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Modèles statistiques réduits de la croissance cardiaque, du mouvement et de
la circulation sanguine - Application à la tétralogie de Fallot

Résumé:Cette thèse présente les travaux réalisés en vue de l'élaboration d'un modèle car-
diaque associant croissance, mouvement et circulation sanguine pour permettre ensuite la
construction d'un modèle prédictif par patient à partir d'un modèle standard de l'ensemble
d'une population.

Le premier axe de ce travail est la simulation de la croissance bi-ventriculaire due au
vieillissement. Un modèle existant de surface unique, calculé à l'aide de méthodes statis-
tiques, a été généralisé à un modèle bi-ventriculaire puis appliqué à des patients souffrant
de la tétralogie de Fallot a�n de modéliser l'évolution complexe des ventricules atteints de
la pathologie.

Le deuxième axe concerne la modélisation du mouvement cardiaque au niveau de la
population. Un modèle d'ordre réduit basé sur un modèle polyaf�ne et LogDemon a
été proposé. Il simule spéci�quement la dynamique cardiaque avec un petit nombre de
paramètres. Après calcul des transformations, les paramètres sont analysés par des méth-
odes statistiques a�n d'obtenir des mesures moyennes pour la population. Un modèle de
mouvement moyen a été calculé pour représenter le mouvement standard de la population.

Le troisième s'intéresse à la simulation de l'écoulement sanguin à l'échelle de la
population. La complexité des simulations spéci�ques à un patient a été réduite grâce
à l'utilisation de méthodes relatives à l'analyse d'image et à la dynamique des �uides
numérique ainsi qu'à des techniques de réduction d'ordre de modèle. La simulation du
�ux sanguin dans l'artère pulmonaire pour des patients atteints de tétralogie de Fallot a
permis de mieux comprendre l'impact du sang régurgité sur la pression et la vitesse.

Étant donné nos contributions sur ces trois axes, nous sommes maintenant en bonne
position pour élaborer le modèle couplé des contributions interdépendantes de la crois-
sance, du mouvement et de l'écoulement sanguin. Ce modèle pourrait être utilisé a�n
d'aider la plani�cation de la thérapie et la prise de décision chez les patients souffrant de
maladies cardiaques.

Mots-clés: Analyse d'images médicales; Recalage; Modèles statistiques réduits;
Tétralogie de Fallot





Reduced-Order Statistical Models of Cardiac Growth, Motion and Blood
Flow - Application to the Tetralogy of Fallot Heart

Abstract: This thesis presents work towards a coupled model of cardiac growth, motion,
and blood �ow to enable predictive patient-speci�c models to be built from a population-
based model.

The �rst axis of this work is to simulate bi-ventricular growth through aging. A pre-
viously proposed single surface model computed using statistical methods was extended
to a bi-ventricular model and applied to Tetralogy of Fallot patients to model the complex
evolution of the ventricles due to the pathology.

The second axis concerns the development of a model to simulate cardiac motion at a
population level. A reduced-order cardiac-speci�c motion model was proposed to sim-
ulate the motion dynamics with a small number of parameters using a Polyaf�ne and
LogDemons based model. From the computed transformations, the parameters were anal-
ysed using statistical methods to obtain population-based measures of normality. A mean
motion model was derived to represent the normal motion for a given population.

The third axis is to develop a reduced-order framework for blood �ow simulation to
obtain population-based �ow dynamics. The complexity of patient-speci�c simulations
was reduced by combining image analysis, computational �uid dynamics and model order
reduction techniques. Blood �ow through the pulmonary artery in Tetralogy of Fallot pa-
tients was simulated to better understand the impact of regurgitated blood on pressure and
velocity.

Given our contributions on these three axes, we are now in a good position to couple
the models in order to capture the interrelated contributions of growth, motion and �ow.
Such a model could be used to aid in therapy planning and decision making for patients
with heart disease.

Keywords: Medical image analysis; Non-rigid registration; Statistical model re-
duction; Tetralogy of Fallot
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1.1 Introduction

Medical imaging is becoming more and more widely used in clinical practice to detect
abnormalities within tissue, bones, and organs. Imaging can be performed over several
time periods to acquire up-to-date images to keep track of disease progression, as well
as to thoroughly analyse organ, bone and tissue structure to aid in decision making and
therapy planning. Medical imaging provides a vital tool in everyday clinical work-�ow to
increase the quality of patient care.

Medical image analysis aims to go even further to aid clinicians by modelling what
isn't measured from the images directly to obtain quantitative measures of structure and
function. In the case of cardiovascular modelling, medical image analysis techniques can
be used to model the different structures, to obtain quantitative measures such as size and
volume of the ventricles and atria, or to model function such as motion, blood �ow, elec-
trophysiology, mechanics etc. Naturally, these measures can be useful in determining and
measuring how well the heart is functioning; whether the heart is beating ef�ciently, pump-
ing enough blood, beating synchronously, and so on. Modelling what isn't observed di-
rectly can provide complementary information to aid clinicians with diagnosis, prognosis,
and treatment planning.

Typical treatment planning for cardiovascular disease involves a meeting between the
cardiologists, physiologists and surgeons to discuss and come to a consensus on the best
method of treatment to pursue for a given patient. In this situation, the choice is guided
by the medical images, which give an indicator of the severity of the disease, and by the
knowledge and experience of the cardiologists and surgeons regarding potential treatment
options. Obviously, this decision making process may be �awed and biased by the expe-
rience of the clinicians, the willingness to perform potentially risky procedures, the inter-
pretation of the data available, and the ability of a clinician to convince the others of their
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opinion on what is the best choice of treatment. Potentially, medical image analysis tech-
niques could be used to improve this process by giving clinicians more indicators to �rstly
better understand the current status of the disease, and secondly to give a better idea of how
a patient will react to a given therapy.

1.1.1 The Care4Me European Project

A large proportion of this thesis was conducted in the context of the Cooperative Ad-
vanced REsearch for Medical Ef�ciency (Care4Me) ITEA2 project, a European project
aimed towards developing clinical indicators of disease within three key areas: cancerous,
cardiovascular, and neuro-degenerative diseases. The overall aim of the Care4Me project
was to offer better patient care by developing innovative tools towards improved diagnosis,
prognosis and treatment planning. The project was centered around advancing tools at the
software level from advanced structural imaging, towards enhanced functional imaging, as
shown in Fig.1.1.

Figure 1.1: The overall aim of the Care4Me project towards improved imaging by devel-
oping methods at the structural imaging level.

The Care4Me project aimed to reach this goal by developing new methods for medical
image analysis to aid clinicians by providing more quantitative measures, extracted from
potentially large data sets. Using the hospital information systems and known medical
knowledge, patient data can potentially be used to drive data analysis and image-based
models, leading towards decision support for patient care. Our role in this process is in
developing image-based models of anatomy and pathology, as circled in Fig.1.2, in the
area of cardiovascular imaging in particular.

1.1.2 Global Objective of This Work

Given that an average heart beats over a billion times during a lifetime, maintaining healthy
motion is important for the heart to be able to sustain such a workload. Since abnormal
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Figure 1.2: The key steps in the pipeline towards improved systems for patient care, by
incorporating hospital systems and medical knowledge with patient data sets to drive new
models to aid in diagnosis and treatment planning. This thesis describes work towards
image-based modelling of cardiovascular disease (circled).

motion is commonly observed in patients with cardiovascular disease, clinicians are inter-
ested in knowing whether the heart is beating suf�ciently well or not, to determine what, if
any, course of action is needed. Modelling the heart motion can thus be useful in better de-
termining and understanding cardiac function. Predicting the outcome of a given treatment
option can also provide useful information for clinicians since decision making can rely
largely on previous experience with a given treatment method. For example, a clinician
may be largely inclined to perform a given therapy based on the fact that the same method
worked in a majority of cases in the past. However, this may not be the optimal method
for a speci�c patient, and may not result in the best possible outcome for the long-term.
Therefore, as an added predictor of the outcome of a therapy, models could be used to give
more of an indication of how the patient will develop over time. For example, knowing the
typical growth dynamics, the growth of the heart of a speci�c patient can be modelled over
time to analyse the development of the heart by �rst simulating therapy (such as surgery)
on the patient, then propagating over time. Modelling the blood �ow dynamics can give
even further information since abnormal blood �ow can result in inadequate pressure of
blood �owing through the heart, increased stress on the tissue wall, and pressure overload.
Furthermore, the vast amount of data available could be used in a more productive way
to discover new treatment methods and to determine optimal treatment options for a given
patient based on the success of such a choice of treatment on similar patients from around
the world.

This thesis is aimed towards these exact clinical challenges to model cardiac growth,
motion and blood �ow. Moreover, by incorporating a range of data, potentially from dif-
ferent time points, different patients, different scanners, different imaging modalities, from
different centers and even from different countries, we aim to make use of this data to ob-
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tain population-based evaluations of cardiac shape and function. Hence, this work leads
towards a 5D+�ow population-based model of the heart incorporating the 3-dimensional
dynamics of shape, the time dimension of the heart beat, the time dimension as the patient
ages, as well as the �ow dynamics. A key theme throughout this thesis is reduced-order
modelling, where we attempt to simulate the different phenomena with models that are
described with a small number of parameters that can be meaningfully analysed.

1.2 Key Steps to Completing the Jigsaw Puzzle

The global objective of this work is to develop a generative model of a beating and grow-
ing heart with blood �owing through it. In order to construct such a model, �rst a low-
dimensional model of each individual component is required. The key questions addressed
in this thesis are described in the following three sections.

1) Generative Model of a Growing Heart

Understanding how the heart develops as a patient grows can give useful insight for not only
determining the prognosis of a disease, but also to aid in therapy planning. By modelling
the growth, it may be possible to better understand how the heart will develop and evolve
over time given a certain choice of therapy. Thus, it can be of interest to model the growth
for a given population to understand the shape evolution over time. Furthermore, given the
coupled shape dynamics between the left and the right ventricle, it may be of interest to
model the bi-ventricular growth over time. Patient data is becoming more and more widely
available for research purposes, however, at the present time, few longitudinal data-sets are
available for the same patients to be able to model the development over time for a given
patient. Furthermore, we are interested in modelling in a group-wise manner rather than
patient-speci�c modelling, in order to better understand the typical growth patterns for a
given population. Thus, the key question is:

� How can we model bi-ventricular growth over time for a chosen population with few
longitudinal data-sets available, that can be generalised to a given population?

2) Generative Model of a Beating Heart

The motion dynamics observed during the cardiac cycle can be useful indicators for the
purposes of diagnosis, prognosis, as well as therapy planning. The way in which the ven-
tricles move during the cardiac cycle can be very different for healthy and pathological
cases. The aim of modelling these different dynamics is to attempt to provide better patient
care through better understanding of what is normal motion and how much a patient differs
from the norm. Given that motion sequences are becoming more and more available for
both normal and diseased patients, this source of information could potentially be used to
draw meaningful conclusions for a given population. Therefore, the key question here is:
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� How can we model cardiac motion over time at a population level to be able to
capture the typical motion dynamics observed for a given population, by making use
of a data-set of several subjects drawn from the same population?

3) Generative Model of Blood Flow

Understanding the blood �ow dynamics through the cardiovascular system is important for
understanding different pathologies and for predicting the strain on the heart under current
conditions. Given the complex �ow dynamics and the intricate coupling between organ
shape and the �ow through that organ, modelling the blood �ow at a patient-speci�c level
is already challenging, and modelling at a population-level can be even more challenging.
This leads to the key question:

� How can we simulate blood �ow through a given organ at a population level to be
able to develop a generative blood �ow model for a given population?

1.3 Thesis Organisation and Main Contributions

This thesis is organised with the aim of reading like a jigsaw puzzle, with each piece joining
together to complete the �nal picture, which is the development of a 5D+�ow model of the
beating, growing, and �owing heart. Following a brief introduction of the heart, imaging
techniques and state-of-the-art (in Chapter 2), the thesis is divided according to the key
questions described in the previous section as follows:

Part - I
Statistical Modelling of Cardiac Growth

Chapter 3 describes a method towards answering the �rst key question. Namely, a
methodological framework for constructing a bi-ventricular growth model from a data-
set of subjects from the same population at different ages to generate a statistical model of
growth is proposed. The key contribution of this chapter is the extension of the previously
proposed method for modelling the growth of the right ventricle [Mansi et al., 2011b], to
include both ventricles. In the case of the left ventricle, both the endocardial and epicardial
surfaces can be modelled since the muscle is thicker than that of the right ventricle. Thus,
the described method models the dynamics of three surfaces (LV endocardium and epi-
cardium, RV endocardium) with aging. Obviously, since the ventricles are attached, they
have an effect on each other, and so by modelling the growth of both ventricles jointly,
we hope to capture this coupling. The method was applied to model the growth dynam-
ics in patients suffering from Tetralogy of Fallot. The computed modes of variation were
interpreted in relation to the pathology to obtain meaningful conclusions about the shape
variability in the population. This chapter was published in Modeling in Computational
Biology and Biomedicine, Lectures Notes in Mathematical and Computational Biology
[McLeod et al., 2013a].
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Part - II
Statistical Modelling of Cardiac Motion

Chapter 4 describes work towards testing and benchmarking state-of-the-art methods
for cardiac motion tracking by applying previous methods to data-sets with given ground
truth. Given that a large proportion of the PhD work was devoted to the development of
a robust motion model, analysing and testing state-of-the-art methods was an important
�rst step. The incompressible LogDemons (iLogDemons) method was applied �rst to a
data-set of image sequences of healthy volunteers, with manually annotated 4D landmarks
used to compute the error of the tracking. The same method was also applied to a data-set
of synthetically generated sequences with known ground truth displacement. This method
was quantitatively compared to other motion tracking methods. These applications were
published in the STACOM workshop proceedings of 2011 [McLeod et al., 2012a] and 2012
([Prakosa et al., 2012a]).

Chapter 5 presents a reduced-order motion model for tracking cardiac motion along the
cycle from medical images. Based on the �ndings from the analysis of motion tracking
algorithms described in Chapter 4, the key missing component was robustness and repro-
ducibility of the current method. The key contribution of this chapter is the proposal of
a new method for modelling cardiac motion with a greatly reduced number of parame-
ters using image registration techniques. The method builds on the previous Polyaf�ne
LogDemons method to incorporate cardiac-speci�c model constraints (namely an incom-
pressibility penalisation, and neighbouring region regularisation), as well as cardiac spe-
ci�c priors (namely, curved weight functions �tting the shape of the ventricle, and clini-
cally relevant Polyaf�ne region de�nition). Image-driven spatial priors are added to give
varying con�dence of the input velocity vectors depending on areas of high gradient in
the image. Furthermore, the motion in the epicardium was restricted to prevent the epi-
cardial motion from being dragged by the much larger endocardial motion. Since few
parameters are needed to describe the motion, the method is robust, and since the de�-
nition of the Polyaf�ne regions are consistent from subject-to-subject, the method can be
applied to study differences between populations. The method was applied to the STACOM
2011 cardiac motion tracking data-set, from which we obtained physiologically reasonable
deformations at a level of accuracy consistent with state-of-the-art methods, but with a
greatly reduced number of parameters. This chapter is in preparation for submission to
a journal and builds on work published in the STACOM workshop proceedings of 2012
([McLeod et al., 2012b]).

Chapter 6 describes the application of the reduced-order motion model presented in
Chapter 5 to analyse the transformation parameters. Given that there are few parame-
ters in the motion model that are consistently represented in different subjects, meaningful
comparison of the parameters between subjects can be performed. The parameters were
�rst analysed at a regional level for comparison between healthy and pathological sub-
jects. By analysing the parameters directly, we observed interesting differences in terms of
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synchrony of motion between asymptomatic subjects and patients with heart failure. The
parameters were further analysed by performing model reduction directly on the Polyaf�ne
matrices for all subjects within a population, to determine group-wise temporal and spatial
patterns. A patient-speci�c reduced model is also described, that allows for further reduc-
tion of the parameters needed to describe the motion. We were able to obtain clinically
meaningful temporal bases for the population. The �rst section of this chapter was pub-
lished in the proceedings of the FIMH conference of 2013 ([Mcleod et al., 2013b]), and
the second section was published in the proceedings of the MICCAI conference of 2013
([Mcleod et al., 2013a]).

Chapter 7 describes the extension of the statistical analysis of transformation parameters
in Chapter6, to propose a population-based motion model by transporting all the motion
parameters computed using the method described in Chapter5, to a common space using
spatio-temporal alignment. Statistical analyses are performed on the aligned parameters
to �rstly create a mean motion model of a given population. The typical motion patterns
observed in a given population are analysed by performing statistical model reduction on
the stacked matrices of parameters of all subjects (using SVD and PCA), then on the full
tensor of all parameters for all subjects (using Tucker tensor decomposition). The methods
were applied to create mean motion models for healthy subjects and for Tetralogy of Fallot
patients, to compare the different motion dynamics observed between the two populations.
The computed mean motion model gives realistic motion, and leads towards population-
based comparison of motion. This chapter will be submitted to Transactions in Medical
Imaging.

Part - III
Statistical Modelling of Cardiac Blood Flow

Chapter 8 describes a method for performing reduced-order blood �ow simulations.
Patient-speci�c blood �ow solutions are transported to an atlas geometry to obtain a mean
blood �ow solution for the population. Model-order reduction is performed on the mean
blood �ow using Proper Orthogonal Decomposition, to obtain reduced-order bases of pres-
sure and velocity. These bases can be transported to a new subject by a non-rigid defor-
mation computed using the LDDMM method. These bases can then be re-solved for the
subject-speci�c geometry by solving the Navier Stokes equations on the reduced bases. In
this chapter, we describe the application of this method for performing reduced-order blood
�ow simulations on new patients from the learned group-wise blood �ow solutions. The
method was applied to blood �ow simulation in the pulmonary artery for Tetralogy of Fal-
lot patients. We were able to obtain similar �ow patterns from the reduced model as the full
�ow simulation indicating that such a model can produce reasonable �ow simulations with
a reduced number of parameters. This chapter was accepted to Medical Image Analysis
([Mcleod et al., 2013]) as an extension of the work published in the STACOM workshop
proceedings of 2010 ([McLeod et al., 2010a]).
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Conclusions

Chapter 9 introduces an approach for constructing a coupled model of growth and mo-
tion, to lead towards the global objective of this work for developing a 5D+�ow model. We
propose to use cross-sectional statistical design applied to transformations that describe
cardiac motion, to regress a data-set of transformations from different subjects. We sug-
gest using a similar method as the one proposed in Chapter3 to regress the transformation
parameters (rather than velocities).

Chapter 10 concludes this thesis by summarising the key contributions of this work,
discussing the collaborative aspect of the PhD, and suggestions for future work to extend
on the methods described in this thesis.
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The purpose of this chapter is to brie�y introduce concepts needed to understand the
following chapters of this thesis. Since the main application of this work is modelling the
Tetralogy of Fallot heart, a brief description of the heart structures is �rst provided (Sec.
2.1) and of the abnormalities observed in ToF patients (Sec.2.3). A brief introduction to
medical imaging techniques used in cardiology is provided, with further details on cardiac
MRI (Sec. 2.2), since this is the main modality studied in this PhD. The key methods
proposed in this work use mesh and image registration, thus a brief overview and state-of-
the-art of registration methods is provided in Sec.2.3, in order to position the proposed
method with respect to other registration methods.

2.1 The Human Heart

The heart is made up of four main structures consisting of twoventricles(left and right)
and twoatria (the left and right atria). The left and right sides of the heart are separated
by a thin wall made up of biological tissue called theseptum. The section of the septum
which divides the left and right atrium is called theinter-atrial septum, and the section
which divides the ventricles is called theinter-ventricular septum. The atria and ventricles
for each side are divided by valves which control the �ow of blood from the atria to the
ventricles. The atria collect blood, and once full this blood is pumped into the respective
ventricles. The right ventricle is fed by de-oxygenated blood from the body through the
inferior andsuperior vena cava, which is then pumped to the lungs to gather oxygen to
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feed back to the left ventricle through thepulmonary veins. A key component of heart
function is the valves which ensure that blood �ows in only one direction from one section
to another (from the right atrium to the right ventricle, for example). The septum ensures
that de-oxygenated blood in the right ventricle does not mix with the oxygenated blood in
the left ventricle (see Figure2.1).

Figure 2.1: An illustration of a healthy human heart. Image obtained from
http://www.nhlbi.nih.gov

The �ow of blood through the chambers and arteries of the heart is a complex process.
When the pressure in the right (resp. left) atrium is higher than in the right (resp. left)
ventricle, the atrium contracts and thetricuspid (resp. mitral) valve dividing the right
(resp. left) atrium and the right (resp. left) ventricle open to allow blood to �ow to the
ventricle. When the pressure in the ventricle increases, the tricuspid (resp. mitral) valve
closes to restrict blood from �owing back into the atrium. Similarly, when there is more
pressure in the right (resp. left) ventricle than in thepulmonary artery(resp. aorta), the
pulmonary valve(resp. aortic valve) opens to allow blood to �ow through the artery to
the lungs (resp. body). The moment when ventricles pump blood (contract) is known as
systole, and when the ventricles relax (while blood is being pumped into the ventricles
from the atria) is known as diastole. For a normal heart, the two sides are synchronised so
that each side contracts and relaxes in unison.

This activity is controlled by electrical waves that depolarise cardiac cells which causes
the cells to contract. Each heart beat starts at thesinoatrial nodesin the atria with an
electrical wave that then spreads over the atria causing the atrial myocytes to contract,
which results in blood being pumped to the ventricles. This is marked by the P wave on an
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electrocardiogram (ECG). When the signal arrives at theatrioventricularnodes it slows to
allow the ventricles to �ll with blood. The signal then runs down each side of the septum
along the right and left bundle branches (marked by the Q wave on an ECG), and on to the
cells in the walls of the heart through thePurkinje �bers. The signal then spreads across the
cells causing the ventricles to contract. This contraction pushes blood from the ventricles
to the respective arteries. Following this, the signal passes the ventricles so they begin to
relax. The left ventricle contracts slightly before the right ventricle. On an ECG, the R
wave marks the contraction of the left ventricle, and the S wave marks the contraction of
the right ventricle (see Fig.2.2).

Figure 2.2: Left: The key areas of the electrical conduction system of the heart (image
from http://www.nhlbi.nih.gov). Right: The activation points at different nodes (image
from http://www.bem.�/book/06/�/0607.gif).

Good heart function depends on both the electrical system and the pumping action.
Abnormal electrical function can have severe effects on heart function, such as causing the
heart to beat too fast or too slow, so that the body is not fed enough oxygen or so that the
blood is not pumped to the body fast enough.

2.1.1 Tetralogy of Fallot

In this work the clinical application we will focus on is Tetralogy of Fallot (ToF). ToF is
a severe congenital heart defect that affects approximately four out of every 10,000 babies
[Hoffman, 1995]. This condition, which is generally diagnosed prenatally, has four associ-
ated defects: a ventricular septal defect, pulmonary stenosis, right ventricular hypertrophy
and an overriding aorta.

Theventricular septal defectis an opening in the ventricular septum (that separates the
two ventricles), which thus allows de-oxygenated blood in the right ventricle to mix freely
with oxygenated blood in the left ventricle. This results in blood volume overload in the
left ventricle from the blood re-circuiting to the right ventricle and on to the lungs, and
poorly oxygenated blood is pumped to the body.
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Figure 2.3: Comparison of a normal heart with a heart with Tetralogy of Fallot. Image
obtained from http://www.nhlbi.nih.gov

As the name indicates,pulmonary stenosisis used to describe the obstruction at the
right ventricular out�ow tract. This consequently causes the right ventricle to pump harder
(causing stress to the right ventricle) and restricts blood �ow to the lungs. The long term
effect of this condition is extreme right ventricular dilation due to severe regurgitation (right
ventricular hypertrophy). Ventricular hypertrophy can result in irregular heart rhythm and
pressure change in the ventricle.

An overriding aortais also present in individuals with ToF, which means that the aorta
is misplaced and sits over the ventricular septal defect, rather than over the left ventricle.
Consequently, the aorta can receive de-oxygenated blood directly from the right ventricle.

Open heart surgical repair is required within the �rst year of life to repair the ventricular
septal defect, as well as to remove the obstruction to the right ventricular out�ow tract,
and repairing the other defects depending on the severity of the condition. During this
surgery, the pulmonary valves can be removed or damaged, causing long-term pulmonary
regurgitation. Therefore, patients may require repeat follow up operations to reduce post-
operative sequelae. In this case, the valves need to be replaced with an arti�cial device to
ensure one way �ow of blood from the right ventricle to the lungs. The timing of follow-up
operations is crucial to ensure that the treatment is instigated before the heart becomes too
deformed for intervention, while also maximising the time between interventions because
of the limited life span of the replacement valves. The clinical challenge for this condition
is to understand how the heart evolves, with the main goal to be able to predict the optimal
time for intervention. However, due to the large variability of shape, the optimal time,
placement and size of the arti�cial device can be dif�cult to determine.

Therefore, in view of assisting cardiologists, understanding the shape of the ventri-
cles is crucial for treatment planning. Previous studies have analysed the shape of the
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heart in order to determine the optimal intervention time for pulmonary valve replacement
[Geva, 2006]. Recent work has been done to simulate the growth of the right ventricle
under these pathological conditions [Mansi et al., 2011b]. In [Schievano et al., 2007], the
shape of the pulmonary artery of 12 ToF patients was determined using MR imaging data,
and prototype models were constructed using a 3D printer to establish the suitability of
the patients for non-invasive valve replacement intervention. However, creating prototype
models in this way is time consuming, and expensive if models are created for individual
patients. Rather, we aim to use statistical models of the heart by extending on previous
work to give a better understanding of the deformation of the shape of the ventricles, under
different states and for different pathologies.

2.2 Medical Imaging in Cardiology

Several different techniques for acquiring medical images have been designed to visualise
different structures. In cardiology these include structural and functional magnetic reso-
nance imaging (MRI), echocardiography (ECHO) and computed tomography (CT). ECHO
is the most widely used imaging technique given that it is quick and easy to use, inex-
pensive, and non-invasive. ECHO is generally recommended as the �rst imaging modality
used for the purpose of diagnosis and for when there is a change in the patient's condition.
In general clinical practice, only 2D sequences are acquired, though 3D imaging is also
now possible. The disadvantage of ECHO is that the images are usually subject to high
noise levels and can be obtained only from certain angles. Tissue contrast is also generally
low, making it dif�cult to distinguish the boundaries of different structures. Cardiac MRI
and CT imaging are often used in cases where more accurate images are needed to better
distinguish different structures and for therapy planning to have a better view of the heart.
Using CT, high resolution images with good image contrast can be captured and can be
used to visual the motion dynamics through the cardiac cycle. However, ionising radiation
is emitted during the scan that can be harmful to the patient. Cardiac MRI, on the other
hand, also has the advantage of capturing high resolution images, but without the harmful
radiation. Therefore, cardiac MR imaging is increasingly being used in clinical practice.
For this reason, the focus of this work is to perform image analysis mainly on cardiac MR
images, though the techniques themselves are not �xed to this particular modality.

Since this work is focused on image analysis tools applied to cardiac MR images,
a brief description of this modality is provided in the following section. For further
details on the image acquisition and machines for cardiac MR as well as ECHO and
CT, see [Higgins and Albert de Roos, 2006], [Bogaert et al., 2012], [Leeson et al., 2012],
[Dewey, 2011].

2.2.1 Cardiac MRI

MRI is becoming increasingly used in clinical practice to image the motion of the heart as it
beats. Cardiac MRI is in principal the same as standard MRI, where radio waves, magnets
and a computer are used to construct images of different structures and tissue. MRI is
commonly used to image the heart due to the good contrast obtained between soft tissue,
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Figure 2.4: The different standard imaging angles of the heart including the four chamber
view, two chamber view and long axis view, shown with the American Heart Association
subregions of the heart. Image obtained from [Lang et al., 2005]

blood and bone (see Fig.2.6), and can be acquired from any angle (see Fig.2.4). Cardiac
MRI uses ECG signals to detect the R peak in the sequence, from which 4D sequences can
be built (see Fig. �g:ECG).

Cardiac MRI can be used to diagnose and assess a number of cardiovascular conditions.
For example, damage caused by heart failure or a heart attack can be assessed through car-
diac MR imaging. Cardiac MRI can provide complementary information to other imaging
such as ECHO, X-ray and CT. In particular, cardiac MRI imaging can be performed to:

� Evaluate the anatomy and function of the heart chambers, valves, major vessels, and
surrounding structures such as the pericardium (the �uid �lled sac that surrounds the
heart).

� Diagnose a variety of cardiovascular (heart and/or blood vessel) disorders such as
tumors, infections, and in�ammatory conditions.

� Detect and evaluate the effects of coronary artery disease such as limited blood �ow
to the heart muscle and scarring within the heart muscle after heart attack.

� Plan a patient's treatment for cardiovascular disorders.
� Monitor a patient's progression over time.
� Evaluate the anatomy of the heart and blood vessels in children with congenital heart

disease.
� Examine the size of the heart chambers and the thickness of the heart wall.
� Determine the extent of myocardial (heart muscle) damage and effect on pump func-

tion caused by a heart attack or progressive heart disease.
� Detect the buildup of plaque and blockages in blood vessels.
� Assess a patient's recovery following treatment.
� Evaluate the heart anatomy, pump function, heart valve function and vascular blood

�ow both before and after surgical repair of congenital cardiovascular disease in
children and adults [Knauth et al., 2008].

(List courtesy ofhtt p : ==www:radiologyin f o:org=).
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Figure 2.5: Top: Illustration of ECG gating of cardiac MR images for detecting the R peak
of the cardiac cycle. Image obtained from [Makela et al., 2002]. Bottom: Cine MR se-
quences can be constructed by dividing the cycle intoN frames and averaging over images
acquired for several heart beats at the same frame (where the frame is detected from the
ECG signal).
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Figure 2.6: Cardiac MRI. Localisation of the heart in the body is shown in (A), with a
given MR slice angle. An example of a 3D MR angiogram is shown in (B). (C) shows
the left ventricle image acquired from the slice shown in (A) when healthy (left), damaged
from heart attack (centre) and when the left ventricle is not receiving enough blood (right).
Image obtained fromwww:daviddarling:in f o=encyclopedia=C=cardiacMRI:html
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2.2.1.1 Bene�ts vs. Risks

Some of the bene�ts and risks of using cardiac MR imaging instead of (or as well as) other
imaging modalities are:

Bene�ts:

+ Non exposure to ionising radiation such as those emitted in CT and X-ray imaging.
+ The ability to diagnose a broad range of conditions related to anatomical abnor-

malities (such as congenital heart defects), functional abnormalities (such as valve
failure), tumors and conditions related to coronary artery disease and cardiomyopa-
thy.

+ MR imaging can be used during certain interventional procedures to give interven-
tional cardiologists and surgeons a better view of the structures to both save time
and improve the quality of care. For this exact purpose, the use of hybrid operating
theaters is becoming increasingly popular.

+ Since MR images can be acquired from any arbitrary angle, structures that would be
otherwise hidden behind bone or other material can be visualised.

+ Allergic reaction due to the use of contrast agent is less common than the reaction
due to iodine-based agents used in CT and X-ray imaging.

+ Both structure and function can be assessed without the need for ionising radiation.

Risks:

- Some patients need to be sedated for cardiac MR such as children or patients suffer-
ing from claustrophobia.

- Due to the high magnetic �eld within the MR machine, there may be some interaction
with metal devices inside the body.

- Contrast agents can induce an allergic reaction in some patients. Some patients
with very poor kidney function can also be at risk of Nephrogenic systemic �bro-
sis, though this is rare.

- The contrast agent may be dangerous for breast-feeding mothers through transfer to
infants via breast milk.

2.2.1.2 Different Uses of Cardiac MRI

There is a wide range of uses of this type of imaging, a few of which are brie�y described
here:

Cardiac Anatomy: Cardiac MRI can be used for de�ningcardiac anatomyusing
Steady-State Free Precision (SSFP) sequences [Schef�er and Lehnhardt, 2003] in heart
conditions such as constrictive pericarditis [Francone et al., 2006], cardiac neoplasm or
thrombus [O'Donnell et al., 2009], congenital heart disease [Sørensen et al., 2004], or for
demonstrating the presence of a patent foramen ovale [Nusser et al., 2006] (see Fig.2.6).
SSFP is commonly used in clinical practice to acquire detailed images of the structures
through the heart beat.
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Myocardial Perfusion: Cardiac MRI can also be used to measuremyocardial per-
fusion with cardiac MR perfusion imaging for patients suspected to have ischemic
heart disease (e.g. angina) to examine potential perfusion defects in the myocardium
[Schwitter et al., 2001]. By inducing stress on the heart with either adenosine or inotrope
Dobutamine [Paetsch et al., 2004] the patient can be imaged under the stress condition, and
again at rest, to visually compare the differences. Myocardial perfusion MR is becoming
more commonly used in clinical practice due to the fact that it is well tolerated for most
patients and gives good indications for examining stenosis or detecting ischemia.

Figure 2.7: Left: Cardiac MR perfusion imaging with stress testing on a patient
with subtotal occlusion of the left anterior descending artery. White arrows indicate
stress perfusion defects [Motwani et al., 2012]. Centre: Left ventricle muscle �bers ex-
tracted using image analysis on DTMRI images. Right: Tagged MRI. Motion of the
heart can be tracked from MR image sequences through tagged MR imaging.htt p :
==www:nature:com=nrcardio=journal=v6=n12=thumbs=nrcardio:2009:189� f 1: jpg

Cardiac Fiber Architecture: Using cardiac diffusion tensor MR imaging (DTMRI),
the cardiac �bers can be extracted to better understand how the �bers are arranged
[Helm et al., 2005]. Since electrical currents propagate along the �ber directions, this can
give useful insight for patients suffering from conditions related to abnormal electrophys-
iology such as arrhythmias (see Fig.2.7 centre). DTMR images, however, are generally
only acquired for research purposes, therefore little data is currently available.

Cardiac Motion: By analysing the4D dynamicsof the heart through the cardiac cycle,
cardiac MRI can be used to quantify left and right ventricular function for patients suffering
from cardiomyopathy [Hunold et al., 2005], heart failure [Bellenger et al., 2000], arryth-
mogenic right ventricular dysplasia [van der Wall et al., 2000] and pulmonary hypertension
[Roeleveld et al., 2005]. Tagged MRI can be used to track the motion of the heart through
the cardiac cycle [Park et al., 1996, Clarysse et al., 2002, Clarysse et al., 2011] (see Fig.
2.7 right), however it is not currently a part of standard clinical routine as it increases the
imaging acquisition time (and therefore also the cost of the acquisition). Therefore, we aim
to analyse the motion from SSFP sequences alone since these are routinely acquired.
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Cardiac Blood Flow: Using cardiac MR imaging, it is possible to extract quantitative
1D measures ofblood �ow [McVeigh, 1996] that can be used to diagnose and assess valvu-
lar disease (such as regurgitation or stenosis) [Glockner et al., 2003], or to analyse shunts
(such as atrial or ventricular septal defects) [Hundley et al., 1995]. (see Fig. 2.8). The
measures are often acquired as part of the imaging set, however such measures are limited
by the fact that the measures are taken only for one slice of the image. This limitation
motives the use of the method described in Chapter8.

Figure 2.8: Quantitative 1D measures of blood �ow from cardiac MRI.

2.3 Inter and Intra-Patient Analysis using Image and Mesh
Registration

As described in the previous section, imaging alone can provide qualitative and quantitative
measures of structure and function. However, current imaging techniques are somewhat
limited in the ability to provide quantitative measures of motion, 3D blood �ow, changes
over time etc. For this reason, image analysis can enable deeper analysis of the observed
phenomena. Structures can, for example, be measured with respect to size, volume, mus-
cle thickness, and ventricular volume using image segmentation. Blood �ow through the
ventricles, atria and arteries can be simulated using computation �uid dynamics simulation
to estimate the �ow dynamics under different conditions and the impact of stress, irregu-
lar �ow patterns, and strain. By quantitatively comparing two images, differences can be
highlighted between the two time points to establish the evolution of an organ over time,
or the growth of a tumour, for example.

A common method for quantifying differences between two images (either from the
same, or different patients), is to use image (or mesh) registration to estimate the defor-
mation from one image (or mesh) to another [Hajnal and Hill, 2010, Goshtasby, 2012]. In
practice, registration amounts to approximating the transformation that optimises the simi-
larity between the �xed image (or mesh) and the transformed moving image (or mesh) (see
Fig. 2.9). Several methods to do this in the context of medical imaging have been proposed
and successfully applied to a number of different applications to model changes in or-
gans (such as the brain [Klein et al., 2009, Rueckert et al., 2003, Crum et al., 2013],
lungs [Gorbunova et al., 2012, Risser et al., 2012, Ehrhardt et al., 2011], heart
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[Chandrashekara et al., 2004b, Perperidis et al., 2005, Makela et al., 2002], liver
[Velec et al., 2012], breast [Denton et al., 1999, Juh and Suh, 2010]), or �ber struc-
tures (such as cardiac muscle �bers [Lombaert et al., 2012, Toussaint et al., 2013], �ber
bundles in the brain [O'Donnell et al., 2012]), or vein structures [Osorio et al., 2012]
(in the cardiovascular or pulmonary systems for example). Pair-wise image (or mesh)
registration is essentially the process of bringing the images (meshes) to a common
coordinate system. In doing so, the image (mesh) differences are parameterised by
the transformations needed to bring the images (meshes) to the same coordinate space.
For example, if a square was transformed to a diamond with sides of equal length, the
corresponding transformation would represent a rotation, which would indicate that the
difference between the two objects is simply a rotation in space. This illustration is an
example of a rigid transformation. In the case of cardiac motion tracking, in general we
are rather interested in non-rigid registration that can capture more complex differences
such as local stretching and scaling.

Figure 2.9: The process of registering one image (the moving, or �oating image) to another
image (the �xed, or reference image). An iterativeoptimisation processcan be used to
estimate thetransformationparameters, given a chosensimilarity measure. Image modi�ed
from [Hutton and Braun, 2003].
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In the following sections we provide a brief overview of the key components of reg-
istration algorithms; namely the types of transformations that we wish to capture with a
registration algorithm, ways to measure the similarity between two images, and optimisa-
tion methods for �nding the best transformations. This is not meant as a full review of
registration methods, but rather as an overview of different methods in order to position the
methods proposed in this thesis with respect to other types of registration algorithms.

2.3.1 Transformation Types

Possible transformation types for medical registration problems include:

� Rigid
� Af�ne
� Piecewise af�ne or Polyaf�ne
� Non-rigid

Rigid (or linear) transformations include rotations, translations and re�ections. Rigid reg-
istration assumes that there is no distortion between the images. A rigid transformation
model is composed of three rotations and three translations (6 degrees of freedom), and
can be represented by a 4� 4 homogeneous matrix. Af�ne transformations include rigid
transformations, while also accounting for stretch and shear (12 degrees of freedom) and
can also be represented by a 4� 4 homogeneous matrix. Piecewise af�ne transformations
[Pitiot et al., 2003] go a bit further to de�ne an af�ne transformation at a regional level,
therefore allowing different regions in an image to transform in different ways. Polyaf�ne
transformations are essentially an extension of piecewise af�ne transformations to include a
smooth transition between regions so that globally the transformation is smooth, rather than
piecewise continuous. Polyaf�ne transformations [Arsigny et al., 2009] include a weight
function that controls the fusion between the piecewise af�ne transformations, therefore the
transformation is represented not only by the af�ne matrices, but also the weight functions.
Non-rigid transformations are non-linear and thus cannot be represented by matrices. The
transformation can be parameterised in a number of different ways through �uid models
[D'Agostino et al., 2003] or spline-based models [Rueckert et al., 2006] for example. The
choice of transformation type depends on the level of detail we want to capture. A method
for measuring the similarity between the two objects is then required. A brief overview of
such methods is provided in the next section.

Figure 2.10: Example of the transformation types needed to get from the source image
(left) to the target image (right). Image adapted from [Crum et al., 2004].
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2.3.2 Similarity Measures

A similarity measure is needed to determine how similar two images (or meshes) are (or
equivalently how much they differ) after alignment. This can be through a measure of the
similarity of intensities of two images, or between geometric differences in two images (or
meshes).

Geometric approaches, that compute the correspondence between geometric objects,
are rather sparsely distributed, therefore the match needs to be interpolated between the
data points. However, geometric approaches have the advantage of incorporating anatom-
ical information to the matching. Landmarks can be used to drive the registration algo-
rithms provided that landmarks can be de�ned consistently in both images (or meshes)
[Johnson and Christensen, 2002]. Intensity-based similarity measures imply a cost func-
tion that minimises the differences in intensity between two images. Intensity-based ap-
proaches generally match intensities over the whole image. The choice of similarity mea-
sure when measuring intensity differences is largely dependent on the image modality and
whether the registration is mono- or multi-modal.

Commonly used similarity measures are the sum of squared differences (SSD), cor-
relation coef�cients (CC), mutual information (MI) and normalised mutual information
(NMI). The SSD measure, as the name implies, minimises the total sum of squared differ-
ences between image intensities (or between points) and assumes that images differ only
up to Gaussian noise. Since the SSD measure is sensitive to intensity differences, his-
togram normalisation can improve the accuracy of the measure, where large outliers are
excluded. CC is an area-based method that searches the intensity correspondences within a
given window. CC assumes an af�ne relationship between image intensities, hence is only
suitable for mono-modality registration. MI, a method originating in information theory,
is a statistical approach that essentially measures the statistical dependency between two
data-sets by using the joint intensity probability distribution. MI, in contrast to SSD and
CC, assumes a probabilistic relationship between intensities, and therefore can be used for
multi-modality registration. However, MI relies on the computation of the joint histogram,
which can be computationally expensive (and requires complex optimisation schemes).

2.3.3 Optimisation Process

Once the type of transformations we are wanting to capture is de�ned, as well as the mea-
sure of similarity that determines the goodness of �t, an optimisation process is required
to �nd the best possible transformation. The key role of the optimisation process is to
approximate a set of parameters to maximise (or minimise) a given function. Common
methods to do this generally use numerical methods such as gradient descent or conjugate
gradient descent for example. Steepest gradient descent approaches can be used to re�ne
the parameters without searching over all the possible parameters by using the past search
history. The re�nement process continues until the similarity criterion is reached. Regu-
larisation terms may also be included to constrain the search space to obtain smoother or
more physiologically plausible deformations.
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2.4 Conclusion

This chapter is meant purely as a basic overview of the heart structures (highlighting the
differences between healthy and Tetralogy of Fallot hearts), cardiac imaging methods, and
a brief introduction to the methods used in the following chapters. This work is focused on
image analysis of cardiac MR given the broad use of this modality in clinical practice. A
more in depth state-of-the-art in registration methods for speci�c applications is given in
each chapter. Overall, in the proposed work we are dealing with mono-modal registration
(MRI-to-MRI), therefore the SSD similarity measure is preferred due to it's simplicity and
since we consider the assumption of linearity between image intensities (after intensity nor-
malisation) as being valid for the applications described in this thesis. In Chapters3 and
8, the preferred transformation method is the Large Deformation Diffeomorphic Metric
Mapping (LDDMM) algorithm on surfaces (with currents representing the surfaces) since
we require a method that is able to capture large deformations (as for inter-subject registra-
tion). In Chapters4-7, we rather prefer stationary velocity �elds (SVF's) paraterised either
locally (using a Demons based method) or regionally (using a Polyaf�ne based method) to
perform non-rigid registration of images for intra-patient registration to de�ne the trans-
formation voxel-wise over the whole image (Demons) characterised by a few parameters
(Polyaf�ne).
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This chapter was published as a chapter titled "Statistical Shape Analysis of Surfaces in
Medical Images Applied to the Tetralogy of Fallot Heart", in Modeling in Computational
Biology and Biomedicine, Lectures Notes in Mathematical and Computational Biology
[McLeod et al., 2013a]. This chapter addresses the �rst key question of this work on how
to model bi-ventricular growth over time for a chosen population with few available lon-
gitudinal data-sets, that can be generalised to a given population. A bi-ventricular growth
model was developed to simulate the growth of the left and right ventricles in a Tetralogy
of Fallot population to obtain clinically relevant modes of variation related to the observed
dynamics for this pathology.

3.1 Chapter Overview

There is an increasing need for shape statistics in medical imaging to provide quantitative
measures to aid in diagnosis, prognosis and therapy planning. In view of this, we describe
methods for computing such statistics by utilising a well-posed framework for representing
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the shape of surfaces as currents. Given this representation we can compute an atlas as a
mean representation of the population and the main modes of variation around this mean.
The modes are computed using principal component analysis (PCA) and applying standard
correlation analysis to these allows to correlate shape features with clinical indices. Beyond
this, we can compute a generative model of growth using partial least squares regression
(PLS) and canonical correlation analysis (CCA). In this chapter, we investigate a clinical
application of these statistical techniques on the shape of the heart for patients with repaired
Tetralogy of Fallot (rToF), a severe congenital heard defect that requires surgical repair
early in infancy. We relate the shape to the severity of the pathology and we build a bi-
ventricular growth model of the rToF heart from cross-sectional data which gives insights
about the evolution of the disease.

3.2 Introduction

During the past ten years, the biophysical modeling of the human body has been a topic
of increasing interest in the �eld of biomedical image analysis. New treatments, therapy
plans and surgical techniques are continually being developed and enhanced to improve
the outcome for patients, The aim of such modeling is to formulate personalised medicine,
where a digital model of an organ can be adjusted to a patient using personal clinical data
as input to the given model. This virtual organ would enable to estimate parameters which
are dif�cult to quantify in clinical routine and to test therapies in-silico as well as to predict
the evolution of the organ over time and with therapy. These methods can be interesting
for example in predicting the long-term outcome of a newly developed treatment in which
longitudinal patient data is not yet available, or for testing the outcome of a number of
different treatment methods virtually to predict the best plan for a given patient. This
notion is largely driven by the fact that testing individual treatments to determine the best
choice for a given patient is neither ethical, nor in fact possible and can bridge the gap
between clinical population testing by combining this with personalised patient-speci�c
models.

When the biological mechanisms involved are too complex, robust statistical ap-
proaches could be used to produce generative models from data. Such statistical
analyses can both provide a predictive model and guide the biophysical approach.
However, computing statistics on dynamic 3D shapes is very challenging. Tradi-
tional methods rely on point based parametrisations of the shapes, where the point-
to-point correspondences can be an important limiting factor for the usability of
the method since the correspondences must be correct and consistent over all the
shapes. New approaches were recently developed to compute such statistics without
this limitation [Durrleman et al., 2009b, Durrleman et al., 2008b, Durrleman et al., 2009a,
Durrleman, 2010, Mansi et al., 2009, Mansi, 2010, Mansi et al., 2011b, Hufnagel, 2010].
Here, the statistical shape analysis tools are based on currents, a non-parametric represen-
tation of shapes (here, the term `shape' is used to refer to geometric data such as curves
and surfaces). These tools have a wide range of applications, and provide a well-posed
framework for statistical shape analysis of groups. Due to the fact that the methods do
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not assume point correspondences between structures (and in fact assigning landmarks to
structures such as the heart are arbitrary), a wider range of data can be used. For example,
one can use surfaces to model organs such as the heart, brain, and lungs, curves to model
sulcal lines on the brain cortex, and sets of curves to represent �ber bundles from diffusion
MRI in the brain. The goal of this chapter is to give an overview of this methodology in
the context of a speci�c clinical problem: the prediction of the cardiac shape remodeling
in repaired tetralogy of Fallot due to chronic regurgitation.

3.2.1 Repaired Tetralogy of Fallot

Tetralogy of Fallot (ToF) is a congenital heart defect that affects approximately four out
of every 10,000 babies [Hoffman and Kaplan, 2002]. The primary defect associated with
this condition is a ventricular-septal opening which allows blood to �ow freely between
the ventricles. Secondary is stenosis in the pulmonary artery which restricts the blood
�ow from the right ventricle to the lungs. Due to a misalignment of the aorta over the
ventricular-septal defect, the aorta is fed by both the left and right ventricle rather than just
the left ventricle. Patients may also have hypertrophy in the right ventricle that causes a
boot-like shape of the ventricle which is characteristic of this condition.

These abnormalities require open heart surgical repair early in infancy. As part of this
surgery, the stenosis in the pulmonary artery is cleared to allow blood to �ow more freely
through the artery. As a consequence, the pulmonary valves which control one way blood
�ow from the right ventricle to the pulmonary artery can be destroyed completely or dam-
aged, causing blood to leak back to the right ventricle. The long-term outcome of this
condition is right ventricular re-modeling caused by the regurgitated blood (see Fig.3.1).
Nowadays, patients undergo follow up operations to reduce this post-operative sequelae.
In particular, the valves are replaced with an arti�cial device to reduce the regurgitation. A
clinical challenge for these patients is determining the optimal time for intervention. On
the one hand, it is preferable to wait as long as possible before performing such operations
since the arti�cial devices have a limited life-span resulting in the need for repeat follow-up
operations. Either open heart surgery or percutaneous valve replacement may be required,
depending on the diameter of the pulmonary annulus. These therapies carry some danger,
so minimising the frequency and total number of surgeries is crucial for these patients. On
the other hand, the heart undergoes re-modeling due to the regurgitated blood producing
volume overload in the right ventricle and if left long enough this damage can be irre-
versible. Determining the optimal time for intervention is a trade-off between maximising
the time between operations and minimising damage to the heart.

Therefore, the clinical application for this condition is to better understand how the
heart evolves over a large period of time, often decades, with and without surgery, with
the main goal to be able to predict the optimal time for intervention. However, due to
the large variability of shape, the optimal time, placement and size of the arti�cial device
can be dif�cult to determine. Furthermore, the complexity of the biological mechanisms
involved in heart growth hinders the development of direct model of cardiac re-modeling.
Statistical shape analysis can therefore be employed to aid in further understanding the
pathology to assist cardiologists with diagnosis, therapy planning, and long term prognosis.
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More particularly, we are interested in determining quantitative measures of the shape that
correlate with the cardiac function and the severity of the disease in these patients (bio-
markers of the disease). Such bio-markers could be used to assess the severity of the
disease when regurgitation cannot be assessed or to provide structural information that
may appear before deterioration of the blood dynamics.

Figure 3.1: Comparison of a normal heart with a Tetralogy of Fallot heart.

3.2.2 Chapter Organisation

In the following sections, we will �rst review in Section3.3statistical shape analysis meth-
ods with a particular focus on the statistical analysis of surfaces. We will introduce the
formalism of deformations which is at the center of most of the current works in computa-
tional anatomy [Thompson et al., 2004]. Then, we will detail the framework of currents to
represent surfaces, and show how this can be turned into an effective shape analysis tech-
nique. Section3.4will apply this methodology to the shape of the heart of 13 patients with
repaired tetralogy of Fallot. Correlating the shape with clinical variables will illustrate how
we can extract some insight about the relationship between morphology and physiology.
Last but not least, we will exemplify how the lack of longitudinal measurements can be
bypassed by building a statistical generative growth model from cross-sectional data which
summarises the heart shape remodeling at the population level.

3.3 Statistical Shape Analysis

3.3.1 Shapes, Forms and Deformations

There is generally no physical model that can faithfully relate the shape of organs in dif-
ferent patients. Thus, to analyse their variability in a population, one usually extracts some
anatomically representative landmarks (or more generally geometric features), and mod-
els their statistical distribution across the population, via a mean shape and covariance
structure analysis after a group-wise matching for instance. One of the earliest methods
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[Bookstein, 1978, Bookstein, 1986] consists in studying the variability of anatomical land-
mark positions among a population: after a global pose (position and orientation) normal-
isation and the consistent identi�cation of landmarks within all patients (see Fig.3.2), a
principle component analysis (PCA) is performed to extract the main modes of variation
of the shape.

Figure 3.2: Using landmark-based methods to register one surface mesh to another surface
mesh, for each pointx in patientA, we require the corresponding pointy(x) in patientB.
This requires a full parameterisation of the patient surface meshes. This is illustrated on
the right ventricle of two patients with rToF.

3.3.1.1 Shapes

In such a process, the global pose of our objects is often considered as a nuisance factor
related to the arbitrary coordinate system of the acquisition device: generally speaking
the shape of an object is understood as the geometric information that is invariant under
translation, rotations and rescaling. Thus, one is often interested only in theshape, i.e. what
remains if we quotient out the object space by a group action, usually rigid body, similarity
or af�ne transformations. For instance, when we consider the equivalent classes of sets of
N (labeled or unlabeled) points under the action of a global similarity (resp. rigid body)
transformation, we obtain the celebrated shape (resp. size and shape) spaces of Kendall at al
[Kendall, 1989, Dryden and Mardia, 1991, Le and Kendall, 1993, Small, 1996]. One can
de�ne similarly the shape spaces of curves by removing the effect of re-parameterisations
and the global pose of the curve [Joshi et al., 2006, Mio et al., 2007, Joshi et al., 2007b,
Joshi et al., 2007a]. However, in medical image analysis, the natural coordinate system of
an organ is its position and orientation with respect to surrounding tissues and organs in
the image. Thus, once images are normalised by aligning them to a reference anatomy, the
pose of organs is a variable of interest and should be kept for analysis.
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3.3.1.2 Deformations

An alternative modeling of shapes was proposed by D'Arcy Thompson in 1917
[Thompson, 1917]. The idea is to assume that there is an atlas object, which represents
the reference shape (this can be seen as an atlas or an equivalent of the mean shape). Then,
the variability of the shape is analysed through the deformations of this reference object
towards the actual observations: a shape difference is encoded by the transformation that
deforms one onto the other. As the deformation of a smooth object should be a smooth ob-
ject, we have to work with diffeomorphisms (invertible, one-to-one mappings with smooth
inverses). This formalism was promoted to a generic shape analysis tool by Grenander and
Miller [ Grenander, 1993, Miller and Younes, 2001] based on advanced mathematical tools
to compute on in�nite dimensional groups of diffeomorphisms [Trouvé, 1998]. One key
feature of this lift of the shape characteristics from the object space to the transformation
space is that it allows to apply the typical deformations to other objects than the ones anal-
ysed in the �rst place (provided that they also live in the coordinate system of the atlas).
For instance, [Durrleman et al., 2008b] analysed the variability of sulcal curves on the sur-
face of the brain cortex to extract the main deformation modes. These modes could then be
used to deform accordingly the surface of the cortex or the full 3D volume of the brain.

However, the problem is even more complex than previously as we want here to per-
form statistics on large deformations, which are known to belong to a non-linear and in�nite
dimensional manifold. The Riemannian setting is one of the most powerful structures to
generalise simple statistics to non-linear spaces: it provides a de�nition of the distance be-
tween points of our manifold and a notion of shortest path / straight lines using geodesics
[Pennec, 2006, Pennec, 2008]. The main dif�culty is that the mean value cannot be de�ned
through an integral or a sum as in Euclidean spaces. Instead, one must look for points in
the manifold that minimise the dispersion of the other points around it, which is commonly
measured by the variance (the mean squared distance). This is what is called the Fréchet
or Karcher mean. Then, one can compute the covariance matrix (the directional dispersion
around the mean) by developing the manifold onto its tangent space at the mean point.
Basically, this amounts to representing each data point by the momentum (initial speed
vector) needed to shoot1 a geodesic to it from the mean.

This generalisation of statistics has to be slightly modi�ed to �t the atlas deforma-
tion model: the `distance' between the atlas and a shape is given here by the length of
the shortest path in the space of deformations. The atlas is called unbiased if it is cen-
tered, i.e. if it minimises (among all possible atlases) the sum of squared distances to the
shapes [Joshi et al., 2004]. In this sense, this is the Fréchet mean of the shapes. Then,
each shape is represented by the momentum of the deformation that allows to regenerate
the shape by deforming the atlas. These momentum all belong to the tangent space2 of the
diffeomorphisms at the identity, which is a vector space in which we can perform a PCA
[Vaillant et al., 2004]: shooting in the space of deformations along the �rst eigenvectors of
the covariance matrix of the momentum give deformation modes that represent the main

1We use the term "geodesic shooting" to de�ne the integration of the Euler-Lagrange equations, which
plays the role of the exponential map in Riemannian geometry

2More precisely to the cotangent space
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shape variability when applied to the atlas.

3.3.2 From Points to Surfaces: the Formalism of Currents

Landmarks can be encoded by the probability of their location in space (typically a Gaus-
sian around their expected value). When the noise is going to zero, then this pdf becomes
singular. However, we can continue to deal with these types of singularities by con-
sidering distributions (generalised functions) instead of functions, which include Diracs.
Mathematically, a Dirac is not a function, but an object which can be characterised by
the result of its integration against any function of a suf�ciently smooth functional space:
8 f 2 W;

R
dx(y): f (y):dy= f (x). This is actually an element of the linear functionals over

the space W. In that framework, a set ofN points xk can be represented by the `pdf'
p(x) = 1=Nå i dxk(x), and its evaluation on a functionf (x) results in the mean of the values
of f at the pointsxk.

When we move to curves and surfaces, we are dealing with the locally singular locus
of points in certain directions only: curves and surfaces are continuous along their tangent.
The extension of the notion of distributions that allows to take that information into account
is the geometric integration theory. The basic idea is to integrate differential forms, but for
objects like smooth surfaces in 3D, we shall simply de�ne currents by their action on vector
�elds, similarly to the way distributions are de�ned by their action on scalar functions.

3.3.2.1 Currents for Surfaces

LetW be a Hilbert space of vector �elds (a possibly in�nite complete vector space provided
with a scalar product). For a given surfaceS, we can measure the �ux of any vector �eld
w 2 W through this surface:

S(w) =
Z

x2S
hw(x) j n(x) i ds (x);

wheren(x) is the normal to the smooth surface at pointx2 Sandds (x) the surface element
around pointx. The shape of the surfaceS is characterised by the variation of the �ux as
the test vector �eldw varies inW. Thus, the surface actually de�nes a continuous linear
form onW which can be identi�ed to an element of the dual spaceW� , which is the space
of linear functionals fromW to R (currents). The nice property of currents is that it is
a vector space: we can add or subtract current from each others, or multiply them by a
scalar. However, we should keep in mind that the space of currents is larger than the space
of smooth surfaces: one can for instance add many pieces of surfaces together in a non
continuous way to create a non-continuous object.

Now that we have identi�ed surfaces to currents, we need to de�ne more carefully what
is the spaceW that we consider. The core element proposed by [Glaunès, 2005] is to con-
sider a Kernel metric (typically the Gaussian kernelKW(x;y) = exp(�k x� yk2=l 2

W)) in or-
der to turnW into a Reproducible Kernel Hilbert Space (RKHS). The reproducibility prop-
erty implies thatW is the dense span of basis vector �elds of the formwa

x (y) = KW(x;y)a .
This means that any vector �eld ofW can be written as an in�nite linear combination of
such basis vectors. The kernel induces a scalar product which is easily computed on two
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basis vectors:
D

wa
x

�
�
� wb

y

E

W
= a TKW(x;y)b . The kernel can be seen as a low pass �lter

which weights more heavily the high spatial frequencies of the vector �eldw than the low
frequencies (essentially penalising high frequencies).

SinceW is a Hilbert space, by the Rietz representation theorem, there exists an iso-
metric linear mappingL W from W to W� which maps to eachw 2 W the linear form that
reproduces the scalar product:(L W(w))( w0) = hw j w0i W. This canonical isomorphism
allows to de�ne the dual of an element, or conversely to map to each surface the vector
�eld that optimises the �ux. For instance, the dual of the above basis vectors are the Dirac
delta currentsda

x = L W(wa
x ) as we havehwa

x j w i W = a Tw(x). These can be seen as vec-
tor �elds whose spatial support is concentrated at one point only. The space of currentsW�

is the dense span of these basis elements. For instance, the surfaceSis represented by the
currentS=

R
x2Sdn(x)

x ds (x). The usual way to de�ne a norm on the dual space is to take the
operator norm:kSkW� = supw2W;kwk= 1 jS(w)j. The distance induced by this norm might
seem dif�cult to use, but thanks to the RKHS properties, we have a closed form for basis
vectors: D

da
x

�
�
� db

y

E

W�
= a TK(x;y)b2

D
da

x

�
�
� db

y

E

W
a Tb

It is interesting to notice that this distance can be approximated by

kda
x � db

y k2
W� = ka � bk2 + 2kx� yk2=l 2

Wa Tb + O
�

kx� yk4=l W
4
�

;

when the pointsx andyare within a fraction ofl W, while the distance is essentially constant
(and equal toka k2

L2
+ kbk2

L2
) when the pointsx andy are more than a fewl W apart. This

behavior is typical of a robust distance in statistics, meaning that outliers (over a fewl W

in distance) will have (almost) no effect on the optimisation of the distance between the
surfaces as it is an almost constant penalty.

In practice, surfaces are often represented by discrete triangulated meshes. Assuming
that each face has a support which is smaller thane times the scalel W, we can approxi-
mate the surface by the currentS= å k dak

xk
, wherexk is the barycenter andak the normal

weighted by the area of the face. From the above Taylor expansion of the distance, we can
see that the approximation error is less thane2 for each face in theW� norm.

The scalar product between two discrete currents is obtained by linearity:
*

å
k

dak
xk

�
�
�
�
� åj

db j
y j

+

W�

= å
k; j

a T
kKW(xk;y j )b j

and the distance between two discrete surfaces is simply dist2(S;S0) = kS� S0k2
W� .

3.3.2.2 Sparse Representation of Currents using Matching Pursuit Algorithm

Representing shapes using currents gives a nice theoretical framework that allows us to
compute simple statistics such as mean and principal modes. However, the complexity of
the distance computation is quadratic in the number of Dirac delta currents used to repre-
sent the shape. This number can be quite high if we take highly detailed surface meshes,
even though it adds nothing for the comparison of surfaces at a given scalel W. Therefore,
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in order to remain computationally as ef�cient as possible, we require a sparse representa-
tion of currents that retains the information needed for the scale of the analysis. This is the
essence of the matching pursuit algorithm as described in [Durrleman et al., 2009a].

In brief, the matching pursuit algorithm is a greedy approach for �nding an approxima-
tion of the currentT that solvesL � 1

W (T) = g, for a given vector �eldg 2 W. This amounts
to �nding N points(xk) and vectors(ak) such that the currentPk(T) = å N

k= 1dak
xk

is as close
as possible toT. If the points are known, thenP(T) is the orthogonal projection ofT onto
Span(deq

xk ;q = 1;2;3;k = 1:::N), whereeq is the canonical basis ofR3. The orthogonality
condition:hT;deq

xk i W� = hP(T);deq
xk i W� leads to a linear set of 3N equations

N

å
p= 1

(K(xi ;xp)a p)k = g(xi)k (3.1)

which can be solved iteratively over the continuous space of Dirac delta currents to �nd
the point positions(xk) as well as their associated momenta and the residual vector �eld.
Additionally, we can also sample the vector �eld on a gridL . Applying the matching
pursuit in the discrete case constrains the estimated momenta to lie on the nodes of the
grid which forces the estimated current to belong to a discrete set of currentsW�

L . This
simpli�es the problem in both complexity as well as computation time. Figure3.3shows a
sparse representation of the right ventricle.

Figure 3.3: The Dirac delta currents of a triangulated mesh are the normal vectors of every
face, centered at the face barycenters. A greedy algorithm reduces the amount of delta
currents needed to represent the shape while preserving the accuracy of the representation.

3.3.3 An Algorithm for Surface Registration using Currents

Having de�ned a non-parametric representation of surfaces, we now require an algorithm
to register one surface to another. Here, the term registration is meant to de�ne the ac-
tion of transforming two objects into the same co-ordinate system. Since we are com-
paring topologically similar shapes, the transformations are restricted to those which pre-
serve the topology of the object and give a smooth one-to-one (invertible) transforma-
tion (i.e. a diffeomorphism). The space of diffeomorphisms give non-linear deformations
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that allow local smooth variations to be captured in the registration. However, diffeo-
morphic transformations have an in�nite degree of freedom, therefore optimising over
the whole group of diffeomorphisms may not be possible. So, we use a smaller in�nite
group of diffeomorphisms to allow computations with discrete parameterisations using
the Large Deformation Diffeomorphic Metric Mapping (LDDMM) method described in
[Beg et al., 2005, Miller et al., 2003] for images.

The LDDMM framework uses a group of diffeomorphisms constructed through inte-
gration of time-varying vector �elds that belong to a RKHS. This gives a geodesic �ow of
diffeomorphismsf t for a continuous parametert within the interval[0;1]. At time t = 0,
we have the identity mappingf 0. The mapping at time 1 gives the desired transformation
f 1 which is required for mapping one image to the other. The path of any pointx is de�ned
by f t(x) and leads to the �nal positionf (x) = f 1(x). By following the reverse path, we can
compute the inverse deformation.

The basic idea of the LDDMM framework is to minimise the distance between objects
after transformation (this is the similarity energy or data attachment term) with a penalisa-
tion for the length of the deformation trajectory (which is the regularisation energy). A time
t, the speed at pointy = f t(x) is vt(y) = df t(y)=dt. This suggests to de�ne the energy of a
velocity �eld at deformationf t using a right-invariant metrickvtk2

f t
= kvt � f (� 1)

t k2
W, where

k:kW is the norm of the RKHS of the velocity �elds at the identity transformation. The
energy of the deformation trajectory is thusE(f t) =

R1
0 kvt � f (� 1)

t )k2
Wdt, and the optimal

curves joiningf 0 = Id to f 1 are geodesics in the space of diffeomorphisms. Since optimal
transformations are geodesics, we know that they are completely determined by their initial
value, here the velocity �eldv0(x) (or more specially the initial momentumK � 1

W v0). Denot-
ing f S the action of the transformationf on the source objectS, the registration criterion
to the target objectT is thus

C(f ) = dist(f 1S;T)2 +
Z 1

0
kvt � f (� 1)

t )k2
Wdt

For our surface registration problem, the objects are surfaces represented by their asso-
ciated currentsS andT and the distance is taken in the space of currentsW� . Since our
currents have a �nite point-wise support, we can show that the optimal initial momentum of
the deformation has the same point-wise support (ifS= å i dak

xk
, thenv0(x) = å i KW(x;xk)bk

for some set of vectorsbk), which means that we are left with a �nite dimensional optimi-
sation problem [Vaillant and Glaunes, 2005, Glaunès, 2005].

3.3.4 Building an Unbiased Atlas

For building the optimally centered atlas, we took the `forward' strategy that models
the set of surfaces as the deformation of an unknown `ideal' atlas plus some residuals
[Allassonnière et al., 2007, Durrleman et al., 2008a, Durrleman et al., 2009a]. This can be
expressed as:

Ti = f iT̂ + ei : (3.2)

for i patients, wherêT is the atlas we are estimating,f is the deformation that maps the
atlas to the surfacesT, ande represents the residuals (shape features not captured by the
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atlas such as changes in topology etc.). The mean shape information is described in the
atlasT̂ while the shape variability is encoded in the transformationf k.

The atlas is �rst initialised by taking the mean of the patient meshes. This initial atlas
is then registered to each of the patients individually. A new atlasT̂ that minimises the
error

L (T̂) = kTi � f i(T̂)k2
W� (3.3)

is computed. We then register the updated atlas to the individuals, recompute the atlas and
loop until convergence (see Algorithm1).

Algorithm 1 Atlas Estimation
Require: N segmented patient images (surface meshes).

1: Rigidly align meshes to a reference patient using rotations and translations.
2: Create initial atlaŝT0 as the mean of the patient meshes.
3: loop { over N until convergence}
4: Estimate the transformationsf k that register the atlaŝTN� 1 to the individualTk.
5: Update the atlas by minimising the error in8.7using the estimated transformations

f k and the atlaŝTN� 1

6: return Final atlasT̂N and the related transformationsf N
k .

3.4 Application on ToF Data

To demonstrate the usefulness of our statistical shape analysis in a clinical context, we
consider a population of patients with repaired tetralogy of Fallot.

As mentioned in the introduction, the clinical problem in rToF patients is in better
understanding the shape re-modeling over time to aid in determining the optimal time for
surgical intervention. In view of this problem, we are �rst interested in identifying the
clinically relevant shape patterns by investigating the relationship between shape and given
clinical indices. The assumption here is that changes in heart morphology may reveal
structural and functional dysfunctions due to the chronic regurgitation. In particular, we
aim to establish which shape patterns are related to the pathology in order to give further
insights into the condition. We can then go beyond the identi�cation of pathological shape
patterns, to estimate a predictive growth model of the heart to give an indication of how the
heart will grow and re-model in time for this pathology.

Making use of currents to represent shapes, and an atlas to give an average represen-
tation of the population, we can apply statistical methods to address key questions for
diagnosis, prognosis and prediction.

3.4.1 The Analysis Pipeline

Patient DataWe consider a data-set of thirteen patients (10 males, mean age� SD
= 19� 9) with repaired tetralogy of Fallot. Steady-state Free Precision cine MRI were
acquired using a 1.5T scanner (Avanto, Siemens AG, Erlangen) in the short axis view
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covering entirely both ventricles (10-15 slices; isotropic in-plane resolution: 1.1x1.1mm
to 1.7x1.7mm; slice thickness: 5mm to 10mm; 25-40 phases).

Surface Mesh DelineationIn the case of ToF patients, we are interested in studying
the shape of the left and right ventricles of the heart. Using the statistical shape analy-
sis methods described in the previous section, we can consider the ventricles as surfaces
represented by triangulated meshes. The surface meshes of the right and left ventricle en-
docardium (inner layer of heart tissue), and left ventricle epicardium (outer layer of heart
tissue) are de�ned using image segmentation by delineating the boundaries of each ventri-
cle at end-diastole using the methods proposed by Zheng et al. [Zheng et al., 2008] (see
Fig. 3.4). This method de�nes the delineated boundaries using an anatomical model and
thus establishes a point correspondence between meshes. Therefore, in this instance we
used a standard least-squares method to �rst rigidly align the surface meshes to reduce the
effect of patient positioning.

Figure 3.4: Delineated boundaries of the right ventricle (pink), left ventricle endocardium
(green) and left ventricle epicardium (yellow) shown on one image slice (left) and the 3D
reconstruction (center and right).

Mean Atlas ConstructionUsing the algorithm for computing a mean shape with the
currents method described in Section3.3, we estimated an atlas for the ToF data, see Fig.
3.5. Eleven iterations of the alternate minimisation for the shape atlas (Algorithm 1) were
needed to reach convergence. The resulting atlasT̂ was well centered (mean over standard
deviation of the deformations was0.36946). Atlas-to-patient registration is implemented
in parallel on a cluster of computers, which means that the atlas creation time is minimally
dependent of the number of patients used to create it.

3.4.2 Diagnosis Parameters

A key topic in computational shape analysis is identifying pathologically speci�c shape
features in populations of diseased patients compared to controls (see [Cates et al., 2008]
and references therein for instance). Beyond simply identifying the pathological shape
features, we would like to also quantify the degree to which the shape is altered due to the
pathology. One way in which this can be done is by correlating the shapes with clinical
features to determine the severity of the disease, which requires a consistent representation
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Figure 3.5: Three views of the mean atlas estimated from 13 patients with repaired ToF with
the right ventricle in blue, left ventricle endocardium in white and left ventricle epicardium
in wire-frame.

of the patient shapes. For this we use �rstly principal component analysis (PCA) to extract
the main modes of shape variation followed by standard statistical design to exhibit those
that are correlated to the pathology (see Fig.3.6top row).

Figure 3.6: Shape analysis pipeline with both clinically relevant model reduction and
growth model generation. Using PCA modes and standard correlation analysis, the patho-
logical shape patterns can be identi�ed. Using a combination of PLS regression and CCA
a statistical generative growth model can be derived.

3.4.2.1 Model Reduction using Principal Component Analysis

Since statistical shape analysis is a high dimensional problem with a large number of pa-
rameters and variables to solve for (despite the matching pursuit reduction, a shape can still
be represented by hundreds of moments), we �rst reduce the dimension of the problem by
applying principal component analysis (PCA). This gives the modes of deformation that
describe the amount of variation of shape observed in the population.

PCA is applied on the initial velocity �eldsv(i)
0 to extract the main deformation modes
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observed in the population. PCA �nds basis vectors, the modes, of the space of variables
(here the initial velocities) that best explain their variance. The modesp are calculated by
solving the eigenvalue problemSp = mp, where the elementss i j of the covariance matrix
S are calculated in the kernel spaceW. Assuming that the deformation from the atlas to
patienti is parameterised by the initial vector �eldv(i)

0 (x) = å k KW(x;xk)b
(i)
k , where thexk

are the point positions of the delta Dirac currents of the atlas, andb (i)
k the moment vector

at xk, then the mean initial vector �eld is ¯v0(x) = å k KW(x;xk)b̄k and the covariance is

s i j = < vi
0 � v̄0;v j

0 � v̄0 > V= å
k;l

(b (i)
k � b̄k)KW(xk;xl )(b ( j)

l � b̄l ) (3.4)

The principal components are obtained by computing the spectral decompositionS =
PMPT . M is the diagonal matrix of the eigenvaluessm, or variances, sorted in decreas-
ing order andP is the orthonormal matrix (in theL2 -norm sense) of the eigenvectorspm.
Themth loadinglm of the PCA decomposition is given by the formula:

lm = å
i

pm[i]b (i) (3.5)

In this equation,pm[i] is the ith element of themth eigenvector ofS, b (i) = ( b (i)
1 �

b̄1; :::b (i)
n � b̄n)T is then� 3 matrix that gathers then centered moment of patienti. As a

result, the initial velocity �eld of themth mode isv0lm(x) = å k KW(x;xk)lm. The variability
captured by thismth deformation mode between[hs m;+ hs m] is visualised by deforming
the atlasT with the deformationsf � m andf + m parameterised by the momentsb̄ � h lm

andb̄ + h lm respectively. Selecting the �rstp modes only among theN� 1 possible modes
(whereN is the number of patients) allows to explain a percentageå p

m= 1s m=trace(S) of
the total variance.

The orthogonal projection of each patient's initial velocity �eld onto the selected PCA
subspace gives a unique shape vector. This simply corresponds to the coordinates of the
projection in the basis constituted by the chosen eigenmodes:

si;m = < v(i)
0 � v̄0;v0lm > W= å

j ;k
[b (i)

j � b̄ ]KW(x j ;xk)lm
k (3.6)

Using PCA we have reduced the amount of data needed to represent the shape of a patient
by two or more orders of magnitude. The precision of the representation is controlled by the
number of components of the PCA subspace. However, it has to be observed that modes
with low variances may still be relevant to external clinical parameters. For instance, a
mode that captures a local bulging is probably more related to the pathology than a global
scaling of the shape although this bulging is not very visible in the population and could be
considered as noise in the model. Consequently, we are fairly conservative in the selection
of the PCA subspace and select the modes based on their relationship with the clinical
parameters of interest and not their variance, as described in the following sections.

3.4.2.2 Identifying Factors Between Shape and Clinical Features

Thesi;mâ�AŹs quantify the amount of variability along themth mode present in patient defor-
mation. We can thus investigate the heart shape by relating these shape vectors to clinical
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parameters that quantify the pathology. Ordinal clinical parameters are investigated using
non-parametric rank-based statistics. Kruskal-Wallis analysis of variance is applied to �nd
effects between the investigated parameters and shape [R Development Core Team, 2009].
If an effect is found, post-hoc two-sample Wilcoxon test is used to determine which lev-
els differ [R Development Core Team, 2009]. Continuous clinical parameters are inves-
tigated using linear regression and Akaike Information Criterion (AIC) model reduction
[Akaike, 1974] to detect relevant modes and the direction of correlation.

To illustrate this method, in [Mansi et al., 2011b] we showed that these methods enable
one to identify shape features related to the severity of the regurgitation for a data-set of
49 repaired ToF patients. The relationship between RV shape and pulmonary regurgitation
were investigated by relating the PCA shape vectors with tricuspid regurgitation, trans-
pulmonary valve regurgitation and pulmonary regurgitation volume indices taken from
colour Doppler ultrasound and phase-contract magnetic resonance images (PC-MRI). 90%
of the spectral energy was explained by 18 PCA modes.

3.4.3 Building an Evolution Model

As explained beforehand, understanding and quantifying heart remodelling in these pa-
tients is crucial for planning pulmonary valve replacement. Given that there is a lack of
longitudinal data available for these patients, we make use of the atlas as the mean of the
population and cross-sectional statistics to formulate a generative growth model. Such a
model could be used as reference, from which the pathology evolution of one patient could
be quantitatively compared. In cross-sectional statistical design, one does not propagate
the evolution over time for a single patient but rather considers each patient as an instance
in the growth evolution. In this way we can model the growth of the population given these
instances using regression analysis (see Fig.3.7). By making use of the initial velocitiesvi

0
that parametrise the deformationsf i computed using the methods described in the previ-
ous sections, we can regress the velocities against an index of patient growth using standard
statistical techniques.

Figure 3.7: Cross-sectional regression of shapes. Each patient is associated to a point in
time (patient age for instance). A regression model is derived from the temporal data.

In order to obtain statistically signi�cant results, we �rst need to reduce the dimen-
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sionality of the problem to consider just the factors related to patient growth, while also
removing any co-linearity between factors. In the previous section the model reduction
was performed using PCA. In this case we chose instead to use partial least squares (PLS)
regression since it has the added advantage of computing the components that are most
related to a given external parameter (i.e. patient growth). Using PLS allows us to compute
the components that best describe the variance of both the matrix of predictors (X) and the
matrix of responses (Y), as well as the covariance betweenX andY, in a manner such that
the regressionY = f (X) is optimal.

In the case of ToF patients, we would ideally like to model the atlas deformation of
a patient as a function of growth (i.e.de f ormation= f (growth), however solving this
problem is not possible due to the large number of deformation parameters that would
need to be predicted with a single, one-dimensional, parameter (growth). Rather, we revert
the problem to be a function of the deformations:growth= f (de f ormations) which has a
much lower number of parameters to predict. The outputted values are then projected onto
the reduced PLS subspace and from that we can revert the problem to the desired form
as a function of the shape using canonical correlation analysis (CCA) to give a generative
growth model of the heart.

For this example we use body surface area (BSA) as the index of growth rather than
patient age to better represent the growth given the variable age at which children enter
puberty. We use the Dubois formula [DuBois and DuBois, 1915] to compute the BSA for
each patient:

BSA(m2) = 0:007184� weight(kg)0:425� height(cm)0:725 (3.7)

The pipeline we have just described for computing a generative growth model is shown in
Fig. 3.6(bottom row).

3.4.3.1 Model Reduction using Partial Least Squares Regression

As introduced in the previous section, regression using the partial least squares regression
(PLS) method is based on �nding an optimal basis of the predictor variablesX that max-
imises the variances ofX andY as well as their covariances. The method can be considered
as the optimal estimation of two weight vectorsr ands that satisfy

max
jr j= jsj= 1

cov(Xr;Ys) = max
jr j= jsj= 1

var(Xr)corr(Xr;Ys)2var(Ys) (3.8)

under the constraint that the regression betweenX andY is optimal. Mathematically, the
centered variablesXc = X � X̄ andYc = Y � Ȳ are modeled by

Xc = TPT + E

Yc = UQT + F

whereT andU are the matrices of the PLS modes,P and Q are the loading matrices
which describe the weight of each variable inX andY respectively andE andF are the
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residual terms which are the same size asXc andYc respectively. Additionally the following
regression condition is imposed for the PLS modes:

U = TD+ G (3.9)

whereD is a diagonal matrix of weights andG a matrix of residuals. Due to this added
condition, the PLS loadingsP andQ are not necessarily orthogonal as is the case for PCA
modes.

Algorithm 2 Partial Least Squares Regression (PLS)
Require: Variables X and Y, number of componentsp � N � 1.

1: X0
c = X � X̄, Y0

c = Y � Ȳ
2: for n = 1 to pdo
2: rn  �rst eigenvector ofXn

c
TYn

c Yn
c

TXn
c

2: tn  Xn
c rn=k rn k nth PLS component of X

2: sn  Yn
c tn=tnTtn

2: un  Yn
c sn=k sn k nth PLS component of Y

2: pn  Xn
c tn=tnTtn nth loading of X

2: qn  Yn
c un=unTun nth loading of Y

2: Xn+ 1
c  Xn

c � tnpnT de�ation of Xc

2: Yn+ 1
c  Yn

c � tn[tnTYn
c =tnTtn de�ation of Xc

3: return T = ( tn)n= 1:::p, P = ( pn)n= 1:::p, U = ( un)n= 1:::p, Q = ( qn)n= 1:::p

Several algorithms have been proposed to compute the PLS modes. In this work, we
use the PLS1 method, an ef�cient iterative algorithm that does not require matrix inversion
as summarised in Algorithm2. X is the matrix of the initial velocity �eld moments for all
patients andY is the vector of the BSA values for all patients. The �rst �ve PLS modes
are shown in Figure3.8 and the explained variance and correlation of modes is shown in
Figure3.9. These modes account for 99% of the covariance between shape and BSA in
the population and 61% of the shape variability and are oriented along increasing BSA.
Visually we can see that Modes 1 and 3 display an overall dilation in both the left and
right ventricles. The second mode shows a narrowing in the right ventricular out�ow tract
with a noticeable dilation in the left ventricle which can be seen in the top view of the
mode. Modes 4 and 5 show an elongation at the right ventricular out�ow tract. Mode 5
also shows an aneurysm in the right ventricle out�ow tract which is characteristic of ToF
patients, although it is still not clear if this is due to pulmonary regurgitations (although
both are correlated) or the initial surgical patch.

3.4.3.2 Generating a Growth Model using Canonical Correlation Analysis

Using PLS as described above allows us to predict BSA given the shape, however what
we would like is to estimate the shape given BSA. To reverse the relationship we use
canonical correlation analysis (CCA) on the PLS shape vectors (thet0

i s of Algorithm 2).
CCA computes the vectorsr ands that maximise the correlation between the two setsX
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Figure 3.8: The �rst �ve PLS modes of variation that describe 99% of the observed BSA
variability and 61% of the observed shape variability in the population.

andY:
max

jr j= jsj= 1
corr(Xr;Ys)2 (3.10)

whereY is the vector of BSA values andX = [ t1; : : : tN]T is the matrix of shape descriptors.
If we de�ne the covariance matricesVUZ = 1

N� 1UTZ, then the matrix G =

V � 1=2
XX VXYV � 1=2

YY can be seen as a multi-variate generalisation of the uni-dimensional cor-
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Figure 3.9: Cumulative variance of PLS modes with respect to shape and BSA (left panel)
and CCA correlation coef�cients between BSA and PLS modes with exponential �tted
curve in black (right panel).

relation coef�cientr = sXY=
p

sXXsYY. The sought correlations are obtained by SVD de-
composition ofG:

G= ASBT (3.11)

S is the diagonal matrix of the correlation coef�cients between correlation vectors and A
and B are rotation matrices of correlation vectors, i.e.ATA = BTB = Id. In our application,
Y is a one-column matrix. Hence, S has only one non-null coef�cient R, which is the
overall correlation between the PLS shape vectors X and BSA. B is a scalar equal to� 1 that
determines the direction of BSA correlation. The elements of the �rst correlation vector
of A, denoted byr , relate to the amplitude and direction of correlations of each predictor,
namely each PLS mode, when Y varies along the direction de�ned by the sign of B. In other
words, when BSA varies by 1, thekth predictor varies byBRr [k]. We can therefore compute
a generative average model of heart growth by arti�cially increasing BSA and deforming
the atlas T with the growth deformationF parametrised by the momentsm= B:R:Skr [k]pk,
wherepk is thekth PLS loading.

3.4.3.3 Interpretation

The growth model computed on the ToF data-set is shown in Fig.3.10. This model shows
an expected overall growth of both ventricles as body surface area increases. We can also
see the caving of the septum into the right ventricle as time passes and the elongation of
the right ventricular out�ow tract which is observed in these patients over time.

Given a larger data-set this model can be improved further by increasing the certainty
in the model and by capturing more variability in shape observed in a wider population. As
well, given more data we can divide the patients according to an external parameter such
as treatment group to formulate a growth model for a given course of treatment. In the case
of ToF, this could allow clinicians to have a better idea of how the heart re-models after
different types of valve replacement surgery and more importantly, the effect of the initial
surgery on the long-term outcome. This is the key question.
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Figure 3.10: Mean growth model computed from a population of 13 rToF patients. Both
ventricles grow as BSA increases

3.5 Conclusion

In this chapter we presented methods for computing statistics on shapes. The proposed
methods rely on currents to represent the anatomical shapes in a consistent way without
the need for de�ning landmarks or point correspondences between shapes. This allows
the computation of population statistics such as the mean and variance observed within a
population and to correlate shape with clinical indices, for instance to quantify the severity
of a disease. We also present a framework for formulating a generative statistical growth
model to simulate the growth of an organ over time. This is especially important for our
clinical application where understanding the shape remodeling of the heart in congenital
diseases like Tetralogy of Fallot is crucial to better understand the evolution of the disease
and ultimately to aid for therapy planning.
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In Part I of this thesis the question of modelling cardiac growth over time was addressed
by formulating a generative model of growth using statistical methods. Part II of this
thesis is rather aimed towards a group-wise model of cardiac motion. This chapter is a
�rst step towards this goal as a pre-requisite to the following chapters of this section to
test state-of-the-art cardiac motion tracking algorithms for benchmarking and comparison.
The �rst section of this chapter (Sec.4.2) was published in [McLeod et al., 2012a] and
contributes to the work published in [Tobon-Gomez et al., 2013]. Sec. 4.3 is based on
the work published in [Prakosa et al., 2012a] (note that the description of the iLogDemons
method has been removed, to avoid repetition).

4.1 Chapter Overview

Quantifying current methods for cardiac image registration was a key element of this work
to analyse the state-of-the-art methods in order to identify the important features needed in
future methods, and to benchmark future methods by providing quantitative analyses and
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comparisons to previous methods. To this end, the incompressible LogDemons method
(iLogDemons for short), was tested on a real data-set of healthy volunteers in the STACOM
MICCAI cardiac motion tracking challenge of 2011 (Sec.4.2) and to a data-set of synthetic
sequences in the STACOM MICCAI cardiac motion tracking challenge of 2012 (Sec.4.3).

4.2 Application to Real Sequences from Healthy Volunteers

The application of the previously proposed iLogDemons algorithm to the STACOM
motion-tracking challenge data is described. The iLogDemons algorithm is a consistent
and ef�cient framework for tracking left-ventricle heart tissue using an elastic incompress-
ible non-linear registration algorithm based on the LogDemons algorithm. This method
has shown promising results when applied to previous data-sets. Along with having the
advantages of the LogDemons algorithm such as computing deformations that are invert-
ible with smooth inverse, the method has the added advantage of allowing physiological
constraints to be added to the deformation model. The registration is entirely performed in
the log-domain with the incompressibility constraint strongly ensured and applied directly
in the demons minimisation space. Strong incompressibility is ensured by constraining the
stationary velocity �elds that parameterise the transformations to be divergence-free in the
myocardium. The method is applied to a data-set of 15 volunteers and one phantom, each
with echocardiography, cine-MR and tagged-MR images. We are able to obtain reasonable
results for each modality and good results for echocardiography images with respect to
quality of the registration and computed strain curves.

4.2.1 Methodology

4.2.1.1 Cardiac Motion Tracking using Physiological Constraints

Tracking cardiac motion from 3D images is a dif�cult task due to the complex movement
of the myocardium through the cardiac cycle. The left ventricular (LV) movement includes
a contraction of the ventricle with a longitudinal motion towards the apex as well as a
twisting motion from the base of the ventricle in the circumferential direction. Common
methods for motion tracking using non-rigid registration are able to capture the dilation of
the ventricle, however capturing the twisting motion is a dif�cult task. The incompressible
log-domain demons algorithm described in [Mansi et al., 2011a] (iLogDemons for short)
aims to tackle this problem by imposing physiological constraints (such as incompress-
ibility and elasticity in the myocardium) in the previously proposed log-domain demons
algorithm (LogDemons) [Vercauteren et al., 2008]. For the purpose of this work we don't
provide here a state of the art on cardiac motion tracking algorithms, but rather refer the
reader to [Mansi et al., 2011a] and references therein. We apply the iLogDemons method
to a 3D data-set of 15 volunteers and one phantom with echocardiography, cine-MR and
tagged-MR image sequences. The method is described here in brief, for a more thorough
and descriptive analysis see [Mansi et al., 2011a].
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4.2.1.2 Review of the Log-Domain Demons Algorithm

The iLogDemons algorithm is an extension of the LogDemons algorithm
[Vercauteren et al., 2008]. The LogDemons algorithm estimates a dense non-linear
transformationf that best aligns a template imageT to a reference imageR. The
transformationf is parameterised by stationary velocity �eldsv through the expo-
nential mapf = exp(v) [Arsigny et al., 2006]. The imagesR and T are registered
by minimising in the space of velocities (the log-domain) the energy functional:
e(v;vc) = 1=s 2

i k R� T � exp(vc) k2
L2

+ 1=s 2
x k log(exp(� v) � exp(vc)) k2

L2
+ 1=s 2

d k Ñv k2,
wheres 2

i relates to the noise in the images ands 2
d controls the regularisation strength. The

velocity �eld v parameterises the transformationf , andvc parameterises an intermediate
transformationf c = exp(vc) that models thecorrespondencesbetween the voxels of
the two images. During theoptimisation step, e(v;vc) is minimised with respect tovc.
Under the diffeomorphic update rulef c  f � exp(dv), the optimal update velocity writes
dv(x) = ( R(x) � T � f (x))=(k (J(x) k2 + s i=s (x))J(x). In this equation,J(x) is the
symmetric gradientJ(x) = ( ÑR(x) + Ñ(T � f )(x))=2. The correspondence velocityvc is
then updated using the �rst order approximation of the Baker-Campbell-Hausdorff (BCH)
formula vc = Z(v;dv) = v + dv + 1=2[v;dv] + 1=12[v; [v;dv]] + O(k dv k2), where the
Lie bracket[�; �] is de�ned by[v;dv] = ( Ñv)dv � (Ñdv)v. Finally, theregularisation step
estimates the optimal regularised transformationf by minimisinge(v;vc) with respect to
v, which is approximated by smoothing the correspondence velocityvc with a Gaussian
kernelGs .

4.2.1.3 Modeling Elasticity in the Myocardium

In order to incorporate an elastic regulariser into the LogDemons framework, a con-
sistent mathematical formulation of the LogDemons regularisation is required. In
[Mansi et al., 2011a] a closed-form expression of the demons Gaussian regulariser
ereg(v) = 1=s 2

x k log(exp(� v) � exp(vc)) k2
L2

+ 1=s 2
d k Ñv k2 is given by linearising the �rst

term using the BCH formula and replacing the second term with the in�nite sum Tikhonov
regulariser. We could then replace the Gaussian regulariser by an elastic-like one, in a
consistent way. The proposed elastic regulariser amounts to �ltering the correspondence
velocities by the elastic-like kernel:

v =
�

Gs Id +
s 2k
1+ k

HGs

�
?vc = Gs ;k ?vc (4.1)

wheres 2 = 2=s 2
d , HGs is the Hessian of the Gaussian kernelGs andGs ;k is the elastic-

like vector �lter. In this formulation,k > 0 penalises the global compressibility, and setting
k = 0 gives the Gaussian �lter used in the LogDemons algorithm.

4.2.1.4 Incorporating Strong Incompressibility in the Myocardium

Incorporating incompressibility into the LogDemons consists in constraining the velocity
�elds v to be divergence-free. Demons optimisation step is not modi�ed, as it optimises
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vc only, but demons regularisation energy is now optimised under the divergence-free con-
straint, which amounts to minimising the Lagrange function:

P(v; p) =
1

s 2
x

k vc � v k2
L2

+
Z

W

+ ¥

å
k= 1

Qk
el(v)

s 2
x s 2k

d

�
2

s 2
x

Z

W
pÑ� v: (4.2)

whereQk
el is the kth order isotropic differential quadratic form (IDQF) of a vector �eld

v de�ned by Qk
el(v) = akdi1:::ikvik+ 1di1:::ikvik+ 1 + bkdi1:::ikvik+ 1di2:::ikvi1. In this equation, the

Lagrange multiplierp is a scalar function of the Sobolev spaceH1
0(W) that vanishes at

in�nity. The second term is the elastic-like regulariser that leads to the �lter previously
mentioned. We refer the reader to [Mansi et al., 2011a] for details.

Optima of (4.2) are found by solvingdvP(v; p) = 0:

v+
¥

å
k= 1

(� 1)k

s 2k
d

(akDkv+ bkDk� 1ÑÑTv) = vc � Ñp (4.3)

with p = 0 at the domain boundariesdW. The divergence of (4.3) under the optimal condi-
tion Ñ� v = 0 yields the Poisson equationDp = Ñ� vc with 0-Dirichlet boundary conditions,
which can be solved independently ofv to get p. The right hand side of (4.3) is thus the
L2 projection ofvc onto the space of divergence-free vector �elds. Computationally, the
divergence-free constraint on the velocity �elds is enforced by smoothing the velocity �eld
then projecting onto the space of divergence-free velocity �elds. This is theoretically the
same as projecting onto the space of divergence-free velocity �elds then smoothing the
results since convolution and derivatives commute (up to issues at the boundary).

Algorithm 1 summarises the main steps of the method. Implementation of this algo-
rithm is described in the following section. A more thorough description of the derivations
of the previous equations can be found in [Mansi et al., 2011a].

Algorithm 3 iLogDemons: Incompressible Elastic LogDemons Registration

Require: Stationary velocity �eldv0. Usuallyv0 = 0 i.e. f 0 = Id.
1: loop { over n until convergence}
2: Compute the update velocity:dvn (see [Mansi et al., 2011a]).
3: Fluid-like regularisation:dvn  Gs f ?dvn , Gs f is a Gaussian kernel.
4: Update the correspondence velocity: vn  Z(vn� 1;dvn) (see

[Vercauteren et al., 2008]).
5: Elastic-like regularisation:vn  Gs ;k ?vn (see [Mansi et al., 2011a]).
6: Solve:Dp = Ñ� vn with 0-Dirichlet boundary conditions.
7: Project the velocity �eld:vn  vn � Ñp.
8: Update the warped imageT � f n = T � exp(vn).
9: return v , f = exp(v) andf � 1 = exp(� v).

4.2.2 Implementation

The algorithm has been implemented using ITK and the open source implementation of
the LogDemons algorithm [Dru and Vercauteren, 2009]. The Poisson equation (which is
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Input parameters: Echo Cine Tag
Multi-resolution levels (frame-by-frame registration) 3 2 2
Multi-resolution levels (re�nement step) 2 1 1
Number of iterations / level 100 100 100
Sigma (update �eld) inmm 0.5 0.5 0.5
Kappa (update �eld) inmm 0 0 0
Sigma (stationary velocity �eld) inmm 0.5 2 2
Kappa (stationary velocity �eld) inmm 1 1 1
Incompressibility update �eld (0-Disable,1-Enable) 0 0 0
Incompressibility velocity �eld (0-Disable,1-Enable) 1 1 1

solved at the incompressible domain) is discretised on the image grid using �nite difference
schemes [Simard and Mailloux, 1988] as the incompressible domainGmay be of irregular
shape. Image gradients are computed with periodic boundary conditions over the entire
image domain [Dru and Vercauteren, 2009] and the Gaussian �lters are implemented with
ITK recursive �lters.

Despite the additional constraints, the complexity of the algorithm remains reason-
able with respect to the LogDemons algorithm. Demons update velocity is computed at
each voxel. The elastic-like �lter is computed using Gaussian convolutions, therefore no
signi�cant overhead is added to the original Gaussian �ltering. The complexity of the
divergence-free projector directly depends on the number of voxels of the incompressible
domainG.

The algorithm requires computing i) the divergence of the velocity �eld, ii) the gradient
of the pressure �eldp, and iii) solving a linear system withn� n elements, wheren is the
number of voxels of the incompressible domain. The divergence and gradient operators
are linear in the number of voxels. The Poisson Equation is solved at each iteration using
iterative solvers like GMRES [Saad, 2003].

The codes are written in C++ and require as input the �xed image �le and moving
image �le, as well as optional input of the mask image �le, and registration parameters. The
parameters used in the registration are summarised in the table below. These values were
chosen based on tests performed on similar data-sets that concluded that the key parameter
of interest iss , which de�nes the weight of the Gaussian smoothing of the velocity �eld (in
mm). The original voxel size of the images are0:67� 0:68� 0:58 for echocardiography,
1:25� 1:25� 8 for cine-MR and 0:96� 0:96� 0:96 for tagged-MR. The choice ofs is
generally based on the voxel size to be around 1-2 times the largest original voxel size.
Given the large difference in voxel size for cine-MRs was a trade-off between the largest
and smallest voxel size. More levels were used for the echocardiography sequences to
speed up convergence of the simulation. This could also be done for the cine-MR sequences
but was not considered necessary in this case. For the tagged-MR sequences, increasing
the number of multi-resolution levels can remove the tags from under-sampling.
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4.2.3 Image Pre-Processing

In order to apply the algorithm to the different data types, some pre-processing is needed
to prepare the data. The method is de�ned in a way such that the user can give as input a
region (which we de�ne as a binary image with value 1 in the incompressible region and
value 0 outside) where the incompressibility constraint is imposed. This region is de�ned at
one time-frame only (end diastole). If no input is given the entire image is constrained to be
incompressible, otherwise the user can turn off the incompressibility constraint (giving the
standard LogDemons algorithm). Therefore, in order to use the iLogDemons algorithm, we
need to de�ne the region where we impose the incompressibility constraint by delineating
the left ventricle myocardium using image segmentation tools (since in this case we are
interested in the deformation of the left ventricle). Note that for the cine-MR sequences we
segmented also the right ventricle since it is clearly visible in all the images and provides
added information to the registration.

Myocardium Segmentation to De�ne the Incompressible Region For each image se-
quence we used an interactive 3D segmentation tool that builds a 3D mask image and mesh.
Control points are added by the user to de�ne the inside, outside, and border of the region,
from which a 3D mesh is constructed using an implicit variational surfaces approach. The
tool is included within the CardioViz3D software package available for download1. For
further details on the tool see [Mansi, 2010]. We segmented the LV endocardium and the
LV epicardium and then applied arithmetic tools to obtain the LV myocardium image. We
then dilate the resulting mask to ensure that the full myocardium is covered and to avoid
possible boundary effects. The incompressibility domain is shown in yellow for each of
the the imaging modalities (see Fig.4.1). A screenshot of the segmentation tool is shown
in Fig. 4.2.

Figure 4.1: The incompressibility domain shown on a cine-MR image (left), tagged-MR
image (center) and echocardiography image (right). This domain de�nes where the incom-
pressibility constraint is enforced in the registration algorithm.

1http://www-sop.inria.fr/asclepios/software/CardioViz3D/
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Figure 4.2: A screenshot of the interactive segmentation tool in CardioViz3D which can
be downloaded fromhttp://www-sop.inria.fr/asclepios/software/CardioViz3D/. The tool
requires the user to place control points, from which a surface is build using implicit vari-
ational surfaces approach.

Isotropic Resampling The cine-MR images have anisotropic voxel sizes. To correct for
this, we re-sampled the voxels to be isotropic in all directions. Isotropic voxel size improves
the registration since the transformation is de�ned on a grid with enough resolution to avoid
"aliasing" effects (as is true for any demons algorithm). The echocardiography and tagged-
MR image sequences had already isotropic voxels.

Contrast Enhancement To enhance the image contrast we clamped the tails of the grey-
level histogram to exclude the 1st and 99th quantiles. The grey level intensities were then
normalised for each slice using a �xed scale. This was done for each image in the sequence
independently. An example of the before and after image is shown in Fig4.3. This pro-
cessing also reduced the effects of tag fading, thus further improving registration results.

4.2.4 Application to Challenge Data

The algorithm was applied to a data-set of 15 volunteers and one phantom, each with cine-
MR, tagged-MR and echocardiography images. The resulting deformation �elds for each
modality are included in the motion tracking challenge. To demonstrate the performance
of this method we show the results for each modality for one patient from the data-set of
15 volunteers as well as the results for the phantom data. Similar results were obtained for
the remaining volunteers.
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Figure 4.3: Original image (left) and processed image (right) after histogram clamping and
normalisation to improve image contrast.

4.2.4.1 Results for Echocardiography Sequences

The method was �rst applied to echocardiography image sequences. In this case, the im-
ages show well the endocardium (inside the heart) but the epicardium is dif�cult to see,
particularly in the free wall. However, the motion is more apparent in the echocardiogra-
phy sequences than in cine-MR due to the speckle that is "stitched" to the muscle and thus
follows it as the heart deforms, though this speckle is consistent only between few time
frames. Figure4.4 (�rst two rows) shows one patient image at full contraction (systole)
with the mask propagated using the deformation �eld computed in the registration over-
laid on the image and similarly for the phantom. The masked deformation �eld is shown
on the patient and phantom at full contraction to illustrate the direction and magnitude of
motion. In each case the registration captures the expected longitudinal contraction, and
circumferential twisting of the ventricle. We can also observe that, although it is dif�cult
to distinguish clearly the epicardium for this modality, the algorithm is able to produce
reasonable strain curves, as shown in Fig4.5.

4.2.4.2 Results for Cine-MR Image Sequences

The algorithm was applied to the short-axis cine-MR images. These images show clearly
the myocardium, though there is little information in the apex due to too few slices in
the through plane. The algorithm is able to capture a realistic motion of the myocardium,
as shown in the middle two rows of Fig4.4. The strain curves for cine-MR are under-
estimated mainly due to lack of texture information in the images but show the expected
trends (increase in strain towards peak systole, followed by decrease at rest (see Fig4.5).

4.2.4.3 Results for Tagged-MR Image Sequences

As expected, the tagged-MR registration captures the twisting motion of the myocardium
very well, this is particularly evident in the phantom (see Fig4.4bottom row second to the
right), as well as the longitudinal contraction. The strain curves for the tagged-MR data
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shown in Fig4.5 show a reasonable trend, however the standard deviation over the given
regions is high in this case.

4.2.5 Strain Estimation

The strain curves in each of the 17 AHA regions in each of the radial, circumferential and
longitudinal directions were computed for each of the modalities. The strain was computed
using the 3D Lagrangian �nite strain tensor

E(x) =
1
2

[Ñu(x)+ ÑuT(x)+ ÑuT(x)Ñu(x)] (4.4)

for the estimated displacementu(x) from the iLogDemons registration at the spatial posi-
tions x. The computed strain tensors were then projected onto a local prolate coordinate
system as described in [Mansi et al., 2011a].

The strain curves for each modality in each direction are shown in Fig4.5. The curves
show a good consistency between the modalities in respect to curve trends, with the strain
rising to a peak in the middle of the cycle at peak systole, and decreasing back towards
zero (note that the curves are not temporally synchronised). The curves for the echocar-
diography sequence show a good agreement to those previously found for cine-MR and
tagged-MR presented in [Mansi et al., 2011a]. However, the curves for the cine-MR se-
quence show less consistency with previously published results in [Moore et al., 2000], as
they are under-estimated in all directions. Possible reasons for this could be too much
smoothing, a lack of texture information, poor image resolution or errors in the tracking.
The curves of the standard deviation among the zones shown are similar to the mean curves
shown in green, which displays the consistency among the AHA regions which is expected
in healthy subjects with synchronised movement among the regions. Note that here we
exclude the apical regions since the apex is not clearly visible in all images.

4.2.6 Discussion

In general, this method provides reasonable results for tracking the myocardium in the three
modalities. In particular, the method gives good results for the echocardiography sequences
for both the tracking and estimation of strain even given data with poor visibility and little
structural information. The method is particularly useful for cardiac motion tracking due
to the fact that it can be applied to the imaging modalities that are most commonly used in
cardiology.

4.2.6.1 Incompressibility Constraint

We discuss here the advantages and disadvantages of enforcing the incompressibility con-
straint in the myocardium. The constraint was integrated into the LogDemons method
initially to be used on cine-MR sequences, which are known to exhibit only apparent mo-
tion in the image. For this reason, it seemed natural to constrain the myocardium to be
incompressible to reduce the number of unknowns to force a circumferential and longi-
tudinal deformation when there is a radial contraction/expansion. In the case of echocar-
diography sequences and tagged-MR sequences, there is more texture information in the
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Figure 4.4: Top row: Long axis and short axis views of echocardiography images for one
patient (left two columns) and the phantom (right two columns) shown at full contraction
overlaid with the mask deformed by the deformation computed using iLogDemons. Second
row: Two views of the computed deformation �eld (normal of intensities and vectors)
shown only in the mask region for one patient image (left columns) and the phantom (right
columns). Similarly for cine-MR (third and fourth rows) and tagged-MR (�fth and sixth
rows). For each modality a realistic motion is obtained (rows one, three and �ve), as well
as the desired direction and magnitude of motion (rows two, four and six), particularly for
the phantom. In particular, the longitudinal motion captured by the algorithm can be seen
by the vectors pointing downwards towards the apex in the long axis views of rows two,
four and six, and the circumferential motion can be seen in the short axis views where the
vectors appear to be wrapping around the muscle to an extent.
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Figure 4.5: Strain curves in the radial (left), circumferential (middle) and longitudinal
(right) directions for echocardiography sequence (top row), cine-MR sequence (middle
row) and tagged-MR sequence (bottom row) for one subject. Mean (solid line) and standard
deviation (dashed line) are shown for one patient in green, and the mean and standard
deviations for systolic strain reported in [Moore et al., 2000] are shown in blue. Note that
the curves have not been temporally synchronised. We can see that the magnitudes are
under-estimated, though the curve trends are consistent with what is expected with a peak
strain at peak contraction in the radial direction, minimum strain at peak contraction for
circumferential and longitudinal strain.

image that aids in capturing this motion (speckles in echocardiography images, tag grids in
tagged-MR). Nonetheless, for the purposes of the challenge we applied the method to all
modalities to analyse the results.

Myocardium Segmentation Since the method requires a mask of the myocardium, we
segmented these prior to running the algorithm using the tool described in Section4.2.3.
The incompressibility constraint relies heavily on the accuracy of the segmentation, there-
fore errors in the tracking can arise due to mis-segmentation of the tissue. This is a problem
in particular for the echocardiography and tagged-MR images, which are known to be hard
to segment given the poor image quality, poor visibility of the myocardium and noise from
the top of the cone in echo images. However, this is the case for any method using localised
incompressibility constraint to track the myocardium. In this work, we used a binary mask
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for the myocardium. To avoid possible problems related to the boundary conditions, we
dilated the mask by 2 voxels.

Constrained Incompressibility vs. Compressibility A common point of discussion
for constraining the myocardium to be incompressible is that the myocardium is not in
fact fully incompressible. In the literature, the myocardium is observed to have a volume
change of around 5% [Glass et al., 1991]. In the case of the LogDemons algorithm, there is
no constraint on the compressibility of the myocardium, which results in up to 30% volume
change, compared to less than 7% of numerical volume change for the iLogDemons algo-
rithm (see Fig4.6). Therefore, while the iLogDemons algorithm may under-estimate the
volume change in general, with the unconstrained LogDemons algorithm it can be greatly-
overestimated. Furthermore, improved strain curves were obtained in [Mansi et al., 2011a]
compared to those computed from the LogDemons algorithm. Hence, the incompressibil-
ity constraint is a useful prior for cardiac motion tracking, though penalising rather than
constraining the compressibility may be more physiologically realistic.

Figure 4.6: Average jacobian determinant in each of the 17 AHA regions for the
LogDemons algorithm (top row) and iLogDemons (bottom row) for each of the modalities
(echo-left column, cine-MR - centre column, tagged-MR - right column). The iLogDemons
algorithm constrains the compressibility to be less than 7% for each modality compared to
up to 30% compressibility for LogDemons.

4.2.6.2 Field of View

In some of the sequences in the challenge data-set, the myocardium was on or very close to
the border of the image, particularly in the tagged-MR sequences which have a very narrow
�eld of view. How the image and the deformation are treated at the boundary of the image
(extrapolated to invisible data) is a key problem in most registration algorithms. Currently
the iLogDemons algorithm works in such a way that the intensities on the border of the
image are extrapolated outside the image in a given region.
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4.2.7 Conclusion

The iLogDemons algorithm was applied to a data-set of 15 subjects and one phantom
each with an echocardiography, cine-MR and tagged-MR image sequence. This method
was developed for the heart to model elasticity of the tissue and incompressibility in the
myocardium. The results show that given few changes in the input parameters, the method
is able to retrieve realistic motion of the heart as well as reasonable strain curves for each
of the three modalities and is thus a versatile registration algorithm for cardiac motion
tracking. However, future work is needed to further analyse the incompressibility prior,
possibly including a change in the way the prior is incorporated into the model by means
of a penalisation of the compressibility rather than the current method of constraining the
velocity �elds to be divergence-free.

4.3 Application to Synthetic Echocardiography Sequences

In this section, we evaluate the iLogDemons algorithm for the STACOM 2012 cardiac
motion tracking challenge. This algorithm was previously applied to the STACOM 2011
cardiac motion challenge to track the left-ventricle heart tissue in a data-set of volunteers.
Even though the previous application showed reasonable results with respect to quality
of the registration and computed strain curves; quantitative evaluation of the algorithm
in an objective manner is still not trivial. Applying the algorithm to the STACOM 2012
synthetic ultrasound sequence helps to objectively evaluate the algorithm since the ground
truth motion is provided. Different con�gurations of the iLogDemons parameters are used
and the estimated left ventricle motion is compared to the ground truth motion. Using
this application, quantitative measurements of the motion error are calculated and optimal
parameters of the algorithm can be found.

4.3.1 Introduction

Understanding cardiac motion dynamics through the heart beat is fundamental for provid-
ing useful insights into cardiac diseases. Analysing medical images is one way to better
understand the complex dynamics of the heart and in recent years, cardiac motion tracking
algorithms have been developed to attempt to estimate the observed motion. We refer the
reader to [Mansi et al., 2011a] for the state of the art on cardiac motion tracking. A cardiac
motion tracking challenge was introduced in the STACOM 2011 MICCAI workshop which
allowed participants to apply algorithms to a given data-set of healthy volunteers with
cine-magnetic resonance, ultrasound, and tagged-magnetic resonance image sequences. In
this work we describe the application of the incompressible log-domain demons algorithm
(iLogDemons for short) to a set of synthetic ultrasound image sequences for which the
ground truth deformation is known and provided for training within the STACOM 2012
MICCAI cardiac motion tracking challenge. From this we are able to compute the error
between the ground truth and the estimated deformation for the training data.



66 Chapter 4. Prerequisite: Quantitative Validation of the iLogDemons Method

[Note: the description of the iLogDemons method from [Prakosa et al., 2012a] has been
removed as it is already described in Sec.4.2)]

4.3.1.1 Cardiac Motion Tracking Strategy

We initialise the registration of the template imageTi(x) at frame i to the ref-
erence imageR(x) with the concatenation of the previous frame (i � 1) to refer-
ence velocity �eld vTi� 1! R and the current-to-previous frame velocity �eldvTi ! Ti� 1 by
Z(vTi� 1! R;vTi ! Ti� 1) with Z is the BCH operation, as a strategy to track the myocardium
(cf. Fig. 4.7) [Mansi et al., 2011a]. The �nal registration is always calculated to the same
end diastolic reference imageR(x).

Figure 4.7: The concatenation of the velocity �eldvTi ! Ti� 1 andvTi� 1! R using the BCH
formula is used to initiate the registration of the template imageTi(x) to the reference
imageR(x).

4.3.2 Application to Challenge Data

4.3.2.1 Algorithm Parameter Setting

We used the standard parameters that were used previously in [McLeod et al., 2012a].
However, since the ground truth motion is available for the synthetic ultrasound sequence
provided, we also tested different parameters of the iLogDemons as described in Ta-
ble5.5.1.1.

iLogDemons non-rigid registration was previously applied to the STACOM 2011 chal-
lenge data-set [Tobon-Gomez et al., 2013, McLeod et al., 2012a]. It showed reasonable
results in term of the alignment of the registered frames in the cardiac sequence with the
reference end diastolic image. Using the estimated transformations, it could also track the
myocardium along the cardiac cycle. The calculated strain curve was also comparable to
literature for healthy strain values [Moore et al., 2000].
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Input parameters: Value
Multi-resolution levels (frame-by-frame registration) 3
Multi-resolution levels (re�nement step) 2
Number of iterations / level 100
s f update �eld inmm 0.5
k f update �eld inmm 0
s stationary velocity �eld inmm 1 or 1.5 or 2
k stationary velocity �eld inmm 1
Incompressibility update �eld (0-Disable,1-Enable) 0
Incompressibility velocity �eld (0-Disable,1-Enable) 1 or 0

Table 4.1: iLogDemons parameters used in the application.

4.3.2.2 Simulated Ultrasound Cardiac Sequence Data

The simulated data-set consisted of 10 synthetic ultrasound sequences with 23 frames per
case, with image spatial resolution of 267� 355� 355, and isotropic voxel size of 0.33 mm.
For each sequence, the left ventricle (LV) is almost fully visible while the right ventricle is
only partially visible in the ultrasound acquisition cone. To compensate for the part of the
LV which is out-of-window region, we arti�cially expanded the acquisition pyramid. The
boundary voxels were copied to �ll this region and additional noise was also added. The
data-set contains different motion and deformation patterns (normal, LBBB, RBBB, pac-
ing) with the ground truth deformation provided as the deformation of volumetric meshes
in a cardiac cycle (See [De Craene et al., 2013] for further details on the synthetic data-set).

4.3.2.3 Application to the Synthetic Data

In order to �nd the optimal parameters of the algorithm that are able to handle large defor-
mations, we processed the �rst case of the ultrasound synthetic data-set since it simulates
normal heart motion with large contraction. We launched the parameters that were used
previously in [McLeod et al., 2012a] to the full resolution data-set. We also applied our al-
gorithm on down-sampled images to reduce the computational time. We down-sampled the
data to a resolution of 88� 117� 117 with isotropic voxel size of 1.02 mm The computation
time of the whole sequence processing was reduced from the order of days to hours. The
current implementation can be optimised to handle large volumes by improving the mem-
ory access scheme since the addition of computation time of current implementation is not
caused by the addition of computational complexity. One con�guration of parameters was
tested for both the full and down-sampled data to verify the accuracy of the down-sampled
registration compared to the full-resolution registration and found very small differences
in the results (cf. Fig.4.8). Other con�gurations of the key parameters were tested on the
down-sampled data.
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Figure 4.8: The registration error (calculated using the method described in Sec-
tion.4.3.2.4) of the full resolution and down-sampled dataset of the �rst case are compared.
They show relatively small difference.

4.3.2.4 Quantitative Evaluation

Displacement Error To evaluate quantitatively the performance of each set of the pa-
rameters used for the iLogDemons with incompressibility on the velocity �eld set to 0 or
1, we calculated the ground truth displacement vector �eld from the deformation of the
provided simulated meshes. We rasterised the displacement vectors to the imageuGT(x) in
order to be able to compare them to the iLogDemons estimated displacement �eldue(x).
The norm of the difference of the two vector �eldsjjuGT(x) � ue(x)jj is calculated. The
global mean of this values over the whole left ventricle are calculated for each time frame
in the cardiac cycle (cf. Fig.4.9). Based on Fig.4.9, the parameters = 1.5 without the in-
compressibility constraint gives the lowest maximum error for the �rst case. We calculated
the LV volume of the ground truth deformed meshes in a cardiac cycle and we observed
that the current electromechanical model is not incompressible. Fig.4.10shows the mean
and standard deviation of the LV myocardium volume change in a cardiac cycle for the
whole data-set. There is a 10% change of volume during the maximum contraction. In
Fig. 4.11, we compare the ground truth displacement vector for each American Heart As-
sociation (AHA) region of the left ventricle. We compare it to the iLogDemons estimated
displacement vector and calculated the difference for each AHA segment. Fig.4.11also
shows the error for the basal (regions 1-6), mid (regions 7-12) and apical (regions 13-17)
regions. More error is observed in the apical region since the longitudinal motion of the
apex toward the base changes the intensity of the apical region.

The result for the whole data-set processing is shown in Fig.4.12. As also shown in
Fig. 4.11for the �rst case, the registration of each frame to its previous frame gives small
error which is less than one voxel size. For the frame to reference result, we observe that
there is an error accumulation during the maximum contraction.

Strain Estimation From the iLogDemons estimated displacement �eldu(x), we com-
puted the strain tensor and projected it to the local radial, circumferential and longitudinal
directions. The strain tensor was calculated using the 3D Lagrangian �nite strain tensor
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Figure 4.9: The mean and standard deviation of the displacement error calculated on the
whole left ventricle for varying values ofs for the �rst case.

Figure 4.10: The mean and standard deviation of the LV volume change of the ground
truth deformed meshes during a cardiac cycle. Current electromechanical model is not
incompressible since there is a 10% of volume change during the maximum contraction.

E(x) =
1
2

[Ñu(x)+ ÑuT(x)+ ÑuT(x)Ñu(x)]. The mean and standard deviation of the strain

estimation of the whole data-set is shown in Fig.4.13. The result using incompressibility
has more realistic range of value (from -15% to 25%) of the estimated strain compared to
the one without incompressibility (from 150% to 300%).
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Figure 4.11: The comparison of the ground truth, incompressible and non-incompressible
iLogDemons estimated LV displacement norm for the �rst case on each American Heart
Association (AHA) region. In both cases,s = 1:5 was used. The mean displacement error
is also calculated on each AHA region.

Figure 4.12: The displacement error of the whole training data-set
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Figure 4.13: The mean and standard deviation of the estimated strain for the whole training
data-set with and without incompressibility constrain. Incompressibility constraint gives
more realistic range of value of the estimated strain (from -15% to 25%). This range is
shown as black horizontal lines on the result without incompressibility.

4.3.2.5 Myocardium Tracking

Qualitative evaluation of the algorithm is done by comparing the contour of the simulated
mesh at the frame with maximum contraction with the deformation of the end diastolic
mesh using the iLogDemons estimated displacement �eld at the same frame for the �rst
case. Reasonable agreement of the contours can be observed in Fig.4.14, which indicated
that the algorithm is able to capture realistic deformations, even in the case of a syntheti-
cally simulated sequence.

4.3.3 Discussion

This evaluation shows that the iLogDemons with and without the incompressibility con-
straint were able to recover the simulated motion in the ultrasound synthetic sequence with
reasonable accuracy. It is worth noting that the current electromechanical model is not in-
compressible, therefore enforcing incompressibility in the registration algorithm naturally
does not improve the results, in comparison to the iLogDemons method without the incom-
pressibility constraint. Furthermore, we also found that increasing or decreasing the sigma
value does not always improve the result since the best value that we found here issu = 1.5
while su = 1 andsu = 2 do not yield signi�cantly better results.
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Figure 4.14: Myocardium tracking result for the �rst case is shown (red for iLogDemons
and purple for iLogDemons without incompressibility) and compared to the simulated
ground truth (blue) at the time frame 8 which is at the maximum contraction. The tracking
result follow the contour of the ground truth, indicating that the algorithm is able to capture
reasonably well the dynamics of the motion.

4.3.4 Conclusion

The iLogDemons algorithm was applied to a data-set of synthetic ultrasound sequence with
different motion and deformation pattern. The algorithm was able to reasonably estimate
the ground truth deformation of the model. Since the provided data-set were created using
an electromechanical model which is not incompressible, the incompressibility constraint
does not improve the result. However, the incompressibility constraint gives more realistic
range of estimated strain value. Future work is needed to deal with the error accumulation
during the maximum of contraction.
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In the previous chapter, state-of-the-art methods for cardiac motion tracking were stud-
ied. In this chapter we propose a new method for cardiac motion tracking based on the
Polyaf�ne and LogDemons methods. A cardiac-speci�c motion tracking algorithm is pro-
posed to obtain deformations that describe the motion along the cardiac cycle with few pa-
rameters to describe the motion while maintaining reasonable accuracy of the registration.
The proposed method is quantitatively analysed on the data-set from Chapter4, and com-
pared to the iLogDemons method and the TDFFD algorithm applied to the same data-set.
This chapter is a starting point towards addressing the second key question of this work on
how to model cardiac motion over time at a population level to be able to capture the typical
motion dynamics observed for a given population, by making use of a data-set of several
subjects drawn from the same population. This chapter is in preparation for submission to
a journal and extends on the work published in McLeod et. al [McLeod et al., 2012b].

5.1 Chapter Overview

The PolyLogDemons algorithm is an ef�cient non-linear registration method for comput-
ing the smooth fusion of local af�ne transformations into a global diffeomorphic trans-
formation using a given stationary velocity �eld. This method has the advantage of de-
scribing a dense transformation with potentially few parameters. However, since the pa-
rameters are unconstrained, there is no control over the regional volume change or the
degree to which neighbouring regions are allowed to vary. We propose cardiac-speci�c
PolyLogDemons regression with all the advantages of the PolyLogDemons, as well as a
regional incompressibility penalisation, regularisation between neighbouring regions and
image driven spatial priors on the LogDemons velocity. Furthermore, we propose cardiac-
speci�c weight functions by taking advantage of the prolate spheroidal coordinate system
rather than standard Cartesian coordinates. The proposed method was applied to a syn-
thetic cine-MRI sequences with known ground truth deformation to test the effect of each
parameter on the displacement error. Cardiac motion tracking was applied to a data-set of
cine MRI sequences of 15 healthy volunteers to estimate the 3D myocardium strain of these
subjects. The results indicate that the proposed method obtains physiologically reasonable
deformations at a level of accuracy consistent with state-of-the-art methods, with a much
lower number of parameters.

5.2 Introduction

Cardiac motion tracking is a complex task but can provide useful insight for clinicians to
aid in therapy planning. By better understanding the motion dynamics for normal subjects
and comparing to the motion observed in pathological cases, more indications could be
given for determining the suitability of a given treatment option. In order to be able to
make such comparisons in a clinically meaningful way, we require a robust method to
describe the motion observed along the cardiac cycle that ideally relies on a small number
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of meaningful parameters for clinically relevant regions of the heart.
Cardiac imaging (such as Magnetic Resonance (MR), Echocardiography (ECHO),

Computed Tomography (CT) is becoming more and more widely used in clinical prac-
tice as a means of visualising the heart due to the ability to capture 3D motion dynamics.
Tracking the cardiac tissue over the cardiac cycle at a regional level can provide useful in-
sight for clinicians to guide with diagnosis, prognosis, and therapy planning [Young, 2006].
However, doing so is not a straightforward task. Manually tracking a given set of points
for all frames in an image sequence is not impossible, but can be time consuming and
is greatly subject to bias. Furthermore, it is not always easy to determine correspond-
ing points in different frames. Tagged magnetic resonance imaging (tagged MRI) offers
a convenient method for cardiac tissue tracking given that the intersecting tagged planes
can act as given control points, reducing the problem of tracking from the image level to
point-wise tracking [Park et al., 1996, Schaerer et al., 2010]. However, tagged-MRI is not
currently routinely used in clinical practice, and accurately tracking control points in an
automatic manner is an ongoing topic of research. For this reason, several non-linear reg-
istration algorithms have been proposed to compute the deformation along the sequence as
a quantitative measure of the motion. Rigid registration, while being simple and easy to
implement, is usually insuf�cient in capturing the complex dynamics, therefore non-rigid
registration is more commonly used.

In general, non-linear registration involves estimating the deformationf for a given
�xed reference imageF and a moving imageM (F;M : R3 ! R) that minimises the differ-
ence between the �xed image and the deformed moving image using the sum of squared
differences for example:å x2W(F(x) � M(f (x))) 2, for voxel coordinatesx in the image do-
mainW. Cardiac motion tracking generally involves computing the deformation from all
image frames to a reference frame to essentially describe how each image differs from the
reference image. In order to preserve the inherent structure of the heart, the deformations
should be constrained to be diffeomorphic (to prevent unwanted structural changes such as
folding), as well as preserving the volume of the muscle to remain within a physiologically
reasonable range. Furthermore, in order to be able to compare normal and pathological
motion in a quantitative manner, describing the motion by a small number of parameters
can not only improve the robustness of the estimation but also allows meaningful analyses
to be drawn between subjects.

5.2.1 Cardiac Motion Tracking

Analysing cardiac deformation at a local and/or global level can help to identify indicators
of heart disease. Tracking the tissue with physical markers is invasive and therefore not
possible in a clinical setting. Thus, noninvasive methods have been developed in recent
years to track the tissue by using non-linear registration.

In response to the growing interest in cardiac motion tracking algorithms, two cardiac
motion tracking challenges have been conducted as a part of the STACOM workshop of
the MICCAI conference. The �rst challenge involved phantom and real image sequences
from 3D ECHO and tagged and cine MRI [Tobon-Gomez et al., 2013]. The second chal-
lenge was focussed on tracking motion in synthetically generated ECHO sequences with
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known ground truth [De-Craene et al., 2012]. Each challenge was open to anyone wanting
to test and validate their algorithms. Several different methods were applied to the data in-
cluding those based on B-spline transformations [Wang et al., 2011], [Heyde et al., 2012],
free-form deformations (FFD) [De-Craene et al., 2011], [Piella et al., 2012], phase-
based registration [Tautz et al., 2011], and optical-�ow methods [McLeod et al., 2012a],
[Prakosa et al., 2012b], [Somphone et al., 2012], [Alessandrini et al., 2012]. A number of
review articles summarising the state-of-the-art in cardiac motion tracking have been pre-
sented, the most recent of which is Wang and Amini [Wang and Amini, 2012] (see refer-
ences therein). Of the different methods currently available, each has their own advantages
and disadvantages.

Voxel-based methods, which essentially model the correspondences between voxels in
pairs of images, have been widely used for cardiac registration. Of these, the iLogDemons
algorithm [Mansi et al., 2011a] was developed speci�cally for cardiac registration by in-
corporating physiological constraints in the model such as elasticity and incompressibility
of the tissue. This method, as with the LogDemons algorithm [Vercauteren et al., 2008]
(which it is based on), models the correspondences between images at a local level and
hence the deformation is parameterised at every voxel. This can be on the order of
millions for standard cardiac MR images. Similarly, for the method of Tautz et. al
[Tautz et al., 2011], which uses phase-based registration with quadrature �lters to track car-
diac motion from tagged MR and ECHO, the �nal deformations are represented by dense
�elds parameterised at the voxel level.

Methods parameterised by B-spline transformations have a lower number of param-
eters since the deformation is parameterised by the motion of control points. Several
spatio-temporal methods have been proposed that consider the transformations as B-splines
to register 3D ECHO sequences [De-Craene et al., 2011] and 3D tagged MRI sequences
[Chandrashekara et al., 2004a]. In [Shi et al., 2012] the information from both tagged and
non-tagged MR image sequences is used to enhance the image registration accuracy by
modelling the transformations by FFD's and spatially weighting the different information
before combining to a common framework. While B-spline methods have the advantage of
representing the transformation with a reduced number of parameters, these parameters are
generally de�ned at arbitrary locations since the control points of the B-spline model are
usually de�ned on a grid. In [Heyde et al., 2012], the grid was adapted to be more physi-
ologically relevant by using an anatomically oriented coordinate system, rather than a grid
in Cartesian coordinates. This improves the accuracy of the motion tracking, though the
total number of parameters still relies on the sampling of control points, which is a trade-
off between the accuracy and maintaining a low number of parameters. Furthermore, the
parameters may not be translatable between subjects to allow direct comparisons between
the motion.

We believe that simple models that can accurately represent the deformation with a
small number of meaningful parameters could provide a more insightful basis for motion
analysis. The Polyaf�ne model provides such a framework and has been applied in many
applications for medical image analysis. A summary of these is described in the following
section.
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5.2.2 Polyaf�ne Image Registration

The Polyaf�ne framework, �rst proposed by Arsigny et. al [Arsigny et al., 2005], has the
nice advantage of characterising the deformation from one image to another by a set of
af�ne transformations. In this way, the deformation is de�ned at a regional level, though
the transformation itself is dense, and therefore de�ned at every point. The model has been
further applied in the �eld of medical image analysis for a number of different applications
including registration of articulated structures [Martín-Fernández et al., 2009], registration
of �ber bundles from diffusion MRI [Ziyan et al., 2007], [Wassermann et al., 2011], brain
MRI registration [Taquet et al., 2011], cardiac registration [Hansen et al., 2012], as well
as for multi-modality registration in cardiovascular imaging [Zhang et al., 2007] and in
prostate imaging [Cosse, 2012]. A method for estimating a non-rigid transformation from
rigid parts for cervical cord image registration was proposed in [Commowick et al., 2012].
The method of [Hansen et al., 2012] has the nice property of being able to capture large
deformations, however the application is limited to 2D image registration, which may miss
some of the crucial 3D motion dynamics.

The PolyLogDemons method of [Seiler et al., 2012] takes the advantages of the
LogDemons and Polyaf�ne algorithms to model the correspondences between images at
the voxel-level using the LogDemons, and then to represent the resulting deformation by a
greatly reduced number of parameters using the Polyaf�ne model. The Polyaf�ne regions
are de�ned automatically from the image in a hierarchical manner which allows for a multi-
level approach. However, de�ning the regions in this way may result in inconsistent region
de�nitions between subjects. This method also may result in physiologically unrealistic
deformations, with large volume change or great variability between the transformation of
neighbouring regions. Since little volume change is observed in biological tissue such as
the myocardium, it is desirable to add incompressibility as a property of the registration.

5.2.3 Incompressible Image Registration

The myocardium, as with other biological tissue, is near incompressible, with only a small
amount of volume loss caused by the perfusion of blood through the tissue. Though
some experimental studies have been conducted to measure the volume change, there
is not a consensus in the literature, with a range of reported values between around 4-
10% [Vossoughi et al., 1980], [Holzapfel and Ogden, 2009], [Yin et al., 1996]. Neverthe-
less, since the volume change is low, the tissue is agreed to be near-incompressible. Hence,
this important property has been included in a number of registration algorithms, by adding
incompressibility constraints on the displacement or divergence-free constraints on the ve-
locities.

The �rst of these was the method of Song and Leahy [Song and Leahy, 1991], where
both a divergence-free and an incompressibility constraint were successfully applied in
the context of using optical �ow to perform motion analysis from CT images. Since this
is a voxel-based method, computing correspondences between voxels in pairs of images,
the deformation �eld is described at the voxel level and hence with a very large num-
ber of parameters. In [Mansi et al., 2011a], an incompressibility constraint was added to
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the LogDemons algorithm [Vercauteren et al., 2008] by projecting the estimated velocity
�eld to the space of divergence-free velocity �elds. In this way, the volume is preserved,
however the hard constraint means that the volume is constrained beyond physiological
ranges, with less that 1% volume change over the cardiac cycle. This was also the case
in [Bistoquet et al., 2007], though this was later transformed into a near-incompressibile
rather than fully incompressible constraint [Bistoquet et al., 2008]. The disadvantage of
[Bistoquet et al., 2008] is that the deformation is de�ned at a given set of nodes. Given that
this number could be low, the number of parameters needed to represent the deformation
may be small, however these are highly dependent on the choice of nodes, and thus may
not be easily translatable between different patients for the purpose of direct comparison.
Incorporating an incompressibility constraint into the registration when B-splines are used
to represent the transformation was proposed in [Rohl�ng et al., 2003] for breast image
registration. This method has a similar disadvantage in that the deformation is de�ned on
a set of control points, typically on an arbitrary grid, and therefore the parameters of the
deformation are not meaningful in a way that could be directly compared between different
subjects.

5.2.4 Aim and Chapter Organisation

In this chapter we describe the extension of the PolyLogDemons algorithm
[Seiler et al., 2012] to cardiac speci�c registration for motion tracking, with the aim of
providing a robust and accurate method for tracking cardiac tissue with a small number
of parameters. The proposed method incorporates cardiac speci�c prior information into
the model via the use of clinically relevant region de�nition for the Polyaf�ne regions, and
anatomically oriented weight functions to follow the shape of the ventricle. This method
takes advantage of the ef�ciency of the LogDemons algorithm to compute the deformation
between images, as well as the low-dimensionality of the Polyaf�ne model to represent this
deformation. By incorporating physiological information into the model, we hope to not
only improve the overall accuracy of the model, but also to be able to obtain more physio-
logically plausible deformations. Moreover, since the de�nition of the regions and weight
functions are consistent from one subject to another, the results are reproducible over dif-
ferent subjects. Spatial priors on the input velocity �eld are added, to give con�dence on
velocities in regions of high gradient in the image and to reduce the motion in the epicardial
regions (since the epicardium moves less than the endocardium). The method is applied
to a given set of cardiac-speci�c regions and fused over these regions using anatomically
grounded weight functions.

The main contribution of this method is a framework for motion tracking that provides
physiologically reasonable deformations that can be described by a small number of re-
gional parameters (due to the choice of using a small number of Polyaf�ne regions), where
the transformations are de�ned everywhere regardless of the sparsity of the grid. More-
over, the transformation is driven by a set of intelligible parameters; translation, rotation,
strain and shear. An early version of this method was presented at the STACOM MICCAI
workshop in 2012 ([McLeod et al., 2012b]) to describe the added incompressibility and
regularisation terms to the PolyLogDemons minimisation, and the use of anatomically rel-
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evant weight functions was described in [Mcleod et al., 2013b]. The contributions of this
work include:

- Extended description of the methodology

- Thorough testing of the model variables

- Added spatial priors to give more physiologically reasonable deformations

- The implementation of a multi-resolution scheme

- Extension to bi-ventricular tracking

- Quantitative validation

The remainder of the chapter is organised as follows: Sec.5.3 reviews the Poly-
LogDemons algorithm of Seiler et. al [Seiler et al., 2012] with a brief overview of the
Polyaf�ne framework of Arsigny et. al [Arsigny et al., 2009] and the LogDemons algo-
rithm of Vercauteren et.al [Vercauteren et al., 2008]. In Sec. 5.4, a reformulation of the
least squares error solution is described which enables the incompressibility penalisation
and neighbouring region regularisation to be incorporated into the linear least squares prob-
lem in a simple manner. Cardiac-speci�c priors are incorporated into the model via curved
weight functions to replace the Cartesian-based weights from [Seiler et al., 2012], and con-
sistent and clinically relevant region division of the left ventricle. Image-based spatial pri-
ors are included in the model to give weighting to the input velocity vectors depending on
the gradient of the image, and to prevent large deformations in the epicardial regions. The
method is quantitatively validated on synthetic and real cine MRI sequences in Sec.8.5as
well as the estimation of myocardial strain from the real sequences obtained from healthy
volunteers.

5.3 Background: Polyaf�ne LogDemons

In this section, we brie�y describe the Polyaf�ne LogDemons algorithm proposed by Seiler
et. al [Seiler et al., 2012], which forms the basis of the proposed method. The Polyaf�ne
LogDemons algorithm is designed to estimate a Polyaf�ne model from an observed station-
ary velocity �eld (SVF) by projecting the given �eld onto the linear space of Log-Euclidean
Polyaf�ne transformations (LEPT). The space of LEPT's is described in Sec.5.3.1, fol-
lowed by the regression method in Sec.5.3.2.

5.3.1 Log-Euclidean Polyaf�ne Framework

The Polyaf�ne framework was introduced by Arsigny et. al [Arsigny et al., 2005] in the
context of medical image analysis to fuse transformations in a smooth manner by numer-
ically solving ordinary differential equations (ODE). The computation of the solution to
the ODE's was improved in Arsigny et. al [Arsigny et al., 2009] and Commowick et. al
[Commowick et al., 2008] to obtain a fast Log-Euclidean Polyaf�ne framework.
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The parameters of the Polyaf�ne model can be de�ned for pointsx in homogeneous
co-ordinates as

log(T) = log
�

A t
0 1

�
def=

�
M
0

�
(5.1)

wherelog is a principal matrix logarithm,A is the linear part of the transformation (ac-
counting for the shearing, rotation and scaling),t its translation, andM a 3� 4 log-af�ne
transformation matrix. Velocity vector �elds can be associated to af�ne transformations by

~v(x) = Mx̃; (5.2)

where~v(x) is a 3� 1 vector, ˜x = [ x 1]T . For each segment the af�ne transformations are
fused to a global velocity �eld using the Polyaf�ne model (see Fig.5.1):

~vpoly(x) = å
i

wi(x)Mi x̃; (5.3)

wherewi(x) is a weight function term de�ned for each regioni at every pointx (further
described in Sec.5.3.3).

5.3.2 SVF Projection onto the Space of LEPT's

The af�ne matricesM0
i s can be estimated by projecting an observed SVF to the space of

LEPT's by solving a linear least squares problem with respect to the observed velocity �eld
~v(x) within a given region of interestP (represented by vectors in Fig.5.2). As shown in
[Seiler et al., 2012] the log af�ne parametersMi can be estimated by the following least-
squares regression:
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whereM = [ M1M2 � � � M3], Bi =
R

P wi(x) �~v(x) � x̃Tdx andSi j =
R

P wi(x) � w j (x) � x � xTdx.
For which the optimum is given atÑCM = 0 to obtain the following system forM:

M = BS� 1: (5.4)

The Polyaf�ne LogDemons algorithm is summarised in4.
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Figure 5.1: The Polyaf�ne framework to perform a smooth fusion between neighbouring
af�ne transformations to obtain a smooth global transformation. For example, shown here
is the Polyaf�ne fusion of two rotations, obtained from two neighbouring regions of the
left ventricle.

5.3.3 Polyaf�ne Weight Functions

The weightswi(x) play an important role in the Polyaf�ne model and can greatly affect
the results of the registration. They are used to model the spatial effect of a given region.
A number of different ways of de�ning the weights is possible, as long as the fusion is
suf�ciently smooth to ensure that the �nal global transformation remains diffeomorphic.
They can be de�ned in a straightforward way by a simple Gaussian function as

wi(x) = � exp
� k

2
(x� x̄i)T f (� 1)

i (x� x̄i)
�

; (5.5)

with x̄i the barycentre (centre point) of zonei andf i the corresponding covariance matrix,
as in [Seiler et al., 2012]. The parameterk controls how much in�uence neighbouring
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Figure 5.2: The Polyaf�ne LogDemons framework to project a given stationary velocity
�eld (SVF) to the space of Log-Euclidean Polyaf�ne transformations (LEPT).

Algorithm 4 Polyaf�ne LogDemons Algorithm

Require: Initialisation: Let~v0 = vpoly(x).
loop { over n until convergence}

- Compute the update velocity:d~vn given~vn� 1.
- Update the correspondence velocity �eld:~vn  Z(~vn� 1;d~vn) using Demons “forces".

- Estimate af�ne transformation of each segment from~vn by solving (5.4).
- Let~vpoly(x)  å i wi(x)Mi x̃

return ~v, f = exp(~v) andf � 1 = exp(� ~v).

regions have on each other. This gives independent transformations fork > 1 and smoother
transitions between regions fork < 1.

Alternatively, more sophisticated weight functions can be developed, as in
[Martín-Fernández et al., 2009], where the weight functions were modi�ed to be suited for
the registration of articulated structures. The above Gaussian weight function was gener-
alised to include modi�ed distance terms suited for articulated registration. In this chapter
we use Gaussian weights within the myocardium.

5.4 Cardiac-Speci�c Polyaf�ne LogDemons

In this section, we describe the contributions of this work to build on the PolyLogDemons
method described in the previous section. Before incorporating new terms into the model,
the standard PolyLogDemons solution needs to be re-written in terms of vectors, as de-
scribed in the following section. Once the solution has been reformulated, an incompress-
ibility penalisation (Sec.5.4.1) and regularisation term (Sec.5.4.2) can be easily incorpo-
rated into the model. Cardiac speci�c priors can be incorporated into the model via the
choice of meaningful region de�nitions (Sec.5.4.4.1), anatomically oriented weight func-
tions (Sec.5.4.4.2) and image driven con�dence on the input velocity (Sec.5.4.5).
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Figure 5.3: The proposed pipeline for cardiac displacement computation divided into two
key steps:preparation andtracking. Thepreparation requires segmentation of the ven-
tricle(s) at the reference frame and division into the Polyaf�ne regions, followed by com-
putation of the weights and pre-computation of theV matrix (used for the incompressibility
penalisation). Cardiac motiontracking is performed pair-wise between each frame in the
cycle and the reference frame by computing the correspondence �eld using LogDemons,
weighting this �eld, then projecting that onto the constrained Polyaf�ne space.

5.4.0.1 Rewriting the Least Squares Minimisation

In order to be able to incorporate the incompressibility and regularisation terms in the
PolyLogDemons framework, the solution to the least squares minimisation given in Eq.
5.4 needs to be reformulated in terms of vectors in order to be able to perform the matrix
(or rather vector) multiplication needed in the following sections. This can be done simply
by vectorising theB andS matrices and adding a Kronecker product. Doing so, we obtain
the equivalent least-squares minimisation, written in terms of vectors:

C(M) = vect(M)T(S
 Id3)vect(M) � vect(M)T :vect(B) (5.6)

with the solution

vect(M) = ( S
 Id3) � 1:vect(B); (5.7)

equivalent to the solution in Eq.5.4, wherevect(:) is the standard matrix vectorisation,

is the Kronecker Product.

5.4.1 Incompressibility Penalisation

In order to control the compressibility of the myocardium to be within physiological ranges,
an added penalisation term is needed. Given that a transformation is incompressible if
its Jacobian determinant is equal to one (and the log Jacobian is equal to zero), for an
in�nitesimal transformationT = Id + ~vpoly with ÑT = Id + Ñ~vpoly:

det(ÑT) = det(Id + Ñ~vpoly) = Tr(Ñ~vpoly) + O(k Ñ~vpoly k)2; (5.8)



84
Chapter 5. Anatomically Constrained Regional Motion Model for Cardiac Strain

Analysis

whereO(:) represents higher order terms. Therefore the velocity �eld~vpoly is locally in-
compressible if the trace ofÑ~vpoly is zero. A penalisation term can then be derived as:

a
Z

P
Tr(Ñ~vpoly)2dx: (5.9)

The parametera is used to control the strength of the penalisation. Incorporating this term
into the least squares minimisation gives the penalised least squares formula:

C(M) =
Z

P
k å

i
wi(x):Mi :x̃ � ~vobs(x) k2 + a

Z

P
Tr(Ñ~vpoly)2; (5.10)

To incorporate the new term into the least squares computation, (5.9) needs to be re-
formulated to obtain a quadratic form ofvect(M). The partial derivative of the poly-af�ne
velocity �eld with respect tox is

¶~vpoly(x)
¶x

= å
i

�
wi(x)Mi

�
Id3

0

�
+ Mi :x̃:

¶wi(x)
¶x

�
: (5.11)

UsingT = vect([Id3;0]) to extract the diagonal elements from the matrix, we have

Tr(Ñ~vpoly(x)) = å
i

�
wi(x):TT :vect(Mi) + gi(x)T :vect(M j )

�
; (5.12)

with gi(x) = vect(Ñwi(x):xT). The penalisation term can then be written as:
Z

P
Tr(Ñ~vpoly)2dx = å

i; j
vect(Mi)T :Vi j :vect(M j )

= vect(M)T :V:vect(M) (5.13)

with
Vi j =

Z

P
(wi(x):T + gi(x))( w j (x):T + g j (x))Tdx: (5.14)

At �rst, it may seem possible to simplifyV by considering only the �rst order terms:

Vi j =
Z

P
(wi(x):T)(w j (x):T)Tdx

However, this amounts to penalising the trace per region, but does not take into account
the directional information. Since neighbouring regions can have high deformations in
opposing directions, this may causing problems in the overlap. Therefore, the higher order
terms are needed.

5.4.2 Neighbouring Region Homogeneity of Parameters

We can also de�ne a regulariser term to control how neighbouring regions in�uence one
another. The weightswi(x) control how smooth the transition is between two regions,
however we would also like to control how similar the af�ne matrices are, as an addition
regularisation. To do this we can add an additional term:

b å
i

Wi j dist(Mi ;M j ); (5.15)
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whereb controls the strength of the regularisation. We de�neWi j as:

Wi j =
Z

P
wi(x)w j (x)dx; (5.16)

which is essentially the Gram matrix of the basis of spatial functions. De�ning a matrixQ
such that

Q =
�

Id3 0
0 m

�

allows to account for the different scaling between the rotation/sheering part of the af�ne
matrix and the translation part. A distance term can then be de�ned to describe the distance
between the matrices from two neighbouring regions as:

dist2(Mi ;M j ) = Tr[(Mi � M j )T :Q:(Mi � M j )]
= Tr(MT

i QMi) + Tr(MT
j QMj )

� 2Tr(MT
i :Q:M j );

(5.17)

with
Tr(MT

i QMj ) = vect(MT
i Q)T :vect(M j )

= vect(Mi)T :(Q
 Id3):vect(M j )
(5.18)

Thus we obtain

å
i; j

Wi j Tr(MT
i :Q:M j ) = vect(M)T :W
 (Q
 Id3):vect(M); (5.19)

5.4.3 Final Cardiac PolyLogDemons Algorithm

De�ning a matrixR as:
R= W
 (Q
 Id3); (5.20)

the �nal least squares error incorporating both the incompressibility and regularisation term
is given by:

C(M) = vect(M)T(S
 Id3)vect(M) � vect(M)Tvect(B)
+ a :vect(M)T :V:vect(M)+ b:vect(M)T :R:vect(M)

(5.21)

for which we want to �nd the optimum by solvingÑCM = 0.

ÑCM = ( S
 Id3 + aV + bR)vect(M) � vect(B): (5.22)

Therefore the solution forM is given by:

vect(M) = ( S
 Id3 + aV + bR) � 1:vect(B) (5.23)

5.4.4 Cardiac-Speci�c Priors

Given the formulation of the PolyLogDemons algorithm, prior information can be incor-
porated into the model easily through the choice of the Polyaf�ne regions and weights, as
described in the following sections.
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5.4.4.1 Anatomically Consistent Region De�nition

Computing regional statistics at a population level requires a low-dimensional and consis-
tent division of the ventricle. The American Heart Association (AHA) proposed a stan-
dardised method to segment the myocardium which can be used to anatomically de�ne
meaningful regions of the ventricle [Cerqueira et al., 2002]. The recommendation given
by the AHA is to divide the left ventricle of the heart into 17 regions with six regions
for the basal area (1-6), six regions for the mid area (7-12) and �ve for the apical areas
(13-17)(see Fig.7.1). These de�nitions are commonly used in clinical practice, therefore
applying the method to these regions allows the analysis to be done at a level that is relevant
for clinicians. Furthermore, the divisions are performed in a standardised and consistent
manner from one patient to another.

Figure 5.4: Left: Bulls-eye plot of the 17 AHA regions of the left ventricle shown in
relation to the right ventricle (white). Right: A 3D mesh of the left and right ventricle of
one volunteer with the 17 AHA regions of the left ventricle with coloured similarly to the
bulls-eye plot, as well as the right ventricle regions (13 regions total: one apical region,
three layers with four regions each).

5.4.4.2 Prolate Spheroidal Polyaf�ne Weights

Polyaf�ne weights can be easily computed in standard Cartesian coordinates, however
for the left ventricle in particular, this gives weights that wrap around the ventricle in a
non-anatomical sense. Increasingk in the weight function above essentially increases
the amount of outside area considered in the poly-af�ne regularisation. Furthermore, the
penalisation and regularisation terms described in the previous section rely on an anatom-
ically meaningful description of the weights. Therefore, in order to compute physiolog-
ically meaningful weights, the above weight function can rather be computed in prolate
spheroidal (PSS) coordinates (see Fig.5.5). In this way, the weights wrap around the ven-
tricle. These coordinates have already been used in cardiac image analysis to represent the
left ventricle for mesh generation [Legrice et al., 2001], [Choi et al., 2008], segmentation
[Vallet et al., 2006], for volume and surface computations [Feng et al., 2001] and for de-
formation reconstruction [O'Dell et al., 1995]. Written in terms ofx;y; andz, the prolate
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spheroidal coordinates(m;n; f ) can be expressed using the following equations:

x = a sinhm sinn cosf

y = a sinhm sinn sinf

z= a coshm cosn

Figure 5.5: Regularisation direction for Cartesian coordinates (left) and prolate spheroidal
coordinates (right). The PSS coordinates follow the curvature of the anatomy, compared to
Cartesian which go against the curvature.

The prolate spheroidal coordinates for a given image were computed following the
method of Toussaint et. al [Toussaint et al., 2013]. These tools can be found online1. In
order to perform the change of coordinates, the mesh needs to be registered to an approx-
imating prolate ellipsoid (computed semi-automatically from the base, apex and LV-RV
anterior junction points). The registration is performed using the symmetric log-demons
algorithm provided in ITK [Vercauteren et al., 2008]. The PSS coordinates are then com-
puted on the ellipsoid and transported back to the patient-speci�c geometry via the inverse
deformation. Given the PSS coordinate for each voxel, the barycenter, covariance matrix
and Gaussian function are computed in prolate spheroidal coordinates, with the output of
the Gaussian function at each voxel written out to an image on the standard Cartesian grid.
One weight image is computed for each region, as well as an image combining the total
weight for all the regions, used for visualisation purposes in order to approximate the most
reasonable values ofk . The difference between the Cartesian and PSS weights is portrayed
in Fig. 5.6, where increasing the overlap between regions described with Cartesian weights
has the effect of averaging out the curvature, whereas in PSS weights, this curvature is fol-
lowed around the ventricle.

5.4.5 Image Driven Spatial Priors

In our preliminary work [McLeod et al., 2012a], the region of interestP was de�ned as a
binary mask, whereP = 1 inside the mask, andP = 0 outside. In this way, equal weight
is given to the inner part of the tissue, endocardium and epicardium. In cine MR images,
however, there is little texture information in the inner part of the tissue. Therefore, the

1https://github.com/ntoussaint
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Figure 5.6: The difference between Cartesian and PSS weights shown from above on a
spheroid and the directions of the covariance matrix shown on an oval (left - lower right
corner) and curved segment (right - lower right corner). The red lines emphasise the differ-
ent shapes captured by the different weights, where the Cartesian weights sum to a hexagon
(left) and the PSS weights sum to a circle (right).

boundary of the tissue is the region that drives the registration, since this is the region
of highest gradient. In fact, given the Gaussian nature of the Polyaf�ne weights, more
weighting is given to the centre of the tissue than the boundaries. To account for this, we
introduce spatial priors on the LogDemons correspondence �eld. Firstly, higher con�dence
is given to the vectors in regions with high gradients in the image. Secondly, we can
restrict the displacement in the epicardium, where the registration tends to be dragged
by the endocardial motion, though less movement is observed in the epicardium than the
epicardium.

The �rst prior can be easily incorporated into the model by modifying the mask in
which we integrate the terms in Eq.5.4 (P). Rather than using the standard binary mask,
we can incorporate a con�dence on the input velocity �eld (the LogDemons correspon-
dence �eld) by taking the smoothed gradient magnitude image of the �xed and moving
images. For the reference image however, the gradient of the mask can be used since the
reference mask is already de�ned. By taking the addition of these two images for the �xed
and moving frames, we obtain an image with the added con�dence between the �xed and
moving images, which can be used to weight the input velocity �eld to give higher con�-
dence to the velocities in voxels on the boundary of the tissue. An example for one image
is shown in Fig.5.7.

The second prior can be included in the model by down-weighting the input velocity
�eld at the epicardium by a factort , where 0< t < 1 andt = 1 in regions of high gradient
(thus leaving the velocity vectors unchanged). We can de�net as(1� (1� C(x)) � E(x)) ,
whereE(x) de�nes the epicardial border,C(x) is the gradient magnitude. In practice, this
can be the gradient magnitude image of the epicardial mask. The term 1� C(x) is included
to prevent the velocity from being restricted in regions where there is high gradient in the
image (and thus in regions where we trust the velocity).
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Figure 5.7: The gradient magnitude image (right) of the image on the left used as a spatial
image-driven prior on the input velocity �eld.

5.5 Experiments

The method was tested on two data-sets, the �rst a synthetically generated cine MR im-
age sequence built from a pathological image sequence. The second was a data-set of 15
healthy volunteer adults. The focus of the experiments was to test the effect of the param-
eters on motion tracking of the left ventricle and to quantitatively compare the method to
state-of-the art methods (Sec.5.5.1). Bi-ventricular motion tracking was also tested brie�y
(Sec. 5.5.2). Myocardial strain was estimated on the healthy volunteers, as described in
Sec.5.5.3.

5.5.1 Left Ventricle Motion Tracking

5.5.1.1 Quantitative Validation on Synthetic Sequences

Quantitatively validating image registration in an unbiased way is a very dif�cult task given
that the underlying ground truth is usually not known. Therefore, for this purpose we
made use of the method of Prakosa et. al [Prakosa et al., 2012c] for generating synthetic
images sequences. This approach was proposed to generate visually realistic sequences
from clinical image sequences. Since the motion is generated synthetically, the ground
truth displacement is available and can be directly compared to the modelled displacement
to obtain quantitative measures of the displacement error. Using this, the effect of the
different parameters was tested.

Image Information A sequence was created from an 84 year old male heart failure
patient, with single values for the global contractility mechanical and electrophysiol-
ogy parameters to simulate the motion dynamics. Steady-state free precision (SSFP)
MR images of this patient were acquired using an Achieva MR Philips Medical System
scanner with image size of 171� 171� 98 voxels and re-sampled image resolution of
1:424� 1:424� 1:424mm3 (original slice thickness of 8mm), with 30 frames in the cycle.
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Variable Parameters
Weights Cartesian, PSS
Incompressibility (a ) 0, 0.1, 1, 10, 100, 1000
Regularisation (b) 0, 0.1, 1, 10, 100, 1000
Weight overlap (k ) 0.01, 0.05, 0.1, 0.5, 1
Reg. param. scaling (m) 0, 0.1, 0.5, 1, 10, 100, 1000, 10000, 100000
Multi-resolution levels 1, 2, 3, 4

Table 5.1:Summary of Variables. The different variables of the proposed method and the
tested values for each variable

Quantitative Validation and Variable Testing We tested a range of values for the in-
compressibility -a , the regularisation -b , the overlap of the weights -k , the scaling of
the af�ne / translation components for the regularisation -mand the different weight types,
and the number of multi-resolution levels. The different values for each variable that were
tested are summarised in Table.5.5.1.1. The error was computed by taking theL2 distance
over all the regions between the ground truth displacement and the computed displacement.
As a measure of the mean error over the cardiac cycle, the errors were averaged for all the
frames.

The effect of the variablesk andmwas tested by �xinga = 10 andb = 10 and varying
k (�xing m= 1) andm(�xing k = 0:1). The resulting errors are shown in Fig.5.8. Four
multi-resolution levels were tested (i = 1 : 4) for both Cartesian and PSS weights (see Fig.
5.8). For the PSS weights, three multi-resolution levels gives the optimal results. For
Cartesian weights, only two levels are needed. In the case of using a multi-resolution, there
is a trade-off between the precision and speed of the registration. In general, using more
levels means that the registration converges quicker. However, using too many levels can
bias the registration when the images are downsampled below the level of detail needed to
be captured by the deformation.

In order to try to visualise the potential relationship betweena andb, contour plots of
the error for each combination of values are given in Fig.5.9. For both Cartesian and PSS
weights, there appears to be a smooth convergence to a global minimum arounda = 1� 10
andb = 1� 10. In both cases, the method appears to be robust to the choice ofa andb.
In the case of PSS weights, the added incompressibility (a ) and regularisation (b) terms
have a large effect on the displacement error. For PSS weights, there is a larger optimum,
indicating greater stability with respect to the parameters, and the error is lower than for
Cartesian weights.

In order to evaluate the evolution of the errors over times, the mean and standard de-
viation of the displacement error are plotted over time fora = 10 andb = 10, since these
appear to be the optimal values from Fig.5.9. The errors are plotted in Fig.5.10. The
errors increase over time up until the end systolic frame, which is expected since this is the
frame with largest displacement.
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Figure 5.8: The effect ofk , mand the number of multi-resolution levels on the displacement
error, tested by �xinga = 10, b = 10, and varyingkappawith m �xed at 1 (left) and
varying mwith k �xed at 0:1 (centre) for Cartesian (green) and PSS (blue) weights. The
number of multi-resolution levels tested (right) were between 1� 4. The optimum for
kappais at 0:1 andmaround 1, with 3 multi-resolution levels.

Figure 5.9: Contour plots displaying the relationship betweena and b with respect to
the displacement error computed from the average difference between the ground-truth
displacement �eld and the estimated displacement �eld for the Cartesian weights (left) and
PSS weights (right). The optimum occurs arounda = 1� 10,b = 1� 10.

Computation Time The computations were performed on a Dell PowerEdge 1950
dual-Xeon 5355 2.66Ghz computer. For the synthetic image sequence with resolution
described in Sec.5.5.1.1, computation of the matrixV took 6:67s. One pairwise registra-
tion took 60:24s. Registration of framen to frame 1 is initialised with the results of the
previous frame-to-reference registration (from frame(n� 1)) concatenated with the result
of the n-to-(n � 1) registration, therefore the tracking is performed sequentially, though
the pair-wise registrations can be performed in parallel. Note that the computation time
for both theV matrix and the pair-wise registration depends on the size of the image.
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Figure 5.10: Displacement error over all the frames fora = 10 andb = 10 showing the
mean (solid line)� standard deviation (dashed lines) for Cartesian weights (left) and PSS
weights (right).

5.5.1.2 Comparison to State-of-the-Art Methods

A �rst step to better understanding abnormal motion is to understand the motion dynam-
ics observed in healthy subjects. In this way, we can quotient out the normal motion to
distinguish abnormal motion patterns. To tackle this �rst challenge, the proposed method
was applied to the STACOM 2011 MICCAI cardiac motion tracking challenge database
[Tobon-Gomez et al., 2013]. The primary goal here was to quantitatively compare the
method to other state-of-the-art methods.

Image Information and Acquisition Details We illustrate these tools on 15 healthy
adults (3 female, mean age� SD = 28� 5). SSFP MR images were acquired using
a 3T scanner (Philips Achieva System, Philips Healthcare) in the short axis view cov-
ering entirely both ventricles (12-16 slices; isotropic in-plane resolution:1:15� 1:15mm2

to 1:25� 1:25mm2; slice thickness: 8mm; 30 frames). For each volunteer, 12 manually
annotated landmarks of the left ventricle were tracked along the cardiac cycle by two ob-
servers on 3D tagged MR image sequences of the same volunteers. These landmarks were
transported to the cardiac MR sequences using the DICOM header information. The 12
landmarks were composed of one landmark per wall (anterior, posterior, lateral, septal) for
each of the ventricular levels (basal, mid and apical).

Quantitative Comparison to iLogDemons and TDFFD The STACOM 2011 cardiac
motion tracking challenge was open to all willing participants. Of the four competitors that
applied for the �nal challenge, only two submitted their methods to the cine MR sequences.
These were the Temporal Diffeomorphic Free Form Deformation (TDFFD) method of
De Craene et. al [De-Craene et al., 2011] and the iLogDemons method of Mansi et. al
[McLeod et al., 2012a, Mansi et al., 2011a]. The principle behind the TDFFD method is to
model the deformations as B-splines. The iLogDemons is rather a gradient-driven optical
�ow method based on the Demons method. As with the method proposed in this work,
both of these methods require a mask of the myocardium as input.
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Figure 5.11: Boxplot of errors per subject from the 12 4D annotated landmarks at end
diastole and end systole for the Cartesian weights (left) and PSS weights (centre). The
average over the population is plotted for the TDFFD algorithm, iLogDemons algorithm,
and the proposed method. The proposed method is on the same order as the TDFFD and
has lower errors than the iLogDemons method.

Evaluating the accuracy of the provided ground truth landmark tracking is not the ob-
jective of this work. Rather, we are interested in quantitatively comparing the registration
results of the proposed method to state-of-the-art methods applied to the same sequences.
Given that the ground truth computation is subject to errors from the landmark allocation it-
self (inter- and intra-observer bias), and in alignment between the tagged MR and cine MR
sequences (subjects may move between acquisitions), and noting the large slice thickness
(8mm), we are interested in evaluating how greatly the errors vary from the other methods,
rather than the absolute error itself. Furthermore, we expect higher errors than for ECHO
or tagged MR for instance, since there is little or no texture information in the myocardium
to drive the registration [Wang and Amini, 2012].

We applied the same work�ow for computing the error as described in
[Tobon-Gomez et al., 2013] to be able to directly compare the errors. Based on the ex-
periments described in the previous section, the chosen parameters werea = 1;b = 1;k =
0:5;m= 1, with PSS weights, and three multi-resolution levels. TheL2 norm error between
the annotated landmarks at end diastole and end systole and the deformed landmarks at the
corresponding frames was computed. The median error value of the two time points was
3:07 for the proposed method. This can be directly compared to the median values for the
iLogDemons algorithm (4:82) and for the TDFFD algorithm (3:17). Therefore, the errors
are of the same order as these methods. The errors are plotted in Fig.5.11(left) for each of
the 15 volunteers. The error over all the subjects is shown in Fig.5.11(right) along with
the boxplots for the TDFFD and iLogDemons methods for comparison. The accuracy is
equivalent to TDFFD and lower than iLogDemons.

To evaluate the registration qualitatively, the AHA image was deformed by the com-
puted deformation �eld and the contours of each region is overlaid on the image at end
diastole (the reference frame) and end systole, for one volunteer (see Fig.5.12). Based on
these images, the registration appears to capture well the translation of the regions from
peak contraction to peak relaxation, though the radial thickening of the muscle is not fully
captured in the registration.
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Figure 5.12: Regional registration result of volunteer 10 at end diastole (ED) and end
systole (ES) for two different views showing the LV AHA regions on one slice annotated
on the ED frame, and the warped regions obtained from deforming the AHA regions by the
registration results.

5.5.2 Bi-ventricular Cardiac Motion Tracking

Given the connected dynamics of the right and left ventricles, capturing the bi-ventricular
motion is important to capture the full dynamics. Given that the PSS weights described
in this chapter are speci�c to the left ventricle, we apply the motion tracking only with
the Cartesian weights. The annotated landmarks from the STACOM 2011 cardiac motion
tracking challenge were only for the left ventricle, we validate the bi-ventricular motion
tracking only qualitatively.

We applied the proposed method to the �rst volunteer sequence. The right ventricle was
divided into 13 regions in a consistent manner to those for the LV (four basal, four mid-
section, and �ve apical). We analysed the results qualitatively by overlaying the deformed
mesh on the image sequence. In this way, we can visualise how well the contours of
the deformed mesh align with the image sequence. The contours for three frames along
the cycle are shown in Fig.5.13 for three views. The �rst frame is the reference frame,
considered to be the end diastolic frame (end of relaxation), since the sequences were gated
from the electrocardiography (ECG) signal. The 10th was chosen manually as the frame
corresponding to the end systolic phase of the cycle for the STACOM challenge. The 20th

frame is also shown to represent the relaxation period. Since the right ventricle is very
thin, there is little information in the image to drive the registration, though the proposed
method is able to capture the motion of the right ventricle reasonably well, as shown by all
the views of Fig.5.13.

5.5.3 Myocardial Strain Estimation

Myocardial strain can be used as a measure of function to measure the shorten-
ing or lengthening of the tissue in different directions. However, computing the
strain directly from cine MR sequences is not straightforward since there is lit-
tle texture information within the myocardium that can be extracted from the im-
age. Several attempts have been made to estimate strain from non-rigid registration,
such as in [Petitjean et al., 2004], [Sinusas et al., 2001], [Ledesma-Carbayo et al., 2006],
[Allan et al., 2011], [Mansi et al., 2011a]. These methods typically compute the strain
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Figure 5.13: The bi-ventricular mask annotated on the �rst frame was deformed by the
deformation �eld computed using the proposed method. The image sequence of volunteer
1 at frame 1 (column 1), frame 10 (second column), and frame 20 (third column) of the
cycle (of 30 frames total) is shown with the contour of the deformed mask for two views
(shown in the different rows). The contours align reasonably well with the image.

from the displacement �eld via the computation of the �nite Lagrangian strain tensor:

E(x) =
1
2

(Ñu(x)T + Ñu(x)+ Ñu(x)TÑu(x)) ; (5.24)

whereu(x) is the displacement atx. The strain tensor can then be projected onto a local ba-
sis in each of the longitudinal, radial and circumferential directions, following the notation
in [Moore et al., 2000].

The average strain for all the volunteers was computed over the cardiac cycle for re-
gions 1-16 (note that region 17 is excluded due to computational issues in de�ning the
directions at the apex). The average strain over each of the AHA regions fora = b = 1 is
summarised in Table5.2and plotted over time in each direction in Fig.5.14. The average
radial strain over all subjects and all regions fora = b = 10 is also plotted in Fig.5.14
to visualise the effect of increasing the incompressibility and regularisation on strain. It
appears that increasing the incompressibility and regularisation decreases the strain, in par-
ticular the radial strain. This is expected since increasing the regularisation has the effect
of smoothing out local motion (and potentially smoothing out the strain). Note that for
a = b = 10 the displacement error is slightly higher (median error 3:12).

These values can be compared to values reported in the literature. In
[Augustine et al., 2013], the authors propose a method for extracting the strain directly
from cine MR using a dedicated feature tracking software. The method requires user in-
teraction, and therefore is not optimal for computing strain on a large number of subjects,
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Figure 5.14: Mean regional strain of all volunteers in the circumferential (left), longitudinal
(centre) and radial (right) directions over time fora = b = 1 (top row) anda = b = 10
(bottom row).

Radial Longitudinal Circumferential
cPolyLogDemons 0:20� 0:08 � 0:02� 0:03 � 0:08� 0:03
Augustine et. al [Augustine et al., 2013] 0:25� 0:06 � 0:19� 0:03 � 0:21� 0:03
Moore et. al [Moore et al., 2000] 0:43� 0:19 � 0:15� 0:03 � 0:19� 0:03

Table 5.2: Strain comparison. Strain estimated from the model and compared to the
values given in [Augustine et al., 2013, Moore et al., 2000].

and is subject to bias. From the study, the longitudinal, radial and circumferential strain
were computed from 145 subjects. Strain was computed globally over the three ventricu-
lar layers, though in the longitudinal and radial directions less strain was observed in the
apical regions. In [Moore et al., 2000], systolic strain were computed from tagged MR
image sequences of healthy subjects. The reported strain values of these studies are sum-
marised in Table5.2. The computed strain is within the same range as those presented
in [Tobon-Gomez et al., 2013] for the TDFFD and iLogDemons methods, but with higher
radial strain.

5.6 Discussion

In this chapter we presented a cardiac motion tracking method that allows cardiac motion
to be tracked along the cycle with few parameters needed to describe the deformation from
each frame to the reference frame. The proposed method extends on the method of Seiler
et. al [Seiler et al., 2012] by introducing an incompressibility penalisation by penalising
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the trace of the gradient of the Polyaf�ne velocity �eld (where the trace of the gradient
of the velocity �eld is directly related to the volume change, thanks to properties of Lie
algebra). Added regularisation between neighbouring af�ne parameters was incorporated
by controlling how neighbouring regions differ in terms of their corresponding af�ne ma-
trices. This regularisation allows for a more homogeneous motion between regions, since
we do not expect large variation in motion between connected regions. Cardiac-speci�c
Polyaf�ne weight functions were used to allow more physiologically meaningful combi-
nation of the af�ne regions, and for the regularisation. Spatial priors on the input velocity
vectors (computed using the LogDemons algorithm ([Vercauteren et al., 2008]) were added
to give higher con�dence to vectors in regions on the boundary of the tissue, where there
are high gradients driving the registration. The movement of the epicardium was restricted
to prevent the epicardial border from being dragged by the endocardial border that is driven
by higher gradients. The accuracy of the method was quantitatively and qualitatively anal-
ysed, as discussed further in the following section. A few key points were raised brie�y in
this chapter including the pre-processing needed to implement the algorithm, and the cur-
rent computation time. The choice of regions was brie�y discussed in the previous sections.
Thee discussions are further developed below.

5.6.1 Accuracy of the Method

Experiments on a synthetic data-set were able to establish a range of optimal values for the
model parameters. Using the synthetic data-set, we were able to determine how each pa-
rameter effects the precision of the registration. Based on these experiments, we observed
that both the incompressibility and regularisation terms improve the accuracy of the reg-
istration, and furthermore, that a combination of both of these terms gives better results.
Using the PSS weights also gave better results than using Cartesian weights. Using a multi-
resolution scheme improves the accuracy and speed of the registration. Using the openly
available data-set of healthy volunteers from the STACOM 2011 cardiac motion tracking
challenge, we are able to determine that the method is able to track the motion of the heart
up to reasonable levels of accuracy consistent with state-of-the-art methods. Preliminary
analysis of the method on cardiac motion tracking of both the left and right ventricle show
promising results in terms of registration accuracy (based on qualitative analysis). Myocar-
dial strain computed on 15 healthy volunteers indicate that the proposed method is able to
capture the circumferential and longitudinal deformation reasonably well, though radial
deformation appears to be underestimated with respect to expected radial strain of healthy
subjects. Including both the spatial priors give higher strain in all directions than without
any spatial priors (results not shown).

5.6.2 Model Variable Selection

The experiments on the synthetic sequence gave indications for a suitable range of values
for each variable of the model. Based on these experiments, the model seems to be rea-
sonably insensitive to the choice of values used for the incompressibility and regularisation
variables (a andb). The number of multi-resolution levels has a small effect on the accu-



98
Chapter 5. Anatomically Constrained Regional Motion Model for Cardiac Strain

Analysis

racy after the �rst level, but little effect between 2-4 levels. The Polyaf�ne weight overlap
variablek is an important variable in the model as it determines the spatial effect of each
region on it's neighbouring regions. For future work, a Bayesian approach could allow for
more thorough investigation of the optimal values for the variables.

5.6.3 Pre-processing

The current implementation requires a number of pre-processing steps. Using the AHA
segmentation to de�ne the Polyaf�ne regions, we require �rst segmentation of the my-
ocardium, and then division into the AHA regions is de�ned from an additional three points
(base, apex and LV-RV junction on anterior). The motivation of this choice of region def-
inition is discussed further in the next section. For this work these steps were performed
semi-automatically, therefore restricting the large-scale application of this method. How-
ever, several methods have been proposed for automatic segmentation of the left ventricle
[Rouchdy et al., 2007], and automatic detection of the base, apex and LV-RV junctions.
Therefore, these pre-processing steps could potentially be automated to allow for large-
scale applications. Computation of the spatial priors is fully automatic.

5.6.4 Polyaf�ne Region De�nition

Using the proposed method, the deformation is described by 204 parameters per frame
(12 af�ne parameters� 17 Polyaf�ne regions). A key question raised from this work is
whether 17 regions is enough to describe the motion of the left ventricle. In our opinion,
given the results of the registration on the healthy volunteer data-set, these regions are
suf�cient for tracking the left ventricular motion. Other possible choices for the Polyaf�ne
regions are available, such as the possibility to use a multi-scale approach as in Seiler et. al
[Seiler et al., 2012] by starting at a coarse scale, and re�ning up until a desired number of
regions (potentially until the voxel level). However, for this application, we want the strain
and displacement to be de�ned in the AHA regions so we can communicate this directly
to the clinicians. Given that these regions are already familiar in cardiology, it allows for
more clinically meaningful analyses. Furthermore, using more regions means there will be
a larger number of parameters required to describe the motion. Naturally there is a trade-
off between the desired level of accuracy and the low parameterisation of the motion. We
believe that the current region de�nition provides a suitable trade-off.

5.6.5 Computation Time

The current implementation of the method is mostly based on the ITK framework. Ma-
nipulation of the matrices (such as theV andWmatrices) has not been optimised. Current
implementation of the method requires sequential tracking with one frame at a time. Us-
ing instead an independent frame-to-reference implementation gives higher errors (median
value 3:55 for the STACOM 2011 data-set), though the tracking can be performed much
faster since all the registrations can be done in parallel. Given that the interest of this work
is not to try to have real-time motion tracking, but rather to perform off-line population
analyses of the motion, accuracy, rather than speed is preferred.
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5.7 Conclusion

A method for tracking cardiac motion over the cardiac cycle based on a Polyaf�ne defor-
mation model is proposed. The described method incorporates cardiac-speci�c prior in-
formation and image-driven spatial priors into the model. Cardiac motion tracking can be
performed with a good level of accuracy (errors within the same range as current methods),
and with few parameters to describe the motion (204 parameters per time frame). Given
so few parameters to describe the motion that a consistently de�ned for all subjects, the
method is robust and can be reproduced on large populations for population-based analysis
and motion comparison.

5.8 Appendix: Numerical Implementation

The method is implemented fully in ITK following the open-source code of the
LogDemons, available from the ITK website2. The Polyaf�ne regression is added as a
�lter to regularise the correspondence �eld parameterised by a SVF, to replace the standard
LogDemons Gaussian convolution of the SVF. The added terms in the minimisation are
included within the �lter as extra functions to compute the matrixV andR, and the least
squares minimisation is solved with respect to these added terms. The Polyaf�ne regions
are given as an input image with the regions represented by different scalar values to com-
pute the weight images per region. The weight images are computed as described in Sec.
5.4.4.2, also using code written in ITK. These weight images are given as input directly to
the PolyLogDemons framework.

5.8.0.1 Pre-Computation of the V Matrix

For the purposes of cardiac motion tracking, theV matrix needs to computed only once
since the regions (and thus the weights) are �xed and de�ned in such a way so as to en-
compass all trajectories of the sequence. The matrix is pre-computed and stored as a text
�le to be read for all the paired image registrations. Since the computation of the V ma-
trix requires the computation of the gradient of each weight image, it is computationally
expensive, so pre-computing in this way reduces the total computation time.

5.8.0.2 Multi-Resolution Implementation

Following the multi-resolution implementation of the LogDemons algorithm, a multi-
resolution scheme for the proposed method was used. In this way, a coarse-to-�ne reg-
istration was performed by starting at a coarse level to capture the large-scale deformation,
followed by a re�nement at a �ner level to capture the small-scale deformation. In practice,
the multi-resolution implementation converges faster since fewer iterations are needed at
the �nest level.

The proposed pipeline is outlined in Fig.5.3 to summarise the key steps involved in
the preparation, and tracking stages. The preparation step requires segmentation of the

2www.itk.org



100
Chapter 5. Anatomically Constrained Regional Motion Model for Cardiac Strain

Analysis

ventricles and subdivision into AHA regions followed by computation of the weights and
pre-computation of theV matrix used for the incompressibility penalisation. Tracking
is performed by computing the correspondence �eld using LogDemons to obtain a SVF,
weighting this �eld by the smooth gradient magnitude of the image, then projecting to the
Polyaf�ne space. Tracking is performed by registration between all frames to the reference
frame, with each registration initialised with the result from the previous frame. Strain and
displacement analysis are performed directly on the af�ne parameters by considering the
�rst 3 � 3 block as the strain component, and the last 3� 1 column as the displacement
component.
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In the previous chapter, a reduced-order model for cardiac motion tracking was pro-
posed. This model allows the transformation from one image to another in the sequence to
be de�ned by a small number of parameters. The cardiac motion tracking algorithm was
developed speci�cally towards enabling group-wise comparison of motion. This chapter
leads towards such an analysis by comparing the transformation parameters of different
subjects as a preliminary step towards the full group-wise analysis described in the follow-
ing chapter. This chapter is based on McLeod et. al [Mcleod et al., 2013b] and McLeod et.
al [Mcleod et al., 2013a] (with the explanation of the cardiac motion tracking model and
testing data-set removed here to avoid repetition).

6.1 Chapter Overview

Using the cardiac motion tracking algorithm described in the previous chapter, the esti-
mated transformation parameters are analysed �rst at a regional level to compare the pa-
rameter evolution of healthy and pathological subjects (Sec.6.3). The analysis is taken a
step further to then build group-wise modes of temporal and spatial variation in Sec.6.3.
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6.2 Regional Analysis of Left Ventricle Function using a
Cardiac-Speci�c Polyaf�ne Motion Model

Given the complex dynamics of cardiac motion, understanding the motion for both normal
and pathological cases can aid in understanding how different pathological conditions ef-
fect, and are affected by cardiac motion. Naturally, different regions of the left ventricle of
the heart move in different ways depending on the location, with signi�cantly different dy-
namics between the septal and free wall, and basal and apical regions. Therefore, studying
the motion at a regional level can provide further information towards identifying abnormal
regions for example. The 4D left ventricular motion of a given case was characterised by
a low number of parameters at a region level using the cardiac-speci�c Polyaf�ne motion
model described in Chapter5. The motion was then studied at a regional level by analysing
the computed af�ne transformation matrix of each region. This was used to examine the
regional evolution of normal and pathological subjects over the cardiac cycle. The method
was tested on 15 healthy volunteers with 4D ground truth landmarks and 5 pathological
patients, all candidates for Cardiac Resynchronisation Therapy. Visually signi�cant differ-
ences between normal and pathological subjects in terms of synchrony between the regions
were obtained, which enables us to distinguish between healthy and unhealthy subjects.
The results indicate that the method may be promising for analysing cardiac function.

6.2.1 Introduction

Cardiovascular disease still remains one of the worlds leading causes of mortality in the de-
veloped world, despite recent advances in the �eld. Research into congestive heart failure
is increasingly providing new solutions to extend the life expectancy of heart failure pa-
tients. Given that cardiac asynchronous contraction is seen as a key characteristic of heart
failure, Cardiac Resynchronisation Therapy (CRT) (where pacing leads are strategically
implanted in a given region, or regions) can signi�cantly reduce the risk of death in heart
failure patients.

Common procedure for patients with heart disease is to scan the patient to obtain a 4D
image sequence (using echocardiography, magnetic resonance (MR) or computed tomog-
raphy (CT) scanners), for example, and / or electrocardiography (ECG) to measure heart
rhythm. Image sequences allow to visualise in 3D the motion dynamics and to potentially
identify thickened, ischemic, or scar regions, and asynchronous electrical conduction can
be identi�ed with ECG. Cardiac motion tracking from image sequences is a thoroughly
studied area of research due to the useful insights it can provide for therapy planning (see
[Tobon-Gomez et al., 2013],[Wang and Amini, 2012] and references therein for a sample
of such methods).

The aim of the proposed method is two fold: �rst, differentiating between healthy and
unhealthy subjects, and second, identifying abnormal regions of abnormal motion. To do
so, a motion tracking scheme was required, with a small number of parameters describing
the motion in order to obtain robust and reproducible measures. For this, the method
proposed in the previous chapter, which has the advantage of incorporating anatomical
and clinically meaningful prior information into the motion tracking through the use of
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anatomically oriented weight functions, and clinically relevant region de�nition, was used.
As a clinical application of this study, the method was applied to 5 heart failure patients, to
determine if there was a visible difference between the healthy and heart failure subjects.
A preliminary analysis of the deformation parameters (the af�ne matrices) indicated that
the method was able to detect meaningful differences between the two groups.

[Note: the description of the cardiac PolyLogDemons method from the previous chapter
given in [Mcleod et al., 2013b] has been removed to avoid repetition, as well as the full
description of the STACOM 2011 data.]

6.2.2 Regional Analysis of Polyaf�ne Parameters

6.2.2.1 4D Cardiac MR data sequences

Healthy Volunteers: The experiments performed on the 15 healthy volunteers described
in Chapter5 were used for comparative purposes to give an indication of "normal" param-
eter evolution.

CRT Heart Failure Patients: To test the methods on pathological cases, we applied
the method described in Chapter5 to �ve adults with asynchronous contraction of the left
ventricle. These patients were candidates for Cardiac Resynchorisation Therapy (CRT),
all with a large QRS duration due to a Left Bundle Branch Block (LBBB). Steady-state
free precession magnetic resonance images were acquired for each patient in the short axis
view covering entirely both ventricles (12-16 slices; isotropic in-plane resolution:1:42�
1:42mm2 to 1:56� 1:56mm2; slice thickness: 7-9mm; 30-40 frames).

6.2.2.2 Parameter Analysis

Since the transformationT from one image to another is given in terms of the ex-
ponential of the af�ne matrixM (see [Commowick et al., 2008] for further details), i.e
T = exp(M), we can use the property derived from Lie Algebra for the Jacobian determi-
nant: det(exp(M)) = exp(tr(M)) . Thus, we can analyse the trace of each matrix directly
as a measure of volume change per region. Note that the incompressibility term is a pe-
nalisation rather than hard constraint, since we don't want to force full incompressibility.
Furthermore, in order to obtain full incompressibility, a larger number of regions would
be needed. Therefore, we are interested in reducing, rather than forcing to zero, the com-
pressibility. Plotting the trace per region along time for all the healthy volunteers shows a
similar deformation at similar times for all the regions (see Fig.6.1).

Plotting the same curves for the CRT patients shows abnormal behaviour between the
regions compared with the normal cases (see Fig.6.2). Patients 1, 3 and 4 have asyn-
chrony between the regions, which can be expected given that these patients have ischemic
regions. Patients 2 and 5 have Dilated Cardiomyopathy (DCM) resulting in reduced pump-
ing function in the left ventricle.

Using Patient 4 as a speci�c case study (adult female with heart failure), the trace evo-
lution can be analysed at the scar regions. For this patient, the scar location was segmented
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Figure 6.1: Trace per region of each af�ne matrix for each of the healthy volunteers plotted
over time. The �gures show abnormal behaviour over time of the trace between all regions
for all volunteers in comparison to the normal cases.

Figure 6.2: Trace per region of each af�ne matrix for the CRT patients. Clearly, there is a
asynchrony between the regions for all of the patients.

from the MR images. Signi�cant mechanical asynchrony for the patient was con�rmed
from echocardiography, with left bundle branch block (LBBB). Two scars were observed,
the �rst in regions 4 and 5, the second in regions 9,10,14 and 15 (see Fig.6.3left). Plotting
the trace separately for each scar (see Fig.6.3centre and right), we see that there is a large
difference in amplitude between regions 4 and 5 for the �rst scar, but with a single peak
in the middle of the cycle, and smaller differences between the regions for the second scar
(see Fig.6.2). Since the second scar is divided amongst four regions, each region has only
a small amount of scar, with mostly healthy tissue.

6.2.3 Discussion and Future Work

A recently proposed method for cardiac motion tracking was applied to a small database
of 15 healthy and 5 heart failure subjects. This method presents the advantage of requiring
a smaller number of parameters compared to previously reported methods. As the defor-
mation is described with few parameters, they can be used as bio-markers to differentiate
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Figure 6.3: Left: Bi-ventricle mesh of a LBBB patient sliced through to show the right
ventricle (grey), left ventricle (blue) and scar location (yellow). Trace of the regions where
one of the scars are located (centre), and trace of the regions where the other scar is located
(right).

between healthy and unhealthy subjects. The results suggest that the proposed method
can be used for the comparison of cardiac motion patterns between groups and the iden-
ti�cation of abnormal motion areas directly from the images, without requiring any other
additional measurements. It was shown that using this methods the motion parameters can
be analysed at a regional level to study differences between regions of healthy or unhealthy
tissue, though including the percentage of scar per region would provide more depth to this
analysis to identify how much the scar region impacts the motion.

6.3 Spatio-Temporal Dimension Reduction of Cardiac Motion
for Group-Wise Analysis and Statistical Testing

Given the observed abnormal motion dynamics of patients with heart conditions, quan-
tifying cardiac motion in both normal and pathological cases can provide useful insights
for therapy planning. In order to be able to analyse the motion over multiple subjects in
a robust manner, it is desirable to represent the motion by a low number of parameters.
We propose a reduced order cardiac motion model, reduced in space through a Polyaf�ne
model, and reduced in time by statistical model order reduction. The method is applied to
a data-set of synthetic cases with known ground truth to validate the accuracy of the left
ventricular motion tracking, and to validate a patient-speci�c reduced-order motion model.
Population-based statistics are computed on a set of 15 healthy volunteers to obtain sepa-
rate spatial and temporal bases. Results demonstrate that the reduced model can ef�ciently
detect abnormal motion patterns and even allowed to retrospectively reveal abnormal un-
noticed motion within the control subjects.

6.3.1 Introduction

With the continuing high incidence of heart disease around the world in all sectors of
society, there is a growing interest in cardiac modeling to aid in diagnosis, prognosis, and
therapy planning. Models are continually being developed to try to simulate the different
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dynamics of cardiac function. Cardiac motion tracking, for instance, is becoming more and
more widely studied to try to quantify the different motion dynamics observed between
normal and pathological cases.

Over the past few years, a number of methods have been proposed to track
the motion of the tissue for different cardiac imaging modalities (ultrasound, cine-
magnetic resonance (MR), tagged-MR etc.), with increasingly interesting results (see
[Tobon-Gomez et al., 2013] and references therein). The majority of these methods focus
on cardiac motion analysis of a single subject, however, population-based motion analysis
may provide further information to aid clinicians. Ideally, such analyses should be robust
and reproducible for different subjects drawn from different populations (such as healthy
vs. pathological subjects), which requires the motion to be described by few parameters. In
[Chandrashekara et al., 2003], a statistical motion model is proposed using principal com-
ponent analysis on motion �elds to de�ne a per phase and per cycle model. However, the
models are used for only individual cases. A statistical atlas of motion computed from
healthy volunteers was proposed by Duchateau et. al [Duchateau et al., 2011] to quanti-
tatively analyse abnormal motion patterns and aid with therapy planning. This method
was effective in characterising abnormal motion, but is limited to 2D ultrasound data. De
Craene et. al later extended the method to 4D, but applied the method only to tagged MRI
[De Craene et al., 2012]. Recently, a low-dimensional cardiac speci�c model was proposed
by Mcleod et. al [McLeod et al., 2012b], that computes the Polyaf�ne fusion over regions
estimated from the log-demons deformation with added incompressibility penalisation and
neighbouring region regularisation, but again this method is limited to individual cases.
Though this method was able to drastically reduce the number of parameters needed to
represent the transformation, we would like to go even further to reduce the number of pa-
rameters from several subjects to enable robust population-based statistics on the motion.

To that end, we propose to extend on the method of [McLeod et al., 2012b] by apply-
ing model reduction on the Polyaf�ne model parameters of a single subject (resp. group of
subjects) to perform patient (resp. group) -wise statistics on left ventricular motion. The
method of [McLeod et al., 2012b] is described brie�y in the following section for review.
Sec. 6.3.2describes a validation of the registration on synthetic sequences with known
ground truth, as well as patient-based statistics on the computed af�ne parameters. In Sec.
6.3.3a method for performing group-wise statistics both spatially and temporally from the
Polyaf�ne model is described and performed on 15 healthy volunteers. Decomposing the
motion this way is essentially estimating a tensor decomposition of the spatial and temporal
components for multiple subjects, but in a more simpli�ed manner than tensor decomposi-
tion (which is not at all straightforward to compute). Similar decomposition was described
in [Metz et al., 2012] and [Hoogendoorn et al., 2009], though these required point annota-
tions and temporal correspondences of these points along the cycle. Enforcement of such
correspondences can introduce bias since determining such correspondences is not evi-
dent. The proposed method requires no such parameterisation and rather using the images
directly. The method was able to compute a patient-speci�c model of the motion with a
reduced number of parameters, as well as building separate spatial and temporal bases at
a group-wise level to understand the different aspects for a given population and to even
detect abnormal motion within that population.
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[Note: the description of the cardiac PolyLogDemons method from the previous chapter
given in [Mcleod et al., 2013a] has been removed here to avoid repetition, as well as the
full description of the STACOM 2011 data.]

6.3.2 Left-Ventricular Motion Tracking Validation on a Synthetic Sequence

In order to validate the accuracy of the registration, the cardiac motion tracking algorithm
described in Chapter 5 was applied to a data-set of 5 synthetic cine-MR sequences, with
known ground truth were used from the data-set of synthetic image sequences generated by
Prakosa et. al [Prakosa et al., 2012c]. All sequences used for the validation were generated
from a single patient sequence, by applying a bio-mechanical model to the reference image
with different contraction parameters in order to simulate different motion dynamics.

6.3.2.1 Motion Tracking Validation and Comparison to iLogDemons

Given the ground truth deformation from each frame to the reference frame (end diastolic
frame), theL2-norm error between the computed deformation and the ground truth de-
formation was computed for each motion simulation over the sequence. The computed
errors are shown in Fig.6.4, comparing against the error of the iLogDemons algorithm
[Mansi et al., 2011a] applied to the same sequences. From these curves we can see that the
proposed method gives lower errors than the iLogDemons method, which may be because
af�ne motion is more robust.

Figure 6.4: Left: TotalL2-norm error for the proposed method and the iLogDemons method
per frame for the 5 simulated sequences. Right: TheL2 norm error for one case comparing
the full Polyaf�ne model (blue solid line), the model computed from only the �rst 3 modes
(blue dashed line), and the iLogDemons algorithm (dashed red line).

6.3.2.2 Singular Value Decomposition on the Polyaf�ne Parameters

Given the low number of parameters needed to describe the deformation (204 per frame=
17 regions� 12 af�ne parameters), a singular value decomposition (SVD) of the parameters
can be easily computed. For a single given case, the SVD of the af�ne matrix is computed
as:

SVD(M) = U � S�VT ; (6.1)
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whereU andV are unitary matrices,S is a diagonal matrix andVT denotes the matrix
transpose ofV. The matrixM can be constructed by stacking the af�ne parameters for all
the regions in a column for all the frames, so that the �nal matrix will be of size 204� 29.

Using three modes, more than 95% of the variability is captured. Based on this fact, a
personalised reduced model was created using the �rst three modes of each subject. These
were then used to re-create the deformation using the Polyaf�ne model. The resulting
error curve is shown in Fig.6.4 (right) for a single case (similar curves can be shown for
the other cases). As expected, there are slightly higher errors than the original Polyaf�ne
model, though the error is still lower than the iLogDemons algorithm. Therefore, we are
able to describe the deformation by a reduced number of parameters - now 702 vs. 5916 for
the full Polyaf�ne model, and compared to voxel-based methods on the order of millions
(image size in each of thex,y,zdirections� 3� number of frames).

6.3.3 Group-wise Statistical Analysis of Motion

The motion tracking was applied to cine-MRI image sequences of 15 healthy volunteers
obtained from the STACOM 2011 MICCAI cardiac motion tracking challenge database
[Tobon-Gomez et al., 2013]. In order to be able to compare the parameters between sub-
jects, rigid alignment to a common space was �rst performed using a simple landmark
based registration.

6.3.3.1 Group-wise Spatial Mode Decomposition

Given a set of subjects drawn from the same population (in this case healthy volunteers),
we are interested in �nding a group-wise spatial basis of the motion within this population.
This can be done by using again SVD, but this time on the combined matrices of all the
subjects (over all the regions, and all the time frames). By stacking the matrices column-
wise, we can obtain a group-wise spatial basis, each with patient-speci�c time loadings
(see Fig.6.5). In this way, we can consider that the expected motion parameters for all
the subjects are the same since they are drawn from the same population, but with different
offsets (loadings) for the time.

Figure 6.5: Pipeline for computing a group-wise spatial basis by stacking the matrices for
all the patients over all the regions and all time column-wise, and performing SVD on the
big matrix.
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Applying this to the 15 healthy subjects, we �nd that 3 modes were suf�cient for de-
scribing 97% of the variability. Patient-speci�c models can be built using these �rst three
group-speci�c spatial modes with the subject-speci�c temporal loadings.

6.3.3.2 Group-wise Temporal Mode Decomposition

We may conversely be interested in �nding a temporal basis for a given population. This
could, for example, be useful in detecting abnormal motion by those with a temporal trigger
signi�cantly different from normal cases. Such a basis can be found by performing SVD
on the group of af�ne matrices, this time stacked row-wise (see Fig.6.6).

Figure 6.6: Pipeline for computing a temporal basis for a given population. The af�ne
matrices of all the regions, parameters and frames for a given set of patients are stacked
row-wise to perform a SVD.

By applying this decomposition to the 15 volunteers, we �nd that in this case 8 modes
are needed to capture 90% of the variability. Given that the sequences were not fully
temporally aligned, a larger number of modes is expected. Plotting the time signal for the
�rst 8 modes only (Fig.6.7, left), we �nd that the �rst mode corresponds well to the normal
volume curve (Fig.6.7, centre). Combining the �rst two modes has the effect of shifting
the peak temporally (Fig.6.7, right).

Figure 6.7: The �rst three temporal modes computed from the model reduction described
in Fig. 6.6 (left) with estimated locations of the cardiac phases (black vertical lines). For
comparison, the volume and electrocardiogram curves are shown (centre) (image modi�ed
from htt p : ==en:wikipedia:org=wiki=File : WiggersDiagram:png). The combination of
the �rst two modes (right).

To test the generalisation of the temporal basis to a new subject, a leave-one-out study
was performed on the 15 volunteers by learning the model on 14 volunteers and testing on
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the 15th. The residual error between the original af�ne matrices and the model computed
from 3 modes was computed for the learning set to determine the range of expected residual
values, then on the testing set to evaluate the generalisation of the basis (see Fig.6.8
left). We observed that there is one outlier in the testing set, and went back to the data
to analyse why this subject does not �t the normal model. Interestingly, we found that in
fact this patient had trouble during the scan and moved signi�cantly in the scanner due
to discomfort. Therefore, the observed difference could in fact be due to motion artifacts.
The model was then learned for the 14 normal volunteers (excluding the outlying volunteer)
and projected onto two heart failure patients with known abnormal motion. The computed
residual errors were much higher than the expected range (see Fig.6.8right), therefore the
model is able to successfully distinguish abnormal motion in a quantitative manner.

Figure 6.8: Left: Leave-one-out testing of the expected residual from using a 3-mode model
rather than full Polyaf�ne model with learning on 14 volunteers (left box-plot) and testing
on the 15th volunteer (right box-plot). Right: Computed residual on the 3-mode model for
15 volunteers used in the learning (box-plot), and residual of the projection of the 3 modes
on two pathological cases (blue stars).

6.3.4 Discussion and Future Work

The current work presents patient-speci�c, as well as group-wise analysis of motion by
approximating the motion by a cardiac-speci�c Polyaf�ne model, then performing model
reduction to the Polyaf�ne parameters. Since the motion is described by a small number
of meaningful parameters, the analysis can be done on a signi�cantly reduced number of
parameters and in a meaningful way, by de-coupling the spatial and temporal aspects. By
performing the model reduction in this way, rather than directly computing principal com-
ponent analysis on the af�ne parameters at all time frames for all the subjects (vectorising
the af�ne and temporal components (represented by the green face of the cube of Fig.6.6)
for all subjects (represented by the orange face of the cube)), we de-couple the temporal
and spatial components. We were able to detect irregular motion within the population,
as well as distinguish abnormal dynamics from subjects outside the population using the
temporal basis. For future work, temporally and spatially aligning the sequences �rst, as
in [Perperidis et al., 2005], may give more meaningful bases with fewer modes needed to
describe the variability. This work describes a proof of concept of the proposed method,
which needs to be further validated on larger data-sets.
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This chapter uses the image registration algorithm described in Chapter 5 to perform
statistical analyses of the transformation parameters by extending on the methods described
in Chapter 6. We go further towards population-based analyses by proposing a mean mo-
tion model, and performing statistical analyses of the parameters to understand the ob-
served motion patterns. Using the methods proposed in this chapter leads to answering the
key question of how to model cardiac motion over time at a population level. The aim of
such modelling is to be able to capture the typical motion dynamics observed for a given
population, by making use of a data-set of several subjects drawn from the same popula-
tion, which �nalises the second part of this thesis on cardiac motion analysis. This chapter
is in the process of being submitted to a journal.

7.1 Chapter Overview

Given that heart disease can result in abnormal motion dynamics over the cardiac cycle,
understanding and quantifying cardiac motion can provide insight for clinicians to aid in
diagnosis, therapy planning, and to determine the prognosis for a given patient. Quantify-
ing motion patterns that are observed in healthy subjects is a �rst step towards extracting
abnormal motion patterns characteristic of a given disease. Since there are common motion
patterns observed in patients suffering from the same condition, extracting these patterns
can enable a better understanding of a disease. Quantifying cardiac motion at a popula-
tion level is not a simple task since images can vary largely in terms of image quality,
size, resolution and pose. To overcome this, we analyse the parameters obtained from
a cardiac-speci�c Polyaf�ne motion tracking algorithm. Since the Polyaf�ne parameters
are intelligible (related to the strain / displacement), they can be interpreted directly. The
parameters are temporally aligned and resampled to a common space to have the same
number of parameters for all subjects, and to align the parameters according to the regional
volume peak. Spatial alignment is performed to align all parameters to a common space
in a prolate spheroidal sense. Once all parameters are in a common space, a mean motion
model of a population (normal or abnormal) can be derived simply by taking the mean
of each parameter. The mean can be de�ned in any space by realigning spatially in the
same prolate spheroidal sense. The modes of variation are derived by performing tensor
decomposition on the tensor of af�ne parameters over time for all subjects. Mean motion
models of healthy subjects and Tetralogy of Fallot patients are computed, from which the
abnormal motion patterns observed in Tetralogy of Fallot patients are extracted. Spatial
and temporal bases are derived for each population to determine typical temporal triggers
and typical spatial patterns for each group. Signi�cant differences are observed between
the motion dynamics of Tetralogy of Fallot patients and healthy subjects in terms of the
residual differences between the mean model and the Polyaf�ne model.
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7.2 Introduction

Cardiovascular disease is a worldwide issue, being the leading cause of death and effect-
ing the day-to-day life of billions. Heart diseases can affect the motion dynamics of the
heart over the cardiac cycle. Understanding the abnormal dynamics can thus potentially
give insight into a pathology and provide information that can aid with diagnosis, therapy
planning, and for determining the prognosis for a given patient. Quantitatively de�ning
what are “normal" motion patterns is not straightforward given the complex dynamics and
coupling between the ventricles and atria. In the case of patients with ischemia, the motion
dynamics will be affected by the poor conductivity in these regions, and there can be dif-
ferences in motion due to the different tissue properties. In patients with heart conditions
that affect the shape of the ventricles, the motion dynamics can be affected by the abnormal
shape to give poor pumping function in one or both of the ventricles, causing an increased
workload on the heart. For patients with stenosis in the arteries, the motion dynamics can
be affected by the heart trying to pump blood to get enough oxygen to the body, and from
regurgitated blood causing abnormal motion dynamics. Given the heavy workload on the
heart in a lifetime, maintaining healthy heart motion is crucial to maximise longevity.

The motion of the heart can be studied by placing markers on the tissue and tracking
the markers over time. However, this kind of measure is invasive and not applicable on a
large-scale basis or in all populations. For this reason, medical images are commonly used
to non-invasively visualise the motion of the heart as it beats using magnetic resonance
imaging (MRI), echocardiography (ECHO), or computed tomography (CT), for example.
Using such images, the temporal evolution of the heart can be visualised in 2D or 3D. Such
image sequences can be used to qualitatively analyse the motion dynamics. Some medical
scanners are able to obtain global measures directly from the images such as ventricular
volume, or 1D blood �ow measures, however regional measures are not currently available
in standard scanners. Also, more in-depth measures of cardiac function cannot be extracted
directly from the images.

Therefore, quantitatively tracking the cardiac motion can provide further insights to
obtain measures of cardiac function by analysing how ef�ciently the heart is beating and
identifying patterns related to normal (healthy) motion, and patterns characteristic of a
given pathology. Myocardial deformation and strain can give early indicators of poor func-
tion and disease evolution. A number of methods for tracking cardiac tissue for a single
subject have been proposed using image registration techniques to compute the deforma-
tion between images in the cardiac cycle. These are further discussed in the following
section.

7.2.0.1 Cardiac Motion Tracking using Non-rigid Registration

A number of non-rigid image registration techniques for cardiac motion tracking have
been proposed in recent years. Reviews of these are given in [Frangi et al., 2001,
Wang and Amini, 2012]. Key features of these methods include ensuring that the defor-
mations are diffeomorphic (smooth transformations that preserve the structure of the ma-
terial to prevent non-physiological transformations such as folding) and including an in-
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compressibility term to prevent large volume change in the myocardium. The challenge in
cardiac motion tracking of cMRI images is that the tissue is represented homogeneously
in the imaging, giving little texture information to track besides the endo- and epicardial
contours. Thus, it is dif�cult to capture the strain purely from image-driven registration
algorithms, in particular the circumferential strain.

Several methods for computing spline-based representations of transformations by a
series of free form deformations (FFD) have been proposed. In [Rueckert et al., 1999]
a B-spline based method for image registration of breast MR images was proposed
and later extended to include an incompressibility constraint [Rohl�ng et al., 2003]. A
cross correlation method for combining the information from non-tagged and tagged-
MRI was proposed in [Shi et al., 2012]. In [De-Craene et al., 2011], a temporal diffeo-
morphic framework was proposed where the velocities rather than the displacement were
represented by FFD's, to allow a temporal consistency in the estimated transformation.
Cardiac motion analysis with the objective of abnormality detection was described in
[Ledesma-Carbayo et al., 2005, Ledesma-Carbayo et al., 2006], but is limited to 2D anal-
ysis. In [Declerck et al., 1998], a 4D polar transformation was used to de�ne the motion
of the left ventricle (LV), however the motion is de�ned only for a given set of points.
Spline-based methods in general de�ne the motion of a set of grid nodes, where the size of
the grid is variable.

Optical �ow methods, originally proposed in the �eld of computer vision, are driven
largely by image intensities, thus assuming consistency in the image intensities along the
cycle. For modalities such as tagged-MRI this may not be the case. However, in the case of
cMRI registration, this is a reasonable assumption since the intensities remain reasonably
constant over the cardiac cycle. Optical �ow methods are usually de�ned at the densely
over the image to determine the motion at voxel-wise. A number of methods for estimating
transformations based on optical �ow principles in the context of cardiac motion tracking
have been proposed using phase-based correlation [Tautz et al., 2010] or Demons forces
[Mansi et al., 2011a] for example. These methods have the advantage of de�ning the trans-
formation for every voxel in the image, however this generally means that the deformation
is also parameterised at the voxel level. In cMRI sequences, this amounts to millions of
parameters per frame.

Polyrigid [Arsigny et al., 2005] and Polyaf�ne [Commowick et al., 2008,
Arsigny et al., 2009] methods have been proposed in recent years to compute a sim-
ple transformation at a regional level (rigid or af�ne) and fuse the regional transformations
in a smooth manner to obtain a global transformation. Such methods have the advantage of
de�ning the transformation over the whole image, but with few parameters. Traditionally, a
Polyaf�ne model is derived based on the result of a block-matching strategy for computing
the correspondences between images. In [Seiler et al., 2012] this was changed to use a
log-domain Demons optical �ow velocity �eld [Vercauteren et al., 2009] instead, which
is then projected onto the space of Polyaf�ne transformations. This was extended in the
context of cardiac motion tracking in [McLeod et al., 2013b] to include cardiac-speci�c
prior terms to the model. This method is used in the current work to obtain a representation
of the transformation that requires few parameters that can be interpreted and compared
amongst different subjects and different populations.
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7.2.0.2 Regional Motion Analysis

Assessing cardiac function can be done at a global or regional scale. Global indices can
for example be used to measure the pressure in the ventricles, the fraction of blood ejected
from the ventricles to the atria, the volume of blood in the ventricles / atria, and the mass of
the tissue. Global indices cannot, however, be used to assess regional function of the heart.
Regional measures, such as regional stress and strain, can be useful in detecting regions that
are functioning poorly due to ischemia for example. Therefore, analysing the function at
a regional level can provide vital information for clinicians in determining where to direct
treatment for therapy planning purposes. By knowing normal regional patterns, it may be
possible to identify abnormal regional patterns to detect regions that are functioning poorly
and potentially to classify function based purely on such indices. Using non-rigid image
registration and an unscented Kalman smoother, a Bayesian classi�er was used to detect
regional motion abnormalities in [Punithakumar et al., 2013]. Using this method, abnormal
regions are classi�ed for the full cycle, rather than taking into consideration the temporal
component. Therefore, some patterns may be averaged out in a sense. Using 2D and 3D
ECHO, wall motion was assessed in [Collins et al., 1999] at a regional level by assessing
the motion �rst in 16 segments of the left ventricle using 2D ECHO, then subdividing
to 36 regions in 3D ECHO. Regional motion was assessed from rest and stress cMRI in
[Suinesiaputra et al., 2011] by delineating the contours of the endo- and epicardium on 2D
slices, then dividing into 17 segments consistent with the standardised LV regions de�ned
by the American Heart Association (AHA) [Cerqueira et al., 2002] and rigidly, then non-
rigidly registering the contours.

7.2.0.3 Population-based Motion Analysis

In [Qian et al., 2011], myocardial strain extracted from tagged MRI was used to identify
and localise regional abnormal cardiac motion patterns, by describing the spatio-temporal
motion as a tensor, where the tensor contains regional strain information for 20 regions
of the LV. This results in a tensor of size 60� 10 (3 strain directions� 20 regions� 10
frames from end diastole to end systole) that is used to classify healthy / abnormal motion
patterns. The authors go a step further than patient-speci�c abnormality detection to de-
velop a population-based classi�er, trained on the patient-speci�c tensors. This, however,
is limited to strain analysis.

Cardiac motion was compared across subjects in [Rao et al., 2002] by �rst extracting
the motion parameters using a B-spline model then transforming the motion �eld to a com-
mon space by transforming each displacement vector by the inverse Jacobian matrix of the
transformation. This was extended to construct a cardiac motion atlas in [Rao et al., 2003]
by simply averaging the transformed motion �elds from a group of subjects drawn from
the same population. A 4D statistical atlas of cardiac anatomy was developed using a B-
spline model to represent the transformations in [Perperidis et al., 2004] by �rst performing
spatio-temporal alignment [Perperidis et al., 2003]. This model was used to differentiate
between normal motion and motion of patients with hypertrophic cardiomyopathy. A car-
diac motion atlas was constructed in [Rougon et al., 2004] by performing principal compo-
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nent analysis (PCA) on subject-speci�c motion �elds after �rst spatio-temporally aligning
the �elds. Regional measures are then acquired by averaging over the AHA regions. A
method for estimating a spatio-temporal atlas from longitudinal datasets was proposed in
[Durrleman et al., 2009b] for the detection of developmental delay in children. This frame-
work, is however, limited to the analysis of shapes, rather than images.

7.2.0.4 Aim and Chapter Organisation

Previous methods for performing population-based analyses of motion have been di-
rected towards analysis of dense motion �elds, or of regional strain. In the present
work, we are rather interested in performing group-wise analysis of a small set
of displacement parameters obtained from the cardiac-speci�c PolyLogDemons algo-
rithm of [McLeod et al., 2013b]. Rather than performing PCA on motion �elds as in
[Chandrashekara et al., 2003], or tensor decomposition of regional strain values, as in
[Qian et al., 2011], we compute a mean motion model by averaging spatio-temporally
aligned Polyaf�ne parameters, and compute spatial and temporal bases by performing
Tucker tensor decomposition on the spatio-temporal parameters of a set of subjects. In
contrast to the method proposed in [Xue et al., 2006] that was proposed to represent high-
dimensional deformation �elds in the context of brain image warping by a 3D statistical
representation, we represent the deformation �elds directly with the Polyaf�ne regression.

The Polyaf�ne parameters are aligned temporally by taking the regional mean peak vol-
ume, obtained from taking the trace of the af�ne matrix per region per subject, as was done
in [Mcleod et al., 2013b], and aligning to the mean of these region-wise. The parameters
are then temporally resampled so that all subjects have the same number of time frames.
Spatial alignment is performed on the temporally aligned and resampled parameters by
bringing all parameters to a common coordinate space, and realigning spatially in a prolate
spheroidal sense. A mean motion model is constructed by averaging the spatio-temporally
aligned parameters. Tucker tensor decomposition is performed on the 3D tensor of af�ne
parameters over time for all subjects (with and without removing the mean) to obtain spatial
and temporal bases.

The remainder of this chapter is organised as follows. A brief introduction of the
cardiac-speci�c PolyLogDemons algorithm of [McLeod et al., 2013b] that is used to ob-
tain the transformation parameters that are used in the following analyses is given in Sec.
7.3. The spatio-temporal realignment is described in Sec.7.4. The mean model construc-
tion is described in Sec.7.5, followed by the mode construction via the Tucker tensor
decomposition in7.6. The methods are applied to create a mean motion model of healthy
subjects and of Tetralogy of Fallot patients in Sec.8.5.

7.3 Transformation Parameter Estimation using a Polyaf�ne
Model

In Seiler et.al [Seiler et al., 2012], the authors propose a method to estimate a poly-af�ne
model from a log demons stationary velocity �eld. Using homogeneous co-ordinates, the
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parameters of the poly-af�ne model can be de�ned for points ˜x = [ x 1]T in Cartesian co-
ordinates as

log(T) def= log
�

A t
0 1

�
=

�
M
0

�
(7.1)

where log is a principal matrix logarithm,A is the linear part of the transformation,t its
translation, andM a 3� 4 matrix. For each segment the af�ne deformation �elds param-
eterised by theMi matrices are fused to a global deformation �eld using the poly-af�ne
model:

~vpoly(x) = å
i

wi(x)Mi x̃; (7.2)

wherewi is a parameter controlling the weight of theith region for each voxelx. Eqn. 7.2
can be estimated by a linear least squares problem with the least squares error with respect
to the observed velocity �eld~v(x) (in this case computed using the LogDemons algorithm).

In [McLeod et al., 2013b], the authors showed that an incompressibility penalisation
and a neighbouring region regularisation can be added to this model by penalising the trace
of the gradient of the poly-af�ne velocity �eld, and by regularising the similarity between
neighbouring regions via a distance term. Both terms were added in the least squares min-
imisation to obtain a penalised least squares error term, still linear in terms ofM. Image
spatial priors were included to weight the input velocity �eld to give more in�uence on ve-
locity vectors in regions of high gradient in the image (regions that drive the LogDemons
registration) and to control the motion in the epicardium to prevent the registration from
being dragged by the endocardial motion that is more visible in the image. The Polyaf�ne
regions used are the 17 AHA regions (see Fig.7.1 left). The Polyaf�ne weight func-
tions were computed in prolate spheroidal coordinates rather than in the Cartesian frame
using the method of Toussaint et. al [Toussaint et al., 2013] (see Fig. 7.1 right). Using
this method, a low-dimensional, regional, and consistent de�nition of the motion can be
obtained for a number of subjects.

7.4 Spatio-Temporal Parameter Alignment

Given the variability of the cMRI data, including temporal shifts, different cycle lengths
and different coordinate spaces for different acquisitions, spatio-temporal alignment is �rst
performed directly on the transformation parameters to align all the parameters to a com-
mon space. A method for temporally resampling the parameters so that all subjects have
the same number of frames in Sec.7.4.1, followed by a method for temporally aligning
the parameters is described in Sec.7.4.2and �nally a method for spatially aligning the
parameters to a common space in a prolate spheroidal sense in Sec.7.4.3. The steps for
aligning Polyaf�ne transformation parameters are summarised in Fig.7.2.

7.4.1 Temporal Resampling

In cine MR imaging, there is not a �xed number of frames acquired for each subject. In
practice, the cycle length (from the R peak to the next R peak) is divided into a given num-
ber of frames (typically 10-30), and the cine movie is constructed from the information
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Figure 7.1: The 17 AHA regions of the left ventricle (left) used as the Polyaf�ne regions,
and the prolate spheroidal coordinate system used to de�ne the Polyaf�ne weight functions
(right).

gathered over several heart beats (see Fig.7.3). Such sequences are acquired while sub-
jects hold their breathe, to remove lung motion artifacts. Therefore, since the cycle length
differs from one acquisition to another, we need to temporally resample the parameters to
a common space to have an equal number of frames for all subjects (in order to be able to
directly compare the parameters). This is done simply by interpolating between frames in
the case that the number of frames for a given subject is fewer than the reference number
of frames. This is represented in Fig.7.2, step 2.

7.4.2 Regional Temporal Alignment

Cine MR image sequences are generally gated by ECG signals, so that the �rst frame cor-
responds to the end diastolic frame, and so that an image sequence covers one cardiac
cycle. Standard acquisition is acquired by waiting a given amount of time after the R wave
before initiating the sequence (see Fig.7.4) and images are required between the R-to-R
cycle. However, sometimes the �rst frame does not correspond exactly to the end diastolic
frame and therefore the sequence is slightly offset. Furthermore, some sequences do not
loop back exactly to the end diastolic frame, where some frames may be missing, or too
many frames may be included in the sequence. Also, the ECG signal may be weak in some
patients, such as those with large pericardial effusion, making the ECG gating dif�cult.
Subjects may also differ in the duration of the cardiac cycle, therefore the peak frame does
not always overlap for a group of patients. To account for this, the transformation param-
eters were aligned temporally per region, by computing the trace of the af�ne matrix per
region over time, as in [Mcleod et al., 2013b]. The trace of the af�ne matrix corresponds to
the volume curve, through properties of Lie algebra, so this essentially amounts to aligning
the parameters according to the volume curves. In this way, the mean peak frame can be
computed for a group of patients, and all the transformation parameters are aligned to the
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Figure 7.2: Spatio-temporal alignment pipeline starting with a temporal resampling step
to resample the parameters so that there are an equal number of frames for all subjects.
Temporal realignment is then performed regionally to align the parameters by the regional
mean peak of the trace of the af�ne matrix. Spatial alignment is performed to align all
parameters to a common coordinate space, by transporting the parameters to be centered at
the barycenter of the region, and reoriented in a prolate spheroidal sense.
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Figure 7.3: For a cine image sequence, the cardiac cycle is divided into N phases and
acquisition is averaged for each phase over several cycles. The number of phases is variable
from one acquisition to another.

mean peak frame (see Fig.7.5). We assume that the transformation starts and �nishes at the
identity transformation, therefore a temporal shift of+ 5 sets the �rst 5 frames to identity.

Figure 7.4: The ECG signal is used to detect the R peak. Acquisition is started a �xed
amount of time after the R peak, and one cycle is considered as the R-to-R duration. Gating
the cine MR sequences in this way can result in different acquisition lengths, especially for
patients with low ECG signal.

7.4.3 Spatial Alignment

In order to be able to construct a mean motion model, we �rst need to transport all the
parameters to a common space. Rather than aligning all the images, which would amount
to rigidly registering all images to a common space prior to performing the motion tracking,
as was done in [Mcleod et al., 2013a], we rather align the transformations after performing
the motion tracking. Given the low dimensional representation of the motion given from
the registration algorithm summarised in the previous section, this is a matter of simply
transporting the af�ne matrices to a common coordinate space. By choosing one subject
(at random) to be the template subject, we can transport all the other subjects to this space.
We are interested in analysing the motion at a regional level, hence we are interested in
aligning the matrices at a regional level independently from other regions. Hence, we can
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Figure 7.5: Trace of a single region plotted over time for a group of subjects shown before
alignment (left) and after alignment (right). Aligning the curves brings the peaks to the
same frame, to give the amount of shift needed to align the parameters.

align all matrices by �rst re-centering each matrix around the origin using the barycenter
per region. The regions then need to be re-oriented to be aligned in a common manner.
Since the Polyaf�ne weights are de�ned in PSS coordinates, it follows that the matrices
can be oriented in a prolate spheroidal sense (see Fig.7.1) by taking the Jacobian matrix
computed at the barycenter. The same is done to re-orient the result to match with the
template orientation, then bringing the matrix to the template space. A simpli�cation of this
pipeline is shown in Fig.7.2, step 3. The prolate spheroidal coordinates were computed
using the method of Toussaint et. al [Toussaint et al., 2013].

7.5 Mean Motion Model Construction

7.5.1 Mean Trajectory Model

Once all the matrices are aligned to a common space for all subjects, the mean and principal
modes of these observations can be easily computed using basic arithmetic operations. The
meanMt at timet can be computed by:

M̄t =
1
Nk

Nk

å
i= 1

Mk;t ; (7.3)

wherek is the subject index,Nk the number of subjects andMk;t the transported matrix for
subjectk at timet. By stacking all the matrices of a given subject to form a column vector
(as shown in Fig.7.7) of [time � number of regions� af�ne parameters], we can similarly
compute the mean trajectorȳM by taking the average of these vectors.

7.5.2 Simulated Motion from the Mean Model

Given the estimated mean trajectory, the motion can be simulated on a new subject, given
that the subject is in the same coordinate space as the template, by simply applying the
mean to the �rst image of the sequence:It = Mt � I0 (see Fig.7.6. In general, new subjects
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Figure 7.6: The mean motion model applied to an image requires simply applying the mean
transformation per frame to the reference image.

will not be in the same coordinate space as the template. Therefore, the mean trajectory
M̄t �rst needs to be transported to the subject space. This can be done in a similar way to
the pipeline for aligning the subjects. Given the barycenter and Jacobian matrix for each
region of the new subject,̄Mt can be transported to the subject space by:

Mk
r = Tk

r � (T̄r ) � 1 � M̄r � T̄r � (Tk
r ) � 1; (7.4)

whereMk
r is the mean motion model in regionr in the subject-speci�c space for subjectk,

Tk
r is the matrix:

Tk
r =

2

6
6
4

Jk
r bk

r

0 1

3

7
7
5

with bk
r the barycenter of regionr for the kth subject (in Cartesian coordinates),Jk

r the
Jacobian matrix at the barycenter in the local (prolate spheroidal) coordinates.T̄r is the
mean matrix at the barycenter of regionr in the template space.

7.5.3 PCA Motion Modes

The modes of variation around the mean can be computed simply by �rst forming a matrix
M containing all the subject trajectories, and performing PCA on this matrix (as shown in
Fig. 7.7).

Creating the matrixM is essentially a matricisation of the tensorT containing all the
parameters (see Fig.7.8). This differs to the matricisation given in [Mcleod et al., 2013a],
where the matrices of the af�ne parameters� time were stacked block-wise by row or by
column and singular value decomposition (SVD) was then applied to the stacked block
matrices. Performing the decomposition in this way gives modes that may be dif�cult to
interpret, in the sense that it is dif�cult to de-couple the modes related to the temporal
or spatial components. To address this issue, we can rather perform the decomposition
directly on the tensor, as described in Sec.7.6.
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Figure 7.7: Formulation of the matrixM of all parameters over time and space for all
subjects. Performing PCA on this matrix gives the mean and modes of variation around
this mean.

Figure 7.8: One method for matricising a three-way tensor by stacking the matrices block-
wise.

7.6 Spatial and Temporal Mode Construction using Tensor De-
composition

Rather than performing PCA on stacked matrices of all parameters for each subject as
described in Sec.7.5.1 or SVD on parameters stacked either temporally or spatially
as in [Mcleod et al., 2013a], the tensorT of all parameters can be decomposed directly.
A number of methods for tensor decomposition have been proposed, the most com-
mon being the CANDECOMP/PARAFAC (CP) decomposition [Carroll and Chang, 1970,
Harshman, 1970] and the Tucker decomposition [Tucker, 1963, Tucker, 1966] (see Fig.
7.9). A review of these methods as well as other tensor decomposition methods is given in
[Kolda and Bader, 2009]. The CP decomposition is the generalisation of SVD to tensors
in which a tensor is factored into the sum of rank-one tensors (tensors that can be written
as the outer product of vectors). The Tucker decomposition (also known as higher-order
PCA) rather decomposes the tensor into a core tensor and factor matrices corresponding
to each axis (see Fig.7.9). In this work, we focus on the Tucker decomposition, to give
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Figure 7.9: Visual representation of the Tucker decomposition (top right) and CP decom-
position (bottom right) on a three-way tensor.

decoupled “loadings" of the modes (whereas in the case of the CP decomposition, there is
a single loading for each axis, meaning that thenth modes are coupled in some way).

7.6.1 Tensor Decomposition Using the Tucker Method

The Tucker decomposition (a.k.a higher-order PCA / SVD, N-mode SVD / PCA) computes
an orthonormal space associated with each axis of the tensorT. For a three-way tensor, the
Tucker decomposition can be written:

T � G� 1 A� 2 B� 3C =
K

å
k= 1

T

å
t= 1

R

å
r= 1

gktrak � bt � cr

= [[ G;A;B;C]]: (7.5)

Computing such a decomposition is not straightforward. One method for doing so is to
matricise the tensor (in the three-way case), similar to the decomposition described in the
previous section. Another method, known as the Tucker1 method, is to compute optimal
components to capture the variation in thenth axis, independently from the other axes.
Alternatively, the factors can be estimated using an iterative alternating least squares strat-
egy (ALS), an alternating slice-wise decomposition (ASD), non-linear conjugate gradient
method (NCG) and using a direct multi-linear decomposition (DMLD). Further details on
the ALS strategy for computing a Tucker decomposition is given in the Appendix.

7.6.2 Tensor Decomposition on Re-scaled Parameters

Rather than performing the tensor decomposition directly on the parameters, we can per-
form tensor decomposition on re-scaled rotation, stretch, shearing and translation parame-
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ters. In this way, rather than performing the decomposition on the af�ne matricesMk
r :

Mk
r =

2

6
6
4

a1;1 a2;1 a3;1 t1
a1;2 a2;2 a3;2 t2
a1;3 a2;3 a3;3 t3
0 0 0 0

3

7
7
5

the analysis can be performed on vectorsPk;t;r made up of the rotation, stretch, shearing
and translation components for subjectk at timet in regionr. The rotation component is
given by:

Rotation:

2

4
Rx

Ry

Rz

3

5 =

2

4
1=2(a2;3 � a3;2)
1=2(a1;3 � a3;1)
1=2(a1;2 � a2;1)

3

5 :

The stretch component is given by:

Stretch:

2

4
Sx

Sy

Sz

3

5 =

2

4
a1;1

a2;2

a3;3

3

5 :

The shearing component is given by:

Shear:

2

4
Sxy

Sxz

Syz

3

5 =

2

4
1=2(a1;2 + a2;1)
1=2(a1;3 + a3;1)
1=2(a2;3 + a3;2)

3

5 :

The translation component is given by:

Translation:

2

4
Tx
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Tz

3
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2

4
t1
t2
t3

3

5 :

The vectorPk;t;r can then be expressed as:
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:

The elements ofPk;t;r can then be scaled bys = [ sRx;sRy � � � s tz], where

s [i] =

s
1

NkNtNl
å
k;t;l

(pk;t;l )2
[i] (7.6)

Tensor analysis can then be performed onqk;t;r = [ Pk;t;r ][i]=s [i]
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7.7 Healthy vs. Tetralogy of Fallot Motion

In order to apply the methods described in the previous sections, 4D sequences of two
populations were tested. The �rst, a data-set of healthy controls, to establish normal motion
patterns. The second, a data-set of patients with Tetralogy of Fallot, to establish motion
patterns related to the pathology. This section is organised in the same order as the previous
section to test �rst the mean motion model on both populations (Sections7.7.1,7.7.2), then
computing temporal bases on the stacked matrices to compare to tensor decomposition on
the parameters (with and without removing the mean) in Sec.7.7.3. Tensor decomposition
on theP matrices for both populations is described in Sec.7.7.4.

Healthy Volunteers We illustrate these tools on 15 healthy adults (3 female, mean age
� SD= 28� 5) obtained from the STACOM 2011 MICCAI cardiac motion tracking chal-
lenge database [Tobon-Gomez et al., 2013]. Steady-state free precession magnetic reso-
nance images were acquired using a 3T scanner (Philips Achieva System, Philips Health-
care) in the short axis view covering entirely both ventricles (12-16 slices; isotropic in-
plane resolution:1:15� 1:15mm2 to 1:25� 1:25mm2; slice thickness: 8mm; 30 frames).

Tetralogy of Fallot Patients To test the methods on pathological cases, we applied the
described method to ten patients with repaired Tetralogy of Fallot (ToF) (5 female, mean
age� SD = 21� 7). These patients all had a full ToF repair early in infancy, resulting in
the destruction of the pulmonary valves. Steady-state free precession magnetic resonance
images were acquired for each patient in the short axis view covering entirely both ventri-
cles (12-15 slices; isotropic in-plane resolution: 1:21� 1:21mm2 to 1:36� 1:36mm2; slice
thickness: 8mm; 15-19 frames).

7.7.1 Mean Normal Motion Model

A mean normal (healthy) motion model was computed from the 15 healthy volunteers using
the method described in Sec.7.5. The �rst volunteer was chosen to be the template, and all
other subjects were aligned to this space. To visualise the mean motion model, the model
was transported to the space of the second volunteer. The �rst image of volunteer 2 was
deformed by the motion model. In order to analyse the result, we compare the mean model
to the Polyaf�ne model (since we do not assess here the accuracy of the Polyaf�ne model
used to estimate the transformation parameters). The �rst image in the sequence was thus
transformed by the Polyaf�ne model for comparison. The images at three frames (frame 5,
10 and 20) are shown in Fig.7.10, along with the iso-contours of each image (in green).
The mean motion model gives a reasonable motion pattern, and actually gives smoother
motion that the Polyaf�ne model (not shown).

A leave-one-out experiment was performed to test the ability of the mean model to
approximate the motion of a new subject drawn from the same population by using 14 sub-
jects as the training set, and testing on the 15th subject. The residual error (RMSE) between
the mean motion model (in thekth subject space) and the original Polyaf�ne transformation
parameters (before realignment) was computed for subjects in the training set as well as
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Figure 7.10: Polyaf�ne Model (top row) and mean motion model (bottom row) at frame 5
(left), 10 (centre) and 20 (right) for subject 2. The mean model captures the key dynamics
of the motion, though the radial contraction is underestimated (as seen on the 10th frame).

for subjects in the testing set. The errors are plotted over time in Fig.7.11for the training
set (left) and the testing set (right). Note that the error is the difference between the af�ne
transformation parameters. The errors are within the same range for the training and testing
set, indicating that the model is able to predict the motion of healthy subjects.

Figure 7.11: Boxplots of the residual norm between the Polyaf�ne transformation and the
normal mean model transformation over time for subjects used in the training set (left), and
for subjects not used in the training set (right) for the healthy volunteers.

To test the ability of the model to capture the motion of ToF patients, the mean mo-
tion model was applied to each patient, and the residual error between the model and the
Polyaf�ne parameters was computed. The boxplot of the error is given in Fig.7.12along-
side the boxplots of the training and testing set of the healthy volunteers. As expected the
residuals are higher for the ToF patients, indicating that the healthy model is insuf�cient
in capturing the motion dynamics in these patients. This suggests that there are abnormal
motion dynamics observed in these patients.
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Figure 7.12: Boxplots of the residual norm between the Polyaf�ne transformation and the
normal mean model transformation for subjects used in the training set (left - red), for
healthy subjects not used in the training set (centre - blue) and for Tetralogy of Fallot
patients (right - green).

7.7.2 Abnormal Motion Identi�cation in Tetralogy of Fallot Patients

The left ventricular motion was tracked in the ToF cases to obtain a baseline motion for
these patients. The mean normal model was then applied to each patient to determine
whether there are visible regional differences between the obtained matrices and the base-
line matrices. In particular, we are interested in determining where the differences lie
between the normal and pathological cases. Given the large variability of motion observed
in these patients (since the patients received different treatments during their lifetimes, and
are at different stages in the progression of the heart remodelling), we expect that a larger
number of subjects are needed in the training set to be able to capture the motion dynam-
ics for all subjects. Performing a leave-one-out experiment as was done for the healthy
controls, we �nd that the residual error is higher for the training set than for the testing
set, as shown in Fig.7.13. This is expected since few subjects were used in the training
set, and there is a large variability of motion in this population. Therefore, this suggests
that the mean ToF motion model is able to capture the motion dynamics of these patients
reasonably well.

7.7.3 Healthy vs. Pathological Spatio-Temporal Bases

As a baseline for comparison, the same decomposition as used in [Mcleod et al., 2013a]
was performed on the realigned parameters for both the healthy controls and for the Tetral-
ogy of Fallot patients (see Fig.7.14), to compare to the temporal modes computed from the
tensor decomposition. There are clear differences between the modes, where the principal
mode for the healthy volunteers resembles the typical volume curve of healthy subjects.
The principal mode for the ToF patients is less regular, potentially due to the fact that these
patients do not have a single peak around the end systolic phase, but have more complex
motion dynamics with multiple peaks in contraction.
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Figure 7.13: Boxplots of the residual norm between the Polyaf�ne transformation and the
normal mean model transformation over time for subjects used in the training set (left), and
for subjects not used in the training set (right) for the Tetralogy of Fallot patients.

Figure 7.14: The �rst 5 temporal modes computed by decomposing the tensorT block-
wise and stacking to one row of blocks, plotted over time (scaled by the eigenvalues) for
the healthy controls (left) and the Tetralogy of Fallot patients (right).

The �rst two spatial modes for the healthy controls are shown in Fig.7.15(left) and
for the ToF patients (right). The �rst mode for the healthy controls appears to capture both
the radial contraction, and the circumferential motion (shown in block yellow arrows). The
ToF modes, on the other hand, appear to capture a translation of the free wall and septal
wall towards the right ventricle. This abnormal motion is evident in the image sequences
of these patients.

The Tucker tensor decomposition described in Sec.7.6.1was performed using the San-
dia National Laboratories Tensor Toolbox [Bader et al., 2012], implemented in MATLAB.
Using these tools, the three-way tensors of [af�ne parameters� time � subject] of the
healthy controls and of the ToF patients were decomposed into factor and core matrices.
Using the Tucker decomposition, we obtain temporal bases for each loading related to the
spatial bases.

The �rst three spatial loadings for the healthy (top row) and ToF (bottom row) subjects
are shown in Fig.7.16for the �rst �ve temporal modes (without removing the mean). The
�rst loadings exhibit interesting differences, where the healthy modes resemble the normal
volume curve, whereas the �rst loading for ToF shows slow contraction and show �lling.
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Figure 7.15: Three views of the �rst(top row) and second (bottom row) spatial modes for
the healthy controls (left) and for the Tetralogy of Fallot patients (right). The modes for
the healthy controls represent the radial contraction and circumferential motion, whereas
the modes for the Tetralogy of Fallot patients represent the translation towards the right
ventricle. Yellow arrows indicate direction of motion.

Figure 7.16: Temporal modes for the �rst (left), second (centre) and third (right) loadings
corresponding to the �rst, second and third spatial modes for the healthy controls (top row),
and for the Tetralogy of Fallot patients (bottom row). The �rst loadings show interesting
differences for the ToF patients, with slower contraction and slower �lling than for the
healthy subjects.
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By performing the tensor decomposition on the parameters after removing the mean,
the temporal modes show similar behaviour, with multiple peaks, translated to the left (see
Fig. 7.17 - left). The curves are �at around the end systolic phase, which is expected
since the parameters were aligned to the frame corresponding to the end systolic phase.
The peaks occur around the beginning and end of the cycle, and between the 10th and 20th

frames, where during the relaxation phase. This may account for the differences in these
phases due to the fact that the parameters were temporally aligned only rigidly. In that
case, the temporal modes would account for the misalignment during these phases. For the
ToF patients (Fig.7.17- right), there is a greater number of peaks, which may indicate that
there is greater variability temporally in these patients.

Figure 7.17: Temporal modes computed from the tensor decomposition performed on the
centered matrices (after subtracting the mean) for the healthy controls (left) and the Tetral-
ogy of Fallot patients (right).

7.7.4 Tensor Decomposition on P Matrices

As described in Sec.7.6.2, tensor decomposition can be performed on the vectorsPk;t;r

containing the rotation, stretch, shearing and translation components of each af�ne matrix.
This amounts to performing tensor decomposition on the four-way tensor [matrix compo-
nents� time � region � subject], which is a tensor of size [12� 29� 17� N] (where
N = 15 for the healthy subjects andN = 10 for the ToF patients). The �rst af�ne compo-
nent mode is summarised in Table7.1 for each population, highlighting the differences in
the motion dynamics. While the healthy controls capture a positive rotation in all direc-
tions, the ToF patients have little rotation, and rotate in the opposite direction. Less stretch
is observed for the ToF patients than the healthy controls.

7.8 Discussion and Perspectives

In the current work, we proposed to use statistical methods to create a mean motion model,
and to extract the modes of variation using standard statistical model reduction techniques,
as well as more advanced tensor decomposition methods. The proposed method uses the
parameters of the cardiac PolyLogDemons algorithm [McLeod et al., 2013b], which gives
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Af�ne component Healthy controls Tetralogy of Fallot
Rx 0.0062 -0.0005
Ry 0.0048 -0.0001
Rz 0.0022 -0.0015
Sx -0.0054 -0.0022
Sy -0.0064 -0.0024
Sz -0.0078 -0.0042
Sxy -0.0093 0.0067
Sxz -0.0083 0.0101
Syz -0.0100 0.0088
Tx 2.58 -1.085
Ty 3.51 -1.245
Tz 2.73 -1.341

Table 7.1:First principle mode of af�ne components.

transformations described by a small number of parameters at a regional scale. Spatio-
temporal alignment of the parameters was performed prior to analysis. The techniques
used are further discussed in Sec.7.8.1. A mean motion model was constructed by taking
the average of the aligned parameters. The mean model construction is further discussed
in Sec. 7.8.2. From the obtained Polyaf�ne transformation parameters, statistical model
reduction was applied to the parameters after spatio-temporal alignment. The statistical
methods used are discussed in Sec.7.8.3.

7.8.1 Parameter Realignment

Spatio-temporal alignment was performed by making use of the trace of the af�ne matrices
to align the transformations temporally, and making use of the prolate spheroidal coordi-
nates to align the transformations spatially, in an anatomically meaningful manner. The
temporal realignment used in this work was a simple "rigid" transformation of the param-
eters. The parameters are translated regionally by the mean peak of the trace, since the
peak contraction is captured suf�ciently well for all regions. However, this may have the
effect of removing relevant parameters. Therefore, a non-rigid transformation may allow
more intuitive analyses by �xing the �rst frame and stretch (or shrinking) the parameters to
the mean peak of the trace, and stretching (or shrinking) to the relaxation phase, similar to
the temporal alignment described in [Perperidis et al., 2005]. Both the temporal and spatial
alignment were performed at a regional level. This was due to the fact that we are interested
in region-wise analyses, rather than global analyses. However, it is also possible to tem-
porally align the transformations to a global peak frame, and in fact for patients with large
dysynchrony between regions, this may be more suitable. Spatially, however, the current
formulation relies on the regional construction. The parameters could be spatially aligned
by the barycenter of the ventricle, however further data-points would be needed such as the
base, apex and LV-RV junction.



7.8. Discussion and Perspectives 133

7.8.2 Mean Motion Model Construction

From the mean motion model constructed from healthy subjects, we found that the model
is able to approximate the motion of other healthy subjects reasonably well, however the
motion of Tetralogy of Fallot patients was not fully captured from this model. This was
expected given the abnormal motion dynamics observed in ToF patients. Interestingly,
the motion model constructed from 9 ToF patients was suf�cient to capture the motion
dynamics of the 10th subject (based on the results of the leave-one-out experiment). Given
that these patients have followed different treatment paths, and are at different stages due to
the range of patient age (some patients are children, others adults), we expected to require a
larger number of patients to capture the dynamics in this population. However, the related
factor between these patients is a missing pulmonary valve, caused by the initial surgery.
Therefore, the regurgitated blood from the pulmonary artery may be the key factor affecting
the motion dynamics of these patients. Ideally, given more patients with similar treatment
history, treatment-speci�c models could be constructed to distinguish the key differences
in the motion dynamics for patients treated with one treatment over another. In future
work, the mean motion models could also be used to generate synthetic sequences for new
subjects in which only the end diastolic image is available, or as a prior in the cardiac-
speci�c PolyLogDemons of Chapter5 to regularise the tracking and to reduce errors.

7.8.3 Statistical Model Reduction

A number of statistical model reduction techniques were used in this work to attempt to
understand the underlying motion variability of the two populations. We extend on the
work in [Mcleod et al., 2013a], in which model reduction is performed block-wise on ma-
trices stacked either column- or row-wise to obtain temporal and spatial population bases.
In the current work, we perform model reduction on the full tensor using the Tucker de-
composition to obtain spatial and temporal bases directly. The advantage of performing
model reduction directly on the tensor is that the bases are decoupled and can be recom-
bined independently. However, tensor decomposition is not straightforward and requires
numerical methods for estimating the modes, compared to matrix decomposition which
could be performed simply with SVD, PCA, POD etc. Due to the coupling between the
modes (the fact that a combination of modes contribute to the motion dynamics), we per-
form model reduction on both the centered data (PCA-like decompositions) as well as on
the non-centered data (SVD-like decompositions). Performing PCA-type analyses, we can
analyse the bases orthonormal with respect to the variable motion dynamics, rather than to
the mean, whereas SVD-type decompositions allow us to analyse the motion with respect
to the mean motion patterns. By performing both types of analyses, we can gather more
information on the different motion dynamics. We propose to perform tensor decompo-
sition on the af�ne components (rotation, stretch, shearing and translation) as well as the
combined af�ne matrices, to distinguish population-wide differences in the motion. The
tensor decomposition used in this work was the Tucker decomposition, though a number of
other methods for decomposing a tensor have been proposed and could be applied to give
potentially similar analyses.
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7.9 Conclusion

In this work we propose a novel method for constructing a mean cardiac motion model
based on image registration and population-based statistics. Using a Polyaf�ne model to
describe the transformation from one image to another, we perform group-wise analysis
on the parameters to construct �rst a mean motion model by averaging spatio-temporally
aligned transformation parameters from a group of subjects in the same population (healthy
or pathological). The modes of variation around this mean were computed using simple
PCA. Further population-based statistical analyses were performed by computing a tensor
decomposition on the transformation parameters directly, and on the af�ne components
of these parameters (rotation, stretch, shearing and translation). From the analyses we
obtained meaningful differences between the healthy population and the pathological pop-
ulation of Tetralogy of Fallot patients.

7.10 Appendix

7.10.1 Tucker Tensor Decomposition using Alternating Least Squares

The alternating least squares (ALS) method for computing a rank-(R1; � � � ;RN) Tucker de-
composition is described brie�y here. Note that then-Rank of a tensorT is not the same
as the rank of a tensor (the minimum number of rank-one components).Rn is the column
rank of thenth axis of T. In this work, we takeRn = rankn(T) to �nd an exact Tucker
decomposition ofT, rather than computing a truncated Tucker decomposition (which gives
an inexact decomposition rather than the truncation of an exact decomposition).

The ALS method essentially approximates the factors that minimise the least squares
criterion:

C(T) = : min
G;A (n)

k T � [[G;A (1) ;A (2) ; � � � ;A (N) ]] k (7.7)

given G 2 RR1� R2����� RN and A(n) 2 RIn� Rn is column-wise orthogonal for alln. The
algorithm for computing a rank-(R1; � � � ;RN) decomposition is given is Algorithm5
[Kolda and Bader, 2009].

Algorithm 5 ALS rank-(R1;R2; � � � ;RN) Tucker decomposition

Require: Initialisation: A (n) 2 RIn� R for n = 1;2; � � � N
loop { until convergence}

for n = 1; � � � N do
y  T � 1 A (1)T � � � � n� 1 A (n� 1)T � n+ 1 A (n+ 1)t � � � � N A (N)T

A (n)  theR(n) leading singular vectors ofy
G T � 1 A (1)T � 2 A (2)T � � � � N A (N)T

return G;A (1) ; � � � ;A (N)
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Following from the cardiac growth model proposed in Part I, and the cardiac motion
analysis described in Part II, we are now interested in understanding how the blood �ow
dynamics differ in a pathological population compared to a normal population. Given the
complexity of subject-speci�c blood �ow simulations, population-based analysis of blood
�ow dynamics can be dif�cult. This chapter describes work towards a reduced-order model
of blood �ow to address the third key question of this work on how to simulate blood �ow



138
Chapter 8. Group-wise Construction of Reduced Models for Understanding and

Characterization of Pulmonary Blood Flows from Medical Images

through a given organ at a population level to be able to develop a generative blood �ow
model for a given population. The atlas construction method described in this work in
application to constructing an atlas of the pulmonary artery is the same framework as that
used to construct the bi-ventricular atlas in Chapter3. The atlas construction method is
described here again to link the notation with the methods that follow in this work. This
chapter was accepted for publication to Medical Image Analysis [Mcleod et al., 2013] and
extends on the work published in McLeod et. al [McLeod et al., 2010a].

8.1 Chapter Overview

3D computational �uid dynamics (CFD) in patient-speci�c geometries provides comple-
mentary insights to clinical imaging, to better understand how heart disease, and the side
effects of treating heart disease, affect and are affected by hemodynamics. This informa-
tion can be useful in treatment planning for designing arti�cial devices that are subject to
stress and pressure from blood �ow. Yet, these simulations remain relatively costly within a
clinical context. This work aims at reducing the complexity of patient-speci�c simulations
by combining image analysis, computational �uid dynamics and model order reduction
techniques. The proposed method makes use of a reference geometry estimated as an av-
erage of the population, within a well-posed statistical framework based on the currents
representation of shapes. Snapshots of blood �ow simulations performed in the reference
geometry are used to build a POD (Proper Orthogonal Decomposition) basis, which can
then be mapped on new patients to perform reduced order blood �ow simulations with
speci�c boundary conditions. This approach is applied to a data-set of 17 tetralogy of Fal-
lot patients to simulate blood �ow through the pulmonary artery under normal (healthy
or synthetic valves with almost no back�ow) and pathological (leaky or absent valve with
back�ow) conditions to better understand the impact of regurgitated blood on pressure and
velocity at the out�ow tracts. The model reduction approach is further tested by performing
patient simulations under exercise and varying degrees of pathophysiological conditions
based on reduction of reference solutions (rest and medium back�ow conditions respec-
tively).

8.2 Introduction

Congenital heart disease (CHD), besides decreasing the quality of living and life ex-
pectancy of many, is a prominent cause of infant mortality around the world. Abnormal
heart rhythm and structure affect blood �ow through the heart and into the arteries, which
consequently in�uences the development of the organs and surrounding structures. CHD
patients are monitored with several imaging modalities, which are chosen in medical prac-
tice based on the pathology and its severity [Puranik et al., 2010]. Anatomy can be easily
visualised in the images extracted from typical cardiac imaging modalities such as cine-
MR in magnetic resonance (MR) imaging, echocardiography and CT. However current
methods for imaging blood �ow in a three-dimensional volume are limited. Non-invasive
imaging techniques such as phase contrast magnetic resonance imaging (PC-MRI) are used
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to quantitatively measure blood �ow in clinical practice only if necessary, or are not easy to
acquire on multiple locations, especially for CHD patients [Markl et al., 2012]. Compared
to PC-MRI, cardiac MR volumetry has been shown to provide non-interchangeable cardiac
function assessment in Dobutamine stress test of regurgitant repaired Tetralogy of Fallot
(ToF) [Valverde et al., 2011]. Time-resolved 3D contrast-enhanced MR angiography has
been proposed to also non-invasively assess lung perfusion in ToF [Tomasian et al., 2009].
4D-MRI, while potentially providing velocity in a three-dimensional volume over time, is
still a subject of research for its acquisition and post-processing [Markl et al., 2012]. Ve-
locity can be measured with Doppler ultrasound machines, which are more often found in
clinical practice, but the acquired data is limited to 1D.

This is one reason why computational simulations of blood �ow have been devel-
oped in recent years in an attempt to better understand blood �ow dynamics. The aim
of such modeling is to gain insight into how hemodynamics change due to a pathology in
terms of �ow patterns, pressure, wall shear stress, and so on (see,e.g., [Yeung et al., 2006,
Troianowski et al., 2011, LaDisa et al., 2011]). Conversely, pathology developments can
depend on abnormal hemodynamics, such as in the absence of a functioning valve, as
will be the case in this work. Computer hemodynamic simulations provide a tool to
predict hemodynamic changes due to surgical repair [Vignon-Clementel et al., 2010b], ex-
plore different scenarios for treatment (see,e.g., [Hsia et al., 2011, Yang et al., 2011]), non-
invasively compute indices that are otherwise invasively measured such as fractional �ow
reserve (FFR) [Koo et al., 2011], and design arti�cial devices or conduits that are subject
to stress and pressure from blood �ow (see,e.g., [Prasad et al., 2011, Pant et al., 2011]).
Similarly, knowing the anatomy and hemodynamics of a patient, physicians can determine
the suitability of a patient for surgical intervention and plan therapy [Morales et al., 2011].

Computational �uid dynamics (CFD) methods are commonly used to simulate blood
�ow in the larger arteries, by solving numerically the three-dimensional Navier-Stokes
equations. However, the large computational cost of numerical simulations is still a rel-
evant issue, especially when dealing with patient-speci�c geometries. On one hand, the
computation time can be reduced by exploiting parallel computing and GPU implemen-
tations (see,e.g., [Glowinski et al., 2001, Biswas, 2010]). On the other hand, the issue of
complexity has also also been addressed by developing so-called model order reduction
techniques, which aim at reducing the dimension of the problem by restricting the numeri-
cal solution to a pre-de�ned low order space.

Among others, in [Manzoni et al., 2011], the authors propose to extract a low dimen-
sional parametrisation of the computational domain and solve the parameterised �ow equa-
tions with the reduced basis method. This work is able to gain speed in computational time
but necessitates a shape parametrisation of the object through control points assigned at
regions of shape change. Here, we consider a model reduction based on the Proper Or-
thogonal Decomposition (POD, also known as Karhunen – Loève expansion or Principal
Component Analysis – PCA), an approach which aims at �nding a low-order basis for the
numerical solution starting from a set of pre-computed snapshots. In �uid dynamics, POD
was introduced by Lumley in the late 1960s to study turbulent �ows. For a more recent pre-
sentation of POD, we refer for example to [Volkwein, 1999, Rathinam and Petzold, 2004],
among many others.
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In this chapter, we extend the algorithm that we brie�y presented
in [McLeod et al., 2010a]. This method is used to construct reduced models of
blood �ow through the pulmonary artery by computing a reference POD from a �ow
simulation on a reference geometry. The reference geometry is obtained by computing
a centered atlas of a preliminary population, with a non-parametric method which is
thus not dependent on a choice of control points. From a blood �ow simulation in
the atlas, we generate a POD basis of the �ow, which de�nes a reduced subspace for
further simulations. Namely, numerical simulations on (potentially new) patients can be
performed directly in the reduced subspace, after transporting the POD basis on the new
geometry. As in [McLeod et al., 2010a], this is done using a deformation map computed
via 3D shape registration. In the present work, we use the reduced order modeling to
compute reduced simulations for a set of individual patients, under different physiological
conditions. The �rst aim is thus to see how for �xed boundary conditions, information
computed on a reference geometry can be used to compute hemodynamics on a patient
geometry. In particular, we apply the methodology to a data-set of 17 pulmonary artery
(PA) geometries with repaired ToF (as shown in Fig.8.1), where the structures are affected
by a known shape abnormality due to the pathology and the initial surgical repair. A
schematic diagram showing the pipeline of this method is shown in Fig8.2. For this

Figure 8.1: A 3D volume rendered image of one patient to visualise the location of the
pulmonary artery (PA) with respect to the heart and lungs.

pathology, clinicians are interested in understanding how the artery remodels due to
blood regurgitating back into the right ventricle of the heart, and reversely how blood
regurgitates due to the deformed artery. Regurgitation results from the absence of a
functioning pulmonary valve that maintains one-way blood �ow from the right ventricle
to the pulmonary artery. Thus the second aim of this chapter is to investigate how the
reduced method works for normal as well as pathological �ows in the PAs, and if it is
robust enough to simulate other physiological states, namely exercise and varying degrees
of pathological regurgitation. Previous ToF blood �ow simulations have investigated
regurgitation with lumped [Kilner et al., 2009] or idealised (geometry and boundary
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conditions) three-dimensional [Chern et al., 2008] models, as well as pressure losses
for two repair options with either a one-dimensional [Spilker et al., 2007] or a steady
three-dimensional [Chai et al., 2010] patient-speci�c model. But for the aims of this
chapter, it is important to combine realistic models of form (three-dimensional geometries)
and function (physiological in�ow and outlet boundary conditions) as in [Das et al., 2011].

For follow-up treatment planning, clinicians are interested in determining �rst the op-
timal method of intervention for each patient, be it surgical or (more preferably) non-
invasive, as well as designing arti�cial devices to act in the same way as the pulmonary
valve to enforce one way blood �ow. Due to the complex and remodeled pulmonary artery,
it is not always possible to insert existing devices in some patients. This work constitutes
thus a �rst step towards the use of atlas-based reduced models to better understand hemo-
dynamics in these patients and ef�ciently simulate hemodynamics for later device design.

The methodology proposed in this chapter has some similarities with the work pre-
sented in [Mcgregor et al., 2008, McGregor et al., 2009]. Nevertheless, in these references
the POD basis is used to interpolate a �ow �eld measured on medical images, whereas it is
used here to actually solve the �uid mechanics equations.

The chapter is structured as follows. In Sec.8.3 the construction of the atlas which
serves as the reference geometry is described. Sec.8.4 is dedicated to blood �ow simula-
tions, describing the numerical method for the full simulations on the reference geometries
and the model order reduction technique for the patient-speci�c reduced simulations. The
procedure is assessed in Sec.8.5comparing the reduced method to full CFD simulations in
different clinically relevant situations. Finally, in Sec.8.6 the results and future paths for
improvements are discussed, while. Sec.8.7draws a few concluding remarks.

8.3 Computation of an Average Geometry

We assume that for a set of patients drawn from a given population we have for each patient
a surface representationS of the region of interest (such as an organ, or artery) which is
de�ned by delineating the boundaries of the organ on the images. Given the set of such
surfaces we would like to compute an average surface representation of the population
(an atlas). The geometry of the atlas should be well-de�ned and centered with respect
to the population, and we also require a consistent method for computing the deforma-
tions from the individual geometries to the atlas. For this we use the framework proposed
in [Durrleman et al., 2009a], as described below.

8.3.1 Non-parametric Representation of Surfaces using Currents

The patient meshes are represented bycurrents, so that we can compute the distance be-
tween two meshes in the space of currents, without requiring a point-to-point correspon-
dence between the meshes [Durrleman et al., 2009a]. Currents are used to represent the
observations (the patient geometries), the residuals (what is not captured by the model),
and the deformations (used to map one geometry to another), in the same common frame-
work. The space of currents forms a vector space, hence we can apply statistical operations
such as the mean and variance on surfaces.
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Figure 8.2: Schematic diagram to display the method which consists of an of�ine pre-
computation step by simulating the blood �ow on a reference geometry, and then reducing
the output of the simulation to obtain a reduced-order basis. An individual �ow simulation
can be done by transporting the reduced-order reference basis to the individual, and solving
the �ow equations with the reduced basis in the patient space with patient-speci�c boundary
conditions.

The basic principle of currents is to probe the surface by a set of vector �elds in a test
spaceW. In this way, a surface can be characterised by a set of real numbers that represent
the solutions of the �ux integral

S(w) =
Z

S
w(x)tn(x)dl (x) (8.1)

for every vector �eldw in W. In (8.1), w denotes a square integrable 3D vector �eld,n(x)
is the unit normal of the surface at a pointx, anddl is the Lebesque measure on the surface.
The test spaceW is chosen as the set of convolutions between any square integrable vector
�eld and a smoothing kernel. Hence,W is a Reproducing Kernel Hilbert Space (RKHS).
In this work we use a Gaussian kernel, which can be de�ned, for any points(x;y), as

KW(x;y) = exp
�k x� yk2

l 2
W ; (8.2)

wherel W is the standard deviation. With this choice for the reproducing kernel, we can
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then control a metric in the space of currents that allows the distance between two surfaces
to be calculated, though this choice is not unique. This space also has the important prop-
erty that it is the dense span of basis vector �elds of the formw(x) = KW(x;y)b , for any
�xed point y and �xed vectorb . As a consequence, any vector �eldw can be written as
an in�nite linear combination of the basis elementsKW(x;y)b . We can also de�ne an inner
product inW using the kernelKW with these basis vectors as

hKW(:;x)a ;KW(:;y)b i W = a tKW(x;y)b : (8.3)

This inner product holds for any vector �eldw(x) = KW(x;y)b in W.
The space of currents is de�ned as thedual space ofW, denotedW� , representing the

vector space of linear mappings fromW to R. SinceW is a Reproducing Kernel Hilbert
Space, the evaluation functionals are bounded. Base on the properties ofW (the fact thatW
is densely spanned by the vector �eldsw(x), and has an associated inner product) its dual
spaceW� is densely spanned by the dual representations of the basis vectorsw(x), called
the Dirac delta currents, de�ned as:

hda
x ;wi W = hKW(x; :)a ;wi W = a tw(x): (8.4)

Given thatW� is a vector space, we can de�ne the sum of two surfaces (represented by
currents)CS1 andCS2 as(CS1 + CS2)(w) = CS1(w)+ CS2(w). In terms of the �ux, this means
that the �ux through the sum of two surfaces is the sum of the �ux through each surface.
The vector space property of scalar multiplication in this case means that we can scale a
current by simply scaling the Dirac delta currents. We can also de�ne an inner product in
W� as: D

da
x (w);db

y (w)
E

W�
= hKW(x; :)a ;KW(y; :)b i W = a tKW(x;y)b : (8.5)

A key advantage of the currents representation is that a metric can be de�ned which does
not assume point correspondences between surfaces. Rather than measuring the distances
between points on the surface, surfaces are compared at an anatomical level. The distance
between two surfaces can then be expressed as the norm of the difference between the
surfaces, which is the distance between their currents:

k CS1 � CS2 kW� : (8.6)

8.3.2 Surface-to-surface Registration

Using currents to represent the meshes, we need a method for computing the deformations.
We would like to restrict the transformations to those which preserve the topology of the
object and give a one-to-one (invertible) smooth transformation (i.e. a diffeomorphism).
Restricting to diffeomorphisms gives non-linear deformations that allow local smooth vari-
ations to be captured in the registration. We use a group of diffeomorphisms to allow
computations with discrete parametrisation using the Large Deformation Diffeomorphic
Metric Mapping (LDDMM) method. LDDMM was used for instance in [Beg et al., 2004]
to �nd the deformations between full 3D images in the context of cardiac anatomy. This
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deformation framework can also be used to register surfaces modeled as currents, as shown
in shown in [Vaillant and Glaunes, 2005].

The LDDMM framework uses a group of diffeomorphisms constructed through in-
tegration of time-varying velocity �elds, determined by the initial velocity at timet = 0
parameterised by moment vectors, that belong to a RKHS. This yields a diffeomorphism
f as well as a differentiable �ow of the diffeomorphismf k for a continuous parameterk
within the interval[0;t]. At time k = 0, we have the identity mappingf 0. The mapping at
time t gives the desired transformationf t which we require for the atlas estimation. We
can then de�ne the path at any pointx asf k(x) that leads to the �nal positionf t(x). By
following the path that passes through the pointx, we can compute easily operations on
diffeomorphisms, such as the inverse path from pointt to 0. Using this framework, we
can minimise the difference between a deformed surfacef t(S1) and another surfaceS2,
therefore �nding the geodesic path fromf t(S1) to S2.

8.3.3 Iterative Estimation of the Atlas

An atlas can be computed from thei patient surfacesSi using a forward ap-
proach [Allassonnière et al., 2006] by modeling the observations (the patient meshes) as
a noisy deformation of the atlasbS: Si = f i(bS)+ ei , whereei is a residual term that accounts
for shape features not represented by the atlas. The deformationsf i can be computed it-
eratively by minimising the distance from theSi 's to the atlas, in order to center the atlas
with respect to the observations. The shape information is contained within the transfor-
mationf i . Using this approach, statistical analyses can be done on the deformations and
the residuals since the framework is well-posed.

The atlas is �rst initialised by taking the mean of the patient meshes (in the space of
currents). This initial atlas is then registered to each of the patients individually. The atlas
is then updated through a deformation, in order to minimise the error, for each patient,
between the patient mesh and the geometry generated from mapping the atlas onto the
patient mesh. Written mathematically, we minimise the error:

e(bS) = kSi � f i(bS)k2 (8.7)

for the atlasbS, for given patient meshesSi , and deformations (f i) that map them to the atlas
bS(see [Durrleman et al., 2009a] for details on the minimisation strategy). We then register
the updated atlas to the individuals, recompute the atlas and loop until convergence using
the forward model (see Algorithm6).

8.3.4 Surface Representation of the Atlas

Using the atlas-construction method described above, we compute an atlas in the space of
currents which can be visualised as the disjoint set of triangles (Dirac currents). This rep-
resentation is suf�cient for computing statistics between objects in the space of currents,
however in this case we need a surface representation of the atlas to transport the patient
�ows into. A general practice for computing this surface is to �nd the closest patient (in
the space of currents) and register this patient to the atlas. Of course, this representation is
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Algorithm 6 Atlas Estimation
Require: N segmented patient images (surface meshes).

1: Manual rigid alignment of meshes to a reference patient.
2: Create initial atlasbS0 as the mean of the patient meshes.
3: loop { over N until convergence}
4: Estimate the transformationsf i that register the atlasbSN� 1 to the individualSi .
5: Update the atlas by minimising the error in8.7using the estimated transformations

f i and the atlasbSN� 1

6: return Final atlasbSN and the related transformationsf N
i .

biased by which patient is used. To reduce this bias, we followed the minimisation strategy
as in [Durrleman et al., 2008a] at a coarse scale, followed by an additional step to aver-
age the atlas-to-patient deformations. This average deformation was applied to the closest
patient and this mesh was used to initialise the atlas construction pipeline at a �ner scale.
The initial optimisation is performed at a coarse scale to extract the regional differences
in order to obtain a reasonable �rst estimate of the atlas. This is then re�ned to capture
smaller local shape features (see Algorithm7).

Algorithm 7 Atlas Re�nement
1: Compute atlas at a coarse scale forsV andsW

2: Find the closest patientSj to the atlas and deform the patient to the atlas to get a surface
meshbSSj = f j (Sj )

3: loop { over N until convergence}
4: RegisterbSN

Sj
to each patient to getf N

bSSj ;i

5: Average the deformation �eldsf N
bSSj ;i

for all i to getf̂ N
bSSj

6: Apply the average deformation �eld̂f N
bSSj

to bSN
Sj

7: Use the result from Step 5 as initialisation into the atlas construction at a reduced
scale withsV andsW

8: return Final re�ned atlasbSN and the related transformationsf N
i .

8.4 An Atlas-based Reduced Order Model of Blood Flow

8.4.1 Reference Blood Flow Simulation and POD Basis

The reference simulation of blood �ow in the pulmonary artery geometries is obtained by
solving numerically the incompressible Navier-Stokes equations in the three-dimensional
spatial domain of the atlas geometry, denoted bybW. We assume that the boundary ofbWis
partitioned as

¶ bW= Sin [ Swall [ Sout;

which corresponds to the in�ow, arterial wall and the out�ow boundaries, respectively. The
velocity û : bW� R+ ! Rd and the pressurep : bW� R+ ! R are hence described by the
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following system
8
>>>>>>><

>>>>>>>:

r¶ t û + r û � Ñû+ Ñp̂� 2mdive(û) = 0 in bW;

div û = 0 in bW;

û = uin on Sin;

û = 0 on Swall;

s (û; p̂)n = pout on Sout;

(8.8)

where,r stands for the density of the �uid and the �uid Cauchy-stress tensor is given by

s (u; p) = � pI + 2me(u); e(u) def=
1
2

�
Ñu+ ÑuT�

;

mbeing the dynamic viscosity of the �uid,uin a given inlet velocity �eld andpout a given
outlet pressure.

At the inlet we prescribe a parabolic velocity pro�le, whose �ow rate varies in time
according to a chosen physiological regime. At the outlet, a relationship between pressure
and �ow is prescribed, in order to represent the pulmonary vessels downstream of the 3D-
�uid model. Namely, the outlet pressurepout at each outlet boundaryG� Sout is imposed
by a so-called lumped parameter model, in whichpout(t) is related to the outgoing �ux at
G,

Qout(t) =
Z

G
u(t) � nds; (8.9)

in an analogous way as tension and current are related in electric circuits. In particular, we
used a 3-element Windkessel model [Frank, 1899] (see [Vignon-Clementel et al., 2010a]
for recent applications in pulmonary artery modeling), in which the outlet pressure and
�ow are related by the ordinary differential equation:

pout+ RdC
dpout

dt
= ( Rp + Rd)Qout+ RpRdC

dQout

dt
; (8.10)

whereRp andRd model the resistance of the proximal and distal vasculature, respectively,
and the capacityC takes into account the deformability of the downstream vessels.

8.4.1.1 Numerical Approximation

Problem (8.8) is discretised in time with a Chorin-Temam projection scheme (see,
e.g., [Guermond et al., 2006, Chorin, 1968, Temam, 1968]) in which velocity and pressure
are solved separately in two substeps. Namely, let us denote witht the time-step size, set-

ting tn
def= nt for 1 � n � N. For a given initial conditionu0 = u0, the time iteration consists

of solving the two problems:

1. Velocity step:
8
>>>>>><

>>>>>>:

r
ûn+ 1 � ûn

t
+ r ûn � Ñûn+ 1 � 2mÑ� e(ûn+ 1) + Ñp̂n = 0 in bW;

ûn = uin(tn+ 1) on Sin;

2me(ûn+ 1)n = 0 on Sout;

ûn = 0 on Swall:

(8.11)
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2. Pressure-Poisson projection step:
8
>>>>><

>>>>>:

�
t
r

Dp̂n+ 1 = � Ñ � ûn+ 1 in bW;

t
r

¶ p̂n+ 1

¶n
= 0 on Sin [ Swall;

p̂n+ 1 = pn+ 1
out on Sout:

(8.12)

The 3D-0D coupling on the outlet boundary condition is treated in a implicit fashion
(see [Bertoglio et al., 2012]). The discretisation in space of problems (8.11)-(8.12) is per-
formed via continuous piece-wise af�ne �nite elements. We denote byVh and Qh the
corresponding �nite element spaces for the velocity and the pressure, respectively.

8.4.1.2 Proper Orthogonal Decomposition

A proper orthogonal decomposition (POD) of a numerical solution (that isf ûn
hgN

i= 1
and f p̂n

hgN
n= 1 or, in general, of a given set of data, see [Bergmann et al., 2009,

Rathinam and Petzold, 2004] for instance), consists of �nding a set of basis functions (or-
thogonal w.r.t. a given scalar product) which, even containing a small number of elements,
can represent suf�ciently well the numerical solution. This approach, besides reducing the
data size without losing relevant information, allows to perform faster numerical simula-
tions, by restricting the space of the solution to the subspace generated by the POD basis
functions.

We computed velocitŷF =
�

ĵ i

	 Mu

i= 1 and pressurêY =
�

ŷ i
	 Mp

i= 1 POD bases, witĥj i :
bW! R3 andŶ i : bW! R. These POD basis functions are given in terms of their natural
decomposition on the �nite element basis ofVh andQh, respectively. Note that in practice
we haveMu � dim(Vh) andMp � dim(Qh). Hence, the main idea of model reduction is
to perform the spatial approximation of (8.11) and (8.12) on the lower dimensional spaces
spanned bŷF andŶ , respectively.

For instance, using the velocity POD basisF̂ , instead of the original �nite element
basis ofVh, the discrete problem (8.11) can be formulated in terms of the reduced solution

ũ(x;t) =
Mu

å
i= 1

a i(t)ĵ i(x); (8.13)

requiring, at each time step, the solution of a linear system of reduced sizeMu � Mu.

8.4.2 Individual Reduced Order Blood Flow Simulation

Our goal is to construct a POD basis for the individual patients simulations using the POD
basis computed from the �ow simulation on the template geometry. The procedure, sum-
marised in Algorithm8, consists of mapping each 3D-patient mesh onto the template ge-
ometry (3D-shape registration), thentransportingthe template POD basis onto the individ-
ual domain, and �nally performing the POD reduction of FE formulation for the patient-
speci�c problem.



148
Chapter 8. Group-wise Construction of Reduced Models for Understanding and

Characterization of Pulmonary Blood Flows from Medical Images

8.4.2.1 3D-shape Registration

Let Wdenote the spatial domain of a patient geometry, and let us consider the discretised
representations of̂W andW, de�ned by two tetrahedral meshesT̂h andTh, respectively.
Firstly, we are interested in computing a map

A : Ŵ! W (8.14)

which mapŝTh ontoTh preserving the mesh topology. In particular,A de�nes a one-to-one
correspondence between the nodes of the two meshes. In what follows,A will be called a
3D-shape registration.

To constructA, we start from thesurface diffeomorphism(see section8.3.2)

f : bS! S

which maps the atlas surfaceŜonto an approximation of the patient surfaceS. SinceŜand
S are represented by triangular surface meshes, the diffeomorphismf is equivalent to a
piecewise linear deformation de�ned on the whole surface. Let us denote this deformation
as a displacement �eldds : ¶ bW! R3 such that

¶W= ¶ bW+ ds(¶ bW) :

We aim at de�ning the mapA by an extension of theds into the three-dimensional domain
with a suitablevolumedeformation �eld

dv : Ŵ! R3 ;

compatible with the surface displacementds on the boundary. In particular, oncedv is
computed, we can de�ne the deformation as

A(x̂) = x̂+ dv(x̂) ; for x̂ 2 Ŵ: (8.15)

In practice, one can consider a harmonic extension ofds insidebW, solving the equation

Ddv = 0; in bW

dv = ds; on¶ bW
(8.16)

In general, non-linear extensions of the surface displacement �eld could also be com-
puted, e.g. considering the volume mesh as an hyperelastic material. This approach is more
robust for larger surface deformations. Notice that computing the solution of (8.16) on the
reference mesĥTh automatically yields a deformation which preserves the topology of the
reference mesh, i.e. such that the inner nodes of theT̂h are mapped onto the nodes of the
individual volume meshTh.
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8.4.2.2 Transporting the Template POD Basis

To construct an individual POD basis for the velocity �eld on a selected patient, we con-
sider theinverse Piola transformof the basis elements of̂F , given by

j i(x) = P(ĵ i)(x) def=
1

J(x̂)
F(x̂)ĵ i(x̂); x̂ = A � 1(x) (8.17)

for i = 1; : : : ;Mu. Here, F stands for the deformation gradient, i.e.,F def= ÑA, and
J = detF being the jacobian ofF. From the properties of the Piola transform (see,
e.g., [Ciarlet, 1988]), we can infer that

Jdiv xj i(x) = div x̂ ĵ i(x̂):

Hence, if the POD basis is divergence free in the reference geometry then the transformed
basis has the same property in the individual geometry.

Considering the shape registration in the form (8.15), we approximate the gradient

F(x̂) = I + Ñdv(x̂) ;

by its projection on the piecewise linear �nite element space. In practice, this is done via
anL2-projection on the �nite element space, namely, by inverting themass matrix, whose
entries are given bŷMi j =

R
bWv̂i v̂ j dbW, v̂i andv̂ j being basis function of the �nite element

space inŴ. For the pressure, an individual POD basisY can be obtained from the template
POD basisŶ i through a simple coordinate change, namely,

y i(x) def= ŷ i(x̂); x̂ = A � 1(x) (8.18)

for all i = 1; : : : ;Mp.

8.4.2.3 Reduced Simulation

With a little abuse of notation, let us denote withF =
�
j 1j : : : jj Mu

�
an individual POD

basis in matrix form, where each column contains a basis element, obtained with the pro-
cedure described in Sections8.4.2.1-8.4.2.2.

At each time steptn, let us callAn and fn the matrix and the right-hand side of the
linear system associated to the �nite element approximation of problem (8.11) in the patient
geometry. The reduced model is given by

(F TAnF ) eU = F T fn; (8.19)

whereeU = f a1 : : :aMugT de�nes the reduced numerical solution (8.13). Analogously, the
reduced system for the pressure-problem (8.12) is built by considering the transported pres-
sure basisY =

�
y 1j : : : jy Mp

�
.

Remark 8.4.1 A POD basis transported as in(8.17) and (8.18) is associated to a single
patient mesh, and can be employed only to reduce a simulation for this speci�c geome-
try. On the other hand, the POD basis is decoupled from other simulation parameters
(for example the boundary conditions such as the inlet velocity in(8.11) or model(8.10)).
Hence, the same basis can thus be used for different physiological regimes. This will be
investigated in Section8.5.3.1.
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Algorithm 8 Individual reduced order simulations

1: Given: Individual surfaceSi and reference POD bases (F̂ , Ŷ )
2: Compute volume deformationA i from the surface diffeomorphismf i

3: Compute patient-speci�c deformation gradientFi

4: Compute POD bases (from (8.17) and (8.18))
5: Assemble FE formulations and reduce the linear systems (e.g., (8.19) for the velocity)
6: return Reduced order solution

8.5 Numerical Experiments on the Pulmonary Artery of Re-
paired Tetralogy of Fallot Patients

8.5.1 Data Collection

Subjects and Image Preparation A data-set of 17 adults with repaired tetralogy of
Fallot was used in this study. MRI angiography of the heart was acquired with a
1:5T scanner (Signa excite, GE Medical Systems) with isotropic in-plane resolution
0:703mm� 0:703mmand 1mmthick slices.

Image Segmentation of the Pulmonary Artery In order to extract the surfaces of the
pulmonary artery, a user-guided 3D image segmentation tool was applied to delineate the
boundaries of the artery. Using this tool, a small number of control points (less than 100)
are added by the user to de�ne the inside, outside, and border of the region. With these
control points as a guide, a 3D mesh is constructed by an implicit variational surfaces
approach. The tool is included within the CardioViz3D software package available for
download1, see [Mansi, 2010] for further details. This tool was applied to each of the
patient images to de�ne the artery for at least 3cmof the in�ow before the bifurcation and
at least 2cmof each out�ow branch after the bifurcation (see Fig.8.3). The variable branch
length in the �nal geometries resulted from the variability of the images used, so in the
case when it was possible to include more than 2cmof the out�ow, this was included. In
particular, images with little image information at the out�ow branches resulted in a shorter
segmentation.

8.5.2 Statistical Shape Model of the Pulmonary Arteries

The obtained meshes were used to compute a centered atlas as a reference for the popula-
tion (see Fig.8.4 and8.5). The atlas construction pipeline described in Sec.8.3 requires
two parameters to be set to control the `stiffness' of the non-linear deformations (sV),
where higher values give more global transformations, such as rigid body transformations,
and a parameter that characterises the resolution of the currents representation to control
how �ner deformations are treated as either noise or shape features (sW). Since we were
mainly interested in the regional ToF alterations related to dilation, valve enlargement, and
regional bulging, these parameters were set tosW = 30mm, sV = 5mmfor the atlas. With

1http://www-sop.inria.fr/asclepios/software/CardioViz3D/
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Figure 8.3: Left: 2D slice of one patient with the segmented outline in yellow. Right: 3D
rendering of the same patient with the 3D mesh overlaid (in yellow).

Figure 8.4: The 17 patient meshes (red) and associated atlas mesh (green).

the algorithm described in Sec.8.3, an atlas was constructed by 4 iterations of the alternate
minimisation (the number of iterations needed to reach the convergence criteria). This was
suf�cient to give a well-centered geometry in which to apply the atlas re�nement pipeline
described in Sec.8.3.4.
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Figure 8.5: Front view (left), side view (center) and top view (right) of the atlas (blue)
and the 17 meshes used to create the atlas (wire-frame red). Though there is a wide shape
variability in the population, the atlas is well-centered.

Un-biased Validation of the Atlas To test how biased the atlas is to the population used
to create it, we performed aleave-one-outvalidation by creating 17 atlases using 16 patients
each. The resulting atlases are shown overlaid on one another in Fig.8.6. Though there is
a large shape variability observed in the population, there is little difference between each
of the computed atlases.

Figure 8.6: Front view (left), side view (center) and top view (right) of the atlas created on
all the patients (blue) and the 17 atlases created on 16 patients (wire-frame red). There is
little difference between the atlases, even given the high variability of shape in the popula-
tion, which displays the un-biased property of the atlas construction step.

8.5.3 Patient-speci�c Full and Reduced order CFD Simulations

For the full CFD simulations on the individual geometries, rather than the original patient
meshes, we used the geometries obtained by mapping the atlas to each patient via the de-
formation computed in the 3D-shape registration step (described in Sec.8.4.2.1). Note that
this results in a discrepancy between the original meshes and the atlas-to-patient deformed
meshes, since we allow for some noise in the atlas construction step. However, due to the
fact that the atlas is well-centered, these differences are small. The simulation approach
described in Sec.8.4 was applied for normal (functioning valve case) and pathological
(regurgitant or absent valve) regimes. The aim was to investigate how such a reduced ap-
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proach performs for both hemodynamics conditions. For each regime, a full simulation
was performed on the atlas, extracting a POD basis containing 30 modes. Then, for each
of the individuals, a reduced order simulation was performed with this transported POD
and the hemodynamic boundary conditions of that regime. Subsequently, for both regimes,
the PODs built underrest conditions were tested underexerciseconditions. Furthermore,
the robustness of the method was assessed by investigating if the POD constructed for the
reference pathological condition was able to capture other pathological conditions.

To assess the reduced order method, we simulated the �ow in the different geometries
both with a full FE model and employing the reduced POD basis as described in Sec.8.4.
For each simulation, we monitored three different errors in time indicating the global errors
in velocity, pressure and the pressure drop between the right ventricle and the outlets. The
latter is particularly interesting from the clinical point of view, and the �rst two aid in
assessing the accuracy of the reduced �ow simulation:

� InstantaneousL2-norm difference in velocity and pressure, adimensionalised by the
maximumL2-norm in time:

Eu =
kureduced� ufull kL2

max(kufull kL2)
and Ep =

kpreduced� pfull kL2

max(kpfull kL2)
(8.20)

� Instantaneous pressure drop (difference between averaged over the surface inlet and
outlet pressures), adimensionalised by the maximum value in time:

EDp = max
i= 1;2

 
k

�
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out

�
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�
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�
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�
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out
�

full

!

(8.21)

Note that with this number of POD modes, the errors between the full and reduced
simulations on the atlas itself are negligible (maximum in time of the velocity, pressure
and pressure drop errors below 0.1% in normal conditions). Furthermore, increasing the
number of modes does not change the errors between the full and reduced patient simula-
tions.

8.5.3.1 Flow Simulations in Normal and Pathological Regimes

First, we used the pre-computed reduced models to simulate the �ow in the individual
geometries with different �ow conditions. In particular, we distinguished between anormal
cardiac �ow condition, i.e. with very little back�ow as is the case in the pulmonary artery
of a healthy pulmonary valve, and apathological �ow conditionwith 30% of back�ow
during diastole, the average amount of expected back�ow for patients without pulmonary
valves [Schwartz et al., 2011]. Note that �ow curves weren't available for all patients,
thus the pathological �ow curve corresponds to a single patients' measurement, typical of
such ToF physiology. The same 0D-Windkessel model was applied at both outlets, but the
parameters were chosen to obtain in the simulations pressure waveforms typical of a normal
pulmonary artery and right ventricle (pathological pressure in the pulmonary artery due to
the absence of valve) respectively (see table8.1). The inlet �ow pro�les and the resulting
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outlet pressures for the atlas simulations for these two cases are depicted in Fig.8.7 and
8.8. In particular, one can see the characteristic pressure bump at the end of diastole that
is observed in the pulmonary artery, as in the right ventricle, for the pathological case.
Furthermore, we investigated different degrees of pathological conditions, with 15% and
40% of back�ow during diastole (see Fig.8.8). The errors (8.20)-(8.21) for normal �ow

Figure 8.7: Normal boundary conditions: �ow rate is prescribed at the inlet (with a mean
value of 4:9L � min� 1) and outlet pressure for the atlas obtained the Windkessel model in
Table8.1. These outlet pressures change slightly from one geometry to another.

Figure 8.8: Left. Inlet �ow (mean inlet �ow rate of 3:5L � min� 1) and outlet pressure
for the atlas under pathological boundary conditions.Right pathological inlet �ows with
different back�ows. The prescribed inlet �ows with 15% and 40% of back�ow respectively
present a mean value of 4:3 and 3:1L � min� 1.

conditions for the different patients are shown in Fig.8.9. To provide a better picture of
the error variability among patients, mean errors and standard deviations are reported in
Fig. 8.10. The error in velocity varies over time and among patients between 3% and 42%,
with an average curve rising from 7% to 27% and then decreasing slowly down back to
7% (mean over time being 15%). Pressure errors vary over time and among patients from
negligible values to 14%, typically rising quickly to its peak value and decreasing equally
fast to very low values and remaining low for the rest of the cycle. The mean over time is
thus 1%. Pressure loss errors follow similar pattern as the pressure, with a peak over time
and patients at 45%, and an average over patients and time of 5%.

Fig. 8.11 shows the errors (8.20)-(8.21) for the different patients under pathological
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Rp (dyn� s� cm� 5) 40
C (cm5 � dyn� 1) 10� 3

Rd (dyn� s� cm� 5) 300

Rp (dyn� s� cm� 5) 107
C (cm5 � dyn� 1) 0:32

Rd (dyn� s� cm� 5) 308

Table 8.1: RCR Windkessel model values imposed at each outlet for normal (left) and
pathological inlet �ow conditions (right).

Figure 8.9: Velocity, pressure and pressure drop errors between the full and the reduced
order solutions for the same normal boundary conditions.
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Figure 8.10: Mean (solid line) and standard deviation (dashed line) for velocity (left),
pressure (center) and pressure drop (right) errors between the full and the reduced order
solutions with the same normal boundary conditions.

�ow conditions. The corresponding mean errors and standard deviations are further re-
ported in Fig.8.12. We obtained an error in velocity that varies over time and among
patients between 10% and 47%, with an average curve going from 18% to 30% with a
double-bump waveform (mean in time being 23%). Conversely, pressure errors vary over
time and among patients from negligible values to below 5%, also with a double-bump
waveform but with a much lower second peak. The mean over time is 1%. Pressure loss
errors follow a four-bump pattern, with a negligible minimum value and a peak of 40%
over time and amongst patients, and an average over patients and time of 11%.

To better visualise the underlying differences of the 3D �elds, velocity magnitude 3D-
cuts of the full and the reduced simulations are presented for two representative patients
under normal and pathological conditions respectively, at different times in the cardiac cy-
cle. In Fig.8.13, one can see that the main features of velocity magnitude are well captured
in the reduced simulation with respect to the full simulation for patient 7 under normal con-
ditions. There are larger differences during deceleration (2nd row), in coherence with the
pro�le of the L2-error (Fig.8.9). Fig. 8.14shows that the main features of velocity magni-
tude are also well captured in the reduced simulation with respect to the full simulation for
patient 13 under pathological conditions. In accordance with theL2-errors (Fig.8.11), that
do not vary much in time but peak at the beginning of deceleration, we observe the high-
est disagreement during beginning of deceleration (2nd row), although the four snapshots
all show differences. For both normal and pathological �ows, �ow jets through the main
pulmonary artery during peak systole, and presents complex structures in the pulmonary
arteries at peak back�ow and subsequent diastole.

8.5.3.2 Simulations During Exercise Based on the Resting Conditions POD

The inlet boundary conditions for the reduced simulations (step 5 of Algorithm8) were
modi�ed to simulate normal and pathological conditions under exercise regimes, increasing
heart rate and systolic �ows (Fig.8.15). The resulting average �ow rates are 7:5L � min� 1

in the normal case and 6:2L � min� 1 with 20% back�ow in the pathological case. For the
reduced simulations, we used the reference POD basis computed in normal conditions,
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Figure 8.11: Velocity, pressure and pressure drop errors between the full and the reduced
order solutions for the same pathological boundary conditions.

Figure 8.12: Mean (solid line) and standard deviation (dashed line) for velocity (left),
pressure (center) and pressure drop (right) errors between the full and the reduced order
solutions for the same pathological boundary conditions.
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Figure 8.13: Full (left) and reduced (right) velocity �elds for patient 07 under normal
conditions shown at four instances along the cardiac cycle.
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Figure 8.14: Full (left) and reduced (right) velocity �elds for patient 13 under pathological
conditions shown at four instances along the cardiac cycle.
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Figure 8.15: Normal and pathological inlet �ows under exercise. Average �ow rates are
7:5L � min� 1 in the normal case and 6:2L � min� 1 with 20% back�ow in the pathological
case.

thus without performing an additional full computation on the reference geometry with the
new boundary conditions. Fig.8.16summarises the results for the different patients. The
error in velocity on average rises from 7% to 30% and then decreases slowly back to 7%.
Pressure errors vary over time on average from negligible values to 7.5%, typically rising
rapidly to its peak value and decreasing equally quick to very low values and remaining
low for around 60% of the cycle. Pressure loss errors follow similar pattern as the pressure,
with a peak at 25%. Overall, the mean and standard deviation time variations and average
are very similar to the resting conditions. Figure8.17displays the results of the exercise

Figure 8.16: Mean (solid line) and standard deviation (dashed line) for velocity (left),
pressure (center) and pressure drop (right) errors between the full and the reduced order
solutions under normal exercise boundary conditions (computed with the resting condition
POD basis).

reduced simulations for pathological conditions. As in the normal case, we used the POD
basis computed on the atlas under rest conditions. In this case, the error in velocity on
average rises from 14% to 32%, then decreasing with a small second bump back to 14%.
Pressure errors vary over time from negligible values to 3%, remaining very low for around
60% of the cycle. Pressure loss errors follow a four-bump evolution, with a peak at 28%.
Overall the mean and standard deviation time variations are similar to resting conditions,
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but with less pronounced secondary bumps.

Figure 8.17: Mean (solid line) and standard deviation (dashed line) for velocity (left),
pressure (center) and pressure drop (right) errors between the full and the reduced order
solutions under pathological exercise boundary conditions (computed with the pathological
resting conditions POD basis).

8.5.3.3 Simulations of Different Pathological Conditions Based on the Reference
Pathological POD

To further test the robustness of the POD approach, the atlas POD basis computed with
30% back�ow was used as reduced basis for the �ow in the different patients under other
pathological conditions, considering 15% and 40% of back�ow. Mean errors and standard
deviation results for these pathological conditions are respectively shown in Fig.8.18and
Fig. 8.19. During systole, the �ow conditions are the same for all the pathological con-

Figure 8.18: Mean (solid line) and standard deviation (dashed line) for velocity (left),
pressure (center) and pressure drop (right) errors between the full and the reduced order
solutions using pathological boundary conditions with 15% of back�ow (using original
pathological POD bases obtained with 30% of back�ow).

ditions, and there is no increase of error during that period. In fact, pressure losses even
decrease for the 40% back�ow case. During diastole, the 15% �ow reversal case has a
decrease in all errors compared to the 30% �ow reversal case on which the POD was con-
structed. The velocity error decays at the same rate as for normal �ow conditions. The
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averages over patients and time are 21% for velocity, 1% for pressure and 9% for pressure
loss. For the higher �ow reversal case (40%), there is an increase in errors (especially in
velocity) after peak �ow reversal. The velocity error has a second bump as high as the �rst
one, even though in absolute value peak back�ow is not as high as peak forward �ow, and
similarly for its derivative (re-acceleration versus deceleration). Pressure errors are, on the
other hand, only slightly higher. The averages over patients and time are 26% for velocity,
1% for pressure and 10% for pressure loss.

Figure 8.19: Mean (solid line) and standard deviation (dashed line) for velocity (left),
pressure (center) and pressure drop (right) errors between the full and the reduced order
solutions using pathological boundary conditions with 40% of back�ow (using original
pathological POD bases obtained with 30% of back�ow).

8.6 Discussion

8.6.1 Results of Reduced Flow Simulations

The reduced model framework has been tested with 17 tetralogy of Fallot patients to create
the atlas-centered reference geometry. Although the pipeline has been designed to be able
to simulate reduced-order blood �ow on new patients, in this work we tested the method
on the same patients the atlas was created from. This is justi�ed by the fact that the atlas
was shown to be unbiased (see theleave-one-outvalidation step of Fig.8.6), and since the
POD basis is computed solely on the atlas geometry, this should have very little effect on
the conclusions of the study. From a qualitative point of view, the numerical tests show
that the �ow dynamics can be well captured by the reduced model in both normal and
pathological conditions. However, when looking at velocity magnitude maps at speci�c
times and with their own scales, differences can be more easily seen (Fig.8.13and8.14).

Under normal conditions (Fig.8.10), the error is lowest for pressure with maximum in
general below 10% (Fig.8.9), and an average over patients and time of 1%. Higher errors
were in general obtained for pressure drop. While during diastole both pressure errors
are close to zero, the peaks of these pressure errors are located at the beginning of �ow
deceleration, where �ow patterns appear to be more dependent on the geometry. However,
the average over time of the mean pressure drop curve (Fig.8.10) is 5% only. Concerning
the velocity �eld, the error norm in time resulted between 3% and 42%, with relatively
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high variability among subjects (Fig.8.9). But the average over time of the mean curve
(Fig. 8.10) is only 15%. In general, note that the error is not proportional to �ow, and, as
for the pressure and pressure drop, the maximum error occurs during early deceleration.
Moreover, the error does not decrease to zero when �ow does, but it rather decreases when
the �ow approaches a steady state, and velocity is lower in the whole domain.

With pathological boundary conditions, and employing a mapped POD basis computed
with the same conditions, the peak pressure error is twice lower than in the normal case,
with a lower variability between the subjects (lower standard deviation in Fig.8.12). But
the time average remains at 1%. Unlike the case of normal conditions, in this situation
the average error follows closely the absolute �ow time variation, with the highest bump
occurring during high �ow (or high pressure, which in this case is almost in phase with �ow,
see Fig.8.8). At the same time, the error decrease is less evident than in the normal case,
and the error increases again in correspondence to peak �ow reversal, which is higher in this
pathological condition. In contrast with the pressure �eld, the velocity and pressure loss
errors under pathological �ow conditions are larger (increase on average from 15% to 23%,
and from 5% to 10% respectively), with more variability among subjects on the magnitude
and timing of the error extrema (Fig.8.9). This suggests that the multiple changes of
direction in the �ow accentuate geometrical differences and lead to more complex velocity
patterns, more sensitive to the individual geometries.

Reduced simulation of exercise conditions were performed with the POD generated
under rest conditions. The velocity errors are very comparable on average, with similar
time variation and standard deviation as under rest, for both the normal and pathological
conditions. This is quite remarkable, since �ow peak increases by 50% in the normal case
and even by 100% in the pathological case. Concerning the pressure, peak errors in normal
conditions generally increase, but remain on the order of 10%, while errors in pressure drop
increase slightly. These trends are more pronounced for the pathological regime, with less
effect of �ow reversal compared to the rest condition, coherently with the fact that there is
less back�ow under the exercise condition. On average over time however, pressure and
pressure drop errors do not change and thus remain low, for both conditions.

8.6.2 General Remarks and Perspectives

The present study shows that the atlas-based reduced order model is able to capture the
main hemodynamic features of the �ow for a reasonable range of boundary conditions (e.g.,
rest versus exercise conditions, different degrees of pathologies). This suggests that the
main contribution to the error comes from the mismatch between the atlas and individual
geometries.

The results also point out the capability of the reduced order method to approximate
the pressure �elds in different geometries (the time average errors are 1% for pressure
and 5-10% for pressure losses). Pressure is mainly set by the Windkessel model which is
the same across patients for a given �ow regime. This possibly explains why the error in
pressure is the lowest. In fact, since pressure represents the main component of the �uid
force, this feature could be applied to perform ef�cient numerical studies of medical device
design and stability under varying �ow conditions, considering different con�gurations as
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deformations of a reference domain.
Nevertheless, the study of different inlet boundary conditions underlines the sensitivity

of the errors to the �ow regime (average errors, timings of peak errors), suggesting the
importance of using a reference POD basis computed under this regime (normal or patho-
logical conditions respectively). Within a regime however, to simulate exercise with the
POD generated at rest worked well. Similarly to simulate different degrees of pathology
based on the POD of one pathological case was successful. The importance of the POD
basis �ow regime has been con�rmed by further numerical studies (results not shown),
which demonstrated that the POD basis computed with normal boundary conditions does
not approximate well the �uid dynamics under pathological conditions. Moreover, we ob-
served that a POD basis combining snapshots of both normal and pathological simulations
did not yield any gain (nor loss) in the accuracy (results not shown) of the simulation in the
pathological regime.

Another important observation concerns the increase of the error among patients for
velocity compared to pressure, especially under complex �ow conditions such as in the
pathological case. Errors are representative of a geometry, in the sense that, if for a given
patient velocity error is among the highest for a given condition, the errors in pressure and
for other conditions are among the highest as well.

The in�uence of the variability of the geometry on the approximation properties of the
POD basis remains an open issue. In particular, identifying the geometric parameters at the
origin of the highest errors would allow a great advance in the understanding of the �ow
characteristics and in the construction of better POD bases. However, identifying those that
robustly describe �ow disturbances is not an easy task [Bijari et al., 2012].

A key point is that the reduced order method has been tested with blood �ow solutions,
for different regimes, always computed on a single geometry. This surely limits the ability
of the transported POD basis to capture the full �ow dynamics on different geometries.
In order to decrease the error, a possible extension of the method could consider the use
of multiple atlas geometries (from different populations) and the computation of different
POD bases, which could be combined when building the reduced models for the �ow sim-
ulations on new patients. A further development could consider generatingintermediate
shapes, interpolating between geometries where �ow dynamics is better approximated and
the ones where errors where larger. By looking at the point where the error norm increases
along these trajectories, we could circumvent the important geometric details that drasti-
cally impact the �ow. However, more patients are needed to obtain signi�cant clusters.

As a �nal remark, we observe that the focus of the chapter has been the development
of a model order reduction framework, without discussing directly the important issue
of computational time. The purpose of reduced-order modeling is obviously to address
the reduction of computational time, reducing thecomplexityof the problem (in the pre-
sented simulations, the number of degrees of freedom is reduced from order of 105 to few
tenths). Nevertheless, for a nonlinear problem like the Navier-Stokes equations, it is not
trivial to translate a reduction of complexity into a reduction of computational time (see,
e.g., [Carlberg et al., 2011]). Indeed, in those cases, the computational cost of the linear
system resolution – which is obviously reduced with the number of unknowns – is not
necessarily dominant with respect to the computational expense due to the assembly of the
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�nite element linear system. This issue, which also depends strongly on the structure of
the numerical solver, goes beyond the scope of this chapter and will be addressed in future
work.

8.7 Conclusion

We presented a model order reduction approach, which combines statistical shape analysis
for the computation of a reference geometry and proper orthogonal decomposition (POD).
The reduced model framework has been tested with 17 tetralogy of Fallot patients to create
the atlas-centered reference geometry. Reduced simulations were computed on these same
patients. In order to apply the procedure for the reduced simulation on new patients, the
framework requires simply the surface mapping between the atlas and the new geometry,
in order to compute the speci�c reduced basis.

Numerical experiments show that the algorithm yields errors that are acceptable for
applications that need to capture pressure and the main velocity features, as, e.g., in the
study of medical devices. However, if velocity �eld or pressure loss are required with
higher precision, more accurate approaches may be necessary, which take into account
the geometric variability on a smaller scale. This is especially true under pathological
conditions. Furthermore, our numerical simulations demonstrate that the reduced model
is robust with respect to changes in boundary conditions, in particular to simulate exercise
conditions from rest simulations, or different degrees of pathology.
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This chapter is designed as a discussion for a �rst step towards tying together the mod-
els proposed in each axis of this thesis. We suggest a method that could be used for future
development of a coupled model, described here to open the discussion on potential future
projects extending on the work in this thesis.

9.1 Chapter Overview

The global objective of this work was to develop a generative growth model of the beating
heart, with blood �owing through the ventricles. The purpose of developing such a model
is to deform the model to patient-speci�c geometries to obtain a predictive patient-speci�c
model. Using such a model, we can have an idea of how a heart will evolve over time in
terms of anatomy and motion dynamics. A �rst step towards such a model is to couple the
growth and motion models to obtain a 5D model of the beating, growing heart (3D in space
+ time(heart beat)+ time(years)). In this chapter we brie�y discuss an idea for performing
such a coupling.

9.2 Introduction

Predictive modelling of heart growth can be used to aid in therapy planning by giving
clinicians an idea of how the heart will re-model over time. Given that treatment methods
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are continuously being developed to treat heart conditions, simulating the effect of different
therapies can give aid in the decision making process. In order to formulate such a model,
a method for modelling the growth dynamics, as well as the motion dynamics are �rst
needed. These need to be de�ned in such a way that the two can then be coupled.

Growth modelling is dif�cult due to the complex nature of heart development. Dif-
ferent approaches for tackling this issue include modelling techniques such as simulating
the heart growth by imposing an underlying mechanical model of the growth, longitudi-
nal modelling from a single subject, and experimental techniques by growing tissue and
analysing the result. A theoretical model for stress-modulated growth was proposed in
[Lin and Taber, 1995] to study how mechanical load affects the growth and morphogenesis
of the developing heart. Longitudinal models require data from several time points over a
number of years. Since treatments are proposed on a frequent basis, waiting for years to
acquire the data over a life-span of a single patient makes it dif�cult to analyse the ongo-
ing development of new methods. Furthermore, comparing the data between two patient-
speci�c longitudinal models is not straightforward. In Chapter3 we discussed a simpler
method for predicting the growth using cross-sectional statistical design. This method has
the advantage of not requiring longitudinal data of the same patient, and allows a generic
model of a given population to be constructed.

The issue of modelling the motion dynamics at a population scale was discussed in
Chapter7. As mentioned, several methods for creating a model of cardiac motion have
been proposed using image processing techniques. These include methods using B-spline
registration with spatio-temporal alignment motion �elds followed by an averaging of the
aligned �elds [Rao et al., 2003, Perperidis et al., 2004]. A cardiac motion atlas was con-
structed from tagged-MR images by performing PCA on spatially and temporally aligned
motion �elds in [Rougon et al., 2004]. These methods, however, require a large number
of parameters to describe both the mean motion model, as well as the deformations from
the mean motion model to the subject-speci�c motion models. In contrast, the method
proposed in Chapter7 allows the mean motion model to be de�ned with a small number
of parameters, and furthermore, the subject-speci�c transformations are described by the
same number of parameters. Computing the deviations from the mean requires simple
matrix arithmetic operations.

Designing a growth model that also captures the motion dynamics is a challenging
task. We propose to use a cross-sectional statistical model to regress the motion of a set of
patients against an index of subject growth, in a manner similar to the method described
in Chapter3. To do so, we require a mean motion model to describe the average motion
in a population, and a method for computing the deformation from the observations to the
mean. Given the formulation of the motion model described in Chapter7 that requires few
parameters, this is used as a basis for developing a coupled model of growth and motion. To
the best of our knowledge, there have been no methods proposed that address the coupling
of growth with motion to develop a predictive dynamic heart model.
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9.3 Static Growth Modelling using Cross-Sectional Statistics

We brie�y recap on the static growth model described in Chapter3, as a basis for develop-
ing a dynamic growth model. The model uses statistical techniques to simulate the growth
directly from the images rather than implying an underlying biomechanical model.

An atlas of the ventricular surfaces is generated as an “average" of the population. The
velocities that describe the deformation from each subject to the atlas are regressed against
an index of subject growth (in this case, body surface area (BSA)).

In order to ensure statistically signi�cant results, the dimensionality of the problem is
reduced to consider factors related speci�cally to subject growth. The model reduction
technique used for this in Chapter3 is the partial least squares method (PLS), that has the
advantage of being able to compute directly the components most related to BSA.

Modelling the deformations as a function of a growth is a complex problem due to
the large number of deformation parameters needed to predict a single growth parameters.
Therefore, instead the growth is modelled as a function of the deformations. The relation-
ship can then be inversed using canonical correlation analysis (CCA) to obtain a generative
growth model (see Fig.9.1).

Figure 9.1: The static growth model from Chapter3, computed from Tetralogy of Fallot
patients to capture the pathologically speci�c growth dynamics.

9.4 Dynamic Growth Modelling using Regression

Using the same concept of regressing observations from different subjects at different
stages of the evolution as described in the previous section, we propose to use a similar
method to derive a dynamic growth model. Instead of regressing the static observations,
we can instead apply regression to transformations computed over the cardiac cycle for
each subject, as shown in Fig.9.2.
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Figure 9.2: Left: Linear regression of static observations can be used to develop a growth
model as described in Chapter3. Right: This same concept can be applied to motion trans-
formations, to regress the motion of a set of patients at different stages in the progression
of the disease.

9.4.1 Spatio-Temporal Alignment of Transformations

Due to the fact that image sequences are generally aligned differently from one acquisi-
tion to another, in order to meaningfully compare the transformations, they need to be �rst
aligned in space and in time. Using the spatio-temporal alignment proposed in Chapter
7, the parameters can be aligned to a common space by resampling the parameters to a
common frame, and then realigning the parameters in a rigid manner to �t the mean peak
contraction phase (estimated directly from the transformation parameters by taking the
trace of the af�ne matrix per region). Once the parameters are in the same temporal frame,
they can be aligned spatially so that all subjects are regionally centered at the same point,
and oriented in the same direction. Using the method described in Chapter7, the reorienta-
tion is performed in prolate spheroidal coordinates, to align the regions in an anatomically
meaningful manner.

9.4.2 Regression of Polyaf�ne Transformations

In Chapter3, the regressed deformations were those obtained by an LDDMM based reg-
istration [Durrleman et al., 2009a]. The motion model described in Chapter5 rather uses
Polyaf�ne transformations. As described in Chapter7, the mean motion of a population
can be estimated by averaging the motion of a set of subjects from the same population
(in this case, averaging the Polyaf�ne transformations after spatio-temporal realignment).
Since the transformations of the mean motion model and the subject-speci�c motion mod-
els are described by regional af�ne matrices, computing the deviation of each subject from
the mean requires simple matrix subtraction. As with the static growth model, the variation
around the mean could be computed using PLS to obtain factors most related to growth (or
in this case, a kind of scaling of the transformations).

9.4.3 Cross-Sectional and Longitudinal Model

The �rst question that follows from this model is the best way to perform the regression.
A simple model using linear regression as in Chapter3 could be used. Going one step
further, we could incorporate data for subjects that have scans at multiple time points by
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using multivariate regression or mixed models, for example. Doing so could give bet-
ter indications of the growth dynamics (see Fig.9.3). Such methods are discussed in
[O'Brien and Fitzmaurice, 2005, Verbeke and Molenberghs, 2009, Diggle et al., 2013].

Figure 9.3: Left: A cross-sectional data-set that implies a negative relationship between
age andY. Right: Assuming the same data was obtained from longitudinal studies with
two measurements per subject we may no longer assume a negative relationship. Images
obtained fromhttps://perswww.kuleuven.be/ u0018341/documents/longitudinal.pdf.

9.5 Coupled Model of Cardiac Growth, Motion and Blood Flow

The global objective of this work was towards the development of a coupled model of
cardiac growth, motion and blood �ow. A �rst step towards this objective is to couple the
growth with the motion to have a growth model of the beating heart was discussed in the
previous section (see Fig.9.4).

Figure 9.4: Combining the growth and motion dynamics into a common model could give
a more informative model of the heart to perform predictive analyses, than using a static
growth model. This idea is exempli�ed here on the right ventricle.
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Including the blood �ow component is more complex, since the blood �ow solutions
are still high dimensional, even after model reduction. Moreover, there is an inherent
coupling between the anatomy and the blood �ow solution. As a �rst step towards coupling
the blood �ow model with a growth / motion model, it could be worthwhile �rst to create
a coupled atlas of anatomy / �ow by taking snapshots of the �ow solution (for example,
using streamlines (see Fig.9.5)).

Figure 9.5: The atlas of the pulmonary artery used in Chapter8 with extracted streamlines.
By coupling the streamlines with the surface, the �uid-structure interaction may be better
captured in the atlas construction step.

9.6 Perspectives

Naturally, the primary perspective of this work is to couple the different models to have
a combined multiple-factor model of the heart. This chapter touches on the subject of
�rst coupling the models of growth and motion by suggesting a method to perform such
a coupling, and then a potential method for also capturing the blood �ow dynamics by
studying streamlines. However, developing such a model is a very dif�cult task, hence
why few such models have been proposed to address this problem. Having analysed each
phenomenon separately, the key questions that need to be addressed in future work in order
to approach this problem can now be identi�ed. The most interesting directions to study
are summarised below.

Key Questions:

1) What is the most appropriate regression method for cross-sectional (and potentially
longitudinal) data?

2) Should the data be sub-grouped within a population, and if so, how should this be
done?
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3) What are the key features that we want to extract from the model (local shape, re-
gional motion, velocity / pressure)?

4) How can the blood �ow dynamics be captured in dynamic and growing ventricles?

9.6.1 Conclusion

Throughout this thesis, a primary theme has been population-based modelling of differ-
ent phenomena. A vital point that was discovered during this PhD was the dif�culty in
performing population-based analyses on a large number of parameters. This discovery is
what motivated the development of the reduced-order models for cardiac growth, motion
and blood �ow. Naturally, this key point is also valid for coupling models of different
phenomena, as the complexity only increases with added model components. The idea
of tensor decomposition (used for the mean motion model in Chapter7) is to have an in-
dependent basis for each factor. In this thesis, reduced models (i.e. compact bases) were
proposed in order to be able to recombine easily the different phenomena in a kind of tensor
form. Tensor decomposition could potentially be performed on the joint tensor of param-
eters representing the shape / motion / �ow patterns. However, exploiting the correlation
between factors still remains a key issue for avoiding the combinatorial explosion with the
increase in the number of factors.
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10.1 Scope of this Thesis

Predictive modelling of cardiac growth, motion and blood �ow, are challenging areas of
research that can provide crucial information for clinicians to aid in diagnosis, classi�ca-
tion, therapy planning and prognosis. In this thesis, we presented methods to address each
of these areas individually with the aim of having methods that are robust with respect to
the data used to build the models, reproducible so that the analyses can be applied easily to
a new population and general enough so that new populations can be studied.

The proposed methods were largely based on the analysis of MR images, though the
methods are not speci�c to this modality. Rather, we chose to test the algorithms on this
modality due to the large availability of cardiac MR images in the context of congenital
heart disease. The methods were applied speci�cally to the case study of Tetralogy of
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Fallot, due to the large shape re-modelling that occurs in these subjects, and due to the
clinical challenge of determining the optimal time to intervene, and optimal device type for
valve replacement. The methods described in this manuscript can be applied to other heart
diseases that undergo signi�cant re-modelling with time due to the pathology.

This thesis was dedicated to better understanding the complex shape, motion, growth
and �ow dynamics in Tetralogy of Fallot that occur in patients that have damaged or miss-
ing pulmonary valves. Due to the high complexity of modelling each component, we ap-
plied model reduction techniques to enable robust computation of the growth, motion and
�ow dynamics. Using reduced-order models we were able to develop population-based
models of cardiac growth, motion and blood-�ow. Such models can be used to give in-
sight into the healthy growth, motion and blood-�ow patterns, to help to identify abnormal
patterns related speci�cally to the pathology.

10.2 Main Contributions

10.2.1 Bi-ventricular Growth Model

In Chapter3, we extended on the RV growth model of [Mansi et al., 2011b] to couple the
bi-ventricular growth dynamics between the left and right ventricles. The coupled growth
model was used to predict the growth evolution of repaired Tetralogy of Fallot patients and
to establish the modes of shape variation around the mean. By including the left ventricle in
the model we were able to capture the coupled growth dynamics between the two ventricles.

10.2.2 Benchmarking of Cardiac Motion Tracking Methods

Working together with the organisers of the 2011 and 2012 STACOM MICCAI workshop
cardiac motion tracking challenges, we applied the iLogDemons algorithm to a data-set of
real and phantom sequences (in 2011) and to a synthetic data-set (in 2012). This work was
aiming towards benchmarking cardiac motion tracking methods to improve the transfer of
such methods to the clinical setting by testing state-of-the-art methods on openly available
data-sets.

10.2.3 Anatomically Grounded Cardiac Motion Tracking Algorithm

Based on the analysis of state-of-the-art cardiac motion tracking methods, we chose to
develop a new method for performing cardiac motion tracking using non-rigid registration,
with the transformation from one image to another de�ned with a low number of intelligible
parameters.

The proposed method incorporates cardiac-speci�c priors into a PolyLogDemons-
based model. By incorporating these terms into the model, the accuracy of the registration
was improved, compared to using a non-constrained PolyLogDemons model (as tested on
synthetic sequences with known ground-truth and real sequences with annotated 4D land-
marks). The method was applied to the STACOM 2011 challenge data-set to compare the
accuracy of the proposed method to state-of-the-art methods applied to the same data-set.
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10.2.4 Cardiac Motion Pattern Analysis

Using the fact that the transformations estimated by the motion tracking method described
in Chapter5 are described with a small number of parameters, we performed a simple
analysis of the parameters by �rst analysing the af�ne matrices regionally per patient to
establish meaningful differences between healthy and pathological cases in terms of syn-
chrony of the trace evolution (where the trace of the af�ne matrices is related to volume
change). We show that the af�ne parameters can be analysed directly at a regional level to
identify regional differences in motion and potentially to detect regions that are functioning
poorly.

We proposed a method for analysing the motion over a group of subjects from the
same population to determine bases related to the temporal evolution of the LV as well as
the spatial patterns through the cardiac cycle. The aim of such analyses is to determine
the normal motion patterns observed in healthy patients, to be able to potentially classify,
detect, or distinguish abnormal motion in patients with heart disease.

10.2.5 Population-speci�c Mean Motion Model

By extending further on the regional and population analyses of motion, we proposed a
method for constructing a population-speci�c mean motion model that can be applied to
new subjects. The cardiac motion tracking algorithm of Chapter5 was used to compute
the transformations along the cardiac cycle for a group of subjects. We presented a method
for spatially and temporally aligning the transformations to a common space so that we
can compare and analyse the transformations between subjects. A mean motion model
was computed by averaging the aligned transformation parameters. Analysis of the motion
patterns was performed by using statistical model reduction techniques on the transforma-
tion parameters. Both matrix and tensor-based model reduction was performed to establish
dominant spatial and temporal motion patterns within a population.

The mean motion model and statistical model reduction was applied to both healthy
and Tetralogy of Fallot subjects to compare the motion patterns in the two groups. From
this analysis we were able to identify meaningful differences between the motion dynamics
in these two populations.

10.2.6 Population-based Cardiac Blood Flow

A reduced-order model of cardiac blood �ow was proposed that makes use of a statistical
shape atlas for generating a population-based �ow simulation. From the shape atlas, sta-
tistical model reduction was performed on the population-based �ow simulation, allowing
new simulations to be computed on the reduced �ow bases. This method was developed
as a means of computing a reduced-order “reference" �ow solution that can be projected
onto new subjects to re-solve the �ow solution on the reduced bases. This could potentially
be used to reduce the complexity of �ow solutions, to reduce the time taken to compute a
patient-speci�c �ow simulation, and to obtain population-based analysis of blood �ow.

Using the reduced-order model, we showed that it is possible to extract meaningful
bases of the pressure, velocity and pressure change. Furthermore, we were able to cap-
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ture reasonable �ow dynamics from the reduced model. Different degrees of blood �ow
regurgitation, and different states (rest, exercise) we are examined.

10.3 Collaborative Work

This PhD was partially funded by two European projects (Care4Me and MD-Paedigree).
The work conducted during this PhD was in collaboration with several other research teams
and with clinicians at hospitals around Europe. Interaction between clinicians and other
researchers was an integral part of this PhD, to motivate the development of new methods
by everyday clinical challenges. Patient data was provided by clinicians at St. Thomas
hospital, London, Necker children's hospital, Paris, OPBG hospital, Rome and from open-
source data from the 2011 STACOM MICCAI workshop cardiac motion tracking data-set.

10.3.1 Care4Me and MD-Paedigree European Projects

The Care4Me project (2010-2012) was a project aimed towards improving health-care by
advancing medical imaging technology and aiding decision making with the help of med-
ical image analysis techniques. The project brought together 25 partners from 5 countries
from academic, industrial and clinical backgrounds. This thesis was focused on the WP4
objective: towards computer-aided detection, quanti�cation and diagnosis, with a speci�c
emphasis on providing decision support with generative models of the heart (leading to-
wards the WP5 objective).

The MD-Paedigree project is a VPH (Virtual Physiological Human)-based initiative to
bring together biomedical data, information and knowledge to develop predictive patient-
speci�c models to improve paediatric health-care. This thesis is related to the predictive
modelling aspect of the MD-Paedigree project, in regards to modelling of congenital heart
disease.

10.3.2 Collaborative Blood Flow Project

The work related to cardiac blood �ow simulation was performed as a collaborative project
between the REO group at INRIA, Rocquencourt, and the Necker children's hospital in
Paris, and the ASCLEPIOS group at INRIA, Sophia Antipolis. This collaboration brought
together the different expertise of the group in REO, who have experience in CFD simula-
tion and �uid-structure interactions, and the expertise of the ASCLEPIOS group for image
analysis, atlas building, and non-rigid registration.

Patient data from the Necker children's hospital was used to perform patient-speci�c
blood �ow simulations in the pulmonary artery, and on these patients an atlas on the pul-
monary artery was generated. This work led to collaborative papers; a conference work-
shop paper presented in Beijing in 2010 [McLeod et al., 2010a] and a journal article sub-
mitted to Medical Image Analysis [Mcleod et al., 2013].
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10.3.3 Cardiac Motion Tracking Challenges

As part of the STACOM MICCAI workshops of 2011 and 2012, there was a large amount
of interaction between the workshop challenge organisers and challenge participants to dis-
cuss the data, validation, methodology etc. As a result of the 2011 cardiac motion tracking
challenge, a collaborative journal article was written between King's College London, Uni-
versitat Pompeu Fabra, Philips Research Medisys, Imperial College London, Fraunhofer
MEVIS and other clinical / industrial partners [Tobon-Gomez et al., 2013].

10.4 Perspectives and Future Applications

Future perspectives and conclusions were described in each chapter of this thesis individu-
ally. For all of the axes of this work, further validation and testing is anticipated for future
work to apply the models on larger data-sets, for a wider range of populations. Each part
of this thesis required a large amount of image processing. When possible this processing
was performed automatically. Image segmentation was a large burden on this work due
to the fact that fully automatic tools were not available during this PhD. Therefore, im-
age segmentation was performed semi-automatically using open-source tools. Naturally,
performing the segmentation in this way introduces potential bias into the models. Using
an automatic segmentation tool would cut down the processing time signi�cantly. In the
current implementation of each method, the codes have not been optimised in any way for
time / memory. Since fast computations were not the aim of this work, we did not focus
on optimising the implementation, though this could lead towards the methods being more
easily transferrable to the clinical setting.

10.4.1 Reduced-order Electro-physiological Simulations

In this work we modelled the growth, motion and blood �ow dynamics of the heart. How-
ever, the electro-physiological component is also crucial in understanding the heart and
analysing cardiac function. Since abnormal electrical conductivity effects the pumping ac-
tion (and thus the motion) of the heart, studying this component in a similar manner to the
other components could provide a more complete picture. Model order reduction could be
applied to the electro-physiological bases in a similar manner to the model reduction per-
formed on the blood �ow simulations, or to the work described in [Boulakia et al., 2012]
(see Fig.10.1).

10.4.2 Reduced-order Modelling with Arti�cial Devices

The models in this work were largely applied to repaired Tetralogy of Fallot patients. The
key question for these patients is determining the optimal time to replace the pulmonary
valve with an arti�cial device, the optimal method for implanting the device, and the opti-
mal placement / size of the device (see Fig.10.4). The next key question for this application
is modelling the effects of using different devices, and for predicting the evolution of the
heart over time after device implantation. From an anatomical model of the heart, we can
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Figure 10.1: Left: An electro-physiological basis computed using a modi�ed Schrodinger
operator. Right: Snapshots of a full electro-physiological simulation (left) and a reduced-
order simulation performed using a POD method (right). Images obtained fromhtt ps:
==team:inria: f r=reo=cardiac_electrophysiology=.

perform virtual surgery on this model. Using the generative bi-ventricular growth model
described in Chapter3, the bi-ventricular heart can be propagated through time to analyse
the dynamics over time with respect to the implanted device. The key question would then
be whether or not the model is able to predict the shape evolution.

Figure 10.2: 3D image segmentation used to create a 3D model of the pulmonary artery, to
create a prototype valve. Image obtained from [Biglino et al., 2012].

10.4.3 Inter-modality Cardiac Analysis

The focus of this work has been on image analysis of cardiac MR images. The tools, how-
ever are not speci�c to this imaging modality. A �rst step towards multi-modality analysis
would be to apply the tools to other modalities to test whether the models yield similar
results as those obtained from MR. The bi-ventricular growth model and the reduced-order
cardiac blood �ow models were applied to surfaces rather than images, therefore these are
easily translatable between modalities. However, the cardiac motion model was applied to
images directly, therefore there may be some differences between modalities. Given that
the cardiac motion tracking algorithm of Chapter5 is a Demon's based algorithm (and thus
driven by image intensities), the results may be different for ECHO, tagged MR and CT.
However, the Polyaf�ne projection is not bound by the use of the LogDemons algorithm
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to compute the correspondences between images, therefore this could be adapted to the
modality.

For the cardiac motion analyses of Chapters6 and7, the analyses are performed on the
transformation parameters, rather than the images themselves, therefore the transformation
parameters may be easily transferable between different imaging modalities. An interesting
extension of the work in undertaken in this PhD would be to combine the information from
different modalities to build a more informative model of motion (see Fig.10.3).

Figure 10.3: The Polyaf�ne transformation parameters could be compared between modal-
ities.Combining the information from different modalities could provide a more robust
model of cardiac motion.

10.4.4 Longitudinal Reduced-order Models of Other Organs

This work was focused purely on cardiac modelling, however the tools could be translated
to analyse other organs. For example, the cardiac motion tracking algorithm could be used
to study longitudinal data on different scales (such as longitudinal scans taken over several
years). Longitudinal analysis of brain morphology is a popular area of research, in partic-
ular for analysing degenerative brain conditions such as Alzheimer's disease. To compare
the longitudinal evolution between subjects, Lorenzi et. al proposed to transport veloci-
ties to a template space using parallel transport [Lorenzi and Pennec, 2012]. In Chapter
7 we transported instead the transformation parameters. This might be more robust than
transporting the velocities and requires no pre-alignment of the images.

10.5 Conclusion

The work described in this thesis shows advances in statistical cardiac modelling of the
heart towards gaining understanding of the growth, motion and blood �ow dynamics spe-
ci�c to a given population. The results indicate that the proposed methods are able to
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Figure 10.4: Comparison of the longitudinal evolution of brain scans for patients with
Alzheimer's disease. Comparing the evolution of different subjects can be performed
by parallel transporting velocities computed from non-rigid registration between image
frames. Image courtesy of Marco Lorenzi.

provide useful insight into cardiac disease, that could in future be potentially used to guide
therapy planning by providing clinicians with predictive models of cardiac phenomena.
The work in this thesis was focused on the application of modelling in Tetralogy of Fallot
patients, however the models are not speci�c to this pathology, and could thus be applied to
other pathologies. In order to be able to translate these models into the clinical setting, fur-
ther research on the pre-processing steps and optimisation of the codes is required to reduce
the time needed to prepare the data, and to reduce the running time of the algorithms.
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A., Bruder, O., SchuÌĹler, W. O., and Barkhausen, J. (2005). Myocardial late enhance-
ment in contrast-enhanced cardiac MRI: Distinction between infarction scar and non–
infarction-related disease.American Journal of Roentgenology, 184(5):1420–1426.
(Cited on page22.)

[Hutton and Braun, 2003] Hutton, B. F. and Braun, M. (2003). Software for image regis-
tration: Algorithms, accuracy, ef�cacy.Seminars in Nuclear Medicine, 33(3):180–192.
(Cited on page24.)

[Johnson and Christensen, 2002] Johnson, H. J. and Christensen, G. E. (2002). Consis-
tent landmark and intensity-based image registration.IEEE Transactions on Medical
Imaging, 21(5):450–461. (Cited on page26.)

[Joshi et al., 2004] Joshi, S., Davis, B., Jomier, M., and Gerig, G. (2004). Unbiased dif-
feomorphic atlas construction for computational anatomy.NeuroImage, 23(Supplement
1):S151 – S160. Mathematics in Brain Imaging. (Cited on page36.)

[Joshi et al., 2006] Joshi, S. H., Kaziska, D., Srivastava, A., and Mio, W. (2006). Rieman-
nian structures on shape spaces: A framework for statistical inferences. InStatistics and
Analysis of Shapes, Modeling and Simulation in Science, Engineering and Technology,
pages 313–333. Birkhäuser Boston. (Cited on page35.)

[Joshi et al., 2007a] Joshi, S. H., Klassen, E., Srivastava, A., and Jermyn, I. (2007a). A
novel representation for riemannian analysis of elastic curves in Rn.IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 0:1–7. (Cited on
page35.)

[Joshi et al., 2007b] Joshi, S. H., Klassen, E., Srivastava, A., and Jermyn, I. (2007b). Re-
moving shape-preserving transformations in square-root elastic (SRE) framework for
shape analysis of curves. InEMMCVPR'07, pages 387–398. (Cited on page35.)

[Juh and Suh, 2010] Juh, R. and Suh, T. (2010). Phase correlated image registration to
4D CT for liver stereotactic radiosurgery with image guidance CT.Medical Physics,
37:3137. (Cited on page24.)

[Kendall, 1989] Kendall, D. (1989). A survey of the statistical theory of shape (with dis-
cussion). Statistical Science, 4:87–120. (Cited on page35.)



194 Bibliography

[Kilner et al., 2009] Kilner, P. J., Balossino, R., Dubini, G., Babu-Narayan, S. V., Taylor,
A. M., Pennati, G., and Migliavacca, F. (2009). Pulmonary regurgitation: The effects
of varying pulmonary artery compliance, and of increased resistance proximal or distal
to the compliance. International Journal of Cardiology, 133(2):157–166. (Cited on
page140.)

[Klein et al., 2009] Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J., Avants, B.,
Chiang, M.-C., Christensen, G. E., Collins, D. L., Gee, J., Hellier, P., et al. (2009). Eval-
uation of 14 nonlinear deformation algorithms applied to human brain MRI registration.
NeuroImage, 46(3):786–802. (Cited on page23.)

[Knauth et al., 2008] Knauth, A. L., Gauvreau, K., Powell, A. J., Landzberg, M. J., Walsh,
E. P., Lock, J. E., del Nido, P. J., and Geva, T. (2008). Ventricular size and function
assessed by cardiac MRI predict major adverse clinical outcomes late after Tetralogy of
Fallot repair. Heart, 94(2):211–216. (Cited on page18.)

[Kolda and Bader, 2009] Kolda, T. G. and Bader, B. W. (2009). Tensor decompositions
and applications.SIAM Review, 51(3):455–500. (Cited on pages123and134.)

[Koo et al., 2011] Koo, B.-K., Erglis, A., Doh, J.-H., Daniels, D. V., Jegere, S., Kim, H.-
S., Dunning, A., DeFrance, T., Lansky, A., Leipsic, J., and Min, J. K. (2011). Diagnosis
of ischemia-causing coronary stenoses by noninvasive fractional �ow reserve computed
from coronary computed tomographic angiograms. Results from the prospective mul-
ticenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via
Noninvasive Fractional Flow Reserve) study.Journal of the American College of Car-
diology, 58(19):1989–1997. (Cited on page139.)

[LaDisa et al., 2011] LaDisa, J. F., Dholakia, R. J., Figueroa, C. A., Vignon-Clementel,
I. E., Chan, F. P., Samyn, M. M., Cava, J. R., Taylor, C. A., and Feinstein, J. A. (2011).
Computational simulations demonstrate altered wall shear stress in aortic coarctation
patients treated by resection with end-to-end anastomosis.Congenital Heart Disease,
6(5):432–43. (Cited on page139.)

[Lang et al., 2005] Lang, R. M., Bierig, M., Devereux, R. B., Flachskampf, F. A., Foster,
E., Pellikka, P. A., Picard, M. H., Roman, M. J., Seward, J., Shanewise, J. S., Solomon,
S. D., Spencer, K. T., Sutton, M. S. J., and Stewart, W. J. (2005). Recommendations
for chamber quanti�cation: A report from the American Society of Echocardiography's
guidelines and standards committee and the chamber quanti�cation writing group, de-
veloped in conjunction with the European Association of Echocardiography, a branch
of the European Society of Cardiology.Journal of the American Society of Echocar-
diography, 18(12):1440–1463. (Cited on page18.)

[Le and Kendall, 1993] Le, H. and Kendall, D. (1993). The Riemannian structure of Eu-
clidean shape space: A novel environment for statistics.Annals of Statistics, 21:1225–
1271. (Cited on page35.)



Bibliography 195

[Ledesma-Carbayo et al., 2006] Ledesma-Carbayo, M., Mahia-Casado, P., Santos, A.,
Perez-David, E., Garcia-Fernandez, M., and Desco, M. (2006). Cardiac motion anal-
ysis from ultrasound sequences using nonrigid registration: Validation against Doppler
tissue velocity.Ultrasound in Medicine & Biology, 32(4):483–490. (Cited on pages94
and114.)

[Ledesma-Carbayo et al., 2005] Ledesma-Carbayo, M. J., Kybic, J., Desco, M., Santos,
A., Suhling, M., Hunziker, P., and Unser, M. (2005). Spatio-temporal nonrigid registra-
tion for ultrasound cardiac motion estimation.IEEE Transactions on Medical Imaging,
24(9). (Cited on page114.)

[Leeson et al., 2012] Leeson, P., Mitchell, A., Augustine, D., and Becher, H. (2012).
Echocardiography. Oxford Medical Publications. OUP Oxford. (Cited on page17.)

[Legrice et al., 2001] Legrice, I., Hunter, P., Young, A., and Smaill, B. (2001). The
architecture of the heart: A data–based model.Philosophical Transactions of the
Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,
359(1783):1217–1232. (Cited on page86.)

[Lin and Taber, 1995] Lin, I.-E. and Taber, L. (1995). A model for stress-induced growth
in the developing heart.Journal of Biomechanical Engineering, 117(3):343–349. (Cited
on page170.)

[Lombaert et al., 2012] Lombaert, H., Peyrat, J., Croisille, P., Rapacchi, S., Fanton, L.,
Cheriet, F., Clarysse, P., Magnin, I., Delingette, H., and Ayache, N. (2012). Human atlas
of the cardiac �ber architecture: Study on a healthy population.IEEE Transactions on
Medical Imaging, 31(7):1436–1447. (Cited on page24.)

[Lorenzi and Pennec, 2012] Lorenzi, M. and Pennec, X. (2012). Geodesics, parallel trans-
port & one-parameter subgroups for diffeomorphic image registration.International
Journal of Computer Vision. (Cited on page183.)

[Makela et al., 2002] Makela, T., Clarysse, P., Sipila, O., Pauna, N., Pham, Q. C., Katila,
T., and Magnin, I. E. (2002). A review of cardiac image registration methods.IEEE
Transactions on Medical Imaging, 21(9):1011–1021. (Cited on pages19and24.)

[Mansi, 2010] Mansi, T. (2010). Image-Based Physiological and Statistical Models of
the Heart, Application to Tetralogy of Fallot. Thèse de sciences (phd thesis), Ecole
Nationale Supérieure des Mines de Paris. (Cited on pages32, 58and150.)

[Mansi et al., 2009] Mansi, T., Durrleman, S., Bernhardt, B., Sermesant, M., Delingette,
H., Voigt, I., Lurz, P., Taylor, A. M., Blanc, J., Boudjemline, Y., Pennec, X., and Ayache,
N. (2009). A statistical model of right ventricle in Tetralogy of Fallot for prediction of
remodelling and therapy planning. InProc. Medical Image Computing and Computer
Assisted Intervention (MICCAI'09), volume 5761 of Lecture Notes in Computer Sci-
ence, pages 214–221. Springer. (Cited on page32.)



196 Bibliography

[Mansi et al., 2011a] Mansi, T., Pennec, X., Sermesant, M., Delingette, H., and Ayache,
N. (2011a). iLogDemons: A demons-based registration algorithm for tracking incom-
pressible elastic biological tissues.International Journal of Computer Vision. (Cited
on pages54, 55, 56, 61, 64, 65, 66, 76, 77, 92, 94, 107and114.)

[Mansi et al., 2011b] Mansi, T., Voigt, I., Leonardi, B., Pennec, X., Durrleman, S., Serme-
sant, M., Delingette, H., Taylor, A. M., Boudjemline, Y., Pongiglione, G., and Ayache,
N. (2011b). A statistical model for quanti�cation and prediction of cardiac remodelling:
Application to Tetralogy of Fallot.IEEE Transactions on Medical Imaging. (Cited on
pages7, 17, 32, 45and178.)

[Manzoni et al., 2011] Manzoni, A., Quarteroni, A., and Rozza, G. (2011). Model reduc-
tion techniques for fast blood �ow simulation in parametrized geometries.International
Journal for Numerical Methods in Engineering. (Cited on page139.)

[Markl et al., 2012] Markl, M., Geiger, J., Jung, B., Hirtler, D., and Arnold, R. (2012).
Noninvasive evaluation of 3D hemodynamics in a complex case of single ventricle phys-
iology. Journal of Magnetic Resonance Imaging, 35:933â�AŞ937. (Cited on page139.)
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