Y. Apertet, H. Ouerdane, C. Goupil, . Ph, and . Lecoeur, From local force-flux relationships to internal dissipations and their impact on heat engine performance: The illustrative case of a thermoelectric generator, Physical Review E, vol.88, issue.2, p.22137, 2013.
DOI : 10.1103/PhysRevE.88.022137

Y. Apertet, H. Ouerdane, A. Michot, C. Goupil, . Ph et al., On the efficiency at maximum cooling power, EPL (Europhysics Letters), vol.103, issue.4, p.400001, 2013.
DOI : 10.1209/0295-5075/103/40001

Y. Apertet, H. Ouerdane, O. Glavatskaya, C. Goupil, . Ph et al., Reply to the Comment on " Optimal working conditions for thermoelectric generators with realistic thermal coupling, p.68008, 2013.

Y. Apertet, H. Ouerdane, C. Goupil, . Ph, and . Lecoeur, Efficiency at maximum power of thermally coupled heat engines, Physical Review E, vol.85, issue.4, p.41144, 2012.
DOI : 10.1103/PhysRevE.85.041144

Y. Apertet, H. Ouerdane, C. Goupil, . Ph, and . Lecoeur, Irreversibilities and efficiency at maximum power of heat engines: The illustrative case of a thermoelectric generator, Physical Review E, vol.85, issue.3, p.31116, 2012.
DOI : 10.1103/PhysRevE.85.031116

Y. Apertet, H. Ouerdane, C. Goupil, . Ph, and . Lecoeur, Thermoelectric internal current loops inside inhomogeneous systems, Physical Review B, vol.85, issue.3, p.33201, 2012.
DOI : 10.1103/PhysRevB.85.033201

Y. Apertet, H. Ouerdane, O. Glavatskaya, C. Goupil, . Ph et al., Optimal working conditions for thermoelectric generators with realistic thermal coupling, EPL (Europhysics Letters), vol.97, issue.2, p.28001, 2012.
DOI : 10.1209/0295-5075/97/28001

F. Mazzamuto, V. H. Nguyen, Y. Apertet, C. Caër, C. Chassat et al., Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons, Physical Review B, vol.83, issue.23, p.235426, 2011.
DOI : 10.1103/PhysRevB.83.235426

H. Apertet, C. Ouerdane, . Goupil, . Ph, and . Lecoeur, Internal convection in thermoelectric generator models, Actes de conférences 9, p.12203, 2012.
DOI : 10.1088/1742-6596/395/1/012103

V. Talbo, J. Saint-martin, Y. Apertet, S. Retailleau, and P. Dollfus, Thermoelectric conversion in Silicon quantum-dots, Journal of Physics: Conference Series, vol.395, p.12112, 2012.
DOI : 10.1088/1742-6596/395/1/012112

Y. Apertet, C. Goupil, . Ph, and . Lecoeur, Role of dissipative coupling between system and heat reservoir in thermoelectric generation, Présentation orale au E-MRS 2011 Spring Meeting, pp.10-12

Y. Apertet, C. Goupil, . Ph, and . Lecoeur, Macro to Micro Derivation of the Thermoelectric Thermodynamics, Présentation orale au 5th Forum on, p.13, 2010.

J. Rozenberg, Two-dimensional electron gas with universal subbands at the surface of SrT iO 3, Nature, vol.469, pp.189-193, 2011.

Y. Apertet, F. Eloi, T. Maroutian, . Ph, and . Lecoeur, Caractérisation par mesure de temps de vol d'un dépôt par ablation laser, Présentation par voie d'affiche aux JNRDM2011, pp.23-25

Y. Apertet, Réalisation d'un dispositif de mesure des propriétés thermoélectriques dans des films minces d'oxydes, Présentation orale aux JNRDM2010, 2010.

T. Seebeck, Ueber den magnetismus der galvenische kette. abh. k, Akad. Wiss, vol.289, p.1821

J. Peltier, Nouvelles expériences sur la caloricité des courants électriques, Annales de chimie, vol.56, pp.371-1834

W. Thomson, 4. On a Mechanical Theory of Thermo-Electric Currents., Proceedings of the Royal Society of Edinburgh, vol.3, 1851.
DOI : 10.1017/S0370164600027310

URL : https://hal.archives-ouvertes.fr/in2p3-00416546

L. Rayleigh, On the thermodynamic efficiency of the thermopile, Philosophical Magazine Series, vol.5, issue.20, pp.361-1885

E. Altenkirch, Über den Nutzeffekt der Thermosäulen, Physikalische Zeitschrift, vol.10, p.560, 1909.

M. Telkes, The Efficiency of Thermoelectric Generators. I., Journal of Applied Physics, vol.18, issue.12, p.1116, 1947.
DOI : 10.1063/1.1697593

H. Goldsmid and R. Douglas, The use of semiconductors in thermoelectric refrigeration, British Journal of Applied Physics, vol.5, issue.11, p.386, 1954.
DOI : 10.1088/0508-3443/5/11/303

G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Nature Materials, vol.7, issue.105, 2008.
DOI : 10.1142/9789814317665_0016

W. Thomson, On the dynamical theory of heat, Transactions of the Royal Society of Edinburgh, p.1852

L. Onsager, Reciprocal Relations in Irreversible Processes. I., Physical Review, vol.37, issue.4, p.405, 1931.
DOI : 10.1103/PhysRev.37.405

H. B. Callen, The Application of Onsager's Reciprocal Relations to Thermoelectric, Thermomagnetic, and Galvanomagnetic Effects, Physical Review, vol.73, issue.11, p.1349, 1948.
DOI : 10.1103/PhysRev.73.1349

I. I. Novikov, The efficiency of atomic power stations (a review), Journal of Nuclear Energy (1954), vol.7, issue.1-2, p.125, 1958.
DOI : 10.1016/0891-3919(58)90244-4

F. L. Curzon and B. Ahlborn, Efficiency of a Carnot engine at maximum power output, American Journal of Physics, vol.43, issue.1, p.22, 1975.
DOI : 10.1119/1.10023

D. C. Agrawal and V. J. Menon, The thermoelectric generator as an endoreversible Carnot engine, Journal of Physics D: Applied Physics, vol.30, issue.3, 1997.
DOI : 10.1088/0022-3727/30/3/007

W. Thomson, Mathematical and Physical Papers, p.1882
DOI : 10.1017/cbo9780511996016

A. Ganot, Traité élémentaire de physique expérimentale et appliquée et de météorologie. L'auteur-éditeur, p.1859

L. Anatychuk, J. Stockhom, and E. G. Pastorino, On the discovery of thermoelectricity by a.volta, Proc. of the VIII ECT2010, 2010.

J. P. Joule, On the calorific effects of magneto-electricity, and on the mechanical value of heat, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.23, issue.263, p.1843

G. S. Ohm, Die galvanische Kette, 1827.
DOI : 10.5479/sil.354716.39088005838644

W. Thomson, The Bakerian Lecture. On the Electro-dynamic Qualities of Metals, Philosophical Transactions of the Royal Society of London, vol.146, issue.649, p.1856

R. L. Powell, L. L. Sparks, and J. G. Hust, Standard thermocouple material, tech. rep., National Bureau of Standrards, 1978.

J. Martin, T. Tritt, and C. Uher, High temperature Seebeck coefficient metrology, Journal of Applied Physics, vol.108, issue.12, 2010.
DOI : 10.1063/1.3503505

A. Bournel, P. Dollfus, and S. Galdin-retailleau, Éléments de base pour la physique du transport dans les composants semiconducteurs, Physique des dispositifs pour circuits intégrés silicium (J. Gautier, p.61, 2003.

C. Wood, Materials for thermoelectric energy conversion, Reports on Progress in Physics, vol.51, issue.4, p.459, 1988.
DOI : 10.1088/0034-4885/51/4/001

R. G. Chambers, Thermoelectric effects and contact potentials (for teachers), Physics Education, vol.12, issue.6, p.374, 1977.
DOI : 10.1088/0031-9120/12/6/006

P. M. Chaikin and G. Beni, Thermopower in the correlated hopping regime, Physical Review B, vol.13, issue.2, 1976.
DOI : 10.1103/PhysRevB.13.647

M. Cutler and N. F. Mott, Observation of Anderson Localization in an Electron Gas, Physical Review, vol.181, issue.3, p.1336, 1969.
DOI : 10.1103/PhysRev.181.1336

M. Smith and P. Butcher, Simple models of phonon-drag in 3D and quasi-2D, Journal of Physics: Condensed Matter, vol.2, issue.10, p.2375, 1990.
DOI : 10.1088/0953-8984/2/10/005

C. Goupil, H. Ouerdane, and Y. Apertet, Thermoélectricité -thermodynamique et applications, 2013.

S. J. Carnot37-]-h, J. E. Goldsmid, N. T. Sunderland, and . Burak, Introduction to thermoelectricity Rowe, CRC handbook of thermoelectrics The influence of the thomson effect on the performance of a thermoelectric power generator, Solid-State Electronics, vol.7, p.465, 1824.

C. B. Vining, An inconvenient truth about thermoelectrics, Nature Materials, vol.320, issue.2, p.83, 2009.
DOI : 10.1038/nmat2361

R. Franz and G. Wiedemann, Ueber die W??rme-Leitungsf??higkeit der Metalle, Annalen der Physik und Chemie, vol.165, issue.8, pp.497-1853
DOI : 10.1002/andp.18531650802

G. A. Slack, New Materials and Performance Limits for Thermoelectric Cooling, Thermoelectrics Handbook, 1995.
DOI : 10.1201/9781420049718.ch34

L. D. Hicks and M. S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit, Physical Review B, vol.47, issue.19, p.12727, 1993.
DOI : 10.1103/PhysRevB.47.12727

L. D. Hicks and M. S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor, Physical Review B, vol.47, issue.24, p.16631, 1993.
DOI : 10.1103/PhysRevB.47.16631

L. D. Hicks, T. C. Harman, X. Sun, and M. S. Dresselhaus, Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit, Physical Review B, vol.53, issue.16, p.10493, 1996.
DOI : 10.1103/PhysRevB.53.R10493

G. Mahan and J. Sofo, The best thermoelectric., Proceedings of the National Academy of Sciences, p.7436, 1996.
DOI : 10.1073/pnas.93.15.7436

T. E. Humphrey, R. Newbury, R. P. Taylor, and E. H. Linke, Reversible Quantum Brownian Heat Engines for Electrons, Physical Review Letters, vol.89, issue.11, 2002.
DOI : 10.1103/PhysRevLett.89.116801

T. E. Humphrey and H. Linke, Reversible Thermoelectric Nanomaterials, Physical Review Letters, vol.94, issue.9, p.96601, 2005.
DOI : 10.1103/PhysRevLett.94.096601

J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki et al., Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States, Science, vol.321, issue.5888, 2008.
DOI : 10.1126/science.1159725

A. Shakouri, Recent Developments in Semiconductor Thermoelectric Physics and Materials, Annual Review of Materials Research, vol.41, issue.1, p.399, 2011.
DOI : 10.1146/annurev-matsci-062910-100445

J. P. Heremans, M. S. Dresselhaus, L. E. Bell, and D. T. Morelli, When thermoelectrics reached the nanoscale, Nature Nanotechnology, vol.6, issue.7, p.471, 2013.
DOI : 10.1038/nnano.2013.129

K. Biswas, J. He, I. D. Blum, C. Wu, T. P. Hogan et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature, vol.29, issue.7416, p.414, 2012.
DOI : 10.1038/nature11439

N. Pottier, Physique statistique hors d'équilibre, EDP Sciences / CNRS Editions, 2007.

H. Ouerdane, C. Goupil, Y. Apertet, A. Michot, and E. A. Abbout, A Linear Nonequilibrium Thermodynamics Approach to Optimization of Thermoelectric Devices, Thermoelectric Nanomaterials
DOI : 10.1007/978-3-642-37537-8_14

H. B. Casimir, On Onsager's Principle of Microscopic Reversibility, Reviews of Modern Physics, vol.17, issue.2-3, p.343, 1945.
DOI : 10.1103/RevModPhys.17.343

C. Goupil, W. Seifert, K. Zabrocki, E. Muller, and G. J. Snyder, Thermodynamics of Thermoelectric Phenomena and Applications, Entropy, vol.13, issue.12, p.1481, 2011.
DOI : 10.3390/e13081481

C. Goupil, Thermodynamics of Thermoelectricity, InTech, 2011.

J. W. Stevens, Optimal design of small ??T thermoelectric generation systems, Energy Conversion and Management, vol.42, issue.6, p.709, 2001.
DOI : 10.1016/S0196-8904(00)00099-6

Y. Apertet, H. Ouerdane, O. Glavatskaya, C. Goupil, and E. P. Lecoeur, Optimal working conditions for thermoelectric generators with realistic thermal coupling, EPL (Europhysics Letters), vol.97, issue.2, 2012.
DOI : 10.1209/0295-5075/97/28001

I. S. Lisker, Determining an efficiency criterion for semiconductor materials, Soviet Physics, Solid state, p.1042, 1966.

L. L. Baranowski, G. J. Snyder, and E. S. Toberer, Effective thermal conductivity in thermoelectric materials, Journal of Applied Physics, vol.113, issue.20, 2013.
DOI : 10.1063/1.4807314

Y. Apertet, H. Ouerdane, C. Goupil, and E. P. Lecoeur, Internal convection in thermoelectric generator models, Journal of Physics: Conference Series, vol.395, 2012.
DOI : 10.1088/1742-6596/395/1/012103

W. Clingman, Entropy production and optimum device design, Advanced Energy Conversion, vol.1, p.61, 1961.
DOI : 10.1016/0365-1789(61)90008-X

G. J. Snyder and T. S. , Thermoelectric Efficiency and Compatibility, Physical Review Letters, vol.91, issue.14, 2003.
DOI : 10.1103/PhysRevLett.91.148301

C. Goupil, Thermodynamics of the thermoelectric potential, Journal of Applied Physics, vol.106, issue.10, p.104907, 2009.
DOI : 10.1063/1.3257250

URL : https://hal.archives-ouvertes.fr/hal-00624253

A. A. Snarskii and I. V. Bezsudnov, Thermoelectric properties of macroscopically inhomogeneous composites, " arXiv preprint, 2011.

D. J. Bergman and O. Levy, Thermoelectric properties of a composite medium, Journal of Applied Physics, vol.70, issue.11, p.6821, 1991.
DOI : 10.1063/1.349830

R. Saleh, P. Thomas, and E. I. Zvyagin, Internal currents in multi-layer structures, Superlattices and Microstructures, vol.10, issue.1, p.59, 1991.
DOI : 10.1016/0749-6036(91)90148-K

P. J. Price, CXXXV. Ambipolar thermodiffusion of electrons and holes in semiconductors, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.95, issue.382, p.1252, 1955.
DOI : 10.1016/S0031-8914(54)80201-1

A. H. Nayfeh, H. Carreon, and P. B. Nagy, Role of anisotropy in noncontacting thermoelectric materials characterization, Journal of Applied Physics, vol.91, issue.1, 2002.
DOI : 10.1063/1.1416852

X. Kleber, L. Simonet, F. Fouquet, and E. M. Delnondedieu, Thermoelectric power of a two-dimensional metal/metal composite: a numerical approach, Modelling and Simulation in Materials Science and Engineering, vol.13, issue.3, p.341, 2005.
DOI : 10.1088/0965-0393/13/3/004

H. Carreon, B. Lakshminarayan, W. I. Faidi, A. H. Nayfeh, and P. B. Nagy, On the role of material property gradients in noncontacting thermoelectric NDE, NDT & E International, vol.36, issue.5, p.339, 2003.
DOI : 10.1016/S0963-8695(03)00006-9

D. Fu, A. X. Levander, R. Zhang, J. W. Ager, and E. J. Wu, Electrothermally driven current vortices in inhomogeneous bipolar semiconductors, Physical Review B, vol.84, issue.4, p.45205, 2011.
DOI : 10.1103/PhysRevB.84.045205

Y. Apertet, H. Ouerdane, C. Goupil, and E. P. Lecoeur, Thermoelectric internal current loops inside inhomogeneous systems, Physical Review B, vol.85, issue.3, p.33201, 2012.
DOI : 10.1103/PhysRevB.85.033201

URL : http://arxiv.org/abs/1110.0749

Y. Apertet, H. Ouerdane, C. Goupil, and E. P. Lecoeur, Series thermoelectrics, 2013.

M. S. El-genk and H. H. Saber, High efficiency segmented thermoelectric unicouple for operation between 973 and 300 K, Energy Conversion and Management, vol.44, issue.7, 1069.
DOI : 10.1016/S0196-8904(02)00109-7

O. Yamashita, S. Tomiyoshi, and E. K. Makita, Bismuth telluride compounds with high thermoelectric figures of merit, Journal of Applied Physics, vol.93, issue.1, 2003.
DOI : 10.1063/1.1525400

G. D. Mahan, Parallel thermoelectrics, Physical Review B, vol.87, issue.4, p.45415, 2013.
DOI : 10.1103/PhysRevB.87.045415

Y. Yang, S. H. Xie, F. Y. Ma, and J. Y. Li, On the effective thermoelectric properties of layered heterogeneous medium, Journal of Applied Physics, vol.111, issue.1, 2012.
DOI : 10.1063/1.3674279

Y. Yang, F. Y. Ma, C. H. Lei, Y. Y. Liu, and J. Y. Li, Is thermoelectric conversion efficiency of a composite bounded by its constituents?, Applied Physics Letters, vol.102, issue.5, p.53905, 2013.
DOI : 10.1063/1.4791684

L. Vikhor and L. Anatychuk, Generator modules of segmented thermoelements, Energy Conversion and Management, vol.50, issue.9, p.2366, 2009.
DOI : 10.1016/j.enconman.2009.05.020

G. J. Snyder, Thermoelectric power generation : Efficiency and compatibility, Thermoelectrics Handbook, Macro to Nano, 2006.

G. J. Snyder, E. S. Toberer, R. Khanna, and E. W. Seifert, Improved thermoelectric cooling based on the Thomson effect, Physical Review B, vol.86, issue.4, p.45202, 2012.
DOI : 10.1103/PhysRevB.86.045202

J. Schilz, L. Helmers, W. E. Müller, and E. M. Niino, A local selection criterion for the composition of graded thermoelectric generators, Journal of Applied Physics, vol.83, issue.2, p.1150, 1998.
DOI : 10.1063/1.366808

K. Zabrocki, E. Muller, and E. W. Seifert, One-Dimensional Modeling of Thermogenerator Elements with Linear Material Profiles, Journal of Electronic Materials, vol.70, issue.8, p.1724, 2010.
DOI : 10.1007/s11664-010-1179-3

W. Seifert, K. Zabrocki, E. Müller, and G. J. Snyder, Power-related compatibility and maximum electrical power output of a thermogenerator, physica status solidi (a), vol.75, issue.13, p.2399, 2010.
DOI : 10.1002/pssa.201026388

A. Vargas-almeida, M. A. Olivares-robles, and E. P. Camacho-medina, Thermoelectric System in Different Thermal and Electrical Configurations: Its Impact in the Figure of Merit, Entropy, vol.15, issue.6, p.2162, 2013.
DOI : 10.3390/e15062162

D. Nemir and J. Beck, On the Significance of the Thermoelectric Figure of Merit Z, Journal of Electronic Materials, vol.40, issue.9, p.1897, 2010.
DOI : 10.1007/s11664-009-1060-4

D. Narducci, Do we really need high thermoelectric figures of merit? A critical appraisal to the power conversion efficiency of thermoelectric materials, Applied Physics Letters, vol.99, issue.10, 2011.
DOI : 10.1063/1.3634018

G. Min and D. M. Rowe, Optimisation of thermoelectric module geometry for ???waste heat??? electric power generation, Journal of Power Sources, vol.38, issue.3, 1992.
DOI : 10.1016/0378-7753(92)80114-Q

M. Freunek, M. Müller, T. Ungan, W. Walker, and L. M. , New Physical Model for Thermoelectric Generators, Journal of Electronic Materials, vol.38, issue.98, p.1214, 2009.
DOI : 10.1007/s11664-009-0665-y

K. Yazawa and A. Shakouri, Cost-Efficiency Trade-off and the Design of Thermoelectric Power Generators, Environmental Science & Technology, vol.45, issue.17, p.7548, 2011.
DOI : 10.1021/es2005418

K. Yazawa and A. Shakouri, Optimization of power and efficiency of thermoelectric devices with asymmetric thermal contacts, Journal of Applied Physics, vol.111, issue.2, 2012.
DOI : 10.1063/1.3679544

M. Spry, Improving the Testing of Power Generation Modules and Resulting Performance Projections, Journal of Electronic Materials, vol.73, issue.6, 1062.
DOI : 10.1007/s11664-012-2015-8

M. Gomez, R. Reid, B. Ohara, and E. H. Lee, Influence of electrical current variance and thermal resistances on optimum working conditions and geometry for thermoelectric energy harvesting, Journal of Applied Physics, vol.113, issue.17, p.174908, 2013.
DOI : 10.1063/1.4802668

S. Su, J. Wang, X. C. Apertet, and Y. , Comment on " Optimal working conditions for thermoelectric generators with realistic thermal coupling, Europhysics Letters, vol.101, issue.68007, 2013.

Y. Apertet, H. Ouerdane, O. Glavatskaya, C. Goupil, and P. Lecoeur, Reply to the Comment by, Europhysics Letters, vol.101, issue.68008, 2013.

M. H. Rubin, Optimal configuration of a class of irreversible heat engines. I, Physical Review A, vol.19, issue.3, p.1272, 1979.
DOI : 10.1103/PhysRevA.19.1272

A. D. Vos, Efficiency of some heat engines at maximum-power conditions, American Journal of Physics, vol.53, issue.570, 1985.

I. I. Novikov, Efficiency of an atomic power generating installation, The Soviet Journal of Atomic Energy, vol.3, issue.11, p.1269, 1957.
DOI : 10.1007/BF01507240

B. Andresen, P. Salamon, and R. S. Berry, Thermodynamics in finite time, Physics Today, vol.37, issue.9, p.62, 1984.
DOI : 10.1063/1.2916405

P. Salamon, K. H. Hoffmann, S. Schubert, R. S. Berry, and E. B. Andresen, What Conditions Make Minimum Entropy Production Equivalent to Maximum Power Production ? The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation, Journal of Non-Equilibrium Thermodynamics European Journal of Biochemistry, vol.26, issue.109, p.269, 1980.

F. Angulo-brown, An ecological optimization criterion for finite???time heat engines, Journal of Applied Physics, vol.69, issue.11, p.7465, 1991.
DOI : 10.1063/1.347562

A. C. Hernández, A. Medina, J. M. Roco, J. A. White, and . Velasco, Unified optimization criterion for energy converters, Physical Review E, vol.63, issue.3, p.37102, 2001.
DOI : 10.1103/PhysRevE.63.037102

P. Salamon and A. Nitzan, Finite time optimizations of a Newton???s law Carnot cycle, The Journal of Chemical Physics, vol.74, issue.6, 1981.
DOI : 10.1063/1.441482

C. Van-den-broeck, Thermodynamic Efficiency at Maximum Power, Physical Review Letters, vol.95, issue.19, 2005.
DOI : 10.1103/PhysRevLett.95.190602

T. Schmiedl and U. Seifert, Efficiency at maximum power: An analytically solvable model for stochastic heat engines, EPL (Europhysics Letters), vol.81, issue.2, 2008.
DOI : 10.1209/0295-5075/81/20003

Z. C. Tu, Efficiency at maximum power of Feynman's ratchet as a heat engine, Journal of Physics A: Mathematical and Theoretical, vol.41, issue.31, 2008.
DOI : 10.1088/1751-8113/41/31/312003

M. Esposito, K. Lindenberg, and C. Van-den-broeck, Universality of Efficiency at Maximum Power, Physical Review Letters, vol.102, issue.13, p.130602, 2009.
DOI : 10.1103/PhysRevLett.102.130602

Z. Tu, Recent advance on the efficiency at maximum power of heat engines, Chinese Physics B, vol.21, issue.2, 2012.
DOI : 10.1088/1674-1056/21/2/020513

L. Chen, C. Wu, and E. F. Sun, Heat transfer effect on the specific heating load of heat pumps, Applied Thermal Engineering, vol.17, issue.1, 1997.
DOI : 10.1016/1359-4311(95)00095-X

J. M. Gordon, Generalized power versus efficiency characteristics of heat engines: The thermoelectric generator as an instructive illustration, American Journal of Physics, vol.59, issue.6, p.551, 1991.
DOI : 10.1119/1.16818

O. Kedem and S. R. Caplan, Degree of coupling and its relation to efficiency of energy conversion, Transactions of the Faraday Society, vol.61, p.1897, 1965.
DOI : 10.1039/tf9656101897

Y. Apertet, H. Ouerdane, C. Goupil, and E. P. Lecoeur, Efficiency at maximum power of thermally coupled heat engines, Physical Review E, vol.85, issue.4, 2012.
DOI : 10.1103/PhysRevE.85.041144

Z. Yan and J. Chen, Comment on Generalized power versus efficiency characteristics of heat engines : The thermoelectric generator as an instructive illustration, American Journal of Physics, vol.61, issue.380, 1993.

Y. Apertet, H. Ouerdane, C. Goupil, and E. P. Lecoeur, Irreversibilities and efficiency at maximum power of heat engines: The illustrative case of a thermoelectric generator, Physical Review E, vol.85, issue.3, p.31116, 2012.
DOI : 10.1103/PhysRevE.85.031116

M. Esposito, K. Lindenberg, and C. Van-den-broeck, Thermoelectric efficiency at maximum power in a quantum dot, EPL (Europhysics Letters), vol.85, issue.6, p.60010, 2009.
DOI : 10.1209/0295-5075/85/60010

V. L. Gurevich, Heat generation by electric current in nanostructures, Physical Review B, vol.55, issue.7, p.4522, 1997.
DOI : 10.1103/PhysRevB.55.4522

B. Jiménez-de-cisneros and A. C. Hernández, Collective Working Regimes for Coupled Heat Engines, Physical Review Letters, vol.98, issue.13, p.130602, 2007.
DOI : 10.1103/PhysRevLett.98.130602

B. Jiménez-de-cisneros and A. C. Hernández, Coupled heat devices in linear irreversible thermodynamics, Physical Review E, vol.77, issue.4, p.41127, 2008.
DOI : 10.1103/PhysRevE.77.041127

T. C. Harman, Multiple Stage Thermoelectric Generation of Power, Journal of Applied Physics, vol.29, issue.10, p.1471, 1958.
DOI : 10.1063/1.1722971

C. Van-den-broeck, N. Kumar, and E. K. Lindenberg, Efficiency of Isothermal Molecular Machines at Maximum Power, Physical Review Letters, vol.108, issue.21, 2012.
DOI : 10.1103/PhysRevLett.108.210602

J. Denur, The apparent ???super-Carnot??? efficiency of hurricanes: Nature???s steam engine versus the steam locomotive, American Journal of Physics, vol.79, issue.6, p.631, 2011.
DOI : 10.1119/1.3534841

E. Rebhan, Efficiency of nonideal Carnot engines with friction and heat losses, American Journal of Physics, vol.70, issue.11, p.1143, 2002.
DOI : 10.1119/1.1501116

G. Lebon and D. Jou, Casas-Vázquez, Understanding Non-equilibrium Thermodynamics, 2008.
DOI : 10.1007/978-3-540-74252-4

C. Wu and R. L. Kiang, Finite-time thermodynamic analysis of a Carnot engine with internal irreversibility, Energy, vol.17, issue.12, p.1173, 1992.
DOI : 10.1016/0360-5442(92)90006-L

B. Gaveau, M. Moreau, and L. S. Schulman, Stochastic Thermodynamics and Sustainable Efficiency in Work Production, Physical Review Letters, vol.105, issue.6, p.60601, 2010.
DOI : 10.1103/PhysRevLett.105.060601

C. A. Domenicali, Stationary Temperature Distribution in an Electrically Heated Conductor, Journal of Applied Physics, vol.25, issue.10, p.1310, 1954.
DOI : 10.1063/1.1721551

Y. Izumida and K. Okuda, Efficiency at maximum power of minimally nonlinear irreversible heat engines, EPL (Europhysics Letters), vol.97, issue.1, 2012.
DOI : 10.1209/0295-5075/97/10004

H. Callen and T. Welton, Irreversibility and Generalized Noise, Physical Review, vol.83, issue.1, p.34, 1951.
DOI : 10.1103/PhysRev.83.34

P. N. Butcher, Thermal and electrical transport formalism for electronic microstructures with many terminals, Journal of Physics: Condensed Matter, vol.2, issue.22, p.4869, 1990.
DOI : 10.1088/0953-8984/2/22/008

L. A. Zotti, M. Bürkle, F. Pauly, W. Lee, K. Kim et al., Heat dissipation and its relation to thermopower in singlemolecule junctions, 2013.

J. Maxwell, Theory of heat. Longmans, Green, and Co, p.1871

G. Gamow, One, two, three... infinity : facts and speculations of science. Viking, 1961.

M. Smoluchowski, Experimentell nachweisbare, der ublichen thermodynamik widersprechende molekularphenomene, Physikalische Zeitschrift, vol.13, p.1069, 1912.

J. D. Norton, All shook up : Fluctuations, maxwell's demon and the thermodynamics of computation Über die entropieverminderung in einem thermodynamischen system bei eingriffen intelligenter wesen, Zeitschrift für Physik, 1929.

L. Brillouin, Maxwell's Demon Cannot Operate: Information and Entropy. I, Journal of Applied Physics, vol.22, issue.3, p.334, 1951.
DOI : 10.1063/1.1699951

R. Landauer, Irreversibility and heat generation in the computing process, IBM journal of research and development, vol.5, issue.183, 1961.

R. P. Bauman and H. L. Cockerham, Pressure of an Ideal Gas on a Moving Piston, American Journal of Physics, vol.37, issue.7, p.675, 1969.
DOI : 10.1119/1.1975769

E. A. Gislason, A close examination of the motion of an adiabatic piston, American Journal of Physics, vol.78, issue.10, p.995, 2010.
DOI : 10.1119/1.3480028

A. E. Allahverdyan, K. V. Hovhannisyan, A. V. Melkikh, and S. G. Gevorkian, Carnot Cycle at Finite Power: Attainability of Maximal Efficiency, Physical Review Letters, vol.111, issue.5, p.50601, 2013.
DOI : 10.1103/PhysRevLett.111.050601

M. Esposito, R. Kawai, K. Lindenberg, and C. Van-den-broeck, Efficiency at Maximum Power of Low-Dissipation Carnot Engines, Physical Review Letters, vol.105, issue.15, p.150603, 2010.
DOI : 10.1103/PhysRevLett.105.150603

J. Wang and J. He, Efficiency at maximum power output of an irreversible Carnot-like cycle with internally dissipative friction, Physical Review E, vol.86, issue.5, 2012.
DOI : 10.1103/PhysRevE.86.051112

U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Reports on Progress in Physics, vol.75, issue.12, 2012.
DOI : 10.1088/0034-4885/75/12/126001

URL : http://arxiv.org/abs/1205.4176

D. C. Agrawal and V. J. Menon, Performance of a Carnot refrigerator at maximum cooling power, Journal of Physics A: Mathematical and General, vol.23, issue.22, p.5319, 1990.
DOI : 10.1088/0305-4470/23/22/020

S. Velasco, J. M. Roco, A. Medina, and E. A. Hernández, New Performance Bounds for a Finite-Time Carnot Refrigerator, Physical Review Letters, vol.78, issue.17, p.3241, 1997.
DOI : 10.1103/PhysRevLett.78.3241

Z. Yan and J. Chen, A class of irreversible Carnot refrigeration cycles with a general heat transfer law, Journal of Physics D: Applied Physics, vol.23, issue.2, p.136, 1990.
DOI : 10.1088/0022-3727/23/2/002

A. E. Allahverdyan, K. Hovhannisyan, and E. G. Mahler, Optimal refrigerator, Physical Review E, vol.81, issue.5, p.51129, 2010.
DOI : 10.1103/PhysRevE.81.051129

C. De-tomás, A. Hernández, and E. J. Roco, Optimal low symmetric dissipation Carnot engines and refrigerators, Physical Review E, vol.85, issue.1, 2012.
DOI : 10.1103/PhysRevE.85.010104

X. G. Luo, N. Liu, and J. Z. He, Optimum analysis of a Brownian refrigerator, Physical Review E, vol.87, issue.2, p.22139, 2013.
DOI : 10.1103/PhysRevE.87.022139

Y. Izumida, K. Okuda, A. C. Hernández, and J. M. Roco, Coefficient of performance under optimized figure of merit in minimally nonlinear irreversible refrigerator, EPL (Europhysics Letters), vol.101, issue.1, 2013.
DOI : 10.1209/0295-5075/101/10005

Y. Wang, M. Li, Z. C. Tu, A. Hernández, and E. J. Roco, Coefficient of performance at maximum figure of merit and its bounds for low-dissipation Carnot-like refrigerators, Physical Review E, vol.86, issue.1, p.11127, 2012.
DOI : 10.1103/PhysRevE.86.011127

G. Benenti, K. Saito, and E. G. Casati, Thermodynamic Bounds on Efficiency for Systems with Broken Time-Reversal Symmetry, Physical Review Letters, vol.106, issue.23, p.230602, 2011.
DOI : 10.1103/PhysRevLett.106.230602

H. U. Fuchs, The Dynamics of Heat : A Unified Approach to Thermodynamics and Heat Transfer, 2010.

R. J. Tykodi, On the Thermocouple in a Magnetic Field, The Journal of Chemical Physics, vol.47, issue.5, p.1879, 1967.
DOI : 10.1063/1.1712199

D. G. Miller, Thermodynamics of Irreversible Processes. The Experimental Verification of the Onsager Reciprocal Relations., Chemical Reviews, vol.60, issue.1, p.15, 1960.
DOI : 10.1021/cr60203a003

R. Wolfe and G. E. Smith, Experimental Verification of the Kelvin Relation of Thermoelectricity in a Magnetic Field, Physical Review, vol.129, issue.3, 1086.
DOI : 10.1103/PhysRev.129.1086

K. Saito, G. Benenti, G. Casati, and E. T. Prosen, Thermopower with broken time-reversal symmetry, Physical Review B, vol.84, issue.20, 2011.
DOI : 10.1103/PhysRevB.84.201306

D. Sánchez and L. M. Serra, Thermoelectric transport of mesoscopic conductors coupled to voltage and thermal probes, Physical Review B, vol.84, issue.20, 2011.
DOI : 10.1103/PhysRevB.84.201307

K. Brandner, K. Saito, and E. U. Seifert, Strong Bounds on Onsager Coefficients and Efficiency for Three-Terminal Thermoelectric Transport in a Magnetic Field, Physical Review Letters, vol.110, issue.7, p.70603, 2013.
DOI : 10.1103/PhysRevLett.110.070603

V. Balachandran, G. Benenti, and E. G. Casati, Efficiency of three-terminal thermoelectric transport under broken time-reversal symmetry, Physical Review B, vol.87, issue.16, 2013.
DOI : 10.1103/PhysRevB.87.165419

J. Pérez, Thermodynamique : Fondements et applications, 1993.

R. D. Astumian, Thermodynamics and Kinetics of a Brownian Motor, Science, vol.276, issue.5314, p.917, 1997.
DOI : 10.1126/science.276.5314.917

P. Hänggi and F. Marchesoni, Artificial Brownian motors : Controlling transport on the nanoscale, Rev. Mod. Phys, vol.81, issue.387, 2009.

P. Reimann, Brownian motors: noisy transport far from equilibrium, Physics Reports, vol.361, issue.2-4, 2002.
DOI : 10.1016/S0370-1573(01)00081-3

J. Parrondo and B. De-cisneros, Energetics of Brownian motors: a review, Applied Physics A, vol.75, issue.2, p.179, 2002.
DOI : 10.1007/s003390201332

S. Velasco, J. M. Roco, A. Medina, and E. A. Hernández, Feynman's ratchet optimization: maximum power and maximum efficiency regimes, Journal of Physics D: Applied Physics, vol.34, issue.6, 1000.
DOI : 10.1088/0022-3727/34/6/323

A. Gomez-marin and J. M. Sancho, Tight coupling in thermal Brownian motors Criticism of Feynman's analysis of the ratchet as an engine, Physical Review E American Journal of Physics, vol.74, issue.64, p.1125, 1996.

H. Sakaguchi, A Langevin Simulation for the Feynman Ratchet Model, Journal of the Physical Society of Japan, vol.67, issue.3, p.709, 1998.
DOI : 10.1143/JPSJ.67.709

Y. Wang and Z. C. Tu, Bounds of efficiency at maximum power for linear, superlinear and sublinear irreversible Carnot-like heat engines, EPL (Europhysics Letters), vol.98, issue.4, 2012.
DOI : 10.1209/0295-5075/98/40001

Z. Tu, Bounds and phase diagram of efficiency at maximum power for tightcoupling molecular motors, The European Physical Journal E, vol.36, issue.1, 2013.

J. W. Fergus, Oxide materials for high temperature thermoelectric energy conversion, Journal of the European Ceramic Society, vol.32, issue.3, p.525, 2012.
DOI : 10.1016/j.jeurceramsoc.2011.10.007

S. Ohta, T. Nomura, H. Ohta, and E. K. Koumoto, High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals, Journal of Applied Physics, vol.97, issue.3, p.34106, 2005.
DOI : 10.1063/1.1847723

S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono et al., Large thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial film at high temperature, Applied Physics Letters, vol.87, issue.9, p.92108, 2005.
DOI : 10.1063/1.2035889

H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura et al., Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO 3, Nature Materials, vol.6, issue.129, 2007.

W. Wunderlich, H. Ohta, and E. K. Koumoto, Enhanced effective mass in doped SrTiO3 and related perovskites, Physica B: Condensed Matter, vol.404, issue.16, p.2202, 2009.
DOI : 10.1016/j.physb.2009.04.012

H. P. Frederikse, W. R. Thurber, and W. R. Hosler, Electronic Transport in Strontium Titanate, Physical Review, vol.134, issue.2A, p.442, 1964.
DOI : 10.1103/PhysRev.134.A442

A. Ohtomo and H. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature, vol.427, issue.6973, p.423, 2004.
DOI : 10.1038/nature02308

M. Basletic, J. Maurice, C. Carrétéro, G. Herranz, O. Copie et al., Mapping the spatial distribution of charge carriers in LaAlO3/SrTiO3 heterostructures, Nature Materials, vol.69, issue.8, p.621, 2008.
DOI : 10.1038/nmat2223

N. Nakagawa, H. Y. Hwang, and D. A. Muller, Why some interfaces cannot be sharp, Nature Materials, vol.64, issue.3, 2006.
DOI : 10.1038/nmat1569

URL : http://arxiv.org/abs/cond-mat/0510491

C. Cancellieri, N. Reyren, S. Gariglio, A. Caviglia, A. Fête et al., interface electronic properties, EPL (Europhysics Letters), vol.91, issue.1, p.17004, 2010.
DOI : 10.1209/0295-5075/91/17004

Y. Chen, N. Pryds, J. E. Kleibeuker, G. Koster, J. Sun et al., Metallic and insulating interfaces of amorphous SrTiO 3 -based oxide heterostructures, Nano letters, vol.11, issue.3774, 2011.

A. Kalabukhov, Y. A. Boikov, I. Serenkov, V. Sakharov, J. Börjesson et al., Improved cationic stoichiometry and insulating behavior at the interface of LaAlO 3 /SrTiO 3 formed at high oxygen pressure during pulsed-laser deposition, Europhysics Letters, vol.93, issue.37001, 2011.

M. Huijben, Interface engineering for oxide electronics : tuning electronic properties by atomically controlled growth, 2006.

S. Thiel, Study of interface properties in LaAlO 3 /SrTiO 3 heterostructures, 2009.

N. Reyren, Oxide superconducting thin films and interfaces studied using field effect, 2009.

A. Santander-syro, O. Copie, T. Kondo, F. Fortuna, S. Pailhes et al., Two-dimensional electron gas with universal subbands at the surface of SrTiO 3, Nature, vol.469, issue.189, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00771655

M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara et al., Atomic Control of the SrTiO3 Crystal Surface, Science, vol.266, issue.5190, p.1540, 1994.
DOI : 10.1126/science.266.5190.1540

D. B. Chrisey and G. K. Hubler, Pulsed laser deposition of thin films, 2003.

D. Estève, Développement d'une technique de caractérisation optique appliquée au suivi in situ de la croissance d'oxydes fonctionnels par ablation laser pulsé, 2010.

N. G. Utterback, S. P. Tang, and J. F. Friichtenicht, Atomic and ionic beam source utilizing pulsed laser blow off, Physics of Fluids, vol.19, issue.6, p.900, 1976.
DOI : 10.1063/1.861557

R. Kelly and R. Dreyfus, On the effect of Knudsen-layer formation on studies of vaporization, sputtering, and desorption, Surface Science, vol.198, issue.1-2, 1988.
DOI : 10.1016/0039-6028(88)90483-9

D. Doria, A. Lorusso, F. Belloni, V. Nassisi, L. Torrisi et al., A study of the parameters of particles ejected from a laser plasma, Laser and Particle Beams, vol.14, issue.04, p.461, 2004.
DOI : 10.1016/S0169-4332(02)01467-8

P. Willmott, R. Herger, C. Schlepütz, D. Martoccia, and E. B. Patterson, Energetic Surface Smoothing of Complex Metal-Oxide Thin Films, Physical Review Letters, vol.96, issue.17, p.176102, 2006.
DOI : 10.1103/PhysRevLett.96.176102

G. Liu, Q. Lei, and E. X. Xi, Stoichiometry of SrTiO 3 films grown by pulsed laser deposition, Applied Physics Letters, vol.100, 2012.

A. I. Abutaha, S. R. Kumar, and H. N. Alshareef, Laser energy tuning of carrier effective mass and thermopower in epitaxial oxide thin films, Applied Physics Letters, vol.100, issue.16, p.162106, 2012.
DOI : 10.1063/1.4704183

C. Aruta, S. Amoruso, R. Bruzzese, X. Wang, D. Maccariello et al., Pulsed laser deposition of SrTiO3/LaGaO3 and SrTiO3/LaAlO3: Plasma plume effects, Applied Physics Letters, vol.97, issue.25, p.252105, 2010.
DOI : 10.1063/1.3529487

T. Tomio, H. Miki, H. Tabata, T. Kawai, and E. S. Kawai, thin films with Nb doping, Journal of Applied Physics, vol.76, issue.10, p.5886, 1994.
DOI : 10.1063/1.358404

M. Nemoz, Etude nano-structurale de superréseaux d'oxydes ferroélectriques, 2004.

D. W. Reagor and V. Y. Butko, Highly conductive nanolayers on strontium titanate produced by preferential ion-beam etching, Nature Materials, vol.70, issue.8, p.593, 2005.
DOI : 10.1103/PhysRev.155.796

D. J. Jefferies, single crystals, Journal of Applied Physics, vol.47, issue.2, p.778, 1976.
DOI : 10.1063/1.322609

G. Niu, G. Saint-girons, B. Vilquin, G. Delhaye, J. Maurice et al., Molecular beam epitaxy of SrTiO3 on Si (001): Early stages of the growth and strain relaxation, Applied Physics Letters, vol.95, issue.6, p.62902, 2009.
DOI : 10.1063/1.3193548

URL : https://hal.archives-ouvertes.fr/hal-00663481

A. Samarelli, L. Llin, Y. Zhang, J. Weaver, P. Dobson et al., Power Factor Characterization of Ge/SiGe Thermoelectric Superlattices at 300??K, Journal of Electronic Materials, vol.110, issue.7, p.1449, 2013.
DOI : 10.1007/s11664-012-2287-z