
HAL Id: tel-00942459
https://theses.hal.science/tel-00942459v2

Submitted on 25 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Foundations for analyzing security APIs in the symbolic
and computational model

Robert Künnemann

To cite this version:
Robert Künnemann. Foundations for analyzing security APIs in the symbolic and computational
model. Cryptography and Security [cs.CR]. École normale supérieure de Cachan - ENS Cachan, 2014.
English. �NNT : 2014DENS0001�. �tel-00942459v2�

https://theses.hal.science/tel-00942459v2
https://hal.archives-ouvertes.fr

ENSC-201X-N◦YYY

T H È S E D E D O C T O R AT D E L’ É C O L E N O R M A L E
S U P É R I E U R E D E C A C H A N

Présentée par

Monsieur Robert Künnemann

Pour obtenir le grade de

D O C T E U R D E L’ É C O L E N O R M A L E S U P É R I E U R E
D E C A C H A N

Domaine :
informatique

Sujet de la thèse :

F O U N D AT I O N S F O R A N A LY Z I N G S E C U R I T Y A P I S
I N T H E S Y M B O L I C A N D C O M P U TAT I O N A L M O D E L

Thèse présentée et soutenue à Cachan le 07/01/2014 devant le jury
composé de :

Ralf Küsters Professeur Rapporteur

Matteo Maffei Professeur Rapporteur

Hubert Comon-Lundh Professeur Examinateur

Joshua Guttman Professeur Examinateur

Thomas Jensen Directeur de recherche Examinateur

David Pointcheval Directeur de recherche Examinateur

Steve Kremer Directeur de recherche Directeur de thèse

Graham Steel Chargé de recherche Directeur de thèse

Laboratoire Spécification et Vérification
ENS de Cachan, UMR 8643 du CNRS
61, avenue du Président Wilson
94235 CACHAN Cedex, France

F O U N D AT I O N S F O R A N A LY Z I N G S E C U R I T Y A P I S I N T H E
S Y M B O L I C A N D C O M P U TAT I O N A L M O D E L

robert künnemann

October 2013

Robert Künnemann: Foundations for analyzing security APIs in the sym-

bolic and computational model, © October 2013

A map is not the territory it represents, but, if correct, it has a similar

structure to the territory, which accounts for its usefulness.

— Alfred Korzybski

Für meine Eltern.

A B S T R A C T

Security critical applications often store keys on dedicated Hardware
Security Modules (HSMs) or key-management servers to separate sen-
sitive cryptographic operations from more vulnerable parts of the
network. Access to such devices is given to protocol parties by the
means of Security APIs, e.g., the RSA PKCS#11 standard, IBM’s CCA
and the Trusted Platform Module (TPM) API, all of which protect keys
by providing an API that allows to address keys only indirectly.

This thesis has two parts. The first part deals with formal meth-
ods that allow for the identification of secure configurations in which
Security APIs improve the security of existing protocols, e. g., in sce-
narios where parties can be corrupted. A promising paradigm is to
regard the Security API as a participant in a protocol and then use
traditional protocol analysis techniques. But, in contrast to network
protocols, Security APIs often rely on the state of an internal database.
When it comes to an analysis of an unbounded number of keys, this
is the reason why current tools for protocol analysis do not work
well. We make a case for the use of Multiset Rewriting (MSR) as the
back-end for verification and propose a new process calculus, which
is a variant of the applied pi calculus with constructs for manipula-
tion of a global state. We show that this language can be translated
to MSR rules while preserving all security properties expressible in a
dedicated first-order logic for security properties. The translation has
been implemented in a prototype tool which uses the tamarin prover
as a back-end. We apply the tool to several case studies among which
a simplified fragment of PKCS#11, the Yubikey security token, and a
contract signing protocol.

The second part of this thesis aims at identifying security proper-
ties that (a) can be established independent of the protocol, (b) allow
to catch flaws on the cryptographic level, and (c) facilitate the analysis
of protocols using the Security API. We adapt the more general ap-
proach to API security of Kremer et al. to a framework that allows for
composition in form of a universally composable key-management
functionality. The novelty, compared to other definitions, is that this
functionality is parametric in the operations the Security API allows,
which is only possible due to universal composability. A Security API
is secure if it implements correctly both key-management (according
to our functionality) and all operations that depend on keys (with re-
spect to the functionalities defining those operations). We present an
implementation which is defined with respect to arbitrary functionali-
ties (for the operations that are not concerned with key-management),
and hence represents a general design pattern for Security APIs.

vii

R É S U M É

Dans une infrastructure logicielle, les systèmes critiques ont souvent
besoin de garder des clés cryptographiques sur des Hardware Secu-
rity Modules (HSMs) ou des serveurs consacrés à la gestion de clés.
Ils ont pour but de séparer les opérations cryptographiques, très cri-
tiques, du reste du réseau, qui est plus vulnérable. L’accès aux clés est
fourni au travers des APIs de sécurité, comme par exemple le standard
PKCS#11 de RSA, CCA d’IBM, ou encore l’API du Trusted Platform
Module, qui ne permettent qu’un accès indirect aux clés.

Cette thèse est composée de deux parties. La première introduit des
méthodes formelles qui ont pour but l’identification des configura-
tions dans lesquelles les APIs de sécurité peuvent améliorer le niveau
de sûreté des protocoles existants, par exemple en cas de compromis-
sion d’un participant. Un paradigme prometteur considère les APIs
de sécurité comme des participants d’un protocole afin d’étendre
l’emploi des méthodes traditionnelles d’analyse de protocole à ces
interfaces. À l’opposé des protocoles réseau, les APIs de sécurité uti-
lisent souvent une base de données interne. Ces outils traditionnels
d’analyse ne sont adaptés que pour le cas où le nombre des clés est
borné a priori.

Nous exposons également des arguments pour l’utilisation de la
réécriture de multi-ensembles MSR (Multiset Rewriting), lors de la vé-
rification. De plus, nous proposons un langage dérivant du pi-calcul
appliqué possédant des opérateurs qui permettent la manipulation
d’un état explicite. Ce langage se traduit en règles MSR en préser-
vant des propriétés de sécurité qui s’expriment dans une logique de
premier ordre. La traduction a été implémentée sous forme d’un pro-
totype produisant des règles spécifiquement adapté au prouveur ta-
marin. Plusieurs études de cas, dont un fragment de PKCS#11, le jeton
d’authentification Yubikey, et un protocole de signature de contrat
optimiste ont été effectuées.

Le deuxième partie de la présente thèse a pour but l’identification
des propriétés de sécurité qui a) peuvent être établies indépendam-
ment du protocole b) permettent de trouver des failles au niveau de la
cryptographie c) facilitent l’analyse des protocoles utilisant cette API
de sécurité.

Nous adoptons ici l’approche plus générale de Kremer et al. dans
un cadre qui permet la composition universelle, à travers une fonc-
tionnalité de gestion de clés. La nouveauté de ce genre de définition
est qu’elle dépend des opérations mises à disposition par l’API. Ceci
est seulement possible grâce à la composition universelle. Une API
de sécurité n’est sûre que si elle réalise correctement la gestion des
clés (selon la fonctionnalité présentée dans ce travail) et les opérations

viii

utilisant les clés (selon les fonctionalités qui les définissent). Pour fi-
nir, nous présentons aussi une implémentation de gestion de clés dé-
finie par rapport à des opérations arbitraires utilisant des clés non
concernées par la gestion des clés. Cette réalisation représente ainsi
un modèle générique pour le design des APIs de sécurité.

ix

P U B L I C AT I O N S

Some ideas have appeared previously in the following publications:

[1] Steve Kremer, Robert Künnemann, and Graham Steel. ‘Univer-
sally Composable Key-Management.’ In: European Symposium

on Research in Computer Security. Springer, 2013, pp. 327–344.

[2] Robert Künnemann and Graham Steel. ‘YubiSecure? Formal
Security Analysis Results for the Yubikey and YubiHSM.’ In:
Workshop on Security and Trust Management. Springer, 2012,
pp. 257–272.

xi

A C K N O W L E D G M E N T S

First things first, I would like to thank my supervisors, Steve Kremer
and Graham Steel for their patient guidance, as well as the time and
effort they have invested in me. I always found an open ear and
valuable advice in scientific questions, as well as question outside
this matter.

While preparing my thesis I was lucky to work in a relaxing and
stimulating environment, which I found in the PROSECCO group. In
particular Iro Bartzia and Alfredo Pironti, whom I shared office with,
have been great partners in discussion and in crime. Many laughs
were had. I would also like to thank Benjamin (notre benjamin), who
joined us for an internship in my last year and helped me with the
résumé in French.

Furthermore, I wish to thank my friends Esfandiar Mohammadi
and Guillaume Scerri, as well as the other members of the Labora-
toire Spécification et Vérification for their help and for the conversa-
tions we had. I am likewise indebted to Dominique Unruh for his
discussion and advice about all things UC.

A very special thank you goes to Milla, for all the love and patience,
encouragement and distraction she had for me. Well, and for reading
the manuscript, of course.

Most importantly, none of this would have been possible without
the love and support of my parents and my brother, who read the
manuscript almost in full and gave excellent critique.

xiii

C O N T E N T S

Introduction 1

1 introduction 3

1.1 Cryptographic security APIs 6

1.2 security APIs and network protocols 10

1.3 security APIs in context of arbitrary protocols 11

i analysis of stateful protocols in the symbolic

model 15

2 preliminaries 17

2.1 Terms and equational theories 17

2.2 Facts 18

2.3 Substitutions 18

2.4 Sets, sequences and multisets 18

3 a survey on existing methods 21

3.1 Running Examples 22

3.2 StatVerif 24

3.2.1 Running Example 4: Left-or-right encryption in
StatVerif 25

3.2.2 Running Example 5: Wrap/Dec in StatVerif 25

3.3 Abstraction by set-membership 26

3.3.1 Running Example 5: Wrap/Dec using abstrac-
tion by set-membership 28

3.3.2 Running Example 4: Left-or-right encryption 30

3.4 Why Horn clause approaches are unsuitable 31

3.5 Other Approaches 35

3.6 The tamarin-prover 35

3.6.1 Labelled multiset rewriting 36

3.6.2 Adversarial deduction 39

3.6.3 Security Properties 39

4 analysis of the yubikey protocol and the yubihsm 43

4.1 Yubikey and Yubikey Authentication Protocol 44

4.1.1 About the Yubikey Authentication Protocol 44

4.1.2 Formal Analysis (Uncompromised Server) 47

4.2 The YubiHSM 50

4.2.1 About the YubiHSM 50

4.2.2 Two Attacks on the Implementation of Authen-
ticated Encryption 51

4.2.3 Analysis in the Case of Server Compromise 53

4.3 Evaluation 55

4.3.1 Positive Results 55

4.3.2 Negative Results 56

xv

xvi contents

4.3.3 Possible changes to the YubiHSM 57

4.3.4 Methodology 58

4.3.5 Future work 59

5 a process calculus with state 61

5.1 Related work 62

5.2 A cryptographic pi calculus with explicit state 62

5.2.1 Syntax and informal semantics 63

5.2.2 Semantics 66

5.2.3 Discussion 69

5.3 A translation from processes to multiset rewrite rules 71

5.3.1 Translation of processes 71

5.3.2 Translation of trace formulas 77

5.3.3 Discussion 78

5.4 Correctness of the translation 85

5.4.1 Lemmas about message deduction 89

5.4.2 Inclusion I 89

5.4.3 Inclusion II 93

5.5 Case studies 94

5.5.1 Security API à la PKCS#11 95

5.5.2 Needham-Schoeder-Lowe 96

5.5.3 Yubikey 96

5.5.4 The GJM contract signing protocol 97

5.5.5 Further Case Studies 97

ii when is a security api “secure”? 99

6 when is a security api secure? 101

6.1 Criteria for persuasive definitions 101

6.2 Characteristics of a “secure” security API 102

6.3 Composability 102

6.4 Overview 103

6.5 Related work 103

7 introduction to gnuc 105

7.1 Preliminaries 105

7.2 Machines and interaction 106

7.3 Defining security via ideal functionalities 107

8 key-management functionality and refer . im-
plementation 111

8.1 Design Rationals 112

8.1.1 Policies 112

8.1.2 Sharing Secrets 113

8.1.3 Secure Setup 113

8.1.4 Operations required 114

8.2 Key-usage (ku) functionalities 114

8.2.1 Credentials 115

8.2.2 Key-manageable functionalities 115

8.3 Policies 116

contents xvii

8.4 FKM and the reference implementation 117

8.4.1 Structure and Network setup 118

8.4.2 Setup phase 120

8.4.3 Executing commands in Cpriv 120

8.4.4 Creating keys 121

8.4.5 Wrapping and Unwrapping 122

8.4.6 Changing attributes of keys 124

8.4.7 Corruption 124

8.4.8 Public key operations 125

8.4.9 Formal definition of FKM 126

8.4.10 Formal definition of the security token network 127

9 analysis of the key-management functionality 129

9.1 Properties 129

9.2 Limitations 131

9.3 Discussion 133

10 proof of emulation. 137

11 a simple case study 141

11.1 Realizing FKM for a static key-hierarchy 141

11.2 An example implementation of the authenticated chan-
nel functionality 143

Conclusion 149

12 conclusion and perspectives 151

12.1 Analysis of protocols using security APIs 151

12.2 Analysis of security APIs 154

Appendix 159

a listings for part i 161

a.1 Listings for Chapter 3 161

a.2 Listings for Chapter 4 166

a.3 Listings for Chapter 5 183

b proofs for part i 197

b.1 Correctness of tamarin’s solution procedure for trans-
lated rules 197

b.2 Proofs for Section 5.4 199

b.2.1 Proofs for Section 5.4.2 204

b.2.2 Proofs for Section 5.4.3 220

c initialisation and setup in FKM 241

c.1 Initialisation phase 241

c.2 Handling of the setup phase in FKM and STi 241

c.3 Setup assumptions for the implementation 242

d the complete proof of emulation 243

bibliography 265

L I S T O F F I G U R E S

Figure 1 Policy graph: strict role separation. 9

Figure 2 Policy graph: no separation, but still avoiding
the attack in Example 1. 9

Figure 3 Syntax of the StatVerif calculus. 24

Figure 4 Example 4 in StatVerif. The deconstructors car

and cdr extract the first respectively the last el-
ement of a pair. 25

Figure 5 Modelling for Example 5 in AVISPA Interme-
diate Format (AIF). The full code can be found
in Listing 16 in Section A.1, p. 164. 29

Figure 6 Modelling for Example 4 in AIF. The full code
can be found in Listing 14 in Section A.1, p. 162.
31

Figure 7 Structure of the One-time Password (OTP) (ses-
sion: 19, token: 16). 46

Figure 8 Advanced Encryption Standard (AES) in counter
mode (simplified). 52

Figure 9 Syntax. 63

Figure 10 Deduction rules. 66

Figure 11 Operational semantics. 68

Figure 12 Definition of JP, p, x̃K. 75

Figure 13 Example trace for translation of !Pnew. 77

Figure 14 Definition of JP, p, x̃K=pt
where {·}

a
?
=b

= { · } if
a = b and ∅ otherwise. 91

Figure 15 Distributed security tokens in the network (left-
hand side) and idealized functionality FKM in
the same network (right-hand side). 118

Figure 16 Visualisation of Case 2. 217

Figure 17 Visualisation of Case 2a. 218

Figure 18 Visualisation of Case 2b. 218

Figure 19 Visualisation of Case 1. 219

Figure 20 Visualisation of Case 2. 219

Figure 21 Visualisation of Case 1. 239

xviii

List of Tables xix

Figure 22 Visualisation of Case 2. 239

L I S T O F TA B L E S

Table 1 Case studies. 95

L I S T I N G S

Listing 1 Fach with session parameters 〈Ppid, Qpid, label〉.
Note that in this example, every step can only
be executed once. 107

Listing 2 Executing command C on a handle hwith data
m (FKM above, STi below). 121

Listing 3 Creating keys of type F, and attribute a (FKM

above, STi below). 121

Listing 4 Wrapping key h2 under key h1 with additional
information id (FKM above, STi below). 122

Listing 5 Unwrapping w created with attribute a2, F2
and id using the key h1. ∃!x.p(x) holds if there
exists exactly one x such that p(x) holds (FKM

above, STi below). 123

Listing 6 Changing the attribute of h to a ′ (FKM above,
STi below). 124

Listing 7 Corruption procedure used in steps corrupt

and wrap. 125

Listing 8 Corrupting h (FKM above, STi below). 125

Listing 9 Computing the public commands C using the
inputs public and m (FKM, note that STi does
not implement this step). 125

Listing 10 A signature functionality FSIG. 142

Listing 11 Fach with session parameters 〈Ppid, Qpid, label〉.
Note that in this example, every step can only
be executed once. 143

Listing 12 The modelling of Example 4 in StatVerif by
Arapinis et al. [5]. 161

xx Listings

Listing 13 An attempt to express Example 5 in StatVerif.
Note that the key store is modelled as single
state cell, which refers to a list of keys. This list
grows in size for every newly generated key.
ProVerif did not terminate on the horn clauses
produced by StatVerif’s translation procedure
in the experiments we conducted. 161

Listing 14 A modelling of Example 4 in AIF. 162

Listing 15 Another modelling of Example 4 in AIF. 163

Listing 16 A modelling of Example 5 in AIF. 164

Listing 17 Modelling of the Yubikey authentication proto-
col in tamarin’s MSR calculus. The counter is
modelled as a term constituting a multiset of
constants, where the cardinality of the multi-
set equals the size of the counter. 166

Listing 18 Modelling of the Yubikey authentication pro-
tocol in conjunction with the YubiHSM, for-
malised in tamarin’s MSR calculus. The counter
is modelled as a term constituting a multiset of
constants, where the cardinality of the multiset
equals the size of the counter. 168

Listing 19 Modelling of the Yubikey authentication pro-
tocol formalised in tamarin’s MSR calculus. The
counter is modelled using a “successor of” con-
structor. The permanent fact !IsSmaller can be
produced by the adversary to proof that one
counter value is smaller than another. We need
to enforce transitivity in order to be able to
proof our claims – that means, we require (us-
ing an axiom) each trace to contain IsSmaller(a,

c), should IsSmaller(a, b) and !IsSmaller(a, c) be
present, for a, b, c ∈ M. !Succ models a func-
tional relation: If !Succ(a, b), then the adver-
sary was able to show that b is the successor
of a. The relation modelled by !Smaller is not
functional: If !Smaller(a, b), then the adversary
was able to show that a is smaller than b. The
Theory() action is used to enforce that this rela-
tion (to the extend it is needed in this trace) has
to be build up before running the first protocol
actions. 173

Listing 20 Modelling of the Yubikey authentication pro-
tocol in conjunction with the YubiHSM, mod-
elling the “smaller-than” relation as described
in Listing 19. 177

Listing 21 The running example from Chapter 5. 183

Listing 22 Security à la Public-Key Cryptography Stan-
dards, Number 11 (PKCS#11). 184

Listing 23 Needham-Schoeder-Lowe protocol. 186

Listing 24 Yubikey protocol. 187

Listing 25 Garay, Jakobsson and MacKenzie’s optimistic
contract signing protocol. 190

Listing 26 Key-server example from [74]. 192

Listing 27 Key-server example from [74], modelled under
the use of insert and lookup. 194

Listing 28 Left-right example from [5], described in Ex-
ample 4 on p.22. 195

Listing 29 Initilisation (FKM). 241

Listing 30 Initilisation (STi). 241

Listing 31 The setup phase: sharing keys (FKM). 241

Listing 32 The setup phase: sharing keys (STi). 241

Listing 33 The setup phase: terminating the setup phase
(FKM). 242

Listing 34 The setup phase: terminating the setup phase
(STi). 242

Listing 35 procedure for corrupting a credential c. 245

Listing 36 Procedure for corrupting a credential c. 252

A C R O N Y M S

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

AIF AVISPA Intermediate Format

API Application Programming Interface

ATM Automated teller machine

AVISPA Automated Validation of Internet Security Protocols and
Applications

CBC Cipher-block chaining mode of operation

CCA IBM Common Cryptographic Architecture

CCM Counter mode of operation with CBC-MAC

CC Common Criteria for Information Technology Security
Evaluation

CPSA Cryptographic Protocol Shapes Analyzer

xxi

xxii acronyms

CRC Cyclic Redundancy Check

EMV Europay, MasterCard and Visa

GNUC GNUC is Not UC

HMAC keyed-hash Message Authentication Code

HOTP keyed-hash Message Authentication Code (HMAC)-based
One-time Password Algorithm

HSM Hardware Security Module

IV Initialisation Vector

MAC Message Authentication Code

MSR Multiset Rewriting

OATH Initiative For Open Authentication

OTP One-time Password

PIN Personal Identification Number

PKCS#11 Public-Key Cryptography Standards, Number 11

PPT probabilistic polynomial-time

RFC Request For Comments

RFID Radio-frequency identification

RSA RSA Security, Inc.

SIM Subscriber Identity Module

SIV Synthetic Initialization Vector

TLS Transport Layer Security

TPM Trusted Platform Module

UC Universal Composability

USB Universal Serial Bus

I N T R O D U C T I O N

1

1
I N T R O D U C T I O N

The more complex a system, the more difficult it is to verify that
it is secure. Computers used in a network protocol are often used
for other tasks, such as reading emails and surfing on the Internet,
too. The hardware and software components necessary to perform all
those tasks not only add to the complexity of analysing the system,
but also provide an increased attack surface for compromising parts
of the system that are important for the security of the protocol.

The computer at your bank that verifies your Personal Identifica-
tion Number (PIN) should not be used for reading emails, for exam-
ple. It should in fact only do what is necessary to check your PIN. It
should be behind locked doors, so it can only be accessed by autho-
rized personnel – this way, the interface between a potential outside
attacker and the computer is reduced. If the computer that checks
PINs is separate from the computer that provides you with a key-
pad and transfers your PIN, and both are separate from the computer
emails are read on, then there is actually hope that we can analyse
those systems in isolation. Furthermore, if, e. g., the computer that
checks PINs can be shown to never accept an incorrect PIN, a certain
amount of security can be guaranteed for the system as a whole, no
matter if the computer that emails are read on can be trusted or not.

There are companies that sell devices dedicated to performing PIN

verification. Those devices can only be accessed using a clearly de-
fined Application Programming Interface (API). Furthermore, there
are a number of hardware measures in place that are supposed to
prevent any other way of accessing the device, or more precisely, the
information contained on this device. Such measures include, for ex-
ample, strong enclosures that make it difficult to obtain physical ac-
cess to the main board, but also tamper detection/response circuitry
that overwrites sensitive cryptographic information in case an intru-
sion of the enclosure is detected [43].

The literature often uses the term security token for such a device.
While most people are aware what kind of device a PC is, and many
of them are aware that there are attacks, for example viruses, worms,
trojan horses etc. on PCs, to most people, the term “security token”
means nothing. Moreover, the idea of a tamper-resistant device with
cryptographic functions appears to be a very specific solution for a
very specific problem; something that is, for example, part of the op-
erations of a financial institution. Many are not aware of the ubiquity
of security tokens in our everyday lives. Not only is it the case that
security tokens are indispensable for money transfers of all kinds, be

3

4 introduction

it online banking, the use of ATMs (cash machines) or credit card ter-
minals. Also e-commerce, whose security hinges on the security of
the channel between client and merchant via the Transport Layer Se-
curity (TLS) protocol, relies on devices dedicated for cryptographic
operations. Many large vendors employ such devices to establish TLS

connections. Even smaller vendors who cannot afford such devices
rely on the integrity of the keys stored with the certification authori-
ties, for the use of the TLS protocol, which themselves (should) store
their signature keys on security tokens.

Security tokens have their part in most aspects of our lives that have
to do with money, but they are with us in a quite literal sense, too:
Many security tokens are integrated circuits we carry in our pockets,
so-called smart cards. In some cities, they are used as tickets for pub-
lic transport, as part of a public bicycle renting system or for public
libraries. They are frequently employed as part of the public health
system, too. Of course smart cards also play a role in our financial
activities: We use them for payments and money withdrawal. Eu-
rosmart reports that in 2012 alone, 6.970 billion smart cards where
shipped in telecommunication, financial services, government, trans-
port, pay TV and other areas [42]. Telecommunication makes up for
5.1 billion of this figure, the reason is the Subscriber Identity Module.
It is used with practically every mobile phone subscription and se-
curely stores the information necessary to identify and authenticate
subscribers on mobile telephony devices such as mobile phones and
computers. There are an estimated 6.8 billion active mobile phone
subscriptions in 2013, hence about the same number of Subscriber
Identity Module (SIM) cards in use [52]. Considering that there are
around 7.1 billion people in world (as of 2013), this number is sur-
prisingly high. The number of PCs seems modest in comparison: At
the beginning of 2013, Deloitte Canada estimated that in 2013, there
will be 1.6 billion PCs in use [75]. These numbers bear witness of the
impact that the development and use of security tokens have had on
modern life. The analysis of the secure operating of those device is
thus of utmost importance.

In this thesis we will use the term security API for the interface that
devices like security tokens provide to the outside. The concept of a
security API entails the following characteristics.

a. They provide (often limited) access to sensitive resources to the
outside, which is untrusted.

b. The implementation of the security API is trusted.

c. Access is only possible via the security API.

A security API is often implemented using an external piece of
hardware with a tamper-resistant enclosure, for example in form of
a security token. But the concept extends to other domains, too. A

introduction 5

virtual machine running in a secure environment or an API accessi-
ble to some untrusted code that runs in a sandbox shares the same
characteristics, as well as JavaScript code embedded in a website (un-
trusted) accesses via the web browser’s implementation of JavaScript.
Consider the following examples:

• Smart cards, pocket-sized cards with an integrated circuit, for
example the SIM used in mobile phones and the EMV standard
used for debit cards as well as credit cards provide a security
API to the mobile phone in use.

• PKCS#11 [82] defines a platform-independent API to security to-
kens, for example smart cards, but also HSMs. HSMs are physical
computing devices that can be attached directly to a server and
communicated via Ethernet, Universal Serial Bus (USB) or other
services, providing logical and physical protection for sensitive
information and algorithms.

• The IBM Common Cryptographic Architecture (CCA, [25]) is a
security API supported by the IBM 4764 and IBM 4758 Crypto-
graphic Coprocessors. Since CCA provides many functions that
are of special interest in the finance industry, it is widely used
in the ATM network, for example, to encrypt, decrypt or verify
PINs. Both PKCS#11 and CCA are commonly used interfaces to
HSMs.

• Small security tokens, for example the Yubikey manufactured
by the Swedish company Yubico provide a security API. They
can provide one-time passwords used for secure authentication.

• The Trusted Platform Module (TPM, [87]) is the specification of
a secure cryptographic processor and hence defines a security
API that can store keys. A TPM chip is built into most PCs and
notebooks that are sold today. It can be used to provide full disk
encryption, password protection and to assure the integrity of
a platform, e. g., the operating system running with a set of
applications.

• Key-management protocols, for instance the OpenPGP HTTP
Keyserver Protocol [91] can also be seen as security APIs. The
key-server in such protocols also provides a limited interface to
the outside. In particular, the computer running the key-server
is likely to be protected against physical access. This example
shows that a security API is not necessarily the interface to a
security token.

• The Google maps API provides an interface between a set of
servers trusted by Google and the Internet, which is untrusted.
This shows that a security API is not necessarily a cryptographic
API.

6 introduction

Although security APIs mainly describe the interface between the
trusted implementation and the outside, we will sometimes use this
term to refer to the trusted implementation, which maybe a piece of
hardware, a library or a network of computers.

1.1 cryptographic security apis

Many network protocols rely on cryptographic operations. Crypto-
graphic operations, in turn, rely on secrets which a) should not be
extractable by the adversary, and b) often need to be honestly gener-
ated. Let us assume for the rest of this thesis that the implementation
of the security API has a higher level of confidence than the rest of
the system. This assumption is based on the fact that it is easier to
verify than the overall system, since it is less complex. Furthermore,
it can, and often is, designed with security as a main goal, something
that is hardly true for an all-purpose computer. Under this assump-
tion, it seems rational to put the cryptographic secrets on the security
API, and forbid all direct access to them.

This has two consequences which further outline how a crypto-
graphic security API operates. First, all algorithms that depend on
cryptographic secrets need to be implemented inside the security API.
Second, all other parts of the system shall stay outside the device (as
it should be as small as possible). Assuming such a system — a net-
work of all-purpose computers that run some protocol together and
access one or many security APIs to compute cryptographic values
used in the protocol — there are four layers where things could go
wrong:

layer 1 The overall system, including the security API and other
protocol parties, from the perspective of a network adversary.

Example: The protocol for PIN verification is faulty – an ad-
versary can simply replay a previous PIN authentication to the
server. The authentication server communicates with the secu-
rity API to verify that the PIN was signed by the terminal, but
it does not check for its freshness, i. e., whether the same query
has been emitted before, and thus performs an unauthorized
transaction.

layer 2 The security API according to its specification, from the per-
spective of any machine that has full or partial access to it.

Example: The security API contains a command to export a
PIN derivation key, i. e., a cryptographic secret that allows to
generate a PIN given an account number. The command is there
for backup uses, but it allows the adversary to export the key
in a way that reveals its value. Now the adversary can compute
the PIN entry herself and perform an unauthorised transaction.
Note that the attacker only uses a sequence of perfectly legal

1.1 cryptographic security apis 7

commands that all work within their specification. Sometimes
such attacks on security APIs are called logical attacks.

layer 3 The actual algorithms that the security API computes in
order to meet its specification, from the perspective of any ma-
chine that has full or partial access to it.

Example: The algorithm used to derive PINs is flawed. The ad-
versary can forge a PIN without the knowledge of the derivation
key.

layer 4 The physical implementation of the security API, whatever
form it has. Attacks can make use of the concrete implementa-
tion of the algorithm, as well as of the hardware it runs on.

Example: The adversary can measure the power consumption
during computation of the PIN. He is able to do so, because the
enclosure does not protect the charger. The peaks in his reading
allow him to conclude the value of the generated PIN, because
the PIN derivation algorithm produces a different processor load
depending on its output.

This thesis concentrates on attacks on layer one to three. Hardware
attacks are out of scope of this work.

The following attack was discovered by Jolyon Clulow [27] and
illustrates that requests which are harmless on their own can be com-
posed to form an attack. It also shows that it is not always clear how
to classify attacks according to the above scheme.

Example 1 (Wrap/Decrypt Conflict): Consider a security API that
contains a store for an arbitrary number of keys. The security API
allows the following five kinds of request:

1. When it receives a creation request, it draws a random key k
and another random value h, the handle. In its database it
stores that h points to the key k, and that the attribute of h
is the value “init”.

2. When it receives a request “allow decryption” for a handle h,
no matter what the current attribute of h is, it is changed to
“decrypt”

3. Similarly, when it receives a request “allow wrapping” for a han-
dle h, no matter what the current attribute of h is, it is changed
to “wrap”

4. When it receives a wrapping request for h1 and h2, it performs
a database lookup for the keys k1 and k2, that h1 and h2, re-
spectively, point to, and the attribute a1 associated to h1. If a1
is “wrap”, it outputs the encryption of k2 under k1. If a lookup
fails, no output is produced.

8 introduction

5. When it receives a decryption request for a handle h and some
data c, it performs a database lookup for the key k that h points
to, as well as the attribute a associated to h. If a1 is “decrypt”,
it outputs the decryption of c using k, if decryption succeeds.
Otherwise, if a lookup fails or the decryption fails, no output is
produced.

Furthermore, the security API would be expected to specify the
dual operations to wrapping and decryption, namely unwrapping
(which decrypts a wrapping using the key a handle points to, and
stores the result as a key, giving a new handle to the imported key to
the user) and encryption (which encrypts a plaintext using the key a
given handle points to). For this example, however, theses operations
are not of importance.

Although there is no single request that reveals the value of a key k
created on the device, it is possible for an attacker to learn this value.
She proceeds as follows:

1. The attacker requests the creation of a key and obtains a handle
h. The store of the security API consists of a mapping from h

to a randomly drawn key k, and a mapping from h to the value
“init”,

2. She requests the security API to “allow wrapping” for the han-
dle h. Now, h is mapped to “wrap” instead of “init”. Otherwise,
the store remains unchanged.

3. She requests a wrapping for h with itself. Since the attribute of
h is “wrap”, she obtains k encrypted under itself.

4. She requests the security API to “allow decryption” for the han-
dle h. Now, h is mapped to “decrypt” instead of “wrap”. Oth-
erwise, the store remains unchanged.

5. She requests a decryption of the previously obtained encryption
of k under k, using the handle h. Since h has the attribute
“decrypt”, and h points to k, the decryption step succeeds and
the attacker obtains the key k in the clear. Since the secrecy of
keys generated on the device is typically guaranteed by security
APIs, we consider this an attack.

This attack can be regarded as an attack on the second layer, or as
an attack on the third layer. Let us discuss those views one after the
other: It is not important which encryption scheme is really used, any
security API that follows this specification is prone to this attack. The
attack succeeds because the security API fails to separate the roles
between a key used for wrapping and unwrapping and a key used
for encryption and decryption. Role separation can be implemented
by using the attribute to mark the role of each key. This attack is

1.1 cryptographic security apis 9

only possible because a key is allowed to switch roles from “wrap”
to “decrypt”. The “allow wrapping” and “allow decrypt” requests
should only succeed if the attribute associated to the handle is “init”.
This implements what we call a policy for keys: Only keys with the
attribute “wrap” are allowed to wrap and unwrap, only keys with
the attribute “decrypt” can encrypt and decrypt, and the attributes of
each key can only move as indicated by the graph in Figure 1.

init

wrap

decrypt

Figure 1: Policy graph: strict role separation.

Another, more permissive policy is secure, despite not strictly sepa-
rating the roles associated to the attributes “wrap” and “decrypt”(we
will formally prove this claim in Chapter 5). In addition to the pre-
vious policy, this one allows to change the attribute of a key from
“decrypt” to “wrap”, but not the other way around (see Figure 2).

init

wrap

decrypt

Figure 2: Policy graph: no separation, but still avoiding the attack in Exam-
ple 1.

On the one hand, the nature of Clulow’s attack suggests that it is
an attack on layer two. On the other hand, it can be argued that
the encryption scheme used for wrapping and unwrapping should
be a completely different encryption scheme from the one used for
encryption and decryption, since the requirements for those schemes
are different. It should, e. g., be impossible to forge a wrapping, that
is, to produce a wrapping outside the device that can be unwrapped
(imported) with a key generated on the device. Encryption and de-
cryption have different requirements, so one could consider the spec-
ification as incomplete in this regard, and the implementation of en-
cryption and wrapping using the same algorithm as an unfortunate
choice.

10 introduction

Had two completely different encryption scheme been used for
wrapping and decryption, then this attack could have been circum-
vented – depending on whether wrapping and decryption share the
same keys and, if they do, how exactly those schemes interact with
each other.

The first part of this thesis discusses the analysis of security APIs
as participants in a protocol, and on their own, both in the symbolic
model of cryptography, which allows to capture attacks on layer one
and two. We will provide techniques to discover logical attacks like
Clulow’s attack following an approach that takes the point of view
standpoint as the first view on the attack.

On the other hand, the security definition we propose in Part ii
allows to capture attacks on layer three, but requires security APIs
to separate the roles of wrapping and decryption, as they have alto-
gether different requirements. Hence, the definition excludes (secure,
but debatable) policies like the policy from Figure 2 in the first place,
taking the same standpoint as the second view on the attack.

1.2 security apis and network protocols

The overall goal of a security API in the context of network protocols
is to improve the security of the protocol that makes use of it, for
instance to make it more resistant in case protocol parties are under
adversary control. What security means in this context depends on
the protocol.

A commonly used approach is to model the security API as a par-
ticipant in a protocol, and use traditional protocol analysis techniques
to establish protocol-specific security properties. Automated analysis
tools that rely on a protocol representation in the symbolic model of
cryptography, where messages are represented as formal terms in-
stead of bit strings (also called the Dolev-Yao model [39]) effectively
describe the security API on the specification level. Therefore, they
are able to detect attacks on layer one and two. The security proper-
ties can be specific to the outside protocol, e. g., fairness in a contract
signing protocol that uses a security API as a trusted third party (see
Section 5.5.4 for a definition of contract signing protocols). It is also
possible to show properties that are protocol independent, by mod-
elling the security API as the only entity in the protocol and by giving
the adversary full access to the security API. This allows for establish-
ing properties like the secrecy of keys that are generated on the device
— no matter which protocol makes use of the security API.

While security protocol analysers can be used for the analysis of se-
curity APIs represented as protocols, they often perform badly when
protocols are stateful. But, as we have seen in Example 1, the security
depends on how attributes in the database can change over time. J.

1.3 security apis in context of arbitrary protocols 11

Herzog [49] advocates improving protocol analysers to overcome this
hindrance:

For API analysis, on the other hand, the idea of mutable
state is crucial. A cryptographic device’s internal state
can be changed by some function calls (migration or key-
loading calls, for example), and API-level attacks often
use state-changing functions in crucial ways. To use them
for interface analysis, therefore, we must extend protocol-
analysis techniques to track the device’s internal state, [..]

Understanding and overcoming theses difficulties is the goal of the
first part of this thesis. In Chapter 2 we introduce some preliminaries,
before giving a survey on existing techniques for the analysis of pro-
tocols with state in Chapter 3. A large case study discusses the afore-
mentioned Yubikey and the analysis of the authentication protocol
that builds upon its use. We present this case study in Chapter 4. We
develop our own calculus which allows to express protocols that rely
on state manipulation. We devise a method that allows to translate
protocols from this higher-level language into a protocol representa-
tion on a much lower level. This translation allows us to use existing
methods for the analysis of stateful protocols, as a number of case
studies confirm. The description of this protocol, the translation, the
case studies and the proof of correctness for this translation can be
found in Chapter 5.

1.3 security apis in context of arbitrary protocols

For the producer of a security API, the situation is different: They are
unaware of what protocols the security API she is developing might
be used for, but would like to verify security properties that can be
established

a. independent of the protocol,

b. that guarantee that there are no flaws on layer 3 and layer 2, and

c. that facilitate the analysis of higher-level protocols for her cus-
tomers.

A definition of what constitutes a “secure” security API in the
computational setting, where messages are represented as actual bit
strings and cryptographic functions are not necessarily perfect, could
establish such properties. The greatest challenge in formulating this
definition is that security APIs are quite diverse, as the previous ex-
amples have shown. In the second part of this thesis, we describe an
approach to finding a definition of security that is reasonable for a
wide range of APIs, but still not for all. This definition uses a frame-
work that allows for modular analysis in the computational model,

12 introduction

supporting the analysis of higher-level protocols. Especially in scenar-
ios where several devices implement the same security API – which
is often the case for reasons of redundancy and high-throughput, as
security APIs are often mission-critical – our definition facilitates the
analysis of higher-level protocols. By modelling the case of several
devices implementing the same security API, our definition is able to
ensure that a given policy is respected not only on each individual
device, but on the global level. The following examples shows that a
policy that is respected locally can still be violated on the global level:

Example 2: The security API from Example 1 additionally allows to re-
import a key using an unwrap request. When it receives an unwrap
request for a handle h and some data c, it performs a database lookup
for the key k, that h points to, as well as the attribute a, associated
to h. If a1 is “wrap”, it encrypts c using k. Should the decryption
succeed, a new handle h ′ is drawn. If the result of the decryption, say,
k ′ is already on the device, let a ′ be the attribute associated to some
handle pointing to k ′ (it should be the same for any handle pointing
to some key equal to k ′). If k ′ is not already on the device, let a ′ be
“init”. In its database, the security API stores that h ′ points to the
key k ′, and that the attribute of h ′ is the value a ′. To be on the safe
side, the second handle for a wrapping request has to be associated
to “wrap” or “decrypt”, but not “init”.

Even if the device implements the policy from Figure 1 on a local
scale, it is possible to use the same key for wrapping as well as for
encryption: An attacker can wrap some key that is either associated to
“wrap” or “decrypt”, and import the key on a second device using an
unwrap request (given that both devices share a common wrapping
key). The key will be new on the second device, so its handle is
associated the attribute “init”. Using either an “allow decryption” or
“allow wrapping” request, a copy on the key can be produced that
has “wrap” set on one device, and “decrypt” on the other. While the
policy was respected on each of the two devices, it is not respected
globally.

In the second part of this thesis, we establish a template for the
design of security APIs that are secure with respect to our definition.
It offers insight in some “best practices” for the design of a security
API and provides a template for a secure implementation for a wide
range of security APIs, as it can be easily extended without losing
security.

To this end, we introduce the concept of key-usage functionalities.
Some features are vital for the security of a set of security APIs, but
most features only have to be secure with respect to the function they
perform. The second kind of feature performs what we call key-usage
(as opposed to key-management). The distinction between the two al-
lows us to derive a design that allows to safely add the second kind
of feature. If the second kind of feature can be implemented securely,

1.3 security apis in context of arbitrary protocols 13

then this implementation can be integrated into the system, preserv-
ing the security of the resulting, extended system. This is important;
Ross Anderson makes following observation about a number of at-
tacks [4, 17, 18] on security APIs [3]:

At a practical level, [those attacks illustrate] one of the
main reasons APIs fail. They get made more and more
complex, to accommodate the needs of more and more
diverse customers, until suddenly there’s an attack.

Considering the apparent need to adapt security APIs to changing
requirements, we propose this “generic” implementation, and subse-
quently show it secure, as a means to the designer of a security API
to easily tell whether a certain function can be added without further
ado.

The second part of this thesis is organized as follows: We discuss
our approach for the definition of security for security API implemen-
tations, as well as previous definitions in Chapter 6. In Chapter 7, we
discuss the framework in which we will formulate this definition. In
Chapter 8, we introduce our notion of security, as well as our design
template. In Chapter 9, we discuss this notion and its limitations. In
Chapter 10, we show that our design template is secure with respect
to this notion. In Chapter 11, we instantiate this design template and
show how our notion of security helps the analysis of protocols using
security APIs.

Part I

A N A LY S I S O F S TAT E F U L P R O T O C O L S I N T H E
S Y M B O L I C M O D E L

Security APIs, such as the RSA PKCS#11 standard [81] or
IBM’s CCA [25], have been known to be vulnerable to log-
ical attacks for quite a while [64, 17]. Formal analysis is
necessary to identify secure configurations. Several mod-
els have been proposed, for example [44], however, man-
ual inspection is tedious and error-prone. A promising
paradigm is to regard the Security API as a participant in
a protocol and then use traditional protocol analysis tech-
niques, e. g., symbolic techniques [20, 29, 36], for analysis.

This section presents a survey on existing techniques to
such analysis. We introduce two examples that help point-
ing out the differences in existing methods and where they
are lacking. We propose a modelling on the basis of multi-
set rewriting, and show the advantages by verifying secu-
rity properties of the Yubikey-protocol and the YubiHSM.
We introduce our own process calculus, which include op-
erators for manipulation of a global store. This calculus
can be translated into MSR rules. We show this transla-
tion to be both sound and complete.

2
P R E L I M I N A R I E S

2.1 terms and equational theories

As usual in symbolic protocol analysis we model messages by ab-
stract terms. Therefore we define an order-sorted term algebra with
the sort msg and two incomparable subsorts pub and fresh. For each
of these subsorts we assume a countably infinite set of names, FN

for fresh names and PN for public names. Fresh names will be used
to model cryptographic keys and nonces while public names model
publicly known values. We furthermore assume a countably infinite
set of variables for each sort s, Vs and let V be the union of the set
of variables for all sorts. We write u : s when the name or variable u
is of sort s. Let Σ be a signature, i.e., a set of function symbols, each
with an arity. We denote by TΣ the set of well-sorted terms built over
Σ, PN, FN and V. For a term t we denote by names(t), respectively
vars(t) the set of names, respectively variables, appearing in t. The
set of ground terms, i.e., terms without variables, is denoted by MΣ.
When Σ is fixed or clear from the context we often omit it and simply
write T for TΣ and M for MΣ.

We equip the term algebra with an equational theory E, e. g., a fi-
nite set of equations of the form M = N where M,N ∈ T. From
the equational theory we define the binary relation =E on terms,
which is the smallest equivalence relation containing equations in
E that is closed under application of function symbols, bijective re-
naming of names and substitution of variable by terms of the same
sort. Furthermore, we require E to distinguish fresh names, i. e.,
∀a, b ∈ FN : a 6= b⇒ a 6=E b.

Example 3: Symmetric encryption can be modelled using a signature
Σ = { senc/2, sdec/2, encSucc/2, true/0 } and an equational theory de-
fined by dec(enc(m,k), k) = m and encSucc(senc(x, y), y) = true. Us-
ing the last equation, one can check whether a term can be decrypted
with a certain key.

For the rest of Part i we assume that E refers to some fixed equa-
tional theory and that the signature and equational theory always con-
tain symbols and equations for pairing and projection, i.e., {〈., .〉, fst,
snd} ⊆ Σ and equations fst(〈x, y〉) = x and snd(〈x, y〉) = y are in E.

We also employ the usual notion of positions for terms. A position
p is a sequence of positive integers and t|p denotes the subterm of t
at position p.

17

18 preliminaries

2.2 facts

We assume an unsorted signature Σfact, disjoint from Σ. The set of
facts is defined as

F := {F(t1, . . . , tk)|ti ∈ TΣ, F ∈ Σ
k
fact}.

Facts will be used both to annotate protocols, by the means of events,
and for defining multiset rewrite rules. We partition the signature
Σfact into linear and persistent fact symbols. In multiset rewriting,
which will be introduced in Section 3.6.1, linear facts may disappear,
while persistent facts may not. We suppose that Σfact always contains
a unary, persistent symbol !K and a linear, unary symbol Fr. Given
a sequence or set of facts S we denote by lfacts(S) the multiset of all
linear facts in S and pfacts(S) the set of all persistent facts in S. By
notational convention facts whose identifier starts with ‘!’ will be
persistent. G denotes the set of ground facts, i.e., the set of facts that
does not contain variables. For a fact f we denote by ginsts(f) the set
of ground instances of f. This notation is also lifted to sequences and
sets of facts as expected.

2.3 substitutions

A substitution σ is a partial function from variables to terms. We
suppose that substitutions are well-typed, i.e., they only map vari-
ables of sort s to terms of sort s, or of a subsort of s. We denote
by σ = {t1/x1

, . . . ,tn /xn} the substitution whose domain is D(σ) =

{x1, . . . , xn} and which maps xi to ti. As usual we homomorphically
extend σ to apply to terms and facts and use a postfix notation to
denote its application, e.g., we write tσ for the application of σ to the
term t. A substitution σ is grounding for a term t if tσ is ground. We
use f := g[a 7→ b] to denote f := g(x) for x 6= a and f := b otherwise,
even if f or g are not substitutions.

2.4 sets , sequences and multisets

We write Nn for the set {1, . . . , n}. Given a set S we denote by S∗

the set of finite sequences of elements from S and by S# the set of
finite multisets of elements from S. We use the superscript # to an-
notate usual multiset operation, e.g. S1 ∪# S2 denotes the multiset
union of multisets S1, S2. We will furthermore use the hash sym-
bol to distinguish multisets { . . . }# from sets {. . .}. Given a multi-
set S we denote by set(S) the set of elements in S. The sequence
consisting of elements e1, . . . , en will be denoted by [e1, . . . , en] and
the empty sequence is denoted by []. We denote by |S| the length,
i.e., the number of elements of the sequence. We use · for the op-
eration of adding an element either to the start or to the end, e.g.,

2.4 sets , sequences and multisets 19

e1 · [e2, e3] = [e1, e2, e3] = [e1, e2] · e3. Given a sequence S, we denote
by idx(S) the set of positions in S, i.e., Nn when S has n elements, and
for i ∈ idx(S), Si denotes the ith element of the sequence. Application
of substitutions and =E are lifted to sets, sequences and multisets as
expected. Set membership modulo E is denoted by ∈E, i.e., e ∈E S
if ∃e ′ ∈ S. e ′ =E e. By abuse of notation we sometimes interpret se-
quences as sets or multisets; the applied operators should make the
implicit cast clear.

3
A S U RV E Y O N E X I S T I N G M E T H O D S

Automated analysis of security protocols has known increasing suc-
cess. Using automated tools, flaws have been discovered,e. g., in the
Google Single Sign On Protocol [7], in commercial security tokens im-
plementing the PKCS#11 standard [20], as well as Lowe’s attack [66] on
the Needham-Schroeder public key protocol 17 years after its publica-
tion. While efficient tools such as ProVerif [14], AVISPA [6] or Maude-
NPA [41] exist, these tools fail to analyze protocols that require a
non-monotonic global state, i.e., some database, register or memory lo-
cation that can be read and altered by different parallel threads. In
particular ProVerif, one of the most efficient and widely used proto-
col analysis tools, relies on an abstraction of protocols as Horn clauses
which are inherently non-monotonic: Once a fact is true it cannot be
set to false anymore. This abstraction is well suited for the mono-
tonic knowledge of an attacker (who never forgets), makes the tool
extremely efficient for verifying an unbounded number of sessions
and allows for building on existing techniques for Horn clause res-
olution. While ProVerif’s input language, a variant of the applied
pi calculus [2], supports a priori encodings of a global memory, the
abstractions performed by ProVerif introduce false attacks.

Security APIs have been known to be vulnerable to logical attacks
for some time [64, 17]. Therefore, formal analysis is necessary to iden-
tify secure configurations. Several models have been proposed, some
of which require manual inspection [44], which is tedious and error-
prone. A promising paradigm is to regard the security API as a par-
ticipant in a protocol. Is it possible to translate the success protocol
analysers like ProVerif have had in the domain of network protocols
to this application? In contrast to most network protocols, security
APIs often rely on the state of an internal database, which we can
model as a set of facts, i. e., predicates on ground terms. When mov-
ing from one state to another, facts might be added or subtracted,
therefore we say that the state of a security API is non-monotonic.
When it comes to the analysis of an unbounded number of keys, this
non-monotonicity is the reason why current tools for protocol analy-
sis do not work well. Herzog [49] already identified not accounting
for mutable global state as a major barrier to the application of secu-
rity protocol analysis tools to verify security APIs. There are other
protocols besides security APIs that maintain databases, too. Key
servers need to store the status of keys, in optimistic contract signing
protocols a trusted party maintains the status of a contract, Radio-
frequency identification (RFID) protocols maintain the status of tags

21

22 a survey on existing methods

and, more generally, websites may need to store the current status of
transactions.

We present a survey on how different techniques to deal with state
in protocol analysis perform on the application of security APIs. This
includes two abstractions for the use with ProVerif (a protocol verifier
based on a representation of the protocol by Horn clauses) [5, 74], an
extension of the strand space model [47], and the tamarin prover [89],
which represents protocols as multiset rewrite rules.

While the first two approaches, both based on Horn clause res-
olution, are not sufficient for modelling even simple fragments of
PKCS#11, they show quite well why Horn clauses are not suited for
this kind of problems: If the intruder knowledge at a point in time
is coupled with the current state of the security API, ProVerif is very
likely not to terminate. If it is not coupled with the current state of the
security API, the intruder can derive knowledge and then “rewind”
the security API, which introduces false attacks.

The strand space model captures the causal relations between pro-
tocol input/output, adversarial deductions and transitions from one
state to another by modelling an execution of protocol and adversary
as an acyclic graph. As in the tamarin prover, the state itself is mod-
elled as a multiset of facts. As of now, protocol analysis in the strand
space model with state has not been mechanized yet.

The tamarin prover borrows ideas from the strand space model,
but uses classical multiset rewriting for protocol description and ad-
versarial deduction. It implements a backward induction technique
that explicitly models the causality between a message deduced by
the adversary and the protocol output allowing the deduction. Al-
though the tool is in an early development stage, we will show why
it has the potential to make fully automated verification of security
APIs possible.

3.1 running examples

The first example was introduced by Arapinis et al. as a running
example for the StatVerif tool [5].

Example 4 (Left-or-right encryption): A device is initialized to act in
either “left” or “right” mode. A key k is chosen on initialisation, and
the attacker receives the encryption of a pair of secret values under
that key. Once it is initialized, the only possible operation is to send
an encryption of a pair (x, y) under k to the device. If the device is in
“left” mode, it outputs x, otherwise it outputs y. The attacker’s goal
is to learn both secret values.

The security of this example relies on the fact that the output that
the adversary receives depends on the state of the system, and that
the states “left”, “right” and the initial state are exclusive.

3.1 running examples 23

The second example is inspired by problems that occur with key-
management APIs in the style of PKCS#11: Those APIs support creating
a large number of keys, which are supposed to stay secret. Neverthe-
less it is necessary to export such keys. For this reason, there is a
mechanism called wrapping: A key can be encrypted using a second
key, making it safe to store the key outside the device. The secrecy
of the key inside the wrapping depends on the secrecy of the second
key.

As mentioned in Example 1 on page 7, the existence of a wrap com-
mand might allow for an attack, if a decryption command is available,
too. The second example is a minimal example with respect to this
conflict.

Example 5 (Wrap/Dec): A security device accepts the following four
kinds of request:

1. When it receives a creation request, it draws a random key k
and another random value h, the handle. In its database it
stores that h points to the key k, and that the attribute of h
is the value “init”.

2. When it receives a wrapping request for h1 and h2, it performs
a database lookup for the keys k1 and k2 that h1 and h2, respec-
tively, point to, and the attribute a1 associated to h1. If a1 is
“wrap”, it outputs the encryption of k2 under k1. If the lookup
fails, no output is produced.

3. When it receives a decryption request for a handle h and some
data c, it performs a database lookup for the key k that h points
to, as well as the attribute a associated to h. If a1 is “dec”,
it outputs the decryption of c using k, if decryption succeeds.
Otherwise, if the lookup fails, no output is produced.

4. When it receives a request to change the attribute of h to a ′, it
performs a database lookup for the current attribute of h. De-
pending on its current value, the attribute in the database is
changed to a ′, or nothing is done. We consider the following
three policies:

a) No matter what the current attribute is, it may be changed
to “dec” or “wrap”. This allows for the attack sketched in
Example 1.

b) Attributes may only change from “init” to “wrap” and
from “init” to “decrypt”. This enforces a role separation
of wrapping and decryption keys.

c) Like the previous policy, but attributes may also change
from “dec” to “wrap”.

24 a survey on existing methods

〈M,N〉 ::= (terms)

| x, y, z (variables)

| a, b, c, s (names)

| f(M1, . . . ,Mn) (constructor appl.)

〈P,Q〉 ::= (processes)

| 0 (nil)

| P | Q (parallel composition)

| !P (replication)

| νn;P (restriction)

| out(M,N);P (output)

| in(M,N);P (input)

| let x = g(M1, . . . ,Mn) in P else Q (destructor appl.)

| if M = N then P else Q (conditional)

| [s 7→M]; P (state initialisation)

| read s as x;P (read)

| s :=M; P (assign)

| lock; P (locked section)

| unlock; P (locked section)

Figure 3: Syntax of the StatVerif calculus.

3.2 statverif

StatVerif is a compiler from the StatVerif calculus to Horn clauses
which can either be handled by ProVerif, or by the automated theo-
rem prover SPASS [5, 97]. The StatVerif calculus extends ProVerif’s
process calculus by the following additional constructs that handle
global state:

• initialisation of a state cell, [s 7→M],

• reading a value off a state cell, read s as x,

• writing a value to a state cell, s :=M, and

• two operators for locking and unlocking the whole state1,

where s is a name addressing a cell, M can be any term and x is a
variable that will be bound to the value of the cell. We see that the
store at some point in time is a function from names (cell names) to
terms. It is global in the sense that it might be addressed anywhere

1 Newer versions support locking individual cells.

3.2 statverif 25

let device =

out(c,pk(k)) |

(!in(c,x); lock(s); read s as y;

if y = init then

(if x = left then s := x; unlock(s)

else if x = right then s := x; unlock(s))) |

(!in(c,x); lock(s); read s as y;

if y = left then out(c,car(adec(k,x))); unlock(s)

else if y = right then out(c,cdr(adec(k,x))); unlock(s)).

let user = ν r; out(c,aenc(pk(k),r,pair(sl,sr))).

process

ν k; ν s; [s 7→init] | device | ! user
✆

Figure 4: Example 4 in StatVerif. The deconstructors car and cdr extract the
first respectively the last element of a pair.

in a process, but not by the adversary. See Figure 3 for the complete
syntax. See [5] for the semantics. We just note that StatVerif, as
well as ProVerif, divide the function symbols in the signature Σ into
constructors and destructors.

The following syntactical restrictions apply:

a. [s 7→M] may only occur once for a given cell name s, and only
in scope of a new, a parallel and a replication, but no other
construct.

b. In every branch of the syntax tree, every lock must be followed
by precisely one corresponding unlock and in between, no par-
allel, replication and unlock are allowed.

3.2.1 Running Example 4: Left-or-right encryption in StatVerif

The listing in Figure 4 shows the modelling of Example 4. Using the
Horn clauses produced by the StatVerif translation as input, ProVerif
can show that, for secret values sl and sr, the adversary is unable to
produce the pair pair(sl,sr).

3.2.2 Running Example 5: Wrap/Dec in StatVerif

The modelling is more difficult in the case of Example 5. In many
practical systems, the handle pointing to a key is some encoding of
its address in memory. This would correspond to modelling the han-
dle as a cell name in StatVerif. Developing this idea further, the han-
dle is in the scope of a restriction, which in turn is in the scope of
a replication, to allow for an unbounded number of keys. The pro-

26 a survey on existing methods

cess handling creation requests would look similar to the following
process:

!(in(c,create); ν handle; ν key; handle:=key; out(c,handle)).
✆

To treat other requests, for instance, a decryption request, the pro-
cess needs to read the key that belongs to some given handle. It can
only address the key using a cell name, in this case, the corresponding
handle. Since the cell name is in the scope of a restriction, the process
that handles decryption requests needs to be in the same scope.

A wrapping request has the same requirement for the wrapping
key, but also for the key to be wrapped. Since both keys might be
different, they could have different handles, which may point to dif-
ferent keys. But there is only one cell name in scope of the above
restriction.

We argue that StatVerif is not suitable for modelling Example 5

for an unbounded number of keys, since a) the subprocess treating
wrapping queries cannot access all keys, unless there is a cell in the
store whose value is not bound a priori, and b) our experiments in
case we have such a value, e. g., a single cell storing the list of keys,
suggest neither ProVerif not SPASS handle this case well.

The argument for a) is as follows: Let P ′ be a subprocess that treats
a wrapping query. It has to access two possibly different keys to
produce a wrapping. Since processes are finite, P ′ can only be a sub-
process of a finite number of processes that handle creation request.
This means, if P ′ is in the scope of one of the key’s restriction, it
cannot be in the scope of the other key’s restriction. The number of
those keys is not bound a priori, so to be able to address all keys,
P ′ would need to be able to access an unbounded number of keys
via the store. But assuming that each term referred in the store is of
constant length, the sum of the length of terms in the store P ′ can
access is fixed as well, since the number of cells is fixed a priori.

To support part b) of the previous claim, we conducted an experi-
ment where we modelled the store using a single state cell and stored
the keys as a list of pairs of handles and keys, see Listing 13 in Sec-
tion A.1, page 161. Whenever a key is looked up, there is a fetch
process that traverses the list. Not very surprisingly, this kind of
modelling turns out to be difficult to handle using either ProVerif or
SPASS. Both theorem provers did not terminate during our experi-
ments. In Section 3.4 we investigate further on why translations into
Horn clauses are not suitable for this kind of problems in general.

3.3 abstraction by set-membership

Similar to StatVerif, this approach aims at translating a protocol spec-
ification into Horn clauses, which can then be verified using SPASS
or ProVerif. The main idea is the following: Given a finite number

3.3 abstraction by set-membership 27

of sets, there are so-called abstractable symbols which might be ele-
ments of those sets. Those symbols can occur in terms as variables or
names. They are abstracted by the available information about which
sets they are members of. For instance, there might be the sets Wrap,
Dec and Init of keys that have the attribute “wrap”, “dec” and/or the
initial attribute, respectively. Every key that is in Wrap, not in Dec and
not in Init is represented by the term val(1, 0, 0), where the first posi-
tion represents the membership in Wrap, the second the membership
in Dec and the third the membership in Init.

The infinite set of keys is represented by a finite amount of repre-
sentatives, if there are finitely many sets. Consider now that the ad-
versary knows a message containing, as a subterm, a key k in “init”,
but not in “dec” or “wrap”. If k might move from “init” to “dec”,
it would be represented by val(0,0,1). The abstraction handles the
intruder knowledge as follows: All previous facts, including those
modelling the intruder knowledge, are maintained, but additionally,
all facts where k appears in its old form val(1,0,0) are added, but
with val(1,0,0) substituted by val(0,0,1).

The protocol specification language, called AVISPA Intermediate
Format (AIF) [83], is not a high-level language as in the case of Stat-
Verif, but a much simpler calculus based on set-rewriting. The state of
the protocol is modelled as a set of facts, for instance, the fact iknows

has arity 1 and represents the intruder knowledge, i. e., if iknows(m)

is in the state, the intruder knows the message m. In addition, the
protocol state might contain set conditions, which are of the form t ∈

M or t 6∈ M, where t is an abstractable symbol and M is a ground
term free of abstractable symbols. Abstractable symbols can appear
in other terms, for example in facts like iknows.

A transition rule has the following form:

LF · S+ · S− −[F]→ RF ·RS.

Loosely speaking, the left-hand side of a rule describes to which
states the rule can be applied, while the right-hand side describes
the changes to the state after the transition: LF represents a set of
facts that is required to be present in the state before the transition,
RF is the set of facts that is added after the transition, S+ and S− are
sets of positive and negative set conditions that are required to be
present in the state before the transition. RS is the set of positive set
conditions that is added after the transition and F is a set of newly
introduced abstractable symbols. Formally, a transition from a set S
to a set S ′ is possible, written S ⇒r S ′, if there is a grounding substi-
tution σ of a rule of the above form, and the following conditions are
fulfilled:

• (LF · S+)σ ⊂ S

• (S− ∩ S = ∅) and (S ′ = S \ S+σ)∪RFσ∪RSσ

28 a survey on existing methods

• Fσ are fresh (i. e., they do not occur in S or in any rule).

Facts and negative set conditions are persistent, but positive set con-
ditions can be removed, namely if they appear in S+ but not in RS.
A state S is reachable using the set of transition rules R, if and only
if ∅ ⇒∗

R S, where ⇒R= ∪r∈R ⇒r and ⇒∗
R is the reflexive transitive

closure of⇒R.
Let us have a look at the following example:

−[SK]→ SK∈ init(t) ·iknows(senc(SK,pair(sl,sr)))
✆

This rule has an empty left-hand side, and introduces a new ab-
stractable symbol SK. Since SK is fresh, the state is extended by a
fact iknows(senc(SK,pair(sl,sr))) and a positive set condition SK∈

init(t). This models a protocol step where a secret key is freshly
drawn, which is then added to the “init” database of a token t (t is
a constant in this case). Finally, the encryption of a pair 〈sl, sr〉 under
this freshly drawn key is output to the adversary. Assuming there are
three sets, init(t), dec(t) and wrap(t), this rule is translated to the
following Horn clause:

−→ iknows(senc(iknows(1,0,0),pair(sl,sr)))
✆

This expresses that the adversary, without any preconditions, can
learn the encryption of the secret pair under a key that is in init(t),
but not in dec(t) or wrap(t). The translation will produce additional
clauses, but this should give the gist of it.

3.3.1 Running Example 5: Wrap/Dec using abstraction by set-membership

Abstraction by set-membership works remarkably well on Example 5.
See Figure 5 for the code of this model. We use a unary function h
to model the handle that belongs to a given key. Since the handle
should reveal no information about the value of the key, there is no
rule to extract a term t from a term h(t).

The first four lines model the intruder’s deductive capabilities. The
modelling of the security device uses four sets in total: store, which
models the set of keys that are available on the device, as well as init,
dec and wrap, which model the set of keys that have the respective
attributes set.

Wrapping is modelled as a rule that for two handles that are known
to the adversary, checks if they belong to keys in the store, if the
wrapping key has “wrap” set and then adds the fact iknows(senc(

KEY1,KEY2)), but does not alter the state any further. The same holds
for decryption. The security goal is secrecy of keys: If the attacker
knows a key that is at the same time in the store, we consider this
an attack. We modelled different policies. The following two pairs
of rules both model a policy where, after initialisation, keys might

3.3 abstraction by set-membership 29

% The intruder’s deduction capabilities:

−→ iknows(Token);

iknows(K) ·iknows(M) −→ iknows(senc(K,M));

iknows(senc(K,M)) ·iknows(K) −→ iknows(M);

% Generate a key

−[KEY]→ iknows(h(KEY)) ·KEY∈ store(Token) ·KEY∈ init(Token);

% Wrap

iknows(h(KEY1)) ·iknows(h(KEY2))
·KEY1∈ wrap(Token) ·KEY1∈ store(Token) ·KEY2∈ store(Token)
−→ iknows(senc(KEY1,KEY2)) ·
KEY1∈ wrap(Token) ·KEY1∈ store(Token) ·KEY2∈ store(Token);

% SDecrypt

iknows(h(KEY)) ·iknows(senc(KEY,M)) ·KEY∈ store(Token) ·KEY∈ dec(
Token)

−→ iknows(M) ·KEY∈ store(Token) ·KEY∈ dec(Token);

% Security goal

iknows(KEY) ·KEY∈ store(Token) −→attack;
✆

Figure 5: Modelling for Example 5 in AIF. The full code can be found in
Listing 16 in Section A.1, p. 164.

become either wrapping keys or decryption keys. Otherwise, those
roles are permanent and thus exclusive.

% Policy B

KEY∈ store(Token) · KEY∈ init(Token)
−→ KEY∈ store(Token) · KEY∈ wrap(Token);

KEY∈ store(Token) · KEY∈ init(Token)
−→ KEY∈ store(Token) · KEY∈ dec(Token);

✆

The second pair of rule does not check whether a key is in init or
not, but instead uses a negative set condition to determine if the key
is in an initial state, i. e., has not been assigned the role of either a
decryption or a wrapping key yet.

% Policy B’ - simplified version of Policy B

KEY∈ store(Token) · KEY/∈dec(Token)
−→ KEY∈ store(Token) · KEY∈ wrap(Token);

KEY∈ store(Token) · KEY/∈wrap(Token)
−→ KEY∈ store(Token) · KEY∈ dec(Token);

✆

For either choice of policy, ProVerif confirms within milliseconds that
a state where the fact attack is present cannot be reached. The same
holds for the following policy, where a key might move from “dec”
to “wrap”, but not the other way around.

% Policy C

KEY∈ store(Token) · KEY∈ init(Token)

30 a survey on existing methods

−→ KEY∈ store(Token) · KEY∈ wrap(Token);
KEY∈ store(Token) · KEY∈ init(Token)

−→ KEY∈ store(Token) · KEY∈ dec(Token);
KEY∈ store(Token) · KEY∈ dec(Token)

−→ KEY∈ store(Token) · KEY∈ wrap(Token);
✆

Finally, the following example policy allows for an attack:

% Policy A -- an attack is reachable ·
KEY∈ store(Token) · KEY∈ init(Token)

−→ KEY∈ store(Token) · KEY∈ wrap(Token);
KEY∈ store(Token) · KEY∈ init(Token)

−→ KEY∈ store(Token) · KEY∈ dec(Token);
KEY∈ store(Token) · KEY∈ wrap(Token)

−→ KEY∈ store(Token) · KEY∈ dec(Token);
✆

This policy allows the attacker to change a key’s attribute from “init”
to “wrap”, produce a wrapping of a second key (possibly the wrap-
ping key itself), move the key from “wrap” to “dec” and finally obtain
a decryption of the key that was just wrapped. The translation cor-
rectly allows ProVerif to conclude that such an attack exists, showing
that this model captures the attack described in Example 1.

3.3.2 Running Example 4: Left-or-right encryption

The left-or-right encryption example (Example 4) shows the limita-
tions of abstraction by set-membership. A straight-forward mod-
elling of this example (see Figure 6) shows where the abstraction
by set-membership is too coarse. The modelling first generates an
abstractable name sk which is in the set init(token), but may be in
other sets, too. It is not possible to specify negative set conditions
on the right-hand side, which is why a second rule allows the adver-
sary to obtain the encryption of the secret pair only if sk, the only
abstractable name ever generated, is in init(token), not in any of the
other two sets. It is then possible to move the set membership from
“init” to “left”, or from “init” to “right”. Decryption gives the left or
the right element of the pair depending on the set membership. If the
adversary can derive both the left and the right part of the secret, she
has successfully mounted an attack.

ProVerif finds a (false) attack on the Horn clauses produced by this
abstraction. The reason is the following: The adversary can learn the
secret pair encrypted under the abstraction of this key, i. e., iknows(
senc(var(1,0,0),pair(sl,sr)) is a derivable fact. If this is the case, so
is iknows(senc(var(0,1,0),pair(sl,sr)), since a key that is abstracted
by val(1,0,0) can move to “left”, and therefore be substituted by (val

(0,1,0). If iknows(senc(var(0,1,0),pair(sl,sr)) is present, sl can be
derived. With the same argument, iknows(senc(var(0,0,1),pair(sl,sr
)), and therefore sr can be derived, which shows that the abstraction
introduces a false attack in this case.

3.4 why horn clause approaches are unsuitable 31

sk −→ sk∈ init(token);
SK∈ init(token) · SK/∈left(token) · SK/∈right(token) ·

−→ SK∈ init(token) ·iknows(senc(pair(sl,sr),SK));

%Set left - or - set right:

SK∈ init(token) −→ SK∈ left(token);
SK∈ init(token) −→ SK∈ right(token);

%decryption

SK∈ left(token) ·iknows(senc(pair(X,Y),SK)) −→ SK∈ left(token) ·
iknows(X);

SK∈ right(token) ·iknows(senc(pair(X,Y),SK)) −→ SK∈ right(token) ·
iknows(Y);

%Security goal

iknows(sl) ·iknows(sr) −→attack;
✆

Figure 6: Modelling for Example 4 in AIF. The full code can be found in
Listing 14 in Section A.1, p. 162.

The main problem here is that, in this abstraction, every key which
has the same set-membership is equivalent. This means that there are
really only three encryptions of the secret pair: one under val(1,0,0),
one under val(0,1,0), and one under val(0,0,1). At the same time,
the abstraction produces two clauses which allow the attacker to ob-
tain an encryption under val(0,1,0) from an encryption under val

(1,0,0) as well as an encryption under val(0,0,1). Both clauses can
be used as often as necessary to obtain this (false) attack.

3.4 why horn clause approaches are unsuitable

Why approaches based on Horn clause resolution are often not suit-
able

While protocols can be accurately represented as multiset rewrite
systems [89, 37] or in linear logic [40], the reason for ProVerif’s effi-
ciency, both in terms of computational resources and degree of au-
tomation, lies in the use of a Horn clause representation for the pro-
tocol. The attacker knowledge is modelled as a fact att(m), which is
present if the attacker knows a message m. The attacker’s deductive
capabilities are modelled as Horn clauses that derive a fact att(m)

from one or more facts att(m1), . . . , att(mn). This part of the mod-
elling seems accurate, because indeed: If an attacker knows m at
some point, much like the fact att(m) stays available for future de-
ductions, the attacker never forgets this message. Furthermore, if the
attacker can derive m from m ′, she needs to know m ′ in advance.

Protocols are modelled as oracles: If the attacker knows a message
m at some point, then he can potentially learn a new message by

32 a survey on existing methods

sending m to the protocol and thereby learning a message m ′ which
might depend on m. These protocol steps are modelled as Horn
clauses, they can be repeated arbitrarily often, even if the real system
prevents that with challenge-response mechanisms or timestamps. In
the context of security APIs, this often results in false attacks, as often
a database lookup is guarding critical protocol steps – e. g., in Exam-
ple 5, the decryption operation validates that a key has the “dec” at-
tribute set. The statement “key x has attribute a” might be true at one
point in time, and false in another – in Example 5, for instance, a key
can have “init” set, but this attribute could be removed later. How-
ever, facts produced by the Horn clause presentation of the protocol
persist.

The approach StatVerif takes is quite obvious: The translation em-
beds the state into the att-fact. There is an explicit state given by the
number of state cells that appear in the protocol. The attacker knowl-
edge is now given in relation to the explicit state of the system, so,
att(σ, t) means that the attacker can derive t when the system is in
state σ. If the state can change from σ to σ ′, then the attacker knowl-
edge is preserved, so att(σ, t) implies att(σ ′, t) in this case. Note
that this is not the complete state of a protocol, as the implicit state of
the protocol, i. e., which part is at what point of the execution, is not
recorded.

The resulting Horn clauses are meant to be verified using ProVerif,
which attempts a proof by refutation. The number of terms in the
store is hence fixed a priori by the number of cell names appearing in
the protocol description. Even if we “cheat” our way around this re-
striction by encoding a list of terms in a single cell using, e. g., nested
pairs, as we did in Section 3.2.2, the resolution algorithm used by
ProVerif does not terminate. The reason is the following: In order to
access an element of the list, e. g., to test of membership, or to retrieve
a certain item, a recursion on the list is necessary. This translates to
a Horn clause with the term encoding the list in the hypothesis and
a subterm of this term (typically the tail of the list) in the conclu-
sion. Backwards induction on this Horn clause, which represents
the recursive step, and the Horn clause that represents the initial call
of the recursion, produces an infinite set of clauses.2 A recent ex-
tension to ProVerif by Blanchet and Paiola represents lists using a
generalized notion of Horn clauses and achieves successful verifica-
tion of a number of stateless protocols involving lists of unbounded
length [16]. Combining this extension with StatVerif’s translation pro-
cedure could remedy this problem.

StatVerif avoids this issue, at least for the case where only terms of
fixed length are stored in cells, by imposing an artificial limit on the

2 The recursive step can be unified with the call, resulting in a clause that represents
the state as a list of one element and a tail. This clause can again be unified with
clause representing the recursive step, resulting in a similar clause, which represents
the state as a list of two elements and a tail. This continues ad infinitum.

3.4 why horn clause approaches are unsuitable 33

number of state cells, effectively imposing a bound on the total state.
As a consequence, previous works using the same abstraction [35]
and more recent work using StatVerif [5, 9] suffer from limitations on
the environment (the model of the TPM for instance requires a bound
on the number of times the computer can be rebooted [35]), limita-
tions on the number of fresh values that can be stored, as well as on
the number or security devices that can be modelled (the modelling
of Example 4 in StatVerif cannot capture the interaction between an
unbounded number of security devices in the network) and often re-
quire additional soundness theorems that justify simplifications on a
per-case basis [35, 9].

The “abstraction by set-membership” approach circumvents this
problem in a clever way: There are only certain parts of the state of a
protocol (abstractable objects in their terminology) that have proper-
ties that change over time and that are important for analysis. Rather
than incorporating the complete state of a system into each fact, this
abstraction incorporates only the set membership of objects that ap-
pear in terms relevant to each fact. As a side effect, the state space
is made “finite”: Every abstractable object is substituted by a repre-
sentative of its equivalence class, where two objects are equivalent if
they are members of exactly the same sets. Given that the number
of sets is finite, there are only finitely many such classes, 2n for n
the number of sets. This greatly reduces the amount of terms that
might appear inside the att-facts and therefore works very well with
ProVerif’s refutation algorithm.

Unfortunately, this abstraction is too coarse for some cases that
are relevant for our target application, security APIs. Example 4 (see
Section 3.2.1) is such a case, albeit contrived. The abstraction excludes
the analysis of scenarios in which keys might leak. Such scenarios are
very relevant in practice, where a single incident of key leakage in a
large system can result from:

• an attack on a specific key via exhaustive key-space exploration,

• not sufficiently tamper-resistant hardware that is used “in the
field” but only holds keys of lower security levels or

• incorrect handling of key-data (for example backups) by person-
nel.

The proposal for a generic security API by Cortier and Steel [30],
for instance, proposes a policy that limits the damage in case that a
key is leaked. This security API assigns a security level l ∈ N to
each handle. Handles of security level l can only be used to wrap
handles of lower security levels, which enforces a so-called strict key

hierarchy. Under these circumstances, it is possible to show that an
attacker, assuming he can learn a single key of any security level l,
is not able to learn any other key that has a higher or equal security

34 a survey on existing methods

level than l. A strict key-hierarchy allows large companies to keep the
costs of securing lower-level keys reasonable while at the same time
containing the risk of exposing a higher-level key. Other policies that
are less restrictive, but enjoy similar properties could be investigated
using automated verification tools, if those tools support modelling
key leakage.

In the case of abstraction by set-membership, the keys are the ob-
jects to be abstracted, since we want to have arbitrary many of them.
They would be abstracted by the security level, which means that
each key of the same security level falls into the same equivalence
class. Therefore, if a key of level l is leaked, every key of level l is
leaked (for the abstraction). The problem persists, even if in order
to distinguish corrupted keys from uncorrupted keys, the modelling
introduces a set for corrupted keys. If any key that is uncorrupted
can become a key of this set, the abstraction introduces a set of rules
permitting the substitution of every corruptible, but uncorrupted key
(i. e., keys of level l) by a corrupted key. Hence, within the abstraction,
the attacker would be able to decrypt any encryption with a key of
level l, nor matter if this key itself was corrupted or not, which also
restricts the use of this abstraction for higher-level protocols.

Sometimes the state of protocols cannot be modelled by a fixed
number of sets: The Yubikey protocol introduced in Chapter 4 binds
keys to a counter value to produce one-time passwords. Those proto-
col could not benefit from this abstraction, although we should note
that, in practice, due to hardware restrictions there is a maximum
number of states the counter can be in: 65 ′536. Still, this is infeasible
for an analysis in this model.

Besides those two approaches, there has also been work tailored to
particular applications: In 2010, Delaune et al. showed, using a dedi-
cated hand proof, that for analyzing PKCS#11, it is possible to bound
the message size [36]. Their analysis still requires to artificially bound
the number of keys. Similarly in spirit, in 2011, Delaune et al. gave
a dedicated result for analyzing protocols based on the TPM and its
registers [35] . However, the number of reboots (which reinitialize
registers) needs to be limited for this approach. Those two works use
the same abstraction that StatVerif employs, but for a specific case, in
other words: StatVerif is a generalisation of those approaches.

We have seen that techniques based on Horn clause resolution [14,
98] have to represent the sequence of states of a protocol through
persistent facts, in order to be useful for our application, the analysis
of security APIs. The abstraction employed in StatVerif restricts the
size of the explicit part of the state and is therefore unsuitable for
the analysis of security APIs, since our goal is to be able to deal
with an unbounded number of keys. Abstraction by set-membership
manages to partly overcome theses restrictions, but there are plenty of
cases where this abstraction is unsuitable (see above). Our conclusion

3.5 other approaches 35

is that Horn clause resolution is not of advantage in our case, and that
we need an approach that takes into account the causality between the
protocol outputs that give information to the adversary and the state
transitions that allow them.

3.5 other approaches

In the following, we give a concise summary of other approaches we
have looked at and decided not to pursue further.

The two back-ends OFMC and CL-AtSe of the Automated Vali-
dation of Internet Security Protocols and Applications (AVISPA) tool-
suite [6] have support for state manipulation. Unfortunately, both re-
quire concrete bounds on the number of sessions and nonces, which
contradicts our goal of an analysis for an unbounded number of keys.
Although SATMC can avoid this restriction in princple [45], according
to [34], SATMC performs poorly in experiments where the message
length is high.

The strand space model [92] captures the causal relations between
protocol input/output and adversarial deductions by modelling an
execution of the protocol and the adversary as an acyclic graph. To
be able to analyze optimistic fair exchange protocols, Guttman intro-
duced an extension to the strand space model [47]. In addition to
the existing kinds of nodes, modelling transmission and reception
of messages, the extension adds a new kind of node which allows
computations on a global state. Similar to the tamarin prover, which
we will introduce in the following, the global state is modelled as a
multiset of facts.

As of now, protocol analysis in the strand space model with state
has not been mechanized yet. The paradigm behind verification in
the original strand space model is the search for a finite number of
so-called shapes, which are characterisations of an infinite number of
protocol runs. The Cryptographic Protocol Shapes Analyzer [38] is
able to reduce the set of protocol runs to a finite number of shapes.
CPSA is usually able to compute a relatively small number of shapes
and verify correspondence and secrecy properties on each of them.
Unfortunately, CPSA does not support the additions accounting for
state. It is not clear how to extend the notion of shapes to state com-
putations, i. e., sequences of multisets.

3.6 the tamarin-prover

In the following, we will introduce the tamarin protocol prover [89],
a tool for the symbolic analysis of security protocols. The tamarin
prover borrows ideas from the strand space model, but uses classical
multiset rewriting for protocol description and adversarial deduction.
It implements a backward induction technique that explicitly mod-

36 a survey on existing methods

els the causality between a message deduced by the adversary and
the protocol output allowing the deduction. Although the tool is
relatively new, we will show why it has the potential to make fully
automated verification of security APIs possible.

Protocols are specified using multiset rewrite rules, a formalism
expressive enough to encode state. However, multiset rewrite rules
constitute a “low-level” specification language with no direct support
for concurrent message passing, making the encoding of protocols
difficult and error-prone. We propose a translation from a higher-
level language in Chapter 5 with the aim of mitigating this problem.

Since the underlying formalism, Multiset Rewriting (MSR), is ex-
pressive enough to encode explicit state, we are able to encode se-
curity APIs without any abstractions that enforce a monotonic state.
Additionally, tamarin supports both falsification and verification of
security goals that can be expressed as first-order formulas. Since the
tool is sound and complete, but allows to express the secrecy problem
with unbounded nonces, which is undecidable [40], there is no guar-
antee that the tool terminates. In order to achieve termination, some
intervention is necessary: Lemmas need to be used to cut branches in
the proof attempt.

Both Example 4 and Example 5 can be analyzed for an unbounded
number of keys and security devices using tamarin. Furthermore, it
is able to reproduce, and improve on, existing results on PKCS#11 [36]
and the TPM [35] that required a bound on the number of keys, re-
spectively the number of security devices and reboots of those de-
vices without such restriction. In Chapter 4 we show how tamarin
can be used for the analysis of an authentication protocol based on
hardware-generated one-time passwords, an example that we con-
sider to be out of the scope of the previously discussed tools. Both
the case studies presented with abstraction by set-membership [74],
as well as those presented with StatVerif [5] were successfully verified
with the tamarin prover [71, 68, 70].

Contrary to ProVerif, tamarin sometimes requires additional typing

lemmas which are used to guide the proof. These lemmas need to be
written by hand but are proven automatically. In four out of seven
case studies we needed to provide at least one such lemma manually.

3.6.1 Labelled multiset rewriting

We now define the syntax and semantics of labelled multiset rewrite
rules, which are the input language of the tamarin tool. We largely
follow the presentation by Meier, Schmidt et al. [89]. We remind the
reader that we have introduced facts in Section 2.2 on page 18.

Definition 1 (Multiset rewrite rule): A labelled multiset rewrite rule ri
is a triple (l, a, r), l, a, r ∈ F∗, written l −[a]→ r. We call l = prems(ri)

3.6 the tamarin-prover 37

the premises, a = actions(ri) the actions, and r = conclusions(ri) the
conclusions of the rule.

Example 6: The following rule has the fact Init(k) as premise and the
permanent fact (see Section 2.2) !Left(k) as conclusion. It is part of the
modelling of the Left/Right device from Example 4. This rule models
that an initialized, but unconfigured security device can be put in
“left” mode, identifying the device by its secret key k. The action
SetLeft(k) serves the purpose of logging that this step happened.

[Init(k)] −[SetLeft(k)]→ [!Left(k)]

Definition 2 (Labelled multiset rewriting system): A labelled multiset
rewriting system is a set of labelled multiset rewrite rules R, such that
each rule (l −[a]→ r) ∈ R satisfies the following conditions:

• l, a, r do not contain fresh names

• r does not contain Fr-facts

• for each (l ′ −[a ′]→ r ′) ∈E ginsts(l −[a]→ r) we have that
∩r ′′=Er ′names(r ′′)∩ FN ⊆ ∩l ′′=El ′names(l ′′)∩ FN

The third condition ensures that protocol rules cannot create fresh
names. Instead, we define one distinguished rule Fresh which is the
only rule allowed to have Fr-facts on the right-hand side and to create
fresh names, i. e., all fresh names originate from this rule.

Fresh : [] −[]→ [Fr(x : fresh)]

Example 7: The complete modelling of Example 4 consists of the fol-
lowing five rules:

P :=
{

[Fr(k),Fr(sl),Fr(sr)] −[New(k, sl, sr)]→

[Init(k),Out(senc(〈sl, sr〉, k))],

[Init(k)] −[SetLeft(k)]→ [!Left(k)],

[Init(k)] −[SetRight(k)]→ [!Right(k)],

[!Left(k), In(senc(〈ml,mr〉, k))] −[Read(ml)]→ [Out(ml)],

[!Right(k), In(senc(〈ml,mr〉, k))] −[Read(mr)]→ [Out(mr)]
}

The first rule initialises a device with a fresh key and fresh secrets.
The encrypted pair of secrets is output and a temporary fact marks
the device as freshly initialised. The two next rules allow for setting
the device to either “left” or “right” mode by replacing the temporary
fact by the corresponding permanent fact. The two last rules allow
for retrieving one of the two secrets if a permanent fact is present to
witness that the device has been set to “left” or “right” mode.

The semantics of the rules is defined by a labelled transition rela-
tion.

38 a survey on existing methods

Definition 3 (Labelled transition relation for multiset rewriting): Given
a multiset rewriting system R we define the labeled transition relation

→R⊆ G# ×P(G)× G# as

S
a
−→R ((S \# lfacts(l))∪# r)

if and only if l −[a]→ r ∈E ginsts(R ∪ Fresh), lfacts(l) ⊆# S and
pfacts(l) ⊆ S.

Example 8: Given the previous multiset rewriting system P, the fol-
lowing transition corresponds to setting one out of two initialised
security devices to “left” mode:

{ Init(k1), Init(k2) }
SetLeft(k2)
−−−−−−−→P{ Init(k1), Left(k2) }

#

Definition 4 (Executions): Given a multiset rewriting system R we de-
fine its set of executions as

execmsr(R) =
{

∅
A1−→R . . .

An−→R Sn |

∀a, i, j : 0 6 i 6= j < n.(Si+1 \
Si) = {Fr(a)}

⇒ (Sj+1 \
Sj) 6= {Fr(a)}

}

The set of executions consists of transition sequences that respect
freshness, i. e., for a given name a the fact Fr(a) is only added once,
or in other words the rule Fresh fires at most once for each name.

Example 9: The following execution is in execmsr(P ∪ {Fresh }) (for
readability, we write −→ instead of −→P∪{Fresh }):

∅ −→ {Fr(k) }# (Fresh)

−→ {Fr(k),Fr(l) }# (Fresh)

−→ {Fr(k),Fr(l),Fr(r) }# (Fresh)
New(k,l,r)
−−−−−−−→ { Init(k),Out(senc(〈l, r〉, k)) }# (1st rule in P)
SetLeft(k)
−−−−−−→ { !Left(k),Out(senc(〈l, r〉, k)) }# (3rd rule in P)

Definition 5 (Traces): The set of traces is defined as

tracesmsr(R) =
{

[A1, . . . , An] | ∀ 0 6 i 6 n. Ai 6= ∅

and ∅
A1
=⇒R . . .

An
=⇒R Sn ∈ execmsr(R)

}

where A
=⇒R is defined as ∅

−→∗
R

A
−→R

∅
−→∗

R.

Note that the set of traces is a sequence of sets of facts.

Example 10: From the previous example we conclude that:

[New(k, l, r), SetLeft(k)] ∈ tracesmsr(P ∪ {Fresh }).

3.6 the tamarin-prover 39

3.6.2 Adversarial deduction

To model the adversary’s message deduction capabilities, we intro-
duce the following set of rules MD:

Out(x) −[]→ !K(x) (MDOut)

!K(x) −[K(x)]→ In(x) (MDIn)

−[]→ !K(x : pub) (MDPub)

Fr(x : fresh) −[]→ !K(x : fresh) (MDFresh)

!K(x1), . . . , !K(xk) −[]→ !K(f(x1, . . . , xk))

for f ∈ Σk (MDAppl)

Example 11: The following execution is in execmsr(P ∪ {Fresh } ∪MD)

(for readability, we write −→ instead of −→P∪{Fresh }∪MD):

∅ −→ {Fr(k) }# (Fresh)

−→ {Fr(k),Fr(l) }# (Fresh)

−→ {Fr(k),Fr(l),Fr(r) }# (Fresh)
New(k,l,r)
−−−−−−−→ { Init(k),Out(senc(〈l, r〉, k)) }# (1st rule in P)
SetLeft(k)
−−−−−−→ { !Left(k),Out(senc(〈l, r〉, k)) }# (3rd rule in P)

−→ { !Left(k), !K(senc(〈l, r〉, k)) }# (MDOut)
K(senc(〈l,r〉,k))
−−−−−−−−−−→ {!Left(k), !K(senc(〈l, r〉, k)),

In(senc(〈l, r〉, k))}# (MDIn)
Read(l)
−−−−−→ { !Left(k), !K(senc(〈l, r〉, k)),Out(l) }# (5th rule in P)

−→ { !Left(k), !K(senc(〈l, r〉, k)), !K(l) }# (MDOut)
K(l)
−−−→ { !Left(k), !K(senc(〈l, r〉, k)), In(l) }# (MDIn)

Therefore, we have the following trace:

(New(k, l, r), SetLeft(k),K(senc(〈l, r〉, k)),Read(l),K(l))

∈ tracesmsr(P ∪ {Fresh }∪MD)

This trace contains the action K(l), which is often used to witness the
fact that the adversary is able to deduce a term, in this case l.

3.6.3 Security Properties

In the tamarin tool, security properties are described in an expressive
two-sorted first-order logic. The sort temp is used for time points,
Vtemp are the temporal variables [89].

40 a survey on existing methods

Definition 6 (Trace formulas): A trace atom is either false ⊥, a term
equality t1 ≈ t2, a time point ordering i⋖ j, a time point equality
i

.
= j, or an action F@i for a fact F ∈ F and a time point i. A trace

formula is a first-order formula over trace atoms.

To define the semantics, we let each sort s have a domain D(s).
Let D(temp) = Q, D(msg) = M, D(fresh) = FN, and D(pub) = PN.
A function θ : V → M ∪ Q is a valuation if it respects sorts, that is,
θ(v) ∈ D(s) for all sorts s and all v ∈ Vs. If t is a term, tθ is the
application of the homomorphic extension of θ to t.

Definition 7 (Satisfaction relation): The satisfaction relation (tr, θ) �

ϕ between trace tr, valuation θ and trace formula ϕ is defined as
follows:

(tr, θ) � ⊥ never

(tr, θ) � F@i iff θ(i) ∈ idx(tr) and Fθ ∈E trθ(i)

(tr, θ) � i⋖ j iff θ(i) < θ(j)

(tr, θ) � i
.
= j iff θ(i) = θ(j)

(tr, θ) � t1 ≈ t2 iff t1θ =E t2θ

(tr, θ) � ¬ϕ iff not (tr, θ) � ϕ

(tr, θ) � ϕ1 ∧ϕ2 iff (tr, θ) � ϕ1 and (tr, θ) � ϕ2

(tr, θ) � ∃x : s.ϕ iff there is u ∈ D(s) such that

(tr, θ[x 7→ u]) � ϕ

When ϕ is a ground formula we sometimes simply write tr � ϕ as
the satisfaction of ϕ is independent of the valuation.

Definition 8 (Validity, satisfiability): Let Tr ⊆ (P(G))∗ be a set of traces.
A trace formula ϕ is said to be valid for Tr, written Tr �∀ ϕ, if for any
trace tr ∈ Tr and any valuation θ we have that (tr, θ) � ϕ.

A trace formula ϕ is said to be satisfiable for Tr, written Tr �∃ ϕ, if
there exist a trace tr ∈ Tr and a valuation θ such that (tr, θ) � ϕ.

Example 12: The following formula is valid for the trace from Exam-
ple 11:

∃k, sl, sr : msg, i, j : temp. New(k, sl, sr)@i∧ K(sl)@j,

since for any valuation θ such that

θ(k : msg) = k θ(sl : msg) = l θ(sr : msg) = r

θ(i : temp) = 0 θ(j : temp) = 4

we have that

((New(k, l, r), SetLeft(k),K(senc(〈l, r〉, k)),Read(l),K(l)), θ)

� ∃k, sl, sr : msg, i, j : temp. New(k, sl, sr)@i∧ K(sl)@j.

3.6 the tamarin-prover 41

Note that Tr �∀ ϕ iff Tr 6�∃ ¬ϕ. Given a multiset rewriting system
R we say that ϕ is valid, written R �∀ ϕ, if tracesmsr(R) �∀ ϕ. We say
that ϕ is satisfied in R, written R �∃ ϕ, if tracesmsr(R) �∃ ϕ. Similarly,
given a ground process P we say that ϕ is valid, written P �∀ ϕ,
if tracespi(P) �∀ ϕ, and that ϕ is satisfied in P, written P �∃ ϕ, if
tracespi(P) �∃ ϕ.

Example 13: The following trace formula expresses the secrecy of the
pair generated by the security device in Example 4:

φ := ¬(∃k, sl, sr : msg, i, j : temp. New(k, sl, sr)@i∧ K(〈sl, sr〉)@j)

The security of Example 4 is therefore expressed via the property
P ∪ {Fresh }∪MD �∀ φ.

Now that the notions of multiset rewrite rules and security prop-
erties of the form tamarin uses are layed out, we can proceed to the
analysis of the Yubikey protocol in the next chapter.

4
A N A LY S I S O F T H E Y U B I K E Y P R O T O C O L A N D T H E
Y U B I H S M

The problem of user authentication is central to computer security
and of increasing importance as the cloud computing paradigm be-
comes more prevalent. Many efforts have been undertaken to replace
or supplement user passwords with stronger authentication mecha-
nisms [19]. The Yubikey is one such effort. Manufactured by Yubico,
a Swedish company, the Yubikey itself is a low cost ($25), thumb-
sized USB device. In its typical configuration, it generates a OTPs

based on encryptions of a secret value, a running counter and some
random values using a unique AES-128 key contained in the device.
The Yubikey authentication server accepts an OTP only if it decrypts
under the correct AES key to a valid secret value containing a counter
larger than the last counter accepted. The counter is thus used as
a means to prevent replay attacks. To date, over a million Yubikeys
have been shipped to more than 30,000 customers including govern-
ments, universities and enterprises, e.g. Google, Microsoft, Agfa and
Symantec [102]. Despite missing certification for governmental stan-
dards, several contractors of the U.S. Department of Defense switched
to the Yubikey, after RSA’s SecureID database was hacked in March
2012 [101].

Despite its widespread deployment, the Yubikey protocol has re-
ceived little independent security analysis. Yubico themselves present
some security arguments on their website [104]. A first independent
analysis was given by blogger Fredrik Björck in 2009 [13], raising is-
sues that Yubico responded to in a subsequent post [12]. Oswald,
Richter, et al. analyse the Yubikey, version 2.0, for side-channel at-
tacks [76]. They show that non-invasive measurements of the power
consumption of the device allow retrieving the AES-key within ap-
proximately one hour of access. The authors mention a more recent
version of the Yubikey, Yubikey Neo [103] which employs a CC cer-
tified smart-card controller that was designed with regard to imple-
mentation attacks and is supposed to be more resilient to power con-
sumption analysis. Our analysis, however, is focussed on version 2.0
of the original Yubikey.

The only formal analysis of the protocol itself that we are aware
of was carried out by Vamanu [96], who succeeded in showing the
absence of replay attacks for an abstract version of the Yubikey OTP

protocol for a bounded number of fresh OTPs. In the first section
of this chapter, we give a formal model for the operation of the Yu-
bikey OTP protocol, version 2.0, in the form of multiset rewrite rules

43

44 analysis of the yubikey protocol and the yubihsm

for tamarin, which was not available at the time of Vamanu’s analy-
sis. We prove security properties of the protocol for an unbounded
number of fresh OTPs using the tamarin prover.

In the second section of this chapter, we analyze the security of the
protocol with respect to an adversary that has temporary access to the
authentication server. To address this scenario, Yubico offers a small
Hardware Security Module (HSM) called the YubiHSM, intended to
protect keys even in the event of server compromise. We show that, if
the same YubiHSM configuration is used both to set up Yubikeys and
run the authentication protocol, there is inevitably an attack that leaks
all of the keys to the attacker. Our discovery of this attack lead to a
Yubico security advisory in February 2012 [105]. In the case where
separate servers are used for the two tasks, we give a configuration
for which we can show (using tamarin) that if an adversary can com-
promise the server running the Yubikey-protocol, but not the server
used to set up new Yubikeys, she cannot obtain the keys used to pro-
duce one-time passwords. The third section of this chapter evaluates
our results and methodology.

All our analysis and proofs are in an abstract model of cryptogra-
phy in the Dolev-Yao style and make various assumptions (that we
will make explicit) about the behaviour of the Yubikey and YubiHSM.
When we refer to the Yubikey, or the Yubikey protocol, we mean ver-
sion 2.0 of the hardware token and the authentication protocol. We
analysed version 0.9.8 beta of the YubiHSM and validated our attack
on this device. According to the documentation, the model presented
in Section 4.2 remains unchanged for the publicly available version
1.0 of the hardware device.

The analysis described in this chapter is joint work with Graham
Steel and was published at STM 2012 [60].

4.1 yubikey and yubikey authentication protocol

This section first discusses the Yubikey and the Yubikey authentica-
tion protocol, before describing the modelling used for security anal-
ysis.

4.1.1 About the Yubikey Authentication Protocol

In the remainder, we will cover the authentication protocol as it per-
tains to version 2.0 of the Yubikey device [93].

The Yubikey is connected to the computer via the USB port. It iden-
tifies itself as a standard USB keyboard in order to be usable out-of-the-

box in most environments, using the operating system’s native drivers.
Since USB keyboards send “scan codes” rather than actual characters,
the character the Yubikey transmits to the systems depends on the
mapping from scan codes to characters, i. e., keyboard layout on the

4.1 yubikey and yubikey authentication protocol 45

system. In order to transmit the correct characters in the majority of
environments, the Yubikey employs a modified hexadecimal encod-
ing, called modhex, which uses characters that have the same position
on many different keyboard layouts, including the French AZERTY,
the German QUERTZ and the US QWERTY layout. Each keystroke
carries 4 bits of information [93, Section 6.2].

The Yubikey can be configured to work in any of the following
modes [93, Section 2.1]:

• Yubikey OTP, which is the method that is typically employed

• OATH-HOTP, where the OTP is generated according to the stan-
dard RFC 4226 HOTP algorithm,

• Challenge-response mode, where a client-side API is used to re-
trieve the OTP, instead of the keyboard emulation, and

• Static mode, where a (static) password is output instead of an
OTP.

We will focus only on the Yubikey OTP mode, which we will explain
in detail. Depending on the authentication module used on the server,
there are four basic authentication modes [107, Section 3.4.1]:

• User Name + Password + YubiKey OTP

• User Name or YubiKey OTP + Password

• YubiKey OTP only

• User Name + Password

As the security provided by a user-chosen password is an orthogo-
nal topic and the OTP is the main feature of the Yubikey, we will only
focus on the third authentication mode.

The Yubikey has exactly one button. If this button is pressed, it
emits a string via USB. The string emitted by the Yubikey is a 44-
character string (i. e., 22 bytes of information in modhex encoding,
see above) and consists of the unique public ID (6 bytes) and the OTP

(16 bytes), encrypted under its AES key [55]. The length of the OTP is
exactly the block-length of AES. It contains the following information
(in order) [93, Section 6.1].

• the unique secret ID (6 bytes)

• a session counter (2 byte)

• a timecode (3 byte)

• a token counter (1 byte)

• a pseudo-random value (2 bytes)

46 analysis of the yubikey protocol and the yubihsm

8792ebfe26cc 0013 c0a8 00 10 4495 e9ec
Unique Device Id

Session Counter

Timestamp

Token Counter

Pseudo-random

CRC-16 value

Figure 7: Structure of the OTP (session: 19, token: 16).

• a CRC-16 checksum (2 byte)

See Figure 7 for an example.
Yubico assigns an AES key and a public and secret ID to the Yu-

bikey before shipment, but they can be overwritten. The Yubikey is
write-only in this regard, thus it is not possible to retrieve the secret
ID nor the AES key. The session counter is incremented whenever
the Yubikey is plugged in. Once it reaches its limit of 216 = 65536,
it cannot be used anymore. The timecode is incremented by an 8Hz
internal clock. When it reaches its limit, the session is terminated,
i. e., no more OTPs can be generated. This happens after approxi-
mately 24 days. The token counter is incremented whenever an OTP

is generated. When it reaches its limit of 256, it restarts at 1 instead
of terminating the session. The pseudo-random value of length two
bytes is supposed to add entropy to the plaintext, while the Cyclic
Redundancy Check (CRC) is supposed to detect transmission errors.
It does not provide cryptographic integrity.

A Yubikey stores public and secret ID pid and sid, and the AES

key k, and is used in the following authentication protocol: The user
provides a client C with the Yubikey’s output pid, otp,e. g., by filling it
in a web form. The infix operator "‖" denotes concatenation.

C→ S : pid ‖ otp ‖nonce

S→ C : otp ‖nonce ‖ hmac ‖ status

Here nonce is a randomly chosen value between 8 and 20 bytes and
hmac is a Message Authentication Code (MAC) over the parameters
using a key present on the server and the client. By status, we denote
additional status information given in the response, containing an er-
ror code that indicates either success or where the verification of the
OTP failed, plus (in case of success) the value of the internal times-
tamp, session counter and token counter when the key was pressed
and more [94].

The server S accepts the token if and only if either the session
counter is bigger than the last one received, or the session counter
has the same value but the token counter is incremented. It is pos-
sible to verify if the timestamp is in a certain window with respect
to the previous timestamp received, however, our model does not
include the timing of messages, therefore we ignore this (optional)
check.

4.1 yubikey and yubikey authentication protocol 47

4.1.2 Formal Analysis (Uncompromised Server)

We are using tamarin for the analysis because it supports the mod-
elling of explicit state, which is an important part of this protocol.
Consider, for example, that the last counter received from some Yu-
bikey is saved on the server. The protocol relies on the fact that once
an OTP with a counter value has been accepted, the last counter value
is updated. Certain OTP values that would have been accepted be-
fore will be rejected from this moment on. We argued in Chapter 3,
specifically Section 3.4, why this kind of “non-monotonicity” does
not work well with many abstractions that are used in the context of
automated protocol verification. As we will show in the course of the
next chapters, tamarin allows for the analysis of this protocol.

An important part of the modelling of the protocol is to determine
whether one counter value is smaller than another. To this end, our
modelling employs a feature added to the development version of
tamarin as of October 2012, a union operator ∪# for multisets of mes-
sage terms. The operator is denoted with a plus sign (“+”) in tamarin;
to avoid confusion we will use the same notation in the multiset
rewriting calculus. We model the counter as a multiset only consist-
ing of the symbol “one”. The cardinality of the multiset is the value
of the counter. A counter value is considered smaller than another
one, if the first multiset is included in the second. We enforce those
semantics by adding an axiom that requires, for all instantiations of
rules annotated with Smaller(a, b), that a is a subset of b:

∀i : temp, a, b : msg. Smaller(a, b)@i⇒ ∃z : msg.a+ z = b

Recall that i is a time-points and Event@i means that the trace con-
tains a rule instantiation that produces the action Event at time point
i.

We had to simplify the modelling of the session and token counter:
Instead of having two counters, we just model a single counter. Since
the Yubikey either increases the session counter and resets the token
counter, or increases the token counter and leaves the session counter
untouched, it implements a complete lexicographical order on the
pair (session counter, token counter). Since the authentication server
accepts an OTP if either the session counter is bigger than the last
one received, or the session counter has the same value but the token
counter is incremented, we let it accept the single counter if it is larger
than previously received counter.

48 analysis of the yubikey protocol and the yubihsm

The following rule models the initialisation of a Yubikey. A fresh
public ID (pid), secret ID (sid) and Yubikey-key (k) are drawn, and
saved on the server and the Yubikey.

Fr(k),Fr(pid),Fr(sid)

−[Protocol(), Init(pid, k),ExtendedInit(pid, sid, k)]→

!Y(pid, sid),Y_counter(pid, ′1 ′), Server(pid, sid, ′1 ′),

!SharedKey(pid, k)

The Fr-facts guarantee that each instantiation of this rule replaces k,
pid and sid by different fresh names. The Yubikey is identified by its
public ID, thus the permanent fact !Y stores the corresponding secret
ID, and !SharedKey the corresponding key k, which is shared with the
server, i. e., rules both on the side of the authentication server and
the Yubikey make use of this fact. Y_counter is the current counter
value stored on the Yubikey. Server models the table on the server-
side, storing which Yubikey is associated with which secret ID and
the value of the last counter received.

The next rule models how the counter is increased when a Yubikey
is plugged in. As mentioned before, we model both the session and
the token counter as a single counter. We over-approximate in the
case that the Yubikey increases the session token by allowing the ad-
versary to instantiate the rule for any counter value that is higher
than the previous one, using the Smaller action.

Y_counter(pid, otc), In(tc) −[Yubi(pid, tc),Smaller(otc, tc)]→

Y_counter(pid, tc)

Note that the adversary has to input tc. We can only express proper-
ties about the set of traces in tamarin, e. g., the terms the adversary
constructs in a given trace, but not the terms she could construct in
this trace. By requiring the adversary to produce all counter values,
we can ensure that they are in !K, i. e., the adversary’s knowledge.

When the button is pressed, an encryption is output in addition to
increasing the counter:

!Y(pid, sid),Y_counter(pid, tc), !SharedKey(pid, k), In(tc),Fr(npr),

Fr(nonce)

−[YubiPress(pid, tc)]→

Y_counter(pid, tc + ′ 1 ′),Out(〈pid,nonce, senc(〈sid, tc,npr〉, k)〉)

4.1 yubikey and yubikey authentication protocol 49

The output can be used to authenticate with the server, in case that
the counter inside the encryption is larger than the last counter stored
on the server:

Server(pid, sid, otc), In(〈pid,nonce, otp〉), !SharedKey(pid, k), In(otc)

−[Login(pid, sid, tc, otp), LoginCounter(pid, otc, tc),

Smaller(otc, tc)]→

Server(pid, sid, tc)

for otp = senc(〈sid, tc, pr〉, k). Tamarin is able to prove the following
properties.

1. The absence of replay attacks:

¬(∃i, j, pid, sid, x, otp1, otp2.

Login(pid, sid, x, otp1)@i∧ Login(pid, sid, x, otp2)@j

∧¬(i = j)).

There are no two distinct logins that accept the same counter
value. Note that this property is stronger than showing that no
two distinct logins for the same OTP exists, as two OTPs that are
equal necessarily contain the same counter value.

2. Injective correspondence between pressing the button on a Yu-
bikey and a successful login:

∀ pid, sid, x, otp, t2.

Login(pid, sid, x, otp)@t2 ⇒

∃t1.YubiPress(pid, x)@t1 ∧ t1 ⋖ t2
∧ ∀otp2, t3.Login(pid, sid, x, otp2)@t3 ⇒ t3 = t2

A successful login must have been preceded by a button press
for the same counter value. Furthermore, there is not second,
distinct login for this counter value.

3. The fact that the counter values associated to logins are mono-
tonically increasing in time, which implies that a successful lo-
gin invalidates previously collected OTPs.

∀ pid, otc1, tc1, otc2, tc2, t1, t2, t3. Smaller(tc1, tc2)@t3
∧ LoginCounter(pid, otc1, tc1)@t1
∧ LoginCounter(pid, otc2, tc2)@t2
⇒ t1 ⋖ t2

The absence of replay attacks is proven by showing the following,
stronger property, which we use as an invariant:

∀ pid, otc1, tc1, otc2, tc2, t1, t2. LoginCounter(pid, otc1, tc1)@t1
∧ LoginCounter(pid, otc2, tc2)@t2 ∧ t1 ⋖ t2

⇒ ∃z.tc2 = z+ tc1

50 analysis of the yubikey protocol and the yubihsm

Intuitively, this means that counter values are strictly increasing in
time. If counter values are increasing strictly in time, any two lo-
gins with the same counter value are in fact the same, i. e., there are
no replay attack. Tamarin is able to prove the invariant, as well as
the security properties completely automatically. Note that in this
model, the adversary has no direct access to the server, she can only
control the network (as well as the Yubikey according to its specifica-
tion). A stronger attack model is discussed in the next section. For
the complete input to tamarin, including the multiset rewrite rules
constituting the model, as well as the security properties and helping
lemmas, see Listing 17 in Section A.2. All source files and proofs are
available online, too [59].

4.2 the yubihsm

The results from the previous chapter assume that the authentication
server remains secure. Unfortunately, such servers are valuable tar-
gets, and consequently successful attacks occur from time to time –
as in the case of the RSA Security, Inc. (RSA) SecurID system where
attackers were able to compromise the secret seed values stored on
the server and thereby fake logins for sensitive organisations such as
Lockheed Martin [56]. RSA now use an HSM to protect seeds in the
event of server compromise. Yubico also offer (and use themselves)
an application specific HSM, the YubiHSM to protect the Yubikey AES

keys in the event of an authentication server compromise by encrypt-
ing them under a master key stored inside the YubiHSM. In the sec-
ond part of our chapter, we analyse the security of the YubiHSM API.
First we show that due to an apparent oversight in the cryptographic
design, an attacker with access to the server where Yubikey AES keys
are generated is able to decrypt the encrypted keys and obtain them
in clear. We then prove secrecy of keys in various configurations of
YubiHSMs and servers, and suggest design changes that would allow
a single server to be used securely.

4.2.1 About the YubiHSM

The YubiHSM is also a USB device about 5 times thicker than a Yu-
bikey. According to Yubico, it “provides a low-cost [$500] way to
move out sensitive information and cryptographic operations away
from a vulnerable computer environment without having to invest
in expensive dedicated Hardware Security Modules (HSMs)” [106].
The YubiHSM stores a very limited number of AES keys in a way that
the server can use them to perform cryptographic operations with-
out the key values ever appearing in the server’s memory. These
‘master keys’ are generated during configuration time and can nei-
ther be modified nor read at runtime. The master keys are used to

4.2 the yubihsm 51

encrypt working keys which can then be stored safely on the server’s
hard disk. The working keys are encrypted inside so-called AEADs

(blocks produced by authenticated encryption with associated data).
In order to produce or decrypt an AEAD, an AES key and a piece of
associated data is required. The YubiHSM uses CCM mode to obtain
an AEAD algorithm from the AES block cipher [99].

In the case of the Yubikey protocol, AEADs are used to store the
keys the server shares with the Yubikey tokens, and the associated
data is the public ID and the key-handle used to reference the AES key.
The idea here is that since the master keys of the YubiHSM cannot be
extracted, the attacker never learns the value of any Yubikey AES keys,
even if she successfully attacks the server. While she is in control of
the server, she is (of course) able to grant or deny authentication to
any client at will. However, if the attack is detected and the attacker
loses access to the server, it should not be necessary to replace or
rewrite the Yubikeys that are in circulation in order to re-establish
security.

4.2.2 Two Attacks on the Implementation of Authenticated Encryption

The YubiHSM provides access to about 22 commands that can be ac-
tivated or de-activated globally, or per key, during configuration. We
first examined the YubiHSM API in its default configuration, discover-
ing the following two attacks which led to a security advisory issued
by Yubikey in February 2012 [105].

The attacks use the following two commands:

• AES_ECB_BLOCK_ENCRYPT takes a handle to an AES key and
a plaintext of length of one AES block (16 Bytes) and applies the
raw block cipher.

• YSM_AEAD_GENERATE takes a nonce, a handle to an AES key
and some data and outputs an AEAD. More precisely, but still
simplified for our purposes, it computes:

AEAD(nonce,kh, data) =

⌈

|data|
blocksize

⌉

‖
i=0

AES(k, counteri)

⊕

data

||mac

where k is the key referenced by the key-handle kh, counteri is
a counter that is completely determined by kh,nonce, i and the
length of data and blocksize is 16 bytes. For the precise definition
of mac and counter, we refer to Request For Comments (RFC)
3610 [99].

Figure 8 depicts the counter mode of operation, used to calculate
the ciphertext body of the AEAD to which the MAC will be appended.

52 analysis of the yubikey protocol and the yubihsm

counter1 counter2 countern

AES AES AES

data1
⊕

data2
⊕

· · · datan
⊕

cypher1 ‖ cypher2 ‖ · · · ‖ cyphern

Figure 8: AES in counter mode (simplified).

The AEADs used to store keys for decrypting OTPs in the Yubikey
protocol are special cases: The plaintext is a concatenation of the
respective Yubikey’s AES key and secret device ID (22 bytes in total),
and nonce consists of the Yubikey’s public ID.

An attacker with access to the command AES_ECB_BLOCK_EN-
CRYPT is able to decrypt an AEAD by recreating the blocks of the
key-stream, i. e., AES(k, counteri). She xors the result with the AEAD

truncated by 8 bytes (the length of mac) and yields data. When the at-
tacker is able to compromise the server, she learns the AEAD and the
key-handle used to produce it. Since the nonce is the public ID of the
Yubikey, she can compute counteri and, using AES_ECB_BLOCK_EN-
CRYPT the key-stream. It is in the nature of the counter-mode that
encryption and decryption are the same operation. According to the
reference manual[106, Section 4.3], “the YubiHSM intentionally does
not provide any functions [sic] that decrypts an AEAD and returns
it in clear text, either fully or partial [sic].”. We therefore consider
the protection of the AEAD’s contents a security goal of the YubiHSM,
which is violated by this attack. The attack can be prevented by dis-
abling the AES_ECB_BLOCK_ENCRYPT command on the relevant
key handles at configuration time.

The second attack uses only YSM_AEAD_GENERATE: An attacker
can produce AEAD(nonce, kh, 0l) for the same handle kh and a value
nonce that was previously used to generated another AEAD of length
l. This way, an attacker can recover the key-stream directly (discard-
ing mac). Once again, it is possible to decrypt AEADs. This attack
is worse than the first one, because YSM_AEAD_GENERATE is nec-
essary for the set-up of Yubikeys. Note that the attack applies also
to the commands YSM_RANDOM_AEAD_GENERATE and YSM_-
BUFFER_AEAD_GENERATE [106, p. 28-29].

This second attack is harder to prevent, since in order to set up Yu-
bikeys with their AES keys, the YSM_AEAD_GENERATE command
must be enabled at some point. The security advisory suggests that
the threat can be “mitigated by observing that a YubiHSM used to
generate AEADs is guarded closely to not permit maliciously crafted
input.” In the next section, we try to interpret this advice into a con-
crete configuration for which we can prove security of the sensitive

4.2 the yubihsm 53

keys. Then, in section 4.3, we describe practical ways in which this
configuration could be used.

Remark 1: Bellare et al. gave a proof of security for counter mode[10]:
Under the assumption that AES constitutes are pseudo-random per-
mutation, this mode of operation should transform the block cipher
AES into a secure encryption scheme. The flaw lies in the implementa-
tion: The YubiHSM allows an arbitrary nonce to be supplied as Initial-
isation Vector (IV) for the counter. The security relies on the fact that
those nonce values are unique: Bellare et al. propose counter mode
as a statefull encryption scheme that increments the nonce value for
every produced cipher-text. The uniqueness of the nonces cannot be
assured neither in the case that AES_ECB_BLOCK_ENCRYPT is avail-
able, nor in the case where YSM_AEAD_GENERATE is available.

4.2.3 Analysis in the Case of Server Compromise

From now on, we will assume the following corruption scenario: In
addition to the capacities described in Section 4.1.2, the attacker can
read the AEADs stored on the server and she can access the HSM. Every
AEAD is created using the same key on the HSM, the handle to this
key is made public. The public ID is given to the adversary when a
Yubikey is set up. Counter values are deducible, so there is no need
to give the adversary explicit access to this data. The adversary is still
not able to directly read the data stored on the Yubikey or YubiHSM.
Note that in this situation, the attacker can trivially approve or deny
authorisation requests to the server, hence we cannot expect to show
absence of replay attacks. We are rather interested in whether the
attacker can recover the secret keys used to create OTPs, which would
allow her to continue to obtain authorisation even once she is denied
access to the server.

We model the xor operator in a simplified manner. The equational
theory we employ allows for rediscovering the two attacks described
in Section 4.2.2, but it does not capture all attacks that xor might
permit in this context. For this reason, the positive security results
in this section have to be taken with caution. We model xor with the
function symbols xor and the following five equations:

xor(xor(a, b), a) = b, xor(0, a) = a,

xor(xor(a, b), b) = a, xor(a, 0) = a, and

xor(a, a) = 0.

These equations ignore commutativity and associativity of xor. Using
this equational theory, we are able to rediscover the attacks described
in the previous section. The current version of tamarin (0.8.2.1) does
not have built-in support yet, but it is planned for future releases.

Remark 2: There is a technique by Küsters and Truderung which re-
duces protocol analysis including xor to the xor-free case using an

54 analysis of the yubikey protocol and the yubihsm

approach based on Horn clauses [85]. This technique cannot be em-
ployed here, since the protocol contains steps where xor is applied
to two terms which both contain variables, see for example the rules
for YSM_AEAD_YUBIKEY_OTP_DECODE below, i. e., the protocol
is not ⊕-linear in the sense of their work.

The counter values are modelled as before. We initialise the Yu-
biHSM with exactly one key-handle:

Fr(k),Fr(kh) −[MasterKey(k),OneTime()]→!HSM(kh, k),Out(kh),

!YSM_AEAD_YUBIKEY_OTP_DECODE(kh)

We make sure that this rule is only instantiated once by adding a
corresponding axiom ∀i, j. OneTime()@i∧OneTime()@j⇒ i = j.

The following rules model the fact that the adversary can commu-
nicate with the YubiHSM

OutHSM(x) −[HSMRead(x)]→ [Out(x)]

In(x) −[HSMWrite(x)]→ [InHSM(x)]

and can read the list of AEADs stored on the authentication server.

!S_AEAD(pid, aead) −[AEADRead(aead),HSMRead(aead)]→

[Out(aead)]

The next rules aim at modelling the HSM. We defined a set of 4 rules
in total, but only YSM_AEAD_YUBIKEY_OTP_DECODE is actually
used: The initialisation rule produces the permanent fact !YSM_-

AEAD_YUBIKEY_OTP_DECODE, but not the fact required by the
other rules. This way, we model a configuration that allows only
the execution of YSM_AEAD_YUBIKEY_OTP_DECODE while the
authentication server might be compromised. The rule YSM_AEAD_-
GENERATE is deactivated in this sense, but it is directly incorporated
into the rule BuyANewYubikey, see below. This models a configura-
tion where YSM_AEAD_GENERATE is active during setup, but only
during setup.

InHSM(〈did, kh, aead, otp〉), !HSM(kh, k),

!YSM_AEAD_YUBIKEY_OTP_DECODE(kh)

−[OtpDecode(k2, k, 〈did, sc, r〉, sc, xor(senc(ks, k), 〈k2, did〉),mac)

OtpDecodeMaster(k2, k)]→ OutHSM(sc)

where

ks = keystream(kh,N),

mac = mac(〈k2, did〉, k),

aead = 〈xor(senc(ks,k), 〈k2, did〉),mac〉, and

otp = senc(〈did, sc, r〉, k2).

4.3 evaluation 55

The rules for emitting the OTP and the login are modelled in a
way that is very similar to the rules described in Section 4.1.2, but of
course we model the encryption used inside the AEAD in more detail.
Here, the server-side rule for the login.

In(〈pid,nonce, senc(〈sid, tc, pr〉, k2)〉), !HSM(kh, k),

!S_sid(pid, sid), !S_AEAD(pid, aead), S_Counter(pid, otc)

−[Login(pid, tc, senc(〈sid, tc, pr〉, k2)), Smaller(otc, tc)]→

S_Counter(pid, tc)

where ks,mac and aead are defined as before.
Tamarin is able to prove that, within our limited model of xor, the

adversary never learns a Yubikey AES key or a YubiHSM master key -
in other words, AEAD, as well as the key used to produce them, stay
confidential. The proof does not need human intervention, however,
some additional typing invariants are needed in order to reach termi-
nation. For instance, the following invariant is used to proof that a
key k2 shared between the authentication server and the Yubikey can
only be learned when the key k, used to encrypt the AEADs, is leaked.

∀ t1, t2, pid, k2. Init(pid, k2)@t1 ∧K(k2)@t2
⇒ ∃ t3, t4, k. K(k)@t3 ∧MasterKey(k)@t4 ∧ t3 ⋖ t2

For the complete input to tamarin, including the multiset rewrite
rules constituting the model, as well as the security properties and
helping lemmas, see Listing 18 in Section A.2.

4.3 evaluation

The positive and negative results in this chapter provide formal cri-
teria to evaluate the security of the Yubikey protocol in different sce-
narios.

4.3.1 Positive Results

Under the assumption that the adversary can control the network,
but is not able to compromise the client or the authentication server,
we have shown that she cannot mount a replay attack. Furthermore,
if a YubiHSM is configured such that YSM_AEAD_YUBIKEY_OTP_-
DECODE is the only available command, then even in case the adver-
sary is able to compromise the server, the Yubikey AES keys remain
secure. All these results are subject to our abstract modelling of cryp-
tography and the algebraic properties of xor.

Since the Yubikeys need to be provisioned with their AES keys and
secret identities must be stored in the AEADs, we propose two set-ups
that can be used to obtain the configuration used in the analysis:

56 analysis of the yubikey protocol and the yubihsm

1. One Server, One YubiHSM: There is a set-up phase which serves
the purpose of producing AEADs (using one of the AEAD gener-
ation commands, e. g., YSM_AEAD_GENERATE) and writing
the key and secret/public identity on the Yubikey. This phase
should take place in a secure environment. Afterwards, the Yu-
biHSM is returned to configuration mode and all commands
are disabled except YSM_AEAD_YUBIKEY_OTP_DECODE. In
this set-up, only one YubiHSM is needed, but it is not possible
to add new Yubikeys once the second phase has begun without
taking the server off-line and returning the YubiHSM to config-
uration mode. Note that switching the YubiHSM into configu-
ration mode requires physical access to the device, hence would
not be possible for an attacker who has remotely compromised
the server.

2. Two Servers, Two YubiHSMs: There is one server that handles
the authentication protocol, and one that handles the set-up of
the Yubikeys. The latter is isolated from the network and only
used for this very purpose, so we consider it a secure environ-
ment. We configure two YubiHSMs such that they store the
same master-key (the key used to produce AEADs). The first is
used for the authentication server and has only YSM_AEAD_-
YUBIKEY_OTP_DECODE set to true, the second is used in the
set-up server and has only YSM_AEAD_GENERATE set to true.
The set-up server produces the list of public ids and correspond-
ing AEADs, which is transferred to the authentication server in
a secure way, for example in fixed intervals (every night) us-
ing fresh USB keys. The transfer does not necessarily have to
provide integrity or secrecy (as the adversary can block the au-
thentication via the network, anyway), but it should only be
allowed in one direction.

Reading between the lines (since no YubiHSM configuration details
are given) it seems that Yubico themselves use the second set-up to
provision Yubikeys [100].

4.3.2 Negative Results

In case either of the permissions AES_ECB_BLOCK_ENCRYPT or
YSM_AEAD_GENERATE are activated on a master key handle (by
default both are), the YubiHSM does protect the keys used to produce
one-time passwords encrypted under that master key. Since YSM_-
AEAD_GENERATE (or YSM_BUFFER_AEAD_GENERATE) are nec-
essary in order to set up a Yubikey, this means that separate setup
and authorisation configurations have to be used in order to benefit
from the use of the YubiHSM, i. e., have a higher level of security
than in the case where the keys are stored unencrypted on the hard

4.3 evaluation 57

disk. Unfortunately, open source code available on the web in e.g. the
yhsmpam project [48], designed to use the YubiHSM to protect pass-
words from server compromise, uses the insecure configuration, i.e.
one YubiHSM with both YSM_AEAD_GENERATE and (in this case)
YSM_AEAD_DECRYPT_CMP enabled, and hence would not provide
the security intended.

4.3.3 Possible changes to the YubiHSM

We will now discuss two possible counter-measures against this kind
of attack that could be incorporated into future versions of the Yu-
biHSM to allow a single device to be used securely, the first which
may be seen as a kind of stop-gap measure, the second which is a
more satisfactory solution using more suitable crypto:

1. AEAD_GENERATE with a randomly drawn nonce: All three Yu-
biHSM commands to generate AEADs, i. e.,

• YSM_AEAD_GENERATE,

• YSM_BUFFER_AEAD_GENERATE and

• YSM_RANDOM_AEAD_GENERATE,

let the user supply the nonce that is used as Initialisation Vector
(IV). This would not be possible if they were replaced by a
command similar to YSM_AEAD_GENERATE that chooses the
nonce randomly and outputs it at the end, so it is possible to use
the nonce as the public ID of the Yubikey. However, even in this
case there is an online guessing attack on the HSM: An AEAD can
be decrypted if the right nonce is guessed. We can assume that
the adversary has gathered a set of honestly generated OTPs, so
she is able to recognize the correct nonce. Since the nonce space
is rather small (248) in comparison to the key-space of AES-128,
the adversary could perform a brute-force search. We measured
the amount of time it takes to perform 10 000 YSM_AEAD_-
GENERATE operations on the YubiHSM. The average value is
0.2178 ms, so it would take approximately 1900 years to traverse
the nonce space. Even so this is not completely reassuring.

2. SIV-mode: The Synthetic Initialization Vector (SIV) mode of op-
eration [86] is designed to be resistant to repeated IVs. It is an
authenticated encryption mode that works by deriving the IV

from the MAC that will be used for authentication. As such it is
deterministic - two identical plaintexts will have an identical ci-
phertext - but the encryption function cannot be inverted in the
same way as Counter mode of operation with CBC-MAC (CCM)
mode by giving the same IV (the encryption function does not
take an IV as input, the only way to force the same IV to be
used is to give the same plaintext). This would seem to suit the

58 analysis of the yubikey protocol and the yubihsm

requirements of the YubiHSM very well, since it is only keys
that will be encrypted hence the chances of repeating a plain-
text are negligible. Even if the same key is put on two different
Yubikeys, they will have different private IDs yielding different
AEADs. In our view this is the most satisfactory solution.

4.3.4 Methodology

Since the tamarin prover could not derive the results in this chapter
without auxiliary lemmas, we think it is valuable to give some infor-
mation about the way we derived those results.

We first modelled the protocol using multiset rewrite rules, which
was a relatively straight-forward task. However, note that our model
consists of only four rules, and is therefore quite coarse. In particu-
lar, since, e. g., the emission of a Yubikey, and the authentication by
the server, e. g., are modelled using a single rule each, we assume
those steps to be atomic. This idealisation seems common for multi-
set rewrite models, but is somewhat unrealistic, as it removes a lot of
potential scheduling problems from the model.

After we modelled the protocol, we stated a sanity lemma saying
“There does not exist a trace that corresponds to a successful protocol
run” to verify that our model is sane. Tamarin should be able to
derive a counter-example, which is a proof that a correct protocol run
is possible.

We stated the security property we wanted to prove, e. g., the ab-
sence of replay attacks. Since tamarin did not produce a proof on its
own, we investigated the proof derivation in interactive mode. We
deduced lemmas that seemed necessary to cut branches in the proof
that are looping, so-called typing invariants. An example is YSM_-
AEAD_YUBIKEY_OTP_DECODE: It outputs a subterm of its input,
namely the counter value. Whenever tamarin tries to derive a term
t, it uses backward induction to find a combination of AEAD and OTP

that allows to conclude that the result of this operation is t. Meier,
Cremers and Basin propose a technique they call decryption-chain rea-

soning in [73, Section 3b] that we used to formulate our typing invari-
ant. Once the invariant is stated, it needs to be proven. Sometimes the
invariant depends on another invariant, that needs to be found man-
ually. Finding the right invariants took a bit of time, and to a certain
degree, was a trial and error task, as we did not have much experience
with tamarin. We eventually found a set of invariants that lead to a
successful verification of the security property, and then minimised
this set of lemmas by deleting those that were not necessary.

All in all, it took about 1 month to do the analysis presented in this
work. The modelling of the protocol took no more than half a day.
Finding a first modelling of the natural numbers and the “Is smaller
than” relation suitable for analysis in tamarin took a week, since at

4.3 evaluation 59

this time, the multiset union operator was not available in tamarin.
We employed a modelling that builds the “Is smaller than” as a set of
permanent facts from an “Is Successor” of relation:

In(0), In(S(0)) −[IsSucc(0,S(0)),IsZero(0)]→!Succ(0,S(0))

In(y), In(S(y)),

!Succ(x, y)
−[IsSucc(y,S(y))]→!Succ(y,S(y))

!Succ(x, y) −[IsSmaller(x, y)]→!Smaller(x, y)

!Smaller(x, y),

!Succ(y, z)
−[IsSmaller(x, z)]→!Smaller(x, z)

An additional axiom was needed to enforce transitivity. Using this
modelling, it was also possible to derive all results covered in this
chapter. We consider the modelling using the multiset data type more
natural, whereas this modelling does not rely on the support of asso-
ciativity, commutativity and a neutral element in equational theories,
as is needed to model multisets with the empty multiset and multiset
union. It might be interesting for similar use cases with other tools
that may not support such equational theories. The complete input to
tamarin, including the multiset rewrite rules constituting the model
described, as well as the security properties, helping lemmas and ad-
ditional axioms can be found in Listing 19 (for the case without server
compromise) and Listing 20 (for the case where the server might be
compromised, but a YubiHSM is protecting the key) in Section A.2.

The lion’s share of the time was spent in searching the right in-
variants for termination. The running time of tamarin is acceptable:
Proving the absence of replay attacks in case of an uncompromised
server takes around 35 seconds, proving confidentiality of keys in the
case of a compromised server takes around 50 seconds, both on a
2.4GHz Intel Core 2 Duo with 4GB RAM.

4.3.5 Future work

We learned that it is possible to obtain formal results on the YubiKey
and YubiHSM for an unbounded model using tamarin. However,
there are plenty of improvements to be made: In the model presented
in this chapter, we treat the session and token counter on the Yubikey
as a single value, which is justifiable by the fact that the Yubikey ei-
ther increases the session counter and resets the token counter, or
increases the token counter, thereby implementing a complete lexico-
graphical order on the pair (session counter, token counter). Never-
theless, a more detailed model would not rely on this argument. We
furthermore omit the CRC and the time-stamp, since in the symbolic
setting, they do not add to the security of the protocol.

60 analysis of the yubikey protocol and the yubihsm

Secondly, we simplified the algebraic theory of xor considerably.
The treatment of xor is in discussion for future versions of the tamarin
tool.

As stated in Section 4.3.4, finding the right lemmas to prove the se-
curity properties was a huge part of the analysis. A methodology for
deriving the lemmas that tamarin needs to obtain a proof automati-
cally, could permit more automation and hence allow for the analysis
of larger models.

5
A P R O C E S S C A L C U L U S W I T H S TAT E

The applied pi calculus [2] has been very successful in the domain of
protocol verification, as it allows an intuitive modelling of protocols
with an emphasis on the most important part: the communication be-
tween processes. It is sufficiently abstract to allow for automated anal-
ysis, while at the same time it is sufficiently concrete to allow refine-
ment into a working implementation that actually benefits from the
protocol analysis – ideally, this refinement can be proven to carry the
security results from the analysis to the implementation, as demon-
strated by Pironti et al. [79, 80]. Even if the refinement may not be
provably correct, a semantically rich model helps minimizing the “de-
grees of freedom” of such a refinement and thus helps establishing
confidence in the implementation.

In our opinion, the formalism of StatVerif [5] has those two qual-
ities. Unfortunately, as shown in Chapter 3, the translation from
StatVerif’s calculus into Horn clauses suffers some limitations with
respect to the application of security APIs. Additionally, there are
some limitations in the calculus itself, such as the limited amount of
cells, and the limited use of locks. In the last chapter, we have seen
how multiset rewriting can be used for the analysis of security APIs,
although it requires a certain amount of effort to derive a good mod-
elling. Another disadvantage is that it is quite hard to see whether
the set of multiset rewrite rules describing the protocol and an im-
plementation of the protocol do the same thing. The representation
of protocols as multiset rewrite rules is very low level and far away
from actual protocol implementations, making it difficult to model
protocols correctly. Encoding private channels, nested replications
and locking mechanisms directly as multiset rewrite rules is a tricky
and error prone task. Protocol steps are often represented as a single
rule, making them effectively atomic. This obscures eventual issues
in concurrent protocol steps, that would otherwise require, e. g., ex-
plicit locking, thus increasing the risk of implicitly excluding attacks
in the model that are well possible in a real implementation, e. g., race
conditions. This chapter aims at combining the advantages of an ap-
plied pi-like calculus similar to StatVerif with the constraint solving
algorithm employed by the tamarin-prover.

In this chapter, we propose a tool for analyzing protocols that may
involve non-monotonic global state. The tool’s input language, de-
scribed in Section 5.2, is a variant of the applied pi calculus with
additional constructs for manipulating state. The heart of our tool
is a translation from this calculus to a set of multiset rewrite rules

61

62 a process calculus with state

that can then be analyzed by the tamarin-prover (see Section 3.6) as a
back-end. We introduce this translation in Section 5.3. We prove the
correctness of this translation in Section 5.4 and show that it preserves
all properties expressible in a dedicated first order logic for express-
ing security properties. In Section 5.5, we illustrate the tool on several
case studies: a simple security API in the style of PKCS#11, a complex
case study of the Yubikey security device, as well as several examples
analyzed by other tools that aim at analyzing stateful protocols. In
all of these case studies we were able to avoid restrictions that were
necessary in previous works.

5.1 related work

The most closely related work is the StatVerif tool by Arapinis et
al. [5]. They propose a stateful extension of the applied pi calcu-
lus, similar to ours, which is translated to Horn clauses and ana-
lyzed by the ProVerif tool. Their translation is sound but may re-
port false attacks, which limits the scope of protocols that can be
analyzed. Moreover, StatVerif can only handle a finite number of
memory cells: When analyzing an optimistic contract signing pro-
tocols this appeared to be a limitation and only the status of a sin-
gle contract is modeled. Arapinis et al. have to provide a man-
ual proof to justify the correctness of this protocol-specific abstrac-
tion. We highlight the differences between our calculus and the cal-
culus StatVerif offers in Section 5.2.3. A more extensive discussion
of StatVerif, the abstraction-by-set-membership approach by Möder-
sheim [74], the state synchronisation extension to Guttman’s strand
space model [47] and work tailored to particular applications [36, 35]
can be found in Chapter 3.

In the goal of relating different approaches for protocol analysis,
Bistarelli et al. [11] also proposed a translation from a process alge-
bra to multiset rewriting, which is very similar to our goal. They
do however not consider private channels or global state and assume
that processes have a particular structure. Because of those limita-
tions, their translation and its correctness proof differ significantly
from ours. Moreover their work does not include any tool support
for automated verification, where we designed our translation with
regard to tamarin’s constraint solving algorithm.

5.2 a cryptographic pi calculus

with explicit state

Our specification language includes support for private channels, for
an explicit global state and for locking mechanisms (which are crucial
to write meaningful programs in which concurrent threads manipu-
late a common memory). The underlying tamarin prover is able to

5.2 a cryptographic pi calculus with explicit state 63

〈M,N〉 ::= x, y, z ∈ V

| p ∈ PN

| n ∈ FN

| f(M1,. . . ,Mn) (f ∈ Σ of arity n)

〈P,Q〉 ::= 0

| P | Q

| ! P
| νn; P
| out(M,N); P
| in(M,N); P
| if M=N then P [else Q]
| event F ; P (F ∈ F)
| insert M,N; P
| delete M; P
| lookup M as x in P [else Q]
| lock M; P
| unlock M; P
| [L] −[A]→ [R];P (L, R,A ∈ F∗)

Figure 9: Syntax.

analyze protocols without bounding the number of sessions, nor mak-
ing any abstractions. Moreover it allows for modelling a wide range
of cryptographic primitives by the means of equational theories. As
the underlying verification problem is undecidable, tamarin may not
terminate. However, it offers an interactive mode with a graphical
user interface which helps the user to manually guide the tool in its
proof. The translation has been carefully engineered in order to favor
termination by tamarin.

5.2.1 Syntax and informal semantics

Our calculus is a variant of the applied pi calculus [2]. In addition to
the usual operators for concurrency, replication, communication and
name creation, it offers several constructs for reading and updating
an explicit global state. The grammar for processes is described in
Figure 9.
0 denotes the terminal process. For readability we sometimes omit

trailing 0 processes. P | Q is the parallel execution of processes P
and Q and !P the replication of P, allowing an unbounded number of
sessions in protocol executions. The construct νn; P binds the name
n in P and models the generation of a fresh, random value. Processes
out(M,N); P and in(M,N); P represent the output, respectively in-
put, of message N on channel M. Readers familiar with the applied

64 a process calculus with state

pi calculus [2] may note that we opted for the possibility of pattern
matching in the input construct, rather than merely binding the input
to a variable x. The process if M = N then P else Q will execute P
if M =E N and Q otherwise. As usual we sometimes omit to write
else Q when Q is 0. The event construct is merely used for annotating
processes and will be useful for stating security properties.

The remaining constructs are used for manipulating state and are
new compared to the applied pi calculus. We offer two different
mechanisms for state. The first construct is functional and associates
a value to a key. The construct insert M,N binds the value N to a key
M. Successive inserts change this binding. The delete M operation
simply “undefines” the mapping for the key M. The lookup M as x

in P else Q construct retrieves the value associated to M, and binds
it to the variable x in P. If the mapping is undefined for M, the
process behaves as Q. The lock and unlock constructs can be used
to gain exclusive access to a resource M. This is essential for writing
protocols where parallel processes may read and update a common
memory. We additionally offer another kind of global state in form
of a second store, modelled as a multiset of ground facts.

This second store allows access to the underlying notion of state in
tamarin, but it is distinct from the previously introduced functional
state. It is similar in style to the state extension in the strand space
model [47] and the underlying specification language of the tamarin
tool [89, 90]: It is accessed via the construct [L] −[A]→ [R];P, which
matches each fact in the sequence L to facts in the current store and,
if successful, adds the corresponding instance of facts R to the store.
The facts A are used as annotations in a similar way to events.

The following example illustrates a problem that occurs in the anal-
ysis of security APIs such as PKCS#11 [36, 20, 44], and will serve as a
running example throughout this chapter.

Example 14: The following API allows the creation of keys in some
secure memory. The user can access the device via an API. If she cre-
ates a key, she obtains a handle, which she can use to let the device
perform operations on her behalf. The goal is that the user can never
gain knowledge of the key, as the user’s machine might be compro-
mised. Consider the following process modelling the device (we use
out(m) as a shortcut for out(‘c’,m) for a public channel ‘c’):

Pex :=!Pnew |!Pset |!Pdec |!Pwrap,

where

Pnew :=νh;νk; event NewKey(h,k); (1)

insert <‘key’,h>,k;

insert <‘att’,h>,‘dec’; out(h)

In the first line, the device creates a new handle h and a key k, and
logs the creation of this key. It then stores the key that belongs to

5.2 a cryptographic pi calculus with explicit state 65

the handle by associating the pair 〈‘key’, h〉 to the value of the key
k. In the next line, 〈‘att’, h〉 is associated to a public constant ‘dec’.
Intuitively, we use the public constants ‘key’ and ‘att’ to distinguish
two databases. The process

Pset := in(h); insert 〈‘att’,h〉, ‘wrap’

provides an interface for changing the attribute of a key from the
initial value ‘dec’ to another value ‘wrap’ to the user. If a handle has
the ‘dec’ attribute set, it can be used for decryption:

Pdec := in(〈 h,c〉); lookup 〈‘att’,h〉 as a in (2)

if a=‘dec’ then lookup 〈‘key’,h〉 as k in

if encSucc(c,k)=true then

event DecUsing(k,sdec(c,k)); out(sdec(c,k))

The first lookup stores the value associated to 〈‘att’, h〉 in a. The value
is compared against ‘dec’. If the comparison and another lookup for
the associated key value k succeeds, we check whether decryption
succeeds and, if so, output the plaintext.

If a key has the ‘wrap’ attribute set, it might be used to encrypt the
value of a second key:

Pwrap := in(〈h1, h2〉); lookup 〈‘att’,h1〉 as a1 in

if a1=‘wrap’ then lookup 〈‘key’,h1〉 as k1 in

lookup 〈‘key’, h2〉 as k2 in

event Wrap(k1,k2); out(senc(k2,k1))

The bound names of a process are those that are bound by νn.
We suppose that all names of sort fresh appearing in the process are
under the scope of such a binder. Free names must be of sort pub. A
variable x can be bound in three ways:

1. by the construct lookup M as x, or

2. x ∈ vars(N) in the construct in(M,N) and x is not under the
scope of a previous binder,

3. x ∈ vars(L) in the construct [L] −[A]→ [R] and x is not under the
scope of a previous binder.

While the construct lookup M as x always acts as a binder, the input
construct and the [L] −[A]→ [R] constructs do not rebind an already
bound variable but perform pattern matching. For instance in the
process

P = in(c,f(x)); in(c,g(x))

x is bound by the first input and pattern matched in the second. We
discuss this choice in Section 5.2.3.3.

66 a process calculus with state

a ∈ FN ∪ PN a /∈ ñ
νñ.σ ⊢ a Dname

νñ.σ ⊢ t t =E t
′

νñ.σ ⊢ t ′
DEq

x ∈ D(σ)

νñ.σ ⊢ xσ DFrame
νñ.σ ⊢ t1 · · ·νñ.σ ⊢ tn f ∈ Σk

νñ.σ ⊢ f(t1, . . . , tn)
DAppl

Figure 10: Deduction rules.

A process is ground if it does not contain any free variable. We
denote by Pσ the application of the homomorphic extension of the
substitution σ to P. As usual we suppose that the substitution only
applies to free variables. We sometimes interpret the syntax tree of
a process as a term and write P|p to refer to the subprocess of P at
position p (where |, if and lookup are interpreted as binary symbols,
all other constructs as unary).

5.2.2 Semantics

5.2.2.1 Frames and deduction

Before giving the formal semantics of our calculus we introduce the
notions of frame and deduction. A frame consists of a set of fresh
names ñ and a substitution σ and is written νñ.σ. Intuitively a frame
represents the sequence of messages that have been observed by an
adversary during a protocol execution, σ and the secrets generated
by the protocol, ñ, a priori unknown to the adversary. Deduction
models the capacity of the adversary to compute new messages from
the observed ones.

Definition 9 (Deduction): We define the deduction relation νñ.σ ⊢ t
as the smallest relation between frames and terms defined by the
deduction rules in Figure 10.

Example 15: If one key is used to wrap a second key, then, given the
intruder learns the first key, he can deduce the second. For ñ = k1, k2
and σ = { senc(k2,k1)/x1

,k1 /x2
}, νñ.σ ⊢ k2, since:

x1 ∈ D(σ)

νñ.σ ⊢ senc(k2, k1)

x2 ∈ D(σ)

νñ.σ ⊢ k1
νñ.σ ⊢ sdec(senc(k2, k1), k1) sdec(senc(k2, k1), k1) =E k2

νñ.σ ⊢ k2

5.2.2.2 Operational semantics

We can now define the operational semantics of our calculus. The
semantics is defined by a labelled transition relation between process
configurations. A process configuration is a 6-tuple (E, S, SMS,P, σ,L)

where

5.2 a cryptographic pi calculus with explicit state 67

• E ⊆ FN is the set of fresh names generated by the processes,

• S : MΣ →MΣ is a partial function modeling the functional store.

• SMS ⊆ G# is a multiset of ground facts and models the multiset
of stored facts

• P is a multiset of ground processes representing the processes
executed in parallel

• σ is a ground substitution modeling the messages output to the
environment

• L ⊆MΣ is the set of currently acquired locks.

The transition relation is defined by the rules described in Figure 11.
Transitions are labelled by sets of ground facts. For readability we
omit empty sets and brackets around singletons, i.e., we write → for
∅
−→ and f

−→ for
{ f }
−→. We write→∗ for the reflexive, transitive closure

of → (the transitions that are labelled by the empty sets) and write
f
⇒ for →∗ f

→→∗. We can now define the set of traces, i.e., possible
executions, that a process admits.

Definition 10 (Traces of P): Given a ground process P we define the set

of traces of P as

tracespi(P) =
{

[F1, . . . , Fn] | (∅, ∅, ∅, {P}, ∅, ∅)
F1
=⇒ (E1, S1,

SMS
1 ,P1, σ1, L1)

F2
=⇒ . . .

Fn
=⇒ (En, Sn, S

MS
n ,Pn, σn,Ln)

}

Example 16: The following examples shows how the first key is cre-
ated on the security device in our running example.

(∅, ∅, ∅, { !Pnew |!Pset |!Pdec |!Pwrap }
#, ∅, ∅)

→(∅, ∅, ∅, { !Pnew, !Pset |!Pdec |!Pwrap
︸ ︷︷ ︸

=:P ′

}#, ∅, ∅)

→(∅, ∅, ∅, {Pnew }# ∪# P ′, ∅, ∅)

→(∅, ∅, ∅, { new h; new k; event NewKey(h,k); . . . }# ∪# P ′, ∅, ∅)

→∗({h ′, k ′ }, ∅, ∅, { event NewKey(h’,k’); . . . }# ∪# P ′, ∅, ∅)

NewKey(h ′,k ′)
−−−−−−−−−−→

({h ′, k ′ }, ∅, ∅, { insert 〈‘key’,h〉 ,k; . . . }# ∪# P ′, ∅, ∅)

→∗({h ′, k ′ }, S, ∅, { out(h); 0 }# ∪# P ′, ∅, ∅)

→∗({h ′, k ′ }, S, ∅,P ′, {h
′
/x1

}, ∅), where

S(〈‘key’, h ′〉) = k ′ and S(〈‘att’, h ′〉) = ‘dec’. Therefore,

[NewKey(h ′, k ′)] ∈ tracespi(P).

68 a process calculus with state

Standard operations :

(E, S, SMS,P∪# {0}, σ,L) −→ (E, S, SMS,P, σ,L)

(E, S, SMS,P∪# {P|Q}, σ,L) −→ (E, S, SMS,P∪# {P,Q}, σ,L)

(E, S, SMS,P∪# {!P}, σ,L) −→ (E, S, SMS,P∪# {!P, P}, σ,L)

(E, S, SMS,P∪# {νa;P}, σ,L) −→ (E∪ {a ′}, S, SMS,P∪# {P{a ′/a}}, σ,L)

if a ′ is fresh

(E, S, SMS,P, σ,L)
K(M)
−→ (E, S, SMS,P, σ,L) if νE.σ ⊢M

(E, S, SMS,P∪# {out(M,N);P}, σ,L)
K(M)
−→ (E, S, SMS,P∪# {P}, σ∪ {N/x},L)

if x is fresh and νE.σ ⊢M

(E, S, SMS,P∪# {in(M,N);P}, σ,L)
K(〈M,N〉)
−→ (E, S, SMS,P∪# {Pτ}, σ,L)

if ∃τ. τ is grounding for N,

νE.σ ⊢M,νE.σ ⊢ Nτ

(E, S, SMS, P ∪#{out (M,N);P,

in (M’,N’);Q},σ, L)
−→ (E, S, SMS,P∪ {P,Qτ}, σ,L)

if M =E M
′ and ∃τ.N =E N

′τ

and τ grounding for N ′

(E, S, SMS,P∪ {if M = N

then P else Q}, σ,L)
−→ (E, S, SMS,P∪ {P}, σ,L) if M =E N

(E, S, SMS,P∪ {if M = N

then P else Q}, σ,L)
−→ (E, S, SMS,P∪ {Q}, σ,L) if M 6=E N

(E, S, SMS,P∪ {event(F);P}, σ,L) F
−→ (E, S, SMS,P∪ {P}, σ,L)

Operations on global state:

(E, S, SMS,P∪# {insert M,N; P}, σ,L) −→ (E, S[M 7→ N], SMS,P∪# {P}, σ,L)

(E, S, SMS,P∪# {delete M;P}, σ,L) −→ (E, S ′, SMS,P∪# {P}, σ,L)

where S ′(x) =

S(x) if x 6=E M

⊥ otherwise

(E, S, SMS,P∪# {lookup M

as x in P else Q }, σ,L)
−→ (E, S, SMS,P∪# {P{V/x}}, σ,L)

if S(N) =E V is defined and N =E M

(E, S, SMS,P∪# {lookup M

as x in P else Q }, σ,L)
−→ (E, S, SMS,P∪# {Q}, σ,L)

if S(N) is undefined for all N =E M

(E, S, SMS,P∪# {lock M; P}, σ,L) −→ (E, S, SMS,P∪# {P}, σ,L∪ {M })

if M 6∈EL

(E, S, SMS,P∪# {unlock M; P}, σ,L) −→ (E, S, SMS,P∪# {P}, σ,L \ {M ′ |M ′ =E M })

(E, S, SMS,P∪# {[l −[a]→ r]; P}, σ,L) a ′

−→ (E, S, SMS \ lfacts(l ′)∪# r ′,P∪# {Pτ }#, σ,L)

if ∃τ, l ′, a ′, r ′.

with τ grounding for l −[a]→ r

and l ′ −[a ′]→ r ′ ∈E (l −[a]→ r)τ

and lfacts(l ′) ⊆# SMS, pfacts(l ′) ⊂ SMS

Figure 11: Operational semantics.

5.2 a cryptographic pi calculus with explicit state 69

5.2.3 Discussion

In the following, we will discuss various design decision we have
made and compare our calculus with the StatVerif calculus.

5.2.3.1 Private Channels and Store

The careful reader might have noticed that the applied pi calculus ac-
tually offers a way to store a value, such that it can be accessed from
within a different process. If a private channel s is only known to the
part of the process allowed to access the store, a fact could be stored
by sending it on the channel s, and, similarly, be read by reading
from s. So, one might ask why we chose to introduce new constructs
for reading and writing state, instead of just providing a sound and
complete translation for the communication on private channels and
reusing existing, well-accepted syntax. Besides the fact that a value
read from the channel “disappears”, hence every lookup to the store
would need to put the value back on the channel, which would be
cumbersome to write, there is another, more important reason: Com-
munication on a private channel is synchronous in our calculus. This
means that a process sending a message cannot proceed until the
message has been received by a second process. A quick look on
the definition of Pnew (see (1) on page 64) should convince the reader
that this is impractical in many cases. In general, databases consti-
tute asynchronous ways of communication and should be modelled
as such.

On the other hand, we decided for synchronous message passing in
favour of asynchronous message passing, first, because synchronous
message passing is more powerful (Palamidessi showed that the syn-
chronous applied pi calculus is strictly more expressive than the asyn-
chronous applied pi calculus [77]) and second, because by using the
same mechanism as in the popular protocol verifier ProVerif, we keep
our calculus more accessible for users familiar with this tool.

5.2.3.2 Distributed Databases

There is only one store for the whole protocol. It is, of course, unreal-
istic to assume all protocol parties have access to the same database.
To model an unbounded number of machines, each with a distinct
store, each database access might be prefixed with an identifier to the
machine, like in the following template:

!(ν id; . . . ; insert 〈id,x〉, y; . . .)

70 a process calculus with state

If the adversary shall have (partial) access to the store, this needs to
be made explicit, by having a process providing an interface to the
store. See the following example, where P ′ is the actual protocol:

!(in(y). insert ’AdversaryCell’, y)

| !(lookup ’AdversaryCell’ as y in out(y)) | P ′

5.2.3.3 Lookup is binding

It might seem odd that lookup acts as a binder, while input does
not. We justify this decision as follows: As Pdec and Pwrap in the previ-
ous example show, lookups appear often after input was received. If
lookups were to use pattern matching, the following process

P = in(c,x); lookup ‘store’ as x in P ′

might unexpectedly perform a check if ‘store’ contains the message
given by the adversary, instead of binding the content of ‘store’ to x,
due to an undetected clash in the naming of variables.

5.2.3.4 Inline multiset rewriting

In addition to the access to the functional store via lookup, insert and
delete, we support a “low-level” form of state manipulation in form
of the construct [L] −[A]→ [R];P. This style of state manipulation is
similar to the state extension in the strand space model [47] and the
underlying specification language of the tamarin tool [89, 90].

This low-level store is distinct from the functional store, which is
a restriction imposed by our translation. We decided to nevertheless
include this construct as a way of accessing the functionality of the
underlying tool, tamarin. This offers a great flexibility and has shown
useful in our case studies. However, we recommend its use only to
users familiar with how our translation works. The discussion on
the translation (see Section 5.3.3) gives further insight on why the
functional store is distinct from this low-level store.

Note further that data can be moved from the functional store to
the low-level store, and vice versa, for example as follows: lookup

’store1’ as x in [] −[]→ [store2(x)].

5.2.3.5 Comparison with StatVerif

Our calculus is very close to the StatVerif calculus by Arapinis et
al. [5]. Notable differences are the following:

1. Destructor application: Since tamarin handles the equational the-
ory without making a distinction between constructors and de-
structors, our calculus does not have a construct for this. The
definition of Pdec (see (2) on page 65) gives an example on how
to handle destructors that might fail, in this case decryption.

5.3 a translation from processes to multiset rewrite rules 71

2. Initial state: In contrast to StatVerif, we have no special operator
for state initialisation. Values are undefined from the start, and
can be initialised during the protocol run. The modeller can
use axioms (c. f. Section 5.3.2, in particular the definition of
αinit) to enforce the initialisation of the store before the protocol
is executed.

3. State cells: StatVerif’s state cells roughly correspond to keys in
the sense of our functional store. While state cells are names
and there is only an arbitrary, but a-priori fixed amount of them,
keys to the store can be arbitrary terms and there is no a-priori
bound on them.

4. Locking: Both StatVerif and our calculus use locks(binary sema-
phores) for process synchronisation. The locking mechanism de-
scribed in the paper introducing StatVerif [5] can only lock one
global resource, but the current version of their translation tool
handles the locking of individual cells, as well. The mechanism
in our tool can lock arbitrary terms, so similar to the previous
point, we have no a-priori bound on the number of lockable re-
sources. There is a syntactic restriction in StatVerif that “the part
of the process P that occurs before the next unlock, if any, may
not include parallel, replication, or lock.” which corresponds to
the condition on well-formed processes for our calculus(c. f. Defi-
nition 13). Well-formedness is a requirement for the translation
to multiset rewrite rules, which means that the same restriction
applies to our calculus.

The L −[A]→ R construct gives the user a way to implement
locking in a different, less restricted manner, see Section 5.3.3.4
for further discussion.

5.3 a translation from processes

into multiset rewrite rules

In this section we define a translation from a process P into a set of
multiset rewrite rules JPK and a translation on trace formulas such
that P |=∀ ϕ if and only if JPK |=∀ JϕK. Note that the result also
holds for satisfiability, as an immediate consequence. For a rather
expressive subset of trace formulas (see [89] for the exact definition of
the fragment), checking whether JPK |=∀ JϕK can then be discharged
to the tamarin prover that we use as a backend.

5.3.1 Translation of processes

We recall the adversary’s message deduction capabilities from Sec-
tion 3.6.2, encoded in the following set of rules MD:

72 a process calculus with state

Out(x) −[]→ !K(x) (MDOut)

!K(x) −[K(x)]→ In(x) (MDIn)

−[]→ !K(x : pub) (MDPub)

Fr(x : fresh) −[]→ !K(x : fresh) (MDFresh)

!K(x1), . . . , !K(xk) −[]→ !K(f(x1, . . . , xk))

for f ∈ Σk (MDAppl)

In order for our translation to be correct, we need to make some
assumptions on the set of processes we allow. These assumptions are
however, as we will see, rather mild and most of them without loss of
generality. First we define a set of variables that will be used in our
translation and is therefore reserved.

Definition 11 (Reserved variables and facts): The set of reserved vari-
ables is defined as the set containing the elements na for any a ∈ FN,
lockl for any l.

The set of reserved facts Fres is defined as the set containing facts
f(t1, . . . , tn) where t1, . . . , tn ∈ T and f ∈ { Init, Insert, Delete, IsIn, Is-
NotSet, state, Lock, Unlock, Out, Fr, In, Msg, ProtoNonce, Eq, NotEq,
Event, InEvent }.

Similar to [5], we require for our translation that any unlock t in a
process can be assigned to a lock t preceding it in the process’ syntax
tree, and that this assignment is injective. Moreover, given a process
lock t; P the corresponding unlock in P may not be under a parallel or
replication. These conditions allow us to annotate each correspond-
ing lock t, unlock t pair with a unique label l. The annotated version of
a process P is denoted P. In case the annotation fails, i.e., P violates
one of the above conditions, the process P contains ⊥. The formal
definition of P is as follows:

5.3 a translation from processes to multiset rewrite rules 73

Definition 12 (Process annotation): Given a ground process P we de-
fine the annotated ground process P as follows:

0 := 0

P|Q := P|Q

!P :=!P

if t1 = t2 then P

else Q
:= if t1 = t2 then P else Q

lookup M as x

in P else Q
:= lookup M as x in P else Q

α;P := α;P

where α /∈ { lock t,unlock t : t ∈ T }

lock t;P := lockl t; au(P, t, l)

where l is a fresh label

unlockl t;P := unlockl t;P

unlock t;P := ⊥

where au(P, t, l) annotates the first unlock that has parameter t with
the label l, i. e.:

au(P|Q, t, l) := ⊥

au(!P, t, l) := ⊥

au(if t1 = t2 then

P else Q, t, l)
:=

if t1 = t2 then au(p, t, l)

else au(Q, t, l)

au(lookup M as x

in P else Q, t, l)
:=

lookup M as x

in au(p, t, l) else au(Q, t, l)

au(α;Pt, l) := α; au(P, t, l) where α 6= unlock t

au(unlock t;Pt, l) := unlockl t;P

au(0, t, l) := 0

Definition 13 (well-formed): A ground process P is well-formed if

• no reserved variable nor a reserved fact appear in P,

• any name and variable in P is bound at most once and

• P does not contain ⊥.

• For each action (l −[a]→ r) that appears in the process, the
following holds: For each (l ′ −[a ′]→ r ′) ∈E ginsts(l −[a]→ r)

we have that ∩r ′′=Er ′names(r ′′)∩ FN ⊆ ∩l ′′=El ′names(l ′′)∩ FN.

A trace formula ϕ is well-formed if no reserved variable nor a re-
served fact appear in ϕ.

74 a process calculus with state

The two first restrictions of well-formed processes are not a loss
of generality as processes and formulas can be consistently renamed
to avoid reserved variables and α-converted to avoid binding names
or variables several times. Also note that the second condition is
not necessarily preserved during an execution, e.g. when unfolding
a replication !P and P may bind the same names. We only require
this condition to hold on the initial process for our translation to be
correct.

The annotation of locks restricts the set of protocols we can trans-
late, but allows us to obtain better verification results, since we can
predict which unlock is “supposed” to close a given lock. This addi-
tional information is helpful for tamarin’s backward reasoning. Dur-
ing our case studies, this restriction never formed an obstacle. We
nevertheless discuss how the modeller can overcome this restriction
in Section 5.3.3.4.

The fourth condition is due to condition three in Definition 2 and
ensures that the embedded multiset rewrite rules cannot create fresh
names.

Definition 14: Given a well-formed ground process P we define the
multiset rewrite system JPK as

MD∪ {Init}∪ JP, [], []K

• where the rule Init is defined as

Init : [] −[Init()]→ [state[]()]

• JP, p, x̃K is defined inductively for process P, position p ∈ N
∗

and sequence of variables x̃ in Figure 12.

• For a position p of P we define statep to be persistent if P|p =!Q
for some process Q; otherwise statep is linear.

In the definition of JP, p, x̃K we intuitively use the family of facts
statep to indicate that the process is currently at position p in its
syntax tree. A fact statep will indeed be true in an execution of these
rules whenever some instance of Pp (i.e. the process defined by the
subtree at position p of the syntax tree of P) is in the multiset P of
the process configuration. Note in particular that the translation of !P
results in a persistent fact as !P always remains in P. The translation
of the zero-process, parallelisation and replication do nothing but
handle statep-facts.

The translation of the construct νa translates the name a into a vari-
able na, as multiset rewrite rules cannot contain fresh names. Any
instantiation of this rule will substitute na by a fresh name, which the
Fr-fact in the premise guarantees to be new. This step is annotated
with a (reserved) action ProtoNonce, which is used in the proof of
correctness to distinguish adversary and protocol nonces. Note that

5.3 a translation from processes to multiset rewrite rules 75

J0, p, x̃K = {[statep(x̃)]→ []}

JP | Q,p, x̃K = {[statep(x̃)]→ [statep·1(x̃), statep·2(x̃)]}

∪JP, p · 1, x̃K∪ JQ,p · 2, x̃K

J!P, p, x̃K = {[!statep(x̃)]→ [statep·1(x̃)]}∪ JP, p · 1, x̃K

Jνa;P, p, x̃K = {[statep(x̃),Fr(na : fresh)] −[ProtoNonce(na : fresh)]→

[statep·1(x̃, na : fresh)]}∪ JP, p · 1, (x̃, na : fresh)K

Jout(M,N);P, p, x̃K = {[statep(x̃), In(M)] −[InEvent(M)]→ [Out(N), statep·1(x̃)],

[statep(x̃)]→ [Msg(M,N), statesemi
p (x̃)],

[statesemi
p (x̃),Ack(M,N)]→ [statep·1(x̃)]}

∪ JP, p · 1, x̃K

Jin(M,N);P, p, x̃K = {[statep(x̃), In(〈M,N〉)] −[InEvent(〈M,N〉)]→ [statep·1(x̃∪ vars(N))],

[statep(x̃),Msg(M,N)]→ [statep·1(x̃∪ vars(N)),Ack(M,N)]}

∪ JP, p · 1, x̃∪ vars(N)K

Jif M = N then P

else Q,p, x̃K

= {[statep(x̃)] −[Eq(M,N)]→ [statep·1(x̃)],

[statep(x̃)] −[NotEq(M,N)]→ [statep·2(x̃)]}

∪ JP, p · 1, x̃K∪ JQ,p · 2, x̃K

Jevent F;P, p, x̃K = {[statep(x̃)] −[Event(), F]→ [statep·1(x̃)]}∪ JP, p · 1, x̃K

Jinsert s, t;P, p, x̃K = {[statep(x̃)] −[Insert(s, t)]→ [statep·1(x̃)]}∪ JP, p · 1, x̃K

Jdelete s;P, p, x̃K = {[statep(x̃)] −[Delete(s)]→ [statep·1(x̃)]}∪ JP, p · 1, x̃K

Jlookup M as v

in P else Q,p, x̃K

= {[statep(x̃)] −[IsIn(M,v)]→ [statep·1(M̃, v)],

[statep(x̃)] −[IsNotSet(M)]→ [statep·2(x̃)]}

∪ JP, p · 1, (x̃, v)K∪ JQ,p · 2, x̃K

Jlockl s;P, p, x̃K = {[Fr(lockl), statep(x̃)] −[Lock(lockl, s)]→ [statep·1(x̃, lockl)]}

∪ JP, p · 1, x̃K

Junlockl s;P, p, x̃K = {[statep(x̃)] −[Unlock(lockl, s)]→ [statep·1(x̃)]}∪ JP, p · 1, x̃K

J[l −[a]→ r]; P, p, x̃K = {[statep(x̃), l] −[Event(), a]→ [r, statep·1(x̃∪ vars(l))]}

∪ JP, p · 1, x̃∪ vars(l)K

Figure 12: Definition of JP, p, x̃K.

76 a process calculus with state

the fact statep·1 in the conclusion carries na, so that the following
protocol steps are bound to the fresh name used to instantiate na.

The first rules of the translation of in and out model the communi-
cation between the protocol and the adversary, and vice versa. In the
first case, the adversary has to prove knowledge of the channel and
the message she would like to send, in the second case knowledge
of the channel suffices. The action InEvent serves a purpose that we
will explain in the next section. The other rules model an internal
communication on a synchronous channel, and are a little more com-
plicated. If the adversary, who controls the scheduling, decides not
to eavesdrop the communication and allow internal communication
to happen, he should not be able to interrupt the communication step
and change his mind – since the channel is synchronous, the sending
process can only execute the following step if the message was suc-
cessfully transmitted. For this reason, when the second rule of the
translation of out is fired, the state-fact is substituted by a semi-state
fact, statesemi. Additionally, the fact Msg(M,N) signals that a message
is present on the synchronous channel. This fact is picked up by the
second rule of the translation of in. Only with the resulting acknowl-
edgement fact Ack(M,N) it is possible to advance the execution of the
sending process, using the third role in the translation of out, which
transforms the semi-state and the acknowledgement of receipt into
statep·1(. . .). Only now the next step in the execution of the sending
process can be executed.

Some of the labels are used to restrict the set of executions that we
will consider. For instance the label Eq(M,N) will be used to indicate
that we only consider executions in which M =E N. This is also the
case for event, insert, delete, lookup, lock and unlock. As we will see,
these restrictions will be encoded in the trace formula. Finally, the
construct for embedded multiset rewrite rules is translated by adding
the previous state-fact to the left-hand side, and the next one to the
right-hand side.

Example 17: J!PnewK gives the following set of rules:

[] −[Init()]→ [state[]()]

[state[]()] −[]→ [!state1()]

[!state1(),Fr(h)] −[]→ [state11(h)]

[state11(h),Fr(k)] −[]→ [state111(k, h)]

[state111(k, h)] −[Event(),NewKey(h, k)]→ [state1111(k, h)]

[state1111(k, h)] −[Insert(〈’key’, h〉, k)]→ [state11111(k, h)]

[state11111(k, h)] −[Insert(〈’att’, h〉, ’dec’)]→

[state111111(k, h)]

[state111111(k, h)] −[]→ [Out(h), state1111111(k, h)]

An example trace is presented in Figure 13. Every box in this pic-
ture stands for the application of a multiset rewrite rule, where the

5.3 a translation from processes to multiset rewrite rules 77

premises are at the top, the conclusions at the bottom, and the action
in middle, if there are any. Every premise needs to have a matching
conclusion, which is visualized by the arrows, otherwise the graph
would not depict a valid MSR execution. (This is a simplification of the
dependency graph representation tamarin uses to perform backward-
induction [89, 90].)

state_0111111(k, h)

Out(h) state_01111111(k, h)

state_011111(k, h)

Insert(<'att', h>, 'dec')

state_0111111(k, h)

state_01111(k, h)

Insert(<'key', h>, k)

state_011111(k, h)

state_0111(k, h)

Event(),NewKey(h, k)

state_01111(k, h)

state_011(h) Fr(k)

state_0111(k, h)

!state_01() Fr(h)

state_011(h)

state_0()

!state_01()

!state_01() Fr(h')

state_011(h')

0[Init()]

state_0()

state_0111111(k', h')

Out(h') state_01111111(k', h')

state_011111(k', h')

Insert(<'att', h'>, 'dec')

state_0111111(k', h')

state_01111(k', h')

Insert(<'key', h'>, k')

state_011111(k', h')

state_0111(k', h')

Event(),NewKey(h', k')

state_01111(k', h')

state_011(h') Fr(k')

state_0111(k', h')

Figure 13: Example trace for translation of !Pnew.

5.3.2 Translation of trace formulas

We can now define the translation for formulas.

Definition 15: Given a well-formed trace formula ϕ we define

JϕK∀ := α⇒ ϕ and JϕK∃ := α∧ϕ

where α := αinit ∧αeq ∧αnoteq ∧αin ∧αnotin ∧αlock ∧αinEv and

αinit :=∀x, y, i, j.Init()@i∧ Init()@j =⇒ i = j

αeq :=∀x, y, i.Eq(x, y)@i =⇒ x ≈ y

αnoteq :=∀x, y, i.NotEq(x, y)@i =⇒ ¬(x ≈ y)

78 a process calculus with state

αin :=∀x, y, t3.IsIn(x, y)@t3 =⇒

∃t2.Insert(x, y)@t2 ∧ t2 ⋖ t3
∧ (∀t1.Delete(x)@t1 ⇒ t1 ⋖ t2 ∨ t3 ⋖ t1)

∧ (∀t1, y.Insert(x, y)@t1 =⇒ t1 ⋖ t2 ∨ t3 ⋖ t1))

αnotin :=∀x, y, t3.IsNotSet(x)@t3 =⇒

(∀t1, y.Insert(x, y)@t1 =⇒ t3 ⋖ t1)

∨ ∃t1.Delete(x)@t1 ∧ t1 ⋖ t3
∧ ∀t2, y.Insert(x, y)@t2 ∧ t2 ⋖ t3 =⇒ t2 ⋖ t1

αlock :=∀x, l, l
′, i, j.Lock(l, x)@i∧ Lock(l ′, x)@j∧ i⋖ j

⇒ ∃k.Unlock(l, x)@k∧ i⋖ k∧ k⋖ j∧

(∀l ′,m.Lock(l ′, x)@m⇒ ¬(i⋖m∧m⋖ k))

∧ (∀l ′,m.Unlock(l ′, x)@m⇒ ¬(i⋖m∧m⋖ k))

αinEv :=∀t, i.InEvent(t)@i⇒ ∃j.K(t)@j∧

(∀k.Event()@k⇒ (k⋖ j∨ i⋖ k))∧

(∀k, t ′.K(t ′)@k⇒ (k⋖ j∨ i⋖ k∨ k ≈ j))

The hypotheses of JϕK use the labels of the generated rules to filter
out executions that we wish to discard:

• αinit ensures that the init rule is only fired once.

• αeq and αnoteq ensure that we only consider traces where all
(dis)equalities hold.

• αin and αnotin ensure that all successful lookups were preceded
by an insert that was neither revoked nor overwritten while
all unsuccessful lookups where either never inserted, or at one
point deleted and never re-inserted.

• αlock checks that between each two matching locks there must
be an unlock. Furthermore, between the first of these locks and
the corresponding unlock, there is neither a lock nor an unlock.

• αinEv ensures that, whenever an instance of MDIn is required to
generate an In-fact, it is generated as late as possible, i. e., there
is no visible Event between the action !K(t) produced by MDIn,
and a rule that requires In(t). This is needed to be correct with
respect to the operational semantics of in and out, see Figure 11.

We also note that Tr �∀ JϕK∀ iff Tr 6�∃ J¬ϕK∃.

5.3.3 Discussion

In the following we will discuss the advantages of using our transla-
tion as opposed to a direct modelling in form of multiset rewrite rules.
Then we will give some insight into why the state manipulation and

5.3 a translation from processes to multiset rewrite rules 79

locking constructs are modelled the way they are. Finally, we discuss
the axioms we have chosen and the well-formedness conditions we
impose on the locks.

5.3.3.1 The need for such a translation

Obviously any protocol that we are able to analyze can be directly
analyzed by the tamarin prover [89, 90] as we use it as a backend.
Indeed, tamarin has already been used for analyzing a model of
the Yubikey device in Chapter 4, the case studies presented with
Mödersheim’s abstraction, as well as those presented with StatVerif.
It is furthermore able to reproduce the aforementioned results on
PKCS#11 [36] and the TPM [35] – moreover, it does so without bound-
ing the number of keys, security devices, reboots, etc.

An important disadvantage is that the representation of protocols
as multiset rewrite rules is very low level and far away from actual
protocol implementations, making it very difficult to model a proto-
col correctly. Our calculus is semantically richer, in particular, it gives
information on which part of the protocol runs on which party and
which kind of requests are treated in which thread, respectively. This
kind of information is fundamental in the development of protocols,
as well as in the implementation of protocols starting from a proto-
col description. There has been work on the automated translation
from protocol descriptions in the spi calculus (another variant of the
applied pi calculus) into Java programs [79, 80], an approach that ap-
pears to be adaptable to our calculus, but not to multiset rewriting.
This supports the claim that our calculus contains enough informa-
tion to serve as a template for an implementation. For protocols that
are first designed, then analysed for security, and later implemented
on the basis of the analysed model, this translation from a model to an
implementation needs to be performed, whether it is done automati-
cally or by hand. One way or another, it should be as straight-forward
as possible.

For the other direction, where a protocol description exists in one
form or another, possibly in form of an implementation, and is to
be modelled with the aim of analysing its security, we face similar
problems: Encoding private channels, nested replications and locking
mechanisms directly as multiset rewrite rules is a tricky and error-
prone task. During our experiments with tamarin, we noticed that
in particular the last point is often swept under the rug: Protocol
steps typically consist of a single input, followed by several database
lookups, and finally an output. In MSR, they are usually modelled as
a single rule, and therefore effectively atomic. Real implementations
are different from that: Several entities might be involved, database
lookups could be slow, etc. In this case, such models could obscure
eventual issues in concurrent protocol steps, that would otherwise
require, e. g., explicit locking. Ignoring the fact that protocol steps

80 a process calculus with state

are not atomic in the model increases the risk of implicitly excluding
attacks in the model that are well possible in a real implementation,
e. g., race conditions. In the following, we will try to illustrate that
the question of where to put locks is a) difficult to answer and b) a
matter of security. Recall the running example, Example 14 on page 7.
Using our translation and the tamarin-prover, we are able to show
key-secrecy for this example, i. e., tracespi(Pex) �

∀ φ for

φ := ¬(∃h, k : msg, i, j : temp. NewKey(h, k)@i∧ K(k)@j).

(See Listing 21 for the full model including the necessary typing
lemma.) Let us change the example, so it implements a slightly dif-
ferent policy: The initial attribute to a key is “init” instead of “dec”,
and there are two processes similar to Pset, one which allow the at-
tribute to be changed from “init” to “dec”, and one which allows the
attribute to be changed from “init” to “enc”:

P ′
ex :=!P ′

new |!Pset−w |!Pset−d |!Pdec |!Pwrap,

where

P ′
new := ν h; ν k; event NewKey(h,k);

insert <‘key’,h>,k; insert <‘att’,h>,‘new’; out(h)

Pset−d := in(h); lookup <’att’,h> as a in

if a=’init’ then insert <’att’,h>, ’dec’

Pset−w := in(h); lookup <’att’,h> as a in

if a=’init’ then insert <’att’,h>, ’wrap’

Pdec and Pwrap are defined as before. It may come as a surprise that P ′
ex

allows for an attack, i. e., tracespi(P ′
ex) 6�

∀ φ, even though Example 14,
as well as this altered variant seem to implement similar policies. We
will only sketch this attack, which is a variation of the attack de-
scribed in Example 1, and can be found using our translation: First,
the attacker executes P ′

new to create a key with a handle h. Then, she
executes Pset−d with handle h until just before the insert command.
She will continue this execution in a moment, but first she executes
Pset−w with h, so that 〈 ′att ′, h〉 points to ′wrap ′ in the store. This
allows her to obtain senc(k, k) by calling Pwrap with 〈h, h〉. Now, by
continuing the previous execution of Pset−d she can alter the store so
that 〈 ′att ′, h〉 points to ′dec ′. Hence, she is allowed to run Pdec on
〈h, senc(k, k), which reveals k.

This attack can be mitigated, by enclosing everything behind in(h)

in the processes Pset−w and Pset−d between lock h and unlock h. This
shows that, for the analysis of security APIs, state synchronisation
is an essential part of the modelling and it is far from trivial to see
when locking is needed (e. g., in P ′

ex), and when it is not (e. g., Pex). A
modelling that is too coarse to capture such attacks (for example due

5.3 a translation from processes to multiset rewrite rules 81

the “implicit” global lock during a multiset rewriting step) should be
viewed critically, as it could give a false sense of security.

The modelling of the Yubikey in the form of multiset rewrite rules
in Chapter 4, as well as in our calculus (in the following Section 5.5)
confirms that our translation is needed to derive the better model, i. e.,
the model including the necessary locking etc. The translation of the
protocol from our calculus produces a total of 49 rules (as opposed to
the four rules in the manual encoding). While in this case the security
results could be confirmed (given that the locks were put in the right
places), this may not always be the case. Instead of expecting the
protocol modeller to describe the protocol in such tedious detail, we
suggest a tool that performs this task while preserving the soundness
and completeness present in the tamarin-prover.

5.3.3.2 Modelling the store using actions instead of facts

The store is presently modelled in the form of Insert and Delete events
that appear in the trace. Since in multiset rewriting, the state of a
protocol is the multiset of facts at a given point in time, the reader
might ask why the store is not translated to facts, for instance, insert

x,y could result in a fact Store(x, y). We faced the following problem:
Store needs to be a linear fact, since we want to be able to remove it
at some point. A rule in the translation of some part of the protocol
that performs a lookup to this value will need to contain Store(x, y)

on the left-hand side (so the database lookup is performed) as well
as on the right-hand side (so it is not removed afterwards). Such a
translation does not interact well with tamarin’s constraint solving
algorithm. Without going too much into the details of how tamarin’s
constraint solving algorithm works, we will sketch the parts relevant
for this argument: Tamarin translates the negation of the security
property into a constraint system, which it then tries to solve, i. e., it
tries to find a counter-example.

It refines this constraint system until it is either solved (and the
security property invalidated), or until all possible cases of the refine-
ment are contradictory. Trace formulas resulting from the negated
security property, as well as from previously established lemmas are
part of the constraint system as well as graph constraints. They de-
scribe protocol traces in a way similar to Figure 13: A node describes
an instantiation of a multiset rewrite rule, including its premises, ac-
tions and conclusions. An edge may connect the conclusion of an in-
stantiated multiset rewriting rule with a matching premise in another
instantiation of a possibly different multiset rewriting rule. (There are
other kinds of edges which are relevant for message deduction, but
unimportant for this argument.) The algorithm performs backward
search: The negation of the security property typically postulates the
existence of one or two actions in the trace (see for example φ in
the previous paragraph). This will be refined into a graph constraint

82 a process calculus with state

consisting of a node that corresponds to an instance of a multiset
rewriting rule that carries this action. Often, this node will have open
premises, which will result in a case distinction over multiset rewrite
rules that can be instantiated to have a matching conclusion. Those
nodes may haven open premises themselves, which may result in an-
other case distinction, etc.

Now back to the example. Whenever there is an open premise for
a fact Store(x, y), there is a case distinction over all multiset rewrit-
ing rules that have Store as a conclusion, including the rule resulting
from a translation of a lookup. But, this rule has Store in the conclu-
sion as well as in the premise, which is provokes a loop in tamarin’s
backward search. Our modelling using the actions allows us to estab-
lish a connection between a lookup and the (uniquely defined) insert
that this value in the store originated from, i. e., an insert with cor-
responding key and value, which has neither been overwritten nor
deleted until the lookup. This is precisely what we encode in the ax-
iom αin– we have not found a way to express this using only multiset
rewrite rules.

We think that it is possible to avoid the loop mentioned above de-
spite using linear facts as a store, but it would require extending
tamarin’s constraint solving algorithm. There could be a syntactic el-
ement to mark linear facts that shall only be verified, but not removed
by a multiset rewriting rule. This could be reflected in a graph node
that has Store as a read-only premise, but not as part of the conclusion.
Read-only premises would need to be connected to a matching con-
clusion, but a conclusion of this linear fact can be connected to more
than one read-only premise in the graph. As a side condition, any
premise that may consume the fact, i. e., any not-read-only premise,
must appear either before the node with the Store in a conclusion, or
after the last node with Store in a read-only premise. Adding this ex-
tension to the constraint solving algorithm and comparing this mod-
elling of state with our current modelling appears to be an interesting
line of future research.

5.3.3.3 Axioms

The axioms in the translation of the formula are designed to work
hand in hand with the translation of the process into rules. They ex-
press the correctness of traces with respect to our calculus’ semantics,
but are also meant to guide tamarin’s constraint solving algorithm.
In the following, we will discuss how the axioms achieve those goals.
The axiom αinit assures that the initial rule, which is the only rule
annotated with the action Init(), appears once in a trace. Unless the
top-level construct of the process is a replication, state[]() is a linear
fact, and can hence only be consumed once. The axioms αeq and αnoteq

are straight-forward. On the other hand, αin and αnotin illustrate what
kind of axioms work well. In the case of αin, when a node with the ac-

5.3 a translation from processes to multiset rewrite rules 83

tion IsIn is created (by definition of the translation, this corresponds to
a lookup command), the existential translates into a graph constraint
that postulates an insert node for the value fetched by the lookup,
and two formulas that assure that a) this insert node appears before
the lookup, b) this insert node is uniquely defined, that is, it is the
last insert to the corresponding key. Further c) there is not delete in
between. Due to this side conditions, αnotin only adds one Insert node
per IsIn node – the case where an axiom postulates a node, which
itself allows for postulating yet another node needs to be avoided, as
tamarin runs into loops otherwise.

Similarly, αnotin, produces two cases, if it can be applied due to the
existence of an IsNotSet node. The first one is coupled with a very
strong condition, namely, that no previous insert to this key exists.
This case can usually be refuted quickly. In the second case, it must
be assumed that a Delete node exists, but that there is no subsequent
Insert. In the majority of our case studies, the second case was refuted
immediately, since no delete command appeared during the process.
Thus, we were left with a very strong assumption (no insert prior to
the lookup), which often led to quick termination.

A naïve way of implementing locks using an axiom would be the
following (to simplify the presentation, we will assume there to be
just one global lock):

Every lock happens either after an unlock, and there is
neither a lock, nor an unlock in between, or it is the first
lock, so there is no previous lock and no unlock at all.

This axiom would guide tamarin in the following way: If a lock is
postulated, a case distinction is made. In the first case, an unlock
is postulated, and a constraint stored which says that there are no
locks and unlocks between the two. Then, tamarin tries to resolve the
missing premises, in particular the state-facts, which will eventually
lead to another lock, since the well-formedness condition imposes
every unlock be preceded (in the sense of the depth in the process
tree) by a lock. The axiom applies again, etc. ad infinitum.

The axiom αlock avoids this caveat, first and foremost because it only
applies to pairs of locks. We will outline how αlock is applied during
the constraint solving procedure:

1. If there are two locks for the same term and with possibly dif-
ferent annotations, an unlock for the first of those locks is pos-
tulated, more precisely, an unlock with the same term, the same
annotation and no lock or unlock for the same term in-between.
The axiom itself contains only one case, so the only case distinc-
tion that takes place is over which rule produces the matching
Unlock-action. However, due to the annotation, all but one are
refuted immediately in the next step. Note further that αlock

postulates only a single node, namely the node with the action
Unlock.

84 a process calculus with state

2. Due to the annotation, the fact statep(. . .) contains the fresh
name that instantiates the annotation variable. Let a : fresh be
this fresh name. Every fact statep ′(. . .) for some position p ′ that
is a prefix of p and a suffix of the position of the corresponding
lock contains this fresh name. Furthermore, every rule instan-
tiation that is an ancestor of a node in the dependency graph
corresponds to the execution of a command that is an ancestor
in the process tree. Therefore, the backward search eventually
reaches the matching lock, including the annotation, which is
determined to be a, and hence appears in the Fr-premise.

3. Because of the Fr-premise, any existing subgraph that already
contains the first of the two original locks would be merged
with the subgraph resulting from the backwards search that we
described in the previous step, as otherwise Fr(a) would be
added at two different points in the execution.

4. The result is a sequence of nodes from the first lock to the corre-
sponding unlock, and graph constraints restricting the second
lock to not take place between the first lock and the unlock. We
note that the axiom αlock is only instantiated once per pair of
locks, since it requires that i⋖ j, thereby fixing their order.

In summary, the annotation helps distinguishing which unlock is
expected between to locks, vastly improving the speed of the back-
ward search. This optimisation, however, required us to put restric-
tions on the locks, which are the subject of the next section.

5.3.3.4 Restrictions on lock/unlock

The annotation of locks restricts the set of protocols we can trans-
late, but allows us to obtain better verification results, since we can
predict which unlock is “supposed” to close a given lock. This addi-
tional information is helpful for tamarin’s backward reasoning. We
think that our locking mechanism captures all practical use cases for
locking. However, since our calculus supports inline multiset rewrite
rules, the user is free to implement locks herself, e.g., as follows:

[NotLocked()]→ []; code; []→ [NotLocked()].

Note that in this case the user does not benefit from the optimisation
we put into the translation of locks.

Obviously, locks can be modelled in both tamarin’s multiset rewrit-
ing calculus in tamarin (this is actually what the translation does) and
Mödersheim’s set rewriting calculus [74]. Hence there are no restric-
tions on where locks appear, however, they must be implement by
hand, for example using a predicat as above. Therefore, there are no
restrictions, but no optimisations either. To the best of our knowledge,
StatVerif is the only comparable tool that models locks explicitly. As

5.4 correctness of the translation 85

pointed out in Section 5.2.3, the restriction in StatVerif are strictly
stronger than in our calculus.

5.3.3.5 Well-formedness of translation

The third condition of Definition 2 does not hold for the translation of
the lookup operator. In order to be able to use tamarin as a back-end,
we need to show that, under this specific conditions, the solution pro-
cedure is still correct. This is formally proven in Appendix B.1. The
idea is the following: A modified translation J·KD which is defined
like the current translation, but adds a dummy-fact the conclusion
when translating an insert, as well as to the premises of a lookup, pro-
duces exactly the same set of traces that are correct with respect to the
axioms. We use this fact to prove that, if tamarin’s constraint solving
algorithm would miss a trace for the original, not well-formed trans-
lation, it would miss a trace for the dummy-translation too, which
would contradict tamarin’s correctness as proven by Schmidt, Meier
et al. [89, 88, 69].

5.4 correctness of the translation

In this chapter, we will show the correctness of our translation stated
by the following theorem.

Theorem 1: Given a well-formed ground process P and a well-formed
trace formula ϕ we have that

tracespi(P) �⋆ ϕ iff tracesmsr(JPK) �⋆ JϕK
⋆

where ⋆ is either ∀ or ∃.

We will first give an overview of the main propositions and lemmas
needed to prove Theorem 1. We first introduce two functions on
traces. The first one, filter, removes all traces that do not satisfy the
trace formula α, i. e., our axioms from page 77. The second one, hide,
removes all reserved actions from each trace in the set. We will show
that the set of traces in tracespi(P) is equal to the set of traces that
result from the translation tracesmsr(JPK), after filter and hide have been
applied. It is not the case that tracespi(P) equals tracesmsr(JPK), as we
will see in the following.

Example 18: Consider the process

P := if ’apple’=’orange’ then event A() else 0.

There is no trace containing A() in tracespi(P), as the semantics of our
calculus cannot reduce this process to its then branch. However, there

86 a process calculus with state

is a trace containing A() in tracesmsr(JPK). Observe that JPK contains
of the following rules:

JPK = {[] −[]→ state[](),

state[]() −[Eq(’apple’, ’orange’)]→ state1(),

state1() −[Event(), A()]→ state1,1(),

state1,1() −[]→ [],

[] −[NotEq(’apple’, ’orange’]→ state2(),

state2() −[]→ []}

There is indeed a trace that contains A(), for example the trace
[

{Eq(’apple’, ’orange’) }#, {Event(), A() }#
]

.

However, this trace does not satisfy the axiom αeq, which means that
it is not important for the verification of translated security properties,
as we will show in the following.

The function filter removes traces that are incorrect with respect to
our axioms α.

Definition 16: Let α be the trace formula as defined in Definition 15

and Tr a set of traces. We define

filter(Tr) := {tr ∈ Tr | ∀θ.(tr, θ) � α}

The following proposition states that if a set of traces satisfies the
translated formula, then the filtered traces satisfy the original for-
mula, too.

Proposition 1: Let Tr be a set of traces and ϕ a trace formula. We have
that

Tr �⋆ JϕK
⋆

iff filter(Tr) �⋆ ϕ

where ⋆ is either ∀ or ∃.

Proof. We first show the two directions for the case ⋆ = ∀. We start by
showing that Tr �∀ JϕK implies filter(Tr) � ϕ.

Tr �∀ JϕK∀ ⇒ filter(Tr) �∀ JϕK∀ (since filter(Tr) ⊆ Tr)

⇔ filter(Tr) �∀ α⇒ ϕ (by definition of JϕK∀)

⇔ filter(Tr) �∀ ϕ (since filter(Tr) �∀ α)

We next show that filter(Tr) �∀ ϕ implies Tr �∀ JϕK∀.

filter(Tr) �∀ ϕ⇒ filter(Tr) �∀ α∧ϕ (since filter(Tr) �∀ α)

⇔ Tr �∀ ¬α∨ (α∧ϕ)

(since filter(Tr) ⊆ Tr and (Tr \ filter(Tr)) 6�∀ α)

⇔ Tr �∀ α⇒ ϕ

⇔ Tr �∀ JϕK∀ (by definition of JϕK∀)

5.4 correctness of the translation 87

The case of ⋆ = ∃ now easily follows:

Tr �∃ JϕK∃ iff Tr 6�∀ J¬ϕK∀ iff filter(Tr) 6�∀ ¬ϕ iff filter(Tr) �∃ ϕ.

If we take a second look at Example 18, we see that the traces in
tracesmsr(JPK) contain some actions that never appear in any trace in
tracespi(P), namely Eq, NotEq, and Event(). Observe that all these
actions are in Fres. The trace [NotEq(’apple’, ’orange’)] is such a case
(NotEq ∈ Fres), although it satisfies the axioms α, including αnoteq, and
hence belongs to filter(tracesmsr(JPK)). We need to “hide” all those
actions that are reserved in order to have equivalent sets of traces.
Since reserved actions do not appear in well-formed trace formulas,
it is safe to hide them. We define the hiding operation which filters
out all reserved facts from a trace.

Definition 17 (hide): Given a trace tr and a set of facts F we inductively
define hide([]) = [] and

hide(F · tr) :=

hide(tr) if F ⊆ Fres

(F \ Fres) · hide(tr) otherwise

Given a set of traces Tr we define hide(Tr) = {hide(t) | t ∈ Tr}.

As expected, well-formed formulas that do not contain reserved
facts evaluate the same whether reserved facts are hidden or not.

Proposition 2: Let Tr be a set of traces and ϕ a well-formed trace for-
mula. We have that

Tr �⋆ ϕ iff hide(Tr) �⋆ ϕ

where ⋆ is either ∀ or ∃.

Proof. We start with the case ⋆ = ∃ and show the stronger statement
that for a trace tr

∀θ.∃θ ′. if (tr, θ) � ϕ then (hide(tr), θ ′) � ϕ

and
∀θ.∃θ ′. if (hide(tr), θ) � ϕ then (tr, θ ′) � ϕ.

We will show both statements by nested induction on |tr| and the
structure of the formula. (The underlying well-founded order is the
lexicographic ordering of the pairs consisting of the length of the trace
and the size of the formula.)

If |tr| = 0 then tr = [] and tr = hide(tr) which allows us to directly
conclude letting θ ′ := θ.

If |tr| = n, we define tr and F such that tr = tr · F. By induction
hypothesis we have that

∀θ.∃θ
′
. if (tr, θ) � ϕ then (hide(tr), θ

′
) � ϕ

88 a process calculus with state

and
∀θ.∃θ

′
. if (hide(tr), θ) � ϕ then (tr, θ

′
) � ϕ

We proceed by structural induction on ϕ.

• ϕ = ⊥, ϕ = i⋖ j, ϕ = i
.
= j or t1 ≈ t2. In these cases we trivially

conclude as the truth value of these formulas does not depend
on the trace and for both statements we simply let θ ′ := θ.

• ϕ = f@i. We start with the first statement. Suppose that (tr, θ) �
f@i. If θ(i) < n then we have also that tr, θ � f@i. By induction
hypothesis, there exists θ

′
such that (tr, θ

′
) � f@i. Hence we

also have that (tr, θ
′
) � f@i and letting θ ′ := θ

′
allows us to

conclude. If θ(i) = n we know that f ∈ trn. As ϕ is well-
formed f 6∈ Fres and hence f ∈ hide(tr)n ′ where n ′ = |hide(tr)|.
The proof of the other statement is similar.

• ϕ = ¬ϕ ′, ϕ = ϕ1 ∧ϕ2, or ϕ = ∃x : s.ϕ ′. We directly conclude
by induction hypotheses (on the structure of ϕ).

From the above statements we easily have that Tr �∃ ϕ iff hide(Tr) �∃

ϕ.
The case of ⋆ = ∀ now easily follows:

Tr �∀ ϕ iff Tr 6�∃ ¬ϕ iff hide(Tr) 6�∃ ¬ϕ iff hide(Tr) �∀ ϕ

We can now state our main lemma which is relating the set of traces
of a process P and the set of traces of its translation into multiset
rewrite rules, using the functions hide and filter to ignore reserved
actions and discard traces that contradict the our axioms.

Lemma 1: Let P be a well-formed ground process. We have that

tracespi(P) = hide(filter(tracesmsr(JPK))).

We will prove this lemma in the following sections, however, for
now we proceed to conclude the proof of Theorem 1 from the bird’s-
eye view.

Given the above propositions and Lemma 1, we can now easily
proof our main theorem.

Proof of Theorem 1.

tracespi(P) �⋆ ϕ

⇔hide(filter(tracesmsr(JPK))) �⋆ ϕ (by Lemma 1)

⇔filter(tracesmsr(JPK)) �⋆ ϕ (by Proposition 2)

⇔tracesmsr(JPK) �⋆ JϕK
⋆

(by Proposition 1)

5.4 correctness of the translation 89

In the following subsections, we will show that Lemma 1 holds, by
showing inclusion of tracespi(R) in hide(filter(tracesmsr(JPK))) (Lemma 3

in Section 5.4.2), and by showing the reverse inclusion (Lemma 4 and
Lemma 5 in Section 5.4.3). But before we are able to show this, we
need to establish a lemma about message deduction and fresh values.
This is the purpose of the next subsection.

5.4.1 Lemmas about message deduction

The following lemma relates the message deduction in our calculus to
the message deduction in multiset rewriting using the rules {MDOut,

MDPub,MDFresh,MDAppl,Fresh }. It will be useful for both direc-
tions of the proof of Lemma 1, i. e., for Lemma 3 and Lemma 5.

First, every message m such that !K(m) is part of the current state
can be derived from the terms that appear in Out facts. Second, if a
message can be derived in our calculus, there is a chain of application
using the above mentioned rules, such that !K(m) is part of the state.

Lemma 2: Let P be a ground process and ∅
F1−→ S1

F2−→ . . .
Fn−→ Sn ∈

filter(execmsr(JPK)). Let

{t1, . . . , tm} = {t | Out(t) ∈16j6n Sj},

σ = {t1/x1
, . . . ,tm /xm}, and

ñ = {a : fresh | ProtoNonce(a) ∈E
⋃

16j6n

Ej}.

We have that

1. if !K(t) ∈ Sn then νñ.σ ⊢ t;

2. if νñ.σ ⊢ t then there exists S such that

• ∅
F1−→ S1

F2−→ . . .
Fn−→ Sn−→

∗S ∈ filter(execmsr
E (JPK)),

• !K(t) ∈E S and

• Sn →
∗
R S for R = {MDOut,MDPub,MDFresh,MDAppl,

Fresh }.

To prove this lemma, we show the first statement by induction on
the number of steps in the execution. For every rule producing a
!K-fact, one can show that a corresponding deduction rule (see Defi-
nition 9) can be used to derive this term. For the second statement,
we perform induction over the deduction tree witnessing νñ.σ ⊢ t
which we use to construct a sequence of multiset rewriting steps pro-
ducing !K(t). See Appendix B for the full proof, including the helping
lemmas 13 and 14.

5.4.2 Inclusion I

To state the next lemma describing the inclusion of tracespi(P) in
hide(filter(tracesmsr(JPK))) we need two additional definitions. The first

90 a process calculus with state

one formally defines which set of rules results from the translation of
a particular position in the process tree. Note that the rules in Fig-
ure 14 are the same as in Figure 12.

Definition 18: Let P be a well-formed ground process and pt a posi-
tion in P. We define the set of multiset rewrite rules generated for
position pt of P, denoted JPK=pt

as follows:

JPK=pt
:= JP, [], []K=pt

where J·, ·, ·K=pt
is defined in Figure 14.

The next definition will be useful to state that for a process P every
fact of the form statep(t̃) in a multiset rewrite execution of JPK corre-
sponds to an active process in the execution of P which is an instance
of the subprocess P|p.

Definition 19: Let P be a ground process, P be a multiset of pro-
cesses and S a multiset of multiset rewrite rules. We write P ↔P S

if there exists a bijection between P and the multiset {statep(t̃) |

∃p, t̃. statep(t̃) ∈
S}# such that whenever Q ∈# P is mapped to

statep(t̃) ∈
S we have that

1. P|pτ = Qρ, for some substitution τ and some bijective renaming
ρ of fresh, but not bound names in Q, and

2. ∃ri ∈E ginsts(JPK=p). statep(t̃) ∈ prems(ri).

When P ↔P S, Q ∈# P and statep(t̃) ∈
S we also write Q ↔P

statep(t̃) if this bijection maps Q to statep(t̃).
We are now ready to formulate an invariant that implies the in-

clusion of traces generated using the semantics of our calculus in the
fragment of multiset rewriting traces of the translation of process that
fulfills the axioms. We show that this invariant holds for every cor-
responding pair of a state in our calculus, and a state of the multiset
rewriting execution. The correspondence is defined by the function f.

Lemma 3: Let P be a well-formed ground process and

(E0, S0, S
MS
0 ,P0, σ0,L0)

E1−→ (E1, S1, S
MS
1 ,P1, σ1,L1)

E2−→

. . .
En−→ (En, Sn, S

MS
n ,Pn, σn,Ln)

where (E0, S0, S
MS
0 ,P0, σ0,L0) = (∅, ∅, ∅, {P }, ∅, ∅). Then, there are

(F1, S1), . . . , (Fn ′ , Sn ′) such that

∅
F1−→JPK S1

F2−→JPK . . .
Fn ′
−→JPK Sn ′ ∈ execmsr(JPK)

and there exists a monotonic, strictly increasing function f : Nn →

Nn ′ such that f(n) = n ′ and for all i ∈Nn

1. Ei = {a | ProtoNonce(a) ∈
⋃

16j6f(i) Fj }

5.4 correctness of the translation 91

J0, p, x̃K=pt
= { [statep(x̃)]→ [] }

p
?
=pt

JP | Q,p, x̃K=pt
= { [statep(x̃)]→ [statep·1(x̃), statep·2(x̃)] }

p
?
=pt

∪JP, p · 1, x̃K=pt
∪ JQ,p · 2, x̃K=pt

J!P, p, x̃K=pt
= { [!statep(x̃)]→ [statep·1(x̃)] }

p
?
=pt
∪ JP, p · 1, x̃K=pt

Jνa;P, p, x̃K=pt
= { [statep(x̃),Fr(na : fresh)] −[ProtoNonce(na : fresh)]→

[statep·1(x̃, na : fresh)] }
p

?
=pt
∪ JP, p · 1, (x̃, na : fresh)K=pt

Jout(M,N);P, p, x̃K=pt
= { [statep(x̃), In(M)] −[InEvent(M)]→ [Out(N), statep·1(x̃)],

[statep(x̃)]→ [Msg(M,N), statesemi
p (x̃)],

[statesemi
p (x̃),Ack(M,N)]→ [statep·1(x̃)] }

p
?
=pt

∪ JP, p · 1, x̃K=pt

Jin(M,N);P, p, x̃K=pt
= { [statep(x̃), In(〈M,N〉)] −[InEvent(〈M,N〉)]→ [statep·1(x̃∪ vars(N))],

[statep(x̃),Msg(M,N)]→ [statep·1(x̃∪ vars(N)),Ack(M,N)] }
p

?
=pt

∪ JP, p · 1, x̃∪ vars(N)K=pt

Jif M = N then P

else Q,p, x̃K=pt

= { [statep(x̃)] −[Eq(M,N)]→ [statep·1(x̃)],

[statep(x̃)] −[NotEq(M,N)]→ [statep·2(x̃)] }
p

?
=pt

∪ JP, p · 1, x̃K=pt
∪ JQ,p · 2, x̃K=pt

Jevent F;P, p, x̃K=pt
= { [statep(x̃)] −[Event(), F]→ [statep·1(x̃)] }

p
?
=pt
∪ JP, p · 1, x̃K=pt

Jinsert s, t;P, p, x̃K=pt
= { [statep(x̃)] −[Insert(s, t)]→ [statep·1(x̃)] }

p
?
=pt
∪ JP, p · 1, x̃K=pt

Jdelete s;P, p, x̃K=pt
= { [statep(x̃)] −[Delete(s)]→ [statep·1(x̃)] }

p
?
=pt
∪ JP, p · 1, x̃K=pt

Jlookup M as v

in P else Q,p, x̃K
=pt

= { [statep(x̃)] −[IsIn(M,v)]→ [statep·1(M̃, v)],

[statep(x̃)] −[IsNotSet(M)]→ [statep·2(x̃)] }
p

?
=pt

∪ JP, p · 1, (x̃, v)K=pt
∪ JQ,p · 2, x̃K=pt

Jlockl s;P, p, x̃K=pt
= { [Fr(lockl), statep(x̃)] −[Lock(lockl, s)]→ [statep·1(x̃, lockl)] }

p
?
=pt

∪ JP, p · 1, x̃K=pt

Junlockl s;P, p, x̃K=pt
= { [statep(x̃)] −[Unlock(lockl, s)]→ [statep·1(x̃)] }

p
?
=pt
∪ JP, p · 1, x̃K=pt

J[l −[a]→ r]; P, p, x̃K=pt
= { [statep(x̃), l] −[Event(), a]→ [r, statep·1(x̃∪ vars(l))] }

p
?
=pt

∪ JP, p · 1, x̃∪ vars(l)K

Figure 14: Definition of JP, p, x̃K=pt
where {·}

a
?
=b

= { · } if a = b and ∅ other-
wise.

92 a process calculus with state

2. ∀t ∈M. Si(t) =

u if ∃j 6 f(i).Insert(t, u) ∈ Fj

∧∀j ′, u ′.

j < j ′ 6 f(i)⇒ Insert(t, u ′) 6∈E Fj ′

∧Delete(t) 6∈E Fj ′

⊥ otherwise

3. SMS
i = Sf(i) \

Fres

4. Pi ↔P Sf(i)

5. { xσi | x ∈ D(σi) }
= {Out(t) ∈ ∪k6f(i)Sk}

#

6. Li =E { t | ∃j 6 f(i), u. Lock(u, t) ∈E Fj ∧ ∀j < k 6 f(i).
Unlock(u, t) 6∈E Fk }

7. [F1, . . . , Fn ′] � α where α is defined as in Definition 15.

8. ∃k. f(i− 1) < k 6 f(i) and Ei = Fk and ∪f(i−1)<j 6=k6f(i) Fj ⊆

Fres

The first condition expresses that the set of restricted values of the
process is the set of nonces that the translation of ν has produced. The
second condition expresses that the store corresponds to the Insert

and Delete-actions in the translation. The third condition expresses
that every non-reserved fact in the state of the translation is a fact
in the secondary store of the calculus. The fourth condition makes
sure that the set of current processes and the state-facts in the transla-
tion correspond, correspond according to Definition 19, i. e., for every
state fact that is in the premise of some ground instance of a multiset
rewrite rule there is a substitution and a bijective renaming of fresh
but unbound names that relates this rule instance to a running pro-
cess. The fifth condition states that the frame corresponds to the set
of terms that have appeared in Out-facts during the protocol execu-
tion. The sixth condition expresses that the set of locks corresponds to
the Lock and Unlock-actions in the translation. The seventh condition
makes sure that the resulting trace respects the axioms α. Finally, the
eighth condition expresses that the actions between two correspond-
ing traces are the same, except for reserved actions.

The proof of this lemma is an induction over the number of tran-
sitions, following a case distinction over all transitions possible in
the semantics of our calculus. In the majority of cases, only a few
conditions have to be proven, while the others follow directly from
the induction hypothesis. In particular the cases for insert, delete,
lookup, lock and unlock are difficult, since the induction hypothesis
expresses a semantical interpretation of the actions in the trace, while
the axioms αin, αnotin and αlock are formulated with the goal of fa-
cilitating analysis using tamarin. This semantical correctness of the

5.4 correctness of the translation 93

axioms and the annotation procedure are therefore part of those cases
in the proof. The complete proof can be found in Section B.2.1 in the
Appendix.

5.4.3 Inclusion II

To simplify the proof for the opposite inclusion, we first define a
normal form of a multiset rewriting execution with respect to our
translation, see Definition 33 on page 220 in Section B.2.2. A nor-
mal execution, e. g., removes semi-states as soon as possible, keeps
the rules corresponding to an internal communication together and
produces In-facts as late as possible.

We can show that we can bring every execution into this form,
which allows us to only reason about “normalized” executions in the
proof of Lemma 5.

Lemma 4 (Normalisation): Let P be a well-formed ground process. If

S0 = ∅
E1−→JPK S1

E2−→JPK . . .
En−→JPK Sn ∈ execmsr(JPK)

and [E1, . . . , En] � α, then there exists a normal MSR execution

T0 = ∅
F1−→JPK T1

F2−→JPK . . .
Fn ′
−→JPK Tn ′ ∈ execmsr(JPK)

such that hide([E1, . . . , En]) = hide(F1, . . . , Fn ′) and [F1, . . . , Fn ′] � α.

This lemma is proven in Section B.2.2. Like in the previous section,
we first define what it means when a set of processes and a multiset
correspond to each other:

Definition 20: Let P be a ground process, P be a multiset of pro-
cesses and S a multiset of multiset rewrite rules. We write P !P S

if there exists a bijection between P and the multiset {statep(t̃) |

∃p, t̃. statep(t̃) ∈
S}# such that whenever Q ∈# P is mapped to

statep(t̃) ∈
S, then:

1. statep(t̃) ∈E prems(R) for R ∈ ginsts(JPK=p).

2. Let θ be a grounding substitution for state(x̃) ∈ prems(JPK=p)

such that t̃ = x̃θ. Then

(P|pτ)ρ =E Q

for a substitution τ, and a bijective renaming ρ of fresh, but not
bound names in Q, defined as follows:

τ(x) :=θ(x) if x not a reserved variable

ρ(a) :=a ′ if θ(na) = a
′

When P !P S, Q ∈# P and statep(t̃) ∈
S we also write Q !P

statep(t̃) if this bijection maps Q to statep(t̃). Lemma 5 is similar to
Lemma 3 and is proven by induction over the number of transitions,
see Section B.2.2 in the Appendix.

94 a process calculus with state

Lemma 5: Le P be a well-formed ground process. If

S0 = ∅
E1−→JPK S1

E2−→JPK . . .
En−→JPK Sn ∈ execmsr(JPK)

is normal and [E1, . . . , En] � α (see Definition 33 and 15), then there
are (E0, S0, S

MS
0 ,P0, σ0,L0), . . . , (En ′ , Sn ′ , SMS

n ′ ,Pn ′ , σn ′ ,Ln ′) and F1,

. . . , Fn ′ such that:

(E0, S0, S
MS
0 ,P0, σ0,L0)

F1−→ (E1, S1, S
MS
1 ,P1, σ1,L1)

F2−→ . . .
Fn ′
−→ (En ′ , Sn ′ , SMS

n ′ ,Pn ′ , σn ′ ,Ln ′)

where (E0, S0, S
MS
0 ,P0, σ0,L0) = (∅, ∅, ∅, {P }, ∅, ∅) and there exists a

monotonically increasing, surjective function f : Nn \ { 0 }→Nn ′ such
that f(n) = n ′ and for all i ∈Nn

1. Ef(i) = {a ∈ FN | ProtoNonce(a) ∈E
⋃

16j6i Ej }

2. ∀ t ∈M. Sf(i)(t) =

u if ∃j 6 i.Insert(t, u) ∈E Ej

∧∀j ′, u ′.

j < j ′ 6 i⇒ Insert(t, u ′) 6∈E Ej ′

∧Delete(t) 6∈E Ej ′

⊥ otherwise

3. SMS
f(i)

=E Si \
Fres

4. Pf(i) !P Si

5. { xσf(i) | x ∈ D(σf(i)) }
=E {Out(t) ∈ ∪k6iSk }

#

6. Lf(i) =E { t | ∃ j 6 i, u. Lock(u, t) ∈E Ej and ∀ j < k 6 i.
Unlock(u, t) 6∈E Ek }.

Furthermore,

7. hide([E1, . . . , En]) =E [F1, . . . , F
′
n].

Lemma 1 follows now from Lemma 3, Lemma 4 and Lemma 5.

5.5 case studies

This section gives an overview of the case studies we performed, in-
cluding a simple security API similar to PKCS#11 [81], the Yubikey
security token (see Chapter 4), the optimistic contract signing proto-
col by Garay, Jakobsson and MacKenzie (GJM) [46], the left-right en-
cryption example discussed by Arapinis et al. [5] and the key-server
example discussed by Mödersheim [74]. The results are summarized
in Table 1. For each of the case studies we also provide the number of
typing lemmas that were needed by the tamarin prover, and whether
manual guidance of the tool was required.

5.5 case studies 95

example lemmas manual

Security API à la PKCS#11 1 no

Yubikey Protocol [60, 93] 3 yes

GJM Contract-Signing protocol [5, 46] 0 no

Mödersheim’s Example (lock/insert) [74] 0 yes∗

Mödersheim’s Example (emb. MSRs) [74] 0 no

Security Device Example [5] 1 no

Needham-Schroeder-Lowe [66] 1 no

∗ only a small amount of guidance was necessary (7 mouse clicks).

Table 1: Case studies.

5.5.1 Security API à la PKCS#11

This example illustrates how our modelling might be useful for the
analysis of security APIs in the style of the PKCS#11 standard [81]. We
expect studying a complete model of PKCS#11, such as in [36], to be
a straightforward extension of our running example in Section 5.2.
The actual case study models two additional operations: First, given
a handle and a plaintext, the user can request an encryption under
the key the handle points to. Second, given an encryption of some
value k2 under a key k1, and a handle h1 pointing to k1, the user can
request the encryption to be unwrapped, which means it is decrypted
under k1. The result is stored on the device, and she receives a handle
h2 pointing to k2. Furthermore, new keys are assigned an initial
attribute, from which they can move to either ‘wrap’, or ‘unwrap’,
see the following snippet:

in(< ‘ set_dec ’,h>); lock < ’ att ’,h>;
lookup < ’ att ’,h> as a in

if a= ’ in i t ’ then

insert < ’ att ’,h>, ’dec ’; unlock < ’ att ’,h>
✆

Note that, in contrast to the running example of the previous sections,
in this modelling it is necessary to encapsulate the state changes be-
tween lock and unlock, as otherwise an adversary could stop the
execution after line 3, set the attribute to ‘wrap’ in another subpro-
cess and therefore be able to produce a wrapping, which he can, after
resuming operation at line 4, decrypt and therefore learn a key. Such
subtleties can produce attacks which can be detected and mitigated
using our modeling. If the locking is handled correctly, we can show
secrecy of keys produced on the device. See Listing 22 in Section A.3
for the complete model.

96 a process calculus with state

5.5.2 Needham-Schoeder-Lowe

We can show secrecy for a session-key established between two hon-
est parties running the Needham-Schroeder-Lowe protocol [65]. The
modelling does not require tags on the messages. See Listing 23 in
Section A.3 for the complete model.

5.5.3 Yubikey

The Yubikey [93] is a small hardware device designed to authenti-
cate a user against network-based services. When the user presses
a button on the device, it outputs a one-time-password consisting of
a counter, a timestamp and other data encrypted using a key that is
on the device. This one-time-password can be used to authenticate
against a server that shares the same secret key.

We introduced the Yubikey in Chapter 4 and showed by the means
of an injective correspondence property and a formalisation of the
protocol in tamarin’s multiset rewriting calculus, that an attacker that
controls the network cannot perform replay attacks. The modelling in
this chapter is more fine-grained due to the use of our calculus, which
makes security-relevant operations like locking and tests on state ex-
plicit. The resulting model is closer to the real-life operation of such
a device and the server component. The modeling of the Yubikey
takes approximately 38 lines in our calculus, which translates to 49

multiset rewrite rules. The modelling from Chapter 4 contains only
four rules, which are quite complicated in themselves, resulting in 23

lines of code. From the new modelling, we learn that the server can
treat multiple authentication requests in parallel, as long as they do
not claim to stem from the same Yubikey. An implementation on the
basis of the model from Chapter 4 would need to implement a global
lock accessible to the authentication server and all Yubikeys to be on
the safe side, since in the MSR model, each of the four rules is atomic.
This is of course impossible: First, the Yubikeys are likely to be used
at different places around the world, so it is unlikely that there exist
means of direct communication between them (the Yubikey “types”
in an OTP in a web-form for the user, i. e., it does not send anything
on the network itself), second, there are typically many Yubikeys de-
ployed at once, so locking the authentication between the moment the
button on the Yubikey is pressed and the moment the OTP is send on
the network is not only unrealistic, but highly inefficient, too. Thirdly,
and most importantly, the Yubikey does not have support for such a
mechanism, so while a server-side global lock might be conceivable
(albeit impractical for the reason previously mentioned), a real global
lock could not be implemented for the Yubikey as deployed. In Sec-
tion 5.3.3, we argue that such locking issues are far from trivial to
detect. We refer to Listing 24 in Section A.3 for the complete model.

5.5 case studies 97

5.5.4 The GJM contract signing protocol

A contract signing protocol allows two parties to sign a contract in a
fair way: None of the participants should be bound to the contract
without the other participant being bound as well. A straightforward
solution is to use a trusted party that collects both signatures on the
contract and then sends the signed contracts to each of the partici-
pants. Optimistic protocols have been designed to avoid the use of a
trusted party whenever possible (optimizing efficiency, and avoiding
the potential cost of a trusted party). In these protocols the parties
first try to simply exchange the signed contracts; in case of failure
or cheating behavior of one of the parties, the trusted party can be
contacted. Depending on the situation, the trusted party may either
abort the contract, or resolve it. In case of an abort decision the proto-
col ensures that none of the parties obtains a signed contract, while
in case of a resolve the protocol ensures that both participants obtain
the signed contract. For this the trusted party needs to maintain a
database with the current status of all contracts (aborted, resolved, or
no decision has been taken). In our calculus, the status information is
naturally modelled using our insert and lookup constructs. The use
of locks is also crucial here to avoid the status to be changed between
a lookup and an insert.

The contract signing protocol by Garay, Jakobsson and MacKenzie
was also studied by Arapinis et al. [46, 5]. They showed the cru-
cial property that the same contract may never be both aborted and
resolved. However, due to the fact that StatVerif only allows for a
finite number of memory cells, they have shown this property for a
single contract and provide a manual proof to lift the result to an un-
bounded number of contracts. We directly prove this property for an
unbounded number of contracts in the model described in Listing 25

in Section A.3.

5.5.5 Further Case Studies

We investigated the case study presented by Mödersheim [74] and
Arapinis et al. [5], in order to be able to compare our approach to
each of them. For Mödersheim’s key-server example, we encoded
two models of this example, one using the insert construct, the other
manipulating state using the embedded multiset rewrite rules. For
this example the second model turned out to be more natural and
more convenient, allowing for a direct automated proof without any
additional typing lemma (Listing 26 in Section A.3, Listing 27 for the
modelling using insert and lookup).

The modelling of the left-right encryption example by Arapinis et
al., also described in Example 4, was straight-forward (Listing 28 in

98 a process calculus with state

Section A.3). In both cases we were able to re-use the typing lemmas
from the tamarin models of those protocols by Simon Meier [71, 68].

Part II

W H E N I S A S E C U R I T Y A P I “ S E C U R E ” ?

We introduce and discuss a definition of security for secu-
rity API implementations. This definition is presented in
form of the first universally composable key-management
functionality, formalized in Hofheinz’ and Shoup’s GNUC

framework. GNUC and similar frameworks define the secu-
rity of protocols by comparison to special network entities
accessed by secure channels which express the “ideal” of
whatever computation the protocol should define. This
approach allows for composability, which means that a
“secure” protocol can be substituted by the functionality
that defines its security in any context. The key-manage-
ment functionality enforces a range of security policies
and can be extended by key usage operations with no
need to repeat the security proof. We illustrate its use
by proving an implementation of a security token secure
with respect to arbitrary key-usage operations and explore
a proof technique that allows the storage of cryptographic
keys externally.

6
W H E N I S A S E C U R I T Y A P I S E C U R E ?

In this chapter, we discuss the characteristics of security APIs and
criteria we require in order to call a security API “secure”. Deciding
whether a given definition is good is difficult, therefore we discuss
what makes a good definition before we try to characterize the nature
of security APIs in a cryptographic context. This helps establishing a
basis for the design decisions we make and provides for criteria for
the evaluation of our definition.

6.1 criteria for persuasive definitions

The following five rules are traditionally used criteria for a certain
kind of definition [28, 54, 53]. With the aim of deriving a definition
that is commonly acceptable, we will regard those rules as desirable
properties of a good definition of security.

a. It should set out the essential attributes of what it defines.

b. It should not be too wide, e. g., it should not include security
APIs that are insecure.

c. It should not be too narrow.

d. It should not be obscure.

e. It should not be negative where it could be positive.

Of course, security definitions have slightly different constraints al-
though we think that those properties provide a good starting point.
We would like to add an additional constraint, which is very impor-
tant for a security definition: It should be possible to work with
the definition, by which we means that it should both be possible
to show whether an object is secure with respect to the definition,
and it should be possible to use the fact that an object is secure with
respect to the definition for the analysis of other objects.

f. Security definitions should be applicable.

Furthermore, security definitions usually put a lot of emphasis on the
second property. Since security definitions that are too wide might
give a false sense of security and thus lead to attacks, which are costly,
the general consensus is to try to be “on the safe side”. In practice,
this means that often clarity, and sometimes generality, are sacrificed
to that end – the definition we propose is not different in this regard.
The fifth property, a definition should not be negative, where it could

101

102 when is a security api secure?

be positive, is usually easy to fulfill: A secure cryptographic primitive
is typically an algorithm, or a set of algorithms, that has a number of
properties.

6.2 characteristics of a “secure” security api

The first property brings us back to one of the questions we have
posed in the introduction: What characterises cryptographic security
APIs? First, they provide an interface to cryptographic keys that are
stored in some secure memory. Second, this interface allows to in-
directly use these keys to compute cryptographic functions possibly
depending on one or more secrets, randomness, and the user’s input.
Third, the access to those secrets can be restricted, for example by the
configuration of the device.

What characterises the security of such devices? First, it should
not reveal secrets to the user. Second, the cryptographic functions
should be secure – what this means depends on the cryptographic
function. Third, the intended access restrictions to the secrets should
be respected. Fourth, the previous properties should hold in a net-
work where the user might be malicious, and where several security
APIs might be present and might contain the same secrets.

6.3 composability

The fourth point suggests the use of a framework that supports uni-
versal composability, i. e., a framework that preserves the security of
a component in a network even under (parallel) composition with a
second components. The GNUC (“GNUC is Not UC”) framework [51],
which we will introduce in Chapter 7, is such a framework. Compos-
ability is helpful for the analysis of higher-level protocols, which is an
appealing feature for security definitions in particular. Consider the
following perspective on security APIs: Hosts in a network can easily
be compromised, since it is very difficult to secure general-purpose
machines against attacks on the implementation level. Taking scenar-
ios where parties are possibly under adversary control into account,
it is often impossible to show protocols secure. Let us modify the
protocol as follows: Instead of performing the cryptographic opera-
tions in the protocol themselves, the parties have security APIs which
perform those computations for them. In the case of GNUC, the se-
curity API would be an incorruptible entity in the network that the
parties – corrupted or not – have access to. Maybe, assuming trust
on the security APIs but not the parties, we can show interesting se-
curity properties for this protocol. Through the use of a framework
that allows for composability, we can substitute the security APIs by
a far more abstract object, a functionality (cf. Chapter 7), which helps
performing this kind of proof.

6.4 overview 103

6.4 overview

In Chapter 7, we will introduce the GNUC framework. In Chapter 8,
we introduce our security definition, which tries to incorporate the
characterisation of a security API and its security we sketched above,
with the aim of deriving a definition that “sets out the essential at-
tributes of what it defines”. In Chapter 9, we analyse this security
definition. We will prove a lemma which states that many guaran-
tees one should expect from our definitions are indeed provided to
support the claim that this definition is not too wide. In the same
chapter, we discuss the limitations of our approach, and evaluate it
with respect to the properties mentioned before, discussing in partic-
ular whether the definition too narrow or too obscure.

In Chapter 8, we furthermore introduce generic architecture for se-
curity APIs. It can serve as a guideline to the design of security APIs
and is independent of how cryptographic functions are implemented,
as long as they are known upfront and the implementation is secure
in itself. In order to achieve this, we make use of the composabil-
ity of the underlying framework. We show in Chapter 10, that this
generic implementation is secure with respect to our definition. In
Chapter 11, we will provide an example of how to use the secure im-
plementation in a higher-level protocol, supporting the claim that our
definition is applicable in the sense of being useful for the analysis of
other protocols.

The contributions that we will present in the following chapters are
joint work with Steve Kremer and Graham Steel and were published
at ESORICS 2013 [57].

6.5 related work

There is recent work that aims at trying to define appropriate security
notions for security APIs [21, 30, 58]. Both the proposal by Cachin
and Chandran and the proposal by Kremer et al. define security in
terms of a cryptographic game, i. e., in both cases, there is a game
with a challenger that, depending on a coin toss, either acts like the
security API, or acts like an idealized version of the security API,
e. g., encrypting random values instead of the actual plaintexts etc.
This approach has two major disadvantages: First, it is not clear how
the security notion will compose with other protocols implemented
by the API. How does the security of a single security API translate
to the security of 100 security APIs that may eventually share the
same keys? We have previously argued that this is inappropriate
since security APIs are first and foremost used as building blocks for
larger protocols – therefore, composability is crucial.

Second, it is difficult to see whether a definition covers the attack
model completely, since the game may be tailored to a specific API.

104 when is a security api secure?

For example, the security definition by Cachin and Chandran [21]
specifies a list of commands that a security API must support – for
many applications this definition is too narrow. Furthermore, it re-
quires that one single central key server is used for a group of users,
since the security depends on a complete and current log of all op-
erations. The definition of Cortier and Steel [30] also defines the set
of commands that the API must support, albeit it is intended for
distributed tokens, as opposed to the definition by Cachin and Chan-
dran. This definition allows only for security proofs in the symbolic
model and has a more limited functionality in comparison to Cachin
and Chandran’s definition. Recent work by Daubignard, Lubicz and
Steel extends the interface to public-key cryptography [32]. While
public key cryptography is supported by Chachin and Chandran’s
definition, as well as our definiton, neither supports the use of public-
key encryption of key export and import. Daubignard, Lubicz and
Steel use signature keys to sign encryptions to guarantee the integrity
of keys that are imported onto a device.

The functionality defined in these works is fixed, which means their
approach is limited to APIs that provide no more operations than
“allowed”. This can be done better; to this end it is worthwhile to find
out which operations are essential to key-management. In present
thesis, we adapt the more general approach to API security of Kremer
et al. [58] to a framework that allows for composition. The idea is to
separate the task of key-management from the task of key-usage, in
order to distinguish the functions that are relevant for security (and
therefore have to be defined) from the functions that are not relevant
for the security (and can therefore be left open). Kremer et al. give
a game-based definition in the computational model, as well as a
definition in the symbolic model. We extend the idea of separating
key-management and key-usage and transfer it into the framework
of GNUC. In fact, the composability of this framework allows us to go
one step further and define the security of the key-usage operations
without fixing the set of key-usage operations in our definition.

Some aspects of the functionality Fcrypto by Küsters et al. [61] are
similar to our key-management functionality in that they both pro-
vide cryptographic primitives to a number of users and enjoy com-
posability. However, the Fcrypto approach aims at abstracting a spec-
ified set of cryptographic operations on client machines to make the
analysis of protocols in the simulation-based security models easier,
and addresses neither key-management nor policies.

7
I N T R O D U C T I O N T O G N U C

The GNUC framework, recently proposed by Hofheinz and Shoup [51],
is a variant of the UC framework [23] and as such a framework for
simulation-based security. The requirements on a protocol are for-
malized by abstraction: An ideal functionality computes the protocol’s
inputs and outputs securely, while a ‘secure’ protocol is one that emu-
lates the ideal functionality. Simulation-based security naturally mod-
els the composition of the API with other protocols, so that proofs of
security can be performed in a modular fashion. We decided to use
the GNUC model because it avoids shortcomings of the original Uni-
versal Composability (UC) framework which have been pointed out
over the years. Moreover, the GNUC framework is well structured and
well documented resulting in more rigorous and readable security
proofs.

Hofheinz and Shoup proposed GNUC to address several known
shortcomings in UC. In particular, in UC the notion of a poly-time
protocol implies that the interface of a protocol has to contain enough
input padding to give sub-protocols of the implementation enough
running time, hence the definition of an interface that is supposed to
be abstract depends on the complexity of its implementation. More-
over, the proof of the composition theorem is flawed due to an inade-
quate formulation of the composition operation [51], though here the
authors remark that, “none of the objections we raise point to gaps
in security proofs of existing protocols. Rather, they seem artifacts
of the concrete technical formulation of the underlying framework”.
These shortcomings are also addressed to a greater or lesser extent
by other altenative frameworks [84, 67]: We chose GNUC because it is
similar in spirit to the original UC yet rigorous and well documented.
We now give a short introduction to GNUC and refer the reader to [51]
for additional details.

7.1 preliminaries

Let Σ be some fixed, finite alphabet of symbols. We note η the security
parameter.

Definition 21 (probabilistic polynomial-time (PPT)): We say that a prob-
abilistic programA runs in polynomial-time if the probability thatA’s
runtime on an input of length n is bounded by a polynomial in n is
1. If so, we say such a program is PPT.

Definition 22 (Computationally indistinguishable): Let X := {Xη }η

and Y := { Yη }η be two families of random variables, where each

105

106 introduction to gnuc

random variable takes values in a set Σ∗ ∪ {⊥ }. We say that X and
Y are computationally indistinguishable, written X ≈ Y, if for every PPT

program D that takes as input a string over Σ we have that

|Pr[D(x) = 1| x← Xη] − Pr[D(y) = 1| y← Yη]|

is negligible in η.

7.2 machines and interaction

In GNUC a protocol π is modeled as a library of programs, e. g., a
function from protocol names to code. This code will be executed by
interactive Turing machines. There are two distinguished machines,
the environment and the adversary, that π does not define code for.
All other machines are called protocol machines. Protocol machines can
be divided into two subclasses: regular and ideal protocol machines.
They come to life when they are called by the environment and are
addressed using machine ids. A machine ID <pid,sid> contains two
parts: the party ID pid, which is of the form <reg,basePID> for regu-
lar protocol machines and <ideal> for ideal protocol machines, and
the session ID sid. Session ids are structured as pathnames of the
form 〈α1, . . . , αk〉. The last component αk must be of the particular
form protName, sp. When the environment sends the first message to
a protocol machine, a machine running the code defined by the pro-
tocol name protName is created. The code will often make decisions
based on the session parameter sp and the party ID. A machine M,
identified by its machine ID 〈pid, 〈α1, . . . , αk〉〉, can call a subroutine,
i.e., a machine with the machine ID 〈pid, 〈α1, . . . , αk, αk+1〉〉. We then
say that M is the caller with respect to this machine. Two protocol
machines, regular or ideal, are peers if they have the same session ID.
Programs have to declare which other programs they will call as sub-
routines, defining a static call graph which must be acyclic and thus
have a program r with in-degree 0 – then we say that the protocol is
rooted at r.

GNUC imposes the following communication constraints on a reg-
ular protocol machine M: It can only send messages to the adversary,
to its ideal peer (i. e., a machine with party ID <ideal> and the same
session ID), its subroutines and its caller. If the caller is the envi-
ronment, a sandbox mechanism translates its machine ID, which is
simply <env>, to the machine ID of the caller of M (which is uniquely
defined). As a consequence, regular protocol machines cannot talk
directly to regular peers. They can communicate via the adversary,
which models an insecure network, or via the ideal peer. This ideal
peer is a party that can communicate directly with all regular protocol
parties and the adversary.

The code of the machines is described by a sequence of steps simi-
larly to [51, § 12]. Each step is defined by a block of the form

7.3 defining security via ideal functionalities 107

name [condition]: P

The label name identifies the step. The logical expression [condition]

is a guard that must be satisfied to trigger a step. We omit the guard
in case it is true. A step name in the guard expression evaluates to
true if the corresponding step was triggered at some previous point.
P is the code (whose semantics we expect to be clear) to be executed
whenever the guard evaluates to true. In particular P may contain
accept-clauses that describe the form of the message that can be input.
The accept clause, too, might have logical conditions that must be
satisfied in order to continue the execution of the step. Any message
not triggering any step is processed by sending an error message to
A. Listing 1 in the next section gives an example of a functionality
written in this notation.

7.3 defining security via ideal functionalities

As in other universal composability frameworks, the security of a
protocol is specified by a so-called ideal functionality, which acts as
a third party and is trusted by all participants. Formally, an ideal
functionality is a protocol that defines just one protocol name, say
r. The behavior defined for this protocol name depends on the type
of machine: All regular protocol machines act as “dummy parties”
and forward messages received by their caller (which might be the
environment) to their ideal peer. The ideal peer (the machine with
the same session ID and party ID <ideal>, see Section 7.2) interacts
with the regular parties and the adversary: Using the inputs of the
parties, the ideal functionality defines a secure way of computing
anything the protocol shall compute, explicitly computing the data
that is allowed to leak to the attacker.

Example 19: For instance, an authenticated channel is specified as a
functionality that takes a message from Alice and sends it to the at-
tacker, exposing its content to the network, but only accepting a mes-
sage from the attacker (the network) if it is the same message Alice
sent in the first place.

We present the following formulation of this functionality, which is
very similar to the one presented in [51, §12.1.1] and which we will
later come back to:

Listing 1: Fach with session parameters 〈Ppid, Qpid, label〉. Note that in this
example, every step can only be executed once.

ready-sender: accept <ready> from P;

send <sender-ready> to A

ready-receiver[¬ready-sender]: accept <ready> from Q;

send <ready-receiver-early> to A

ready-receiver[ready-sender]: accept <ready> from Q;

send <receiver-ready> to A;

108 introduction to gnuc

send [ready-receiver]: accept <send,x> from P;

x← x; send <send,x> to A

done [send]: accept <done> from A;

send <done> to P

deliver[send]: accept <deliver,x> from A where x = x;

send <deliver,x> to Q
✆

We see that a functionality is completely defined by the code run
on the ideal protocol machine.

Now we can define a second protocol, which is rooted at r, and
does not necessarily define any behaviour for the ideal party, but only
for the regular protocol machines. The role of the environment Z is
to distinguish whether it is interacting with the ideal system (dummy
users interacting with an ideal functionality) or the real system (users
executing a protocol). We say that a protocol π emulates a functional-
ity F if for all attackers interacting with π, there exists an attacker, the
simulator Sim, interacting with F, such that no environment can dis-
tinguish between interacting with the attacker and the real protocol
π, or the simulation of this attack (generated by Sim) and F. It is actu-
ally not necessary to quantify over all possible adversaries: The most
powerful adversary is the so-called dummy attacker AD that merely
acts as a relay forwarding all messages between the environment and
the protocol [51, Theorem 5].

Let Z be a program defining an environment, i. e., a program that
satisfies the communication constraints that apply to the environment
(e. g., it sends messages only to regular protocol machines or to the ad-
versary). Let A be a program that satisfies the constraints that apply
to the adversary (e. g., it sends messages only to protocol machines
(ideal or regular) it previously received a message from). The proto-
col π together with A and Z defines a structured system of interactive
Turing machines (formally defined in [51, § 4]) denoted [π,A, Z]. The
execution of the system on external input 1η is a randomized process
that terminates if Z decides to stop running the protocol and output
a string in Σ∗. The random variable Exec[π,A, Z](η) describes the
output of Z at the end of this process (or Exec[π,A, Z](η) = ⊥ if it
does not terminate). Let Exec[π,A, Z] denote the family of random
variables {Exec[π,A, Z](η) }∞η=1. An environment Z is well-behaved
if the data-flow from Z to the regular protocol participants and the
adversary is limited by a polynomial in the security parameter η. We
say that Z is rooted at r, if it only invokes machines with the same
session identifier referring to the protocol name r. We do not define
the notion of a poly-time protocol and a bounded adversary here due
to space constraints and refer the reader to the definition in [51, § 6].

Definition 23 (emulation w.r.t. the dummy adversary): Let π and π ′

be poly-time protocols rooted at r. We say that π ′ emulates π if there

7.3 defining security via ideal functionalities 109

exists an adversary Sim that is bounded for π, such that for every
well-behaved environment Z rooted at r, we have

Exec[π,Sim, Z] ≈ Exec[π ′, AD, Z],

where ≈ denotes computational indistinguishability (Definition 22).

8
K E Y- M A N A G E M E N T F U N C T I O N A L I T Y A N D
R E F E R E N C E I M P L E M E N TAT I O N

In the following, we will develop and discuss a composable notion
of secure key-management in the form of a functionality with the
name FKM. To the best of our knowledge, it is the first composable
definition of secure key-management.

An ideal functionality should provide the required operations in
a way that makes security obvious. This means its design must be
as simple as possible in order for this security to be clear. However,
there are subtle issues in such designs: Obtaining a satisfactory for-
mulation of digital signature took years because of repeated revisions
caused by subtle flaws making the functionality unrealizable. The
functionality we define will at some point need to preserve authen-
ticity in a similar way to this signature functionality, but in a multi-
session setting. So we must expect a key-management functionality to
be at least as complex. Nonetheless we aim to keep it as simple as pos-
sible, and so justify the inclusion of each feature by discussing what
minimum functionality we expect from a key-management system. It
will be necessary to compromise at certain points, for example, we de-
cided to only support symmetric encryption as a key-transportation
mechanism. The following Chapter 9 provides an analysis of FKM:
In Section 9.1, we will give some properties that any security API
that implements FKM enjoys. We list limitations in Section 9.2. A
discussion of FKM takes place in Section 9.3.

The functionality FKM formalises the requirements for a security
API: It assures that keys are transferred correctly from one security
token to another, that the global security policy is respected (even
though the keys are distributed on several tokens) and that opera-
tions which use keys are computed correctly. The latter is achieved
by describing operations unrelated to key-management by so-called
key-usage functionalities. FKM is parametric in the policy and the set
of key-usage functionalities, which can be arbitrary. This facilitates re-
vision of API designs, because changes to operations that are not part
of the key-management or the addition of new functions do not affect
the emulation proof. This allows the aim of deriving a definition that
is wide enough to cover many different forms of security APIs. To
achieve this extensibility, we investigate what exactly a “key” means
in the context of simulation-based security in Section 8.2.

Common functionalities in such settings do not allow two parties
to share the same key. In fact, they do not have a concept of keys,
but a concept of “the owner of a functionality” instead. The actual

111

112 key-management functionality and refer . implementation

key is kept in the internal state of a functionality, used for computa-
tion, but never output. Dealing with key-management, we need the
capability to export and import keys and we propose an abstraction
of the concept of keys, that we call credentials. The owner of a cre-
dential can not only compute a cryptographic operation, but he can
also delegate this capacity by transmitting the credential. We think
this concept is of independent interest. We subsequently introduce
a general proof method that allows the substitution of credentials by
actual keys when instantiating a functionality.

We will now proceed to explain the architecture of FKM, then, in
Section 8.2, introduce our concept of key-usage functionalities which
covers the usual cryptographic operations we might want to perform
with our managed keys. In Section 8.3, we describe our notion of
security policies for key-management. In Section 8.4, we formally
define FKM, as well as a generic implementation of FKM.

8.1 design rationals

The network we want to show secure has the following structure:
A set of users takes input from the environment, each of them is
connected to a security token. Each security token is a network entity,
just like the users, and has a secure channel to the user it belongs
to. Cryptographic keys are stored on the token, but are not given
directly to the user – instead, at creation of a key, the user (and thus
the environment) receives a handle to the key.

We consider such a network secure if it emulates a network in
which the users are communicating with a single entity, the key-
management functionality FKM, instead of their respective security
token. It gives the users access to its operations via handles, too, and
is designed to model the “ideal” way of performing key-management.
To show the security of the operations that have nothing to do with
key-management, FKM accesses several other functionalities which
model the security of the respective operations. This allows us to
have a definition that is applicable to many different cases.

8.1.1 Policies

As mentioned in Chapter 6, a security API we want to consider secure
should respect the intended access restrictions that apply to keys. In
order to formalise this intention, we assume there to be a policy, which
is to be enforced on a global level. Our definition allows the expres-
sion of two kinds of requirements: usage policies of the form “key
A can only be used for tasks X and Y”, and dependency policies of
the form “the security of key A may depend on the security of keys
B and C”. The need for the first is obvious. The need for the sec-
ond arises because almost all non-trivial key-management systems

8.1 design rationals 113

allow keys to encrypt other keys, or derive keys by, e. g., encrypting
an identifier with a master key. Typically, the policy defines roles for
keys, i. e., groups of tasks that can be performed by a key, and se-

curity levels, which define a hierarchy between keys. The difficulty
lies in enforcing this policy globally when key-management involves
a number of distributed security tokens that can communicate only
via an untrusted network. Recall Example 2 from the introduction
which showed that a global policy can be violated even if each se-
curity token enforces the policy locally. Our ideal key-management
functionality considers a distributed set of security tokens as a single
trusted third party. It makes sure that every use of a key is compliant
with the (global) policy. Therefore, if a set of well-designed security
tokens with a sound local policy emulates the ideal key-management
functionality, they can never reach a state where a key is used for
an operation that is contrary to the global policy. This implies that,
in general, the key should be kept secret from the user, as the user
cannot be forced to comply with any policy. Thus, keys are only ac-
cessed via an interface that executes only the operations on the key
permitted by the policy. The functionality associates some meta-data,
an attribute, to each key. This attribute defines the key’s role, and
thus its uses. Existing industrial standards [81] and recent academic
proposals [21, 58] are similar in this respect.

8.1.2 Sharing Secrets

A key created on one security token is a priori only available to users
that have access to this token (since it is hidden from the user). Many
cryptographic protocols require that the participants share some key,
so, in order to be able to run a protocol between two users of different
security tokens, we need to be able to “transfer” keys between devices
without revealing them. There are several ways to do this, e. g., using
semantically secure symmetric or asymmetric encryption, but we will
opt for the simplest, key-wrapping (the encryption of one key by
another). While it is possible to define key-management with a more
conceptual view of “transferring keys” and allow the implementation
to decide for an option, we think that since key-wrapping is relevant
in practice (it is defined in RFC 3394), the choice for this option allows
us to define the key-management in a more comprehensible way. We
leave the definition of a notion more general in this regard for future
work.

8.1.3 Secure Setup

The use of key-wrapping requires some initial shared secret values
to be available before keys can be transferred. We model the setup
in the following way: A subset of users, Room, is assumed to be in

114 key-management functionality and refer . implementation

a secure environment during a limited setup-phase. Afterwards, the
only secure channel is between a user Ui, and his security token STi.
The intruder can access all other channels, and corrupt any party at
any time, as well as corrupt keys, i. e., learn the value of the key stored
inside the security token. This models the real world situation where
tokens can be initialised securely but then may be lost or subject to,
e. g., side channel attacks once deployed in the field.

8.1.4 Operations required

These requirements give a set of operations that key-management de-
mands: new (create keys), wrap and unwrap (our chosen method of
transferring keys), corrupt (corruption of keys) and share/finish_-
setup (modelling a setup phase in a secure environment). For poli-
cies that allow a key’s attribute to be changed, the command attr_-

change is provided. We argue that a reasonable definition of secure
key-management has to provide at least those operations. Further-
more, the users need a way to access the keys stored in the security
tokens, so there is a set of operations for each type of key. A sig-
nature key, for example, allows the operations sign and verify. This
allows the following classification: The first group of operations de-
fines key-management, the second key-usage. While key-management
operations, for example wrap, might operate on two keys of possibly
different types, key-usage operations are restricted to calling an oper-
ation on a single key and user-supplied data. This is coherent with
global policies as mentioned above: The form “key A can be used for
task X” expresses key-usage, the form “the security of key A depends
on keys B and C” expresses a constraint on the key-management.

8.2 key-usage (ku) functionalities

We now define an abstract notion of a functionality making use of a
key which we call a ku functionality. This will allow us to define our
ideal key-management functionality FKM in a way that is general with
respect to a large class of cryptographic functionalities. For every ku
operation, FKM calls the corresponding ku functionality, receives the
response and outputs it to the user. We define FKM for arbitrary ku
operations, and consider a security token secure, with respect to the
implemented ku functionalities, if it emulates the ideal functionality
FKM parametrized by those ku functionalities. This allows us to pro-
vide an implementation for secure key-management independent of
which ku functionalities are used.

8.2 key-usage (ku) functionalities 115

8.2.1 Credentials

Many existing functionalities, e. g., [23], bind the roles of the parties,
e. g., signer and verifier, to a machine ID encoded in the session pa-
rameters. In implementations, however, the privilege to perform an
operation is linked to the knowledge of a key rather than a machine
ID. While for most applications this is not really a restriction, it is for
key-management. The privilege to perform an operation of a ku func-
tionality must be transferable as some piece of information, which
however cannot be the actual key: A signature functionality, for ex-
ample, that exposes its keys to the environment is not realizable, since
the environment could then generate dishonest signatures itself. Our
solution is to generate a key, but only send out a credential, which is a
hard-to-guess pointer that refers to this key. We actually use the key
generation algorithm to generate credentials. As opposed to the real
world, where security tokens map handles to keys, and compute the
results based on the keys, in the ideal world, FKM maps handles to
credentials, and uses those credentials to address ku functionalities,
which compute the results. The implementation of a ku functionality
maps credentials to cryptographic keys (see Definition 24). While cre-
dentials are part of the key-management functionality FKM and the ku
functionality, they are merely devices used for abstracting keys. They
are used in the proofs, but disappear in the reference implementation
presented in Section 8.4.

In summary, credentials serve as an abstraction of keys in the ideal
world. Whoever knows the credential is allowed to sign. Keys not
only allow a distinguished party, the owner of the key, to perform
operation but also allow delegation of this capacity. An abstraction of
‘keys’ by ‘credentials’ is thus more powerful than abstraction of the
‘owner of a key’ by a ‘fixed identity of party that is allowed to sign’.
In our scenario, where keys are exported, it is necessary to abstract
keys.

8.2.2 Key-manageable functionalities

Our approach imposes assumptions on the ku functionalities, as they
need to be implementable in a key-manageable way.

Definition 24 (key-manageable implementation): A key-manageable
implementation Î is defined by (i) a set of commands Cmds that
can be partitioned into private and public commands, as well as key-
(and credential-)generation, i. e., C = Cpriv ⊎ Cpub ⊎ { new }, and (ii) a set
of PPT algorithms implementing those commands, { implC }C∈C, such
that for the key-generation algorithm impl

new
it holds that

• for all k, Pr
[

k ′ = k | (k ′, public)← impl
new

(1η)
]

is negligible in
η, and,

116 key-management functionality and refer . implementation

• Pr
[

|k1| 6= |k2| | (k1, p1)← impl
new

(1η); (k2, p2)← impl
new

(1η)
]

is
negligible in η.

Î is a protocol in the sense of [51, §5], i. e., a run-time library that
defines only one protocol name. The session parameter encodes a
machine ID P. When called on this machine, the code below is exe-
cuted. If called on any other machine no message is accepted. From
now on in our code we follow the convention that the response to a
query (Command, sid, . . .) is always of the form (Command•, sid, . . .),
or ⊥. The variable L holds a set of pairs and is initially empty.

new: accept <new> from parentId;

(key, public) ← implnew(1
η);

(credential,_) ← implnew(1
η);

L← L∪ {(credential, key)};
send <new•, credential, public> to parentId

command: accept <C, credential,m> from parentId;

if (credential, key) ∈ L for some key
send <C•, implC(key,m)> to parentId

public_command: accept <C, public,m> from parentId;

send <C•, implC(public,m)> to parentId

corrupt: accept <corrupt,credential> from parentId;

if (credential, key) ∈ L for some key
send <corrupt•, key> to parentId

inject: accept <inject,k> from parentId;

(c, _) ← implnew(1
η)

L← L∪ { (c, k) }; send <inject•,c> to parentId
✆

The definition requires that each command C can be implemented
by an algorithm implC. If C is private, implC takes the key as an
argument. Otherwise it only takes public data (typically the public
part of some key, and some user data) as arguments. In other words,
an implementation Î emulating F is, once a key is created, stateless
with respect to queries concerning this key. The calls 〈corrupt〉 and
〈inject〉 are necessary for cases where the adversary learns a key, or
is able to insert dishonestly generated key-material.

Definition 25 (key-manageable functionality): A poly-time functional-
ity F (to be precise, an ideal protocol [51, § 8.2]) is key-manageable iff it
is poly-time, and there is a set of commands C and implementations,
i. e., PPT algorithms ImplF = { implC }C∈C, defining a key-manageable
implementation Î (also poly-time) which emulates F.

8.3 policies

Since all credentials on different security tokens in the network are
abstracted to a central storage, FKM can implement a global policy.
Every credential in FKM is associated with an attribute from a set of
attributes A and to the ku functionality it belongs to (which we will

8.4 FKM and the reference implementation 117

call its type). Keys that are used for key-wrapping are marked with
the type KW.

Definition 26 (Policy): Given the ku functionalities Fi, i ∈ { 1, . . . , l }

and corresponding sets of commands Ci, a policy is a quaternary rela-
tion Π ⊂ {F1, . . . ,Fl, KW}×∪i∈{1,...,l }C

priv
i ∪ {new, wrap, unwrap, attr_

change}×A×A.

FKM is parametrized by a policy Π. If (F, C, a, a ′) ∈ Π and if

• C = new, then FKM allows the creation of a new key for the
functionality F with attribute a.

• F = Fi and C ∈ C
priv
i , then FKM allows sending the command C

to F, if the key is of type F and has the attribute a.

• F = KW and C = wrap, then FKM allows wrapping a key with
attribute a ′ using a wrapping key with attribute a.

• F = KW and C = unwrap, then FKM allows unwrapping a wrap-
ping with attribute a ′ using a wrapping key with attribute a.

• if C = attr_change, then FKM allows changing a key’s attribute
from a to a ′.

Note that a ′ is only relevant for the commands wrap, unwrap and
attr_change. Because of the command attr_change, a key can have
different attributes set for different users of FKM, corresponding to
different security tokens in the real word.

Example 20: To illustrate Definition 26, consider the case of a single
ku functionality for encryption Fenc. The set of attributes A is {0, 1}:
Intuitively a key with attribute 1 can be used for wrapping and a key
with attribute 0 for encryption. The following table describes a policy
that allows wrapping keys to wrap encryption keys, but not other
wrapping keys, and allows encryption keys to perform encryption
on user-data, but nothing else – even decryption is disallowed. The
policy Π consists of the following 4-tuples (F,Cmd,attr1,attr2):

F Cmd attr1 attr2
KW new 1 *

Fenc new 0 *

KW wrap 1 0

KW unwrap 1 0

Fenc enc 0 *

8.4 the key-management functionality and a generic

and secure reference implementation

We are now in a position to give a full definition of FKM, together
with a generic, secure architecture for security APIs. We give the de-

118 key-management functionality and refer . implementation

Z

U1 . . . Un Uext
1 . . . Uext

m

Fsetup

ST1 . . . STn

(a) Distributed security tokens in the network

Z

U1 . . . Un Uext
1 . . . Uext

m

ST1

F1 . . . Fl

FKM

(b) An idealized functionality FKM in the same
network

Figure 15: Distributed security tokens in the network (left-hand side) and
idealized functionality FKM in the same network (right-hand
side).

scription of FKM in the Listings 3 to 8. At the same time, to illustrate
our definition and demonstrate its use, we present the implemen-
tation of a security API showing that it is possible to implement a
security API for key-management that is independent of the ku func-
tions it provides. By presenting the functionality FKM and the model
implementation side-by-side we hope to be able to show how, on the
one hand, how FKM provides the security guarantees and deals with
corner cases, while on the other hand, the implementation illustrates
a straight-forward way of implementing FKM using a deterministic,
symmetric key-wrapping scheme.

The implementation ST is inspired by Kremer et al.’s proposal for
a secure implementation of key-management [58] and is parametric
with respect to the ku parameters F,C, Π and the implementation
functions Impl := {ImplF}F∈F. It is therefore composable in the fol-
lowing sense: If a device performs the key-management according to
our implementation, it does not matter how many, and which func-
tionalities it enables access to, as long as those functionalities provide
the amount of security the designer aims to achieve (cf. Corollary 1).
In Chapter 10, we show that this implementation is indeed a realiza-
tion of FKM. We emphasize that extending FKM and the implementa-
tion by a new ku functionality does not require a new proof.

8.4.1 Structure and Network setup

For book-keeping purposes FKM maintains a set Kcor of corrupted
keys and a wrapping graph W whose vertices are the credentials. An
edge (c1, c2) is created whenever (the key corresponding to) c1 is
used to wrap (the key corresponding to) c2.
FKM acts as a proxy service to the ku functionalities. It is possible

to create keys, which means that FKM asks the ku functionality for the
credentials and stores them, but outputs only a handle referring to the
credential, which represents the key. A handle can be the position of

8.4 FKM and the reference implementation 119

the key in memory, or a running number – we just assume that there
is a way to draw them such that they are unique. When a command
C ∈ C

priv
i is called with a handle and a message, FKM substitutes the

handle with the associated credential, and forwards the output to Fi.
The response from Fi is forwarded unaltered. All queries are checked
against the policy. The environment may corrupt parties connected
to security tokens, as well as individual keys.

Definition 27 (Parameters to a security token network): We summarize
the parameters of a security token network as two tuples, (U,Uext, ST,

Room) and (F,C, Π). The first tuple defines network parameters:

• U = {U1, . . . , Un } are the party IDs of the users connected to a
security token

• Uext = {Uext
1 , . . . , U

ext
m } are the party IDs of external users, i. e.,

users that do not have access to a security token.

• ST = {ST1, . . . , STn } are the party IDs of the security tokens
accessed by U1, . . . , Un.

• Room ⊂ U.

The second tuple defines key-usage parameters:

• F = { F1, . . . ,Fl }, and

• C = { C1, . . . ,Cl } are key-manageable functionalities with corre-
sponding sets of commands. Note that KW 6∈ { F1, . . . ,Fl }, and
that each Ci ∈ C is partitioned into the private C

priv
i and public

commands C
pub
i , as well as the singleton set consisting of new.

• Π is a policy for F and C (cf. Definition 26) and a membership
test on Π can be performed efficiently.

Figure 15 shows the network of distributed users and security to-
kens on the left, and their abstraction FKM on the right. There are two
kinds of users: U1, . . . , Un =: U, each of whom has access to exactly
one security token STi, and external users Uext

1 , . . . , U
ext
m =: Uext, who

cannot access any security token but may access the public parts of
keys that are stored on a security token. The security token STi can
only be controlled via the user Ui. The functionality Fsetup in the real
world captures our setup assumptions, which need to be achieved
using physical means. Among other things, Fsetup assures a secure
channel between each pair (Ui,STi). The necessity of this channel
follows from the fact that a) GNUC forbids direct communication
between two regular protocol machines (indirect communication via
A is used to model an insecure channel) and b) U1, . . . , Un can be
corrupted by the environment, while ST1, . . . , STn are incorruptible,
since security tokens are designed to be better protected against phys-
ical attacks, as well as worms, viruses etc. Although we assume that

120 key-management functionality and refer . implementation

the attacker cannot gain full control of the device (party corruption),
he might obtain or inject keys in our model (key corruption).

The session ID sid is of the form 〈α1, . . . , αk−1, 〈prot− fkm, sp〉〉,
where the session parameter sp is some encoding of the network pa-
rameters U,Uext, ST,Room. The code itself is parametric in the ku
parameters F,C, Π. When we refer to FKM as a network identity, we
mean the machine ID 〈ideal, sid〉.

Similarly, each security token STi ∈ {ST1, . . . , STn } is addressed
via the machine ID 〈STi, sid〉. We will abuse notation by identifying
the machine ID with STi, whenever the session ID is clear from the
context. The session parameter within sid encodes the network pa-
rameters U,Uext, ST,Room. STi makes subroutine calls to the function-
ality Fsetup which subsumes our setup assumptions. Fsetup provides
two things: 1. a secure channel between each pair Ui and STi, 2. a se-
cure channel between all pairs STi and STj for which Ui, Uj ∈ Room

during the setup phase (see below). STi receives commands from a ma-
chine Ui ∈ U, which is defined in Definition 29. Ui relays arbitrary
commands sent by the environment to STi (via Fsetup). The environ-
ment cannot talk directly to STi, but the attacker can send queries on
behalf of any corrupted user, given that the user has been corrupted
previously (by the environment).

8.4.2 Setup phase

The setup assumptions are implemented by the functionality Fsetup,
which Listing C.3 in Section C.3 in the appendix describes in full de-
tail. All users in Room are allowed to share keys during the setup
phase, i. e., the implementation is allowed to use secure channels to
transport keys during this phase, but not later. This secure chan-
nel between each two security tokens STi,STj ∈ Room is only used dur-
ing the setup phase. Once the setup phase is finished, the expres-
sion setup_finished evaluates to true and the functionality enters
the run phase. During the run phase, Fsetup provides only a se-
cure channel between a user Ui, which takes commands from the
environment, and his security token STi. When we say that STi

calls Fsetup, we mean that it sends a message to the machine ID
〈ideal, 〈sid, 〈prot− fsetup, 〈U,Uext, ST,Room〉〉〉〉.

8.4.3 Executing commands in Cpriv

We will now describe FKM and the reference implementation ST com-
mand by command. Note that, from now on, when we say that FKM

calls F, we mean that it sends a message to a regular peer that calls
F as a sub-protocol and relays the answers. Formally, FKM sends
a message to the machine ID F = 〈〈reg,F〉, sid〉, who in turn ad-
dresses 〈〈reg,F〉, 〈sid, 〈F, F〉〉〉 as a dummy party. This is necessary

8.4 FKM and the reference implementation 121

since Condition C6 in [51, §4.5] disallows ideal parties from making
sub-routine calls. Note first that, for unambiguity, we use the code F

as the party ID for this user. Note secondly that F uses the session
parameter F to identify F as the only machine ID it accepts messages
from.

If the policy Π permits execution of a command C ∈ Cpriv, FKM

calls the corresponding functionality as a sub-protocol (via F), substi-
tuting the handle by the corresponding credential. Similarly, STi uses
the corresponding key to compute the output of the implementation
function implC of the command C (see Listings 2). Note that the se-
curity token communicates with its respective user via Fsetup, which
forwards messages between STi and Ui, serving as a secret channel.

Listing 2: Executing command C on a handle h with data m (FKM above,
STi below).

command[finish_setup]: accept <C ∈ C
priv
i ,h,m> from U ∈ U;

if Store[U,h]=<Fi,a,c> and <Fi,C,a,*>∈ Π and Fi 6= KW

call Fi with <C,c,m>; accept <C•,r> from Fi;

send <C•,r> to U
✆

command[finish_setup]: accept <C ∈ C
priv
i ′

,h,m> from Fsetup;

if Store[Ui, h] =<Fi ′,a,k> and <Fi ′,C,a,*>∈ Π and Fi ′ 6= KW

send <C•,implC(k,m)> to Fsetup
✆

8.4.4 Creating keys

A user can create keys of type F and attribute a using the command
〈new,F, a〉. In FKM, the functionality F is asked for a new creden-
tial and some public information. The credential is stored with the
meta-data at a freshly chosen position h in the store. ST proceeds
similarly, but stores an actual key, instead of a credential. Both FKM

and ST output the handle h and the public information given by F,
or produced by the key-generation algorithm. FKM treats wrapping
keys differently: It calls the key-generation function for KW. It is pos-
sible to change the attributes of a key in future, if the policy permits
(Listing 6).

Listing 3: Creating keys of type F, and attribute a (FKM above, STi below).

new[ready]: accept <new,F,a> from U ∈ U;

if 〈F, new, a, ∗〉 ∈ Π
if F =KW then

(c, public)← implKW
new (1η)

else

call F with <new>;

accept <new•,c,public> from F

if c ∈ K∪Kcor then

send <error> to A

122 key-management functionality and refer . implementation

else

create h;

Store[U, h] ← <F,a,c>;

K := K ∪ { c }; send <new•,h,public> to U
✆

new[ready]: accept <new,F,a> from Fsetup;

if 〈F, new, a, ∗〉 ∈ Π

(k, public) ← implFnew(1
η);

create h;

Store[Ui , h] ← <F,a,k>;

send <new•,h,public> to Fsetup
✆

8.4.5 Wrapping and Unwrapping

The commands that are important for key-management are handled
by FKM itself. To transfer a key from one security token to another
in the real world, the environment instructs, for instance, U1 to ask
for a key to be wrapped (see Listing 4). A wrapping of a key is the en-
cryption of a key with another key, the wrapping key. The wrapping
key must of course be on both security tokens prior to that. U1 will
receive the wrap from ST1 and forward it to the environment, which
in turn instructs U2 to unwrap the data it just received from U1. The
implementation STi just verifies if the wrapping confirms the policy,
and then produces a wrapping of c2 under c1, with additionally au-
thenticated information: the type and the attribute of the key, plus a
user-chosen identifier that is bound to a wrapping in order to identify
which key was wrapped. This could, e. g., be a key-digest provided
by the ku functionality the key belongs to. The definition of FKM is
parametric in the algorithms wrap, unwrap and implnew used to pro-
duce the wrapping. When a handle to a credential c is corrupted, the
variable key[c] stores the corresponding key, c.f. Listing 7. We use $l

to denote a bitstring drawn from a uniform distribution of bitstrings
of length l .

Listing 4: Wrapping key h2 under key h1 with additional information id
(FKM above, STi below).

wrap[finish_setup]: accept <wrap,h1,h2,id> from U ∈ U;

if Store[U,h1]=<KW,a1,c1> and Store[U,h2]=<F2,a2,c2>

and <KW,wrap,a1,a2>∈ Π then

if ∃w.<c2,<F2,a2,id>,w>∈encs[c1]
send <wrap•,w> to U

else

W←W∪ { (c1, c2) };
if c1 ∈ Kcor

forall c3 reachable from c2 in W;

corrupt c3;

w← wrap<F2,a2,id>(c1, key[c2])
else

8.4 FKM and the reference implementation 123

w← wrap<F2,a2,id>(c1, $|c2|)
encs[c1] ← encs[c1] ∪{ <c2,<F2,a2,id>,w>};
send <wrap•,w> to U

✆

wrap[finish_setup]: accept <wrap,h1,h2,id> from Fsetup;

if Store[Ui, h1]=<KW,a1,k1> and Store[Ui, h2]=<F2,a2,k2>

and <KW,wrap,a1,a2>∈ Π

w← wrap<F2,a2,id>(k1, k2);

send <wrap•,w> to Fsetup
✆

When a wrapped key is unwrapped using an uncorrupted key, FKM

checks if the wrapping was produced before using the same identifier.
Furthermore, FKM checks if the given attribute and types are correct.
If this is the case, it creates another entry in Store, i. e., a new handle
h ′ for the user U pointing to the correct credentials, type and attribute
type of the key. This way, FKM can guarantee the consistency of its
database for uncorrupted keys, see Theorem 2 in Chapter 9. If the
key used to unwrap is corrupted, this guarantee cannot be given, but
the resulting entry in the store is marked corrupted. It is possible
to inject keys by unwrapping a wrapping created outside the device.
Such keys could be generated dishonestly by the adversary, that is,
not using their respective key-generation function. In this case, the 〈
inject 〉 call imports the cryptographic value of the key onto the ku
functionality, which generates a new credential for this value.

Listing 5: Unwrapping w created with attribute a2, F2 and id using the key
h1. ∃!x.p(x) holds if there exists exactly one x such that p(x) holds
(FKM above, STi below).

unwrap[finish_setup]: accept <unwrap,h1,w,a2,F2,id> from U ∈ U;

if Store[U,h1]=<KW,a1,c1> and <KW,unwrap,a1,a2>∈ Π,F2 ∈ F

if c1 ∈ Kcor

c2 ← unwrap<F2,a2,id>(c1, w);

if c2 6= ⊥ and c2 6∈ K

if F2 =KW

create h2;

Store[U,h2] ← <F2,a2,c2>;

key[c2]← c2;

Kcor ← Kcor ∪ { c2 }
else

call F2 with <inject,c2>;

accept <inject•,c ′>;

if c ′ 6∈ K∪Kcor
create h2;

Store[U,h2] ← <F2,a2,c
′>;

key[c ′]← c2;

Kcor ← Kcor ∪ { c
′ };

send <unwrap•,h> to U

else if c2 6= ⊥∧ c2 ∈ K∧ c2 ∈ Kcor
create h2;

Store[U,h2] ← <F2,a2,c2>;

send <unwrap•,h> to U

124 key-management functionality and refer . implementation

else // (c2 = ⊥∨ c2 ∈ K\Kcor)

send <error> to A

else if (c1 /∈ Kcor and ∃ !c2 .<c2,<F2,a2,id>,w>∈encs[c1
])

create h2;

Store[U, h2] ← <F2,a2,c2>;

send <unwrap•,h2> to U
✆

unwrap[finish_setup]: accept <unwrap,h1,w,a2,F2,id> from Fsetup
if Store[Ui , h1]=<KW,a1,k1> and F2 ∈ F and <KW,unwrap,a1,a2>∈ Π

and k2 = unwrap<F2 ,a2 ,id> (k1 , w) 6= ⊥
create h2;

Store[U, h2] ← <F2,a2,k2>;

send <unwrap•,h2> to Fsetup
✆

There is an improvement that became apparent during the emu-
lation proof (see Chapter 10). When unwrapping with a corrupted
key, FKM checks the attribute to be assigned to the (imported) key
against the policy, instead of accepting that a corrupted wrapping-
key might import any wrapping the attacker generated. This pre-
vents, e.g., a corrupted wrapping-key of low security from creating a
high-security wrapping-key by unwrapping a dishonestly produced
wrapping. This detail in the definition of FKM enforces a stronger
implementation than the one in [58]: ST validates the attribute given
with a wrapping, enforcing that it is sound according to the policy, in-
stead of blindly trusting the authenticity of the wrapping mechanism.
Hence our implementation is more robust against key-corruption.

8.4.6 Changing attributes of keys

The attributes associated with a key with handle h can be updated
using the command 〈attr_change, h, a ′〉.

Listing 6: Changing the attribute of h to a ′ (FKM above, STi below).

attr_change[finish_setup]: accept <attr_change,h,a ′> from U ∈ U;

if Store[U,h]=<F,a,c> and<F,attr_change,a,a ′>∈ Π
Store[U,h]=<F,a ′,c>;

send <attr_change•> to U
✆

attr_change[finish_setup]: accept <attr_change,h,a ′> from Fsetup;

if Store[Ui, h]=<F,a,k> and <F,attr_change,a,a ′>∈ Π
Store[Ui, h]=<F,a

′,k>;

send <attr_change•> to Fsetup
✆

8.4.7 Corruption

Since keys might be used to wrap other keys, we would like to know
how the loss of a key to the adversary affects the security of other

8.4 FKM and the reference implementation 125

keys. When an environment “corrupts a key” in FKM, the adversary
learns the credentials to access the functionalities. Since corruption
can occur indirectly, via the wrapping command, too, we factored
this out into a procedure used both in the corrupt command and the
wrap command. The procedure used in FKM is depicted in Listing 7.
Listing 8 shows the actual corruption command in FKM and in ST.
In FKM, the corruption procedure is invoked for all keys that have
been wrapped with the newly corrupted key. ST implements this
corruption by outputting the actual key to the adversary.

Listing 7: Corruption procedure used in steps corrupt and wrap.

procedure for corrupting a credential c:

Kcor ← Kcor ∪ { c }
for any Store[U,h] =< F, a, c >

if F = KW

key[c]← c; send <corrupt•,h,c> to A

else

call F with <corrupt,c>; accept <corrupt•,k> from

F

key[c]← k; send <corrupt•,h,k> to A
✆

Listing 8: Corrupting h (FKM above, STi below).

corrupt[finish_setup]: accept <corrupt,h> from U ∈ U;

if Store[U,h] =< F, a, c >
for all c ′ reachable from c in W corrupt c ′

✆

corrupt[finish_setup]: accept <corrupt,h> from Fsetup;

if Store[Ui, h] =< F, a, k > send <corrupt•,h,k> to A
✆

8.4.8 Public key operations

Some cryptographic operations (e. g., digital signatures) allow users
without access to a security token to perform certain operations (e. g.,
signature verification). Those commands do not require knowledge
of the credential (in FKM), or the secret part of the key (in ST). They
can be computed using publicly available information. In the case
where participants in a high-level protocol make use of, e. g., signa-
ture verification, but nothing else, the protocol can be implemented
without requiring those parties to have their own security tokens.
Note that FKM relays this call to the underlying ku functionality un-
altered, and independent of its store and policy (see Figure 9). The
implementation STi does not implement this step, since Ui, Uext

i com-
pute implC(public,m) themselves.

Listing 9: Computing the public commands C using the inputs public and m
(FKM, note that STi does not implement this step).

126 key-management functionality and refer . implementation

public_command: accept <C,public,m> from U ∈ U∪Uext;

if C ∈ Ci,pub

call Fi with <C,public,m>;

accept <C•,r> from Fi;

send <C•,r> to U
✆

8.4.9 Formal definition of FKM

Before we give the formal definition of FKM, note that FKM is not
an ideal protocol in the sense of [51, § 8.2], since not every reg-
ular protocol machine runs the dummy party protocol – the party
〈〈reg,Fi〉, sid〉 relays the communication with the ku functionalities.

Definition 28 (FKM): Given the ku parameters F,C, Π, and polytime
algorithms wrap, unwrap and implnew, let the ideal protocols Fp+1, . . . ,

Fl be rooted at prot-Fp+1,. . . ,prot-Fl. In addition to those proto-
cols names, FKM defines the protocol name prot-fkm. For prot-fkm,
the protocol defines the following behaviour: a regular protocol ma-
chine with machine ID 〈〈reg,Fi〉, sid〉 for Fi ∈ { F1, . . . ,Fl } runs the
following code:

ready: accept <ready> from parentId

send <ready> to <ideal,sid> (= FKM)

relay_to: accept <m> from <ideal,sid> (= FKM)

send <m> to <<reg,Fi>,<sid,<prot-Fi,<>>> (= Fi)

relay_from: accept <m> from <<reg,Fi>,<sid,<prot-Fi,<>>>

send <m> to <ideal,sid> (= FKM)
✆

The ideal party runs the logic for FKM described in Listings 3 to 8.

remark 1 : Credentials for different ku functionalities are distinct.
It is nonetheless possible to encrypt and decrypt arbitrary credentials
using <wrap> and <unwrap>. Suppose a designer wants to prove a
security API secure which uses shared keys for different operations.
One way or another, she would need to prove that those roles do not
interfere. For this case, we suggest providing a functionality that com-
bines the two desired operations, and proving that the implementa-
tion of the two operations combined emulates the combined function-
ality. It is possible to assign different attributes to keys of the same
ku functionality, and thus restrict their use to certain commands, ef-
fectively providing different roles for credentials to the same ku func-
tionality. This can be done by specifying two attributes for the two
roles and defining a policy that restricts which operation is permitted
for a key of each attribute.

remark 2 : Many commonly used functionalities are not caller-in-

dependent, often the access to critical functions is restricted to a net-
work party that is encoded in the session identifier. In the imple-

8.4 FKM and the reference implementation 127

mentation, this party is the party holding the key which is other-
wise not represented in the functionality. We think that it is possible
to construct caller-independent functionalities for many functionali-
ties, if the implementation relies on keys but is otherwise stateless.
A general technique for transforming such functionalities into key-
manageable functionalities that preserves existing proofs will be dis-
cussed in Section 12.2 in the conclusion of this thesis.

remark 3 : Constraint C6 in [51, §8.2] requires each regular ma-
chine to send a message to Fsetup before it can address it. The initial-
ization procedure and the parts of the definition of FKM, ST and Fsetup

that perform this procedure are explained in detail in Appendix C.1.

8.4.10 Formal definition of the security token network

We can now define the network of security tokens ST, users and ex-
ternal users that implements FKM:

Definition 29 (security token network): For ku parameters F,C, Π and
implementation functions Impl := { ImplF }F∈F, define the protocol
πF,C,Π,Impl as follows: πF,C,Π,Impl defines πF,C,Π,Impl(prot− fkm) and
πF,C,Π,Impl(prot− fsetup). The session parameter is expected to be
an encoding of the network parameters U,Uext, ST,Room. The code
executed depends on the party running πF,C,Π,Impl(prot− fkm): If the
party has identity Ui, (which we assume to have the form 〈〈reg, u-i〉,
sid〉) the following code is executed:

relay_to: accept <m> from parentId

call Fsetup with <m,STi>

relay_from: accept <m, STi> or <m = ⊥> from Fsetup
send <m> to parentId

public_command:

accept <C,public,m> from parentId

if C ∈ Ci,pub

send <C•,implC(public,m)> to parentId
✆

If the party has identity Uext
i , (which we assume to have the form

〈〈reg, ext-u-i〉, sid〉) the following code is executed:

public_command: accept <C,public,m> from parentId

if C ∈ Ci,pub

send <C•,implC(public,m)> to parentId
✆

A regular protocol machine with machine ID <reg,Fi>,sid for Fi ∈

{F1, . . . ,Fl} runs the following code:

ready: accept <ready> from parentId

call Fsetup with <ready>
✆

All other regular protocol machines run the code of the dummy ad-
versary. If the party has identity STi, (which we assume to have the

128 key-management functionality and refer . implementation

form 〈〈reg, st-i〉, sid〉) then the code for ST described in this chap-
ter is executed for i. The code for STi is given in Section 8.4 and
in, for the setup procedure, in Appendix C.1. For other machines,
including ideal machines, it responds to any message with an error
message to the adversary, i. e., πF,C,Π,Impl(prot-fkm) is totally regular.
πF,C,Π,Impl(prot−fkm) declares the use of prot-fsetup as a subrou-
tine. πF,C,Π,Impl(prot−fsetup) runs Fsetup, i. e., πF,C,Π,Impl is a Fsetup-
hybrid protocol.

9
A N A LY S I S O F T H E K E Y- M A N A G E M E N T
F U N C T I O N A L I T Y

In this chapter, we will give an analysis of FKM in three steps: First,
we will show that this functionality gives the properties that you
would expect it to guarantee. Second, we will discuss the limita-
tions of our approach. Third, we will discuss to what extent we have
reached the requirements for a commonly acceptable definition we
have outlined in Chapter 6.

9.1 properties

In order to identify some properties we get from the design of FKM,
we introduce the notion of an attribute policy graph:

Definition 30: We define a family of attribute policy graphs (AΠ,F), one
for each ku functionality F and one for key-wrapping (in which case
F = KW) as follows:

• a is a node in AΠ,F if (F, C, a, a ′) ∈ Π for some C, a ′.

• a is additionally marked new if (F, new, a, a ′) ∈ Π.

• An edge (a, a ′) is in AΠ,F whenever (F, attr_change, a, a ′) ∈

Π.

Example 21: For the policy Π described in Example 20, the attribute
policy graph AΠ,KW contains one node, labelled 1, connected to itself
and marked new. Similarly, the attribute policy graph AΠ,Fenc contains
one node 0 connected to itself and marked new.

The following theorem shows that (1) the set of attributes an un-
corrupted key can have in FKM is determined by the attribute policy
graph, (2) there are exactly three ways to corrupt a key, and (3) ku
functionalities receive the corrupt message only if a key is corrupted.

Theorem 2 (Properties of FKM): Every instance of FKM with parame-
ters F,C, Π and session parameters U,Uext, ST,Room has the following
properties:

(1) At any step of an execution of [FKM, AD, Z], the following holds
for FKM: For all Store[U,h] = 〈F, a, c〉 such that c 6∈ Kcor, there
is a node a ′ marked new in the attribute policy graph AΠ,F

such that a is reachable from a ′ in AΠ,F and there was a step
new where Store[U ′, h ′] = 〈F, a ′, c〉 was added.

(2) At any step of an execution of [FKM, AD, Z], the following holds
for FKM: All c ∈ Kcor were either

129

130 analysis of the key-management functionality

a) directly corrupted: there was a corrupt step triggered by a
query 〈corrupt, h〉 from U while Store[U,h]= 〈F, a, c〉, or
indirectly, that is,

b) corrupted via wrapping: there is c ′ ∈ Kcor such that at some
point the wrap step was triggered by a message 〈wrap, h ′, h,

id〉 from U while Store[U,h ′]= 〈KW, a ′, c ′〉, Store[U,h]=
〈F, a, c〉, or

c) corrupted via unwrapping (injected): there is c ′ ∈ Kcor such
that at some point the unwrap step was triggered by a
message 〈unwrap, h ′, w, a, F, id〉 from U while Store[U,h ′] =

〈KW, a ′, c ′〉 and c = unwrap
〈F,a,id〉
c ′ (w) for some a, F and id. If

this step did not return <error>, then, at the point in time
this step was triggered, c ∈ Kcor (it was corrupted before),
or c 6∈ K (k was created outside FKM).

(3) At any step of an execution of [FKM, AD, Z], the following holds:
Whenever an ideal machine Fi = 〈ideal, 〈sid, 〈Fi, F〉〉〉, with
F = 〈〈reg,F〉, 〈sid〉〉 accepts the message 〈corrupt, c〉 for some c
such that FKM in session sid has an entry Store[U,h] = 〈Fi, a, c〉,
then c ∈ Kcor in FKM.

Proof. We proof each property separately:

(1) Proof by induction over the number of epochs since FKM’s first
activation, t: If t = 0, Store is empty. t〉0: Since the property
was true in the previous step, there are only three steps we need
to look at: If a key 〈F, a, c〉 is added to Store at step new, then
it is created only if the policy contains an entry (F, new,a), i. e.,
a itself is a new node. If a key 〈F, a, c〉 is added to Store at step
unwrap, let 〈unwrap, h1, w,F, id〉 be the arguments sent by a user
U, and Store[U,h1]= 〈KW, aw, cw〉. If c 6∈ Kcor, then cw 6∈ Kcor,
too, and thus there is an entry 〈c, 〈F, a, id〉, w〉 ∈ encs[cw]. The
array encs is only written in wrap, therefore there was a position
[U ′, h ′] in the store, such that Store[U ′, h ′]=〈F, a, c〉. Using the
induction hypothesis, we see that a is reachable in the attribute
policy graph. The third and last step where the store is written
to is AttributeChange. If this step alters the attribute from a ′

to a, there must have been an entry (F, attr_change, a ′, a) ∈ Π.
By induction hypothesis, a ′ is reachable from a new node, and
hence a is, too.

(2) A credential c is only added to the set Kcor in three steps: If it
is added in corrupt, then a message 〈corrupt, h〉 was received
from U ∈ U and Store[U,h]=〈F, a, c〉. If it was added in wrap,
then a message 〈wrap, h1, h2〉must have been received fromU ∈

U while Store[U,h1]= 〈KW, a1, c1〉, and c was reachable from
c1. Let c ′ be the last node on the path to c. c ′ ∈ Kcor because

9.2 limitations 131

it is reachable from c1, too. Since (c ′, c) ∈W, there was another
wrapping query 〈wrap, h ′, h, id〉 with Store[U,h ′]= 〈KW, a ′, c ′〉

and Store[U,h]= 〈F, a, c〉. Since entries in the store are never
deleted (only the attribute can be altered), and credentials are
never removed from Kcor, the property holds in this case. If it
was added in unwrap, then c 6∈ K at that point in time, and c =
unwrap

〈F,a,id〉
c ′ (w) 6= ⊥. Furthermore, we observe that the condi-

tionals prior to adding c to Kcor require that Store[U,h ′]=〈KW,
a ′, c ′〉, c ′ ∈ Kcor, and that the step was triggered by a message
〈unwrap, h ′, w, a, F, id〉. If c ∈ K \Kcor, then 〈error〉 is output,
since c is only added to Kcor if c ∈ K (thus the first subbranch
is not taken) and c /∈ K ∪Kcor (thus the first and second sub-
branch are not taken).

(3) Îi accepts only messages coming from the party F, and F in
turn only accepts messages coming from FKM. Therefore, we
can conclude from the definition of step corrupt in FKM that
c ∈ Kcor.

9.2 limitations

Before we discuss FKM and to what extend it achieves our goals from
Chapter 6, we discuss the limitations of the key-management func-
tionality we have presented in this chapter.

architecture of the network One of the key features of the
key-management functionality FKM is that it is able to abstract a net-
work of security APIs as one monolithic block that verifies accordance
to a policy before every step it takes. This ensures that the policy is re-
spected on a global level, as the first statement of Theorem 2 and the
definition of FKM show. Different instantiations of FKM with differ-
ent parameters, e. g., in terms of the policy and the ku functionalities
supported, may coexist in the same network, but they may not share
the same keys.

In practice, this means that the enforcement of a global policy can
only extend to a set of security APIs in the network that are similarly
configured, in particular, that offer the same interface to the outside.
This is for example the case if each department in an organisation
has an identical HSM that manages the department’s keys, but also
shares some common key used for backup and key-transfer. If one of
the HSMs offers a command that the other HSMs do not support then
it is (in general) not possible to abstract those HSMs using the same
instance of FKM. Since the key-transfer in the setup phase is limited
to the same instance of FKM, those HSMs cannot share keys with each
other. One such example is the Yubikey protocol from Chapter 4:

132 analysis of the key-management functionality

The Yubikeys in the network and the YubiHSM provide a completely
different interface, but need to share the AES keys in order to run the
protocol.

In summary, our approach is limited to cases where the security
APIs in a network offer the same interface, i. e., where the environ-
ment is homogeneous.

key-transport Currently, FKM is tightly coupled with the em-
ployment of a deterministic, symmetric and authenticated encryp-
tion scheme that is secure against key-dependant messages for key
export and import. While practitioners indeed favour deterministic
key-encryption in protocol design and standardization efforts (see,
e. g., RFC 3394), it restricts the analysis to security devices provid-
ing this kind of encryption. We have not yet covered asymmetric
encryption of keys in FKM (but we cover asymmetric encryption of
user-supplied data), although FKM could be extended to support this
option. An even better alternative than extending FKM to support dif-
ferent ways of key-transfer would be to introduce a more conceptual
view of transferring keys. A key-management functionality would
support an interface that allows the environment to give the instruc-
tion to transfer a key from one security API to another, but send the
wrapping of the key, or whatever piece of information is transferred,
on a public channel, i. e., to the adversary, as opposed to the envi-
ronment. The adversary is free to relay the message to the security
API which is supposed to receive the message. In case he does, the
environment only receives a simple acknowledgement from the user
connected to the receiving token. The machines in U would imple-
ment this more abstract interface depending on what mechanism the
actual security APIs employs. This way, we could formulate FKM

without specifying how exactly keys are transferred.

key-usage The access that key-usage functions have on keys is
very limited: They can compute an algorithm that uses the value of
the key, some untrusted input provided by the user or the adversary,
and randomness. This is a realistic assumption for general purpose
security APIs such as PKCS#11 but not for security APIs that are de-
signed for a specific protocol, like the Yubikey. The Yubikey can be
set up with an AES key. Upon a query, it computes the encryption of
a OTP that contains a running counter. Due to the design of FKM, it is
not possible store the last counter value, so FKM is not useful for the
analysis of the security of a set of Yubikeys in the network. It would
only be possible to compute the encrypted OTP given the key and the
counter value as an input, but the counter cannot be trusted unless it
is stored on the device itself.

On the other hand, it is this restriction, the strict separation be-
tween key-management and key-usage, that allows us to achieve the

9.3 discussion 133

result in Chapter 10 which shows a generic implementation of the
key-management secure with respect to arbitrary ku functionalities.
It might be possible to achieve the same result with a redesign of
FKM that supports an additional store for payload values, similar to
the store for credentials, which might be used in each ku functionality.
In the case of the Yubikey, this would allow storing the last counter
value on the device.

commitment problem Adaptive corruption of parties, as well
as adaptive corruption of keys that produce an encryption, provokes
the well-known commitment problem [50]. This requires us to place
limitations on the types of corruptions that the environment may pro-
duce.

9.3 discussion

In the Chapter 6, we gave five qualities which we think a persuasive
definition of security should possess. For each of those desiderata,
we will now discuss whether is satisfied by the definition of provably
secure key-management in the GNUC model presented in Chapter 8,

It should set out the essential attributes of what it defines.

Our definition quite clearly defines the aspects of the use of a security
API that are relevant for key-management. The characteristics of a
security API are set out through the interface FKM provides: First,
that it provides an interface to cryptographic keys that are stored in
some secure memory. Second, that this interface allows to indirectly
use this keys to compute cryptographic functions possibly depending
on one (but for the ku functions not more than one), randomness, and
the user’s input. Third, the access to those secrets can be restricted,
using the policy.

The characteristics of the security of security APIs are set out as
well: First, it does not reveal secrets to the user (unless a key is cor-
rupted, in which case the adversary learns those secrets). Second,
the cryptographic functions are secure, which is defined by the corre-
sponding ku functionality. Third, the intended access restrictions to
the secrets, defined in the policy Π are respected. Fourth, the previ-
ous properties hold in a network where the user might be malicious,
and where several security APIs might be present and might contain
the same secrets, through the use of the GNUC framework and the
support for party corruption.

Finally, the concept of credentials sets out quite well which at-
tributes are essential for a key, and how keys can be handled in
simulation-based security frameworks.

It should not be too wide, e. g., it should not include secu-
rity APIs that are insecure.

134 analysis of the key-management functionality

Theorem 2 gives some indication that this is achieved, but careful
inspection of FKM is necessary to validate this claim.

It should not be too narrow.

As pointed out in the previous section, there are a number of limita-
tions to our approach, some of which exclude certain kinds of APIs,
in particular security APIs that focus less on key-management and
more on providing some protocol-specific functionality. One can ar-
gue that security results for the latter kind of security APIs are likely
to be protocol dependant as well.

The key-management functionality presented is not as general as
our approach would allow; it could be extended to allow for differ-
ent kinds of key-transportation, for different kinds of ku functional-
ities, etc., as we pointed out in the previous section. However, the
approach of separating key-management and key-usage, combined
with composability features of the underlying framework allow us
to reason about the security of the key-management and key-usage,
while keeping the definition flexible in this regard, which we regard
as a promising starting point for future work.

It should not be obscure.

Definitions in simulation-based security frameworks, such as the one
we employ in this work, GNUC, are notorious for being long and full
of technical details. The definition of FKM is no exception in this re-
gard, it might even be worse than most functionalities. The fact that
a theorem like Theorem 2 is necessary to convince the reader of the
soundness of the definition illustrates the obscurity of FKM. In the fol-
lowing, we will try justify the obscurity of FKM, but we acknowledge
the fact that it is indeed difficult to read and understand.

First, many functionalities in simulation-based security suffer from
this problem, often due to the definition of efficiency in the frame-
work. Most existing frameworks, perhaps with the exception of the
abstract cryptography framework by Maurer and Renner [67], pro-
vide their composability results on very low level of abstraction, so
that technical details, like the scheduling, the runtime of the proto-
col etc. are necessary to obtain a security result. The initialisation
phase Section C.1, to give an example, is the result of such a tech-
nical requirement. Fortunately, since the first proposal by Canetti
in 2001 [22], simulation-based security frameworks have been, and
now, in 2013, still are an active subject of research [63], leading to
continuous improvements [23, 51, 84, 67, 63]. We hope that future
frameworks allow for presenting functionalities like FKM in a more
concise manner. In particular the initialisation procedure of the net-
work (see Section C.1), as well as the communication between FKM

and its ku functionalities (see Definition 28) are obscured due to tech-
nical requirements of the framework.

9.3 discussion 135

Second, defining the security of key-management in this setting is

a challenging task. It took year to obtain a satisfactory formulation
of digital signature took years and repeated revision due to by subtle
flaws making the functionality unrealizable [24, 23, 8]. FKM preserves
authenticity in a similar way to this signature functionality, but in
a multi-session setting. So we must expect a key-management func-
tionality to be at least as complex. Previous definitions of security for
security APIs in terms of games are a matter of several pages, too [58,
21](but still more concise).

Third, as FKM is the first formulation of a functionality of its kind,
it is only natural that there is room for improvement. We hope that
this work sparks interest for future work which might enhance the
clarity of this work.

Security definitions should be applicable.

A definition in the UC framework can be applicable in two senses.
First, it can be used to evaluate the security of a protocol. In Chap-
ter 10 we show that FKM can be used to show a generic implementa-
tion of key-management secure. Second, it can be used to help show-
ing the security of higher-level protocols that make use,e. g., of one
security tokens per participant. Using the composition theorem, the
set of security tokens used by the participants can be substituted by
an instance of FKM which provides for example the properties shown
in Theorem 2.

10
P R O O F O F E M U L AT I O N .

We show that for arbitrary ku parameters F,C, Π, the security token
network described in Chapter 8, πF,C,Π,Impl, consisting of the set of
users U connected to security tokens ST , the set of external users Uext

and the functionality Fsetup, emulates the key-management function-
ality FKM. We achieve this result in two steps which we describe in
two lemmas. The first step shows that the key-management func-
tionality FKM can be implemented by a similar functionality, which,
instead of calling a ku functionality Fi, calls the functions ImplFi

that define a key-manageable implementation of Fi. The resulting

functionality F
impl

KM := F
F1/ImplF1

,...,Fl/ImplFl

KM acts as a “big” machine
that all users in U access, just like FKM, but instead of substituting
keys by credentials and forwarding requests to the ku functionalities,
F
impl

KM computes the output itself, using the implementation functions
in ImplF1

. . . ImplFl
. Now, the translation from credentials to keys

(which takes place in the key-manageable implementations) is not
necessary anymore, and consequently F

impl

KM stores keys instead of
credentials.

In the second step, we show that the computations that Fimpl

KM per-
forms can be distributed. The security token network πF,C,Π,Impl

performs the same computations on the key-usage part that F
impl

KM
performs, but implements the key-management part, including key-
wrapping and unwrapping, using the algorithms implKW

new
, wrap and

unwrap. Under the assumption that those three algorithms consti-
tute a secure and correct key-wrapping scheme, we can show that
πF,C,Π,Impl implements F

impl

KM and, hence, by transitivity of the emula-
tion relation, πF,C,Π,Impl emulates FKM.

The first step is subsumed by the following lemma.

Lemma 6: Let F,C, Π be ku parameters such that all F ∈ F are key-
manageable. Let further ImplFi

be the set of functions defining the

key-manageable implementation Îi of Fi. Then F
F1/ImplF1

,...,Fl/ImplFl

KM
emulates FKM. Furthermore, it is poly-time.

Proof Sketch (Full proof in Appendix D). Making use of the composition
theorem, the last functionality Fl in FKM can be substituted by its key-
manageable implementation ÎL. Then, FKM can simulate Îl instead of

calling it. Let F{Fl/Îl }
KM be the resulting functionality. In the next step,

calls to this simulation are substituted by calls to the functions used
in Îl, i. e., implC for each C ∈ Cl – so instead of addressing the sim-
ulation of Îl with the credentials, the function implC is called with
the key that the credential would otherwise be mapped to. The re-

137

138 proof of emulation.

sulting, partially implemented functionality F
{Fl/ImplFl

}

KM saves keys
rather than credentials (for Fl). We repeat the previous steps un-
til FKM does not call any ku functionalities anymore, i. e., we have

F
{F1/ImplF1

,...,Fn/ImplFn }

KM , i. e., Fimpl

KM .

Before we come to Lemma 7, which describes the last step, we
need to define what we understand under a key-wrapping scheme.
We took the definition by Kremer et al. [58] as a basis, which is based
on the notion of deterministic, authenticated encryption by Rogaway
and Shrimpton [86], but additionally supports key-dependant mes-
sages. In contrast to the definition by Kremer et al., we allow wrap-
ping the same key with the same wrapping key but under different
attributes, which is also permitted in Rogaway and Shrimpton’s defi-
nition.

Definition 31 (Multi-user setting for key wrapping): We define exper-
iments Expwrap,

A,KW(η) and Expwrap,fake
A,KW (η) for a key-wrapping scheme

KW = (KG,wrap, unwrap). In both experiments the adversary can ac-
cess a number of keys k1, k2, . . . , kn . . . (which he can ask to be cre-
ated via a query NEW). In his other queries, the adversary refers to
these keys via symbols K1, K2, . . . , Kn (where the implicit mapping
should be obvious). By abusing notation we often use Ki as a place-
holder for ki so, for example, wrapaKi

(Kj) means wrapaki
(kj). We now

explain the queries that the adversary is allowed to make, and how
they are answered in the two experiments.

• NEW(Ki): a new key ki is generated via ki ← KG(η)

• ENC(Ki, a,m) where m ∈ K ∪ {Ki | i ∈ N } and h ∈ H. The
experiment returns wrapaki

(m).

• TENC(Ki, a,m) where m ∈ K ∪ {Ki | i ∈ N } and a ∈ H.
The real experiment returns wrapaki

(m), whereas the fake exper-

iment returns $|wrapaki
(m)|

• DEC(Ki, a, c): the real experiment returns unwrapaki
(c), the fake

experiment returns ⊥.

• CORR(Ki): the experiment returns ki

Correctness of the wrapping scheme requires that for any k1, k2 ∈
K and any a ∈ H, if c← wrapak1

(k2) then unwrapak1
(c) = k1.

Consider the directed graph whose nodes are the symbolic keys Ki

and in which there is an edge from Ki to Kj if the adversary issues a
query ENC(Ki, a, Kj). We say that a key Ki is corrupt if either the ad-
versary corrupted the key from the start, or if the key is reachable in
the above graph from a corrupt key. If a handle, respectively pointer,
points to a corrupted key, we call the pointer corrupted as well.

We make the following assumptions on the behaviour of the adver-
sary.

proof of emulation. 139

• For all i the query NEW(Ki) is issued at most once.

• All the queries issued by the adversary contain keys that have
already been generated by the experiment.

• The adversary never makes a test query TENC(Ki, a, Kj) if Ki is
corrupted at the end of the experiment.

• If A issues a test query TENC(Ki, a,m) then A does not issue
TENC(Kj, a

′,m ′) or ENC(Kj, a
′,m ′) for (Ki, a,m) = (Kj, a

′,m ′)

• The adversary never queries DEC(Ki, a, c) if c was the result
of a query TENC(Ki, a,m) or of a query ENC(Ki, a,m) or Ki is
corrupted.

At the end of the execution the adversary has to output a bit b which
is also the result of the experiment. The advantage of adversary A in
breaking the key-wrapping scheme KW is defined by:

A
wrap
KW,A(η) =

∣

∣Pr
[

b← Expwrap,
KW,A(η) : b = 1

]

−

Pr
[

b← Expwrap,fake
KW,A (η) : b = 1

]∣

∣

∣

and KW is secure if the advantage of any probabilistic polynomial
time algorithm is negligible.

The second and last step assumes a key-wrapping scheme that is
secure with respect to this definition. It is subsumed by the follow-
ing lemma, which shows that the completely implemented, but still
monolithic functionality F

impl

KM can be emulated by a set of security
tokens, each only managing the set of keys that belongs to its asso-
ciated user. A necessary condition is that a secure and correct key-
wrapping scheme is used. In this step, we need to restrict the set of
environments to those which guarantee that keys are not corrupted
after they have been used to wrap. Otherwise, we would provoke
the commitment problem [50]. To formally define this class of envi-
ronments, we introduce the notion of a guaranteeing environment, and
a predicate on the inputs and outputs an environment receives and
sends in a given execution, which is called corrupt-before-wrap. Both
can be found in Appendix D.

Lemma 7: For any ku parameter F,C, Π and set of sets of PPT al-

gorithms Impl, let F
F1/ImplF1

,...,Fl/ImplFl

KM be the partial implementa-
tion of FKM with respect to all ku functionalities in F. If KW =

(implKW
new
,wrap, unwrap) is a secure and correct key-wrapping scheme

(Definition 31) then πF,C,Π,Impl emulates F
impl

KM for environments that
guarantee corrupt-before-wrap.

Proof sketch (Full proof in Appendix D). This lemma is proven using a
reduction to the security of the key-wrapping scheme. We show that
any environment that is able to distinguish πF,C,Π,Impl from F

impl

KM can

140 proof of emulation.

be transformed into an adversary against the fake-or-real game de-
scribed in Definition 31. Fix such an environment Z. We first have
to show that an attacker we construct from Z, which we call BZ, is
valid with respect to the fake-or-real game, i. e., that it does not re-
peat queries, etc. Then we show that the distinguishing environment
Z interacting with F

impl

KM and a (carefully crafted) simulator has the
same output distribution as BZ in the fake experiment and that Z
interacting with πF,C,Π,Impl and a dummy adversary has the same
output distribution as BZ in the real experiment. This allows us to
conclude that a distinguishing environment Z would imply a distin-
guishing attacker for the key-wrapping game and thus contradict the
assumption that KW is secure and correct.

The main result follows from the transitivity of emulation and Lem-
mas 6 and 7:

Corollary 1: Let F,C, Π be ku parameters such that all F ∈ F are
key-manageable. Let ImplFi

be the set of functions defining the key-
manageable implementation Îi of Fi. If KW = (implKW

new
,wrap, unwrap)

is a secure and correct key-wrapping scheme (see Definition 31), then
πF,C,Π,Impl emulates FKM for environments that guarantee corrupt-

before-wrap.

11
A S I M P L E C A S E S T U D Y

To demonstrate the use of our main result, we will instantiate the
generic reference implementation of a security API presented in Chap-
ter 8 with a policy and two functionalities. If the functionalities are
key-manageable, then, by Corollary 1 from the previous chapter, we
have a concrete implementation that is secure with respect to our def-
inition. We furthermore demonstrate how two security token using
this implementation can be employed in a higher-level protocol to
implement an authenticated channel.

11.1 realizing FKM for a static key-hierarchy

We equip the security token with the functionalities F1 = FRand and
F2 = FSIG described below. The resulting token STFRand ,FSIG is able
to encrypt keys and random values and sign user-supplied data. It is
not able to sign keys, as this task is part of the key-management. The
first functionality, FRand, is unusual, but demonstrates what can be
done within the design of FKM, as well as its limitations. It models
how random values can be stored as keys, with equality tests and
corruption, which means here that the adversary learns the value of
the random value. Since our framework requires a strict division be-
tween key-management and usage, they can be transmitted (using
wrap) and compared, but not appear elsewhere, since other ku func-
tionalities shall not use them. We define FRand as follows:

new: accept <new> from parentId (=:p);

c← {0, 1}η; L← L∪ { (c, 0) }; send <new•,c,> to p

command: accept <equal,c,n> from p;

if (c, k) ∈ L for some k

if k 6∈ Kcor
send <equal•,false> to p

else if n = k

send <equal•,true> to p

corrupt: accept <corrupt,c> from p;

if (c, 0) ∈ L
k← {0, 1}η;

L← (L \ { (c, 0) })∪ { (c, k) };
Kcor = Kcor ∪ {k };
send <corrupt•, k> to A

inject: accept <inject,n> from P;

(c,_) ← {0, 1}η;

Kcor ← Kcor ∪ {n };

L← L∪ { (c, n) };
send <inject•,c> to parentId

✆

141

142 a simple case study

The two functions impl
new

and impl
equal

give the key-manageable
implementation: implnew on input 1η gives output (n, _) for n ←
{0, 1}η; impl

equal
on input n,n ′ gives output n = n ′.

The digital signature functionality is designed after the one de-
scribed in [62] and detailed in Listing 10. It is parametrized by
three algorithms KG, sign and verify. It expects the session parame-
ter to encode a machine ID P, and implements Cpriv = {sign} and
Cpub = {verify}.

Listing 10: A signature functionality FSIG.

new: accept <new> from P

(sk, vk)← KG(1η); (credential,_) ← KG(1η);

L← L∪ { (credential,sk,vk) };

send <new•,credential,vk> to P

sign: accept <sign,credential,m> from P

if (credential,sk,vk)∈L for some key

σ← sign(sk,m)

if verify(vk,m, σ) 6= ⊥∧ sk 6∈ Kcor
signs[vk]= signs[vk] ∪{ (m,σ) }

else σ← ⊥
send <sign•,σ> to P

verify: accept <verify,vk,<m,σ>> from P

b← verify(vk,m, σ)
if ∃c, sk. (c,sk,vk)∈L and sk /∈ Kcor and b = 1 and

6 ∃σ ′ : (m,σ ′) ∈signs[vk] or b 6∈ {0, 1}

b← ⊥
send <verify•,b> to P

corrupt: accept <corrupt,credential> from P

if (credential,sk,vk)∈L for some sk, vk
Kcor ← Kcor ∪ {sk}; send <corrupt•,sk> to A

inject: accept <inject,<sk, vk>> from P

(c,_) ← KG(1η); Kcor ← Kcor ∪ {sk};
L← L∪ {(c, sk, vk)}; send <inject•,c> to parentId

✆

In the following, we will consider FKM for the parameters F = { FRand,

FSIG }, C = { { equal }, {sign, verify} } and a static key-hierarchy Π,
which is defined as the relation that consists of all 4-tuples (F,Cmd,
attr1, attr2) such that the conditions in one of the lines in the fol-
lowing table holds. Note that we omit the “=” sign when we mean
equality and “*” denotes that no condition has to hold for the vari-
able.

F Cmd attr1 attr2
KW new > 0 *

6= KW new 0 *

* attr_change a a

KW wrap > 0 attr1 > attr2
KW unwrap > 0 attr1 > attr2
Fi C ∈ Cpriv 0 *

11.2 an example implementation of the authenticated channel functionality 143

(where a ∈N)

Theorem 2 allows immediately to conclude some useful properties
on this instantiation of FKM: From (1) we conclude that all keys with
c /∈ Kcor have the attribute they were created with. This also means
that the same credential always has the same attribute, no matter
which user accesses it. From (2), we can see that for each corrupted
credential c ∈ Kcor, there was either a query 〈corrupt, h〉, where
Store[U,h]= 〈F, a, c〉, or there exist Store[U,h ′]= 〈KW, a ′, c ′〉 and
Store[U,h]= 〈F, a, c〉, and a query 〈wrap, h ′, h, id〉 was emitted, for
c ′ ∈ Kcor, or an unwrap query 〈unwrap, h ′, w, a, F, id〉 for a c ∈ Kcor

was emitted. By the definition of the strict key-hierarchy policy, in the
latter two cases we have that a ′ > a. It follows that, for any creden-
tial c for F, such that Store[U,h] = 〈F, a, c〉 for some U,h and a, we
have that c 6∈ Kcor, as long as every corruption query 〈corrupt, h∗〉
at U was addressed to a different key of lower or equal rank key, i. e.,
Store[U,h∗] = 〈KW, a∗, c∗〉, c∗ 6= c and a∗ 6 a. By (3), those creden-
tials c /∈ Kcor have not been corrupted in their respective functionality,
i. e., it has never received a message 〈corrupt, c〉.

11.2 an example implementation of the authenticated

channel functionality

The following implementation of the authenticated channel function-
ality Fach from the introduction may serve as an example on how to
use FKM in a protocol. We repeat the definition of Fach from Chapter 7

here:

Listing 11: Fach with session parameters 〈Ppid, Qpid, label〉. Note that in this
example, every step can only be executed once.

ready-sender: accept <ready> from P;

send <sender-ready> to A

ready-receiver[¬ready-sender]: accept <ready> from Q;

send <ready-receiver-early> to A

ready-receiver[ready-sender]: accept <ready> from Q;

send <receiver-ready> to A;

send [ready-receiver]: accept <send,x> from P;

x← x; send <send,x> to A

done [send]: accept <done> from A;

send <done> to P

deliver[send]: accept <deliver,x> from A where x = x;

send <deliver,x> to Q
✆

The idea is the following: Two parties, the sender and the recip-
ient, use the set-up phase to generate a shared signature key. The
recipient creates this signature key, stores the public part, shares the
private part, which is hidden inside FKM, with the sender, and then
announces the end of the set-up phase. At some later point, when

144 a simple case study

the sender is instructed to send a message, it attaches the signature to
the message. The recipient accepts only messages that carry a valid
signature, which she can verify using the public part of the shared
signature key. Obviously, a similar implementation without the key-
management functionality FKM is possible (although other means of
pre-sharing signature keys, or MAC keys for that matter, would be
required). However, our aim is to provide a very concise use case.
Formally, the protocol πach defines three protocol names: proto-ach,
proto-fkm and proto-sig. πach(proto-sig) is defined by the signa-
ture functionality FSIG. πach(proto-fkm) is defined by FKM, for the pa-
rameters F = { FSIG }, C = { { sign,verify } } and a static key-hierarchy
Π as defined in the previous section. πach(proto-ach) parses the ses-
sion parameter as a tuple 〈Ppid, Qpid, label〉, where label is used to dis-
tinguish different channels, and Ppid, Qpid to identify the sender and
the recipient. Let sid be the session ID. Then we will use P to denote
〈Ppid, sid〉 and Q to denote 〈Qpid, sid〉. As we want to keep the exam-
ple simple, we do not model party corruption. The following code
defines the behaviour of the sender P:

ready-sender: accept <ready> from parentId;

call FKM with <ready>

import[ready-sender]: accept <share•,h ′> from FKM; h
′
← h ′;

call FKM with <finish_setup>

send[import]: accept <send,x> from parentId;

call FKM with <sign,h
′
,x>; accept <sign•,σ> from FKM;

send <x, σ> to A

done [send]: accept <done> from A;

send <done> to parentId
✆

When we say that P calls FKM, we mean that P sends a message to
〈Ppid, 〈sid, 〈prot− fkm, 〈U,Uext, ST,Room〉〉〉, where U = {P,Q }, Uext =

{Q }, Room = {P,Q } and ST any two regular peers of P and Q, but
not P and Q themselves. Similar for the receiver Q:

ready-receiver:

accept <ready> from parentId; call FKM with <ready>;

accept <proceed> from A; call FKM with <new,FSIG,0>;

accept <new,h,vk> from FKM;

h← h;

vk← vk;
call FKM with <share,h>

deliver[ready-receiver]:

accept <deliver,x,σ> from A;

call FKM with <verify,vk,<x, σ>>;
accept <verify,1> from FKM;

send <deliver,x> to parentId
✆

The following lemma makes use of the fact that FKM provides an
authentic way to share keys during the set-up phase, and that FSIG

outputs 〈verify, 1〉 only if the corresponding message was “regis-
tered” before.

11.2 an example implementation of the authenticated channel functionality 145

Lemma 8: πach emulates Fach.

Proof. We have to show that there exists a simulator Sim bounded
for Fach and that, for every well-behaved environment Z rooted at
prot-fach,

Exec[πach, AD, Z] ≈ Exec[Fach,Sim, Z].

We define the following simulator Sim:

ready-sender:

accept <sender-ready> from <ideal>

send <FKM,<ready•,P>> to <env>

faux-ready-receiver[¬ready-sender]:

accept <ready-receiver-early> from <ideal>

send <FKM,<ready•,Q> to <env>

accept <Q,proceed> from <env>

send <FKM,error> to <env>

ready-receiver[ready-sender]:

accept <receiver-ready> from <ideal>

send <FKM, <ready•,Q>> to <env>

accept <Q,proceed> from <env>

sk, vk← KG(1η)

send <FKM,<finish_setup•>> to <env>

send [ready-receiver]:

accept <send,x> from <ideal>

σ← sign(sk, x)
send <P,<x,σ>> to <env>

done [send]:

accept <P,done> from <env>

send <done> to P

faux-deliver[ready-receiver∧¬send]:

accept <Q,<deliver,x,σ>> from <env>

send <Q,error> to <env>

deliver[send]:

accept <Q,<deliver,x,σ>> from <env>

if σ = σ

send <deliver,x> to <ideal>

error:

accept <P,error> from <ideal>

send <P,error> to <env>
✆

Let us fix the session ID sid, and assume it is of the form 〈sid ′,

〈prot-ach, 〈Ppid, Qpid, label〉〉 . . .〉. Let P = 〈Ppid, sid〉 and Q = 〈Qpid,

sid〉. First, we show that Sim is bounded for Fach: It is trivial to verify
that Sim is time-bounded, since KG and sign are assumed to be. Every
flow from Sim to Fach is provoked by an input from the environment,
and the length of the message from Sim to Fach is polynomially re-
lated to the length of the message from the environment to Sim.

Next, we show that, for every well-behaved environment Z rooted
at prot-fach, Exec[πach, AD, Z] = Exec[Fach,Sim, Z], by showing a
stronger invariant:

At the end of each epoch, the following conditions hold true:

146 a simple case study

1. The view of Z is the same in [πach, AD, Z] and [Fach,Sim, Z].

2. If Fach has finished a step S in [Fach,Sim, Z], Sim has finished the
same step, and in [πach, AD, Z], either P or Q has finished S.

Induction over the number of activations of Z. In the base case, Z
has not called any party, so the invariant holds trivially. Now assume
the invariant held true at the end of the previous activation of Z, after
which Z sends a message m to some party. We have to show the
invariant to hold true when this new epoch is over, i. e., Z is activated
again. Case distinction over the steps that were completed by Fach in
[Fach,Sim, Z] before Z emittedm. Note that the guards define a partial
order of the steps, therefore it is sufficient to perform the distinction
over the last completed step:

1. Fach has not finished any step yet. If Z sends m = 〈ready〉 to
P, then in [Fach,Sim, Z], Sim will translate Fach’s response into
〈FKM, 〈ready

•, P〉〉, which is what Z would receive in [πach, AD,

Z] due to the definition of FKM. If Z sends the message to Q
instead, in [Fach,Sim, Z] an error message is sent to Sim, as the
guard for the step ready-receiver would not be fulfilled. By
induction hypothesis, Sim is in the same state as Fach, and there-
fore simulates the error that FKM would send out in [πach, AD,

Z], because it receives a share query from Q without having
received ready from P before – otherwise Z would have sent
ready to P and then Fach would have finished this step. If any
other message is sent, FKM sends an error message to Sim, who
forwards it to Z just like AD does in [πach, AD, Z].

2. Fach has finished ready-sender. If Z sends m = 〈ready〉 to Q,
in [πach, AD, Z] it will receive 〈FKM, 〈ready

•, Q〉 from AD. Sim-
ilarly in [Fach,Sim, Z], Sim would wait for the same response to
proceed. If Sim and Q in πach were in this step before Z sends
m, and m = 〈Q, proceed〉, then, in [πach, AD, Z], Q would cre-
ate a key on FKM, and save the handle as well as the public
part. Before Z’s next activation, FKM would activate P on step
import which would store the same handle (by definition of
FKM) and finish the setup phase, producing as only observable
output to Z the message 〈FKM, finish_setup•〉. In [Fach,Sim, Z],
Sim draws the secret and public part of the key itself (with the
same algorithm KG that FSIG uses, which is called by FKM). It
would then produce the same output to Z. Any other message
m would result in an error-message and treated as described
before.

3. Fach has finished ready-receiver. If Z sends m = 〈send, x〉 to
Q, then Z would receive 〈P, 〈x, σ〉〉, for an equally distributed
σ, in both networks [πach, AD, Z] and [Fach,Sim, Z], since, as

11.2 an example implementation of the authenticated channel functionality 147

mentioned before, the value at the key-position is equally dis-
tributed. If Z sends m = 〈Q, 〈deliver, x, σ〉〉 to Sim, it receives
〈Q, error〉 as response. In [πach, AD, Z], AD forwards this to Q
who queries FKM. Because deliver was not executed yet, the
array signs in FSIG is empty. Since vk was created in FSIG/FKM

(since, by induction hypothesis, ready-receiver also holds in
πach), and no corruption message is emitted by any party in πach,
the response from FSIG/FKM cannot be 〈verify•, 1〉. Therefore,
the second accept step in deliver in Q fails, and 〈Q, error〉 is
output, just as in [Fach,Sim, Z]. Any other message m would
result in an error-message and treated as described before.

4. Fach has finished send. If m = 〈P, done〉 is send to AD in [πach,

AD, Z], Z receives 〈done〉 from P. In [Fach,Sim, Z], Sim translates
this to 〈done〉, which Fach relays to the same response via the
dummy party P. If Z sends m = 〈Q, 〈deliver, x, σ〉〉 to AD in
[πach, AD, Z], it receives 〈deliver, x〉 from Q, but only in case
that Z has sent a message 〈send, x〉 to P earlier, when P was
in state import, and gave the output 〈x, σ〉 to AD, since FSIG

keeps a list of previously signed message and their signatures.
In [Fach,Sim, Z], by definition of Sim and Fach, Z receives the
same response from Q if x is the same x in a 〈send, x〉 query
accepted earlier, and σ is the output produced by Sim before
forwarding. Since FKM may have only accepted such queries
when ready-receiver was finished, and done or deliver were
not yet called, this corresponds to the same input z in [πach, AD,

Z]. Any other message m would result in an error-message and
treated as described before.

5. Fach has finished deliver. No messages are accepted anymore
(i. e., they lead to error-messages).

C O N C L U S I O N

149

12
C O N C L U S I O N A N D P E R S P E C T I V E S

The interface between trusted code in an enclosed environment, such
as for example a security token, and untrusted code on the outside is
called a security API. Security APIs are often used as a means to make
other protocols more resistant against the corruption of protocol par-
ties. The idea is to protect sensitive data from a potentially untrusted
“outside”, since a security token is simpler than a general-purpose
system and designed with the intent of providing security. Thorough
security analysis is indispensable for achieving this goal.

There are two orthogonal objectives for security analysis, which we
have investigated in this thesis: First, there is the security of whatever
protocol makes use of the security API. What security goals need to
be achieved in this context depends, of course, on the protocol. Sec-
ond, there is the security of the security API itself. As the designer
of a security API can hardly predict all possible contexts in which his
security API will be employed, a definition of security is necessary to
help guiding the design of the security API, as well as its implemen-
tation, and provide evaluation criteria for both.

12.1 analysis of protocols using security apis

Previous work has identified a promising approach to establish secu-
rity guarantees of protocols that employ security APIs. Modelling the
security APIs as ordinary protocol parties, it is possible to use tradi-
tional protocol verification tools for analysis. However, as we pointed
out in Chapter 3, security APIs are typically stateful; they contain a
database that stores cryptographic keys and additional attributes to
those keys. As opposed to typical network protocols, this means that
a protocol execution is stateful, and more importantly, the state is
mutable and non-monotonic. The approach of using Horn clause res-
olution to perform protocol verification, which is very successful for
ordinary protocols, leads to false attacks in this case, since it is based
on the (sound, but not complete) abstraction that protocol actions can
be repeated arbitrarily often. Despite some efforts being put into in-
corporating parts of the state into the horn-clause representation of
the protocol, these limitations are still present, as we have shown in
a thorough evaluation of those approaches in Chapter 3.

In Section 3.6, we argued that multiset rewrite rules are better
suited as a back-end for the analysis, since they model causal relation-
ships more accurately. In Chapter 4, we gave support to this claim
by presenting a case study in which we show the absence of replay

151

152 conclusion and perspectives

attacks in a protocol based on a security token, the Yubikey protocol,
in the formal model. The verification of this protocol was particularly
challenging because it involves storing values, which need to be com-
pared to each other. An analysis of this protocol had been attempted
before, using protocol verification tools based on Horn clauses, as
well as a model-checking approach, but, in contrast to the present
work, it was previously only possible for a fixed number of nonces.
We furthermore modelled an extension to this protocol that makes
use of a second, different security token and showed that an attack
on this protocol is possible, but also how this attack can be thwarted.
Our results has been obtained using multiset rewriting and provides
formal results on both the Yubikey protocol and its extension in an
unbounded model.

Building on the experience with this modelling, we recognized the
need for a protocol representation which is closer to an actual imple-
mentation, yet still abstract. A manual encoding of protocols using
multiset rewrite rules is a difficult process. Deriving a model that
is accurate with respect to concurrent runs of processes and is able
to recognises locking issues is possible; however, it is a tedious and
error-prone task that requires a great deal of expertise to be done
correctly. To remedy this shortfall, we introduced a calculus that can
serve as a front-end in Chapter 5. This calculus is especially conve-
nient for users familiar with the well-known ProVerif tool. It extends
the applied pi calculus with synchronous communication by opera-
tors for database access and explicit locking and uses verification on
multiset rewrite rules on the back-end. We presented a number of
case studies to show our tool’s use for the analysis of security APIs:
the above mentioned Yubikey protocol, the examples that we used
for evaluating Horn-clause resolution approaches in Chapter 3 and a
fragment similar to the PKCS#11 standard.

Our translation makes it possible to include the subtle issues that
can arise in the context of synchronisation and locking in the model,
but keep the amount of time needed to model a protocol small. En-
coding such models directly in multiset-rewrite rules is tiresome and
difficult to do right.

We conclude that the analysis of security APIs benefits from a pre-
cise verification procedure, which can be provided by using multiset
rewriting as a back-end, and our calculus and translation to allow for
a convenient and versatile modelling of the protocol or security API
in question.

Future work

automatic generation of helping lemmas For 4 out of 7

case studies, our method required helping lemmas to find a proof.
These lemmas are proven automatically, but they have to be given

12.1 analysis of protocols using security apis 153

by the user. We would like to further advance the degree of automa-
tion in our tool, for example as follows: We observed that many of
the helping lemmas we formulated in the course of our case studies
are instances of what Meier, Cremers and Basin call the decryption

chain case [73]. Their work introduces two invariants which, for proto-
cols that fall into a certain class, help generating machine-checkable
proofs of security. It might be possible to instantiate these invariants
to a protocol-specific helping lemma, given that the protocol is in the
right class. Due to our approach by translation, we have access to
the protocol in a high-level language, which gives us more structure
to work with, as well as in form of low-level rewrite rules that we
generate ourselves. This gives us better control and puts us in a more
favorable situation to automatically generate helping lemmas.

loops Certain protocols, for example the TESLA protocol [78] con-
tain loops. There are various ways to model loops in the calculus
we propose: First, using secret (and thus synchronous) channels and
replication. The initial local variable are sent on a secret channel,
and each process in the replication can pick these values up, perform
some input/output and compute new values. If the loop shall con-
tinue, the new values are emitted on the same channel, otherwise,
a message on a second secret channel permits leaving the loop and
proceeding elsewhere. Second, using insert, lookup and lock. The
procedure here is similar, but a lock is needed, since the store is an
asynchronous channel. Third, using embedded multiset-rewrite rules
and replication. Instead of transferring the local variables from pro-
cess to process via a secret channel or the store, a fact can be used to
the same end. The resulting multiset rewrite rules from a translation
using the third method would be quite similar to the modelling of
the TESLA protocol in tamarin [72]. Evaluating these different mod-
ellings of loops and, if necessary, extending the calculus by a loop
operator and finding an efficient translation are possible venues of
future research.

equivalence properties Privacy-type properties, for example
the secrecy of a vote in e-voting protocols, are naturally formulated
as equivalences between different instances of a protocol. Two very
prominent notions of equivalence are labelled bisimilarity and ob-
servational equivalence, which have been formulated and shown to
coincide in the applied pi calculus [2]. As the calculus we propose is
similar to the applied pi calculus, adapting these two notions would
be quite straight forward. To prove the equivalence of two processes,
however, a different translation is necessary, as tamarin currently
does not support equivalence between MSR systems.

ProVerif provides support for showing diff-equivalence, a stronger
notion of equivalence than observation equivalence, for processes that

154 conclusion and perspectives

differ only in the choice of some terms [15]. While the method is
sound, it sometimes produces false attacks. Subsequent work elim-
inates some of the false attacks in the case where conditionals are
involved [26]. Both methods essentially translate two processes of
similar structure into a set of Horn clauses and a reachability query.
Future work could lift this translation to output multiset rewriting
rules instead of Horn clauses, possibly using ideas from our current
translation to incorporate constructs that are present in our calculus,
but not in the applied pi calculus.

case studies We see the strengths of the calculus we propose
in the analysis of protocols that rely heavily on state, such as key-
management APIs, and will give some possible targets in the follow-
ing: A modelling of the full PKCS#11 standard would be both use-
ful in practice and challengeing, since security policies for PKCS#11

can define recursive datatypes. Although this feature is rarely used
in practice, an automated analysis could possibly help identifying
new key-policies with useful properties. Academic proposals for key-
management APIs that have only been proven by hand so far are
of special interest, too, since they provide security properties that
go beyond key secrecy. As such, we would like to mention the key-
management API by Cortier, Steel and Wiedling [31] which allows for
key-revocation, and the key-management API proposed by Daubig-
nard, Lubicz and Steel [32], which supports public-key cryptography.

The TPM standard is another goal for analysis, especially since a
modelling in our calculus has the potential to lift some restrictions
present in previous work [35, 33, 9], for reasons detailled in Chapter 3.
The new version 2.0 of the standard is currently in public review [95]
and is therefore perhabs the most interesting target for a case study.

12.2 analysis of security apis

In the second part of this thesis, we presented a definition that covers
a wide range of security APIs and helps assessing the security of a net-
work of security APIs. This definition uses a framework that allows
for universal composability, which offers the following advantages:
First, security holds in arbitrary contexts. Second, we can define se-
curity for sets of security APIs, which enables us to show that a policy
is respected globally. Third, we can use composition to define the se-
curity API as a combination of secure key-management and correct
implementations of key-usage tasks. Fourth, our definition can be
used in proofs of higher-level protocols without need for a reduction
proof.

Our definition differs from previous definitions in this respect, as
these were based on real-or-fake games and hence do not benefit from
these advantage. With the exception of the definition proposed by

12.2 analysis of security apis 155

Kremer et al., they are tailored to specific APIs and thereby lack gen-
erality. In order to formulate the transport of keys in the “ideal world”
setting of the universal composability framework, we introduced the
concept of credentials, randomly drawn strings that allow the delega-
tion of access rights to functionalities. We introduced our definition,
along with the concept of credentials, in Chapter 8.

In Chapter 9 we established some properties that this functionality
enjoys and that high-level protocol can benefit from. In the same
chapter, we discussed the limitations to our approach in detail.

In Section 8.4, we demonstrated that our definition can guide the
design of a generic implementation of key-management. This imple-
mentation is secure with respect to our definition and can serve as a
template for the implementation of many security APIs, as it is inde-
pendent of which functions it is supposed to offer, as long as those op-
erations are implemented correctly. As a consequence, adding func-
tionality to security APIs that follow this design does not require a
new proof. A case study in Chapter 11 gave an example on how
the functionality can be instantiated and be used in the analysis of a
higher-level protocol.

Future work

generalising key-transport The proposed definition of se-
curity can be generalized. Currently, it is too strict. It specifies the
way keys are transferred from one device to another very explicitly,
thereby restricting the possible implementation of this task to deter-
ministic, symmetric and authentic encryption schemes that allow for
key-dependant messages. Future research can explore to what ex-
tend key-transport can be captured in a more abstract way, making
the definition applicable to a wider range of security APIs.

generalising key-usage The current interface FKM provides to
key-usage functionalities does not allow two keys to interact with
another, although it might be safe to do this if the two keys belong
to the same key-usage functionalities. For some applications, like the
Yubikey protocol, it would also be useful to extend key-manageable
implementations to be able to keep some kind of state, for example a
running counter, which is then exported along with the key. Making
the key-management more powerful in this regard would suggest
formulating the policy in a more general way, too.

making existing functionalities key-manageable Relat-
ing key-manageable functionalities to existing functionalities in the
literature could allow reusing existing proofs of emulation. Most ex-
isting functionalities, even those for signature and encryption, bind
the permission to perform operations to the identity of some party.

156 conclusion and perspectives

This can be seen as unnecessarily restrictive, as many implementa-
tions could allow exporting keys, or even give them to trusted third
parties, like security token.

We think it is possible to develop a technique for transforming
functionalities that have implementations of a certain form, but are
not key-manageable, into key-manageable functionalities. This form
describes an implementation that stores a single key. Our conjec-
ture is that, if an implementation of this form emulates an “ordinary”
functionality, then we can construct a key-manageable implementa-
tion that emulates a key-manageable functionality consisting of sev-
eral copies of the “ordinary” functionality. This way, existing proofs
could be used to develop a secure implementation of cryptographic
primitives in a plug-and-play manner. Investigating the restrictions
of this approach could furthermore provide deeper insight about the
modelling of keys in simulation-based security frameworks.

case studies Case studies of bigger systems than the example
we provide in this thesis would be useful in gaining insight into the
use of the definition in practice, as well as an assessment of its limita-
tions. It would be interesting to discover to what extend the PKCS#11

standard can be modelled. The fact that many PKCS#11 configurations
are indeed insecure would suggest using our translation to identify a
secure and practical configuration before performing analysis in the
computational model. Features that do not conform our distinction
between key-management and key-usage can be excluded in the first
place, e. g., signatures on keys, asymmetric key-wrapping (which, in
PKCS#11 is broken anyway [27]), etc. The difficulty of this analysis
depends on the configuration chosen. If the configuration entails a
policy that enforces a strict key-separation, then the proof can be per-
formed in a more modular way. The resulting security token network
can harden other protocols against party corruption, which suggests
using the security network, or more precisely, the instantiation of
FKM it emulates, to to analyse higher-level protocols in typical do-
mains where PKCS#11 is used, e. g., smart card sign-on mechanisms,
disk encryption, and protocols like TLS.

key transfer in uc using credentials Finally, credentials
might be useful in other contexts where keys can be transferred be-
tween protocol parties. One example that comes to mind is the mod-
elling of protocols that have a key-agreement phase, followed by a
communication phase that makes use of this key, for example the
TLS protocol. Hardware accelerators allow for offloading the (com-
putationally expensive) processing of the key-agreement phase and
leave the server to process (less expensive) symmetric operations of
the communication phase. After the key-agreement phase, session
key is transferred between two different entities, the hardware accel-

12.2 analysis of security apis 157

erator, and the server. We think that this interaction is but one ex-
ample where the use of credentials for the modelling of key-transfer
between different functionalities appears to produce a very natural
way of abstracting keys.

A P P E N D I X

159

A
L I S T I N G S F O R PA RT i

a.1 listings for chapter 3

Listing 12: The modelling of Example 4 in StatVerif by Arapinis et al. [5].

fun pair/2.

fun aenc/3.

fun pk/1.

4 free left.

free right.

free init.

free c.

private free sl.

9 private free sr.

reduc

car(pair(xleft, xright)) = xleft;

cdr(pair(xleft, xright)) = xright;

14 adec(u, aenc(pk(u), v, w)) = w.

query att:vs,pair(sl,sr).

let device =

19 out(c, pk(k)) |

(! in(c, x); lock(s); read s as y;

if y = init then

(if x = left then s := x; unlock(s)

else if x = right then s := x; unlock(s))) |

24 (! in(c, x); lock(s); read s as y;

if y = left then out(c, car(adec(k, x))); unlock(s)

else if y = right then out(c, cdr(adec(k, x))); unlock(s)

).

let user =

29 ν r;

out(c, aenc(pk(k), r, pair(sl,sr))).

process

ν k; ν s; [s 7→ init] | device | ! user
✆

Listing 13: An attempt to express Example 5 in StatVerif. Note that the key
store is modelled as single state cell, which refers to a list of keys.
This list grows in size for every newly generated key. ProVerif
did not terminate on the horn clauses produced by StatVerif’s
translation procedure in the experiments we conducted.

161

162 listings for part i

fun pair/2.

2 fun senc/2.

free c.

free nil.

free store.

7 reduc

car(pair(xleft, xright)) = xleft;

cdr(pair(xleft, xright)) = xright;

sdec(u, senc(u, v)) = v.

12 query att:vs,key.

let create_proc =

in(c,x); ν key; ν handle; lock;

read store as list;

17 store := pair(pair(key,handle),list);

unlock;

out(c,handle).

let wrap_proc =

22 in(c,x); let h1 = car(x) in let h2 = cdr(x) in

lock;

read store as list;

unlock;

out(input,pair(h1,list));

27 in(output,k1);

out(input,pair(h2,list));

in(output,k2);

if k1 = nil then 0

else if k2 = nil then 0

32 else out(c,senc(k1,k2)).

let fetch_key =

in (input,x); let arg=car(x) in

let list=cdr(x) in

37 let h = car(list) in

let r = cdr(list) in

if arg=car(h) then

out(output,cdr(h))

else if r=nil then

42 out(output,nil)

else

out(input,pair(arg,r)).

process

47 ν input; ν output;

ν store;

[store 7→ nil] | ! create_proc | ! wrap_proc | ! fetch_key
✆

Listing 14: A modelling of Example 4 in AIF.

A.1 listings for chapter 3 163

Problem: Leftrightincorrect;

% not correct: the model actually allows the attack

% since the same secrets are used for every newly generated

machine ·

5 Types:

Secrets: {sl,sr};

SK,sk: value;

K,M,X,Y,token : untyped;

10 Sets:

init(token),left(token),right(token);

Functions:

public senc/2, pair/2;

15 private inv/1;

Facts:

iknows/1, attack/0;

20 Rules:

%the intruder’s deduction capabilities:

−→ iknows(token);

iknows(K) ·iknows(M) −→ iknows(senc(K,M));

25 iknows(senc(M,K)) ·iknows(K) −→ iknows(M);

iknows(X) ·iknows(Y) −→ iknows(pair(X,Y));

iknows(pair(X,Y)) −→ iknows(X);

iknows(pair(X,Y)) −→ iknows(Y);

30 %Init:

sk −→ sk∈ init(token);
SK∈ init(token) · SK/∈left(token) · SK/∈right(token) ·

−→ SK∈ init(token) ·iknows(senc(pair(sl,sr),SK));

35 %Set left - or - set right:

SK∈ init(token) −→ SK∈ left(token);
SK∈ init(token) −→ SK∈ right(token);

%decryption

40 SK∈ left(token) ·iknows(senc(pair(X,Y),SK)) −→ SK∈ left(token) ·
iknows(X);

SK∈ right(token) ·iknows(senc(pair(X,Y),SK)) −→ SK∈ right(token) ·
iknows(Y);

%Security goal

iknows(sl) ·iknows(sr) −→attack;
✆

Listing 15: Another modelling of Example 4 in AIF.

1 Problem: wrapdec;

164 listings for part i

Types:

% Secrets: {sl,sr};

SK: value;

6 K,M,X,Y,t : untyped;

Sets:

init(t),left(t),right(t);

11 Functions:

public senc/2, pair/2;

private sl/1, sr/1;

Facts:

16 iknows/1, attack/0;

Rules:

%the intruder’s deduction capabilities:

21 iknows(K) ·iknows(M) −→ iknows(senc(K,M));

iknows(senc(K,M)) ·iknows(K) −→ iknows(M);

iknows(X) ·iknows(Y) −→ iknows(pair(X,Y));

iknows(pair(X,Y)) −→ iknows(X);

iknows(pair(X,Y)) −→ iknows(Y);

26

%Init:

−[SK]→ SK∈ init(t) ·iknows(senc(SK,pair(sl(SK),sr(SK))));

%Set left - or - set right:

31 SK∈ init(t) −→ SK∈ left(t);
SK∈ init(t) −→ SK∈ right(t);

%decryption

SK∈ left(t) ·iknows(senc(SK,pair(X,Y))) −→ SK∈ left(t) ·iknows(X);
36 SK∈ right(t) ·iknows(senc(SK,pair(X,Y))) −→ SK∈ right(t) ·iknows(Y

);

%Security goal

iknows(sl(SK)) ·iknows(sr(SK)) −→attack;
✆

Listing 16: A modelling of Example 5 in AIF.

1 Problem: Wrapdec;

Types:

Agents: {t}; % Agents: Token, Intruder

Token: {t}; % one token

6

KEY, HANDLE, KEY1,KEY2: value;

K,M: untyped;

Sets:

11 store(Token),init(Token),wrap(Token),dec(Token);

A.1 listings for chapter 3 165

Functions:

public senc/2;

private h/1;

16

Facts:

iknows/1, attack/0;

Rules:

21

% The intruder’s deduction capabilities:

∀ Agents · −→ iknows(Agents);

iknows(K) ·iknows(M) −→ iknows(senc(K,M));

iknows(senc(K,M)) ·iknows(K) −→ iknows(M);

26

% Generate a key

∀ Token · −[KEY]→ iknows(h(KEY)) ·KEY∈ store(Token) ·KEY∈ init(
Token);

% Wrap

31 ∀ Token · KEY1∈ wrap(Token) · iknows(h(KEY1)) · iknows(h(KEY2)) ·
KEY1∈ store(Token) · KEY2∈ store(Token)
−→ iknows(senc(KEY1,KEY2)) ·
KEY1∈ wrap(Token) · KEY1∈ store(Token) · KEY2∈ store(Token);

36 % SDecrypt

∀ Token ·iknows(h(KEY)) ·iknows(senc(KEY,M)) ·KEY∈ store(Token) ·KEY
∈ dec(Token)

−→ iknows(M) ·KEY∈ store(Token) ·KEY∈ dec(Token);

% Security goal

41 ∀ Token · KEY∈ store(Token) ·iknows(KEY) −→attack;

% Policy 1

∀ Token · KEY∈ store(Token) · KEY/∈dec(Token) · KEY∈ init(Token) −→
KEY∈ store(Token) · KEY∈ wrap(Token);

∀ Token · KEY∈ store(Token) · KEY/∈wrap(Token) · KEY∈ init(Token)
−→ KEY∈ store(Token) · KEY∈ dec(Token);

46

% Policy 2

% ∀ Token · KEY∈ store(Token) · KEY/∈dec(Token) −→ KEY∈ store(
Token) · KEY∈ wrap(Token);

% ∀ Token · KEY∈ store(Token) · KEY/∈wrap(Token) −→ KEY∈ store(
Token) · KEY∈ dec(Token);

51 % Policy 3

% ∀ Token · KEY∈ store(Token) · KEY∈ init(Token) −→ KEY∈ store(
Token) · KEY∈ wrap(Token);

% ∀ Token · KEY∈ store(Token) · KEY∈ init(Token) −→ KEY∈ store(
Token) · KEY∈ dec(Token);

% ∀ Token · KEY∈ store(Token) · KEY∈ dec(Token) −→ KEY∈ store(
Token) · KEY∈ wrap(Token);

166 listings for part i

56 % Bad policy -- attack is reachable ·
∀ Token · KEY∈ store(Token) · KEY∈ init(Token) −→ KEY∈ store(

Token) · KEY∈ wrap(Token);
∀ Token · KEY∈ store(Token) · KEY∈ init(Token) −→ KEY∈ store(

Token) · KEY∈ dec(Token);
∀ Token · KEY∈ store(Token) · KEY∈ wrap(Token) −→ KEY∈ store(

Token) · KEY∈ dec(Token);
✆

a.2 listings for chapter 4

Listing 17: Modelling of the Yubikey authentication protocol in tamarin’s
MSR calculus. The counter is modelled as a term constituting a
multiset of constants, where the cardinality of the multiset equals
the size of the counter.

theory Yubikey

begin

section{* The Yubikey Authentication Protocol *}

5

builtins: symmetric-encryption, multiset

// Initialisation and Setup of a Yubikey

10 rule BuyANewYubikey:

[Fr(~k),Fr(~pid),Fr(~sid)]

−[Protocol(), Init(~pid,~k),ExtendedInit(~pid,~sid,~k)]→
[!Y(~pid,~sid), Y_counter(~pid, ’1 ’),

Server(~pid,~sid, ’1 ’),!SharedKey(~pid,~k),
15 Out(~pid)]

rule Yubikey_Plugin:

[Y_counter(pid,otc), In(tc)]

−[Yubi(pid,tc), Smaller(otc,tc)]→
20 [Y_counter(pid, tc)]

//If the Button is pressed, the token counter is increased

rule Yubikey_PressButton:

[!Y(pid,sid), Y_counter(pid,tc),!SharedKey(pid,k),

25 In(tc),Fr(~npr),Fr(~nonce)]

−[YubiPress(pid,tc)]→
[Y_counter(pid, tc + ’1 ’),
Out(<pid,~nonce,senc(<sid,tc,~npr>,k)>)

]

30

/* Upon receiving an encrypted OTP, the Server compares the

* (unencrypted) public id to his data base to identify the

* key to decrypt the OTP. After making sure that the secret

* id is correct, the Server verifies that the received

35 * counter value is larger than the last one stored. If the

A.2 listings for chapter 4 167

* Login is successful, i.e., the previous conditions were

* fulfilled, the counter value on the Server that is

* associated to the Yubikey is updated.

*/

40

rule Server_ReceiveOTP_NewSession:

[Server(pid,sid,otc),

In(<pid,nonce,senc(<sid,tc,~pr>,k)>),

!SharedKey(pid,k), In(otc)]

45 −[Login(pid,sid,tc,senc(<sid,tc,~pr>,k)),

LoginCounter(pid,otc,tc),

Smaller(otc,tc)]→
[Server(pid,sid,tc)]

50 //model the larger relation using the smaller action and

//exclude all traces where the predicate does *not* hold true

axiom smaller:

" ∀ #i a b. Smaller(a,b)@i −→ ∃ z. a+z=b"

55 // For sanity: Ensure that a successful login is reachable.

lemma Login_reachable:

exists-trace

" ∃ #i pid sid x otp1. Login(pid,sid,x,otp1)@i"

60 // If a succesful Login happens before a second sucesfull

// Login, the counter value of the first is smaller than the

// counter value of the second

lemma invariant[reuse, use_induction]:

"(∀ pid otc1 tc1 otc2 tc2 #t1 #t2 .

65 LoginCounter(pid,otc1,tc1)@#t1 &

LoginCounter(pid,otc2,tc2)@#t2

−→ (#t1<#t2 ∧ (∃ z . tc1+z=tc2))

∨ #t2<#t1 ∨ #t1=#t2)

"

70

// It is ¬ possible to have to distinct logins with the

// same counter value

lemma no_replay:

"¬ (∃ #i #j pid sid x otp1 otp2 .

75 Login(pid,sid,x,otp1)@i ∧ Login(pid,sid,x,otp2)@j

∧ not(#i=#j))"

lemma injective_correspondance:

" ∀ pid sid x otp #t2 . Login(pid,sid,x,otp)@t2 −→
80 (∃ #t1 . YubiPress(pid,x)@#t1 ∧ #t1<#t2

∧ ∀ otp2 #t3 . Login(pid,sid,x,otp2)@t3 −→ #t3=#t2

)"

lemma Login_invalidates_smaller_counters:

85 " ∀ pid otc1 tc1 otc2 tc2 #t1 #t2 #t3 .

LoginCounter(pid,otc1,tc1)@#t1 &

LoginCounter(pid,otc2,tc2)@#t2

168 listings for part i

∧ Smaller(tc1,tc2)@t3

−→ #t1<#t2 "

90 end
✆

Listing 18: Modelling of the Yubikey authentication protocol in conjunction
with the YubiHSM, formalised in tamarin’s MSR calculus. The
counter is modelled as a term constituting a multiset of con-
stants, where the cardinality of the multiset equals the size of
the counter.

theory YubikeyHSM

begin

section{* The Yubikey-Protocol with a YubiHSM *}

5

builtins: symmetric-encryption, multiset

functions:

keystream/2, keystream_kh/1, keystream_n/1,

10 xor/2, zero/0,

mac/2, demac/2

equations:

keystream_kh(keystream(kh,n))=kh,

15 keystream_n(keystream(n,n))=n,

/* models the way the key-stream used for encryption is

* computed */

xor(xor(a,b),a)=b,

xor(xor(a,b),b)=a,

20 xor(a,a)=zero,

xor(zero,a)=a,

xor(a,zero)=a,

/* incomplete modelling of xor */

demac(mac(m,k),k)=m

25 /* describes the MAC used inside the AEADs

* using mac, adv might find out *something* about the

* message, we over-approximate */

// Rules for intruder’s control over Server

30

// send messages to the HSM

rule isendHSM:

[In(x)] −[HSMWrite(x)]→ [InHSM(x)]

rule irecvHSM:

35 [OutHSM(x)] −[HSMRead(x)]→ [Out(x)]

// write and read the Authentication Server’s database

rule read_AEAD:

[!S_AEAD(pid,aead)]

40 −[AEADRead(aead),HSMRead(aead)]→
[Out(aead)]

rule write_AEAD:

A.2 listings for chapter 4 169

[In(aead), In(pid)]

−[AEADWrite(aead),HSMWrite(aead)]→
45 [!S_AEAD(pid,aead)]

// Initialisation of HSM and Authentication Server.

rule HSMInit:

50 [Fr(~k), Fr(~kh)] −[MasterKey(~k), OneTime()]→
[!HSM(~kh,~k), Out(~kh),

//!YSM_AEAD_GENERATE(~kh), //uncomment to produce attack

!YSM_AEAD_YUBIKEY_OTP_DECODE(~kh)

]

55

//HSM commands

rule YSM_AEAD_RANDOM_GENERATE:

let ks=keystream(kh,N)

aead=<xor(senc(ks,k),~data),mac(~data,k)>

60 in

[Fr(~data), InHSM(<N,kh>),!HSM(kh,k),

!YSM_AEAD_RANDOM_GENERATE(kh)]

−[GenerateRandomAEAD(~data)]→
[OutHSM(aead)

65]

rule YSM_AEAD_GENERATE:

let ks=keystream(kh,N)

aead=<xor(senc(ks,k),data),mac(data,k)>

70 in

[InHSM(<N,kh,data>),!HSM(kh,k),!YSM_AEAD_GENERATE(kh)]

−[GenerateAEAD(data,aead)]→
[OutHSM(aead)]

75 rule YSM_AES_ESC_BLOCK_ENCRYPT:

[InHSM(<kh,data>), !HSM(kh,k),

!YSM_AES_ESC_BLOCK_ENCRYPT(kh)]

−[]→
[OutHSM(senc(data,k))]

80

rule YSM_AEAD_YUBIKEY_OTP_DECODE:

let ks=keystream(kh,N)

aead=<xor(senc(ks,k),<k2,did>),mac(<k2,did>,k)>

otp=senc(<did,sc,rand>,k2)

85 in

[InHSM(<did,kh,aead,otp>), !HSM(kh,k),

!YSM_AEAD_YUBIKEY_OTP_DECODE(kh)

]

−[

90 OtpDecode(k2,k,<did,sc,rand>,sc,

xor(senc(ks,k),<k2,did>),mac(<k2,did>,k)),

OtpDecodeMaster(k2,k)

]→
[OutHSM(sc)]

170 listings for part i

95

//Yubikey operations

rule BuyANewYubikey:

let ks=keystream(kh,~pid)

100 aead=<xor(senc(ks,~k),<~k2,~sid>),mac(<~k2,~sid>,~k)>

in

//This rule implicitly uses YSM_AEAD_GENERATE

[Fr(~k2),Fr(~pid),Fr(~sid),

//!YSM_AEAD_GENERATE(kh),

105 //Uncomment to require the HSM to have

YSM_AEAD_GENERATE

!HSM(kh,~k), In(’1 ’)]

−[Init(~pid,~k2)]→
[Y_counter(~pid, ’1 ’), !Y_Key(~pid,~k2), !Y_sid(~pid,~sid),

S_Counter(~pid, ’1 ’), !S_AEAD(~pid,aead), !S_sid(~pid,~sid),

110 Out(~pid)]

//On plugin, the session counter is increased and the token

//counter reset

rule Yubikey_Plugin:

115 [Y_counter(pid,sc),In(Ssc)]

//The old counter value sc is removed

−[Yubi(pid,Ssc),Smaller(sc, Ssc)]→
[Y_counter(pid, Ssc)]

//and substituted by a new counter value, larger, Ssc

120

rule Yubikey_PressButton:

[Y_counter(pid,tc),!Y_Key(pid,k2),!Y_sid(pid,sid),

Fr(~pr),Fr(~nonce), In(tc+ ’1 ’)]
−[YubiPress(pid,tc),

125 YubiPressOtp(pid,<sid,tc,~pr>,tc,k2)]→
[Y_counter(pid,tc+ ’1 ’),

Out(<pid,~nonce,senc(<sid,tc,~pr>,k2)>)]

rule Server_ReceiveOTP_NewSession:

130 let ks=keystream(kh,pid)

aead=<xor(senc(ks,k),<k2,sid>),mac(<k2,sid>,k)>

in

[In(<pid,nonce,senc(<sid,tc,~pr>,k2)>) ,

!HSM(kh,k), !S_AEAD(pid,aead), S_Counter(pid,otc),

135 !S_sid(pid,sid)]

−[Login(pid,sid,tc,senc(<sid,tc,~pr>,k2)),

LoginCounter(pid,otc,tc), Smaller(otc,tc)]→
[S_Counter(pid,tc)]

140 //model the larger relation using the smaller action and

//exclude all traces where the predicate does *not* hold true

axiom smaller:

" ∀ #i a b. Smaller(a,b)@i −→ ∃ z. a+z=b"

145 axiom onetime:

A.2 listings for chapter 4 171

" ∀ #t3 #t4 . OneTime()@#t3 ∧ OneTime()@t4 −→ #t3=#t4"

// For sanity: Ensure that a successful login is reachable.

lemma Login_reachable:

150 exists-trace

" ∃ #i pid sid x otp1. Login(pid,sid, x, otp1)@i"

/* Every counter produced by a Yubikey could be computed by

* the adversary anyway. (This saves a lot of steps in the

155 * backwards induction of the following lemmas). */

lemma adv_can_guess_counter[reuse,use_induction]:

" ∀ pid sc #t2 . YubiPress(pid,sc)@t2

−→ (∃ #t1 . K(sc)@#t1 ∧ #t1<#t2)"

160 /* Everything that can be learned by using OtpDecode is the

* counter of a Yubikey, which can be computed according to

* the previous lemma. */

lemma

otp_decode_does_not_help_adv_use_induction[reuse,use_induction]:

165 " ∀ #t3 k2 k m sc enc mac . OtpDecode(k2,k,m,sc,enc,mac)@t3

−→ ∃ #t1 pid . YubiPress(pid,sc)@#t1 ∧ #t1<#t3"

/* ∀ keys shared between the YubiHSM and the

* Authentication Server are either *not* known to the

170 * adversary, or the adversary learned the key used to

* encrypt said keys in form of AEADs. */

lemma k2_is_secret_use_induction[use_induction,reuse]:

" ∀ #t1 #t2 pid k2 . Init(pid,k2)@t1 ∧ K(k2)@t2

−→
175 (∃ #t3 #t4 k . K(k)@t3 ∧ MasterKey(k)@t4 ∧ #t3<#t2)"

/* Neither of those kinds of keys are ever learned by the

adversary */

lemma neither_k_nor_k2_are_ever_leaked_inv[use_induction,reuse]:

"

180 not(∃ #t1 #t2 k . MasterKey(k)@t1 ∧ KU(k)@t2)

∧ ¬ (∃ #t5 #t6 k6 pid . Init(pid,k6)@t5 ∧ KU(k6)@t6)

"

// Each successful login with counter value x was preceded by a

button press

185 // event with the same counter value

lemma one_count_foreach_login[reuse,use_induction]:

" ∀ pid sid x otp #t2 . Login(pid,sid,x,otp)@t2 −→
(∃ #t1 . YubiPress(pid,x)@#t1 ∧ #t1<#t2)"

190 // If a successful Login happens before a second successful

// Login, the counter value of the first is smaller than the

// counter value of the second

lemma slightly_weaker_invariant[reuse, use_induction]:

"(∀ pid otc1 tc1 otc2 tc2 #t1 #t2 .

172 listings for part i

195 LoginCounter(pid,otc1,tc1)@#t1 ∧ LoginCounter(pid,

otc2,tc2)@#t2

−→ (#t1<#t2 ∧ (∃ z . tc2=tc1 + z))

∨ #t2<#t1 ∨ #t1=#t2)

"

induction

200 case empty_trace

by contradiction // from formulas

next

case non_empty_trace

simplify

205 solve((¬(#t1 < #t2)) ∨ (∀ z.2. ((otc2+z.1) = (otc1+z+z.2)) ⇒
⊥))

case case_1

solve((#t2 = #t1) ∨ (#t1 < #t2))

case case_1

by contradiction // from formulas

210 next

case case_2

by contradiction // from formulas

qed

next

215 case case_2

solve((#t2 = #t1) ∨ (#t1 < #t2))

case case_1

by contradiction // from formulas

next

220 case case_2

solve(S_Counter(pid, otc2) ◮3
#t2)

case BuyANewYubikey

by sorry

next

225 case Server_ReceiveOTP_NewSession_case_1

by sorry

next

case Server_ReceiveOTP_NewSession_case_2

by sorry

230 qed

qed

qed

qed

235

// It is *not* possible to have to distinct logins with the

// same counter value

lemma no_replay:

"¬ (∃ #i #j pid sid x otp1 otp2 .

240 Login(pid,sid,x,otp1)@i ∧ Login(pid,sid,x,otp2)@j

∧ not(#i=#j))"

// Every Login was preceded by exactly one corresponding button

press

A.2 listings for chapter 4 173

lemma injective_correspondance:

245 " ∀ pid sid x otp #t2 . Login(pid,sid,x,otp)@t2 −→
(∃ #t1 . YubiPress(pid,x)@#t1 ∧ #t1<#t2

∧ ∀ otp2 #t3 . Login(pid,sid,x,otp2)@t3 −→ #t3=#t2

)"

250 // If one login has a smaller counter than the other, it must

have occurred earlier

lemma Login_invalidates_smaller_counters:

" ∀ pid otc1 tc1 otc2 tc2 #t1 #t2 z .

LoginCounter(pid,otc1,tc1)@#t1

∧ LoginCounter(pid,otc2,tc2)@#t2

255 ∧ tc2=tc1+z

−→ #t1<#t2 "

end
✆

Listing 19: Modelling of the Yubikey authentication protocol formalised in
tamarin’s MSR calculus. The counter is modelled using a “suc-
cessor of” constructor. The permanent fact !IsSmaller can be pro-
duced by the adversary to proof that one counter value is smaller
than another. We need to enforce transitivity in order to be able
to proof our claims – that means, we require (using an axiom)
each trace to contain IsSmaller(a, c), should IsSmaller(a, b) and
!IsSmaller(a, c) be present, for a, b, c ∈ M. !Succ models a func-
tional relation: If !Succ(a, b), then the adversary was able to show
that b is the successor of a. The relation modelled by !Smaller is
not functional: If !Smaller(a, b), then the adversary was able to
show that a is smaller than b. The Theory() action is used to
enforce that this relation (to the extend it is needed in this trace)
has to be build up before running the first protocol actions.

1 theory Yubikey-noms

begin

section{* The Yubikey-Protocol (alternative modelling) *}

6 builtins: symmetric-encryption

functions: S/1,zero/0

// Rules modelling the "successor of" relation

11 rule InitSucc:

[In(zero),In(S(zero))]

−[Theory(), IsSucc(zero,S(zero)),IsZero(zero)]→
[!Succ(zero,S(zero))]

16 rule StepSucc:

[In(y),In(S(y)), !Succ(x,y)]

−[Theory(), IsSucc(y,S(y))]→
[!Succ(y,S(y))]

174 listings for part i

21 // Rules modelling the "smaller than" relation

rule SimpleSmaller:

[!Succ(x,y)]

−[Theory(), IsSmaller(x,y)]→
[!Smaller(x,y)]

26

rule ZExtendedSmaller:

[!Smaller(x,y),!Succ(y,z)]

−[Theory(), IsSmaller(x,z)]→
[!Smaller(x,z)]

31

// Rules modelling the Yubikey

rule BuyANewYubikey:

[Fr(~k),Fr(~pid),Fr(~sid)]

−[Protocol(), Init(~pid,~k),

36 ExtendedInit(~pid,~sid,~k),IsZero(zero)]→
[!Y(~pid,~sid), Y_counter(~pid,zero),

Server(~pid,~sid,zero),!SharedKey(~pid,~k), Out

(~pid)]

//On plugin, the session counter is increased and the token

counter reset

41 rule Yubikey_Plugin:

[Y_counter(pid,sc),!Smaller(sc, Ssc)]

−[Yubi(pid,Ssc)]→
[Y_counter(pid, Ssc)]

46 //If the Button is pressed, the token counter is increased

rule Yubikey_PressButton:

[!Y(pid,sid), Y_counter(pid,tc),!SharedKey(pid,k),

!Succ(tc,Stc),Fr(~npr),Fr(~nonce)]

−[YubiPress(pid,tc)]→
51 [Y_counter(pid, Stc),

Out(<pid,~nonce,senc(<sid,tc,~npr>,k)>)

]

/* Upon receiving an encrypted OTP, the Server compares

56 * the (unencrypted) public id to his data base to

* identify the key to decrypt the OTP. After making

* sure that the secret id is correct, the Server

* verifies that the received counter value is larger

* than the last one stored. If the Login is

61 * successful, i.e., the previous conditions were

* fulfilled, the counter value on the Server that is

* associated to the Yubikey is updated.

*/

66 rule Server_ReceiveOTP_NewSession:

[Server(pid,sid,otc), In(<pid,nonce,senc(<sid,tc,~pr>,k)

>),

!SharedKey(pid,k), !Smaller(otc,tc)]

−[Login(pid,sid,tc,senc(<sid,tc,~pr>,k)),

A.2 listings for chapter 4 175

LoginCounter(pid,otc,tc)

71]→
[Server(pid,sid,tc)]

/* The following three axioms function like filters on

* the traces. They ensure that: */

76

//a) the !Smaller relation is transitive

axiom transitivity:

" ∀ #t1 #t2 a b c. IsSmaller(a,b)@t1 ∧ IsSmaller(b,c)@t2

−→ ∃ #t3 . IsSmaller(a,c)@t3 "

81

//b) !Smaller implies inequality

axiom smaller_implies_unequal:

"¬ (∃ a #t . IsSmaller(a,a)@t)"

86 //c) The protocol runs only after the IsSmaller and

// IsSuccessor relation is build up

axiom theory_before_protocol:

" ∀ #i #j. Theory() @ i ∧ Protocol() @ j −→ i < j"

91 // For sanity: Ensure that a successful login is reachable.

lemma Login_reachable:

exists-trace

" ∃ #i pid sid x otp1. Login(pid,sid,x,otp1)@i"

96 // Each successful login with counter value x was

// preceded by a button press with the same counter

// value

lemma one_count_foreach_login[reuse,use_induction]:

" ∀ pid sid x otp #t2 . Login(pid,sid,x,otp)@t2 −→
101 (∃ #t1 . YubiPress(pid,x)@#t1 ∧ #t1<#t2)"

// If a successful Login happens before a second

// successful Login, the counter value of the first is

// smaller than the counter value of the second

106 lemma slightly_weaker_invariant[reuse, use_induction]:

"(∀ pid otc1 tc1 otc2 tc2 #t1 #t2 .

LoginCounter(pid,otc1,tc1)@#t1 &

LoginCounter(pid,otc2,tc2)@#t2

−→ (#t1<#t2 ∧ (∃ #t3 . IsSmaller(tc1,tc2)@t3))

111 ∨ #t2<#t1 ∨ #t1=#t2)

"

induction

case empty_trace

by contradiction // from formulas

116 next

case non_empty_trace

simplify

solve((∀ pid otc1 tc1 otc2 tc2 #t1 #t2.

(LoginCounter(pid, otc1, tc1) @ #t1) ∧

121 (LoginCounter(pid, otc2, tc2) @ #t2)

176 listings for part i

⇒
(last(#t2)) ∨

(last(#t1)) ∨

((#t1 < #t2) ∧

126 (∀ #t3. (IsSmaller(tc1, tc2) @ #t3) ∧ ¬(last(#t3)))

) ∨

(#t2 < #t1) ∨

(#t1 = #t2)) ∨

(∀ #t1 #t2 a b c.

(IsSmaller(a, b) @ #t1) ∧ (IsSmaller(b, c) @ #t2)

131 ∧

(¬(last(#t2))) ∧

(¬(last(#t1))) ∧

(∀ #t3. (IsSmaller(a, c) @ #t3) ⇒ last(#t3))))

case case_1

136 solve((last(#t2)) ∨ (last(#t1)) ∨

((#t1 < #t2) ∧

(∀ #t3. (IsSmaller(tc1, tc2) @ #t3) ∧ ¬(last(#t3)))

) ∨

(#t2 < #t1) ∨ (#t1 = #t2))

case case_1

141 solve(Server(pid, sid, otc1) ◮0
#t1)

case BuyANewYubikey

solve(Server(~pid, sid.1, otc2) ◮0
#t2)

by sorry

next

146 case Server_ReceiveOTP_NewSession_case_1

solve(Server(~pid, sid.1, otc2) ◮0
#t2)

by sorry

next

case Server_ReceiveOTP_NewSession_case_2

151 solve(Server(~pid, sid.1, otc2) ◮0
#t2)

by sorry

next

case Server_ReceiveOTP_NewSession_case_3

solve(Server(~pid, sid.1, otc2) ◮0
#t2)

156 by sorry

next

case Server_ReceiveOTP_NewSession_case_4

solve(Server(~pid, sid.1, otc2) ◮0
#t2)

by sorry

161 qed

next

case case_2

by contradiction // cyclic

next

166 case case_3

by contradiction // from formulas

next

case case_4

by contradiction // from formulas

171 next

A.2 listings for chapter 4 177

case case_5

by contradiction // from formulas

qed

next

176 case case_2

by sorry

qed

qed

181 lemma no_replay:

"¬ (∃ #i #j pid sid x otp1 otp2 .

Login(pid,sid,x,otp1)@i ∧ Login(pid,sid,x,otp2)@j

∧ not(#i=#j))"

186 lemma injective_correspondance:

" ∀ pid sid x otp #t2 . Login(pid,sid,x,otp)@t2 −→
(∃ #t1 . YubiPress(pid,x)@#t1 ∧ #t1<#t2

∧ ∀ otp2 #t3 . Login(pid,sid,x,otp2)@t3 −→ #t3=#t2

)"

191

lemma Login_invalidates_smaller_counters:

" ∀ pid otc1 tc1 otc2 tc2 #t1 #t2 #t3 .

LoginCounter(pid,otc1,tc1)@#t1 &

LoginCounter(pid,otc2,tc2)@#t2

196 ∧ IsSmaller(tc1,tc2)@t3

−→ #t1<#t2 "

end
✆

Listing 20: Modelling of the Yubikey authentication protocol in conjunction
with the YubiHSM, modelling the “smaller-than” relation as de-
scribed in Listing 19.

1 theory YubikeyHSMnoms

begin

section{* The Yubikey-Protocol with a YubiHSM (alternative

modelling) *}

6 builtins: symmetric-encryption

functions: S/1,zero/0

functions: keystream/2, keystream_kh/1, keystream_n/1,

11 xor/2,

mac/2, demac/2

equations: keystream_kh(keystream(kh,n))=kh,

keystream_n(keystream(n,n))=n,

16 xor(xor(a,b),a)=b,

xor(xor(a,b),b)=a,

xor(a,a)=zero,

xor(zero,a)=a,

178 listings for part i

xor(a,zero)=a,

21 demac(mac(m,k),k)=m

// Rules modelling the "successor of" relation

rule InitSucc:

[In(zero),In(S(zero))]

26 −[Theory(), IsSucc(zero,S(zero)),IsZero(zero)]→
[!Succ(zero,S(zero))]

rule StepSucc:

[In(y),In(S(y)), !Succ(x,y)]

31 −[Theory(), IsSucc(y,S(y))]→
[!Succ(y,S(y))]

// Rules modelling the "smaller than" relation

rule SimpleSmaller:

36 [!Succ(x,y)]

−[Theory(), IsSmaller(x,y)]→
[!Smaller(x,y)]

rule ZExtendedSmaller:

41 [!Smaller(x,y),!Succ(y,z)]

−[Theory(), IsSmaller(x,z)]→
[!Smaller(x,z)]

// Intruder’s control over Server

46

/* The attacker can send messages to the HSM, i.e., on

* behalf of the authentication server. Likewise, he

* can receive messages. */

rule isendHSM:

51 [In(x)] −[HSMWrite(x)]→ [InHSM(x)]

rule irecvHSM:

[OutHSM(x)] −[HSMRead(x)]→ [Out(x)]

// The attacker can write and read the Authentication

56 // Server’s database.

rule read_AEAD:

[!S_AEAD(pid,aead)] −[AEADRead(aead),HSMRead(aead)]→ [

Out(aead)]

rule write_AEAD:

[In(aead), In(pid)] −[AEADWrite(aead),HSMWrite(aead)]→
[!S_AEAD(pid,aead)]

61

/* Initialisation of HSM and Authentication Server.

* OneTime() Assures that this can only happen a single

* time in a trace */

rule HSMInit:

66 [Fr(~k), Fr(~kh)]

−[Protocol(), GenerateRole1(~k),

MasterKey(~k), OneTime()]→
[!HSM(~kh,~k), Out(~kh),

A.2 listings for chapter 4 179

//!YSM_AEAD_GENERATE(~kh), //uncomment to produce attack

71 !YSM_AEAD_YUBIKEY_OTP_DECODE(~kh)

]

//Some commands on the HSM:

rule YSM_AEAD_RANDOM_GENERATE:

76 let ks=keystream(kh,N)

aead=<xor(senc(ks,k),~data),mac(~data,k)>

in

[Fr(~data), InHSM(<N,kh>),

!HSM(kh,k),!YSM_AEAD_RANDOM_GENERATE(kh)]

81 −[GenerateRandomAEAD(~data)]→
[OutHSM(aead)

]

rule YSM_AEAD_GENERATE:

86 let ks=keystream(kh,N)

aead=<xor(senc(ks,k),data),mac(data,k)>

in

[InHSM(<N,kh,data>),!HSM(kh,k),!YSM_AEAD_GENERATE(kh)]

−[GenerateAEAD(data,aead)]→
91 [OutHSM(aead)]

rule YSM_AES_ESC_BLOCK_ENCRYPT:

[InHSM(<kh,data>), !HSM(kh,k), !YSM_AES_ESC_BLOCK_ENCRYPT(kh)

]

−[]→
96 [OutHSM(senc(data,k))]

rule YSM_AEAD_YUBIKEY_OTP_DECODE:

let ks=keystream(kh,N)

aead=<xor(senc(ks,k),<k2,did>),mac(<k2,did>,k)>

101 otp=senc(<did,sc,rand>,k2)

in

[InHSM(<did,kh,aead,otp>), !HSM(kh,k),

!YSM_AEAD_YUBIKEY_OTP_DECODE(kh)

]

106 −[

OtpDecode(k2,k,<did,sc,rand>,sc,

xor(senc(ks,k),<k2,did>),mac(<k2,did>,k)),

OtpDecodeMaster(k2,k)

]→
111 [OutHSM(sc)]

//Yubikey operations

rule BuyANewYubikey:

let ks=keystream(kh,~pid)

116 aead=<xor(senc(ks,~k),<~k2,~sid>),mac(<~k2,~sid>,~k)>

in

/* This rule implicitly uses YSM_AEAD_GENERATE to

* produce the AEAD that stores the secret identity and

* shared key of a Yubikey. By disabling the

180 listings for part i

121 * YSM_AEAD_GENERATE flag but nevertheless permitting

* this operation, we model a scenario where

* YSM_AEAD_GENERATE can be safely used to guarantee

* the operation, but ¬ by the attacker. This

* corresponds to a setup where Yubikey initialisation

126 * takes place on a different server, or a setup where

* the initialisation takes place before the server is

* plugged into the network. Uncomment the following

* line to require the HSM to have the

* YSM_AEAD_GENERATE flag set.

131 */

[

//!YSM_AEAD_GENERATE(kh),

Fr(~k2), Fr(~pid), Fr(~sid), !HSM(kh,~k), !Succ(zero,one)]

−[Init(~pid,~k2)]→
136 [Y_counter(~pid,one), !Y_Key(~pid,~k2), !Y_sid(~pid,~sid),

S_Counter(~pid,zero), !S_AEAD(~pid,aead),

!S_sid(~pid,~sid), Out(~pid)]

//On plugin, the session counter is increased and the token

counter reset

141 rule Yubikey_Plugin:

[Y_counter(pid,sc),!Smaller(sc, Ssc)]

−[Yubi(pid,Ssc)]→
[Y_counter(pid, Ssc)]

146 rule Yubikey_PressButton:

[Y_counter(pid,tc),!Y_Key(pid,k2),!Y_sid(pid,sid),

!Succ(tc,Stc),Fr(~pr),Fr(~nonce)]

−[YubiPress(pid,tc),

YubiPressOtp(pid,<sid,tc,~pr>,tc,k2)]→
151 [Y_counter(pid,Stc), Out(<pid,~nonce,senc(<sid,tc,~pr>,k2)>)]

rule Server_ReceiveOTP_NewSession:

let ks=keystream(kh,pid)

aead=<xor(senc(ks,k),<k2,sid>),mac(<k2,sid>,k)>

156 in

[In(<pid,nonce,senc(<sid,tc,~pr>,k2)>),

!HSM(kh,k), !S_AEAD(pid,aead), S_Counter(pid,otc),

!S_sid(pid,sid), !Smaller(otc,tc)]

−[Login(pid,sid,tc,senc(<sid,tc,~pr>,k2)),

161 LoginCounter(pid,otc,tc)]→
[S_Counter(pid,tc)]

/* The following three axioms function like filters on

* the traces. They ensure that: */

166

//a) the !Smaller relation is transitive

axiom transitivity: //axiomatic

" ∀ #t1 #t2 a b c. IsSmaller(a,b)@t1 ∧ IsSmaller(b,c)@t2

−→ ∃ #t3 . IsSmaller(a,c)@t3 "

171

A.2 listings for chapter 4 181

//b) !Smaller implies unequality

axiom smaller_implies_unequal: //axiomatic

"¬ (∃ a #t . IsSmaller(a,a)@t)"

176 /*c) The protocol runs only after the IsSmaller and IsSuccessor

relation is

* build up */

axiom theory_before_protocol:

" ∀ #i #j. Theory() @ i ∧ Protocol() @ j −→ i < j"

181 axiom onetime:

" ∀ #t3 #t4 . OneTime()@#t3 ∧ OneTime()@t4 −→ #t3=#t4"

//LEMMAS:

186 // For sanity: Ensure that a successful login is reachable.

/* lemma Login_reachable: */

/* exists-trace "∀ #i pid sid x otp1. Login(pid, sid, x, otp1

) @ #i" */

/* simplify */

/* solve(!KU(senc (<sid, (otc+z), ~pr>, k2)) @ #vk.4) */

191 /* case Yubikey_PressButton */

/* solve(!S_sid(pid, ~sid) ◮4
#i) */

/* case BuyANewYubikey */

/* solve(S_Counter(~pid, otc) ◮3
#i) */

/* case BuyANewYubikey */

196 /* solve(!S_AEAD(~pid, */

/* <xor(senc(keystream(kh, ~pid), k), <~k2,

~sid>), */

/* mac(<~k2, ~sid>, k)> */

/*) ◮2
#i) */

/* case BuyANewYubikey */

201 /* solve(!HSM(~kh, ~k) ◮1
#i) */

/* case HSMInit */

/* solve(Y_counter(~pid, (’1’+z)) ◮0
#vr) */

/* case Yubikey_Plugin_case_1 */

/* solve(Y_counter(~pid, ’1’) ◮0
#vr.5) */

206 /* case BuyANewYubikey */

/* solve(!KU(~pid) @ #vk.3) */

/* case BuyANewYubikey */

/* SOLVED // trace found */

/* qed */

211 /* qed */

/* qed */

/* qed */

/* next */

/* case write_AEAD */

216 /* by sorry */

/* qed */

/* next */

/* case Server_ReceiveOTP_NewSession_case_1 */

/* by sorry */

182 listings for part i

221 /* next */

/* case Server_ReceiveOTP_NewSession_case_2 */

/* by sorry */

/* qed */

/* qed */

226 /* next */

/* case csenc */

/* by sorry */

/* next */

/* case irecvHSM */

231 /* by sorry */

/* qed */

/* Every counter produced by a Yubikey could be

* computed by the adversary anyway. (This saves a lot

236 * of steps in the backwards induction of the following

* lemmas). */

lemma adv_can_guess_counter[reuse,use_induction]:

" ∀ pid sc #t2 . YubiPress(pid,sc)@t2

−→ (∃ #t1 . K(sc)@#t1 ∧ #t1<#t2)"

241

/* Everything that can be learned by using OtpDecode is

* the counter of a Yubikey, which can be computed

* according to the previous lemma. */

lemma otp_decode_does_not_help_adv_use_induction

246 [reuse,use_induction]:

" ∀ #t3 k2 k m sc enc mac . OtpDecode(k2,k,m,sc,enc,mac)@t3

−→ ∃ #t1 pid . YubiPress(pid,sc)@#t1 ∧ #t1<#t3"

/* ∀ keys shared between the YubiHSM and the

251 * Authentication Server are either ¬ known to the

* adversary, or the adversary learned the key used to

* encrypt said keys in form of AEADs. */

lemma k2_is_secret_use_induction[use_induction,reuse]:

" ∀ #t1 #t2 pid k2 . Init(pid,k2)@t1 ∧ K(k2)@t2

256 −→
(∃ #t3 #t4 k . K(k)@t3 ∧ MasterKey(k)@t4 ∧ #t3<#t2)"

/* Neither of those kinds of keys are ever learned by

* the adversary */

261 lemma neither_k_nor_k2_are_ever_leaked_inv[use_induction,reuse]:

"

not(∃ #t1 #t2 k . MasterKey(k)@t1 ∧ KU(k)@t2)

∧ ¬ (∃ #t5 #t6 k6 pid . Init(pid,k6)@t5 ∧ KU(k6)@t6)

"

266

// Each successful login with counter value x was

// preceded by a button press with the same counter

// value

lemma one_count_foreach_login[reuse,use_induction]:

271 " ∀ pid sid x otp #t2 . Login(pid,sid,x,otp)@t2 −→
(∃ #t1 . YubiPress(pid,x)@#t1 ∧ #t1<#t2)"

A.3 listings for chapter 5 183

induction

case empty_trace

by contradiction // from formulas

276 next

case non_empty_trace

simplify

solve(!S_AEAD(pid,

<xor(senc(keystream(kh, pid), k), <k2, sid>),

mac(<k2, sid>, k)>

281) ◮2
#t2)

case BuyANewYubikey_case_1

by sorry

next

case BuyANewYubikey_case_2

286 by sorry

next

case write_AEAD

solve(!KU(xor(senc(keystream(kh, pid), k), <k2, sid>)

) @ #vk.6)

291 case irecv

by contradiction // cyclic

next

case cxor

by sorry

296 next

case read_AEAD_case_1

by sorry

next

case read_AEAD_case_2

301 by sorry

qed

qed

qed

306 end
✆

a.3 listings for chapter 5

Listing 21: The running example from Chapter 5.

theory RunningExample

begin

4

builtins: symmetric-encryption

functions: encSucc/2, true/0

equations: encSucc(senc(x,y),y) = true

9

!(

(ν h; ν k; event NewKey(h,k);

184 listings for part i

insert < ’key ’,h>,k;
insert < ’ att ’,h>, ’dec ’; out(h))

14 | //allow wrap

(in(h); insert < ’ att ’,h>, ’wrap’)

| //Dec

(in(<h,c>);

lookup < ’ att ’,h> as a in

19 if a= ’dec ’ then lookup < ’key ’,h> as k in

if encSucc(c,k)=true() then

event DecUsing(k,sdec(c,k)); out(

sdec(c,k))

)

| //Wrap

24 (in(<h1,h2>); lookup < ’ att ’,h1> as a1 in

if a1= ’wrap’ then lookup < ’key ’,h1> as k1

in

lookup < ’key ’,h2> as k2 in

event Wrap(k1,k2);

out(senc(k2,k1))

29)

)

lemma can_create_key: //for sanity

exists-trace

34 " ∃ # t h k. NewKey(h,k)@t"

lemma can_obtain_wrapping: //for sanity

exists-trace

" ∃ # t k1 k2 . Wrap(k1 ,k2)@t"
39

lemma dec_limits[reuse , typing]:
//a message that can be decrypted was

//either encrypted on the device, or some key leaked, or

// ¬ a valid enc

44 " ∀ k m # t1 . DecUsing(k,m)@t1 =⇒
(∃ h k2 # t2 # t3 . NewKey(h, k2)@t2 ∧ KU(k2)@t3 ∧ t2<t1

∧ t3<t1)
"

lemma cannot_obtain_key_ind[reuse , use_induction]:
49 " ¬ (∃ # i # j h k . NewKey(h,k)@i ∧ KU(k) @j) "

lemma cannot_obtain_key:

" ¬ (∃ # i # j h k. NewKey(h,k)@i ∧ K(k) @j) "

54 end
✆

Listing 22: Security à la PKCS#11.

1 theory EncWrapDecUnwrap

begin

A.3 listings for chapter 5 185

builtins: symmetric-encryption

6

!(

(in(’ create ’); ν h; ν k; event NewKey(h,k);

insert < ’key ’,h>,k;
insert < ’ att ’,h>, ’ in i t ’; out(h))

11 |

(in(< ’set_wrap ’,h>); lock < ’ att ’,h>; lookup < ’ att ’,h> as a

in

if a= ’ in i t ’ then delete < ’ att ’,h>;
insert < ’ att ’,h>, ’wrap’;
event WrapHandle(h); unlock < ’ att ’,h>

16)

|

(in(< ’ set_dec ’,h>); lock < ’ att ’,h>; lookup < ’ att ’,h> as a in

if a= ’ in i t ’ then delete < ’ att ’,h>; insert < ’ att ’,h>, ’dec
’;

unlock < ’ att ’,h>
21)

| //Dec

(in(<h,senc(m,k)>); lookup < ’ att ’,h> as a in

if a= ’dec ’ then

lookup < ’key ’,h> as kp in

26 if kp=k then

event DecUsing(k,m); out(m)

)

| //Enc

(in(<h,m>); lookup < ’ att ’,h> as a in

31 if a= ’dec ’ then lookup < ’key ’,h> as k in

event EncUsing(k,m); out(senc(m,k))

)

| //Wrap

(in(<h1,h2>); lookup < ’ att ’,h1> as a1 in

36 if a1= ’wrap’ then lookup < ’key ’,h1> as k1 in

lookup < ’key ’,h2> as k2 in

event Wrap(k1,k2);

out(senc(k2,k1))

)

41 | //Unwrap

(in(<h1,senc(m,k)>); lookup < ’ att ’,h1> as a1 in

if a1= ’wrap’ then lookup < ’key ’,h1> as k1 in

if k1=k then

ν h2;

46 insert < ’key ’,h2>, m;

insert < ’ attr ’,h2>, ’wrap’
)

)

lemma can_create_key: //for sanity

51 exists-trace

" ∃ # t h k. NewKey(h,k)@t"

186 listings for part i

lemma can_set_wrap: //for sanity

exists-trace

56 " ∃ # t h .WrapHandle(h)@t"

lemma can_obtain_wrapping: //for sanity

exists-trace

" ∃ # t k1 k2 . Wrap(k1 ,k2)@t"
61

lemma dec_limits[reuse , typing]:
/* a message that can be decrypted was either encrypted on the

device, or some

* key leaked */

" ∀ k m # t1 . DecUsing(k,m)@t1 =⇒
66 (∃ h k2 # t2 # t3 . NewKey(h, k2)@t2 ∧ KU(k2)@t3 ∧ t2<t1 ∧

t3<t1)
∨ ∃ # t2 . EncUsing(k,m)@t2 ∧ t2<t1 "

lemma cannot_obtain_key_ind[reuse , use_induction]:
" ¬ (∃ # i # j h k . NewKey(h,k)@i ∧ KU(k) @j) "

71

lemma cannot_obtain_key:

" ¬ (∃ # i # j h k. NewKey(h,k)@i ∧ K(k) @j) "

end
✆

Listing 23: Needham-Schoeder-Lowe protocol.

theory NeedhamSchroeder

begin

4

builtins: asymmetric-encryption

! (ν skA;

event HonestA(pk(skA));

9 out(pk(skA));

!(in(pk(xB));

ν Na;

event OUT_I_1(aenc(<Na,pk(skA)>,pk(xB)));

out(aenc(<Na,pk(skA) > ,pk(xB)));

14 in(aenc(<Na,xNb,pk(xB)>,pk(skA)));

event IN_I_2_nr(xNb,aenc(<Na,xNb,pk(xB)>,pk(skA)));

ν k; out(aenc(<xNb,k>,pk(xB)));

event SessionA(pk(skA),pk(xB),k)

))

19 |

! (ν skB;

event HonestB(pk(skB));

out(pk(skB));

!(in(aenc(<xNa,pk(xA)>,pk(skB)));

24 event IN_R_1_ni(xNa,aenc(<xNa,pk(xA)>,pk(skB)));

ν Nb;

A.3 listings for chapter 5 187

event OUT_R_1(aenc(<xNa,Nb,pk(skB)>,pk(xA)));

out(aenc(<xNa,Nb,pk(skB)>,pk(xA)));

in(aenc(<Nb,xk>,pk(skB)));

29 event SessionB(pk(xA),pk(skB),xk)

))

lemma sanity1: //make sure that a valid protocol run exists

exists-trace

34 " ∃ pka pkb k # t1 . SessionA(pka,pkb,k)@t1"

lemma sanity2:

exists-trace

" ∃ pka pkb k # t1 . SessionB(pka,pkb,k)@t1"
39

lemma types [typing , reuse]:
" (∀ ni m1 # i .

IN_R_1_ni(ni , m1) @ i
=⇒

44 ((∃ # j . KU(ni) @ j ∧ j < i)
∨ (∃ # j . OUT_I_1(m1) @ j)

)
)

∧ (∀ nr m2 # i .
49 IN_I_2_nr(nr , m2) @ i

=⇒
((∃ # j . KU(nr) @ j ∧ j < i)
∨ (∃ # j . OUT_R_1(m2) @ j)

)
54)

"

lemma secrecy:

" ¬ (

59 ∃ pka pkb k # t1 # t2 .
SessionA(pka,pkb,k)@t1
∧ K(k)@t2
∧ (∃ # i . HonestA(pka)@i)
∧ (∃ # i . HonestB(pkb)@i)

64) "

end
✆

Listing 24: Yubikey protocol.

theory Yubikey

begin

3

section{* The Yubikey-Protocol *}

builtins: symmetric-encryption, multiset

8 let Yubikey=

188 listings for part i

ν k; ν pid; ν secretid;

insert < ’Server ’,pid>, <secretid,k, ’one ’>;
insert < ’Yubikey ’,pid>, ’one ’;
event ExtendedInit(pid,secretid,k);

13 out(pid);

!((//Plug

lock pid;

lookup < ’Yubikey ’,pid> as sc in

in(sc); //just a trick to enforce adv learning sc

18 insert < ’Yubikey ’,pid>, sc+ ’one ’;
event Yubi(pid,sc + ’one ’);

unlock pid

) | (//ButtonPress

lock pid;

23 lookup < ’Yubikey ’,pid> as tc in

in(tc); //just a trick to enforce adv learning tc

insert < ’Yubikey ’,pid>, tc + ’one ’;
ν nonce;

ν npr;

28 event YubiPress(pid,secretid,k,tc);

out(<pid,nonce,senc(<secretid,tc,npr>,k)>);

unlock pid

)

)

33

let Server=

!(

in(<pid,nonce,senc(<secretid,tc,npr>,k)>);

lock pid;

38 lookup < ’Server ’,pid> as tuple in

if fst(tuple)=secretid then

if fst(snd(tuple))=k then

in(otc);

if snd(snd(tuple))=otc then

43 event Smaller(otc,tc);

event InitStuff(pid,

secretid,k,tuple,otc,

tc);

event Login(pid,k,tc);

insert < ’Server ’,pid>, <secretid,k,tc>;

unlock pid

48)

(Server | !Yubikey)

// we model the larger relation using the smaller action

53 // and excluding all traces where it is ¬ correct

axiom smaller:

" ∀ # i a b . Smaller(a ,b)@i =⇒ ∃ z . a+z=b"

// For sanity: Ensure that a successful login is reachable.

58 lemma Login_reachable:

A.3 listings for chapter 5 189

exists-trace

" ∃ # i pid k x . Login(pid ,k, x)@i"

// typing lemmas:

63 // There exists a Initialisation for every Login on the Server

lemma init_server[typing]:
" ∀ pid sid k tuple otc tc # i . InitStuff (pid , sid ,

k, tuple , otc , tc)@i
=⇒

tuple=<sid ,k, otc>
68 &

∃ # j . ExtendedInit(pid , sid , k)@j ∧ # j <# i
"

lemma init_yubikey[typing]:
73 " ∀ pid sid k tc # i . YubiPress(pid , sid ,k, tc)@i

=⇒ ∃ # j .
ExtendedInit(pid , sid , k)@j ∧ # j <# i "

// If a succesful Login happens before a second sucesfull Login,

// the counter value of the first is smaller than the counter

78 // value of the second

lemma slightly_weaker_invariant[reuse , use_induction]:
" (∀ pid k tc1 tc2 # t1 # t2 .

Login(pid ,k, tc1)@# t1 ∧ Login(pid ,k, tc2)@# t2

=⇒ (# t1<# t2 ∧ (∃ z . tc1+z=tc2))
83 ∨ # t2<# t1 ∨ # t1=# t2)

"

/* It is impossible to have to distinct logins with the same

* counter value */

88 lemma no_replay[reuse]:
" ¬ (∃ # i # j pid k x .
Login(pid ,k, x)@i ∧ Login(pid ,k, x)@j
∧ not(# i=# j)) "

93 /* Each succesful login with counter value x was preceeded by a

PressButton */

/* event with the same counter value */

/* proof needs to be guided */

lemma one_count_foreach_login[reuse , use_induction]:
" ∀ pid k x # t2 . Login(pid ,k, x)@t2 =⇒

98 (∃ # t1 sid . YubiPress(pid , sid ,k, x)@# t1 ∧ # t1<# t2

) "

lemma injective_correspondance[reuse , use_induction]:
103 " ∀ pid k x # t2 . Login(pid ,k, x)@t2 =⇒

(∃ # t1 k . YubiPress(pid ,k,k, x)@# t1 ∧ # t1<# t2)
∧ ∀ # t3 . Login(pid ,k, x)@t3 =⇒ # t3=# t2

"

190 listings for part i

108 lemma Login_invalidates_smaller_counters:

" ∀ pid k tc1 tc2 # t1 # t2 # t3 .
Login(pid ,k, tc1)@# t1 ∧ Login(pid ,k, tc2)@# t2

∧ Smaller(tc1 , tc2)@t3
=⇒ # t1<# t2 "

113 end
✆

Listing 25: Garay, Jakobsson and MacKenzie’s optimistic contract signing
protocol.

theory Contract

2 begin

section{* GM Protocol for Contract signing *}

builtins: signing

7

functions: pcs/3, checkpcs/5, convertpcs/2, check_getmsg/2,

fakepcs/4

equations:

check_getmsg(sign(xm, xsk), pk(xsk)) = xm,

12 checkpcs(xc, pk(xsk), ypk, zpk, pcs(sign(xc, xsk), ypk, zpk)) =

true(),

convertpcs(zsk, pcs(sign(xc, xsk), ypk, pk(zsk))) = sign(xc, xsk)

,

/* fakepcs () */

checkpcs(xc, xpk, pk(ysk), zpk, fakepcs(xpk, ysk, zpk, xc)) =

true()

17 let Abort1 =

in(< ’abort ’,<ct,pk1,pk2,ysig>>);
if check_getmsg(ysig, pk1) = <ct,pk1,pk2> then

(lock ct;

lookup ct as state in unlock ct/* TODO: maybe output state

*/

22 else

(

insert ct, ’aborted ’;
event Abort1(ct);

unlock ct;

27 out(sign(<<ct,pk1,pk2>,ysig>,skT))

)

)

let Resolve2 =

32 in(< ’ resolve2 ’,<ct,pk1,pk2,ypcs1,ysig2>>);
if check_getmsg(ysig2, pk2)=ct then

(

/* check validity of the pcs ..something ¬ done in StatVerif/

Tamarin modelling */

if check_getmsg(convertpcs(skT,ypcs1),pk1) = ct then

A.3 listings for chapter 5 191

37 (

if checkpcs(ct, pk1, pk2, pk(skT), ypcs1)=true then

(

lock ct;

lookup ct as status in unlock ct

42 else

(

insert ct, ’ resolved2 ’;
event Resolve2(ct);

unlock ct;

47 out(sign(<convertpcs(skT,ypcs1), ysig2>,skT))

)

)

)

)

52

let Resolve1 =

in(< ’ resolve1 ’,<ct,pk1,pk2,ysig1,ypcs2>>);
if check_getmsg(ysig1,pk1)=ct then

(

57 if check_getmsg(convertpcs(skT,ypcs2),pk2) = ct then

(

if checkpcs(ct, pk2, pk1, pk(skT), ypcs2)=true then

(

lock ct;

62 lookup ct as status in unlock ct

else

(

insert ct, ’ resolved1 ’;
event Resolve1(ct);

67 unlock ct;

out(sign(<ysig1,convertpcs(skT, ypcs2)>,skT))

)

)

)

72)

let WitnessAbort =

in (sign(pcs(sign(ct,sk1), pk(ysk), pk(skT)),skT));

event AbortCert(ct)

77 let WitnessResolved =

in (sign(<sign(ct,sk1), sign(ct,sk2)>,skT));

event ResolveCert(ct)

let HonestClient =

82 ν skA;

out(pk(skA));

in (<ct,xpkB>);

(//First decision: Sign the contract!

out(sign(ct,skA));

87 (

in(sigB);

192 listings for part i

if verify(sigB,ct,xpkB)=true() then

//if we get a signature back..good!

event AhasSignature(ct)

92 else //if not

0 //Accept silently

)

)

| //Or we decide ¬ to sign it

97 0

!(

102 ν skT;

event TrustedParty(skT);

out(pk(skT));

(

! Abort1 | ! Resolve2 | ! Resolve1 |

107 !WitnessAbort | !WitnessResolved |

!HonestClient

)

)

112 /* Lemmas taken from tamarin files */

lemma aborted_and_resolved_exclusive:

" ¬ (∃ ct # i # j . AbortCert(ct) @ i ∧ ResolveCert(ct) @ j) "

117 /* Sanity checks */

lemma resolved1_contract_reachable:

exists-trace

" (∃ ct # i . ResolveCert(ct) @ i)
// Ensure that this is possible with at most one Resolve1

step .
122 ∧ (∀ ct # i . Abort1(ct) @ i =⇒ F)

∧ (∀ ct1 ct2 # i1 # i2 .
Resolve1(ct1) @ i1 ∧ Resolve1(ct2) @ i2 =⇒ # i1 = # i2)

∧ (∀ ct # i . Resolve2(ct) @ i =⇒ F)
"

127

lemma resolved2_contract_reachable:

exists-trace

" (∃ ct # i . ResolveCert(ct) @ i)
// Ensure that this is possible with at most one Resolve1

step .
132 ∧ (∀ ct # i . Abort1(ct) @ i =⇒ F)

∧ (∀ ct # i . Resolve1(ct) @ i =⇒ F)
∧ (∀ ct1 ct2 # i1 # i2 .

Resolve2(ct1) @ i1 ∧ Resolve2(ct2) @ i2 =⇒ # i1 = # i2)
"

137 end
✆

A.3 listings for chapter 5 193

Listing 26: Key-server example from [74].

theory SetAbst

begin

3

section{* The PKI-example *}

builtins: asymmetric-encryption, signing

8 let Client=

(

// Revoke key

ν ~nsk;

[ClientKey(user , ~sk)] −[HonestKey(~nsk)]→ [ClientKey(
user,~nsk)];

13 out(< ’revoke ’,user,pk(~nsk)>);
out(sign(< ’revoke ’,user,pk(~nsk)>,~sk));
in(sign(< ’confirm ’,sign(< ’revoke ’,user,pk(~nsk)>,~sk)>,pki));
event Revoked(~sk);

out(~sk)

18)

let Server=

((in(< ’ create ’,user>); //Create Honest Keys

ν ~sk;

23 [] −[HonestKey(~sk)]→ [ServerDB(pki , user ,pk(~sk)) ,
ClientKey(user,~sk)];

out(pk(~sk))

)

| //Allow creating Dishonest Keys

28 (in(<user,sk>);

[] −→ [ServerDB(pki , user ,pk(sk))]
)

| //Revoke Key

(

33 in(< ’revoke ’,user,pk(nsk)>);
in(sign(< ’revoke ’,user,pk(nsk)>,sk));
[ServerDB(pki , user ,pk(sk))]−→[ServerDB(pki , user ,pk(nsk))];
out(sign(< ’confirm ’,sign(< ’revoke ’,user,pk(nsk)>,sk)>,pki))

))

38

!(ν pki; ! Server | (ν user; ! Client))

rule SetupDishonestKey:

[In(sk)] −→ [ServerDB($A, pk(sk))]
43

lemma Knows_Honest_Key_imp_Revoked:

" ∀ sk # i #d. HonestKey(sk) @ i ∧ K(sk) @ d =⇒
(∃ # r . Revoked(sk) @ r)

"
48

end
✆

194 listings for part i

Listing 27: Key-server example from [74], modelled under the use of insert
and lookup.

1 theory SetAbst

begin

section{* The PKI-example *}

6 builtins: asymmetric-encryption, signing

let Client=

/* Revoke key */

ν ~nsk;

11 lock user;

lookup < ’USER’,user> as ~sk in

event HonestKey(~nsk);

delete < ’USER’,user>;
insert < ’USER’,user>,~nsk;

16 unlock user;

out(< ’revoke ’,user,pk(~nsk)>);
out(sign(< ’revoke ’,user,pk(~nsk)>,~sk));
in(sign(< ’confirm ’,sign(< ’revoke ’,user,pk(~nsk)>,~sk)>,

pki));

event Revoked(~sk);

21 out(~sk)

let Server=

(

(/* Create Honest Keys */

26 in(< ’ create ’,user>);
ν ~sk;

lock user;

event HonestKey(~sk);

insert < ’SERVER’,pki,user>, pk(~sk);

31 insert < ’USER’,user>, ~sk;

event HonestKey(~sk);

unlock user;

out(pk(~sk))

)

36 |

(/* Revoke key */

in(< ’revoke ’,user,pk(nsk)>);
in(sign(< ’revoke ’,user,pk(nsk)>,sk));
lock user;

41 lookup < ’SERVER’,pki,user> as pksk in

if pksk = pk(sk) then

delete < ’SERVER’,pki,user>;
insert < ’SERVER’,pki,user>, pk(nsk);

unlock user;

46 out(sign(< ’confirm ’,sign(< ’revoke ’,user,
pk(nsk)>,sk)>,pki))

)

)

A.3 listings for chapter 5 195

!(ν pki; ! Server | (ν user; ! Client))

51

rule SetupDishonestKey:

[In(sk)] −→ [ServerDB($A, pk(sk))]

56 lemma Knows_Honest_Key_imp_Revoked:

" ∀ sk # i #d. HonestKey(sk) @ i ∧ K(sk) @ d =⇒
(∃ # r . Revoked(sk) @ r)

"

61

/* Sanity check. Commented out for runtime comparison to [1]. */

lemma Honest_Revoked_Known_Reachable:

exists-trace

" (∃ sk # i # j # r . HonestKey(sk) @ i
66 ∧ K(sk) @ j

∧ Revoked(sk) @ r
) "

end
✆

Listing 28: Left-right example from [5], described in Example 4 on p.22.

theory StatVerif_Security_Device begin

builtins: asymmetric-encryption

5 let Device=(

out(pk(sk))

|

(lock s ;

in(req);

10 lookup s as status in

if status= ’ in i t ’ then

insert s,req;

unlock s

)

15 |

(

lock s;

in(aenc{<x,y>}pk(sk));

lookup s as status in

20 if status= ’ l e f t ’ then

event Access(x); out(x); unlock s

else if status= ’ right ’ then

event Access(y); out(y); unlock s

)

25)

let User=

196 listings for part i

ν lm; ν rm; event Exclusive(lm,rm);

out(aenc{<lm,rm>}pk(sk))

30

!(ν sk; ν s; insert s, ’ in i t ’; (Device | ! User))

// Typing lemma, taken from Tamarin’s example directory:

lemma types [typing]:
35 " ∀m # i . Access(m) @ i =⇒

(∃ # j . KU(m) @ j ∧ j < i)
∨ (∃ x # j . Exclusive(x ,m) @ j)
∨ (∃ y # j . Exclusive(m,y) @ j)

"
40

// Check that there is some trace where the intruder knows the

// left message of an exclusive message-tuple. In contrast to the

// typing lemma, we use the standard ’K’-fact, which is logged by

// the built-in ’ISend’ rule.

45 lemma reachability_left:

exists-trace

" ∃ x y # i # j . Exclusive(x ,y) @i ∧ K(x) @ j "

lemma reachability_right:

50 exists-trace

" ∃ x y # i #k. Exclusive(x ,y) @i ∧ K(y) @ k"

// Check that exclusivity is maintained

lemma secrecy:

55 "not(∃ x y # i #k1 #k2 .
Exclusive(x ,y) @i ∧ K(x) @ k1 ∧ K(y) @ k2

)
"

60 end
✆

B
P R O O F S F O R PA RT i

b.1 correctness of tamarin’s solution procedure for

translated rules

The multiset rewrite system produced by our translation for a well-
formed process P could actually contain rewrite rules that are not
valid with respect to Definition 2, because they violate the third con-
dition, which is: For each l ′ −[a ′]→ r ′ ∈ R ∈E ginsts(l −[a]→ r) we
have that ∩r ′′=Er ′names(r ′′)∩ FN ⊆ ∩l ′′=El ′names(l ′′)∩ FN

This does not hold for rules in JPK=p where p is the position of the
lookup-operator. The right hand-side of this rule can be instantiated
such that, assuming the variable bound by the lookup is named v, this
variable v is substituted by a names that does not appear on the left-
hand side. In the following, we will show that the results from [89]
still hold. In practice, this means that the tamarin-prover can be used
for verification, despite the fact that it outputs well-formedness errors
for each rule that is a translation of a lock.

We will introduce some notation first. We re-define JPK to contain
the Init rule and JP, [], []K, but not MD (which is different to Defi-
nition 14). We furthermore define a translation with dummy-facts,

denoted JPKD, that contains Init and JP, [], []K
D

, which is defined as
follows:

Definition 32: We define JPKD := Init ∪ JP, [], []K
D

, where JP, [], []K
D

is
defined just as JP, [], []K, with the exception of two cases, P = lookup
M as v in P else Q and P = insert s, t;P. In those cases, it is defined
as follows:

Jlookup M as v in P else Q,p, x̃KD =

{[statep(x̃), !Dum(v)] −[IsIn(M,v)]→ [statep·1(M̃, v)],

[statep(x̃)] −[IsNotSet(M)]→ [statep·2(x̃)]}

∪ JP, p · 1, (x̃, v)KD ∪ JQ,p · 2, x̃KD

Jinsert s, t;P, p, x̃KD = [statep(x̃)] −[Insert(s, t)]→

[statep·1(x̃), !Dum(t)]∪ JP, p · 1, x̃KD

The only difference between JPK and JPKD is therefore that JPKD

produces a permanent fact !Dum for every value v that appears in an
action insert(k, v), which is a premise to every rule instance with an
action IsIn(k ′, v). We see that JPKD contains now only valid multiset
rewrite rules.

In the following, we would like to show that the tamarin-prover’s
solution algorithm is correct for JPK. To this end, we make use of the

197

198 proofs for part i

proof of correctness of tamarin as presented in Benedikt Schmidt’s
Ph.D. thesis [88]. We will refer to Lemmas, Theorems and Corollaries
in this work by their numbers. We will use the notation of this work,
to make it easier to the reader to compare our statements against the
statements there. In particular, trace(execs(R)) is tracesmsr(R) in our
notation. We have to show that:

Lemma 9: For all well-formed process P and guarded trace properties
φ,

trace(execs(JPK∪MD) �DHe
¬αin ∨φ

if and only if

trace(ndgraphs(JPK)) �ACC ¬αin ∨φ.

Proof. The proof proceeds similar to the proof to Theorem 3.27. We
refer to results in [88], whenever their proofs apply despite the fact
that the rules in JPK do not satisfy the third condition of multiset
rewrite rules.

trace(execs(JPK∪MD) �DHe
¬αin ∨ψ

⇔ trace(execs(JPK∪MD) �DHe
¬αin ∨φ

(Lemma 3.7 (unaltered))

⇔ trace(execs(JPK∪MD)) ↓RDHe
�DHe

¬αin ∨φ

(Definition of �DHe
)

⇔ trace(dgraphsDHe
(JPK∪MD)) ↓RDHe

�DHe
¬αin ∨φ

(Lemma 3.10 (unaltered))

⇔ trace({dg | dg ∈ dgraphsACC(⌈JPK∪MD⌉RDHe

insts)

∧dg ↓RDHe
-normal}) �DHe

¬αin ∨φ

(Lemma 3.11 (unaltered))

⇔ trace(ndgraphs(JPK)) �DHe
¬αin ∨φ (Lemma A.12 (*))

⇔ trace(ndgraphs(JPK)) �ACC ¬αin ∨φ

(Lemma 3.7 and A.20(both unaltered))

It is only in Lemma A.12 where the third condition is used: The
proof to this lemma applies Lemma A.14, which says that all fac-
tors (or their inverses) are known to the adversary. We will quote
Lemma A.14 here:

Lemma 10 (Lemma A.14 in [88]): For all ndg ∈ ndgraphs(P), conclu-
sions (i, u) in ndg with conclusion fact f and terms t ∈ afactors(f),
there is a conclusion (j, v) in ndg with j < i and conclusion fact Kd(m)

such that m ∈ACC { t, (t−1) ↓RBPe
}.

B.2 proofs for Section 5 .4 199

If there is ndg ∈ ndgraphs(JPK), such that trace(ndg) �ACC αin, then

trace(ndgraphs(JPK)) �ACC ¬αin ∨φ

⇔∀ndg ∈ ndgraphs(JPK) s. t. trace(ndg) �ACC αin

trace(ndg) �ACC� φ

Since for the empty trace, [] �ACC αin, we only have to show that
Lemma A.14 holds for ndg ∈ ndgraphs(JPK), such that trace(ndg) �ACC

αin.
For every ndg ∈ ndgraphs(JPK), such that trace(ndg) �ACC αin, there

is a trace equivalent ndg ′ ∈ ndgraphs(JPKD), since the only difference
between JPK and JPKD lies in the dummy conclusion and premises,
and αin requires that any v in an action IsIn(u,v) appeared previously
in an action Insert(u,v) (equivalence modulo ACC). Therefore, ndg ′

has the same Kd-conclusions ndg has, and every conclusion in ndg is
a conclusion in ndg ′.

We have that Lemma A.14 holds for JPKD, since all rules gen-
erated in this translation are valid multiset rewrite rules. There-
fore, Lemma A.14 holds for all ndg ∈ ndgraphs(JPK), such that
trace(ndg) �ACC αin, too, concluding the proof by showing the marked
(*) step.

b.2 proofs for Section 5 .4

The following two lemmas are used in the proof to Lemma 2. In order
to prove the first one, Lemma 1, we need a few additional lemmas.

We say that a set of traces Tr is prefix closed if for all tr ∈ Tr and
for all tr ′ which is a prefix of tr we have that tr ′ ∈ Tr.

Lemma 11 (filter is prefix-closed): Let Tr be a set of traces. If Tr is prefix
closed then filter(Tr) is prefix closed as well.

Proof. It is sufficient to show that for any trace tr = tr ′ ·awe have that
if ∀θ. (tr, θ) � α then ∀θ. (tr ′, θ) � α. This can be shown by inspecting
each of the conjuncts of α.

We next show that the translation with dummy facts defined in
Definition 32 produces the same traces as JPK, excluding traces not
consistent with the axioms. For this we define the function d which
removes any dummy fact from an execution, i.e.,

d(∅
F1−→ S1

F2−→ . . .
Fn−→ Sn) = ∅

F1−→ S ′1
F2−→ . . .

Fn−→ S ′n

where S ′i = Si \
∪t∈T !Dum(t).

Lemma 12: Given a ground process P, we have that

filter(execmsr(JPK)) = filter(d(execmsr(JPKD ∪MD)))

200 proofs for part i

Proof. The only rules in JPKD that differ from JPK are translations of
insert and lookup. The first one only adds a permanent fact, which
by the definition of d, is removed when applying d. The second one
requires a fact !Dum(t), whenever the rule is instantiated such the
actions equals IsIn(s, t) for some s. Since the translation is otherwise
the same, we have that

filter(d(execmsr(JPKD ∪MD))) ⊆ filter(execmsr(JPK))

For any trace in filter(d(execmsr(JpK∪MD))) and any action IsIn(s, t) in
this trace, there is an earlier action Insert(s ′, t ′) such that s = s ′ and
t = t ′, as otherwise αin would not hold. Therefore the same trace
is part of filter(d(execmsr(JpKD ∪MD))), as this means that whenever
!Dum(t) is in the premise, !Dum(t ′) for t = t ′ has previously appeared
in the conclusion. Since it is a permanent fact, it has not disappeared
and therefore

filter(d(execmsr(JPKD ∪MD))) ⊆ filter(execmsr(JPK))

We slightly abuse notation by defining filter on executions to filter
out all traces contradicting the axioms, see Definition 16.

Lemma 13: Let P be a ground process and ∅
F1−→ S1

F2−→ . . .
Fn−→ Sn ∈

filter(execmsr(JPK)). For all 1 6 i 6 n, if Fr(a) ∈ Si and F(t1, . . . , tk) ∈
Si for any F ∈ Σfact \ {Fr }, then a 6∈ ∩t=Et ′names(t ′), for any t ∈

{t1, . . . , tk}.

Proof. The translation with the dummy fact introduced in Section B.1
(see Definition 32) will make this proof easier as for JPKD ∪MD, we
have that the third condition of Definition 2 holds, namely,

∀l ′ −[a ′]→ r ′ ∈E ginsts(l −[a]→ r) :

∩r ′′=Er ′ names(r ′′)∩ FN ⊆ ∩l ′′=El ′names(l ′′)∩ FN (3)

We will show that the statement holds for all ∅
F1−→ S1

F2−→ . . .
Fn−→

Sn ∈ filter(execmsr(JPKD ∪MD)), which implies the claim, since

filter(execmsr(JPK)) = filter(d(execmsr(JPKD ∪MD)))

by Lemma 12. We proceed by induction on n, the length of the exe-
cution.

• Base case, n = 0. We have that S0 = ∅ and therefore the state-
ment holds trivially.

• Inductive case, n > 1. We distinguish two cases.

B.2 proofs for Section 5 .4 201

1. A rule that is not Fresh was applied and there is a fact
F(t1, . . . , tk) ∈ Sn, such that F(t1, . . . , tk) /∈ Sn−1, and
Fr(a) ∈ Sn such that a ∈ ∩ti=Et ′names(t ′) for some ti.
(If there are no such F(t1, . . . , tk) and Fr(a) we immedi-
ately conclude by induction hypothesis.) By Equation 3,
a ∈ t ′j for some F ′(t ′1, . . . , t

′
l) ∈ Sn−1. Since Fresh is the

only rule that adds a Fr-fact and Fr(a) ∈ Sn, it must be
that Fr(a) ∈ Sn−1, contradicting the induction hypothesis.
Therefore this case is not possible.

2. The rule Fresh was applied, i. e., Fr(a) ∈ Sn and Fr(a) /∈

Sn−1. If there is no a ∈ ∩ti=Et ′names(t ′) for some ti,
and F(t1, . . . , tk) ∈ Sn, then we conclude by induction hy-
pothesis. Otherwise, if there is such a F(t1, . . . , tk) ∈ Sn,
then, by Equation 3, a ∈ t ′j for some F ′(t ′1, . . . , t

′
l) ∈ Si

for i < n. We construct a contradiction to the induc-
tion hypothesis by taking the prefix of the execution up
to i and appending the instantiation of the Fresh rule
to its end. Since d(execmsr(JPKD ∪MD)) is prefix closed

by Lemma 11 we have that ∅
F1−→ S ′1

F2−→ . . .
Fi−→ Si ∈

filter(d(execmsr(JPKD ∪MD))). Moreover as rule Fresh was
applied adding Fr(a) ∈ Sn it is also possible to apply the
same instance of Fresh to the prefix (by Definition 4) and
therefore

∅
F1−→ S ′1

F2−→ . . .
Fi−→ Si −→ Si ∪ {Fr(a) }

∈ filter(d(execmsr(JPKD ∪MD)))

contradicting the induction hypothesis.

Lemma 14: For any frame νñ.σ, t ∈ M and a ∈ FN, if a 6∈ st(t),
a 6∈ st(σ) and νñ.σ ⊢ t, then νñ, a.σ ⊢ t.

Proof. In [1, Proposition 1] it is shown that νñ.σ ⊢ t if and only if
∃M.fn(M) ∩ ñ = ∅ and Mσ =E t. Define M ′ as M renaming a to
some fresh name, i.e., not appearing in ñ, σ, t. As a 6∈ st(σ, t) and
the fact that equational theories are closed under bijective renaming
of names we have that M ′σ =E t and fn(M ′) ∩ (ñ, a) = ∅. Hence
νñ, a.σ ⊢ t.

Lemma 2: Let P be a ground process and ∅
F1−→ S1

F2−→ . . .
Fn−→ Sn ∈

filter(execmsr(JPK)). Let

{t1, . . . , tm} = {t | Out(t) ∈16j6n Sj},

σ = {t1/x1
, . . . ,tm /xm}, and

ñ = {a : fresh | ProtoNonce(a) ∈E
⋃

16j6n

Ej}.

202 proofs for part i

We have that

1. if !K(t) ∈ Sn then νñ.σ ⊢ t;

2. if νñ.σ ⊢ t then there exists S such that

• ∅
F1−→ S1

F2−→ . . .
Fn−→ Sn−→

∗S ∈ filter(execmsr
E (JPK)),

• !K(t) ∈E S and

• Sn →
∗
R S for R = {MDOut,MDPub,MDFresh,MDAppl,

Fresh }.

Proof. We prove both items separately.

1. The proof proceeds by induction on n, the number of steps of
the execution.

base case : n=0 . This case trivially holds as Sn = ∅.

inductive case : n>0 . By induction we suppose that if
!K(t) ∈ Sn−1 then νñ ′.σ ′ ⊢ t where ñ ′, σ ′ are defined in a sim-
ilar way as ñ, σ but for the execution of size n− 1. We proceed
by case analysis on the rule used to extend the execution.

• MDOut. Suppose that

Out(u) −[]→ K(u) ∈ ginsts(MDOut)

is the rule used to extend the execution. Hence Out(u) ∈

Sn−1 and by definition of σ there exists x such that xσ = u.
We can apply deduction rule DFrame and conclude that
νñ.σ ⊢ u. If K(t) ∈ Sn and t 6= u we conclude by induction
hypothesis as ñ = ñ ′, σ = σ ′.

• MDPub. Suppose that

−[]→ K(a : pub) ∈ ginsts(MDPub)

is the rule used to extend the execution. As names of sort
pub are never added to ñ we can apply deduction rule
DName and conclude that νñ.σ ⊢ a. If K(t) ∈ Sn and t 6= a
we conclude by induction hypothesis as ñ = ñ ′, σ = σ ′.

• MDFresh. Suppose that

Fr(a : fresh) −[]→ K(a : fresh) ∈ ginsts(MDFresh)

is the rule used to extend the execution. By definition of
an execution we have that Fr(a : fresh) 6= (Sj+1 \ Sj) for
any j 6= n− 1. Hence n 6∈ ñ. We can apply deduction rule
DName and conclude that νñ.σ ⊢ a. If K(t) ∈ Sn and t 6= a
we conclude by induction hypothesis as ñ = ñ ′, σ = σ ′.

B.2 proofs for Section 5 .4 203

• MDAppl. Suppose that

!K(t1), . . . , K(tk) −[]→ K(f(t1, . . . , tk)) ∈ ginsts(MDAppl)

is the rule used to extend the execution. We have that
K(t1), . . . , K(tk) ∈ Sn−1, and thus by induction hypothesis,
νñ ′.σ ′ ⊢ ti for 1 6 i 6 k. As ñ = ñ ′, σ = σ ′ we have
that νñ.σ ⊢ ti for 1 6 i 6 k and can apply deduction rule
DAppl and conclude that νñ.σ ⊢ f(t1, . . . , tk). If K(t) ∈ Sn
and t 6= f(t1, . . . , tk) we conclude by induction hypothesis
as ñ = ñ ′, σ = σ ′.

• If Sn−1
ProtoNonce(a)
−−−−−−−−→Sn, then Fr(a) ∈ Sn−1. By Lemma 13,

we obtain that if !K(t) ∈ Sn−1 then a 6∈ st(t) and a 6∈

st(σ ′). For each !K(u) ∈ Sn there is !K(u) ∈ Sn−1, and by
induction hypothesis, νñ ′.σ ′ ⊢ u. By Lemma 14 and the
fact that σ = σ ′ we conclude that νñ.σ ⊢ u.

• All other rules do neither add !K()-facts nor do they
change ñ and may only extend σ. Therefore we conclude
by the induction hypothesis.

2. Suppose that νñ.σ ⊢ t. We proceed by induction on the proof
tree witnessing νñ.σ ⊢ t.

base case . The proof tree consists of a single node. In this
case one of the deduction rules DName or DFrame has been
applied.

• DName. We have that t 6∈ ñ. If t ∈ PN we use rule MDPub

and we have that Sn → S = Sn ∪ {!K(t)}. In case t ∈ FN we
need to consider 3 different cases: (i) !K(t) ∈ Sn and we
immediately conclude (by letting S = Sn), (ii) Fr(t) ∈ Sn
and applying rule MDFresh we have that Sn → S = Sn ∪

{!K(t)}, (iii) Fr(t) 6∈ Sn. By inspection of the rules we see
that Fr(t) 6∈ Si for any 1 6 i 6 n: The only rules that could
remove Fr(t) are MDFresh which would have created the
persistent fact !K(t), or the ProtoNonce rules which would
however have added t to ñ. Hence, applying successively
rules Fresh and MDFresh yields a valid extension of the
execution Sn → Sn ∪ {Fr(t)}→ S = Sn ∪ {!K(t)}.

• DFrame. We have that xσ = t for some x ∈ D(σ), that is,
t ∈ {t1, . . . , tm}. By definition of {t1, . . . , tm}, Out(t) ∈ Si
for some i 6 n. If Out(t) ∈ Sn we have that Sn → S =

(Sn \ {Out(t)})∪ {!K(t)} applying rule MDOut. If Out(u) 6∈

Sn, the fact that the only rule in JPK that allows to remove
an Out-fact is MDOut, suggests that it was applied before,
and thus !K(u) ∈ S.

204 proofs for part i

inductive case . We proceed by case distinction on the last
deduction rule which was applied.

• DAppl. In this case t = f(t1, . . . , tk), such that f ∈ Σk

and νñr̃.σ ⊢ ti for every i ∈ {1, . . . , k}. Applying the in-
duction hypothesis we obtain that there are k transition
sequences Sn →∗

R S
i for 1 6 i 6 k which extend the execu-

tion such that ti ∈ Si. All of them only add !K facts which
are persistent facts. If any two of these extensions remove
the same Out(t)-fact or the same Fr(a)-fact it also adds the
persistent fact !K(t), respectively !K(a), and we simply re-
move the second occurrence of the transition. Therefore,
applying the same rules as for the transitions Sn →∗ Si

(and removing duplicate rules) we have that Sn →∗ S ′ and
!K(t1), . . . , !K(tk) ∈ S ′. Applying rule MDAppl we con-
clude.

• DEq. By induction hypothesis there exists S as required
with !K(t ′) ∈E S and t =E t

′ which allows us to immedi-
ately conclude that !K(t) ∈E S.

b.2.1 Proofs for Section 5.4.2

Remark 3: Note that ↔P (see Definition 19) has the following proper-
ties (by the fact that it defines a bijection between multisets).

• If P1 ↔P S1 and P2 ↔P S2 then P1 ∪
P2 ↔P S1 ∪

S2.

• If P1 ↔P S1 and Q ↔P statep(t̃) for Q ∈ P1 and statep(t̃) ∈

S1 (i.e. Q and statep(t̃) are related by the bijection defined by
P1 ↔P S1) then P1 \

{Q}↔P S1 \
{statep(t̃)}.

The following lemma will be used throughout Lemma 3.

Lemma 15: If νñ.σ ⊢ t, ñ =E ñ
′, σ =E σ

′ and t =E t
′, then νñ ′.σ ′ ⊢ t ′.

Proof. Assume νñ.σ ⊢ t. Since an application of DEq can be ap-
pended to the leafs of its proof tree, we have νñ.σ ′ ⊢ t. Since DEq

can be applied to its root, we have νñ.σ ′ ⊢ t ′. Since ñ, ñ ′ consist only
of names, ñ = ñ ′ and thus νñ ′.σ ′ ⊢ t ′.

The following proposition is used in Lemma 3.

Proposition 3: Let A be a finite set, < a strict total order on A and p a
predicate on elements of A. We have that

∀i ∈ A.p(i) ⇔ ∀i ∈ A. p(i)∨ ∃j ∈ A. i < j∧¬p(j)

(⇔ ∀i ∈ A. ¬p(i)→ ∃j ∈ A. i < j∧¬p(j))

and

∃i ∈ A.p(i) ⇔ ∃i ∈ A.p(i)∧ ∀j ∈ A. i < j→ ¬p(j)

B.2 proofs for Section 5 .4 205

The following Lemma implies the first direction of the inclusion.

Lemma 3: Let P be a well-formed ground process and

(E0, S0, S
MS
0 ,P0, σ0,L0)

E1−→ (E1, S1, S
MS
1 ,P1, σ1,L1)

E2−→

. . .
En−→ (En, Sn, S

MS
n ,Pn, σn,Ln)

where (E0, S0, S
MS
0 ,P0, σ0,L0) = (∅, ∅, ∅, {P }, ∅, ∅). Then, there are

(F1, S1), . . . , (Fn ′ , Sn ′) such that

∅
F1−→JPK S1

F2−→JPK . . .
Fn ′
−→JPK Sn ′ ∈ execmsr(JPK)

and there exists a monotonic, strictly increasing function f : Nn →

Nn ′ such that f(n) = n ′ and for all i ∈Nn

1. Ei = {a | ProtoNonce(a) ∈
⋃

16j6f(i) Fj }

2. ∀t ∈M. Si(t) =

u if ∃j 6 f(i).Insert(t, u) ∈ Fj

∧∀j ′, u ′.

j < j ′ 6 f(i)⇒ Insert(t, u ′) 6∈E Fj ′

∧Delete(t) 6∈E Fj ′

⊥ otherwise

3. SMS
i = Sf(i) \

Fres

4. Pi ↔P Sf(i)

5. { xσi | x ∈ D(σi) }
= {Out(t) ∈ ∪k6f(i)Sk}

#

6. Li =E { t | ∃j 6 f(i), u. Lock(u, t) ∈E Fj ∧ ∀j < k 6 f(i).
Unlock(u, t) 6∈E Fk }

7. [F1, . . . , Fn ′] � α where α is defined as in Definition 15.

8. ∃k. f(i− 1) < k 6 f(i) and Ei = Fk and ∪f(i−1)<j 6=k6f(i) Fj ⊆

Fres

Proof. We proceed by induction over the number of transitions n.

Base Case. For n = 0, we let f(n) = 1 and S1 be the multiset obtained
by using the Rule Init:

∅
Init
−→ { state[]() }

#

Condition 1, Condition 2, Condition 3, Condition 5, Condition 6,
Condition 7 and Condition 8 hold trivially. To show that Condi-
tion 4 holds, we have to show that P0 ↔P { state[]() }

#. Note that
P0 = {P }#. We choose the bijection such that P ↔P state[](). For
τ = ∅ and ρ = ∅ we have that P|[]τ = Pτ = Pρ. By Definition 18,
JPK=[] = JP, [], []K=[]. We see from Figure 14 that for every P we have
that state[]() ∈ prems(JP, [], []K=[]). Hence, we conclude that there is a
ground instance ri ∈E ginsts(JPK=[]) with state[]() ∈ prems(ri).

206 proofs for part i

Inductive step. Assume the invariant holds for n− 1 > 0. We have to
show that the lemma holds for n transitions

(E0, S0, S
MS
0 ,P0, σ0,L0)

E1−→ (E1, S1, S
MS
1 ,P1, σ1,L1)

E2−→ . . .
En−→ (En, Sn, S

MS
n ,Pn, σn,Ln)

By induction hypothesis, we have that there exists a monotonically
increasing function from Nn−1 →Nn ′ and an execution

∅
F1−→JPK S1

F2−→JPK . . .
Fn ′
−→JPK Sn ′ ∈ execmsr(JPK)

such that Conditions 1 to 8 hold. Let fp be this function and note that
n ′ = fp(n− 1). Fix a bijection such that Pn−1 ↔P Sfp(n−1). We will
abuse notation by writing P ↔P statep(t̃), if this bijection goes from
P to statep(t̃).

We now proceed by case distinction over the type of transition from
(En−1, Sn−1, S

MS
n−1,Pn−1, σn−1,Ln−1) to the last state (En, Sn, S

MS
n ,

Pn, σn,Ln). We will (unless stated otherwise) extend the previous
execution by a number of steps, say s, from Sn ′ to some Sn ′+s, and
prove that Conditions 1 to 8 hold for n (since by induction hypothesis,
they hold for all i < n) and a function f : Nn →Nn ′+s that is defined
as follows:

f(i) :=

fp(i) if i ∈Nn−1

n ′ + s if i = n

Case: (En−1, Sn−1, S
MS
n−1,Pn−1 = P ′ ∪ {0}, σn−1,Ln−1) → (En−1,

Sn−1, S
MS
n−1,P

′, σn−1,Ln−1). By induction hypothesis Pn−1 ↔P Sn ′ .
Let p and t̃ be such that 0 ↔P statep(t̃). By Definition 19, there
is a ri ∈ ginsts(JPK=p) such that statep(t̃) is part of its premise. By
definition of JPK=p, we can choose

ri = [statep(t̃)] −[]→ [].

We can extend the previous execution by one step using ri, therefore:

∅
F1−→JPK S1

F2−→JPK . . .
Fn ′
−→JPK Sn ′−→JPKSn ′+1 ∈ execmsr(JPK)

with Sn ′+1 = {Sf(n−1) \ {statep(t̃) }. It is left to show that Conditions 1

to 8 hold for n.
Condition 1, Condition 2, Condition 3, Condition 5, Condition 6,

Condition 7, and Condition 8 hold trivially.
Condition 4 holds because P ′ = Pn−1 \# {0}, Sf(n) = Sf(n−1) \

#

{ statep(t̃) }
#, and 0↔P statep(t̃) (see Remark 3).

Case: (En−1, Sn−1, S
MS
n−1,Pn−1 = P ′ ∪ {Q|R}, σn−1,Ln−1) → (En−1,

Sn−1, S
MS
n−1,P

′ ∪ {Q,R}, σn−1,Ln−1). By induction hypothesis Pn−1

↔P Sn ′ . Let p and t̃ be such that Q|R↔P statep(t̃). By Definition 19,

B.2 proofs for Section 5 .4 207

there is a ri ∈ ginsts(JPK=p) such that statep(t̃) is part of its premise.
By definition of JPK=p, we can choose

ri = [statep(t̃)] −[]→ [statep·1(t̃), statep·2(t̃)].

We can extend the previous execution by one step using ri, therefore:

∅
F1−→JPK S1

F2−→JPK . . .
Fn ′
−→JPK Sn ′−→JPKSn ′+1 ∈ execmsr(JPK)

with Sn ′+1 = Sf(n−1) \ { statep(t̃) }
∪ { statep·1(t̃), statep·2(t̃) }

#. It is
left to show that Conditions 1 to 8 hold for n.

Condition 1, Condition 2, Condition 3, Condition 5, Condition 6,
Condition 7 and Condition 8 hold trivially. We now show that Con-
dition 4 holds.

Condition 4 holds because Pn = Pn−1 \# {Q|R} ∪# {Q,R}, {Q} ↔P

{statep·1(x̃)} and {R}↔P {statep·2(x̃)} (by definition of the translation)
(see Remark 3).

Case: (En−1, Sn−1, S
MS
n−1,Pn−1 = P ′ ∪ {!Q}, σn−1,Ln−1) → (En−1

, Sn−1, S
MS
n−1,P

′ ∪ {!Q,Q}, σn−1,Ln−1). Let p and t̃ such that !iQ↔P

statep(t̃). By Definition 19, there is a ri ∈ ginsts(JPK=p) such that
statep(t̃) is part of its premise. By definition of JPK=p, we can choose
ri = [statep(t̃)] −[]→ [statep(t̃), statep·1(t̃)]. We can extend the previ-
ous execution by 1 step using ri, therefore:

∅
F1−→JPK S1

F2−→JPK . . .
Fn ′
−→JPK Sn ′

(ri)
→JPK Sn ′+1 ∈ execmsr(JPK)

with Sn ′+1 = Sf(n) ∪
{ statep·1(t̃) }

#. Condition 4 holds because Pn =

Pn−1 ∪
{Q} and {Q} ↔P {statep·1(t̃)} (by definition of JPK=p). Con-

dition 1, Condition 2, Condition 3, Condition 5, Condition 6, Condi-
tion 7 and Condition 8 hold trivially.

Case: (En−1, Sin−1, S
MS
in−1, Pn−1 = P ′ ∪ {νa;Q }, σn−1, Ln−1) →

(En−1 ∪ {a ′}, Sin−1, S
MS
in−1,P

′ ∪ {Q{a
′
/a}}, σn−1,Ln−1) for a fresh a ′.

Let p and t̃ be such that {νa;Q} ↔P statep(t̃). There is a ri ∈

ginsts(JPK=p) such that statep(t̃) is part of its premise. By definition
of JPK=p, there is a ri ∈ ginsts(JPK=p), ri = [statep(t̃),Fr(a ′ : fresh)] −[

ProtoNonce(a ′ : fresh)]→ [statep·1(t̃, a
′ : fresh)]. Assume there is an

i < n ′ such that Fr(a ′) ∈ Si. If Fr(a ′) ∈ Sn, then we can remove
the application of the instance of Fresh that added Fr(a ′) while still
preserving Conditions 1 to 8. If Fr(a ′) is consumned at some point,
by the definition of JPK, the transition where it is consumned is anno-
tated either ProtoNonce(a ′) or Lock(a ′, t) for some t. In the last case,
we can apply a substitution to the execution that substitutes a by a
different fresh name that never appears in ∪i 6 n ′Si. The conditions
we have by induction hypothesis hold on this execution, too, since
Lock ∈ Fres, and therefore Condition 8 is not affected. The first case
implies that a ′ ∈ En−1, contradicting the assumption that a ′ is fresh

208 proofs for part i

with respect to the process execution. Therefore, without loss of gen-
erality, the previous execution does not contain an i < n ′ such that
Fr(a ′) ∈ Si, and we can extend the previous execution by two steps
using the Fresh rule and ri, therefore:

∅
F1−→JPK S1

F2−→JPK . . .

Fn ′
−→JPK Sn ′

(Fresh)
→JPK Sn ′+1

(ri)
→JPK Sn ′+2 ∈ execmsr(JPK)

with Sn ′+1 = Sn ′ ∪# {Fr(a ′ : fresh) }# and Sn ′+2 = Sf(n) = Sn ′ ∪#

{ statep·1(t̃, a
′ : fresh) }#. We define f(i) := fp(i) for i < n and f(n) :=

f(n− 1) + 2. We now show that Condition 4 holds. As by induction
hypothesis νa;Q ↔P statep·1(t̃) we also have that P|pσ = νa;Qρ for
some σ and ρ. Extending ρ with {a ′ 7→ a} it is easy to see from def-
inition of JPK=p that {Q{a

′
/a}} ↔P {statep·1(t̃, a

′)}. As Pn = Pn−1 \
#

{νa;Q} ∪# {Q{a
′
/a} }

#, we also immediately obtain that Pn ↔P Sf(n).
Since Fn = ProtoNonce(a ′) and a ′ is fresh, and therefore {a ′ } =

En \ En−1, Condition 1 holds. Condition 2, Condition 3, Condition 5,
Condition 6, Condition 7 and Condition 8 hold trivially.

Case: (En−1, Sn−1, S
MS
n−1,Pn−1, σn−1,Ln−1)

K(t)
−→ (En−1, Sn−1, S

MS
n−1

,Pn−1, σn−1,Ln−1). This step requires that νEn−1.σn−1 ⊢ t. From

Lemma 2 follows that there is an execution ∅
F1−→S1

F2−→ . . .
Fn ′
−−→Sn ′ →∗

S ∈ execmsr
E (JPK) such that !K(t) ∈E S and Sn ′ →∗

R S for R = {MDOut,

MDPub,MDFresh,MDAppl }.
From S, we can go one further step using MDIn, since !K(t) ∈ S:

∅
F1−→JPKS1

F2−→JPK . . .

Fn ′
−−→JPKSn ′−→∗

R⊂JPKS = Sn ′+s−1
K(t)
−−−→JPKSn ′+s ∈ execmsr(JPK)

where Sn ′+s = S∪ {In(t)}.
From the fact that Sf(n−1) →

∗
R Sf(n) = S, and the induction hypoth-

esis, we can conclude that Condition 8 holds. Condition 4 holds since
Pn = Pn−1 and no state-facts where neither removed nor added.
Condition 1, Condition 2, Condition 3, Condition 5, Condition 6 and
Condition 7 hold trivially.

Case: (En−1, Sn−1, S
MS
n−1, Pn−1 = P ′ ∪ { out(t, t ′);Q }, σn−1, Ln−1)

K(t)
−−−→(En−1, Sn−1, S

MS
n−1,P

′ ∪# {Q }, σn−1 ∪ {
t ′
/x},Ln−1). This step re-

quires that x is fresh and νEn−1.σ ⊢ t. Using Lemma 2, we have that

there is an execution ∅
F1−→S1

F2−→ . . .
Ff(n)
−−−→Sf(n−1) →

∗ S ∈ execmsr
E (JPK)

such that !K(t) ∈E S and Sf(n−1) →
∗
R S for R = {MDOut,MDPub,

MDFresh,MDAppl }. Let p and t̃ s.t. {out(t, t ′);Q} ↔P statep(t̃). By
Definition 19, there is a ri ∈ ginsts(JPK=p) such that statep(t̃) is part of
its premise. From the definition of JPK=p, we see that we can choose
ri = [statep(t̃), In(t)] −[InEvent(t)]→ [Out(t ′), statep·1(t̃)]. To apply

B.2 proofs for Section 5 .4 209

this rule, we need the fact In(t). Since νEn−1.σ ⊢ t, as mentioned
before, we can apply Lemma 2. It follows that there is an execution

∅
F1−→S1

F2−→ . . .
Fn ′
−−→Sn ′ →∗ S ∈ execmsr

E (JPK) such that !K(t) ∈E S and
Sn ′ →∗

R S for R = {MDOut,MDPub,MDFresh,MDAppl }. From S,
we can now go two steps further, using MDIn and ri:

∅
F1−→JPK S1 . . .

Fn ′
−→JPK Sn ′ →∗

R⊂JPK S = Sn ′+s−2

K(t)
−−−→JPKSn ′+s−1

InEvent(t)
−−−−−−→JPKSn ′+s ∈ execmsr(JPK)

where Sn ′+s−1 = S∪# { In(t) }# and

Sf(n) = S \
{ statep(t̃) }∪

{Out(t ′), statep·1(t̃) }.

Taking k = n ′ + s − 1 we immediately obtain that Condition 8

holds. Note first that, since Sn ′ →R S, set(Sn ′) \ {Fr(t),Out(t)|t ∈

M} ⊂ set(S) and set(S) \ { !K(t)|t ∈ M} ⊂ set(Sn ′). Since Pn =

Pn−1 \ {out(t, t ′);Q} ∪ {Q} and {Q} ↔P {statep·1(t̃)} (by definition of
JPK=p), we have that Pn ↔P Sf(n), i. e., Condition 4 holds. Condi-
tion 5 holds since t ′ was added to σn−1 and Out(t) added to Sf(n−1).
Condition 7 holds since K(t) appears right before InEvent(t). Condi-
tion 1, Condition 2, Condition 3 and Condition 6 hold trivially.

Case: (En−1, Sn−1, S
MS
n−1,Pn−1 = P ′ ∪ {in(t,N);Q}, σn−1,Ln−1) →

(En−1, Sn−1, S
MS
n−1,P

′ ∪# {Qθ }, σn−1,Ln−1). This step requires that
θ is grounding for N and that νEn−1.σn−1 ⊢ 〈t,Nθ〉. Using Lemma 2,

we have that there is an execution ∅
F1−→S1

F2−→ . . .
Ff(n−1)
−−−−→Sf(n−1) →

∗

S ∈ execmsr
E (JPK) such that !K(t) ∈E S and Sf(n−1) →

∗
R S for R =

{MDOut,MDPub,MDFresh,MDAppl }. The same holds for Nθ. We
can combine those executions, by removing duplicate instantiations
of Fresh, MDFresh and MDOut. (This is possible since !K is per-

sistent.) Let ∅
F1−→S1

F2−→ . . .
Ff(n−1)
−−−−→Sf(n−1) →

∗
R S ∈ execmsr

E (JPK) this
combined execution, and !K(t), !K(Nθ) ∈E S.

Let p and t̃ be such that, in(t,N);Q ↔P statep(t̃). By Definition 19

there is a ri ∈ ginsts(JPK=p) such that statep(t̃) is part of its premise.
From the definition of JPK=p and the fact that θ is grounding for Nθ,
we have statep(t̃) in their premise, namely,

ri = [statep(t̃), In(〈t,Nθ〉)]

−[InEvent(〈t,Nθ〉)]→ [statep·1(t̃∪ (vars(N)θ)].

210 proofs for part i

From Sn ′ , we can first apply the above transition Sn ′ →∗
R S, and

then, (since !K(t), !K(Nθ), statep(x̃) ∈ S), MDAppl for the pair con-
structer, MDIn and ri:

∅
F1−→JPK S1 . . .

Fn ′
−→JPK Sn ′ →∗

R⊂JPK S = Sn ′+s−3

(MdAppl)
−−−−−−→JPKSn ′+s−2

K(〈t,Nθ〉)
−−−−−−−→JPKSn ′+s−1

InEvent(〈t,Nθ〉)
−−−−−−−−−−→JPKSn ′+s ∈ execmsr(JPK), where

• since Sn ′ →R S, S is such that set(Sn ′) \ {Fr(t),Out(t)|t ∈ M} ⊆

set(S), set(S) \ { !K(t)|t ∈M} ⊆ set(Sn ′), and !K(t), !K(Nθ) ∈ S

• Sn ′+s−2 = S∪# { !K(〈t,Nθ〉) }#,

• Sn ′+s−1 = S∪# { In(〈t,Nθ〉) }#,

• Sn ′+s = S \# { statep(t̃) }∪
{ statep·1(t̃∪ (vars(N)θ)) }.

Letting k = n ′ + s− 1 we immediately have that Condition 8 holds.
We now show that Condition 4 holds. Since by induction hypoth-

esis, in(t,N);Q ↔P statep(t̃), we have that P|pτ = in(t,N);Qρ for
some τ and ρ. Therefore we also have that P|p·1τ ∪ (θρ) = Qρ(θρ)

and it is easy to see from definition of JPK=p that {Qθ}↔P {statep·1(t̃,

(vars(N)θ))}. Since Pn = Pn−1 \# {in(t,N);Q} ∪# {Q}, we have that
Pn ↔P Sf(n), i. e., Condition 4 holds. Condition 7 holds since !K(〈t,
Nθ〉) appears right before InEvent〈t,Nθ〉). Condition 1, Condition 2,
Condition 3, Condition 5 and Condition 7 hold trivially.

Case: (E, S, SMS,P ∪ {out(c,m);Q} ∪ {in(c ′, N);R}, σ,L) → (E, S, SMS

,P ∪ {Q,Rθ }, σ,L). This step requires that θ grounding for N, t =E

Nθ and c =E c ′. Let p, p ′ and t̃, Ñ such that {out(c,m);P} ↔P

statep(t̃), {in(c ′, N);Q}↔P statep ′(t̃ ′), and there are ri ∈ ginsts(JPK=p)

and ri ′ ∈ ginsts(JPK=p ′) such that statep(t̃) and statep ′(t̃ ′) are part of
their respective premise. From the definition of JPK=p and the fact
that θ is grounding for N, we have:

ri1 = [statep(t̃)]→ [Msg(t,Nθ), statesemi
p·1 (t̃)]

ri2 = [statep ′(t̃ ′),Msg(t,Nθ)]→ [statep ′·1(t̃
′ ∪ (vars(N)θ)),

Ack(t,Nθ)]

ri3 = [statesemi
p (t̃),Ack(t,Nθ)]→ [statep·1(t̃)].

Hence, we can extend the previous execution by 3 steps:

∅
F1−→JPK S1 . . .

Fn ′
−→JPK Sn ′

(ri1)
→JPK Sn ′+s−2

(ri2)
→JPK Sn ′+s−1

(ri2)
→JPK Sn ′+s ∈ execmsr(JPK)

where:

• Sn ′+s−2 = Sn ′ \# { statep(t̃) }∪
{Msg(t,Nθ), statesemi

p·1 (t̃) }
#,

B.2 proofs for Section 5 .4 211

• Sn ′+s−1 = Sn ′ \# { statep(t̃), statep ′(t̃ ′) } ∪# { statesemi
p·1 (t̃),Ack(t,

Nθ), statep ′·1(t̃
′ ∪ (vars(N)θ)) }#,

• Sn ′+s = Sn ′ \# { statep(t̃), statep ′(t̃ ′) } ∪# { statep·1(t̃), statep ′·1(t̃
′

∪ (vars(N)θ)) }.

We have that Pn = Pn−1 \# { out(c,m);Q, in(c ′, t ′);R } ∪# {Q,Rθ }#.
Exactly as in the two previous cases we have that Q ↔ statep·1(t̃),
as well as Rθ ↔ statep ′·1(t̃

′). Hence we have that, Condition 4 holds.
Condition 1, Condition 2, Condition 3, Condition 5, Condition 6, Con-
dition 8 and Condition 7 hold trivially.

Case: (En−1, Sn−1, S
MS
n−1,Pn−1 = P ′ ∪ { if t = t ′ then Q else Q ′ },

σn−1,Ln−1) → (En−1, Sn−1, S
MS
n−1,P

′ ∪ {Q }, σn−1,Ln−1). This step
requires that t =E t

′. By induction hypothesis Pn−1 ↔P Sn ′ . Let
p and t̃ be such that if t = t ′ then Q else Q ′ ↔P statep(t̃). By Defini-
tion 19, there is a ri ∈ ginsts(JPK=p) such that statep(t̃) is part of its
premise. By definition of JPK=p, we can choose

ri = [statep(t̃)] −[Eq(t, t ′)]→ [statep·1(t̃)].

We can extend the previous execution by one step using ri, therefore:

∅
F1−→JPK S1

F2−→JPK . . .
Fn ′
−→JPK Sn ′

Eq(t,t ′)
−−−−−→JPKSn ′+1 ∈ execmsr(JPK)

with Sn ′+1 = {Sn ′ \# { statep(t̃) }
∪# { statep·1(t̃) }

}. It is left to show
that Conditions 1 to 8 hold for n. The last step is labelled Ff(n) =

{Eq(t, t ′) }#. As t =E t
′, Condition 7 holds, in particular, αeq is not

violated. Since Eq is reserved, Condition 8 holds as well.
As before, since Pn = Pn−1 \

{ if t = t ′ then Q else Q ′ }∪# {Q} and
{Q} ↔ {statep·1(t̃, a)} (by definition of the translation), we have that
Pn ↔P Sf(n), and therefore Condition 4 holds. Condition 1, Condi-
tion 2, Condition 3, Condition 5 and Condition 6 hold trivially.

Case: (En−1, Sn−1, S
MS
n−1,Pn−1 = P ′ ∪ { if t = t ′ then Q ′ else Q },

σn−1,Ln−1) −→ (En−1, Sn−1, S
MS
n−1, P

′ ∪ {Q ′ }, σn−1, Ln−1). This
step requires that t 6=E t

′. This case is similar to the previous case,
except ri is chosen to be

[statep(t̃)] −[NotEq(t, t ′)]→ [statep·2(t̃)].

The condition in αnoteq holds since t 6=E t
′.

Case: (En−1, Sn−1, S
MS
n−1,Pn−1 = P ′ ∪ { event(F);Q }, σn−1,Ln−1)

F
−→

(En−1, Sn−1, S
MS
n−1,

P ′ ∪ {Q }, σn−1,Ln−1) . By induction hypothesis Pn−1 ↔P Sn ′ . Let
p and t̃ be such that event(F);Q ↔P statep(t̃). By Definition 19, there
is a ri ∈ ginsts(JPK=p) such that statep(t̃) is part of its premise. By
definition of JPK=p, we can choose

ri = [statep(t̃)] −[F,Event()]→ [statep·1(t̃)].

212 proofs for part i

We can extend the previous execution by one step using ri, therefore:

∅
F1−→JPK S1

F2−→JPK . . .
Fn ′
−→JPK Sn ′

F,Event()
−−−−−→JPKSn ′+1 ∈ execmsr(JPK)

with Sn ′+1 = Sn ′) \
{statep(t̃)} ∪

{statep·1(t̃)}. It is left to show that
Conditions 1 to 8 hold for n. Condition 4 holds because Pn =

Pn−1 \
{ event(F);Q } ∪# {Q } and {Q} ↔ {statep·1(t̃)} (by definition of

JPK=p). Taking k = f(n) Condition 8 holds. Condition 1, Condition 2,
Condition 3, Condition 5, Condition 6 and Condition 7 hold trivially.

Case: (En−1, Sn−1, S
MS
n−1,Pn−1 = P ′ ∪ { insert t, t ′; Q }, σn−1,Ln−1)

→ (En−1, Sn = Sn−1[t 7→ t ′],

SMS
n−1,P

′ ∪ {Q }, σn−1,Ln−1). By induction hypothesis Pn−1 ↔P Sn ′ .
Let p and t̃ be such that insert t, t ′; Q↔P statep(t̃). By Definition 19,
there is a ri ∈ ginsts(JPK=p) such that statep(t̃) is part of its premise.
By definition of JPK=p, we can choose

ri = [statep(t̃)] −[Insert(t, t ′)]→ [statep·1(t̃)].

We can extend the previous execution by one step using ri, therefore:

∅
F1−→JPK S1

F2−→JPK . . .
Fn ′
−→JPK Sn ′

Insert(t,t ′)
−−−−−−−→JPKSn ′+1 ∈ execmsr(JPK)

with Sn ′+1 = Sf(n−1) \
{ statep(t̃) }

#∪# { statep·1(t̃) }
#. It is left to show

that Conditions 1 to 8 hold for n.
This step is labelled Ff(n) = Insert(t, t ′), hence Condition 8 holds.

To see that Condition 2 holds we let j = f(n) for which both conjuncts
trivially hold. Since, by induction hypothesis, Condition 7 holds, i.e.,
[F1, . . . Fn ′] � α, it holds for this step too. In particular, if [F1, . . . Fn ′] �

αin and [F1, . . . Fn ′] � αnotin, we also have that [F1, . . . Fn ′ , Ff(n)] � αin

and [F1, . . . Fn ′ , Ff(n)] � αnotin: As the Insert-action was added at the
last position of the trace, it appears after any InIn or IsNotSet-action
and by the semantics of the logic the formula holds.

Since Pn = Pn−1 \
{ insert t, t ′; Q } ∪# {Q } and {Q} ↔ {statep·1(t̃)}

(by definition of JPK=p), we have that Condition 4 holds. Condition 1,
Condition 3, Condition 5 and Condition 6 hold trivially.

Case: (En−1, Sn−1, S
MS
n−1,Pn−1 = P ′ ∪ {delete t; Q }, σn−1,Ln−1) →

(En−1, Sn = Sn−1[t 7→ ⊥],

SMS
n−1,P

′ ∪ {Q }, σn−1,Ln−1). By induction hypothesis Pn−1 ↔P Sn ′ .
Let p and t̃ be such that delete t; Q ↔P statep(t̃). By Definition 19,
there is a ri ∈ ginsts(JPK=p) such that statep(t̃) is part of its premise.
By definition of JPK=p, we can choose

ri = [statep(t̃)] −[Delete(t)]→ [statep·1(t̃)].

We can extend the previous execution by one step using ri, therefore:

∅
F1−→JPK S1

F2−→JPK . . .
Fn ′
−→JPK Sn ′

Delete(t)
−−−−−→JPKSn ′+1 ∈ execmsr(JPK)

B.2 proofs for Section 5 .4 213

with Sn ′+1 = Sf(n−1) \
{statep(t̃)} ∪

{statep·1(t̃)}. It is left to show
that Conditions 1 to 8 hold for n.

This step is labelled Ff(n) = Delete(t), hence Condition 8 holds.
Since, by induction hypothesis, Condition 7 holds, i.e., [F1, . . . Fn ′] �

α, it holds for this step too. In particular, if [F1, . . . Fn ′] � αin and
[F1, . . . Fn ′] � αnotin, we also have that [F1, . . . Fn ′ , Ff(n)] � αin and
[F1, . . . Fn ′ , Ff(n)] � αnotin: As the Insert-action was added at the last
position of the trace, it appears after any InIn or IsNotSet-actions and
by the semantics of the logic the formula holds.

We now show that Condition 2 holds. We have that Sn = Sn−1[t 7→

⊥] and therefore, for all t ′ 6=E Tt, Sn(x) = Sn−1(x). Hence for all
such t ′ we have by induction hypothesis that for some u,

∃j 6 n ′.Insert(t ′, u) ∈ Fj ∧ ∀j ′, u ′.j < j ′ 6 n ′

→ Insert(t ′, u ′) 6∈E Fj ′ ∧ Delete(t ′) 6∈E Fj ′

As Fn ′+1 6=E Delete(x, u) and Fn ′+1 6=E Insert(x, u ′) for all u ′ ∈M,
we also have that

∃j 6 n ′ + 1.Insert(t ′, u) ∈ Fj ∧ ∀j ′, u ′.j < j ′ 6 n ′ + 1

→ Insert(t ′, u ′) 6∈E Fj ′ ∧ Delete(t ′) 6∈E Fj ′ .

For t ′ =E t, the above condition can never be true, because Fn ′+1 =

Delete(t) which allows us to conclude that Condition 2 holds.
Since Pn = Pn−1 \

{delete t; Q }∪# {Q } and {P}↔ {statep·1(t̃)} (by
definition of JPK=p), we have that Condition 4 holds. Condition 1,
Condition 3, Condition 5 and Condition 6 hold trivially.

Case: (En−1, Sn−1, S
MS
n−1,Pn−1 = P ′ ∪ { lookup t as x in Q else Q ′ },

σn−1,Ln−1) → (En−1, Sn−1, S
MS
n−1,P

′ ∪ {Q{v/x} }, σn−1,Ln−1). This
step requires that Sn−1(t

′) =E v for some t ′ =E t. By induction
hypothesis Pn−1 ↔P Sn ′ . Let p and t̃ be such that lookup t as v in Q

else Q ′ ↔P statep(t̃). By Definition 19, there is a ri ∈ ginsts(JPK=p)

such that statep(t̃) is part of its premise. By definition of JPK=p, we
can choose

ri = [statep(t̃)] −[IsIn(t, v)]→ [statep·1(t̃, v)].

We can extend the previous execution by one step using ri, therefore:

∅
F1−→JPK S1

F2−→JPK . . .
Fn ′
−→JPK Sn ′

IsIn(t,v)
−−−−−→JPKSn ′+1 ∈ execmsr(JPK)

with Sn ′+1 = Sf(n−1) \
{statep(t̃)} ∪

{statep·1(t̃)}. It is left to show
that Conditions 1 to 8 hold for n.

This step is labelled Ff(n) = IsIn(t, v), hence Condition 8 holds.
From the induction hypothesis, Condition 2, we have that there is

a j such that Insert(t, t ′) ∈E Fj, j 6 n ′ and

∀j ′, u ′. j < j ′ 6 n ′ → Insert(t, u ′) 6∈E Fj ′ ∧ Delete(t) 6∈E Fj ′

214 proofs for part i

This can be strengthened, since Ff(n) = { IsIn(t, v) }:

∀j ′, u ′. j < j ′ 6 f(n)→ Insert(t, u ′) 6∈E Fj ′ ∧ Delete(t) 6∈E Fj ′ .

We can now conclude that Condition 2 holds. From Condition 2 it
also follows that Condition 7, in particular αin, holds.

We now show that Condition 4 holds. By induction hypothesis we
have that lookup t as x in Q else Q ′ ↔P statep(t̃), and hence P|pτ =

(lookup t as x in Q else Q ′)ρ for some τ and ρ. Therefore we also have
that P|p·1τ ∪ ({vρ/x}) = Qρ{vρ/x}) and it is easy to see from defini-
tion of JPK=p that {Q{v/x}} ↔P {statep·1(t̃, v)}. Since Pn = Pn−1 \#

{ lookup t as x in Q else Q ′ } ∪# {Q{v/x} } we have that Pn ↔P Sf(n),
i. e., Condition 4 holds.

Condition 1, Condition 3, Condition 5 and Condition 6 hold triv-
ially.

Case: (En−1, Sn−1, S
MS
n−1,Pn−1 = P ′ ∪ { lookup t as x in Qelse Q ′ },

σn−1,Ln−1) −→ (En−1, Sn−1, S
MS
n−1, P

′ ∪ {Q ′ }, σn−1, Ln−1). This
step requires that S(t ′) is undefined for all t ′ =E t. By induction
hypothesis Pn−1 ↔P Sn ′ . Let p and t̃ be such that lookup t as x in Q

else Q ′ ↔P statep(t̃). By Definition 19, there is a ri ∈ ginsts(JPK=p)

such that statep(t̃) is part of its premise. By definition of JPK=p, we
can choose

ri = [statep(t̃)] −[IsNotSet(t)]→ [statep·1(t̃)].

We can extend the previous execution by one step using ri, therefore:

∅
F1−→JPK S1

F2−→JPK . . .
Fn ′
−→JPK Sn ′

IsNotSet(t)
−−−−−−−→JPKSn ′+1 ∈ execmsr(JPK)

with Sn ′+1 = Sf(n−1) \
statep(t̃) ∪

statep·1(t̃). It is left to show that
Conditions 1 to 8 hold for n.

This step is labelled Ff(n) = IsNotSet(t), hence Condition 8 holds.
Condition 2 also holds trivially and will be used to show Condition 7.
Since this step requires that S(t ′) is undefined for all t ′ =E t, we have
by Condition 2 that

∀j 6 f(n), u. Insert(t, u) ∈E Fj
→ ∃j ′, u ′.j < j ′ 6 f(n)

∧ (Insert(t, u ′) ∈E Fj ′ ∨ Delete(t) ∈E Fj ′)

Now suppose that

∃i 6 f(n), y.Insert(t, y) ∈E Fi)

As there exists an insert, there is a last insert and hence we also have

∃i 6 f(n), y. Insert(t, y) ∈E Fi
∧ ∀i ′, y ′.i < i ′ 6 f(n)→ Insert(t, y ′) /∈E Fi ′

B.2 proofs for Section 5 .4 215

Applying Condition 2 (cf above) we obtain that

∃i 6 f(n), y. Insert(t, y) ∈E Fi
∧ ∀i ′, y ′. i < i ′ 6 f(n)→ Insert(t, y ′) /∈E Fi ′

∧ ∃j ′, u ′. i < j ′ 6 f(n)

∧ (Insert(t, u ′) ∈E Fj ′ ∨ Delete(t) ∈E Fj ′)

which simplifies to

∃i 6 f(n), y. Insert(t, y) ∈E Fi
∧ ∀i ′, y ′. i < i ′ 6 f(n)→ Insert(t ′, y ′) /∈ Fi ′

∧ ∃j ′. i < j ′ 6 f(n)∧ Delete(t) ∈E Fj ′

Now we weaken the statement by dropping the first conjunct and
restricting the quantification ∀i ′.i < i ′ 6 f(n) to ∀i ′.j ′ < i ′ 6 f(n),
since i < j ′.

∃i 6 f(n). ∃j ′. i < j ′ 6 f(n)∧ ∀i ′. j ′ < i ′ 6 f(n)

→ Insert(t ′, y ′) /∈ Fi ′ ∧ Delete(t) ∈E Fj ′

We further weaken the statement by weakening the scope of the exis-
tential quantification ∃j ′. i < j ′ 6 f(n) to ∃j ′. j ′ 6 f(n). Afterwards, i
is not needed anymore.

∃j ′. j ′ 6 f(n)∧ ∀i ′. j ′ < i ′ 6 f(n)

→ Insert(t ′, y ′) /∈ Fi ′ ∧ Delete(t) ∈E Fj ′

This statement was obtained under the hypothesis that ∃i 6 f(n), y.
Insert(t, y) ∈E Fi). Hence we have that

∀i 6 f(n), y. Insert(t, y) 6∈E Fi
∨∃j ′ 6 f(n). Delete(t) ∈E Fj ′ ∧ ∀i ′. j ′ < i ′ 6 f(n)

→ Insert(t ′, y ′) /∈ Fi ′

This shows that Condition 7, in particular αnotin, holds.
Since Pn = Pn−1 \

{ lookup t as x in Q else Q ′ }∪# {Q ′ } and {Q ′}↔

{statep·1(t̃)} (by definition of JPK=p), we have that Condition 4 holds.
Condition 1, Condition 3, Condition 5 and Condition 6 hold trivially.

Case: (En−1, Sn−1, S
MS
n−1,Pn−1 = P ′ ∪ { lock t; Q }, σn−1,Ln−1) −→

(En−1, Sn−1, S
MS
n−1,P

′ ∪# {Q ′ }, σn−1,Ln−1 ∪ { t }). This step requires
that for all t ′ =E t, t ′ /∈ Ln−1. Let p and t̃ such that lock t; Q ↔P

statep(t̃). By Definition 19, there is a ri ∈ ginsts(JPK=p) such that
statep(t̃) is part of its premise. By definition of JPK=p, we can choose
ri = [Fr(l), statep(t̃)] −[Lock(l, t)]→ [statep·1(t̃, l)] for a fresh name l,
that never appeared in a Fr-fact in ∪j6f(n−1)Sj. We can extend the

216 proofs for part i

previous execution by s = 2 steps using an instance of Fresh for l
and ri:

∅
F1−→JPK S1

F2−→JPK . . .
Fn ′
−→JPK Sn ′−→{ fresh }Sn ′+s−1

Lock(l,t)
−−−−−−→JPKSn ′+s ∈ execmsr(JPK)

with Sn ′+s−1 = Sf(n−1) \
{ statep(t̃) }

#∪# {Fr(l) } and Sn ′+s = Sf(n−1)

\# { statep(t̃) }
∪# { statep·1(t̃) }

#. It is left to show that Conditions 1 to
8 hold for n.

The step from Sf(n)−1 to Sf(n) is labelled Ff(n) = Lock(l, t), hence
Condition 8 and Condition 2 hold.
Ff(n) also preserves Condition 6 for the new set of active locks

Lf(n) = Lf(n−1) ∪ { t }.
In the following we show by contradiction that αlock, and therefore

Condition 7 holds. αlock held in the previous step, and Ff(n−1)+1

is empty, so we assume (by contradiction), that Ff(n) = Lock(l, t)
violates αlock. If this was the case, then:

∃i < f(n), l1. Lock(l1, t) ∈E Fi∧

∧ ∀j. i < j < f(n)→ Unlock(l1, t) 6∈E Fj
∨ ∃l2, k. i < k < j

∧ (Lock(l2, t) ∈E Fk ∨ Unlock(l2, t) ∈E Fk) (4)

Since the semantics of the calculus requires that for all t ′ =E t, t ′ /∈
Ln−1, by induction hypothesis, Condition 6, we have that

∀i < f(n− 1), l1. Lock(l1, t) ∈E Fi →

∃j. i < j < f(n− 1)∧ Unlock(l1, t) ∈E Fj

Since Ff(n−1)+1 = ∅ and f(n) = f(n− 1) + 2, we have:

∀i < f(n), l1.Lock(l1, t) ∈E Fi →

∃j. i < j < f(n)∧ Unlock(l1, t) ∈E Fj

We apply Proposition 3 for the total order > on the integer interval
i+ 1..f(n) − 1:

∀i < f(n), l1. Lock(l1, t) ∈E Fi →

∃j. i < j < f(n)∧ Unlock(l1, t) ∈E Fj
∧ ∀k. i < k < j→ Unlock(l1, t) 6∈E Fk

Combining this with (4) we obtain that

∃i < f(n), l1. Lock(l1, t) ∈E Fi∧

∃j. i < j < f(n)∧ Unlock(l1, t) ∈E Fj
∧ ∃l2, k. i < k < j∧ (Lock(l2, t) ∈E Fk
∨ (Unlock(l2, t) ∈E Fk ∧ l2 6=E l1))

B.2 proofs for Section 5 .4 217

Fix i < f(n), j such that i < j < f(n), and l1 such that Lock(l1, t) ∈E
Fi and Unlock(l1, t) ∈E Fj. Then, there are l2 and k such that i < k < j
and either Lock(l2, t) ∈E Fk or Unlock(l2, t) ∈E Fk, but l2 6=E l1. We
proceed by case distinction.
Case 1: there is no unlock in between i and j, i. e., for all m, i < m < j,
Unlock(l ′, t) 6∈ Fm. Then there is a k and l2 such that Lock(l2, t) ∈E
Fk. In this case, αlock is already invalid at the trace produced by the
k-prefix of the execution, contradicting the induction hypothesis.
Case 2: there are l ′ and m, i < m < j such that Unlock(l ′, t) ∈ Fm
(see Figure 16).

i

Lock(l1, t)

m

Unlock(l ′, t)

j

Unlock(l1, t)

Figure 16: Visualisation of Case 2.

We first observe that for any l, u, i1, i2 , if Unlock(l,u) ∈E Fi1 and
Unlock(l,u) ∈E Fi2 , then i1 = i2. We proceed by contradiction. By
definition of JPK and well-formedness of P, the steps from i1 − 1 to
i1 and from i2 − 1 to i2 must be ground instances of rules JPK=q and
JPK=q ′ such that P|q and P|q ′ start with unlock commands that are
labelled the same and have the same parameter, since every variable
lockl in JPK appears in a Fr-fact in the translation for the correspond-
ing lock command. By definition of P, this means q and q ′ have a
common prefix ql that starts with a lock with this label.

Let ql 6 q denote that ql is a prefix of q. Since P gives ⊥ if there
is a replication or a parallel between ql and q or q ′, and since P is
well-formed (does not contain ⊥), we have that every state fact stater
for ql 6 r 6 q or ql 6 r 6 q ′ appearing in JPK is a linear fact, since
no replication is allowed between ql and q or q ′. This implies that
q ′ 6= q. Furthermore, every rule in ∪ql6r6q∨ql6r6q ′JPK=r adds at
most one fact stater and if it adds one fact, it either removes a fact
stater ′ where r = r ′ · 1 or r ′ · 2, or removes a fact statesemi

r ′ where
r = r ′ · 1, which in turn requires removing stater ′ (see translation of
out). Therefore, either q 6 q ′ or q ′ 6 q. But this implies that both
have different labels, and since JPK=ql

requires Fr(l), and E distin-
guishes fresh names, we have a contradiction. (A similiar observa-
tion is possible for locks: For any l, u, i1, i2 , if Lock(l,u) ∈E Fi1 and
Lock(l,u) ∈E Fi2 , then i1 = i2, since by definition of the translation,
the transition from i1 − 1 to i1 or i− 2− 1 to i2 removes fact Fr(l).)

From the first observation we learn that , l ′ 6=E l1 for any l ′ and
m, i < m < j such that Unlock(l ′, t) ∈ Fm. We now choose the
smallest such m. By definition of JPK, the step from Sm−1 to Sm must
be ground instance of a rule from JPK=q for P|q starting with unlock.
Since P is well-formed, there is a ql such that P|ql

starts with lock,
with the same label and parameter as the unlock. As before, since P
is well-formed, and therefore there are no replications and parallels

218 proofs for part i

between ql and q, there must be n such that Lock(l ′, t) ∈ Fn and
n < m. We proceed again by case distinction.
Case 2a: n < i (see Figure 17). By the fact that m > i we have that
there is no o such that n < o < i and Unlock(l ′, t) ∈E Fo (see first
observation). Therefore, the trace produced by the i-prefix of this
execution does already not satisfy αlock, i. e., [F1, . . . , Fi] 6� αlock.

n

Lock(l ′, t)

i

Lock(l1, t)

m

Unlock(l ′, t)

j

Unlock(l1, t)

Figure 17: Visualisation of Case 2a.

Case 2b: i < n (see Figure 18). Again [F1, . . . , Fn] 6� αlock, since there
is no o such that i < o < n and Unlock(l1, t) ∈E Fo.

i

Lock(l1, t)

n

Lock(l ′, t)

m

Unlock(l ′, t)

j

Unlock(l1, t)

Figure 18: Visualisation of Case 2b.

Since we could, under the assumption that Condition 1 to Condi-
tion 8 hold for i 6 n ′, reduce every case in which [F1, . . . , Fn ′+1] 6�

αlock to a contradiction, we can conclude that Condition 7 holds for
n ′ + 1.

Since Pn = Pn−1 \
{ lock t; Q } ∪# {Q } and {Q} ↔ {statep·1(t̃)} (by

definition of the translation), we have that Condition 4 holds. Condi-
tion 1, Condition 3 and Condition 5 hold trivially.

Case: (En−1, Sn−1, S
MS
n−1,Pn−1 = P ′ ∪ {unlock t; Q }, σn−1,Ln−1)→

(En−1, Sn−1, S
MS
n−1,P

′ ∪# {Q ′ }, σn−1,Ln−1 \ { t
′ : t ′ =E t }). By induc-

tion hypothesis Pn−1 ↔P Sn ′ . Let p and t̃ be such that unlock t; Q

↔P statep(t̃). By Definition 19, there is a ri ∈ ginsts(JPK=p) such that
statep(t̃) is part of its premise. By definition of JPK=p, we can choose

ri = [statep(t̃)] −[Unlock(l, t)]→ [statep·1(t̃)].

We can extend the previous execution by one step using ri, therefore:

∅
F1−→JPK S1

F2−→JPK . . .
Fn ′
−→JPK Sn ′

Unlock(l,t)
−−−−−−−→JPKSn ′+1 ∈ execmsr(JPK)

with Sn ′+1 = Sf(n−1) \
{ statep(t̃) }∪

{ statep·1(t̃) }. It is left to show
that Conditions 1 to 8 hold for n.

The step from Sf(n−1) to Sf(n) is labelled Ff(n) = Unlock(l, t),
hence Condition 8 and Condition 2 hold.

In order to show that Condition 6 holds, we perform a case dis-
tinction. Assume t 6∈E∈ Ln−1. Then, Lf(n−1) = Lf(n). In this case,
Condition 6 holds by induction hypothesis. In the following, we as-
sume t ∈E Ln−1. Thus, there is j ∈ n ′, l ′ such that Lock(l ′, t) ∈E Fj
and for all k such that j < k 6 n ′, Unlock(l ′, t) 6∈E Fk.

B.2 proofs for Section 5 .4 219

Since P|p is an unlock node and P is well-formed, there is a prefix q
of p, such that P|q is a lock with the same parameter and annotation.
By definition of P, there is no parallel and no replication between
q and p. Note that any rule in JPK that produces a state named
statep for a non-empty p is such that it requires a fact with name
statep ′ for p = p ′ · 1 or p = p ′ · 2 (in case of the translation of out, it
might require statesemi

p ′ , which in turn requires statep ′). This means
that, since statep(t̃) ∈ Sn ′ , there is an i such that stateq(t̃

′) ∈ Si and
stateq(t̃

′) 6∈ Si−1 for t̃ ′ a prefix to t. This rule is an instance of JPK=q

and thus labelled Fi = Lock(l, t). We proceed by case distinction.

j

Lock(l ′, t)

i

Lock(l, t)

n ′ + 1

Unlock(l, t)

Figure 19: Visualisation of Case 1.

Case 1: j < i (see Figure 19). By induction hypothesis, Condition 7

holds for the trace up to n ′. But, [F1, . . . , Fi] 6� αlock, since we assumed
that for all k such that j < k 6 n ′, Unlock(l ′, t) 6∈E Fk.

i

Lock(l, t)

j

Lock(l ′, t)

n ′ + 1

Unlock(l, t)

Figure 20: Visualisation of Case 2.

Case 2: i < j (see Figure 20). As shown in the lock case, any k such
that Unlock(l, t) ∈E Fk is k = n ′ + 1. This contradicts Condition 7 for
the trace up to j, since [F1, . . . , Fj] 6� αlock, because there is not k such
that i < k < j such that Unlock(l, t) ∈E Fk. This concludes the proof
that Condition 6 holds for n+ 1.

Condition 7 holds, since none of the axioms, in particular not αlock,
become unsatisfied if they were satisfied for the trace up to f(n− 1)

and an Unlock is added.
Since Pn = Pn−1 \# {unlock t; Q } ∪# {Q } and {Q} ↔ {statep·1(t̃)}

(by definition of the translation), we have that Condition 4 holds. Con-
dition 1, Condition 3 and Condition 5 hold trivially.

Case: (En−1, Sn−1, S
MS
n−1,Pn−1 = P ′∪ { l −[a]→ r; Q }, σn−1,Ln−1)

a
−→

(En−1, Sn−1, S
MS
n−1 \ lfacts(l ′)∪# mset(r),P ′ ∪# {Q }, σn−1,Ln−1). This

step requires that l ′ −[a ′]→ r ′ ∈E ginsts(l −[a]→ r) and lfacts(l ′) ⊂#

SMS
n−1, pfacts(l ′) ⊂ mset(SMS

n−1). Let θ be a substitution such that (l −[
a]→ r)θ = (l ′ −[a ′]→ r ′). Since, by induction hypothesis, SMS

n−1 =

Sn ′ \# Fres, we therefore have lfacts(l ′) ⊂# Sn ′ , pfacts(l ′) ⊂ mset(Sn ′).
By induction hypothesis Pn−1 ↔P Sn ′ . Let p and t̃ be such that l −[
a]→ r; Q ↔P statep(t̃). By Definition 19, there is a ri ∈ ginsts(JPK=p)

220 proofs for part i

such that statep(t̃) is part of its premise. By definition of JPK=p, we
can choose

ri = [statep(t̃), l
′] −[a ′,Event()]→ [r ′, statep·1(t̃∪ (vars(l)θ))].

We can extend the previous execution by one step using ri, therefore:

∅
F1−→JPK S1

F2−→JPK . . .
Fn ′
−→JPK Sn ′

a ′,Event()
−−−−−−→JPKSn ′+1 ∈ execmsr(JPK)

with Sn ′+1 = Sf(n−1) \# { statep(t̃) }
\# lfacts(l ′) ∪# mset(r ′) ∪#

{ statep·1(t̃ ∪ (vars(l)θ)) }#. It is left to show that Conditions 1 to 8

hold for n.
Condition 3 holds since

SMS
n = SMS

n−1 \
lfacts(l ′)∪# mset(r)

= (Sn ′ \# Fres) \ lfacts(l ′)∪# mset(r) (induction hypothesis)

= (Sn ′ \# lfacts(l ′)∪# mset(r) \# { statep(t̃) }
#

∪# { statep·1(t̃∪ (vars(l)θ)) }#) \# Fres

(since statep(t̃), statep·1(t̃∪ (vars(l)θ)) ∈ Fres)

= Sf(n) \
Fres

The step from Sf(n−1) to Sf(n) is labelled Ff(n) = a, and does not
contain actions in Fres, since P is well-formed. Hence Condition 2,
Condition 6, Condition 7 and Condition 8 hold.

Since Pn = Pn−1 \
{ l −[a]→ r; Q } ∪# {Q } and {Q} ↔ {statep·1(t̃ ∪

(vars(l)θ))} (by definition of JPK=p), we have that Condition 4 holds.
Condition 1, and Condition 5 hold trivially.

b.2.2 Proofs for Section 5.4.3

Definition 33 (normal MSR execution): A MSR execution

∅
E1−→JPK · · ·

En−−→JPKSn ∈ execmsr(JPK)

for the multiset rewrite system JPK defined by a ground process P is
normal if:

1. The first transition is an instance of the Init rule, i. e., S1 =

state[]() and there is at least this transition.

2. Sn neither contains any fact with the symbol statesemi
p for any p,

nor any fact with symbol Ack.

3. if for some i ∈N and t1, t2 ∈M, Ack(t1, t2) ∈ (Si−1 \
Si), then

there are p and q such that:

Si−3−→R1
Si−2−→R2

Si−1−→R3
Si , where:

B.2 proofs for Section 5 .4 221

• R1 = [statep(x̃)]→ [Msg(t1, t2), state
semi
p (x̃)]

• R2 = [stateq(ỹ),Msg(t1, t2)]→ [stateq·1(ỹ∪ ỹ
′),Ack(t1, t2)]

• R3 = [statesemi
p (x̃),Ack(t1, t2)]→ [statep·1(x̃)].

4. Sn−1
En−−→JP,[],[]K,MDIn,InitSn

5. if In(t) ∈ (Si−1 \
Si), then Si−2

K(t)
−−−→MDInSi−1 (for some i ∈ N

and t ∈M)

6. if n > 2 and no Ack-fact in (Si−1 \
Si), then there exists m < n

such that Sm →∗
R Sn−1 for R = {MDOut,MDPub,MDFresh,

MDAppl,Fresh } and ∅
E1−→JPK · · ·

Em−−→JPKSm ∈ execmsr(JPK) is nor-
mal.

7. if for some t1, t2 ∈ M, Ack(t1, t2) ∈ (Sn−1 \# Sn), then there

exists m 6 n− 3 such that ∅
E1−→JPK · · ·

Em−−→JPKSm ∈ execmsr(JPK) is
normal and Sm →∗

R Sn−3 for R = {MDOut,MDPub,MDFresh,

MDAppl,Fresh }.

Lemma 4 (Normalisation): Let P be a well-formed ground process. If

S0 = ∅
E1−→JPK S1

E2−→JPK . . .
En−→JPK Sn ∈ execmsr(JPK)

and [E1, . . . , En] � α, then there exists a normal MSR execution

T0 = ∅
F1−→JPK T1

F2−→JPK . . .
Fn ′
−→JPK Tn ′ ∈ execmsr(JPK)

such that hide([E1, . . . , En]) = hide(F1, . . . , Fn ′) and [F1, . . . , Fn ′] � α.

Proof. We will modify S0
E1−→JPK . . .

En−→JPK Sn by applying one trans-
formation after the other, each resulting in an MSR execution that still
fulfills the conditions on its trace.

1. If an application of the Init rule appears in S0
E1−→JPK . . .

En−→JPK

Sn, we move it to the front. Therefore, S1 = state[](). This is
possible since the left-hand side of the Init rule is empty. If
the rule is never instantiated, we prepend it to the trace. Since
Init() ∈ Fres, the resulting MSR execution

S
(1)
0

E
(1)
1−→JPK . . .

E
(1)
n−→JPK S

(1)

n(1)

is such that hide([E1, . . . , En]) = hide([E
(1)
1 , . . . , E

(1)

n(1)]). Since

Init() is only added if it was not present before, [E(1)1 , . . . , E
(1)

n(1)]

� α, especially αinit.

2. For each fact Ack(t1, t2) contained in S(1)
n(1 , it also contains a fact

statesemi
p (t̃) for some p and t̃ such that there exists a rule of type

222 proofs for part i

R3 that consumes both of them, since Ack(t1, t2) can only be pro-
duced by a rule of type R2 which consumes Msg(t1, t2) which
in turn can only be produced along with a fact statesemi

p (t̃), and
by definition of JPK, there exists a rule in JPK=p of form R3 that
consumes Ack(t1, t2) and statesemi

p (t̃). We append as many ap-

plications of rules of type R3 as there are facts Ack(t1, t2) ∈ S
(1)

n(1) ,

and repeat this for all t1, t2 such that Ack(t1, t2) ∈ S
(1)

n(1) . Then,

S
(1)

n(1)−→JPKS
(1)
n ′ and S(1)n ′ does not contain Ack-facts anymore.

If S(1)n ′ contains a fact statesemi
p (t̃), we remove the last transi-

tion that produced this fact, i. e., for i such that Si = Si−1 \#

{ statep(t̃) }
∪# {Msg(t1, t2), state

semi
p (t̃) }#, we define S(1)

′

j = S
(1)
j

if j 6 i − 1 and S
(1) ′

j = S
(1)
j+1 \# {Msg(t1, t2), state

semi
p (t̃) }# ∪#

{ statep(t̃) }
if i− 1 < j < n ′. The resulting execution is valid,

since statesemi
p (t̃) ∈ S

(1)
n ′ and since Msg(t1, t2) ∈ S

(1)
n ′ . The latter

is the case because if Msg(t1, t2) would be consumned at a later
point, say j, j+1would contain Ack(t1, t2), but since S(1)

′

n ′−1 does
not contain Ack-facts, they can only be consumned by a rule of
type R3, which would have consumned statesemi

p (t̃). We repeat

this procedure for every remaining statesemi
p (t̃) ∈ S

(1)
n ′ , and call

the resulting trace

S
(2)
0

E
(2)
1−→JPK . . .

E
(2)
n−→JPK S

(2)

n(2)

Since no rule added or removed or removed has an action,
hide([E1, . . . , En]) = hide([E

(2)
1 , . . . , E

(2)

n(2)]) and [E
(2)
1 , . . . , E

(2)

n(2)]

� α.

3. We transform S
(1)
0

E
(1)
1−→JPK . . .

E
(1)
n−→JPK S

(1)

n(1) as follows (all equal-
ities are modulo E): Let us call instances of R1, R2 or R3 that
appear outside a chain

Si−3−→R1
Si−2−→R2

Si−1−→R3
Si

for some i t1, t2 ∈ M “unmarked”. Do the following for the
smallest i that is an unmarked instance of R3 (we will call the
instance of R3 ri3 and suppose it is applied from Si−1 to Si):
Apply ri3 after j < i such that Sj−1 to Sj is the first unmarked
instance of R2, for some q and ỹ,i. e., this instance produces
a fact stateq·1(ỹ, ỹ

′) and a fact Ack(t1, t2). Since there is no
rule between j and i that might consume Ack(t1, t2) (only rules
of form R3 do, and ri3 is the first unmarked instance of such
a rule) and since ri3 does not consume stateq·1(ỹ, ỹ

′), we can
move ri3 between j and j + 1, adding the conclusions of ri3
and removing the premises of ri3 from every Sj+1, . . . , Si. Note
that unmarked instances of R2 and R3 are guaranteed to be pre-
ceeded by a marked R1, and therefore only remove facts of form

B.2 proofs for Section 5 .4 223

Ack(. . .) or Msg(. . .) that have been added in that preceeding
step. Since the transition at step j requires a fact Msg(t1, t2),
there is an instance of R1 prior to j, say at k < j, since only rules
of form R1 produces facts labelled Msg(t1, t2). Since ri3 is now
applied from Sj to Sj+1, we have that an instance ri1 of a rule
of form R1 that produces statesemi

p (t̃) must appear before j, i. e.,
ri1 ∈ ginsts(JPK=p). Therefore, it produces a fact Msg(t1, t2) in-
deed. We choose the largest k that has an unmarked R1 which
produces Msg(t1, t2) and statesemi

p (t̃) and move it right before j,
resulting in the following MSR execution:

S
(1) ′

t :=

S
(1)
t if t < k

S
(1)
t+1 ∪

{Msg(t1, t2), state
semi
p (t̃) }#

\# { statep(t̃) }
#

if k 6 t < j− 1

S
(1)

(t)
if j− 1 6 t < j+ 1

S
(1)

(t−1)
∪# { statep·1(t̃) }

#

\# { statesemi
p (t̃),Ack(t1, t2) }

#
if j+ 1 6 t < i+ 1

S
(1)
t if i+ 1 6 t

We apply this procedure until it reaches a fixpoint and call the
resulting trace

S
(3)
0

E
(3)
1−→JPK . . .

E
(3)
n−→JPK S

(3)

n(3)

No rule that has an action moved during the procedure, hence
we can conclude hide([E1, . . . , En]) = hide([E

(3)
1 , . . . , E

(3)

n(3)]), as

well as [E
(3)
1 , . . . , E

(3)

n(3)] � α.

4. If the last transition is in the set {MDOut,MDPub,MDFresh,

MDAppl,Fresh }, we remove it. Repeat until fixpoint is reached
and call the resulting trace

S
(4)
0

E
(4)
1−→JPK . . .

E
(4)
n−→JPK S

(4)

n(4)

Since this procedure removes no rule that is annotated with an
action, hide([E1, . . . , En]) = hide([E

(4)
1 , . . . , E

(4)

n(4)]) and [E
(4)
1 , . . . ,

E
(4)

n(4)] � α.

5. If there is In(t) ∈ S
(4)

n(4)−1
, then there is a transition where In(t)

is produced and never consumned until n(4) − 1. The only rule
producing In(t) is MDIn. We can move this transition to just
before n(4) − 1 and call the resulting trace

S
(5)
0

E
(5)
1−→JPK . . .

E
(5)
n−→JPK S

(5)

n(5)

224 proofs for part i

Since [E
(4)
1 , . . . , E

(4)

n(4)] � α, especially αinEv, there are only ac-
tion in Fres between the abovementioned instance of MDIn and
n(4). Therefore, hide([E1, . . . , En]) = hide([E

(5)
1 , . . . , E

(5)

n(5)]) holds.
Since αinEv is the only part of α that mentions K, and since
the tranformation preserved αinEv, we have that [E(5)1 , . . . , E

(5)

n(5)]

� α.

6. We will show that 6 and 7 hold for

S
(5)
0

E
(5)
1−→JPK . . .

E
(5)
n−→JPK S

(5)

n(5)

in one step.

If n(5) > 2 and there is no Ack-fact in S(5)
n(5)−1 \ S

(5)

n(5) , then we

chose the largest m < n such that S(5)m−1

E
(5)
m−−→JP,[],[]K,Init,MDInS

(5)
m ,

or, if there is an Ack-fact in S
(5)

n(5)−1 \ S
(5)

n(5) , we will chose the

largest m ′ < n− 2 such that S(5)m ′−1

E
(5)

m ′
−−→JP,[],[]K,Init,MDInS

(5)
m ′ .

This trivially fulfills 4. S(5)m →∗
R S

(5)

n(5) and S(5)m ′ →∗
R S

(5)

n(5)−3 , since
otherwise there would be a larger m or m ′. This also implies
2, as none of the rules in R = {MDOut,MDPub,MDFresh,

MDAppl,Fresh } remove Ack- or statesemi-facts, and the chain
of rules R1, R2, R3 consumes as many as it produces. Thus, if
they where in S(5)m , they would be in S(5)

n(5) , too. Since n > 2,
m > 1, and therefore 1. 3 holds for all parts of the trace, and
therefore also for the m prefix. Similar for 5.

Since we can literally apply the same argument for the largest

m̃ < m such that S(5)m−1

E
(5)
m−−→JP,[],[]K,Init,MDInS

(5)
m , or, in case that

there is an Ack-fact in S(5)m−1 \S
(5)
m , for the largest m̃ < m−2, can

show that 6 and 7 hold for the trace up to m or m ′, concluding
it is normal.

Remark 4: Note that !P has the following properties (by the fact that
it defines a bijection between multisets).

• If P1 !P S1 and P2 !P S2 then P1 ∪
P2 !P S1 ∪

S2.

• If P1 !P S1 and Q !P statep(t̃) for Q ∈ P1 and statep(t̃) ∈

S1 (i.e. Q and statep(t̃) are related by the bijection defined by
P1 !P S1) then P1 \

{Q} !P S1 \
{statep(t̃)}.

Lemma 5: Le P be a well-formed ground process. If

S0 = ∅
E1−→JPK S1

E2−→JPK . . .
En−→JPK Sn ∈ execmsr(JPK)

B.2 proofs for Section 5 .4 225

is normal and [E1, . . . , En] � α (see Definition 33 and 15), then there
are (E0, S0, S

MS
0 ,P0, σ0,L0), . . . , (En ′ , Sn ′ , SMS

n ′ ,Pn ′ , σn ′ ,Ln ′) and F1,

. . . , Fn ′ such that:

(E0, S0, S
MS
0 ,P0, σ0,L0)

F1−→ (E1, S1, S
MS
1 ,P1, σ1,L1)

F2−→ . . .
Fn ′
−→ (En ′ , Sn ′ , SMS

n ′ ,Pn ′ , σn ′ ,Ln ′)

where (E0, S0, S
MS
0 ,P0, σ0,L0) = (∅, ∅, ∅, {P }, ∅, ∅) and there exists a

monotonically increasing, surjective function f : Nn \ { 0 }→Nn ′ such
that f(n) = n ′ and for all i ∈Nn

1. Ef(i) = {a ∈ FN | ProtoNonce(a) ∈E
⋃

16j6i Ej }

2. ∀ t ∈M. Sf(i)(t) =

u if ∃j 6 i.Insert(t, u) ∈E Ej

∧∀j ′, u ′.

j < j ′ 6 i⇒ Insert(t, u ′) 6∈E Ej ′

∧Delete(t) 6∈E Ej ′

⊥ otherwise

3. SMS
f(i)

=E Si \
Fres

4. Pf(i) !P Si

5. { xσf(i) | x ∈ D(σf(i)) }
=E {Out(t) ∈ ∪k6iSk }

#

6. Lf(i) =E { t | ∃ j 6 i, u. Lock(u, t) ∈E Ej and ∀ j < k 6 i.
Unlock(u, t) 6∈E Ek }.

Furthermore,

7. hide([E1, . . . , En]) =E [F1, . . . , F
′
n].

Proof. We proceed by induction over the number of transitions n.

Base Case. A normal MSR execution contains at least an application of
the init rule, thereby the shortest normal MSR execution is

∅−→JPKS1 = { state[]() }
#

We chose n ′ = 0 and thus

(E0, S0, S
MS
0 ,P0, σ0,L0) = (∅, ∅, ∅, {P }#, ∅, ∅).

We define f : { 1 }→ { 0 } such that f(1) = 0.
To show that Condition 4 holds, we have to show that P0 !P

{ state[](s : fresh) }#. Note that P0 = {P }#. We choose the bijection such
that P!P state[](s : fresh).

By Definition 18, JPK=[] = JP, [], []K=[]. We see from Figure 14

that for every P we have that state[](s : fresh) ∈ prems(Rθ), for R ∈

226 proofs for part i

JP, [], []K=[] and θ = ∅. This induces τ = ∅ and ρ = ∅. Since P|[]τρ = P,
we have P!P state[](), and therefore P0 !P S1.

Condition 1, Condition 2, Condition 3, Condition 5, Condition 6,
and Condition 7 hold trivially.

Inductive step. Assume the invariant holds for n− 1 > 1. We have to
show that the lemma holds for n transitions, i. e., we assume that

∅
E1−→JPK S1

E2−→JPK . . .
En−→JPK Sn ∈ execmsr(JPK)

is normal and [E1, . . . , En] � α. Then it is to show that there is

(E0, S0, S
MS
0 ,P0, σ0,L0)

F1−→ (E1, S1, S
MS
1 ,P1, σ1,L1)

F2−→

. . .
F ′
n−→ (En ′ , Sn ′ , SMS

n ′ ,Pn ′ , σn ′ ,Ln ′)

fulfilling Conditions 1 to 8.
Assume now for the following argument, that there is not fact with

the symbol Ack in Sn−1 \
Sn. This is the case for all cases except for

the case where rule instance applied from Sn−1 to Sn has the form
ri = [statesemi

p (s̃),Ack(t1, t2)] −[]→ [statep·1(s̃)]. This case will require
a similiar, but different argument, which we will present when we
come to this case.

Since ∅
E1−→JPK · · ·

En−−→JPKSn ∈ execmsr(JPK) is normal and n > 2, there
exists an m < n such that Sm →∗

R Sn for R = {MDOut,MDPub,

MDFresh,MDAppl,Fresh } and ∅
E1−→JPK · · ·

Em−−→JPKSm ∈ execmsr(JPK)

is normal, too. This allows us to apply the induction hypothesis on

∅
E1−→JPK · · ·

Em−−→JPKSm ∈ execmsr(JPK). Hence there is a monotonically
increasing function from Nm → Nn ′ and an execution such that
Conditions 1 to 8 hold. Let fp be this function and note that n ′ =

fp(m).
In the following case distinction, we will (unless stated otherwise)

extend the previous execution by one step from (En ′ , Sn ′ , SMS
n ′ ,Pn ′ ,

σn ′ ,Ln ′) to (En ′+1, Sn ′+1, S
MS
n ′+1,Pn ′+1, σn ′+1,Ln ′+1), showing Con-

ditions 1 to 7 for n ′ + 1. By induction hypothesis, they hold for all
i 6 n ′. We define a function f : Nn →Nn ′+1 as follows:

f(i) :=

fp(i) if i ∈Nm

n ′ if m < i < n

n ′ + 1 if i = n

(5)

Since, Sm →∗
R Sn for R = {MDOut,MDPub,MDFresh,MDAppl,

Fresh }, only Sn \# Sm contains only Fr-facts and !K-facts, and Sm \#

Sn contains only Fr-facts and Out-facts. Therefore, Condition 3,4 and
5 hold for all i 6 n− 1. Since Em+1, . . . , En−1 = ∅, Condition 1, 2,6
and 7 hold for all i 6 n− 1.

Fix a bijection such that Pn ′ !P Sm. We will abuse notation by
writing P!P statep(t̃), if this bijection maps P to statep(t̃).

B.2 proofs for Section 5 .4 227

We now proceed by case distinction over the last type of transition
from Sn−1 to Sn. Let llinear =E Sn−1 \ Sn and r =E Sn \ Sn−1. llinear

can only contain linear facts, while r can contain linear as well as
persistent facts. The rule instance ri used to go from Sn−1 to Sn has
the following form:

[llinear, lpersistent] −[En]→ r

for some lpersistent ⊂
#
E Sn−1.

Note that llinear, En and r uniquely identify which rule in JP, [], []K ri

is an instance of – with exactly one exception: J[] −[a]→ []; P, p, x̃K =

Jevent a; P, p, x̃K. Luckily, we can treat the last as a special case of the
first.

If R is uniquely determined, we fix some ri ∈ ginsts(R).

Case: R = Init or R ∈ MD \ {MDIn }. In this case, ∅
E1−→ . . .

En−−→Sn is
not a well-formed MSR execution.

Case: R = MDIn. Let t ∈M such that ri = Rτ = !K(t) −[K(t)]→ In(t).
From the induction hypothesis, and since Em+1, . . . , En = ∅, we

have that

En ′ = {a ∈ FN | ProtoNonce(a) ∈E
⋃

16j6n

Ej }.

From the induction hypothesis, and since no rule producing Out-
facts is applied between step m and step n, we have that

{ xσn ′ | x ∈ D(σn ′) }# =E {Out(t) ∈ ∪k6nSk }
#.

Let r̃ = {a ∈ FN | RepNonce(a) ∈E
⋃

16j6n Fj }. Then, by Lemma 2

and Lemma 15, we have that νEn ′ , r̃.σn ′ ⊢ t. Therefore, νEn ′ .σn ′ ⊢ t.
This allows us to chose the following transition:

· · ·
Fn ′
−−→(En ′ , Sn ′ , SMS

n ′ ,Pn ′ , σn ′ ,Ln ′)

K(t)
−−−→(En ′+1, Sn ′+1, S

MS
n ′+1,Pn ′+1, σn ′+1,Ln ′+1)

with (En ′+1, Sn ′+1, S
MS
n ′+1,Pn ′+1, σn ′+1,Ln ′+1) equal to (En ′ , Sn ′ ,

SMS
n ′ ,Pn ′ , σn ′ ,Ln ′).
Conditions 1 to 8 hold trivially.

Case: ri = [statep(t̃)] −[]→ [] (for some p and t̃). By induction hy-
pothesis, we have Pn ′ !P Sm, and thus, as previously established,
Pn ′ !P Sn−1. Let Q ∈# Pn ′ such that Q !P statep(t̃). Let θ be a
grounding substitution for statep(x̃) ∈ prems(JPK=p) such that t̃ = x̃θ.
Then θ induces a substitution τ and a bijective renaming ρ for fresh,
but not bound names (in Q) such that P|pτρ = Q (see Definition 20).

From the form of the rule R, and since Q = P|pτρ, we can deduce
that Q = 0.

228 proofs for part i

We therefore chose the following transition:

· · ·
F ′
n−→(En ′ , Sn ′ , SMS

n ′ ,Pn ′ , σn ′ ,Ln ′)

K(t)
−−−→(En ′+1, Sn ′+1, S

MS
n ′+1,Pn ′+1, σn ′+1,Ln ′+1)

with En ′+1 = En ′ , Sn ′+1 = Sn ′ , SMS
n ′+1 = SMS

n ′ , Pn ′+1 = Pn ′ \# { 0 }#,
σn ′+1 = σn ′ and Ln ′+1 = Ln ′ .

We define f as in equation 5 on page 226. Therefore, Conditions 1

to 8 hold for i < n− 1. It is left to show that Conditions 1 to 8 hold
for n.

Condition 4 holds since Q ↔ statep(t̃), Pn ′+1 = Pn ′ \# { 0 }# and
Sn = Sn−1 \

{ statep(t̃) }
#. Conditions 1, 2, 3, 5 and 7 hold trivially.

Case: ri = [statep(t̃)] −[]→ [statep·1(t̃), statep·2(t̃)] (for some p and

t̃). By induction hypothesis, we have Pn ′ !P Sm, and thus, as
previously established, Pn ′ !P Sn−1. Let Q ∈# Pn ′ such that
Q !P statep(t̃). Let θ be a grounding substitution for statep(x̃) ∈

prems(JPK=p) such that t̃ = x̃θ. Then θ induces a substitution τ and a
bijective renaming ρ for fresh, but not bound names (in Q) such that
P|pτρ = Q (see Definition 20).

From the form of the rule R, and since Q = P|pτρ, we can deduce
that Q = Q1|Q2, for some processes Q1 = P|p·1τρ and Q2 = P|p·2τρ.

We therefore chose the following transition:

· · ·
F ′
n−→(En ′ , Sn ′ , SMS

n ′ ,Pn ′ , σn ′ ,Ln ′)

−→(En ′+1, Sn ′+1, S
MS
n ′+1,Pn ′+1, σn ′+1,Ln ′+1)

with En ′+1 = En ′ , Sn ′+1 = Sn ′ , SMS
n ′+1 = SMS

n ′ , Pn ′+1 = Pn ′ \# {Q1 |

Q2 }
∪# {Q1, Q2 }

#, σn ′+1 = σn ′ and Ln ′+1 = Ln ′ .
We define f as in equation 5 on page 226. Therefore, Conditions 1

to 8 hold for i < n− 1. It is left to show that Conditions 1 to 8 hold
for n.

By definition of JPK and JPK=p, we have that Q1 ↔ statep·1(t̃) and
Q2 ↔ statep·2(t̃). Therefore, and since Q↔ statep(t̃), Pn ′+1 = Pn ′ \#

{Q1 | Q2 }
∪# {Q1, Q2 }

#, and Sn = Sn−1 \
{ statept̃ }

∪# { statep·1(t̃),

statep·2(t̃) }
#, Condition 4 holds.

Conditions 1, 2, 3, 5 and 7 hold trivially.

Case: ri = [!statep(t̃)] −[]→ [statep·1(t̃)] (for some p, t̃). By induction
hypothesis, we have Pn ′ !P Sm, and thus, as previously established,
Pn ′ !P Sn−1. Let Q ∈# Pn ′ such that Q !P statep(t̃). Let θ be a
grounding substitution for statep(x̃) ∈ prems(JPK=p) such that t̃ = x̃θ.
Then θ induces a substitution τ and a bijective renaming ρ for fresh,
but not bound names (in Q) such that P|pτρ = Q (see Definition 20).

From the form of the rule R, and since Q = P|pτρ, we can deduce
that Q = !Q ′for a process Q ′ = P|p·1τρ..

B.2 proofs for Section 5 .4 229

We therefore chose the following transition:

· · ·
F ′
n−→(En ′ , Sn ′ , SMS

n ′ ,Pn ′ , σn ′ ,Ln ′)

−→(En ′+1, Sn ′+1, S
MS
n ′+1,Pn ′+1, σn ′+1,Ln ′+1)

with En ′+1 = En ′ , Sn ′+1 = Sn ′ , SMS
n ′+1 = SMS

n ′ , Pn ′+1 = Pn ′ ∪# {Q ′ }#,
σn ′+1 = σn ′ and Ln ′+1 = Ln ′ .

We define f as in equation 5 on page 226. Therefore, Conditions 1

to 8 hold for i < n− 1. It is left to show that Conditions 1 to 8 hold
for n.

By definition of JPK and JPK=p, we have that Q ′ !P statep·1(t̃).
Therefore, and since Pn ′+1 = Pn ′ ∪# {Q ′ }#, while Sn = Sn−1 ∪

#

{ statep·1(t̃) }
#, Condition 4 holds.

Conditions 1, 2, 3, 5 and 7 hold trivially.

Case: ri = [statep(t̃),Fr(a ′ : fresh)] −[ProtoNonce(a ′ : fresh)]→ [statep·1(

t̃, a ′ : fresh)] (for some p, t̃ and a ′ ∈ FN). By induction hypothesis,
we have Pn ′ !P Sm, and thus, as previously established, Pn ′ !P

Sn−1. Let Q ∈# Pn ′ such that Q!P statep(t̃). Let θ be a grounding
substitution for statep(x̃) ∈ prems(JPK=p) such that t̃ = x̃θ. Then θ
induces a substitution τ and a bijective renaming ρ for fresh, but not
bound names (in Q) such that P|pτρ = Q (see Definition 20).

From the form of the rule R, and since Q = P|pτρ, we can deduce
that Q = νa; Q ′ for a name a ∈ FN and a process Q ′ = P|p·1τρ.

By definition of execmsr, the fact Fr(a ′) can only be produced once.
Since this fact is linear it can only be consumed once. Every rule in
JPK that produces a label ProtoNonce(x) for some x consumes a fact
Fr(x). Therefore,

a ′ /∈ {a ∈ FN | ProtoNonce(a) ∈E
⋃

16j6n−1

Ej }.

The induction hypothesis allows us to conclude that a ′ /∈ En ′ ,i. e., a ′

is fresh. We therefore chose the following transition:

· · ·
F ′
n−→(En ′ , Sn ′ , SMS

n ′ ,Pn ′ , σn ′ ,Ln ′)

−→(En ′+1, Sn ′+1, S
MS
n ′+1,Pn ′+1, σn ′+1,Ln ′+1)

with En ′+1 = En ′ ∪ a ′, Sn ′+1 = Sn ′ , SMS
n ′+1 = SMS

n ′ , Pn ′+1 = Pn ′ \#

{ν a;Q ′ }# ∪# {Q ′{ a/a ′ } }#, σn ′+1 = σn ′ and Ln ′+1 = Ln ′ .
We define f as in equation 5 on page 226. Therefore, Conditions 1

to 8 hold for i < n− 1. It is left to show that Conditions 1 to 8 hold
for n.

By definition of JPK, statep·1(x̃, a) ∈ prems(R ′) for an R ′ ∈ JPK=p·1.
We can choose θ ′ := θ[na 7→ a ′]. Let statep·1(t̃, a

′) = statep·1(x̃, a)θ
′.

Since Q = P|pτρ for τ and ρ induced by θ, Q ′{ a
′
/a } = P|pτ

′ρ ′ for
τ ′ and ρ ′ induced by θ ′, i. e., τ ′ = τ and ρ ′ = ρ[a 7→ a ′]. Therefore,
Q ′{ a

′
/a } !P statep·1(t̃, a

′).

230 proofs for part i

Condition 4 holds, since furthermore

ν a ′; Q’↔ statep(t̃),

Pn ′+1 = Pn ′ \# {ν a ′; Q’ }# ∪# {Q ′{ a
′
/a } }#

and

Sn = Sn−1 \
{Fr(a), statep(t̃) }

∪# statep·1(t̃, a : fresh).

Condition 1, holds since En ′+1 = En ′ ∪a ′ and En = ProtoNonce(a ′).
Condition 7 holds since ProtoNonce(a) ∈ Fres.

Conditions 2, 3 and 5 hold trivially.

Case: ri = [statep(t̃), In(t1)] −[InEvent(t1)]→ [statep·1(t̃),Out(t2)] (for

some p, t̃ and t1, t2 ∈M). Since the MSR execution is normal, we have

that Sn−2
K(t1)
−−−→MDInSn−1. Since S0

E1−→JPK . . .
En−−→JPKSn is normal, so

is S0
E1−→JPK . . .

En−1
−−−→JPKSn−1, and therefore S0

E1−→JPK . . .
En−2
−−−→JPKSn−2.

Hence there is an m < n − 2 such S0
E1−→JPK . . .

Em−−→JPKSm is a nor-
mal trace and Sm →

∗
R Sn−1 for R = {MDOut,MDPub,MDFresh,

MDAppl,Fresh }.
By induction hypothesis, we have Pn ′ !P Sm, and thus, since the

rules in {MDOut,MDPub,MDFresh,MDAppl,Fresh } neither add
nor remove state-facts, Pn ′ !P Sn−2. Let Q ∈# Pn ′ such that
Q !P statep(t̃) and θ be a grounding substitution for state(x̃) ∈

prems(JPK=p) such that t̃ = x̃θ. Then θ induces a substitution τ and a
bijective renaming ρ for fresh, but not bound names (in Q) such that
P|pτρ = Q (see Definition 20).

From the form of the rule R, and since Q = P|pτρ, we can deduce
that Q = out (t1, t2);Q ′ for a process Q ′ = P|p·1τρ.

From the induction hypothesis, and since Em+1, . . . , En−2 = ∅, we
have that

En ′ = {a ∈ FN | ProtoNonce(a) ∈E
⋃

16j6n−2

Ej }.

From the induction hypothesis, and since no rule producing Out-
facts is applied between step m and step n− 2, we have that

{ xσn ′ | x ∈ D(σn ′) }# =E {Out(t) ∈ ∪k6n−2Sk }
#. (6)

Let r̃ = {a : fresh | RepNonce(a) ∈
⋃

16j6n−2 Fj }. Since !K(t1) ∈
prems(MDInσ) for σ(x) = t1, we have !K(t) ∈E Sn−2. By Lemma 2

and Lemma 15, we have νEn ′ , r̃.σn ′ ⊢ t. Therefore, νEn ′ .σn ′ ⊢ t. We
chose the following transition:

· · ·
F ′
n−→(En ′ , Sn ′ , SMS

n ′ ,Pn ′ , σn ′ ,Ln ′)

K(t1)
−−−→(En ′+1, Sn ′+1, S

MS
n ′+1,Pn ′+1, σn ′+1,Ln ′+1)

B.2 proofs for Section 5 .4 231

with En ′+1 = En ′ , Sn ′+1 = Sn ′ , SMS
n ′+1 = SMS

n ′ , Pn ′+1 = Pn ′ \#

{ out (t1, t2);Q ′ }# ∪# {Q ′ }#, σn ′+1 = σn ′ ∪ { t2/x } and Ln ′+1 = Ln ′

for a fresh x.
We define f as follows:

f(i) :=

fp(i) if i ∈Nm

n ′ if m < i < n− 1

n ′ + 1 if i = n

Therefore, Conditions 1 to 8 hold for i < n− 1. It is left to show
that Conditions 1 to 8 hold for n.

Condition 7 holds since En−1 = K(t1) which implies hide([E1, . . . ,

Em]) =E [F1, . . . , n
′] and [Em+1, . . . , En−1] =E [Fn ′+1].

Condition 5 holds since σn ′+1 = σn ′ ∪ { t2/x }, and therefore:

{ xσn ′+1 | x ∈ D(σn ′+1) }
={ xσn ′ | x ∈ D(σn ′) }# ∪# { t2 }

#

=E{Out(t) ∈ ∪k6n−2Sk }
∪# { t2 }

#

(by (6))

={Out(t) ∈ ∪k6nSk }
#

By definition of JPK and JPK=p, we have that Q ′ !P statep·1(t̃).
Therefore, and since out (t1, t2);Q ′ !P statep(t̃), Pn ′+1 = Pn ′ \#

{ out (t1, t2);Q ′ }# ∪# {Q ′ }#, and Sn =E Sn−1 \# { In(a), statep(t̃) }
∪#

{ statep·1(t̃),Out(t2) }, Condition 4 holds.
Conditions Condition 1, 2 and 3 hold trivially.

Case: ri = [statep(t̃), In(< t1, t2 >)] −[InEvent(〈t1, t2〉)]→ [statep·1(t̃,

t̃ ′)] (for some p, t̃, t̃ ′ and t1, t2 ∈ M). Since the MSR execution is nor-

mal, we have that Sn−2
K(t1)
−−−→MDInSn−1. Since S0

E1−→JPK . . .
En−−→JPKSn

is normal, so is S0
E1−→JPK . . .

En−1
−−−→JPKSn−1, and therefore S0

E1−→JPK . . .
En−2
−−−→JPKSn−2. Hence there is an m < n − 2 such that S0

E1−→JPK . . .
Em−−→JPKSm is a normal trace and Sm →∗

R Sn−1 for R = {MDOut,

MDPub,MDFresh,MDAppl,Fresh }.
By induction hypothesis, we have Pn ′ !P Sm. Since {MDOut,

MDPub,MDFresh,MDAppl }, Fresh and MDIn do not add or re-
move state-facts, Pn ′ !P Sn−2.

Let Q ∈# Pn ′ such that Q !P statep(t̃). Let θ be a grounding
substitution for statep(x̃) ∈ prems(JPK=p) such that t̃ =E x̃θ. Then θ
induces a substitution τ and a bijective renaming ρ for fresh, but not
bound names (in Q) such that P|pτρ = Q (see Definition 20). From
the form of the rule R, and since Q = P|pτρ, we can deduce that
Q = in (t1, N);Q ′, for N a term that is not necessarily ground, and
a process Q ′ = P|p·1τρ. Since ri ∈E ginsts(R), we have that there is a
substitution τ ′ such that Nτ ′ =E t2.

232 proofs for part i

From the induction hypothesis, and since Em+1, . . . , En−2 = ∅, we
have that

En ′ = {a | ProtoNonce(a) ∈
⋃

16j6n−2

Ej }.

From the induction hypothesis, and since no rule producing Out-
facts is applied between step m and step n− 2, we have that

{ xσn ′ | x ∈ D(σn ′) }# = {Out(t) ∈ ∪k6n−2Sk }
#. (7)

Let r̃ = {a : fresh | RepNonce(a) ∈
⋃

16j6n−2 Fj }. Since !K(〈t1, t2〉) ∈
prems(MDInσ) for σ(x) = 〈t1, t2〉, we have !K(〈t1, t2〉)E ∈ Sn−2. By
Lemma 2 and Lemma 15, we have νEn ′ , r̃.σn ′ ⊢ 〈t1, t2〉. Therefore,
νEn ′ .σn ′ ⊢ 〈t1, t2〉. Using DEq and DAppl with the function symbols
fst and snd, we have νEn ′ .σn ′ ⊢ t1 and νEn ′ .σn ′ ⊢ t2. Therefore, we
chose the following transition:

· · ·
F ′
n−→(En ′ , Sn ′ , SMS

n ′ ,Pn ′ , σn ′ ,Ln ′)

K(t1)
−−−→(En ′+1, Sn ′+1, S

MS
n ′+1,Pn ′+1, σn ′+1,Ln ′+1)

with En ′+1 = En ′ , Sn ′+1 = Sn ′ , SMS
n ′+1 = SMS

n ′ , Pn ′+1 = Pn ′ \#

{ in (t1, N);Q ′ }# ∪# {Q ′τ ′ }#, σn ′+1 = σn ′ and Ln ′+1 = Ln ′ .
We define f as follows:

f(i) :=

fp(i) if i ∈Nm

n ′ if m < i < n− 1

n ′ + 1 if i = n

Therefore, Conditions 1 to 8 hold for i < n− 1. It is left to show
that Conditions 1 to 8 hold for n.

Condition 7 holds since hide([E1, . . . , Em]) = [F1, . . . , n
′] and [Em+1,

. . . , En−1] = [Fn ′+1], since En−1 = K(t1).
Let θ ′ such that ri = θ ′R. As established before, we have τ ′ such

that Nτ ′ =E t2. By definition of JPK=p, we have that statep·1(t̃, t̃
′) ∈E

ginsts(P=p·1), and that θ ′ = θ · τ ′. Since τ and ρ are induced by θ,
θ ′ induces τ · τ ′ and the same ρ. We have that Q ′τ ′ = (P|p·1τρ)τ

′ =

P|pττ
′ρ and therefore Q ′τ !P statep·1(t̃, t̃

′). Thus, and since in(t1,

N); Q’ !P statep(t̃), Pn ′+1 = Pn ′ \# { in (t1, N);Q ′ }# ∪# {Q ′τ ′ }# and
Sn = Sn−1 \# { In(< t1, t2 >), statep(t̃) }

∪# { statep·1(t̃, t̃
′) }#, Condi-

tion 4 holds.
Conditions Condition 1, 2, 3 and 5 hold trivially.

Case: ri = [statesemi
p (s̃),Ack(t1, t2)] −[]→ [statep·1(s̃)] (for some p, t̃

and t1, t2 ∈ M). Since the MSR execution is normal, we have that
there p,q,x̃, ỹ, ỹ ′ such that:

Sn−3−→R1
Sn−2−→R2

Sn−1−→R3
Sn , where:

B.2 proofs for Section 5 .4 233

• R1 = [statep(x̃)]→ [Msg(t1, t2), state
semi
p (x̃)]

• R2 = [stateq(ỹ),Msg(t1, t2)]→ [stateq·1(ỹ∪ ỹ
′),Ack(t1, t2)]

• R3 = [statesemi
p (x̃),Ack(t1, t2)]→ [statep·1(x̃)]

.
Since in this case, there is a fact with symbol Ack removed from

Sn−1 to Sn, we have to apply a different argument to apply the in-
duction hypothesis.

Since ∅
E1−→JPK · · ·

En−−→JPKSn ∈ execmsr(JPK) is normal, n > 2, and
t1, t2 ∈ M, Ack(t1, t2) ∈ (Sn−1 \# Sn), there exists m 6 n− 3 such
that Sm →∗

R Sn−3 for R = {MDOut,MDPub,MDFresh,MDAppl } ∪

Fresh and ∅
E1−→JPK · · ·

Em−−→JPKSm ∈ execmsr(JPK) is normal. This al-

lows us to apply the induction hypothesis on ∅
E1−→JPK · · ·

Em−−→JPKSm ∈

execmsr(JPK). Hence there is a monotonically increasing function from
Nm → Nn ′ and an execution such that Conditions 1 to 8 hold. Let
fp be this function and note that n ′ = fp(m).

In the following case distinction, we extend the previous execution
by one step from (En ′ , Sn ′ , SMS

n ′ ,Pn ′ , σn ′ ,Ln ′) to (En ′+1, Sn ′+1, S
MS
n ′+1,

Pn ′+1, σn ′+1,Ln ′+1), and prove that Conditions 1 to 7 hold for n ′ +

1. By induction hypothesis, they hold for all i 6 n ′. We define a
function f : Nn →Nn ′+1 as follows:

f(i) :=

fp(i) if i ∈Nm

n ′ if m < i 6 n− 3

n ′ + 1 if i = n

Since, Sm →∗
R Sn for R = {MDOut,MDPub,MDFresh,MDAppl,

Fresh }, only Sn \# Sm contains only Fr-facts and !K-facts, and Sm \#

Sn contains only Fr-facts and Out-facts. Therefore, Condition 3, 4 and
5 hold for all i 6 n− 3. Since Em+1, . . . , En−1 = ∅, Condition 1, 2, 6

and 7 hold for all i 6 n− 3.
Fix a bijection such that Pn ′ !P Sm. We will abuse notation by

writing P !P statep(t̃), if this bijection maps P to statep(t̃). Since
{MDOut,MDPub,MDFresh,MDAppl } and Fresh do not add or re-
move state-facts, Pn ′ !P Sn−3. Let P ∈# Pn ′ such that P !P

statep(s̃). Let Q ∈# Pn ′ such that Q!P stateq(t̃).
Let θ ′ be a grounding substitution for stateq(ỹ) ∈ prems(JPK=q)

such that t̃ =E ỹθ
′. Then θ ′ induces a substitution τ ′ and a bijective

renaming ρ ′ for fresh, but not bound names (inQ) such that P|qτ ′ρ ′ =
Q (see Definition 20).

From the form of the rules R1 and R3, and since P =E P|pτρ, for
τ and ρ induced by the grounding substitution for statep(x̃), we can
deduce that P =E out t1, t2; P

′ for a process P ′ = P|p·1τρ. Similarly,
from the form of R2, we can deduce Q =E in (t1, N);Q ′, for N a

234 proofs for part i

term that is not necessarily ground, and a process Q ′ = P|q·1τ
′ρ ′.

Since Sn−2−→R2
Sn−1, we have that there is a substitution τ∗ such that

Nτ ′ρ ′τ∗ =E t2 and ((ỹ ∪ vars(N)) \ ỹ)τ∗ =E t̃ ′, where t̃ ′ such that
stateq·1(t̃, t̃

′) ∈ Sn−1 \
Sn−2.

Given that Q =E in (t1, N);Q ′ and P =E out t1, t2; P
′, have that

Pn ′ = P ′ ∪# { out t1, t2;P ′, in (t ′1, N);Q ′ }# with t1 =E t
′
1 and t2 =E

Nτ∗. Therefore, we chose the following transition:

· · ·
F ′
n−→(En ′ , Sn ′ , SMS

n ′ ,Pn ′ , σn ′ ,Ln ′)

K(t1)
−−−→(En ′+1, Sn ′+1, S

MS
n ′+1,Pn ′+1, σn ′+1,Ln ′+1)

with En ′+1 = En ′ , Sn ′+1 = Sn ′ , SMS
n ′+1 = SMS

n ′ , Pn ′+1 = P ′ ∪# {P ′, Q ′ }#,
σn ′+1 = σn ′ and Ln ′+1 = Ln ′ .

Conditions 1 to 8 hold for i 6 n− 3. It is left to show that Condi-
tions 1 to 8 hold for n.

As established before, we have τ∗ such that Nτ ′ρ ′τ∗ =E t2. Let
stateq(t̃, t̃

′) be the state variable added to Sn−1. Then, ((ỹ∪vars(N))\

ỹ)τ∗ = t̃ ′. By definition of JPK=q, we have that stateq·1(t̃, t̃
′) ∈

prems(ginsts(P=p·1)) for a grounding substitution θq·1 = θ ′ · τ∗. Since
τ ′ and ρ ′ are induced by θ ′, θq·1 induces τ · τ ′ and the same ρ. We
have that Q ′τ ′ = (P|q·1τ

′ρ ′)τ∗ = P|q·1ττ
′ρ and therefore Q ′τ∗ !P

stateq·1(t̃, t̃
′). Similarly, we have P ′ !P stateq·1(s̃). We conclude

that Condition 4 holds.
Conditions Condition 1, 2, 3, 5, 6 and 7 hold trivially.

Case: ri = [statep(t̃)] −[Eq(t1, t2)]→ [statep·1(t̃)] (for some p, t̃ and

t1, t2 ∈M). By induction hypothesis, we have Pn ′ !P Sm, and thus,
as previously established, Pn ′ !P Sn−1. Let Q ∈# Pn ′ such that
Q !P statep(t̃). Let θ be a grounding substitution for statep(x̃) ∈

prems(JPK=p) such that t̃ = x̃θ. Then θ induces a substitution τ and a
bijective renaming ρ for fresh, but not bound names (in Q) such that
P|pτρ = Q (see Definition 20).

From the form of the rule R, and since Q = P|pτρ, we can deduce
that Q = if t1 = t2 then Q1 else Q2 for a process Q ′ = P|p·1τρ.

Since, [E1, . . . , En � α, and thus [E1, . . . , Em � αeq, we have that
t1 =E t2. We therefore chose the following transition:

· · ·
F ′
n−→(En ′ , Sn ′ , SMS

n ′ ,Pn ′ , σn ′ ,Ln ′)

−→(En ′+1, Sn ′+1, S
MS
n ′+1,Pn ′+1, σn ′+1,Ln ′+1)

with En ′+1 = En ′ , Sn ′+1 = Sn ′ , SMS
n ′+1 = SMS

n ′ , Pn ′+1 = Pn ′ \# { if t1 =

t2then Q1 else Q2 }
∪# {Q1 }

#, σn ′+1 = σn ′ and Ln ′+1 = Ln ′ .
We define f as in equation 5 on page 226. Therefore, Conditions 1

to 8 hold for i < n− 1. It is left to show that Conditions 1 to 8 hold
for n.

By definition of JPK and JPK=p, we have that Q1 ↔ statep·1(t̃).
Therefore, and since if t1 = t2 thenQ1 elseQ2 ↔ statep(t̃), Pn ′+1 =

B.2 proofs for Section 5 .4 235

Pn ′ \# { if t1 = t2 then Q1 else Q2 }
∪# {Q1 }

#, and Sn = Sn−1 \#

{ statep(t̃) }
∪# { statep·1(t̃) }

#, Condition 4 holds. Conditions 1, 2, 3, 5,
6 and 7 hold trivially.

Case: ri = [statep(t̃)] −[NotEq(t1, t2)]→ [statep·1(t̃)] (for some p, t̃

and t1, t2 ∈ M). In this case, the proof is almost the same as in the
previous case, except that αnoteq is the relevant axiom, Q2 is chosen
instead of Q1 and Sn = Sn−1 \

{ statep(t̃) }
∪# { statep·2(t̃) }

#.

Case: ri = [statep(t̃)] −[F,Event()]→ [statep·1(t̃)] (for some p, t̃).

This is a special case of the case where ri = [statep(t̃), l] −[a]→

[statep·1(t̃), r] for l = r = ∅ and a = F.

Case: ri = [statep(t̃)] −[Insert(t1, t2)]→ [statep·1(t̃)] (for some p, t̃ and

t1, t2 ∈M). By induction hypothesis, we have Pn ′ !P Sm, and thus,
as previously established, Pn ′ !P Sn−1. Let Q ∈# Pn ′ such that
Q !P statep(t̃). Let θ be a grounding substitution for statep(x̃) ∈

prems(JPK=p) such that t̃ = x̃θ. Then θ induces a substitution τ and a
bijective renaming ρ for fresh, but not bound names (in Q) such that
P|pτρ = Q (see Definition 20).

From the form of the rule R, and since Q = P|pτρ, we can deduce
that Q = insert t1, t2;Q ′ for a process Q ′ = P|p·1τρ.

We therefore chose the following transition:

· · ·
F ′
n−→(En ′ , Sn ′ , SMS

n ′ ,Pn ′ , σn ′ ,Ln ′)

−→(En ′+1, Sn ′+1, S
MS
n ′+1,Pn ′+1, σn ′+1,Ln ′+1)

with En ′+1 = En ′ , Sn ′+1 = Sn ′ [t1 7→ t2], SMS
n ′+1 = SMS

n ′ , Pn ′+1 =

Pn ′ \# { insert t1, t2;Q ′ }# ∪# {Q ′ }#, σn ′+1 = σn ′ and Ln ′+1 = Ln ′ .
We define f as in equation 5 on page 226. Therefore, Conditions 1

to 8 hold for i < n− 1. It is left to show that Conditions 1 to 8 hold
for n.

By definition of JPK and JPK=p, we have that Q ′ ↔ statep·1(t̃).
Therefore, and since insert t1, t2;Q ′ ↔ statep(t̃), Pn ′+1 = Pn ′ \#

{ insert t1, t2;Q ′ }# ∪# {Q ′ }#, as well as Sn = Sn−1 \
{ statep(t̃) }

∪#

{ statep·1(t̃) }
#, we have that Condition 4 holds.

Condition 2 holds, since En = Insert(t1, t2) is the last element of
the trace.

Conditions 1, 3, 5, 6 and 7 hold trivially.

Case: ri = [statep(t̃)] −[Delete(t1, t2)]→ [statep·1(t̃)] (for some p, t̃ and

t1, t2 ∈M). By induction hypothesis, we have Pn ′ !P Sm, and thus,
as previously established, Pn ′ !P Sn−1. Let Q ∈# Pn ′ such that
Q !P statep(t̃). Let θ be a grounding substitution for statep(x̃) ∈

prems(JPK=p) such that t̃ = x̃θ. Then θ induces a substitution τ and a
bijective renaming ρ for fresh, but not bound names (in Q) such that
P|pτρ = Q (see Definition 20).

From the form of the rule R, and since Q = P|pτρ, we can deduce
that Q = delete t1;Q ′ for a process Q ′ = P|p·1τρ.

236 proofs for part i

We therefore chose the following transition:

· · ·
F ′
n−→(En ′ , Sn ′ , SMS

n ′ ,Pn ′ , σn ′ ,Ln ′)

−→(En ′+1, Sn ′+1, S
MS
n ′+1,Pn ′+1, σn ′+1,Ln ′+1)

with En ′+1 = En ′ , Sn ′+1 = Sn ′ [t1 7→ t2], SMS
n ′+1 = SMS

n ′ , Pn ′+1 =

Pn ′ \# { delete t1;Q ′ }# ∪# {Q ′ }#, σn ′+1 = σn ′ and Ln ′+1 = Ln ′ .
We define f as in equation 5 on page 226. Therefore, Conditions 1

to 8 hold for i < n− 1. It is left to show that Conditions 1 to 8 hold
for n.

By definition of JPK and JPK=p, we have that Q ′ ↔ statep·1(t̃).
Therefore, and since delete t1;Q ′ ↔ statep(t̃), Pn ′+1 = Pn ′ \# { delete

t1;Q ′ }# ∪# {Q ′ }#, as well as Sn=Sn−1\
{ statep(t̃) }

∪# { statep·1(t̃) }
#,

we have that Condition 4 holds.
Condition 2 holds, since En = Delete(t1, t2) is the last element of

the trace.
Conditions 1, 3, 5, 6 and 7 hold trivially.

Case: ri = [statep(t̃)] −[IsIn(t1, t2)]→ [statep·1(t̃, t2)] (for some p, t̃

and t1, t2 ∈ M). By induction hypothesis, we have Pn ′ !P Sm,
and thus, as previously established, Pn ′ !P Sn−1. Let Q ∈# Pn ′

such that Q !P statep(t̃). Let θ be a grounding substitution for
statep(x̃) ∈ prems(JPK=p) such that t̃ = x̃θ. Then θ induces a substitu-
tion τ and a bijective renaming ρ for fresh, but not bound names (in
Q) such that P|pτρ = Q (see Definition 20).

From the form of the rule R, and since Q = P|pτρ, we can deduce
that Q = lookup t1 as v in Q1 else Q2 for some variable V , and two
processes Q1 = P|p·1τρ and Q2 = P|p·2τρ.

Since [E1, . . . , En] � αin, there is an i < n such that Insert(t1, t2) ∈E
Ei and there is no j such that i < j < n and Delete(t1) ∈E Ej or and
Insert(t1, t2) ∈E TEj. Since Em, . . . , En = ∅, we know that i < m.
Hence, by induction hypothesis, Sn ′(t1) = t2. We therefore chose the
following transition:

· · ·
F ′
n−→(En ′ , Sn ′ , SMS

n ′ ,Pn ′ , σn ′ ,Ln ′)

−→(En ′+1, Sn ′+1, S
MS
n ′+1,Pn ′+1, σn ′+1,Ln ′+1)

with En ′+1 = En ′ , Sn ′+1 = Sn ′ , SMS
n ′+1 = SMS

n ′ , Pn ′+1 = Pn ′ \#

{ lookup t1 as v in Q1 else Q2 }
∪# {Q1{

t2/v } }
#, σn ′+1 = σn ′ and

Ln ′+1 = Ln ′ .
We define f as in equation 5 on page 226. Therefore, Conditions 1

to 8 hold for i < n− 1. It is left to show that Conditions 1 to 8 hold
for n.

By definition of JPK and JPK=p, we have thatQ1{
v/t2 }↔ statep·1(t̃,

t2) (for τ ′ = τ[v 7→ t2] and ρ ′ = ρ). Therefore, and since lookup

t1 as v in Q1 else Q2 ↔ statep(t̃), Pn ′+1 = Pn ′ \# { lookup t1 as v

B.2 proofs for Section 5 .4 237

in Q1 else Q2 }
∪# {Q ′ }#, as well as Sn = §n−1 \# { statep(t̃) }

∪#

{ statep·1(t̃, t2) }
#, Condition 4 holds.

Conditions 1, 2, 3, 5, 6 and 7 hold trivially.

Case: ri = [statep(t̃)] −[IsNotSet(t1)]→ [statep·2(t̃)] (for some p, t̃ and

t1 ∈ M). By induction hypothesis, we have Pn ′ !P Sm, and thus,
as previously established, Pn ′ !P Sn−1. Let Q ∈# Pn ′ such that
Q !P statep(t̃). Let θ be a grounding substitution for statep(x̃) ∈

prems(JPK=p) such that t̃ = x̃θ. Then θ induces a substitution τ and a
bijective renaming ρ for fresh, but not bound names (in Q) such that
P|pτρ = Q (see Definition 20).

From the form of the rule R, and since Q = P|pτρ, we can deduce
that Q = lookup t1 as v in Q1 else Q2 for a variable v and two
processes Q1 = P|p·1τρ and Q2 = P|p·2τρ.

Since [E1, . . . , En] � αnotin, there is no i < n with Insert(t1, t2) ∈E Ei
and there is no j such that i < j < n and Delete(t1) ∈E Ej or and
Insert(t1, t2) ∈E TEj. Since Em, . . . , En = ∅, we know that holds
j < m. Hence, by induction hypothesis, Sn ′(t1) is undefined. We
therefore chose the following transition:

· · ·
F ′
n−→(En ′ , Sn ′ , SMS

n ′ ,Pn ′ , σn ′ ,Ln ′)

−→(En ′+1, Sn ′+1, S
MS
n ′+1,Pn ′+1, σn ′+1,Ln ′+1)

with En ′+1 = En ′ , Sn ′+1 = Sn ′ , SMS
n ′+1 = SMS

n ′ , Pn ′+1 = Pn ′ \#

{ lookup t1 as v in Q1 else Q2 }
∪# {Q2 }

#, σn ′+1 = σn ′ and Ln ′+1 =

Ln ′ .
We define f as in equation 5 on page 226. Therefore, Conditions 1

to 8 hold for i < n− 1. It is left to show that Conditions 1 to 8 hold
for n.

By definition of JPK and JPK=p, we have that Q2 ↔ statep·2(t̃).
Therefore, and since lookup t1 as v in Q1 else Q2 ↔ statep(t̃),
Pn ′+1 = Pn ′ \# { lookup t1 as v in Q1 else Q2 }

∪# {Q2 }
#, and

Sn = §n−1 \
{ statep(t̃) }

∪# { statep·2(t̃) }
#, Condition 4 holds.

Conditions 1, 2, 3, 5, 6 and 7 hold trivially.

Case: ri = [statep(t̃),Fr(lockl)] −[Lock(lockl, t)]→ [statep·1(t̃, lockl)] (for

some p, t̃, lockl ∈ FN and t ∈ M). By induction hypothesis, we have
Pn ′ !P Sm, and thus, as previously established, Pn ′ !P Sn−1. Let
Q ∈# Pn ′ such that Q !P statep(t̃). Let θ be a grounding substitu-
tion for statep(x̃) ∈ prems(JPK=p) such that t̃ = x̃θ. Then θ induces
a substitution τ and a bijective renaming ρ for fresh, but not bound
names (in Q) such that P|pτρ = Q (see Definition 20).

From the form of the rule R, and since Q = P|pτρ, we can deduce
that Q = lockl t; Q ′ for Q ′ = P|p·1τρ.

Since [E1, . . . , En] � αlock, for every i < n such that Lock(lp, t) ∈E Ei,
there a j such that i < j < n and Unlock(lp, t) ∈E Ej, and in between
i and j, there is no lock or unlock, i. e., for all k such that i < k < j,
and all li, Lock(li, t) /∈E Ek and Unlock(li, t) /∈E Ek.

238 proofs for part i

Since Em, . . . , En = ∅, we know that this holds for i < m and
j < m as well. By induction hypothesis, Condition 6, this implies that
t 6∈E Ln ′ . We therefore chose the following transition:

· · ·
F ′
n−→(En ′ , Sn ′ , SMS

n ′ ,Pn ′ , σn ′ ,Ln ′)

−→(En ′+1, Sn ′+1, S
MS
n ′+1,Pn ′+1, σn ′+1,Ln ′+1)

with En ′+1 = En ′ , Sn ′+1 = Sn ′ , SMS
n ′+1 = SMS

n ′ , Pn ′+1 = Pn ′ \#

{ lockl t; Q ′ }# ∪# {Q ′ }#, σn ′+1 = σn ′ and Ln ′+1 = Ln ′ ∪ { t }.
We define f as in equation 5 on page 226. Therefore, Conditions 1

to 8 hold for i < n− 1. It is left to show that Conditions 1 to 8 hold
for n.

By definition of JPK and JPK=p, we have that Q ′ ↔ statep·1(t̃).
Therefore, and since lockl t; Q ′ ↔ statep(t̃), Pn ′+1 = Pn ′ \# { lockl t;
Q ′ }# ∪# {Q ′ }#, and Sn = §n−1 \

{ statep(t̃),Fr(lockl) }
∪# { statep·1(t̃,

lockl) }
#, Condition 4 holds.

Condition 6 holds since En = {Lock(lockl, t) }
is added to the end

of the trace.
Conditions 1, 2, 3, 5 and 7 hold trivially.

Case: ri = [statep(t̃)] −[Unlock(nl, t)]→ [statep·1(t̃)] (for some p, t̃,

nl ∈ FN and t ∈ M). By induction hypothesis, we have Pn ′ !P

Sm, and thus, as previously established, Pn ′ !P Sn−1. Let Q ∈#

Pn ′ such that Q !P statep(t̃). Let θ be a grounding substitution
for statep(x̃) ∈ prems(JPK=p) such that t̃ = x̃θ. Then θ induces a
substitution τ and a bijective renaming ρ for fresh, but not bound
names (in Q) such that P|pτρ = Q (see Definition 20).

From the form of the rule R, and since Q = P|pτρ, we can deduce
that Q = unlockl t; Q ′ for Q ′ = P|p·1τρ.

We therefore chose the following transition:

· · ·
F ′
n−→(En ′ , Sn ′ , SMS

n ′ ,Pn ′ , σn ′ ,Ln ′)

−→(En ′+1, Sn ′+1, S
MS
n ′+1,Pn ′+1, σn ′+1,Ln ′+1)

with En ′+1 = En ′ , Sn ′+1 = Sn ′ , SMS
n ′+1 = SMS

n ′ , Pn ′+1 = Pn ′ \#

{ unlockl t; Q ′ }# ∪# {Q ′ }#, σn ′+1 = σn ′ and Ln ′+1 = Ln ′ \ { t }.
We define f as in equation 5 on page 226. Therefore, Conditions 1

to 8 hold for i < n− 1. It is left to show that Conditions 1 to 8 hold
for n.

By definition of JPK and JPK=p, we have that Q ′ ↔ statep·1(t̃).
Therefore, and since unlockl t; Q ′ ↔ statep(t̃), Pn ′+1 = Pn ′ \#

{ unlockl t; Q ′ }# ∪# {Q ′ }#, as well as Sn = Sn−1 \# { statep(t̃) }
∪#

{ statep·1(t̃) }
#, Condition 4 holds.

We show that Condition 6 holds for Ln ′+1 = Ln ′ \ { t }: For all t ′ 6=E

t, t ′ ∈E Ln ′ ⇔ t ′ ∈E Ln ′+1 by induction hypothesis. If t 6∈E Ln ′ ,
then ∀j 6 m,u.Lock(u, t) ∈E Ej → ∃j < k 6 n.Unlock(u, t) ∈E Ek.

B.2 proofs for Section 5 .4 239

Since we have Em, . . . , En−1 = ∅ and En = {Unlock(nl, t) }
#, we

can strengthen this to ∀j 6 n,u.Lock(u, t) ∈E Ej → ∃j < k 6

n.Unlock(u, t) ∈E Ek, which means that the condition holds in this
case. If t ∈E Ln ′ , then ∃j 6 n,u.Lock(u, t) ∈E Ej ∧ ∀j < k 6

n.Unlock(u, t) 6∈E Ek and since En = {Unlock(nl, t) }
and Em, . . . ,

En−1 = ∅, a contradiction to Condition 6 would constitute of j and
u 6=E nl such that Lock(u, t) ∈E Ej and ∀j < k 6 n. Unlock(u, t) 6∈E
Ek.

We will show that this leads to a contradiction with [E1, . . . , En] � α.
Fix j and u. By definition of JPK and well-formedness of P, there is
a pl that is a prefix of p such that P|ql

= locklt;Q ′′ for the same
annotation l and parameter t. The form of the translation guaran-
tees that if statep(t̃) ∈ Sn, then for some t̃ ′ there is i 6 n such that
statep ′(t̃ ′) ∈ Si, if p ′ is a prefix of p. We therefore have that there is
i < n such that Ei =E {Lock(nl, t) }

#. We proceed by case distinction:
Case 1: j < i (see Figure 21). Since ∀j < k 6 n.Unlock(u, t) 6∈E Ek,
[E1, . . . , En] 6� αlock.

j

Lock(u, t)

i

Lock(nl, t)

n

Unlock(nl, t)

Figure 21: Visualisation of Case 1.

Case 2: i < j (see Figure 22). By definition of P, there is no paral-
lel and no replication between pl and p. Note that any rule in JPK

that produces a state named stateq for a non-empty q is such that
it requires a fact with name stateq ′ for q = q ′ · 1 or q = q ′ · 2 (in
case of the translation of out, it might require statesemi

q ′ , which in turn
requires stateq ′). Therefore, there cannot be a second k 6= n such
that Unlock(nl, t) ∈E Ek (since nl was added in a Fr-fact in to Si).
This means in particular that there is not k such that i < k < n and
Unlock(nl, t) ∈E Ek. Therefore, [E1, . . . , En] 6� αlock.

i

Lock(nl, t)

j

Lock(u, t)

n

Unlock(nl, t)

Figure 22: Visualisation of Case 2.

Conditions 1, 2, 3, 5 and 7 hold trivially.

Case: ri = [statep(t̃), l
′] −[a ′,Event()]→ [statep·1(t̃, t̃

′), r ′] (for some

p, t̃, t̃ ′ and l ′, r ′, a ′ ∈ G∗). By induction hypothesis, we have Pn ′ !P

Sm, and thus, as previously established, Pn ′ !P Sn−1. Let Q ∈#

Pn ′ such that Q !P statep(t̃). Let θ be a grounding substitution
for statep(x̃) ∈ prems(JPK=p) such that t̃ = x̃θ. Then θ induces a
substitution τ and a bijective renaming ρ for fresh, but not bound
names (in Q) such that P|pτρ = Q (see Definition 20).

240 proofs for part i

From the form of the rule R, and since Q = P|pτρ, we can deduce
that Q = l −[a]→ r;Q ′ for a process Q ′ = P|p·1τρ.

Since ri ∈E ginsts(R), we have that there is a substitution τ∗ such
that (l −[a]→ r)τ∗ = l ′ −[a]→ ′ r ′, lfacts(l ′) ⊂# Sn−1, pfacts(l ′) ⊂E

Sn−1 and, from the definition of JPK=p vars(l)τ∗ = t̃ ′. Since P is well-
formed, no fact in Fres appears in neither l nor r, so from Condition 3

in the induction hypothesis, we have that lfacts(l ′) ⊂# SMS
m = SMS

n ′ and
pfacts(l ′) ⊂ SMS

m = SMS
n ′ . We therefore chose the following transition:

· · ·
F ′
n−→(En ′ , Sn ′ , SMS

n ′ ,Pn ′ , σn ′ ,Ln ′)

a ′

−→(En ′+1, Sn ′+1, S
MS
n ′+1,Pn ′+1, σn ′+1,Ln ′+1)

with En ′+1 = En ′ , Sn ′+1 = Sn ′ , SMS
n ′+1 = SMS

n ′ \ lfacts(l ′)∪# r ′, Pn ′+1 =

Pn ′ \# { l −[a]→ r;Q ′ }# ∪# {Q ′τ∗ }#, σn ′+1 = σn ′ and Ln ′+1 = Ln ′ .
We define f as in equation 5 on page 226. Therefore, Conditions 1

to 8 hold for i < n− 1. It is left to show that Conditions 1 to 8 hold
for n.

Condition 7 holds since Em+1, . . . , En−1 = ∅ and since hide([E1, . . . ,

Em]) = [F1, . . . , n
′], while En = F ′n \Event() = a ′ (note that Event() ∈

Fres).
As established before, we have τ∗ such that (l −[a]→ r)τ∗ =E l −[

a]→ r. By the definition of JPK=p, we have that statep·1(t̃, t̃
′) ∈E

ginsts(P=p·1), and a θ ′ = θ · τ∗ that is grounding for statep·1(t̃, t̃
′).

Since τ and ρ are induced by θ, θ ′ induces τ · τ∗ and the same ρ.
We have that Q ′τ∗ = (P|p·1τρ)τ

∗ = P|pττ
∗ρ and therefore Q ′τ !P

statep·1(t̃, t̃
′). Thus, and since l −[a]→ r;Q ′ !P statep(t̃), Pn ′+1 =

Pn ′ \# { l −[a]→ r;Q ′ }# ∪# {Q ′τ∗ }# and Sn = Sn−1 \
lfacts(l ′) ∪# r ′ \#

{ statep(t̃) }
∪# { statep·1(t̃, t̃

′) }#, Condition 4 holds.
Condition 3, holds since

Sn \# Fres = (Sn−1 \
lfacts(l ′)∪# r ′

\# { statep(t̃) }
∪# { statep·1(t̃, t̃

′) }#) \# Fres

= (Sn−1 \
lfacts(l ′)∪# r ′) \# Fres

= Sn−1 \
Fres \

lfacts(l ′)∪# r ′

= SMS
n ′ \

lfacts(l ′)∪# r ′

= SMS
n ′+1

Conditions 1, 2, 5, 6 and 7 hold trivially.

C
I N I T I A L I S AT I O N A N D S E T U P I N FK M

c.1 initialisation phase

All regular protocol machines that shall accept messages from FK M

need to send a message to FK M first [51, § 4.5]. A similar behaviour
needs to be emulated by F s e t u p in the network with the actual tokens.
The involved protocol machines are M : = U ∪ S T ∪ { F 1 , . . . , F l } ,
where F i denotes the regular protocol machine that makes subrou-
tine calls to F i , identified with the machine ID «reg,F i>,s i d >.

We add the following part to the definition of FK M :

Listing 29: Initilisation (FKM).

ready-P: accept <ready> from P ∈M

send <ready•,P> to A

ready [ready-P ∀P ∈M]
✆

We add the following part to the definition of ST:

Listing 30: Initilisation (STi).

ready [¬ ready]:

2 accept <ready> from parentId

call Fsetup with <ready>
✆

c.2 handling of the setup phase in FKM and STi

The following listings describe the setup phase introduced on p. 120.

Listing 31: The setup phase: sharing keys (FKM).

share[¬finish_setup∧ready]: accept <share,h1,U2> from U1 ∈ U;

2 if Ui, U2 ∈ Room
create h2; Store[U2,h2]=Store[U1,h1]; send <

share•,h2> to U2
✆

Listing 32: The setup phase: sharing keys (STi).

share[¬finish_setup∧ready]: accept <share,h1,U2> from Fsetup;

2 if Store[U,h1]=s call Fsetup with <send,s,U2>

import[¬finish_setup∧ready]:accept <deliver,s,U1> from Fsetup
if U1 ∈ Room create h2; Store[Ui,h2]=s; send <share•,h2>

to Fsetup
✆

241

242 initialisation and setup in {km

Listing 33: The setup phase: terminating the setup phase (FKM).

1 finish_setup[¬finish_setup∧ready]: accept <finish_setup> from

U ∈ U;

send <finish_setup•> to A
✆

Listing 34: The setup phase: terminating the setup phase (STi).

finish_setup[¬finish_setup∧ready]: accept <close> from Fsetup;

send <close•> to Fsetup
✆

c.3 setup assumptions for the implementation

The setup assumption used for ST is subsumed in the setup function-
ality Fsetup, which is defined as follows:

ready-Ui: accept <ready,STi> from Ui ∈ U

send <ready•,Ui> to A

3 ready-P: accept <ready> from P ∈M\U

send <ready•,P> to A

ready [ready-P ∀P ∈M]

share[ready∧ ¬finish_setup]: accept <send,x,STj> from STi

if Ui, Uj ∈ Room
8 send <deliver,x,STi> to STj

else

send <⊥,STi> to Ui

finish_setup[ready∧¬finish_setup]:

accept <finish_setup> from U ∈ U

13 from i:=1 to n

send <close> to STi; accept <close•> from STi

send <finish_setup•> to A

relay_receive[ready]: accept <x,STi> from Ui; send <x> to STi

relay_send[ready]: accept <x> from STi;send <x,STi> to Ui
✆

(The sixth line signifies that ready is considered true when ready-P

is true for all P ∈M.)

D
T H E C O M P L E T E P R O O F O F E M U L AT I O N

The static call graph has only an edge from prot-fkm to prot-fsetup,
πF,C,Π,Impl is thus rooted at prot-fkm.

Lemma 16: For all KU parameters F,C, Π, πF,C,Π,Impl is a poly-time
protocol.

Proof. By Definition 2 in [51, § 6], we need to show that there exists a
polynomial p such that for every well-behaved environment Z that is
rooted at prot-fkm, we have:

Pr[TimeπF,C,Π,Impl
[πF,C,Π,Impl, AD, Z](η)

> p(FlowZ→πF,C,Π,Impl,AD
[πF,C,Π,Impl, AD, Z](η))]

= negl(η).

Let pmax be a polynomial such that for all Fi and C ∈ C, the al-
gorithm implC terminates in a running time smaller than pmax(n),
where n is the length of the input. implF

new
is always called on input

of length η, thus all keys have a length smaller pmax(η). In step new,
F and a are provided by the environment (as input to Ui, which then
asks Fsetup to relay the request to STi). Store grows at most by some
polynomial pgrowth−new in the length of the environment’s input. Sim-
ilarly, an <unwrap,...> query cannot grow the Store by more than
pgrowth−unwrap. Therefore, at any point in time t (we simply count the
number of epochs, i. e., activations of the environment), the store is
smaller than p ′(FlowZ→πF,C,Π,Impl,AD

[πF,C,Π,Impl, AD, Z](η)) for a poly-
nomial p ′.

We observe that there is not a single activation of a machine in
πF,C,Π,Impl, neither a Ui, an STi nor Fsetup, where the running time
is not polynomial in the environment’s input and the length of the
Store. AD might corrupt user U ∈ U∪Uext, but they do not have any
state. Thus, we have for the running time of πF,C,Π,Impl at point t,
i. e., TimeπF,C,Π,Impl,t

[πF,C,Π,Impl, AD, Z](η),

TimeπF,C,Π,Impl,t
[πF,C,Π,Impl, AD, Z](η)

= TimeπF,C,Π,Impl,t−1[πF,C,Π,Impl, AD, Z](η)+

p ′(FlowZ→πF,C,Π,Impl,AD
[πF,C,Π,Impl, AD, Z](η))

6 t · p ′(FlowZ→πF,C,Π,Impl,AD
[πF,C,Π,Impl, AD, Z](η))

6 p ′′(FlowZ→πF,C,Π,Impl,AD
[πF,C,Π,Impl, AD, Z](η))

243

244 the complete proof of emulation

for another polynomial p ′′, because

t < FlowZ→πF,C,Π,Impl,AD
[πF,C,Π,Impl, AD, Z](η)).

The proof that π implements FKM proceeds in several steps: Mak-
ing use of the composition theorem, the last functionality Fl in FKM

can be substituted by its key-manageable implementation ÎL. Then,

FKM can simulate Î instead of calling it. Let F
{Fl/Îl }
KM be the result-

ing functionality. In the next step, calls to this simulation are sub-
stituted by calls to the functions used in Î, implC for each C ∈ Cl.

The resulting, partially implemented functionality F
{Fl/ImplFl

}

KM saves
keys rather than credentials (for Fl). We repeat the previous steps
until FKM does not call any KU functionalities anymore, i. e., we

have F
{F1/ImplF1

,...,Fn/ImplFn }

KM , which we abbreviate to F
impl

KM . Then
we show that the network of distributed token π emulates the mono-
lithic block F

impl

KM , which does not call KU functionalities anymore,
using a reduction to the security of the key-wrapping scheme.

The first four steps will be the subject of Lemma 6, the last step
is Lemma 7. But before we come to this, the following definition ex-
presses partial implementations of FKM. In fact, the formal definition
of FKM is the special case in which the set of substituted functionali-
ties is empty:

Definition 34 (FKM with partial implementation): Given the KU pa-
rameters F,C, Π, and functions (implKW

new
,wrap, unwrap), let ImplFi

be
the algorithms defining the keymanageable implementation Îi of Fi ∈

{ F1, . . . ,Fp } ⊂ F. We define the partial implementation of FKM with
respect to the KU functionalities F1, . . . ,Fp , denoted

F
{F1/ImplF1

,...,Fp/ImplFp }

KM , as follows:

Let the ideal protocols Fp+1, . . . ,Fl be rooted at prot-Fp+1,. . . ,

prot-Fl. In addition, F
{F1/ImplF1

,...,Fp/ImplFp }

KM , defines the protocol
name prot-fkm. For prot-fkm, the protocol defines the following be-
haviour: A regular protocol machine with machine ID 〈〈reg,Fi〉, sid〉

for Fi ∈ { F1, . . . ,Fl } runs the following code:

ready: accept <ready> from parentId

send <ready> to <ideal,sid> (= FKM)

3 relay_to: accept <m> from <ideal,sid> (= FKM)

send <m> to <<reg,Fi>,<sid,<prot-Fi,<>>> (= Fi)

relay_from: accept <m> from <<reg,Fi>,<sid,<prot-Fi,<>>>

send <m> to <ideal,sid> (= FKM)
✆

The ideal party runs the logic for FKM described in Section-8.4, with
the following alteration of the corrupt macro used in the corrupt and
wrap step:

the complete proof of emulation 245

Listing 35: procedure for corrupting a credential c.

Kcor ← Kcor ∪ { c }
for any Store[U,h]=〈F, a, c〉

if F ∈ { KW,F1, . . . ,Fp }

4 key[c]← c

send <corrupt•,h,c> to A

else

call F with <corrupt,c>

accept <corrupt•,k> from F

9 key[c]← k

send <corrupt•,h,k> to A
✆

and in the new, command, public_command and unwrap steps:

new[ready]: accept <new,F,a> from U ∈ U

if <F,new,a,*> ∈ Π then

if F ∈ { F1, . . . ,Fp }

(k, public) ← implFnew(1
η)

5 create h; Store[U,h] ← <F,a,k>

K← K∪ {k }
send <new•,h,public> to U

else if F = KW

(k, public)← implKW
new (1η)

10 if k ∈ K∪Kcor
send <error> to A

else

create h; Store[U,h] ← <F,a,k>

K← K∪ {k }
15 send <new•,h,public> to U

else

call F with <new>

accept <new•,c,public> from F

if c ∈ K∪Kcor
20 send <error> to A

else

create h; Store[U,h] ← <F, a, c>

K← K∪ { c }
send <new•,h,public> to U

✆

1 command[finish_setup]:

accept <C,h,m> from U ∈ U

if Store[U,h]=<F,a,c> and <F,C,a,*>∈ Π
if F ∈ { F1, . . . ,Fp }

send <C•,implC(c,m)> to U

6 else if F 6= KW

call F with <C,c,m>

accept <C•,r> from F

send <C•,r> to U
✆

1 public_command:

accept <C,public,m> from U ∈ U

if C ∈ Ci,pub

246 the complete proof of emulation

if F ∈ { F1, . . . ,Fp }

send <C•,implC(public,m)> to U

6 else

call Fi with <C,public,m>

accept <C•,r> from Fi
send <C•,r> to U

✆

1 unwrap[finish_setup]:

accept <unwrap,h1,w,a2,F2,id> from U ∈ U

if Store[U,h1]=<KW,a1,c1> and

<KW,unwrap,a1,a2>∈ Π,F2 ∈ F

if c1 ∈ Kcor

6 c2 = unwrap<F2,a2,id>(c1, w)

if c2 6= ⊥ and c2 6∈ K

Kcor ← Kcor ∪ { c2 }
if F2 ∈ { KW,F1, . . . ,Fp }

create h2
11 Store[U,h2] ← <F2,a2,c2>

key[c2]=c2
else

call F2 with <inject,c2>

accept <inject•,c ′>

16 if c ′ 6∈ K∪Kcor
create h2
Store[U,h2] ← <F2,a2,c

′>

key[c ′]=c2
send <unwrap•,h> to U

21 else if c2 6= ⊥, c2 ∈ K and c2 ∈ Kcor
create h2
Store[U,h2] ← <F2,a2,c2>

send <unwrap•,h> to U

else // (c2 = ⊥∨ c2 ∈ K\Kcor)

26 send <error> to A

else if (c1 /∈ Kcor and

∃!c2.<c2,<F2,a2,id>,w>∈encs[c1])
create h2
Store[U,h2] ← <F2,a2,c2>

31 send <unwrap•,h> to U
✆

Note that the partial implementation of FKM is not an ideal proto-
col in the sense of [51, § 8.2], since not every regular protocol machine
runs the dummy party protocol – the party <reg,Fi> relays the com-
munication with the KU functionalities.

Lemma 6: Let F,C, Π be ku parameters such that all F ∈ F are key-
manageable. Let further ImplFi

be the set of functions defining the

key-manageable implementation Îi of Fi. Then F
F1/ImplF1

,...,Fl/ImplFl

KM
emulates FKM. Furthermore, it is poly-time.

Proof. Induction on the number of substituted KU functionalities.

the complete proof of emulation 247

base case : F∅
KM actually equals FKM. Since emulation is reflexive,

F∅
KM emulates FKM. It is left to show that FKM is poly-time. The argu-

ment is actually the same as for πF,C,Π,Impl (see proof to Lemma 16),
after we have established five things: 1. instead of calling implemen-
tation functions implFC for F 6= KW, FKM is calling the function F with
the same value. Since F is key-manageable, it is also poly-time. 2. The
implementation function for wrapping is applied on a different value,
but this value has the same length, therefore the same upper bound
holds for its running time. 3. Graph reachability is linear in the num-
ber of credentials, which in turn is polynomial, because the flow from
the environment is polynomial, and thus the number of new queries is
polynomial, too. Therefore, only a number of credentials that is poly-
nomial in the flow from the environment is added. 4. The relaying
of messages from Ui via Fsetup does not add more than linearly in η
to the running time, 5. similarly, for the distribution of the <finish_-

setup> message.

induction step : Assume i > 1 and F
F1/ImplF1

,...,Fi−1/ImplFi−1

KM
(in the following: Fi−1

KM) emulates FKM. Since emulation is transi-

tive, it suffices to show that F
F1/ImplF1

,...,Fi/ImplFi

KM emulates Fi−1
KM . We

will proceed in three steps: First, we will substitute Fi by its key-
manageable implementation Îi. Then, we will alter FKM to simulate
Îi inside. The main part of the proof is showing that Îi can be emu-
lated by calling ImplFi

inside FKM, storing keys instead of credentials.
The first step is a consequence of composition theorem [51, The-

orem 7]. The induction hypothesis gives us that Fi−1
KM is a poly-

time protocol which is rooted in fkm. By assumption, Îi is the key-
manageable implementation of Fi, i. e., Îi is a polytime protocol that
emulates Îi. Furthermore, Îi defines only F-i, therefore ÎF is substi-
tutable for Fi in Fi−1

KM . Therefore, Fi−1[Fi/Îi] is poly-time and emu-
lates Fi−1

KM .
In the second step, we alter Fi−1[Fi/Îi] (in the following: Fi−1 ′

KM)
such that the ideal functionality defined in Fi−1 ′

KM (prot− fkm) sim-
ulates Îi locally, and calls this simulation whenever 〈〈reg,Fi〉, sid〉

would be addressed in FKM. Îi might send a message to A, in which
case this message is indeed relayed to A. Since the simulation will
only be called by FKM, it will only respond to FKM. We will call
this protocol Fi−1 ′′

KM . To show that Fi−1 ′′

KM emulates Fi−1 ′

KM , we have to
make sure that in Fi−1 ′

KM , Îi can only be addressed by FKM, via the
relay mechanism implemented in 〈〈reg,Fi〉, sid〉 (which consequently
is not present in Fi−1 ′′

KM , since any call to 〈〈reg,Fi〉, sid〉 is substituted
by calls to the simulation of Îi). If this is the case, then the observable
output to the environment is exactly the same. First, Îi never adresses
<adv>, so by C5, it cannot be adressed by the adversary. Second, since
the environment is rooted at proto-fkm, it cannot address Îi. Third,
there is no other regular party than 〈〈reg,Fi〉, sid〉 in sid that calls Îi.

248 the complete proof of emulation

By C8, there cannot be other regular machines addressing Îi. There-
fore, Fi−1 ′′

KM emulates Fi−1 ′

KM . Since Îi is poly-time, Fi−1 ′′

KM can simulate
it and is still poly-time.

In the third step, we show that Fi emulates Fi−1 ′′

KM . We claim that
in fact, with overwhelming probability, Fi provides a perfect simula-
tion of Fi−1 ′′

KM , namely, when the list L maintained in Fi−1
KM describes a

function from credentials to keys. Whenever a pair (c, k) is added to L
(this happens only in steps new and inject), implFi

new
is used to draw c.

Since for all k, Pr[k ′ = k|k ′ ← implFi
new

(1η)] is negligible by assumption
(see Definition 24), for every c there is (with overwhelming probabil-
ity) exactly one k such that (c, k) ∈ L, hence L describes a function
from credentials to keys. So we can assume that, with overwhelming
probability, this list describes a function. We will inspect the steps
new, command, wrap, unwrap and corrupt, since they are the only
steps that produce an output depending on the value of the creden-
tial. Note first that, since Pr[k ′ = k|k ′ ← implFi

new
(1η)] is negligible

for all k, and since both K and Kcor are only polynomial in size, the
checks for c ∈ K∪Kcor in step new pass only with negligible probabil-
ity. Therefore, we can assume those checks to be non-operations. The
steps new, corrupt and command are trivial to verify. Each credential
is substituted by the corresponding key. The corruption macro used
in both steps corrupt and wrap makes sure that for each credential
c ∈ K∩Kcor, key[c] contains the same key that the bijection defined
by L in Fi−1

KM assigns to it. Furthermore, for each c 6∈ K, c ∈ Kcor, the
step unwrap gives the same guarantee (by definition of step inject

in Definition 24). Therefore, the step wrap correctly substitutes cor-
rupted credentials by keys. Since Îi is key-manageable, and both cre-
dential and keys are drawn using implFi

new
, with overwhelming proba-

bility, the substitution is correct for uncorrupted credentials, too. The
last step to check is unwrap. Unless c1 ∈ Kcor and c2 6∈ K, this step
restores only a previously created credential in the Store, so no sub-
stitution necessary. In case that c1 ∈ Kcor and c2 6∈ K, a credential
that is freshly created and linked to the content of the wrapping (see
the inject step) is stored, whereas in Fi−1 ′′

KM , it is the content of the
wrapping itself that is stored.

By transitivity of emulation, we have that Fi emulates FKM. By the
fact that Fi actually computes less than Fi−1 ′′

KM , we know it is poly-
time.

Definition 35 (guaranteeing environment): Suppose Z is an environ-
ment that is rooted at r, and p is a predicate on sequences of (id0, id1,
m). Let Sp(Z) be a sandbox that runs Z but checks at the end of
each activation if the predicate holds true on the list of messages sent
and received by the environment (including the message about to be
send). If the predicate does not hold true, Sp aborts Zp and outputs
some error symbol fail ∈ Σ. We say that Z guarantees a predicate p, if

the complete proof of emulation 249

there exists such a sandbox Sp(Z), and for every protocol Π rooted at
r, for every adversary A, we have that:

Pr[Exec[Π,A,Z] = fail]

is negligible in η.

Let us denote a list of messages mi from ai to bi, as Mt = ((a0, b0,

m0), . . . , (at, bt,mt)). We will denote the i-prefix of this list by Mi.
We can filter messages by their session ID: Mi

|SP denotes a messages
(ai, bi,mi) where either ai = < env > and bi is of the form

〈〈reg, basePID〉, 〈α1, . . . , αk−1, 〈prot− fkm, 〈SP〉〉〉〉,

or vice versa. We say (aj, bj,mj) is a response to (ai, bi,mi) if (aj, bj,
mj) is the earliest message such that i < j, ai = bj, bj = ai, and that
no other message at an epoch k < i exists such that (ai, bi,mi) is
a response to (ak, bk,mk). This assumes that there is a response to
every query. (In case of an error, FKM responds with ⊥ rather than
ignoring the query.) In order to tell which handles are corrupted, we
need to define which handles point to the same key a given moment
t.

Given M|NP = M|U,Uext,ST,Room = ((a0, b0,m0), . . . , (an, bn,mn)),
we define ≡0 to be the empty relation and for all 1 6 t 6 n, we
define ≡t as the least symmetric transitive relation such that

1. ≡t⊂≡t−1 ∪{ (U,h), (U,h) }, if mt = < new•, h, public) >, at = U
and ∃s < t, F, a : ms = < new, F, a > and (at, bt,mt) is a
response to (as, bs,ms)

2. ≡t⊂≡t−1 ∪{ (U1, h1), (U2, h2) }, if mt = < share• >, at = U1

and ∃s < t : ms = < share, (U1, h1), (U2, h2) > and (at, bt,mt)

is a response to (as, bs,ms)

3. ≡t⊂≡t−1 ∪{ (U1, h1), (U2, h2) }, if mt = < unwrap•, h2 >,
at = U2 and ∃q, r, s : such that (at, bt,mt) is a response to
(as, bs,ms), and (ar, br,mr) is a response to (aq, bq,mq), and
r < s. Furthermore:
mq = < wrap, h1, h2, id >, bq = U1,mr = < wrap•, w >,ar = U1

and ms = unwrap, h ′
1, w, a, F, id >, bs = U1 and

(U2, h
′
1) ≡

t−1 (U1, h1).

4. ≡t=≡t−1, otherwise.

Using this relation, we can define the predicate corruptedM|NP
(U,h),

which holds iff either some (U∗, h∗), ((U∗, h∗) ≡t (U,h)) were cor-
rupted directly, via wrapping with a corrupted key, or injected via
unwrapping, i. e., if there are mi,mj ∈ M|NP, mj is a response to mi

and:

250 the complete proof of emulation

• mj = (adv, env, 〈corrupt•, h∗, c〉),mi = (env, U∗, 〈corrupt, h〉)

(for some c), or

• mj = (U∗, env, 〈wrap•, w〉), mi = (env, U∗, 〈wrap, h1, h
∗, id〉),

with corruptedM|NP
(U∗, h1), or

• mj = (U∗, env, 〈unwrap•, h∗〉),mi = (env, U∗, 〈unwrap, h1, w, a2,

F2, id〉) with corruptedM|NP
(U∗, h1).

Finally, let corrupt-before-wrap be the following predicate on a list
of messages Mt = ((a0, b0,m0), . . . , (at, bt,mt)): For all i 6 t and
network parameters NP = U,Uext, ST,Room, we have

corruptedM|NP
(U,h)∧ (env, U,< wrap, h, h ′ >) ∈Mi

|NP

⇒ corruptedMi
|NP

(U,h).

Lemma 7: For any ku parameter F,C, Π and set of sets of PPT al-

gorithms Impl, let F
F1/ImplF1

,...,Fl/ImplFl

KM be the partial implementa-
tion of FKM with respect to all ku functionalities in F. If KW =

(implKW
new
,wrap, unwrap) is a secure and correct key-wrapping scheme

(Definition 31) then πF,C,Π,Impl emulates F
impl

KM for environments that
guarantee corrupt-before-wrap.

Proof. Proof by contradiction: Assuming that there is no adversary
Sim such that for all well-behaved environments Z that are rooted at
prot-fkm and guarantee corrupt-before-wrap, both networks are indis-
tinguishable, i. e.,

Exec[πF,C,Π,Impl, AD, Z] ≈ Exec[Fimpl

KM ,Sim, Z]

we chose a Sim that basically simulates Fsetup for corrupted users
in F

impl

KM , and a Z that is indeed able to distinguish Exec[πF,C,Π,Impl,

AD, Z] and Exec[Fimpl

KM ,Sim, Z]. Then, we use it to construct an at-
tacker BZ against the key-wrapping challenger. BZ will be carefully
crafted, such that a) it is a valid adversary b) it has the same output
distribution in the fake key-wrapping experiment as Z has when in-
teracting with F

impl

KM and Sim c) it has the same output distribution in
the real key-wrapping experiment as Z in interaction with πF,C,Π,Impl

and AD.
Sim defines the same code as the dummy adversary (see [51, §4.7]),

but when instructed by the environment to instruct a corrupted party
to call Fsetup, it simulates Fsetup (because F

impl

KM does not define prot-

-fsetup). This means: Sim waits for 〈ready•, P〉 from F
impl

KM for all
parties P ∈ U∪ ST ∪ F̂ before operating - for corrupted parties Ui ∈ U

(security tokens are incorruptible, Uext ∈ Uext are ignored), it waits un-
til instructed to send ready and simulates the reception of 〈ready•, P〉
itself. Afterwards, it accepts instructions to send 〈m〉 as Ui to Fsetup–

the complete proof of emulation 251

in this case, Sim instructs Ui to send m to F
impl

KM . Similarly, the re-
sponse from F

impl

KM is simulated to be transmitted via Fsetup. When Ui

is instructed to send finish_setup to Fsetup, Sim sends finish_setup

to F
impl

KM instead (and relays the answer), but only if it received ready
from all parties P ∈ U∪ ST ∪ F̂ before (as we already mentioned), and
only the first time.

Given Z, we will now construct the attacker BZ against the key-
wrapping game in Definition 31. Recall that Z is rooted at prot-fkm.
This means that Z only calls machines with the same SID and the pro-
tocol name prot-fkm. In particular, the session parameters (F,C, Π)
are the same (see [51, §5.3]), so from now on, we will assume them
to be arbitrary, but fixed. The construction of BZ aims at simulat-
ing Z in communication with the simulator Sim given above and the
key-management functionality F

impl

KM , but instead of performing wrap-
ping and unwrapping in F

impl

KM itself, BZ queries the challenger in the
wrapping experiment. In case of the fake experiment, the simula-
tion is very close to the network [F

impl

KM ,Sim, Z], for the case of the
real experiment, we have to show that the output is indistinguishable
from a network of distributed security tokens and a dummy adver-
sary [πF,C,Π,Impl, AD, Z]. This will be the largest part of the proof.

BZ is defined as follows: BZ simulates the network [F
impl,KW
KM ,Sim, Z],

where F
impl,KW
KM is defined just as F

impl

KM , but new,wrap,unwrap and
corrupt are altered such that they send queries to the experiment
instead. Note that for this reason, Fimpl,KW

KM is not a valid machine in
the GNUC model - we just use it as a convenient way to describe the
simulation that BZ runs. We assume that the place-holder symbols
K1, . . . from Definition 31 are distinguishable from other credentials
and that there is some way to select those symbols such that each of
them is distinct. Furthermore, they should be difficult to guess. One
way to achieve this is to implement a pairing of i and j, for U = Ui

and j← {0, 1}η, using Cantor’s pairing function.

new[ready]: accept <new,F,a> from U ∈ U

if <F,new,a,*> ∈ Π then

if F ∈ { F1, . . . ,Fl }

4 (k, public) ← implFnew(1
η)

create h; Store[U,h] ← <F,a,k>

K← K∪ {k }
send <new•,h,public> to U

else if F = KW

9 create Ki, h

query NEW(Ki)

K← K∪ {Ki }

Store[U,h] ← <KW,a,Ki>

send <new•,h,> to U
✆

wrap[finish_setup]:

2 accept <wrap,h1,h2,id> from U ∈ U

if Store[U,h1]=<KW,a1,c1> and Store[U,h2]=<F2,a2,c2>

252 the complete proof of emulation

and <KW,wrap,a1,a2>∈ Π
if ∃w.<c2,<F2,a2,id>,w>∈encs[c1]

send <wrap•,w> to U

7 else

W←W∪ { (c1, c2) }
if c1 ∈ Kcor
for all c3 reachable from c2 in W

corrupt c3
12 w← wrap<F2,a2,id>(key[c1],key[c2])

else

w = TENC(c1, < F2, a2, id >, c2)
encs[c1] ← encs[c1] ∪{ <c2,<F2,a2,id>,w>}
send <wrap•,w> to U

✆

unwrap[finish_setup]:

accept <unwrap,h1,w,a2,F2,id> from U ∈ U

if Store[U,h1]=<KW,a1,c1> and <KW,unwrap,a1,a2>∈ Π,F2 ∈ F

4 if c1 ∈ Kcor

c2 = unwrap<F2,a2,id>(key[c1], w)

if c2 6= ⊥ and c2 /∈ K\Kcor
Kcor ← Kcor ∪ { c2 }
create h2

9 Store[U,h2] ← <F2,a2,c2>

key[c2]=c2
send <unwrap•,h> to U

else // first bad event

send <error> to A

14 else

if ∃!c2.<c2,<F2,a2,id>,w>∈encs[c1]
create h2
Store[U,h2] ← <F2,a2,c2>

send <unwrap•,h> to U

19 else //c1 6∈ Kcor ∧¬∃c2.〈c2, 〈F2, a2, id〉, w〉 ∈encs[c1])
query c2 = DEC(c1, < F2, a2, id >,w);
if c2 6= ⊥ //second bad event

halt and output 0.
✆

Listing 36: Procedure for corrupting a credential c.

if c ∈ Kcor
send <corrupt•,h,key[c]> to A

3 else

Kcor ← Kcor ∪ { c }
for any Store[U,h]=<F,a,c>

if F ∈ KW

query k = CORR(c)

8 key[c]← k

else

key[c]← c

send <corrupt•,h,key[c]> to A
✆

the complete proof of emulation 253

BZ is a valid adversary We will argue about each condition
on the behaviour of the adversary from Definition 31:

1. For all i, the query NEW(Ki) is issued at most once, because we
specified F

impl,KW
KM to select a new Ki for each such query

2. All queries issued by BZ contain keys that have already been
generated by the experiment. Observe that all queries are pre-
ceeded by a conditional that checks if the argument to the query
is in the third position of the store, i. e., there are U,h, a such
that Store[U,h] = 〈KW, a, k〉 at some point of the execution of
BZ. We claim that each such k has either been generated us-
ing NEW or is in Kcor (in which case no query is made). Proof
by contradiction: Assume we are at the first point of the ex-
ecution where such a key is added to the store. The store is
only written in the new and unwrap step. In new, a new Ki is
created. In unwrap, there are three cases in which the store is
written to: a) If c1 ∈ Kcor, then c2 ∈ Kcor. Once something
is marked as corrupted, it stays corrupted. b) If c1 6∈ Kcor, but
∃c2. 〈c2, 〈F2, a2, id〉, w〉 ∈ encs[c1]. Only wrap can write to encs,
so c2 must have been in the store before.

3. The adversary never makes a test query TENC(Ki, a, Kj) if Ki is
corrupted at the end of the experiment, because a TENC query
is only output in the step wrap if c1 6∈ Kcor. The condition
corrupt-before-wrap enforces that if c1 is not corrupted at that
point, it will never be corrupted. (A detailed analysis about
how corrupt-before-wrap is correct with respect to the definition
if Fimpl,KW

KM is left to the reader.)

4. If BZ issues a test query TENC(Ki, a,m) then BZ neither issues
TENC(Kj, a

′,m ′) nor ENC(Kj, a
′,m ′) with (Ki, a,m) = (K ′

j, a,

m ′), since BZ never issues ENC queries at all and only issues
TENC queries if the same combination of (Ki, a,m) was not
stored in encs before. Every time TENC is called, encs is up-
dated with those parameters.

5. BZ never queries DEC(Ki, a, c) if c was the result of a query
TENC(Ki, a,m) or of a query ENC(Ki, a,m) or Ki is corrupted,
because a) TENC queries are stored in encs and the step unwrap

checks this variable before querying DEC, b) enc queries are not
issued at all, c) if a credential c1 inside the unwrap step is cor-
rupted, the query DEC is not issued.

We conclude that BZ fulfills the assumptions on the behaviour of the
adversary expressed in Definition 31.

BZ simulates F
impl,KW
KM in the fake experiment BZ is de-

fined to be a simulation of the network
[

F
impl,KW
KM , Sim, Z

]

, where

254 the complete proof of emulation

F
impl,KW
KM is F

impl

KM , except for the altered steps new,wrap,unwrap and
corrupt. We claim that, in the fake experiment, those alterations do
not change the input/output behaviour. First, we will simplify the
unwrap step in F

impl

KM :

1 unwrap[finish_setup]:

2 accept <unwrap,h1,w,a2,F2,id> from U ∈ U

3 if Store[U,h1]=<KW,a1,c1> and

4 <KW,unwrap,a1,a2>∈ Π,F2 ∈ F

5 if c1 ∈ Kcor

6 c2 = unwrap<F2,a2,id>(c1, w)

7 if c2 6= ⊥ and c2 6∈ K

8 Kcor ← Kcor ∪ { c2 }
9 create h2

10 Store[U,h2] ← <F2,a2,c2>

11 key[c2]=c2
12 send <unwrap•,h> to U

13 else if c2 6= ⊥, c2 ∈ K and c2 ∈ Kcor
14 create h2
15 Store[U,h2] ← <F2,a2,c2>

16 send <unwrap•,h> to U

17 else // (c2 = ⊥∨ c2 ∈ K\Kcor)

18 send <error> to A

19 else if (c1 /∈ Kcor and

20 ∃!c2.<c2,<F2,a2,id>,w>∈encs[c1])
21 create h2
22 Store[U,h2] ← <F2,a2,c2>

23 send <unwrap•,h> to U
✆

We first observe that it would not make a difference if the code in
the branch at Line 13 would execute the same code as in the branch
at Line 7, i. e., additionally perform the computations in Line 8 and
11, since from the definition of the steps unwrap and the corruption
procedure, if c2 ∈ Kcor, then already key[c2] = c2. This means that
Lines 7 to 12 are executed if c2 6= ⊥ ∧ c2 6∈ K \ Kcor, otherwise a
bad event is produced, i. e., an error is send to the adversary. For
reference, this is the equivalent, simpler code:

unwrap[finish_setup]:

2 accept <unwrap,h1,w,a2,F2,id> from U ∈ U

if Store[U,h1]=<KW,a1,c1> and

<KW,unwrap,a1,a2>∈ Π,F2 ∈ F

if c1 ∈ Kcor

c2 = unwrap<F2,a2,id>(c1, w)

7 if c2 6= ⊥ and c2 /∈ K\Kcor
Kcor ← Kcor ∪ { c2 }
create h2
Store[U,h2] ← <F2,a2,c2>

key[c2]=c2
12 send <unwrap•,h> to U

else // (c2 = ⊥∨ c2 ∈ K\Kcor)

send <error> to A

the complete proof of emulation 255

else if (c1 /∈ Kcor and

∃!c2.<c2,<F2,a2,id>,w>∈encs[c1])
17 create h2

Store[U,h2] ← <F2,a2,c2>

send <unwrap•,h> to U
✆

We claim that the following invariant holds: For all Z, and at the
end of every epoch [51, §5.3], i. e., after each activation of Z:

• the distribution of the input received by Z (the view of Z) is the
same for Z in [F

impl

KM ,Sim, Z] as well as in the network [F
impl,KW
KM ,

Sim, Z] simulated by BZ.

• in the same two execution, the entry Store[U,h] = 〈KW, a, c〉 ex-
ists in F

impl,KW
KM if, and only if, the entry Store[U,h] = 〈KW, a, c〉

exists in F
impl

KM , and the following holds for c and c

– c ∈ K↔ c ∈ K and c ∈ Kcor ↔ c ∈ Kcor

– if c ∈ K, then c is the key drawn for c in the NEW step.
Furthermore, if c ∈ Kcor, in F

impl,KW
KM key[c] = c and in

F
impl

KM key[c] = c

– if c ∈ Kcor \K (i. e., c was injected), c = c and key[c] = c in
both F

impl,KW
KM and F

impl

KM .

The only relevant steps are the altered steps new,wrap,unwrap, and
the corruption macro.

• corrupt: For honestly generated wrapping keys c ∈ K, by in-
duction hypothesis, the corruption procedure outputs the key
generated with NEW in F

impl,KW
KM , and the equally drawn key in

case of Fimpl

KM . Assume c /∈ K. If c /∈ Kcor, by induction hypoth-
esis, both F

impl

KM and F
impl,KW
KM produce an error and leave their

respective store unchanged. For dishonestly generated keys –
that is, for the missing case where c ∈ Kcor \ K – both output
the same keys by induction hypothesis. The second condition
holds by definition of this step and induction hypothesis.

• new: From the definition of the fake experiment follows that
the first condition holds. The second condition holds since the
freshly created c is added to K and since c is the argument to
the NEW step.

• wrap: By definition of the fake experiment, ENC and TENC sub-
stitute credentials c in F

impl,KW
KM . If c1 6∈ Kcor, then c1 ∈ K (as

otherwise it would not be in the database). Thus, in F
impl,KW
KM ,

TENC will perform this substitution for both c1 and c2, result-
ing in the same output that Fimpl

KM produces. If c1 ∈ Kcor, then,
by definition of this step in F

impl

KM , c2 ∈ Kcor at the point in the
time where the unwrap function is computed. Therefore, and
by induction hypothesis, key[c1] in F

impl,KW
KM contains c1. The

256 the complete proof of emulation

same holds for c2). Hence, the same value is computed and
output in F

impl,KW
KM and F

impl

KM and the first condition holds. The
second condition holds by induction hypothesis and the fact
that both functions call the corrupt macro on c2 if c1 ∈ Kcor.

• unwrap: Since for c1 6∈ Kcor (by definition of the fake experi-
ment), DEC produces ⊥, i. e., the conditional marked “second
bad event” never evaluates. Note furthermore, that this step is
the same in F

impl,KW
KM and F

impl

KM , only that the call to the unwrap

function in case c1 ∈ Kcor substitutes c1 by key(c1) in F
impl,KW
KM .

This is correct by the second condition of the induction hypoth-
esis. Therefore, both conditions of the induction hypothesis are
preserved for the next step.

We can conclude that

Expwrap,fake
KW,BZ

(η) = Exec[Fimpl

KM ,Sim, Z](η).

BZ simulates πF,C,Π,Impl in the real experiment In the
fake experiment, it is not possible that BZ halts at the end of the
unwrap step (marked “second bad event”), since DEC always outputs
⊥. Thus, the probability that BZ halts at the “second bad event” mark
whilst in the real experiment must be negligible, as this would contra-
dict the assumption that KW is a secure wrapping scheme right here.
The representation of the this part of the proof benefits from altering
BZ such that instead of halting, BZ continues to run F

impl,KW
KM , by

running the following code:

1 create h2; Store[U,h2]← <F2,a2,c2>

send <unwrap•,h> to U
✆

We further modify the code of BZ by removing the conditional in
front of the comment “first bad event”. Here as well, the probability
that this conditional evaluates to true is negligible, following from
the assumption that KW is a secure wrapping scheme. Proof by con-
tradiction: If BZ could produce this conditional, then she knows a
wrappingw such that unwrapa(k1, w) = c2 for c2 ∈ K and c2 6∈ Kcor.
Since c1 ∈ Kcor and k1 = key[c1], BZ either knows k1 (since it injected
it, i. e., c1 6∈ K), or can learn by corrupting it (if c1 ∈ K). If there was
a path in W from c1 to c2, it would already be corrupted, so the at-
tacker can learn k1 while c2 6∈ Kcor. She can use k1 as to decrypt w
himself and learn c2. But she should not be able to learn c2 in the
fake experiment, since it is randomly drawn and did never appear in
any output1. Since this happens only with neglible probability, it can
only happen with negligible probability in the real experiment, too,

1 The adversary can check if it guessed c2 correctly, for example, by requesting a
wrapping of a third, corrupted wrapping key under c2 via F

impl,KW

KM and then calling
DEC to check if the received wrapping (using the same argument) decrypts to the
corrupted and thus known key.

the complete proof of emulation 257

as otherwise the assumption that KW is a secure wrapping scheme
would be contradicted.

Therefore, we perform those modifications and call the sightly dif-
ferent attacker B ′

Z. Since those parts of the code are only executed
with negligible probability, we have that

Pr[b← Expwrap,
KW,BZ

(η) : b = 1] − Pr[b← Expwrap,
KW,B ′

Z
(η) : b = 1]

is negligible in η.
Fix an arbitrary security parameter η. Then, let ViewB ′

Z
(t) be the

view of Z, i. e., the distribution of messages it is simulated to send
to the protocol machine or the adversary, in the tth step of the sim-
ulation of B ′

Z in the real experiment. Furthermore, let StoreB ′
Z
(t)

be the distribution of the variable Store within the simulated ma-
chine 〈ideal, sid〉, i. e., Fimpl,KW

KM , but with the following substitution
that affects the wrapping keys: Every entry 〈KW, a, Ki〉 in the variable
Store[U,h] for some U and h is substituted by an entry 〈KW, a, ki〉,
where ki is the key that the key-wrapping experiment associates to
Ki, denoted in the following by k(Ki). If Ki was not created by the
key-wrapping experiment, it is left untouched.

We will denote the view of Z in the execution of the network
[πF,C,Π,Impl, AD, Z] by Viewπ and the distribution of the union of all
Store variables of all security tokens ST1, . . . , STn in the network as
Storeπ. The union of those variables is still a map, because the first
element of each key-value of this table is different for all ST. A step t
is an epoch [51, §5.3], i. e., it begins with an activation of Z and ends
with the next activation.

We define the following invariant, which will allow us to conclude
that B ′

Z has the same output distribution as [πF,C,Π,Impl, AD, Z]. For
each number of steps t, the following three conditions hold:

• state consistency (s.c.): StoreB ′
Z

(t) and Storeπ are equally dis-
tributed

• output consistency (o.c.): ViewB ′
Z

(t) and Viewπ are equally dis-
tributed

• phase consistency (p.c.): The probability that the flag ready is set
in F

impl,KW
KM in Expwrap,

KW,B ′
Z

equals the probability that ready is
set in Fsetup in [πF,C,Π,Impl, AD, Z]. Furthermore, the probabil-

ity that the flag setup_finished is set in F
impl,KW
KM in Expwrap,

KW,B ′
Z

equals the probability that setup_finished is set in all ST ∈ ST .
.

If t = 0, the protocol has not been activated, thus there was no
output, and not state changes. The invariant holds trivially. If t > 0,
we can assume that s.c., o.c. and p.c. were true at the end of the pre-
ceding epoch. Note that Z is restricted to addressing top-level parties

258 the complete proof of emulation

with the same sid. In particular, it cannot address Fsetup directly (but
it can corrupt a user to do this). Since the sid has to have a specific
format that is expected by all machines in both networks, we assume
sid to encode U,Uext, ST,Room. Case distinction over the recipient
and content of the message that Z sends at the beginning of the next
epoch:

1. Z sends a message to STi ∈ ST , and

a) the message is 〈ready〉: In Expwrap,
KW,B ′

Z
, F

impl,KW
KM records

ready-STi and sends 〈ready•,STi〉 to Sim, if the message
is recorded for the first time. Sim behaves just like AD in
this case. If all other STj ∈ ST and all U ∈ U have sent this
message before, the flag ready is set to true.

In [πF,C,Π,Impl, AD, Z], STi accepts the message and for-
wards it (as 〈ready〉) to Fsetup. Then, Fsetup records ready-
STi and sends < ready•,STi > to AD, if the message is
recorded for the first time. If all other STj ∈ ST and all
U ∈ U have sent this message before, the flag ready is set
to true. We see that p.c. and o.c. hold. S.c. holds trivially,
because the Store did change in neither execution.

b) the message is of some other form: In [πF,C,Π,Impl, AD,

Z], ST accepts no other message from the environment.
In Expwrap,

KW,B ′
Z

, Fimpl,KW
KM ignores any other message coming

from STi, too. So p.c., o.c. and s.c. hold.

2. Z sends a message to Ui ∈ U:

In Expwrap,
KW,B ′

Z
, F

impl,KW
KM will receive this message, and treat it

depending on its form (if its flag ready is set). In [πF,C,Π,Impl,

AD, Z], Ui will relay this message m in the form <m,STi> to
Fsetup, who in turn will send m to STi, (assuming the steps
necessary for the flag ready were completed).

a) Let m be <ready>: If the ready flag has not been set be-
fore, and Ui is the last party in U ∪ ST that has not sent
this message yet, Fimpl,KW

KM in Expwrap,
KW,B ′

Z
will set the ready

flag, otherwise it will not. The same holds for Fsetup in
[πF,C,Π,Impl, AD, Z]. Therefore, we have p.c. In both cases,
Sim, respectively AD, forwards the acknowledgement to
the environment (after recording the state change). Thus,
s.c. and o.c. hold trivially.

For the following cases, assume ready to be set in both
Expwrap,

KW,B ′
Z

and [πF,C,Π,Impl, AD, Z]. If it is unset in one of
them, by induction hypothesis, it is unset in both. If it
is not set, any other message will not be accepted by nei-
ther F

impl,KW
KM , nor Fsetup (thus never reach STi). Therefore,

in the following cases we will assume ready to be set in

the complete proof of emulation 259

F
impl,KW
KM and Fsetup, i. e., Fsetup delivering commands that
Ui receives from the environment to STi.

b) Let m=<new,F,a> : If F 6= KW, the same code is executed
(except for the step adding the freshly created credential
to K), p.c.,s.c. and o.c. hold trivially. Assume F = KW

and <KW,new,a,*>∈ Π (otherwise, ⊥ is output in both exe-
cutions). F

impl,KW
KM draws a new Ki and call NEW to cre-

ate the key. Ki is created, just like handles, in a way
that makes sure it is unique. Therefore, since through-
out Expwrap,

KW,B ′
Z

, Ki is always substituted for the same key,
there is a function mapping Ki to the key ki created by
the experiment, and this function is injective. Note that,
by the definition of StoreB ′

Z
, StoreB ′

Z
(t) is StoreB ′

Z
(t − 1)

with an additional entry 〈KW, a, ki〉 at [U,h], where ki is dis-
tributed according to KG. In [πF,C,Π,Impl, AD, Z], STi calls
the key-generation directly (implKW

new
calls KG, adding noth-

ing but an empty public part). The output in both cases is
<new•,h,> for an equally distributed h. Thus, o.c. holds.
Storeπ is Storeπ(t− 1) with an additional entry KW,a,ki at
[U,h] where ki is distributed according to the same KG as
above. Therefore, s.c. holds. (P.c. holds trivially.)

c) Let m = 〈share, hi, Uj〉: In Expwrap,
KW,B ′

Z
, assuming Ui, Uj ∈

Room, Fimpl,KW
KM outputs 〈share•, hj〉, and StoreB ′

Z
(t) equals

StoreB ′
Z
(t − 1) extended by a copy of its entry [Ui, hi] at

[Uj, hj]. In [πF,C,Π,Impl, AD, Z], STi checks the same condi-
tions (which by p.c. have an equal probability of success)
implicitly: It sends the content of its store at [Ui, hi] to
Fsetup, which verifies Ui, Uj ∈ Room. If this is not the case,
Fsetup sends ⊥ to STi, which sends this to the environment
(via Fsetup), behaving just like Expwrap,

KW,B ′
Z

. If the condition is
met, STi sends the content of the store at [Ui, hi] to Fsetup,
which delivers this information to STj, which in the next
step extends Storeπ(t− 1) by a copy of its entry [Ui, hi] at
[Uj, hj]. Thus, s.c. holds. Both output <share•,hj> upon
success, so o.c. holds, too. p.c. holds trivially.

d) Let m = 〈finish_setup〉: By p.c., we have that Expwrap,
KW,B ′

Z

and [πF,C,Π,Impl, AD, Z] either both have finish_setup set,
or none has. If both have it set, both output ⊥ and do
nothing.

Assume none has finish_setup set and both ready. In
Exp, F

impl,KW
KM sets the flag finish_setup and responds.

In [πF,C,Π,Impl, AD, Z], Ui sends <finish_setup> to Fsetup,
which in turn, instead of forwarding it to STi like for the
majority of commands, sends <close> to every STj ∈ ST ,
accepting the response (and thus taking control) after each

260 the complete proof of emulation

of those have set the finish_setup flag. By the time Fsetup

finishes this step, and hands communication over to Ui,
which forwards finish_setup to the environment, every
STi has left the setup phase. We see that p.c. and o.c. are
preserved.

e) Let m = 〈C,h,m〉: F
impl,KW
KM and STi execute the same

code on their inputs, so by s.c., the invariant is preserved.

f) Let m = 〈corrupt, h〉: STi outputs the credential. Fimpl,KW
KM

does the same, except for wrapping keys, where it substi-
tutes the credential by the output of CORR, i. e., k = k(c).
By definition of Storeπ as s.c., < KW, a, k > ∈ Storeπ[Ui, h]

with the same probability as < KW, a, c > ∈ StoreB ′
Z
[Ui, h],

thus the output is equally distributed. S.c. and p.c. hold
trivially.

g) Let m = 〈wrap, h1, h2, id〉: For this case and the following
case, observe that F

impl,KW
KM initialises key[c] only at steps

wrap, unwrap and corrupt.

The variable key[c] contains either the output of a query
CORR, thus k(c), or the same value as c, or it is defined.
It is defined whenever c ∈ Kcor ∩K, because if c is added
to Kcor at step corrupt, the response is written to key[c],
and if a c3 6∈ Kcor is found during step wrap, the condition
corrupt-before-wrap must have been violated by Z: If such
a c3 is reachable from c1, without loss of generality, as-
sume it to have minimal distance from c1 in W. Then, the
second-before last node on this path is in Kcor, as the dis-
tance would not be minimal otherwise. By definition of the
step wrap, this node could not have been wrapped without
adding it to Kcor, therefore this node was corrupted after
it was used to create this wrapping. If c ∈ Kcor, but c /∈ K,
then key[c] = c (see step unwrap).

Assume now STi and F
impl,KW
KM both have finish_setup set,

as otherwise either p.c. was violated in the previous step,
or both would output ⊥ and trivially satisfy the invariant.
(This argument is valid for each of the following sub-cases,
but the last one).

Both machines check the same conditions on the Store and
the policy. STi computes w = wrap〈F2,a2,id〉(c1, c2) on the
values 〈KW, a1, c1〉 and 〈F2, a2, c2〉 at [Ui, h1] and [Ui, h2]

in Storeπ.

F
impl,KW
KM performs a case distinction, but we will show that

in each cases, it outputs the same value. If 〈c2, 〈F2, a2, id〉,
w〉 ∈ encs[c1], then by observing that encs is only written
at the end of this function, we see that p.c. would have

the complete proof of emulation 261

been violated in an earlier step, if the output now was dif-
ferently distributed then the output in [πF,C,Π,Impl, AD, Z].

If c1 ∈ Kcor, then c2 ∈ Kcor, too. Assume c1, c2 ∈ K. Then,
since key(c1) = k(c1) (and key(c2) = k(c2) in case F2 =

KW), the output is w = wrap<F2,a2,id>(k(c1), c2)) (or w =

wrap<F2,a2,id>(k(c1), k(c2))), which preserves o.c., since s.c.
from the last step guarantees that 〈KW, a, c〉 ∈ Storeπ[Ui, h]

which equals 〈KW, a, k(c)〉 ∈ StoreB ′
Z
[Ui, h] for c = c1 and

c = c2, in case c2 is a wrapping key. By definition of the
real experiment, it performs the same substitutions in case
c1 6∈ Kcor, so the same argument can be applied. In case
that c1 /∈ K, or c2 /∈ K, the substitution performed is the
identity, as key[c] = c for c ∈ Kcor \ K. Therefore, in this
case, the same output is produced in both F

impl,KW
KM and

[πF,C,Π,Impl, AD, Z].

Therefore, the output is equally distributed in all three
cases, assuming that s.c. was true for the previous step.
s.c. and p.c. hold trivially.

h) Let m=<unwrap,h1,w,a2,F2,id> : In [πF,C,Π,Impl, AD, Z],
if policy and Store allow, i. e., 〈F1, a1, c1〉 ∈ Storeπ(Ui, h1),
then STi writes 〈F2, a2, unwrap〈F2,a2,id〉(c1, w)〉 at a fresh
place [Ui, h] in Storeπ, unless unwrap returns ⊥ on this in-
put.

F
impl,KW
KM chooses Ui and a new h exactly the same way.

By s.c., we have, with equal probability, that 〈F1, a1, c1〉 ∈
StoreB ′

Z
(Ui, h1). Since F1 = KW, we will use ĉ1 for the actual

value in BZ’s store before substitution, i. e., given c1, ĉ1 is
such that k(ĉ1) = c1.

• If ĉ1 ∈ Kcor and ĉ1 6∈ K, we have that c1 = ĉ1, and that
key[ĉ1] = ĉ1 (only in step unwrap, a key that is not in
K can be added to the store). Hence, Fimpl,KW

KM writes
〈F2, a2, unwrap〈F2,a2,id〉(k(ĉ1), w)〉.

• If ĉ1 ∈ Kcor and ĉ1 ∈ K, k(ĉ1) = c1. Since a key in Kcor

but not K must have been added using the corruption
procedure, we have that key[ĉ1] = c1 = k(ĉ1). Thus,
F
impl,KW
KM writes 〈F2, a2, unwrap〈F2,a2,id〉(k(ĉ1), w)〉.

• If ĉ1 6∈ Kcor and w was recorded earlier, inspection of
F
impl,KW
KM shows that encs is written to only at the wrap

step, which implies that w = wrap〈F2,a2,id〉(k(ĉ1), c2)

for some c2. From the correctness of the scheme, we
conclude that 〈F2, a2, c2 = unwrap〈F2,a2,id〉(k(ĉ1), w)〉

is written to this position.

• If ĉ1 6∈ Kcor and w is not recorded earlier, by defini-
tion of DEC, 〈F2, a2, unwrap〈F2,a2,id〉(k(ĉ1), w)〉 is writ-

262 the complete proof of emulation

ten. (Same argument as in the first case, follows from
s.c.)

i) Let m = 〈attr_change, h, a ′〉: The same code is executed
in both Expwrap,

KW,B ′
Z

and [πF,C,Π,Impl, AD, Z], thus p.c., s.c.,
and o.c. hold trivially.

j) Let m = 〈C, public,m〉: The same code is executed in both
Expwrap,

KW,B ′
Z

and [πF,C,Π,Impl, AD, Z], thus p.c., s.c., and o.c.
hold trivially.

3. Z sends a message to Uext ∈ Uext.

Both F
impl,KW
KM and Uext in [πF,C,Π,Impl, AD, Z] only accept mes-

sages of the form 〈C, public,m〉 for C ∈ Ci,pub. Both perform the
same computations, thus p.c., s.c., and o.c. hold trivially.

4. Z sends a message to <adv>.

Both AD and Sim ignore messages that are no instruction. So
we can assume that Z instructs the adversary to send a message
to some party.

a) Assume Z instructs <adv> to send a message to a corrupted
party, namely:

i. Ui ∈ U: Ui can only be addressed by the adversary if
it was corrupted before, as otherwise it has never sent
a message to the adversary. Note that the code run
by Ui in [πF,C,Π,Impl, AD, Z], as well as in Expwrap,

KW,B ′
Z

,
does not depend on any internal state. Ui can only
talk to the environment, the adversary (Sim acts like
AD in this case) and it can call Fsetup, which Sim has
to simulate in Expwrap,

KW,B ′
Z

. Sim is described above and
receives all the information necessary to simulate it,
that is: 〈ready•, P〉, when a protocol party in U∪ ST re-
ceives 〈ready〉 from the environment, 〈finish_setup•〉,
when a protocol party in U receives 〈ready〉 from the
environment, and all messages that Fimpl,KW

KM sends to
the corrupted UU (and Fsetup would need to relay).
Thus, if p.c. holds in the previous step, the invariant
is preserved in case that the message is 〈ready, Ui〉 or
〈finish_setup〉. A message of form 〈send, . . .〉 is ig-
nored by Fsetup and Sim, so the invariant is trivially
preserved here. The communication relayed in the
steps relay_receive and relay_send in Fsetup is simu-
lated as described above and thus falls back to case 2.

ii. Uext
i ∈ Uext: Like in the previous case, only that Fsetup

ignores messages from Uext
i , which Sim simulates cor-

rectly.

the complete proof of emulation 263

iii. other parties cannot become corrupted

b) Assume Z instructs <adv> to send a message to a party that
cannot be corrupted, but that addressed <adv> before, i. e.,
ST ∈ ST or Fsetup. Since both ST and Fsetup are specified
to ignore messages in this case, Sim can simply mask their
presence by reacting like ST or Fsetup react upon reception
of an unexpected message and answer with ⊥.

We conclude that the invariant is preserved for an arbitrary number
of steps. Since output consistency implies that Z has an identical view,
the distribution of Z’s output is the same in both games. Thus:

Pr[b← Exec[πF,C,Π,Impl, AD, Z](η) : b = 1] =

Pr[b ← Expwrap,
KW,B ′

Z
(η) : b = 1]

and therefore:

|Pr[b← Exec[πF,C,Π,Impl, AD, Z](η) : b = 1]

− Pr[b← Exec[Fimpl

KM ,Sim, Z](η) : b = 1]|

= |Pr[b← Expwrap,fake
KW,BZ

(η) : b = 1]

− Pr[b← Expwrap,
KW,B ′

Z
(η) : b = 1]|

> |Pr[b← Expwrap,fake
KW,BZ

(η) : b = 1]

− Pr[b← Expwrap,
KW,BZ

(η) : b = 1]|− ǫ(η),

where ǫ is negligible in η. This contradicts the indistinguishability
of Exec[Fimpl

KM ,Sim, Z] and Exec[πF,C,Π,Impl, AD, Z] and thus concludes
the proof.

B I B L I O G R A P H Y

[1] Martín Abadi and Véronique Cortier. ‘Deciding Knowledge in
Security Protocols Under Equational Theories.’ In: Automata,

Languages and Programming (2004), pp. 46–58.

[2] Martín Abadi and Cédric Fournet. ‘Mobile values, new names,
and secure communication.’ In: Principles of Programming Lan-

guages. ACM, 2001, pp. 104–115.

[3] Ross J. Anderson. Security engineering - a guide to building de-

pendable distributed systems. Wiley, 2001.

[4] Ross J. Anderson and Markus G. Kuhn. ‘Low Cost Attacks on
Tamper Resistant Devices.’ In: International Workshop on Secu-

rity Protocols. Springer, 1998, pp. 125–136.

[5] Myrto Arapinis, Eike Ritter, and Mark Dermot Ryan.
‘StatVerif: Verification of Stateful Processes.’ In: Computer

Security Foundations Symposium. IEEE Computer Society, 2011,
pp. 33–47.

[6] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna,
J. Cuellar, P. Hankes Drielsma, P. C. Heám, O. Kouchnarenko,
J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusinow-
itch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. ‘The
AVISPA tool for the automated validation of internet secu-
rity protocols and applications.’ In: Computer Aided Verification.
Springer, 2005, pp. 281–285.

[7] Alessandro Armando, Roberto Carbone, Luca Compagna,
Jorge Cuellar, and Llanos Tobarra Abad. ‘Formal Analysis
of SAML 2.0 Web Browser Single Sign-On: Breaking the
SAML-based Single Sign-On for Google Apps.’ In: Workshop

on Formal Methods in Security Engineering. ACM, 2008,
pp. 1–10.

[8] Michael Backes and Dennis Hofheinz. ‘How to Break and Re-
pair a Universally Composable Signature Functionality.’ In: In-

formation Security (2004), pp. 61–72.

[9] Ian Batten, Shiwei Xu, and Mark Ryan. ‘Dynamic measure-
ment and protected execution: model and analysis.’ In: Trust-

worthy Global Computing. To appear. Spinger, 2013.

[10] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway.
‘A Concrete Security Treatment of Symmetric Encryption.’ In:
Symposium on Foundations of Computer Science. IEEE Computer
Society, 1997, pp. 394–403.

265

266 Bibliography

[11] Stefano Bistarelli, Iliano Cervesato, Gabriele Lenzini, and
Fabio Martinelli. ‘Relating multiset rewriting and process
algebras for security protocol analysis.’ In: Journal of Computer

Security 1 (2005), pp. 3–47.

[12] Fredrik Björck. Security DJ Blog: Increased security for Yubikey.
2009. url: http://web.archive.org/web/20100725005817/
http://security.dj/?p=154.

[13] Fredrik Björck. Security DJ Blog: Yubikey Security Weaknesses.
2009. url: http://web.archive.org/web/20100203110742/
http://security.dj/?p=4.

[14] Bruno Blanchet. ‘An Efficient Cryptographic Protocol Verifier
Based on Prolog Rules.’ In: Computer Security Foundations Work-

shop. IEEE Computer Society, 2001, pp. 82–96.

[15] Bruno Blanchet, Martín Abadi, and Cédric Fournet.
‘Automated Verification of Selected Equivalences for Security
Protocols.’ In: Journal of Logic and Algebraic Programming 1

(2008), pp. 3–51.

[16] Bruno Blanchet and Miriam Paiola. ‘Automatic Verification of
Protocols with Lists of Unbounded Length (long version).’ to
appear at CCS’13. 2013. url: https://sites.google.com/
site/ccs2013submission/.

[17] M. Bond and R. Anderson. ‘API level attacks on embedded
systems.’ In: IEEE Computer Magazine (2001), pp. 67–75.

[18] Mike Bond and Piotr Zieliński. Decimalisation table attacks for

PIN cracking. Tech. rep. University of Cambridge Computer
Laboratory, 2003.

[19] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and
Frank Stajano. The quest to replace passwords: a framework for

comparative evaluation of Web authentication schemes. Tech. rep.
UCAM-CL-TR-817. University of Cambridge, Computer Lab-
oratory, 2012. url: http://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-817.pdf.

[20] Matteo Bortolozzo, Matteo Centenaro, Riccardo Focardi, and
Graham Steel. ‘Attacking and Fixing PKCS#11 Security To-
kens.’ In: Computer and Communications Security. ACM, 2010,
pp. 260–269.

[21] C. Cachin and N. Chandran. ‘A Secure Cryptographic Token
Interface.’ In: Computer Security Foundations Symposium. IEEE
Computer Society, 2009, pp. 141–153.

[22] Ran Canetti. ‘Universally Composable Security: A New
Paradigm for Cryptographic Protocols.’ In: Foundations of

Computer Science. IEEE Computer Society, 2001, pp. 136–145.

http://web.archive.org/web/20100725005817/http://security.dj/?p=154
http://web.archive.org/web/20100725005817/http://security.dj/?p=154
http://web.archive.org/web/20100203110742/http://security.dj/?p=4
http://web.archive.org/web/20100203110742/http://security.dj/?p=4
https://sites.google.com/site/ccs2013submission/
https://sites.google.com/site/ccs2013submission/
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-817.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-817.pdf

Bibliography 267

[23] Ran Canetti. ‘Universally Composable Signature, Certification,
and Authentication.’ In: Computer Security Foundations Work-

shop. IEEE Computer Society, 2004, pp. 219–233.

[24] Ran Canetti and Tal Rabin. ‘Universal Composition with Joint
State.’ In: Advances in Cryptology. Springer, 2003, pp. 265–281.

[25] CCA Basic Services Reference and Guide. IBM. 2006. url: http:
//www-03.ibm.com/security/cryptocards/pdfs/bs327.pdf.

[26] Vincent Cheval and Bruno Blanchet. ‘Proving More Observa-
tional Equivalences with ProVerif.’ In: Principles of Security and

Trust. Springer, 2013, pp. 226–246.

[27] Jolyon Clulow. ‘On the Security of PKCS#11.’ In: International

Worshop on Cryptographic Hardware and Embedded Systems.
Springer, 2003, pp. 411–425.

[28] Irving M Copi. Introduction to logic. Macmillan, 1982.

[29] V. Cortier, G. Keighren, and G. Steel. ‘Automatic Analysis
of the Security of XOR-based Key Management Schemes.’ In:
Tools and Algorithms for the Construction and Analysis of Systems.
2007, pp. 538–552.

[30] Véronique Cortier and Graham Steel. ‘A generic security API
for symmetric key management on cryptographic devices.’ In:
European Symposium on Research in Computer Security. Springer,
2009, pp. 605–620.

[31] Véronique Cortier, Graham Steel, and Cyrille Wiedling. ‘Re-
voke and let live: a secure key revocation api for cryptographic
devices.’ In: Computer and communications security. ACM, 2012,
pp. 918–928.

[32] Marion Daubignard, David Lubicz, and Graham Steel. A Se-

cure Key Management Interface with Asymmetric Cryptography.
Tech. rep. 2013. url: http://hal.inria.fr/hal-00805987.

[33] Stéphanie Delaune, Steve Kremer, Mark D. Ryan, and Graham
Steel. ‘A Formal Analysis of Authentication in the TPM.’ In:
Formal Aspects in Security and Trust. Vol. 6561. Springer, 2010,
pp. 111–125. url: http://www.lsv.ens-cachan.fr/Publis/
PAPERS/PDF/DKRS-fast10.pdf.

[34] Stéphanie Delaune, Steve Kremer, Mark D. Ryan, and Graham
Steel. ‘A formal analysis of authentication in the TPM.’ In: For-

mal Aspects in Security and Trust. Springer, 2010, pp. 111–125.

[35] Stéphanie Delaune, Steve Kremer, Mark D. Ryan, and Graham
Steel. ‘Formal analysis of protocols based on TPM state regis-
ters.’ In: Computer Security Foundations Symposium. IEEE Com-
puter Society, 2011, pp. 66–82.

http://www-03.ibm.com/security/cryptocards/pdfs/bs327.pdf
http://www-03.ibm.com/security/cryptocards/pdfs/bs327.pdf
http://hal.inria.fr/hal-00805987
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/DKRS-fast10.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/DKRS-fast10.pdf

268 Bibliography

[36] Stéphanie Delaune, Steve Kremer, and Graham Steel. ‘Formal
Analysis of PKCS#11 and Proprietary Extensions.’ In: Journal

of Computer Security 6 (2010), pp. 1211–1245.

[37] G. Denker, J. Meseguer, and C. Talcott. ‘Protocol Specification
and Analysis in Maude.’ In: Workshop on Formal Methods and

Security Protocols. Springer, 1998.

[38] Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer.
‘Searching for Shapes in Cryptographic Protocols.’ In: Tools

and Algorithms for the Construction and Analysis of Systems.
The Cryptographic Protocol Shapes Analyzer is available at
http://hackage.haskell.org/package/cpsa. Springer, 2007,
pp. 523–537.

[39] Danny Dolev and Andrew Chi-Chih Yao. ‘On the security of
public key protocols.’ In: Transactions on Information Theory 2

(1983), pp. 198–207.

[40] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. ‘Undecid-
ability of Bounded Security Protocols.’ In: Workshop on Formal

Methods and Security Protocols. IEEE Computer Society, 1999.

[41] Santiago Escobar, Catherine Meadows, and José Meseguer.
‘Maude-NPA: Cryptographic Protocol Analysis Modulo
Equational Properties.’ In: Foundations of Security Analysis and

Design. Vol. 5705. Springer, 2009, pp. 1–50.

[42] Eurosmart. Eurosmart General Assembly Confirms Strong Growth.
Accessed: Fr 13 Sep 2013 14:51:39 IST. 2013. url: http://www.
eurosmart.com/index.php/publications/market-overview.

html.

[43] FIPS-140-2. Security Requirements for Cryptographic Modules.
2004. url: http://www.nist.gov/itl/upload/fips1402.pdf.

[44] Sibylle B. Fröschle and Nils Sommer. ‘Reasoning with Past to
Prove PKCS#11 Keys Secure.’ In: Formal Aspects in Security and

Trust. Vol. 6561. Springer, 2010, pp. 96–110.

[45] Sibylle Fröschle and Graham Steel. ‘Analysing PKCS#11 Key
Management APIs with Unbounded Fresh Data.’ In: Joint

Workshop on Automated Reasoning for Security Protocol Analysis

and Issues in the Theory of Security. Springer, 2009, pp. 92–106.

[46] Juan A. Garay, Markus Jakobsson, and Philip D. MacKenzie.
‘Abuse-Free Optimistic Contract Signing.’ In: Advances in Cryp-

tology. Springer, 1999, pp. 449–466.

[47] Joshua D. Guttman. ‘State and Progress in Strand Spaces: Prov-
ing Fair Exchange.’ In: Journal of Automated Reasoning 2 (2012),
pp. 159–195.

http://hackage.haskell.org/package/cpsa
http://www.eurosmart.com/index.php/publications/market-overview.html
http://www.eurosmart.com/index.php/publications/market-overview.html
http://www.eurosmart.com/index.php/publications/market-overview.html
http://www.nist.gov/itl/upload/fips1402.pdf

Bibliography 269

[48] Thomas Habets. YubiHSM login helper program. Accessed: Wed
18 Sep 2013 15:07:42 CEST. 2011. url: http://code.google.
com/p/yhsmpam/.

[49] Jonathan Herzog. ‘Applying Protocol Analysis to Security De-
vice Interfaces.’ In: Security and Privacy 4 (2006), pp. 84–87.

[50] Dennis Hofheinz. Possibility and impossibility results for selective

decommitments. Cryptology ePrint Archive. 2008. url: http :

//eprint.iacr.org/.

[51] Dennis Hofheinz and Victor Shoup. GNUC: A New Universal

Composability Framework. Cryptology ePrint Archive. 2011. url:
http://eprint.iacr.org/.

[52] ITU Telecommunication Development Bureau. 6.8 billion

mobile-cellular subscriptions. Accessed: Fr 13 Sep 2013

15:08:38 IST. 2013. url: http : / / www . itu . int / en / ITU -

D/Statistics/Documents/facts/ICTFactsFigures2013.pdf.

[53] Horace William Brindley Joseph. An Introduction to Logic.
Clarendon Press, 1916.

[54] George Hayward Joyce. Principles of logic. Green, 1949.

[55] Kamikaze28 et al. Specification of the Yubikey operation in the

Yubico wiki. 2012. url: http://wiki.yubico.com/wiki/index.
php/Yubikey.

[56] D. Kaminsky. On The RSA SecurID Compromise. 2011. url:
http://dankaminsky.com/2011/06/09/securid/.

[57] Steve Kremer, Robert Künnemann, and Graham Steel. ‘Univer-
sally Composable Key-Management.’ In: European Symposium

on Research in Computer Security. Springer, 2013, pp. 327–344.

[58] Steve Kremer, Graham Steel, and Bogdan Warinschi. ‘Security
for Key Management Interfaces.’ In: Computer Security Founda-

tions Symposium. IEEE Computer Society, 2011, pp. 66–82.

[59] Robert Künnemann and Graham Steel. Source files and proofs for

the analysis of the Yubikey protocol. 2013. url: http://www.lsv.
ens-cachan.fr/~kunneman/yubikey/analysis/yk.tar.gz.

[60] Robert Künnemann and Graham Steel. ‘YubiSecure? Formal
Security Analysis Results for the Yubikey and YubiHSM.’ In:
Workshop on Security and Trust Management. Springer, 2012,
pp. 257–272.

[61] Ralf Küsters and Max Tuengerthal. ‘Ideal Key Derivation and
Encryption in Simulation-Based Security.’ In: Topics in Cryptol-

ogy. Springer, 2011, pp. 161–179.

[62] Ralf Küsters and Max Tuengerthal. ‘Joint State Theorems for
Public-Key Encryption and Digitial Signature Functionalities
with Local Computation.’ In: Computer Security Foundations

Symposium. IEEE Computer Society, 2008, pp. 270–284.

http://code.google.com/p/yhsmpam/
http://code.google.com/p/yhsmpam/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2013.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2013.pdf
http://wiki.yubico.com/wiki/index.php/Yubikey
http://wiki.yubico.com/wiki/index.php/Yubikey
http://dankaminsky.com/2011/06/09/securid/
http://www.lsv.ens-cachan.fr/~kunneman/yubikey/analysis/yk.tar.gz
http://www.lsv.ens-cachan.fr/~kunneman/yubikey/analysis/yk.tar.gz

270 Bibliography

[63] Ralf Küsters and Max Tuengerthal. The IITM Model: a

Simple and Expressive Model for Universal Composability.
Tech. rep. 2013/025. Cryptology ePrint Archive, 2013. url:
http://eprint.iacr.org/.

[64] D. Longley and S. Rigby. ‘An Automatic Search for Security
Flaws in Key Management Schemes.’ In: Computers & Security

1 (1992), pp. 75–89.

[65] Gavin Lowe. ‘An attack on the Needham-Schroeder public-
key authentication protocol.’ In: Information Processing Letters

3 (1995), pp. 131–133.

[66] Gavin Lowe. ‘Breaking and fixing the Needham-Schroeder
public-key protocol using FDR.’ In: Tools and Algorithms

for the Construction and Analysis of Systems. Springer, 1996,
pp. 147–166.

[67] Ueli Maurer and Renato Renner. ‘Abstract Cryptography.’ In:
Innovations in Computer Science. Tsinghua University Press,
2011, pp. 1–21.

[68] Simon Meier. Contract Signing Protocol (Example 2 from [5]).
Accessed: Tue 17 Sep 2013 14:28:06 CEST. 2012. url: https:
/ / github . com / tamarin - prover / tamarin - prover / blob /

develop / data / examples / related _ work / StatVerif _ ARR _

CSF11/StatVerif_GM_Contract_Signing.spthy.

[69] Simon Meier. ‘Formal Analysis of Key-Exchange Protocols
and Physical Protocols.’ PhD thesis. ETH Zürich, 2013.

[70] Simon Meier. Simple security device (Example 1 from [5]).
available in the example/ directory of the tamarin
distribution. Accessed: Tue 17 Sep 2013 14:31:32 CEST.
2012. url: https://github.com/tamarin-prover/tamarin-
prover / blob / develop / data / examples / related _ work /

StatVerif_ARR_CSF11/StatVerif_Security_Device.spthy.

[71] Simon Meier. The keyserver example from [74]. Ac-
cessed: Tue 17 Sep 2013 14:23:53 CEST. 2012. url:
https : / / github . com / tamarin - prover / tamarin -

prover/blob/develop/data/examples/related_work/AIF_

Moedersheim_CCS10/Keyserver.spthy.

[72] Simon Meier. The TESLA protocol, scheme 1 and 2. available in
the example/ directory of the tamarin distribution. Accessed:
Thu 19 Sep 2013 14:36:52 CEST. 2012. url: https://github.
com/tamarin-prover/tamarin-prover/blob/develop/data/

examples/loops/TESLA_Scheme[1,2].spthy.

[73] Simon Meier, Cas J. F. Cremers, and David A. Basin. ‘Strong
Invariants for the Efficient Construction of Machine-Checked
Protocol Security Proofs.’ In: Computer and Communications Se-

curity. ACM, 2010, pp. 231–245.

http://eprint.iacr.org/
https://github.com/tamarin-prover/tamarin-prover/blob/develop/data/examples/related_work/StatVerif_ARR_CSF11/StatVerif_GM_Contract_Signing.spthy
https://github.com/tamarin-prover/tamarin-prover/blob/develop/data/examples/related_work/StatVerif_ARR_CSF11/StatVerif_GM_Contract_Signing.spthy
https://github.com/tamarin-prover/tamarin-prover/blob/develop/data/examples/related_work/StatVerif_ARR_CSF11/StatVerif_GM_Contract_Signing.spthy
https://github.com/tamarin-prover/tamarin-prover/blob/develop/data/examples/related_work/StatVerif_ARR_CSF11/StatVerif_GM_Contract_Signing.spthy
https://github.com/tamarin-prover/tamarin-prover/blob/develop/data/examples/related_work/StatVerif_ARR_CSF11/StatVerif_Security_Device.spthy
https://github.com/tamarin-prover/tamarin-prover/blob/develop/data/examples/related_work/StatVerif_ARR_CSF11/StatVerif_Security_Device.spthy
https://github.com/tamarin-prover/tamarin-prover/blob/develop/data/examples/related_work/StatVerif_ARR_CSF11/StatVerif_Security_Device.spthy
https://github.com/tamarin-prover/tamarin-prover/blob/develop/data/examples/related_work/AIF_Moedersheim_CCS10/Keyserver.spthy
https://github.com/tamarin-prover/tamarin-prover/blob/develop/data/examples/related_work/AIF_Moedersheim_CCS10/Keyserver.spthy
https://github.com/tamarin-prover/tamarin-prover/blob/develop/data/examples/related_work/AIF_Moedersheim_CCS10/Keyserver.spthy
https://github.com/tamarin-prover/tamarin-prover/blob/develop/data/examples/loops/TESLA_Scheme[1,2].spthy
https://github.com/tamarin-prover/tamarin-prover/blob/develop/data/examples/loops/TESLA_Scheme[1,2].spthy
https://github.com/tamarin-prover/tamarin-prover/blob/develop/data/examples/loops/TESLA_Scheme[1,2].spthy

Bibliography 271

[74] Sebastian Mödersheim. ‘Abstraction by set-membership: veri-
fying security protocols and web services with databases.’ In:
Computer and Communications Security. ACM, 2010, pp. 351–
360.

[75] The Canadian Press – OBJ. PCs still more popular than tablets,

smarpthones: Deloitte. Accessed: Fr 13 Sep 2013 15:44:46 IST.
2013. url: http://www.obj.ca/Canada%20-%20World/2013-
01- 15/article- 3156753/PCs- still- more- popular- than-

tablets-smarpthones-Deloitte/1.

[76] David Oswald, Bastian Richter, and Christof Paar.
‘Side-Channel Attacks on the Yubikey 2 One-Time Password
Generator.’ In: Research in Attacks, Intrusions and Defenses.
Springer, 2013.

[77] Catuscia Palamidessi. ‘Comparing the Expressive Power of the
Synchronous and the Asynchronous pi-calculi.’ Anglais. In:
Mathematical Structures in Computer Science 5 (2003), pp. 685–
719. url: http://hal.inria.fr/inria-00201104.

[78] Adrian Perrig, J. D. Tygar, Dawn Song, and Ran Canetti. ‘Ef-
ficient Authentication and Signing of Multicast Streams over
Lossy Channels.’ In: Security and Privacy. IEEE Computer Soci-
ety, 2000, pp. 56–73.

[79] Alfredo Pironti, Davide Pozza, and Riccardo Sisto. ‘Formally-
Based Semi-Automatic Implementation of an Open Security
Protocol.’ In: Journal of Systems and Software (2012), pp. 835–
849.

[80] Alfredo Pironti and Riccardo Sisto. ‘Provably Correct
Java Implementations of Spi Calculus Security Protocols
Specifications.’ In: Computers & Security (2010), pp. 302–314.

[81] PKCS #11: Cryptographic Token Interface Standard. RSA Security
Inc. 2004.

[82] PKCS#11 v2.20: Cryptographic Token Interface Standard. Available

from http://www.rsa.com/rsalabs. 2004.

[83] AVISPA project. Deliverable 2.3: The Intermediate Format. 2003.
url: http://www.avispa-project.org.

[84] R. Küsters. ‘Simulation-Based Security with Inexhaustible In-
teractive Turing Machines.’ In: Computer Security Foundations

Workshop. IEEE Computer Society, 2006, pp. 309–320.

[85] R. Küsters and T. Truderung. ‘Reducing Protocol Analysis
with XOR to the XOR-free Case in the Horn Theory Based
Approach.’ In: Journal of Automated Reasoning 3 (2011),
pp. 325–352.

http://www.obj.ca/Canada%20-%20World/2013-01-15/article-3156753/PCs-still-more-popular-than-tablets-smarpthones-Deloitte/1
http://www.obj.ca/Canada%20-%20World/2013-01-15/article-3156753/PCs-still-more-popular-than-tablets-smarpthones-Deloitte/1
http://www.obj.ca/Canada%20-%20World/2013-01-15/article-3156753/PCs-still-more-popular-than-tablets-smarpthones-Deloitte/1
http://hal.inria.fr/inria-00201104
http://www.avispa-project.org

272 Bibliography

[86] P. Rogaway and T. Shrimpton. Deterministic Authenticated En-

cryption: A Provable-Security Treatment of the Keywrap Problem.
2006.

[87] Mark Ryan. Introduction to the TPM 1.2. Tech. rep. University
of Birmingham, 2009.

[88] Benedikt Schmidt. ‘Formal Analysis of Key-Exchange Proto-
cols and Physical Protocols.’ PhD thesis. ETH Zürich, 2012.

[89] Benedikt Schmidt, Simon Meier, Cas Cremers, and
David Basin. ‘Automated Analysis of Diffie-Hellman
Protocols and Advanced Security Properties.’ In: Computer

Security Foundations Symposium. IEEE Computer Society, 2012,
pp. 78–94.

[90] Benedikt Schmidt, Simon Meier, Cas Cremers, and David
Basin. ‘The TAMARIN Prover for the Symbolic Analysis of
Security Protocols.’ In: Computer Aided Verification. Springer,
2013, pp. 696–701.

[91] D. Shaw. The OpenPGP HTTP Keyserver Protocol (HKP).
Internet-Draft. Internet Engineering Task Force, 2003. url:
http://tools.ietf.org/html/draft-shaw-openpgp-hkp-00.

[92] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman.
‘Strand Spaces: Why is a Security Protocol Correct?’ In: Secu-

rity and Privacy. IEEE Computer Society, 1998, pp. 160–171.

[93] The YubiKey Manual - Usage, configuration and introduction of ba-

sic concepts (Version 2.2). Yubico AB. 2010. url: http://www.
yubico.com/documentation.

[94] The yubikey-val-server-php project. Validation Protocol Version

2.0. 2011. url: http://code.google.com/p/yubikey- val-
server-php/wiki/ValidationProtocolV20.

[95] Trusted Platform Module Library, Family 2.0. Commit-
tee Draft. Trusted Computing Group, 2013. url:
http://www.trustedcomputinggroup.org/resources/tpm_

library_specification.

[96] Loredana Vamanu. ‘Formal Analysis of Yubikey.’ Master’s
Thesis. École normale supérieure de Cachan, 2011. url: http:
//n.ethz.ch/~lvamanu/download/YubiKeyAnalysis.pdf.

[97] Christoph Weidenbach. ‘Combining Superposition, Sorts and
Splitting.’ In: Handbook of Automated Reasoning (2001), pp. 1965–
2013.

[98] Christoph Weidenbach. ‘Towards an Automatic Analysis of Se-
curity Protocols in First-Order Logic.’ In: Automated Deduction.
Vol. 1632. Springer, 1999, pp. 314–328.

http://tools.ietf.org/html/draft-shaw-openpgp-hkp-00
http://www.yubico.com/documentation
http://www.yubico.com/documentation
http://code.google.com/p/yubikey-val-server-php/wiki/ValidationProtocolV20
http://code.google.com/p/yubikey-val-server-php/wiki/ValidationProtocolV20
http://www.trustedcomputinggroup.org/resources/tpm_library_specification
http://www.trustedcomputinggroup.org/resources/tpm_library_specification
http://n.ethz.ch/~lvamanu/download/YubiKeyAnalysis.pdf
http://n.ethz.ch/~lvamanu/download/YubiKeyAnalysis.pdf

Bibliography 273

[99] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-

MAC (CCM). RFC 3610 (Informational). Internet Engineering
Task Force, 2003. url: http://www.ietf.org/rfc/rfc3610.
txt.

[100] Yubicloud Validation Service - (Version 1.1). Yubico AB. 2012. url:
http://www.yubico.com/documentation.

[101] Yubico AB. Department of Defence: Moving from legacy authen-

tication to Yubico technology and best practice security processes.
Accessed: Wed 17 Jul 2013 11:20:48 CEST. 2013. url: https:
//www.yubico.com/about/reference-customers/department-

defence/.

[102] Yubico AB. Yubico customer list. Accessed: Wed 17 Jul 2013

11:40:50 CEST. 2013. url: https://www.yubico.com/about/
reference-customers/.

[103] Yubico AB. YubiKey NEO. Accessed: Wed 17 Jul 2013 13:25:32

CEST. 2013. url: www . yubico . com / products / yubikey -

hardware/yubikey-neo/.

[104] Yubico AB. YubiKey Security Evaluation: Discussion of security

properties and best practices. v2.0. 2009. url: http://static.
yubico.com/var/uploads/pdfs/Security_Evaluation_2009-

09-09.pdf.

[105] Yubico Inc. YubiHSM 1.0 security advisory 2012-01. 2012.
url: http : / / static . yubico . com / var / uploads / pdfs /

SecurityAdvisory%202012-02-13.pdf.

[106] Yubico YubiHSM - Cryptographic Hardware Security Module (Ver-

sion 1.0). Yubico AB. 2011. url: http://www.yubico.com/
documentation.

[107] YubiKey Authentication Module Design Guide and Best Practices

(Version 1.0). Yubico AB. 2011. url: http://www.yubico.com/
documentation.

http://www.ietf.org/rfc/rfc3610.txt
http://www.ietf.org/rfc/rfc3610.txt
http://www.yubico.com/documentation
https://www.yubico.com/about/reference-customers/department-defence/
https://www.yubico.com/about/reference-customers/department-defence/
https://www.yubico.com/about/reference-customers/department-defence/
https://www.yubico.com/about/reference-customers/
https://www.yubico.com/about/reference-customers/
www.yubico.com/products/yubikey-hardware/yubikey-neo/
www.yubico.com/products/yubikey-hardware/yubikey-neo/
http://static.yubico.com/var/uploads/pdfs/Security_Evaluation_2009-09-09.pdf
http://static.yubico.com/var/uploads/pdfs/Security_Evaluation_2009-09-09.pdf
http://static.yubico.com/var/uploads/pdfs/Security_Evaluation_2009-09-09.pdf
http://static.yubico.com/var/uploads/pdfs/SecurityAdvisory%202012-02-13.pdf
http://static.yubico.com/var/uploads/pdfs/SecurityAdvisory%202012-02-13.pdf
http://www.yubico.com/documentation
http://www.yubico.com/documentation
http://www.yubico.com/documentation
http://www.yubico.com/documentation

	Dedication
	Abstract
	Résumé
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	1 Introduction
	1.1 Cryptographic security APIs
	1.2 security APIs and network protocols
	1.3 security APIs in context of arbitrary protocols

	Analysis of stateful protocols in the symbolic model
	2 Preliminaries
	2.1 Terms and equational theories
	2.2 Facts
	2.3 Substitutions
	2.4 Sets, sequences and multisets

	3 A survey on existing methods
	3.1 Running Examples
	3.2 StatVerif
	3.2.1 Running Example 4: Left-or-right encryption in StatVerif
	3.2.2 Running Example 5: Wrap/Dec in StatVerif

	3.3 Abstraction by set-membership
	3.3.1 Running Example 5: Wrap/Dec using abstraction by set-membership
	3.3.2 Running Example 4: Left-or-right encryption

	3.4 Why Horn clause approaches are unsuitable
	3.5 Other Approaches
	3.6 The tamarin-prover
	3.6.1 Labelled multiset rewriting
	3.6.2 Adversarial deduction
	3.6.3 Security Properties

	4 Analysis of the Yubikey protocol and the YubiHSM
	4.1 Yubikey and Yubikey Authentication Protocol
	4.1.1 About the Yubikey Authentication Protocol
	4.1.2 Formal Analysis (Uncompromised Server)

	4.2 The YubiHSM
	4.2.1 About the YubiHSM
	4.2.2 Two Attacks on the Implementation of Authenticated Encryption
	4.2.3 Analysis in the Case of Server Compromise

	4.3 Evaluation
	4.3.1 Positive Results
	4.3.2 Negative Results
	4.3.3 Possible changes to the YubiHSM
	4.3.4 Methodology
	4.3.5 Future work

	5 A process calculus with state
	5.1 Related work
	5.2 A cryptographic pi calculus with explicit state
	5.2.1 Syntax and informal semantics
	5.2.2 Semantics
	5.2.3 Discussion

	5.3 A translation from processes to multiset rewrite rules
	5.3.1 Translation of processes
	5.3.2 Translation of trace formulas
	5.3.3 Discussion

	5.4 Correctness of the translation
	5.4.1 Lemmas about message deduction
	5.4.2 Inclusion I
	5.4.3 Inclusion II

	5.5 Case studies
	5.5.1 Security API à la PKCS#11
	5.5.2 Needham-Schoeder-Lowe
	5.5.3 Yubikey
	5.5.4 The GJM contract signing protocol
	5.5.5 Further Case Studies

	When is a Security API ``secure''?
	6 When is a security API secure?
	6.1 Criteria for persuasive definitions
	6.2 Characteristics of a ``secure'' security API
	6.3 Composability
	6.4 Overview
	6.5 Related work

	7 Introduction to GNUC
	7.1 Preliminaries
	7.2 Machines and interaction
	7.3 Defining security via ideal functionalities

	8 Key-management functionality and refer. implementation
	8.1 Design Rationals
	8.1.1 Policies
	8.1.2 Sharing Secrets
	8.1.3 Secure Setup
	8.1.4 Operations required

	8.2 Key-usage (ku) functionalities
	8.2.1 Credentials
	8.2.2 Key-manageable functionalities

	8.3 Policies
	8.4 FKM and the reference implementation
	8.4.1 Structure and Network setup
	8.4.2 Setup phase
	8.4.3 Executing private commands
	8.4.4 Creating keys
	8.4.5 Wrapping and Unwrapping
	8.4.6 Changing attributes of keys
	8.4.7 Corruption
	8.4.8 Public key operations
	8.4.9 Formal definition of FKM
	8.4.10 Formal definition of the security token network

	9 Analysis of the key-management functionality
	9.1 Properties
	9.2 Limitations
	9.3 Discussion

	10 Proof of emulation.
	11 A simple case study
	11.1 Realizing FKM for a static key-hierarchy
	11.2 An example implementation of the authenticated channel functionality

	Conclusion
	12 Conclusion and Perspectives
	12.1 Analysis of protocols using security APIs
	12.2 Analysis of security APIs
	Appendix
	A Listings for Part i
	A.1 Listings for Chapter 3
	A.2 Listings for Chapter 4
	A.3 Listings for Chapter 5

	B Proofs for Part i
	B.1 Correctness of tamarin's solution procedure for translated rules
	B.2 Proofs for Section 5.4
	B.2.1 Proofs for Section 5.4.2
	B.2.2 Proofs for Section 5.4.3

	C Initialisation and Setup in FKM
	C.1 Initialisation phase
	C.2 Handling of the setup phase in FKM and the generic implementation
	C.3 Setup assumptions for the implementation

	D The complete proof of emulation
	Bibliography

