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Présentation de la thèse en
français

I. Introduction

La motivation pour ce travail est venue de la situation réelle dans des pays en
développement où des personnes vivent en-dessous du seuil de pauvreté et qui
trouvent à améliorer leurs conditions de vie par l’accès au microcrédit qui leur est
fournit par des institutions de microfinance (IMFs). Il faut prendre en compte que
les pauvres ont rarement la chance d’obtenir un crédit bancaire du fait qu’ils n’ont
pas un vrai métier, qu’ils n’ont pas un bon historique de crédit (credit score) à leur
disposition, ni de personne ou biens à apporter en caution. Fournir l’opportunité
d’un crédit à des pauvres pour leur petite entreprise ou activité dégageant un revenu
est une idée plaisante.

Toutefois, le problème du crédit tourne souvent autour des frais mis à la charge
des emprunteurs par les prêteurs. En effet les taux d’intérêts sont souvent élevés,
mais si nous tenons compte qu’il y a assez souvent des retards de paiement, les
véritables taux d’intérêts sont plus faibles. Par une modélisation mathématique des
retards aléatoires le «vrai» taux peut être mieux compris et quantifié. On peut
également s’intéresser à la question du fort taux de remboursement. Ceci peut être
dû à l’innovation en matière de crédit du fait que les prêts sont consenti à des
groupes de personnes, et ainsi chaque membre du groupe devient caution des autres
membres. Les économistes font généralement appel a de nombreuses caractéristiques
sociales et économiques attachées au groupe pour expliquer les résultats en matière
de remboursement. En fonction des données disponibles sur les groupes emprunteurs
les méthodes de sélection de variables peuvent dégager le modèle le plus simple ne
mettant en œuvre qu’une sélection d’un petit sous-ensemble de variables explicatives,
sans perte pour le caractère prédictif du modèle.

Problèmes et Méthodes

Le taux d’intérêt du microcrédit dépasse généralement 20% ; les remboursements
sont souvent hebdomadaires. La question de ces forts taux d’intérêts du microcrédit
est centrale, tant pour les personnes et organismes impliqués que pour les autorités
en charge et les études académiques. Celle-ci est débattue sans prendre en
compte que certains bénéficiaires ne sont pas en mesure de respecter les délais de
remboursement prévus avec l’IMF. Quand une difficulté intervient, l’IMF ne facture
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pas de pénalité de retard et ce pour de bonne raisons. De ce fait le véritable taux
d’intérêt est alors inférieur à ce qui a été dit.

De manière à mieux comprendre cette question j’introduit un modèle prenant en
compte le retard aléatoire dans les remboursements qui induit un taux d’intérêt
aléatoire. Ce taux aléatoire peut tout d’abord être compris comme un «taux
actuariel espéré», le taux qui satisfait en espérance l’équation de Yunus aléatoire.
L’introduction de la fonction génératrice des moments d’une variable aléatoire
suivant une distribution géométrique permet de calculer ce taux actuariel espéré
en fonction de la probabilité p de paiement dans les délais (in-time installment
probability). De plus, pour prendre en compte le cas d’un grand nombre
d’emprunteurs, on simule au moyen de Scilab un grand nombre de séries de
remboursements et on calcule, toujours au moyen de Scilab, le taux d’intérêt
résultant, pour diverses valeurs de p. Ceci permet de représenter la distribution
des taux d’intérêts induite.

Un autre fait attaché au microcrédit que j’ai étudié est que le taux de remboursement
(ou faible taux de défaut) est remarquablement élevé, de l’ordre de 97%, même dans
le cas, ici, de taux d’intérêts élevés. Ceci peut être dû au fait que le microcrédit
est la seule option pour les pauvres. De manière à comprendre en profondeur ces
résultats en matière de taux de remboursement j’effectue une analyse statistique des
données réunies et ayant fait l’objet d’une première étude pas Ahlin et Townsend
dans [Ahlin 2007] pour des prêts à des groupes solidaires d’emprunteurs. Le modèle
de régression logistique des chances de remboursement présenté dans leur papier fait
appel, de fait, à beaucoup de variables explicatives, ce qui n’est guère commode pour
l’interprétation, sans parler du fait que certaines variables explicatives ne sont guères
statistiquement significatives. C’est pourquoi j’applique une méthode de sélection
de variables capable de produire un nouveau model avec moins de variables pour
lequel ces variables ont un meilleur rôle prédictif des chances de remboursement.

Comme nous considérons un résultat binaire 1 ou 0 (codant le paiement ou non)
nous adoptons un modèle logistique. J’introduis tout d’abord l’estimation des
paramètres du modèle logistique par la méthode du maximum de vraisemblance,
puis l’interprétation de la régression obtenue, et enfin l’erreur de Pearson. Puis je
présente deux critères classiques de sélection de modèle : le critère d’information
d’Akaike (Akaike Information Criterion (AIC)) et le critère d’information bayesienne
(Bayesian Information Criterion (BIC)). Je donne une présentation théorique de AIC
et BIC que je fais suivre d’une élimination pratique de variables, par une méthode
pas à pas rétrograde (backward stepwise elimination) mettant en œuvre tantôt le
critères AIC tantôt le critère BIC mentionnés.

Ceci se fait, en pratique, par l’usage de bibliothèques du logiciel de Statistique
R. On utilise la fonction glm() avec l’option family=binomial() qui produit la
régression logistique des données. Je donne également un code Scilab qui produit
bien le même résultat que le logiciel. Pour la partie sélection de variables, j’utilise à
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nouveau une bibliothèque de R, notamment la fonction stepAIC() de la bibliothèque
library(MASS) pour opérer la sélection de variable par élimination pas à pas
rétrograde AIC. Un paramètre de la fonction stepAIC() permet de passer du critère
AIC au critère BIC. Ceci conduit à un modèle avec moins de variables explicatives
pour la prédiction des chances de remboursement.

Plan de la thèse

La thèse est structurée en quatre chapitres et deux annexes.

Le chapitre 1 donne un aperçu de quelques caractéristiques du microcrédit.
J’introduis tout d’abord ce qu’est le microcrédit et les institutions qui offrent de tels
crédits. Je présente également les origines du microcrédit moderne dû au Professeur
Muhammad Yunus et à la banque Grameen a qui ont été décerné le Prix Nobel de la
Paix en 2006 pour leur innovation du microcrédit et leur contribution à la réduction
de la pauvreté par le crédit. Le chapitre souligne la croissance remarquable du
microcrédit tant en volume qu’en nombre de bénéficiaires. On y présente aussi
brièvement des particularités du microcrédit par rapport au crédit classique. La
question des taux d’intérêts pratiqués et des taux de remboursements sont également
abordées dans ce chapitre. Ces concepts pratiques fournisse un cadre général de
connaissances sur le microcrédit.

Au chapitre 2 on construit un nouveau modèle avec délais de remboursement
aléatoires construit sur une exemple réel du programme de prêts de la banque
Grameen. Dans cet exemple l’emprunteur rembourse 22 BDT chaque semaine
durant près d’une année pour un prêt de 1000 BDT. Mais des accidents de
remboursement peuvent se produire durant cette période ; l’acte de remboursement
–l’emprunteur verse ou ne verse pas la somme prévue dans la semaine prévue–
est modélisé par une variable aléatoire de Bernoulli de paramètre p, où p est
appelé la probabilité de remboursement à temps (in-time installment probability),
la probabilité que l’emprunteur puisse effectuer sans (nouveau) retard un
remboursement donné. Le processus de remboursement (ou non) semaine après
semaine devient ainsi un processus de Bernoulli du fait qu’on suppose l’indépendance
de ces variables de Bernoulli. De plus les instants où les versements interviennent
effectivement sont alors des temps d’arrêt pour la filtration du processus de
Bernoulli, et nous prouvons que les durées entre deux paiements successifs suivent
une loi géométrique de paramètre p. On peut alors calculer le taux actuariel espéré
qui sera défini (il s’agit d’un taux non aléatoire qui satisfait en espérance l’équation
de Yunus). On donne alors le résultas de simulations du taux d’intérêt aléatoire.

Le chapitre 3 traite des outils statistiques nécessaires aux applications du chapitre
4 pour la sélection de variables et de modèle. Je présente principalement le
modèle de régression logistique, essentiellement comment calculer les paramètres
du modèle par un algorithme de moindres-carrés itératif avec poids obtenu par
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approximation numérique du maximum de vraisemblance. Puis je présente les
critères de sélection AIC et BIC ainsi que quelques unes de leur caractéristiques
utiles dans la pratique. J’introduis des algorithmes classiques de choix du meilleur
sous-ensemble de variables : directe (forward), rétrograde (backward), et pas à pas
(stepwise). Ces algorithmes peuvent être mis en œuvre en conjonction avec les
critères de sélection AIC ou BIC pour obtenir le modèle optimal pour minimiser le
critère choisi.

Le chapitre 4 présente l’étude statistique de données relatives aux remboursement.
On commence par présenter les données. Puis on procède à la régression logistique,
suivie par la sélection de variables selon la méthode d’élimination rétrograde pas
à pas pour les critères AIC puis BIC appliqués au modèle complet. Ainsi le
modèle complet de vingt-trois variables est réduit à un modèle optimal à huit
variables pour le critère AIC et à cinq variables pour le critère BIC. Puis on
s’assure de la validité des deux modèles optimaux par 25 sous-échantillonnages
choisis aléatoirement soumis à la même procédure et au même critère de sélection
de variables. J’abouti à la recommandation de choisir le modèle optimal pour le
critère AIC avec adjonction de la variable taux d’intérêt (elle ne dégrade guère le
critère et est aisément et précisément disponible)

Nous donnons deux annexes: l’annexe A fournit plus de détails sur la description des
variables et sur les variables sélectionnées, et l’annexe B comporte les codes Scilab
et R utilisés dans la thèse.

II. Conclusion et Perspectives

Dans cette thèse j’ai tout dabord étudié un modèle stochastique pour les retards
aléatoires des remboursements hebdomadaires d’un programme de microcrédit
introduit par la banque Grameen créé par le Prof. Yunus au Bangladesh. Dans
cet exemple, pour le cas déterministe (sans retard) il avait été calculé que le taux
d’intérêts est de près de 20%. On a introduit un modèle pour la prise en compte des
retards fondé sur un processus de Bernoulli: chaque versement hebdomadaire dû est
modélisé par la variable aléatoire valeur du processus pour la semaine considérée, et
la probabilité p modélise la chance de succès du paiement dû cette semaine là. Ce
modèle conduit à une version aléatoire de l’équation de Yunus. Le taux actuariel
espéré est alors calculé en fonction de p. On déduit la valeur de p de la connaissance
du taux de remboursement connu de 97% et de la valeur d = 4 du nombre de
semaines sans remboursement retenu pour décider qu’il y a non-remboursement
(retard maximal). Ceci conduit à un taux actuariel espéré de 16.59% , soit environ
3.5% de moins que la valeur annoncée. Nous avons illustré le caractère aléatoire
du taux d’intérêt par des histogrammes issus de plusieurs simulations pour diverses
valeurs de p.

Le paramètre le plus important pour le calcul du taux actuariel espéré est la
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probabilité p de paiement dans les délais. Ce paramètre est également essentiel
dans la simulation des taux. Nous avons indiqué comment, dans ce modèle, déduire
p de la valeur du taux de remboursement γ et de la valeur d du nombre de
semaines sans remboursement retenu pour décider qu’il y a non-remboursement.
Une autre manière d’estimer, en pratique, cette probabilité pourrait être d’utiliser
que l’espérance d’une distribution géométrique est 1/p. On pourrait donc estimer la
valeur de 1/p en calculant la moyenne du nombre de semaines nécessité pour obtenir
un versement.

Un autre paramètre important est le nombre maximal d de semaine toléré pour
obtenir un versement et au-delà duquel il y a défaut. Augmenter d réduit la valeur de
p ce qui entraîne un taux actuariel espéré plus faible (inférieur à 16.59%). On aurait
pu envisager de prendre en compte le nombre cumulé de retards et pas seulement
les retards consécutifs.

La question de la loi du taux d’intérêt aléatoire n’a été abordée que par des
simulations. Ces simulations donnent une première idée de la loi du taux aléatoire R.

Nous aurions préféré obtenir la distribution exacte; il serait souhaitable de disposer
une approche générale de cette question de la loi du taux.

En ce qui concerne le traitement des données du microcrédit réunies pas Ahlin
et Townsend nous avons donné les bases statistiques nécessaires et utilisées dans
notre étude. La régression logistique du model complet à 23 variables explicatives
a été réduit à un model à 8 variables optimal pour le critère AIC, et à un modèle
à 5 variables optimal pour le critère BIC, déterminés au moyen d’un algorithme
d’élimination de variables par une méthode pas à pas rétrograde. Le modèle
AIC-optimal s’est révélé plus stable que le modèle BIC-optimal lors de choix
aléatoires de sous-échantillons. Ceci m’a conduit à sélectionner finalement un modèle
réduit à 8 variables du modèle AIC-optimal et adjonction d’une neuvième variable:
le taux d’intérêts.

On observe que dans le modèle ainsi sélectionné quatre parmi les neuf groupes
de variable ont été totalement écartés, à savoir Covariance, Cost of Monitoring,

Screening et Productivity ; de plus, certaines variable des groupes subsistants, telles
que BCPCT dans Cooperation, LOANSIZE dans Contract terms, et MEMS, VARBTY,
WEALTH, et CBANKMEM dans Control ont été retire du modèle complet par cette
approche statistique de sélection des variables.

Les variables explicatives du modèle final peuvent être considérées être les variables
les plus pertinentes et se sont révélées statistiquement significatives. L’aptitude à
la prédiction de l’issu en matière de remboursement par le modèle simplifié optimal
est quasiment aussi précise que le modèle complet.

La méthode de sélection de variable est un algorithme purement mathématique qui
choisi les variables explicatives automatiquement sans considération pour leur sens
économique ou sociologique. Néanmoins, en utilisant cette méthode, il ressort que
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les variables restant dans le modèle final sont économiquement significatives. La
méthode de sélection est un outil d’un usage facile et dont la mise en œuvre ne
requiert pas de fortes connaissance mathématiques. Adopter le modèle simplifié
pour prédire l’issu en matière de remboursement permet de réduire la tâche de
l’IMF dans la prédiction du risque de nouveaux groupes emprunteurs, tout comme
les banques commerciales ont dès à présent leurs propres modèles pour prévoir le
risque de leurs emprunteurs.
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Introduction

The motivation for this work came from a real situation happened in developing
countries where more people live under the poverty line. Some poor people improve
their living standards from the access of microcredit provided by microfinance
institutions (MFIs). It should be taken into account that traditionally the poor
rarely have chance to be granted credit from banks for the reasons that they do not
have any formal jobs, record of credit history or even collateral. Providing credit
opportunity for the poor to support their small businesses or income generating
activities is found to be a great idea.

However, the problem of credit is frequently centered on the fee charged by the
lenders. Indeed the interest rates are often very high, but if we take into account
frequent delays in repayment of the borrowers the true rates become in fact lower.
Thanks to a mathematical modeling of the phenomenon of random delays, the
“true” interest rate can be insightfully understood. Another question concerns on a
positive point of microcredit that can be seen through a high repayment rate. This
may be due to a lending innovation consisting in using the mechanism of group
borrowers, in such a way that each of members plays as guarantor for the other.
Economists usually explain the repayment outcome by using a large number of social
and economical characteristics underlying behind the entire group. Depending on
the available data of group borrowers, the statistical method of variable selection
may provide the simplest model that only involves a small number of explanatory
variables without loosing the accuracy of the prediction.

Problems and Methods

The annual interest rate for microcredit generally exceeds 20%. The microcredit
borrowers often repay their loans on weekly or monthly installment basis. The high
interest rate is computed without considering on a scenario that some borrowers are
not able to repay the installments on scheduled times agreed between themselves
and the MFIs. When the accident of repayment occurs, with some good reasons,
the MFI does not impose penalties on the subsequent repayments. In fact, the true
interest rate in this case is less than what it is claimed.

To understand this question, I introduce a model that takes consideration of random
delay in repayments leading to random interest rates. A construction of a stochastic
model of random delays in repayment bases on a Bernoulli process with arrival time
being the time when the installment occurs. This model allows to compute the
actuarial expected rate in term of a probability that the borrower is no longer
having a delay. This probability practically depends on two parameters, repayment
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rate and maximal time of delay. Moreover, for a large sample size of borrowers who
have delays in repayments, Scilab is used to generate several simulations on random
interest rate distribution for different values of the probability. The true interest
rate can be explained from these simulation results.

Another fact in microcredit I have studied is that the repayment rate is interestingly
high, around 97%, even in the case of very high interest rate. This may be because
of microcredit is the only choice for the poor. To deeper understand the factors
underlying this repayment outcome, I perform a statistical analysis on a data
set of joint liability borrowing groups collected and already studied by Ahlin and
Townsend in [Ahlin 2007]. The logistic regression model on repayment outcome in
their paper is found to have quite many predictors, which is not very convenient for
interpretation, this without taking a consideration of the statistical insignificance of
some predictors. In addition to this, a model with too many explanatory variables is
not easy to use in practice to predict the repayment outcome of any new borrower.
Therefore, it could be interesting to see if a variable selection method is able to
produce a new reduced model with fewer variables, in which those variables are
more relevant predictors for the repayment outcome and give similar prediction.

The statistical model under study is a linear logistic regression because the
repayment outcome is a binary variable, taking value 0 or 1. After introducing
a linear logistic regression model for binary variable with a maximum likelihood
method to obtain estimation of the parameters, interpretation of the fitted logistic
regression and Pearson error, I present two common model selection criteria,
Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC).
The derivation of AIC and BIC are provided theoretically followed by a backward
stepwise elimination, a step by step approach for selecting variables, based on model
evaluation using the mentioned criteria AIC and BIC.

To deal with the practical data, R-packages are used. There exists the function
glm() with option family=binomial() that allow to perform linear logistic
regression on the data. A Scilab code of the algorithm to obtain parameters
in the logistic regression model is also implemented and it generates the same
result. For the variable selection part, R-packages is again used with the function
stepAIC() in library(MASS) to perform the selection of variables by AIC backward
stepwise elimination. The function stepAIC() contains a parameter permitted
to change the criterion from AIC to BIC. Using selection criteria and backward
stepwise elimination procedure in R-packages, a reduced model with less number of
explanatory variables for predicting the repayment outcome is obtained.
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Outline of the Thesis

The thesis is structured into four chapters and two appendices as follows:

Chapter 1 overviews some features of microcredit. I first introduce what is a
microcredit and the institutions that are involved in offering such credits. I also
discuss the origin of modern microcredit thanked to Professor Muhammad Yunus
and Grameen Bank who received a Nobel Prize for Peace in 2006 for their innovation
of microcredit and the contribution of the credit for poverty alleviation. The
justification of Grameen Bank’s lending model provides a mathematical study of
microcredit. The chapter points out remarkable growth of microcredit in terms of
the growth of gross loan portfolio and number of borrowers. In addition, a way of
lending methods in microcredit which is different from a normal bank is presented.
The issues on repayment rate and interest rate charged are discussed as they play
important role in the thesis. These practical concepts provide a general background
to have new knowledge about microcredit.

In Chapter 2, a new model of random delay in repayment is constructed based on
a real example of Grameen bank’s lending program. In this example, a borrower
refunds 22 Bangladeshi Taka (BDT) weekly throughout a year for a loan of 1000
BDT. Then, some accidents of repayments may occur during the repaying period;
the act of repayment, the borrower refund or does not refund the installment at
a scheduled time is represented by a Bernoulli variable with parameter p, where p

is what is called in-time installment probability, the probability that a borrower
succeeds to pay the installment without any delay. The repayment process is
then a Bernoulli process constituting a sequence of independent Bernoulli variables.
Further, the random repayment time is a stopping time with respect to a filtration of
a Bernoulli process and the inter-repayment time, the time between two successive
repayments, is proved to be an independent random variable follows a geometric
law with parameter p. The actuarial expected rate (a non-random rate that satisfies
the expectation of random Yunus equation) can be computed. The simulations of
random interest rate are also presented in this chapter.

Chapter 3 is on statistical tools necessary for the applications of variable selection in
Chapter 4. I mainly present the logistic regression model, basically how to compute
parameters of the model using iterative reweighted least squares algorithm obtained
by numerical approximation of maximum likelihood method. The model selection
criteria, AIC and BIC are discussed with derivation of the criteria and some useful
features from practical point of view are provided. The common variable selection
algorithms such as best subset selection, forward, backward and stepwise procedures
are also discussed. These algorithms can be applied along with model selection
criterion, AIC or BIC to obtain an optimal model corresponding to the minimum
criterion.

Chapter 4 is on a statistical study of the repayment outcome on an existing data
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set. The chapter first presents the data. Then a logistic regression for repayment
outcome is performed in the subsequent section, followed by the section on variable
selection where a backward stepwise elimination with selection criteria AIC and BIC
are applied on the full model. The number of variables is reduced from 23 in the
full model to 8 variables in an AIC optimal model and 5 variables in a BIC optimal
model. The stability of the two optimal models is verified through sampling results
of 25 sub-samples randomly selected from the whole data set and put under the
same selection procedure and criterion. In the last section of the chapter, a final
model is then decided based on the AIC optimal model with interest rate as an
additional predictor.

In addition, there are two attached appendices: Appendix A provides more detail
on variable descriptions and extracted data, and Appendix B contains Scilab codes
and R codes used in the thesis.



Chapter 1

An Overview of Microcredit

Microcredit is an act of providing small amount of loans, often less than 100 Euros,
to poor and low-income people who traditionally are refrained from credit access of
commercial banks. The success story of microcredit program started in Bangladesh
introduced by Muhammad Yunus, the idea of granting small loans to alleviate
financial constraints for the poor has been widespread replicated. The growing
number of microcredit providers in many countries around the world provide benefit
to millions of clients to get affordable microloans not only from a single institution,
but they can choose from a wide range of lenders. Recognizing the energy and
activity, the United Nations dedicated the year 2005 as “the International Year of
Microcredit” [de Aghion 2005].

This chapter provides an overview of microcredit in general that will be a helpful
tool for understanding of microcredit and some of its economic properties before
continuing to the subsequent chapters that a real world repayment scenario of
microcredit will be put into a mathematical framework and a data set of group
borrowers of this credit type will be analyzed. In Section 1.1, I introduce what is
microcredit, its characteristics and microfinance suppliers. The story of Grameen
Bank and Muhammad Yunus which has been recognized as the root of modern
microcredit is described in Section 1.2.

Section 1.3 is on the growth of microcredit, where I present the development of the
credit based on noticeable increases of gross loan portfolio and number of borrowers
from 2003 to 2011. In Section 1.4, the methods of lending in microcredit, individual
and group lending approaches, are demonstrated. Section 1.5 is on the microcredit
interest rate that overviews on why the interest rate is high and its relevant costs
incur in delivering small loans. Section 1.6 discusses on the rate of loan repayment
and the efficiency of the credit. Section 1.7 is a summary of the chapter related to
the needs of comprehension of microcredit features for latter works in the succeeding
chapters.

1.1 What is Microcredit?

Microcredit refers to the making of small loans to very poor, poor, low-income
households for enable them to raise revenue and improve standard of living. The
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aim of offering this kind of credit is to provide the poor liberate from poverty
cycle by providing opportunity to create business, to become entrepreneurs and
to earn sufficient income. It might also seek to support the existing small-scale
businesses or to start-up supplementary activities to diversify the income sources
of micro-borrowers. The loans help their clients to generate and increase income,
providing them with stability for their families, opportunities for education, gender
equality, health care, protection from externalities, etc.

The basic idea came from the finding that a large part of people can not get
credits from formal financial institutions because they require their borrowers
to meet a range of criteria, such as being able to read and write, bears some
identification documents, collateral, steady employment, a verifiable credit history,
or to have already secured a minimum deposit. In rural areas, the micro-borrowers
are usually farmers and women who engage in small income-generating activities,
such as food processing, livestock, and petty trade. In urban areas, microcredit
recipients are more diverse, including shopkeepers, service providers, artisans, small
manufacturers, and street vendors.

The main characteristics of microcredit are as following:

• The loans are very small,

• Over short periods usually the loan is paid back by a borrower within a year
at most, sometimes with frequent (weekly) installment,

• The loans is lent to an individual who belongs to a group of 5 to 20 people,

• The annual interest rates charged are usually high from 20% up to 50%,

• The target clients are the women and mothers of landless and small-scale
farmers,

• For poor families to lift themselves out of poverty,

• The repayment rate is very high close to 100%,

• Micro-lending institutions do not usually take collateral from their clients to
secure the loan.

Microcredit lenders have innovated and extended a broader range of financial
services offering to their clients, not only microloan but also microsaving,
micro-insurance, remittance, and other various services. With the recognition that
households can benefit from access to wider financial services and products, a word
microfinance is more preferable used instead of microcredit. In general, “microcredit”
refers to the provision of small loan to poor and focuses on poverty reduction. The
key players are NGOs like the Grameen bank or government subsidized banks.
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The organizations that provide such financial services to low-income families or
micro entrepreneurs are known as microfinance institutions (MFIs). The principal
activity of MFIs is to supply microcredit to the economically active poor populations
including consumers and self-employed who are excluded by traditional banking
and related services. It is estimated that over 10 000 MFIs worldwide which
made up various types of MFIs such as non-profit institution, non government
organization (NGO), credit cooperative, non-bank financial institution (NBFI),
parts of state-owned banks, or even a formal regulated bank. Many MFIs provide not
only financial services but also social services such as health and education. MFIs
differ in size and reach, some have numerous branches and serve a large number of
clients in various geographical regions, while others serve a few thousand clients in
their immediate areas [Dieckmann 2007].

Traditionally, some MFIs have obtained the capital for their lending activities
through government grants and private donations. As the microfinance market
is growing, these sources of funding are likely inadequate to finance the increasing
demands. Many well-established MFIs now are attempting to obtain additional
source of capital from private investors or to mobilize public saving. Recently,
reflecting to the maturing of the microfinance industry, certain MFIs have organized
themselves as for-profit commercial institutions. Advanced MFIs have facilitated to
collect funds by issuing bond or securities in the capital market. Microfinance has
emerged as an opportunity investment for investor because of its nature as the new
asset class which has less correlation with global financial crisis and lower volatility
than other traditional assets (bond, stock).

MFIs can be categorized into three main types based on the financial analysis. A
Formal microfinance institution refers to a full regulated institution which finances
large-scale enterprises in rural or urban areas. It consists of private banks, and
non-bank financial institutions (NBFIs); for example, ACLEDA in Cambodia, the
BAAC1 in Thailand. The second type is a semi-formal microfinance institution,
which composes of microfinance NGOs, credit unions and cooperatives. These
entities can achieve deep outreach by working mainly in rural area, searching for
people who live in the poverty and using group-lending rather than individual.
The third one is an informal microfinance institution, which includes moneylenders,
pawnshops, or village associations such as ROSCAs2, and ASCAs3. The third type
of MFIs usually responds quickly to the need of borrowers but charges relatively
high interest rate [Churchill 2006].

1Bank for Agriculture and Agricultural Cooperatives (BAAC) is a government-operated
development bank in Thailand established to serve rural households

2Rotating Saving and Credit Associations: usually comprise between five and fifty members
and primarily female

3Accumulating Saving and Credit Associations: self-help groups, village banks, individual
money lenders and pawnshops
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1.2 The Grameen Bank and Muhammad Yunus

The roots of mirocredit can be found in many places, but the most notable story is
that of Muhammad Yunus and the founding of Grammeen Bank. After obtaining a
PhD in economics from Vanderbit University in 1969, Yunus returned to Bangladesh
in 1972 and became a professor of economics at Chittagong University. Bangladesh
won independence from Pakistan in December 1971. Following the fierce war, and
two years of flooding, a terrible famine was found through out the country. By
1974, over 80% of the population was living in poverty. Seeing famine around him,
Yunus became disillusioned and disappointed with economic theory teaching in the
classroom: “Nothing in the economic theories I taught reflected the life around me...
I needed to run away from these theories and from my textbooks and discover the
real-life economics of a poor person’s existence” (see page viii: [Yunus 1999]). He
ventured into a nearby village of Jobra to learn more from the poor, soon Yunus
realized that the lack of access to credit had trapped them in poverty.

Professor Yunus and his students asked the craftsmen and peasants of the village
in order to try to understand their needs and listed a demand for small loans. He
then decided to lend from his own pocket a total of about $27 to 42 women involved
in the manufacturing of bamboo stools and asked to be repaid whenever they could
afford it. In 1976, Yunus started a series of experiments lending to poor households
in the nearby village of Jobra. He noticed that even the little money could help
the villagers to run simple business activities like bamboo weaving and rice husking.
He found that the villagers were not only profiting by access the credits but they
also repaid the debts reliably eventhough the collaterals were not required. He
spent nearly 10 years trying to persuade banks to take on these loans before finally
deciding to set up his own bank, the Grameen Bank in 1983 [Sengupta 2008].

The Grameen went nation-wide. Currently, it has expanded to 2,565 branches with
22,140 staff, throughout 81,379 villages and served 8.35 million borrowers of which
96% of them are women. The present amount of outstanding loans stands at BDT4

72.56 billion (USD $ 974.20 million). The loan recovery rate is 96.36%5. One
innovation that allowed Grameen to grow fast was a group lending, a method that
enables the poor borrowers to act as guarantors for each other. The Grameen
Bank’s pioneering of microcredit has been duplicated across the globe, especially
in developing countries. This bank and Professor Muhammad Yunus received
the Nobel Prize for Peace in 2006 for their effort to create economic and social
development from below.

The great success of Grameen Bank enables an enormous number of people to get
out of poverty. Just to mention, the philosophy of Yunus is related to what is called
now a “ social business”, according to Professor Yunus, it can be defined as a non-loss,
non-dividend company that is created to address and solve a social problem. At the

4Bangladeshi Taka
5www.grameen-info.org
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World Economic Forum in Davos, in January 2009, Yunus proposed that a business
can be considered as a social business if it follows seven principles: (1) Business
objective will be to overcome poverty, or one or more problems (such as education,
health, technology access, and environment) which threaten people and society; not
profit maximization. (2) Financial and economic sustainability. (3) Investors get
back their investment amount only. No dividend is given beyond investment money.
(4) When investment amount is paid back, company profit stays with the company
for expansion and improvement. (5) Environmentally conscious. (6) Workforce gets
market wage with better working conditions. And (7)...do it with joy.

1.3 Growth of Microcredit

The modern microcredit movement has rapidly gained prominence in the 1980s
and 1990s, after a success of lending operated by Grameen bank in Bangladesh.
Currently, the credit schemes have been implemented throughout the world; in
Asia, Africa, Latin America, and more recently in Eastern and Western Europe.
In poor countries such as Cambodia, Nepal, and Philippines, etc., the NGOs
are major service providers to borrowers at remote areas. In Latin America,
ACCION International supports the development of solidarity group lending to
urban vendors; and Fundacion Carvajal develops a successful credit and training
system for individual micro-entrepreneurs. The institutions involve in microcredit
in Europe including the Agency for Development and Economic Initiative (ADIE),
and Active Network France based in France, MicroFinanza in Italy, and Finnvera
in Finland.

MFIs exist in 105 different countries according to Microfinance Information
Exchange (MIX) Market6. It is difficult to know exactly about the number of
MFIs around the world. Based on the data in MIX, there were 2,807 MFIs served
around 95 million borrowers in 2011. The gross loan in 1998 was only USD 1,299
millions that grew to USD 8,443 millions in 2003 and continued to increase up to
around USD 86,800 millions in 2011 (see Table 1.1 and Figure 1.1). Therefore, the
microcredit industry has expanded at historic rate with gross loan portfolio growth
of 34.2% per year in average during the period from 2003 to 2011, while aggregate
number of borrowers increased at 21% annually within the same period. For this
level of growth, many microcredit practitioners and analysts found that microcredit
is on the way to its success in increasing access to financial services for the poor,
low-income households and small enterprises.

The growth and success of microcredit have attracted new entrants into this credit
market. In addition, some existing MFIs start looking for additional capital sources

6MIX Market is a non-profit organization based in Washington D.C. which provides financial
and social performance indicators for more than 2,000 MFIs. The MIX Market data set is probably
the most comprehensive of its kind, providing detailed information on individual MFIs. Its website
is www.mixmarket.org
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to expanding the scope of their operations. A recent phenomenon in microfinance
is the emergence of foreign investment in MFIs. Deutsche bank research predicted
by the year 2015 the investments in microfinance from institutional and individual
investors would rise up to around USD 20 billions [Dieckmann 2007]. The forecast
is based on the following assumptions. More and more MFIs become regulated
institutions suitable for investments. The microfinance itself will gradually move
into a market of investment product that will attract retail investors and benefit
from socially responsible investments (SRIs). Some private institutional investors
such as pension funds, insurance companies or trusts will discover microfinance as
an attractive supplement for their portfolio. The efficiency of microfinance such as
the low rate of default and a high rate of return on assets will potentially absorb
commercial funding.

Table 1.1: Growth of Gross Loan Portfolio and Number of Borrowersa

Year Gross Loan Portfolio Number of Borrowers
(in million USD) (in thousands)

2003 8,443.24 25,472
2004 12,199.14 36,474
2005 18,065.89 48,721
2006 25,550.61 59,089
2007 38,057.72 71,683
2008 44,679.02 83,574
2009 71,687.96 91,509
2011 86,800.00 94,700

Note: Data in 2010 is not attainable.

aSource: Data from MIX Market

Figure 1.1: Gross Loan Portfolio and Number of Borrowers from 2003 to 2011

 

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

2003 2004 2005 2006 2007 2008 2009 2011

Gross Loan Portfolio in million USD

Number of Borrowers in thousands



1.4. Methods of Microcredit Lending 11

1.4 Methods of Microcredit Lending

Microcredit borrowers are most often too poor. If microlenders require collateral
from their clients, they will be unable to participate in lending program. Anyhow,
MFIs have their own innovations in securing and extending credits. Some
microlenders use social collateral such as peer pressure via joint liability group
lending in which group members act as guarantors for the others that can be seen in
case of Grameen or BAAC contracts. Meanwhile, some MFIs use dynamic incentive

mechanism by threatening to exclude defaulting borrower from future access to
loan and the possibility of granting a new larger loan size when the borrower proves
reliable and repays on time the current loan. Generally, the methods of microcredit
delivery can be divided into two broad categories: group and individual lending
approaches. The lending methods are described as follows:

Group lending approach

Microcredit programs typically provide credit to households who have few assets that
can be used as collateral or who are extremely poor with no collateral. To ensure
term of repayment from a borrower who has no collateral, most microlenders adopt
a group lending method as an alternative kind of guarantee. Group lending takes
advantage of local information, peer monitoring, and sometimes peer pressure. The
lending approaches generally provide either loan to individuals who are members of a
group or to a group which afterward sub-loans will be distributed among members.
Even there are a variety of methodologies in group lending approach, a favorite
choice of lenders bases on a principal of joint liability.

Joint liability is a well-known feature of lending technique arising from microcredit
programs in which members accept to jointly liable for an individual who defaults
loans, that is each group member is jointly responsible for the loan of the other
members. If a member does not pay back, the other group members are obliged to
cover the debt amount or the proportion from their own resources, otherwise, they
lose access to future loans in next cycle. This joint responsibility approach results
in low level of default. The joint liability group lending approach is also adapted
by BAAC for small loans. The small loans are allowed to be supported with social
collateral in the form of joint liability. The loans under group contracts do not in
principle require land or other physical collateral only the promise that individual
members be jointly liable. However, it requires some collateral for larger loan sizes
more than 50,000 Baht7. The large loans must be backed by an asset such as land
[Ahlin 2007].

The group-lending model was introduced by the Grameen Bank with the aim that
the members would lose the privilege of borrowing rather than forcing to repay

740 Thai Baht is about 1 Euro
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for others [de Aghion 2005]. Here, we describe the classical features of the lending
model first implemented by Grameen. The group is made up of five borrowers,
loans go first to two members, then go to another two, and finally to the fifth. As
long as loans are being repaid, the cycle of lending continues. In case one member
defaults and the other group members cannot pay off the debt, all members are
refused subsequent loans. This aspect provides borrowers important incentives to
repay on time, to select responsible partners when forming groups and to monitor
their fellow members. In particular, Grameen creates “dynamic incentives” approach
by starting to offer borrowers with very small loans and gradually increasing loan
size as customers demonstrate reliability. Over years, this group-lending system
has undergone some changes or adapted in different contexts when the model is
replicated to use in different parts of the world.

Individual lending approach

Individual households and small entrepreneurs can get credits from MFIs based on
their abilities to provide the assurances of repayment and some level of security.
The effective models to lend to individuals have been successfully developed by
MFIs, which offer formal lending the same as traditional financial institutions.
Characteristics of individual lending models include screening of potential clients
by checking credit history and references, depositing the guarantee of loans by some
form of physical collateral, or having a cosigner, a person who agrees to be legally
responsible for the loan but not usually received her or his own loan from the MFI.
The lender generally makes the loan size and term of repayment adapting to the
business needs. The MFI may increase the subsequent loan size once the individual
proves efficiency in repayments of the previous loan.

The MFIs’ staff makes efforts to develop close relationship with clients, so staff needs
to devote more time and energy to each client. The purpose of having a close contact
with individual clients is to keep updating clients’ situations of his or her business.
Individual lending is most often successful in urban areas, where client easily has
access to the credit. The lending can also be successful in rural areas, particularly
through savings and credit cooperates or credit unions. In some countries, individual
lending exhibits higher average loan amounts and often primarily serves the existing
self-employed rather than the one seeking to start a new business.

In comparison to group lending approach, the amounts of loans to individual
are usually larger than the amount to each member in a group. In addition,
individual lending models may be less costly and less labor-intensive to establish
than a group-based model. Accordingly, given an equal number of loans, these
loans to individuals cost the MFIs higher in terms of delivering, maintaining, and
monitoring than the ones to the group. Giné and Karlan, [Giné 2007], conduct a
field experiment in the Philippines to explore the group lending programs versus the
individual lending schemes. They found that by offering individual loans, MFIs can
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attract relatively more new clients. However, both lending schemes do not differ in
repayment rates.

1.5 Microcredit Interest Rate

Microcredit interest rates are still one of the most concerned and discussed issues
capturing the attention of governments, medias and microcredit practitioners. The
growth of microfinance sector is appealing more private investors who are social
responsible minded to continuously financing MFIs to meet the increasing demand
of microcredit. The presence of commercial investors, those MFIs tend to maximize
profits, providing competitive financial returns to shareholders, hence very high
interest rates have to be charged from their borrowers. For instance, Compartamos,
a Mexican MFI with a banking license, sold a part of their shares very high price in
a public offering in 2007. A superior profit (annual return on shareholder’s equity
is 55%) derived from charging interest rate incredibly high on its clients, above 85%
annually (not including a 15% tax paid by the clients), is one of essential reason to
make its shares costly [Rosenberg 2009].

The high interest rate seems to be abusive to poor clients who have limited options.
This rate is even higher than richer borrowers pay to traditional bank. Consequently
MFIs may drift from social development objective of helping the poor out of poverty
instead by forcing them more indebted. Meanwhile, the very high rate may lead
MFIs to lose their borrowers. The annual rate ranges from 15% to 70% annually
and varies significantly by the geographical regions. In India, microloans are usually
granted at 15% to 30% per year [Dieckmann 2007]. In Bangladesh and Indonesia, the
main institutions keep interest rate below 50%, typically around 30%. In Cambodia,
the interest rate currently is around 30% per year, for example, ACLEDA8 takes
monthly interest rate between 3% and 4% computed on a reduction balance basic
[Fernando 2006].

It is not surprising that unsustainable MFIs tend to charge lower interest rates
than sustainable ones. Because interest rates set by unsustainable MFIs are not
constrained by their costs. The interest rates are usually affordable to address the
needs of poor borrowers as subsidies may be provided by donors or governments
to cover the losses. BAAC is subsidized by government, charges much lower
interest rate for small loans in rural areas of Thailand. BAAC does not attempt to
differentiate by increasing interest rate based on risk or location specifics of their
clients. It carries only 9% interest rate on all loan under 60,000 Baht and 12.25% rate
for the loans between 60,000 and 1,000,000 Baht. Except the higher loan amounts
not fall in the setting intervals may be charged higher [Ahlin 2007]. In the data

8ACLEDA is a leading microcredit supplier in Cambodia which recently serves around 306
thousand borrowers. It started microcredit activities since 1993 and received a license to become
a commercial bank in December 2003
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we study, the average and median annual interest rates equal to 10.87% and 11%,
respectively.

Obviously, there is an association between interest rates and costs. MFIs’ interest
rates can be determined by cost of funds, loan loss expense, operating expense,
and profit. The high rate would require because of the increasing costs the four
components. The cost of financial capital on average consists of 5.1%, which is one
reason that prompts profitable MFIs adopt high interest rate [Dieckmann 2007]. In
addition, the higher inflation and devaluation in money exchange could be added
to the cost of funds. The rate of loan default and delinquency in MFIs, even quite
low comparing with commercial banks, has relatively effect on the interest rate.
Furthermore, making profit is also a subject that MFIs set a high rate.

Last, the high operating cost including administrative and personnel expenses cover
about 60% of total MFI costs. Some studies showed that the main reason why
microcredit interest rates are higher than those of other financial institutions is due
to the fact of higher operational cost necessary to deliver such small loans. For
example, “lending $100,000 in 1,000 loans of $100 each practically costs more than a
single loan of $100,000”; because they need to spend on transportation cost, cost of
regular collection, staff salaries, etc. Not only tiny loan sizes but also short period
loan, client location and density, group lending loans, lateness of repayment and so
on are broad range of factors that effect on operating costs.

Grameen Bank claimed that its interest rate is reasonably low but still around 20%
annually. Actually, the loans offered by Grameen Bank are divided into four levels
of interest rates based on utilization of the loans: 20% for income generating loans,
8% for housing loans, 5% for student loans, and 0% (interest-free) for struggling
members (beggars). Typically, the amount of loan of the last type is around $15
and the restriction on repayment time and amount are not imposed [Yunus 2007].
In general, the amount of interest collected from a borrower can never exceed the
principal amount. The borrower will not pay a total of more than twice the sum she
borrowed even if she takes twenty years to repay her loan. The scenario of income
generating loans of Grameen Bank inspired us to study the behavior of interest rate
in microcredit that will be illustrated in Chapter 2.

1.6 Microcredit Repayment

The situation that loan payments are past due is called a delinquency. Delinquency
is also referred to arrears or late payments, and it is more delicate in MFI than in
commercial banks because most of microloans are not secured by tangible assets
that can be seized or sold in the case of inability to repay. When a borrower stops
repayment successively of a loan for more than three or four due dates, a loan is
considered as a default. For MFI that adopts weekly installment method, usually if
the installment is not paid within consecutive 4 weeks, then the debtor is assumed
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to have default. This means that the maximal delay time till the default of the loan
is 3 weeks. Default appears when a borrower cannot or will not repay her loan and
the MFI no longer expects to receive the repayments [CGAP 2009]. The positive
sign of microcredit is expressed in term of very low default rate which is equivalent
to high repayment rate. The repayment rate are usually computed by taking the
amount of collected divided by total amount of loan at due date [Rosenberg 1999].

Currently, many studies and discussions on repayment performance have been
satisfactorily reported that MFIs get extremely good repayment at the rates of
over 90% or even 95%9. For instance, Grameen Bank has achieved loan recovery
rate 96.67%10. While, ACCION11 reported that a repayment rate of microcredit is
about 97%12. High repayment rates are indeed benefit both on MFIs and borrowers.
MFIs enable to reduce interest rates charged to borrowers, thus reducing financial
costs of the credit and allowing more borrowers to have access to credit. For-profit
and non-profit MFIs try to maximize repayment performance since it is a crucial
factor might help MFIs to be independent from subsidies.

The poor households that take small loans are usually being asked to repay in
more frequent installments starting immediately after initial loan disbursement.
Typically the repayment schedules are by weekly, bi-weekly or monthly. MFIs
believe that frequent collection of repayment installments are important in keeping
low probability of default in the absence of collateral, and make lending to the poor
viable. This scheme may also have advantage for borrowers who have difficulty in
saving by just allowing them to pay a tiny amount immediately to MFIs. However,
frequent repayment schedules are often seen to be a burden for the poor borrower
who cannot afford to pay before her realization of project returns. This deprives her
to borrow from other lenders and thereby pushes her to multiple debts. In addition,
frequent collections dramatically increase MFIs’ transaction costs.

Introducing regular meeting, monitoring on loan lending out, social discipline
imposed by frequent repayments, or technical training to borrowers have a positive
impact on repayment performance and are critical to prevent the default. Besides,
MFIs can introduce innovative approaches that benefit clients to improve the
capacity of loan repayment including flexible repayment schedule by allowing
borrowers to have multiple options to repay their loans. For example, to ease
financial burden on poor borrowers, the Grameen Bank has introduced a new
system called the “Grameen Generalized System (GGS)”, in which their staffs are
allowed to offer a wider variety of repayment schedules as they gather experience
and information about borrowers.

Even there are many complains on high interest rates charged by this credit, still

9Richard Rosenberg, 2009 www.cgap.org/blog/95-good-collection-rate
10Grameen Bank at a glance , available at www.grameen-info.org
11ACCION is an non-profit organization helped to build 63 MFIs in 31 countries, based in

Boston, USA
12Media Coverage, Financial Times February 17, 2007, available at www.accion.org
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the repayment rate is very high. The secret of low default rate on the loans may
closely link to the facts of group lending contract first innovated by Grameen as
discussed in Section 1.4 or due to the majority of female borrowers who are more
responsible than their male counterparts. Dynamic incentives, regular repayment
schedules and collateral substitutes are the factors that prompt to increase the rate
of repayment.

The facts of 97% repayment rate and a maximal consecutive 4 weeks of no repayment
allowed before the default of loan will be used as parameters to compute the interest
rate in a stochastic model of random delays that will be studied in Chapter 2.

1.7 Summary

This chapter provides readers an understanding of background on microcredit
where we are going to take a real observed scenario of loan repayment process
to mathematically model in Chapter 2 and to empirically analyze of repayment
outcome based on data of BAAC in Chapter 4 of the thesis. Here, we do not seek
to provide any precise research on the management or economic of microcredit.
Anyhow, we just can have a comment that the initial views of microcredit have
been positive because the idea of providing opportunity for the poor to have credit
access which is already a breakthrough regardless the social objective of the credit
to eliminate poverty.

The issue of high interest rates pushes many authorities concerned to take action,
some governments start to set up a regulation on interest rate caps and watch
closely on the performance of MFIs. The long-term sustainability of microcredit is
largely unknown. The future of credit is most probably the same as normal bank
or it will find its own way to stand among financial sectors. Another new event
is the emergence of new investments in this field that may have both advantage
and disadvantage. The advantage is that MFIs will continue providing credit source
to the poor on sustainable way. While the disadvantage is that the investors are
interested in profit maximizing and ignored the original objective of social mission
as always been the aim of Prof. Yunus to put the poverty into a historical museum
of human being.



Chapter 2

Stochastic Model of Microcredit
Interest Rate

The high interest rate charged on microcredit is one of the most concerned issues
that captures the attention of media, industry analysts, and academicians alike.
The microcredit providers usually argue that the high interest charged results from
high administrative and operating costs for delivery of such tiny loans. For example
lending $ 100,000 in 100 loans, of course require a lot of more in staff salaries
than just a single loan of $100,000. Charging interest rates a little higher will best
ensure the permanence and expansion of the services they provide. The lenders can
continue to serve their clients without needing ongoing support of subsidies.

The above arguments deal only with the management of the microcredit without
taking into consideration that there are accidents of lateness in repayment during
the repaying period. It is worth to mention that the lending program under
consideration is about a micro-loan in which weekly installments are reimbursed
through out a year. The accidents of not paying weekly installments to MFI occur
because of the borrower herself or a member of her family falls sick, or she faces
a natural disaster, etc. With such good reasons, the MFI does not impose any
penalties or extra charges for the delays and it will be paid the same amount of
installment for the next period when the borrower can effort. The delays obviously
result in lower interest rates.

In order to better understanding the consequences of the delays in repayment that
effect on the interest rate, we construct in this chapter what we call a stochastic
model of random delays in repayment. The main objective of this study is to seek for
the law of random interest rate corresponding to the random repayment time under
the proposed new model, in which we provide simulation results of the interest rate
distribution.

This chapter is organized in the following way: Section 2.1 is about the deterministic
Yunus equation, where we consider an example raised by Grameen bank or given by
Yunus in his book, Creating a world without poverty, [Yunus 2007], and Banker to
the Poor, [Yunus 1999], that a microloan of 1000 BDT1 is lent to a borrower and the
loan is reimbursed via 50 weekly installments of 22 BDT. From this real practice
example, we formulate what we call a deterministic Yunus equation, in which a

1The value of 100 Bangladeshi Taka (BDT) is about 1 Euro.
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time value of money principle is taken into account. Thus, applying the rule of
compounded interest rate, we obtain the annual interest rate charged by Grameen
bank is about 20%.

Followed by Section 2.2 on a stochastic model of random delays in repayment,
where we add an assumption that if the borrower has an accident and she does
not pay one installment, she can postpone of one week all remaining settlements,
under the same conditions, so without extra cost. The accident may happen one,
two, or a number of times. In this process, we regard the repayment time as a
random variable, which leads to a random interest rate where its law is unknown.
In the spirit of this section, we introduce a Bernoulli variable corresponding to a
success or failure of repayment with a success probability p, the in-time installment

probability. These random variables constitute a well-known Bernoulli process and
the random time of repayment is a stopping time with respect to this process. We
prove that inter-repayment times, the times between two successive repayments are
independent random variables following a simple geometric distribution with the
same parameter p.

Default risk is one of the vital components for lending decision and it is the case of
micro-lending when the clients are lack of collateral or other security pledged for the
loan. For many MFIs who utilize the method of collecting the weekly installment,
if the debtor fails to repay the amount after a certain number of weeks, the loan is
treated as a default. While there is a concern in the default rates of micro-loans,
there are claims that the credits have historically high repayment rate up to 97%. In
Section 2.3, we consider this real practice of microcredit and construct a relationship
of the in-time installment probability in terms of the observed 97% of repayment
rate and the maximal number of weeks (d) allowed to delay until the loan is treated
to be a default. The graphs of the function p in terms of repayment rate are plotted
for some fixed values of d = 1, 2, 3, 4, and 5 to see particular cases in practice. For
the real practice of 97% repayment rate and d = 4, we obtain p = 0.84.

Section 2.4 is on random interest rate. As the repayment time is a random variable,
the corresponding interest rate becomes a random variable too. In this section,
we introduce what is called a random Yunus equation, which has a similar form of
the deterministic Yunus equation defined in Section 2.1 but the interest rate and
repayment time are random. Assuming that the random Yunus equation is true
in average, and denoting the actuarial expected rate to be a real number r̄ that
satisfies the expectation of the random Yunus equation, we compute this number
as a function of the in-time installment probability p. The computation is worked
out through the moment generating function of inter-repayment time which is an
independent random variable following a geometric law. We plot the graph of r̄ to
show how it behaves in terms of p and for the practical value of p = 0.84 obtained
in Section 2.3, the actuarial interest rate is found to be less than the annual interest
in case of no delay occurred during the repaying period.
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In the search of the law of random interest rate, we performed several experimental
results taking a sample of 10 000 borrowers who face delays for distinct values of
p, where here we present four results; first with p = 0.84 corresponding to real
practice computed in Section 2.3, then decreasing the value of p to 0.75. In these
two cases, the interest rate distributions are hump-shaped spread over an interval
from 0.12 to 0.20. We continue to steadily increase the value of p to 0.95 and
0.97, the distributions are no longer hump-shaped and skewed left with a very high
bar closes to the upper end. We can understand that the high bar corresponds to
the interest rates paid by borrowers who do not have any delays in repayments.
These simulation results are presented in Section 2.5. The similar simulations of the
random interest rate distribution can also be found in [Mauk 2012] and [Augé 2010].

2.1 Deterministic Yunus Equation

In this section, we take an example of income-generating loan given in [Yunus 2007],
[Yunus 1999] and www.grameen-info.org and formulate an equation in unknown
interest rate, from this equation the annually effective interest rate of the credit is
computed. Just to mention, the Grameen Bank classifies the interest rate into four
different categories: 20% for income-generation loans, 8% for housing loan, 5% for
students loans and 0% (interest-free) for struggling members. The Grameen claims
that all interests are simple interests, calculated on declining balance method. For
example if a borrower takes an income-generating loan of 1000 BDT and pays back
the entire amount within a year in weekly installments, she will pay a total amount
of 1100 BDT. Within this amount, 1000 BDT is the principal, plus 100 BDT is
the interest for the year, which corresponding to 10% flat rate. This calculation is
without taking consideration of the time value of money.

In the above example, given 1000 BDT loan reimbursed via 50 weeks of the year
with the total of repayment 1100 BDT from a borrower is equivalent to each week
she pays the installment of 22 BDT. The repayment scheme of weekly installments
can be represented by Figure 2.1. The current worth of a series of equal payments
22 BDT paying over 50 weeks of the year at a discount interest rate is computed as
following:

Figure 2.1: Weekly Installments
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Let us denote by r the annual continuously compound interest rate. The present
value of the 22 BDT refunded after one week is 22 e−

r
52 . This value of the second

installment is 22 e−
2r
52 . In general, the present value of the installment at week n is

22 e−
nr
52 . Therefore, for the 50 installments to balance the 1000 BDT immediately

received by the borrower, we obtain the following equation, what we shall call the
deterministic Yunus equation:

1000 = 22

50∑

n=1

e−
nr
52 (2.1)

Letting y = e−
r
52 , the equation becomes

1000 = 22
50∑

n=1

yn

= 22
y − y51

1− y
. (2.2)

This reduces to a degree 51 polynomial equation with unknown y. We denote by
f(y) the following polynomial:

f(y) := 22y51 − 1022y + 1000. (2.3)

We observe that f has two real zeros q− < 0 < q+ < 1, obviously q = 1 is a zero
of the polynomial but not the solution of the equation (2.2), and all other zeros are
complex conjugate. An approximation of q+ gives2 q+ = 0.9962107 . . ., which leads
to r = 19, 74 . . ., so nearly 20%.

The effective interest rate about 20% is exactly the rate charged by Grameen bank
for the type of income-generating loan. Clearly, the effective interest rate is very
high compared to the rate charged by a commercial bank. However, Grameen bank
declares that this rate is even less than the rate charged by government’s microloans.
The government of Bangladesh has fixed an interest rate for government-run
microcredit programs at a flat rate 11%, which is equivalent to about 22% at
a decline basis. While, the effective interest rate of NGO-MFIs on general loan
ranges from 25% to 33% and the modal value is 29% according to a recent survey
by Microcredit Regulatory Authority (MRA)3 of Bangladesh. Recently, MRA has
decided that a maximum interest rate for microcredit is 27% on declining balance
method and instructed the NGO-MFIs to implement this capped interest rate within
June 2011.

2using Scilab code in appendix B.
3MRA is an authority established in 2006 by the government of Bangladesh to monitor and

supervise microfinance operations of NGO-MFIs in the country. License from the Authority is
mandatory to operate microfinance operations in Bangladesh as an NGO.



2.2. A Stochastic Model of Random Delays in Repayment 21

The effective rate computed above is done without taking into account the fact that a
borrower has an accident of being not able to repay the installment at any scheduled
week, or some consecutive weeks. So, all remaining settlements are postponed to
the next weeks. Furthermore, various accidents may occur many times during the
period of repaying the installments. In our model, the accidents are assumed to
be independent from each other. The phenomena of random repayment times,
therefore, will be explored in the following sections.

2.2 A Stochastic Model of Random Delays in
Repayment

The borrowers of microcredit generally are poor, sometimes it occurs that they are
not able to pay the installments in the scheduled time agreed between themselves
and the lenders. When the delays in repayment occur, the micro-lenders usually
allow the delays without any penalties or extra charges. For modeling the random
delays in repayment of the installments, we make the following assumptions: (1)
refunding accidents are independent identically distributed Bernoulli variables; (2)
no extra charges or penalties for the borrower imposed by MFIs in case there is
a failure in repaying the installments i.e. the borrower pays the same amount of
installment when she can repay.

The main purpose throughout the chapter is to find the law of the implicit interest
rate under these assumptions. We start by constructing a new model of delays
in repayment of the installments that requires us to first understand clearly the
distribution of random repayment time and inter-repayment time, the time between
two successive repayments. Furthermore, a probability is assigned to the act of
repayment, say, p when a borrower succeeds to pay the installment at any week and
1−p otherwise. The acts of repayment, success or failure of repaying the installments
are thus Bernoulli variables; and the process of repaying the installments can be
regarded as a Bernoulli process.

Definition 2.1

Let (Ω, F , P) be a common probability space and let Bm, m = 1, 2, · · ·
be independent identically distributed random variables following a Bernoulli

distribution with probability of success p = P (Bm = 1), Bm  B(1, p). This

sequence (Bm)m=1,2,··· defined on (Ω, F , P) is a Bernoulli process 4.

Let (Fn)n=1,2,··· be the filtration associated to this Bernoulli process, then

Fn = σ (B0, · · · , Bn) ⊂ F .

4Some authors would prefer to call “Bernoulli process” the sequence (St)t=1,2,··· defined by
St = B1 + · · ·+Bt. Obviously, Ft = F

B
t = σ(B1, · · · , Bt) = σ(S1, · · · , St) = F

S
t .
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The important fact underlying the Bernoulli process is the independent assumption.
Suppose now that a Bernoulli process has been running for n time steps. The first
m Bernoulli random variables, B1, B2 · · · Bm, where m ≤ n, are observed. The
sequence of future variables, Bm+1, Bm+2, · · · are independent Bernoulli variables
and therefore form a Bernoulli process. In addition, this sequence of variables is
independent from the past one. Therefore, starting from any given point, the future
is also modeled by a Bernoulli process, which is independent of the past. It is
referred to a fresh-start property of the Bernoulli process.

Here, the model we adopt for microcredit installments:

Let Bm be the act of repayment at time m, then

Bm =

{
1, if the borrower succeeds to pay the installment at time m

0, otherwise
(2.4)

In this context, Bm describes the actions of repayment or not at time m. For
example, in the case of weekly installments, if at week m, the borrower can pay
the installment, then Bm = 1. After week m she does not pay and the fact of no
repaying may continue for some weeks, say, she can resume to pay the installments
at week 3 afterward, then we have Bm+1 = 0, Bm+2 = 0, and Bm+3 = 1.

Let us give a name to the probability that a borrower is successful to reimburse an
installment at the scheduled time.

Definition 2.2

The probability that at each scheduled time m the borrower is able to pay in time the

installment that she should pay is called in-time installment probability and is

denoted by p, where p = P (Bm = 1).

Defining (Bm)m≥1 as above, we observe that the sequence of repayments is a discrete
time Bernoulli process, which is a sequence of independent Bernoulli variables, where
the in-time installment probability p = P (Bm = 1) can be viewed as the probability
of success and its complement 1−p = P (Bm = 0), the probability that no installment
is paid at time m can be regarded as probability of failure.

Given a repayment process, we are interested in a sequence of random variables, Tk

corresponding to the time when the kth repayment occurred possibly after having
accidents of no repayment.

Definition 2.3

Given (Bm)m≥ 1 as defined by (2.4), the time when the kth installment takes place

is the sequence of random variable (Tk)k≥0 defined by

T0 = 0, and for k ≥ 1, Tk = Tk−1 + Min
{
∆t ≥ 1 | BTk−1+∆t = 1

}
(2.5)

Another important sequence of random variables associated with the random times
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of repayment is the increment of sequence (Tk)k≥0 that is the sequence of random
variables representing the time gap between two successive repayments.

Definition 2.4

Given (Tk)k≥0 defined in (2.5). We call a sequence of inter-repayment times the

sequence of random variables (Xk)k≥1 defined by

Xk := Tk − Tk−1, for k = 1, 2 · · · . (2.6)

Remark 2.1

When the installments are paid regularly on scheduled time, the sequence (Xk)k≥1

is constant, Xk = 1 for all k ≥ 1.

In a situation when delays exist, Xk is a number of consecutive time periods until
a first success in repayment at time Tk proceeded by a number of no repayments
after an observed success in repayment at time Tk−1. For example, Figure 2.2 is a
trajectory of a repayment process to illustrate the inter-repayment times when the
time steps are weeks. The horizontal axis represents weekly random repayments and
the vertical axis represents a number of weeks of delay. In this example, we have
T1 = 1, X1 = 1 and BT1

= 1, T2 = 2, X2 = 1 and BT2
= 1; the repayments occur

each week for the two cases. Further, T3 = 6, X3 = 4 and BT2+1 = 0, BT2+2 =

0, BT2+3 = 0, BT2+4 = BT3
= 1; here, there are consecutive three weeks of no

repayments. Afterward, there is no delay happened, T4 = 7 and T5 = 8, then
after T5 there is one week of no repayment, thus, T6 = 10, X6 = 2 and BT5+1 =

0, BT5+2 = BT6
= 1, T7 = 11 and T8 = 12 associated with X7 = 1 and X8 = 1.

Figure 2.2: Weekly Repayment Process with some Accidents of Delay
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Proposition 2.1

For any k, Tk is a stopping time with respect to the filtration of the Bernoulli process

(Bm)m≥1 .

Proof.

We will prove it by induction on k ≥ 1.

For k = 1; for any n ≥ 1, we have

{T1 = n} = {B1 = 0, · · · , Bn−1 = 0, Bn = 1}
= {B1 = 0} ∩ · · · ∩ {Bn−1 = 0} ∩ {Bn = 1} ∈ Fn,

so Proposition 2.1 holds for k = 1. By induction, assume that the proposition holds
for k − 1. Now,

{Tk = n} = {Tk−1 +Xk = n}

=
n⋃

m=k−1

{
Tk−1 = m, Xk = n−m

}

=
n⋃

m=k−1

{{
Tk−1 = m

}
∩
{
Xk = n−m

}}

=
n⋃

m=k−1

{{
Tk−1 = m

}
∩

{
BTk−1+1 = 0, · · · , BTk−1+(n−m−1) = 0, BTk−1+(n−m) = 1

}}

=
n⋃

m=k−1

({
Tk−1 = m

}
∩
{
Bm+1 = 0, · · · , Bn−1 = 0, Bn = 1

}
∈ 〈Fm,Fn〉 ,

as
{
Tk−1 = m

}
∈ Fm by assumption.

As m ≤ n, Fm ⊂ Fn, thus, 〈Fm,Fn〉 = Fn, and {Tk = n} ∈ Fn.

Remark 2.2

The stopping time Tk is also known as arrival time. In our case Tk = k if and only
if no accident of repayment occurs before time k.

Remark 2.3

From the strong Markov property, it follows that for any k ≥ 1,
(
BTk−1+n

)
n=1,2,···

=

(B′
n)n=1,2,··· is again a Bernoulli process independent of FTk−1

.

Knowing the distribution of the random variable Xk is important because it will
allow us to build simulation for the random interest rate that will be examined in
the latter section. From the definition above, Xk can be written in terms of Bernoulli
variables for the act of weekly repayment Bm as

Xk = Min
{
∆t ≥ 1 | BTk−1+∆t = 1

}
, for k ≥ 1. (2.7)
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From remark 2.3,
(
BTk−1+∆t

)
, ∆t = 1, 2, · · · , is a sequence of independent Bernoulli

random variables with in-time installment probability p = P
(
BTk−1+∆t = 1

)
and

probability of no repayment at time Tk−1+∆t is given by 1−p = P
(
BTk−1+∆t = 0

)
.

We will show that the inter-repayment time, Xk, follows a geometric law with
parameter p in the following proposition.

Proposition 2.2

For all k ≥ 1, the inter-repayment time, Xk, follows a geometric law with parameter

p. The expectation and the variance of Xk are given by

E (Xk) =
1

p
and V (Xk) =

1− p

p
.

Proof.

By definition, we have

Xk = Min
{
∆t ≥ 1 | BTk−1+∆t = 1

}
= Tk − Tk−1

Thus,

P (Xk = n) =
∑

m≥k−1

P (Tk−1 = m) P (Xk = n |Tk−1 = m)

=
∑

m≥k−1

P (Tk−1 = m)

P
(
BTk−1+1 = 0, · · · , BTk−1+n−1 = 0, BTk−1+n = 1 |Tk−1 = m

)

=
∑

m≥k−1

P (Tk−1 = m) P
(
B′

n = 1
) n−1∏

i=1

P
(
B′

i = 0
)

(by remark 2.3)

=
∑

m≥k−1

P (Tk−1 = m) p (1− p)n−1

= (1− p)n−1 p
∑

m≥k−1

P (Tk−1 = m) = (1− p)n−1p.

Therefore, for all n ≥ 1

P (Xk = n) = (1− p)n−1p.

The expectation and variance are just the known ones of a geometric distribution.

Proposition 2.3

The moment generating function of any geometric random variable, X  G(p), is

given by

MX(t) =
pet

1− (1− p)et
.
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Proof.

By definition of the moment generating function, we have

MX(t) = E
(
etX
)

=

∞∑

n=1

etn(1− p)n−1p

=
p

1− p

∞∑

n=1

(
(1− p) et

)n
=

p

1− p
(1− p) et

1

1− (1− p)et

=
p et

1− (1− p) et

Proposition 2.4

The sequence of random variables (Xk)k≥1 are independent.

Proof.

For all k ≥ 1, we have Xk  G(p), i.e.

P (Xk = n) = (1− p)n−1p.

Now, for 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk, and Bm’s are identically independent for all
m ≥ 0, we get

P (X1 = n1, X2 = n2, · · · , Xk = nk) = P

[
{B1 = 0, · · · , Bn1−1 = 0, Bn1

= 1} ,
{
Bn1+1 = 0, · · · , Bn1+(n2−1) = 0, Bn1+n2

= 1
}
,

· · · · · · · · · · · · ,
{
Bnk−1+1 = 0, · · · , Bnk−1+(nk−1) = 0, Bnk−1+nk

= 1
} ]

= (1− p)n1−1p (1− p)n2−1p · · · (1− p)nk−1p

= P (X1 = n1) P (X2 = n2) · · ·P (Xk = nk)

Corollary 2.1

Given random variable Tk be the time of the kth repayment, the expectation and

variance of Tk are

E (Tk) =
k

p
and V (Tk) =

k(1− p)

p2
.

Proof.

By definition, we have
Tk = X1 +X2 + · · ·+Xk

As the Xi are independent (from Proposition 2.4) and follow a geometric distribution
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with parameter p, we have

E (Tk) = E (X1) + E (X2) + · · ·+ E (Xk) =
k

p
,

and

V (Tk) = V (X1) + V (X2) + · · ·+ V (Xk) =
k(1− p)

p2
,

Furthermore, we are also interested to identify the probability density function
(p.d.f) of the stopping time Tk, which is the random time when the kth repayment
happens.

Proposition 2.5

The probability density function of the random variable Tk is a negative binomial

distribution or Pascal p.d.f of order k and given by

P (Tk = n) =

(
n− 1

k − 1

)
pk(1− p)n−k, for n ≥ k.

Proof.

For all k ≥ 0, we have Tk ≥ k, by definition of Tk.

For n ≥ k, the event {Tk = n} will occur if and only if the two events

Bn = 1 and
n−1∑

i=1

Bi = k − 1 occur.

Using the independence of Bi, the probabilities of these two events are

P (Bn = 1) = p, and P

(
n−1∑

i=1

Bi = k − 1

)
=

(
n− 1

k − 1

)
pk−1(1− p)n−k.

Therefore,

P (Tk = n) = P

[
(Bn = 1) ∩

(
n−1∑

i=1

Bi = k − 1

)]

= P (Bk = 1) × P

(
n−1∑

i=1

Bi = k − 1

)

= p×
(
n− 1

k − 1

)
pk−1(1− p)n−k =

(
n− 1

k − 1

)
pk(1− p)n−k.
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2.3 Relationship between In-time Installment
Probability and Repayment Rate

In the previous section, we have constructed a dynamic model of repayment. In
this section we will introduce a relationship of in-time installment probability as
functions of a repayment rate and the maximal length of inter-repayment time.
Here, we consider a particular case where the number of repayments takes place 50
times which is the case of collecting scheme of Grameen Bank’s lending program.

Let us now denote by d the maximal length of inter-repayment time allowed before
a loan is categorized as a default. As explained in section 1.6, the maximal length,
d, is usually equal to 4 but it could be larger than this.

Let γ be a repayment rate which is simply the complement of the default rate. Then,
it can be expressed as the probability that any inter-repayment time
X1, X2, · · · X50 is less than d as follows:

γ = P (Max {X1, . . . , X50} ≤ d) . (2.8)

In the proposition below, we state the relationship between the in-time installment
probability p and the repayment rate γ.

Proposition 2.6

Given d and γ, we have the following relationship between the in-time installment

probability p and the repayment rate

p = 1− (1− γ
1

50 )
1

d .

Proof.

By the definition of repayment rate and since the Xi are i.i.d and Xi  G(p), we
obtain

γ = P

[
Max {X1, · · · , X50} ≤ d

]

= P

(
50⋂

i=1

{Xi ≤ d}
)

=

50∏

i=1

P (Xi ≤ d) ,

=
50∏

i=1

[
p (1− p)0 + p (1− p)1 + . . .+ p (1− p)d−1

]

=
50∏

i=1

[
p
1− (1− p)d

1− (1− p)

]
,
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from which we get the equation of γ as

γ =
[
1− (1− p)d

]50
.

Therefore, we can explicitly express the in-time installment probability as a function
of repayment rate and d as below.

p = 1− (1− γ
1

50 )
1

d . (2.9)

To give a precise example, we plot in Figure 2.3 the graphs of functions p(γ) in
(2.9) for different values of parameter, d. The horizontal axis is the repayment rate,
γ, and the vertical axis represents the in-time installment probability, p. The most
above curve corresponds to d = 1, the subsequent curves are associated with the
values of d = 2, 3, 4 and 5. A particular attention is paid for the case of d = 4,
which is usually adopted in real world practice of microcredit. We observed that
for γ = 0.97, the obtained probability, p, approximately equals 0.84. Thus, this
experiment shows that in our model, when the two constants d and γ are chosen
accordingly to the real practice, for each week the probability of having an accident
(i.e. not having in-time repayment) is equal to 0.16.

Figure 2.3: In-time Installment Probability (p) as a function of Repayment Rate
(γ) for d = 1, 2, 3, 4, 5.
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The maximal delay time may be extended to more than 4 weeks. For example, d = 5

weeks, for the same repayment rate of 97%, the in-time installment probability is
equal to 0.77, which 0.07 less than the case of 4 weeks that will yield a lower expected
actuarial rate.

2.4 Random Interest Rate

In this section, we come back to the example of Yunus equation given in Section 2.1,
where the number of repayments is 50 times of each installment 22 BDT for the total
loan of 1000 BDT. We will study the actuarial interest rate R which is the implicit
interest rate corresponding to a sequence of random times T1, T2, · · · , T50. Because
the Tk are random variables, R becomes random too. For the sake of getting a
better understanding of the risks faced by the lender we wish to have information
on the probability law of the random variable R. The consequence of this chapter
is devoted on the results we got so far.

Definition 2.5

For (Tk)k≥0 defined in 2.5, we call actuarial interest rate R the random variable on

probability space (Ω,F ,P), satisfying the following implicit equation:

1000 = 22
50∑

k=1

e−
R
52

Tk (2.10)

This equation is called random Yunus equation. It is similar to equation (2.1) but
the difference is that the kth installment takes place at random time Tk with possibly
Tk > k. For the case that the borrower is able to pay the installments regularly on
scheduled date as we have studied in Section 2.1, we have Tk = k for all k and the
interest rate is the fixed real number r defined by (2.1). For a random case, when
weekly installments are possibly delayed, interest rate is no longer a real number
but a random variable R and we are interested in knowing better its law.

Taking expectation of the random Yunus equation (2.10) and assuming that there
exists a non-random rate, r̄, called an actuarial expected rate corresponding to the
expectation, r̄ can be computed as in the proposition below.

Proposition 2.7

Let us denote by r̄ the positive real number which satisfies the equation

1000 = E

(
50∑

k=1

22e−
r̄
52

Tk

)
,

Then, we have

r̄ = 52 ln

(
1 + p

(
1

q+
− 1

))
,
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where q+ is the positive non trivial solution of the deterministic Yunus equation

(2.2).

Proof.

For all k ≥ 1, we have Tk = X1 + X2 + · · · + Xk and X1, · · · , Xk are independent.
We have

1000 = E

(
50∑

k=1

22 e−
r̄
52

(X1+···+Xk)

)

= 22
50∑

k=1

E

(
e−

r̄
52

X1

)
· · ·E

(
e−

r̄
52

Xk

)
.

As the Xi are i.i.d and Xi  G(p), then E

(
e−

r̄
52

X1

)
= · · · = E

(
e−

r̄
52

Xk

)
, denoted

by v. Thus, we get

1000 = 22

50∑

k=1

vk,

= 22
v − v51

1− v
, (2.11)

which is the deterministic Yunus equation. Let q+ be the positive real solution of
this equation, where 0 < q+ < 1.

Also v = E

(
e−

r̄
52Xi

)
= MXi

(
− r̄

52

)
is the moment generating function of Xi,

v = MXi

(
− r̄

52

)
=

p e−
r̄
52

1− (1− p)e−
r̄
52

.

Putting q+ in place of v, we have

q+ =
p e−

r̄
52

1− (1− p)e−
r̄
52

,

in which we can deduce r̄ in terms of q+ as follow

r̄ = 52 ln

(
1 + p

(
1

q+
− 1

))
. (2.12)

To show how the actuarial expected rate r̄ behaves as a function of in-time
installment probability, p, we plot Figure 2.4 below for q+ = 0.9962107.., the positive
real zero of equation (2.2). The graph of function r̄(p) looks like a straight line since

the function, ln
(
1 + p

(
1
q+

− 1
))

≈ p
(

1
q+

− 1
)
, when p

(
1
q+

− 1
)

is small. We also

observed that when p is close to 1 the average interest rate r̄ is close to 20%, which
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is the annual interest rate in the deterministic case.

Figure 2.4: Actuarial expected rate, r̄, as a function of in-time installment
probability
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Here, we consider the real world practice of microcredit, in case of, the repayment
rate of the micro-loans is around 97% and a four weeks of the maximum period
allowed before the debt is put into a default type i.e. γ = 97% and d = 4; as
illustrated in Section 2.3 that we obtained p = 84%. For this value of p, using the
relation (2.12), the actuarial expected interest rate, r̄ ≈ 16.59%. Therefore, the
effective interest rate in this case is not 20% but 16.59% in reality.

2.5 Law of Random Interest Rate

In the process of finding a law of the random interest rate R defined by the
equation (2.10), we did several simulations using Scilab5. In this section, we present
four simulation results corresponding to four different values of in-time installment
probability, p, and a fixed sample size of 10 000 borrowers who face random delays.
The simulation uses the fact that the inter-repayment time, Xk, follows a geometric
distribution G(p). We observe the histograms of the experiments below where we
provide some comments on them.

For the first simulation (Figure 2.5), we choose p = 0.84, which is the value we have

5The Scilab code is provided in Appendix B
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obtained in Section 2.3 for d = 4 and γ = 0.97. The interest rate distribution looks
similar to a normal distribution and ranges from greater than 0.12 to less than 0.20,

where 20% represents the annually interest rate corresponding to the one found in
the deterministic Yunus model with regular weekly installment.

Figure 2.5: Interest rate distributions, p = 0.84, sample size =10 000
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Figure 2.6: Interest rate distributions, p = 0.75, sample size =10 000
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For the second simulation (Figure 2.6), we decrease the value of probability p to
0.75. We observe that the distribution of the interest rate is similar to the one
above. It seems that it is the case of the normal distribution. Anyhow, we cannot
conclude about the law of random interest rate. Meanwhile, we also notice that the
lower bound of the range is smaller than the previous case, which shows that when
the in-time installment probability becomes smaller and smaller, some frequencies
of low values of interest rate have appeared. These frequencies are associated with
borrowers who have frequently delays in repayments. Then we try with higher values
of p, for p = 0.95 and p = 0.97.

For p = 0.95, (Figure 2.7), we observe that the interest rate distribution behaves
differently from the above two cases. The distribution is skewed left and with a high
bar toward the upper end of its range which indicates that the high frequency of
the interest rate values tend to the exact interest rate. The range of interest rate
values in this simulation spreads over an interval from 0.155 to 0.20. This implies
that when the in-time probability is higher, the random interest rate tends to larger
but always less than 20%.

Notice that the borrowers corresponding to the high bar are the ones that do not
have any delay in repayment. Therefore, their interest rates are close to the “true”
value of the deterministic case. At this point we can say that the interest rate in
previous two cases were not followed a Gaussian distribution.

Figure 2.7: Interest rate distributions, p = 0.95, sample size =10 000
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Continuing to increase p to 0.97, (Figure 2.8), we observe that the same phenomenon
persists. The distribution is skewed left starting from the lower frequencies of the
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smaller values of interest rate and a high frequency at the value of interest rate
immediately greater than 19%, then for the values of interest rate beyond the 19%,
the frequencies start to a little lower and at the most upper there exists a very high
bar. The range of interest rate is extended over 0.165 to 0.20. The lower bound of
interest rate in this case is greater than the one for p = 0.95 and the highest bar close
to the upper bound has much more higher frequency than the one in the previous
case. This even proves that when the in-time installment probability becomes very
large close to 1, more and more borrowers pay interest rate close to the exact interest
rate of 20%.

Figure 2.8: Interest rate distributions, p = 0.97, sample size =10 000
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From these simulation results we can conclude that the borrowers always pay a lower
than the exact interest rate charged of 20% whenever there are delays happening
during the period of repayments. This result provides an insightful contribution to
ease the tension of MFIs, who do not have a rich evidence to mathematically prove
that their high interest rates do not mean always high when there are accidents of
delays in repaying the installments and usually the cases happened without taking
any compensation from their clients. The experimental results allow us to have a
better understanding of the law of the “true” interest rate; however, we did not
succeed to show exactly the law of random interest rate mathematically.





Chapter 3

Statistical Tools

The goal of this chapter is to illustrate some necessary aspects of statistical tools
required for performing variable selection in logistic regression model of real data
on joint liability group borrowers in Chapter 4. Variable selection is a key step
in building a statistical model. We usually face databases with a large number of
explanatory variables in real world practice. Some of them are redundant, others
have no relation with the output variable. Some analysts just select those variables
that they feel very useful for a first approach on data. The statistical methods
should provide a reasonable guideline to indicate a subset of good variables to be
included in the model, as we have accepted that quality of prediction is a main
objective to do a statistical model. Even if the expert in any field has precise ideas
of gathering potential explanatory variables, the study of variable selection should
be put on the tracks.

The chapter is divided into six sections. Section 3.1 is on maximum likelihood

method, which begins with the definition of likelihood and log-likelihood function,
then introduces the maximum likelihood method to obtain an estimator. The
definitions and properties of efficient score vector and observed Fisher information,
which are the first and second derivative of the log-likelihood function are presented.
An asymptotic property of estimator is also examined in this section. This
knowledge provides a basic requirement for subsequent sections.

Understanding a Gaussian linear regression model provides a good way of
understanding a logistic regression model. In Section 3.2, I discuss the Gaussian
linear regression model by starting with a general presentation of regression model
and linear regression model with an orthogonal projection method to obtain the
parameters of the model. The Gaussian linear regression model, where the error of
the model is assumed to be normally distributed, is then presented. The parameters
of the Gaussian model can be obtained by the maximum likelihood method.

Section 3.3 is about the logistic regression model, where I present the formulation of
the model for Bernoulli data, fitting the logistic regression using the maximum
likelihood method, an algorithm of iteratively reweighted least squares to
approximate the parameters in the model, and the interpreting of the estimated
coefficients. The logistic regression model is a tool which has been used in
the empirical study of repayment outcome in the paper of Ahlin and Townsend
[Ahlin 2007]. The application of logistic regression model has exploded during the
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past decade. The method is currently employed in many fields including biomedical
research, health policy, business and finance, economics, ecology, engineering,
and educations. Some comprehensive texts on this subject include [Collett 2003],
[Hosmer 2000], [Agresti 2007] and [Cox 1989].

Section 3.4 is on model selection criteria. First, a basic concept of model selection
is presented, then I illustrate two popular penalized criteria, Akaike Information
Criterion (AIC) introduced by Akaike [Akaike 1973] and Bayesian Information
Criterion (BIC) derived by Schwarz [Schwarz 1978]. I present Kullback-Leibler
information as a criterion for evaluating statistical models that approximate the
true probability density function. This criterion of evaluating statistical models
leads to the concept of deriving AIC, while deriving BIC is based on the concept
of Bayesian posterior probability and Laplace integral approximation. At the end
of the section, I discuss on comparison of the two criteria. The illustrations of AIC
and BIC in this chapter are mainly adapted from [Burnham 2002], [Konishi 2008],
[Davies 2006] and a lecture note [Cavanaugh 2009].

Section 3.5 is on step by step variable selection algorithm. Best subsets selection,
forward selection, backward elimination and stepwise algorithms in selecting
variables are presented. Best subsets selection is commonly used when the number
of variables in the model is few and the other procedures are widely used when
dealing with a large numbers of potential input variables. The forward selection
adds one variable into a model at each step if a pre-defined threshold is satisfied,
while the backward elimination algorithm starts with a full model containing all
variables, then drops a most unimportant variable at each step until all remaining
variable beneath a pre-defined criterion. The stepwise procedure is an algorithm
that moves in both directions, the forward stepwise selection starts by selecting the
most important variable at each step followed by a check of dropping the selected
variable, while the backward stepwise elimination performs the selection of variable
in a reverse of the forward stepwise.

3.1 Maximum Likelihood Methods

In this section, we examine the likelihood method for estimating parameters for a
density of random vector Y = (Y1, Y2, · · · , Yn)′. We first introduce a likelihood and
log-likelihood function, efficient score vectors, observed Fisher information matrix
and their properties, followed by an asymptotic property of maximum likelihood
estimators. The concept of likelihood method is useful in computing parameters in
Gaussian and logistic regression model and it will also be used to derive AIC and
BIC.

Given a random vector Y defined on a probability space (Ω,P) with a probability
density function (p.d.f), f. The p.d.f may be specified by a finite k-dimensional
vector of parameter. Suppose θ = (θ1, θ2, · · · , θk)′ ∈ Θ ⊂ R

k, where Θ is a
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parameter space; the p.d.f can be expressed as f(·, θ). As an example, for a random
variable Y that follows a normal distribution with mean µ and standard deviation
σ, written as Y  N (µ, σ) , we have a p.d.f of normal distribution in terms of the
parameter, θ = (µ, σ)′ , and p.d.f can be denoted by

f (y, (µ, σ)) =
1

σ
√
2π

exp

[
− 1

2σ2
(y − µ)2

]
, µ ∈ R, σ > 0.

Here, we have written the p.d.f as f (·, (µ, σ)) to show the dependency on the
parameters µ and σ. Another example for one dimensional parameter vector, Y  
B(p), a Bernoulli distribution with parameter as a success probability p. In this
case, we have a Bernoulli distribution f with f(y, p) = py(1− p)1−y, 0 < p < 1.

The inference of such density generally deals with estimation of the parameters and
their precisions. The estimator of θ is usually denoted by θ̂. We should note that
the parameter vector θ is a fixed vector of real numbers ; its estimate θ̂ is a random

vector whose distribution can be determined. An estimator is said to be unbiased
if E(θ̂) = θ and the bias of the estimator is defined as

Bias(θ̂) = E(θ̂)− θ.

3.1.1 Likelihood and Log-likelihood Function

Let us consider a sample, Yi, i = 1, 2, · · · , n, of independent identically distributed
(i.i.d) random variables with p.d.f, f (yi, θ) . Denote by Y = (Y1, Y2, · · · , Yn)′ the
random vector and its realization is being denoted by y = (y1, y2, · · · , yn)′. The
joint probability density function of the Yi in this case is given by

f (y, θ) =

n∏

i=1

f (yi, θ) .

The likelihood function is algebraically the same as the joint probability density
function, except it is written as a function of parameter θ. The log-likelihood
function is the logarithm of the likelihood function. Logarithm function is
monotonic, thus any θ that maximizes the likelihood function also maximizes the
log-likelihood function. In general, the log-likelihood function is more convenient
to work with than the likelihood function itself. The likelihood and log-likelihood
function are defined as following:

Definition 3.1

Given Yi, i = 1, 2, · · · , n, be an n-sample with p.d.f, f(yi, θ), the likelihood

function of the n-sample is defined by

L(θ) = L(·, θ) = L(y, θ) =

n∏

i=1

f (yi, θ) , (3.1)
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where y = (y1, · · · , yn), and y1, · · · , yn are possible values of Y1, · · · , Yn.

The log-likelihood function is the logarithm of the likelihood function,

ℓ(θ) = ℓ(·, θ) = ℓ(y, θ) = lnL(θ) =
n∑

i=1

ln f (yi, θ) . (3.2)

The maximum likelihood estimation (m.l.e.) of θ is any value in the parameter space
Θ that maximizes ℓ(θ), and it is denoted by θ∗. Therefore,

θ∗ = θ∗(·) = θ∗(y) = argmax
θ∈Θ

ℓ(θ) = argmax
θ∈Θ

L(θ).

The method of obtaining the m.l.e. is called the maximum likelihood method and
ℓ(θ∗) is the maximum log-likelihood. Further, a model with θ = θ∗ is referred to
maximum likelihood model.

The maximum likelihood estimator (MLE) of θ is the random variable θ̂ obtained
by replacing the values y1, · · · , yn in θ∗ (y1, · · · , yn) by a sample Y1, · · · , Yn.

In order to compute the m.l.e. as soon as the log-likelihood function ℓ(θ) is
continuously differentiable, one has to solve the system of equations:

∂ℓ

∂θ
(θ) = 0.

And it is sufficient that

∂2ℓ

∂θ2 (θ) < 0.

If the first derivative of ℓ(θ) is linear with respect to the components of θ, m.l.e.
can be obtained explicitly. This is the case of Gaussian linear model that will
be presented in Section 3.2. In general, the derivative of the log-likelihood is a
nonlinear function of the parameter vector θ, the m.l.e. is usually obtained by a
numerical approximation method for which we will give an example in computing
the parameters in a logistic regression model in Section 3.3. Further, the variance
of the estimator can be estimated by considering the variance and covariance of the
derivative of the log-likelihood function.

3.1.2 Efficient Score Vector and Fisher Information Matrix

As discussed above, the derivative of the log-likelihood function ℓ plays an important
role in computing the estimator; here we introduce the definition of the first and
second derivative of the log-likelihood function and their properties.

Suppose that the log-likelihood function is differentiable; the efficient score vector
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is the first derivative of the log-likelihood function with respect to parameter vector
θ and denoted by

S(θ) = S(y, θ) = ∂ℓ

∂θ
(θ), (3.3)

The observed Fisher information matrix is a negative of the second derivative of the
log-likelihood function which is (k×k) dimensional matrix, also known as a Hessian
matrix, and denoted by

I(θ) = I(·, θ) = I(y, θ) = − ∂2ℓ

∂θ2 (θ). (3.4)

The expectation of the observed Fisher information matrix, called Fisher

information matrix, is defined by

J(θ) = E [I(θ)] = E [I(Y, θ)] .

We assume that I is invertible for all θ ∈ Θ.

The properties of the score vector and Fisher information matrix are found to be
useful when computing m.l.e. using numerical approximation method and will be
stated in Proposition 3.1. The properties are true under some regularity conditions
on the density function f (y, θ) . Here, we follow the steps of [Konishi 2008] and
[Wasserman 2010].

The regularity assumptions on the density function are as follows:

1. The function ln f (y, θ) is three times continuously differentiable with respect
to θ = (θ1, θ2, · · · , θk)′ .

2. There exist a real number M > 0 and three integrable functions F1(y), F2(y)

and H(y) defined on R
n such that for all θ ∈ Θ,

∣∣∣∣
∂ ln f

∂θi
(y, θ)

∣∣∣∣ < F1(y),

∣∣∣∣
∂2 ln f

∂θi∂θj
(y, θ)

∣∣∣∣ < F2(y),

∣∣∣∣
∂3 ln f

∂θi∂θj∂θl
(y, θ)

∣∣∣∣ < H(y), i, j, l = 1, 2, · · · , k.

and ∫

Rn

H(y)f (y, θ) dy < M.

3. For all θ ∈ Θ,

0 <

∫

Rn

∂ ln f

∂θi
(y, θ)

∂ ln f

∂θj
(y, θ) f(y, θ)dy < ∞, i, j = 1, 2, · · · , k.
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Proposition 3.1

Under the regularity conditions of likelihood function, we have

E [S(Y, θ)] = E [S(θ)] = 0, (3.5)

and E [I(θ)] = E

[(
∂ℓ

∂θ
(θ)

)(
∂ℓ

∂θ
(θ)

)′]
. (3.6)

Proof.

For all j = 1, 2, · · · , k, we have

E [S (θ)]j = E

(
∂ℓ

∂θj
(θ)

)
=

∫

Rn

∂ ln f

∂θj
(y, θ) f (y,θ)dy,

=

∫

Rn

1

f (y,θ)

∂f

∂θj
(y,θ)f (y, θ)dy =

∫

Rn

∂f

∂θj
(y, θ) dy,

=
∂

∂θj

∫

Rn

f (y, θ) dy (using the regularity condition 2),

=
∂

∂θj
1 = 0.

Now for all i, j = 1, 2, · · · , k, we have

∂2ℓ

∂θi∂θj
(θ) =

∂

∂θi

(
∂ ln f

∂θj
(y, θ)

)
=

∂

∂θi

(
1

f(y, θ)

∂f

∂θj
(y, θ)

)

=
1

f(y, θ)

∂

∂θi

(
∂f

∂θj
(y, θ)

)
− 1

[f(y, θ)]2
∂f

∂θi
(y, θ)

∂f

∂θj
(y, θ)

=
1

f(y, θ)

∂

∂θi

(
∂f

∂θj
(y, θ)

)
− ∂ℓ

∂θi
(θ)

∂ℓ

∂θj
(θ)

Replacing y by Y and taking the expectation both sides and using again the
regularity condition 2, we have

E

[
1

f(Y, θ)

∂

∂θi

(
∂f

∂θj
(Y, θ)

)]
=

∫

Rn

1

f(y, θ)

∂

∂θi

(
∂f

∂θj
(y, θ)

)
f(y, θ)dy

=
∂

∂θi

∫

Rn

∂f

∂θj
(y, θ)dy = 0

Thus,

E

(
∂2ℓ

∂θi∂θj
(θ)

)
= −E

(
∂ℓ

∂θi
(θ)

∂ℓ

∂θj
(θ)

)
= −E

(
∂ℓ

∂θi
(Y, θ)

∂ℓ

∂θj
(Y, θ)

)
,

for all i, j = 1, 2, · · · , k and any θ ∈ Θ.
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Remark 3.1

Let us denote by V [S(θ)] the variance-covariance matrix of S(θ), then V [S(θ)] is
just the Fisher information matrix, we get

V [S(θ)] = E

[(
∂ℓ

∂θ
(θ)

)(
∂ℓ

∂θ
(θ)

)′]
= J(θ)

3.1.3 Asymptotic Properties of the Maximum Likelihood
Estimator (MLE)

Here, we present the asymptotic properties of the maximum likelihood estimator,
θ̂n = θ∗ (y1, · · · , yn) , for the parametric density function, f(·, θ), θ ∈ Θ.

Let us now use θ0 for an unknown true parameter vector and a sequence θ̂n used
to denote MLE subscribed by sample size n.

For a true parameter θ0 ∈ Θ, from Proposition 3.1, we have E [S(θ0)] = 0. As
n → ∞ the following properties hold:

1. The maximum likelihood estimator θ̂n converges in probability to θ0.

2. The sequence θ̂n has asymptotic normality, that is

√
n
(
θ̂n − θ0

)
P−→ Nk

(
0, [J (θ0)]

−1
)
.

where J (θ0) is the Fisher information matrix evaluated at θ = θ0.

To derive the asymptotic property of the estimator θ̂n, let us use a Taylor expansion
of the efficient score vector at MLE, θ̂n around θ0, we obtain

∂ℓ

∂θ
(θ̂n) =

∂ℓ

∂θ
(θ0) +

∂2ℓ

∂θ2 (θ0)
(
θ̂n − θ0

)
+ o(θ̂n − θ0)

From the fact that θ̂n is the MLE,
∂ℓ

∂θ
(θ̂n) = 0, rearrange the terms, we get

∂ℓ

∂θ
(θ0) = − ∂2ℓ

∂θ2 (θ0)
(
θ̂n − θ0

)
− o(θ̂n − θ0)

or S(θ0) = I(θ0)
(
θ̂n − θ0

)
− o(θ̂n − θ0), (3.7)

where S(θ0) =
∂ℓ

∂θ
(θ0) and I(θ0) = − ∂2ℓ

∂θ2 (θ0) .

From Proposition 3.1, we have

E [S(θ0)] = 0 and V [S(θ0)] = J(θ0).
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Using the central limit theorem and by (3.2), we have,

√
n

[
1

n
S(θ0)

]
=

√
n

[
1

n
S(θ0)− 0

]
P−→ Nk (0, J (θ0)) ,

and, by the law of large numbers as n → ∞

1

n
I(θ0)

P−→ E [I(θ0)] = J (θ0) .

The equality (3.7) can be written as:

√
n
(
θ̂n − θ0

)
=

√
n

[
1

n
S(θ0)

] [
1

n
I(θ0)

]−1

+ o(θ̂n − θ0).

Thus, as n → ∞, we have

√
n
(
θ̂n − θ0

)
P−→ Nk

(
0, [J (θ0)]

−1
)
.

3.2 Gaussian Linear Regression Model

In this section, the general concept of regression, the method to relate an output
variable to an input vector, is first introduced in definition 3.2. We then a multiple
linear regression model is presented. In Subsection 3.2.2, we consider a particular
case of a Gaussian linear regression model when an error is assumed to follow a
normal distribution, and finally the computation of the parameter in the Gaussian
model using the method of maximum likelihood is given.

3.2.1 Regression Model and Linear Regression Model

Let Y ∈ R be a real valued random output variable, and X ∈ R
k denote a real valued

input vector defined on a probability space with joint density function f(x,y). We
seek a function r(·) for predicting Y given the value of the input X. The common
and convenient approach is to choose a function r(·) that minimizes a squared error

loss function, (Y − r(·))2, which leads to a criterion for choosing r, by minimizing
the expected squared prediction error (EPE),

EPE(r) = E

[
(Y − r(X))2

]

=

∫
[y − r(x)]2 f(x,y)dxdy

By conditioning on X, we can write

EPE(r) = EX

{
EY|X

[
(Y − r(X))2 |X

]}
,
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which is sufficient to minimize EPE pointwise,

r(x) = argmin
c

EY|X

[
(Y − c)2 |X = x

]
.

The solution, therefore, is given by

r(x) = E(Y |X = x).

This conditional expectation is known as the regression function. Hence, the best
prediction of Y at any point X = x is the conditional mean, when best is measured
by average squared error [Hasti 2009]. Accordingly, the definition of regression
model is defined as follows:

Definition 3.2

Given Y ∈ R a real valued random output variable and X ∈ R
k a real random input

vector defined on a probability space (Ω, P), a regression model is given by

Y = r(x) + ε where ε is an error or a noise. (3.8)

Now, suppose that we have a data set of n independent observations. Let Y

be an n-dimensional output column vector, Y = (Y1, Y2, · · · , Yn)′ and X =(
X1, X2, · · · , Xk

)
be a k-dimensional input vector, where each Xj represents

the jth input variable in the data set, where Xj = (x1j , x2j , · · · , xnj)′ , for
j = 1, 2, · · · k. The ith observation of input variable may be denoted by a vector
Xi = (xi1, xi2, · · · , xik) , corresponding to the ith component of the output variable,
Yi.

Here, X can also be regarded as an n × k dimensional input matrix when it is
considered in terms of sample size and number of variables, where the matrix can
be written as

X =




x11 x12 · · · x1k
x21 x22 · · · x2k
...

... xij
...

xn1 xn2 · · · xnk


 .

Each row of the matrix corresponds to k values of one observation and each column
corresponds to n values of an input variable.

In general case, the regression function r(·) can be any function. For a linear
regression model, the regression function r(·) is modeled by a linear combination of
an input matrix X that is,

Y = Xβ + ε,

where
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• Y is an output vector of dimension n× 1,

• X is an n× k dimensional input matrix,

• β = (β1, β2, · · · , βk)′ is a k-dimensional column vector of coefficients,

• ε = (ε1, ε2, · · · εn)′ is an n-dimensional vector of random error in the model.

The assumptions for the linear regression model setting are as follows:

• Observations are independent,

• Xj are deterministic and independent i.e rank(X) = k,

• The error term ε is a random variable,

• E(ε) = 0 and V(ε) = σ2 < ∞.

In the linear regression model, we are interested in estimating the coefficient vector,
β. A least square method can be used to compute β̂; acquiring this method is to
choose the parameter β̂ in order to minimize the error or residual sum of squares.

That means

β̂ = argmin
β∈Rk

‖Y −Xβ‖2.

Geometrical aspects of linear regression can be stated as below:

Suppose for all j = 1, 2, · · · , k; Xj ∈ L2(Ω) a Hilbert space. Let
〈
X
〉

be the
subspace spanned by Xj , j = 1, 2, · · · , k, written as

〈
X
〉

=
〈
X1, · · · , Xk

〉

=
{
Xβ | β ∈ R

k
}
⊂ L2(Ω)

Let Ŷ = Xβ̂ ∈
〈
X
〉
, β̂ ∈ R

k. The residual sum of squares, ‖Y −Xβ‖2 is minimized

if Y is as near as possible to Ŷ in the sense of the L2(Ω) norm. Therefore, β̂ is
to be chosen in such a way that the residual vector Y − Ŷ is orthogonal to the
subspace

〈
X
〉
. The representation of linear regression of Y ∈ L2(Ω) on X is then

an orthogonal projection of Y onto the subspace
〈
X
〉
, denoted by Ŷ = PXY, where

PX is a projection matrix. Our objective is to determine PX .

Let
〈
X
〉⊥ ∈ L2(Ω) be the orthogonal subspace (or residual subspace) onto

〈
X
〉
.

The vector Y can be decomposed as follows:

Y = PXY + (I − PX)Y, where (I − PX)Y ∈
〈
X
〉⊥

.
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For all α ∈ R
k, v = Xα ∈

〈
X
〉
, and (I − PX)Y ∈

〈
X
〉⊥

, we have

0 =
〈
v, (I − PX)Y

〉
=
〈
Xα, (I − PX)Y

〉
= α′X ′(I − PX)Y for all α ∈ R

k.

Thus,
〈
v, (I − PX)Y

〉
= 0, if and only if, X ′Y = X ′PXY.

Searching PX in the form of PXY = Xβ̂, leads to

〈
v, (I − PX)Y

〉
= 0, that is equivalent to X ′Y = X ′Xβ̂.

Thus, β̂ = (X ′X)−1X ′Y.

The computation of β̂ using orthogonal projection can be seen in [Cornillon 2007]
and [Hasti 2009].

3.2.2 The Gaussian Linear Regression Model

In the classical regression setting, the error term is assumed to be normally
distributed with mean equal to zero and a constant variance, that is, ε N (0, σ2In)

[Yan 2009]. In such a case the output variable Y also follows the normal distribution
with mean E(Y ) = Xβ and variance V(Y ) = σ2In i.e. Y  N (Xβ, σ2In).
The linear regression model satisfying this hypothesis is known as Gaussian linear

regression model.

Definition 3.3

Given an n-sample of output vector Y and (n×k) dimensional input matrix X, (k×1)

dimensional vector of coefficients β, the Gaussian linear regression model is a

model of the form

Y = Xβ + ε, (3.9)

under the assumptions:

• A1: ε is a random error vector and ε N (0, σ2In),

• A2: rank(X) = k.

3.2.3 Parameter Estimation in the Gaussian Linear Regression
Model

In the linear regression model, a constant is usually included. Therefore, a constant
column vector X0 with elements 1 is added to the matrix X, now X becomes an
input matrix of dimension n× (k + 1).

For the Gaussian model, we seek to estimate coefficient vector β̂ =(
β̂0, β̂1, · · · , β̂k

)′
of β, where β̂0 corresponds to a constant vector X0. Under the

hypothesis of normality of the error term, we can easily show that the maximum
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likelihood estimator of the regression coefficients are exactly the same as coefficients
obtained by using orthogonal projection or least square estimation method. While
computing parameter by orthogonal projection or least square estimation does not
require the assumption of normality.

Proposition 3.2

In the Gaussian linear regression model, assuming that the ((k + 1)× (k + 1))

matrix X ′X is invertible, the maximum likelihood estimator of β is given by

β̂ = (X ′X)−1X ′Y (3.10)

and β̂  N
(
β, σ2(X ′X)−1

)
. (3.11)

Proof.

We have Y  N
(
Xβ, σ2In

)
, hence the density function of Y is given by

f(y, (β, σ)) =

(
1

2πσ2

)n/2

exp

[
− 1

2σ2
(y −Xβ)′ (y −Xβ)

]

=

(
1

2πσ2

)n/2

exp

[
− 1

2σ2
‖y −Xβ‖2

]

Therefore, the likelihood function can be written as:

L (β, σ) =

(
1

2πσ2

)n/2

exp

[
− 1

2σ2
‖y −Xβ‖2

]
,

and, the log-likelihood function is

ℓ(β, σ) = lnL (β, σ)

= −n

2
lnσ2 − n

2
ln 2π − 1

2σ2
‖y −Xβ‖2.

To obtain the estimators β̂ and σ̂, we differentiate the log-likelihood function with
respect to β and σ2 and set to zero.

∂ℓ

∂β
(β, σ) = − 1

2σ2

∂

∂β

(
‖y −Xβ‖2

)
,

∂ℓ

∂σ2
(β, σ) = − n

2σ2
+

1

2σ4
‖y −Xβ‖2.

For
∂ℓ

∂β
(β, σ) = 0 and

∂ℓ

∂σ2
(β, σ) = 0,

and given a sample Y, we get

β̂ =
(
X ′X

)−1
X ′Y and σ̂2 =

‖Y −Xβ̂‖2
n

.
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Now,

E

(
β̂
)

= E

[(
X ′X

)−1
X ′Y

]

=
(
X ′X

)−1
X ′

E(Y ), thus by (3.9) and E(ε) = 0

=
(
X ′X

)−1
X ′ (Xβ) = β,

which shows that β̂ is an unbiased estimator of β.

V

(
β̂
)

= V

[(
X ′X

)−1
X ′Y

]

=
(
X ′X

)−1
X ′

V(Y )X
(
X ′X

)−1

= σ2
(
X ′X

)−1
.

Moreover, β̂ is a linear function of Gaussian variables, thus follows a normal
distribution.

3.3 Linear Logistic Regression Model

The linear regression model discussed in Section 3.2 above deals with real number
values of an output variable. When the output variable, Y, takes binary values or
dichotomous, generally Y is assumed to follow a Bernoulli distribution. Instead of
directly modeling the output variable in relation with the inputs, we model a logit
of odds as a linear combination of input variables. Such a model is called logistic

regression model. The study goal of a logistic regression is the same as that of any
model-building technique used in statistics, that is, to find the best fitting and the
most reasonable model to describe the relationship between an output variable and
a set of input variables [Hosmer 2000]. The principle used to build and to analyze
logistic regression are very similar to the general techniques in linear regression for
example to estimate and interpret the parameters.

In this section, a fitting of logistic regression and finding the parameters using
the maximum likelihood method are presented. The maximum likelihood method
used for logistic regression cannot apply directly as the one used in the Gaussian
linear regression model, thus a numerical approximation is adapted to obtain the
parameters in the model. The interpretation of the model is generally focused on
the odds ratio and confidence interval of odds ratio that will be presented. The
discussion on the error of logistic regression model computed at the convergence of
MLE, called Pearson error, is shown at the end of this section.
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3.3.1 The Logistic Regression Model

The output variable in multiple linear regression usually takes a real value, further
for the Gaussian linear model, the output is assumed to follow normal distribution.
Now, suppose that the output variable Y is measured on a binary scale for
example, the response may be alive or dead, present or absent, male or female;
the general terms used for the two categories are “success” and “failure”; thus Y

is just assumed to take binary value 1 or 0. Since Y is binary, the data are
assumed to follow a Bernoulli distribution, which implies that the random variable Y
given the input variable X follows a Bernoulli distribution with success probability
π(X) = P (Y = 1 |X). Therefore, the expectation of the random variable Y given
X is E(Y |X) = π(X).

In the equation (3.9) of the Gaussian linear regression model, the right hand side
may take any value range between −∞ and +∞, leading to E(Y |X) could possibly
take on any value. If Y takes on the values 0 or 1, then the left hand side of equation
(3.9), E(Y |X) represents a probability; so it must lie between 0 and 1. Hence, it is
more reasonable to model π(X) = P(Y = 1 |X) = E(Y |X) when the output Y is
coded as 0 or 1 and X is an input.

The probability π(X) = P(Y = 1 |X) takes the value over the range from 0 to 1,
thus π(X)/(1 − π(X)) has range in the interval [0,+∞). Further, if we take the
logarithm of this expression, we have

ln

(
π(X)

1− π(X)

)
∈ (−∞,+∞),

so its value has the same range as Xβ. Therefore, the basis for logistic regression is
the equation

ln

(
π(X)

1− π(X)

)
= Xβ. (3.12)

From (3.12) the probability π(X) can be written as

π(X) = P(Y = 1 |X) =
eXβ

1 + eXβ
. (3.13)

Let us define the logit function of π(X) by

logit(π(X)) = ln

(
π(X)

1− π(X)

)
(3.14)

Definition 3.4

Given an n× k dimensional input matrix X and n-dimensional output vector, Y  

B(1, π(X)), where π(X) = P(Y = 1 |X), the linear logistic regression model is

defined by

logit(π(X)) = Xβ + E , where E is an error. (3.15)
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It should be noticed that π(X)/(1 − π(X)) is the so-called odds on the output of
interest for an individual Y = 1 given covariates X. For the logistic model, instead
of fitting a model with the probability of an output, we fit a model of logit of the
odds as a linear combination of input variables. The important assumption of the
model is that the logit of odds is a linear combination of input variables.

Remark 3.2

For an input variable X, the model of binary output variable Y ∈ {1, 0} in terms
of the success probability π(X) = P(Y = 1 |X) has a form:

Y = π(X) + ε.

The error ε here can be written as ε = Y − π(X), which takes only two possible
values:

ε = 1− π(X) with probability π(X), and

ε = −π(X) with probability 1− π(X).

Therefore, ε is no longer normal distributed as in the one of Gaussian model but it
follows a Bernoulli distribution [Hosmer 2000] with expectation,
E(ε) = [1− π(X)]π(X) + (−π(X)) [1− π(X)] = 0 and variance, V(ε) =

π(X) [1− π(X)] computed as below:

V (ε) = E

{
[ε− E(ε)]2

}
= E

[
ε2
]

(since E(ε) = 0)

= [1− π(X)]2 π(X) + (−π(X))2 [1− π(X)] = π(X) [1− π(X)] .

The error discussed in remark 3.2 is not the case of the error in the logistic model
given in definition 3.4 because in the logistic regression model, the binary variable
Y is not modeled by its conditional probability but the logit of odds of success
is modeled as a linear combination of input variables. This error is an important
element for assuring the appropriateness of the model and will be discussed in detail
after the computation of parameters in Subsection 3.3.2.

The function “logit” that relates π(X) to the linear components of the model
is known as the link function, hence a logit link function is being used in this
linear logistic regression model. The link function is the logarithm of the odds
on Y = 1 given X. The linear logistic regression model is a member of a class of
models known as generalized linear models introduced by Nelder and Wedderburn,
[McCullagh 1989] where in generalized linear models the output variable is assumed
to follow a general exponential family distribution.

The name logistic regression comes from the fact that the function π(x) = ex/(1 +

ex) (see Figure 3.1) is called the logistic function1 and its inverse is denoted by

1the logistic function was first named by Pierre-François Verhust (1804-1849). Later in 1920,
unawared of Verhust’s work, Pearl and Reed used the function in a study of the population growth
of the United States.
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logit(π(x)) = ln
(

π(x)
1−π(x)

)
[Cramer 2002].

Figure 3.1: The logistic function π(x) = ex

1+ex
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3.3.2 Parameter Estimation in Logistic Regression Model

Geometrically, a representation of linear regression of an output Y on input X

is just an orthogonal projection of Y onto subspace
〈
X
〉

(see Subsection 3.2.1).
Logistic regression can be explained in a similar way that it is an orthogonal
projection of logit (π(X)) onto the subspace

〈
X
〉
. In the multiple linear regression,

the common method often used for estimating the parameters is least squares,
which yields estimators with a number of statistical properties. This method is no
longer applicable to a model with a dichotomous output. The method of maximum
likelihood used to estimate the regression coefficients in the Gaussian linear model
(multiple regression model when the error terms are normally distributed) provides
the foundation approach to estimate the unknown parameters in the logistic
regression model. This method is required to first construct the likelihood function,
then compute the maximum likelihood estimators (MLE), the values of parameter
that maximize this function.

For the Gaussian regression model, we directly model the output variable Y in
terms of the linear combination of input variables. The MLE, β̂, can be calculated
straight forward by equating the efficient score (first derivative of the log likelihood
function), which is a linear function of unknown parameter β to zero. On the other
hand, in logistic regression, we model a logit of odds of the success of Y as a linear
combination of input variables. The efficient score of the later case is nonlinear in
β. Therefore, the MLE is not possible to work out directly, but it can be computed
by using the numerical approximation method.
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Given a data set of n samples with the n dimensional output vector Y =

(Y1, Y2, · · · , Yn)′, where Yi = {0, 1} and the n × (k + 1) dimensional input matrix
X =

(
X0, X1, · · · , Xk

)
, where X0 is a column corresponding to constant coefficient,

Xj , j = 1, 2, · · · , k, is the jthcolumn of X, fitting the model requires us to estimate
the values of the (k + 1) unknown parameters β0, β1, · · · , βk, in which β0 is the
coefficient of the intercept and the rest are the coefficients of the k input variables.

Let us denote the estimator by β̂ =
(
β̂0, β̂1, · · · , β̂k

)′
.

For the ith observation (Yi, Xi), where Xi = (xi0, xi1, · · · , xij , · · · , xik), i =

1, 2, · · · , n, the conditional probability is give by

πi(x) = π(Xi) = P (Yi = 1 |Xi) =
exp(

∑k
j=0βjxij)

1 + exp(
∑k

j=0βjxij)
.

Proposition 3.3

For the logistic regression model defined by definition 3.4, logit(π(X)) = Xβ + E ,
the maximum likelihood estimator β̂ is a solution of

X ′ Y ∗ = 0,

where X is the input matrix and Y ∗ = Y −π(X) is an n-dimensional column vector,

where Y is the output vector and π(X) = (π1(x), π2(x), · · · , πn(x))′ .

Proof.

Under the assumption that (Y |X) follows a Bernoulli law, the p.d.f of (Yi |Xi) is

f (yi, β) = πi(x)
yi (1− πi(x))

1−yi .

Therefore, from the definition 3.1, the likelihood and log-likelihood functions are

L(β) =

n∏

i=1

πi(x)
yi (1− πi(x))

1−yi ,

and

ℓ(β) =
n∑

i=1

[
yi log πi(x) + (1− yi)log(1− πi(x))

]

To obtain the maximum likelihood estimator β̂, we differentiate ℓ(β) with respect
to βj , for j = 0, 1, · · · , k and equate to zero. We use the chain rule

∂ℓ(β)

∂βj
=

∂ℓ(β)

∂πi(x)

∂πi(x)

∂logit(πi(x))
∂logit(πi(x))

∂βj
.

Now
∂ℓ(β)

∂πi(x)
=

n∑

i=1

(
yi

πi(x)
− 1− yi

1− πi(x)

)
=

n∑

i=1

yi − πi(x)

πi(x) (1− πi(x))
,
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∂πi(x)

∂logit (πi(x))
=

1
∂logit(πi(x))

∂πi(x)

= πi(x) (1− πi(x)) ,

and

∂logit (πi(x))
∂βj

=
∂
(∑k

j=0 βj xij + Ei
)

∂βi
= xij .

Thus, we get

∂ℓ(β)

∂βj
=

n∑

i=1

yi − πi(x)

πi(x)(1− πi(x))
πi(x)(1− πi(x))xij

=
n∑

i=1

y∗i xij , where y∗i = yi − πi(x).

Hence, we obtain
∂ℓ(β)

∂β
= X ′ Y ∗,

where X is the input matrix and Y ∗ = Y − π(X) is the n × 1 vector whose ith

component is y∗i . Therefore, the (k+1)-dimensional column vector β̂ that maximizes
the log-likelihood function l(β) is a solution of X ′ Y ∗ = 0.

Remark 3.3

The first derivative of the log-likelihood function

∂ℓ(β)

∂β
= X ′ Y ∗,

is known as an efficient score vector as defined in Subsection 3.1.2 and is denoted
by S(β). The solution of S(β) = 0 cannot be computed directly but it can be solved
numerically by Newton-Raphson method.

Derivation of Estimator β̂

Let logit(π(X)) = Xβ + E be a logistic regression model, the MLE β̂ of β is the
limit when s → +∞ of

β̂s =
(
X ′W s−1X

)−1 (
X ′W s−1Zs−1

)
,

where Zs−1 = Xβ̂s−1 +
(
W−1 Y ∗

)s−1
, W is the n × n diagonal matrix whose ith

diagonal element is wi = πi(x) (1− πi(x)), and Y ∗ = Y −π(X) is the n-dimensional
column vector whose ith component is y∗i = yi − πi(x).

The derivation of parameter in the logistic regression model can be found in
[Pregibon 1981] or [Collett 2003]. Here, the main step leading in the set up of
the operator R : β̂s−1 → β̂s is provided. The sought value β̂ is a fixed point of
operator R.
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The maximum likelihood estimator, β̂, is a solution of

∂ℓ(β)

∂β
= 0.

Using a Taylor formula to expand
∂ℓ(β̂)

∂β
about β∗, we get

∂ℓ(β̂)

∂β
=

∂ℓ(β∗)

∂β
+

∂2ℓ(β∗)

∂β2

(
β̂ − β∗

)
+ o(β̂ − β∗),

and
∂ℓ(β̂)

∂β
= 0 since β̂ is the maximum likelihood estimator.

Thus,

∂ℓ(β∗)

∂β
+

∂2ℓ(β∗)

∂β2

(
β̂ − β∗

)
= 0 (the term o(β̂ − β∗) is neglected).

Solving for β̂ we obtain,

β̂ = β∗ − ∂ℓ(β∗)

∂β

(
∂2ℓ(β∗)

∂β2

)−1

We have
∂ℓ(β∗)

∂β
is

∂ℓ(β)

∂β
= X ′ Y ∗ evaluated at β = β∗, and

∂2ℓ(β∗)

∂β2
is replaced by its expectation.

Also

E

(
∂2ℓ(β)

∂β2

)
= −E

[(
∂ℓ(β)

∂β

)(
∂ℓ(β)

∂β

)′]
, (from Proposition 3.1)

= −E
[(
X ′ Y ∗

) (
X ′ Y ∗)′

]
= −E

[
X ′ Y ∗ Y ∗′X

]

= −X ′
E
(
Y ∗ Y ∗′

)
X.

Here,

E
(
Y ∗ Y ∗′

)
= V (Y − π(X)) = W,

where W is the diagonal matrix with the ith diagonal element wi = πi(x) (1− πi(x)) ,

because E {(Yi − πi(x)) (Yj − πj(x))} = Cov (Yi, Yj) = 0 for i 6= j, since

observations are independent, and E

{
(Yi − πi(x))

2
}

= V(Yi) = πi(x) (1− πi(x)) .
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Thus,

E

(
∂2ℓ(β∗)

∂β2

)
= −

{
X ′W X

}
β=β∗

.

Therefore,

β̂ = β∗ +
{(

X ′W X
)−1 (

X ′ Y ∗
)}

β=β∗

The above equation suggests that the estimate of β̂ at the sth iteration is

β̂s = β̂s−1 +
(
X ′W s−1X

)−1
(
X ′Y ∗s−1

)
,

=
(
X ′W s−1X

)−1
[
X ′W s−1

(
Xβ̂s−1 +

(
W−1 Y ∗

)s−1
)]

,

=
(
X ′W s−1X

)−1 (
X ′W s−1Zs−1

)
,

where Zs−1 = Xβ̂s−1 +
(
W−1 Y ∗

)s−1
is a column vector of dimension n× 1.

Hence, the maximum likelihood estimator β̂ has to be obtained by maximizing ℓ(β)

numerically, and
β̂ = lim

s→+∞
βs.

Following is the summary step by step of the algorithm:

Iteratively Reweighted Least Squares Algorithm

• Choose the initial values β̂0 = (β̂0
0 , β̂

0
1 , · · · , β̂0

k),

• Set s = 0, compute π0
i using the equation

π0
i =

exp
∑k

j=0 β̂
0
j xij

1 + exp
∑k

j=0 β̂
0
j xij

for i = 1, 2, · · · , n.

Iterate the following steps until convergence:

1. Let

zsi = logit(πs
i ) +

yi − πs
i

πs
i (1− πs

i )
, i = 1, 2, · · · , n.

2. Let W be a diagonal matrix with the ith diagonal element equal to πs
i (1−πs

i ).

3. Set
β̂s =

(
X ′W s−1X

)−1 (
X ′W s−1Zs−1

)

This corresponds to doing a weighted linear regression of Z on X.

4. Set s = s+ 1 and go back to the first step.
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Standard Deviation of Estimator

From the asymptotic normality property of MLE as the sample size n is large, β̂ is an
unbiased estimator of β, and the estimated standard deviation of β̂ can be obtained
from the asymptotic variance-covariance matrix of MLE, which is the inverse of the

Fisher information matrix,
[
J(β̂)

]−1
. In the logistic regression case,

J(β̂) = E

[
−∂2ℓ(β̂)

∂β2

]
= X ′W X.

Thus, the standard deviation (sd) is obtained as

sd(β̂) =
[
X ′W X

]−1/2
.

3.3.3 Interpretation of Fitted Logistic Regression

The interpretation of any fitted model concerns with concluding the practical
inference from the estimated coefficients in the model. Recall that for a simple
linear regression model Y = β0 + β1X

1, the coefficient β1 represents a unit change
in output variable for a unit change in input variable.

Considering the simplest case of the logistic regression model that involves only one
input variable, the model for this case would correspond to

logit(π(X1)) = ln

(
π(X1)

1− π(X1)

)
= β0 + β1X

1 (3.16)

The coefficient, β1, in the same sense of linear regression case, represents the change
in the logit corresponding to the change of one unit in the input variable.

When the value of X1 equals 1, the equation (3.16) becomes

ln

(
π(1)

1− π(1)

)
= β0 + β1.

For X1 = 0, we have

ln

(
π(0)

1− π(0)

)
= β0.

We see that β0 represents the logarithm of the odds of response X1 = 0, whereas
the logarithm of the odds of response X1 = 1 is given by β0 + β1.

If we subtract the latter equation, where X1 = 0 from the former, where X1 = 1,



58 Chapter 3. Statistical Tools

we obtain

β1 = ln

(
π(1)

1− π(1)

)
− ln

(
π(0)

1− π(0)

)

= ln

{
π(1)/ [1− π(1)]

π(0)/ [1− π(0)]

}

= ln
{
Odds Ratio

}

Thus, odds ratio (OR) can be obtained as

OR = eβ1 .

The OR is a measure of how much likely (or unlikely) it is for the output to be
present among those with X1 = 1 than among those with X1 = 0. The odds of the
output being present among individuals with X1 = 1 is π(1)/ [1− π(1)] . Similarly,
the odds of output being present among individuals with X1 = 0 is π(0)/ [1− π(0)] .

The OR is the ratio of the odds for X1 = 1 to the odds for X1 = 0 i.e.

OR =
π(1)/ [1− π(1)]

π(0)/ [1− π(0)]

For an estimate parameter β̂1, the associated estimate of OR is given by

ÔR1 = eβ̂1 .

For any input variable at two different levels, say, Xj = a versus Xj = b, the
estimate of odds ratio is given by

ÔR1(a, b) = eβ̂1(a−b).

The odds ratio, OR, is usually the parameter of interest in a logistic regression due to
the easier interpretation. In theory, when the sample size n is large, the distribution
of OR is assumed to be normal, and the inferences are usually based on the sampling
distribution of ln(ÔR1) = β̂1, which tends to follow a normal distribution.

A 100(1− α)% confidence interval (CI) estimate for the odds ratio is obtained by

exp
[
β̂1 ± z1−α/2 × ŝd(β̂1)

]
.

Many software packages automatically provide point and confidence interval
estimates based on the exponential of each coefficient in a fitted logistic regression
model [Hosmer 2000].
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3.3.4 Pearson Error of the Logistic Regression Model

To assess the goodness-of-fit in the model, we are interested in (1) the summary
measures of the distance between a model of the output variable Y and its fitted
model Ŷ and (2) the error of each individual pair components of Y and Ŷ . For the
logistic regression model, as we model the logit of odds of output variable Y, we
cannot directly compute the error by ‖Y − Ŷ ‖. At the convergence of the MLE, β̂,
the error between the model and its fitted model can be computed [Pregibon 1981].

At the convergence of estimator, we have

β̂ = (X ′W X)−1W Z where Z = X β̂ +W−1(Y − π(X)) (3.17)

The computation of β̂ as in (3.17) provides a basis for analysis on linear regression
in which Z is treated as the output variable, X is the input matrix and W is the
weight matrix.

Let Ẑ = X β̂ be the fitted value of Z, then we have the residual sum of squares
(SSE) given by

SSE =
(
Z − Ẑ

)′
W
(
Z − Ẑ

)

=
[
W−1 (Y − π(X))

]′
W
[
W−1 (Y − π(X))

]

= (Y − π(X))′ W−1 (Y − π(X))

=

n∑

i=1

w−1
i (yi − πi(x))

2 =

n∑

i=1

(yi − πi(x))
2

πi(x) (1− πi(x))
. (3.18)

The residual sum of squares given in (3.18) is the Pearson chi-square goodness-of-fit
statistic, χ2, for the fitted logistic regression model.

3.4 Model Selection Criteria

The objective of this section is to examine two common optimal model selection
criteria, Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC), which have been encountered in many practical applications for model or
variable selection. We first introduce the basic concept of model selection which deals
with parsimony, goodness of fit and generalizability. Subsequently, the derivation
of AIC and BIC are presented. At the end of the section, a comparison of AIC and
BIC from a practical point of view is discussed.
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3.4.1 Basic Concept of Model Selection

Model selection criteria are statistical tools that identify an “optimal” statistical
model from among a set of models, the set is usually called a set of candidate

models. A model is considered as an optimal model if it satisfies three basic features:
generalizability, parsimony, and goodness-of-fit. The principle of generalizability is
a capability of the fitted model to describe or predict new data. The purpose of
statistical modeling should be that of predicting new data as opposed to precisely
characterizing the true model that generated the data [Akaike 1974]. The law
of parsimony is dealing with a model simplicity. Selecting a statistical model
that persists the law of parsimony is to choose a simplest model from a set of
candidate models that adequately accommodate the data. The main advantage of
the parsimony bases on the interpretability, is that the simple model is easier in
explaining and understanding than a complex one.

A goodness-of-fit in a model selection is to balance between underfitting and
overfitting. An underfitting happens when choosing a too simplistic model that
provides an incomplete representation of a model in general; it is maybe the case
of parsimony law. In practice, an underfitted model will fail to include important
variables. While choosing a complex model that contains unnecessary explanatory
variables or effects is called an overfitting. An overfitted model usually does not
only keep important variables but also includes extraneous or spurious ones. An
important concept underlying in statistical modeling is that underfitting induces
bias whereas overfitting increases variability [McQuarrie 1998].

The statistical advantage of adapting parsimony is an improvement in the accuracy
of inferential results in terms of estimators of parameters or predictors of response
variables. This improvement results from controlling the variability associated with
overfitting while protecting against bias associated with underfitting.

3.4.2 Akaike Information Criterion (AIC)

The AIC criterion actually deals with selecting an optimal model from a set of
candidate models, which is mainly based on an appropriateness of density function
of a selected model compared with a density function of a “true model”. The
appropriateness can be reflected by Kullback-Leibler (K-L) information and AIC
is derived from this concept.

Now, suppose a random vector Y has been generated according to a true unknown
model or density function g(·, θ0), where θ0 is a parameter vector from a parameter
space for the true model.

Denote an approximating parametric family, a family of densities in which the
parameter space contains parameter vectors whose components of each vector are
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functionally independent, by

F =
{
f(·, θ), θ ∈ Θ

}
.

Let θ̂ be an estimate vector that maximizes the density function f(y, θ) over Θ i.e

θ̂ = argmax
θ∈Θ

f(y, θ),

and the fitted model corresponding to the estimate θ̂ is denoted by f(y, θ̂).

Denote a collection of parametric families by

M =
{
F1, F2, · · · , Fr

}

in which each Fm contains the fitted model f(y, θ̂m) where m ∈ {1, 2, · · · , r} . For
simplicity of the framework, the candidate model families Fm and the corresponding
fitted model f(y, θ̂m) are distinguished by the dimension of the parameter vectors
θ̂m i.e.

Fm =
{
f(y, θ̂m), θ̂m ∈ Θm, dim(Θm) = km

}
.

Our purpose is to search, among a collection of families M , for the fitted model
f(y, θ̂m), m ∈ {1, 2, · · · , r} that provides a best approximation to g(y, θ0).

Evaluating a statistical models that best approximates the true probability
distribution of the data requires a measure which provides a suitable difference
between the true model g(y, θ0) and the approximating model f(y, θ). The
Kullback-Leibler information is such a measure.

Definition 3.5

Given two parametric density functions g(y, θ0) and f(y, θ), the Kullback-Leibler

(K-L) information (or Kullback-Leibler’s directed divergence) between the two

density functions with respect to g is defined as

Igf (θ0, θ) = E

[
ln

g(Y, θ0)

f(Y, θ)

]
, (3.19)

where E is the expectation under g(y, θ0).

The smaller the K-L information quantity, the closer the approximating model
f(y, θ) is to the true model g(y, θ0). The K-L information is always positive and
it is equal to zero if and only if f(y, θ) is the same as g(y, θ0) as it will be stated
in the next proposition:
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Proposition 3.4

Defined K-L information as in definition 3.5, we have

Igf (θ0, θ) ≥ 0

Igf (θ0, θ) = 0 if and only if g(y, θ0) = f(y, θ).

Proof.

For all z > 0, as ln z ≤ z − 1, we have

ln
f(y, θ)

g(y, θ0)
≤ f(y, θ)

g(y, θ0)
− 1

Thus,

∫

R

ln
f(y, θ)

g(y, θ0)
g(y, θ0)dy ≤

∫

R

(
f(y, θ)

g(y, θ0)
− 1

)
g(y, θ0)dy

=

∫

R

f(y, θ)dy −
∫

R

g(y, θ0)dy = 0

Therefore,

Igf (θ0) =

∫

R

ln
g(y, θ0)

f(y, θ)
g(y, θ0)dy = −

∫

R

ln
f(y, θ)

g(y, θ0)
g(y, θ0)dy ≥ 0

Obviously, the equality holds if and only if g(y, θ0) = f(y, θ).

Our purpose here is to examine the K-L information between the true model g(y, θ0)

and the approximating model f(y, θ) with respect to g(y, θ0).

Clearly, the appropriateness of a given model can be evaluated by calculating the K-L
information; however, the K-L information can be applied only when a true density
function is known. Here, the true density function g is an unknown distribution; so
the K-L information cannot be computed directly.

Now let us decompose Igf (θ0,θ) as follow:

Igf (θ0, θ) = E

[
ln

g(Y, θ0)

f(Y, θ)

]
= E [ln g(Y, θ0)] + E [− ln f(Y, θ)] . (3.20)

The first term on the right hand side in the above equality (3.20) is a constant that
depends solely on the true density g; hence to compare the appropriateness of a
model, it is sufficient to examine only the second term, E [− ln f(Y, θ)] . Two times
of this expectation will be defined as the Kullback discrepancy d(θ), in definition 3.6
below [Cavanaugh 2009]. It is very important to note that the smaller the quantity
of the second term is for a model, the smaller is the K-L information and the better
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is the model approximated.

Definition 3.6

Given f(y, θ) be the density function of approximating model, the Kullback

discrepancy is defined by

d(θ) = E
[
− 2 ln f(Y, θ)

]
, (3.21)

where E again denotes the expectation under the true density function g(y, θ0).

Derivation of AIC

Within the same framework, for a fitted model f(y, θ̂), the measure d(θ̂)

reflects the separation between the the true model g(y, θ0) and the fitted model.
Furthermore, it is not possible to directly compute d(θ̂) since computing it requires
the knowledge of g(·, θ0). Akaike [Akaike 1973] suggested that the estimated

discrepancy −2 ln f(y, θ̂) serves as a biased estimator of E
[
d(θ̂)

]
and the unbiased

adjustment is given by

E

[
d(θ̂)

]
− E

[
−2 ln f(Y, θ̂)

]
(3.22)

can often be asymptotically estimated by twice the dimension of θ.

Under regularity conditions of the density function to maintain the properties of θ̂,
and from the assumption that the density function of the true model g(y, θ0)belongs
to F , we obtain

AIC = −2 ln f(y, θ̂) + 2k, (3.23)

where k is the dimension of the parameter vector θ.

An outline of the proof leading to (3.23) is provided below:

The expectation of AIC asymptotically approaches the expectation of Kullback
discrepancy of the fitted model, that is

E(AIC) + o
[
(θ̂ − θ)2

]
= E

[
d(θ̂)

]

Now, let us denote the expectation of Kullback discrepancy by

∆(k) = E

[
d(θ̂)

]
(3.24)

∆(k) reflects the average separation between the true model g(y, θ0) and the fitted
model f(y, θ̂).
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To derive precisely the AIC, requires the assumption that the density function
g(y, θ0) belongs to F . Then g(y, θ0) from now can be written as f(y, θ0). From
a practical point of view, this assumption implies that the fitted model f(y, θ̂) is
either correctly specified or overfitted.

To justify the asymptotic unbiased of AIC, let us rewrite the expectation of Kullback
discrepancy as follow:

∆(k) = E

[
−2 ln f(Y, θ̂)

]

+
{
E

[
− 2 ln f(Y, θ0)

]
− E

[
−2 ln f(Y, θ̂)

]}

+
{
E

[
d(θ̂)

]
− E

[
− 2 ln f(Y, θ0)

]}
. (3.25)

Lemma 3.5

Under the regularity conditions on density function assumed in Section 3.1, let θ̂ be

the maximum likelihood estimator vector. Then

E

[
− 2 ln f(Y, θ0)

]
− E

[
−2 ln f(Y, θ̂)

]
= k + o

[
(θ̂ − θ)2

]
, (3.26)

and E

[
d(θ̂)

]
− E

[
− 2 ln f(Y, θ0)

]
= k + o

[
(θ̂ − θ)2

]
. (3.27)

Proof.

Taking a second-order Taylor expansion of the function ln f(y, θ0) about θ̂, we have

ln f(y, θ0) = ln f(y, θ̂) +
[∂ ln f(y, θ̂)

∂θ

]′ [
θ0 − θ̂

]

+
1

2

[
θ0 − θ̂

]′ [∂2 ln f(y, θ̂)

∂θ2

] [
θ0 − θ̂

]
+ o

[
(θ̂ − θ)2

]
.

Using the fact that

∂ ln f(y, θ̂)

∂θ
= 0, (since θ̂ is a MLE),

also −∂2 ln f(y, θ̂)

∂θ2 = I(θ̂) is an observed Fisher information defined in Subsection 3.1.2,

Multiplying by −2 and taking the expectation of both sides, we obtain

E

[
−2 ln f(Y, θ0)

]
= E

[
−2 ln f(Y, θ̂)

]
+E

[ (
θ̂ − θ0

)′
I(θ̂)

(
θ̂ − θ0

) ]
+o
[
(θ̂ − θ)2

]
.

Therefore,

E

[
−2 ln f(Y, θ0)

]
−E

[
−2 ln f(Y, θ̂)

]
= E

[ (
θ̂ − θ0

)′
I(θ̂)

(
θ̂ − θ0

) ]
+o
[
(θ̂ − θ)2

]
.

(3.28)

Using Fisher information matrix, J(θ̂) = E

[
I(θ̂)

]
,
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the asymptotic variance and covariance matrix in Subsection 3.1.3 that

E

[(
θ̂ − θ0

)(
θ̂ − θ0

)′]
= [J(θ0)]

−1 ,

and from the fact that J(θ̂) ≈ J (θ0) , we obtain

E

[ (
θ̂ − θ0

)′
I(θ̂)

(
θ̂ − θ0

) ]
= tr

{
E

[
I(θ̂)

]
E

[(
θ̂ − θ0

)(
θ̂ − θ0

)′]}

= tr
{
J(θ̂) [J(θ0)]

−1
}
= k.

Now consider the case of d(θ̂). Similar to the above result, we take a second-order
expansion of ln f(y, θ̂) about θ0, we get

ln f(y, θ̂) = ln f(y, θ0) +
[∂ ln f(y, θ0)

∂θ

]′ [
θ̂ − θ0

]

+
1

2

[
θ̂ − θ0

]′ [∂2 ln f(y, θ0)

∂θ2

] [
θ̂ − θ0

]
+ o

[
(θ̂ − θ)2

]
.

Multiplying by −2 and taking expectation of both sides, also using Proposition 3.1
that

E

[
∂ ln f(Y, θ0)

∂θ

]
= E [S(θ0)] = 0,

we get

d(θ̂) = E [−2 ln f(Y, θ0)] + E

[(
θ̂ − θ0

)′
I(θ0)

(
θ̂ − θ0

)]
+ o

[
(θ̂ − θ)2

]
,

where d(θ̂) = E

[
−2 ln f(Y, θ̂)

]
from definition 3.6 and I(θ0) is the observed Fisher

information. Therefore, by again taking the expectation and rearranging the terms,
we obtain

E

[
d(θ̂)

]
− E [−2 ln f(Y, θ0)] = E

[ (
θ̂ − θ0

)′
J(θ0)

(
θ̂ − θ0

) ]
+ o

[
(θ̂ − θ)2

]
.

(3.29)
Again using asymptotic variance and covariance given in Subsection 3.1.3, hence,

E

[ (
θ̂ − θ0

)′
J(θ0)

(
θ̂ − θ0

) ]
= tr

{
J(θ0)E

[(
θ̂ − θ0

)(
θ̂ − θ0

)′]}

= tr
{
J(θ0) [J(θ0)]

−1
}
= k.

Taking the results of the Lemma 3.5, replacing the values into (3.25), we obtain the
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wanted result
∆(k) = E

[
−2 ln f(Y, θ̂)

]
+ 2k + o

[
(θ̂ − θ)2

]
(3.30)

AIC gives an approximately unbiased estimator of ∆(k) in the setting where n is
large and k is comparatively small.

Therefore,
AIC = −2 ln f(y, θ̂) + 2k.

The Akaike Information Criterion (AIC) can be widely applied for modeling
framework, since its justification requires only asymptotic property of MLE as the
sample size grows large. The first term, −2 ln f(y, θ̂), is called the goodness-of-fit

and the second term, 2k, is called the penalty term. The penalty term increases with
respect to the increasing number of parameters. In a model selection application,
the optimal fitted model is identified by the minimum value of AIC.

3.4.3 Bayesian Information Criterion (BIC)

In this subsection, we consider a model selection criterion based on a Bayesian point
of view. The Bayesian Information Criterion (BIC) was introduced as a competitor
to AIC. Schwarz [Schwarz 1978] proposed an evaluation criterion for a model in
terms of the posterior probability of candidate models. First, we will describe a
general framework for constructing the BIC, then BIC is derived under the concept
of Bayesian posterior probability.

Let Y = (Y1, · · · , Yn) be an n-sample with an unknown density function f. The
aim is to estimate f. To do this, we consider a finite set of parametric models{
M1, M2, · · · , Mr

}
, where Mm =

{
fm(·, θm), θm ∈ Θm, dim(Θm) = km

}
for

m ∈ {1, 2, · · · , r}. The scope is to select one model among this collection. The BIC
criterion is a Bayesian concept for model selection whose construction is based on a
conditional likelihood as explained below.

Consider θm and Mm as random variables. Let P(Mm) be the prior distribution of
the model Mm, and let πm(θm |Mm) be the prior distribution of θm given Mm.

The model selection by BIC is defined by

MBIC = argmax
Mm

P (Mm |Y), (3.31)

where P (Mm |Y) denotes the posterior distribution of Mm. Therefore, using the
BIC criterion is to select the model which is the most “probable” thanks to the data.

Applying Bayes’ theorem, we have the posterior probability as:

P(Mm|Y) =
P(Y |Mm)P (Mm)

P(Y)
, m = 1, 2, · · · , r. (3.32)
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To simplify the computation, the prior distribution is assumed to be equal for every
model, i.e. P(M1) = · · · = P(Mr), which means that we do not prefer any model
in particular.

Thus, to maximize P(Mm |Y), we just have to consider the quantity P(Y |Mm).

We have

P(Y |Mm) =

∫

Θm

P(Y, θm |Mm)dθm =

∫

Θm

fm(y, θm)πm(θm |Mm)dθm (3.33)

where fm(y, θm) is the likelihood associated with the model Mm. The probability
P(Y |Mm) is known as the marginal distribution of Y, which is also called the
marginal likelihood function.

To be a little more convenient in writing, I will use M in place of Mm, θ for θm,
and the prior probability π(θ) instead of πm(θm |Mm). Also p(y, θ) is written for
P(Y |Mm). The quantity p(y, θ) is called the marginal likelihood and is defined
below:

Definition 3.7

Given an n-sample, Y, and let θ ∈ Θ be a k-dimensional parameter vector.

The marginal likelihood function associated with a parametric model M ={
f(·, θ), θ ∈ Θ

}
is given by

p(y, θ) =

∫

Θ
f(y, θ)π(θ)dθ. (3.34)

Derivation of BIC

As we have discussed above, we are interested in maximizing the posterior
probability of the model M given the data Y that further reduces to the
maximizing of the marginal likelihood function p(y, θ). The main difficulty is that
in general computing p(y, θ) directly is not possible; therefore, a computation using
approximation method is needed to derive this criterion.
Now let us consider the marginal likelihood

p(y,θ) =

∫

Θ
f(y, θ)π(θ)dθ

Taking the Taylor expansion of the log-likelihood function about the MLE, θ̂, we
obtain

ln f(y, θ) = ln f(y, θ̂) +

[
∂ ln f(y, θ̂)

∂θ

]′ (
θ − θ̂

)

+
1

2

(
θ − θ̂

)′
[
∂2 ln f(y, θ̂)

∂θ2

](
θ − θ̂

)
+ o

[
(θ − θ̂)2

]
.
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Using the fact that θ̂ is the MLE, then

∂ ln f(y, θ̂)

∂θ
= 0,

the observed Fisher information matrix,

I(θ̂) = −∂2 ln f(y, θ̂)

∂θ2

and Ī(θ̂) = 1

n
I(θ̂) is the average of observed Fisher information matrix.

We obtain

ln f(y, θ) = ln f(y, θ̂)− 1

2

(
θ − θ̂

)′ [
nĪ(θ̂)

] (
θ − θ̂

)
+ o

[
(θ − θ̂)2

]

Taking exponential both sides, we get

f(y, θ) = f(y, θ̂) exp

[
−1

2

(
θ − θ̂

)′ [
nĪ(θ̂)

] (
θ − θ̂

)]
+ o

[
(θ − θ̂)2

]
(3.35)

Further, multiplying both sides of (3.35) by π(θ) and taking integral with respect
to θ, we have

p(y, θ) =

∫

Θ
f(y, θ)π(θ)dθ = f(y, θ̂)

∫

Θ
exp

[
−1

2

(
θ − θ̂

)′ [
nĪ(θ̂)

] (
θ − θ̂

)]
π(θ)dθ

+o
[
(θ − θ̂)2

]
(3.36)

Similarly, we can expand the prior distribution π(θ) in a Taylor series around θ̂ as

π(θ) = π(θ̂) +

[
∂π(θ̂)

∂θ

]′ (
θ − θ̂

)
+ o(θ̂ − θ)

Putting the approximation of π(θ) into the right hand side of (3.36) and using
Laplace’s integral approximation, we obtain

p(y, θ) = f(y, θ̂)π(θ̂)

∫

Θ
exp

[
−n

2

(
θ − θ̂

)′ [
Ī(θ̂)

] (
θ − θ̂

)]
dθ + o(θ − θ̂)

= f(y, θ̂)π(θ̂)
[
(2π)

k
2 n− k

2

∣∣Ī(θ̂)
∣∣− 1

2

]
+ o(θ − θ̂)

The maximum value of p(y, θ) is equivalent to the minimum of −2 ln p(y, θ), that
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is

−2 ln p(y, θ) = −2 ln f(y, θ̂)− 2 lnπ(θ̂)− k ln 2π + k ln(n) + ln
∣∣Ī(θ̂)

∣∣+ o(θ − θ̂)

=
{
−2 ln f(y, θ̂) + k ln(n)

}

+
{
−2 lnπ(θ̂)− k ln 2π + ln

∣∣Ī(θ̂)
∣∣+ o(θ − θ̂)

}
,

ignoring the terms in the preceding that are bounded as sample size, n → ∞. Thus,
the last approximation used for selecting the “best” model, MBIC is given by

MBIC = argmin
Mm

{
−2 ln f(y, θ̂m) + km ln(n)

}
.

With this motivation the Bayesian Information Criterion (BIC) can be defined as:

BIC = −2 ln f(y, θ̂) + k ln(n),

where k is the dimension of the parameter θ. It can be seen that BIC is an evaluation
criterion for models that uses the maximum likelihood method and the criterion
obtained under a condition that the sample size n is sufficient large. The first
term of BIC, −2 ln f(y, θ̂) is the same as the one in AIC, which is known as the
goodness-of-fit and the second term, k ln(n) is the penalty term.

3.4.4 Comparison of AIC and BIC

The AIC is derived under an unbiased estimation of K-L information, while BIC was
obtained by approximating the marginal likelihood associated with the posterior
probability of the model by Laplace’s method for integral. Finally, the criteria
contain the same goodness-of-fit term, the only difference is the penalty term. The
penalty term of BIC grows faster than the one in AIC. It is clear that for n ≥
8, k ln(n) ≥ 2k. Figure 3.2 below is plotted for n = 20, it is observed that the
trade-off between the penalty and the goodness of fit in BIC criterion occurs faster
than the one in AIC. Therefore, adapting BIC criterion tends to choose a fitted
model that is more parsimonious than the one using AIC criterion.

AIC is applicable in a broad array of modeling frameworks, since its justification
only requires conventional large-sample properties of maximum likelihood estimator.
The application of the criterion does not require the assumption that one of the
candidate models is the “true” or “correct” model, although the derivation implies
otherwise. AIC is widely used as a model selection tool among practitioners. The
criterion is somehow asymptotically efficient but it is not yet consistent in the sense
of [Shibata 1981] and [Shibata 1980].
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Figure 3.2: AIC and BIC Penalty Terms versus Goodness of Fit Term
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As shown in the above subsection, deriving BIC was not based on an unbiased
estimation of the K-L information, it was constructed by approximating the marginal
likelihood associated with the posterior probability of the model. In application BIC
can be used to evaluate models estimated by the maximum penalized likelihood
method without requiring the posterior probability, even the derivation was entirely
based on the concept. Some practitioners prefer BIC to AIC, since adopting BIC
frequently leads to selecting a more parsimonious fitted model than the one by
AIC counterpart. There exist some discussions on statistical properties of BIC,
see for instance, [Lebarbier 2004]. It proves that BIC is consistent but it is not
asymptotically efficient.

There are some extensions of AIC, for example in a case of a small-sample data set,
the Corrected Akaike Information Criterion (AICc) should be more applicable. In
this corrected criterion, the penalty term is corrected to 2k [n/(n− k − 1)] where
n is the sample size and k is the number of parameters in the model. When n is
large and k is comparatively small, then 2k [n/(n− k − 1)] → 2k. The criterion,
AICc, was suggested by Sugira 1978 (as cited in [Davies 2006]) for normal linear
regression model and Hurwich and Tai [Hurvich 1989] justified the use of AICc in
the frameworks of nonlinear regression and autoregression models.

Takeuchi (1977) (see Chapter 7, [Burnham 2002]) derived Takeuchi Information
Criterion (TIC) based on the development where the true model is not necessarily
included in a family of candidate models, the TIC statistic is given by

TIC = −2 ln f(y, θ̂) + 2tr
(
I(θ0) [J(θ0)]

−1
)
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where I(θ0) and J(θ0) are the observed Fisher information and the Fisher
information matrices with respect to the true model g(·, θ), respectively.

3.5 Model Selection Procedures

The variable selection algorithms that have been extensively used are forward

selection, backward elimination, and stepwise procedures. The stepwise algorithm
is the modification of forward and backward procedures in which variables are
selected either for inclusion or exclusion from a model. The mentioned algorithms
are to be favored when a large number of predictor variables are available. A best

subsets selection is a careful method that considers all possible combinations of the
variables. The method is more applicable when facing with a data set containing a
small number of predictor variables. A comprehensive overview of model selection
procedures for regression model is provided in [Hocking 1976] and [Miller 1984]. The
various selection procedures are illustrated below.

3.5.1 Best-Subset Selection

The most careful selection procedure is the best-subset in which all possible models
are fitted to the data, and the selection criterion is used on all the models in order to
find the most preferable one. In general, if there exist k explanatory variables in a
full model, 2k−1 different models will be fitted. Therefore, in a situation with many
input variables in the full model, the best-subset procedure becomes inefficient. The
best-subset linear regression has been available in many statistical softwares based
on the so-called brand-and-bound algorithm of Furnival and Wilson [Furnival 1974].
Obviously, this method gives an analyst the maximum amount of information on the
nature of relationship between the output variable and all possible combinations of
the input variables. An efficient way of evaluating the appropriateness of all possible
fitted models is to pick out a statistical criteria (for example: AIC, BIC, or Mallow
Cp) for evaluating all the candidate models. A best model is selected from among
candidate models under the chosen criterion.

The best-subset for logistic regression has been studied by [Hosmer 1989] which
can be performed straight forward using any program capable of best-subset linear
regression. Mallow Cp criterion [Mallows 1973] for best-subset of linear regression
is applied for the case of logistic regression model where it is shown that the Cp of
the logistic model containing p variables, a subset of the set of k input variables, is
given as

Cp =
χ2 + λ∗

χ2/(n− k − 1)
+ 2(p+ 1)− n

where χ2 is the Pearson chi-square statistic for a model with p variables shown in
Subsection 3.3.4, λ∗ is the multivariable Wald test statistic for the hypothesis that
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the coefficients for k− p variables not in the model are equal to zero. Under certain
assumptions, the expectation of χ2 and λ∗ are approximated by (n − k − 1) and
(k − p) respectively, then Cp = p+ 1. Hence, the models with Cp close to p+ 1 are
the candidates for the optimal model. The optimal model is the one corresponding
to the smallest value of Cp.

When the number of predictor variables is large, the evaluation of all possible models
may not be practically feasible. The alternative approach is to use forward selection,
backward elimination or stepwise procedures. Employing these procedures will not
provide us with as much information as the fitting all possible models, rather it
will entail considerably less computation and may be the only available practical
solution.

3.5.2 Forward Selection and Backward Elimination

Forward selection begins with the empty model. Variables are added sequentially
to a model until a predefined stopping rule is satisfied. Suppose an information
criterion (for example AIC or BIC) is used as a model evaluation tool, at a given
step of the selection process, a variable whose addition decreases the criterion of
interest is included in the model. Suppose there are k input variables, the first step
requires a consideration of k candidate models. The procedure selects a model with
an optimal value of the criterion. For the remaining steps, the algorithm adds one
variable to the selected model at the previous step.

The procedure requires fitting all models containing the selected variable at the
previous step plus one additional variable that has not yet been in the selected
model. Therefore, at step s, it is needed to consider k − s + 1 models. Using a
pre-determined criterion, the algorithm will include a variable that the inclusion of
the variable given the input variables already in the current model decreases the
criterion of interest. A typical stopping rule is applied when all input variables are
included in the model or if any addition of a variable increases the criterion.

Backward elimination algorithm is a reversed version of the forward selection
procedure. Instead of starting with an intercept-only model, the procedure starts out
with a full model and eliminates variables one by one at each step. Traditionally
removing a variable is based on the insignificant of the input variable, that is a
variable is deleted from a model if it has a largest possible of p-value comparing
to the others. The algorithm terminates when all remaining variables in the model
have p-values beneath a pre-defined threshold.

Applying any model selection criterion, at each step, the procedure considers all
possible models deleting one input variable. Based on the criterion, a variable is
dropped from the current model when its removing produces the smallest possible
criterion. In this manner, the procedure continues to exclude one variable at each
step until the next deleting increases the criterion of interest.



3.5. Model Selection Procedures 73

The backward procedure is sometimes preferred to its forward counterpart for the
reason that it gives a chance to each variable a possibility of staying at least once
in a model before an exclusion of the variable in the next step.

3.5.3 Stepwise Procedure

In the stepwise algorithm, variables are selected either for inclusion or exclusion
from the model in a sequential fashion based on statistical criteria. The two
main versions are forward selection followed by backward elimination called forward

stepwise selection and backward elimination followed by a test for forward selection
called backward stepwise elimination. Stepwise selection procedure provides a fast
and effective mean to screen a large number of explanatory variables. Selecting or
removing variables from a model is based entirely on a statistical algorithm that
searches for the importance of variables. A variable becomes an “importance” to be
included or an “unimportance” to be excluded based on a fixed decision rule. An
important variable is defined in terms of a measure of statistical significance of the
coefficient for the variable or a measure of criterion selected to evaluate the model.
Typically in linear regression, F-test is used.

Following the backward stepwise elimination i.e. backward elimination followed by
forward selection in stepwise algorithm is illustrated step by step. This method
is described by considering the statistical computations that the computer must
perform at each step of the procedure.

Suppose the full model contains k input variables, X1, X2, · · · , Xk. A penalized
criterion (for example AIC or BIC) is selected as a measure for model evaluation.

Step 0: At this step, it starts with fitting of a full model, followed by fitting k

possible models of excluding one variable in turn; then compare their respective
criterion of each model.

• Let C(0) be the criterion of the full model. The subscript (0) refers to the step
0.

• Let Cj
(0) be the criterion of the model excluding variable Xj , j = 1, 2, · · · , k

from the full model at step 0.

A variable Xr1 is considered to be an “unimportance” and will be removed from the
current model, if

Cr1
(0) = Min

{
Cj
(0), j = 1, 2, · · · , k

}
and Cr1

(0) < C(0).

If Cr1
(0) ≥ C(0), the algorithm terminates.

Step 1: At this step, a model under consideration is a full model excluding Xr1

called step 1 model. First, the step 1 model is fitted, followed by fitting (k − 1)
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possible models of excluding each variable from a set of remaining variables in
the step 1 model,

{
Xj , j = 1, 2, · · · , k; j 6= r1

}
. The procedure also fits a model

of adding back the deleted variable Xr1 to the step 1 model, which is the full model
in step 0 with a corresponding criterion C(0).

• Let C(1) = Cr1
(0) be the criterion of step 1 model.

• Let Cj
(1) be the criterion of step 1 model excluding Xj , j = 1, 2, · · · , k; j 6= r1.

A variable Xr2 becomes an “unimportance” to be removed from step 1 model if

Cr2
(1) = Min

{
Cj
(1), j = 1, 2, · · · , k; j 6= r1

}
and Cr2

(1) < C(1)

If Cr2
(1) ≥ C(1), the algorithm stops.

Step 2: In a similar manner, at this step, a model under consideration is a step

1 model excluding Xr2 or a full model excluding Xr1 and Xr2 called step 2 model.
The algorithm starts with fitting the step 2 model, then fit (k − 2) possible models
of excluding each variable from a set of remaining variables in the step 2 model,{
Xj , j = 1, 2, · · · , k; j 6= r1, r2

}
. The procedure also fits models of adding back

each deleted variable Xr1 and Xr2 to the step 2 model. Adding Xr1 , to the step 2

model, it gives the full model excluding Xr2 ; denote its criterion by Cr1
(2). Adding

Xr2 back to the step 2 model, it gives the step 1 model with corresponding criterion
C(1).

• Let C(2) = Cr2
(1) be the criterion of step 2 model.

• Let Cj
(2) be the criterion of step 2 model excluding Xj , j = 1, 2, · · · , k; j 6=

r1, r1.

A variable Xr3 becomes an “unimportance” to be removed from this current model
if

Cr3
(2) = Min

{
Cr1
(2), C

j
(2), j = 1, 2, · · · , k; j 6= r1, r2

}
and Cr3

(2) < C(2)

If Cr3
(2) ≥ C(2), the procedure terminates.

Similarly, for subsequent steps, the procedure fits the current step model that
obtained by excluding a variable from or including a variable to the previous step
model based on the criterion of interest. Then, it fits all possible models excluding
each variable in turn from a set of variables remaining in the current step model
and fits all possible models adding back each variable from a set of deleted variables
from previous steps. The procedure searches for a model of deleting a variable
from or adding a variable to the current model by comparing each criterion of all
models in this current step. The selected model for the seceding step is the model
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corresponding to the smallest criterion and less than the criterion of the current step
model.

The algorithm terminates when continues excluding a variable from or including a
variable to the current model produces a criterion greater than the criterion of the
current step model.

Summary

In this chapter, a statistical background necessary for applying on the real data
of joint liability group lending has been constructed. The main statistical tools
that will be used are logistic regression model, model selection criterion comprised
of penalized AIC and BIC criteria, and stepwise selection procedure along with
the penalized criteria. Others are basic concepts needed for deriving all these
necessary tools. Understanding theoretical background of statistics provides a
deeply understanding of their applications of the methods in a real world practice.





Chapter 4

Variable Selection for Repayment
Outcome

In this chapter, the statistical tools, logistic regression and variable selection,
presented in the previous chapter is applied to a data set that have been collected and
studied by Ahlin and Townsend in [Ahlin 2007]. The data are actually obtained from
joint liability group lending who received the loans from the Bank for the Agriculture
and Agricultural Cooperation (BAAC) in Thailand. It should be noticed that those
groups are located in two different regions, the northeast and the central of the
country. The paper performs logistic regression model on the whole data by taking
characteristics of the groups as predictors to predict output variable, repayment
outcome. The repayment outcome in this context is the existence of penalty for a
delay in repayment and the way that Ahlin and Townsend measured it is through a
raising interest rate.

The aim of the paper is to find determinants of repayment in a group lending context,
then use these imperial results to compare with four well-known economic models on
prediction of group repayment rate. Just to mention, the four models are two models
by Stiglitz [Stiglitz 1990] and Banerjee et al. [Banerjee 1994] highlighted moral
hazard problems, which deal with joint liability lending and cooperative behavior,
another by Besley and Coate [Besley 1995], which focuses on an environment of
limited contract enforcement and the remedy of village sanctions, and the fourth
by Ghatak [Ghatak 1999], which shows how adverse selection of borrowers can be
partially overcome by joint liability contract.

The logistic regression model analyzed by the reference paper contains twenty four
input variables. To us the number of variables are quite large and the model may
contain some unimportant or extraneous predictors. The main objective for our
analysis in this chapter is to perform a variable selection on the existing model.
A new logistic regression model with fewer variables, but still explaining well the
output and being easier to interpret is a target in my study.

To have a good final model, a technique of backward stepwise elimination procedure
along with model evaluation criterion is used. Specifically, two penalized criteria,
Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) to
evaluate all models along the steps of backward stepwise elimination procedure are
proposed to use as a tool to reach the wanted optimal model. The existing function
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stepAIC() of library(MASS) in R-packages is used to perform the selection of
variables. The statistical background for variable selection in this chapter has been
illustrated in Chapter 3.

The chapter is organized in the following manner: It starts with a presentation of
data in Section 4.1, where a summary of variable definition and a table of brief
descriptive statistics are provided. In Section 4.2, the logistic regression models as
in the reference paper are again performed using R-software packages. The existing
function glm() is an easy used tool for obtaining a logistic regression results. In
addition, a Scilab code on the algorithm of re-weighted least squares of the logistic
regression is run to double check the results. The results obtained are the same as
the ones in the paper and the interpretation of the results are not provided here,
rather than some remarks on the results which lead us to an idea of performing
selection of variables on the existing model.

Section 4.3 is on variable selection in prediction of repayment outcome. A backward
stepwise elimination along with penalized criteria, AIC and BIC applied on the data
to reduce the number of variables from the model is performed in this section. This
selection procedure was done by using function stepAIC() in R-packages. Using
the mentioned techniques, eight variables are kept in an optimal model based on
the minimum AIC criterion and five variables conserved in an optimal model based
on the minimum BIC criterion. I also continue to apply the same procedure and
criteria on the optimal models in order to delete more variables from the optimal
models in order to show that continuing to exclude more variables then the criteria
will be increased and the models obtained will no longer optimal with respect to the
criteria of interest.

Section 4.4 is on model validation based on sampling. A cross validation using
sampling technique is applied to verify the existence of variables in the optimal
models selected in the previous section. A sub-sample of 160 observations with
replacement from the data set is taken as a learning sample and the rest is kept
in a test sample. In this manner, twenty five sub-samples are generated randomly.
The variable selection using the same procedure and criteria as in Section 4.3 is
then applied for each sub-sample. The existence or absence of coefficients is really a
focal point for validation of variables in the optimal models in the previous section.
Meanwhile, values of criteria, Pearson errors of the learning sample, Pearson errors of
the test sample, and Pearson errors of the whole data with respect to the coefficients
of the variables kept in the optimal models are plotted to just compare among the
errors.

Section 4.5 is on the final model by adding one more variable to the optimal model
obtained by AIC backward stepwise in Section 4.3. A BIC optimal model including
only five input variables is seen to be too parsimonious, then the decision is made to
choose an AIC optimal model. Observing that an input variable, the interest rate,
is the one deleted just an immediate step before obtaining the AIC optimal model,
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and adding back the interest rate to the current optimal model, AIC of this model
is slightly increased. Therefore, the final model is the AIC optimal model plus the
interest rate. More comments on the variables in this final model are made.

4.1 Data Description

In this section, a data set for performing a logistic regression model to predict
repayment outcome is presented. The data mainly came from 262 joint
liability groups, who received the loans from the Bank for the Agriculture
and Agricultural Cooperation (BAAC) in Thailand. A total of 2,875 households
from villages where groups located were also collected at the same time and
finally constructed to match each case of the 262 observations. The data set
under study contains 219 observations (Ahlin and Townsend have in fact 43
additional observations that were excluded because of the missing data). Among
these, 130 observations correspond to joint liability groups in the northeast
region and the other 89 are the groups in the central region. The data set
contain 25 variables selected by Ahlin and Townsend to perform their statistical
analysis, namely, REP, NOLNDPCT, COVARBTY, HOMOCCUP, SHARING, SHARNON,

BCPCT, PRODCOOP, LIVEHERE, RELPRCNT, SCREEN, KNOWN, BIPCT, SNCTIONS,

MEANLAND, AVGED, INTRAT, LOANSIZE, SQLOANSIZE, LNYRSOLD, MEMS, VARBTY,

WEALTH, PCGMEM, and CBANKMEM.

The most important variable in this study is REP [REPayment] that represents
repayment outcome used as an output variable. It is a binary variable taking
the values 0 and 1, which aim to differentiate between groups having had an
accident in repayment and groups having had none. In order to measure criterion
of the existence of a “true” delay in repayment, the questionnaire asked an indirect
question: “In the history of this BAAC group, has the BAAC ever raised the interest
rate on a loan as a penalty for late repayment?” This equals zero if the BAAC has
ever raised the interest rate as a penalty for late payment, and one otherwise. A
proportion of 26.48% corresponding to 58 groups were found to have ever faced such
the penalty, see the frequency table and Figure 4.1 below. Imposing penalty for the
delay by raising interest rate is one of the first remedial actions that the BAAC uses
against delinquent group-guaranteed borrowers; by doing so the repayment finally
may be paid to the bank.

REP Frequency Percentage
0 58 26.48%
1 161 73.52%

The output variable REP takes a binary value, then it is assumed to be a random
variable following a Bernoulli distribution. Therefore, a logistic regression model
studied in Chapter 3 is the most suitable one for such a prediction.
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Figure 4.1: Plot of REP
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The other variables are various characteristics of the groups. From the data,
descriptive statistics of each variable is computed and is shown in Table 4.1. The
detail definition of variables is given in Appendix A. Here, only short definition of
each variable is given.

COVARBTY [COVARiaBiliTY]: It is a measure of coincidence of economically bad
years across villagers.

HOMOCCUP [HOMogeneous OCCUPations]: This variable is the measure of
occupational homogeneity within the group.

SHARING [SHARING among relatives]: It is a measure of the capacity of group to
share money, free labour, crops transportation, to coordinate for purchasing inputs,
and for selling crops among closely relative group members.

SHARNON [SHARing among NON-relatives]: The measure is constructed in the same
manner as SHARING, but regarding to non-relative group members.

BCPCT [Best Cooperation PerCenTage]: It is the percentage of villagers naming the
village in which a group is resided enjoys the best cooperation among villagers.

LIVEHERE [LIVE HERE]: It is the percentage of the group living in the same village
of the group leader.

RELPRCNT [RELatedness PeRCeNTage]: This variable represents the percentage of
group members who have a close relative belonging to the group.

SCREEN: Screen is a categorical variable which equals to 1 if there are persons who
want to join the group but they are not permitted.

KNOWN: It is a categorical variable equal to 1 if the members know the quality of each
other’s work and 0 otherwise.

BIPCT [Best Institution PerCenTage]: It is the percentage of the villagers in the
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villages naming the village where the group resided best in terms of availability and
quality of institutions.

Table 4.1: Summary of Descriptive Statistics a

Variable Code Short Name Mean SD Min Max

REP Repayment Outcome – – 0 1
NOLNDPCT Degree of joint liability 0.070 0.157 0 1
COVARBTY Covariability 0.289 0.165 0 1
HOMOCCUP Homogeneous Occupation 0.861 0.243 0.132 1
SHARING Sharing among Relatives 2.151 1.577 0 5
SHARNON Sharing among Non-relatives 1.552 1.430 0 5
BCPCT Best Cooperation 0.252 0.105 0 0.58
PRODCOOP Joint Decision 0.365 0.921 0 3
LIVEHERE In the same Village 0.867 0.232 0.033 1
RELPRCNT Relatedness 0.566 0.360 0 1
SCREEN Screen – – 0 1
KNOWN Known Type – – 0 1
BIPCT Best Institution 0.273 0.191 0 0.8
SNCTIONS Sanction 0.099 0.112 0 0.53
MEANLAND Average Land 23.607 15.946 0 94
AVGED Average Education 3.065 0.315 1.40 4.30
INTRAT Interest Rate 10.960 2.086 1 17.45
LOANSIZE Loan Size 18.930 18.164 2.27 150
YEAROLD Group Age 11.380 8.598 1 50
MEMS Group Size 12.342 4.971 5 37
VARBTY Village Risk 0.303 0.086 0.08 0.52
WEALTH Village Average Wealth 1.189 2.267 0.098 16.74
PCGMEM PCG Membership 0.055 0.228 0 0.92
BANKMEM Bank Membership 0.275 0.180 0 0.80

Note: The group age is reported, not logarithm of the group age, LNYRSOLD.

aData is obtained from Ahlin and Townsend, 2007.

SNCTIONS [SaNCTIONS]: This variable is the percentage of village loans where
default of the loans are punished by informal sanctions such as the villagers cannot
borrow again from this lender and other lenders, or that reputation in the village is
damaged.

MEANLAND [MEAN LAND]: It is the average amount of land holding of group
members measured in rai1

MEMS [MEMberS]: Group size represents the number of members in each group.

1One rai is approximately equal to 0.4 acres and exactly 1 600 square meters (m2)
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VARBTY [VARiaBiliTY]: It represent the village risk which is the village average
coefficient of variation for next year’s expected income.

WEALTH: Village average wealth is an average households’ wealth in the village where
the group domiciled.

CBANKMEM [Commercial BANK MEMbership]: It is the percentage of households in
a village who are members of a commercial bank.

AVGED [AVeraGe EDucation]: It is the weighted average within each group. It is
computed by 1(% of group with some schooling but below P4)+ 3(% of group with
P4 schooling)+5(% of group with higher than P4 schooling). The education in this
case is classified into four categories: no schooling, some schooling but below P4,
P42, and higher than P4 schooling.

INTRAT [INTerest RATe]: It comes from a survey on the highest (hi) and lowest (lo)
interest rates that the groups were charged. INTRAT was computed by (lo + 0.1 ×
hi)/1.1. The median and the mean of interest rates were found to be 11 and 10.87
with standard deviation of 2.036. The highest of INTRAT is 17.45. The histogram
4.2 shows the distribution of interest rates.

Figure 4.2: Interest Rate Histogram
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LOANSIZE: The loan size is constructed similarly to INTRAT, which equals to (lo +

0.1×hi)/1.1, where lo and hi are the smallest and highest loan figures respectively.
The measurement unit of loan was in 1,000 Thai Baht. The loans borrowed by the
groups vary between 2.27 to 150 thousand Baht with average amount of 18.93. The
standard deviation is 18.16 which shows very large deviation among the groups. The
histogram of the variable is shown in Figure 4.3. The variable LOANSIZE used by
Alhin and Townsend was scaled by 1,000; while the squared of loan size, LSQUARED
was calculated by squaring the loan size and dividing by 1,000.

2P4 schooling is a minimum level required by the Thai government
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Figure 4.3: Histogram of Loan Size
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LNYRSOLD [Log Natural YeaRS-OLD]: It is the natural logarithm of the group age.
The average age of the group is 11.38 year-old and the median is 9 year-old.

Variable Min. 1st Qu. Median Mean 3rd Qu. Max. S.D

GROUPAGE 1.00 4.00 9.00 11.38 16.00 50.00 8.60
LNYRSOLD 0.000 1.390 2.200 2.103 2.770 3.910 0.88

NOLNDPCT [NO LaND PerCenTage]: This variable represent a degree of joint liability,
which is the percentage of members of each group who do not own land. For each
group, the measure is equal to the number of members who are landless divided by
the total members of the group. If all members of the group own land, the measure
is equal to 0. The data show that there exist 166 groups among the 219 groups
under study, representing 75.80%, which all of their members own land (see the
below table and Figure 4.4).

NOLNDPCT Frequency Percentage
=0 166 75.80%
>0 53 24.20%

Figure 4.4: Plot of NOLNDPCT
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PRODCOOP [PRODuction COOPeration]: This variable represents the joint decision,
which is the number of decisions made collectively. More precisely, it is the counts
of three decisions on which some or all group members opposed to the individual
farmer deciding on the crops to grow, pesticide and fertilizer usage, and production
techniques. The three questions on the join decision are “Who has the final decision
on which crops to grow, on pesticide and/or fertilizer usage, and on production
techniques?” PRODCOOP is the counts of responses to the three questions as opposed
to “individual” who make his/her own decision.

PCGMEM [PCG MEMbership]: It is the percentage of households in the village where
the group located who are members of a production credit group (PCG)3. The
distribution of the PCGMEM(see Figure 4.5) shows that less percent of villagers belong
to PCG.

Figure 4.5: Histogram of PCGMEM
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The descriptive statistics and the summary of variable definitions provide us a
basic knowledge for understanding all variables that will be included in the logistic
regression model. In the following section, logistic regression models on the data
are fitted to obtain the parameters of input variables which are important figures
for interpretation.

4.2 Logistic Regression with all Input Variables

The main purpose of this section is to perform again the logistic regression of
repayment outcome on all input variables, which was already done by Ahlin
and Townsend. The variable selection to improve the model will be done in the
next section. The data set used have been described in Section 4.1. In this
logistic regression model, there exist 24 input variables depicting characteristics

3PCGs are village-run organizations that collect regular savings and deposits from members and
offer loans after a member has met some criteria such as duration of membership, amount deposited,
or both. The loans from PCG are usually small with high interest rate and joint liability is often
used with these loans.
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of joint liability groups used to predict repayment outcome. Recall that the 24
input variables are NOLNDPCT, COVARBTY, HOMOCCUP, SHARING, SHARNON, BCPCT,

PRODCOOP, LIVEHERE, RELPRCNT, SCREEN, KNOWN, BIPCT, SNCTIONS, MEANLAND,

AVGED, INTRAT, LOANSIZE, SQLOANSIZE, LNYRSOLD, MEMS, VARBTY, WEALTH,

PCGMEM, and CBANKMEM.

The logistic regression model is fitted using the function glm() in the R-packages
with an option family=binomial(). In addition, a Scilab code on the algorithm
of iterative reweighted least squares studied in Chapter 3 is also run for the data
set. The results produced by R and by the code are the same, and the same as the
one in the reference paper, which is shown in Table 4.2. In addition to the results
in the reference paper, odd ratios (OR) and 95% confidence intervals (CI) for OR
of the fitted model are computed. The figures are reported in column 6 and 7 of
Table 4.2. The odd ratios are computed by taking exponential of coefficients and the
confident intervals are based on Wald confidence intervals as explained in Section
3.3 of Chapter 3. The CI allows us to know how good is the estimation of the odd
ratios. The smaller the interval, the better the prediction of the parameter is.

This fitted logistic regression result is a primary focus for interpretation in
[Ahlin 2007]. In the paper, the predictors or input variables are actually grouped
under different categories corresponding to the economic models. Those include
Joint liability, Covariance, Cooperation, Cost of monitoring, Screening, Penalties

for default, Productivity, Contract terms, and Control, which are also shown in the
table. The control variables were not featured in any of the four models, but the
paper considers they are also important to be included as predictors for the output
variable. Some remarks on the result in the Table 4.2 can be drawn as follows:

1. The first remark is that the model contains a large number of variables. Taking
into consideration of an “optimal” statistical model properties, a quite large
number of input variable may not respect the principle of parsimony. A
model that complies with this principle is the simplest model that adequately
accommodates the data. A simple model is more easily understood and
explained than a complex one.

2. Another remark concerns the significance level of input variables. At column
5 of the Table 4.2 of the logistic result for the whole region data set, it can
be seen that some p − value of the estimated coefficients are very high. The
question arrived whether the input variables with such a high p − value are
good predictors for the output variable or not.

3. Notice that, for the variable LOANSIZE, the confidence interval of its OR is
found to be (0−8.3×1039), thus it is very large. This may be due to the scale
of this variable as this LOANSIZE is obtained by dividing the original figure by
1,000. To avoid the large CI, this variable will be replaced by the original loan
size without adjusting and the same name, LOANSIZE, will be kept.
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4. The other remark is on the variable LSQUARED. This variable shares the same
information as LOANSIZE, the difference is again the scale as explained in the
above section, this variable is obtained by squaring of loan size and divided
by 1000. This variable will be dropped from a full model before performing
variable selection.

Table 4.2: Logistic Regression Result for the Whole Region Data Set

Variable Coefficient Std.Error z-value. Pr(>|z|) OR 95%CI

Intercept 0.780 3.001 0.260 0.795067 2.181 (0.006- 782.267)
I. Joint Liability:

NOLNDPCT -3.625 1.506 -2.407 0.016085 * 0.027 (0.001-0.510)
II. Covariance:

COVARBTY 1.999 1.384 1.444 0.148805 7.379 (0.489-111.257)
HOMOCCUP 0.202 0.857 0.236 0.813498 1.224 (0.228-6.562)
III. Cooperation:

SHARING 0.386 0.250 1.544 0.122491 1.471 (0.901-2.402)
SHARNON -0.553 0.266 -2.080 0.037538 * 0.575 (0.342-0.969)
BCPCT -1.948 2.381 -0.818 0.413224 0.143 (0.001-15.160)
PRODCOOP 0.494 0.264 1.869 0.061692 . 1.639 (0.976-2.753)
IV. Cost of Monitoring:

LIVEHERE 0.898 0.830 1.082 0.279276 2.455 (0.482-12.491)
RELPRCNT -0.580 0.573 -1.014 0.310645 0.560 (0.182- 1.719)
V. Screening:

SCREEN -0.355 0.401 -0.885 0.376118 0.701 (0.319-1.540)
KNOWN -0.137 0.770 -0.178 0.858546 0.872 (0.193-3.946)
VI. Penalties for default:

BIPCT 1.938 1.355 1.431 0.152519 6.948 (0.488-98.880)
SNCTIONS 3.143 1.944 1.617 0.105907 23.163 (0.513-1045.213)
VII. Productivity:

MEANLAND -0.006 0.013 -0.460 0.645662 0.994 (0.969-1.020)
AVGED 1.132 0.693 1.634 0.102359 3.103 (0.797-12.074)
VIII. Contract terms:

INTRAT -0.120 0.101 -1.187 0.235155 0.887 (0.728-1.081)
LOANSIZE 31.935 30.605 1.043 0.296739 7.3e+13 (0.000- 8.3e+39)
LSQUARED -0.454 0.333 -1.365 0.172144 0.635 (0.331-1.219)
IX. Control:

LNYRSOLD -0.962 0.283 -3.399 0.000675 *** 0.382 (0.219-0.665)
MEMS 0.034 0.046 0.731 0.464784 1.035 (0.945-1.133)
VARBTY -3.593 2.655 -1.353 0.175943 0.028 (0.000-5.006)
WEALTH 0.027 0.083 0.329 0.741828 1.028 (0.874-1.208)
PCGMEM -3.790 1.178 -3.216 0.001300 ** 0.023 (0.002-0.228)
CBANKMEM 0.335 1.210 0.277 0.781805 1.398 (0.131-14.976)

Codes: ***, **, *, and . denote significance at 0%, 0.1%, 5%, and 10% respectively.
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4.3 Variable Selection in Prediction of Repayment
Outcome

The previous section has presented result of logistic regression model on repayment
outcome, REP, and some remarks on the result were made that keeping all variables
in the model were not completely satisfactory as it contains some variables that
may not be good predictors for the output and too many input variables is not very
convenient for interpretation. In this context, it is natural to search for a smaller
model with fewer input variables that still explains well the output and would be
easier to interpret. This section illustrates selection of variables that leads to keeping
only “important” variables in the model. “Important” here means they are not only
statistically significant for prediction but also produce an optimal value for a chosen
statistical criterion.

This section starts with recalling the list of the input variables entering the full
model under analyze. A naive approach of selection variables based on significance
of the coefficients in univariate models and full model is presented in Subsection
4.3.1. Then, Subsection 4.3.2 and 4.3.3 illustrate a backward stepwise elimination
along with AIC and BIC criteria applied on the logistic regression model in order
to select variables. A discussion on the results obtained is given in Subsection 4.3.4.

The data set under study always contains 219 observations as presented in Section
4.1. As discussed in the above section, the input variable, LOANSIZE, is substituted
by the original measurement without adjusting. Furthermore, SQLOANSIZE is
removed from the previous model for the fact that SQLOANSIZE depicts the same
information as loan size. Therefore, 23 input variables are now included in the full
model under analysis, namely, NOLNDPCT, COVARBTY, HOMOCCUP, SHARING,

SHARNON, BCPCT, PRODCOOP, LIVEHERE, RELPRCNT, SCREEN, KNOWN, BIPCT,

SNCTIONS, MEANLAND, AVGED, INTRAT, LOANSIZOLD, LNYRSOLD, MEMS, VARBTY,

WEALTH, PCGMEM, and CBANKMEM.

4.3.1 Naive Selection Approach

The primary goal is to select some variables from the 23 input variables. Considering
on reducing number of variables from the model, it can be thought of a “naive”
approach to screen the variables according to the statistical significant, p − value.

Thus, univariate logistic regression models are fitted to obtain the estimated
coefficients, the estimated standard errors, the univariable Wald statistics and the
significance of the coefficients. In addition, the odd ratios (OR), 95% confidence
intervals of OR’s and corresponding AIC’s are provided to completely show the
related properties of the coefficients. The results of the univariate logistic regression
are reported in Table 4.3 below.

With respect to this, if univariate logistic models are taken into account,
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8 variables such that p − values are less than 10% are kept, namely,
NOLNDPCT, SHARNON, PRODCOOP,

LIVEHERE, LNYRSOLD, MEMS, WEALTH, and PCGMEM. The univariable selection
approach ignores the possibility that a collection of variables, each of which is
weakly associated with the output variable, can become an important predictor
of the output when taken together [Hosmer 2000].

Table 4.3: Univariable Logistic Regression Results

Variable Coefficient Std.Error z-value. Pr(>|z|) OR 95%CI AIC

NOLNDPCT -2.6239 0.9342 -2.809 0.00497 ** 0.073 0.012-0.453 248.99
COVARBTY 0.7224 0.9984 0.724 0.4694 2.059 0.291-14.573 256.64
HOMOCCUP 0.3429 0.6142 0.558 0.577 1.409 0.423-4.696 256.88
SHARING -0.07763 0.09667 -0.803 0.422 0.925 0.766-1.118 256.55
SHARNON -0.2429 0.1045 -2.324 0.0201 * 0.784 0.639-0.963 251.81
BCPCT 0.04447 1.46810 0.030 0.9758 1.045 0.059-18.576 257.19
PRODCOOP 0.3986 0.2229 1.788 0.0737 . 1.490 0.962-2.306 253.16
LIVEHERE 1.26274 0.61694 2.047 0.0407 * 3.535 1.055-11.845 253.12
RELPRCNT -0.4979 0.4317 -1.153 0.249 0.608 0.261-1.416 255.84
SCREEN -0.3237 0.3122 -1.037 0.3 0.723 0.392-1.334 256.12
KNOWN 0.3483 0.6325 0.551 0.582 1.417 0.410-4.894 256.9
BIPCT 0.5584 0.8209 0.680 0.49638 1.748 0.350-8.736 256.72
SNCTIONS 1.8384 1.4699 1.251 0.211 6.287 0.353-112.095 255.55
MEANLAND 0.0007656 0.0096723 0.079 0.936906 1.001 0.982-1.020 257.18
AVGED 0.5560 0.4881 1.139 0.255 1.744 0.670-4.539 255.87
INTRAT -0.10362 0.08078 -1.283 0.1996 0.902 0.770-1.056 255.46
LOANSIZE -0.007616 0.007839 -0.972 0.331 0.992 0.977-1.008 256.28
LNYRSOLD -0.8052 0.2104 -3.826 0.00013 *** 0.447 0.296-0.675 239.97
MEMS -0.06371 0.02972 -2.144 0.0321 * 0.938 0.885-0.995 252.6
VARBTY -0.6158 1.7848 -0.345 0.7301 0.540 0.016-17.858 257.07
WEALTH -0.12771 0.06382 -2.001 0.0454 * 0.880 0.777- 0.997 253.01
PCGMEM -1.4532 0.8344 -1.742 0.0816 . 0.234 0.046- 1.200 254.25
CBANKMEM -0.8443 0.8401 -1.005 0.315 0.430 0.083- 2.231 256.19

Codes: ***, **, *, and . denote significance at 0%, 0.1%, 5%, and 10% respectively.

The second naive idea is to apply the same approach but with the full model. Thus,
full logistic regression model is first fitted. The result is obtained by using the
R-packages and is shown in Table 4.4.

With this “naive” approach for the full model, 7 variables with p− values less than
10% should be conserved. These are NOLNDPCT, SHARING, SHARNON,

PRODCOOP, SNCTION, LNYRSOLD, and PCGMEM.

It is interesting to notice that the two naive selections on univariate and multivariate
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select 8 and 7 variables respectively with 5 variables in common among the remaining
variables in the two selected models. The 3 variables, LIVEHERE, MEMS, and WEALTH

considered as statistically significant when being alone but not together with others
will not be part of the final model that will be built later. On the contrary, the 2
variables, SHARING, and SNCTION are not statistically significant alone but become
statistically significant when considered together with others, will be part of the
final model as it will be seen in Section 4.5.

Table 4.4: Result of the Full Logistic Regression Model

Variable Coefficient Std.Error z-value. Pr(>|z|) OR 95%CI

Intercept 1.186350 2.920934 0.406 0.684629 3.275 (0.011-1003.526)
NOLNDPCT -3.382536 1.453712 -2.327 0.019974 * 0.034 (0.002-0.587)
COVARBTY 1.999347 1.350162 1.481 0.138654 7.384 (0.524-104.127)
HOMOCCUP 0.418916 0.830692 0.504 0.614053 1.520 (0.298-7.745)
SHARING 0.462662 0.251984 1.836 0.066346. 1.588 (0.969-2.603)
SHARNON -0.617163 0.267497 -2.307 0.021045 * 0.539 (0.319-0.911)
BCPCT -1.656018 2.349625 -0.705 0.480934 0.191 (0.002-19.090)
PRODCOOP 0.489058 0.265561 1.842 0.065533. 1.631 (0.969-2.744)
LIVEHERE 0.870574 0.828694 1.051 0.293471 2.388 (0.471-12.119)
RELPRCNT -0.808491 0.554940 -1.457 0.145145 0.446 (0.150-1.322)
SCREEN -0.306821 0.397699 -0.771 0.440417 0.736 (0.337-1.604)
KNOWN -0.336386 0.752881 -0.447 0.655021 0.714 (0.163-3.124)
BIPCT 1.763185 1.330486 1.325 0.185098 5.831 (0.430-79.114)
SNCTIONS 3.505969 1.926500 1.820 0.068780. 33.314 (0.763-1453.660)
MEANLAND -0.003838 0.012811 -0.300 0.764478 0.996 (0.971-1.021)
AVGED 1.048135 0.677211 1.548 0.121689 2.852 (0.756-10.756)
INTRAT -0.105862 0.100362 -1.055 0.291517 0.900 (0.739-1.095)
LOANSIZE -0.013964 0.010693 -1.306 0.191560 0.986 (0.966-1.007)
LNYRSOLD -0.949894 0.283195 -3.354 0.000796*** 0.387 (0.222-0.674)
MEMS 0.042301 0.045746 0.925 0.355124 1.043 (0.954-1.141)
VARBTY -3.528738 2.621147 -1.346 0.178220 0.029 (0.000- 4.996)
WEALTH 0.023080 0.083071 0.278 0.781139 1.023 (0.870-1.204)
PCGMEM -3.867393 1.177699 -3.284 0.001024** 0.021 (0.002-0.210)
CBANKMEM 0.640432 1.180287 0.543 0.587400 1.897 (0.188-19.178)

Codes: ***, **, *, and . denote significance at 0%, 0.1%, 5%, and 10% respectively.

Remark 4.1

The result of the logistic regression containing 23 input variables shown in Table
4.4 is not remarkably different from the earlier model in the reference paper with
24 variables, the only change is the coefficient of variable, LOANSIZE and 95% CI of
this variable is (0.977− 1.008), which is somehow more appropriate.



90 Chapter 4. Variable Selection for Repayment Outcome

4.3.2 Variable Selection by AIC

In this section, I propose a backward stepwise elimination along with the optimal
statistical criterion AIC on the logistic regression of the full model containing 23
explanatory variables. Selecting variables based on the AIC criterion for a general
parametric model has been examined in Subsection 3.4.2. The AIC statistic is given
by AICk = −2 ∗ log-likelihood + 2 ∗ k, where k is the number of input variables
in the model. The variable selection by AIC consists in minimizing the criterion.
Recall that, when the first term is minimal, the log-likelihood is maximal and the
second term, called penalty term, is minimal when the number of input variables is
minimal.

The function stepAIC with option “both” in library(MASS) of R-packages allows
to assign an upper and lower bound condition on AIC, but in my experiment the
condition is not used, the step AIC is permitted to run till it reaches the optimal
AIC value. As explained in detail in Subsection 3.5.3. at each step, the AIC
backward stepwise elimination algorithm removes one variable from the current
model if dropping the variable decreases the value of AIC. The deleted variable is
considered to be added back into the model in the next step if its inclusion gives
a model with smaller AIC value. It is observed that, with the data considered
here, whatever the step, the deleted variable is not put back into the model because
adding it back never produces a smaller AIC.

Tables 4.5 and 4.6 show some successive steps of performing AIC backward stepwise
elimination on the data:

Step 0 or step AIC=242.50: At this step, the program fits a full logistic regression
model with 23 input variables. Then, it generates 23 models in which each
model is obtained by excluding one variable from these 23 variables of the full
model and it computes the AIC for each models. The AICs are arranged in an
ascending order. AIC of a full model excluding “WEALTH” is the smallest [AIC(full
model-WEALTH)=240.58, see the first column of Table 4.5]; then WEALTH will be
deleted from a model in the next step.

Step 1 or step AIC=240.58: The model under consideration at this step is a full
model without WEALTH called “step 1 model”. Again, R generates 22 models obtained
by removing one variable in turn from the step 1 model and another model of adding
back the deleted variable, “WEALTH” to the current model (adding back WEALTH into
the model yields a full model in step 0). At this step a model without “MEANLAND”
is found to have the smallest AIC [AIC(step 1 model-MEANLAND)=238.69, see the
second column of Table 4.5], MEANLAND will be dropped from the step 1 model to
get a step 2 model.

Up to this step, adding back any deleted variable brings back to the previous step
model. Starting from step 2, this will no longer the case. Adding back the most
recent deleted variable to the current model brings an immediate previous step
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model but adding others deleted variables gives the non-existing ones.

Step 2 or step AIC=238.69: The step 2 model is the step 1 model excluding
MEANLAND or a full model excluding WEALTH and MEANLAND. In a similar fashion,
R gives twenty one models excluding one variable in turn from the step 2 model
and two other models of adding back one deleted variable to the step 2 model
(adding MEANLAND back to the step 2 model yields the step 1 model; adding back
WEALTH to the step 2 model yields a full model excluding MEANLAND). The AIC of
various models are arranged in an ascending order of AIC values. It is observed that
removing “HOMOCCUP” from the model corresponds to the smallest AIC [AIC(step 2
model-HOMOCCUP)=236.91, see the third column of Table 4.5]. HOMOCCUP will be
excluded from the model in the next step.

Step 3 or step AIC=236.91: The step 3 model is the step 2 model excluding HOMOCCUP

or a full model without WEALTH, MEANLAND, and HOMOCCUP. Similarly, the procedure
considers to remove one variable from the remaining variables of the step 3 model and
adding in turn one variable from a set of deleted variables from previous steps [adding
back HOMOCCUP to the step 3 model gives a step 2 model; adding back MEANLAND into
the step 3 model yields a full model without HOMOCCUP and WEALTH; adding WEALTH to
the step 3 model yields a full model without HOMOCCUP and MEANLAND], then models
are arranged in an increasing order of AIC values. Observe that a model excluding
“KNOWN” has a smallest AIC value at this step [AIC(step 3 model-KNOWN)=235.13,
see the first column of Table 4.6]. KNOWN will be removed from a model in the next
step.

Up to step 3, each of the deleted variables has never been considered to include back
to a succeeding selected model since the inclusion has never produced a better AIC.

In this way, the procedure then terminates at step 15, a step with AIC=223.56.
Deleting a variable from a set of remaining variables from this final model yields
a larger AIC value. Similarly, adding a variable from a set of deleted variables to
this final model produces a greater AIC value. At this step, the final selected model
by AIC backward stepwise elimination using stepAIC() in R is a model containing
eight variables: NOLNDPCT, SHARING, SHARNON, PRODCOOP, BIPCT, SNCTIONS,

LNYRSOLD, and PCGMEM. The final model generated by AIC backward stepwise
elimination is called an AIC optimal model. The logistic regression result of the
AIC optimal model is shown in Table 4.7 below. The number of input variables
have been reduced from 23 in the full model to 8 in the AIC optimal model by using
AIC backward stepwise elimination.
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Table 4.5: Subsequent Steps in AIC Backward Stepwise Elimination Procedure

Step 0: AIC=242.50 Step 1: AIC=240.58 Step 2: AIC=238.69

Variable AIC Variable AIC Variable AIC
-WEALTH 240.58 -MEANLAND 238.69 -HOMOCCUP 236.91
-MEANLAND 240.59 -KNOWN 238.78 -KNOWN 236.91
-KNOWN 240.71 -HOMOCCUP 238.81 -CBANKMEM 237.03
-HOMOCCUP 240.75 -CBANKMEM 238.90 -BCPCT 237.14
-CBANKMEM 240.80 -BCPCT 239.06 -SCREEN 237.34
-BCPCT 241.00 -SCREEN 239.18 -MEMS 237.50
-SCREEN 241.10 -MEMS 239.46 -INTRAT 237.76
-MEMS 241.38 -LIVEHERE 239.63 -LIVEHERE 237.87
-LIVEHERE 241.59 -INTRAT 239.72 -LOANSIZE 238.44
-INTRAT 241.65 -LOANSIZE 240.29 -BIPCT 238.47
-LOANSIZE 242.20 -BIPCT 240.37 -VARBTY 238.48
-BIPCT 242.31 -VARBTY 240.38 <none> 238.69
-VARBTY 242.34 <none> 240.58 -RELPRCNT 238.70
<none> 242.50 -RELPRCNT 240.67 -COVARBTY 238.88
-RELPRCNT 242.67 -COVARBTY 240.86 -AVGED 238.99
-COVARBTY 242.82 -AVGED 240.96 -SHARING 240.56
-AVGED 242.88 -SNCTIONS 242.38 -SNCTIONS 240.58
-SNCTIONS 244.04 -SHARING 242.46 +MEANLAND 240.58
-SHARING 244.44 +WEALTH 242.50 + WEALTH 240.59
-PRODCOOP 244.51 -PRODCOOP 242.55 - PRODCOOP 240.61
-NOLNDPCT 246.51 -NOLNDPCT 244.74 - SHARNON 242.82
-SHARNON 246.81 -SHARNON 244.81 - NOLNDPCT 243.14
-PCGMEM 251.58 -PCGMEM 249.78 - PCGMEM 247.81
-LNYRSOLD 253.60 -LNYRSOLD 251.83 - LNYRSOLD 251.10

- sign means that a variable is dropped from a model and
+ sign means that a variable is added back to a model
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Table 4.6: Subsequent Steps in AIC Backward Stepwise Elimination Procedure

Step 3: AIC=236.91 Step 4: AIC=235.13 Step 5: AIC=233.39

Variable AIC Variable AIC Variable AIC
-KNOWN 235.13 -CBANKMEM 233.39 -BCPCT 231.82
-CBANKMEM 235.17 -BCPCT 233.60 -SCREEN 232.19
-BCPCT 235.33 -SCREEN 233.85 -MEMS 232.20
-SCREEN 235.47 -MEMS 233.90 -LIVEHERE 232.42
-MEMS 235.81 -INTRAT 234.25 -INTRAT 232.50
-INTRAT 236.03 -LIVEHERE 234.29 -VARBTY 233.00
-LIVEHERE 236.18 -VARBTY 234.62 -BIPCT 233.02
-VARBTY 236.52 -BIPCT 234.86 -LOANSIZE 233.03
-BIPCT 236.56 -RELPRCNT 234.90 -RELPRCNT 233.15
-LOANSIZE 236.74 -LOANSIZE 234.93 -COVARBTY 233.25
-RELPRCNT 236.77 <none> 235.13 <none> 233.39
<none> 236.91 -COVARBTY 235.13 -AVGED 233.82
-COVARBTY 236.97 -AVGED 235.26 +CBANKMEM 235.13
-AVGED 237.14 -PRODCOOP 236.65 +KNOWN 235.17
-PRODCOOP 238.63 +KNOWN 236.91 +MEANLAND 235.25
+HOMOCCUP 238.69 +HOMOCCUP 236.91 -PRODCOOP 235.25
+MEANLAND 238.81 +MEANLAND 237.01 +HOMOCCUP 235.26
+WEALTH 238.83 +WEALTH 237.06 +WEALTH 235.30
-SHARING 238.96 -SHARING 237.38 -SHARING 235.40
-SNCTIONS 239.29 -SNCTIONS 237.42 -SNCTIONS 235.67
-SNCTIONS 239.29 -NOLNDPCT 239.43 -NOLNDPCT 237.46
-NOLNDPCT 241.36 -SHARNON 239.94 -SHARNON 237.96
-PCGMEM 245.94 -PCGMEM 244.00 -PCGMEM 242.04
-LNYRSOLD 249.70 -LNYRSOLD 247.74 -LNYRSOLD 245.79

- sign means that a variable is dropped from a model and
+ sign means that a variable is added back to a model
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Table 4.7: AIC Optimal Model

Variable Coefficient Std.Error z-value. Pr(>|z|) OR 95%CI

Intercept 2.6706 0.6453 4.139 3.50e-05 *** 14.449 4.079-51.181
NOLNDPCT -2.6429 1.0862 -2.433 0.01496 * 0.071 0.008-0.598
SHARING 0.3598 0.2135 1.686 0.09187 . 1.433 0.943-2.178
SHARNON -0.4812 0.2283 -2.108 0.03506 * 0.618 0.395-0.967
PRODCOOP 0.5193 0.2498 2.079 0.03759 * 1.681 1.030-2.743
BIPCT 1.5597 1.0077 1.548 0.12168 4.757 0.660-34.285
SNCTIONS 3.4370 1.7222 1.996 0.04597 * 31.095 1.063-909.163
LNYRSOLD -0.9022 0.2247 -4.015 5.94e-05 *** 0.406 0.261-0.630
PCGMEM -3.2314 1.0596 -3.050 0.00229 ** 0.040 0.005-0.315

Codes: ***, **, *, and . denote significance at 0%, 0.1%, 5%, and 10% respectively.

From the Table 4.7, it is observed that each remaining input variable shows a small
p − value. The input variables, BIPCT and SHARING have larger p − value equal to
0.12168 and 0.09187, respectively. We will see in the next subsection that these two
variables will be 2 among 3 variables in the AIC optimal model that will be deleted
in the BIC optimal model.

Remark 4.2

In addition to AIC backward stepwise elimination, the backward elimination
(without stepwise) can be performed by using the function stepAIC() with an
option backward. The result achieved is the same as using the AIC backward
stepwise elimination because at no step of the backward stepwise procedure, the
program was able to add a deleted variable back to the model.

4.3.3 Variable Selection by BIC

The analysis of variable selection using procedure of backward stepwise elimination
under criterion of AIC has been shown in the above subsection. In this section,
another model selection criterion is applied on the data set. The criterion adopted
here is BIC, which BICk = −2 ∗ log-likelihood + k ∗ ln(n), where k is the number
of variables and n is the size of sample. The theoretical statistics of BIC have been
introduced in Subsection 3.4.3.

My aim in applying BIC to the full model through a backward stepwise elimination
after having already done this with AIC is to know whether the same 8 variables
will be kept in a final selected model or not. As the penalized term of BIC equal to
k ∗ ln(n), has a larger slope then the one used in AIC, equal to 2 ∗ k, when n ≥ 8,

the optimal model based on BIC is expected to be more parsimonious. But will it
choose other variables or keep some or all the ones kept in the model using AIC?
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To perform BIC backward stepwise elimination, the same function stepAIC() in
R-package is used. There exists a parameter in the function that allows us to
modify the penalty term. By changing the penalty term to k ∗ ln(n), then BIC
criterion is obtained. In similar way as in AIC backward stepwise, it is observed
that the algorithm deletes the same variables at each step as in AIC backward
stepwise selection procedure. Further, the BIC backward stepwise continues three
steps beyond the AIC’s steps. The final model given by the BIC backward stepwise
elimination contains only 5 variables: NOLNDPCT, PRODCOOP, SNCTIONS, LNYRSOLD

and PCGMEM corresponding to a minimum BIC equal to 246.52. The BIC final model

is called a BIC optimal model. The logistic regression result of the BIC optimal
model is shown in Table 4.8.

Table 4.8: BIC Optimal Model

Variable Coefficient Std.Error z-value. Pr(>|z|) OR 95%CI

Intercept 2.8705 0.5789 4.958 7.11e-07 *** 17.645 5.674-54.879
NOLNDPCT -2.9414 1.0751 -2.736 0.006222 ** 0.053 0.006-0.434
PRODCOOP 0.5278 0.2427 2.175 0.029631 * 1.695 1.103-2.932
SNCTIONS 3.7675 1.6715 2.254 0.024201 * 43.271 1.635-1145.524
LNYRSOLD -0.8392 0.2175 -3.859 0.000114 *** 0.432 0.282-0.662
PCGMEM -2.7119 0.9597 -2.826 0.004715 ** 0.066 0.010-0.436

Codes: ***, **, *, and . denote significance at 0%, 0.1%, 5%, and 10% respectively.

4.3.4 Discussion on Optimal Models

Two models, AIC and BIC optimal models, have been achieved from the previous
subsections, in which the later keeps less input variables. Assume now we continue
to apply backward stepwise elimination on the two optimal models beyond the
minimum AIC or BIC is just to see how the AIC’s or BIC’s will be changed when
dropping more variables from the current optimal models.

First, applying the selection procedure on AIC optimal model, BIPCT is seen to
be a first target variable to be removed since the model without this variable has
the smallest AIC among all models of dropping one more variable in turn from the
AIC optimal model. Deleting this variable AIC of the AIC optimal model without
BIPCT is larger than the AIC of the AIC optimal model; however, BIPCT is forced
to remove from the model. Again the same selection procedure is performed on
the current model without BIPCT, which the procedure lists SHARING as a dropped
variable with smallest AIC, while dropping this variable, AIC of the model is larger
than the previous two. In a similar manner, the AIC stepwise on subsequent models
are performed until all variables are removed from the model. The intercept only
model (model with no variable) produces the maximum AIC value of 255.19. At
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each time of deleting a variable, the AIC of the dropping variable model is always
increased. A report of AIC and variables dropped at each step till no input variable
left in the model is shown in Table 4.9.

In the same direction, BIC backward stepwise is applied for the BIC optimal model.
At the beginning, the program provides all possible models dropping one variable in
turn. Dropping SNCTIONS from the current model yields a model with the smallest
BIC but it is greater that the BIC of the preceding model. This variable is forced to
delete from the current model, deleting this variable, the BIC increases from 246.52
to 246.66. Continuing this way leads to deleting PRODCOOP, then deleting NOLNDPCT,
at this step BIC decreases in small amount. Deleting NOLNDPCT from the current
model, BIC starts to increase, till the intercept only model with BIC of 258.58. The
BICs and the variables deleted at each step are given in Table 4.9. It should be
noted that, at each step, the program dropped the same variable as in the selection
procedure based on AIC criterion.

Table 4.9: AIC and BIC for Subsequent Steps of Dropping Each Variable

Step AIC BIC Variable Dropped/Added
0 242.50 323.84
1 240.58 318.53 -WEALTH
2 238.69 313.25 -MEANLAND
3 236.91 308.08 -HOMOCCUP
4 235.13 302.91 -KNOWN
5 233.39 297.78 -CBANKMEM
6 231.82 292.82 -BCPCT
7 230.52 288.14 -MEMS
8 229.2 283.43 -SCREEN
9 228.12 278.95 -LIVEHERE
10 227.27 274.71 -RELPRCNT
11 226.51 270.57 -VARBTY
12 225.35 266.02 -COVARBTY
13 224.13 261.41 -LOANSIZE
14 223.58 257.47 -AVGED
15 223.56 254.06 -INTRAT
16 224.07 251.18 -BIPCT
17 225.67 249.39 -SHARING
18 226.19 246.52 -SHARNON
19 229.71 246.66 -SNCTIONS
20 231.50 245.06 -PRODCOOP
21 235.81 245.98 -NOLNDPCT
22 239.97 246.74 -PCGMEM
23 255.19 258.58 -LNYRSOLD

- sign in front of a variable means that the variable is dropped from the model



4.3. Variable Selection in Prediction of Repayment Outcome 97

The following figures are the plots of AIC and BIC of each step of backward stepwise
elimination in Table 4.9. Figure 4.6 illustrates AICs versus the number of variables
kept in the models given in the above table. For the full model with 23 variables, the
AIC is equal to 242.50. Deleting on input variable, WEALTH, the model contains 22
input variables and its AIC is equal to 240.58. Continuing dropping each variable,
AIC decreases until the minimum AIC of 223.56, which is AIC of the AIC optimal
model containing 8 variables. Removing one variable at each step from the AIC
optimal model, AIC starts to increase.

Figure 4.6: AIC versus Number of Variables in the Model
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Figure 4.7 is the graph of BIC versus the number of variable remaining in the
model. It is observed that BIC decreases with respect to the decreasing number
of input variables in the models. The BIC decreases till the BIC equal to 246.52,
which is the one of BIC optimal model contained 5 variables. Continue dropping
one variable, SNCTIONS, from the optimal model increases BIC. Removing another
variable, PRODCOOP, the BIC of the new model with 3 input variables decreases to
245.06, smaller than the one of the optimal model which was automatically selected
by the R program. The subsequent removing of the remaining two input variables
increases BIC of the model.
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Figure 4.7: AIC versus Number of Variables in the Model
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Remarks on the current optimal models can be summarized as follows:

1. At each step, AIC and BIC backward stepwise elimination, the same variable
is dropped from the subsequent models.

2. All the remaining variables in both optimal models are statistically significant
(p− values are small).

3. The set of input variables in the BIC optimal model is a subset of the set of
input variables in the AIC optimal model.

4. With respect to the principle of parsimony, the BIC optimal model is preferred.

5. Subsequently dropping each variable from the AIC optimal model, the AICs
of the new models are always greater than the one of the optimal; whereas
the BIC case, the BIC of the model containing 3 input variables, removing
SNCTIONS and PRODCOOP from the BIC optimal model, is smaller than the one
of the optimal.



4.4. Model Validation Based on Sampling 99

4.4 Model Validation Based on Sampling

In this section, the stability of the choice of variables done in the two optimal models
computed before is studied. Stability here means to which extent the selection will
end up with the same choice of variables when using another similar data set. To
address this question, I have considered sub-samples randomly selected from the
data set under study, and performed the same selection technique on each of them.

The approach here is to randomly divide the data set into two parts: a learning set
and a test set. The learning sample contains 160 observations chosen randomly with
replacement. This sub-sample will be used to fit a model and to perform the variable
selection under the same procedure and criterion as in Section 4.3. The remaining
observations are kept in a test sample, usually the number of observations in the test
sample is greater than 59 (59 plus 160 is equal to 219 total observations) because of
the observations in the earlier set are chosen with replacement.

For each learning sample, backward stepwise elimination is performed to obtain an
optimal model under the criterion of interest. Then, a Pearson error of this optimal
model of the learning sample is computed and normalized by the sample size. The
Pearson error of a logistic regression model was discussed in Subsection 3.3.4. The
normalized Pearson error is given by

Error =
1

n

n∑

i=1

(yi − πi)
2

πi(1− πi)
, (4.1)

where n is the sample size, yi is ith component of output variable and πi = eXiβ/(1−
eXiβ), where Xi is the ith row or observation of input matrix.

Similarly, normalized Pearson errors of the corresponding test sample and whole
sample data are calculated with respect to the coefficients of input variables
remaining in the optimal model of the learning sample.

Twenty-five learning samples were generated in the same way and analyzed. From
each of the optimal models, coefficients of variables kept in the models, AIC, and
normalized Pearson error of the learning sample, test sample and the whole sample
are recorded. The results of applying AIC and BIC backward stepwise elimination
procedure on sampling data are discussed in turn as follows. The records of this
information are shown at the end of Appendix A.

4.4.1 Validation of AIC Optimal Model

In this part, the results by applying AIC backward stepwise elimination on each
learning sample are discussed. The presence of any input variable in the optimal
models of each learning sample is investigated. From the twenty five learning
samples, frequency of the input variables included in the corresponding twenty five
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optimal models are shown in Figure 4.8 below. The red bars represent the input
variables contained in the AIC optimal model in Subsection 4.3.2, where the AIC
backward stepwise elimination was performed for the whole sample. It is observed
that the variable LNYRSOLD has the highest frequency, equal to 24, out of 25 samples,
PCGMEM has a next highest frequency of 22, the frequency of NOLNDPCT equals to 18.
This suggests that these three variables are the most “important” variables in the
AIC optimal models.

From this figure, the variables HOMOCCUP, AVGED, and VARBTY did not appeare in the
AIC optimal model, but the frequencies of these variables presented in the twenty
five optimal models of the samplings are 10, 12 and 11 respectively, which is higher
than SHARING, a variable included in the AIC optimal model, with frequency only
equal to 9.

Except for this variable SHARING, all other most frequently selected variables are
precisely the ones that were kept in the optimal model. This may be considered as
a good stability sign of the AIC optimal model.

Figure 4.8: Frequency of Variables appeared in 25 AIC Optimal Models of Samplings
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The AICs of the twenty five optimal models corresponding to performing AIC
variable selection procedure on the twenty five generated learning samples are
observed to have fluctuation from 120 to less than 180 and are shown in Figure
4.9.

It is also observed that the normalized Pearson errors of the optimal models of
learning samples are quite small compared to the two others. Figure 4.10 shows the
plots of the three normalized Pearson errors: the red line is the errors of the learning
samples, the green one represents the errors of the test samples, and the blue line is
the errors of the whole sample corresponding to the input variables remaining in the
optimal models when applying AIC backward stepwise elimination on the learning
samples. The errors of the test samples are even more fluctuating compared to the
ones of the whole sample.
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Figure 4.9: AICs of 25 AIC Optimal Models of Samplings
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Figure 4.10: Normalized Pearson Errors of 25 AIC Optimal Models of Samplings
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According to the sampling results, the input variables, HOMOCCUP, AVGED and VARBTY

are added in turn to the AIC optimal model. Adding HOMOCCUP to the AIC optimal
model results AIC of the model equal to 225.55 and the p− value of this variable is
0.114. Entering AVGED to the AIC optimal model yields AIC to 224 and the p−value

of the variable is equal to 0.209274. And adding VARBTY to the same optimal model
gives AIC equal to 225.05 and p−value of this variable equal to 0.47513. In addition,
the three variables, HOMOCCUP, AVGED and VARBTY, are included together at the same
time to the AIC optimal model, the respective p−values are 0.734, 0.223 and 0.504
with AIC=227.51.
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4.4.2 Validation of BIC Optimal Model

In a similar manner, BIC backward stepwise elimination is applied with each of the
twenty five generated learning samples. Data on coefficients of variables kept in
the twenty five BIC optimal models of the samplings, corresponding AIC of each
models, normalized Pearson errors of the learning samples, test samples, and whole
sample are recorded. The frequencies of variables appeared in the optimal models
are taken for consideration.

The “red” bars correspond to the input variables that were conserved in the BIC
optimal model examined in Subsection 4.3.2. From the twenty five optimal models
of the samplings, it is observed that the input variable LNYRSOLD appears most
frequently with frequency of 20. In addition to this, the variable SHARNON that
was not selected for the BIC optimal model of the whole data has a second most
frequency of 13, which is higher than the ones contained in the BIC optimal model.
This information can been seen from Figure 4.11.

Figure 4.11: Frequency of Variables appeared in 25 BIC Optimal Models of Sampling
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Frequency of Variables in 25 Samplings by Stepwise BIC

The fact that two selected variables, PRODCOOP and SNCTIONS, appear more rarely
than the non selected variable SHARNON in this experiment shows that, for the BIC
optimal model containing only 5 variables, the stability of the selection is much
more questionable than for the AIC optimal model.

Similar to applying AIC stepwise on the samplings, the AICs of the twenty five
optimal models corresponding to performing of BIC variable selection procedure on
the twenty five generated learning samples are observed to have fluctuation from
120 to 180 and shown in Figure 4.12.

It is also observed that the normalized Pearson errors of the optimal models of
learning samples are quite small compared the two others. Figure 4.13 shows the
plots of the normalized Pearson errors. The red line is the errors of learning samples,
the green one represents the errors of test samples, and the blue line is the errors
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of the whole sample corresponding to the input variables remaining in the optimal
models when applying BIC backward stepwise elimination on the learning samples.
The errors of the test samples are again more fluctuating compared to the ones of
the whole sample.

Figure 4.12: AIC’s of 25 BIC Optimal Models of Samplings
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Figure 4.13: Normalized Pearson Errors of 25 BIC Optimal Models of Samplings

Peason error of Test sample
Peason error of Learning sample

Peason error of Whole sample

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25

Peason Error of 25 Samples-BIC Stepwise

Sample

Pe
as

on
 E

rro
r

From this experimental result, there is a strong evidence to include SHARNON back
to the current BIC optimal model. When this variable is included into the current
BIC optimal model, AIC of the BIC optimal model including SHARNON is equal to
225.67 and p− value of this variable is equal to 0.1119.
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4.5 The Final Model: Adding “INTRAT” to AIC
Optimal Model

In this section, I build what could be considered as a “final model” for predicting the
repayment outcome REP by taking into account all previous variable selections. As
illustrated in Section 4.3, the BIC optimal model contains only five input variables,
which is more parsimonious than the one of AIC. Believing in sampling result in
Subsection 4.4.2, SHARNON should be put back into the model, the BIC optimal model
including SHARNON yields AIC equal to 225.67. The current BIC optimal model
contains 6 input variables. All these input variables belong to the AIC optimal
model.

Without being too parsimonious, the AIC optimal model should be an optional.
This model includes eight variables, in which there are two additional variables,
SHARING and BIPCT to the current BIC optimal model. The input variables in the
AIC optimal model are the ones corresponding to the variable with p − value less
than 10%, except BIPCT, whose p− value equals 0.185 in the full model.

But taking a consideration of real practice of microcredit it is usually considered that
“interest rate” is a factor that effects the repayment outcome. And, in addition to the
economic view point of interest rate, this variable is dropped just at the immediate
step before obtaining the AIC optimal model. The evidence from sampling results,
see Figure 4.8, shows that the frequency of this variable compared to the worst one
(SHARING) in the AIC optimal model is not really different. Adding the variable
interest rate to the AIC optimal model, the AIC of this new model equals 223.58,
which is a bit larger than the AIC of the AIC optimal model, 223.56 and better
than the AIC of adding one variable in turn to AIC optimal model discussed at the
end of Subsection 4.4.1. Therefore, the interest rate could be included back into the
model without changing that much.

Hence, the decision is made to keep 9 variables in the final model for prediction of
repayment outcome REP. These 9 variables may be considered as the “important”
predictors that really predict the repayment outcome REP defined by Ahlin and
Townsend that was discussed in Section 4.1. The other 23-9=14 input variables
may be treated as relatively unimportant or just superfluous predictors. The result
of the final model, the AIC optimal model adding INTRAT is given in Table 4.10. In
this table, the numbers in parentheses in the column “coefficient” are the coefficients
of the input variables in the full model that are just displayed to compare with the
ones of the final model.
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Table 4.10: The Final Model Based on AIC Stepwise plus INTRAT

Variable Coefficient Std.Error z-value. Pr(>|z|) OR 95%CI

Intercept 4.168 1.282 3.252 0.00115 ** 64.558 5.237-795.873
I. Joint Liability:
NOLNDPCT -2.716 (-3.38) 1.102 -2.464 0.01375 * 0.066 0.008-0.574
II. Covariance: No Predictors

COVARBTY (1.99)
HOMOCCUP (0.42)
III. Cooperation:
SHARING 0.384 (0.46) 0.221 1.736 0.08261. 1.468 0.952-2.266
BCPCT (-1.65)
SHARNON -0.517 (-0.62) 0.238 -2.176 0.02957 * 0.596 0.374-0.950
PRODCOOP 0.526 (0.49) 0.252 2.088 0.03682 * 1.693 1.033-2.774
IV. Cost of Monitoring: No Predictors

LIVEHERE (0.87)
RELPRCNT (-0.81)
V. Screening: No Predictors

SCREEN (-0.31)
KNOWN (-0.34)
VI. Penalties for default:
BIPCT 1.473 (1.76) 1.013 1.453 0.14616 4.360 0.598-31.772
SNCTIONS 3.372 (3.51) 1.732 1.947 0.05155 . 29.148 0.978-869.042
VII. Productivity: No-Predictors

MEANLAND (-0.004)
AVGED (1.05)
VIII. Contract terms:
INTRAT -0.131(-1.11) 0.095 -1.373 0.16991 0.878 0.728-1.057
LOANSIZE (-0.01)
IX. Control:
LNYRSOLD -0.905 (-0.95) 0.228 -3.970 7.17e-05 *** 0.405 0.259-0.632
MEMS (0.04)
VARBTY (-3.53)
WEALTH (0.02)
PCGMEM -3.250 (-3.87) 1.062 -3.059 0.00222 ** 0.039 0.005-0.311
CBANKMEM (0.64)

Codes: ***, **, *, and . denote significance at 0%, 0.1%, 5%, and 10% respectively.

The accuracy of prediction of the final model compared to the full model is very
similar. This can be reflected through the Pearson errors of the two models shown
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in Figure 4.14. Recall that the Pearson error of each observation Yi is given by

Yi − πi√
πi(1− πi)

.

The respective Pearson errors of the two models almost coincide. In Figure 4.14, the
errors of the final and the full models are plotted with circles and crosses respectively,
one cannot easily see the differences in this figure. The difference between the two
errors are shown in Figure 4.15 which it can be observed that there are more dense
around 0.

Figure 4.14: Pearson Error of Final Model Versus Full Model
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Figure 4.15: Difference between Pearson Errors of Full Model and Final Model
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The final model obtained by adding INTRAT to the AIC optimal model does not
include predictors under categories of covariance, cost of monitoring, screening and
productivity. One predictor, BCPCT, under cooperation was removed from the model.
The variable, LOANSIZE under contract terms is not kept either, and four predictors,
namely, MEMS, VARBTY, WEALTH, and CBANKMEM, under control are either deleted
from the model. Totally, 14 input variables are dropped from the full model of
logistic regression for repayment outcome.

Finally, I discuss the meaning of the 9 input variables kept in the final model, trying
to justify the option I chose, from the view point of their economic implications.

The degree of joint liability, NOLNDPCT is the percentage of the group that is landless.
It is a negative predictor for repayment in the final model. The bank uses legal
action to seize asset, often confiscate land of a borrower or his/her guarantors,
this variable should be valid for representing the joint liability degree. The more
borrowers are landless, the more likely guarantors will end up liable. The result
shows that increasing the degree of joint liability lowers repayment.

SHARING, sharing among relatives, is found to have positive effect on repayment
outcome. This variable reflects the ability of the group to make binding agreement
with relatives to get help for their businesses.

SHARNON, sharing among non-relatives, is similar to SHARING but in terms of
non-relative persons in the group. The presence of this predictor shows a significant
negative influence on repayment outcome, which is opposite to sharing among
relatives. The increase of sharing among non-relative lowers the repayment outcome.

Another important predictor is PRODCOOP, the joint decision, which reflects the
cooperation on production decision and captures the joint choice of project among
group members. The ability to cooperate in project choice has a positive effect on
repayment outcome.

BIPCT, best institutions, captures outside loan availability. This shows degree of legal
infrastructure related to official penalties that the bank can impose on borrowers.
The more available of best institutions, the higher the repayment outcome is. This
shows that the repayment rate is even better when more and more outside loan
options from quality lenders, the quality may be in terms of legal action or low
interest rate loans.

SNCTIONS, the measure of sanctions is the percentage of loans in the village where
the groups resided are under penalties that the borrowers cannot borrow again from
BAAC and other lenders or the reputation of the village is in a bad shape. This
variable reflects directly a form of unofficial penalties on denial of future extension
of the credit. The presence of this variable positively influences the repayment
outcome, meaning that imposing more sanctions increases repayment rate.

INTRAT, the interest rate, has a negative effect on repayment outcome. The higher
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the interest rate charges the lower the repayment outcome is. The interest rate here
is the weighted average of the highest and lowest rates faced by each borrowing
group. It should be noticed that the highest interest rate taken by BAAC is less
than 12.25% for a loan size less than 1,000,000 Thai Baht. In the data set, the
maximum of interest rate is found to be 17.45% and the maximum loan size is only
150,000 Baht (less than 1,000,000), thus, the figure in the data shows a variation
from the true one.

LNYRSOLD, the log age of group, is very statistically significant and has a negative
influence on repayment outcome. Obviously, a group with a longer history
encounters the problem of default more often. The default happened in the history
of the group is the measure of output variable used in this context.

PCGMEM, membership of production credit group (PCG), is the percentage of villagers
who are member of PCG. This figure measures outside credit options similar to best
institution, but involved in the informal village based PCG. This predictor lowers the
repayment outcome. Increasing the percentage of PCG membership will negatively
effect the repayment rate.



Conclusion and Perspectives

In this thesis, a stochastic model of random delays in repayments of microcredit
had been constructed from a real phenomenon of lending program at Grameen
bank in Bangladesh, which was initiated by Prof. Yunus. In the example of
weekly installments when borrowers were able to repay regularly, which what it
was called deterministic model of Yunus, the interest rate was computed to be
around 20%. Introducing delays into the model and by considering the success
or failure in repayment as a random variable follows a Bernoulli distribution with
a success probability being the in-time installment probability p, the sequence of
these random variables formed a Bernoulli process. From the constructed model,
the random Yunus equation was then introduced that led to the computation of
actuarial expected rate as a function of p. Corresponding to the repayment rate,
γ equal to 97% and the maximal inter-repayment time, d, of 4 weeks in practice
of microcredit, p was obtained that resulted in the actuarial expected rate equal
to 16.59% which is around 3.5% lower than the exact claimed. The distribution of
random interest rate associated with random repayment time could be illustrated
from several simulation results for various values of p.

The most important parameter involved in the computation of the actuarial expected
rate is the in-time installment probability, p. This probability is also the important
parameter for simulating the interest rate distribution. Our stochastic model
provided a way to compute p through repayment rate, γ, and maximal delay time,
d, which γ and d are usually the known parameters obtained from the practice
of microcredit. Another way to compute in practice this installment probability
would be using the geometric distribution of the inter-repayment time in which the
expectation is equal to 1/p. To estimate this expectation, data of delay times faced
by borrowers would be required, namely, taking the average to get an estimation of
1/p.

Another important parameter is the maximal time allowed before a default that
was taken equal to 4 weeks. Increasing d leads to the decreasing probability p,

that would result in a lower actuarial expected rate (less than 16.59%). It would
have been interesting to also examine a model for the repayment rate relating to a
cumulative maximal delay time as a different rule of default.

In my study the distribution of random interest rate was only investigated from
the simulations. These simulations are already a primary result for explaining the
interest rate behavior; furthermore, obtaining the exact distribution of the random
rate from our constructed stochastic model will be the improvement of this work.

Regarding to the analysis of data on joint liability group borrowers taken from
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Ahlin and Townsend, the necessary statistical background was illustrated. The
logistic regression of a full model contained 23 input variables was then reduced
to 8 variables in a AIC optimal model and 5 variables in a BIC optimal model
under an automatic backward stepwise elimination algorithm along with respective
AIC and BIC criteria. The AIC optimal model was somehow stable (better than
the BIC optimal model) according to sampling experiments, in which sub-samples
of random sampling was taken from the whole sample. Finally, a final reduced
model was drawn based on the current AIC optimal model including an additional
predictor, the interest rate.

We Observed that four among nine groups of variables, namely, Covariance, Cost

of Monitoring, Screening and Productivity were completely discarded; in addition,
some variables in the remaining groups such as BCPCT under Cooperation, LOANSIZE
under Contract terms, and MEMS, VARBTY, WEALTH, and CBANKMEM under Control

were removed from the full logistic regression model by this statistical approach.
The remaining explanatory variables in the final model could be thus considered
as the most relevant predictors and they were found to be statistically significant.
The ability of predicting repayment outcome by the simpler model was still about
as much accurate as the one of the full model.

The variable selection method is a purely mathematical algorithm that automatically
chooses variables without considering on the meaning of variables. Nevertheless,
using this method, it appears that the remaining variables included in the final
model are economically meaningful. The selection method is an easy tool that
can be used by even the ones who do not have a strong knowledge in mathematics
providing them with simpler models. Adhering simpler models to predict repayment
outcome may reduce the data collection effort for the MFIs that would be needed
to predict the risk of new borrowing groups the same as some commercial banks
presently have their own models to forecast the risk of their borrowers.



Appendix A

Data Description

A.1 Variable Description

In this appendix, I provide more detail on variable descriptions of the data set.
The information is adapted mostly from [Ahlin 2007] and [Ahlin 2002]. To be easier
to understand I also add some explanations based on the questionnaires used to
collect the data, which are available on the website of “Townsend Thai project”
(http://cier.uchicago.edu/data/baseline-survey.shtml).

NOLNDPCT: The degree of joint liability is the percentage of the group that
owns no land. This is obtained from a question, “how many rai of land does this
person own?”, in which the leader of the group listed all his members with number
of rai of land that each member has. Among total of 219 groups, 166 groups were
found that all members owned land. This measure has validity because, in case
of default, the BAAC has the option of taking legal action to seize assets, often
land of a borrower or his guarantors. If some members of the group are landless,
a guarantor will more often have to repay if the landless borrower defaults. The
more borrowers are landless, the more likely guarantors will end up liable. If all
group members own land, it is less likely that a guarantor will have to pay the debt
rather than the borrower himself. NOLNDPCT is a very suitable measurement to
represent the degree of joint liability.

COVARBTY: Covariability is a village-level measure taken from the household
(HH) survey. Villagers answered which of the previous five years were the best and
worst for income, respectively. The variable is constructed as the probability that
two randomly selected respondents from the same village reported the same year as
worst.

If Nv is the number of villagers in village v and Nvy is the number of respondents in
village v who answer year y is worst, then, the number of different pairs of villagers
in village v with Nv respondents is given by

(
Nv

2

)
, and the number of different pairs

of villagers in village v indicating year y is equal to
(
Nvy

2

)
. Thus, within five years,

the measure is given by ∑5
y=1

(
Nvy

2

)
(
Nv

2

)



112 Appendix A. Data Description

HOMOCCUP: The variable, homogeneous occupations, is taken from the BAAC
survey, which the group leader answered on behalf of his/her members for a question
“What is this person’s primary occupation?” The measure of this variable equals the
probability of two randomly chosen group members having the same occupation. It
is calculated similarly to COVARBTY.

If N is the number of group members and Nx is the number of members who have
occupation x, then, the measure is given by

∑N
x=1

(
Nx

2

)
(
N
2

) .

SHARING: Sharing among relatives is a measure taken from BAAC survey. It is
equal to the number of positive responses to five out of six yes/no sharing questions
among relatives within the group. The questions are “ In the past 12 months,
has anyone in the group shared rice, helped with money, helped with free labor,
coordinated to transport crops, coordinated to purchase inputs, and coordinated to
sell crops among closed relative group members?” The sharing of rice is excluded
because sharing rice among farmers has generally happened. In the table below, 0
means that there is no positive response to the 5 questions; 1 means that there is one
positive response; 2 means that there are two positive responses to the 5 questions;
and so on.

SHARING Frequency Percentage
0 33 15.07%
1 59 26.94%
2 45 20.55%
3 29 13.24%
4 30 13.70%
5 23 10.50

SHARNON: Sharing among non-relatives is constructed in the same manner as
SHARING, but regarding to non-relative group members. Below is the frequency
table of multi-discrete values of the variable.

SHARNON Frequency Percentage
0 58 26.48%
1 73 33.33%
2 34 15.53%
3 27 12.33%
4 17 7.76%
5 10 4.57%
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BCPCT: Best cooperation comes from survey on villagers. A household is asked
which village in his area (sub-county) enjoys the best cooperation among villagers.
The percentage of villagers naming the village in which the group is resident is the
measure used. Thus, the groups from the same village expose the same value.

PRODCOOP: This, joint decision, counts the number of three decisions on which
some group members opposed to the individual farmer who has her own decision
on crops to grow, pesticide and fertilizer usage, and production techniques. The
three questions on the join decision are “Who has the final decision on which crops
to grow, on pesticide and/or fertilizer usage, and on production techniques?” The
answer to each question is equal to 0, if individual member makes her own decision
and 1, otherwise. Finally, PRODCOOP is the sum of the three responses. In the
following table, 0 means that all the three responses are the individual who makes
her own decision; 1 means that one response to the 3 questions is not the individual
who make decision; and so on. The frequency table shows that individual decision
basis is majority.

PROCOOP Frequency Percentage
0 185 84.47%
1 9 4.11%
2 4 1.83%
3 21 9.59%

LIVEHERE: Living in the same village is measured by the percentage of the group
members who live in the same village of the group leader. It is constructed from a
yes/no question in the BAAC survey: “Does this person live in the village?”

RELPRCNT: Relatedness is the percentage of group members who have a close
relative in the group. The yes/no question to obtain this information is “Does
this person have a close relative in the BAAC group?” The counts of positive
responses divided by the total group members yield the percentage. RELPRCNT is
a numerical variable, which the descriptive statistics shows that the average among
groups having close relative in the data equal to 56.59%.

SCREEN: Screen is obtained from BAAC survey. The question to get this
information is “Are there people who would like to be members but cannot?” It
is equal to 1, if the group leader response yes, and 0 otherwise. Less percentage of
borrowers who would like to join the groups was accepted. If anyone requested to
become a member, it is more likely that he/she would not be accepted. SCREEN is a
categorical variable of dichotomous type. Below is the frequency table of SCREEN.

SCREEN Frequency Percentage
0 137 62.56%
1 82 37.44%
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KNOWN: Known type is constructed from a question on whether the members
of the group know the quality of each other’s work. It equals 1 if the group leader
answered “yes” and 0 otherwise. KNOWN is a categorical variable with two values,
1 and 0. It is observed that 94.52% of group members knew the quality of each
other’s work. This means that each member of a group is more preferable to know
the quality of the others, so he/she is more confident to become a guarantor for the
others. Following is its frequency table.

KNOWN Frequency Percentage
0 12 5.48%
1 207 94.52%

BIPCT: This variable is related to best institutions, which is obtained from a poll
similar to BCPCT. A villager is asked to name the best village in his area in terms
of availability and quality of institutions. The value of BIPCT is the percentage of
villagers who indicate that the village of the group is the best one. BIPCT captures
some degree of legal infrastructure, which is related to the official penalties that
BAAC can impose on borrowers. The groups in the same village take the same
value.

SNCTIONS: This variable, sanctions, comes from the HH survey, which is the
answer to the question, “What are the penalties for default on their current loans?”
It counts the loans for which the borrower reports that under default, he/she cannot
borrow again from this lender and other lenders, or that reputation in the village
is damaged. Finally, the percentage of loans in the village that have the penalties
is computed to get the measure of sanctions. The groups from the same village are
measured by the same amount of sanctions.

MEANLAND: Average land is the average amount of land per group member
measured in rai1, from BAAC survey. The group leader was asked “How many
rai of land does this person own?”. The descriptive statistics shows that the overall
average land area among group members is equal to 23.61 rai with a large deviation,
which the standard deviation is equal to 15.95.

AVGED: Average education is the average educational within each group. It is
constructed from a question on characteristics of group members: “What is the
highest level of schooling that this person has completed?” The group leader
answered for his members. The raw data for education are not years of schooling,
but a classification into one of four categories: no schooling, some schooling but
below P4, P4, and higher than P4 schooling. The majority of borrowers have P4
schooling, the minimum level required by the Thai government. The measure used

1One rai is approximately equal to 0.4 acres and exactly 1600 square meters (m2)
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the following average: 1(% of group with some schooling, but below P4)+ 3(% of
group with P4 schooling)+5(% of group with higher than P4 schooling).

INTRAT: Interest rate comes from questions on the highest and lowest interest
rate charged. The two questions are “For your group, what was the highest annual
interest rate on a loan of this type during the past year? and what was the lowest
annual interest rate on a loan of this type?” INTRAT is the weighted average of the
high (hi) and the low (lo) rates of interest. It was computed by (lo+ 0.1 ∗ hi)/1.1.
The BAAC policy on the interest rate in 1997 was 9% for all loans under 60, 000
baht and 12.25% for the ones from 60,000 to 1,000,000 baht. The measurement
variation in the data may be due to the error as respondent did not distinguish
clearly between the principal and the interest portions during the repayment.

LOANSIZE: Loan size comes from a BAAC survey questioning about the highest
and lowest loan size experienced by any member of the group over the past year.
Each group leader answered two questions: “For your group, what was the largest
loan size during the last year? and what was the smallest loan size during the last
year?” LOANSIZE was computed by taking a weighted average (lo+ 0.1 ∗ hi)/1.1,
where lo and hi are the smallest and highest loan figures respectively. The unit of
measurement was in 1,000 Thai baht. In the logistic regression model for repayment
outcome by Alhin and Townsend, two variables were constructed from this loan size,
namely, LOANSIZE and LSQUARED; the first is obtained by dividing the loan size
by 1,000 and the second was calculated by squaring the loan size and dividing by
1,000. For our model in this study, this original measure of loan size is used.

LNYRSOLD: Log of group age is the natural logarithm of the group age. The age
of the group obtained from questioning a leader “When the group was founded?”
The mean of the group ages was found to be 11.38 years-old. It is clear that the
groups with a longer history are more likely faced with repayment problem. The
effect is assumed to be non-linear in ages. The descriptive statistics of the variable
is given below both group age and log of group age.

Variable Min. 1st Qu. Median Mean 3rd Qu. Max. S.D

GROUPAGE 1.00 4.00 9.00 11.38 16.00 50.00 8.60
LNYRSOLD 0.000 1.390 2.200 2.103 2.770 3.910 0.88

MEMS: Group size is the number of members in each group. It is constructed from
BAAC survey, which asked “How many members have joined the group in the last
five years?” The members of the groups in the data range from 5 to 37 with 11
being the median.

VARBTY: Village risk is a village-wide measure of risk. Households are asked how
much they will earn if next year is a good year (Hi), how much if bad (Lo), and how
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much they expect to earn (Ex).

By assigning “a” to be a probability for getting “Hi”, then “1− a” is the probability
of realizing output “Lo”. Thus, Ex = aHi+(1− a)Lo, in which we can be obtained
a = (Ex− Lo)/(Hi− Lo). By substituting this value into the variance
σ2 = a(Hi−Ex)2 + (1− a)(Ex−Lo)2, then σ2 = (Hi−Ex)(Ex−Lo). Therefore,
the coefficient of variation is equal to

σ/Ex =

√
(Hi− Ex)(Ex− Lo)

Ex
.

This quantity is calculated for each villager in the HH survey, and the village average
is used. Again, the groups from the same village have the same measurement.

WEALTH: Village average wealth measures average household wealth in the
village. Villagers were asked detailed questions about assets of all types such as
ponds, livestock, appliances, and so on as well as liabilities. Date of purchase was
used to estimate current value after depreciation. These different types of wealth
were aggregated for each villager, then averaged across villagers. The unit of measure
is one hundred thousand 1997 Thai baht. The descriptive statistics of the variable
is shown in the table below.

Min. 1st Qu. Median Mean 3rd Qu. Max. S.D.
0.098 0.252 0.432 1.190 0.829 16.740 2.267463

PCGMEM: PCG-membership is taken from survey of villagers. It is the percentage
of households in the group’s village who are members of a production credit group

(PCG). PCGs are organizations based in village that collect regular savings deposits
from members and offer loans after a member has met some threshold requirement
involving duration of membership, amount deposited, or both. Usually, the loans
from PCGs are small, possibly one fifth the size of BAAC loans, and the interest
rates are similar or slightly higher. There are PCGs large enough to offer loans as
large as BAAC loans. Occasionally joint liability is used with these loans.

CBANKMEM: Commercial bank-membership is obtained in the same way as
the one in PCG-membership that is the percentage of households in a village who
are members of a commercial bank. Commercial banks are conventional lenders,
requiring collateral for offering loans to borrowers. The loan sizes are often large
enough compared to the ones offered by MFIs.
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1 0 0.143 1 4 4 0.25 0 1 0.75 0 1 0.18 0.11 15 3.3 10.82 0.031 0.955 3.69 12 0.35 5.266 0.07 0.27 40 30.91 0 1 0 0 1 0

1 0 0.154 1 1 1 0.14 0 0.765 0.82 1 1 0.14 0.08 26 3.8 12.41 0.052 2.685 2.71 17 0.27 1.014 0 0.47 15 51.82 0 1 0 0 1 0

1 0 0.154 1 0 0 0.37 0 1 0.2 0 1 0.47 0.14 42 3 13.82 0.023 0.517 1.39 10 0.17 0.235 0 0.27 4 22.73 0 1 0 0 1 0

1 0 0.154 1 0 0 0.37 0 1 0.25 0 1 0.47 0.14 55 3 13.82 0.014 0.186 2.08 8 0.17 0.235 0 0.27 8 13.64 0 1 0 0 1 0

0 0.43 0.178 1 1 1 0 0 0.087 1 0 1 0 0.38 11 3.2 10.82 0.014 0.186 2.3 23 0.21 2.81 0 0.4 10 13.64 0 1 0 0 1 0

0 0 0.179 1 0 0 0.19 0 1 0.5 1 1 0.14 0.27 28 2.5 11.73 0.012 0.14 2.08 6 0.24 0.432 0 0.27 8 11.82 0 1 0 0 1 0

1 0 0.179 0.571 1 1 0.19 0 1 0.25 1 1 0.14 0.27 50 3.3 13.55 0.013 0.162 2.64 8 0.24 0.432 0 0.27 14 12.73 0 1 0 0 1 0

1 0 0.192 1 1 1 0.17 0 1 1 0 1 0.16 0.31 30 3.1 12 0.033 1.071 2.64 15 0.22 1.052 0 0.27 14 32.73 0 1 0 0 1 0

1 0 0.194 0.311 0 0 0.25 0 1 0.3 0 1 0.45 0 4 3 11.82 0.012 0.14 2.71 10 0.15 5.675 0 0.47 15 11.82 0 1 0 0 1 0

1 0.47 0.194 0.415 0 0 0.25 0 0.842 0.21 0 1 0.45 0 2 3 11.82 0.012 0.14 3.18 19 0.15 5.675 0 0.47 24 11.82 0 1 0 0 1 0

1 0.6 0.194 0.867 2 2 0.17 0 0.867 0.87 1 1 0.23 0.18 8 3.1 9 0.012 0.14 2.3 15 0.33 14.59 0 0.2 10 11.82 0 1 0 0 1 0

0 0.67 0.194 1 5 5 0.17 0 1 0.95 0 1 0.23 0.18 7 3 9 0.012 0.14 3.18 21 0.33 14.59 0 0.2 24 11.82 0 1 0 0 1 0

1 0.06 0.197 0.691 1 1 0.25 0 0.529 1 1 1 0.29 0.23 18 3.1 11.82 0.022 0.476 2.56 17 0.13 4.608 0 0.4 13 21.82 0 1 0 0 1 0

1 0.17 0.209 0.561 5 2 0.25 0 1 1 0 1 0.15 0 22 3 12.5 0.051 2.592 3.33 12 0.19 2.804 0.07 0.27 28 50.91 0 1 0 0 1 0

0 0 0.218 1 4 4 0.3 0 0.429 0.5 0 1 0.2 0.14 17 3 10.82 0.023 0.517 2.89 14 0.4 3.761 0 0.2 18 22.73 0 1 0 0 1 0

0 0 0.218 1 1 1 0.3 0 0.8 0.4 1 1 0.2 0.14 37 2.3 12 0.035 1.193 3.18 25 0.4 3.761 0 0.2 24 34.55 0 1 0 0 1 0

1 0 0.219 1 0 0 0.22 0 0.643 0.29 1 1 0.16 0.17 32 3 11.5 0.032 1.012 2.64 14 0.51 0.532 0 0.33 14 31.82 0 1 0 0 1 0

0 0.36 0.222 0.209 4 1 0.28 0 0.429 1 0 0 0.68 0 16 2.7 12.5 0.031 0.955 3.18 14 0.22 7.101 0.2 0.4 24 30.91 0 1 0 0 1 0

0 0.56 0.238 0.92 4 4 0.29 0 0.64 0.88 1 1 0.27 0.13 10 3.1 11 0.018 0.331 3.18 25 0.23 5.357 0 0.53 24 18.18 0 1 0 0 1 0

0 0 0.248 1 1 1 0.28 0 1 1 0 1 0.08 0.06 14 3.3 12.5 0.005 0.03 2.64 13 0.32 16.74 0 0.47 14 5.455 0 1 0 0 1 0

1 0.39 0.25 0.889 4 3 0.42 0 0.167 1 0 1 0.41 0.33 9 3 11.27 0.073 5.289 1.61 18 0.15 3.38 0 0.53 5 72.73 0 1 0 0 1 0

1 0.44 0.25 1 5 5 0.32 0 0.556 0.67 1 1 0.27 0.31 6 3.2 9.5 0.015 0.239 1.95 18 0.28 6.55 0 0.47 7 15.46 0 1 0 0 1 0

0 0.76 0.25 1 5 5 0.32 0 0.524 0.71 1 1 0.27 0.31 3 3 9.5 0.022 0.476 3.3 21 0.28 6.55 0 0.47 27 21.82 0 1 0 0 1 0

0 0.38 0.255 0.917 4 4 0.22 0 0.542 0.25 1 1 0.23 0.13 2 2.8 12.96 0.017 0.298 3 24 0.23 7.966 0 0.33 20 17.27 0 1 0 0 1 0

1 0 0.267 0.8 3 3 0.32 0 0.9 0.2 0 1 0.29 0 9 3 11.5 0.022 0.504 2.2 10 0.31 1.538 0.14 0.79 9 22.46 0 1 0 0 1 0

1 0 0.267 0.533 3 3 0.32 0 1 0 0 1 0.29 0 12 3.2 8 0.012 0.14 0.69 10 0.31 1.538 0.14 0.79 2 11.82 0 1 0 0 1 0

0 0.14 0.267 0.467 0 0 0.18 0 1 1 0 1 0.12 0.19 12 3 9 0.022 0.476 2.89 21 0.32 3.077 0.07 0.27 18 21.82 0 1 0 0 1 0

0 0.27 0.267 0.673 0 0 0.18 0 0.273 0 0 0 0.12 0.19 18 3 11 0.033 1.071 2.08 11 0.32 3.077 0.07 0.27 8 32.73 0 1 0 0 1 0

0 0.14 0.282 0.198 4 4 0.2 0 0.857 1 0 1 0.1 0 6 3.9 12.23 0.114 12.91 3 14 0.25 2.537 0.07 0.4 20 113.6 0 1 0 0 1 0

1 0 0.289 1 0 0 0.33 0 0.214 1 1 1 0.29 0.25 54 3 11.82 0.022 0.476 3.4 14 0.15 11.43 0.13 0.47 30 21.82 0 1 0 0 1 0

1 0 0.305 0.638 0 0 0.15 0 1 0.13 0 0 0.3 0.2 19 3 11.5 0.031 0.955 2.3 15 0.39 4.588 0.27 0.8 10 30.91 0 1 0 0 1 0

1 0 0.348 1 1 0 0.2 0 0.667 0 0 1 0.4 0 43 3 9 0.02 0.4 1.61 9 0.49 0.211 0 0.13 5 20 0 1 0 0 1 0

1 0.1 0.348 1 2 0 0.2 0 0.8 0 1 1 0.4 0 53 3 9 0.041 1.674 2.64 10 0.49 0.211 0 0.13 14 40.91 0 1 0 0 1 0

1 0 0.379 1 0 0 0.23 0 1 0.14 1 1 0.31 0.33 69 3.3 10.82 0.036 1.322 2.3 7 0.39 0.233 0 0 10 36.36 0 1 0 0 1 0

1 0.29 0.379 1 2 0 0.23 0 1 0.29 1 1 0.31 0.33 12 2.7 11 0.032 1.012 2.3 7 0.39 0.233 0 0 10 31.82 0 1 0 0 1 0

1 0 0.4 1 1 1 0.41 0 1 0.5 1 1 0.28 0 17 3.3 9 0.02 0.4 0 8 0.42 0.444 0.4 0.33 1 20 0 1 0 0 1 0

0 0 0.418 0.3 2 1 0.4 0 0.4 0 0 1 0.39 0 70 3 10.82 0.021 0.437 2.64 5 0.28 0.234 0 0.27 14 20.91 0 1 0 0 1 0
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1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 167.11 1.670 0.978 1.766

1 0 0 1 1 1 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 135.55 3.939 0.788 3.309

1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 149.35 1.310 1.130 1.692

1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 171.06 4.109 1.049 3.576

0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 130.03 2.476 1.064 2.535

1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 162.18 0.828 1.001 1.243

1 1 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 120.17 20.805 1.077 15.918

1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 133.93 0.852 0.852 2.270

1 0 0 1 1 1 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 156.41 1.242 3.432 3.300

1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 135.68 32.739 0.931 24.540

1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 142.58 3.581 0.914 3.175

1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 0 1 1 0 1 1 1 0 153.40 3.354 0.886 2.898

1 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 1 1 0 136.67 14.822 1.553 11.922

1 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 162.78 5.004 1.823 4.886

0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 146.62 13.082 0.888 10.127
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1 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 137.73 3.607 1.057 3.316

1 0 0 0 0 1 1 1 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 162.42 2.962 0.920 2.675

0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 139.56 2.178 1.122 2.252

1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 174.89 1.844 1.251 2.068

1 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 170.14 5.461 0.980 4.573

0 0 0 1 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 1 0 135.24 11.371 1.113 9.012
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0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 147.68 4.626 1.328 4.238

0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 137.01 1.888 1.223 2.041

1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 161.48 0.945 1.011 1.337

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 119.07 10.993 1.142 8.757

0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 170.22 1.157 1.052 1.403

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 158.79 1.782 0.944 1.859

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 142.2 2.601 0.895 2.390

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 173.23 0.826 0.951 1.085

0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 135.72 19.857 0.912 15.102
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0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 172.35 0.813 1.038 1.087
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 178.84 0.790 0.790 1.076

1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 146.04 1.449 1.177 1.829

0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 137.75 6.052 2.108 5.886

1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 157.47 1.623 0.955 1.731

0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 156.3 1.606 1.370 2.075
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Appendix B

Scilab and R Codes

B.1 Scilab Codes

Stochastic Model of Interest Rate

//Solve Deterministic Yunus Equation

x=poly(0,"x");

T=1:50;

[sols]=roots(22*sum(x^T)-1000);

q=sum(sols.*bool2s((imag(sols)==0) & (real(sols)>0)))

r=-52*log(q)//deterministic root

//=============================================//

//In-time Installment Probability as function of Repayment Rate

//d=maximal weeks of delay

//gamma=no default probability (repayment rate)

function x=p(d,gamma)

x=1-(1-(gamma)^(1/50))^(1/d);

endfunction;

xset("window",0)

for d=1:5

plot2d(0:0.001:1, p(d, 0:0.001:1));

end;

plot2d([0,0.97],[p(4,0.97),p(4,0.97)]);

plot2d([0.97,0.97],[0,p(4,0.97)]);

xtitle("In-time Installment Probability as function of Repayment Rate")

xlabel("Repayment Rate");

ylabel("In-time Installment Probability (p)");

legend("d=1","d=2","d=3","d=4","d=5",3);

//==========================================//

p1=p(4,0.97)//value of p at d=4 and gamma=0.97

p2=p(5,0.97)//value of p at d=5 and gamma=0.97

p3=p(1,0.97)//value of p at d=1 and gamma=0.97

//==========================================//

//Plotting Expected rate as a function of in-time installment probability

function[rbar]=ExpRate(p)

rbar=52*log(1+p*(1/q-1));//Expected rate function

endfunction

p1=[0:0.02:1]; //in-time installment probability
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[rbar]=ExpRate(p1);

xset("window",1)

xtitle("Expected Rate as a function of In-time Installment Probability");

xlabel("In-time Installment Probability (p)");

ylabel("Expected Interest Rate");

plot(p1,rbar,’r’);

legend("rbar=52*ln(1+p*(1/q-1))",2);

//=========================================//

//Compute rbar for p=0.84 obtained from gamma=0.97 and d=4

rbar=ExpRate(0.84);

//=======================================//

//Simulation of Random Interest Rate

//===Random Yunus Equation========//

function y=randgeom(alpha);

y=0;

while rand()<alpha, y=y+1, end;

y;

endfunction;

alpha=0.03; //alpha=1-p

// alpha=0.25, 0.16, 0.05, 0.03

deltaT=zeros(50); /// initialisation

for k=1:50, deltaT(k)=1+randgeom(alpha); end;

xset(’window’,2);

plot2d(1:50,deltaT);

histplot(0.5:10.5,deltaT);

T=cumsum(deltaT);

[sols]=roots(22*sum(x^T)-1000);

q=sum(sols.*bool2s((imag(sols)==0) & (real(sols)>0)));

R=-52*log(q);

disp(R,’R= ’);

/////////////Simulation of Random Interest Rate (R)

samplesize=10000;

q=zeros(samplesize);

R=zeros(samplesize);

for i=1:samplesize

for k=1:50, deltaT(k)=1+randgeom(alpha); end;

T=cumsum(deltaT);

[sols]=roots(22*sum(x^T)-1000);

q(i)=sum(sols.*bool2s((imag(sols)==0) & (real(sols)>0)));

R=-52*log(q);

end;

xset(’window’,3);

xtitle("Interest Rate Distribution, p=0.97, Samples Size=10 000")

xlabel("Interest Rate");

ylabel("Number of Occurrences");

histplot(50,real(R)); // distribution of R for real numbers
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Reweighted Least Square Algoritm to Compute Parameters in Logistic

Regression

clear;

n=219;//sample size

k=24;//number of input variables

A=fscanfMat(’d:/scilabCode/data/repayall.txt’);//read data

X=ones(n,k);//initialize matrix X

X(1:n,2:k)=A(1:n,2:k); //Input matrix from 2nd column to k

y=A(1:n,1);//Output, y, the 1st column of A

Coef=[1:k]’;

// define function "logit"

function l= logit(a)

l=log(a./(1-a));

endfunction;

// initialize diagonal matrix, "W"

W=zeros(n,n);

//define function "logistic"

function p=logistic(e)

p=e./(1+e);

endfunction

function Beta=reweighted(Beta0)

Beta=Beta0;

BetaOld=Beta0+1;

count=0;

epsilon=0.00000001

while norm(Beta-BetaOld) > epsilon;

BetaOld=Beta;

count=count+1;

p=logistic(exp(X*Beta));

d=p.*(1-p);

for i=1:n

W(i,i)=d(i,1);

end;

z=logit(p)+((y-p)./d);

// z=p./(1-p)+((y-p)./d);

Beta = (inv(X’*W*X))*X’*W*z;

se=sqrt(diag(inv(X’*W*X)));

wald=(Beta-Beta0)./se;

loglike=y’*log(p)+(1-y)’*log(1-p);

AIC=(-2)*loglike+2*k;

end

disp(count,’number of iteration’)

printf(’print(Coef) \t Beta \t se \t wald \n’)

printf(’%2d \t %6.5f \t %6.5f \t %2.5f \n’, Coef, Beta, se, wald);

disp(loglike,’log-likelihood=’);

disp(AIC,’AIC=’);

endfunction
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reweighted(zeros(k,1));//assign initial value of parameter

Plot AIC and BIC of Models versus Number of Variables in the Models

varaic=[23;22;21;20;19;18;17;16;15;14;13;12;11;10;9;8;

7;6;5;4;3;2;1];//number of variables

aic=[242.5;240.58;238.69;236.91;235.13;233.39;231.82;230.52;229.2;

228.12;227.27;226.51;225.35;224.13;223.58;223.56;224.07;225.67;

226.19;229.71;231.5;235.81;239.97];//AIC of models

varbic=[23;22;21;20;19;18;17;16;15;14;13;12;11;10;9;8;

7;6;5;4;3;2;1;0];//number of variables

bic=[323.84;318.53;313.25;308.08;302.91;297.78;292.82;288.14;

283.43;278.95;274.71;270.57;266.02;261.41;257.47;254.06;

251.18;249.39;246.52;246.66;245.06;245.98;246.74;258.58];//bic of models

xset("window",0)

xtitle("AIC versus Number of Variables");//make title

xlabel("Number of Variables in the Model");//label the x-axis

ylabel("AIC");//label the y-axis

plot(varaic, aic, "r");//plot AIC

xset("window",1)

xtitle("BIC versus Number of Variables");

xlabel("Number of Variables in the Model");

ylabel("BIC");

plot(varbic,bic,"b")//plot BIC

Plots of Pearson Errors of the Full and Final model

A=fscanfMat(’d:/scilabCode/data/error.txt’);//import data

x=A(1:219,1 );// Observations

y=A(1:219,2);//Pearson error of the final model

z=A(1:219,3);//Pearson error of the full model

a=z-y;//Difference of Pearson errors

xset("window",0)

xtitle("Pearson Error of Full and Final Models");//make title

xlabel("Observations");//label the x-axis

ylabel("Pearson Error");//label the y-axis

plot(x, y, "o");

plot(x,z,"+");

legend("Final Model","Full Model",3);

xset("window",1)

xtitle("Difference between Pearson Error of Full and Final Models");//make title

xlabel("Observations");//label the x-axis

ylabel("Difference b/w Pearson Errors");//label the y-axis

plot(x,a,"+");
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B.2 R Codes

Univariable and Multiple Logistic Regression Models

#===Import Data===============================#

repay<-read.csv("d:/myR/data/repayall.csv" ,head=TRUE);

#++++++++++++++++++++++++++++++++++++++++++++++#

#=Logistics Regression of 24 Input Variables [Ahlin 2007]====

repay0.logit<-glm(REP~ NOLNDPCT+COVARBTY+HOMOCCUP+SHARING+SHARNON+

BCPCT+PRODCOOP+LIVEHERE+RELPRCNT+SCREEN+KNOWN+BIPCT+

SNCTIONS+MEANLAND+AVGED+INTRAT+LOANSIZE+LSQUARED+

LNYRSOLD+MEMS+VARBTY+WEALTH+PCGMEM+CBANKMEM,

data=repay, family=binomial());

summary(repay0.logit)

round(cbind(exp(cbind(OR=repay0.logit$coefficients)),

exp(confint.default(repay0.logit))),3)

#+++++++++++++++++++++++++++++++++++++++++++++++++#

#===Rename the Variables=======================#

REP=repay$REP, NOLNDPCT=repay$NOLNDPCT; COVARBTY=repay$COVARBTY;

HOMOCCUP=repay$HOMOCCUP; SHARING=repay$SHARING; SHARNON=repay$SHARNON;

BCPCT=repay$BCPCT; PRODCOOP=repay$PRODCOOP; LIVEHERE=repay$LIVEHERE;

RELPRCNT= repay$RELPRCNT; SCREEN=repay$SCREEN; KNOWN=repay$KNOWN;

BIPCT=repay$BIPCT; SNCTIONS=repay$SNCTIONS; MEANLAND= repay$MEANLAND;

AVGED=repay$AVGED;INTRAT=repay$INTRAT; LOANSIZE=repay$LOANSIZEOLD;

LNYRSOLD=repay$LNYRSOLD; MEMS=repay$MEMS; VARBTY=repay$VARBTY;

WEALTH=repay$WEALTH; PCGMEM=repay$PCGMEM; CBANKMEM=repay$CBANKMEM;

#==================================================#

#++++++Data Ready for Logistic Regression++++++++++#

dat<-data.frame(REP, NOLNDPCT, COVARBTY, HOMOCCUP, SHARING, SHARNON,

BCPCT, PRODCOOP,LIVEHERE, RELPRCNT, SCREEN, KNOWN,

BIPCT, SNCTIONS, MEANLAND, AVGED, INTRAT, LOANSIZE,

LNYRSOLD, MEMS, VARBTY,WEALTH, PCGMEM, CBANKMEM)

str(dat) # display type of data

summary(dat) # statistics descriptive

#==========================================#

#===========Univariate Model===============#

NON.logit<-glm(REP~ 1, data=dat, family=binomial());

summary(NON.logit)

round(cbind(exp(cbind(OR=NON.logit$coefficients)),

exp(confint(NON.logit))),3)

NOLNDPCT.logit<-glm(REP~ NOLNDPCT, data=dat, family=binomial());

summary(NOLNDPCT.logit)

round(cbind(exp(cbind(OR=NOLNDPCT.logit$coefficients)),

exp(confint.default(NOLNDPCT.logit))),3)

COVARBTY.logit<-glm(REP~ COVARBTY, data=dat, family=binomial());

summary(COVARBTY.logit)

round(cbind(exp(cbind(COVARBTY.logit$coefficients)),
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exp(confint.default(COVARBTY.logit))),3)

HOMOCCUP.logit<-glm(REP~ HOMOCCUP, data=dat, family=binomial());

summary(HOMOCCUP.logit)

round(cbind(exp(cbind(OR=HOMOCCUP.logit$coefficients)),

exp(confint.default(HOMOCCUP.logit))),3)

SHARING.logit<-glm(REP~ SHARING, data=dat, family=binomial());

summary(SHARING.logit)

round(cbind(exp(cbind(OR=SHARING.logit$coefficients)),

exp(confint.default(SHARING.logit))),3)

SHARNON.logit<-glm(REP~ SHARNON, data=dat, family=binomial());

summary(SHARNON.logit)

round(cbind(exp(cbind(OR=SHARNON.logit$coefficients)),

exp(confint.default(SHARNON.logit))),3);

BCPCT.logit<-glm(REP~ BCPCT, data=dat, family=binomial());

summary(BCPCT.logit)

round(cbind(exp(cbind(OR=BCPCT.logit$coefficients)),

exp(confint.default(BCPCT.logit))),3);

PRODCOOP.logit<-glm(REP~ PRODCOOP, data=dat, family=binomial());

summary(PRODCOOP.logit)

round(cbind(exp(cbind(OR=PRODCOOP.logit$coefficients)),

exp(confint.default(PRODCOOP.logit))),3);

LIVEHERE.logit<-glm(REP~ LIVEHERE, data=dat, family=binomial());

summary(LIVEHERE.logit)

round(cbind(exp(cbind(OR=LIVEHERE.logit$coefficients)),

exp(confint.default(LIVEHERE.logit))),3);

RELPRCNT.logit<-glm(REP~ RELPRCNT, data=dat, family=binomial());

summary(RELPRCNT.logit)

round(cbind(exp(cbind(OR=RELPRCNT.logit$coefficients)),

exp(confint.default(RELPRCNT.logit))),3);

SCREEN.logit<-glm(REP~ SCREEN, data=dat, family=binomial());

summary(SCREEN.logit)

round(cbind(exp(cbind(OR=SCREEN.logit$coefficients)),

exp(confint.default(SCREEN.logit))),3);

KNOWN.logit<-glm(REP~ KNOWN, data=dat, family=binomial());

summary(KNOWN.logit)

round(cbind(exp(cbind(OR=KNOWN.logit$coefficients)),

exp(confint.default(KNOWN.logit))),3);

BIPCT.logit<-glm(REP~ BIPCT, data=dat, family=binomial());

summary(BIPCT.logit)

round(cbind(exp(cbind(OR=BIPCT.logit$coefficients)),

exp(confint.default(BIPCT.logit))),3);

SNCTIONS.logit<-glm(REP~ SNCTIONS, data=dat, family=binomial());

summary(SNCTIONS.logit)

round(cbind(exp(cbind(OR=SNCTIONS.logit$coefficients)),

exp(confint.default(SNCTIONS.logit))),3);

MEANLAND.logit<-glm(REP~ MEANLAND, data=dat, family=binomial());

summary(MEANLAND.logit)

round(cbind(exp(cbind(OR=MEANLAND.logit$coefficients)),

exp(confint.default(MEANLAND.logit))),3);



B.2. R Codes 127

AVGED.logit<-glm(REP~ AVGED, data=dat, family=binomial());

summary(AVGED.logit)

round(cbind(exp(cbind(OR=AVGED.logit$coefficients)),

exp(confint.default(AVGED.logit))),3);

INTRAT.logit<-glm(REP~ INTRAT, data=dat, family=binomial());

summary(INTRAT.logit)

round(cbind(exp(cbind(OR=INTRAT.logit$coefficients)),

exp(confint.default(INTRAT.logit))),3);

LOANSIZE.logit<-glm(REP~ LOANSIZE, data=dat, family=binomial());

summary(LOANSIZE.logit)

round(cbind(exp(cbind(OR=LOANSIZE.logit$coefficients)),

exp(confint.default(LOANSIZE.logit))),3);

LNYRSOLD.logit<-glm(REP~ LNYRSOLD, data=dat, family=binomial());

round(summary(LNYRSOLD.logit),3)

round(cbind(exp(cbind(OR=LNYRSOLD.logit$coefficients)),

exp(confint.default(LNYRSOLD.logit))),3);

MEMS.logit<-glm(REP~ MEMS, data=dat, family=binomial());

summary(MEMS.logit)

round(cbind(exp(cbind(OR=MEMS.logit$coefficients)),

exp(confint.default(MEMS.logit))),3);

VARBTY.logit<-glm(REP~ VARBTY, data=dat, family=binomial());

summary(VARBTY.logit)

round(cbind(exp(cbind(OR=VARBTY.logit$coefficients)),

exp(confint.default(VARBTY.logit))),3);

WEALTH.logit<-glm(REP~ WEALTH, data=dat, family=binomial());

summary(WEALTH.logit)

round(cbind(exp(cbind(OR=WEALTH.logit$coefficients)),

exp(confint.default(WEALTH.logit))),3);

PCGMEM.logit<-glm(REP~ PCGMEM, data=dat, family=binomial());

summary(PCGMEM.logit)

round(cbind(exp(cbind(OR=PCGMEM.logit$coefficients)),

exp(confint.default(PCGMEM.logit))),3);

CBANKMEM.logit<-glm(REP~ CBANKMEM, data=dat, family=binomial());

summary(CBANKMEM.logit)

round(cbind(exp(cbind(OR=CBANKMEM.logit$coefficients)),

exp(confint.default(CBANKMEM.logit))),3);

#=======================================================#

#++Logistic Regression for Full Model (23 input variables)+#

rep.logit<-glm(REP~ NOLNDPCT+COVARBTY+HOMOCCUP+SHARING+SHARNON+BCPCT

+PRODCOOP+LIVEHERE+RELPRCNT+SCREEN+KNOWN+BIPCT+SNCTIONS

+MEANLAND+AVGED+INTRAT+LOANSIZE+LNYRSOLD+MEMS+VARBTY+

WEALTH+PCGMEM+CBANKMEM, data=dat, family=binomial());

summary(rep.logit)

#+++Odd Ratio and 95\% Confidence Interval, Wald-Test++++#

round(cbind(exp(cbind(OR=rep.logit$coefficients)),

exp(confint.default(rep.logit))),3);
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AIC and BIC Backward Stepwise Elimination

#AIC Backward stepwise without restriction /start from full model#

library(MASS)

repAIC.step=stepAIC(rep.logit, trace=1, keep=NULL, k=2, data=dat,

direction="both");

summary(repAIC.step)

round(cbind(exp(cbind(OR=repAIC.step$coefficients)),

exp(confint.default(repAIC.step))),3)

#============================================================#

repaic0.logit<-glm(REP~NOLNDPCT+SHARING+SHARNON+PRODCOOP+BIPCT

+SNCTIONS+LNYRSOLD+PCGMEM, data=dat, family=binomial())

summary(repaic0.logit)

repaic0.step=stepAIC(repaic0.logit, trace=1, keep=NULL, k=2, data=dat,

direction="both");

#++++++++++++++++++++++++++++++++++++++++++++++++++#

#Delet BIPCT by AIC step, p-value(BIPCT)=0.12 greatest of all#

repaic1.logit<-glm(REP~NOLNDPCT+SHARING+SHARNON+PRODCOOP+#BIPCT

+SNCTIONS+LNYRSOLD+PCGMEM, data=dat, family=binomial())

summary(repaic1.logit)

repaic1.step=stepAIC(repaic1.logit, trace=1, keep=NULL, k=2, data=dat,

direction="both");

#===============================================#

#Delet SHARING by AIC step & p-value(SHARING )=0.076007 greatest of all#

repaic2.logit<-glm(REP~NOLNDPCT+#SHARING

+SHARNON+PRODCOOP+#BIPCT#+

SNCTIONS+LNYRSOLD+PCGMEM, data=repaydat, family=binomial())

summary(repaic2.logit)

repaic2.step=stepAIC(repaic2.logit, trace=1, keep=NULL, k=2, data=dat,

direction="both");

#================================================#

#Delet SHARNON by AIC step & p-value(SHARNON )=0.111907 greatest of all#

repaic3.logit<-glm(REP~NOLNDPCT+#SHARING +SHARNON#

+PRODCOOP+#BIPCT#+

SNCTIONS+LNYRSOLD+PCGMEM,

data=repaydat, family=binomial())

summary(repaic3.logit)

repaic3.step=stepAIC(repaic3.logit, trace=1, keep=NULL, k=2, data=dat,

direction="both");

#===============================================#

#delet SNCTIONS by AIC step

repaic4.logit<-glm(REP~NOLNDPCT+#SHARING +SHARNON#

+PRODCOOP+#BIPCT#+#SNCTIONS

+LNYRSOLD+PCGMEM, data=dat, family=binomial())

summary(repaic4.logit)

repaic4.step=stepAIC(repaic4.logit, trace=1, keep=NULL, k=2, data=dat,

direction="both");

#===============================================#
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#delet PRODCOOP by AIC step and p-value is greatest of all

repaic5.logit<-glm(REP~NOLNDPCT+#SHARING +SHARNON#

+#PRODCOOP+#BIPCT#+#SNCTIONS

+LNYRSOLD+PCGMEM, data=dat, family=binomial())

summary(repaic5.logit)

repaic5.step=stepAIC(repaic5.logit, trace=1, keep=NULL, k=2, data=dat,

direction="both");

#===============================================#

#delet NOLNDPCT by AIC and p-value is greatest of all

repaic6.logit<-glm(REP~LNYRSOLD+PCGMEM,

data=dat, family=binomial())

summary(repaic6.logit)

repaic6.step=stepAIC(repaic6.logit, trace=1, keep=NULL, k=2,

data=dat, direction="both");

#===============================================#

#Delet PCGMEM by AIC and p-value is greatest

repaic7.logit<-glm(REP~LNYRSOLD,#+PCGMEM,

data=dat, family=binomial())

summary(repaic7.logit)

#========Intercept only Model===================#

repnew8.logit<-glm(REP~1,data=dat, family=binomial())

summary(repnew8.logit)

#================================================#

#==BIC stepwise without restriction /start from full model==#

library(MASS)

repBIC.step=stepAIC(rep.logit, trace=TRUE, data=dat,

direction="both", k=log(219));

summary(repBIC.step)

round(cbind(exp(cbind(OR=repBIC.step$coefficients)),

exp(confint.default(repBIC.step))),3);

#+++++++++++++++++++++++++++++++++++++++++++++#

repBic.logit<-glm(REP~NOLNDPCT+PRODCOOP+SNCTIONS+LNYRSOLD+PCGMEM,

data=dat, family=binomial())

summary(repBic.logit)

repBIC1.step=stepAIC(repBic.logit, trace=TRUE, data=dat,

direction="both", k=log(219));

#===========================================================#

# Base on last report of Bic step, delete SNCTIONS

repBic2.logit<-glm(REP~NOLNDPCT+ PRODCOOP#+ SNCTIONS

+LNYRSOLD+ PCGMEM,

data=dat, family=binomial())

summary(repBic2.logit)

Bic2=229.71-(2*5)+(5*log(219))

Bic2

repBIC2.step=stepAIC(repBic2.logit, trace=TRUE, data=dat,

direction="both", k=log(219));
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#===============================================#

#Delet PROCOOP

repBic3.logit<-glm(REP~NOLNDPCT+ #PRODCOOP+ SNCTIONS

+LNYRSOLD+ PCGMEM,

data=repaydat, family=binomial())

summary(repBic3.logit)

Bic3=231.5-(2*4)+(4*log(219))

repBIC3.step=stepAIC(repBic3.logit, trace=TRUE, data=dat,

direction="both", k=log(219));

#===============================================#

# Delet #NOLNDPCT

repBic4.logit<-glm(REP~#NOLNDPCT+ #PRODCOOP+ SNCTIONS

+LNYRSOLD+ PCGMEM,

data=dat, family=binomial())

summary(repBic4.logit)

Bic4=235.81-(2*3)+(3*log(219))

repBIC4.step=stepAIC(repBic4.logit, trace=TRUE, data=dat,

direction="both", k=log(219));

#===============================================#

#==Delet #PCGMEM

repBic5.logit<-glm(REP~#NOLNDPCT+ #PRODCOOP+ SNCTIONS

+LNYRSOLD,#+ #PCGMEM,

data=dat, family=binomial())

summary(repBic5.logit)

Bic5=239.97-(2*2)+(2*log(219))

#===============================================#

repBic6.logit<-glm(REP~1, data=repaydat, family=binomial())

summary(repBic6.logit)

Bic6=255.19-(2*1)+(1*log(219))

#==============================================================#

Validation by Sampling Results

#+++++++++++25 Samples-AIC Backward Stepwise++++++++++++++++#

u=1:219;

v=sample(u,160, replace=TRUE);

s1=dat[v, ];

new=u[-v]

ns1=dat[new, ]

sam.logit<-glm(REP~ NOLNDPCT+COVARBTY+HOMOCCUP+SHARING+SHARNON+BCPCT

+PRODCOOP+LIVEHERE+RELPRCNT+SCREEN+KNOWN+BIPCT+SNCTIONS

+MEANLAND+AVGED+INTRAT+LOANSIZE+LNYRSOLD+MEMS+VARBTY

+WEALTH+PCGMEM+CBANKMEM,

data=s1, family=binomial());

#summary(sam.logit)

#==============================================#

sam.step=step(sam.logit, direction="both");

#summary(sam.step);
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#==============================================#

Allvar=names(rep.logit$coefficients);

Selectvar=names(sam.step$coefficients);

SelectBeta=sam.step$coefficients;

Res<-numeric(length(Allvar))

for (i in 1 : length(Allvar) )

for (j in 1: length(Selectvar))

if (Allvar[i] == Selectvar[j])

Res[i]<-SelectBeta[j]

Res[i]<- 0

Beta=as.matrix(Res)

cont1=matrix(data=1, nrow=length(new), ncol=1)

cont2=matrix(data=1, nrow=length(v), ncol=1)

cont3=matrix(data=1, nrow=219, ncol=1)

samt<-cbind(cont1,ns1$NOLNDPCT,ns1$COVARBTY,ns1$HOMOCCUP,ns1$SHARING,

ns1$SHARNON,ns1$BCPCT,ns1$PRODCOOP,ns1$LIVEHERE, ns1$RELPRCNT,

ns1$SCREEN,ns1$KNOWN,ns1$BIPCT,ns1$SNCTIONS,ns1$MEANLAND,

ns1$AVGED,ns1$INTRAT,ns1$LOANSIZE,ns1$LNYRSOLD,ns1$MEMS,

ns1$VARBTY,ns1$WEALTH,ns1$PCGMEM,ns1$CBANKMEM)

sam<-cbind(cont2,s1$NOLNDPCT,s1$COVARBTY,s1$HOMOCCUP,s1$SHARING,

s1$SHARNON,s1$BCPCT,s1$PRODCOOP,s1$LIVEHERE,s1$RELPRCNT,

s1$SCREEN,s1$KNOWN,s1$BIPCT,s1$SNCTIONS,s1$MEANLAND,

s1$AVGED,s1$INTRAT,s1$LOANSIZE,s1$LNYRSOLD,s1$MEMS,

s1$VARBTY,s1$WEALTH,s1$PCGMEM,s1$CBANKMEM)

ndat<-cbind(cont3,dat$NOLNDPCT,dat$COVARBTY,dat$HOMOCCUP,dat$SHARING,

dat$SHARNON,dat$BCPCT,dat$PRODCOOP,dat$LIVEHERE,dat$RELPRCNT,

dat$SCREEN,dat$KNOWN,dat$BIPCT,dat$SNCTIONS,dat$MEANLAND,

dat$AVGED,dat$INTRAT,dat$LOANSIZE, dat$LNYRSOLD, dat$MEMS,

dat$VARBTY,dat$WEALTH,dat$PCGMEM, dat$CBANKMEM)

Xt=as.matrix(samt); #input matrix of test sample

Yt=as.matrix(ns1$REP);#output vector of test sample

X=as.matrix(sam); #input matrix of learning sample

Y=as.matrix(s1$REP); #output vector of learning sample

Xo=as.matrix(ndat); #input matrix of whole sample

Yo=as.matrix(REP); #output vector of whole sample

pi1=exp(Xt%*%Beta)/(1+exp(Xt%*%Beta)); #cumpute pi for test sample

a1=pi1*(1-pi1)

pi2=exp(X%*%Beta)/(1+exp(X%*%Beta));#cumpute pi for learning sample

a2=pi2*(1-pi2)

pi3=exp(Xo%*%Beta)/(1+exp(Xo%*%Beta));#cumpute pi for whole sample

a3=pi3*(1-pi3)

p.err1=(1/length(new))*(t((Yt-pi1)/sqrt(a1))%*%((Yt-pi1)/sqrt(a1)));

p.err2=(1/length(v))*(t((Y-pi2)/sqrt(a2))%*%((Y-pi2)/sqrt(a2)));

p.err3=(1/219)*(t((Yo-pi3)/sqrt(a3))%*%((Yo-pi3)/sqrt(a3)));

#=================================================================#

summary(sam.step);# optimal model

Coeff=as.numeric(Beta); # numerical value of coefficients of optimal model

Coeff;
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p.err1; # error of test sample

p.err2; # error of learning sample

p.err3; # error of whole sample

#=================================================================#

#++++++++++++++++25 Samples-BIC Backward Stepwise++++++++++++++++#

u=1:219;

v=sample(u,160, replace=TRUE);

s1=dat[v, ];

new=u[-v]

ns1=dat[new, ]

sam.logit<-glm(REP~ NOLNDPCT+COVARBTY+HOMOCCUP+SHARING+SHARNON+BCPCT

+PRODCOOP+LIVEHERE+RELPRCNT+SCREEN+KNOWN+BIPCT+SNCTIONS

+MEANLAND+AVGED+INTRAT+LOANSIZE+LNYRSOLD+MEMS+VARBTY+WEALTH

+PCGMEM+CBANKMEM,

data=s1, family=binomial());

#summary(sam.logit)

#===================================#

sam.step=step(sam.logit, direction="both", k=log(219));

#summary(sam.step);

#=====================================#

Allvar=names(rep.logit$coefficients);

Selectvar=names(sam.step$coefficients);

SelectBeta=sam.step$coefficients;

Res<-numeric(length(Allvar))

for (i in 1 : length(Allvar) )

for (j in 1: length(Selectvar))

if (Allvar[i] == Selectvar[j])

Res[i]<-SelectBeta[j]

Res[i]<- 0

Beta=as.matrix(Res)

cont1=matrix(data=1, nrow=length(new), ncol=1)

cont2=matrix(data=1, nrow=length(v), ncol=1)

cont3=matrix(data=1, nrow=219, ncol=1)

samt<-cbind(cont1, ns1$NOLNDPCT,ns1$COVARBTY,ns1$HOMOCCUP,ns1$SHARING,

ns1$SHARNON,ns1$BCPCT,ns1$PRODCOOP,ns1$LIVEHERE,ns1$RELPRCNT,

ns1$SCREEN,ns1$KNOWN,ns1$BIPCT,ns1$SNCTIONS,ns1$MEANLAND,

ns1$AVGED,ns1$INTRAT,ns1$LOANSIZE,ns1$LNYRSOLD,ns1$MEMS,

ns1$VARBTY,ns1$WEALTH, ns1$PCGMEM, ns1$CBANKMEM)

sam<-cbind(cont2, s1$NOLNDPCT, s1$COVARBTY, s1$HOMOCCUP, s1$SHARING,

s1$SHARNON,s1$BCPCT, s1$PRODCOOP, s1$LIVEHERE, s1$RELPRCNT,

s1$SCREEN,s1$KNOWN, s1$BIPCT, s1$SNCTIONS, s1$MEANLAND,

s1$AVGED,s1$INTRAT, s1$LOANSIZE, s1$LNYRSOLD, s1$MEMS,

s1$VARBTY,s1$WEALTH,s1$PCGMEM, s1$CBANKMEM)

ndat<-cbind(cont3,dat$NOLNDPCT,dat$COVARBTY,dat$HOMOCCUP,dat$SHARING,

dat$SHARNON,dat$BCPCT,dat$PRODCOOP,dat$LIVEHERE,dat$RELPRCNT,

dat$SCREEN,dat$KNOWN, dat$BIPCT, dat$SNCTIONS, dat$MEANLAND,
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dat$AVGED,dat$INTRAT,dat$LOANSIZE, dat$LNYRSOLD, dat$MEMS,

dat$VARBTY,dat$WEALTH,dat$PCGMEM, dat$CBANKMEM)

Xt=as.matrix(samt) #input matrix of test sample

Yt=as.matrix(ns1$REP)#output vector of test sample

X=as.matrix(sam) #input matrix of learning sample

Y=as.matrix(s1$REP) #output vector of learning sample

Xo=as.matrix(ndat) #input matrix of whole sample

Yo=as.matrix(REP) #output vector of whole sample

pi1=exp(Xt%*%Beta)/(1+exp(Xt%*%Beta))

a1=pi1*(1-pi1)

pi2=exp(X%*%Beta)/(1+exp(X%*%Beta))

a2=pi2*(1-pi2)

pi3=exp(Xo%*%Beta)/(1+exp(Xo%*%Beta))

a3=pi3*(1-pi3)

p.err1=(1/length(new))*(t((Yt-pi1)/sqrt(a1))%*%((Yt-pi1)/sqrt(a1)))

p.err2=(1/length(v))*(t((Y-pi2)/sqrt(a2))%*%((Y-pi2)/sqrt(a2)))

p.err3=(1/219)*(t((Yo-pi3)/sqrt(a3))%*%((Yo-pi3)/sqrt(a3)))

#================================================================#

summary(sam.step);# optimal model

Coeff=as.numeric(Beta); # numerical value of coefficients of optimal model

Coeff;

p.err1; # error of test sample

p.err2; # error of learning sample

p.err3; # error of whole sample

#==============================================================#

#++++++++After Sampling AIC stepwise++++++++++++++++++++++++++#

#==Add HOMOCCUP, AVGED, and VARBTY to the AIC optimal Model=====#

OptAic.logit<-glm(REP~NOLNDPCT+SHARING+SHARNON+PRODCOOP+BIPCT

+SNCTIONS+LNYRSOLD+PCGMEM, data=dat, family=binomial())

summary(OptAic.logit)

OptAicHOM.logit<-glm(REP~NOLNDPCT+SHARING+SHARNON+PRODCOOP+BIPCT

+SNCTIONS+LNYRSOLD+PCGMEM+HOMOCCUP, data=dat, family=binomial())

summary(OptAicHOM.logit)

OptAicAVG.logit<-glm(REP~NOLNDPCT+SHARING+SHARNON+PRODCOOP+BIPCT

+SNCTIONS+LNYRSOLD+PCGMEM+AVGED, data=dat, family=binomial())

summary(OptAicAVG.logit)

OptAicVAR.logit<-glm(REP~NOLNDPCT+SHARING+SHARNON+PRODCOOP+BIPCT

+SNCTIONS+LNYRSOLD+PCGMEM+VARBTY, data=dat, family=binomial())

summary(OptAicVAR.logit)

OptAicall3.logit<-glm(REP~NOLNDPCT+SHARING+SHARNON+PRODCOOP+BIPCT

+SNCTIONS+LNYRSOLD+PCGMEM+HOMOCCUP+AVGED+VARBTY,

data=dat, family=binomial())

summary(OptAicall3.logit)

#=================================================================#

#+++++++++++++After Sampling BIC stepwise++++++++++++++++++++++++#

#Add SHARNON, SHARING, BIPCT, AVGED, WEALTH to the BIC optimal Model

OptBic.logit<-glm(REP~NOLNDPCT+ PRODCOOP+ SNCTIONS +LNYRSOLD+ PCGMEM,
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data=dat, family=binomial())

summary(OptBic.logit)

OptBicSNON.logit<-glm(REP~NOLNDPCT+ PRODCOOP+ SNCTIONS +LNYRSOLD+PCGMEM

+SHARNON, data=dat, family=binomial())

summary(OptBicSNON.logit)

OptBicSHA.logit<-glm(REP~NOLNDPCT+ PRODCOOP+ SNCTIONS +LNYRSOLD+ PCGMEM

+ SHARING, data=dat, family=binomial())

summary(OptBicSHA.logit)

OptBicBIP.logit<-glm(REP~NOLNDPCT+ PRODCOOP+ SNCTIONS +LNYRSOLD+ PCGMEM

+BIPCT,data=dat, family=binomial())

summary(OptBicBIP.logit)

OptBicAV.logit<-glm(REP~NOLNDPCT+ PRODCOOP+ SNCTIONS +LNYRSOLD+ PCGMEM

+AVGED, data=dat, family=binomial())

summary(OptBicAV.logit)

OptBicWEA.logit<-glm(REP~NOLNDPCT+ PRODCOOP+ SNCTIONS +LNYRSOLD+ PCGMEM

+WEALTH, data=dat, family=binomial())

summary(OptBicWEA.logit)

OptBicAdd5.logit<-glm(REP~NOLNDPCT+ PRODCOOP+ SNCTIONS +LNYRSOLD+ PCGMEM

+SHARNON+SHARING+BIPCT+AVGED+WEALTH,

data=dat, family=binomial())

summary(OptBicAdd5.logit)

#=========================================================#

OptBicINTRAT.logit<-glm(REP~NOLNDPCT+ PRODCOOP+ SNCTIONS +LNYRSOLD

PCGMEM+SHARNON+INTRAT,

data=dat, family=binomial())

summary(OptBicINTRAT.logit)

round(cbind(exp(cbind(OR=OptBicINTRAT.logit$coefficients)),

exp(confint.default(OptBicINTRAT.logit))),3)

round(cbind(exp(cbind(OR=OptBicINTRAT.logit$coefficients)),

exp(confint(OptBicINTRAT.logit))),3)

OptBicN1.logit<-glm(REP~NOLNDPCT+ PRODCOOP+ SNCTIONS +LNYRSOLD+

PCGMEM+SHARNON+INTRAT+MEMS,

data=dat, family=binomial())

summary(OptBicN1.logit)

OptBicN2.logit<-glm(REP~NOLNDPCT+ PRODCOOP+ SNCTIONS +LNYRSOLD+

PCGMEM+SHARNON+INTRAT+LOANSIZE,

data=dat, family=binomial())

summary(OptBicN2.logit)

The Final Model

#========AIC optimal model plus INTRAT=========#

AICoptInt<-glm(REP~NOLNDPCT+SHARING+SHARNON+PRODCOOP+BIPCT

+SNCTIONS+LNYRSOLD+PCGMEM+INTRAT, data=dat, family=binomial())

summary(AICoptInt)

round(cbind(exp(cbind(OR=AICoptInt$coefficients)),

exp(confint.default(AICoptInt))),3)#confidence Interval
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Pearson Errors of the Full and the Final Models

#==========Pearson Errors of Full Model========#

K=as.numeric(rep.logit$coefficients)#call the coefficients of the full model

Beta0=as.matrix(K) # put the coefficients as matrix

Xo=as.matrix(ndat)

Yo=as.matrix(REP)

pi=exp(Xo%*%Beta0)/(1+exp(Xo%*%Beta0))#fitted probability for y=1

a=pi*(1-pi)

err.ful=(Yo-pi)/sqrt(a)#Peason Error of the Full model

#==========Pearson Errors of Final Model========#

Allvar=names(rep.logit$coefficients);

Selectvar=names(AICoptInt$coefficients);

SelectBeta=AICoptInt$coefficients;

Res<-numeric(length(Allvar))

for (i in 1 : length(Allvar) )

for (j in 1: length(Selectvar))

if (Allvar[i] == Selectvar[j])

Res[i]<-SelectBeta[j]

Res[i]<- 0

Beta.final=as.matrix(Res)

newpi=exp(Xo%*%Beta.final)/(1+exp(Xo%*%Beta.final))#fitted probability for y=1

newa=newpi*(1-newpi)

err.final=(Yo-pi)/sqrt(newa) #Peason Error of the Final model

#====Data of Pearson Errors to be plotted in Scilab======#

error<-data.frame(err.final, err.ful)
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Mathematical Modelization of Microcredit

Abstract:
This study is inspired from a real scenario of microcredit lending introduced in Bangladesh by

Yunus. A stochastic model of random delays in repayment installments is then constructed.

Since delays occur without financial penalty, the interest rate is obviously lower than the exact

claimed. This rate then becomes a random variable corresponding to the random repayment time,

in which simulation results of its distribution are provided. The expected rate is computed as a

function of in-time installment probability. It is found around 3.5% lower than the exact one in

the deterministic case when considering 3% of delay occurred within four weeks in real practice.

The work is extended to a statistical analysis on data of microcredit in Thailand. It is started

by presenting a logistic regression model of repayment outcome containing 23 input variables

measured on a sample of 219 lending groups. Applying penalized criterion, AIC or BIC together

with backward stepwise elimination procedure on the full model, a more parsimonious model kept

only most relevant predictors is obtained. Finally, experiments on sub-samples show a stability of

the chosen predictors obtained by the selection method.

Keywords: microcredit, random interest rate, logistic regression, backward stepwise, AIC,

BIC.

Modélisation mathématique du micro-crédit

Résumé:
Le travail soumis commence par un aperçu du micro-crédit tel qu’il a été introduit au Bangladesh

par M. Yunus. Puis on donne un modèle stochastique des retards de versement. Comme ces

retards ne donnent pas lieu à une sanction financière, ils constituent, de fait, une baisse du taux

réel de crédit. Ce taux est alors, lui-même, aléatoire. On calcule un taux espéré en fonction

de la probabilité de retard de remboursement hebdomadaire. On déduit que ce taux espéré est

d’environ 3.5% inférieur au taux (annoncé) du cas déterministe si l’on considère que 3% des retards

atteignent 4 semaines.

Le travail se poursuit par une étude statistique de données du micro-crédit en Thaïlande. On

commence par présenter un modèle de régression logistique du taux de remboursement par rapport

aux 23 variables mesurées sur un échantillon de 219 groupes d’emprunteurs. On présente ensuite

une sélection des variables les plus pertinentes selon un critère AIC ou BIC par une méthode

“backward stepwise”. Finalement des expériences sur des sous-échantillons montrent une bonne

stabilité du choix des variables obtenues par la sélection.

Mots clés: micro-crédit, taux aléatoire, régression logistique, backward stepwise, AIC, BIC.
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