes use of the oriented Grassmann manifold which is defined
as the set of all oriented d-dimensional subspaces of E, denoted generally éd(E).
In a similar way as the Pliicker embedding, éd(E) can be embedded into the unit
sphere of A?E. In particular, if d = 1 or d = n— 1, oriented Grassmann manifold can
be actually identified to the unit sphere of F | which makes it a particularly simple
space to use in practice. Oriented varifolds are then defined similarly to varifolds as :

Definition 3.6.2. An orienled varifold is a_Borel finile measure on E x éd(E), i.e
an element of the functional space Co(E x G4(E))'.

Now, oriented varifolds provide a representation of any oriented rectifiable subsets X
of E by integrating as usual any function of Co(E x G4(E)) on X, which associate to
X the oriented varifold denoted i x. However, it is not equivalent neither to currents
nor to varifolds in general. If X is for instance a connected oriented submanifold and
X the one with opposite orientation, in that setting, iy # —fix and fig # fix.
Although it has not been carried out yet, one could obviously define kernels as we
did with varifolds using in that case the embedding of éd(E) into the sphere of AE
and obtain RKHS distances in that context. Such a framework, as we can expect,
would not suffer from the cancellation issues appearing with currents (at the price of
a lower robustness to noise). Compared to varifolds, it would likely improve results
when working on shapes with a clearly defined and useful orientation information but
it remains clearly ineffective in treating cases where orientation is not well-defined
or relevant.

3.6.4 Conclusion

Having explored in the first place the orientation issues that come along with the
use of currents in shape modelling, we have adapted in this chapter the alternative
concept of varifolds, by representing shapes as spatially spread distributions of un-
oriented tangent spaces themselves modeled as elements of the Grassmann manifold.
As for currents, we embed a wide variety of objects like submanifolds and rectifiable
subsets in one common functional space. The first contribution of our work was to
define metrics that share theoretical requirements and enable convenient numerical
computations. We have shown how this can be done by defining Hilbert structures
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on varifolds through reproducing kernels and proposed a general construction process
for such kernels. From the theoretical side, we proved that these metrics, as opposed
to the previous representation by currents, do not artificially ’eliminate’ shape vol-
ume due to orientation. We also computed a variation formula of the metric with
respect to shapes. In terms of numerical applications, we have presented an adap-
tation of large deformation shape registration based on this framework. The results
we presented are mainly focused on synthetic examples for the time being, but we
will show a few applications to real datasets in chapter 4, in which we extend the
varifold framework to atlas estimation.

As we started to mention in this last section, this work is also paving the way to
several extensions and new issues. For instance, the ideas of functional varifolds
or oriented varifolds can be almost straightforwardly implemented and now need
to be experimented on larger sets of applications. Furthermore, the discussion on
the relationship between varifolds and tangent spaces’ histograms, that was only
initiated in 3.6.1, would probably deserve more in-depth study, perhaps by linking
that to shape comparison based on descriptors, for instance shape contexts in 2D
and 3D shapes [15] or SIFT descriptors in images.
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Chapter 4

Statistical Atlas estimation and
analysis
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4.1 Forward atlas construction in computational anatomy

In the previous chapter, we have presented a first range of applications related to
the problem of diffeomorphic registration between two functional shapes. In the
context of anatomical studies, the estimated deformations are likely to make possible
the detection of abnormalities in the shape of subjects, leading to potential medical
diagnosis for certain diseases. To have any meaning from the statistical point of view,
registration need to be transposed to larger database of subjects. In this chapter,
we discuss the problem of group-study, namely how to analyze in a statistical way
potentially large groups of geometrico-functional datasets.

This problem has been extensively studied in the past, mostly in the case of 2D
and 3D images [11, 6, 49] and more recently generalized to shapes like curves and
surfaces |28, 32]. The main challenge, starting from registration of two subjects, is
precisely to avoid the bias that would inevitably occur if we chose one specific subject
in the database and register all other individuals on this one. Instead of this naive
approach, recent methods are generally based on algorithms that try to estimate an
atlas from the data. In shape analysis, an atlas is made of a template shape, or a
mean shape, that captures the common features of all subjects, together with a set
of deformations between template and individuals, which, properly analyzed, should
transcribe the shape variability among the population. Technically speaking, given a
population of N subjects {S;}i=1,.. n, the output is a template S and N deformations
{¢i}i=1,.,n. These deformations can either pull the subjects back on the template
eq.(4.1), which is thus called the backward model, or transport the template toward
the individuals eq.(4.2), which is known as the forward model.

¢Z(81) =S+ € <— S; = d)l_l(g) + (Z)Z-_l.ei. (4.1)

Si = bi(S) + e (4.2)

In both these models, the ¢; are shape residuals for each subject, corresponding
to the mismatch between the template and the subject. As already mentioned for
registration, these are necessary to account for all that cannot be captured by the
deformation model including noise, topological changes and high-frequency varia-
tions. Note however that in the backward model, the residuals are living on the
template coordinate system and are transported by each deformation whereas in the
forward model, they are intrinsic properties of the subject. This is summed up by
Figure 4.1. It is argued in 28] that the forward model is better fitted to modelling
considerations and more adapted to statistical purposes : it can be derived from a
consistent maximum a posteriori (MAP) estimator and computing the likelihood of
a new subject is much easier than in the case of the backward model. This approach
has been implemented for 2D and 3D currents and found successful applications to
atlas estimation of white matter fiber bundles [30] or deep brain structures’ surfaces
[36].

Before coming to that, we briefly sum up the general derivation of MAP estimator in
the context of usual currents, following [6] and [28]. We insist on the fact that these
are only formal derivations since they are done infinite dimensional vector spaces.
However, as detailed in |28], it can be translated in terms of finite-dimensional mod-
els, in the case of usual applications. From a Bayesian point of view, given the
shape observations S; represented as currents in a RKHS W/, template estimation
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Figure 4.1: Forward and backward atlas estimation’s models [28§].

reduces to the problem of finding a template S that intuitively maximizes the like-
lihood of the observations knowing the template, i.e for independent observations,
Hij\il p(S;|S), where the deformations ¢; in eq.(4.2) are hidden variables. To give a
precise meaning to that, one need to introduce probabilistic models and priors for
the residuals and deformations. Residuals €; are considered as iid random variables
on the space of currents with Gaussian probability density function :

pr(e) = Cr.exp(=lellfy/ (207)) -

Deformations are totally determined by their initial velocity field in vy € V' thanks
to the geodesic equations, so that we can introduce a prior on deformation with a
probability density function :

Pg(v0) = Cy. exp(—|lvoll}/(207)) (4.3)

Now, one can express formally the probability of an observation S; knowing the
template by using the Bayes rule :

pSIS) = / PSS, v () v
- / Pe(S; — (6°0).3)py v dvg (4.4)

The term p,(S; — (¢%),S) depends on the vector field vy by a geodesic shoot-
ing procedure which provides no closed form for maximizing the previous integral.
Hence, we apply a standard approximation, called Fast Approximation with Modes
(FAM, cf [6]), replacing the integral of eq.(4.4) by the maximum of its integrand :
p(Si|S) ~ maz,i pr(Si — (¢90).S)pg(v§). Then, the maximization of the likelihood or
equivalently the minimization of the log-likelihood leads to the following optimization
problem :

N
(S,vp) = ArgImILL g i) (E ﬂ””o”% + ﬁ”&‘ — (9 “)*ﬂ%{//) (4.5)

i=1

Again, this minimization is just formal at this point because it does not specify
in what space the template shape S is optimized on. Only in the case of discrete
shapes can eq.(4.5) be actually given a real meaning. In that case, the template is
made of a finite number of points and the variable S lives in a finite-dimensional
space. The resolution of this problem then gives both the template shape S and the
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deformations d)“3 from the template to each of the observation, which (still in the
discrete situation) are obtained by geodesic shooting from the initial vector fields
vé. Note that, for a fixed S, the previous problem consists exactly in solving N
matching problems between S and the S;. Conversely, for given ¢%, optimizing with
respect to S uses the computation of the variation of the attachment distance given
by currents. Thus, estimating an atlas in the context of currents can be done by a
simultaneous gradient descent on the template and the deformations. This approach
has been implemented on various shape datasets, as for instance in [33, 34].

4.2 Atlas estimation for functional shapes

Having outlined in the previous section the idea of atlas estimation of shapes rep-
resented by currents through forward scheme, we now intend to provide a similar
framework in the context of functional shapes. Our approach makes profit on the
metrics given by the functional currents’ setting that was developed in chapter 2 and
that demonstrated interesting properties on the simpler problem of registering two
functional shapes. In the first place, we present a model that directly transcribes in
terms of functional currents the atlas estimation problem of eq.(4.5) and we will show
in what respect combining geometry and signal can provide more relevant templates.
We shall then propose an enriched model where functional residuals on each subject
are estimated in addition to the template and the deformations. Finally, in light of
more recent but still prospective reflexions at the time, we discuss the possibility to
formalize, in the continuous setting, a well-posed problem that could guarantee the
existence of minimizers for atlases.

4.2.1 A first model
Formulation with MAP

We now consider the situation where we are given N functional shapes S; = (X?, f?)
as in chapter 2, X’ being d-dimensional oriented rectifiable subsets and f* functions
defined on X? with values in a given signal space M. We intend to find, just as in
section 4.1, a template that would be now a functional shape (X, f) and deformations
¢; € DIff(E) satisfying :

C(Xl,fl) = (gﬁvz)*c(yj) + €; (46)

We remind that (¢”2)*C(y3) is the action of deformations on functional currents,
depending on the nature of the signal. One noticeable advantage of the generalization
of the concept of currents we have presented is that the formal MAP derivation of
atlas estimation explained in section 4.1 can be adapted almost straightforwardly to
all sorts of functional shapes. In the discrete case, where the template X is assumed
to consist of a finite set of points and thus a finite set of signal values f, we also
know from section 1.2.5 in chapter 1, that the deformations ¢¥" are parametrized by
initial momenta p} (which are themselves finite sets of covectors attached to each
point of X) and thus the atlas estimation problem takes the following form :

N
(X, f.pp) = arg (;I}igi) <Z E(py) +YIICx 1) — ((bpé)*C(X,f)HIQ/V’> (4.7)
o) \i21
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v being a weight parameter between the deformation cost and the data attachment
distance (or the ratio between the residual prior’s variance and the deformation
prior’s variance), ¢P0 denotes the deformation obtained by geodesic shooting with
initial momentum pé. Note that, in this discrete setting, this minimization makes
sense because all variables X, f and pf) live in finite-dimensional spaces. For a coher-
ent formulation in the continuous setting, we refer to the later discussion of 4.2.4.
We also emphasize the fact this atlas estimation formulation remains general enough
to incorporate all functional shapes, provided that one can express the way diffeo-
morphisms act on those functional shapes. In that formalism, if the template fshape
(X, f) can be interpreted somehow as a prototype or mean of the observations, note
that it is not the actual mean in the space of fcurrents, i.e % Zf\il C(xi,py- Indeed,
this arithmetic mean is not rectifiable in general, so that there is no way to think of
it as a functional shape. Instead, the approach formalized by eq.(4.7) optimizes on
feurrents that are already written under the form Cx ).

Now, if we specify the previous to the case of real-valued signals f* : X’ — R,
which shall be the situation considered in our applications, as discussed in 2.2, we

have (¢0).Cx f) = C¢”3.(X n with ¢P0.(X, f) = (¢P0(X), f o (¢P0)~1) and therefore
eq.(4.7) writes :

N
()2}1:26) J(X, £, (py)) = (; E(py) + 'VHC(Xl,fl) C(¢p6(X)7fo(¢p6)1)||W/> (4.8)

Assuming that one can solve this optimization problem (which is the subject of next
section), the output is a functional shape (X, f) that captures the common features of
the set of observations both in shape and in signal as well as a set of deformations that
supposedly explain the geometrical variation around this common template. The rest
of the variability is all contained in the fcurrent residues C i iy —C (67 () Fo(¢™)-1)
that combine higher-frequency geometrical variations not captured by the ¢;’s as
well as the variability of signals f; around f.

Atlas estimation algorithm

We now come into more details about the effective optimization of eq.(4.8). In [28],
was proposed an alternated minimization procedure between the template shape
and the deformations. This approach has however the inconvenient of updating the
template part by a gradient computed in the space of currents, which first requires
deconvolution schemes like Matching Pursuit for the computation and also looses the
structure of rectifiable subset of the template. Instead, the algorithm we are going
to develop is a single gradient descent scheme that simultaneously updates X, f
and the deformation momenta pf). To achieve this, we simply need to compute the
gradient of the functional with respect to each of these variables.

As we said, the template X is assumed to be composed of a finite set of points
¢ = (qk)k=1,.n and all initial momenta can be identified to vectors of E attached to
each point gy, i.e pf) = (pak)k:l,-.n generating initial vector fields vé by :

n
vy = Z Kv(qk, -)pb 1 -
k=1
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The gradient of the deformation energy is then almost straightforward since :

N N n
E=Y Hi(q,p)=> Y Kvliga) (v pi)
i1 i=1 k=1
and thus :
N N n ' _
Vol =Y 0y He(q,pi) = Y Y (O Kv(qka) + 02Ky (ar, ai)) (P i)
=1 =1 =1
Vi B = 0p, Hr(q,pi) = > Kv (g a)p} (4.9)

=1

Note that in most cases, Ky is symmetric in both its variables (as for all radial
kernels for instance) so the two partial derivatives in the first equation above are
actually equal and the gradient becomes particularly simple. The gradient of the
attachment terms g; is again slightly more technical but can be derived in the exact
same way as for a registration problem. Indeed, g; is a function of the points q@l,
the final positions of the template points shot by momentum pf) and do not depend
on the final momenta pfﬂ. Therefore, Vi igi = Vg 9i(q}) where Vg, g; was already
expressed in section 2.3.2, and szigi = 0. These gradients being computed at the
final state variables ¢} and p}, one need to pull them back on the initial template
position and momenta, which, as already explained in chapter 2 section 2.3.2, is
the role of the backward evolution equation, i.e for each i € {1,,, N}, we have
Vagi = QY V,igi = P} with :

Qi = —(92 . H,(q}. p})

PZ = (ag,pHr('qga ))
Qi =-V 19i(q1), P{ =0

(82 H, (Qtvpt>) Pl
62

P Qi +
pi))*Qi + (97, Hy(qf,pt))* P} (4.10)

And it results that the gradient of the functional J with respect to variables ¢ and
p’ is given by :

N
Vol =Y (9gHy(a:pp) — Qp)
i=1
Vi = 0pH,(a,0h) — Py (4.11)

There still remains the computation of the gradient with respect to the functional
values on the template, which we shall denote in short by fr = f(qr). We see
that only the attachment terms g; depend on f and the gradient can be derived
exactly as in chapter 2. Indeed, we remind that, in the model of transport we are
considering, the functional values are not modified by the geodesic shooting so there

is no backward integration needed. Now, taking similar notations and conventions,
let’s denote Cyi piy = D12y 6§’“ i) and C¢P6 X = Py (5?%7 ) where each dirac
encodes one face of the template or the subjects. Considered as a function of the
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auxiliary variable f, we have :

i

9" =(Cx,5) Cix,niw — 2(Cx,p), Coxi piy)wr + (Cxi piys Crxi iy ) wr

= > kg(Gr @ks (Fer ) &) = 2D 0> k(G )k (fis f1) (€0 &)
k=1 k=1 1=1

+ Y ko(@h @)k (f FDEL €)
k,l=1

And so, the gradient with respect to f writes :

N
ViJ=> Vg, with
=1

Vi g = koldn, @)0nks(Frr fi) + Daks (fir )}k €0)
=1

=1

Since f is basically the interpolated value of the function f at the center of each cell
of the mesh on X, the gradient of J with respect to f can be simply obtained by
distributing VJ;J on the points of X.

Now, the atlas estimation is roughly a gradient descent on all variables (g, f,p’) to-
gether, which we recap in algorithm 2. Practically, any type of gradient descent could
be applied, the simplest one being an adaptive step scheme. However, in our situa-
tion, since we are optimizing on several sorts of variables (point positions, momenta
and functional values) which are not necessarily homogeneous, a better approach is
to use different steps for ¢, f and the p'’s, which can be adapted separately by doing
a basic line search in order to find a better descent direction after each gradient com-
putation. This allows some flexibility of the algorithm and prevents it from updating
too fast one of the variables compared to the others. We also want to emphasize the
fact that the energy and gradient we have to compute at each step are the combi-
nation of terms related to only one observation at a time. This has the important
consequence that the computations done within the FOR loop in algorithm 2 can be
parallelized straightforwardly, improving significantly time computations. Working
for instance on a machine with as many processors as the number N of subjects
do not make atlas estimation longer in time than a single registration between two
subjects.

At this stage, algorithm 2 suffers from several drawbacks essentially because it does
not take into account the dependency of energies and gradients in either the scale or
the sampling of template and data. The other issue comes from boundary behavior
that we have already outlined from a theoretical point of view in chapter 2 theorem
2.2.4. All these motivate the efforts that we present in the following to provide a
more robust and stable numerical scheme.

Normalization with respect to scales

Despite the obvious invariance of our algorithm if we apply a common isometry of the
geometrical space to all observations and initial template, it no longer remains true
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Algorithm 2 Atlas estimation on functional shapes

Require: N functional shapes (X, f?), initialization of the template fshape (X, f) =
(qk, f&)k=1,.n and the gradient descent step 9.

1: set pP =0 forallic {1,..,N}.

2: while Convergence do

3:  for i=1,..,N do

4: Flow (X, f) by forward integration with p’ and store the deformed template
at time 1 ¢%.(X, f) = (g}, fr)-

5: Compute the feurrent representations of (X?, %) and ¢%.(X, f).

6 Compute the gradients of g° with respect to the final point configuration
Qo1+

7: Af)ply the backward integration of eq.(4.10) and deduce V,J and V,,J as
in eq.(4.11).

: Compute V¢J with eq.(4.12).
9:  end for
10:  Update variables :

q<—q+oVyJ
[ f+0VyJ
Pl p 4+ 8V, ]

11:  Compute new functional J(q, f, (p*)) and possibly adapt step & by line search.
12: end while o
13: return template functional shape (X, f) and N initial momenta (p?).

when it comes to rescaling. In this section, we precisely examine the effect of scaling
both in the geometrical and the signal space on the functional J and its gradients.
The objective is to make the energies and variables’ updates in algorithm 2 invariant if
for instance we apply any homothetic transformation to all the geometrical supports
of the initial template and the data together or if we multiply all signals by a certain
constant.

Let’s consider a first homothety on the geometrical space, x — T = Ay and homo-
thety on the real-valued signals f — f = A,f. We assume that the parameters of
kernels Ky and k, are also rescaled by A, and that the one of kernel k; is rescaled
by As so that we have : f(v()\gx,)\gy) = Ky(z,y), /%g()\gx,)\gy) = ky(z,y) and
/;;f()\sf, Asg) = k¢(f,g). That being set up, it is easy to see that the new momenta
of the deformation have to be multiplied by the factor Ay, i.e p = A\gp so that the
displacement generated by p is also rescaled by A,. The new energy of deformation
is then £ = Z” Kv(fi,jj)<]5i,ﬁj> = )\ZE. One can thus normalize the energy by
the factor 1/ )\3, which makes F independent of scale in the algorithm. Concerning
the data attachment term, the dependency in A, is given by dot products between
d-vectors proportional to the d-dimensional area of the shapes and therefore to )\g.
It results that the attachment term is proportional to )\gd and has to be normalized
by 1/ )\gd to be scale-invariant. Note incidentally that, without these normalizations,
the balance between the regularity and the attachment terms is modified by scale if
d # 1, which is not desirable in practice. As for the functional dependency, we see

136



that the attachment term is not affected by the scale As.
Now, we examine the gradients’ behavior. As we just said, we have, for the func-

tional dependency of the criterion J properly renormalized, J(f) = J(f) = J(5 L -)
and V W = 1 V :J. Therefore, the gradient on f must be multiplied by A2 in order
to update the functlon f by a term which is proportional to the values of functional
signals. In the same spirit, focusing on the dependency in the template point posi-
tions x, J(&) = J(%) = Vi = /\—IQV@J, so the gradient of J with respect to x has
to be renormalized by a factor )\3. Finally, we have again J(p) = J ()\—19]5) and just

as previously, we find that the normalization factor in front of V,J is also )\3.

In practical applications of algorithm 2, one can have an estimation of typical scales
Ag and Ay by simply looking at the average spatial and functional extensions of
the observations. The normalizations that we have proposed then guarantee that
using similar but rescaled data will provide comparable energies and energy decrease
during gradient descent. Once again, we must insist that such a normalization is not
absolutely fundamental in theory but it has the great advantage of normalizing the
choice of some parameters in the algorithm, notably the balance between deformation
cost and data attachment as well as the initial steps for the gradient descent, which
could otherwise vary a lot according to the size of the observations.

Normalization with respect to template sampling

Using a similar method, we now focus on the behavior of algorithm 2 with respect to
sampling of the discretized template. Namely, working for instance with surfaces, we
wish to understand qualitatively the asymptotical behavior of the expressions of the
functional J and the different gradients when the mesh on the template is refined.

Let (X (n) f ) be a sequence of discretized templates sampled from a continuous tem-

plate fshape (X, f), with n the total number of points on X ) such that Cixm g LN

(n)

C(x,p) and vy v, vo. Since the initial vector field on X ™ is related to the momenta

by the relation v(()n)(ac) =31 Kv(q,gn),x)plgn), we see that p(™ is of asymptotical

order % The sequence of functionals

(n)y (n) 12 2
TED ) = e 1C o = ol
then converges to its continuous counterpart |[vo||3 + | Cgvo(x), 1) — Cv, fy) 37~ The
values of the deformation energies and attachment distances computed in the algo-
rithm are therefore stable with the sampling of the template.
Let’s now examine the gradients of the deformation energy E. The gradient with
respect to p is given by :

VB =2Y Kv(gl”.q"p" = 20" (¢")
k=1

which is asymptotically of order 1 (because it converges toward the vector field vg).

(n)

As noticed previously, the momenta p,”’ are of order % so that homogeneity requires
to rescale the gradient V ) E by a factor % In a similar way, we have

VnE = 25" ok (g, a)w” o)
k=1
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Figure 4.2: Gradient dependency in the number of points n. The figure shows the
gradient of the fcurrent norm between two surfaces : the template (the underneath
square) and a target (the above bigger square). The gradient is computed numerically
for three different sampling of the template surface : 900 points (left), 3600 points
(center) and 10000 points (right). We only display here the gradient with respect
to the point positions represented as a vector at each of these points. Observe the
global decrease when the sampling is higher as well as the boundary effect which
makes the gradient higher on the boundary, particularly for high sampling.

and Y ;_, 81Kv(ql(n),q,(€n))p,(:) converges toward [ 91Ky (q,.)p, pl(n) is of order % S0
V,m E is asymptotically proportional to % and must be therefore normalized by a
factor n.

Concerning the attachment term g, the gradients with respect to initial positions of
the template is computed basically by flowing backward, with eq.(4.10), the gradients
with respect to final variables ¢; and p;. As stated previously, we have V,, g = 0 and
V.9 is the gradient of [|Cgeo(xy,p) — C(Y,fy)”%/vf with respect to the points of the
shooted shape ¢"°(X). In theorem 2.2.4 of chapter 2, we derived a general formula for
the variation of such fcurrent norms relying on the generalization of Cartan’s formula.
As we explained, putting aside the boundary terms that we shall treat in the next
section, the variation of the metric with respect to the displacement of an interior
mesh cell is proportional to the d-volume of this cell. Thus for a shape sampled with
n points, it decreases as % It results that asymptotically V4, g ~ % and so is Vyg
thanks to the linearity of the backward equation : this gives a renormalization by
factor n for V,g. With Cartan’s formula generalized to fcurrents (theorem 2.2.4),
we have for the exact same reason that Vg is at each position proportional to the
d-volume of the corresponding cell and thus the normalization factor is again n.

To sum up the whole discussion, we conclude that consistency of the algorithm
with respect to sampling of the template can be achieved by doing the following
renormalization of gradients : for a template with n points, multiply V,J, VJ by
n and divide V,J by n.

Boundary terms and regularization of gradients

Cartan’s formula for functional currents reveals that the variation of W/-norms in-
volves in addition integrals on the boundary of the submanifold X. These induce
particular effects on the boundary of X in the template estimation process that must
be accounted for when renormalizing gradients with respect to the template mesh
accuracy.

Assuming that the X are regularly discretized with n points, we may assume
that the number of points on the boundaries X is of order n'=1/¢ and local
(d — 1)-volume elements on X are proportional to n'/%1. It results that, on
the boundary points, Vg, g depends on the size of the mesh asymptotically in pl/d-1
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as opposed to interior points where the dependency is in n~'. There is therefore a
multiplicative factor n'/¢ between the gradient on the boundary and in the interior
of X" which is corroborated numerically by the simple example of figure 4.2. Now,
in algorithm 2, V, g serves as the initialization for the backward equation that
computes V49, and thus we get a similar behavior when we update the template X
by the gradient V,J. Indeed, the gradient is computed for the L? metric on the set
of points ¢, which results in updating the template point positions by simply adding
the gradient. Therefore, these high boundary terms may cause, at certain steps of
the gradient descent, undesired effects like self-crossing or changes in the topology
of X.

One convenient solution to address such issues is to compute the gradient of X with
respect to a more regular metric than L?. Namely, one can consider a Gaussian kernel
K,cq of scale Ay > 0 and compute @QJ = Kyeg(q,q)VqJ. Then, —K;e4(q,q) V4 is
still a descent direction for the functional J, as the matrix K,.4(q, q) is positive defi-
nite. However, this new gradient is regularized at a scale given by the regularization
kernel and it can be thus considered as a sampling of a dense vector field belonging
to the RKHS V;.y. The displacement of the template from its initial position in the
gradient descent is then the integration of a sequence of vector fields living in V.4 so
that, with sufficiently small steps § in the gradient descent, it ensures that the final
estimation of X is an element of the diffeomorphic orbit of its initial estimate. In
more precise terms, one can actually show that the flow of the regularized gradients
is indeed defined at all times, as stated in the following :

Property 4.2.1. Let q¢s = (qrs)k=1,.n be the position of the template points at
iteration s (which we consider as a continuum) and

— Z Kreg (QS,ku x)vq\e‘,k’ J

the vector field obtained by the regularized gradient at each iteration. Then the flow
of the differential equation §(s) = us(y) exists for all s € R.

Proof. Due to the regularity of the regularization kernel K,.4, we see that the vector
fields ug are smooth for all s so that Cauchy-Lipschitz theorem gives the existence
of maximal solutions. For a given initial condition x, the solution is defined on an
interval [0, sf[ and we only need to prove that sy = +00. Let’s denote in short J(s)
for J(qs,ph ). Since we know that |us|e < Cte.|usly,,,, this will be a consequence
of the following estimate :

Sf
/0 |ug|,,, ds < J(0). (4.13)

We have indeed :

|u8|%/;eg = Z ((vqé kJ) Z Kreg(@s ke, 45,1)Va, 1J>
=1

k=1

((vq k‘]) US(Qs,k))

N
795k dpj s dJ
S (V(Is k J) dS Z(vpo s ) dS - _£ .
k=1 i=1
>0
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The positiveness of the second term is simply due to the fact that by definition
dz;‘;"" = _vpé,s‘]' It results that [ ]usﬁ/mg < J(0) — J(sf) < J(0) which concludes
the proof. O

The consequence is that regularization provides numerical stability of the template
support by the algorithm. But incidentally, it constrains the template to live in a
particular orbit and makes the algorithm dependent on the choice of the initializa-
tion. Even though smaller values of A4 allow more flexibility (while diminishing the
stability), changes of topology as creation of holes or disconnections on X cannot be
obtained by our approach and the initialization of the template is consequently cru-
cial. We can argue however that topological changes in applications to computational
anatomy are generally not desirable.

Concerning the momenta, the behavior is exactly dual. Indeed, p, as a covariable,
lives in the dual of the space of vector fields V' and need not be regular at all. In
fact, once the minimum is reached, one has the transversality equation mentioned in
the introduction (section 1.3.2) which imposes that :

p=-Vgq9

This suggests that the momenta must be singular on the boundary of X (asymp-
totically in n!~%/? in the discrete setting), due once more to Cartan’s formula for
functional currents. Such singularities are difficult to create by the gradient descent
process because V,J is obtained numerically as a regularized vector field through
the backward equation. It results that the framework will require numerous descent
steps for surfaces with boundaries in order to reproduce this momentum’s singular-
ities, as we have also observed in practical applications. Thus, a way to increase
the convergence speed of the algorithm is to simply extract the boundary of the
template shape (which can be done only once at the beginning since the previous
regularization on the template position’s evolution ensures that boundary points will
remain boundary points during the whole gradient descent) and, after each gradient
computation, multiply V,J on the boundary by a factor n1/d. As we have confirmed
on a few numerical examples, this straightforward procedure allows to significantly
decrease the number of iterations for a predefined convergence threshold up to a
factor 2 or 3.

First results and discussion

We now apply algorithm 2, with the additional normalizations and regularizations
of gradients described in the previous subsections, for several simulated and real
datasets involving sets of shapes carrying different real-valued signals. As mentioned,
the algorithm estimates a template functional shape (X, f) that can be interpreted
as a baseline of the data ensemble and a set of deformations mapping the template
on each subject represented by their initial momenta (p’). We first show, on the
simple example of figures 4.3 and 4.4, the interest of doing geometrico-functional
estimation together instead of separating both. This is precisely made possible with
the approach of functional currents. As we see, those norms enforce momenta to
match regions with similar signals on each other which has also important impact on
the estimated template fshape itself. Indeed, the signal we obtain on the template
is much closer to the expected pattern than the one given by separating geometry
and signal (figure 4.4) which basically averages the signals located at corresponding
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Figure 4.3: Template estimation on a set of three colored curves based on functional
currents. The template and the deformations are estimated using both geometrical
and functional information at the same time through the fcurrent norm. On the first
row, we show the three subjects and the initialization of the template (on the left
figure) and the template estimated at the end of the gradient descent (right figure).
On the second row are displayed the trajectories corresponding to the deformations
from the template to each one of the subjects.
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Figure 4.4: The same example for which the geometry and the function are computed
separately, by first estimating a template shape by currents and then pulling back
signals from the different subjects on the template. Observe that the resulting signal
on the template is a more spread and averaged crenel.

positions but provided by purely geometrical matchings. This observation argues
in favor of the algorithm we propose because, in many cases, it makes possible to
learn signals with a better accuracy and resolution than all methods that intend to
decouple the shape from the functional information.

On the example of figure 4.5, we show the interest of the gradient regularization for
the template displacement V,J developed in 4.2.1. Observe in particular, even on
such a simple example, the change of topology of the template in the non-regularized
case which is mainly a consequence of the higher gradients on the boundaries which
can provoke undesired self-crossings.

The third example is a template computation on a set of ’cup’ surfaces with Gaussian
decreasing signals centered at the base. Notice the evolution of the template fshape
throughout the gradient descent steps

4.2.2 Estimation of functional residuals
A richer model for functional variability

The atlas estimation procedure of 4.2.1 has the advantage of providing a geometrico-
functional baseline for a given dataset, and deformations whose variability can be
then statistically analysed based on the tangent space representation provided by
the momenta, as pioneered in [79]. This shall be detailed in section 4.3. However, it
only accounts for the geometrical variability of the dataset around the template. In
generic situations, signals are also likely to vary across individuals and this variability
can have a statistical significance. For example, in the case of the OCT dataset
presented previously, the thickness is expected to decrease in several locations as a
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Non-regularized

Regularized

Initial template

Figure 4.5: Several intermediate iterations in the template estimation algorithm both
for non-regularized and regularized gradients. Figures show the dataset of ten close
parabolas (which are pure geometrical shapes in that case) and the evolution of the
template (in blue) at different steps of the gradient descent.
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Initial Step 5 Step 15 Step 25 Step 50

Figure 4.6: Template estimation on a set of 6 'cup’ shapes with artificial Gaussian
signals. On top, the evolution of the template during gradient descent. On the
bottom, we show the final results of registration between the template and each
of the subjects : the more transparent surface is the subject, the solid one is the
deformed template.
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consequence of the glaucoma so that inter-individual thickness variability can be a
highly relevant biomarker to perform classification. With our previous model, this
variability is contained in the residuals of matching to each subject, namely the
feurrents associated to S; — (¢%),S, which could be also analysed from a statistical
point of view, as elements in the infinite dimensional space of fcurrents. The essential
drawback is that these terms do not only represent the functional variability but also
include high-frequency geometrical variations not captured by the deformations as
well as noise and artifacts of the datasets. In addition, such residuals are nearly
impossible to visualize except as linear combinations of Dirac fcurrents and thus
making the interpretability of discriminative directions for PCA or LDA practically
intractable.

This motivates an adaptation of the previous framework that would estimate, in
addition to the template and deformations, a functional residual for each subject,
namely a function defined on the template that measures the gap between the base-
line and subject’s functional. This is precisely the model introduced in 1.4.1 and
already implemented for registration in 2.3.2. In that case, a generative model that
we can introduce is the following :

(X ) = (0'(X), (f+ (Do) +e (4.14)

The data are considered as generated by a template functional shape with a subman-
ifold X and a signal f on which is added residual functions ¢* : X — R and deformed
by diffeomorphism ¢°. Note that we consider the residuals (¢?) to be defined on the
template shape and thus added before deformation instead of after. The reason for
this choice is essentially that residuals will then share a common geometrical sup-
port, enabling easier numerical estimation and a much nicer framework for statistics
(cf section 4.3). Just as we did for the previous model, we can derive a formal MAP
estimator associated to eq.(4.14). We represent functional shapes by fcurrents and
assume Gaussian density priors on the residual fcurrents ¢;. We have now hidden
variables that are both the deformations ¢’ parametrized by the initial momenta p%
on which we assume a prior probability distribution as given by eq.(4.3), and the
residuals ¢; which we shall consider as L? functions on X with a prior distribution :

Pres(C1X) = Chres. exp(—!\C!\i2(y)/(2afes)) (4.15)

where we remind that [|C]|,»%) stands for the L? norm on the submanifold X.
Then, one can write an equivalent MAP estimator in that context and using the
Fast Approximation with Modes, it leads to a minimization problem of the form :

N

. i i)2 2
(X,I;};?,Ci) ; <E(p0) + 'YresHC HLQ(X) + ’YW”C(Xi,fi) - C(¢p6(X),(f+<i)o(¢p6)*1> ‘W’)

(4.16)
where v,.es, Yy > 0 are the weight of the respective terms. Compared to the previous
model of eq.(4.8), we have additional variables ¢’ to estimate and the presence of an
additional term in the functional that depends on the (*’s and the template shape X.
Note that if X and f are fixed, then the problem given in eq.(4.8) reduces to solve
the registration with residual of (X, f) on each (X, f*), which is exactly what was
studied in chapter 2 section 2.3.2. Algorithmically, the framework doesn’t change
much except for the computation of additional gradients, which we detail in the next
subsectiomn.
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New algorithm

As in algorithm 2, we propose a gradient descent algorithm that simultaneously
optimizes the functional with respect to all variables together. To achieve this, we
only need to make explicit the computation of the new terms Ef(¢*) = HCZH%Q(X)

and express the gradients with respect to the new variables (*.
The computations of the L?-norms Ef(Ci) are almost straightforward because, for a
discretized shape X and signals ¢?, these are basically the sum of the volumes of the
mesh cells weighted by the interpolated values of the functions ¢* to the center of
the cells. Namely, with the notations of section 4.2.1, we have :

Er(¢) =Y _ ¢ lal (4.17)
=1

where for each k, i is the position of the center of the I cell, |&| equals its d-
dimensional volume and (; is the average of the cell vertices’ signal values.

Now, differentiating eq.(4.17) with respect to the template point positions simply
requires to compute gradients of the local volumes |§| with respect to the g¢’s,
which is the same computation as we did for the gradient of the fcurrent attachment
distances. The gradient with respect to the residual functions’ values ((x) is :

Ve Br =Y 20V l4l
=1

and gradients Vck& are simply computed by redistribution from centers to ver-
tices. Finally, the gradient of the attachment distance terms g* = [[Cxi fiy —
Cl (X),(f+CP)odi—1) ||12/V’ with respect to the residuals ¢* can be computed in the exact

same way as with respect to f, cf eq.(4.12). In fact, we see that Vg = Zf\;l V(igi.

The last important issue is the one of gradient normalizations and regularizations
that has been thoroughly discussed in section 4.2.1. Of course, the different conclu-
sions hold with this new model and we only need to examine the new penalization
terms and the behavior with respect to the new variables ¢*. As far as scales are
concerned, the attachment term g and V¢, g can be treated exactly the same as with
respect to f (cf 4.2.1). Ef(¢*) being the squared L? norm of ¢’ on X, rescaling by g
on the geometrical part and by Ay on the signal part multiplies such terms by )\Z)\?

and thus we achieve scale invariance by applying renormalization factors 1/ ()\Cgl/\fc)

on the Ey. For similar reasons, the gradient V. Ey is to be renormalized by 1/ )\f;l
and the gradient V,E; by /\3/)\%.

On the dependency with respect to the template sampling, using the notations and
reasoning of subsection 4.2.1, we easily see that V., E; is proportional to the local
volume element on X (™ which is asymptotically of order 1 /m and thus these terms
must be renormalized by a factor n. The gradient of the term E with respect to the
positions of the template points ¢ can be seen as a particular instance of Cartan’s
formula for functional currents (taking w(z,m) = ((z)), and therefore it involves
some boundary effects as in 4.2.1. A good solution is again to regularize the gradient
by the kernel K,¢4(q,q). We sum up all the different steps of the full process in
algorithm 3. Note that this new algorithm is a generalization of the previous one
: taking the parameter y,¢s — +00 and a null gradient step in the residuals ¢?, we
exactly get back to algorithm 2.

146



Algorithm 3 Atlas estimation on functional shapes with functional residuals

Require: N functional shapes (X, f?), initialization of the template fshape (X, f) =
(qk, f&)k=1,.n and the gradient descent step 9.
1: set p' =0 and ¢! =0 for all i € {1,.., N}.
2: while Convergence do
3:  for i=1,..,N do
4: Flow (X, f) by forward integration with p’ and store the deformed template
at time 1 ¢%.(X, f) = (ar.15 e+ Cp)-

5: Compute the fecurrent representations of (X, f%) and ¢%.(X, f + ¢%).

6: Compute the gradients of g° with respect to the final point configuration
qu~:71~

T: Apply the backward integration of eq.(4.10) and deduce V,g° and V,,g".

8: Compute V FE and V,; E with eq.(4.9).

9: Compute V¢,J = Viig' + Vi Ey

10: end for

11:  Deduce VyJ =N Ve J.

12:  Normalize with respect to scale and sampling all the gradients.
13:  Apply regularization kernel to V,J.

14:  Update variables :

q<q+oVyJ
f — f+ (5VfJ
Pl 6V
(" ("4 6Ved

15:  Compute new functional J(q, f, (p%), (¢*)) and adapt step & by line search.

16: end while

17: return template functional shape (X, f), N initial momenta (p*) and functional
residuals (¢?).

4.2.3 Results on the retina dataset

We have applied algorithms 2 and 3 to a dataset of retina membranes. This is a
current joint project with Dr Faisal Beg, Dr Evgeniy Lebed, Dr Marinko Sarunic and
Sieun Lee from Biomedical Research group in Simon Fraser University. The data was
acquired using Optimal Coherence Tomography (OCT) coupled with compressive
sampling for rapid image acquisition, as introduced in [87]. The raw data consist in
3D images of a portion of the retina for a certain number of subjects, which are then
regularized. The next pre-processing step is the segmentation of the different layers
and membranes in the retina which are basically (from the most superficial to the
deepest) : the inner layer membrane (ILM), the nerve fiber layer surface (NFL), the
Brook’s membrane (BM) and the Choroid surface. This is shown in the images of
figure 4.7. In addition to that, was computed two thickness maps : one representing
the thickness between the ILM and NFL surfaces that we will call the NFL thickness
and the Choroidal thickness between the BM and the Choroid. In this manuscript,
we will focus only on the NFL and its thickness even though some work was also
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NFL thickness

Figure 4.7: The different layers and membranes observed in the retina 3D images
acquired by OCT.

carried on the Choroid as well as on the shape of the ILM. One of the reason is that
the estimation of the thickness on the NFL is more accurate and provides patterns
that are more easily interpretable.

Thus, restricted to the NFL, the dataset obtained after pre-processing is made of
different subjects’ surfaces on which we have a functional data representing the thick-
ness of the layer at each point. The database we have been working on contain such
functional surfaces for 30 different subjects put in the same coordinate system, some
of which are shown in figure 4.8. The geometry of the surfaces is quite close to be
planar in most subjects but the orientation varies from subject to subject. Another
important element is the opening (through which the optical nerve passes in the
retina) that also varies in size an position within the dataset. Thicknesses offer more
or less common patterns as well but also significant local differences.

Now, the main clinical issue that makes the interest of this data is the study of the
glaucoma, an ocular pathology that is reflected by retina and optical nerve damages
leading progressively to partial or even complete visual field loss. The dataset we just
presented was acquired for both controls and glaucomatous subjects. The question
raised is the possibility to characterize the presence and stage of the disease by the
shape of the retina layers. In our particular case, we would wish to understand the
effects of glaucoma both on the shape and the thickness of the NFL.

One usual empirical hypothesis formulated by clinicians is that glaucoma induces a
degeneration of tissues provoking some localized thickness decrease, possibly coming
along with membranes’ deformations. In order to assess it qualitatively in the first
place, we applied algorithm 2 to estimate a template for the control population
and a template for the subjects with confirmed glaucoma. Both these template
functional shapes are shown in figure 4.9. It shows indeed quite clearly an average
loss of thickness for glaucomatous subjects compared to controls particularly in some
areas around the opening as well as a rather significant change in the orientation of
the membrane as we see on the images of the first row in figure 4.9 and some small
differences in the shape of the opening.

This, however, constitute only a qualitative study at this point. For the thickness
maps, it is only giving some mean thickness for both classes but not the intra-class
and inter-class covariances. As for the shapes of the NFL surfaces, since we have
two templates, the set of deformations’ momenta are lying on two different surfaces
accordingly to the class. Doing further statistics would then require to estimate
likelihoods of deformations around each class, as introduced for grey-level images in
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Figure 4.8: Twelve NFL surfaces with their thickness from the database provided
by Biomedical Optics Research Group. The two first rows are normal subjects, the
two last ones are subjects affected by Glaucoma. The chosen view is the same for
all images as well as the color map (blue for small thickness, red for large).
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Figure 4.9: Two views of the templates for both classes of subjects estimated with
algorithm 2. The initialization was, in both case, a square with a centered opening,
with all functional values at zero.
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Figure 4.10: Deformation and functional residuals obtained by algorithm 3 for two
subjects.
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[6]. Instead, the approach we implemented with algorithm 3 is meant to simplify
the following statistical analysis a little bit. It estimates only one single template
functional shape and for each subject, a momentum pj for the deformation of the
template to the subject and a residual thickness ¢’ so that, now, all momenta and
residuals for both classes are defined on this common template support and can be
studied all together. This enables a deeper statistical analysis of the variability and
the design of classification algorithms which we postpone the exposition, together
with results on this dataset, to section 4.3.

4.2.4 A well-posed continuous framework for atlas estimation

As we have mentioned, the two previous models of atlas estimation that we derived
are essentially valid in the discrete situation where all variables are assumed to live
in finite-dimensional spaces. From the algorithmic point of view, this is of course a
natural assumption and we have assessed on several examples that the algorithms
seem to provide expected and stable results. Yet, the question of having an under-
lying continuous model that, among other properties, guarantees theoretically the
existence of a minimizer for the atlas estimation problem remains a very important
point for inquiry. It is quite clear that the formulation of eq.(4.16) does not provide
a well-posed problem in the continuous situation, first because one needs to give a
meaning to the minimization over the ’shape’ X in that case. In this section, we
intend to address these issues from the theoretical perspective : the corresponding
implementations of such frameworks, although not very far from the ones previously
presented, will be left for future work.

Hence the first point is to give a proper setting for the search of the template shape
X, since the set of all possible shapes (for instance of all rectifiable subsets) lacks
structure to consider the optimization over this whole set and it is very unlikely that
the existence of a minimum for atlas estimation could be proved in this large space.
Instead, we can follow the idea of hypertemplate introduced for images in [57] and
later adapted to surface template estimation in [58]. Fixing a hypertemplate shape
Xo, we shall look for templates that are constrained to live in the orbit of X for a
certain group of diffeomorphisms. Namely, let’s consider a space of admissible vector
fields Vp and its associated group of diffeomorphisms Gy;. Let Xy = Gy,.Xo be the
orbit of the hypertemplate under the action of Gy;. Then (cf 1.2.3) we have the
Riemannian distance dy, on X defined by :

1
1 2
dxy(X1,X2) = inf {(/ \U?|%/odt> /X =X2} :
0

072
v GLVO

In that setting, we can thus replace the optimization over X by an optimization over
a vector field v¥ in L%/O that displaces the initial hypertemplate in the orbit. Note
that the gradient regularization procedure that we applied in the previous algorithms
by convolving gradients through a kernel at each gradient descent step can be seen
as some kind of greedy way to also restrict the updates of the template in the orbit
of the initialization (this is formulated by property 4.2.1). Here, we have in addition
the metric dy, that can be used to penalize the displacements of the template from
its initial position : such penalization should hopefully guarantee a compactness
property for X needed for proving existence of solutions to the atlas problem.
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Thus, we introduce the following functional :
J(X,
1

+

O |

£, 01),(6Y) = Ty (X0, X)% + L1 L 2x)
N
=1

1
3 ( 108+ 2l By + 1w I Con gy = c(w(X),(fw)owi)-l)H%V,)

i

(4.18)

Compared to the one of eq.(4.16), we essentially add penalty terms for the template
displacement from its initialization and for the baseline signal f on X. The atlas
estimation for the group of fshapes (X', f*) writes :

nf{J(X, f, (v"),(¢") | X € X, feL*(X), (o) € (L)Y, (¢') € (L2(X)™}

(4.19)
Note that, here, the minimization over X € Aj) makes sense because it is equivalent
to minimizing with respect to a time-varying vector field v° € L%/O by setting X =
¢"’ (Xy). Proving existence of a minimizer to eq.(4.19) is however not immediate,
the essential reason being that we have no weak semi-continuity in L?(X) of the
application f — [[Cixi iy — Cgoi(x),(f+ci)o(svi)-1) lfys- Yet the result we have is
summed up by the following theorem :

Theorem 4.2.1. Assume that W is continuously embedded in C2(E x R,AYE*),
that Xo and (Xi)lgigN are finite volume bounded oriented d-dimensional rectifiable
subsets and that fi € L*(X?) for 1 < i < N. Assume that v¢/yw and v¢/yw are
large enough with v¢,yw,v: = 0 and g > 0. Then

TS (6, 0) = Py (X0, X + [ (@) Par o)

N
1 i)2 (0|2, 72yd o A 2
t5 '§1 <||U 1Z2(0,11,v) +’Yc/x ¢ (@) ["dH () + ywl[Cxi pi = Cpoi xy prcillive

(4.20)

achieves its minimum on {(X, f,¢%, (v%) | X € X, f € L*(X), ¢ = (% €
L2A(X)N, (v') € L2([0,1], V)Y and any minimizer (X, fx, (1), (v1)) 4s such that
fv and ¢¢ for 1 < i < N are in L®(X.). Moreover, if Xo is also a CP submani-
fold and W — CJ'(E x R, AYE*) with m > max{p, 2}, then f. and the (i’s are in
Cr1(X,).

The full proof of theorem 4.2.1 is quite technical and is presented in appendix A. The
most subtle part is the existence of the fshape template (X, f) : the proof we derive
follows basically the so-called direct method of geometric measure theory where we
first show the existence of a minimizer in a proper space of currents or measures and
then show that this solution does indeed result from a true fshape. We emphasize
that the existence holds for the quite weak assumption of L? regularity on the signals
but at the price of sufficient penalties on the L? norms. It’s also worth noticing the
regularizing effect of fcurrents’ norms on the signal functions f, and (! since the
solutions appear to be more regular as we increase the regularity of the fcurrents’
kernel.
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4.3 Statistical analysis of momenta and residuals

Starting from the atlases estimated by previous algorithms, the further step is to go
beyond the simple qualitative observation of means by first analyzing the intra and
inter-group variability and provide a quantitative classification criterion. In the case
of geometrico-functional atlases given by algorithm 3, this can based on the study
of deformations represented by the initial momenta pj, as well as on the functional
residuals (;. In both cases, the central issue is dimensionality reduction in the space of
the subjects. Namely, one wants to learn a lower dimensional subspace that can best
describe the principal modes of variation in the dataset and separate the different
classes. From a purely geometrical point of view, the description of deformations
by momenta in LDDMM gives a tangent space representation of diffeomorphisms,
which was first coupled to statistical analysis in [79] in the case of images and later
on applied to curves and surfaces datasets as well [30, 36]. The general idea in all
cases is to perform Principal Component Analysis (PCA) and construct classifiers
based on the directions provided by the PCA.

Following similar ideas, we will first recall some classical features of dimensionality
reduction and classification in a generic finite dimensional vector space and evaluate
the alternative possibility of linear discriminant analysis (LDA). We shall then focus
on the specific cases of momenta and functional residuals and show a few results of
classification based on such algorithms for the previous OCT dataset.

4.3.1 Dimensionality reduction

The problem of dimensionality reduction is an extremely wide topic in statistical
learning and it is clearly out of the scope of this thesis to pretend to be exhaustive
in any way. Our more humble purpose is to review briefly the learning methods
that we actually experimented with in our applications. In this subsection, we first
consider the generic framework of data reduction and place ourselves in the case of
data lying in the finite dimensional euclidean space RP. The collection of 'subjects’
in that setting is thus a set of points in RP that we will denote (z;);=1,. n and
T = % Zfil x; the mean of the dataset. We will also denote X the centered data
matrix X = (z; —7) € RP*N. Up to this global translation of the data, we shall
assume from now on that the dataset is centered.

Principal Component Analysis

The most common and simple technique for analyzing such multivariate linear data
is the PCA and has been extensively used in many situations. The idea behind the
method is to find an orthonormal basis of a lower dimensional subspace on which
the projection of the data points has a maximum variance. The PCA thus consists
in computing iteratively the principal components wy, .., wg, .. € RP. The first one is
obtained as the unit vector maximizing the variance of the projections z7w; i.e

i

w = arg max || XTwl|? = arg max w! (XXT)w
|w||=1 |w||=1

The k" component is given by solving the previous problem on the new data matrix
X — 25;11 wsw! X obtained by just removing to each data point its projection on
the subspace generated by the (k — 1) previous principal components. We will also
call these principal components principal modes of variation since they encode the
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directions of main variations in the dataset. One of the great advantage of PCA is
that it can be also computed directly as the eigenvectors of the empirical covariance
matrix X X7 in the decreasing order of the eigenvalues ([47]). Thus the matrix W
of all the principal components is obtained by the eigenvalues decomposition of the
symmetric matrix X X7, which writes :

XXT =wTAW

where A is the diagonal matrix of the (positive) eigenvalues. Observe, since the rank
of X X7 is less than min(NV, p), that there are at most min(N, p) non-zero eigenvalues.
However, the general paradigm is that the data can be represented with much less
components and that only a few ones should be able to capture the essential part of
the statistical variability. For instance, in the degenerate case where all the data lie
in a low-dimensional subspace of RP, the first eigenvectors will precisely be vectors
of that subspace. The interest of PCA is twofold : it is first a way to extract the
directions of main variance of the dataset in the original space but it provides in
addition a lower dimensional subspace on which to project and visualize the data.
Now, in situations when one has a learning set of data consisting in several subjects
belonging to different known groups or classes, this reduced subspace can be then
used typically to learn a classifier from the data, for instance using various clustering
methods in the PCA subspaces.

Remark 4.3.1. An important thing to note also is that PCA is based exclusively
on the covariance structure within the dataset. The component vectors necessarily
belong to the vector space spanned by the data points. In this respect, it is equivalent
to perform PCA by w?rkz'ng on the linear subspace generated by the data and replace
the data matriz by G2 where G = XTX € RV*N s the Gram matriz of the data.
In that point of view, the vectors provided by PCA are to be thought as weights of
a linear combination of the dataset. Moreover, we see that other metrics could be
used instead of the euclidean one in the computation of the Gram matriz, which is
for instance the basis of kernel PCA methods.

Linear Discriminant Analysis

Nevertheless, it’s important to point out that the vectors given by the PCA are only
taking into account the global variance of the whole dataset. In the situations that we
are interested in, our learning sets consist generally of subjects belonging to known
classes (controls and glaucomatous in the example of the retina database). Since
PCA is not supervised by the classes, it does consider the inter-class variance and
for that reason, the resulting subspaces might be very poorly relevant to discriminate
between groups. This is what we intend to show on figure 4.11 : none of the two
first PCA axis is able to separate classes because the inter-class variation is basically
overwhelmed by the greater inner variance of the two class clusters.

Linear Discriminant Analysis (or LDA), which is also very close to Fischer’s discrim-
inant analysis, was introduced in statistical learning precisely to overcome this kind
of issues. These methods are well-detailed for instance in [47, 48]. We just briefly
remind its essential lines.

Let’s focus first on the case of two classes. We consider again the set of points
(z;) € RPN with global center T and we assume that these points belong to two
classes 0 and 1 given by the sets Cp C {1,..., N} and Cy = {1,..., N}\Cy of respective
sizes Ng and N1 = N — Ny. We also call To and Z; the centers of each class. The

154



Figure 4.11: A simulated example of PCA on a set of points in R®. On the left figure,
the points drawn using two elongated and translated normal distributions with colors
corresponding to the two different classes. In red, we show the two first principal
directions found by PCA. On the right figure are represented the points projected in
the corresponding subspace.

goal of LDA is to find one discriminant axis between X¢, and X¢,. It introduces
two matrices of RP*P. The first one is the within-class scatter matriz and is defined
by :
Sw = Z (i — To) (w — 7o) + Z (@i — Z1) (2 —71)"
1€Cp 1€Cy

The second one is the between-class scatter matriz :
Sy = No(To — 7)(@To — 7)1 + N1(71 — ) (71 — 7)1 .

Remark 4.3.2. Simple computations show that Sy, o< (Z1—%0)(T1—To)" and thus Sy
is proportional to the orthogonal projection matriz on the line spanned by (T1 — To).

In order to separate the two classes as much as possible, the principle of LDA is to
find a direction v that maximizes the between-class variance of the projections on
Span(v) while minimizing the within-class variance. Thus, it intends to solve :

uT' Syu
v = arg max

. 4.21
Jull=1 uL Syu (4.21)

We see that this problem makes sense only if S, is a non-singular matrix. From the
very definition of Sy, this is clearly not the case if the number of subjects is smaller
than the dimension of the embedding space, i.e if N < p. We shall be dealing
with that case in a following paragraph. If p < N, unless the data strictly lie in a
lower dimensional subspace of RV, S, is generally non-singular and, cf [12], v is the
eigenvector corresponding to the largest eigenvalue A of SpS,!, that is :

Spv = AS,v

which amounts in solving a generalized eigenvalue problem between Sy, and S,,. Since
Sp is a rank one matrix, there is only one non-zero eigenvalue. In this simple case,
one can actually express the true solution :
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Figure 4.12: The LDA direction obtained on the example of figure 4.11 and the
projection of points on this subspace.

Property 4.3.1. The LDA wvector v solving (4.21) is given explicitly by :
Sy (@1 — )
18w (T2 — To) |
Proof. Since Syv = %Sbv and Syv o (T1 —To) thanks to the previous remark, we see

that Sy,v belongs to the line spanned by the vector (Z; — Zp) and thus v is collinear
to S;l(fl — fo). ]

In figure 4.12, we show the result of LDA on the example of the two translated Gaus-
sian distributions of figure 4.11. As we expected, compared to PCA, the projections
of the data points on the LDA axis are far better separated.

Even though the applications we show in this thesis are focused on the case of
two classes, let’s mention that LDA generalizes to an arbitrary number of classes
(Cj)j=1,.k in a quite natural way. With analogous conventions, one defines the
matrices Sy, and Sy by :

Z =) (@i — x])T
eC;

Sh

NERL M?r

N;(z; —z) (35 —7)"

.
Il
-

Note that S is now a matrix whose rank is the dimension of the vector space spanned
by the class centers T; and thus Sp is a matrix of rank less or equal than k — 1, since
Zle N;(Z; — %) = 0. This being set, similarly to the case k = 2, the multi-class
LDA consists in finding the non-zero generalized eigenvalues between Sy and Sy,.
This provides several LDA vectors, that are all obtained as linear combination of the
data points, and thus a discriminant subspace (of dimension < k — 1) in which one
can project and analyze the data with definitely better class separation properties.

Regularized LDA

As we mentioned, the previous computations are valid when Sy, is non-singular but
this hypothesis breaks down as soon as the number of data points is smaller than
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the dimension N. In our cases of applications, we are typically confronted to that
since the number of available subjects is rather small compared to the dimension of
the features we want to analyze which is generally huge (for momenta or functional
residuals, this is proportional to the number of points on the shapes).

To tackle this issue, some methods propose to first project the data on a lower
dimensional subspace using typically PCA. However, we argue that this could be
dangerous in that we do not really control how much between-class variance is lost
by doing so. Other approaches like in [48] rely on generalized SVD’s to solve the
generalized eigenvalues problem. Yet the most common and simple alternative is to
regularize the LDA [38] by replacing S,, by the matrix :

S; =Sy +eld

for a certain € > 0, which automatically makes S invertible and, similarly to prop-
erty 4.3.1, gives v = (S, +€Id)~}(T1 — Tp) in the two classes case. The drawback is
the presence of the additional regularization parameter. The choice of € can be done
by optimizing it with respect to classification rates on cross-validation tests, which
we shall explain a little more below.

4.3.2 Generalized LDA on Hilbert spaces

The previous LDA was presented in its classical setting, namely in the case of a
finite-dimensional euclidean space. Nevertheless, the typical applications that we
alm at in this chapter have to deal with momenta that belong to the dual V’ of a
space of vector fields or residual functions in the space L?(X) for instance. Those
are manifestly Hilbert spaces of infinite dimensions. Even though one could argue
that, in practice, the datasets are sampled with a finite number of points and that
the momenta and functions can be represented in large dimensional vector spaces,
the metric corresponding to V' for example is generally not the euclidean metric (it
involves a kernel matrix). In this section, we show that LDA can be generalized in a
natural way to Hilbert spaces and explain how it can be actually reduced to a usual
regularized LDA in a certain finite-dimensional euclidean space.

Let’s fix a Hilbert space H and its inner product (.,.) . We take the same notations
as in the previous subsection : (wi)izle e HY is the dataset and T its center,
C; Cc {1,..,N} for j = 1,..,k are the k different classes and z; € H are the class
centers. We can then define, by analogy to usual LDA, the within-class and between-
class operators :

Z > (wi =g, 2) (i - 7))

Jj=11ieC;
ZN i — T2V g (T, — ).

Note that these definitions generalize the previous euclidean case. We introduce
now the finite-dimensional subspace Hy = Span(xz;|i = 1,.., N) spanned by the data
points and denote by Sy, u, and Sy f, the restriction of these operators to Hy. Note
that, since both S, and Sy take values in Hy, Sy, 1, and Sy g, are linear applications
of Hy to itself. In general, Sy, m, is not invertible and we consider as previously the
regularized matrix :

ZI,HO = Sw,Hy +eldy, € L(Hyp)
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Now, we have the following property :

Property 4.3.2. Let L : Ho — RY, g € N*, be any isometry and let’s denote by
SE .Sy the scatter matrices of the image data points L(z;) € R1. Then we have, for
alle >0 :

Se, = LS, L', Sy = LSy, L'

where LT : RY — Hy is the adjoint of L. It results that, up to the change of variable
@ — u = L', to any eigenvalue and eigenvector (A\j,@ij) of (S5)71Sy corresponds
the eigenvalue and eigenvector (\;, LTi;) of ( Serto) LS 1y -

Proof. By definition, we have for all ¢ € R? and x € H :
(L'a,z)g = L(z)Ta

We deduce that for all a,b € R? :

k
= Z b (L(z:) — L(T;))(LTa, 2 — T}

k
:Z Lb:z:l—mj <LTa,xi—Tj>H
j=1ieCj

= <LTb Z Z Ta,2; — ;) (s —xj)>
j=1ieCj H
= (L', Suw.m, (LTa)) 1
= b7 (LS., LTa)

which implies that S, = LSy m, L. In addition, since L is assumed to be an isometry,
we have that LLT = Idge and it follows that :

Sg = LS5, y LT
In the same way, one checks easily that S, = LSbVHOLT. Now, we deduce :
(55) 7Sy = (L)~ (S5m) ™" Sby) LT

It results that the eigenvalues of (S2,)'Sy and (S¢, HO)_lS@HO are the same and we
obtain the eigenvectors of the second operator from the first one by the change of
coordinates @ € R? — L4 € Hy. O

Property 4.3.2 means basically that LDA in the Hilbert space H can be done equiv-
alently by applying usual ’euclidean’ LDA in R? on the data points L(x;). The only
remaining point to address is to make explicit such an isometry L. For that purpose,
let’s assume that the x; are linearly independent so that they constitute a basis of Hy.

158



If H is typically a Hilbert space whose dimension is infinite or very big compared to
N, this assumption is not aberrant since N random elements in H will be generically
independent. Otherwise, one can just restrict to a sub-database made of independent
z;’s. We then introduce the Gram matrix of the dataset G = ((xi, )1 )i j=1,..N,
which is symmetric positive definite, and define an operator L : Hy — R as follows :

Vx € Hy, L(z) = G_%’y(a:) (4.22)
with v(x) = ((x, xi>H)Z-:17“7N .

Note that the image L(x;);=1,. n of the data matrix by L is Gz. Tn addition :

Property 4.3.3. The linear application L : Hy — RN defined by eq.(4.22) is an
isometry. Moreover, the adjoint LT equals for all a € R? :

N
Li(a) = Zaﬂi, with a = G 2a (4.23)
i=1

Proof. Let y,z € Hy. By definition, we have :
L(y)"L(z) = ()G 'y(2).

Now if we write z = Zi\;1 pix;, we see that y(z) = Gu and thus :

N

L) L(z) =v() 1= (v, xdupm = (Y, 2) -
i=1

L is therefore an isometry. A consequence is that we have also LLT = Idgn. If
a € RN, L(a) € Hy which writes Lf(a) = Ef\;l a;x;. Thus,

a=LL(a) = G*%'y(LT(a)) =G 2Ga = Gza
and finally, we conclude that a = G 2a. 0

In concrete terms, the previous property shows that the computation of the LDA
discriminant vectors in the Hilbert space H can be actually done by first applying
usual LDA in the euclidean space RY for the data matrix G2. The discriminant
directions in H are then obtained by the adjoint operator L' that can be computed
explicitly using eq.(4.23). Any new data x € H can be also projected to this dis-

criminant subspace by first computing L(pg,(z)) = Gféfy(a:) and compute directly
inner products with the discriminant vectors in RV,

4.3.3 Modes and classification for functional atlases

We specify and detail the previous PCA and LDA analysis to the case where the
data is now a set of deformation momenta and functional residuals on the template
shape as provided by the previous atlas estimation algorithm on functional shapes.
We shall restrict to the case where the ambient space E = R? as in our applications,
although what we present remains valid in any dimension. From the theoretical point
of view, we are manipulating objects that live in infinite dimensional Hilbert spaces
(the dual V' of the RKHS of vector fields for momenta, the space of functions on
the template shape in the case of residuals). In practice, these are sampled on the
points of the template but still belong to very high dimensional vector spaces. The
second point is the metric that is chosen to compute correlations between the data.
We examine those issues for both features in the following.
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Momenta analysis

In that case, the dataset to analyze is the set of initial momenta pé fori=1,..,N,
N being the number of subjects and each of the pé can be represented as a vector
p&k € R? attached to every point (qg)g=1..n of the estimated template shape and
thus to a large vector of R3". However, these momenta must be considered as
elements of V' and consequently one has to evaluate the covariance not with respect
to the L2-metric in R3" (which does not have any 'natural’ meaning here) but with
the RKHS metric on V', that is to say :

(b po)vr = (Kph, Kpg)v = (vh, vh)v
where we remind that vj(x) = > iy Kv (aw, x)pak is the initial velocity field corre-
sponding to the momentum pj. Thus, from the numerical point of view, using usual

kernel computations, for all pairs of subjects i,5 € {1,.., N} we have :

n

(b oo)v = > o) Kv (i a)ph, - (4.24)
fi=1

These computations are of numerical complexity O(n?) for each inner product but
can be also done using all the arsenal of fast kernel computations developed in section
2.3.3. Based on eq.(4.24), we can then compute the Gram matrix of the data

G = ((Ph, POV )ij=1,.N (4.25)

In our situations, we have generally N < n, and thus computing eigenvalues of G as
needed for the PCA is numerically very fast compared to the computation of G.
Applying PCA in this setting just consists in computing the largest eigenvalues
of the matrix G. It provides corresponding eigenvectors w, € RY which are the
principal modes of geometrical variability in the dataset. Coming back to the space
of momenta, these modes are given by

N
PCA __ 7
pEO = " wapg
=1

Shooting the template using such momenta thus allows to visualize what these modes
are in term of deformation, which we will show on the retina dataset in the next
section.

The case of LDA can be treated as explained in subsection 4.3.2 (for H = V).
Adopting the same notations, we first compute the Gram matrix as in eq.(4.25) and
its square root GG %, then apply usual LDA in RY. It provides a discriminant vector
a € RN which, in the space of momenta, translates to :

N
pPA = L) = 3" ciph, a = G 7a
i=1

Again, this discriminant direction can be visualized by shooting the template with
initial momentum p“P4. One can then project the data on the line Span(p’4) by
computing (pé,pLDAW/, which can be done in the space R since :

N
(ph, p" P = Z o;Gij .
=1
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Any new data pg outside the training set can be also projected to this subspace, by
first computing L(pp) and write :

N
(po, p"P M)y = " u;L(po);
j=1

Classification for both PCA and LDA can be performed based on the projections
of the data onto the low dimensional subspaces provided by the methods. If these
subspaces are sufficiently discriminative, one can expect that the dataset splits into
several clusters, each one corresponding to one class. The classification rule can then
consist in simply finding the closest cluster center to the projection of a given data,
possibly by computing Mahalanobis distances in order to take into account clusters’
variances.

Residuals analysis

The treatment of functional residuals follows the exact same pattern as momenta.
One only needs to introduce the right metric to compute covariance between subjects.
These residuals (Ci)z‘:l,.., n~ are all functions defined on the common template shape
X. For the template estimation procedure, we used the L? metric on X as a penalty
term in the functional. This metric could be also used as the measure of correlation.
With the notations of section 4.2.2, it writes :

m

(G G ax / Ci(@) ¢ (2)dH (@) = S G le (4.26)

=1

This metric, however, could be argued to be too strong in this purpose because it

compares values of residuals only at corresponding points on the template. One easy
_lzy—ag?
possibility to overcome that is to regularize the L? metric by a Gaussian e~ 2

which would give the following correlation measure between residuals :

() = / /X . — 12l2Cz(m)CJ(m)d?—[d(xl)d”ﬂd(xz)

:Ze

k=1

J18kl1&l (4.27)

A third possibility could be to lean again on the kernel norms on functional currents
(or even on functional varifolds) that were used as data attachment distances in
registration and atlas estimation algorithms. In that case, the Hilbert space H in
which the PCA and LDA are done is the space W' by identifying a residual ¢ with
the fcurrent C(x sy¢) € W’. Natural candidates for kernels are also products of a
_ley—wol? _lh-pa?
Gaussian Ky(r1,22) = e 9 Id with ks(f1, fo) = e °7 . The correlation
measure between residuals is then :

1)~ ¢ (w912
2 ~

N T2| 5
CoxerCoropw = [ F e T o) fwaart!(a)int(an)

2
\Tk acl|2 ‘Ck gl‘

=N 7 e T o{&.8) (4.28)
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where we adopted the same notations as in chapter 2, £(z) = &(x)/|&(x)] is the unit
d-vector at each point x € X. Note that one can take other kernel widths o, and
oy than the one used for the atlas estimation part, thus allowing a certain flexibility
of the analysis with respect to various scales (at the price of additional parameters).
Such metrics have the advantage of taking more into account the geometry of the
support X on which all the (¢ are defined. But there are two counterparts : first, the
computations are more expensive compared to L? norm and second, the variation
modes and discriminant directions are basically linear combination of the fcurrents
C(x,f+¢#) which cannot be interpreted and visualized directly as a signal defined on
X due to the non-linearity of k.

Once the metric is chosen and the Gram matrix of the dataset computed, PCA and
LDA can be performed exactly as previously explained for momenta. In both cases,
we obtain modes of variations that are linear combinations of the (*’s and that can be
represented as residual functions on the template. Clagsification is then done again
by projecting the training and testing datasets on the lower-dimensional subspaces
provided by PCA and LDA.

4.3.4 Classification results on the OCT dataset

We now show a few results of the previous framework on the retina thickness maps
of section 4.2.3. We had obtained, with algorithm 3, an atlas of the NFL surfaces
consisting of a functional surface baseline (the template) plus momenta p’ and resid-
uals thicknesses ¢* for each of the N = 30 subjects. Based on these, we intend to
illustrate the statistical analysis of geometrical and functional variability developed
in this section.

Starting with the analysis on momenta, in figure 4.13, we show the template de-
formed in the directions of the two first principal components. As we can see, the
first component is essentially a dilatation /shrinkage of the whole geometrical support
while the second one is more or less a displacement and distortion of the opening.
As we could suppose, these are mainly explained by the variability caused both by
acquisition (position and orientation of the eye with respect to the device during
the measurement) and by global variations in the size of the retina and openings
across individuals. Figure 4.3.4 shows the projection of the dataset on the plane
generated by these principal components and confirms that these do not discrimi-
nate satisfyingly between controls and glaucomatous. One would obviously need to
compute more PCA vectors to get discriminative directions but the first components
are clearly not enough.

This is contrasting with the LDA which provides a component vector detecting the
between-class variability. As for PCA, we show this discriminative direction on figure
4.15. It was obtained by regularized LDA with ¢ = 0.1. Observe that the correspond-
ing deformation of the template is very different to the ones provided by the first
PCA components. The displacements are essentially concentrated around the ocu-
lar nerve opening and seem to correspond to an increase and decrease of the layer
digging. As we see thanks to figure 4.3.4, this mode of variation is apparently more
discriminant between glaucomatous and controls because it separates the classes in
two nearly distinct clusters.

The same analysis can be performed for the residual thicknesses on the template
shape. This time, the component vectors provided by PCA or LDA, as detailed previ-
ously, are represented by a function on the template shape which is added /subtracted
to the baseline thickness. We have used the simplest correlation provided by the L?
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Figure 4.13: The first (middle row) and second (middle column) principal compo-
nents of the momenta. What we show is the template shooted for both negative
and positive times in the direction given by the PCA vectors, as explained in the
previous section.
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Figure 4.14: Projections and class means of the dataset on the plane given by the
two first PCA vectors for the momenta. Class 0 corresponds to controls and 1 to
glaucomatous subjects.
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Figure 4.15: Resulting LDA direction on the momenta (obtained with a regulariza-
tion parameter ¢ = 0.1).
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Figure 4.16: Projections and class means of the dataset on the one-dimensional
subspace given by the LDA on momenta.
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Figure 4.17: Results of the PCA on the thickness residuals. We computed two
component vectors for the PCA. On the top figure, we represent the first one by
showing the addition and subtraction of the residual to the baseline thickness. On
the bottom figure are the projected coordinates of the residuals from the dataset on
the two-dimensional subspace generated by the PCA vectors.
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Figure 4.18: Results of the regularized LDA on the thickness residuals (e = 0.1). It
provides one component vector which we represent on the top figure. The projections
on this direction are shown on the lower figure.

metric on X (cf previous section). We display the results for the PCA in figure 4.17.
The first component vector basically shows a thickness decrease for subjects with
glaucoma on a C-shape concentrated mainly around the opening, which tends to
confirm the overall observations of clinicians. As we see on the lower plot, the two
first PCA vectors for thicknesses seem to separate the classes in a nicer way than
momenta. This is even more obvious with the LDA. The variations of thicknesses
in the direction of the LDA vector follow a quite similar pattern as the first PCA
vector, as shown in figure 4.18. Yet one can remark once again the greater class
separation property of the LDA.

These first sets of results suggest that applying LDA (rather than PCA) on momenta
and thickness maps should provide a simple way to classify, at least with a reasonable
efficiency, between controls and glaucoma. This could be assessed more rigorously
by applying the prediction rule learned by LDA on a testing set of newly acquired
subjects as we explained in the previous section. In the case of this particular
application, we did not have yet new subjects available to work on (this is a current
work from our collaborators’ side in SFU). Instead, we tested the quality of prediction
by cross-validation tests on the learning dataset itself. Namely, we applied leave-one
out procedures which consist in excluding one (or more generally p) subject from
the dataset and predict the class of these subjects by using the remainder. This is
exactly as if one artificially separates the dataset into training and testing sets.

In practical terms, we randomly choose p subjects among the N = 30 available,
estimate a template and LDA axis with the N — p others, then project the p ’test’
subjects on the LDA subspace and affect each of them to the class of the closest
class mean. By repeating this procedure for numerous draws of p among N, one can

166



Data | p=1 | p=2 | p=3 | p=4 |
Momenta 0.100 | 0.082 | 0.090 | 0.089
Thickness residuals 0.033 | 0.040 | 0.041 | 0.056
Momenta and thickness | 0.000 | 0.008 | 0.021 | 0.032

Table 4.1: LDA classification error rates in cross validation (N = 30) for leave-p-out
tests.

Data ‘ p=1 ‘ p=2 ‘ p=3 ‘ p=4 ‘
Momenta 0.150 | 0.174 | 0.183 | 0.207
Thickness residuals 0.000 | 0.008 | 0.018 | 0.035
Momenta and thickness | 0.050 | 0.053 | 0.057 | 0.067

Table 4.2: LDA classification error rates on the old subject sub-dataset (N = 20).

then measure the number of false class predictions. Note that we also try several
regularization parameters to optimize the classification rates. Thickness and mo-
menta coordinates can be also combined in the classification : here we have tried a
simple ¢! distance to class centers in the 2D space provided by LDA coordinates for
both momenta and residuals. The results are summed up in table 4.1. Classification
based on momenta or thicknesses leads to misclassification rates of the order of 9%,
which of course increases slowly as we remove more subjects from the training set (i.e
when p increases). We remark that error rates are also slightly better using thick-
nesses. However, the misclassifications do not occur generally for the same subjects
in the two methods. It results that the combination of the two provides very solid
classification rates in that case since we get an error under 1% for p = 1, 2.

Naturally, these are still crude results at the present time. An important follow-up
study is to interpret from a more clinical point of view these discriminative modes
of variations found by LDA, especially the geometrical deformations. On the other
hand, it’s also interesting to analyze incidental parameters of the dataset in order
to eliminate hidden effects that are not specifically correlated to the development
of glaucoma. The subjects’ age is typically an important one because it generally
affects the shape of the retina. Since it is a known data, we also conducted the
same classification experiments but restrained to only old subjects from the dataset
(which gives 20 subjects, controls and glaucomatous). The cross-validation classifi-
cation results are presented in table 4.2. We see that the classification performance
based on geometry with the momenta is less accurate in that situation (around 17%
error), whereas the one based on the thickness analysis improves quite spectacularly,
suggesting that thickness decrease is probably a better biomarker of the disease than
shape variations which could be partly caused by age. This is a study to be con-
tinued as a future work, one possible trail being to separate the dataset into more
classes for instance by adding age and perform multi-class LDA : this would become
particularly relevant statistically if the dataset is enriched with additional subjects’
acquisitions.
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4.4 Atlas estimation in the context of varifolds and ap-
plications

The atlas estimation procedures of section 4.2 can be readily transposed to the case
of varifolds and functional varifolds that were introduced in chapter 3. All it needs
basically is to replace fcurrents’ norms by varifolds with the corresponding gradients
for the update of the template position, momenta and residuals. Compared to the
previous algorithms, the advantages are the one detailed in chapter 3 : the possibility
to work with non-oriented manifolds and the greater stability of the estimation at
bigger scales. In this section, we will essentially present two ongoing applications of
that on real datasets of purely geometrical shapes : a first one concerns the study
of cells’ divisions in mice heart envelopes while the second will present atlases of
Cochlea’s surfaces.

4.4.1 Algorithm

The algorithms are very similar to the previous ones so we will just briefly highlight
the few differences. If we consider pure geometries with no signals, atlas estimation
in that context writes :

N
(r)?g}) J(X, (o)) = <Z 1ol + Yl pexs = M¢i(x)|!%w> (4.29)
ro i=1

px denotes the varifold associated to X and |[|.||y is a RKHS norm on varifolds as
defined in chapter 3. Now the gradients of J with respect to X and the momenta
pY can be computed also by the same forward and backward dynamics. Only the
initialization of the adjoint variables Q' in the backward equation eq.(4.10) must be
changed to Q% = —ngi(qi) where g; is the squared distance to the i*” subject but
now for the varifold metric. These gradients are directly derived from the compu-
tations presented in chapter 3. The normalizations of gradients presented in section
4.2.1 and 4.2.1 are still valid for varifolds. And finally, the variation formula shown
in theorem 3.4.2 brings out singularities on the boundary for the gradient which can
be tackled, as in 4.2.1, by regularization.

Now the functional component can be also added to the varifold framework, follow-
ing what was exposed in chapter 3 section 3.6.2. It results that algorithm 3 is also
transposable with minimal changes to varifolds, providing an alternative to fcurrents
for estimating geometrico-functional atlases.

4.4.2 Works on embryonic mouse heart

As a first illustration of the interest of varifolds’ atlas estimation from a more applied
point of view in the field of biological imaging, we present a first series of results
from an ongoing project in collaboration with S. Meilhac and J.F Le Garrec from
the team Molecular Genetics of Development in Institut Pasteur. It consists in the
analysis of cells’ directions of divisions during the growth of hearts in mice embryos,
as pioneered in [53]. The dataset itself is made of several subjects’ envelopes, which
are surfaces in the 3D space. These were acquired by confocal microscopy and
delimit only a section on top of the heart of the embryo (until a depth limited by the
acquisition device). The depth of acquisition is rather small and thus the surfaces
are thin membranes. Inside these envelopes, were measured, at the time of embryo’s
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sampling, the divisions azes’ (unoriented) directions of the cells which were in a
mitosis process at this precise moment. We show in figure 4.19 the full dataset with
the nine subjects envelopes and the corresponding division axes inside (except for a
few artifacts located outside the envelopes on some subjects).

The biological issues at stake are several. As we can see, the number of measured
divisions’ axes within a subject is rather small in a given envelope. One of the ques-
tion raised by biologists is to find if some regions show some meaningful correlations
of the divisions’ directions to understand the features of the heart’s growth. How-
ever, estimating correlations on subjects separately would lead to very unstable and
non-reproducible results due to the low number of axes for each one. Thus one needs
a framework to gather the informations from the different subjects in order to have
a denser distribution of axes. The second important issue, that we have just touched
upon for the time being, is to study the influence of a mutation on a particular gene
in the directions’ repartition. The dataset contains actually three subjects of each
class : wild species (with two non-mutated genes), heterozygous and mutants.

In the first place, we have investigated a way to gather together axes data from the
different subjects in one common set of divisions. A reasonable way is to normalize
geometries of the subjects by computing deformations between the envelopes and
transport the directions through these deformations, i.e through the Jacobian of the
diffeomorphisms as already described by eq.(2.3). Instead of choosing one of the sub-
jects as a reference with the bias that this would introduce in the method, we propose
instead to compute first a template of the envelope shapes. The essential difficulties
here comes from a few artifacts on the envelopes’ triangulations and from the fact
that these membranes are usually very thin, which causes important cancellation
problems when using usual currents (cf discussion of chapter 3 section 3.1.2). From
this point of view, the framework of varifolds and the template estimation frame-
work presented just previously seems more adapted. We initialize the template to
an ellipsoid to avoid bias as much as possible and run the atlas estimation algorithm
based on varifolds : this leads to the template shown in figure 4.20.

A second step is to compute the deformations from each subject to the estimated
template (note that these are more or less the inverses of the maps ¢ given at the
end of the atlas estimation). Finally, we pull the axes’ directions of each subject
back on the template by applying the differentials of the previous diffeomorphisms.
In the end, we get a template envelope containing the contribution of the axes from
the nine subjects together, which is represented in figure 4.21.

Since the total number of axes data transported in the template envelope is now
more than 1000, statistics of spatial correlation between the directions makes far
more sense than separate statistics on each subject. The result of figure 4.21 were
analyzed by biologists using clustering methods combined with Rayleigh statistical
tests on the set of directions : this study has evidenced three regions of the template
that present significant correlation of the axes along a particular direction. Matching
pursuit algorithm like the one presented for functional currents in chapter 2 was also
adapted to varifolds and used to visualize the most significant correlations. Although
quite preliminary at this stage, these first sets of results seemed encouraging enough
to begin more precise investigations on the dependency of these regions and directions
with respect to the gene mutation, which is currently at work but would most likely
require the acquisition of additional subjects.

From the methodological point of view, we believe that this dataset offers some
more perspectives and open questions that deserve to be mentioned. The varifold
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Figure 4.19: The nine different subjects of Pasteur dataset showing the triangulated
envelopes’ 3D surfaces seen from above and the division axes in red. On the first row
are the three wild subjects, on the second the three heterozygous and on the last one
the mutant subjects. In most subjects, one sees the development of two ventricles
(up and down) separated by the inter-ventricular region.
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Figure 4.20: Evolution of the template envelope through the iterations of the atlas
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Figure 4.21: The template envelope with the transported division axes from the nine

subjects.
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representation was used here only on the envelopes, which provides perceptively
better results of template and registration than currents. However, as we see on figure
4.19, on a few subjects, some boundaries are artificial because they correspond only
to the limit of the acquisition box rather than to the real limit of the envelope. This
issue of partial observation due to acquisition devices, even if not too determinant
in that case, is a recurrent problem in many medical imaging datasets and is not yet
diligently addressed by the present registration and template estimation algorithms.
A second interesting point is the axes directions’ analysis. Since these are basically
distributions of non-oriented directions in the space, varifolds and kernel metrics
offers again a natural representation and framework that could be used to estimate
meaningful statistical correlations. One possibility, yet totally prospective at the
moment, would be to estimate a template as an envelope shape containing a dense
map of directions estimated from the database.

4.4.3 Template estimation on Cochleae dataset

We show now a second illustration of varifold atlas estimation on a completely differ-
ent dataset. We gratefully thank professor Jose Braga from University Paul Sabatier
in Toulouse, professor Jean-Luc Kahn, curator at the museum of ’Institut d’anatomie
normale et pathologique’ in Strasbourg and doctor Stanley Durrleman from ’Institut
du Cerveau et de la Moelle épiniére’ in Paris for providing the material data used
in this section. To briefly explain the context of this study and the overall project
behind it, anthropologists are interested in understanding the evolution in the shape
of the inner ear (or Cochlea) in a phylogenetic tree and relate some shape features of
the Cochlea to other morphological characteristics of species such as the body mass
index or the audiogram.

Figure 4.22: The eight different subjects of the Homo Sapiens Cochlea dataset. The

surfaces we show here were subsampled from the original data to approximately 7500
points each, using vertex decimation filter in Paraview.
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Figure 4.23: Three different views of the first subject. Note the presence of the
'snail” shape of the Cochlea and the presence of three canals (posterior, superior and
horizontal).

%

Figure 4.24: Template estimated with currents from different views.

2% %Y

Figure 4.25: The initialization of the template shape (on the left) and the template
shape estimated by the varifold algorithm (on the right), with several intermediate
gradient descent steps.

The work we present here is less ambitious for the time being. We focused only on the
Cochlea of Homo Sapiens for which the database contained the triangulated surfaces
of eight subjects, which we show in figures 4.22 and 4.23. The inter-subject shape
variability even among one particular specie is also an interesting and still not very
well-known feature. The atlas estimation algorithms we have been investigating so
far constitute a procedure to estimate this variability. Due to the complex geometry
of the Cochlea shape, notably the presence of the three thin canals, the algorithms
based on currents can very hardly recover a prototype shape from the dataset mainly
because the cancellation effect of currents makes the kernel metrics insensitive to
those pieces. Instead, the varifold atlas estimation algorithm is expected to be more
robust in that regard. A special care for the initialization of the template is needed
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Figure 4.26: Estimated deformations between the template and the subjects from
the dataset. The template is the transparent surface and its deformed version is the
opaque one. Trajectories of the points are displayed in red.

in that specific dataset because of the particular topology of the inner ear. After
reducing the number of points in the triangulations, we initialized the algorithm to
the simple shape shown in figure 4.25, which has the topology of a triple torus but
is not biased toward one of the individual. The estimated template shape is shown
on the right of figure 4.25 and the deformations from the template to the subjects of
the dataset in figure 4.26. As a comparison, we show the template estimated with
the approach of currents with identical parameters for the kernels (figure 4.24). We
notice a particularly unsatisfying estimation in the region of the canals, which is the
most subject to orientation issues.

As we see, the template and deformations obtained with varifolds are able to capture
some of the shape global features and variability between individuals, which could
be studied in a deeper way using for instance the framework proposed in section 4.3.
The layout of the three canals is obviously quite well recovered by the algorithm.
However, the coiling number in the snail part, which is also an important biological
marker, is still difficult to catch using this approach, essentially because it involves
important deformations at very small scales. It can be recovered quite well the
template is initialized to one subject of the database. To evaluate this dependency
on the choice of the initial template, in figure 4.27, we show the obtained template
for different initializations. The interesting point is that, for this dataset, we see a
rather satisfying consistency in the estimated shape, even for different initializations
so that the bias toward particular individuals does not seem a very limitating factor
in this case.

Finally, to give a rough idea of computational times for such examples, let’s mention
that the previous atlases were obtained in about one hour on the CMLA computa-
tional server for Cochlea shapes subsampled to approximately 8000 points each.
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Figure 4.27: The estimated template at the convergence of the algorithm for different
initializations. On the first row, the template of figure 4.25. On the second one, the
template obtained by initializing with subject 1. The last row with initialization to
subject 8.

4.5 Conclusion and extensions

In this chapter, we have focused on the problem of estimating anatomic and anatomo-
functional atlases on a population of subjects. This is a way to extend the scope of
registration between two individuals, in the perspective of studying group variability
of a whole dataset.

In the first place, we proposed algorithms to compute atlases on geometrico-functional
shapes carrying real-valued signals, based on the framework of functional currents of
chapter 2. We showed that this can be done by estimating iteratively and simultane-
ously a template functional shape (X, f) from the dataset and a set of momenta p’
that deforms the template to each subject, which is the purpose of algorithm 2. This
can be then extended by estimating in addition some residual signals ¢ on the base-
line shape, encoding the functional differences between the template and the different
subjects : this resulted in algorithm 3. Both algorithms involved some important gra-
dient normalizations and regularizations to be robust to rescaling, sampling changes
or boundary effects. As already mentioned for registration, some natural and po-
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tentially quite reachable extensions of such algorithms would consist in generalizing
them to other signal spaces than R, vectors or tensors being probably the most in-
teresting cases for practical applications. Another algorithmic improvement could
be also brought to the present code by incorporating the control point formulation
of large deformations, as introduced in [29, 33, 34|, which would be beneficial in
that it would speed up computations related to diffeomorphisms and enable sparse
representation of deformations.

From the theoretical point of view, we addressed in 4.2.4 the central issue of setting
a general continuous framework for geometrico-functional atlas estimation, that en-
sures existence of solutions. We have shown that the existence holds with the rather
weak L? assumptions on the signal parts, but provided penalty constants are chosen
high enough. A pending question would be to examine the theoretical benefits of
assuming more regularity on the signals (by working for instance on Sobolev spaces
or with bounded variations’ functions). Yet, the use of such spaces would obviously
introduce new numerical challenges, all the more that the supports are, in our case,
varying geometrical shapes. The second important point, that seems achievable in
a near future, is to formulate and show the existence of such atlases in the slightly
more complex Riemannian framework of metamorphosis that was presented in the
first chapter.

In addition, we also examined the question of statistical interpretation and clas-
sification based on those atlases. This part is the most likely to lead to future
improvements or extensions. Indeed, we chose to focus on simple statistical analysis
techniques such as the PCA and its supervised version for multi-class datasets, the
LDA. We proposed adaptations of these methods to study the statistical variabil-
ity of shape and signal based on momenta and functional residuals. Even though
more sophisticated statistical learning tools could be used instead, we showed that
the combination of geometrico-functional atlas estimation and LDA analysis of mo-
menta and thicknesses leads to interesting classification rates on the detection of
glaucoma in the retina database. Undoubtedly, applications to other datasets of this
kind enters in the range of our framework and shall be tested in a near future.
Finally, following the issues raised in chapter 3, the case of unoriented shapes was
also treated in the atlas estimation point of view. This can be easily done in the
varifold setting, and provides template estimation algorithms very close to currents
and functional currents. We showed a few results and benefits of such methodologies
in comparison to oriented ones on applications to embryonic mice heart membranes
on the one hand and on the study of Cochlea shape on the other.
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Conclusion and discussion

On the representation of non-oriented shapes

Chapter 3 was focused on the issue of orientation which has been one of the main
drawback of the framework of currents in applications to computational anatomy.
Imposing a consistent orientation of shapes, as we pointed out, is a clear limitation of
this approach in treating several sorts of datasets, including fiber bundles and non-
connected shapes. We have also evidenced the currents’ cancellation phenomenon
which has several negative consequences in practical cases of registration.

The approach that we have developed in this thesis, as an alternative or complement
to currents, relies on another concept from geometric measure theory called varifolds.
The challenge of chapter 3 was to show that varifolds can be also transposed to the
large deformations’ setting and to detail the strengths and weaknesses of this new
framework. We have proved in particular that the space of varifolds embeds all non-
oriented rectifiable subsets and provide representation and metrics that do not suffer
from shape annihilation as currents. Registration algorithms based on varifolds were
then implemented and tested on a few examples.

As briefly mentioned at the end of chapter 3, there are a few interesting open ques-
tions that could follow from this work. Omne of them would be to establish mathemat-
ically a relationship between varifolds and the other representation of non-oriented
submanifolds given by normal cycles (cf section 3.1.3). Intuitively, normal cycles
seem to be a higher-order representation since it models intrinsically variations of
tangent spaces, but this remains to be evaluated in a more rigorous way.

A second promising track, in our point of view, is to go further on the study of the
constraints on shapes that result from tangent direction histograms (cf 3.4.1), which,
as we showed, corresponds to RKHS on varifolds with infinite scale o.. One of the
theoretical question that could be examined for example is to relate a deformation
path of a given shape in F with the corresponding path in the space of histograms :
the real issue there being to find how much (or up to what transformations) a his-
togram path can determine a shape deformation path. This problematic is of course
not only related to varifolds but, in our context, it would give a way to better under-
stand the behavior of varifold-based registration algorithms accordingly to the scale
parameters of kernels.

On fshapes’ modelling and dissimilarity measures

The main problematic addressed by this dissertation consisted in proposing a frame-
work that can extend the approach of computational anatomy to functional shapes.
As we explained in chapter 1, one of the essential challenge was to have a repre-
sentation that provides dissimilarity metrics for defining relevant data attachment
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terms on the set of functional shapes. In chapter 2, we have proposed a possible
framework to do so. The key idea was to define a proper generalization of currents,
we named functional currents, that embeds functional shapes of given dimension
into a common functional space which is the dual of a space of extended differential
forms. Metrics were then defined on the space of functional currents by considering
appropriate reproducing kernel Hilbert spaces.

On the modelling side, functional currents offer similar advantages to currents : the
resulting metrics do not require point to point correspondences between objects,
are robust to noise and topological perturbations and are controlled by geometrico-
functional deformations, as shown by the results of 2.2.3. This theoretical setting is
also general enough to treat a wide variety of possible signal types : real, vector or
tensor-valued functions are among usual examples. Numerically, we have focused on
the case of real-valued signals exclusively and proposed large deformation registration
algorithms for functional shapes based on the data attachment metrics provided by
fecurrents. As we mentioned at the end of chapter 3, the varifold setting can be also
superimposed to all the previous in a very simple way, which results in the notion
of functional varifolds that can have the additional robustness to orientation issues.
A more extensive reflexion on the advantages and drawbacks of functional varifolds
versus functional currents, notably on the question of noise, is still to be conducted.
A natural extension of this work, that is essentially a computational issue, is to add
other possibilities of signals and group actions to the present code. This comes along
with the efforts initiated in section 2.3.3 to improve the numerical complexity and
speed for computing the different terms involved in our algorithms and hopefully
enable numerical schemes to address applications with higher-dimensional signals.
Last but not least, we want to point out that the functional currents (or functional
varifolds) setting is not limited to its use as an intermediate to define data attachment
terms for registration or atlas estimation. Indeed, the Hilbert space structure that we
obtain through kernels offers many other application possibilities. We have sketched
some of these in this thesis, for instance with the Matching-Pursuit procedure of 2.3.1
for data compression. Yet, a still largely unexplored range of applications would be
to exploit such metrics for doing direct statistics and classification on geometrico-
functional datasets (after gross registration of the subjects), using either discriminant
analysis as in section 4.3.1 or support vector machines. This is clearly a less accurate
analysis than the atlas-based methods developed in chapter 4 that really estimate
geometrico-functional variation from a template fshape but it has the interest of
being faster to compute for very big datasets and could thus serve as a preliminary
analysis.

On the estimation and statistical analysis of atlases

The final objective of computational anatomy is to study the variability of structures
within a certain population of subjects and deduce classification rules to discrimi-
nate between different populations. This is the problem that we finally intended to
address in the case of functional shapes in chapter 4. Having proposed a satisfying
setting to compare fshapes together and estimate deformations between two sub-
jects, we generalized this approach to the problem of atlas estimation and statistical
interpretation.

Our first task in chapter 4 was to propose algorithms, adapted from the forward
generative model used for images and currents, to compute an atlas from a population
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of fshapes. In the simplest setting, these atlases consist in a template fshape together
with a set of deformations mapping the template to the subjects. As we have detailed
in 4.2.1, there are several algorithmic tricks that can be implemented to improve the
estimation algorithm itself, notably concerning robustness to scale and sampling
as well as boundary effects. The model can be then enriched by the additional
estimation of functional residuals on the template to describe signal variability in an
interpretable way. This setting was implemented as well in our current codes.

On the algorithmic side, there are many other tracks that could be followed to
extend, speed up or simply improve the present version, some of which we have
already experimented while others are still mere suggestions. For instance, multi-
shapes’ situations where all the objects to analyze have several distinct elements (as
for example several surface layers with or without signals, or objects mixing curves
and surfaces) are quite usual in applications. We have extended our atlas estimation
schemes to account for these. Concerning speed and sparsity of representations, the
control points setting of [29, 34| is probably a good idea to reduce computational
times related to the diffeomorphism framework but has not been integrated in our
algorithms yet. Another possibility is to work rather on the gradient descent scheme
on which the algorithm is based. Computing functionals and gradients at each step
is obviously linear in time with respect to the number of subjects in the population
and it is clear that, for large datasets, parallelization will not be enough to limit
it. One potential solution that remains to be tested for these applications is given
by stochastic gradient algorithms, which only require such computations for one
individual per descent step at the price of a slower convergence rate.

In the second part of chapter 4, we have addressed the next issue of statistical
analysis of the variability in shape and function. We proposed an approach based
on PCA and LDA in Hilbert spaces applied to the deformation momenta and on the
functional residuals obtained by atlas algorithms, that estimates principal modes of
variations and discriminant directions for classification. There is surely room for
improvement at this level since we chose to focus on simple statistical learning tools
whereas more sophisticated ideas from machine learning could be also investigated.
Yet, as we evidenced with a few results on the retina dataset, this framework seems
quite successful in finding meaningful variation patterns both on the geometric and
functional level, and offers significant classification rates on cross-validation tests.
Undoubtedly, these results need to be comforted in the future by similar studies
carried on other datasets.

A complete and well-posed Riemannian framework for
fshapes’ group analysis 7

To give a final conclusion to the present work, we wish to come back on the original
problematic that we had initiated in section 1.4.1 of chapter 1. We introduced the
idea of a metamorphosis framework, in which two functional shapes within a fixed
bundle are compared by the geodesic distance induced from the space of fshapes
metamorphoses. As we explained, this gives a Riemannian formulation to the prob-
lem of exact registration, which amounts in computing a geodesic path in the meta-
morphoses space. Similarly, within this setting, estimating atlases is simply the
computation of a mean in the sense of this geodesic distance.

However, this holds in the ideal situation of shapes belonging to a single orbit and
we argued for the necessity of an inexact formulation involving dissimilarity mea-
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sures between different orbits. Defining such dissimilarity measures in the context
of functional shapes have been one of the important challenge addressed here. Tt
appears therefore as an attainable goal to provide a general methodology for group
analysis on functional shapes which would completely rely on a coherent Riemannian
framework. What we have presented in this thesis, and notably in the last chapter,
is a big step in this direction. Nevertheless, the story is not completed yet in so far as
the framework for atlas estimation we considered and implemented was done under
the simplified ’tangential model’ (cf 1.4.1) of stationary residual functions on the
template. A remaining step is to adjust our current framework to the real metamor-
phosis setting, which would affect essentially the dynamics of the geodesic shooting
equations. A last point would be then to extend the existence result of theorem 4.2.1
to this setting.
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Appendix A

Proof of theorem 4.2.1

In this appendix, we give the proof of the existence of geometrico-functional atlases
expressed by theorem 4.2.1. We have decomposed it in several steps by first show-
ing the existence of the template part (X, f) for a simplified functional and then
generalize these arguments to the full atlas model.

A.1 Existence of the template fshape

In all this part, we will consider the simpler situation where all variables v* and (*
in equation (4.18) are freezed and show that a minimum of the functional exists in
the variables X and f. We start by introducing a few additional definitions.

A.1.1 Preliminary definitions
Functional currents and measures on E x A%(E) x R

For the sake of the proof, we shall have to consider, in the following, a slightly bigger
space than functional currents which is the set of measures on the product space
F = E x AYE) x R. Namely, we will call M(F) the set of finite positive Borel
measures on F. For any f € L*(X) we denote vy ¢ the finite Borel measure on F
such that for any bounded and continuous g € Cy(F,R) :

vx.s(g) = /X oz, £(x), f(x))dH(x) (A1)

where £(z) is the unique unit normed element in A?(E) associated with the oriented
tangent space T, X defined at almost every location = on X since X is rectifiable.
Note that

vx,([€]) = HU(X) < 0. (A-2)

Moreover, for any v € M(F) such that v(|{]) < oo, we can identify v with a func-
tional current C,, € W’ such that for any w € W, we have

Cy(w) = / W) (v (a, €, ). (A.3)

One can check indeed that |C,(w)| < |w|eo¥([€]) < K|lw|lwr(]€]) for a fixed K > 0
so that
1C llw < Kv(l€]) - (A.4)

Thus, C, is indeed a continuous linear form on W.
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In addition, if ¢ is a diffeomorphism of E, one can define, for v € M(F), its transport
¢«v by the following relation, for all g € Cy(F,R) :

Pv(g) = / |d29.£|.9(¢(2), [ded-&], fdv(z, &, f) - (A.5)

where, for £ = & A ... A&y, do,.€ is, as usual, the transported d-vector dy¢(&1) A ... A
d (&) and [dy¢.£] its normed version. One can then easily check that this action
commutes with the usual action on functional currents of eq.(2.11) i.e.

d)*Cu = C(b*l/

and that
(Zs*VX,f = V(f)(X),de)_l . (AG)

X supported measures

For a fixed finite-volume, bounded and oriented rectifiable subset X, we introduce
a particular subset of M(F) that we define as the set M~ (F) of all Borel finite
measures v on F x A°E x R such that :

/ W, €)dv(z,€, f) = /X B, ()M () (A7)

for all continuous and bounded applications h on E x A%(E). These are measures
that have a particular marginal on E x A%(E). Note that any vx s for f a L* function
on X belongs to MX(F). In addition, M (F) is a closed subset for the usual weak
convergence of measures defined by v, — v if for any g € Cp(F,R)

Vn(g9) = Voo(9) - (A.8)

Perturbation

We introduce also a perturbation process on any measure v € M(F') that shall be
useful for the following. Let a > 0 to be fixed later and consider for any ¢ € R the
function p; : R — R such that

pi(z) = z + t(sgn(z)a — 2)1\z|>a (A.9)
where sgn(z) is the sign of z. We have py = Idg and p; is a symmetric threshold at

level a. Now for any t € R, we denote v, the new measure defined for any g € Cy(F,R)
as:

u(g) = /F o2, &, po(F))dv(a, €, F) (A.10)

Obviously vy = v and vy is such that v1(]f| > a) = 0 so that ¢ — 14 is an homotopy
from v to a measure under which the signal is a.e. bounded by a.

A.1.2 Existence with X fixed

This subsection is dedicated to the proof of the following intermediate proposition :
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Proposition A.1.1. Assume that W is continuously embedded in C2(E x R, ACE*),
that X and (Xi)lgigN are finite volume bounded oriented d-dimensional rectifiable
subsets and that fi € L*(X') for 1 < i < N. Assume that v¢/yw is large enough
with ~vp,yw > 0. Then

.'Y
(=2 / (@) PdH () Zwucw Cox f13)

achieves its minimum on L%*(X) and any minimizer f. is such that f. € L®(X).
Moreover, if we assume that X is a CP submanifold and that W — CJ'(E xR, AYE*)
with m > max{p, 2}, then f, € CP~1(X).

Existence of a measure minimizer

In the first place, we will show existence of a minimizer in the space M(F) of
measures, and thus consider the extended functional .J defined for v € MX(F) by

Jw) = Lv(fP) ZHsz i = Colliy (A.11)

=1

where /(| f|?) is the notation we shall use for [ ]f\QdV

Now let v € MX(F). Consider for t € R, J; = J(v;) where v, is the previously

defined perturbation of v and assume that Jy < oo (which is equivalent to say

that v(|f]*) < o0). We recall that [|[Cxi s — Cu, ||} = (Cxifi — Cy,)(w') where
= Kw(Cxi i — Cy) € W. Then one easily checks that J; < oo and, since

we assume that W is continuously embedded into C2(E x R, A?E*), with existing

derivative J] at any location t given by

d N Ow(x
J=v (dt (pe(f)) (Wﬂt +’YWZ ’pt )) (A.12)

Using again the continuous embedding of W into C2(E x R, AYE*) we get for a
constant C' > 0 that

Ouw?
=t ) <

< K (IICxs sillw + 1Cu, ) -

Moreover, it is a trivial verification that we have, by analogy to eq.(1.17) in the
case of currents, ||Cxi fillws < cte.H4(X?). With similar arguments, ||Cy, [y <
cte.y(E x A(E) x R) and, since v € MX(F), we have 1(E x AY(E) x R) = H4(X)
and consequently ||Cy, |l < cte.H(X). Thus, there exists a constant K > 0 such
that :

N ! N
S| <k (e ) o
i=1 i=1

Noticing now that < ( «(f) pe(f) < 0, that |dt (pe(f))] = 0 for |f| < a and that
lpe(f)] > a for |f] > a and t € [0, 1], we get for ¢t € [0, 1]

N
J <y (—\jt (i) \1|f|>a (wa —wK Y (M) + Hd(X)))) (A.14)

=1
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so that

N
J) < J(w) it a > KYYVfV 3 (Hd(xi) + ”Hd(X)> . (A.15)
=1

An important consequence of (A.15) is that one can restrict the search of a minimum
for J on v € M*(F) such that

V(1ifj5a) =0 (A.16)

with a = K%’ Zfil (HU(X?") + HY(X)). In particular, since v € M*(F), we will
have
reX, (<1 and |[f| <av ae. (A.17)

Since X is bounded, we can restrict the search of a minimum on a measure supported
on a compact subset C C F so that we introduce :

MXCE)={ve MX(F)| (2., f)eC vae. }. (A.18)

One can then check easily that .J is lower semi-continuous on the set MXC(F) for
the weak convergence topology. In addition, MX:C(F) is sequentially compact. In-
deed, if v, is a sequence in M*C(F) then all v, are supported by the compact C
and in particular (1) is tight. Also, as we already noticed, there exists a constant cte
independent of n such that v,(F) < cteH?(X) and thus the sequence is uniformly
bounded for the total variation norm. It results, thanks to Prokhorov theorem, that
there exists a subsequence of (v,,) converging for the weak topology. These compact-
ness and lower semicontinuity properties guarantee the existence of a minimizer v,
of J with v, € MX’C(F) and

Tw) < inf Ix(f). (A.19)

Existence of a minimizing function f

At that point we do not have yet a minimizer of Jx. The problem is that if the
marginal on E x A%(E) of v, is the transport of H‘ClX under the application z
(z,&(x)), we cannot guarantee that v, does not weight multiple signal values in the
fiber above a location (x,&(x)). We will show now that for v¢/yw large enough there
exists fy € LQ(X) such that v, = vx s, so that we will deduce

Ix(fo) = J(w) < feingigX) Ix(f) (A.20)

and the existence of a minimizer on L?(X).
Let §f € Cy(F,R) and for any ¢t € R consider the perturbation v; € MX(F) of
v € MXC(F) such that for all g € Cy(F,R) we have :

n(g) = / oz, 6, f + 16 (2,6, F))dn(z. €, f) (A21)

Here again, the function t — J(v4) is differentiable everywhere and we have for
wi = KW(Cxiyfi - CV)

d = - 0%l p)
CﬁJ(Vt)|t—0—V<(7ff+7W; 6f7 (5)) 5f(‘r7£7f)> )
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so that when v = v, we get
vef FywA(x, & f) =0 vy ae.
with (A.22)
Az, e, ) =N, a‘“g}n (€).

The partial derivative of f — ~v¢f + ywA(z, &, f) with respect to f equals v¢ +
’yw%(m, ¢, f). Using as previously the continuous embedding W — C3(ExR, AE¥),

one can show that we have once again a certain constant K such that aA (x & f)

can be bounded uniformly by K SN | (HU(X?) + HU(X)). It results that for Y/ YW
large enough and for all (z,V) € E x AE, f vef +ywA(z, &, f) is a strictly
increasing function going to —oo (resp +00) at —oo (resp +o0) and thus there is a
unique solution f(x, &) to (A.22). Now, since the application f — vrf+wA(z, &, f)
is also C' on E x AYE x R, we deduce from the implicit function theorem that f
is a C! function on FE x AdE. Going back to the solution v, we know that for v,
almost every (z,€, f) € E x A’E xR, we have (z,&, f) € C and f = f(z, V), so that
| f | < a a.e. For any continuous and bounded function g :

vle) = [ ato.& piv. = [ oo Fa, &)

and if we denote by g(z,§) = g(z,&, f(x, V)) which is a continuous and bounded
function on E x AYE, we have by definition of the space M (F) (eq.(A.7)) :

va(g) = 1a(3) = /X oz, £(2), f(x, €(2)))aHz) (A.23)

Therefore, setting fo(z) = f(x,&(z)) for € X, we see that |f.] < a so that
fi € L*(X) and with eq.(A.23), we deduce that v, = v(x f,) which shows that
the solution of the optimization is the fcurrent associated to the fshape (X, fi).
Moreover, if we assume that W — CJ'(E x R, AYE*) with m > max{p, 2} then A
and f are CP~! functions and if X is a C? submanifold then z — &(z) is a P~
function on X so that f, is also CP~!, which concludes the proof of proposition A.1.1.

A.1.3 Existence with non-fixed X

We now consider the existence of a template when X is no more fixed and is estimated
as well. In this case, as we mentioned in 4.2.4, it is enough to introduce a RKHS
Hilbert space Vp continuously embedded in CZ(E, E), an initial hypertemplate X
and consider also an optimization of the template X in the orbit of Xy under the ac-
tion of "0 € Gy, the group of diffeomorphisms associated with Vj i.e. X = ¢"(X)).
To prove existence result, we will need to introduce a penalization depending on the
distance between Xo and X i.e. on dg,, (Id, ¢"). A typical functional would be, if
Xy is the orbit of Xy under Gy, and dy, (X, X') = inf¢eGV07¢>(X)=X' day, (Id, ¢) is the
induced distance between two templates in the orbit,

J(X, f) = ﬂd% (Xo, X)?
(A.24)
/ (@) PaH Zucw Cx sl
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Since a diffeomorphism ¢° € Gy, is obtained as the flow of a time-varying vector
field v° € L2([0,1],Vp), we consider the minimization of the following functional :

0 Y0002
B0 1) = FllE

v - N (A.25)
+ 2 [ r@Pate) + B3 1Cx e = sl
=1

for v°0 € L20, f € L*(X) with X = ¢"(X). However, it is more convenient for X =
$"(Xo) to consider the change of variable f — fo = f o ¢ from L?(X) — L?(Xo)
so that we keep working in a fixed space L?(Xg). Hence we end up with functional

WO )= DI+ [ 1@ Pl @l @)
0 Xo

penalization on X _p | (@) 2dpi(a) for f=foo(6™0)1eLA(X) (A 26)
N
w
TS Z ICxi,pi = (67°)Cxy. fo I
i=1

with fo € L?(Xo). The existence of a minimizer (v?, fo.) for Js gives immediately
the existence of a minimizer (X, fi) for J; with X, = (;511)9 (Xo), f« = foxo (gblfg)_l e
L2(X,).

The existence result then becomes :

Proposition A.1.2. Assume that W is continuously embedded in CZ2(E x R, AYE*),
that X and (Xi)lgiSN are finite volume bounded oriented d-dimensional rectifiable
subsets and that f' € L*(X") for 1 < i < N. Assume that v¢/yw is large enough
with vg,yw > 0 and 79 > 0. Then

J(X, f) = %d;._»o(Xo,X)2
¥ Wy
1%
+ /X [F@)fdr (@) + 5= > ICxe g = Cxyllive
=1

achieves its minimum on {(X, f | X € Xy, f € L*(X)} and any minimizer (X, f:)
is such that f, € L>(X,). Moreover, if Xo is a C? submanifold and W — CJ*(E X
R, AYE*) with m > max{p, 2}, f. € CP71(X,).

The proof of Proposition A.1.1 can be in fact easily adapted to this new situa-
tion. We can consider the formulation of equation (A.26) with J3 a functional on
the vector field v* and the function f € L?(Xg). With respect to vg, thanks to
the penalization in (A.26), we can restrict the search of a minimum on a closed
ball By of given radius b in L%/O, which guarantees at the same time that the Ja-
cobians |d;¢".&(x)| are uniformly lower bounded. This closed ball is also com-
pact for the weak topology in L%/O. In addition, it follows from corollary 2.2.2 that

N 2 N 2
UO — Zi:l ||CXZ’fL - ( 11}0)*CX0,JCOHW’ - Zi:l ||CXz’fL - C fO(Xo),fOO( ’IJO)—lHW/ 15
weakly continuous on L§, and it is also classical that v° — [[o"]] 12 is lower semi-
0
continuous for the weak convergence topology. Therefore, for all fixed fo € L?(Xy),
00 = J3(v0, fo) is weakly lower semicontinuous on L%/O. It results that we obtain ex-

istence of a minimizing vector field v° and, reasoning as in the previous subsection,
one deduces easily the claim of proposition A.1.2.
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A.2 Existence of full fshape atlases

We are now ready to generalize the previous results to the existence of complete
atlases of fshapes’ datasets that is the claim of theorem 4.2.1. In addition to the
template (X, f), one wants to estimate simultaneously transformations from the
template to each subject. These consist in deformations (¢");=1,. n obtained as
flows of time varying vector fields (v*) and residual signals (¢*) that are L? functions
on X. The proof of the theorem can be done by leaning essentially on the same
arguments as detailed in the previous subsections. We shall go rapidly through each
of them by referring also to what was proved previously. First of all, exactly as in
A 1.3, existence of a template shape X is guaranteed with the same compacity and
lower semicontinuity arguments. Thus we may assume that X is fixed and we only
have to show existence of minimizers to the simplified functional :

Te(. (6. = 4 [ @R

T Z(Hvi!!izv+v< /X r<i<x>|2dﬂd<x>+kucxz-,fz-—c¢vi(x),f+@u%w)

=1

N | =

all vector fields v* belong to a fixed closed ball B of radius r > 0 in L%/. Asin the proof
of proposition A.1.1, we first show existence of a minimizer in a space of measures.
Namely, extending the definitions of the previous subsections, we introduce the space
MX(F) of measures v on F = E x A’E x R x RY that are supported on X, i.e such

that for all continuous and bounded function h on E x AYE, we have :

v(h) = / W, Vdu(z, €, £, (1) = /X B, £(x)) A ()

Now, as for v°, due to the presence of the penalizations ||v?||?, , one can assume that

For a measure v on F' and a diffeomorphism ¢, we denote by ¢*v the transport of v
by ¢ defined,by analogy with eq.(A.5) by :

(6.)(g) = / de.Elg(&(a). [dab €], £ (CF)) (. €. £ ()

We now introduce the extended functional :
T, ) = Zu(12) + 537 (10912, + 96w (€ + O s — (6°):Coilh
i=1

for v € MX(F), (v) € (L?,)N and where, for all i € {1,.., N}, v/ is the measure on
E x A4(E) x R defined for all g € Cy(E x AY(E) x R,R) by :

V()= [ gl + vl £.(69) (A.27)
and C,; the fcurrent defined for all w € W as in (A.3) :

Cui (w) - /w(x,erCi)(g)dyi(x? Ev f7 (CZ)) :

As previously, we can consider the perturbation function p; acting on signals and the
measures

ulg) = / 9z, 6. o), (r(CP))dw (. &, 1, (C1))
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Denoting J; = J (v, (v')), we have, for ¢ € [0,1],

N Jwt . .
d v (z),pt £ (C* vl
T=v | ggon0) | o) w3 gl )
=1
N ow' . v
d o i (6" @)pe(H)+pe(C) (5 v
+v ;dtm(c» Wp(C) +w 57 (deo”€) | | (A28)

where, for all i € {1,.., N}, w' = Kw(Cxi fi — (qﬁ”i)*Cl,g). On the first hand, we
know that there exists a constant cte such that for all 4, x € E and { € NE, € =1,
|d,¢"" €| < cte|dd¥'|oo. In addition, it is a classical result on flows of differential

equations (cf [86]) that there exists a non-decreasing continuous function C': RT —
RT, C(0) = 0, independent of v € L} such that |d¢¥|e < C(llvllzz)- Therefore,

since for all 4, HleL% <r

oW’

(@ @D+ 0 b | < i1 0w’
P (4,67 6)| < Ol 7|
o'
< . .
<057,

Now, using the same controls as in the previous subsections, we have, on the other
hand :
%] < ctelw]
— < cte||w'||lw
Of |
< cte(||Cxi gillwr + 16" )Cp )

< cte(HYX?Y) + (qb”i)*yf(E x A’E x R)).
It is easy to check, using eq.(A.5), that
(6" V' V(E x AE x R)) < cte|dp” |} (E x AE x R)

and, using the fact that v € M (F) as already argued in A.1.2, v{(E x A’E x R) =
HY(X). Also, since all v¥’s are bounded by r for the L%-norm, the terms |d¢¥" |
can be also bounded by a common constant (cf lemma 2.2.3). It results, from all the
previous inequalities, the existence of a constant K > 0 such that for all i,z, V, f, ("

ow' ; , .
(¢ (w)gtf(f)ert(C ) (dy0” .€)| < K.(HYXT) + HYUX)) (A.29)

Following the same path that previously lead to (A.14)

Ji<v (— & (o) ‘1| fl>a (w e (mx) + H‘%X))))
N d 4 B .
+3 v (— = () '1|<i|>a (vea —aw K (HIX) + H%X)))) . (A30)
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Just as in A.1.2, this implies that .J (1, (v*)) < J(vp, (v')) as soon as :
N i
0> 1SN K (HIX) + H(X))
and
a > max; 'fy—"é‘/K (HU(X?) + HYU(X))

Therefore, one may restrict the search of a minimum on a set of measures v that are
supported on a compact subset C of E x A%E x R x RN, which space we shall denote
again M*C(F). The rest of the proof is now very close to the one of A.1.2. Due
to lower semi-continuity of the functional and the compacity of MX¢(F) and B for
the weak convergence topologies (respectively on the space of measures and on L%/),
we obtain the existence of a minimizer (v, (v),) for the functional .J.

The last step is to prove that v,, which belongs a priori to the measure space
MXC(F), can be written under the form v, = Vx,f, (ci)s 1-e that there exists func-

*

tions f, and (% on X such that, for all continuous and bounded function g on F :

vlg) = /X 92, £(x), fo (), (C}(2)))dH(z) (A31)

Hence, we consider variations of the signals (§f,(5¢?)) all belonging to the space
Cy(F,R) and the path ¢ — v, defined by :

Vt(g) = /g(fﬁ,f,ijt(;f(I,g,f, (CZ))’(CZ+t5CZ($7£’fa (CL))))dV*(xvgafv (gz))

Now, if J; = J(i,vl), expressing that J/|;—g = 0 for all f and (5¢°) gives the
following set of equations :

('Yffv (’YCCZ)) = _A(xa V, fﬂ (Cz)) Vy-a.e (A'32)

with Az, €, £, (¢) = (S0 5 (6" (2), dug™ & f +C1), (B (6% (2), du™ €, £ + () ).
The derivatives 0yA and 9;iA can be shown again to be uniformly bounded in
z,V, f,¢". A previous argument provides the existence, for v¢/yw and v¢/yw large
enough, of unique solutions f = f(z,V) and ¢* = (i(z,V) to (A.32). The rest
of the proof is exactly the same as in A.1.2 : we set f.(z) = f(z,&(x)) and
Ci(x) = CH(x,&(x)), which are again L™ functions on X. In addition, one shows
easily that the minimizing measure v, equals vy ; (i) in the sense of (A.31). Fi-
nally, the regularity of f. and {, when X is a CP submanifold is obtained again by

applying the implicit function theorem to (A.32).
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