
HAL Id: tel-00942559
https://theses.hal.science/tel-00942559

Submitted on 6 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conceptual workflows
Nadia Cerezo

To cite this version:
Nadia Cerezo. Conceptual workflows. Other [cs.OH]. Université Nice Sophia Antipolis, 2013. English.
�NNT : 2013NICE4149�. �tel-00942559�

https://theses.hal.science/tel-00942559
https://hal.archives-ouvertes.fr

UNIVERSITE DE NICE SOPHIA-ANTIPOLIS

ECOLE DOCTORALE STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION ET DE LA COMMUNICATION

THESE

pour l’obtention du grade de

Docteur en Sciences

de l’Université de Nice Sophia-Antipolis

Mention :

présentée et soutenue par

Nadia CEREZO

CONCEPTUAL WORKFLOWS

Thèse dirigée par Johan MONTAGNAT

soutenue le 20/12/2013

Jury :

M. Hugues BENOIT-CATTIN Professeur Rapporteur

Mme. Mireille BLAY-FORNARINO Professeur Présidente

M. Oscar CORCHO Associate Professor Rapporteur

M. Johan MONTAGNAT Directeur de recherche Directeur

M. Gabriele PIERANTONI Research Fellow Examinateur

CONTENTS

List of Figures vi

Listings ix

Acknowledgements x

Notations xii

1 Introduction 1

1.1 Simulations . 1

1.2 Scientific Workflows . 2

1.3 Challenges . 3

1.4 Abstraction Levels . 4

1.5 Entanglement of Concerns . 6

1.6 Goals . 8

2 State of the Art 10

2.1 Scientific Workflow Models . 11

2.1.1 Interface . 11

2.1.2 Model . 12

2.1.2.1 Graph Type . 12

2.1.2.2 Node Type . 12

2.1.2.3 Edge Type . 12

2.1.3 Abstraction Level . 15

2.1.4 Comparison Matrix . 15

2.1.5 Discussion . 17

2.1.5.1 System . 17

2.1.5.2 Model . 17

2.1.5.3 Abstraction Level . 17

2.2 Separation of Concerns . 18

2.2.1 Paradigm . 18

2.2.2 Main general approaches . 19

2.2.2.1 Subject-Oriented Programming 19

2.2.2.2 Role-Oriented Programming 19

2.2.2.3 Aspect-Oriented Programming 20

2.2.2.4 Feature-Oriented Programming 21

2.2.3 Separation of Concerns in Workflows 22

2.2.3.1 Separation of Concerns in Scientific Workflows 22

2.2.3.2 Aspect-Oriented Workflows 23

i

CONTENTS CONTENTS

2.2.4 Discussion . 24

2.3 Model-Driven Engineering . 24

2.3.1 Paradigm . 24

2.3.2 Unified Modeling Language . 26

2.3.3 Model Transformations . 28

2.3.4 Discussion . 29

2.4 Knowledge Engineering . 29

2.4.1 Semantic Data Models . 30

2.4.1.1 Entity-Relationship Model 30

2.4.1.2 IDEF1X . 31

2.4.2 Ontologies . 31

2.4.2.1 Types . 32

2.4.2.2 Languages . 32

2.4.3 Semantic Web . 32

2.4.3.1 Resource Description Framework 34

2.4.3.2 RDF Schema . 36

2.4.3.3 SPARQL Protocol and RDF Query Language 38

2.4.4 Discussion . 41

3 Conceptual Workflow Model 43

3.1 Conceptual Elements . 43

3.1.1 Conceptual Workflows . 43

3.1.2 Graphical Convention . 44

3.1.3 Encapsulation . 45

3.1.4 Conceptual Links . 47

3.2 Abstract Elements . 48

3.2.1 Activities . 49

3.2.2 Specialized Activities . 49

3.2.3 Links . 49

3.2.4 Iteration Strategies . 50

3.2.5 Graphical Convention . 51

3.3 Semantic Annotations . 51

3.3.1 Type . 52

3.3.2 Role . 52

3.3.3 Meaning . 52

3.3.4 Compatibility . 52

3.3.5 Graphical Convention . 54

3.4 Fragments . 54

3.4.1 Graphical Convention . 54

3.4.2 Variables . 55

4 Transformation Process 57

4.1 Mapping . 57

4.1.1 Mechanisms . 58

4.1.2 Classification . 58

4.2 Weaving . 59

4.2.1 Steps . 62

4.2.2 Fragment to SPARQL Conversion . 63

ii

CONTENTS CONTENTS

4.2.3 SPARQL query . 65

4.2.4 Conflicts . 66

4.2.5 Clean-up . 67

4.2.6 Binding . 68

4.2.6.1 Node-bound Weaving . 70

4.2.6.2 Link-bound Weaving . 70

4.2.7 Classification . 71

4.3 Tools . 72

4.3.1 Merging . 72

4.3.2 Erasing . 73

4.3.2.1 Conceptual Links . 73

4.3.2.2 Annotations . 74

4.3.2.3 Sub-workflows . 75

4.3.2.4 Example . 76

4.4 Discovery . 76

4.4.1 Process . 76

4.4.2 Matching . 77

4.4.2.1 Match Quality . 78

4.4.2.2 Matching Query . 80

4.4.3 Ranking . 81

4.4.3.1 Ranking Principles . 81

4.4.3.2 Scoring . 82

4.4.3.3 Ranking for Conceptual Inputs 83

4.4.3.4 Ranking for Conceptual Outputs 83

4.4.3.5 Ranking for Conceptual Functions 84

4.5 Composition . 84

4.5.1 Link Suggestion . 86

4.5.2 Producer Suggestion . 88

4.5.3 Consumer Suggestion . 90

4.5.4 Converter Suggestion . 91

4.6 Conversion . 94

4.6.1 XML in a nutshell . 94

4.6.2 To GWENDIA (MOTEUR) . 95

4.6.2.1 Converting Inputs/Outputs 96

4.6.2.2 Converting Activities . 96

4.6.2.3 Converting Links . 97

4.6.3 To t2flow (Taverna 2) . 99

4.6.3.1 Converting Inputs/Outputs 100

4.6.3.2 Converting Activities . 100

4.6.3.3 Converting Links . 101

4.6.4 To IWIR (SHIWA) . 102

4.6.4.1 Converting Simple Chains 102

4.6.4.2 Iteration strategies . 104

4.6.5 Classification . 106

4.6.6 Discussion . 107

iii

CONTENTS CONTENTS

5 Validation 109

5.1 Prototype . 109

5.1.1 Architecture . 109

5.1.2 Features . 110

5.2 Virtual Imaging Platform . 111

5.2.1 OntoVIP . 112

5.2.2 Workflow Designer . 113

5.3 Conceptual Workflow Model . 114

5.3.1 VIP Simulators . 114

5.3.1.1 FIELD-II . 114

5.3.1.2 SIMRI . 117

5.3.1.3 SimuBloch . 118

5.3.1.4 Sindbad . 118

5.3.1.5 SORTEO . 120

5.3.2 Simulator Template . 122

5.3.3 Conceptual Workflows . 123

5.3.3.1 FIELD-II . 123

5.3.3.2 SIMRI . 124

5.3.3.3 SimuBloch . 125

5.3.3.4 Sindbad . 126

5.3.3.5 SORTEO . 128

5.3.4 Discussion . 129

5.4 Transformation Process . 130

5.4.1 VIP Fragments . 130

5.4.1.1 Simple Sub-workflows . 130

5.4.1.2 Two Steps Function . 130

5.4.1.3 Split and Merge . 131

5.4.2 Use Case . 132

5.4.3 Discovery and Weaving . 133

5.4.4 Composition . 137

5.4.5 Conversion . 139

5.4.6 Discussion . 142

6 Conclusion 144

A Detailed Frameworks 147

A.1 ASKALON/AGWL . 147

A.2 Galaxy . 149

A.3 GWES/GWorkflowDL . 150

A.4 Java CoG Kit/Karajan . 151

A.5 Kepler/MoML . 152

A.6 KNIME . 153

A.7 MOTEUR/GWENDIA . 154

A.8 Pegasus/DAX . 155

A.9 SHIWA/IWIR . 155

A.10 Swift . 156

A.11 Taverna/SCUFL . 156

A.12 Triana . 157

iv

CONTENTS CONTENTS

A.13 VisTrails . 158

A.14 WINGS . 159

A.15 WS-PGRADE . 161

B Conceptual Workflow Meta-Model 163

C Fragment to SPARQL Conversion Example 166

D Two Converters Chain Query 168

E Conversion to t2flow 170

F Conversion to IWIR 176

G OntoVIP URIs 179

H License 181

Glossary 183

Bibliography 200

v

LIST OF FIGURES

1.1 Scientific Workflow Abstraction Levels . 4

1.2 Scientific Workflow Concerns and Lifecycle 7

1.3 Scientific Workflow Concerns Entanglement Example 7

2.1 Control Contructs in Data-driven Models . 13

2.2 Data Flow in Control-driven Models . 14

2.3 Feature Diagram Example . 21

2.4 Model-Driven Architecture - Abstraction Levels 25

2.5 UML Class Diagram Graphical Convention (excerpt) 27

2.6 UML Class Diagram Example . 27

2.7 Linked Open Data cloud diagram by Cyganiak R. and Jentzsch A. 33

2.8 Small triple sample . 35

2.9 RDFS inference example . 37

2.10 DBpedia HTML result screenshot . 39

2.11 SPARQL CONSTRUCT example . 40

3.1 Graphical Convention - Conceptual Elements 45

3.2 Image Spatial Alignment Process Example at Multiple Abstraction Levels . . . 45

3.3 Conceptual Workflow Composite Pattern . 45

3.4 Conceptual Link Restriction . 47

3.5 Data Links and Order Links Associations . 50

3.6 Graphical Convention - Abstract Elements . 51

3.7 Compatibility between Elements and Annotations 53

3.8 Graphical Convention - Annotations . 54

3.9 Graphical Convention - Fragments . 54

3.10 Fragment Example . 55

4.1 Transformation Process . 57

4.2 Mapping Process . 58

4.3 Classification of the Mapping model transformation 59

4.4 Weaving Example - Base workflow . 60

4.5 Weaving Example - Fragment . 61

4.6 Weaving Example - Result . 61

4.7 Weaving Process . 62

4.8 Fragment SPARQL Query - Example . 65

4.9 Fragment SPARQL Query - Conflicts . 66

4.10 Fragment SPARQL Query - Conflicts Fixed 67

4.11 Fragment SPARQL Query - Final Result . 68

4.12 Binding Example - Alignment Process . 69

vi

LIST OF FIGURES LIST OF FIGURES

4.13 Binding Example - Unbound Fragment . 69

4.14 Binding Example - Unbound Weaving Result 69

4.15 Binding Example - Node-bound Fragment . 70

4.16 Binding Example - Node-bound Weaving Result 70

4.17 Binding Example - Link-bound Fragment . 71

4.18 Binding Example - Link-bound Weaving Result 71

4.19 Classification of the Weaving model transformation 71

4.20 Merging Example . 73

4.21 Erasing - Links . 73

4.22 Erasing - Links Bypass . 74

4.23 Erasing - Annotations . 74

4.24 Erasing - Sub-workflows . 75

4.25 Erasing - Link Constraints . 75

4.26 Erasing - Example . 76

4.27 Discovery Process . 77

4.28 VIP Ontology (excerpt) - Registration Processes Taxonomy 79

4.29 Matching Query . 80

4.30 Composition Process . 86

4.31 X→ Y Converter Search Query . 92

4.32 Conversion to GWENDIA - Basic Structure 95

4.33 Conversion to GWENDIA - Inputs/Outputs Example 96

4.34 Conversion to GWENDIA - Activities Example 96

4.35 Conversion to GWENDIA - Links Example 98

4.36 Conversion to t2flow - Basic Structure . 99

4.37 Conversion to t2flow - Inputs/Outputs Example 100

4.38 Conversion to t2flow - Activities Example . 100

4.39 Conversion to t2flow - Links Example . 101

4.40 Conversion to IWIR - Simple Chains Example 102

4.41 Converting Iteration Strategies to IWIR . 105

4.42 Classification of the Conversion model transformation 106

5.1 Prototype Architecture . 110

5.2 OntoVIP Excerpt - Simulations . 112

5.3 OntoVIP Excerpt - Dataset Processing Ascendance 113

5.4 Link to VIP Workflow Designer Screenshot 113

5.5 VIP Workflow Designer Screenshot . 113

5.6 FIELD-II - Result Example . 115

5.7 FIELD-II - Abstract Workflow (MOTEUR screenshot) 116

5.8 SIMRI - Result Example . 117

5.9 SIMRI - Abstract Workflow (MOTEUR screenshot) 117

5.10 SimuBloch - Abstract Workflow (MOTEUR screenshot) 118

5.12 Sindbad - Result Example . 118

5.11 Sindbad - Abstract Workflow (MOTEUR screenshot) 119

5.13 SORTEO - Result Example . 120

5.14 SORTEO - Abstract Workflow (MOTEUR screenshot) 121

5.15 VIP Simulator Template Conceptual Workflow 122

5.16 FIELD-II Conceptual Workflow . 123

5.17 SIMRI Conceptual Workflow . 124

vii

LIST OF FIGURES LIST OF FIGURES

5.18 SimuBloch Conceptual Workflow . 125

5.19 Sindbad Conceptual Workflow . 127

5.20 SORTEO Conceptual Workflow . 128

5.21 Simple Sub-workflow Fragment Example . 130

5.22 PET 2 Steps Fragment . 131

5.23 Split and Merge Fragment - Link-bound . 131

5.24 Split and Merge Fragment - Node-bound . 132

5.25 Use Case High-level Conceptual Workflow 132

5.26 Mapping Use Case - After Weaving PET 2 Steps 133

5.27 Mapping Use Case - After Weaving SimuBloch 134

5.28 Mapping Use Case - After Weaving (node-bound) Split and Merge 135

5.29 Mapping Use Case - Fixed Split and Merge Steps 136

5.30 Mapped Use Case . 136

5.31 Use Case Link Suggestions . 138

5.32 Use Case Intermediate Representation . 140

5.33 Use Case GWENDIA Conversion Result (MOTEUR screenshot) 141

A.1 Sample ASKALON Workflow . 148

A.2 Sample Galaxy Workflow . 149

A.3 Galaxy Dummy Cycle Example . 150

A.4 Sample GWES Workflow . 151

A.5 Sample Kepler Workflow . 152

A.6 Sample KNIME workflow . 153

A.7 Sample MOTEUR Workflow . 154

A.8 Sample Taverna Workflow . 157

A.9 Sample Triana Workflow . 158

A.10 Sample VisTrails Workflow . 159

A.11 VisTrails Dummy Cycle Example . 159

A.12 Sample WINGS Workflow . 160

A.13 Sample WS-PGRADE Workflow . 161

B.1 Conceptual Workflow Meta-model - Conceptual Part 163

B.2 Conceptual Workflow Meta-model - Abstract Part 164

B.3 Conceptual Workflow Meta-model - Semantic Part 164

B.4 Conceptual Workflow Meta-model . 165

D.1 X→ ? → Y Two Converters Chain Query . 169

viii

LISTINGS

2.1 Turtle example . 35

2.2 N-Triples example . 35

2.3 RDF/XML example . 36

2.4 RDF/XML example (alternative) . 36

2.5 SPARQL SELECT example query . 39

2.6 SPARQL CONSTRUCT example query . 40

4.1 Fragment to SPARQL Conversion - Fragment Example (abbreviated) 64

4.2 Fragment to SPARQL Conversion - Result Query (abbreviated) 64

4.3 Matching Query (T = target type) . 81

4.4 Producer Search Query (T = target type) . 89

4.5 Consumer Search Query (T = target type) . 90

4.6 X→ Y Converter Search Query . 91

4.7 Conversion to GWENDIA - Inputs/Outputs Example 96

4.8 Conversion to GWENDIA - Activities Example 97

4.9 Conversion to GWENDIA - Links Example 98

4.10 Conversion to IWIR - Simple Chains Example 103

C.1 Fragment to SPARQL Conversion - Fragment Example 166

C.2 Fragment to SPARQL Conversion - Result Query 167

D.1 X→ ? → Y Two Converters Chain Query . 168

E.1 Conversion to t2flow - Inputs/Outputs Example 170

E.2 Conversion to t2flow - Activities Example . 171

E.3 Conversion to t2flow - Links Example . 172

F.1 Conversion to IWIR - Flat Inputs Example . 176

F.2 Conversion to IWIR - Dot Example . 177

F.3 Conversion to IWIR - Cross Example . 178

ix

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Johan Montagnat, for your trust, your

invaluable advice and your tireless work to help me succeed. Without you, I would have never

overcome the beast that my PhD turned into. When you took me under your wing, you warned

me that it would be hard - about that you were right - and that I would eventually come to find

something amiss with you - about that you were wrong.

My next thanks go to Mireille Blay-Fornarino for treating me like an equal from day one

and often seeing more worth in my work than even I would. Your advice was incredibly helpful

and your trust was immensely humbling. Thank you for all the time you gave me.

Next I want to bow to the generosity of the other members of my jury. I want to thank

Gabriele Pierantoni for being not just a colleague but a friend and for always saying it like it

is; Oscar Corcho for showing so much interest in my work even though it pales in comparison

to yours in many ways; and Hugues Benoit-Cattin for taking a bit of a leap of faith with me.

I am truly grateful for your time and humbled by your trust.

I will never forget the help Régine Saelens and Gilles Bernot provided me either. You

were there for me when I most needed it, the make-or-break moment where, if not for your

kindness, I might have given up. Thank you so much.

Next up is my favorite coffee drinking partner, Franck Berthelon. You helped me keep

my head clear and my feet on the ground. More than anyone else, you made me feel like I

belonged, like I was just another PhD student. I can never thank you enough for that.

I now want to thank Sabine Barrere for the tremendous patience with which you showed

me the administrative ropes. You made my life a lot easier and I dare hope I did not make yours

too bothersome in return.

Thanks are also due for Michel Buffa, Alban Gaignard, Franck Michel and Olivier

Corby. Your patience is superhuman and you helped me a lot more than you probably suspect.

Thank you for always taking me seriously.

A bit further away from home, but just as close to heart, I want to thank Tristan Glatard

for being an extremely tolerant and insightful colleague; Bernard Gibaud for challenging me

to do a better work and giving me precious advice to that end; Kitti Varga for always lifting the

mood up no matter the adversity (any project is lucky to have you); Bob Bentley for being such

a good sport (how is that for a French?); Silvia Delgado Olabarriaga for talking to me as if

we were the same age and of similar accomplishments; and the researchers I had the incredible

chance to meet at WORKS’11 after reading their names so often in the litterature, especially

Ian Taylor and Ewa Deelman, for being nowhere near as intimidating in person as I had made

you up in my head.

I also want to thank Guillaume Husson, Pavel Arapov, Mathieu Acher, Macha Da Costa

Barros and Simon Urli for being perfect office-mates. You belied all apprehensions I ever had

about office life twenty times over. Anyone sharing an office with any of you is extremely

lucky, whether they know it or not.

x

ACKNOWLEDGEMENTS ACKNOWLEDGEMENTS

I did not have the pleasure of sharing an office with Javier Rojas Balderrama, Chris-

tian Brel, Fanny Dufossé, Filip Krikava, Ketan Maheshwari, Romaric Pighetti or Tram

Truong Huu and that is a shame, for I am sure I would have been the luckier one for it. Thanks

for being exemplary teammates.

I now want to turn my gratitude towards Loula Fezoui who supported me throughout in

so many different ways, up to and including proof-reading just about everything. This thesis

would not be anywhere near its current state if it were not for you.

Outside of work, there are too many people I feel grateful towards to list here. Plus, I

am afraid I would lose some friends if I tried and inevitably failed to make an exhaustive list.

Anyway, if you know me, you probably already know how I feel about you. If, for some reason,

you do not, do ask. Come on. I do not bite. :)

And last but not least, I want to thank you for taking the time to read this, whoever you are.

Please do take a look at the Glossary too. It’s full of definitions and URLs and funny acronyms,

I bet you’ll like it. ;)

And now for something completely different...

It’s not so much about gratitude than simple acknowledgement. Here’s a list of softwares

and websites used in the making of this document, besides those mentioned in it:

• BibTeX to generate the bibliography;

• detexify to find some of the LaTeX symbols;

• FreeFormatter.com XML Formatter to indent long XML documents;

• Google Scholar to look up most references;

• GraphViz to create some of the figures;

• LaTeX to layout the whole document;

• MacOS X Preview to crop PDFs;

• makeglossaries to generate the glossary;

• Microsoft PowerPoint to create most of the figures;

• Protégé to browse and tinker with ontologies;

• subversion to backup the LaTeX source code;

• texmaker and TeXnicCenter to edit the LaTeX source code; and

• WordReference to find or check French→English translations.

xi

NOTATIONS

The following conventions are used throughout the book:

• “Text written in italic between quotes” is either a direct quote from another work or a

term commonly found in the litterature.

• Text written in italic outside quotes is either a latin expression, such as i.e., or a

reference to a mathematical or algorithmical element, such as a function.

• Text written in boldface is simply emphasized over the surrounding text.

• Text written in Typewriter style is something technical, such as a literal

value, a specific program name or a specific variable.

• Text written in dark blue is either a reference to a specific numbered item (e.g. a section,

figure, listing, etc) or a term defined in the glossary.

• Text written in dark blue and boldface is a glossary term emphasized because it is

inherent to this work. Most such terms are part of our model and many others are the

names of specific processes defined in this work.

• [Text written in green between brackets] is a reference whose details can be found in the

bibliography. Outside brackets, green text is reserved for URLs.

“ Text written in rectangles such as this one is a direct quote...

...AND THIS IS THE AUTHOR OR THE REFERENCE.

Those slightly different rectangles...

...are for equations.

And the text in boldface above is the title.

xii

CHAPTER 1

INTRODUCTION

1.1 Simulations

Ever since the conception of computers, scientists have used them to handle part of their scien-

tific experiments for many reasons, including:

• performing complex computations that would take too long and be too error-prone for

humans to perform;

• manipulating digital data that is captured as-is or converted from analog sources and is

then processed by computers; and

• implementing virtual experiments that are used to model reality in order to avoid the

costs and risks of practical experiments, to try impractical conditions or to deduce knowl-

edge from the model itself.

Scientific experiments that are partially or entirely carried out via computers are called

simulations. In the field of life sciences, they are commonly referred to as in-silico experiments

by contrast to other types of experiments, e.g. “in-vivo”, “in-vitro” and “in-situ” experiments.

Complete simulations very rarely consist of a simple program. Even in cases where all com-

putations are performed inside one executable, there is most often need for data management.

Indeed, data must somehow be:

• fetched from where it was captured or generated;

• prepared so that it is compatible with the program(s) using it as input; and

• visualized, transformed or mined so as to provide results to the scientist and/or input

data for further simulations.

To this day, scientists have chained the various programs composing their simulations man-

ually or automated them through ad-hoc scripting and generic tools like GNU Make1. Both

methods, manual composition and automation via generic tools and script languages, are poor

fits for simulations, for the following reasons:

• the exploratory nature of scientific analysis induces frequent reuse and repurposing,

which easily become tedious enough to warrant dedicated systems;

• many simulations handle such huge data volume that it is impractical to handle manually

and hard to handle reliably via scripting; and

1GNU Make: http://www.gnu.org/software/make/

1

http://www.gnu.org/software/make/

1.2. SCIENTIFIC WORKFLOWS CHAPTER 1. INTRODUCTION

• distributed resources – e.g. databases, data streams, web services, computing grids

and clouds – have become an integral part of most simulations and are rather hard to

access: scientists find they need to become experts of distributed algorithms and web

technologies in order to leverage the wealth of available distributed resources.

There is thus a practical and growing need for systems dedicated to the automation of

simulations and usage of highly-distributed heterogeneous resources.

1.2 Scientific Workflows

The need to automate the use of highly-distributed heterogeneous resources was first answered

in the corporate world – years before the issue was identified as such in the scientific community

– by the concept of workflow:

“ Definition - Workflow

The computerized facilitation or automation of a business process, in

whole or part.

WORKFLOW MANAGEMENT COALITION (WFMC)

Applying that definition to scientific processes suggests that any form of automation of a

simulation should qualify as a scientific workflow. In this work, however, we focus on systems

built specifically to model, maintain and perform simulations, i.e. what is commonly called

scientific workflow frameworks.

Scientific workflow frameworks often target different scientific communities and most of

them were developed independently by different teams with different goals; frameworks are

therefore plenty and varied (see Section 2.1.4 for an overview). No standard has emerged

yet, in the field of scientific workflows, however there are noticeable trends. For instance,

most frameworks are compatible with web services, allowing access to a significant part of the

distributed resources available online, and/or provide end-users with drag-and-drop interfaces

to compose scientific workflows graphically, making it easier for beginners to start composing

workflows and for everyone to read the workflows authored by others.

One of the most quickly recognizable trends for anyone comparing scientific workflow

frameworks is that the vast majority of scientific workflow models the frameworks rely on –

implicitly or explicitly – are based on directed graphs. That very common choice presents many

advantages:

• it is the most straightforward way to represent the order in which tasks must be per-

formed and/or how data is to be transferred between tasks;

• it is a graphical representation that is universal enough to be accessible for beginners,

who can start composing simulation tasks without having to learn a language syntax; and

• it is especially legible in that it clearly highlights, for the human reader, things about the

process that might otherwise be quite hard to detect or evaluate, e.g. complexity, resource

consumption, bottlenecks, loops and unreachable code.

2

CHAPTER 1. INTRODUCTION 1.3. CHALLENGES

For all those reasons, the vast majority of systems opted for directed graphs despite their

disadvantages, most notably the lack of scalability: huge graphs are hard to layout, to read and

to process. In order to have a basis of comparison and cater to most systems, we have chosen to

focus on scientific workflow frameworks whose models are based on directed graphs – though

in some cases the user interfaces might not expose that fact.

1.3 Challenges

The main goal of scientific workflows is, by definition, to automate simulations. Interestingly

though, scientific workflows are increasingly used by scientists to formalize and share not only

the results of their experiments, but also the scientific processes that produced them. As that

usage spreads, so does the need for other features.

For instance, the need for provenance – to relate data with the workflow and parameters that

produced it, so as to facilitate reuse and peer validation – sparked a series of four Provenance

Challenges2 which led to the definition of the Open Provenance Model (OPM) and recently the

World Wide Web Consortium (W3C) standard PROV, which are widely regarded as standards

for provenance modeling and sharing. Another good example of a hot topic is preservation

– to run a scientific workflow, and thus run all of its components and access all the necessary

data, years after its design and publication. That growing concern in the field is the main goal

of the Wf4Ever project [Belhajjame 12].

The present work focuses on three key aspects of scientific workflows:

• accessibility, i.e. the ease with which domain scientists can read workflows created by

other people or create their own;

• reuse, i.e. the ease with which users can use workflows created by other people for the

same or different goals (a case referred to as repurposing); and

• comparison, i.e. the ease with which someone can compare different scientific work-

flows or different scientific workflow frameworks.

Despite laudable efforts to make scientific workflows accessible and reusable, notably via

easy-to-use Graphical User Interfaces (GUIs), it is widely recognized that most existing scien-

tific workflow models remain complex to use for scientists who are not experts of distributed

algorithms [Gil 07, McPhillips 09]. We argue that the main factors exacerbating that complex-

ity are (i) the fairly low level of abstraction of most existing scientific workflow models and

(ii) the entanglement of different types of concerns which adversely affects legibility.

Both factors stem directly from scientific workflow models. Indeed, they constrain the

range of abstraction in which scientific workflows can be modeled and determine whether and

how different types of concerns may be separated. Comparison is also hindered by the variety

of models, absence of standard and difficulty of converting from a model to another. Hence the

goal of this work:

Create a new scientific workflow model to improve accessibility, ease

reuse and allow comparison.

GOAL

2Provenance Challenges: http://twiki.ipaw.info/bin/view/Challenge/WebHome

3

http://twiki.ipaw.info/bin/view/Challenge/WebHome

1.4. ABSTRACTION LEVELS CHAPTER 1. INTRODUCTION

1.4 Abstraction Levels

Scientific workflows are used to formally model simulations so they can be performed auto-

matically on computing infrastructures. There is an obvious gap between the level at which

simulations are conceived (i.e. the scientific domain(s) of the end user) and that of enactment.

The vast majority of scientific workflow models lie between those two levels: more techni-

cal than the simulations they model, so that they can be executed, yet shielding the user from

much of the complexity of distributed algorithms, web technologies and Distributed Computing

Infrastructures (DCIs).

On the one hand, it is relatively common to call the level of abstraction of most scientific

workflows the Abstract Level and that of enactment the Concrete Level [Yu 05]. On the other

hand, to the best of our knowledge, there is no consensus as of yet for the name of the highest

level of abstraction (i.e. the level of the simulations themselves): we call it Conceptual Level

to contrast it with the Abstract Level, but it is sometimes called “Abstract”, e.g. in [Garijo 11],

and hence might confuse the unsuspecting reader.

Given the definitions we just established and since our goal is to improve accessibility, we

need our scientific workflow model to be as close as possible to the scientific domain(s) of the

end users and therefore to lie at the Conceptual Level.

Create a new scientific workflow model at the Conceptual Level.

METHOD (PART 1 OF 4)

End$user)

Scien-fic)

Workflow)

Framework)

Compu-ng)

Infrastructure)

1 2 3

Conceptual)

Level)(CIM))

Abstract)

Level)(PIM))

Concrete)

Level)(PSM))

A

B

S

T

R

A

C

T

I

O

N

Figure 1.1: Scientific Workflow Abstraction Levels

4

CHAPTER 1. INTRODUCTION 1.4. ABSTRACTION LEVELS

Most scientific workflow frameworks invite users to work directly at the abstraction level

of their scientific workflow model, bypassing the transformation from Conceptual Level to

Abstract Level in the sense that the simulation itself is never formally defined and thus never

actually transformed. However, the transformation from Abstract Level to Concrete Level

can never be bypassed, since automation (and thus execution) is the main goal of scientific

workflows. In most cases, that transformation is performed automatically by the scientific

workflow framework.

We argue that the three levels of abstraction we just defined align very well with those of

the Model Driven Architecture (MDA), as shown on Figure 1.1:

• The Concrete Level is that of the execution of scientific workflows by an enactor over

a DCI. At this level, models are tightly-coupled with the infrastructure and are therefore

referred to as Platform-Specific Models (PSMs) in the MDA.

• The Abstract Level is that of most scientific workflow models, ready to be automati-

cally compiled or directly interpreted, but not entirely bound to specific resources and

retaining some flexibility. Models at this level aim to be independent from computing

infrastructures and are referred to as Platform-Independent Models (PIMs) in the MDA.

• The Conceptual Level is the one at which scientists conceive their scientific experi-

ments in a vocabulary that is familiar to them. Conceptual models are referred to as

Computation-Independent Models (CIMs) in the MDA, since they remain independent

from how the system is or will be implemented. The distinction between CIM and PIM

is much clearer in the MDA than it is in the field of scientific workflows, but few works

have touched upon the transition from one to the other [Singh 10].

Theoretically, scientists can: (i) pick the scientific workflow framework which best suits

their needs among a huge selection, (ii) design their simulations directly in the associated sci-

entific workflow model and (iii) run their experiments on compatible DCIs.

However, in practice: (i) there are few surveys for users to compare existing systems and

pick the most suitable [Yu 05, Taylor 07a, Barker 08, Curcin 08], (ii) designing at the Abstract

Level requires technical know-how and knowledge about the target infrastructure, thus raising

the entry barrier for scientists of all domains but that of scientific workflows and (iii) scientific

workflow frameworks tend to be tied to their target DCIs enough to warrant multi-workflow

systems interoperability projects like SHIWA [Krefting 11].

Hence the need not only to formalize simulations at the Conceptual Level but to develop a

process to help users transform those representations down to the Abstract Level.

Develop a computer-assisted Transformation Process from the

Conceptual Level to the Abstract Level.

METHOD (PART 2 OF 4)

There are three reasons why the Transformation Process must remain in our scientific

workflow model as long as possible.

Firstly, without a closed-world assumption and a curated base of resources, the process can-

not be fully automated. For one thing, it is impossible to guarantee that the resources needed to

implement the user goals exist or can be identified as such. Since the Transformation Process

requires user intervention, it would make sense not to jump from the scientific workflow model

the simulation is designed in to a distinct model right at the start of the process.

5

1.5. ENTANGLEMENT OF CONCERNS CHAPTER 1. INTRODUCTION

Secondly, the frontier between Conceptual Level and Abstract Level is somewhat in the

eye of the beholder: what passes for technicalities for one scientist might be core domain

concerns for another one. It is therefore useful to cater to multiple levels of abstractions inside

the same scientific workflow model, as has been recognized in the literature:

“ Workflow representations must accommodate scientific process de-

scriptions at multiple levels. For instance, domain scientists might want

a sophisticated graphical interface for composing relatively high-level sci-

entific or mathematical steps, whereas the use of a workflow language and

detailed specifications of data movement and job execution steps might con-

cern computer scientists. To link these views and provide needed capabil-

ities, workflow representations must include rich descriptions that span

abstraction levels and include models of how to map between them. [...]

Other important and necessary dimensions of abstraction are experiment-

critical versus non-experiment-critical representations, where the former

refers to scientific issues and the latter is more concerned with operational

matters.

[GIL 07]

Thirdly, a conceptual scientific workflow model sufficiently independent from the lower

abstract layer might serve as a basis of comparison between existing scientific workflow frame-

works. One way to increase independence is to avoid picking a specific target abstract scientific

workflow model and instead wait until the very last moment to delegate.

For those three reasons, the Transformation Process is divided in two distinct steps:

• Mapping is computer-assisted and transforms the scientific workflow from the Concep-

tual Level to an Intermediate Representation lying at the Abstract Level.

• Conversion is fully automated and converts the Intermediate Representation to a target

language, so as to delegate to an existing scientific workflow framework.

And this split sparks the following need:

Extend the scientific workflow model with elements of the Abstract Level

to model Intermediate Representations.

METHOD (PART 3 OF 4)

1.5 Entanglement of Concerns

Each phase of a scientific workflow lifecycle comes with its share of concerns, as summarized

on Figure 1.2: (i) during Design, the simulation itself caters only to domain concerns, i.e.

concerns pertaining to the scientific domain of the end-user; (ii) during Implementation, the

scientific workflow must somehow fulfill all technical concerns in order to be executable;

and (iii) during Execution, all manners of non-functional concerns become relevant, e.g.

performance, reliability and provenance capture.

6

CHAPTER 1. INTRODUCTION 1.5. ENTANGLEMENT OF CONCERNS

Design)

Concerns:)

• Domain

Implementa-on)

Concerns:)

• Domain)

•  Technical

Execu-on)

Concerns:)

• Domain)

•  Technical)

• Non.func1onal

Figure 1.2: Scientific Workflow Concerns and Lifecycle

As an illustration of just how tangled those concerns can become, Figure 1.3 shows a Tav-

erna [Missier 10a] workflow published by Paul Fisher on myExperiment3 where we categorized

each node as either domain, technical or non-functional based on its name.

Legend:)

)))))))))))))))Domain)

)))))))))))))))Technical)

)))))))))))))))Non$func-onal)

Figure 1.3: Scientific Workflow Concerns Entanglement Example

3Example workflow by Paul Fisher: http://www.myexperiment.org/workflows/16.html

7

http://www.myexperiment.org/workflows/16.html

1.6. GOALS CHAPTER 1. INTRODUCTION

It is fairly easy to see how indiscriminately mixing concern types can lead to much confu-

sion when reading scientific workflows and much hardship when trying to maintain or repur-

pose them. The need to separate concerns in scientific workflows, not just inside one system

but via multiple complementary ones, has already been expressed in the literature as such:

“ We also argue that in order to address all the important issues such as

scalability, reliability, scheduling and monitoring, data management, col-

laboration, workflow provenance, and workflow evolution, one system can-

not fit all needs. A structured infrastructure that separates the concerns of

workflow specification, scheduling, execution etc, yet is organized on top

of components that specialize on one or more of the areas would be more

appropriate.

[ZHAO 08]

We thus argue that for a conceptual scientific workflow model to be truly effective, it must

not only cater to the Conceptual Level of abstraction, but also allow proper Separation of

Concerns (SoC), by allowing users to define concerns of different types separately from the

base workflow they will be woven into.

Develop technologies to weave different types of concerns into scientific workflows.

METHOD (PART 4 OF 4)

1.6 Goals

Let us recap the goals of this work. In an effort to improve the accessibility of scientific work-

flows, we aim to:

1. create a scientific workflow model at the Conceptual Level;

2. extend the model with Abstract Elements to model Intermediate Representations;

3. develop technologies to assist the Mapping phase of the Transformation Process, from

a high-level workflow to an Intermediate Representation;

4. develop technologies to automate the Conversion phase from an Intermediate Repre-

sentation to a target scientific workflow model; and

5. develop technologies to weave concerns into scientific workflows to ensure proper SoC.

In Chapter 2, we present the state of the art of scientific workflow models as well as the

domains our approach meets: model-driven engineering, separation of concerns and semantic

knowledge engineering. We then present our scientific workflow model in Chapter 3 and the

tools we provide - to transform Conceptual Workflows and delegate them to existing frame-

works, including Weaving to improve SoC - in Chapter 4. Chapter 5 validates our contributions

by applying them to real-life examples. Preliminary work was published in [Cerezo 11] and an

earlier version of our contributions was published in [Cerezo 13].

8

CHAPTER 1. INTRODUCTION 1.6. GOALS

The objectives of this work are the design of a scientific workflow model

encompassing conceptual and abstract levels of abstraction as well as the

development of a transformation process supporting proper Separation of

Concerns, in order to improve accessibility, ease reuse and allow compar-

ison of scientific workflows.

CHAPTER SUMMARY

9

CHAPTER 2

STATE OF THE ART

Long before they were used to model and automate simulations, workflows were defined,

formalized and used in the industry for business processes. The research field of business

workflows grew years before that of scientific workflows [Georgakopoulos 95] and has known

many fundamental works and standardization initiatives such as the Workflow Patterns Initia-

tive [Van Der Aalst 03].

The frontier between the two types of workflows, i.e. business workflows versus scien-

tific workflows, is somewhat blurry and subjective. Nothing prevents a user from using a

business workflow framework to model and perform a scientific experiment or a scientific

workflow framework to capture and automate a business process. There are notably many

efforts to use the de facto standard business workflow language Business Process Execution

Language (BPEL) directly or adapt it for simulations [Emmerich 05, Akram 06, Slominski 07,

Wassermann 07, Sonntag 13].

The differences between business workflows and scientific workflows pertain essentially to

priorities and context, as detailed in [Barga 07] as well as in [Sonntag 10, Görlach 11], notably:

• The need for security and privacy, extremely important in a business context, is much

less prevalent in the scientific community, where peer validation and collaboration are

common goals that imply sharing, reuse and repurposing.

• The need for integrity and reliability is a central aspect of business services and thus a

top priority for business workflows, but the exploratory nature of research makes flexi-

bility a much greater priority for scientific workflows.

• Many business contexts require the fine-grained control and expressivity provided by

control-driven models. However, scientific data is most often the first-class citizen of

a simulation, which makes data-driven models and hybrid models better fits for most

scientific workflows. In particular, data-driven and hybrid models can leverage data par-

allelism implicitly [Montagnat 09], which is crucial to many data- and compute-intensive

simulations. The distinction between the three types of scientific workflow models is ex-

plained in Section 2.1.2.3.

• On the one hand, business workflow designers often face either (i) a lack of suitable can-

didate web services to perform a step in their process or (ii) a wealth of functionally close

candidates which need to be differentiated through considerations of Quality of Service

(QoS) and cost. On the other hand, scientific workflow designers often start modeling

their simulations with the main services/programs already determined and generally find

very few viable alternatives, since different candidates for a scientific process step often

pertain to substantially different scientific approaches.

10

CHAPTER 2. STATE OF THE ART 2.1. SCIENTIFIC WORKFLOW MODELS

In this work, we focus on scientific workflows and scientific workflow models, analyzed

and overviewed in Section 2.1, and not business workflows and their associated models. Ele-

vating the abstraction level greatly improves accessibility but is not sufficient to ensure proper

Separation of Concerns (SoC): that entails specific efforts which are somewhat transversal to

abstraction levels, such as those described in Section 2.2. However, to be truly useful, high-

level models and proper SoC must fit into a broader process to assist scientific workflow design.

We chose to rely on an existing software development paradigm: Model Driven Engineering

(MDE) described in Section 2.3. Section 2.4 outlines existing technologies to capture and lever-

age domain knowledge and know-how in order to assist the model transformations involved in

our approach.

2.1 Scientific Workflow Models

In this overview of existing scientific workflow frameworks, we will analyze some of the most

used systems along three dimensions: Interface, i.e. how users can create workflows and/or

execute them; Model, i.e. the nature of the scientific workflow model used explicitly or implic-

itly; and Abstraction Level, i.e. where the system falls on the scale we defined in Section 1.4

(Conceptual, Abstract and Concrete).

2.1.1 Interface

There are plenty of ways for users to interact with scientific workflow frameworks. We will

focus here on the following:

• Application Programming Interfaces (APIs) are protocols specifying how other pro-

grams may interact with the system. APIs let users generate, execute and/or monitor

scientific workflows from inside other programs.

• Command-line interfaces let users execute scientific workflows directly from the com-

mand line. One of the advantages of doing so is that it greatly facilitates running scientific

workflows on remote infrastructures.

• Graphical User Interfaces (GUIs) let users create and modify scientific workflows

graphically. They often also provide a visual way to monitor their execution.

• Dedicated file formats were created and documented not just internally inside the frame-

work development team, but for end-users to create and edit their scientific workflows in

a format directly understandable by the framework.

• Portals target domain scientists and hide most of the complexity and technical details of

scientific workflows. They even often hide the underlying scientific workflows entirely,

focusing instead on input data and the scientific method in use.

• Scripting languages differ from dedicated file formats in that they are much more con-

cise and are interpreted to generate the usually verbose executable format handled di-

rectly by the enactor.

• Web services are a particular kind of API meant to be used over the internet. We consider

that they are available as an interface to a framework if said framework generates them

automatically for the enactor and/or scientific workflow instances.

11

2.1. SCIENTIFIC WORKFLOW MODELS CHAPTER 2. STATE OF THE ART

2.1.2 Model

Directed graphs lend themselves especially well to the modeling of processes, with nodes rep-

resenting steps or locations and edges representing dependencies or transitions. Though there

may be scientific workflow models wholly incompatible with directed graphs, most systems

have either adopted them directly or adopted a compatible model.

We focus here on graph-based models so as to ensure some measure of comparability. We

further distinguish the types of directed graphs used in each model based on the class of graphs

used and the nature of the edges therein.

2.1.2.1 Graph Type

Directed Acyclic Graphs Plenty of scientific workflow frameworks (for instance Taverna

[Missier 10a], cf. Section A.11) adopt Directed Acyclic Graphs (DAGs) as their core model

for two main reasons: it is the closest representation to the way tasks are actually executed, no

matter the target Distributed Computing Infrastructure (DCI); and it is very straightforward for

data analysis pipelines, which represent a big part of scientific workflows.

Directed Cyclic Graphs Many scientific workflow frameworks (e.g. Kepler [Ludäscher 06],

cf. Section A.5) opt instead for Directed Cyclic Graphs (DCGs) as their core model and thus

allow loops to be modelled as such, instead of through constructs or dedicated activities.

Petri Nets Several systems (e.g. GWES [Neubauer 05], cf. Section A.3) have adopted petri

nets as their core model, because it is a mathematical model designed specifically for distributed

systems and it is already mastered by plenty of scientists who are eager to run simulations on

DCIs.

2.1.2.2 Node Type

Nodes in graph-based scientific workflow models most often represent processing steps, i.e.

either a simple invocation of a program, script or web service or a call to a sub-process or some

abstraction thereof. Petri nets are an exception to that rule: half their nodes represent locations

and the other half transitions between the locations.

2.1.2.3 Edge Type

Edges in graph-based scientific workflow models denote flow between the nodes: they specify

how information and execution must be handled by the enactor. It is common practice to

classify graph-based scientific workflow models into three categories according to the type of

flow their edges represent [Shields 07, Deelman 09]:

• if all edges represent data flow, i.e. data transferring from a processor or location to the

next, they are data-driven models;

• if all edges represent control flow, i.e. ordering constraints specifying that the target

activity must run after the source activity, they are control-driven models; and

• if edges may represent both flow types, they are hybrid models.

12

CHAPTER 2. STATE OF THE ART 2.1. SCIENTIFIC WORKFLOW MODELS

Data-driven Models Edges in data-driven models (for instance Triana [Taylor 07b], cf. Sec-

tion A.12) represent data flow between otherwise independent processing units. Perfect for

digital processing pipelines and other streamlined processes, those models are, at first glance,

the easiest to read and write.

However, their most useful feature - as far as scientific workflows are concerned - is implicit

parallelism: on the one hand, processing units can run as soon as input data and the necessary

computing resources are available, on the other hand, data sets can be split and dispatched

to parallel computing resources automatically. As a result, those models shift the burden of

planning asynchronous execution from the workflow designer to the enactor.

Unfortunately, elementary control constructs, such as conditionals and loops, are necessary

for all but the simplest and most straightforward analysis pipelines. As a result, either data-

driven models are extended with those constructs and become hybrid models or they emulate

the corresponding behaviors, as illustrated on Figure 2.1:

• Straightforward ordering constraints can be implemented through dummy data tokens

representing the control transmitted from the source to the target activity.

• More sophisticated control constructs must be implemented via dedicated activities han-

dling them transparently from the viewpoint of the data-driven model.

Dedicated activities used to implement control structures tend to diminish the overall legi-

bility of workflows in that knowledge of the workflow language itself is not enough: the reader

has to identify every dedicated activity and decipher its meaning to understand the workflow

logic. In practice, there is also a matter of portability with those activities, as they are often

implemented via ad-hoc scripting and may well not run as-is in a different framework.

Ac#vity(B(

Ac#vity(A(

Ac#vity(C(Ac#vity(D(

Ac#vity(B(

Ac#vity(A(

Ac#vity(C(Ac#vity(D(

Condi#on(

Handler(

Legend:(

(((((((((((((((Flow((control(on(the(le;,(data(on(the(right)(

(((((((((((((((Data(port(

(((((((((((((((Dummy(data(port(

ControlAdriven(DataAdriven(

IF(condi#on(ELSE(

Figure 2.1: Control Contructs in Data-driven Models

13

2.1. SCIENTIFIC WORKFLOW MODELS CHAPTER 2. STATE OF THE ART

Control-driven Models Control-driven models (e.g. ASKALON [Fahringer 07], cf. Sec-

tion A.1) and Imperative Programming Languages (IPLs) follow the same fundamental prin-

ciple: control is transferred from an operator to the next according to control constructs such

as sequences, loops and conditionals. Because scientific workflows are meant to carry out

simulations, unlike general-purpose IPLs, control-driven models:

• most often support graphical composition;

• aim at the best trade-off between expressivity and ease-of-use; and

• explicitly target parallel execution, notably by automatically handling the fine-grained

elements thereof, such as messages and semaphores.

IPLs and control-driven models also differ by their respective abstraction levels: most IPLs

are hardware-centric and deal with low-level operations such as variable assignment and mem-

ory allocation, but such tight coupling with the hardware would make scientific workflows

unusable on heterogeneous DCIs. Therefore, control-driven scientific workflows deal with

high-level operators, such as web services and grid jobs, and high-level control constructs that

encapsulate complex transfer protocols between those operators.

Data is the first-class citizen in most simulations, yet it must be handled explicitly in control-

driven models, which makes them less popular within the scientific community than within the

business one. In control-driven models, data dependencies are modeled through intermediate

activities that explicitly perform file transfers and handle synchronization from producer to

consumer activity, as shown on Figure 2.2.

Legend:(

(((((((((((((((Flow((data(on(the(le;,(control(on(the(right)(

(((((((((((((((Data(port(

Ac#vity(B(

Ac#vity(A(

DataAdriven(ControlAdriven(

Ac#vity(B(

Ac#vity(A(

Data(

Handler(

Figure 2.2: Data Flow in Control-driven Models

14

CHAPTER 2. STATE OF THE ART 2.1. SCIENTIFIC WORKFLOW MODELS

Hybrid Models The current tendency in the field of scientific workflows is to build hybrid

models; most often data-driven models that are extended with select control constructs (e.g.

MOTEUR [Glatard 08], cf. Section A.7).

“ It is clear that both control and data flow techniques are needed for

scientific workflow languages. [...] Simple hybrid models with limited con-

trol constructs and support for data flow appear to stand the best chance

of being interoperable with the most tools and frameworks but still contain

enough functionality to be able to represent real scientific applications.

[DEELMAN 09]

Note that emulating control constructs in a data-driven model through dedicated activities,

does not make the model itself hybrid. Indeed, the semantics of the model are unchanged and

the control constructs are hidden from the enactor.

2.1.3 Abstraction Level

As stated in Section 1.4, most existing scientific workflow frameworks lie roughly at the Ab-

stract Level. They are not however all at exactly the same level of abstraction.

Plenty of factors may contribute to elevate the abstraction level of a scientific workflow

framework. We will focus on the following four criteria (the convention is that the level of

abstraction is higher if the answers are positive than otherwise):

• Annotations: Can the scientific workflows and/or their components be annotated with

Semantic Annotations? With curated keywords? With informal tags?

• Composition: Does the system automatically compose scientific workflows? Does it

provide the user with suggestions of edges or nodes? Does it check existing edges for

potential mismatches?

• Flexibility: Is there any structural flexibility in the scientific workflow model? Can the

same scientific workflow instance represent or lead to (via generation/transformation)

structurally different processes (e.g. a sequence of 3 tasks vs. 4 parallel tasks)? Is there

flexibility in the data representation (e.g. multiple files can be represented by a single

input parameter)?

• Indirection: Is there indirection between the specification of a task and the technical

execution thereof? Can a given activity represent multiple web services? Multiple pro-

grams? Multiple processing units?

2.1.4 Comparison Matrix

Table 2.1 compares 15 of the most well-known scientific workflow frameworks along the di-

mensions described in the three previous sections. Details of each system can be found in

Appendix A.

15

2
.1

.
S

C
IE

N
T

IF
IC

W
O

R
K

F
L

O
W

M
O

D
E

L
S

C
H

A
P

T
E

R
2
.

S
T

A
T

E
O

F
T

H
E

A
R

T

Table 2.1: Scientific Workflow Models - Comparison Matrix

Framework/Language Interface Model
Abstraction Level

Annotations Composition Flexibility Indirection

ASKALON/AGWL F, G Control-driven DCG ❴ ✝ ✫ ✫

Galaxy G, P Data-driven DCG ❱ ✫ ✫ ❴

GWES/GWorkflowDL C, F, G, P, W Petri Net ❱ ✫ ✫ ❱

Java CoG Kit/Karajan C, F, G, S, W Control-driven DCG ✫ ✝ ✫ ✝

Kepler/MoML C, G Hybrid DCG ❱ ❴ ❴ ✫

KNIME A, G, P Hybrid DAG ❴ ✫ ✫ ✫

MOTEUR/GWENDIA F, G, S, W Hybrid DCG ❴ ❴ ✫ ❴

Pegasus/DAX A, C, F Petri Net ✫ ✫ ✫ ❴

SHIWA/IWIR C, F Control-driven DAG ✫ ✫ ✫ ✫

Swift S Hybrid DCG ✫ ✫ ❴ ✫

Taverna/SCUFL C, G Data-driven DAG ❴ ❴ ✫ ❴

Triana G Data-driven DCG ✫ ✫ ✫ ✫

VisTrails G Data-driven DCG ❱ ✝ ✫ ✫

WINGS G Petri net ❱ ❱ ✫ ❱

WS-PGRADE G, P, W Data-driven DAG ✫ ✫ ✫ ❱

Interface: A: API, C: Command-line, F: Files (dedicated format), G: GUI, P: Portal, S: Scripting language, W: Web service

Abstraction Level Feature: ❱: Supported,❴: Marginally present,✫: Essentially absent,✝: Third-party project(s)

1
6

CHAPTER 2. STATE OF THE ART 2.1. SCIENTIFIC WORKFLOW MODELS

2.1.5 Discussion

Though the previous section only describes some of the most well-known scientific workflow

frameworks, it does give enough of an overview of the field to draw some conclusions.

2.1.5.1 System

There are enough scientific workflow frameworks available already and thus very little incen-

tive to create yet another full-fledged framework, catering to scientific workflows from design

to enactment. Instead, it seems more sensible to build either libraries (e.g. for provenance cap-

ture) for existing frameworks to rely on or stand-alone systems lying upstream (e.g. for design

or sharing) or downstream (e.g. for enactment) from existing frameworks.

Since our aim is to elevate the abstraction level and assist the design of scientific workflows,

we intend to build a stand-alone design system upstream from existing frameworks, i.e. a

program focused solely on scientific workflows design and delegating management, enactment

and so on to existing systems.

2.1.5.2 Model

Existing scientific workflow models vary widely and each solution presents advantages and

flaws. For instance, DAGs are the most straightforward graph type and the easiest to check for

errors, DCGs are more expressive but a little harder to check since they allow loops, endless

loops included, and petri nets are already well-known to many scientific communities but are

somewhat more complex to approach for complete beginners.

The trade-off between expressivity and accessibility is a complex one. Often, the most

expressive models are the hardest to apprehend, but if a model is too simplistic, it will regularly

require convoluted schemes. For instance, loops are commonly used in simulations and their

implementation with data-driven DAGs, via dedicated activities, is uneasy and inconsistent

(between different frameworks) enough to defeat the purpose of accessibility.

Our objective is to allow most scientists to model their simulations at the highest level of

abstraction in as straightforward a way as possible. The best pick thus seems to be a nested

directed cyclic graph which is mainly data-driven and hybridized with control constructs.

2.1.5.3 Abstraction Level

Though a lot of effort has been put into increasing accessibility to scientific workflow frame-

works through easy-to-use interfaces and scientific portals which hide the underlying scientific

workflows, the actual abstraction level of most existing scientific workflow models is pretty

low.

We identified four features as key to elevating the abstraction level. Annotations and indi-

rection are slowly becoming staples in the field and automated composition is certainly a hot

topic. The new frontier is now the structural flexibility: even WINGS [Gil 11b], whose level

of abstraction is clearly the highest in the field as of this writing, presents no such flexibility

whatsoever.

That lack may be a legacy of business workflows. Indeed, while business processes evolve

with time, they are nowhere near as variable as simulations, given the exploratory nature of

science. It thus may seem reasonable to think of two structurally different business workflows

as different and independent workflows, unlike scientific workflows where a given scientific

protocol could and often is implemented in ways that significantly differ structurally.

17

2.2. SEPARATION OF CONCERNS CHAPTER 2. STATE OF THE ART

For instance, the Virtual Imaging Platform (VIP), cf. Section 5.2, whose aim is to interop-

erate medical imaging models and simulators seminally included four simulators, and although

the same general template holds true for all four simulators - and most simulators that have

been added since or will be added in the future - the workflows, elements and structure, vary

widely.

We argue that a scientific workflow model that would allow the modeling of all VIP simu-

lators via a common scientific workflow, at the level of abstraction at which they are identical,

would be beneficial in that it would ease the understanding of those applications as well as their

comparison.

2.2 Separation of Concerns

Ensuring proper SoC is one of our goals, as stated in Section 1.6, and none of the systems

analyzed in Section 2.1 achieve that particular goal. It is no surprise, given that structural

flexibility is key to proper SoC and it is hardly supported in existing scientific workflow models.

2.2.1 Paradigm

The notion of SoC was first introduced by E.W. Dijkstra:

“ Let me try to explain to you, what to my taste is characteristic for all

intelligent thinking. It is, that one is willing to study in depth an aspect of

one’s subject matter in isolation for the sake of its own consistency, all the

time knowing that one is occupying oneself only with one of the aspects. We

know that a program must be correct and we can study it from that viewpoint

only; we also know that it should be efficient and we can study its efficiency

on another day, so to speak. In another mood we may ask ourselves whether,

and if so: why, the program is desirable. But nothing is gained – on the

contrary! – by tackling these various aspects simultaneously. It is what

I sometimes have called “the separation of concerns”, which, even if not

perfectly possible, is yet the only available technique for effective ordering

of one’s thoughts, that I know of. This is what I mean by ”focusing one’s

attention upon some aspect”: it does not mean ignoring the other aspects, it

is just doing justice to the fact that from this aspect’s point of view, the other

is irrelevant. It is being one- and multiple-track minded simultaneously.

[DIJKSTRA 82]

As the name and quote indicate, SoC is the name of a software design paradigm which can

be described as such: programs often cater to wildly different (and sometimes contradictory)

concerns and – in order to ease understanding, reuse, repurposing and modification – those

concerns should be analyzed separately rather than mingled indiscriminately. This paradigm

became more prominent over the last two decades [Hürsch 95].

18

CHAPTER 2. STATE OF THE ART 2.2. SEPARATION OF CONCERNS

2.2.2 Main general approaches

It is sometimes possible to separate concerns with the traditional techniques of encapsulation

and modularization, but many typical concerns defy those techniques [Aldrich 00]. There is

thus a need for software design approaches specifically dedicated to SoC. One of the earliest

of such approaches focused on the notion of subjectivity and is subsequently called Subject-

Oriented Programming (SOP).

2.2.2.1 Subject-Oriented Programming

At the basis of SOP is the notion that not every feature and function of an object is inherent to

that object. In the now classical example of the tree, which to the best of our knowledge was

introduced in the fundamental work [Harrison 93], it is easy to see that things like height and

photosynthesis are intrinsic to the tree itself, whereas things like food value for birds and time

to cut for lumberjacks are extrinsic.

An object can thus be built by composing “subjects”: sets of fields and methods that are

relevant to a specific application. This approach separates concerns of different applications,

but it does so in a quite static and somewhat restrictive way.

In real life, the different ways an object is perceived based on beholder are indeed subjective

views and the different ways objects behave and interact based on context are the “roles” they

play. Hence the notion of Role-Oriented Programming (ROP).

2.2.2.2 Role-Oriented Programming

It is somewhat hard to track down the notion of ROP. It seems many concurrent works coined

the term simultaneously [Belakhdar 96, Kristensen 96, Reenskaug 96].

Though ROP has been suggested in a more general context [Kristensen 96, Reenskaug 96,

Demsky 02], it has been especially adopted in the field of multi-agent systems [Cabri 04]. In-

deed, the notion of “role” might well be a more natural fit than that of function, when consid-

ering software agents, given that agent design focuses on autonomy and collaboration.

There are various ways to implement ROP. One of the most well-known frameworks is

ROPE [Becht 99], which defines a domain-specific language and associated transformation

process to design “cooperation processes”.

Although ROP is an obvious good fit to model multi-agent systems, it does not handle all

kinds of concerns equally well:

• functional concerns describe the system’s basic functionality, e.g. what it is meant to do

and how it does it;

• non-functional concerns, by contrast, cater to preoccupations and properties outside

the basic functionality of the system, e.g. logging might be a very important part of a

program’s lifecycle, but, unless the program is a logging middleware, it is not a functional

concern; and

• cross-cutting concerns are special non-functional concerns that significantly impact the

structure of the process and/or are replicated in multiple points in the process and thus

cannot be properly separated via modularization and encapsulation.

19

2.2. SEPARATION OF CONCERNS CHAPTER 2. STATE OF THE ART

SOP and ROP divide objects along component lines that run parallel to traditional object

classes and are as limited as traditional object-oriented programming when it comes to captur-

ing cross-cutting concerns. For instance, whether a Logger is implemented as a class, subject

or role does not change the complexity of tying it to every part of the system that must be

logged. Hence the need for the more flexible notion of “aspect”:

“ The basis of the problem is that some kinds of behavior or function-

ality cross cut or are orthogonal to classes or components; these kinds of

behavior appear in many components and are not easily modularized to a

separate class. Aspects cut across or cross-cut the units of a systems func-

tional decomposition (objects).

[KENDALL 99]

2.2.2.3 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) was conceived to tackle – and focuses on the issue – of

cross-cutting concerns [Kiczales 97]. The aspect-oriented approach is to define cross-cutting

concerns separately from the base process they are woven in and to weave them automatically.

This is achieved by:

• the definition of a “base process” catering only to the functional aspects of the process;

• the declaration of “join points”, i.e. precise locations in the base process where cross-

cutting concerns might be woven;

• the specification of “aspects” composed of “advice”, which define the additional behavior

needed to fulfill the cross-cutting concern, and “pointcuts”, which detect matching join

points to determine where the aspect must be woven into the base process; and

• the use of an automated “Weaver” which will modify the base process with all the pro-

vided aspects.

The most well-known implementation of AOP is arguably AspectJ [Kiczales 01]. It is based

on the Eclipse1 framework and extends Java with aspects that can either use the typical combi-

nation of advice and pointcuts or directly and namely add methods, fields or interfaces to exist-

ing classes. It inspired similar extensions for a variety of languages, e.g. AspectC [Coady 01]

for C, AspectC++ [Spinczyk 02] for C++, AspectS [Hirschfeld 03] for Smalltalk and many li-

braries2 for the .NET framework. There are also language-independent AOP frameworks like

Compose* [De Roo 08].

There are other Java libraries and frameworks for AOP in Java, notably JAC [Pawlak 01]

which is a framework written in pure Java: it is less flexible than AspectJ in that programs must

be built from the ground up following its logic and structure, but it is also more flexible in that

aspects can be woven or unwoven at runtime.

1Eclipse: http://www.eclipse.org
2List of .NET AOP libraries: http://www.bodden.de/tools/aop-dot-net

20

http://www.eclipse.org
http://www.bodden.de/tools/aop-dot-net

CHAPTER 2. STATE OF THE ART 2.2. SEPARATION OF CONCERNS

Using AOP does not automatically imply using dedicated libraries and frameworks: AOP

features have been incorporated into some languages like Perl3 and are currently being incor-

porated into others like Ada4.

One of the flaws of AOP is that the end result of weaving aspects into a base process tends

to depend heavily on the order in which the aspects are woven. ADORE [Mosser 12] solves

that problem by relying on logical foundations that allow interference detection and by mixing

AOP principles with those of Feature-Oriented Programming (FOP).

2.2.2.4 Feature-Oriented Programming

Object-Oriented Programming, by focusing on the nature of objects and how they can be clas-

sified rather than on functionalities, tends to heavily limit feature composition. For instance,

many Object-Oriented Programming languages do not allow multiple inheritance and thus

something as simple as a square having all the features of both rectangles and rhombuses is

hard to model. There is also a semantic problem in that saying that objects of type A share

functionalities with objects of type B does not necessarily mean that they are similar in na-

ture. Projects thus often end up with plenty of generic classes such as “Sortable” which do not

describe the objects therein as much as what they can do or what can be done with them.

The paradigm of FOP aims to remedy that problem and is a bit reminiscent of iterative and

incremental development: a program is made by stacking an ordered composition of “features”

[Prehofer 93] which are formally defined and relatively small sets of functionalities. For that

process to work out automatically, features are defined by how a program must be modified

to acquire the associated functionalities. It is then a matter of applying all transformations

sequentially, different composition orders generally resulting in different end programs.

Theoretically, the number of possible feature compositions grows exponentially with the

number of available features. In practice though, not all feature compositions are viable or de-

sirable. Inspired by industrial product lining, Software Product Lines (SPLs) analyze and define

the exact set of viable and desirable feature compositions via “feature models” [Clements 01].

Smartphone(

Screen(Keyboard(Camera(Network(

OneAPoint(Mul#APoint(

Touch(Virtual(Physical(Front(Rear(2G(3G(4G(

Legend:(

(Mandatory(

(Op#onal(

(XOR(Alterna#ve(

(OR(Alterna#ve(

Virtual(implies(Touch

Figure 2.3: Feature Diagram Example

3Perl Aspect module: http://search.cpan.org/dist/Aspect/lib/Aspect.pm
4Ada 2012 Rationale: http://www.ada-auth.org/standards/rationale12.html

21

http://search.cpan.org/dist/Aspect/lib/Aspect.pm
http://www.ada-auth.org/standards/rationale12.html

2.2. SEPARATION OF CONCERNS CHAPTER 2. STATE OF THE ART

Feature models are essentially logic trees representing the full array of alternative sets of

features for a system. They are represented by diagrams where the root of the tree, at the top, is

the system (or sub-feature when a diagram is split) being described, where children of a node

are sub-features of it and where the relationships between features are mostly indicated on the

edges, with some constraints written in plain text, as shown on Figure 2.3.

FOMDD [Trujillo 07] is a software development paradigm which combines SPLs with

MDE: programs are designed by composing features into models and transforming those mod-

els into executable artifacts. GenVoca [Batory 92] is a well-known model of SPL which defines

programs as layers of unary functions. AHEAD [Batory 03] refines and extends GenVoca to

handle multiple programs and representations. Program development in AHEAD is supported

by the AHEAD Tool Suite [Batory 04].

Though extremely powerful, SPLs are limited by their closed-world assumption: the feature

models most SPLs rely on not only define the precise set of possible features, but also the pre-

cise set of possible compositions thereof. However, there are frameworks, such as FAMILIAR

[Acher 12b], that help overcome that limitation by managing the variability and composition

of feature models, helping designers build and maintain feature models.

2.2.3 Separation of Concerns in Workflows

While, technically, workflows are a category of software, not all SoC approaches translate

easily from the object-oriented paradigm to that of workflows.

2.2.3.1 Separation of Concerns in Scientific Workflows

To the best of our knowledge, Kepler [Ludäscher 06] is the first scientific workflow framework

designed with SoC as a top priority [Bowers 05]. However, the concerns that the framework

separates are not left for the workflow designer to choose. Unlike all other scientific workflow

frameworks, Kepler separates “communication” and “orchestration”: data-driven systems fo-

cus on the former, i.e. how data transits between activities; control-driven systems focus on

the latter, i.e. how activities are scheduled; hybrid systems focus on neither and tangle both;

and Kepler uses a specific “Actor” called the “Director” to specify how things are orchestrated

and all edges in the graph represent pure data flow, disconnected from orchestration. That pe-

culiar choice of concern separation is inherited from the underlying actor-oriented framework

Ptolemy II5.

A more recent work presented Chameleon [Bachmann 10]. Rather than a scientific work-

flow framework, it is a proposed architecture and a series of modular tools used to implement

this architecture via integration environments. Like Kepler, Chameleon imposes a specific

brand of SoC. It discriminates between three kinds of components in the scientific workflow

framework: (i) data formats and data-related libraries; (ii) tools (i.e. activities), inputs and

outputs; and (iii) the integration framework binding all other components.

Though the SoC provided by those two systems improves reusability, it does not at all let

users determine which concerns to separate. Proper SoC cannot, therefore, be enforced in the

scientific workflows themselves with those frameworks.

5Ptolemy II: http://ptolemy.berkeley.edu/ptolemyII/

22

http://ptolemy.berkeley.edu/ptolemyII/

CHAPTER 2. STATE OF THE ART 2.2. SEPARATION OF CONCERNS

At least two works have attempted to introduce proper SoC in scientific workflows by defin-

ing them with SPLs. [Ogasawara 09] takes advantage of SPLs to improve structural flexibility

and to separate abstraction levels: an “abstract” workflow can be derived into various concrete

workflows. [Acher 12a] uses SPLs to increase indirection and to assist workflow design: each

choice made of an activity restricts the possibilities in the rest of the workflow, helping the

design of “coherent workflows”. Both approaches bring the power of SPLs to scientific work-

flows, but also its flaws: for those approaches to work, the variability of scientific workflows

must be fully captured into feature models. That can be done in a specific use case or restricted

domain, but would not work with an open-world hypothesis.

SoC is a much more advanced topic on the side of business workflows than it is on that

of scientific workflows. As with the workflow frameworks themselves, it is quite natural to

wonder whether state-of-the-art approaches to SoC can be directly transferred or adapted from

one field to the other.

2.2.3.2 Aspect-Oriented Workflows

AOP is the most successful SoC approach in the field of business workflows, notably because:

• it focuses on cross-cutting concerns and most QoS concerns, which are often vital in

business contexts, are cross-cutting;

• it can very easily separate concerns by domain in such a way that each expert only caters

to the aspects of their own specialty, which fits the variety of experts commonly seen in

the industry; and

• aspects can be used as a formal and flexible way to extend and maintain legacy pro-

grams and services without directly modifying them, a problem regularly faced by many

companies.

There are many levels at which aspects may be introduced:

• at the enactor level, most generally a BPEL engine, aspects are used to adapt workflows

dynamically and extend them with unforeseen features [Charfi 04, Courbis 05];

• at the service level, many works focus on the weaving of WS* standards, such as WS-

Policy and WS-Security, rather than general-purpose aspects, with the added benefit of

using well-established standards to express the non-functional cross-cutting concerns

[Balligand 04, Ortiz 06]; and

• at the workflow level, some works focus on the generic Service Component Architecture

instead of a given workflow language [Pessemier 08, Seinturier 09].

However, AOP is not as popular in the field of scientific workflows. It makes sense ar-

guably, since the requirements of a scientist - or scientific team - performing simulations differ

significantly from that of experts automating business processes.

On the one hand, aspects seem too restrictive for the extreme flexibility required by ex-

ploratory science, because “pointcuts” tend to be too tightly-coupled with the base process.

For instance, if an aspect is described as coming “before”, “after” or “around” a given service,

it is not necessarily easy to reuse it in other ways or in other workflows. That somewhat re-

strictive quality of aspects is not an issue in most business contexts where fine-grained control

is worth a lot more than flexibility.

23

2.3. MODEL-DRIVEN ENGINEERING CHAPTER 2. STATE OF THE ART

On the other hand, aspects seem too sophisticated for the moderate needs of scientists: there

is rarely a large team of vastly different experts collaborating on the design of one scientific

workflow and cross-cutting concerns, while definitely present, are not as crucial for simulations

as they are for business processes. It seems to us that AOP, though it definitely ensures proper

SoC, is a bit of an overkill for scientific workflows and that is partly why it is hardly present in

that field, especially compared to the field of business workflows.

2.2.4 Discussion

Our objective is to assist design and improve reuse of scientific workflows and to ensure proper

SoC. We must thus be able not only to encapsulate sub-workflows into parent workflows, but

also to divide and mix workflow parts, that must capture either a full scientific process (which

can then be used as-is or encapsulated into a more complex scientific process), a piece of

reusable know-how (such as a possible replacement for an activity) or a cross-cutting concern.

We call those parts Fragments (cf. Section 3.4), as they are close to “workflow fragments”

defined in other works, most notably:

• they are sub-workflows or workflow parts annotated to facilitate their discovery, as in

[Goderis 05, Wroe 07]; and

• they can be extracted from processes or created from scratch and are woven through

model transformations during workflow design, as in [Schumm 11, Schumm 12].

However, the notion of “workflow fragment” is neither as precisely nor as formally defined

as that of “aspect” in the litterature. The term is used in the field of business workflows in

different contexts and with different definitions. For instance, in [Sadiq 01], a “fragment” is

an element used to resolve “pockets of flexibility” at runtime, whereas in [Reese 06] it is a

workflow part autonomous enough for different fragments to be handled by separate agents.

“Fragment” is also the name used in [Mosser 10] to qualify the components woven, to

emphasize the differences with traditional aspects the method is inspired by, i.e. there is no dis-

tinction between a base process and aspects and the end result does not depend on the weaving

order. Our notion of Fragment is comparatively less sophisticated and more flexible.

2.3 Model-Driven Engineering

A high-level scientific workflow model and a Weaving mechanism to merge Fragments would

be of limited use unless they fit in a broader scientific workflow design process.

A scientific workflow is itself a model, but it is also a software. Scientific workflow design,

the process we want to assist, falls under the purview of software engineering. It seems only

logical to take inspiration from a model-based engineering method to structure our own design

process.

2.3.1 Paradigm

MDE is a software development paradigm which revolves around and expands on the Model

Driven Architecture (MDA) [Kent 02].

24

CHAPTER 2. STATE OF THE ART 2.3. MODEL-DRIVEN ENGINEERING

Computa(on*Independent.Model.(CIM)

(

Conceptual(Model,(User(Domain(s),(Standards(

Pla5orm*Independent.Model.(PIM)

(

Abstract(Model,(Mix(of(Domain(Knowledge(and(Technical(KnowAhow(

Pla5orm*Specific.Model.(PSM)

(

Concrete(Model,(Executable(Ar#fact(

Model(

Transforma#on(

Model(

Transforma#on(

E(=(C(●(D(

C(=(A(

D(=(A(●(B(

def F(i) {	
a := A(i);	
b := B(i);	

c := C(a);	
d := D(a,b);	

return E(c,d);	
}	

Figure 2.4: Model-Driven Architecture - Abstraction Levels

The MDA was devised (and the term copyrighted) by the Object Management Group

(OMG) [Miller 03]. As illustrated on Figure 2.4, it defines three levels of abstraction for soft-

ware models:

• Computation-Independent Models (CIMs) are at the highest level of abstraction, they are

designed directly in the vocabulary of the user domain(s), according to their conventions

and standards. They are called “computation-independent” because they focus on goals,

instead of methods, i.e. on why the software should exist at all, what it is trying to

achieve, rather than how it will be implemented to achieve those goals. For instance, a

graph representing the architecture of a system is a CIM.

• Platform-Independent Models (PIMs) are at an intermediate level of abstraction, they

mix domain knowledge and goals with technical know-how and methods. They are

called “platform-independent” because they are not completely tied to a specific plat-

form. For instance, the source code of a program written in a programming language,

such as Caml, Fortran and Java, is a PIM. Some programming languages, however, lie at

a substantially lower level of abstraction than most and tend to tie their source code to

the target platform, most notably C.

• Platform-Specific Models (PSMs) are at the low level of abstraction of the target infras-

tructure and they can be executed/interpreted directly. They are called “platform-specific”

because, more often than not, they cannot be executed on a different platform without

modifications, which often turn out to be complex and have far-reaching impact. For

instance, a compiled binary program is a PSM.

25

2.3. MODEL-DRIVEN ENGINEERING CHAPTER 2. STATE OF THE ART

Based on that separation of levels of abstractions, the MDE principle is to build conceptual

models in the problem domain(s) and use those models to generate executable artifacts more or

less automatically. The benefits of such an approach include:

• improved portability, since conceptual models are independent from the infrastructure;

• easier reuse, since goals and methods are formally identified;

• improved communication, since models exist as a basis for communication between

users of different domains, different projects or different teams; and

• easier design, since domain experts can focus on their own domain problems rather than

on technical details.

The limitations pertain to three things: (i) domain standardization, which is anything but

trivial; (ii) duplication of work, since the same kind of tools, whether for model design or

model transformation, are re-developed by different teams, for different projects, in different

domains or for different uses; and (iii) automation of transformation, which often requires

complete specification of the problem space and thus a close-world assumption. So far, those

limitations have proven strong enough to prevent widespread adoption of strict MDE.

However, many related ideas and methods are widely accepted and used. One of the most

famous of such related items is arguably Unified Modeling Language (UML): a series of soft-

ware meta-models ranging from CIMs to PIMs.

2.3.2 Unified Modeling Language

UML is an ISO standard created at the Rational Software company (later bought by IBM) and

maintained by the OMG.

It formally defines 14 types of diagrams, each with its purpose, syntax and semantics. The

“Class Diagram” is one of the most well-known and versatile of those diagrams. It is not

restricted to software models and can be used to create meta-models of virtually anything.

We used the UML Class Diagram to model our own conceptual scientific workflow model

and the elements used therein are introduced. For an exhaustive list of elements or for other

diagrams, please refer to the OMG specification6.

• The Class is the first-class citizen in a Class Diagram, as the name suggests, and it repre-

sents a type of objects, e.g. Computer, GeometricalFigure and WebService.

It always has a name, but it can be further described by fields and methods (strict typing

optional) that are either public (marked with a +), private (marked with a -), protected

(marked with a #) or limited to the package (marked with a ~).

• The Association is the second-most important element of a Class Diagram, since it re-

lates classes to each other. There are many types of associations, including:

– the Generalization, which establishes inheritance: the source of the generalization

is a sub-class, a specialization and the target is a super-class, a generalization, e.g.

Square is a specialization of Parallelogram;

– the Composition, which declares the source to be an integral part of the target that

cannot belong to multiple objects simultaneously, e.g. an Engine is an integral

part of a Car, but a given engine cannot belong to multiple cars;

6UML specification: http://www.omg.org/spec/UML/Current

26

http://www.omg.org/spec/UML/Current

CHAPTER 2. STATE OF THE ART 2.3. MODEL-DRIVEN ENGINEERING

– the Aggregation, which is similar to the composition, but does not restrict the num-

ber of owners, e.g. a Member may be aggregated into distinct instances of Club.

• The Multiplicity restricts the number of associations that can exist simultaneously be-

tween an instance and others:

– a number alone means that there must be exactly that many instances;

– a wildcard * (or a n unknown) alone means that there can be any number of in-

stances;

– two numbers separated by two dots, e.g. 0..3, means that the number of instances

must be inside that range, limits included; and

– a number and a wildcard * (or a n unknown) separated by two dots, e.g. 4..*,

means that the number of instances must be greater than or equal to the number.

Consequently, 0..* is the direct equivalent of *.

An association often bears different multiplicities on each end. Indeed, a wheel can only

belong to one car (or none), but a car better have four wheels. A composition from wheel

to car might thus bear a 0..1 multiplicity on the side of the car and 4 on the side of the

wheel.

• The Package indicates the boundaries of modules in the diagram, which may serve three

purposes: (i) reflect structural, technical or conceptual boundaries; (ii) highlight parts

of the diagram and name them; and/or (iii) identify sub-parts that are further detailed in

other diagrams.

Package(

Class(

Generaliza#on(

Composi#on(

Aggrega#on(

Associa#on(
Mul#plicity(Mul#plicity(

Figure 2.5: UML Class Diagram Graphical Convention (excerpt)

Square(

Rectangle(Rhombus(

Parallelogram(Vertex(

Abscissa(Ordinate(

Coordinate(

1(4(

*(*(

1(1(

Figure 2.6: UML Class Diagram Example

27

2.3. MODEL-DRIVEN ENGINEERING CHAPTER 2. STATE OF THE ART

Figure 2.5 illustrates the UML graphical convention for all aforementioned elements. To il-

lustrate their use, let us consider the following example: squares are at the same time rectangles

and rhombuses and all three are parallelograms. A parallelogram has four vertices. Each vertex

has an abscissa and ordinate, which are both coordinates. Coordinates can be shared by any

number of vertices. Figure 2.6 is a possible UML model for that small world of parallelograms.

Whether one uses UML or any other modeling language to design the CIMs and PIMs,

without model transformations, models can only serve as a basis of communication, e.g. for

developers to discuss specifications with clients. The MDE approach requires model transfor-

mations to implement a full-fledged software development paradigm, as intended.

2.3.3 Model Transformations

A model transformation is essentially a transformation process that takes a model as input and

either modifies it or produces another model as output. Obviously, that is a loose definition that

would include a plethora of things, from compilators to format converters.

In a sense, compilation of any programming language is indeed a form of model trans-

formation, albeit at a rather low level of abstraction. Notably, the transformation rules are

completely hidden from the user, unless he or she is an expert of the language, its specification

and optimization techniques. With such black box model transformations, the regular user will

focus on the meaning of his or her input model and its conformity to the demands of the model

transformation, such as syntactic validity.

In the case of model transformation languages, however, the transformation rules are ex-

plicited and emphasized, taken as parameter alongside the input model. End users will not

necessarily write the transformation rules themselves - they might instead reuse the rules of

another user - but they will have a lot more access to them and will more likely than not

have to pay attention, if only to pick the right set of rules to reuse. For instance, eXtensible

Stylesheet Language Transformations (XSLT) is a transformation language anyone can use to

define transformation rules from an eXtensible Markup Language (XML)-based language to

another. Plenty of XSLT files can be found for a variety of well-known input and output lan-

guages. Specific needs, such as rather obscure input or output languages or unusual conversion

choices, will require an ad hoc XSLT file.

In-between black box model transformations, with their implicit transformation rules, and

transformation languages, there are plenty of hybrid systems, offering access to only part of

the transformation rules. LaTeX7 is a good example of such a system: a significant part of the

transformation rules is hidden from users under the hood of the various compilators, but users

can also specify their own transformation rules inside style files or directly inside the input

model, e.g. using macros.

Of course, model transformations differ along not only the explicitness of transformation

rules, but many other dimensions, including automation level. [Czarnecki 03] provides a de-

tailed taxonomy of model transformations. We refer to it in Chapter 4 to classify the model

transformations involved in our own approach. This taxonomy is formalized into feature mod-

els (see Section 2.2.2.4) detailing categories for:

• Transformation Rules: how they are expressed, how flexible they are and whether they

are executable (or must be applied manually);

• Rule Application Scoping: whether it is possible to restrict the transformation to part of

the source and/or part the target;

7LaTeX: http://www.latex-project.org/

28

http://www.latex-project.org/

CHAPTER 2. STATE OF THE ART 2.4. KNOWLEDGE ENGINEERING

• Source-Target Relationship: whether the transformation builds a new model or mod-

ifies the source in-place and whether updates are destructive (i.e. they may modify or

remove elements);

• Rule Application Strategy: how it is determined which rules apply and which rule must

be applied where;

• Rule Scheduling: whenever multiple rules must be applied, how the order in which they

are is determined;

• Rule Organization: how rules relate to each other, whether they can be reused, com-

bined and whether they are organized based on the target or source models;

• Tracing: whether there is explicit support for tracing elements between source and target

models; and

• Directionality: whether a target model can be transformed back into the source.

Please refer to [Czarnecki 03] for the detailed sub-categories in each aforementioned category.

2.3.4 Discussion

Our approach fits right into MDE. Indeed, as explained in Section 1.4, the abstraction levels we

outlined in the field of scientific workflows align with those of the MDA.

Moreover, the Transformation Process, detailed in Chapter 4, invites users to:

• design their simulation as a CIM, in our Conceptual Workflow Model, defined in Chap-

ter 3, at the Conceptual Level; then

• transform that CIM into a PIM, called the Intermediate Representation, through Map-

ping, detailed in Section 4.1; and then

• transform that Intermediate Representation, through Conversion, into another PIM

which can be converted into a PSM by an existing scientific workflow framework.

2.4 Knowledge Engineering

The model transformations involved in the aforementioned MDE approach progressively trans-

form high-level conceptual models into executable artifacts. The starting conceptual models

essentially represent domain knowledge about the problem at hand and the solution(s) adopted

to solve it. The resulting executable artifacts, however, are most often made of technical know-

how about how the adopted solution must be carried out. Somehow, model transformations

must bridge the gap between those two fundamentally different yet interdependent worlds of

domain knowledge and technical know-how.

The way to do it that least impacts the end-user is to bind specific domain knowledge to spe-

cific technical know-how, e.g. specify that a given high-level operation may be implemented

by a given list of programs, generally either in extensive domain term definitions, such as a

vocabulary of possible operations with lists of relevant programs, or in enriched technical spec-

ifications of executable artifacts and composites thereof, such as a repository of web services

annotated with the operations they perform.

29

2.4. KNOWLEDGE ENGINEERING CHAPTER 2. STATE OF THE ART

There is an obvious trade-off between flexibility and automation: with a closed-world as-

sumption, i.e. with a limited and specified set of goals and methods involved, it is possible to

guarantee that any high-level model created within the limits of the system may be automat-

ically transformed into an executable artifact. However, it is not enough to restrict a system

to a specific field of application to ensure full automation; the range of applications must be

carefully restricted and curated as well or there cannot be any guarantee that relevant methods

exist and can be matched to goals.

We think the closed-world assumption is too heavy a price to pay in the field of sciences

because it is an especially evolutive environment where end users are often service providers

in turn and because the ontologies modeling data and its processing are being developed in

growing numbers and are themselves a moving target for now. Therefore, we do not want to

restrict this work with a closed-world assumption; on the contrary, virtually any simulation

could be modeled by Conceptual Workflows, defined in the following Chapter 3. In exchange

for that flexibility, we forego any and all guarantees of automation: anything can be modeled at

a high level of abstraction, but there might not be a method to operationalize it or, worse, there

might be a method but no way to identify it as such.

To automatically detect whether an available operation is relevant to a given goal, its func-

tion and interface must be described in a processable way. Capturing domain knowledge about

goals, capturing technical know-how about methods and inferring links between the two, all

fall under the purview of the vast field of Knowledge Engineering research. The name seems to

have been first coined by artificial intelligence experts Edward Albert Feigenbaum and Pamela

McCorduck:

“ KE [Knowledge Engineering] is an engineering discipline that in-

volves integrating knowledge into computer systems in order to solve com-

plex problems normally requiring a high level of human expertise.

[FEIGENBAUM 83]

For a computer to handle and capitalize on human knowledge, that knowledge must first be

represented in a way that computers can process: a digital model.

2.4.1 Semantic Data Models

Semantic data models are conceptual data models that not only describe data, but its meaning,

notably how some parts relate to others. One of the earliest semantic data models, is also one

of the most well-known and widely used: the Entity-Relationship model.

2.4.1.1 Entity-Relationship Model

The Entity-Relationship Model was devised by Peter Chen in 1976 [Chen 76] as an abstract

way to describe databases, especially relational databases.

The model identifies three distinct types of concepts: entities are uniquely identifiable and

may exist in isolation, e.g. students, teachers, classes; relationships relate entities to each

other, e.g. a student attends a class and a teacher teaches a class; and attributes qualify specific

entities, e.g. a student has a first name, last name and identification number.

30

CHAPTER 2. STATE OF THE ART 2.4. KNOWLEDGE ENGINEERING

When designing a relational database based on an Entity-Relationship Model, each entity

is converted into its own table, each attribute becomes a column in that table and relationships

are modeled based on their cardinality:

• a one-to-one cardinality suggests that one of the two entities could be designed as an

attribute of the other, e.g. if each student has a mentor and each mentor is assigned to one

student at a time, then the mentor can be an attribute of students;

• a one-to-n cardinality will translate to a “foreign key” (a column reproducing identifi-

cation keys from another table) in the table which is on the n side of the relationship,

e.g. teachers who work as advisors to groups of students will be identified as such by a

foreign key in the student table; and

• an n-to-n cardinality will require a dedicated table to represent the relationship, with

each row being a pair of foreign keys and related attributes, if any, e.g. the affectation of

students to classes can be represented by a table with columns for a class, a student and

a grade that student got in that class.

Because designing an Entity-Relationship Model is fairly easy, with a little experience, and

transforming one into a relational database schema is extremely straightforward, that model

has been and still is extremely popular.

It is however fairly skewed toward relational databases and thus is rarely the model of

choice when trying to model semantic data in any other context.

2.4.1.2 IDEF1X

Based on the Entity-Relationship Model as well as relational theory at large, the US Air Force’s

Integrated Computer-Aided Manufacturing program developed a family of modeling language

called the Integrated DEFinition (IDEF) methods8. IDEF1X [Kusiak 97] is one of those lan-

guages and is a fairly generic semantic data modeling language, aimed at integration of infor-

mation systems.

On top of notions already present in the Entity-Relationship Model, IDEF1X adds:

• domains, i.e. set of data values that function as types for attributes;

• categorization relationships, i.e. a relationship defined semantically as a generalization,

meaning one entity is a sub-type of the other; and

• view levels, which formally define different levels of abstractions and map them to dis-

tinct views on the same model.

Though semantics are more fleshed out in an IDEF1X model than in an Entity-Relationship

Model, it is still a model dedicated to databases and that is apparent in the lack of instance to

instance logic: everything is expressed at the level of classes, notably the affiliation of entities

and attributes to domains.

2.4.2 Ontologies

Ontologies are semantic data models augmented with the notion of reasoning: they not only

contain information about concepts and how those concepts relate to each other, but about how

new information can be inferred from already stated information.

8IDEF methods: http://www.idef.com/

31

http://www.idef.com/

2.4. KNOWLEDGE ENGINEERING CHAPTER 2. STATE OF THE ART

2.4.2.1 Types

There are many types of ontologies, built in different ways with different objectives.

A taxonomy is the most basic type of ontology: it is a classification of concepts, a hierarchy

of classes. Folksonomies are a peculiar kind of taxonomy, obtained not through design by

a handful of people, but by an entire community freely tagging content. However, they are

generally flat vocabularies and, as such, barely qualify as taxonomies unless, for instance,

hierarchical clustering is employed [Shepitsen 08]. [Garcı́a-Silva 12] overviews and analyzes

approaches to enrich folksonomies with semantic data.

At the very least, a taxonomy requires two relations: an affiliation relation, meaning that

an instance belongs to a given class, and a generalization relation, meaning that all instances

of a class are automatically instances of another, e.g. all instances of Shark are instances of

Fish. Some taxonomies go well beyond those two relations. For instance, the foundational

ontology WordNet [Fellbaum 10] specifies synonymy (words mean the same thing), antonymy

(words mean the opposite of each other) and other more complex relations, notably meronymy

(a word is composed of other words).

Foundational ontologies, such as DOLCE [Gangemi 02], also known as upper or top-level

ontologies, are particularly generic and abstract: instead of targeting a specific domain, they

attempt to unify multiple domains by identifying universal concepts and inference rules. Their

biggest advantage is undoubtedly interoperability: they can be used to bridge the gap between

different domains or different domain-specific ontologies. But there are obvious trade-offs

between genericity and accessibility, on the one hand, since the vocabulary is often far removed

from the one used in any specific domain; and between universality and expressivity, on the

other hand, since universal inference rules are unlikely to fully capture the knowledge of any

specific domain.

2.4.2.2 Languages

There are plenty of ontology languages, specifying how data and inference rules must be rep-

resented and thus constraining what inference rules can be expressed.

Some ontologies are based on first-order logic, notably the language of the Cyc foundational

ontology, CycL [Lenat 91] and the Knowledge Interchange Format (KIF)9 which evolved into

the ISO Common Logic standard10.

Others, like F-Logic, which stands for Frame Logic, try to establish logical foundations for

object-oriented modeling [Kifer 95].

A family of ontology languages have been developed specifically for the web and are based

on description logic, notably the DARPA Agent Markup Language (DAML)11 and the Ontology

Inference Layer (OIL) [Fensel 01], merged into DAML+OIL [McGuinness 02].

In 2002, the World Wide Web Consortium (W3C) picked up DAML+OIL and revised it

into Web Ontology Language (OWL), which is now the standard ontology language for the

Semantic Web.

2.4.3 Semantic Web

As the name suggests, the Semantic Web is an extension of the web with semantic technologies.

It inherits advantages and flaws of both.

9KIF: http://www.ksl.stanford.edu/knowledge-sharing/kif/
10Common Logic standard: http://iso-commonlogic.org/
11DAML: http://www.daml.org/about.html

32

http://www.ksl.stanford.edu/knowledge-sharing/kif/
http://iso-commonlogic.org/
http://www.daml.org/about.html

CHAPTER 2. STATE OF THE ART 2.4. KNOWLEDGE ENGINEERING

Like the web, the Semantic Web is an open and decentralized space, which makes it pos-

sible for anybody to participate freely, but also makes collecting and curating information an

impossible utopia: by design, there is neither a way to enforce any convention beyond basic

protocols, nor ever any certainty that one has access to all relevant data at any given time (data

could be unreachable or in the process of being added).

Like all semantic technologies, the Semantic Web makes data and data-driven applications

smarter, but at the heavy upfront cost of domain modeling. Ontology design is a craft that is not

easily mastered and takes a lot of time. Annotating data for the first time, rather than converting

from one semantic data model to another, is extremely error-prone if automated and extremely

tedious if done manually.

2007(2008(

2009(

2010(
2011(

Figure 2.7: Linked Open Data cloud diagram by Cyganiak R. and Jentzsch A.

The set of interconnected public semantic databases is called “Linked Data”12. A quick

look at the Linked Open Data cloud diagram by Richard Cyganiak and Anja Jentzsch13 and

its evolution from 2007 to 2011, as featured on Figure 2.7, shows that the Semantic Web is

steadily growing: each node on the diagram represents a public knowledge base and each edge

one or more references connecting knowledge bases to each other (e.g. a triple binding a local

subject to a remote object).

It seems that the advantages of the Semantic Web are progressively outweighing its flaws

and, as the Semantic Web grows, the associated technologies are refined and become more

unavoidable.

12Linked Data: http://linkeddata.org/
13Linked Open Data cloud diagram: http://lod-cloud.net/

33

http://linkeddata.org/
http://lod-cloud.net/

2.4. KNOWLEDGE ENGINEERING CHAPTER 2. STATE OF THE ART

2.4.3.1 Resource Description Framework

The Resource Description Framework (RDF) is the W3C standard all other W3C Semantic Web

standards rely on. It is a semantic data model which, like XML, is simultaneously extremely

basic and extremely generic, allowing “anyone [to] say anything about anything”: a founding

principle the Semantic Web inherited from the web.

At the heart of RDF - and therefore the Semantic Web - is the notion of triple, also known

as “statement”. As the name suggests, a triple is made of three parts:

• a subject, i.e. a “resource”, identified by a Uniform Resource Identifier (URI), which

could represent literally anything, e.g. dbpedia:Socrates represents the Greek

philosopher Socrates on DBpedia14;

• a predicate, i.e. a “property” which either relates the subject to another resource, e.g.

rdf:type means the subject belongs to a “class”, or further describes the subject, e.g.

dbpedia:dateOfDeath qualifies the date a person died; and

• an object, i.e. either a “resource” the subject is related to through the property, e.g.

dbpedia:Human represents humankind, or a “literal” which specifies a value for the

property, e.g. -399 is the year Socrates died.

For instance, the triple made of dbpedia:Socrates, rdf:type and dbpedia:Human

states that Socrates is a human being, whereas the triple made of dbpedia:Socrates,

dbpedia:dateOfDeath and the literal -399 states that Socrates died in 399BC.

There is also a special type of resource called “blank node” which has no URI: those nodes

can only be accessed through the resources they are related to and are generally used as place-

holders.

At first glance, triples seem to compose a semantic graph with resources as nodes and prop-

erties as edges. However, that vision is inaccurate in two ways: (i) properties are themselves

resources and can be the subject or the object of a triple and (ii) triples can be “reified”, i.e.

qualified by properties, so as to add meta-information like the date or author of the triple. Still,

the vision holds true enough for the official RDF Validator15 to offer to build a graph of the

validated triples.

RDF data can be formatted/serialized in a variety of ways, depending on its use. The three

most well-known and popular formats are:

• RDF/XML16, as the name suggests, is an XML syntax and, as such, is very appropriate

for automated processing and data exchange between programs, but is too verbose to be

practical for human writing or reading;

• Turtle is a compact textual syntax meant specifically for human production and consump-

tion of RDF; and

• N-Triples17 is a subset of Turtle with none of the abbreviations that make the latter com-

pact but slow down its processing and it is quite popular as a dump format, i.e. when a

big number of triples must be exported, backed up or imported at once.

14DBpedia: http://dbpedia.org
15RDF Validator: http://www.w3.org/RDF/Validator/
16RDF/XML: http://www.w3.org/TR/REC-rdf-syntax/
17N-Triples: http://www.w3.org/TR/n-triples/

34

http://dbpedia.org
http://www.w3.org/RDF/Validator/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/n-triples/

CHAPTER 2. STATE OF THE ART 2.4. KNOWLEDGE ENGINEERING

To illustrate all three formats, consider the following example: Socrates is the master of

Plato, who in turn is the master of Aristotle and all three are philosophers. Expressing this in

RDF requires five triples, one to relate Socrates to Plato, another to relate Plato to Aristotle and

one for each philosopher to state that he is one.

The three resources representing the three philosophers as well as the class representing

all philosophers can be taken from DBpedia so as to link to that very well-known website,

but, to the best of our knowledge, DBpedia does not provide a property to characterize the

relation between master and pupil. We will thus create such a property, called masterOf

in our example. Figure 2.8 is a graph representing our five triples: each triple is represented

as an edge from the subject to the object. In the following listings, we have highlighted the

resource and property names in bold to improve legibility and ease comparison between the

three formats presented here.

Socrates(Plato(Aristotle(

Philosopher(

Legend:(

(((((((((((((((Resource(

(((((((((((((((rdf:type(

(((((((((((((((masterOf(

Figure 2.8: Small triple sample

The Turtle version, shown on Listing 2.1, is somewhat straightforward. It begins with the

definition of a few namespaces as prefixes, so as to shorten the triples themselves. For instance,

rdf:type will actually refer to the type anchor in the RDF specification. Each triple is then

written as subject predicate object, followed by a dot which indicates its end.

Listing 2.1: Turtle example

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix dbpedia: <http://dbpedia.org/resource/> .

3 @prefix dbonto: <http://dbpedia.org/ontology/> .

@prefix example: <http://example.org/rdfexample#> .

5

dbpedia:Socrates example:masterOf dbpedia:Plato .

7 dbpedia:Plato example:masterOf dbpedia:Aristotle .

dbpedia:Socrates rdf:type dbonto:Philosopher .

9 dbpedia:Plato rdf:type dbonto:Philosopher .

dbpedia:Aristotle rdf:type dbonto:Philosopher .

Triples are written the same way in N-Triples, shown on Listing 2.2, but with the full URIs,

since one cannot use abbreviations like the Turtle @prefix statement.

Listing 2.2: N-Triples example

<http://dbpedia.org/resource/Socrates> <http://example.org/rdfexample#masterOf>

2 <http://dbpedia.org/resource/Plato> .

<http://dbpedia.org/resource/Plato> <http://example.org/rdfexample#masterOf>

4 <http://dbpedia.org/resource/Aristotle> .

<http://dbpedia.org/resource/Socrates> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

6 <http://dbpedia.org/ontology/Philosopher> .

<http://dbpedia.org/resource/Plato> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

8 <http://dbpedia.org/ontology/Philosopher> .

<http://dbpedia.org/resource/Aristotle> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

10 <http://dbpedia.org/ontology/Philosopher> .

35

2.4. KNOWLEDGE ENGINEERING CHAPTER 2. STATE OF THE ART

The RDF/XML version, shown on Listing 2.3, is significantly more verbose than the others.

Prefixes can be defined like in Turtle, by using the xmlns attribute, which defines an XML

namespace. Because an XML document is a tree and neither a graph nor a flat list of statements,

the structure differs significantly: by default, properties are children nodes of their subject

resource Description node and the object is an attribute of the property.

Listing 2.3: RDF/XML example

<?xml version="1.0" encoding="UTF-8"?>

2 <rdf:RDF

xmlns:example="http://example.org/rdfexample#"

4 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="http://dbpedia.org/resource/Socrates">

6 <example:masterOf rdf:resource="http://dbpedia.org/resource/Plato"/>

<rdf:type rdf:resource="http://dbpedia.org/ontology/Philosopher"/>

8 </rdf:Description>

<rdf:Description rdf:about="http://dbpedia.org/resource/Plato">

10 <example:masterOf rdf:resource="http://dbpedia.org/resource/Aristotle"/>

<rdf:type rdf:resource="http://dbpedia.org/ontology/Philosopher"/>

12 </rdf:Description>

<rdf:Description rdf:about="http://dbpedia.org/resource/Aristotle">

14 <rdf:type rdf:resource="http://dbpedia.org/ontology/Philosopher"/>

</rdf:Description>

16 </rdf:RDF>

There are many other ways to write a series of triples in RDF/XML. For instance, Listing 2.4

is strictly equivalent to the version shown on Listing 2.3, but slightly more condensed: there

is no rdf:Description node and resource objects are children of the property rather than

attributes, which allows recursive imbrication.

Listing 2.4: RDF/XML example (alternative)

<?xml version="1.0" encoding="utf-8"?>

2 <rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

4 xmlns:dbonto="http://dbpedia.org/ontology/"

xmlns:example="http://example.org/rdfexample#"

6 >

<dbonto:Philosopher rdf:about="http://dbpedia.org/resource/Socrates">

8 <example:masterOf>

<dbonto:Philosopher rdf:about="http://dbpedia.org/resource/Plato">

10 <example:masterOf rdf:resource="http://dbpedia.org/resource/Aristotle"/>

</dbonto:Philosopher>

12 </example:masterOf>

</dbonto:Philosopher>

14 <dbonto:Philosopher rdf:about="http://dbpedia.org/resource/Aristotle"/>

</rdf:RDF>

Though RDF is a semantic data model, it enforces very little in the way of semantics, pre-

sumably to remain generic enough to fit any ontology: it defines only a handful of classes and

properties, the most inescapable of which is rdf:type and none of those classes and proper-

ties come with inference rules, which means RDF is not an ontology language. Interestingly, it

does not even define the classes Resource and Class, even though their existence is induced

by the rdf:type property.

2.4.3.2 RDF Schema

RDF Schema (RDFS) is a thin layer of semantics on top of RDF and is meant to create the

most basic types of ontologies: vocabularies and taxonomies. It introduces rdfs:Resource,

rdfs:Literal, rdfs:Class and a handful of other classes used implicitly in RDF data,

as well as multiple properties, e.g. rdfs:label which defines a label to display the resource

in a text. Properties defined in RDF and RDFS are not all created equal. Some carry “inference

rules”: their use as predicate implies that new triples can be inferred.

36

CHAPTER 2. STATE OF THE ART 2.4. KNOWLEDGE ENGINEERING

rdfs:domain (resp. rdfs:range) describes the domain (resp. range) of a property.

It implies that any time a resource is the subject (resp. object) of that property, it can be

inferred that said resource is of the domain (resp. range) type. For instance, masterOf

rdfs:domain Philosopher not only states that the domain of the masterOf property

we created is the Philosopher class, but that if we state that A example:masterOf B,

then we can infer A rdf:type Philosopher.

rdfs:subClassOf is the cornerstone of any taxonomy, since it creates a hierarchy of

classes. It is easily conflated with class inheritance relations found in object-oriented languages

and UML models, but the mechanisms differ significantly: rdfs:subClassOf does not in

any way restrict the classes it is applied on or the instances thereof. It simply means that any

instance of the subclass can be inferred to also be an instance of the superclass. For instance,

Human rdfs:subClassOf Mortal means precisely that from any stated A rdf:type

Human triple can be inferred a A rdf:type Mortal triple.

rdfs:subPropertyOf is the equivalent of rdfs:subClassOf for properties. For

instance, motherOf rdfs:subPropertyOf ancestorOf implies that from any stated

A motherOf B triple can be inferred a A ancestorOf B triple.

To illustrate the inference mechanisms of those four properties, let us consider the following

example, illustrated by a graph on Figure 2.9: we state that Socrates is the master of Plato and

that Plato is the master of Aristotle, on the other hand; that our masterOf property has the

Philosopher class for domain as well as range and that it is a sub-property of another one

called inspired; and that the Philosopher class is a sub-class of Human.

Socrates(Plato(Aristotle(

Philosopher(Human(

masterOf(inspired(
P(

R(D(

C(

M(M(

T(

I(

T(
T(T(

T(T(

I(

Legend:(

(Resource(

(State(triple(

(Inferred(triple(

((((((((((((C (subClassOf(

((((((((((((D (domain(

((((((((((((I (inspired(

((((((((((((M (masterOf(

((((((((((((P (subPropertyOf(

((((((((((((R (range(

((((((((((((T (type(

Figure 2.9: RDFS inference example

Here is what we can infer:

• since Philosopher is the domain of masterOf, then it is also the type of all its

subjects, i.e. Socrates and Plato;

• similarly, since Philosopher is the range of masterOf, it is also the type of all its

objects, i.e. Plato and Aristotle;

• since Philospher is a sub-class of Human, then all instances of the former are also

instances of the latter, i.e. Socrates, Plato and Aristotle; and

• since masterOf is a sub-property of inspired then from the statement that Socrates

is the master of Plato, we can infer that Socrates inspired Plato and the same goes for

Plato and Aristotle.

37

2.4. KNOWLEDGE ENGINEERING CHAPTER 2. STATE OF THE ART

More sophisticated inferences, such as transitivity - e.g. to infer that the ancestor of an an-

cestor of someone is also their ancestor - or inverse properties - e.g. to infer from A motherOf

B that B childOf A - require more sophisticated ontology languages, such as OWL.

With only a handful of triples, it is fairly easy to draw inferences manually. For any more

significant processing, or if automation is needed, there are many “semantic reasoners” avail-

able, notably BaseVISor [Matheus 06], CORESE [Corby 05], Fact++ [Tsarkov 06], HermiT

[Motik 09], Pellet [Sirin 07] and the one included in the Jena framework [Carroll 04].

2.4.3.3 SPARQL Protocol and RDF Query Language

Once triples have been stated and/or inferred, the standard way to browse them is to use the

SPARQL Protocol and RDF Query Language (SPARQL), designed and recommended by the

W3C. At first glance, it seems to be for knowledge bases what SQL is for relational databases.

SPARQL 1.0 crucially lacks update queries to modify data, making it very unlike SQL, but

after the introduction of modification queries in SPARQL 1.1, the comparison holds. Yet, it

is important to note that each query language aligns closely with the structure of the data it

targets: SQL is based on relational algebra and SPARQL is built around graph patterns.

For browsing, i.e. setting aside update queries, SPARQL offers four basic types of queries.

All four types start by matching a graph pattern with variables against the graph made of all

triples. They only differ in how they handle the matches found:

• SELECT queries return the nodes the variables matched, for each match found;

• CONSTRUCT queries build a graph for each match found and return their union;

• ASK queries return false if no match is found, true otherwise; and

• DESCRIBE return information (in the form of RDF triples) about the resources identified

through URIs or variable matching.

CONSTRUCT queries build graphs based on the results of pattern matching and, as such,

they can be used as a graph rewriting tool. They are composed of two graph patterns: one

simply called “pattern”, matched against the data, and the other called “template”, used to

build new graphs based on the matches.

An analogy can be made with aspects (described in Section 2.2.2.3), comparing “pattern”

with “pointcuts”, to determine where the graph should be affected, and “template” with “ad-

vice”, to determine how the graph should be affected. The most significant difference is that

CONSTRUCT queries do not directly affect the graph of data they are run on, but instead build

a new graph. On the one hand, it means that a CONSTRUCT query in and of itself cannot work

as a weaving mechanism: it leaves the merging of its solution with the base graph to be done.

On the other hand, it induces a lot of flexibility since the author of a query can focus on the

parts that must be matched and built while ignoring the rest of the graph.

The SPARQL syntax is fairly close to that of RDF format Turtle: prefixes are set with a

PREFIX command and triples are written in-line as subject predicate object. The

syntax is also heavily inspired by that of SQL: keywords are written in uppercase by convention

(though their case is ignored) and followed by either a single line or a block of lines delimited

by brackets.

38

CHAPTER 2. STATE OF THE ART 2.4. KNOWLEDGE ENGINEERING

To illustrate SELECT queries, let us consider the following example: the list of monarchs

who were murdered in France, like Henry IV of France. To obtain such a list requires a handful

of things: a class representing monarchs, a class representing the fact of having been murdered

in France and, of course, RDF data about monarchs. The DBpedia knowledge base provides

all three things.

As shown on Listing 2.5, a SELECT query starts with the definition of prefixes, with the

PREFIX keyword, much like in Turtle. Then the query defines which variables should be

returned by the query with the SELECT keyword and a ? marking a variable as such. Finally,

the WHERE keyword gives a series of triples forming the graph pattern that will be matched

against the knowledge base. If we only want labels from a given language, then we need to use

the FILTER keyword and utility functions to match that language, but of course such filtering

is optional.

Listing 2.5: SPARQL SELECT example query

1 PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

3 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX yago: <http://dbpedia.org/class/yago/>

5

SELECT ?label

7 WHERE {

?king rdf:type dbpedia-owl:Royalty .

9 ?king rdf:type yago:PeopleMurderedInFrance .

?king rdfs:label ?label .

11 FILTER(LANGMATCHES(LANG(?label), "EN"))

}

Figure 2.10: DBpedia HTML result screenshot

If run on the DBpedia knowledge base, for instance using the Virtuoso SPARQL endpoint18,

this query will return Charles Ferdinand, Duke of Berry, Henry III of France, Henry IV of

France, John the Fearless and Louis I, Duke of Orleans, in any order. Figure 2.10 is a screenshot

of that result, returned by Virtuoso as HTML.

Now, to illustrate CONSTRUCT queries, let us consider another example, inspired by fa-

mous historical novelist Maurice Druon: he nicknamed the sons of Philip IV of France (the

Fair) “accursed kings” and wrote a series of novels under that very name. To build a simple

graph reflecting that, we need to identify Philip the Fair, find his children who became kings

of France and type them AccursedKing. DBpedia provides all but the type we need, so we

will create that type in our example.

As shown on Listing 2.6, CONSTRUCT queries work very much like SELECT queries, save

for the main keyword, CONSTRUCT, followed by a WHERE graph pattern.

18DBpedia Virtuoso SPARQL endpoint: http://dbpedia.org/sparql

39

http://dbpedia.org/sparql

2.4. KNOWLEDGE ENGINEERING CHAPTER 2. STATE OF THE ART

Listing 2.6: SPARQL CONSTRUCT example query

PREFIX dbpedia: <http://dbpedia.org/resource/>

2 PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>

PREFIX example: <http://example.org/sparqlexample#>

4 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX yago: <http://dbpedia.org/class/yago/>

6

CONSTRUCT {

8 ?king rdf:type example:AccursedKing .

}

10 WHERE {

?king rdf:type yago:KingsOfFrance .

12 ?king dbpedia-owl:parent dbpedia:Philip_IV_of_France .

}

RESULT(

WHERE(

CONSTRUCT(

?king(AccursedKing(?king(

KingsOfFrance(

Philip(IV(of(France(

AccursedKing(

Philip(V(of(France(Louis(X(of(France(Charles(IV(of(France(

Legend:(

(((((((((((((((Resource(

(((((((((((((((rdf:type(

(((((((((((((((dbpediaAowl:parent(

Figure 2.11: SPARQL CONSTRUCT example

If run on the DBpedia knowledge base, this query will build a graph made of three triples,

binding each son of Philip the Fair - Louis X, Philip V and Charles IV - to the accursed king

type we created, as illustrated on Figure 2.11.

CONSTRUCT queries handle variables (signaled by a ?) and blank nodes (signaled by :)

differently. If a variable appears in the template (i.e. the CONSTRUCT graph pattern) and not in

the pattern (i.e. the WHERE graph pattern), it will be created exactly once, no matter the number

of matches found. However, if a blank node appears in the template and not in the pattern, a

new blank node will be created for each match found. That fact makes blank nodes a rather

easy way to generate nodes with CONSTRUCT queries, but there is a flaw: those nodes have no

URI and thus cannot afterwards be referenced directly.

As with semantic reasoners, there are many “SPARQL engines” available. Some are stan-

dalone software and/or libraries, like CORESE [Corby 05], but most are provided as “end-

points” (i.e. web service that supports SPARQL) or APIs to specific “triple stores” (i.e. RDF

database), as in the Jena framework [Carroll 04].

40

CHAPTER 2. STATE OF THE ART 2.4. KNOWLEDGE ENGINEERING

There are multiple ways to query the Linked Open Data cloud [Hartig 10], besides down-

loading and merging all relevant datasets locally, including:

• Follow-up queries: query one dataset first, adapt the next query based on the result,

query the next dataset and so on. Obviously that approach requires a lot of knowledge

about not only dataset structures, but also how data is spread over the datasets and a lot

of work on the part of the user building the queries.

• Federated endpoints: some endpoints, like the one managed by OpenLink SW19, act

as a front-end to multiple datasets. That approach is a lot easier for the user, but he or

she has very little control over how data is actually queried and little certainty as to its

freshness.

• Federated query processing: “mediators”, such as AliBaba’s Federation SAIL20, can

be used to automatically dispatch a query to relevant datasets. However, it is generally

no easy task to configure those mediators. [Haase 10] compares many such solutions

quantitatively.

2.4.4 Discussion

We use Semantic Web technologies in three distinct ways:

• The Conceptual Workflow Model, defined in Chapter 3, itself is modeled in both UML

(and implemented in Java in our prototype) and in RDFS, which allows reasoning on the

Conceptual Workflows themselves.

• The Weaving mechanism, described in Section 4.2, is based on SPARQL CONSTRUCT

queries, so as to leverage their flexibility as a graph rewriting method and to capitalize

on the aforementioned RDFS representation of Conceptual Workflows.

• The Mapping step of the Transformation Process is computer-assisted thanks to do-

main knowledge captured in RDFS-compatible ontologies. By relying on the most pop-

ular form of ontology languages, we hope to make our process compatible with as many

domains as possible.

So far, we have had no need for inference rules beyond the basic ones found in RDFS,

but future extension of the system to more sophisticated ontology languages, such as OWL, is

entirely conceivable.

19OpenLink SW SPARQL endpoint: http://lod.openlinksw.com/sparql
20AliBaba Federation SAIL: http://www.openrdf.org/alibaba.jsp

41

http://lod.openlinksw.com/sparql
http://www.openrdf.org/alibaba.jsp

2.4. KNOWLEDGE ENGINEERING CHAPTER 2. STATE OF THE ART

The abstraction level of most scientific workflow models is low, given that

domain scientists are the intended users. We identified four important fea-

tures related to high abstraction level: support for annotations, computer

assistance for workflow composition, indirection between the description

and implementation of activities and structural flexibility. To the best of

our knowledge, no existing scientific workflow model features all four.

The Transformation Process we are developing (i) takes inspiration from

existing approaches to support Separation of Concerns with the notion of

Fragments, (ii) follows the principles of Model-Driven Engineering and

(iii) leverages standard semantic web technologies to process and capital-

ize on domain knowledge with maximum flexibility and compatibility.

CHAPTER SUMMARY

42

CHAPTER 3

CONCEPTUAL WORKFLOW MODEL

In this Chapter, we present the scientific workflow model we defined to fulfill our first goal as

defined in Section 1.6: our objective was to create a model at the Conceptual Level - hence the

name Conceptual Workflow - so as to facilitate the capture of domain knowledge and know-

how and increase legibility in an attempt to improve the accessibility of scientific workflows.

Conceptual Workflows are meant to be iteratively transformed into abstract workflows that

can be enacted on a Distributed Computing Infrastructure (DCI). As a result, the Conceptual

Workflow Model features:

• Conceptual Elements, detailed in Section 3.1 and used to describe simulations at a high

level of abstraction that is computation-independent;

• Abstract Elements detailed in Section 3.2 and similar to the platform-independent low-

level abstract workflow elements they will be converted to; and

• Semantic Annotations detailed in Section 3.3 and used to guide the Transformation

Process, which is detailed in Chapter 4.

The Conceptual Workflow Model, described in Unified Modeling Language (UML) in

Appendix B, is based on directed graphs like most scientific workflow models, including those

analyzed in Section 2.1.

3.1 Conceptual Elements

3.1.1 Conceptual Workflows

Conceptual Workflows are modeled through nested directed cyclic graphs whose nodes model

the components of a simulation and whose links model inter-dependencies (see Section 3.1.4).

Directed Cyclic Graphs (DCGs) have been adopted because they are the base model of the

majority of scientific workflow frameworks (see Section 2.1.2) and they are nested to allow the

modeling of a simulation at multiple levels of abstraction as well as encapsulation. The various

elements of a simulation are modeled thusly:

• input data is modeled by Conceptual Inputs;

• process steps are modeled by Conceptual Functions;

• output products are modeled by Conceptual Outputs; and

• dependencies between those elements are modeled by Conceptual Links.

For the Transformation Process to remain as independent as possible from existing frame-

works, we also need to model artifacts from the Abstract Level (e.g. web services, files) and

that is what we call Abstract Elements.

43

3.1. CONCEPTUAL ELEMENTS CHAPTER 3. CONCEPTUAL WORKFLOW MODEL

Because Conceptual Workflows contain both high-level conceptual elements and low-

level abstract elements, they are graphs composed of two sets of vertices and two sets of

edges, high-level and low-level. Let us define the following sets:

Set Definitions (1 of 3)

HF is the set of all Conceptual Functions

HI is the set of all Conceptual Inputs

HO is the set of all Conceptual Outputs

H is the set of all Conceptual Workflows

L is the set of all Abstract Elements

H ∩ L = HF ∩HI = HI ∩HO = HO ∩HF = ∅

Conceptual Workflows are nested graphs. Their definition is less straightforward than that

of regular directed graphs, because nodes in a Conceptual Function are either simple nodes or

graphs themselves. Hence the need to define Conceptual Workflows through recursion, with

depth being the number of nested levels in a Conceptual Workflow:

Conceptual Workflows of depth 0

H0 is the set of all Conceptual Workflows of depth 0
HF0 is the set of all Conceptual Functions of depth 0
H0 = HI ∪HO ∪HF0

= {(VH , VL, EH , EL) | VH = ∅, VL ⊂ L,EH = ∅, EL ⊂ V 2
L}

Conceptual Workflows of depth ≤ n ∈ N
∗

Hn is the set of all Conceptual Workflows of depth ≤ n
HFn is the set of all Conceptual Functions of depth ≤ n
Hn = HI ∪HO ∪HFn

HFn = {(VH , VL, EH , EL) | VH ⊂ Hn−1, VL ⊂ L,EH ⊂ V 2
H , EL ⊂ V 2

L}

Conceptual Workflows of any depth

H =
⋃

n∈N

Hn = HI ∪HO ∪HF

HF =
⋃

n∈N

HFn

3.1.2 Graphical Convention

The four main classes of Conceptual Elements are represented as illustrated on Figure 3.1:

• Conceptual Functions by rectangles (layered when nested);

• Conceptual Inputs by trapezoids with the small edge down;

• Conceptual Outputs by trapezoids with the small edge up; and

• Conceptual Links by dashed arrows.

44

CHAPTER 3. CONCEPTUAL WORKFLOW MODEL 3.1. CONCEPTUAL ELEMENTS

Conceptual+

Input+

Conceptual+

Func.on+

Conceptual+

Output+

Conceptual+Link+

Conceptual+Link+

Parent+workflow+

Sub9workflow+

Figure 3.1: Graphical Convention - Conceptual Elements

3.1.3 Encapsulation

Unaligned+

Images+

Reference+

Image+

Alignment+

Aligned+Images+

(a) One global step

Unaligned+

Images+

Reference+

Image+

Registra.on+

Aligned+Images+

Transforma.on+

(b) Two separate steps

Unaligned+

Images+

Reference+

Image+

Aligned+Images+

Alignment+

Registra.on+

Transforma.on+

(c) Combination

Figure 3.2: Image Spatial Alignment Process Example at Multiple Abstraction Levels

Process steps can often be divided into smaller steps or grouped into broader functions. For

instance, automated image alignment can be done through registration (i.e. computing the

transformation that most closely aligns the images) and then applying the computed transfor-

mation. As illustrated on Figure 3.2, the alignment process can be seen as one global step,

two separate ones or a combination of a global step and two smaller ones. In the latter case,

the smaller steps are effectively at a lower level of abstraction and should be nested into the

high-level step to highlight their relation.

Conceptual+

Workflow+

component

Conceptual+

Output+

leaf

Conceptual+

Input+

leaf

Conceptual+

Func.on+

composite

*+

*+

parent+

workflow+

sub9workflow+

Figure 3.3: Conceptual Workflow Composite Pattern

45

3.1. CONCEPTUAL ELEMENTS CHAPTER 3. CONCEPTUAL WORKFLOW MODEL

Precisely in order to allow such modeling at multiple levels of abstraction, Conceptual

Functions are nested: they can themselves contain Conceptual Elements. The meta-model

(see Figure B.4) thus exhibits a “Composite Pattern” [Gamma 93], as described in UML on

Figure 3.3, with:

• Conceptual Workflows as “Components”;

• Conceptual Functions as “Composites”; and

• Conceptual Inputs and Conceptual Outputs as “Leaves”.

When a Conceptual Function P contains a Conceptual Workflow S, P is relatively called

the parent workflow and S is relatively called the sub-workflow. If S is also a Conceptual

Function (as opposed to a Conceptual Input or Conceptual Output), it can in turn contain

sub-workflows. The relation between parent workflows and their sub-workflows is transitive:

if A is a sub-workflow of B and B is a sub-workflow of C, then A is also a sub-workflow of C.

Encapsulation (definition)

∀cP = (VHP , VLP , EHP , ELP) ∈ HFn, n ∈ N
∗

∀cS = (VHS, VLS, EHS, ELS) ∈ Hn−1

cP ≺ cS ⇔ cS ∈ VHP

Encapsulation (properties)

cP ≺ cS ⇒ cP is called a parent workflow of cS
and cS is called a sub-workflow of cP
and VHS ⊂ VHP \ {cS}
and VLS ⊂ VLP

and EHS ⊂ EHP

and ELS ⊂ ELP

Where it is necessary to distinguish between direct ancestor/descendants (where the relation

is defined directly) and indirect ancestors/descendants (where the relation is derived by transi-

tivity), the direct ancestor is called the immediate parent workflow and the direct descendants

are called the immediate sub-workflows.

Immediate Encapsulation

∀cP = (VHP , VLP , EHP , ELP) ∈ HFn, n ∈ N
∗

∀cS ∈ VHP

if ∀cI = (VHI , VLI , EHI , ELI) ∈ VHP , cS /∈ VHI

then cP � cS,
cP is called the immediate parent workflow of cS

and cS is called an immediate sub-workflow of cP

46

CHAPTER 3. CONCEPTUAL WORKFLOW MODEL 3.1. CONCEPTUAL ELEMENTS

3.1.4 Conceptual Links

The components of a simulation are interconnected through either data dependencies meaning

data produced by sources is forwarded to targets; or control dependencies meaning targets

must wait for the sources to finish before they can start.

Section 2.1.2.3 details the differences and similarities between the two types of flow, data

and control, and how they impact scientific workflow models. However, at a computation-

independent level of abstraction, it is not necessarily possible to predict how a dependency

between two components will be implemented and it is certainly not desirable to restrict it, since

it would impede structural flexibility. Therefore, a Conceptual Link (i.e. an edge connecting

two Conceptual Workflows), represents either (i) a set of data dependencies; (ii) a set of

control dependencies; or (iii) a combination thereof.

Forbidden+

Legend:++

Figure 3.4: Conceptual Link Restriction

The dependencies modeled through Conceptual Links are transitive: to limit the links at

the Abstract Level to pairs of Abstract Elements contained in the same Conceptual Work-

flow or in two Conceptual Workflows bound by a Conceptual Link would be too restrictive.

Hence the notion of conceptual path: it is possible for Abstract Elements of a given Con-

ceptual Workflow to depend on - i.e. be the target of a link bound to - Abstract Elements

contained (i) in the same Conceptual Workflow; (ii) in a parent workflow or (iii) in a Con-

ceptual Workflow bound by a chain of Conceptual Links to the one the elements are in. The

symbol denotes the existence of a conceptual path between Conceptual Workflows:

Conceptual Path

∀cP = (VHP , VLP , EHP , ELP) ∈ HFn, n ∈ N
∗

∀cS = (VHS, VLS, EHS, ELS) ∈ VHP

∀cI ∈ VHP

∀cT ∈ VHP

(1) cT ∈ VHS ⇒ cS cT
(2) (cS, cT) ∈ EHP ⇒ cS cT
(3) cS cI and cI cT ⇒ cS cT

47

3.2. ABSTRACT ELEMENTS CHAPTER 3. CONCEPTUAL WORKFLOW MODEL

At a given nesting level, i.e. when source and target have the same immediate parent

workflow, Conceptual Links can neither emanate from Conceptual Outputs, nor target Con-

ceptual Inputs. However, when considering a parent workflow P and one of its sub-workflows

S, then Conceptual Links emanating from Conceptual Workflows of P can target Concep-

tual Inputs of S; and Conceptual Links targeting Conceptual Workflows of P can emanate

from Conceptual Outputs of S. Figure 3.4 illustrates both cases.

Conceptual Link Restriction

∀cP = (VHP , VLP , EHP , ELP) ∈ HFn, n ∈ N
∗

∀e = (s, t) ∈ EHP

s ∈ HO ⇒ ∃cS ∈ VHP | cP ≺ cS ≺ s
and

t ∈ HI ⇒ ∃cS ∈ VHP | cP ≺ cS ≺ t

3.2 Abstract Elements

Abstract Elements are featured in the Conceptual Workflow Model, despite coming from a

lower level of abstraction, so that most of the Transformation Process takes place inside the

model. This approach presents two advantages compared to a purely conceptual model:

• on the one hand, it is easier to assist the Transformation Process without switching to

another model, especially since the process is only semi-automated;

• on the other hand, it prevents the model from being too tightly-coupled with an existing

Abstract Level model, which would certainly complicate delegation to multiple existing

frameworks.

Continuing the definitions given in Section 3.1.1, let us define sets of Abstract Elements:

Set Definitions (2 of 3)

L is the set of all Abstract Elements

LA is the set of all Activities

LP is the set of all Ports

LIP is the set of all Input Ports

LOP is the set of all Output Ports

LL is the set of all Links

LDL is the set of all Data Links

LOL is the set of all Order Links

LIP ∪ LOP = LP and LIP ∩ LOP = ∅

LDL ∪ LOL = LL and LDL ∩ LOL = ∅

LA ∪ LP ∪ LL = L and LA ∩ LP = ∅

LA ∩ LL = ∅

LP ∩ LL = ∅

48

CHAPTER 3. CONCEPTUAL WORKFLOW MODEL 3.2. ABSTRACT ELEMENTS

3.2.1 Activities

From the viewpoint of the Conceptual Workflow that embeds it, an Activity is a black box

representing an executable artifact, e.g. a web service, a grid job or a legacy program.

The arguments of the underlying artifact are modeled by Input Ports and its products by

Output Ports associated with the Activity. Each Activity has at least one Port, otherwise it

would be impossible to connect it to the rest of the workflow.

Some arguments may not be explicit in the underlying artifact’s description. For instance,

a web service might take a folder path as input and import files that are in that folder: those

files are also arguments of the Activity, but they are implicit. The notion of Implicit Ports is

meant to clarify those implicit relations and expose the related knowledge. By opposition, other

Ports are Explicit Ports. Implicit Ports are a tool for the end-user to make implicit required

knowledge explicit, but they are not automatically detected.

3.2.2 Specialized Activities

In addition to regular Activities, the Conceptual Workflow Model defines the following spe-

cialized ones:

• Inputs are Activities with at least one Output Port and no Input Port;

• Outputs are Activities with at least one Input Port and no Output Port; and

• Filters are special Activities implementing conditional constructs: they have one In-

put Port, two Output Ports: then and else and a logical condition called a Guard.

Whenever a piece of data d is transferred to a Function, the associated Guard is evalu-

ated: d is passed along the then branch if the Guard is True, along the else branch

otherwise.

In practice, Inputs and Outputs are most often data constants or references to files, but

they may also be executable artifacts (such as web services) that either only produce or only

consume data.

3.2.3 Links

As explained in Section 2.1.2.3, there are two types of flow in workflows and, accordingly,

there are two types of links in the Abstract part of the Conceptual Workflow Model:

• Data Links represent data flow, i.e. data transfers from a source to a target, with the

target waiting for the data to execute; and

• Order Links represent control flow, i.e. control transfers - which can be seen as order

constraints, hence the name - from a source to a target, with the target waiting until the

source finishes to execute.

As they represent data transfers, Data Links connect Output Ports to Input Ports, whereas

Order Links connect two Activities directly. Figure 3.5 describes those associations in UML.

49

3.2. ABSTRACT ELEMENTS CHAPTER 3. CONCEPTUAL WORKFLOW MODEL

Ac.vity+

Input+ Filter+Output+

Port+
1+ 1..*+

Input+

Port+

Output+

Port+

Order+

Link+

2+

*+

Data+

Link+1+

1+

*+ *+target+ source+

Figure 3.5: Data Links and Order Links Associations

3.2.4 Iteration Strategies

Scientific workflows are commonly used to process data sets, i.e. repeat the same kind of

computation on collections of data items. When an Activity receives data of a bigger depth

than it is meant to process, e.g. if an Activity treating integers (depth 0) receives a list of

integers (depth 1) or a list of list of integers (depth 2) and so on and so forth, there are two main

options for the enactor: (i) treat the event like a bug and inform the user that an improper type

of data was provided; or (ii) loop over the Activity implicitly to treat all input data.

Implicit loops might make a scientific workflow slightly harder to read: how the enactor be-

haves depends not only on the scientific workflow at hand and the Activities therein, but on the

input data itself. Nonetheless, it is a very useful feature for parallel data processing, to automat-

ically dispatch data over multiple processing units in the DCI, and is thus present in multiple

scientific workflow frameworks, e.g. Taverna [Missier 10a] and MOTEUR [Glatard 08].

If an Activity has multiple Input Ports and two or more of them receive data at higher

depth than they were specified for, it is impossible to guess how data should be combined for

the Activity to iterate over. Therefore, whenever an Activity has two or more Input Ports, it is

associated with an Iteration Strategy that defines how data received on those multiple Input

Ports must be combined.

An Iteration Strategy is a combination of all the Input Ports of the Activity via the

operators:

• Cross Product ⊗ which results in every possible combination of the pieces of data re-

ceived; and

• Dot Product ⊙ which combines data pairs in the order in which they are received.

For instance, if an Activity has three Input Ports {a, b, c}, then a ⊗ b ⊗ c, a ⊗ (b ⊙ c),
(a⊗ b)⊙ c and a⊙ b⊙ c are all valid Iteration Strategies.

Iteration Strategies

{ai}1≤i≤n ⊗ {bj}1≤j≤m = {(ai, bj)}1≤i≤n,1≤j≤m

{ai}1≤i≤n ⊙ {bi}1≤i≤n = {(ai, bi)}1≤i≤n

50

CHAPTER 3. CONCEPTUAL WORKFLOW MODEL 3.3. SEMANTIC ANNOTATIONS

3.2.5 Graphical Convention

The 6 types of Abstract Elements are represented thusly, as illustrated on Figure 3.6:

• Activities (including Inputs and Output) by rounded rectangles;

• Filters by triangles pointing downward;

• Explicit Ports by small rectangles;

• Implicit Ports by small rhombuses;

• Data Links by regular arrows; and

• Order Links by arrows with a dot head.

Legend:+

++++++++++++++++Explicit+Port+

++++++++++++++++Implicit+Port+

++++++++++++++++Data+Link+

++++++++++++++++Order+Link+

++++++++++++++++Filter+

Input+

Output+

then+ else+

Output+Ac.vity+

Ac.vity+

Figure 3.6: Graphical Convention - Abstract Elements

3.3 Semantic Annotations

In order to leverage Semantic Web technologies and to ensure maximum flexibility when it

comes to Semantic Annotations, the Conceptual Workflow Model itself is captured in an

ontology called COnceptual WORKflow (COWORK). Every other ontology used in conjunc-

tion with our system is therefore called external ontology by contrast with our inner model.

In order to provide assistance to the user during the Transformation Process, the underly-

ing domain knowledge, as well as the technical know-how and non-functional knowledge, must

be exposed. We opted to link Conceptual Elements and Abstract Elements with the domain

concepts and non-functional concerns they model, as they are defined in external ontologies.

As a result, many Conceptual Elements and Abstract Elements, described respectively in

Section 3.1 and Section 3.2, can bear Annotations.

An Annotation is defined by three things in the Conceptual Workflow Model:

• its Type detailed in Section 3.3.1;

• its Role, detailed in Section 3.3.2; and

• its Meaning, detailed in Section 3.3.3.

51

3.3. SEMANTIC ANNOTATIONS CHAPTER 3. CONCEPTUAL WORKFLOW MODEL

3.3.1 Type

Domain ontologies used for simulation modeling, like the one defined for and used on the

Virtual Imaging Platform (VIP) platform [Marion 11], often contain extensive taxonomies of

the concepts the related simulations handle. In order to exploit type inference, Annotations

are simultaneously of the type cowork:Annotation – defined in the COWORK ontology

– and of a type defined in an external ontology.

3.3.2 Role

At a computation-independent level of abstraction, Conceptual Elements do not yet achieve

any goals or fulfill any criteria. Therefore, at that level, Annotations associating domain con-

cepts and non-functional concerns with Conceptual Elements are Requirements: they repre-

sent the objectives of the Conceptual Elements they annotate, rather than what the Conceptual

Elements do.

Mapped Conceptual Elements, which embed sub-workflows and/or abstract workflows to

fulfill their Requirements no longer need them. They are annotated instead with Specifications

that describe the goals achieved and the criteria satisfied by the Conceptual Elements they

annotate.

Abstract Elements also bear Specifications describing the goals they achieve and the cri-

teria they satisfy, so that they can be suggested as suitable candidates to embed in high-level

Conceptual Workflows, to fulfill their Requirements.

During the Mapping phase of the Transformation Process (detailed in Section 4.1), Re-

quirements are progressively transformed into Specifications, as they are fulfilled.

3.3.3 Meaning

Annotations are linked to external semantic concepts through their Type. For the purpose of

modeling a simulation, there are three categories of relevant concepts and we distinguish three

different Meanings accordingly:

• Functions describe scientific process steps;

• Concerns describe non-functional criteria; and

• Datasets describe data content and/or format.

3.3.4 Compatibility

Annotations belong to different sets, based on their Role and Meaning:

Set Definitions (3 of 3)

Ω is the set of all Annotations

ΩR is the set of all Requirements

ΩS is the set of all Specifications

ΩF is the set of all Functions

ΩC is the set of all Concerns

ΩD is the set of all Datasets

ΩR ∪ ΩS = Ω and ΩF ∩ ΩC = ΩC ∩ ΩD = ΩD ∩ ΩF = ∅

52

CHAPTER 3. CONCEPTUAL WORKFLOW MODEL 3.3. SEMANTIC ANNOTATIONS

Not every type of Conceptual Elements and Abstract Elements can be annotated with all

kinds of Annotations.

Role+

Requirement+ Specifica.on+

Func.on+

Concern+

Dataset+

M
e
a
n
in
g
+

Conceptual+

Func.on+
Ac.vity+

Conceptual+

Input+

Conceptual+

Output+

Port+

Legend:+

A+

E+

Elements+of+type+E+

can+bear+Annota.ons+

of+Role/Meaning+A+

Figure 3.7: Compatibility between Elements and Annotations

As summarized in Figure 3.7:

• Elements modeling input/output data, i.e. Conceptual Inputs, Conceptual Outputs and

Ports, bear only Datasets;

• Elements modeling processing steps, i.e. Conceptual Functions and Activities, bear

Functions and Concerns;

• aforementioned Conceptual Elements, i.e. Conceptual Inputs, Conceptual Outputs

and Conceptual Functions, bear either Requirements or Specifications, depending on

whether they are mapped or not; and

• aforementioned Abstract Elements, i.e. Ports and Activities, bear only Specifications.

Let us define the function Γ which associates elements with the Annotations they bear and

its restrictions ΓR and ΓS to Requirements and Specifications, respectively.

Annotation Functions

Γ : H ∪ L −→ Ω
e 7−→ a

ΓR : H −→ ΩR

e 7−→ r

ΓS : H ∪ L −→ ΩS

e 7−→ s

53

3.4. FRAGMENTS CHAPTER 3. CONCEPTUAL WORKFLOW MODEL

The Annotation compatibility restrictions can be expressed thusly:

Annotation Compatibility

Γ[HI] = Γ[HO] = Γ[LP] = ΩD

Γ[HF] = Γ[LA] = ΩF ∪ ΩC

Γ[H] = ΩR ∪ ΩS = Ω
Γ[L] = ΩS

3.3.5 Graphical Convention

Annotated+

Conceptual+

Workflow+

Type+

Type+

Requirement:+

Specifica.on:+

Figure 3.8: Graphical Convention - Annotations

There are two different representations for Annotations, depending on their Role, - in both

cases, the Type is used as the name for the Annotation and the Meaning is not represented

graphically - as illustrated by Figure 3.8: Specifications are represented by legend tags (i.e.

rectangles with a line indicating where the tag is applied) and Requirements are represented

by legend tags with a border line separating the line from the rectangle, so as to suggest some

distance yet to breach.

3.4 Fragments

Conceptual Workflows are not saved as-is in the knowledge base: they are automatically saved

inside Fragments, which may contain information about the context in which they are relevant

so as to facilitate their retrieval from the knowledge base. We describe here our own definition

of Fragment which is similar but not identical to other definitions discussed in Section 2.2.4.

Fragments are composed of two distinct Conceptual Workflows: the Blueprint represents

the content of the Fragment and the Pattern represents the context in which the Fragment is

relevant. By default, if no Pattern is provided specifically, a Conceptual Workflow is saved

as the Blueprint of a new Fragment created with an empty Pattern.

3.4.1 Graphical Convention

By convention, Fragments are represented by two dashed rectangles side by side, with the

Pattern on the left and the Blueprint on the right, as shown on Figure 3.9.

PATTERN+ BLUEPRINT+

Figure 3.9: Graphical Convention - Fragments

54

CHAPTER 3. CONCEPTUAL WORKFLOW MODEL 3.4. FRAGMENTS

Let us illustrate Fragments by considering the following example: some Conceptual

Functions bear the annotation CriticalStep, which, in this case, means they are more

likely to fail than others. We want to log the status of the workflow right before each critical

step. One way to achieve that is to build a Fragment that will insert a logging step right before

each Conceptual Function annotated with CriticalStep, as illustrated on Figure 3.10:

• the Pattern features only the Conceptual Function and Annotation we want to match

as well as the Conceptual Link we want to bind a logging step to; and

• the Blueprint features the same elements, with a logging step (i.e. here a Conceptual

Function annotated with a Log Requirement) inserted right before the critical step.

Step+

Cri.calStep+

Step+

Log+Status+

Log+

linkbefore+
linkbefore+

Figure 3.10: Fragment Example

3.4.2 Variables

The Blueprint is in every way a regular Conceptual Workflow, but the Pattern is slightly

different: its elements are interpreted as variables. For instance, a Conceptual Function CF

annotated with a Function F in a stand-alone Conceptual Workflow or in a Blueprint will

represent a specific instance, but the same pair in a Pattern will be interpreted as “any Con-

ceptual Function annotated with F”. The names of elements in Patterns are thus disregarded

when they are matched against a base workflow.

Another special feature of a Conceptual Workflow used as a Pattern is that it may feature

links without a target or without a source, though both things cannot be missing simultaneously.

The reason for that leniency is explained in Section 4.2.6.

In our example shown on Figure 3.10, the Conceptual Function called Step featured in

both Pattern and Blueprint is a variable: it does not represent a specific instance of Concep-

tual Function with the rather generic name of Step, but instead any Conceptual Function

annotated with CriticalStep and which is the target of a Conceptual Link. Similarly, the

Conceptual Link called linkbefore represents any link targeting a Conceptual Function

annotated with CriticalStep, rather than a specific instance of Conceptual Link called

linkbefore. The names Step and linkbefore serve two purposes: identifying ele-

ments shared by the Pattern and the Blueprint and provide a human reader with clues as to

what their use is inside the Fragment, though of course nothing prevents the designer of a

Fragment from obfuscating the names of the elements therein.

55

3.4. FRAGMENTS CHAPTER 3. CONCEPTUAL WORKFLOW MODEL

The first (out of two) contribution of this work is the Conceptual Work-

flow Model: a multi-level, structurally flexible and explicitly semantic sci-

entific workflow model. It comprises Conceptual Elements representing

domain notions, Abstract Elements representing implementation, Seman-

tic Annotations to bind elements to domain, technical and/or non-functional

ontologies and Fragments to support Separation of Concerns.

CHAPTER SUMMARY

56

CHAPTER 4

TRANSFORMATION PROCESS

The transformation from a Conceptual Workflow to an abstract workflow involves two steps

as illustrated by Figure 4.1. The first step, Mapping, which is overviewed in Section 4.1 and

whose parts are detailed in Sections 4.2 to 4.5, is the computer-assisted transformation from a

simulation, modeled at a computation-independent level of abstraction through a Conceptual

Workflow, into an Intermediate Representation that contains both Conceptual Elements

and Abstract Elements. The second step, Conversion, detailed in Section 4.6, automatically

translates from the Intermediate Representation to a target abstract workflow language, so

that execution can be delegated to an existing scientific workflow framework such as those

mentioned in Section 2.1.4.

Conceptual+Level+ Abstract+Level+Transforma5on+

Conversion+Mapping+

Intermediate+Representa5on+

Figure 4.1: Transformation Process

4.1 Mapping

The Mapping step of the Transformation Process takes place inside the Conceptual Work-

flow Model and converts from a scientific workflow modeled at the Conceptual Level to an

Intermediate Representation which lies at the Abstract Level. It is a semi-automated pro-

cess, providing tools to assist but giving control over all decisions to the user.

57

4.1. MAPPING CHAPTER 4. TRANSFORMATION PROCESS

4.1.1 Mechanisms

Mapping is an interactive process, driven step by step by the user, as highlighted by Figure 4.2.

Its main objectives are: (i) to transform all Requirements into Specifications and (ii) to con-

nect all Conceptual Inputs and Input Ports. The process can not be fully automated, since

there is no guarantee that required Activities exist or that they are annotated in a way that al-

lows their automated discovery. However, there are mechanisms in place to help users lower

the abstraction level of their Conceptual Workflow:

• Discovery is the process of finding and selecting relevant Fragments to weave and relies

on Annotations, as explained in Section 4.4, as well as on:

– Weaving which automatically modifies the Conceptual Workflow, based on Frag-

ments taken from the knowledge base, as explained in Section 4.2;

– additional tools called Erasing and Merging completing Weaving, as explained in

Section 4.3; and

• Composition is assisted through suggestions of links between elements of the Concep-

tual Workflow and of additional Activities, as explained in Section 4.5.

Mapping'

Design'

Discovery'

Conversion'

Composi2on'

Legend'

'''''''''''''Automated'Step'

'''''''''''''Manual'Step'

'''''''''''''Semi:automated'Step'

Figure 4.2: Mapping Process

4.1.2 Classification

The position of the Mapping model transformation in the taxonomy defined in [Czarnecki 03]

and described in Section 2.3.3, is represented on Figure 4.3. It is a Feature Model instance and

every node on the graph is relevant to Mapping:

• Transformation Rules: the essential transformation rule in Mapping is Weaving, de-

scribed in Section 4.2, so the classification here stems from that of Weaving, the only

difference being that some other mechanisms (e.g. Merging) are imperative;

58

CHAPTER 4. TRANSFORMATION PROCESS 4.2. WEAVING

Mapping

Transformation

Rules

Rule

Application

Scoping

Source-Target

Relationship

Rule

Application

Strategy

Rule

Scheduling

Rule

Organization
Directionality

LHS/RHS Parameterization

Patterns Logic

Form Syntax Typing

Graphs Concrete

Textual Graphical

Semantically

Typed

Executable

Imperative Declarative

Source
Existing

Target

In-Place

(In Source)
Update

Destructive

Interactive Form
Rule

Selection

Rule

Iteration

Explicit

Internal

Interactive Recursion

Organizational

Structure

Source-Oriented

Unidirectional

Figure 4.3: Classification of the Mapping model transformation

• Rule Application Scoping and Strategy: rules are interactive, i.e. users decide when

and where to apply a rule in the Conceptual Workflow being mapped to an Intermediate

Representation;

• Source-Target Relationship: a Conceptual Workflow is mapped in-place, with new

elements inserted and old elements modified or even deleted, which overall amounts to

destructive updating;

• Rule Scheduling: the rules used during Mapping, be it Weaving, Merging, Erasing or

any modification the user may perform manually, are selected by the users and sometimes

include internally scheduled recursive sub-rules;

• Rule Organization: rules are made available to the users contextually, based on the

source model; and

• Directionality: Mapping is meant to lower the abstraction level of a Conceptual Work-

flow and only works in that direction.

4.2 Weaving

The Weaving mechanism (i) applies Fragments, defined in Section 3.4, on base workflows,

(ii) is used as a transformation rule during Mapping and (iii) is itself a model transformation,

hence the classification given in Section 4.2.7. It requires three things:

• a way to determine where the base process must be modified, a role played by a com-

bination of “join points” and “pointcuts” in Aspect-Oriented Programming (AOP) and

played here by the Pattern;

• a way to determine how the base process must be modified, a role played by the “advice”

in AOP and played here by the combination of the Blueprint and Pattern; and

• a tool to perform the modifications, called a “Weaver” in AOP and described here in

Section 4.2.

59

4.2. WEAVING CHAPTER 4. TRANSFORMATION PROCESS

The modifications performed when weaving a Fragment depend on both Blueprint and

Pattern, following those rules, summarized in Table 4.1:

• elements that are featured in the Blueprint but not in the Pattern will be generated:

they will be created inside the base workflow;

• elements that are featured in the Pattern but not in the Blueprint will be deleted: they

will be removed from the base workflow;

• elements that are featured in both will be preserved: they might be slightly modified in

the base workflow (e.g. changing the target of a Conceptual Link), but they will not be

destroyed; and

• elements that are only featured in the base workflow and in neither the Blueprint nor the

Pattern will be left untouched: they will not be modifed in any way.

Table 4.1: Pattern/Blueprint combinations

Pattern Blueprint Resulting Graph

X X Preserved

X Generated

X Deleted

Untouched

The comparison of elements between Blueprint and Pattern is based on names: if there is

a Conceptual Input called CI in the Blueprint and another one called the same in the Pattern,

they will be interpreted as being the same element (in the aforementioned rules), even though

they are necessarily different instances of Conceptual Input. Specifically for that reason, all

links may bear names in Fragments.

URL+

Fetch+web+page+

Parse+HTML+

Match+

Keyword+

Matches+

Cri.calStep+

Cri.calStep+

Legend:+

+Preserved+

+Deleted+

+Untouched+

yellow+

red+

green+

Figure 4.4: Weaving Example - Base workflow

60

CHAPTER 4. TRANSFORMATION PROCESS 4.2. WEAVING

Let us illustrate Weaving with the example Fragment defined in Section 3.4 and shown on

Figure 4.5 as well as a simple base workflow, shown on Figure 4.4, which describes the process

of fetching a web page and matching its contents against an input keyword. The Annotation

CriticalStep is used on two steps in the workflow which are particularly likely to fail,

Fetch web page and Parse HTML.

Step+

Cri.calStep+

Step+

Log+Status+

Log+

linkbefore+
linkbefore+

Legend:+

+Preserved+

+Generated+

+Deleted+

yellow+

blue+

red+

Figure 4.5: Weaving Example - Fragment

URL+

Fetch+web+page+

Parse+HTML+

Match+

Keyword+

Matches+

Log+Status+
Log+

Log+Status+
Log+

Legend:+

+Preserved+

+Generated+

+Untouched+

yellow+

blue+

green+

Figure 4.6: Weaving Example - Result

61

4.2. WEAVING CHAPTER 4. TRANSFORMATION PROCESS

Figure 4.6 shows the result of Weaving the example Fragment of Figure 4.5 into the base

workflow of Figure 4.4. All three figures are color coded thusly:

• preserved elements, i.e. the Step Conceptual Functions, their matches Fetch web

page and Parse HTML and their incoming Conceptual Links are in yellow;

• generated elements, i.e. the Log Status Conceptual Functions as well as their Log

Annotations and outgoing Conceptual Links, are in blue;

• deleted elements, i.e. the CriticalStep Annotations are in red; and

• untouched elements are in green.

4.2.1 Steps

As is clear from the modeling of the process in our own Conceptual Workflow Model, shown

on Figure 4.7, Weaving comprises 5 steps:

Fragment+

Convert+to+SPARQL+

CONSTRUCT+query+
Base+Workflow+

Run+SPARQL+query+

Merge+graphs+

Fix+conflicts++

Clean+up+

Woven+workflow+

Figure 4.7: Weaving Process

1. the Fragment is converted to a SPARQL Protocol and RDF Query Language (SPARQL)

CONSTRUCT query, as explained in Section 4.2.2;

2. the resulting query is run against the base Conceptual Workflow, as explained in Sec-

tion 4.2.3;

62

CHAPTER 4. TRANSFORMATION PROCESS 4.2. WEAVING

3. the graph result of the query is merged with that of the base Conceptual Workflow, as

explained in Section 4.2.3;

4. conflicts introduced at the previous step are fixed, as explained in Section 4.2.4; and then

5. elements present in the Pattern but not in the Blueprint are deleted and Uniform Re-

source Identifiers (URIs) are generated for blank nodes, as explained in Section 4.2.5.

In many cases, after Weaving, depending on how new elements are bound to existing ones,

as detailed in Section 4.2.6, users might want to employ the Merging and/or Erasing tools,

respectively described in Section 4.3.1 and Section 4.3.2, to reach their goals.

4.2.2 Fragment to SPARQL Conversion

SPARQL is the standard query language for Resource Description Framework (RDF) knowl-

edge bases. Since it is built around the notion of graph pattern matching, it is a very good match

for Fragments. In particular, CONSTRUCT queries (cf. Section 2.4.3.3) can be leveraged to

implement Weaving fairly easily.

The conversion from a Fragment to a SPARQL CONSTRUCT query is straightforward. The

Pattern is converted into the CONSTRUCT part of the query and the Blueprint into the WHERE

part. Triples are converted according to the following rules:

• properties are kept as-is;

• resources belonging to the COnceptual WORKflow (COWORK) ontology or to an exter-

nal one are kept as-is;

• other resources (i.e. instances pertaining to the Fragment) are transformed into SPARQL

variables (i.e. names preceded by ? markers) by default; and

• every resource in the Blueprint whose name does not exist in the Pattern is transformed

into a blank node (i.e. a placeholder name preceded by :). This use of blank nodes

ensures that elements present in the Blueprint but not in the Pattern will be generated

once for each match.

However, not all triples are converted, as some would hinder pattern matching or produce

garbage triples in the resulting workflow: In particular, rdfs:label declarations - which

specify the names of resources and are used to compare the elements between Pattern and

Blueprint - are converted neither for Pattern resources (otherwise they would prevent match-

ing when names differ even slightly) nor for resources the Blueprint shares with the Pattern

(otherwise preserved elements would be systematically renamed).

To illustrate the conversion from Fragments to SPARQL CONSTRUCT queries, let us re-

consider the example Fragment first introduced in Section 3.4.1 and shown on Figure 4.5:

Weaving this Fragment amounts to inserting a Conceptual Function annotated with a Log

Requirement before every Conceptual Function which bears a CriticalStep Require-

ment.

This example uses the following prefixes:

• rdf is the standard specification of RDF;

• rdfs is the standard specification of RDF Schema (RDFS);

• cowork is our COWORK ontology;

63

4.2. WEAVING CHAPTER 4. TRANSFORMATION PROCESS

• ex is the namespace of the Fragment example; and

• domain serves as an example of external domain ontology.

In both Listing 4.1 (the example Fragment) and Listing 4.2 (the result of converting said

Fragment to SPARQL), names are abbreviated for the listings to fit side by side (for instance

Blueprint is abbreviated as Bluep) and lines are aligned so the line on the right-hand

listing is the conversion of the one on the left, save for lines 11, 29 and 41 which exist only

in SPARQL and have no equivalent in the original Fragment. The unabbreviated listings are

given in Appendix C.

Listing 4.1: Fragment to SPARQL Conversion

- Fragment Example (abbreviated)

1 @prefix rdf: <.../22-rdf-syntax-ns#> .

@prefix rdfs: <.../rdf-schema#> .

3 @prefix cowork: <.../cowork.rdfs#> .

@prefix ex: <.../fragmentexample#> .

5 @prefix remote: <.../remoteontologyexample#> .

7 ex:Fragment1 rdf:type cowork:Fragment .

ex:Fragment1 cowork:hasBluep ex:Bluep1 .

9 ex:Fragment1 cowork:hasPattern ex:Pattern1 .

ex:Fragment1 rdfs:label "Example" .

11 ## no equivalent

ex:Bluep1 rdf:type cowork:ConcepFunc .

13 ex:Bluep1 cowork:contains ex:ConcepFunc2 .

ex:Bluep1 cowork:contains ex:ConcepFunc3 .

15 ex:Bluep1 rdfs:label "Example" .

ex:ConcepFunc2 rdf:type cowork:ConcepFunc .

17 ex:ConcepFunc2 rdfs:label "Log Status" .

ex:ConcepFunc2 cowork:hasReq ex:Function1 .

19 ex:Function1 rdf:type cowork:Function .

ex:Function1 rdf:type remote:Log .

21 ex:ConcepFunc3 rdf:type cowork:ConcepFunc .

ex:ConcepFunc3 rdfs:label "Step" .

23 ex:ConcepLk2 cowork:hasTarget ex:ConcepFunc2 .

ex:ConcepLk2 rdf:type cowork:ConcepLk .

25 ex:ConcepLk2 rdfs:label "linkbefore" .

ex:ConcepLk3 cowork:hasSource ex:ConcepFunc2 .

27 ex:ConcepLk3 cowork:hasTarget ex:ConcepFunc3 .

ex:ConcepLk3 rdf:type cowork:ConcepLk .

29 ## no equivalent

ex:Pattern1 rdf:type cowork:ConcepFunc .

31 ex:Pattern1 cowork:contains ex:ConcepFunc1 .

ex:Pattern1 rdfs:label "Example" .

33 ex:ConcepFunc1 rdf:type cowork:ConcepFunc .

ex:ConcepFunc1 rdfs:label "Step" .

35 ex:ConcepFunc1 cowork:hasReq ex:Concern1 .

ex:Concern1 rdf:type cowork:Concern .

37 ex:Concern1 rdf:type remote:CriticalStep .

ex:ConcepLk1 cowork:hasTarget ex:ConcepFunc1 .

39 ex:ConcepLk1 rdf:type cowork:ConcepLk .

ex:ConcepLk1 rdfs:label "linkbefore" .

41 ## no equivalent

Listing 4.2: Fragment to SPARQL

Conversion - Result Query (abbreviated)

1PREFIX rdf: <.../22-rdf-syntax-ns#>

PREFIX rdfs: <.../rdf-schema#>

3PREFIX cowork: <.../cowork.rdfs#>

PREFIX ex: <.../fragmentexample#>

5PREFIX remote: <.../remoteontologyexample#>

7## ignored

ignored

9## ignored

ignored

11CONSTRUCT {

?Example rdf:type cowork:ConcepFunc .

13?Example cowork:contains _:LogStatus .

?Example cowork:contains ?Step .

15## ignored

_:LogStatus rdf:type cowork:ConcepFunc .

17_:LogStatus rdfs:label "Log Status" .

_:LogStatus cowork:hasReq _:Func1 .

19_:Func1 rdf:type cowork:Func .

_:Func1 rdf:type remote:Log .

21?Step rdf:type cowork:ConcepFunc .

ignored

23?linkbefore cowork:hasTarget _:LogStatus .

?linkbefore rdf:type cowork:ConcepLk .

25?linkbefore rdfs:label "linkbefore" .

_:ConcepLk3 cowork:hasSource _:LogStatus .

27_:ConcepLk3 cowork:hasTarget ?Step .

_:ConcepLk3 rdf:type cowork:ConcepLk .

29} WHERE {

?Example rdf:type cowork:ConcepFunc .

31?Example cowork:contains ?Step .

ignored

33?Step rdf:type cowork:ConcepFunc .

ignored

35?Step cowork:hasReq ?Concern1 .

?Concern1 rdf:type cowork:Concern .

37?Concern1 rdf:type remote:CriticalStep .

?linkbefore cowork:hasTarget ?Step .

39?linkbefore rdf:type cowork:ConcepLk .

ignored

41}

The triples binding Pattern and Blueprint to the Fragment, i.e. lines 7-10 of Listing 4.1,

are ignored during conversion. Indeed, the Fragment is woven into a Conceptual Workflow,

not another Fragment. Triples specifying names, through the rdfs:label property, of re-

sources present in the Pattern, i.e. lines 15, 22, 32, 34 and 40 of Listing 4.1, are not converted.

The Blueprint and Pattern automatically bear the same name (that of the Fragment).

Indeed, they both represent the base workflow in which the Fragment is woven. All re-

sources present in both Blueprint and Pattern, including themselves, or only in the Pattern

64

CHAPTER 4. TRANSFORMATION PROCESS 4.2. WEAVING

are converted into variables bearing either the value of their rdfs:label property, if it ex-

ists, (e.g. ex:Pattern1 rdfs:label "Example" implies that Example is the name

of ex:Pattern1) or the local name (e.g. the local name of ex:Concern1 is Concern1):

• ex:Pattern1 and ex:Blueprint1 =⇒ ?Example

• ex:ConceptualFunction1 and ex:ConceptualFunction3 =⇒ ?Step

• ex:ConceptualLink1 and ex:ConceptualLink2 =⇒ ?linkbefore

• ex:Concern1 =⇒ ?Concern1

Resources present only in the Blueprint are transformed into blank nodes, based on their

name (again, label or local name):

• ex:ConceptualFunction2 =⇒ :LogStatus

• ex:Function1 =⇒ :Function1

• ex:ConceptualLink3 =⇒ :ConceptualLink3

Apart from the conversions into variables/blank nodes, the aforementioned skipped lines

and the positioning of Pattern (resp. Blueprint) triples inside the CONSTRUCT (resp. WHERE)

brackets, the rest is left as it is in Turtle. For instance, ex:Concern1 on line 37 of Listing 4.1

becomes ?Concern1 on line 37 of Listing 4.2.

4.2.3 SPARQL query

Once the query has been automatically generated, it is run against the base workflow the Frag-

ment is woven onto: the SPARQL query engine is given the SPARQL CONSTRUCT query

resulting from the Fragment conversion and the triple graph of the base Conceptual Work-

flow as a base model in which to execute the query.

The query produces one result graph which, if there were two or more matches, is the union

of the graphs constructed (one for each match found). That result graph contains only the triples

generated by the query and none of those that are in the base workflow. To obtain a workable

result, at the cost of generating conflicts as explained in the following Section 4.2.4, the result

graph is merged with the base workflow by a direct graph union (i.e. the union graph contains

all the triples of both graphs).

URL+

Fetch+web+page+

Parse+HTML+

Match+

Keyword+

Matches+

Cri5calStep+

Cri5calStep+

A+

B+

C+
D+

E+

(a) Base workflow

Fetch+web+page+

Log+Status+
Log+

Parse+HTML+

Log+Status+
Log+

A+ B+

F+ G+

(b) Query result

Figure 4.8: Fragment SPARQL Query - Example

65

4.2. WEAVING CHAPTER 4. TRANSFORMATION PROCESS

For instance, in our running example, executing the query obtained in the previous sec-

tion against the example base workflow shown on Figure 4.8a would produce a result graph

with those two Conceptual Functions preceded by a Log Status Conceptual Function

annotated with Log, as shown on Figure 4.8b. Letters on both figures are meant to identify

Conceptual Links, especially those shared by both graphs. The union of those two graphs,

the base workflow and the query result, cannot be represented as a Conceptual Workflow,

because Conceptual Links A and B both would end up with multiple targets, which violates

the Conceptual Workflow Model. This is a typical example of conflict.

4.2.4 Conflicts

Conflicts in the graphs resulting from the union of base workflows and query results stems from

preserved links: links present in both Pattern and Blueprint which will, more often than not,

be switched to new sources and/or targets by the Weaving process. The problem is that running

the SPARQL CONSTRUCT and mixing the result graph with the base workflow will not remove

anything from the original workflow: the modified links will thus have multiple sources and/or

targets, which conflicts with the Conceptual Workflow Model.

URL+

Fetch+web+page+

Parse+HTML+

Match+

Keyword+

Matches+

Cri5calStep+

Cri5calStep+

Log+Status+
Log+

Log+Status+
Log+

Conflict+

Legend:++

A+

F+

B+

G+

C+ D+

E+

Figure 4.9: Fragment SPARQL Query - Conflicts

In our running example, the links called A and B in Figure 4.8 are preserved because they

match with linkbefore in the Fragment which is shared by both Blueprint and Pattern.

They are also modified in that they are given a new target. Both thus generate conflicts as

highlighted by Figure 4.9.

Detecting conflicts is as simple as listing all resources that have two or more distinct sources

(resp. targets). Fixing them is a little more involved; there are three cases:

66

CHAPTER 4. TRANSFORMATION PROCESS 4.2. WEAVING

• if the target (resp. source) of the link was switched to a preserved element in the Frag-

ment, the link has two named targets (as opposed to blank nodes) in the union result

graph, fixing then requires comparing the new graph with the original and getting rid of

the target (resp. source) statement that exists in both;

• if the target (resp. source) of the link was switched to a generated element, then only

the target (resp. source) statements with a blank node as object are relevant and the one

statement with a named object can be safely deleted; and

• if the link ends up with two or more blank node targets (resp. source) then it must be split

into as many links as there are blank node targets (resp. sources).

URL+

Fetch+web+page+

Parse+HTML+

Match+

Keyword+

Matches+

Cri5calStep+

Cri5calStep+

Log+Status+
Log+

Log+Status+
Log+

A+

F+

B+

G+

C+ D+

E+

Figure 4.10: Fragment SPARQL Query - Conflicts Fixed

In our running example, the links A and B have two targets each: one is a generated Log

Status blank node and the other is a named Conceptual Function (respectively Fetch

web page and Parse HTML). The statements binding them to named nodes can safely be

removed automatically and that results in the Conceptual Workflow shown on Figure 4.10.

All that is left is a little cleanup, notably to get rid of deleted elements and to transform blank

nodes into named ones.

4.2.5 Clean-up

The first step to clean up the workflow is to generate URIs for the blank nodes generated

during Weaving, if any. Indeed, blank nodes work fine as a tool to generate new elements with

SPARQL CONSTRUCT queries, but having no URI makes them hard to manipulate: one has

to go through another resource they are bound to by some property. However, naming a node

after creating it as a blank node is not a feature commonly available in Semantic Web libraries.

67

4.2. WEAVING CHAPTER 4. TRANSFORMATION PROCESS

Instead, a new named node is created for each blank node, replicating all its statements, and

then the blank nodes are deleted.

The second step is to get rid of deleted elements, i.e. elements that were present in the

Pattern but not in the Blueprint. A simple way to do this is to identify those elements during

the SPARQL query conversion - when Pattern and Blueprint elements are compared to deter-

mine which elements are converted to variables and which to blank nodes - and annotate them

with a dedicated statement, such as rdfs:comment "TO REMOVE". Then, after querying,

mixing the result graph with the base one and cleaning up URIs, it is very easy to remove all

the subjects of those statements.

URL+

Fetch+web+page+

Parse+HTML+

Match+

Keyword+

Matches+

Log+Status+
Log+

Log+Status+
Log+

A+

F+

B+

G+

C+ D+

E+

Figure 4.11: Fragment SPARQL Query - Final Result

On our running example, the only deleted element is the CriticalStep Requirement,

but it is matched twice; both are thus removed and the final result is shown on Figure 4.11.

4.2.6 Binding

Elements present in the Blueprint but not in the Pattern are generated in the workflow resulting

from the Fragment Weaving process. If they are only bound to the Blueprint itself or only to

elements that are themselves generated as well, then they will be created disconnected from all

other elements in the base workflow.

Let us consider the following example: the process of aligning images is most often realized

in two steps, by first computing the best transformation from each image to a reference image

- a process generally called “registration” - and then by applying that transformation to each

image. Figure 4.12 shows a typical use of Weaving: the Conceptual Workflow on the left

has only one Conceptual Function bearing an Annotation ex:Alignment which means it

performs an image spatial alignment and the one on the right is the ideal result of Weaving

with the alignment step replaced by the aforementioned two and the Requirement transformed

into a Specification for the entire Conceptual Workflow.

68

CHAPTER 4. TRANSFORMATION PROCESS 4.2. WEAVING

Unaligned+

Images+

Reference+

Image+

Alignment+

Aligned+Images+

Alignment+

(a) Base workflow

Unaligned+

Images+

Reference+

Image+

Registra5on+

Aligned+Images+

Transforma5on+

Alignment+

(b) Desired result

Figure 4.12: Binding Example - Alignment Process

Alignment+
Alignment+

Registra5on+

Transforma5on+

Alignment+

Figure 4.13: Binding Example - Unbound Fragment

It would be tempting to try to achieve that result with the simplest Fragment, shown on

Figure 4.13: on the one hand, the Pattern contains only the Conceptual Function we want

to replace; on the other hand, the Blueprint contains only the small sub-workflow we want to

replace the aforementioned Conceptual Function with.

Unaligned+

Images+

Reference+

Image+
Registra5on+

Transforma5on+
Alignment+

Aligned+Images+

Figure 4.14: Binding Example - Unbound Weaving Result

Unfortunately, this would not achieve the desired result: the generated elements would

not be bound to anything in the result workflow and would just float around, as shown on

Figure 4.14. To avoid this loss of information, generated elements (i.e. present in the Blueprint

but not in the Pattern) must be bound to preserved elements (i.e. present in both Pattern and

Blueprint). How Weaving behaves depends on the type of preserved element used to bind the

generated elements to, whether they are nodes or links.

69

4.2. WEAVING CHAPTER 4. TRANSFORMATION PROCESS

4.2.6.1 Node-bound Weaving

Node-bound Weaving happens when generated elements are contained in a preserved node.

One way to use node-bound Weaving in our running example is to put the Registration

and Transformation Conceptual Functions inside the Alignment one, instead of delet-

ing the latter, as shown on Figure 4.15.

Alignment+

Alignment+

Alignment+

Registra5on+

Transforma5on+

Alignment+

Figure 4.15: Binding Example - Node-bound Fragment

Unaligned+

Images+

Reference+

Image+

Aligned+Images+

Alignment+

Registra5on+

Transforma5on+

Alignment+

Figure 4.16: Binding Example - Node-bound Weaving Result

The new elements are then generated inside the node(s) matched to the ones that contained

them in the Fragment, as illustrated by Figure 4.16. Though meaningful, this result is not the

desired one. The differences can either be fixed manually or by using the Erasing mechanism

described in Section 4.3.2.

4.2.6.2 Link-bound Weaving

When node-bound Weaving is unsuitable, e.g. when there is no suitable node to use for

that purpose, link-bound Weaving can be used instead by binding the generated elements to

preserved links which will necessarily be modified, i.e. either their source or target will be

switched from whatever it was to the generated element. One way to use link-bound Weaving

in our running example is to bind the registration and transformation Conceptual Functions to

the same links binding the alignment one, as shown on Figure 4.17.

If the number of links in the Pattern is exactly the same as in the base workflow, link-

bound Weaving works as expected, but if, as in our example, there are multiple matches, then

different elements will be generated for each match, as shown on Figure 4.18. Though it might

make sense in some instances to generate different elements for each path in the base workflow,

e.g. to log data transfers, it is not the desired result in our example. The differences can either

be fixed manually or by using the Merging mechanism described in Section 4.3.1.

70

CHAPTER 4. TRANSFORMATION PROCESS 4.2. WEAVING

Alignment+

Alignment+

Registra5on+

Transforma5on+

Alignment+

B+

A+

B+

A+

Figure 4.17: Binding Example - Link-bound Fragment

Unaligned+

Images+

Reference+

Image+

Aligned+Images+

Registra5on+

Transforma5on+

Alignment+

Registra5on+

Transforma5on+

Figure 4.18: Binding Example - Link-bound Weaving Result

4.2.7 Classification

The position of the Weaving model transformation in the taxonomy defined in [Czarnecki 03]

and described in Section 2.3.3, is represented on Figure 4.19. Like the classification of Map-

ping, it is a Feature Model instance and every node on the graph is relevant to Weaving:

Weaving

Transformation

Rules

Source-Target

Relationship

Rule

Application

Strategy

Rule

Scheduling

Rule

Organization
Directionality

LHS/RHS

LHS/RHS

Syntactic

Separation

Intermediate

Structures

Variables Patterns Logic

Semantically

Typed
Form Syntax Typing

Graphs Concrete

Textual Graphical

Semantically

Typed

Executable

Declarative

Existing

Target
Update

In-Place

(In Source)
Destructive

Non-Deterministic

Concurrent

Form
Rule

Selection

Implicit
Explicit

Condition

Organizational

Structure

Independent

Unidirectional

Figure 4.19: Classification of the Weaving model transformation

71

4.3. TOOLS CHAPTER 4. TRANSFORMATION PROCESS

• Transformation Rules: Weaving relies on SPARQL CONSTRUCT queries and is based

on Fragments, their results can be thought of as intermediate structures, the Fragments

they use are parameterized semantically-typed graph patterns whose logic is declarative

and they separate left-hand side Pattern from right-hand side Blueprint syntactically;

• Source-Target Relationship: the result of the SPARQL CONSTRUCT query is merged

with the base workflow in what amounts to an in-place destructive update;

• Rule Application Strategy: the graph transformation defined by a Fragment is applied

concurrently wherever the Pattern matches the base workflow;

• Rule Scheduling: scheduling of rules is performed implicitly by the SPARQL engine

according to the explicit conditions the Pattern defines;

• Rule Organization: Fragments are stored in and retrieved from the knowledge base

independently from the Conceptual Workflow being mapped; and

• Directionality: though it is possible for any Weaving application to build a Fragment

undoing its effects, the Weaving mechanism itself is unidirectional.

4.3 Tools

The following two tools, Merging and Erasing, are provided to the user to help reach the

desired result after, respectively, link-bound and node-bound Weaving (cf. Section 4.2.6).

In some cases, the result of Weaving will be directly desirable, therefore those tools are

not automatically used and are not considered to be part of Weaving per se. Instead, they are

provided for the user to exploit at will.

4.3.1 Merging

Merging is a tool melding two Conceptual Workflows into one. What it does in practice, after

checking that the two input Conceptual Workflows are of the same type (i.e. two Conceptual

Functions, two Conceptual Inputs or two Conceptual Outputs), is removing all the elements

contained in one of them (i.e. the second argument), all links linking to or from it as well as

its annotations, adding them progressively to the other (i.e. the first argument) and finally

removing the now completely empty Conceptual Workflow.

Resulting Conceptual Workflows are named after the first argument. If the name of the

second argument differs, then that information will be lost through Merging. That loss seems

acceptable, since Merging is meant to be used on virtually identical Conceptual Workflows.

Merging becomes especially useful after link-bound Weaving, when multiple paths gen-

erate as many new elements, even though only one was desired. To illustrate that use, let us

reconsider the example given in Section 4.2.6.2: because the base workflow had two possi-

ble paths through the Alignment step (one per Conceptual Input), link-bound Weaving

produces not one Registration and one Transformation step, but two of each.

By using Merging on the twin Registration steps and the twin Transformation

ones, the user can, with minimal hassle, achieve the desired result, shown on Figure 4.20,

without modifying the Fragment in a way that would restrict it (e.g. putting two links targeting

the Alignment step to account for the two paths present in the base workflow).

72

CHAPTER 4. TRANSFORMATION PROCESS 4.3. TOOLS

Unaligned+

Images+

Reference+

Image+

Aligned+Images+

Registra5on+

Transforma5on+

Alignment+

Registra5on+

Transforma5on+

Merging+

Legend:++

Unaligned+

Images+

Reference+

Image+

Aligned+Images+

Registra5on+

Transforma5on+

Alignment+

Result+

Figure 4.20: Merging Example

4.3.2 Erasing

Erasing is a tool that not only removes a Conceptual Workflow, but reassigns the elements

associated with it (i.e. Conceptual Links, Annotations and sub-workflows) so as not to lose

them. It is a tool meant to help the user get rid of potentially undesired levels of encapsulation

created by node-bound Weaving and it is restricted to Conceptual Workflows embedding no

Abstract Elements to ensure that links between high-level concepts and low-level elements

are not needlessly destroyed.

The process is a bit more involved than that of Merging, because the way elements are

reassigned depends on their type.

4.3.2.1 Conceptual Links

B+ C+

D+ E+

F+ G+

A+

H+

B+ C+

D+ E+

F+ G+

A+

H+

Result+

Legend:++ Erased+element+

Figure 4.21: Erasing - Links

Conceptual Links targeting (resp. coming from) the erased Conceptual Workflow are

reassigned to the Conceptual Functions it contains that have no incoming (resp. outgoing)

links, since it makes them de facto entry (resp. exit) points of the workflow, as illustrated by

Figure 4.21.

In cases where there are no suitable Conceptual Functions in the erased one, the incoming

links are combined with the outgoing links, in such a way that there is a link between each pre-

decessor and each successor of the erased Conceptual Workflow, as illustrated by Figure 4.22.

73

4.3. TOOLS CHAPTER 4. TRANSFORMATION PROCESS

B+ C+

D+

E+ F+

A+

G+

B+ C+

E+ F+

A+

G+

Result+

Legend:++ Erased+element+

Figure 4.22: Erasing - Links Bypass

4.3.2.2 Annotations

When it comes to reassigning Annotations, there are 4 cases, depending on the nature of the

erased Conceptual Workflow and the Meaning of the Annotations:

• for Conceptual Functions with sub-Conceptual Functions, the Requirements are re-

assigned to those sub-functions and the Specifications to the parent, as illustrated by

Figure 4.23a;

• for Conceptual Functions without sub-Conceptual Functions, all Annotations are re-

assigned to the parent, as illustrated by Figure 4.23b;

• for Conceptual Inputs, Annotations are re-assigned to all compatible predecessors, as

illustrated by Figure 4.23c; and

• for Conceptual Outputs, Annotations are re-assigned to all compatible successors, as

illustrated by Figure 4.23d.

A+

C+
E+

F+

D+

B+

A+

C+

E+

F+

D+

Result+

Legend:++ Erased+element+

(a) Conceptual Functions with Sub-functions

A+

C+

E+

F+

D+

B+

A+

B+

E+

F+

D+

Result+

Legend:++ Erased+element+

(b) Conceptual Functions without Sub-functions

A+ B+

D+

E+

C+

F+

G+

A+ B+

E+

C+

F+

G+

F+

G+

Result+

Legend:++ Erased+element+

(c) Conceptual Inputs

B+

C+

D+ E+

F+

G+

A+

B+

D+ E+

F+

G+

A+

F+

G+

Result+

Legend:++ Erased+element+

(d) Conceptual Outputs

Figure 4.23: Erasing - Annotations

74

CHAPTER 4. TRANSFORMATION PROCESS 4.3. TOOLS

4.3.2.3 Sub-workflows

A+

B+

C+

A+

B+

C+

Result+

Legend:++ Erased+element+

Figure 4.24: Erasing - Sub-workflows

Sub-workflows of the erased Conceptual Workflow become sub-workflows of its parent,

as illustrated by Figure 4.24.

G+

C+ D++

J+ K+

A+ B+

L+ M+

H+

E+

R+

S+

N+

O+

T+

U+

P+

Q+

F+

I+

++

G+

C+ D++

J+ K+

A+ B+

L+ M+

R+

S+

N+

O+

T+

U+

P+

Q+

F+

I+

Result+

Legend:++ Erased+element+

Figure 4.25: Erasing - Link Constraints

If the sub-workflow is a Conceptual Input (resp. Conceptual Output) with incoming

(resp. outgoing) links that come from (resp. target) a sub-workflow of its new parent (i.e.

the parent of the erased Conceptual Workflow), then the reassignment violates the constraint

imposed on Conceptual Links, cf. Section 3.1.4. There are two cases, both illustrated by

Figure 4.25:

• if the Conceptual Input (resp. Conceptual Output) embeds no Abstract Elements,

then it is itself recursively erased;

• otherwise, it is transformed into a Conceptual Input and its Annotations (both Require-

ments and Specifications) are transferred to all compatible predecessors (resp. succes-

sors).

75

4.4. DISCOVERY CHAPTER 4. TRANSFORMATION PROCESS

4.3.2.4 Example

Back to our running example, after node-bound Weaving, by using Erasing on the leftover

Alignment step, the user can achieve the same result as with link-bound Weaving then

Merging, as shown on Figure 4.26.

Unaligned+

Images+

Reference+

Image+

Aligned+Images+

Alignment+

Registra5on+

Transforma5on+

Alignment+

Result+

Unaligned+

Images+

Reference+

Image+

Registra5on+

Transforma5on+

Aligned+Images+

Alignment+

Legend:++ Erased+element+

Figure 4.26: Erasing - Example

4.4 Discovery

The usefulness of Weaving is limited by the quantity and quality of available Fragments and

by the ability of end users to find the Fragments which best fit their needs. The user community

can be thought of as responsible for the quality of the Fragments present in their knowledge

base, but even plentiful relevant Fragments will be of little use if they are not found.

One of the main reasons why Mapping cannot be fully automated is that finding a relevant

Fragment is not guaranteed: there might be no such Fragment in the knowledge base or it

might be annotated inconsistently with the base Conceptual Workflow.

However, it is possible to help users find candidate Fragments based on Annotations, in

cases where matches exist. For the system to suggest Fragments in as many cases as possible,

it is also important to broaden results, i.e. to suggest Fragments which are less-than-perfect

matches for the situation. Though those Fragments might not perform all desired Functions

and/or fulfill all Concerns, they might give part of the answer or serve for the user as clues as

to what can be done.

4.4.1 Process

The process of helping users find Fragments of varied relevance is called Discovery and is

done in four steps, as is clear from the modeling of the process in our own Conceptual Work-

flow Model, shown on Figure 4.27:

• Selection: the user selects a Conceptual Workflow with at least one Requirement;

• Matching: the Requirements of that Conceptual Workflow are compared to that of

Fragments contained in the knowledge base, as explained in Section 4.4.2;

76

CHAPTER 4. TRANSFORMATION PROCESS 4.4. DISCOVERY

• Ranking: the system orders the matches found at the previous step by order of probable

relevance, as explained in Section 4.4.3; and

• Choice: the ordered list of candidates is presented to users for them to choose the Frag-

ment that will be used as input for Weaving.

Weaving+

Woven+Workflow+

Unmapped+

Workflow+

Discovery+

Selec5on+

Matching+

Ranking+

Choice+

Fragment+

Figure 4.27: Discovery Process

4.4.2 Matching

Before Matching, the user selects a Conceptual Workflow with one or more Requirements.

The objective of Matching is to find Fragments in the knowledge base with Annotations

corresponding to those Requirements.

Trying to find all Requirements simultaneously would miss all partial matches (i.e. Frag-

ments bearing Annotations matching only part of the target Requirements) and looking for

all possible combinations of Requirements would not scale well with the number of Require-

ments. The best option is thus to look for Fragments matching each Requirement separately

and getting rid of redundancies.

However, it would make little sense to compare a Requirement with all Annotations in-

discriminately. Indeed, the Role of Annotations matters as well as their location inside the

Fragments:

• a Requirement present...

– ...only in the Pattern represents an objective of the Fragment, i.e. a Function it

performs or a Concern it fulfills;

– ...in both the Pattern and the Blueprint represents a context in which the Fragment

is relevant and that it preserves;

– ...only in the Blueprint represents a need for further Mapping; and

77

4.4. DISCOVERY CHAPTER 4. TRANSFORMATION PROCESS

• a Specification present...

– ...only in the Pattern represents a context in which the Fragment is relevant and

that it modifies;

– ...in both the Pattern and the Blueprint represents a context in which the Fragment

is relevant and that it preserves;

– ...only in the Blueprint represents a result of the Fragment, i.e. a Function it

performs or a Concern it fulfills.

Therefore, Matching limits comparison to the Requirements present in Patterns and the

Specifications present in Blueprints, so as to focus on the objectives and results of Fragments.

4.4.2.1 Match Quality

When comparing Annotations, it is not enough to determine whether they are equal, i.e. share

the same Type. Indeed, doing only that would make Matching only more restrictive than

keyword-based search, since keywords would be limited to terms defined in an ontology. To

leverage semantic knowledge, it is necessary to take into account class hierarchies, at the very

least. Obviously, the further apart classes are in a taxonomy graph, the less similar the two

classes are, but direction counts just as much as distance.

Indeed, whenever a Sub rdfs:subClassOf Super triple is asserted, since all in-

stances of Sub are instances of Super but instances of Super are not necessarily instances

of Sub, it induces the following two relationships between the two classes: Sub is narrower

than Super and Super is broader than Sub.

For instance, in OntoVIP, the ontology of the Virtual Imaging Platform (VIP), cf. Sec-

tion 5.2.1, affine-registration is broader than rigid-registration and nar-

rower than registration, as can be seen on the very small excerpt shown on Figure 4.28.

For two given Annotations Candidate (the potential match whose quality is evaluated)

and Target (the reference to match), we define three distinct match qualities (all other cases

are considered to be no match at all):

• Exact match applies when Candidate and Target share the same type;

• Narrower match applies when the Candidate is a subtype of the Target; and

• Broader match applies when the Candidate is a supertype of the Target.

The case for narrower matches seems pretty straightforward, at first glance: if a user

is looking for an affine rigid registration process, they will likely want both mono and multi

modality versions to come up in their search. In fact, the need to find narrower matches is so

ubiquitous that the inference rule attached to the basic property rdfs:subClassOf ensures

they are found. For instance, if:

• Proc rdf:type vip:mono-modality-affine-rigid-registration is

asserted and

• inferences are run against the VIP ontology, then

• Proc rdf:type vip:affine-rigid-registration will be inferred; and

• looking for instances vip:affine-rigid-registration will find Proc.

78

CHAPTER 4. TRANSFORMATION PROCESS 4.4. DISCOVERY

registra5on+

affineT
registra5on+

affineTnonTrigidT
registra5on+

monoTmodalityT
affineTnonTrigidT

registra5on+

mul5TmodalityT
affineTnonTrigidT

registra5on+

rigidTregistra5on+

monoTmodalityT
rigidTregistra5on+

mul5TmodalityT
rigidTregistra5on+

nonTaffine+
registra5on+

monoTmodalityT
nonTaffineT

registra5on+

mul5TmodalityT
nonTaffineT

registra5on+

normaliza5on+

registra5onT
withTdistor5onT

correc5on+

Legend:+

+rdfs:subClassOf++

narrower+

broader+

Figure 4.28: VIP Ontology (excerpt) - Registration Processes Taxonomy

The utility of broader matches is less obvious. They are deemed moderatly relevant and

of a lower quality than both exact and narrower matches, for two reasons:

• the user might over-specify, i.e. look for a supertype of what they really need, e.g. look

for a rigid registration algorithm when a non-rigid one would do just as well in their

situation; and

• there might be valuable insight in workflows that are slightly too broad in scope for the

work at hand.

However, neither reason holds up when distance increases between candidate and target:

the broader the candidate is compared to the target, the less likely it is that it will be of any

interest for the user. For instance, if the user is looking for an affine registration process, other

types of registration processes might be of some value, but climb higher in the taxonomy and

you find dataset-processing, which is obviously way too broad to be of any use.

79

4.4. DISCOVERY CHAPTER 4. TRANSFORMATION PROCESS

Unfortunately, all rdfs:subClassOf relationships are equal, therefore it is generally

impossible to tell automatically whether a superclass is too broad to still be relevant. To avoid

burdening the user with completely irrelevant Fragments and yet attempt not to miss out on all

potentially interesting broader matches, we have decided to limit the search to direct broader

matches, i.e. candidates whose type is the direct supertype of the target’s, instead of recursively.

4.4.2.2 Matching Query

?fragment+

Fragment+

?blueprint+ ?paWern+

Target+Type+ ?supertype+

?annota5on+
?conceptual+

workflow+

?conceptual+

workflow+

rdf:type+

rdfs:subClassOf+

hasSpecifica5on+

hasRequirement+

Legend:+

+OR+alterna5ve+

+Domain+ontology+

+COWORK+ontology+

+Fragment+instance+

+Property+

+Resource+

blue+

red+

green+

Figure 4.29: Matching Query

The most efficient way to identify matching Fragments in the knowledge base is through

a SPARQL SELECT query. The query must look for many alternative graph patterns simula-

neously. Namely, as illustrated by Figure 4.29, it must look for:

• either a Requirement in a Pattern or a Specification in a Blueprint;

• either an Annotation born directly by the Pattern/Blueprint or born by a Conceptual

Workflow contained therein; and

• an Annotation of either the target type (i.e. an exact or narrower match) or a supertype

of the target type (i.e. a broader match).

In SPARQL, alternative graph patterns are declared with the keyword UNION. Whenever

two alternatives are given through that keyword, the query engine will try to match both sepa-

rately and return all results matching either or both. Listing 4.3 shows the basic SPARQL query

for Matching.

80

CHAPTER 4. TRANSFORMATION PROCESS 4.4. DISCOVERY

Listing 4.3: Matching Query (T = target type)

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

3 PREFIX cowork: <http://www.i3s.unice.fr/˜cerezo/cowork/latest/cowork.rdfs#>

5 SELECT ?fragment WHERE {

?fragment rdf:type cowork:Fragment .

7

{

9 ?fragment cowork:hasBlueprint ?blueprint .

{

11 ?blueprint cowork:hasSpecification ?annotation .

}

13 UNION

{

15 ?blueprint cowork:contains ?conceptualworkflow .

?conceptualworkflow cowork:hasSpecification ?annotation .

17 }

}

19 UNION

{

21 ?fragment cowork:hasPattern ?pattern .

{

23 ?pattern cowork:hasRequirement ?annotation .

}

25 UNION

{

27 ?pattern cowork:contains ?conceptualworkflow .

?conceptualworkflow cowork:hasRequirement ?annotation .

29 }

}

31

{

33 ?annotation rdf:type T .

}

35 UNION

{

37 ?annotation rdf:type ?supertype .

T rdfs:subClassOf ?supertype .

39 }

}

4.4.3 Ranking

After retrieving all Fragments matching any of the Requirements of the selected Conceptual

Workflow, those Fragments must be ranked by order or probable relevance for the user. In

turn, the Annotations and elements of each Fragment are compared to that of the selected

Conceptual Workflow in order to evaluate that relevance, following four principles described

in the following Section 4.4.3.1.

The algorithm itself differs depending on the type of Conceptual Workflow selected: Sec-

tion 4.4.3.3 details the Ranking algorithm for Conceptual Inputs, Section 4.4.3.4 for Con-

ceptual Outputs and Section 4.4.3.5 for Conceptual Functions.

4.4.3.1 Ranking Principles

Prioritize match quality. For the reasons given in Section 4.4.2.1, all other things being

equal, an exact match should rank higher than both narrower matches and broader matches;

and a narrower match should rank higher than broader matches. For instance, when looking

for affine registration processes, those annotated exactly likewise should come up first, then

those annotated more specifically and non-affine registration processes should come last.

81

4.4. DISCOVERY CHAPTER 4. TRANSFORMATION PROCESS

Penalize partial matches. All other things being equal, the more Requirements a Fragment

matches, the higher it should rank. For instance, when looking for a parallel registration pro-

cess, sequential registration processes should rank lower than parallel ones, since they match

only the Function and not the parallelism Concern.

Prioritize Functions over Concerns. This is only relevant for Conceptual Functions, since

Conceptual Inputs and Conceptual Outputs only bear Datasets (cf. Section 3.3.4). It makes

more sense to look first for Fragments performing the desired Functions and worry later about

the non-functional Concerns, rather than the opposite. For instance, when looking for a parallel

registration process, a sequential registration process would be more relevant to the search than

a parallel gene sequence alignment process, even though both fulfill the parallelism Concern.

Penalize extras. If the selected Conceptual Workflow is a Conceptual Function, then the

more extra Functions (i.e. Functions matching no Requirements) a Fragment bears, the

lower it should rank. For instance, when looking for a registration process, a process per-

forming both registration and denoising should rank lower than a process performing only the

desired Function.

If the selected Conceptual Workflow is a Conceptual Input (resp. Conceptual Output),

then Fragments that would generate extra Conceptual Inputs (resp. Conceptual Outputs)

through Weaving (i.e. Fragments with Conceptual Inputs (resp. Conceptual Outputs) fea-

tured only in their Blueprint), should rank lower than Fragments that would not.

4.4.3.2 Scoring

All three Ranking algorithms presented thereafter rely on the following score function:

Algorithm 1 Scoring Annotations or Elements

1: function SCORE(t : Annotation, c : Annotation)

2: if type(t) = type(c) then ⊲ If t and c are of the same type,

3: return KEM ⊲ then return the exact match constant;

4: else if type(t) ∈ superclasses(type(c)) then ⊲ else if c’s type derives from t’s,

5: return KNM ⊲ then return the narrower match constant;

6: else if type(c) = superclass(type(t)) then ⊲ else if t’s type is a subclass of c’s,

7: return KBM ⊲ then return the broader match constant;

8: else

9: return 0.0 ⊲ else return zero (no match).

10: end if

11: end function

12: function SCORE(t : Element, c : Element)
13: return maxat∈Γ(t),ac∈Γ(c)(score(at, ac)) ⊲ Return maximum score.

14: end function

As detailed in Algorithm 1, when applied on two Annotations, it evaluates and returns

their match quality, as described in Section 4.4.2.1 and when applied on two elements, such as

Conceptual Functions, it returns the maximum score between their respective Annotations.

82

CHAPTER 4. TRANSFORMATION PROCESS 4.4. DISCOVERY

It uses the following sub-functions:

• type(a : Annotation) returns a’s Type;

• superclasses(c : Class) returns the set of all superclasses of c; and

• superclass(c : Class) returns the direct superclass of c.

It also uses three constants KEM , KNM and KBM defining the default scores for exact, nar-

rower and broader matches, respectively. Though it is clear, as explained in Section 4.4.2.1,

that KEM > KNM > KBM > 0, the best value for each constant depends on the content of the

knowledge base and the preferences of the user. It is thus better not to freeze them and instead

give them default values which can be tweaked by users if they so wish.

4.4.3.3 Ranking for Conceptual Inputs

Algorithm 2 Ranking candidates for a Conceptual Input

1: function DISCOVER(ci : ConceptualInput)
2: result : Dictionary(Fragment, F loat) ⊲ Initialize result list.

3: for all r ∈ ΓR(ci) do ⊲ ∀r requirement of ci,
4: for all m ∈ match(r) do ⊲ ∀m candidate match for r:

5: w ← maxa∈Γ(m)(score(a, r)) ⊲ Compute best Matching score.

6: if m ∈ keys(result) then ⊲ If m is already in the result list,

7: result[m]← result[m] + w ⊲ then update its weight;

8: else

9: result[m]← w ⊲ else add m to the list with default weight.

10: end if

11: end for

12: end for

13: for all (m,w) ∈ result do ⊲ ∀(m,w) match and associated weight:

14: result[m]← result[m]
|ΓR(ci)|

⊲ Penalize partial matches.

15: result[m]← result[m]
1+|inputs(m)|

⊲ Penalize extra inputs.

16: end for

17: return sort(result) ⊲ Sort by decreasing weight.

18: end function

The discover function detailed in Algorithm 2 finds candidate Fragments for a selected

Conceptual Input and ranks them. It uses the score function defined in Section 4.4.3.2 and

the following sub-functions:

• match(r : Requirement) uses the SPARQL query detailed in Listing 4.3, in Sec-

tion 4.4.2, to fetch all candidate matches for the Requirement r; and

• inputs(f : Fragment) returns the set of Conceptual Inputs contained in f ’s Blueprint.

4.4.3.4 Ranking for Conceptual Outputs

The discover function detailed in Algorithm 3 finds candidate Fragments for a selected Con-

ceptual Output and ranks them. It uses the same functions as Algorithm 2, with the addition

of outputs(f : Fragment), which returns the set of Conceptual Outputs contained in f ’s

Blueprint.

83

4.5. COMPOSITION CHAPTER 4. TRANSFORMATION PROCESS

Algorithm 3 Ranking candidates for a Conceptual Output

1: function DISCOVER(co : ConceptualOutput)
2: result : Dictionary(Fragment, F loat) ⊲ Initialize result list.

3: for all r ∈ ΓR(co) do ⊲ ∀r requirement of co,

4: for all m ∈ match(r) do ⊲ ∀m candidate match for r:

5: w ← maxa∈annot(m)(score(a, r)) ⊲ Compute best Matching score.

6: if m ∈ keys(result) then ⊲ If m is already in the result list,

7: result[m]← result[m] + w ⊲ then update its weight;

8: else

9: result[m]← w ⊲ else add m to the list with default weight.

10: end if

11: end for

12: end for

13: for all (m,w) ∈ result do ⊲ ∀(m,w) match and associated weight:

14: result[m]← result[m]
|ΓR(co)|

⊲ Penalize partial matches.

15: result[m]← result[m]
|outputs(m)|+1

⊲ Penalize extra outputs.

16: end for

17: return sort(result) ⊲ Sort by decreasing weight.

18: end function

4.4.3.5 Ranking for Conceptual Functions

The discover function detailed in Algorithm 4 finds candidate Fragments for a selected Con-

ceptual Function and ranks them. It uses the same functions as Algorithm 2, with the addition

of meaning(a : Annotation), which returns the Meaning of a, i.e. either Function, Concern

or Dataset. It also uses a constant KF which is a factor characterizing how much Functions

should be prioritized over Concerns.

As with KEM , KNM and KBM , the best value for the constant KF depends on the content

of the knowledge base and the preferences of the user and it is best not to give it a default value

which can be tweaked by users if they so wish.

4.5 Composition

Once all Requirements are fulfilled, it is very likely the resulting workflow will be incomplete:

there most probably will be disconnected Activities among those woven or inserted into the

Conceptual Workflow. For the workflow to become a viable Intermediate Representation,

those Activities must be composed, i.e. all Input Ports must be bound to Output Ports.

It is at this level that most technical issues have to be dealt with, most notably format

conversion. Indeed, so far the focus has been purposely put on high-level concepts, leaving out

technicalities so as to emphasize the scientific experiment over its implementation.

However, to transform the Conceptual Workflow into a fully executable abstract workflow

still requires tackling all those technical issues.

Like Mapping, Composition cannot be fully automated, since that would assume that

every required piece of know-how is available and that it is accurately annotated. There is most

often a gap between the “physical layer”, where the enactor handles files formats, error codes

and transfer protocols, and the “semantic layer”, where Semantic Annotations lie.

84

CHAPTER 4. TRANSFORMATION PROCESS 4.5. COMPOSITION

Algorithm 4 Ranking candidates for a Conceptual Function

1: function DISCOVER(cf : ConceptualFunction)

2: if ∃c/cf ≺ c then ⊲ If there are sub-workflows,

3: result : Dictionary(ConceptualWorkflow,Object) ⊲ then initialize list

4: for all c/cf ≺ c do ⊲ and ∀c sub-workflow

5: result[c]← discover(c) ⊲ propagate to c recursively.

6: end for

7: return result ⊲ Return results of recursive propagation.

8: else

9: result : Dictionary(Element, F loat) ⊲ Initialize result list.

10: for all r ∈ ΓR(cf) do ⊲ ∀r requirement of cf ,

11: for all m ∈ match(r) do ⊲ ∀m candidate match for r:

12: w ← maxa∈Γ(m)(score(a, r)) ⊲ Compute best Matching score.

13: if meaning(r) = Function then ⊲ If r is a Function,

14: w′ ← KF ∗ w ⊲ then increase default weight by a factor KF ;

15: else ⊲ else (i.e. if r is a Concern)

16: w′ ← w ⊲ leave default weight as-is.

17: end if

18: if m ∈ keys(result) then ⊲ If m is already in the result list,

19: result[m]← result[m] + w′ ⊲ then update its weight;

20: else

21: result[m]← w′ ⊲ else add m to the list with default weight.

22: end if

23: end for

24: end for

25: for all (m,w) ∈ result do ⊲ ∀(m,w) match and associated weight:

26: result[m]← result[m]
KF ∗|ΓR(cf)∩ΩF |+|ΓR(cf)∩ΩC |

⊲ Penalize partial matches.

27: result[m]← result[m]
1+|ΓS(m)\ΓR(cf)|

⊲ Penalize extra Functions.

28: end for

29: return sort(result) ⊲ Sort by decreasing weight.

30: end if

31: end function

85

4.5. COMPOSITION CHAPTER 4. TRANSFORMATION PROCESS

Automation can be improved by extending either or both layers, e.g. augmenting basic

types with meta-data and/or extending ontologies with technical notions as they arise. But, as

with the rest of the Mapping process, there is a trade-off between the scope of the system and

the level of automation that can be provided.

Without a closed-world assumption, user input is needed to sort out non-modeled Require-

ments and fill in knowledge and know-how that was never captured. Nonetheless, workflow

design can be assisted in cases where Annotations provide enough information to detect and/or

solve technical issues.

We leverage Semantic Annotations in four different ways highlighted on Figure 4.30:

• to suggest Data Links between compatible Ports in the workflow, as explained in Sec-

tion 4.5.1;

• to suggest Activities from the knowledge base that could produce the type of data re-

quired by an existing Activity, as explained in Section 4.5.2;

• to conversely suggest Activities from the knowledge base that could consume the type

of data produced by an existing Activity, as explained in Section 4.5.3; and

• to suggest Activities (or chains thereof) from the knowledge base that could fix a mis-

matched Data Link in the workflow, as explained in Section 4.5.4.

Select'una;ached'

Output'Port'

Select'

Consumer'

Consumer'

Sugges2on'

Select'

Converter'

Start'

End'

Legend'

'''''''''''''Automated'Step'

'''''''''''''Manual'Step'

Select'una;ached'

Intput'Port'

Select'mismatched'

Data'Link'

Producer'

Sugges2on'

Converter'

Sugges2on'

Link'

Sugges2on'

Select'

Producer'

Select'

Link'

Inser2on'

Figure 4.30: Composition Process

4.5.1 Link Suggestion

When a Port is not bound by any Data Link, it is unattached. While unattached Output Ports

are not necessarily a problem (they might be by-products of an Activity that are irrelevant to

the simulation at hand), all unattached Input Ports induce unreachable parts in the workflow.

86

CHAPTER 4. TRANSFORMATION PROCESS 4.5. COMPOSITION

Indeed, if no data is ever directed to an Activity, it will never be executed and neither will be

those depending on its execution (through Order Links) or its products (through Data Links).

The link suggestion algorithm examines all unattached Input Ports in the Conceptual

Workflow and suggests Data Links between them and any compatible Output Port already

present in the workflow.

An Output Port is compatible with an Input Port if and only if (i) the associated Data

Link would preserve the order defined by Conceptual Links and (ii) their Annotations match,

i.e. their score, as defined in Section 4.4.3.2, is not null:

Ports Compatibility

∀cS = (VS, ES) ∈ H
∀cT = (VT , ET) ∈ H

∀o ∈ LOP ∩ VS

∀i ∈ LIP ∩ VT

o֌ i i.e. o is compatible with i
iff: (cS = cT or cS cT)
and score(o, i) > 0

Subsequently, suggesting links to the user for a given Conceptual Workflow consists in

listing all its unattached Input Ports and finding all compatible Output Ports.

It is done through two functions:

• predecessing(cw : ConceptualWorkflow), detailed in Algorithm 5, finds all Output

Ports predecessing the Conceptual Workflow cw; and

• link(cw : ConceptualWorkflow), detailed in Algorithm 6, checks whether predecess-

ing Output Ports are compatible and suggests them if they are.

Algorithm 5 Finding predecessing Output Ports

1: function PREDECESSING(cw : ConceptualWorkflow)

2: result : List(OutputPort) ⊲ Initialize result list.

3: for all o ∈ LOP ∩ immediateOutputs(cw) do ⊲ ∀o Output Port immediately in cw:

4: resultև o ⊲ Append o to the list.

5: end for

6: for all cl ∈ incomingLinks(cw) do ⊲ ∀cl Conceptual Link targeting cw:

7: result← result ∪ predecessing(source(cl)) ⊲ Propagate to cl’s source.

8: end for

9: if ∃cP/cP � cw then ⊲ If cw has an immediate parent cP ,

10: result← result ∪ predecessing(cP) ⊲ then propagate to cP .

11: end if

12: return result ⊲ Return all predecessing Output Ports.

13: end function

87

4.5. COMPOSITION CHAPTER 4. TRANSFORMATION PROCESS

The predecessing function uses the following sub-functions:

• immediateOutputs(cw : ConceptualWorkflow) returns the set of Conceptual Out-

puts and Output Ports directly contained in cw (by opposition to those possibly con-

tained in sub-workflows); and

• incomingLinks(cw : ConceptualWorkflow) returns the set of Conceptual Links tar-

geting cw.

Algorithm 6 Suggesting Links

1: function LINK(cw : ConceptualWorkflow)

2: result : List(DataLink) ⊲ Initialize result list.

3: for all i ∈ LIP ∩ inputs(cw) do ⊲ ∀i Input Port in cw:

4: cP ← immediateParent(activity(i)) ⊲ Let cP be the immediate parent of i
5: for all o ∈ predecessing(cP) do ⊲ ∀o predecessing Output Port:

6: if score(i, o) > 0 then ⊲ If i’s and o’s Annotations match,

7: resultև DataLink(o, i) ⊲ append Data Link o→ i to the result list.

8: end if

9: end for

10: end for

11: return result ⊲ Return suggested links.

12: end function

The link function uses the following sub-functions:

• inputs(cw : ConceptualWorkflow) returns the set of Conceptual Inputs and Input

Ports contained in cw at any depth;

• immediateParent(a : Activity) returns the Conceptual Function in which a is di-

rectly embedded (by opposition to the parent Conceptual Workflows of the immediate

parent); and

• activity(p : Port) returns the Activity p belongs to.

4.5.2 Producer Suggestion

If the algorithm of the previous Section 4.5.1 does not suggest any Data Link for a given

unattached Input Port, or if none of the suggestions fit the needs of the user, there might be

an Activity in the knowledge base which could be a producer, i.e. an Activity with an Output

Port whose Specifications matches that of the unattached Input Port.

Listing 4.4 gives the SPARQL query which looks for all Activities producing type T: i.e.

all Activities having an Output Port bearing a Specification which is an exact, narrower or

broader match for T. In the former case, the Specification will be of type T directly or through

inference, whereas, in the latter, the it will be of a direct supertype of T.

88

CHAPTER 4. TRANSFORMATION PROCESS 4.5. COMPOSITION

Listing 4.4: Producer Search Query (T = target type)

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX cowork: <http://www.i3s.unice.fr/˜cerezo/cowork/latest/cowork.rdfs#>

4

SELECT ?activity WHERE {

6 ?activity rdf:type cowork:Activity .

8 ?activity cowork:hasOutput ?outputport .

?outputport cowork:hasSpecification ?dataset .

10 {

?dataset rdf:type T .

12 }

UNION

14 {

?dataset rdf:type ?supertype .

16 T rdfs:subClassOf ?supertype .

}

18 }

Much like candidate Fragments in the Discovery process (cf. Section 4.4), candidate pro-

ducers must be ranked by order or probable relevance, according to the following principles:

• prioritize match quality: all other things being equal, exact matches should rank higher

than narrower ones and both should rank higher than broader matches; and

• penalize partial matches: the more Specifications a producer matches at once, the

higher it should rank.

Algorithm 7 Suggesting Producers

1: function PRODUCE(ip : InputPort)
2: result : Dictionary(Activity, F loat) ⊲ Initialize result list.

3: for all s ∈ ΓS(ip) do ⊲ ∀s Specification of ip:

4: for all a ∈ producers(s) do ⊲ ∀a Activity producing s:

5: w ← maxsa∈ΓS(outputs(a))score(s, sa) ⊲ Initialize weight.

6: if a ∈ keys(result) then ⊲ If a is already in the result list,

7: result[a]← result[a] + w ⊲ then update its weight;

8: else

9: result[a]← w ⊲ else add a to the list with weight w.

10: end if

11: end for

12: end for

13: for (a, w) ∈ result do ⊲ ∀(a, w) Activity and associated weight:

14: result[a]← result[a]
|ΓS(ip)|

⊲ Penalize partial matches.

15: end for

16: return sort(result) ⊲ Sort by decreasing weight.

17: end function

The function produce, detailed in Algorithm 7, looks for all candidate producers for each

Specification of a selected Input Port and ranks them, using the score function defined in

Section 4.4.3.2 as well as the following sub-functions:

• producers(d : Dataset) uses the SPARQL query of Listing 4.4 and retrieves all Ac-

tivities from the knowledge base with an Output Port whose Specifications match d;

and

• outputs(a : Activity) returns the set of a’s Output Ports.

89

4.5. COMPOSITION CHAPTER 4. TRANSFORMATION PROCESS

4.5.3 Consumer Suggestion

Though unattached Output Ports are not necessarily problematic, it might occasionally help

users to get suggestions for Activities that might be able to consume the data produced by an

existing one. It is therefore interesting to suggest not only producers, but also consumers. The

SPARQL query to look for Activities consuming a type T is given in Listing 4.5 and is very

similar to the one given in Listing 4.4, which looks for producers.

Listing 4.5: Consumer Search Query (T = target type)

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX cowork: <http://www.i3s.unice.fr/˜cerezo/cowork/latest/cowork.rdfs#>

4

SELECT ?activity WHERE {

6 ?activity rdf:type cowork:Activity .

8 ?activity cowork:hasInput ?inputport .

?inputport cowork:hasSpecification ?dataset .

10 {

?dataset rdf:type T .

12 }

UNION

14 {

?dataset rdf:type ?supertype .

16 T rdfs:subClassOf ?supertype .

}

18 }

Algorithm 8 Suggesting Consumers

1: function CONSUME(op : OutputPort)
2: result : Dictionary(Activity, F loat) ⊲ Initialize result list.

3: for all s ∈ ΓS(op) do ⊲ ∀s Specification of op:

4: for all a ∈ consumers(s) do ⊲ ∀a Activity producing s:

5: w ← maxsa∈ΓS(inputs(a))score(sa, s) ⊲ Initialize weight.

6: if a ∈ keys(result) then ⊲ If a is already in the result list,

7: result[a]← result[a] + w ⊲ then update its weight;

8: else

9: result[a]← w ⊲ else add a to the list with weight w.

10: end if

11: end for

12: end for

13: for (a, w) ∈ result do ⊲ ∀(a, w) Activity and associated weight:

14: result[a]← result[a]
|ΓS(op)|

⊲ Penalize partial matches.

15: end for

16: return sort(result) ⊲ Sort by decreasing weight.

17: end function

The consume function looks for and then ranks candidate consumers for a selected Output

Port, is detailed in Algorithm 8 and differs from the produce function in the following ways:

• it uses the score function defined in Section 4.4.3.2 in reverse, so that broader matches

are ranked higher than narrower ones, because a consumer which supports a broader

type should also support the exact one, whereas a consumer which supports a narrower

type might not accept all data produced by the selected Output Port;

90

CHAPTER 4. TRANSFORMATION PROCESS 4.5. COMPOSITION

• it uses consumers(d : Dataset) instead of producers(d : Dataset), which uses the

SPARQL query given in Listing 4.5 to retrieve all Activities from the knowledge base

with an Input Port whose Specifications match d; and

• it uses inputs(a : Activity) instead of outputs(a : Activity), which returns the set of

a’s Input Ports.

4.5.4 Converter Suggestion

A mismatch characterizes a Data Link whose source and target are incompatible either at the

physical level (if the basic types of source and target differ, e.g. list and string) or at the semantic

level (if the target Annotations are neither exact nor narrower matches for the source ones).

Since partial matches and broader matches are detected as mismatches, it is entirely possible

for the aforementioned link suggestion algorithm to suggest mismatches. This is a trade-off

in the effort to help the user compose the workflow. Indeed, mismatches will at least provide

some clues as to some technical issues which must be tackled for the workflow to execute.

Further help can be provided to the user when mismatches are detected, regardless of how

the mismatched Data Links were created (by the user, by the Weaving mechanism or by the

link suggestion algorithm). If they lie at the physical level, the system can provide the user with

a small collection of ad-hoc converters meant to tackle the most common format mismatches,

such as List2String and String2Integer.

When mismatches are detected at the semantic level, the system can suggest candidate

converters in much the same way it suggests candidate producers and consumers, but for one

important difference: multiple Activities can be put in sequence to form a conversion chain.

Given a mismatch between a source type X and a target type Y, the query to look for a one-

shot converter (i.e. only one Activity) is given in Listing 4.6 and illustrated on Figure 4.31.

The query for a chain of two converters is given in Listing D.1 and illustrated on Figure D.1,

both found in Appendix D.

Listing 4.6: X→ Y Converter Search Query

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX cowork: <http://www.i3s.unice.fr/˜cerezo/cowork/latest/cowork.rdfs#>

4

SELECT ?activity WHERE {

6 ?activity rdf:type cowork:Activity .

8 ?activity cowork:hasInput ?inputport .

?inputport cowork:hasSpecification ?inputdataset .

10 {

?inputdataset rdf:type X .

12 }

UNION

14 {

?inputdataset rdf:type ?inputtype .

16 X rdfs:subClassOf ?inputtype .

}

18

?activity cowork:hasOutput ?outputport .

20 ?outputport cowork:hasSpecification ?outputdataset .

{

22 ?outputdataset rdf:type Y .

}

24 UNION

{

26 ?outputdataset rdf:type ?outputtype .

Y rdfs:subClassOf ?outputtype .

28 }

}

91

4.5. COMPOSITION CHAPTER 4. TRANSFORMATION PROCESS

Ac5vity+

?ac5vity+

?inputport+ ?outputport+

?inputdataset+ ?outputdataset+

X+?inpuWype+ Y+ ?outpuWype+

rdf:type+

rdfs:subClassOf+

rdfs:subClassOf+

hasSpecifica5on+ hasSpecifica5on+

Legend:+

+OR+alterna5ve+

+Domain+ontology+

+COWORK+ontology+

+Fragment+instance+

+Property+

+Resource+

blue+

red+

green+

Figure 4.31: X→ Y Converter Search Query

Such queries can be generated automatically up to any number of intermedirary steps. The

optimal number of conversion steps is unknown, but each intermediary type gone through in-

creases the likelihood of data loss or alteration. Therefore, the system looks for converter chains

up to an arbitrary length threshold. That threshold should be given a default value and should

be modifiable by the users if they so wish.

Once candidate converters (and conversion chains of size up to the threshold) have been

retrieved, they are ranked according to the following principles:

• penalize partial matches: the more Specifications a converter tackles at once, the higher

it should rank;

• penalize chain length: the longer the chain, the more likely data will be lost or altered,

hence the need for longer chains to rank lower; and

• penalize extra functions and concerns: any Function or Concern that is not identified

by the system as relating to conversion is a sign that the converter (or chain of converters)

might perform unwanted operations on the data, maybe causing data loss or even altering

data semantics, hence the fewer such Annotations there are, the higher the rank.

The convert function detailed in Algorithm 9 finds candidate converters (and conversion

chains) for a selected mismatched Data Link and ranks them based on the aforementioned

principles.

92

CHAPTER 4. TRANSFORMATION PROCESS 4.5. COMPOSITION

Algorithm 9 Suggesting Converters

1: function CONVERT(dl : DataLink)

2: result : Dictionary(List(Activity), F loat) ⊲ Initialize result list.

3: for all ds ∈ ΓS(source(dl)) do ⊲ ∀ds Specification of the OutputPort source of dl:
4: for all dt ∈ ΓS(target(dl)) do ⊲ ∀dt Specification of the InputPort target of dl:
5: for all c ∈ converters(ds, dt) do ⊲ ∀c converter (or chain) from ds to dt:
6: w : Float ⊲ Initialize weight.

7: w ← maxdi∈ΓS(inputs(c[first]))score(di, ds) ⊲ Compute best score of inputs

8: w ← w ∗maxdo∈ΓS(outputs(c[last]))score(dt, do) ⊲ and adjust with outputs’.

9: if c ∈ keys(result) then ⊲ If c is already in the result list,

10: result[c]← result[c] + w ⊲ then update its weight;

11: else

12: result[c]← w ⊲ else add c to the list with weight w.

13: end if

14: end for

15: end for

16: end for

17: for (c, w) ∈ result do ⊲ ∀(a, w) converter (or chain) and associated weight:

18: result[c]← result[c]
|ΓS(source(dl))|∗|ΓS(target(dl))|

⊲ Penalize partial matches.

19: result[c]← result[c]
size(c)

⊲ Penalize chain length.

20: result[c]← result[c]
nonConvert(c)

⊲ Penalize extra Functions and Concerns.

21: end for

22: return sort(result) ⊲ Sort by decreasing weight.

23: end function

93

4.6. CONVERSION CHAPTER 4. TRANSFORMATION PROCESS

It uses the score function defined in Section 4.4.3.2, both with the standard order or pa-

rameters, when it scores ouput Datasets, and in reverse, when it scores input Datasets, for

the same reasons consumers do. It also uses the previously defined inputs(a : Activity) and

outputs(a : Activity) as well as the following sub-functions:

• converters(ds : Dataset, dt : Dataset) uses the queries given in Listing 4.6 and List-

ing D.1 as well as longer queries auto-generated up to the threshold, to retrieve candidate

converters and conversion chains from ds to dt;

• size(l : List) returns the size of l; and

• nonConvert(c : List(Activity)) returns the list of Functions and Concerns contained

in the conversion chain that are not identified as pertaining to conversion.

4.6 Conversion

After transforming a high-level Conceptual Workflow into an Intermediate Representation

through Mapping, the Conversion step transforms that representation into one that a third-

party scientific workflow framework will be able to handle and enact: that translation step is

performed completely automatically by the system.

The reason why that step can be automated, when the previous one (i.e. Mapping) can not,

is that an Intermediate Representation, though part of the Conceptual Workflow Model,

contains a full-fledged abstract workflow. Conversion is the process of extracting that abstract

workflow and translating it into a target scientific workflow language.

As of this writing, our system supports three target languages:

• Section 4.6.2 details the Conversion to GWENDIA [Montagnat 09], the language of

MOTEUR [Glatard 08] (cf. Section A.7), chosen because it is the language used on the

VIP platform we relied on for use cases (cf. Section 5.2);

• Section 4.6.3 details the Conversion to t2flow, the language of the version 2 of

Taverna [Missier 10a] (cf. Section A.11), chosen because Taverna is a very well-known

scientific workflow framework with a big user community; and

• Section 4.6.4 details the Conversion to IWIR [Plankensteiner 11], the fine-grained in-

teroperability language of the SHIWA [Krefting 11] platform (cf. Section A.9), chosen

because it is meant to enable enactment on many different scientific workflow frame-

works.

Since all three currently supported targets, as well as many other scientific workflow languages,

comply with the eXtensible Markup Language (XML), Section 4.6.1 very briefly introduces

that meta-format.

4.6.1 XML in a nutshell

XML is a World Wide Web Consortium (W3C) standard which defines not one file format, but

a meta-format: a set of rules for encoding documents in a way that is easy for machines to

process yet readable for humans (though extremely verbose).

Complying with the rules of XML when creating a file format, no matter its target contents,

presents the advantage of relying on now quite robust technologies to parse, produce, transmit,

transform and validate the resulting XML files.

94

CHAPTER 4. TRANSFORMATION PROCESS 4.6. CONVERSION

An XML file is essentially a markup tree structure:

• nodes start with a beginning markup <node-name> and end with </node-name>;

• leaf nodes can be abbreviated into a self-closing markup <node-name/>;

• children of a node are declared between its delimiting markups; and

• nodes bear attributes that are declared in the beginning markup like so: <node-name

attribute1="value1" attribute2="value2" ...>.

We only described here the bare minimum needed to follow the Conversion processes

described thereafter. The full specification1 is hosted by the W3C and the reader willing to dive

into XML might find the w3schools tutorial2 especially useful.

4.6.2 To GWENDIA (MOTEUR)

A GWENDIA [Montagnat 09] file is an XML document with a root <workflow> node which

has a name attribute and four children nodes, as summed up on Figure 4.32:

workflow+

interface+ processors+ links+ coordina5ons+

source+ sink+ processor+ link+ link+

Input+ Output+ Ac5vity+ DataLink+ OrderLink+

Legend:+

+GWENDIA+node+

+ParentTchild+rela5onship+

+Abstract+Element+

+«+converts+to+»+

Figure 4.32: Conversion to GWENDIA - Basic Structure

• <interface> is the parent node of any number of <source> nodes which represent

data entry points and correspond to Inputs; and <sink> nodes which represent data exit

points and correspond to Outputs;

• <processors> is the parent node of any number of <processor> nodes, which

themselves contain <in> and <out> nodes for Ports and an iterationstrategy

node, each of which corresponds to an Activity;

• <links> is the parent node of any number of <link> nodes, each of which corre-

sponds to a Data Link; and

• <coordinations> is the parent node of any number of <link> nodes, each of which

corresponds to an Order Link.

1XML Specification: http://www.w3schools.com/xml/
2w3schools.com XML tutorial: http://www.w3schools.com/xml/

95

http://www.w3schools.com/xml/
http://www.w3schools.com/xml/

4.6. CONVERSION CHAPTER 4. TRANSFORMATION PROCESS

4.6.2.1 Converting Inputs/Outputs

Inputs are converted to <source> nodes and Outputs and converted to <sink> nodes, but

there is not necessarily a one-to-one relationship between both sides. Indeed, <source> and

<sink> nodes each represent one piece (or collection) of data at a time. Therefore, an Input

(resp. Output) with two or more Output Ports (resp. Input Ports) will be converted into that

many <source> (resp. <sink>) nodes.

For instance, if the Intermediate Representation features three Inputs A, B and C with

one Output Port each and one Output D with two Input Ports, as shown on Figure 4.33a,

that will translate to three <source> and two <sink> nodes, as shown on Figure 4.33b and

detailed on Listing 4.7.

A+ B+

D+

C+

(a) Intermediate Representation (b) MOTEUR screenshot

Figure 4.33: Conversion to GWENDIA - Inputs/Outputs Example

Listing 4.7: Conversion to GWENDIA - Inputs/Outputs Example

1 <workflow name="inputs/outputs example">

<interface>

3 <source name="A" type="string"/>

<source name="B" type="string"/>

5 <source name="C" type="string"/>

<sink name="D_in0" type="string"/>

7 <sink name="D_in1" type="string"/>

</interface>

9 <processors></processors><links></links><coordinations></coordinations>

</workflow>

By convention, when an Input or Output has only one Port, the resulting node inherits its

name. When there are two or more Ports, each resulting node is named with the concatenation

of the Input (or Output) name, an underscore and the corresponding Port name, so as to

differentiate them.

4.6.2.2 Converting Activities

Activities with both Input Ports and Output Ports, i.e. Activities other than Inputs and

Outputs are converted to <processor> nodes. Each Input Port becomes an <in> child

node and each Output Port an <out> child node.

P+ Q+ R+

S+

(a) Intermediate Representation (b) MOTEUR screenshot

Figure 4.34: Conversion to GWENDIA - Activities Example

96

CHAPTER 4. TRANSFORMATION PROCESS 4.6. CONVERSION

For instance, if the Intermediate Representation features three Activities P, Q and R with

one Input Port and one Output Port each and an Activity S with two Input Ports and two

Output Ports, as shown on Figure 4.34a, it will translate to four <processor> nodes as

shown on Figure 4.34b and detailed on Listing 4.8.

When an Activity has two or more Input Ports, the associated Iteration Strategy is con-

verted into an <iterationstrategy> child node, with its tree of operators translated into

a tree of corresponding nodes. For instance, a⊗ (b⊙ c) would translate to:

<cross>

<port name="a" />

<dot>

<port name="b" />

<port name="c" />

</dot>

</cross>

Listing 4.8: Conversion to GWENDIA - Activities Example

<workflow name="activities example">

2 <interface></interface>

<processors>

4 <processor name="P">

<in depth="0" name="in" type="string"/>

6 <out depth="0" name="out" type="string"/>

</processor>

8 <processor name="Q">

<in depth="0" name="in" type="string"/>

10 <out depth="0" name="out" type="string"/>

</processor>

12 <processor name="R">

<in depth="0" name="in" type="string"/>

14 <out depth="0" name="out" type="string"/>

</processor>

16 <processor name="S">

<in depth="0" name="in0" type="string"/>

18 <in depth="0" name="in1" type="string"/>

<out depth="0" name="out0" type="string"/>

20 <out depth="0" name="out1" type="string"/>

<iterationstrategy>

22 <cross>

<port name="in0"/>

24 <port name="in1"/>

</cross>

26 </iterationstrategy>

</processor>

28 </processors>

<links></links><coordinations></coordinations>

30 </workflow>

4.6.2.3 Converting Links

Data Links and Order Links are converted to <link> nodes, but they are not placed inside

the same parent nodes: Data Links become children nodes of <link>, whereas Order Links

become children nodes of <coordination>. Each <link> has a from attribute which

references the name of the link source and a to attribute for the target.

For instance, if an Intermediate Representation features, as shown on Figure 4.35a: one

Input A; four Activities P, Q, R and S; an Output B; Data Links A to P and Q, from P to R,

from Q to S and from R and S to B; as well as an Order Link from P to S; then those links

will translate to six children nodes for <links> and one child node for <coordination>,

as shown on Figure 4.35b and detailed on Listing 4.9.

97

4.6. CONVERSION CHAPTER 4. TRANSFORMATION PROCESS

A+

S+R+

P+ Q+

B+

(a) Intermediate Representation (b) MOTEUR screenshot

Figure 4.35: Conversion to GWENDIA - Links Example

Listing 4.9: Conversion to GWENDIA - Links Example

<workflow name="links example">

2 <interface>

<source name="A_out0" type="string"/>

4 <source name="A_out1" type="string"/>

<sink name="B_in0" type="string"/>

6 <sink name="B_in1" type="string"/>

</interface>

8 <processors>

<processor name="P">

10 <in depth="0" name="in" type="string"/>

<out depth="0" name="out" type="string"/>

12 </processor>

<processor name="Q">

14 <in depth="0" name="in" type="string"/>

<out depth="0" name="out" type="string"/>

16 </processor>

<processor name="S">

18 <in depth="0" name="in" type="string"/>

<out depth="0" name="out" type="string"/>

20 </processor>

<processor name="R">

22 <in depth="0" name="in" type="string"/>

<out depth="0" name="out" type="string"/>

24 </processor>

</processors>

26 <links>

<link from="A_out0" to="P:in"/>

28 <link from="A_out1" to="Q:in"/>

<link from="Q:out" to="S:in"/>

30 <link from="P:out" to="R:in"/>

<link from="R:out" to="B_in0"/>

32 <link from="S:out" to="B_in1"/>

</links>

34 <coordinations>

<link from="P" to="S"/>

36 </coordinations>

</workflow>

98

CHAPTER 4. TRANSFORMATION PROCESS 4.6. CONVERSION

4.6.3 To t2flow (Taverna 2)

The first version of Taverna [Missier 10a] uses a language called SCUFL [Oinn 04] and the

team behind its development announced that the future version 3 will use an evolution of it

called “SCUFL2”3. t2flow is merely a serialization format for Taverna 2 workflows.

Like GWENDIA, t2flow is XML-based. However, it is considerably more verbose, since

it is a serialization format, i.e. a direct reproduction, without any simplification, of the complete

structure of objects involved in instances of Taverna 2 workflows. t2flow documents

have a root node called <workflow>, but also an additional layer of dataflow nodes. The

reason for that is the way Taverna handles encapsulation: each sub-workflows is reproduced in

its entirety in its own <dataflow> node.

workflow+

port+ port+ processor+ condi5on+ datalink+

Input+ Output+ Ac5vity+ OrderLink+ DataLink+

Legend:+

+t2flow+node+

+ParentTchild+rela5onship+

+Abstract+Element+

+«+converts+to+»+ dataflow+

inputPorts+ processors+ condi5ons+ datalinks+outputPorts+

Figure 4.36: Conversion to t2flow - Basic Structure

<dataflow> nodes have six children, as summed up on Figure 4.36:

• <name> contains the name of the workflow;

• <inputPorts> is the parent node of any number of <port> nodes which represent

data entry points and correspond to Inputs;

• <outputPorts> is the parent node of any number of <port> nodes which represent

data exit points and correspond to Outputs;

• <processors> is the parent node of any number of <processor> nodes, each of

which corresponds to an Activity;

• <conditions> is the parent node of any number of <condition> nodes, each of

which corresponds to an Order Link; and

• <datalinks> is the parent node of any number of <datalink> nodes, each of which

corresponds to a Data Link.

3SCUFL2 Announcement: http://bit.ly/scufl2announcement

99

http://bit.ly/scufl2announcement

4.6. CONVERSION CHAPTER 4. TRANSFORMATION PROCESS

Because the structure of t2flow is close to that of GWENDIA (cf. Section 4.6.2), the two

Conversion processes are similar as well. The main differences pertain to arbitrary choices

(e.g. GWENDIA uses attributes where t2flow uses text content) and the nature of t2flow:

because it is a serialization format, the actual structure features a lot of repetition (i.e. the same

data reproduced in multiple places) as well as many additional layers.

4.6.3.1 Converting Inputs/Outputs

Inputs (resp. Outputs) are converted to <port> nodes, children of <inputPorts> (resp.

<outputPorts>). As with GWENDIA, Inputs (resp. Outputs) with two or more Output

Ports (resp. Input Ports) are converted into as many <port> nodes.

Again with the example of an Intermediate Representation featuring three Inputs A, B

and C with one Output Port each and one Output D with two Input Ports, as shown on Fig-

ure 4.37a, Conversion will produce three <port> nodes inside <inputPorts> and two

inside <outputPort>, as shown on Figure 4.37b and detailed on Listing E.1 (found in Ap-

pendix E).

A+ B+

D+

C+

(a) Intermediate Representation (b) Taverna 2 screenshot

Figure 4.37: Conversion to t2flow - Inputs/Outputs Example

4.6.3.2 Converting Activities

Activities with both Input Ports and Output Ports, i.e. Activities other than Inputs and Out-

puts, are converted to <processor> nodes. Each Input Port (resp. Output Port becomes a

<port> inside the <inputPorts> (resp. <outputPorts> child node, but they are also

described deeper in the tree and both descriptions are mapped to one another by <map> nodes

children of <inputMap> (resp. <outputMap>).

Back to the example of and Intermediate Representation featuring three Activities P, Q

and R with one Input Port and one Output Port each and an Activity S with two of each,

as shown on Figure 4.38a, Conversion will produce four <processor> nodes as shown on

Figure 4.38b and detailed on Listing E.2 (found in Appendix E).

P+ Q+ R+

S+

(a) Intermediate Representation (b) Taverna 2 screenshot

Figure 4.38: Conversion to t2flow - Activities Example

100

CHAPTER 4. TRANSFORMATION PROCESS 4.6. CONVERSION

When an Activity has two or more Input Ports, the operators of the Iteration Strategy
are converted into a tree of corresponding nodes in the <iterationStrategyStack>
<iteration><strategy> branch of nodes contained in the <processor> node. For
instance, a⊗ (b⊙ c) would translate to:

<strategy>

<cross>

<port name="a" depth="0" />

<dot>

<port name="b" depth="0" />

<port name="c" depth="0" />

</dot>

</cross>

</strategy>

4.6.3.3 Converting Links

Order Links (resp. Data Links) are converted to <condition> (resp. <datalink>)

children nodes of <conditions> (resp. datalinks). <condition> nodes have two

attributes: control is the source of the Order Link and target its target.

Each <datalink> node has two children nodes <sink> and <source> describing the

target and source respectively. If the target (resp. source) is a Port belonging to an Output

(resp. Input), then it is described through a single <port> node, otherwise it is converted to a

<processor> specifying which Activity the port belongs to and a <port> node specifying

which Port is the target (resp. source).

A+

S+R+

P+ Q+

B+

(a) Intermediate Representation (b) Taverna 2 screenshot

Figure 4.39: Conversion to t2flow - Links Example

Back to the example of Intermediate Representation described in Section 4.6.2.3, Con-

version will produce one <coordination> node and six <datalink> nodes, as shown

on Figure 4.39b and detailed on Listing E.3, (found in Appendix E).

101

4.6. CONVERSION CHAPTER 4. TRANSFORMATION PROCESS

4.6.4 To IWIR (SHIWA)

The SHIWA [Krefting 11] platform implements scientific workflow interoperability either at

a coarse-grained level, with each “non-native” sub-workflow packaged with the correspond-

ing “non-native” enactor into a “job” of a “meta-workflow”, or at a fine-grained level through

conversion to a common pivot language: IWIR [Plankensteiner 11].

Each scientific workflow framework participating in the project provides both conversion

from their scientific workflow model to the pivot language and direct interpretation of it by their

enactor. As a result, barring technical incompatibilities, workflows can be run by “non-native”

enactors. The full specification of IWIR was made publicly available4 as well as a dedicated

library5 to help developers add IWIR-support to their scientific workflow framework.

The Conversion from an Intermediate Representation to IWIR is more than a question

of format. Indeed, as explained in Chapter 3, the Conceptual Workflow Model is a hybrid

model, whereas IWIR is a control-driven model.

4.6.4.1 Converting Simple Chains

When working with simple chains, i.e. when each Activity has only one Input, the differ-

ences between IWIR and data-driven languages (like those converted to in Section 4.6.2 and

Section 4.6.3) appear deceptively few.

A+

S+R+

P+ Q+

B+ C+

(a) Intermediate Representation



 

 

(b) Graph generated by IWIRtool

Figure 4.40: Conversion to IWIR - Simple Chains Example

The most notable difference is the apparition of “scopes”: “tasks”, “inputs”, “outputs” and

“links” all belonging to a specific parent scope and though links can target the ports of a direct

sub-task, they cannot go further down the tree, e.g. targeting the port of a sub-task of a sub-task.

With simple chains, however, there is only one scope: a BlockScope containing the entire

workflow. Another difference is that IWIR does not differentiate much between Data Links

and Order Links: the former simply link “ports” together, whereas the latter link “tasks”.

4IWIR Specification v1.1: http://bit.ly/IWIRspec
5IWIRtool Library: http://sourceforge.net/projects/iwirtool/

102

http://bit.ly/IWIRspec
http://sourceforge.net/projects/iwirtool/

CHAPTER 4. TRANSFORMATION PROCESS 4.6. CONVERSION

To illustrate those differences, let us get back to a slightly modified version of the example

of Intermediate Representation described in Section 4.6.2.3 and used in Section 4.6.3.3 as

well. The only variation being that the final Output is split in two, as shown on Figure 4.40a.

Listing 4.10: Conversion to IWIR - Simple Chains Example

1 <IWIR version="1.1" wfname="Simple Chains Example" xmlns="http://shiwa-workflow.eu/IWIR">

<blockScope name="Simple_Chains_Example">

3 <inputPorts>

<inputPort name="A_out1" type="string"/>

5 <inputPort name="A_out2" type="string"/>

</inputPorts>

7 <body>

<task name="S" tasktype="S">

9 <inputPorts>

<inputPort name="in" type="string"/>

11 </inputPorts>

<outputPorts>

13 <outputPort name="out" type="string"/>

</outputPorts>

15 </task>

<task name="P" tasktype="P">

17 <inputPorts>

<inputPort name="in" type="string"/>

19 </inputPorts>

<outputPorts>

21 <outputPort name="out" type="string"/>

</outputPorts>

23 </task>

<task name="Q" tasktype="Q">

25 <inputPorts>

<inputPort name="in" type="string"/>

27 </inputPorts>

<outputPorts>

29 <outputPort name="out" type="string"/>

</outputPorts>

31 </task>

<task name="R" tasktype="R">

33 <inputPorts>

<inputPort name="in" type="string"/>

35 </inputPorts>

<outputPorts>

37 <outputPort name="out" type="string"/>

</outputPorts>

39 </task>

</body>

41 <outputPorts>

<outputPort name="B_in1" type="string"/>

43 <outputPort name="B_in2" type="string"/>

</outputPorts>

45 <links>

<link from="Simple_Chains_Example/A_out1" to="P/in"/>

47 <link from="Simple_Chains_Example/A_out2" to="Q/in"/>

<link from="P/out" to="R/in"/>

49 <link from="Q/out" to="S/in"/>

<link from="P" to="S"/>

51 <link from="R/out" to="Simple_Chains_Example/B_in1"/>

<link from="S/out" to="Simple_Chains_Example/B_in2"/>

53 </links>

</blockScope>

55 </IWIR>

Conversion will produce 4 tasks and 7 links, as shown on Figure 4.40b and detailed on

Listing 4.10. The reason for splitting the Output is to emphasize the differences between

the graphical representations: the links on the IWIR representation are all control links and

the pairs of circles at the top and bottom of the graph represent start and stop states, not

inputs/outputs.

103

4.6. CONVERSION CHAPTER 4. TRANSFORMATION PROCESS

4.6.4.2 Iteration strategies

As explained in Section 3.2.4, Iteration Strategies are necessary to handle “implicit loops”:

when an Activity with two or more Input Ports is provided with input data of a higher depth

than it is meant to process, the enactor can iterate automatically over the data, based on the

Iteration Strategy. However, that behavior is typically driven by data and would make no

sense with a control-driven model.

Indeed, in IWIR, not only must loops be explicitly declared as “scopes”, there are a variety

of them to choose from which behave differently: the traditional for, forEach and while

as well as the parallel computing variants parallelFor and parallelForEach.

Therefore, Iteration Strategies must be converted into explicit loops and the best match is

parallelForEach, which will iterate over one of the Input Ports data and process different

data items simultaneously, if possible. The Conversion will depend not only on the Iteration

Strategy, but on the depths of the concerned Input Ports: where a list will require a single

loop, a list of lists will require two loops and so on and so forth.

The dot operator is converted into as many loops as there are extra depth levels on each

of the input data. Note: they must all have the same number of extra depth levels for the dot

operator to work. For instance, with a, b and c each provided with data 2 depths higher than

expected, the Iteration Strategy a⊙ b⊙ c will be converted to 2 parallelForEach loops,

each decrementing all three port data depths by one simultaneously.

The cross operator is converted into as many loops as the sum of extra depth levels on each

of the input data. For instance, with a and b provided with data 1 depth higher than expected

and c 2 depths higher, a ⊗ b ⊗ c will be converted to 4 parallelForEach loops, each

decrementing one data depth by one.

Example Let us illustrate the Conversion of Iteration Strategies with a minimal example,

shown on Figure 4.41a: two Inputs A and B, one Activity P and one Output C. Since depths

can be increased virtually indefinitely, there is an infinity of cases. Let us focus on the following

three, with all three corresponding listings found in Appendix F:

Flat Inputs Example

If both A and B match the depths of the Input Port they are bound to, then the Iteration

Strategy is ignored, as shown on Figure 4.41b and detailed on Listing F.1.

Dot Example

If both A and B are one depth level above that of the Input Port they are bound to and the

Iteration Strategy is A⊙ B, then the Conversion generates 1 parallelForEach loop, as

shown on Figure 4.41c and detailed on Listing F.2.

Cross Example

With the same depths as the previous Dot Example, but this time with an Iteration Strategy

of A⊗B, the Conversion generates 2 parallelForEach loops, as shown on Figure 4.41d

and detailed on Listing F.3.

104

CHAPTER 4. TRANSFORMATION PROCESS 4.6. CONVERSION

A+ B+

P+

C+

(a) Intermediate Representation





(b) Flat Inputs - Graph generated by IWIRtool







(c) Dot Strategy - Graph generated by IWIRtool









(d) Cross Strategy - Graph generated by IWIRtool

Figure 4.41: Converting Iteration Strategies to IWIR

105

4.6. CONVERSION CHAPTER 4. TRANSFORMATION PROCESS

4.6.5 Classification

The position of Conversion in the model transformation taxonomy defined in [Czarnecki 03]

and described in Section 2.3.3, is represented on Figure 4.42. Like the classification of Map-

ping, it is a Feature Model instance and every node on the graph is relevant to Conversion:

Conversion

Transformation

Rules

Source-Target

Relationship

Rule

Application

Strategy

Rule

Scheduling

Rule

Organization
Directionality

LHS/RHS

Logic

Executable

Imperative

New

Target
Non-Deterministic

One-Point

Form
Rule

Selection

Rule

Iteration
Phasing

Implicit Non-Determinism Looping

Organizational

Structure

Source-Oriented

Unidirectional

Figure 4.42: Classification of the Conversion model transformation

• Transformation Rules: the Conversion algorithms are themselves written in Java (i.e.

the language adopted for the prototype), but in a mostly imperative fashion;

• Source-Target Relationship: a new target abstract workflow is built based on the source

Intermediate Representation;

• Rule Scheduling and Application Strategy: the Intermediate Representation to con-

vert is treated sequentially in RDF, iterating over all triples, but triples themselves are

not ordered, so the rules (based on the nature of the triple in question) are applied in

non-deterministic order, one at a time, though there are some limitations (some triples

must be treated before others) inducing phases in the tranformation;

• Rule Organization: the rules are source-based in that each triple will be translated in a

given way, based on its subject, predicate and object; and

• Directionality: Conversion transforms from Intermediate Representations to abstract

workflows and the reverse transformation is essentially impossible, since high-level in-

formation cannot be inferred automatically (hence the need for semantic representations).

106

CHAPTER 4. TRANSFORMATION PROCESS 4.6. CONVERSION

4.6.6 Discussion

Conversion is limited both at the level of the model and at that of the underlying infrastructure.

Model Limitations

The closer the target scientific workflow model is to the Conceptual Workflow Model, the

simpler Conversion becomes. For models of a different nature, e.g. control-driven models or

petri nets, Conversion means a lot more than translating between file formats.

There are two distinct model-level issues with Conversion: expressivity issues and missing

information issues.

Expressivity issues arise when the target scientific workflow model lacks features that are

used in the converted Conceptual Workflow. Theoritically, it should always be possible to

inject the missing features into the target language through ad-hoc dedicated Activities. How-

ever, the case can be made that it would require a lot of work to build and maintain all those

Activities and that they would decrease the legibility and flexibility of the resulting workflow.

It is important to note that a model may be more expressive than the Conceptual Workflow

Model in general, yet lack some of its features. For instance, IWIR [Plankensteiner 11] is

largely more expressive than the Conceptual Workflow Model but lacks Iteration Strategies

because they do not fit a control-driven model.

Missing information issues are, in the sense, the inverse of expressivity issues. They

arise when the target language requires more information than is provided in the Conceptual

Workflow Model. It is typically the case with petri nets where each piece of intermediate data

is described by a node of its own. While missing data can probably be generated well enough

to meet the syntaxic requirements of the target framework, it will likely not be as meaningful

as what the users would have devised, had they created the workflow directly in the target

language.

Infrastructure Limitations

Conversion issues do not stop with the scientific workflow itself. Most low-level Activities

are meant to be run in a very specific context, e.g. a Linux 64bits machine or a Globus6 grid,

and will fail if run in a different context.

Most scientific workflow frameworks have been tailored, over time, to specific Distributed

Computing Infrastructures (DCIs) and that is reflected in the way their Activities are created,

described and enacted.

Though it is impractical and certainly hard to maintain, it does not seem impossible to

support the idiosyncratic Activity management systems of each target framework. However,

converting an Activity from one framework to another might be impossible to do at all, much

less automate.

As a result, while a knowledge base could be shared by users of different scientific workflow

frameworks, it is extremely unlikely that all the Activities in the knowledge base would be

compatible with all target languages.

6Globus Toolkit: http://www.globus.org/toolkit/

107

http://www.globus.org/toolkit/

4.6. CONVERSION CHAPTER 4. TRANSFORMATION PROCESS

The second (out of two) contribution of this work is a semi-automated

Transformation Process designed to help users transform purely con-

ceptual workflows into executable abstract workflows with algorithms and

tools: Discovery to look for potentially relevant Fragments in the Knowl-

edge Base, Weaving to automatically apply a Fragment to a workflow, Com-

position suggestion algorithms (for links, producers, consumers and con-

verters) to assist the composition of abstract elements and Conversion to

automatically convert the workflow for an existing framework.

CHAPTER SUMMARY

108

CHAPTER 5

VALIDATION

There are many ways to approach the validation of the current work, all of them ambitious

in some way. We chose to focus validation on what seemed the most fundamental aspects of

our contributions, i.e. the Conceptual Workflow Model itself and the building blocks of the

Transformation Process.

In order to do so, we have built a prototype framework, described in Section 5.1 and in-

tegrated it into the Virtual Imaging Platform (VIP), cf. Section 5.2. Section 5.3 details our

validation of the Conceptual Workflow Model and Section 5.4 that of the Transformation

Process, based on use cases taken from the VIP project.

5.1 Prototype

To ensure that the Conceptual Workflow Model and that the algorithms used in the Transfor-

mation Process are sound, we built a prototype framework, cowork, to test them in isolation

as well as against real-life examples, taken from the VIP project. The prototype can be freely

obtained as explained on the MODALIS team wiki1.

5.1.1 Architecture

The cowork prototype is coded in Java, is built using and is split into 6 modules, as illustrated

on Figure 5.1:

• gui is the graphical interface letting users design Conceptual Workflows and access

the features of the prototype; it relies on Java Swing, the primary Java Graphical User

Interface (GUI) library;

• model handles the Conceptual Workflow Model itself; it relies on Apache Jena RDF

API2, a well-known Java semantic library;

• annotation is a sub-module of model and is dedicated to Annotations; it also relies

on Apache Jena RDF API;

• mapping contains the tools and algorithms used for the Mapping process, it relies

on Apache Jena ARQ3, the Apache Jena SPARQL Protocol and RDF Query Language

(SPARQL) engine;

1How to get the prototype: https://modalis.i3s.unice.fr/softwares/cowork
2Apache Jena RDF API: http://jena.apache.org/documentation/rdf/index.html
3Apache Jena ARQ: http://jena.apache.org/documentation/query/index.html

109

https://modalis.i3s.unice.fr/softwares/cowork
http://jena.apache.org/documentation/rdf/index.html
http://jena.apache.org/documentation/query/index.html

5.1. PROTOTYPE CHAPTER 5. VALIDATION

• conversion contains the Conversion algorithms towards each target language; it re-

lies on basic Java XML libraries for GWENDIA (MOTEUR) and t2flow (Taverna), and

on the IWIRtool library for IWIR (SHIWA); and

• knowledgebase interfaces with the knowledge base queried by the Discovery and

Composition processes and used to store Fragments; it relies on Apache Jena SDB4 to

store triples in a MySQL5 relational database.

COWORK.

Model.

Annota/on.

Jena.RDF.

Mapping.

Jena.ARQ.

Conversion.

SHIWA.

IWIRtool.

GUI.

Java.

Swing.

Knowledge.

Base.

Jena.

SDB.

MySQL.

DB.

MySQL.

Connector.

Taverna.

End&user.

uses.
stores.in.

queries.

Scien/fic.Workflow.Frameworks.

delegates.to.

Legend:.

Library.

Dependency.

Module.

Figure 5.1: Prototype Architecture

5.1.2 Features

Here is the list of features implemented in the prototype, as of version 0.2:

• Creation and edition of Conceptual Elements (cf. Section 3.1)

• Creation and edition of Abstract Elements (cf. Section 3.2)

• Addition and removal of Annotations by URI (cf. Section 3.3)

• Optional edition of the Pattern (cf. Section 3.4)

• Weaving (cf. Section 4.2)

• Erasing and Merging tools (cf. Section 4.3)

4Apache Jena SDB: http://jena.apache.org/documentation/sdb/index.html
5MySQL: http://www.mysql.com/

110

http://jena.apache.org/documentation/sdb/index.html
http://www.mysql.com/

CHAPTER 5. VALIDATION 5.2. VIRTUAL IMAGING PLATFORM

• Discovery functions (cf. Section 4.4)

• Composition functions (cf. Section 4.5)

• Conversion to GWENDIA, t2flow and IWIR (cf. Section 4.6)

• Editor GUI

• Saving to and loading from files

• Support for a relational database-stored knowledge base

Here is a list of planned features that have yet to be implemented, as of version 0.2:

• Leveraging SPARQL property paths for converter suggestion

• Mismatch detection

• Complete access to underlying features from the GUI

• Loading of taxonomies to ease the addition of Annotations

• Specification of conversion-related Functions and Concerns

• Import of Activities from existing description formats to ease their insertion

• Edition and removal of Fragments in the relational database knowledge base

• Support for file-stored knowledge bases

• Handling of all sub-types of Activities featured in the target languages

5.2 Virtual Imaging Platform

The use cases presented in this chapter all come from VIP, which is a joint project between

the following partners: CEA-Leti6, Creatis7, MODALIS8, VISAGES9 and maatG-France10.

The platform’s goal is the integration of multiple modalities and object (organ and pathology)

models into a cohesive medical image simulation platform [Glatard 13].

The projects’s aims were:

• interoperability between various simulators that were never meant to interact, by using

scientific workflows and Semantic Annotations,

• data model federation to handle all organ models in a standardized fashion, through the

definition of the IntermediAte Model Format (IAMF) and

• reliability and performance on large-scale grid infrastructures needed to cope with the

amount of data processed.

The platform is meant to be flexible and easy to extend with new simulators and object

models. The semantic annotations used therein are mostly taken from the OntoVIP ontology

developed as part of the project.

6CEA-Leti: http://www.leti.fr/
7Creatis: http://www.creatis.insa-lyon.fr/
8MODALIS: http://modalis.i3s.unice.fr/
9VISAGES: https://www.irisa.fr/visages/

10maatG-France: http://www.maatg.com/

111

http://www.leti.fr/
http://www.creatis.insa-lyon.fr/
http://modalis.i3s.unice.fr/
https://www.irisa.fr/visages/
http://www.maatg.com/

5.2. VIRTUAL IMAGING PLATFORM CHAPTER 5. VALIDATION

5.2.1 OntoVIP

“ OntoVIP is a multi-level ontology designed to support the sharing

of resources in the field of medical image simulation [Glatard 13]. This

includes both data (e.g., the models used as input of the simulation, and the

images resulting from it), and image simulation software.

The overall conceptualization is based on DOLCE [Masolo 03] and relies

on previous ontologies (OntoNeuroLOG ontology) developed in the context

of the NeuroLOG project [Temal 08, Lando 07, Kassel 10, Gibaud 11]. The

final version delivered at the end of the project was OntoVIP Version 0.41

[Forestier 11].

ONTOVIP DOCUMENTATION: HTTP://BIT.LY/ONTOVIPV1DOC

One of the classes of OntoVIP we are most interested in is dataset-processing: it

was inherited from OntoNeuroLOG and is the super-class of all data processing classes in the

ontology, which are clearly Functions in most simulations.

dataset&
processing.

registra/on.

resampling.

simula/on.
medical&image&
simula/on.

CT&simula/on.

MR&simula/on.

PET&simula/on.

US&simula/on.

sta/s/cal&
analysis.

….
Legend:.

.rdfs:subClassOf..

Figure 5.2: OntoVIP Excerpt - Simulations

OntoVIP v1.0 defines 14 subclasses for dataset-processing, encompassing many

different types of data processes, notably registration (which is the focus of the example

given in Section 4.4.2.1) and, most importantly when it comes to the use cases we chose for

our validation, medical-imaging-simulation, with its four subclasses, as shown on

Figure 5.2, corresponding to four medical imaging modalities:

• CT-simulation for X-ray Computed Tomography;

• MR-simulation for Magnetic Resonance imaging;

• PET-simulation for Positron Emission Tomography; and

• US-simulation for Ultra-Sonography.

112

http://bit.ly/ontovipv1doc

CHAPTER 5. VALIDATION 5.2. VIRTUAL IMAGING PLATFORM

par/cular. perdurant. ac/on.
non&physical&

ac/on.
conceptual&

ac/on.
dataset&
processing.

Legend:.

.rdfs:subClassOf..

Figure 5.3: OntoVIP Excerpt - Dataset Processing Ascendance

The complete ascendance of dataset-processing, shown on Figure 5.3, all the way

to generic notions of perdurant and particular, is an example of OntoVIP’s reliance on

DOLCE [Gangemi 02] and its foundational approach.

5.2.2 Workflow Designer

The cowork prototype has been slightly modified and integrated, packaged into a Java applet,

into the VIP platform11 as a “Workflow Designer”: a module meant to help platform adminis-

trators design scientific workflows for new simulators to integrate into the platform.

Figure 5.4: Link to VIP Workflow Designer Screenshot

Figure 5.5: VIP Workflow Designer Screenshot

Figure 5.4 is a screenshot of the link to the Workflow Designer on the VIP platform, which

is only visible to members of the Cowork group, and Figure 5.5 is a screenshot of the Workflow

Designer interface, i.e. the prototype GUI.

11Virtual Imaging Platform: http://vip.creatis.insa-lyon.fr/

113

http://vip.creatis.insa-lyon.fr/

5.3. CONCEPTUAL WORKFLOW MODEL CHAPTER 5. VALIDATION

5.3 Conceptual Workflow Model

Our validation of the Conceptual Workflow Model is two-fold: on the one hand, we needed

to make sure that it can model real-life scientific workflows; on the other hand, we needed to

check that it does provide additional benefits, compared to purely abstract workflows.

Section 5.3.1 describes five of the simulators integrated into the VIP platform and shows

the associated abstract workflows in GWENDIA [Montagnat 09], the language of the platform

itself; Section 5.3.2 highlights a limitation of abstract workflows that our Conceptual Work-

flow Model alleviates; and Section 5.3.3 details five Conceptual Workflows, each modeling

one of the five simulators.

5.3.1 VIP Simulators

Four simulators were seminally included from the start of the VIP project, to represent the four

distinct modalities modeled in OntoVIP:

• FIELD-II [Jensen 04] for US-simulation;

• SIMRI [Benoit-Cattin 05] for MR-simulation;

• Sindbad [Tabary 09] for CT-simulation; and

• SORTEO [Reilhac 04] for PET-simulation.

Another simulator, SimuBloch [Cao 12], was integrated into the platform soon after launch

and it quickly became popular among platform users for MR image simulation.

5.3.1.1 FIELD-II

FIELD-II [Jensen 04] is a Matlab12 Application Programming Interface (API) developed by

Jørgen Arendt Jensen:

“ Field II is a program for simulating ultrasound tranducer fields

and ultrasound imaging using linear acoustics. The programs uses the

Tupholme-Stepanishen method for calculating pulsed ultrasound fields. The

program is capable of calculating the emitted and pulse-echo fields for both

the pulsed and continuous wave case for a large number of different trans-

ducers.

OFFICIAL WEBSITE: HTTP://FIELD-II.DK/

In the context of VIP, FIELD-II [Jensen 04] is used to simulate medical UltraSonography,

whose most well-known application is arguably obstetric sonography, commonly used during

pregnancy.

12Matlab: http://www.mathworks.com/products/matlab/

114

http://field-ii.dk/
http://www.mathworks.com/products/matlab/

CHAPTER 5. VALIDATION 5.3. CONCEPTUAL WORKFLOW MODEL

Figure 5.6: FIELD-II - Result Example

Figure 5.6 is one frame from a “2D+t echocardiographic sequence [which] was simulated

with an image-based approach”, taken from the VIP US Gallery13 where more details about

the simulation and contact information can be found.

The FIELD-II abstract workflow, which is shown on Figure 5.7, takes two Matlab files

as input: ProbeParameters mat contains all the simulation parameters, concerning the

ultrasound probe (e.g. the elevation focus of the transducer) and the generated image (e.g. the

number of lines in the image); and TissueParameters mat contains the objet model, i.e.

a structure of scatterers used to simulate a scanned object.

Data is split along result image lines and the split is handled by the main simulation

step, SimulateRFLine: if the number of lines, computed by read line number, is

less than the maximum number of jobs computed by set max job number based on the

simulation size input, then one instance is invoked for each line. Otherwise, each in-

stance of SimulateRFLine determines which lines it should process, based on a job number

and the total number of jobs (i.e. the maximum number of jobs).

Simulated lines are merged into the output synthetic images of various formats (RFImage,

matImage, mhd and raw) by Merge then reconstructImage. Merge is not con-

nected to SimulateRFLine by either data or order link, but it is told how many lines

should be merged and can thus know when they have all been processed. The reason for

that peculiar structural choice is performance: it is a lot more efficient to merge the results

of SimulateRFLine instances as they become available, rather than wait for all of them to

finish to start. Moreover, sleep ensures that Merge starts before SimulateRFLine, to

prevent a possible scheduling of all or most instances of SimulateRFLine before Merge.

13VIP US Gallery: http://vip.creatis.insa-lyon.fr/gallery/us.html

115

http://vip.creatis.insa-lyon.fr/gallery/us.html

5.3. CONCEPTUAL WORKFLOW MODEL CHAPTER 5. VALIDATION

Figure 5.7: FIELD-II - Abstract Workflow (MOTEUR screenshot)

116

CHAPTER 5. VALIDATION 5.3. CONCEPTUAL WORKFLOW MODEL

5.3.1.2 SIMRI

SIMRI [Benoit-Cattin 05] is developed at CREATIS14 and distributed under the CeCiLL li-

cense15. As the name suggests, it simulates Magnetic Resonance Imaging (MRI), which uses

magnetic fields to stimulate specific atoms into producing magnetic fields of their own, which

are then detected by the scanner and used to construct a three-dimensional image. MRI con-

trasts soft tissues better than other medical imaging modalities, which makes it very useful in

brain, muscles and heart imaging.

Figure 5.8: SIMRI - Result Example

Figure 5.8 is one instant of a “Parasternal short axis view” sequence, taken from the VIP

MRI Gallery16 where more details about the simulation and contact information can be found.

Figure 5.9: SIMRI - Abstract Workflow (MOTEUR screenshot)

The SIMRI abstract workflow, shown on Figure 5.9, has two main inputs: inputZip

contains the object model and paramsFileName is the name of the file containing simulation

parameters.

Because SIMRI was designed for deployment on parallel computing resources, the main

program was parallelized using an MPI library [Benoit-Cattin 03]. As a result, the main step

simri calcul splits and merges data internally and then stores it on the grid and outputs the

corresponding Logical File Name (LFN).

14CREATIS: http://www.creatis.insa-lyon.fr/site/
15CeCiLL license: http://www.cecill.info/index.en.html
16VIP MRI Gallery: http://vip.creatis.insa-lyon.fr/gallery/mri.html

117

http://www.creatis.insa-lyon.fr/site/
http://www.cecill.info/index.en.html
http://vip.creatis.insa-lyon.fr/gallery/mri.html

5.3. CONCEPTUAL WORKFLOW MODEL CHAPTER 5. VALIDATION

5.3.1.3 SimuBloch

SimuBloch [Cao 12] is a Magnetic Resonance Imaging (MRI) simulator developed at VIS-

AGES17 which has quickly become popular among users of the VIP platform.

Figure 5.10: SimuBloch - Abstract Workflow (MOTEUR screenshot)

The SimuBloch abstract workflow, shown on Figure 5.10, has five main inputs. Three

parameters compose the object model: T1 represents the longitudinal magnetic relaxation time,

T2 represents the transverse relaxation time and M0 represents the proton density. Two scalar

values parameterize the simulation: TR is the repetition time and TE the echo time.

Like SIMRI, SimuBloch was designed for deployment on parallel computing resources and

thus the main step SimuBloch leverages data parallelism internally and outputs the URL

where it stored the final result.

5.3.1.4 Sindbad

Figure 5.12: Sindbad - Result Example

17VISAGES: https://www.irisa.fr/visages/

118

https://www.irisa.fr/visages/

CHAPTER 5. VALIDATION 5.3. CONCEPTUAL WORKFLOW MODEL

Figure 5.11: Sindbad - Abstract Workflow (MOTEUR screenshot)

119

5.3. CONCEPTUAL WORKFLOW MODEL CHAPTER 5. VALIDATION

Sindbad [Tabary 09] was developed at CEA18 to simulate X-ray computed tomography (CT).

CT can be construed as a three-dimensional version of traditional radiography: instead of taking

X-ray images from only one angle, X-ray tomographs take images around an axis of rotation

and those images are processed to generate a three-dimensional image.

Figure 5.12 is a “Simulated whole-body static 3D CT acquisition (coronal slice)” taken

from the VIP CT Gallery19 where more details about the simulation and contact information

can be found.

The Sindbad abstract workflow, shown on Figure 5.11, takes one input for the object model,

phantom and four for the simulation parameters: pegs4dat for electromagnetic properties

of materials; scan file for the scanner specifications; geo for geometric parameters; and

chain for other simulation parameters.

A Sindbad simulation comprises a large number of projections, each of them resulting from

the merging of an analysis and a Monte-Carlo computation. There are three levels of inherent

data parallelism:

• projections (i.e. the individual 2D images) are independent;

• analysis and processing of each projection can be done in parallel; and

• random samplings of each Monte-Carlo algorithm can be computed simultaneously.

Much like with FIELD-II, data splitting is handled by the main step sindbad, however the

test of whether merging can start is done explicitly with conditionals rather than inside merge.

5.3.1.5 SORTEO

SORTEO [Reilhac 04] (Simulation Of Realistic Tridimensional Emitting Objects) is a simu-

lation software built at the CERMEP imaging centre, Lyon, France and the McConnell Brain

Imaging Centre, Montreal, Canada. It uses Monte-Carlo techniques to simulate Positron Emis-

sion Tomography (PET): tracers (radioactive atoms) are introduced in the body of the patient

and the gamma rays they indirectly emit are detected in all directions by a tomograph and

analyzed to build a tridimensional image of the tracer concentration.

Figure 5.13: SORTEO - Result Example

18CEA: http://www.cea.fr/
19VIP CT Gallery: http://vip.creatis.insa-lyon.fr/gallery/ct.html

120

http://www.cea.fr/
http://vip.creatis.insa-lyon.fr/gallery/ct.html

CHAPTER 5. VALIDATION 5.3. CONCEPTUAL WORKFLOW MODEL

Figure 5.13 is a “Simulated whole-body static 3D 224s FDG-PET acquisition (coronal

slice)” taken from the VIP PET Gallery20 where more details about the simulation and con-

tact information can be found.

Figure 5.14: SORTEO - Abstract Workflow (MOTEUR screenshot)

The SORTEO abstract workflow, shown on Figure 5.14, simulates a the PET procedure in

two separate steps:

• first singles (short for single photons) are generated with sorteo singles and the

resulting data is merged by sorteo single end,

• then the resulting positron emissions are computed with sorteo emission and the

resulting data is merged by sorteo emission end.

Data is split only once by generateJobs. The object model is contained in a file called

fantome v and the simulation parameters in text protocol. All other Abstract Ele-

ments pertain to technicalities, e.g. LMF2RAWSINO converts from the list mode format result

of SORTEO to a raw sinogram.

20VIP PET Gallery: http://vip.creatis.insa-lyon.fr/gallery/pet.html

121

http://vip.creatis.insa-lyon.fr/gallery/pet.html

5.3. CONCEPTUAL WORKFLOW MODEL CHAPTER 5. VALIDATION

5.3.2 Simulator Template

All five aforementioned VIP simulators share a common “Simulator Template”. They all fit the

same high-level basic skeleton of:

• two types of input data:

– data that defines the Object Model, i.e. the anatomical part and/or pathology

whose medical image will be synthesized, e.g. a brain voxel; and

– Simulation Parameters defining the medical imaging procedure which will

be simulated, e.g. location of the scanner;

• a main process step, Simulate Medical Imaging Procedure; and

• output data of only one type, Synthetic Medical Image.

Moreover, in the context of VIP, all four simulators leverage data parallelism: a Concern

we called SplitAndMerge because fulfilling it consists in splitting data to spread it over

multiple processing units and then merging the results.

Since the OntoVIP ontology does not model Concerns like SplitAndMerge, we cre-

ated a small taxonomy cowork-annot.rdfs to supplement OntoVIP with precisely the

SplitAndMerge Concern and the related Split and Merge Functions.

Object.

Model.

Simula/on.

Parameters.

Simulate.

Medical.

Imaging.

Procedure.

Synthe/c.

Medical.Image.

vip:medical&image&simula/on.

cowork:SplitAndMerge.

vip:medical&image&

simula/on&object&model.
vip:quality.

vip:simulated&data.

Figure 5.15: VIP Simulator Template Conceptual Workflow

That common template, modeled as a Conceptual Workflow on Figure 5.15, is near impos-

sible to detect in the abstract workflows and cannot be modeled in a purely abstract scientific

workflow model such as GWENDIA [Montagnat 09]. Conversely, since Intermediate Rep-

resentations present both the Conceptual Level and Abstract Level of a scientific workflow,

they can fully model the five simulators and tie them to the high-level template.

122

CHAPTER 5. VALIDATION 5.3. CONCEPTUAL WORKFLOW MODEL

5.3.3 Conceptual Workflows

In the following five Conceptual Workflows, which we designed manually to check the ex-

pressivity of our model: (i) Input Ports are annotated like the Output Port they are bound

to by a Data Link (ii) the SplitAndMerge Concern as well as the Split and Merge

Functions come from the cowork-annot taxonomy we created to supplement OntoVIP and

(iii) all other Annotations come from the modules of OntoVIP: the full URIs can be found in

Appendix G.

In most of the following Conceptual Workflow figures, we used a graphical tool we called

the Data Link Replicator: it splits Data Links which would otherwise cross-cut the graph and

make it less legible.

5.3.3.1 FIELD-II

The FIELD-II workflow fits the template with an additional Merge Conceptual Function,

while the correspondig Split Function is catered to internally in the SimulateRFLine

Activity.

The vast majority of the Activities featured in the workflow cater to technical issues and

thus do not belong to any Conceptual Function, e.g. read line number which extracts a

specific information from the input parameter ProbeParameters mat for other Activities

to process and reconstructImagewhich converts the result into additional output formats.

Synthe'c)Medical)Image)

Simulate)Medical)Imaging)Procedure)

Simula'onDirectory)

Object)Model)

TissueParameters_mat)

Simula'on)Parameters)

ProbeParameters_mat)

simula'on)size)

writeBool)

appendDate)

concatenate)

listFiles) copy)file)

read)line)number)

SimulateRFLine)

set)max)job)number)

getRFLines)

RFImage)matImage) mhd) raw)

sleep)

reconstructImage)

FL)

FL)

FL)

LN)

LN)

LN)

LN)

LN)

LN)

PP)

PP)

PP)

PP)

Merge)

Legend:)

))))))))))))Data)Link)Replicator)

Merge)

Figure 5.16: FIELD-II Conceptual Workflow

123

5.3. CONCEPTUAL WORKFLOW MODEL CHAPTER 5. VALIDATION

The elements of the Intermediate Representation of FIELD-II, shown on Figure 5.16, are

annotated with the following Specifications:

• Object Model and the Output Port of TissueParameters mat bear

US-simulation-compatible-model;

• Simulation Parameters and the Output Ports of ProbeParameters mat,

copy file and simulation size bear quality;

• Simulate Ultra-Sonography and SimulateRFLine perform

US-simulation and Split;

• the Merge Conceptual Function and activity both perform Merge;

• Synthetic Sonogram and the Output Ports of Merge and reconstructImage

bear US-simulated-image;

• the Output Ports of SimulationDirectory and appendDate bear directory;

• the Output Ports of listFiles and concatenate bear file; and

• the Output Ports of read line number, getRFLines and

set max job number bear number.

5.3.3.2 SIMRI

The SIMRI workflow fits the template almost directly. It only featues five Activities (including

two Inputs) which do not pertain to any Conceptual Function.

Simulate'''Medic.'Img.'Proc.'

Synthe1c'Medic.'Img.'

outputDir'

Simula1on'Parameters'

paramsFileName'

Object'Model'

inputZip'

simri_calcul'

outputFileLfn'

appendDate' cstMpiVersion'

fileoutName_2'

detFileOut'

Figure 5.17: SIMRI Conceptual Workflow

124

CHAPTER 5. VALIDATION 5.3. CONCEPTUAL WORKFLOW MODEL

The elements of the Intermediate Representation of SIMRI, shown on Figure 5.17, are

annotated with the following Specifications:

• Simulate MRI and SIMRI perform ontovip:MR-simulation and fulfill

SplitAndMerge;

• Simulation Parameters and the Output Port of paramsFileName bear

quality;

• Object Model and the Output Port of inputZip bear

MR-simulation-compatible-model;

• Synthetic MRI and the Output Port of simri calcul bear

MR-simulated-image;

• the Output Ports of outputDir and appendDate bear directory;

• the Output Port of cstMpiVersion bears version-number; and

• the Output Ports of fileoutName 2 and detFileOut bear file.

5.3.3.3 SimuBloch

Of the five simulators, SimuBloch is the one whose implementation as an abstract workflow

sticks closest to the simulator template. It only features two technical Activities, result

directory and appendDate, to generate the result directory name in a manner compliant

with platform conventions.

Object'Model'

Simula1on'Parameters'

Simulate'Medic.''Imaging'Proced.'

Synthe1c'Medical'Image'

result'directory'

TE' TR'

T1' T2' M0'

SimuBloch'

simulated'image'

appendDate'

Figure 5.18: SimuBloch Conceptual Workflow

125

5.3. CONCEPTUAL WORKFLOW MODEL CHAPTER 5. VALIDATION

The elements of the Intermediate Representation of SimuBloch, shown on Figure 5.18,

are annotated with the following Specifications:

• Simulate MRI and SimuBloch perform ontovip:MR-simulation and fulfill

SplitAndMerge;

• Simulation Parameters bears quality;

• Object Model bears MR-simulation-compatible-model;

• Synthetic MRI and the Output Port of SimuBloch bear

MR-simulated-image;

• the Output Ports of result directory and appendDate bear directory;

• the Output Port of T1 bears T1-weighted-MR-dataset;

• the Output Port of T2 bears T2-weighted-MR-dataset;

• the Output Port of M0 bears proton-density-weighted-MR-dataset;

• the Output Port of TE bears echo-time; and

• the Output Port of TR bears repetition-time.

5.3.3.4 Sindbad

The Sindbad workflow, like that of FIELD-II, fits the template with an additional Merge

Conceptual Function while the Split Function is performed by the sindbad Activity and

about half of its Activities pertain to no Conceptual Function.

The elements of the Intermediate Representation of Sindbad, shown on Figure 5.19, are

annotated with the following Specifications:

• Object Model and the Output Port of phantom bear

CT-simulation-compatible-model;

• Simulation Parameters and the Output Ports of chain, geo, scan file,

pegs4dat, split count and projection count bear quality;

• the Output Ports of nb jobs max, get min element and default split bear

number;

• the Output Port of sindbad release bears version-number;

• Synthetic CT Scan and the Output Ports of sindbad, test use split,

count in dir, text start merge and merge bear CT-simulated-data;

• Simulate CT Scan and sindbad perform CT-simulation and Split; and

• the Merge Conceptual Function and the merge Activity both perform Merge.

126

C
H

A
P

T
E

R
5
.

V
A

L
ID

A
T

IO
N

5
.3

.
C

O
N

C
E

P
T

U
A

L
W

O
R

K
F

L
O

W
M

O
D

E
L

Simulate)

Medical)

Imaging)

Procedure)

Merge)

Simula'on)Parameters)Object)Model)

Synthe'c)Medical)Image)

default_split)

nb_jobs_max)scan_file)chain)geo)phantom) pegs4dat) sindbad_release)

nb_par'cules_par_job_max)

result_directory)

sindbad)

appendDate)
get_min_element)

projec'on_count)

split_count)

count_in_dir)

Merge)

MC_merges)

wait)

ResultFile_2) ResultFile)

SNM) SNM) SNM) SNM)

SNM)

SNM)

C)

C)

C)

Legend:)

))))))))))))Data)Link)Replicator)

F
ig

u
re

5
.1

9
:

S
in

d
b
ad

C
o
n
cep

tu
al

W
o
rk

fl
o
w

1
2
7

5.3. CONCEPTUAL WORKFLOW MODEL CHAPTER 5. VALIDATION

5.3.3.5 SORTEO

The relationship with the template is most complex with the SORTEO abstract workflow. In-

deed, not only does it feature additional Split and Merge Conceptual Functions to handle

the SplitAndMerge Concern, it also splits the main Conceptual Function into two distinct

phases Generate Singles and Generate Emissions. Of course, it also features a

handful of technical Activities belonging to no Conceptual Function in particular.

Simulate'Medical'

Imaging'Procedure'

Synthe1c'Medical'Image'

sinogram'

Simula1on'Parameters'

text_protocol'

Split'

generateJobs'

CompileProtocol'

Generate'

Emissions'

sorteo_emission'
Merge1'

sorteo_single_end'

Generate'

Singles'

sorteo_singles'

Merge2'

sorteo_emission_end'

Object'Model'

fantome_v'

parse_text_protocol'

LMF2RAWSINO'

DN'

DN'

DN'

DN'

DN'

DN'

list'mode'

appendDate'

result_directory'

DN'

Legend:'

''''''''''''Data'Link'Replicator'

Figure 5.20: SORTEO Conceptual Workflow

128

CHAPTER 5. VALIDATION 5.3. CONCEPTUAL WORKFLOW MODEL

The elements of the Intermediate Representation of SORTEO, shown on Figure 5.20, are

annotated with the following Specifications:

• Generate Singles, Generate Emissions, sorteo singles and

sorteo emission perform PET-simulation;

• Split and generateJobs perform split;

• Merge1, Merge2, sorteo single end and sorteo emission end perform

Merge;

• Simulation Parameters and the Output Ports of text protocol,

parse text protocol, generateJobs and CompileProtocol bear

quality;

• Object Model and the Output Port of fantome v bear

PET-simulation-compatible-model;

• Synthetic PET Sinogram bears PET-simulated-image;

• the Output Ports of result directory and appendDate bear directory;

• the Output Port of sorteo single end bears PET-simulated-data;

• the Input Port of sorteo emission end bears PET-list-mode-data; and

• the Output Port of LMF2RAWSINO bears PET-sinogram.

5.3.4 Discussion

Applying the Conceptual Workflow Model to the five VIP simulators has allowed us to check

that it can model real simulations.

Moreover, it shows that Conceptual Workflows, thanks to their multiple abstraction levels

and structural flexibility, can be used to:

• highlight common high-level templates among workflows whose implementations differ

widely; and

• emphasize the simulation in a scientific workflow, making it easier to interpret by explic-

iting the scientific goals.

However, Conceptual Workflows tend to take more graphical space than the equivalent ab-

stract workflows, because of their additional layers of information, and that makes Conceptual

Workflows of full-fledged simulations, like the VIP simulators presented here, hard to fit for

print. We have tackled that issue by using a purely graphical shortcut we called Data Link

Replicator which splits Data Links so they do not cross the rest of the workflow. It would

be interesting to investigate whether it enhances or degrades legibility and whether its use can

be automated.

129

5.4. TRANSFORMATION PROCESS CHAPTER 5. VALIDATION

5.4 Transformation Process

To validate our Transformation Process, we opted for the use case presented in Section 5.4.2,

inspired by the VIP simulators, and applied on it the Mapping and Conversion processes.

The results are detailed in Section 5.4.3 for the algorithms of Discovery and Weaving; in

Section 5.4.4 for that of Composition; and in Section 5.4.5 for the Conversion to GWENDIA

[Montagnat 09], which is used on the VIP platform.

All the algorithms of Mapping were run against the same knowledge base containing only

the Fragments described in the following section.

5.4.1 VIP Fragments

The Intermediate Representations of the aforementioned simulators are wrapped into Frag-

ments before they are saved into the knowledge base, but they are not easily woven as-is. Other

Fragments can be extracted from them to facilitate reuse.

5.4.1.1 Simple Sub-workflows

The simplest form of Fragment, besides those with empty Patterns, is that of a single Con-

ceptual Workflow fulfilling a set of Requirements by embedding a set of Activities.

The template is as follows: a Pattern containing a single Conceptual Workflow which

bears a set of Requirements and a Blueprint containing the same (identified by name) Con-

ceptual Workflow, with at least one of the aforementioned Requirements transformed into a

Specification.

Simulate.MRI.

MR&simula/on.

Simulate.MRI.

MR&simula/on.

SimuBloch.

Figure 5.21: Simple Sub-workflow Fragment Example

For instance, the SimuBloch Fragment, shown on Figure 5.21, features a Pattern anno-

tated with a MR-simulation Requirement and a Blueprint annotated with the same Type,

but as a Specification. The basic meaning of this Fragment is that the Activity SimuBloch

performs the MR-simulation Function.

5.4.1.2 Two Steps Function

A more complex type of Fragment aims to fulfill a Requirement not by a sub-workflow

of Activities, but by a sub-workflow of Conceptual Workflows. That has multiple benefits,

including the ability to introduce further Requirements for later Discovery steps. However,

the Fragment designer must know more about the inner workings of the Weaving process,

especially when it comes to binding (cf. Section 4.2.6): whether the generated elements are

bound to nodes or to links will impact where and how many elements will be generated.

130

CHAPTER 5. VALIDATION 5.4. TRANSFORMATION PROCESS

Simulate.PET.

Generate.Singles.

sorteo_singles.

Generate.Emissions.

sorteo_emission.

Simulate.PET.

PET&simula/on.

PET&simula/on.

SplitAndMerge.

SplitAndMerge.

SplitAndMerge.

Figure 5.22: PET 2 Steps Fragment

For instance, the PET 2 Steps Fragment, shown on Figure 5.22, describes how SOR-

TEO performs the PET-simulation Function: in two distinct phases, each of which must

fulfill the SplitAndMerge Concern and it uses node-bound Weaving (cf. Section 4.2.6.1)

to do so.

5.4.1.3 Split and Merge

Step.

SplitAndMerge.

linkbefore.

linkaUer.

Step.

linkaUer.

linkbefore.

Split.

Merge.

Split.

Merge.

Figure 5.23: Split and Merge Fragment - Link-bound

The most complex Fragment that can be extracted from the VIP simulators is the Split

and Merge Fragment shown on Figure 5.23 and Figure 5.24. The former uses link-bound

and the latter node-bound Weaving (cf. Section 4.2.6.2 and Section 4.2.6.1 respectively) to

insert a pre-processing Split step and a post-processing Merge step, in order to fulfill the

SplitAndMerge Concern.

On the one hand, even though FIELD-II, Sindbad and SORTEO each fulfill the Con-

cern in their own distinct way, all three methods fit in the high-level skeleton created by those

Fragments. SIMRI and SimuBloch, on the other hand, fulfill the Concern inside their main

Activity and thus require no additional Conceptual Functions.

131

5.4. TRANSFORMATION PROCESS CHAPTER 5. VALIDATION

Step.

SplitAndMerge.

Step.

Split.

Merge.

SplitAndMerge.

Figure 5.24: Split and Merge Fragment - Node-bound

5.4.2 Use Case

One of the goals of the VIP project was to ease the design and integration of new medical image

simulation tools. To illustrate how Conceptual Workflows help reuse existing elements, let us

consider the following situation: the knowledge base contains the five Conceptual Workflows

and Fragments detailed in the previous Section 5.3.1 and we want to create a workflow to

simulate MRI and PET scans of a given medical object simultaneously, similarly to what is

done in hybrid PET/MRI image acquisition devices available today.

The first step is to design a high-level Conceptual Workflow which fits our needs. A simple

variation of the “VIP Simulator Template” described in Section 5.3.2, as shown on Figure 5.25

will do nicely.

Object.

Model.

Simula/on.

Parameters.

Simulate.

MRI.

and.

PET.

Synthe/c.

MRI.and.PET.

vip:PET&simula/on.

cowork:SplitAndMerge.

vip:medical&image&

simula/on&object&model.
vip:quality.

vip:PET&simulated&image.

vip:MR&simula/on.

vip:MR&simulated&image.

Figure 5.25: Use Case High-level Conceptual Workflow

The modifications required pertain to the Annotations which must let the system know the

aim is to simulate both an MRI and a PET scan:

• the vip:medical-image-simulation Function is split into

vip:MR-simulation and vip:PET-simulation instead; and

• the vip:simulated-dataDataset is split into vip:MR-simulated-image and

vip:PET-simulated-image.

132

CHAPTER 5. VALIDATION 5.4. TRANSFORMATION PROCESS

5.4.3 Discovery and Weaving

In this entire section, the following constants were used (cf. Section 4.4.3.2): exact matches

constant KEM = 1.0; narrower matches constant KNM = 0.5; broader matches constant

KBM = 0.25; and functions priority factor KF = 2.0.

Discovery applied to the Simulate MRI and PETConceptual Function finds the fol-

lowing matches (Legend: Fragment name [score]):

1. PET 2 Steps [0.6]

2. SimuBloch [0.4]

3. Split and Merge [0.2]

4. Node-bound Split and Merge [0.2]

5. SIMRI (complete workflow) [0.15]

6. SimuBloch (complete workflow) [0.15]

7. SORTEO (complete workflow) [0.09]

The PET 2 Steps Fragment is first because it caters to both the PET-simulation

and SplitAndMerge Requirements, but the score is not perfect since it does not perform

MR-simulation. As expected, the difference in scores between the SimuBloch Fragment

and the Split and Merge ones reflects exactly the functions priority factor. Complete

workflows performing either PET-simulation or MR-simulation get a much lower

score because of their extra Functions.

Object.

Model.

Simula/on.

Parameters.

Simulate.MRI.and.PET.

Synthe/c.

MRI.and.PET.

vip:medical&image&

simula/on&object&model.
vip:quality.

vip:PET&simulated&image.

vip:MR&simula/on.

vip:MR&simulated&image.

Generate.Singles.

sorteo_singles.

Generate.Emissions.

sorteo_emission.

vip:PET&simula/on.

cowork:SplitAndMerge.

cowork:SplitAndMerge.

Figure 5.26: Mapping Use Case - After Weaving PET 2 Steps

Figure 5.26 shows the result of Weaving the top discovered match PET 2 steps (shown

on Figure 5.22) into the base workflow (shown on Figure 5.25).

133

5.4. TRANSFORMATION PROCESS CHAPTER 5. VALIDATION

This time, applying Discovery to the Simulate MRI and PET Conceptual Function

finds the following matches (Legend: Fragment name [score]):

1. SimuBloch [0.67]

2. Split and Merge [0.33]

3. Node-bound Split and Merge [0.33]

4. SIMRI (complete workflow) [0.25]

5. SimuBloch (complete workflow) [0.25]

6. PET 2 Steps [0.08]

7. SORTEO (complete workflow) [0.03]

Again, the difference in scores between the SimuBloch Fragment and the Split and

Merge ones reflects the functions priority factor. Since PET-simulation is no longer a

Requirement, the PET 2 Steps Fragment fell to the bottom of the ranking.

Object.

Model.

Simula/on.

Parameters.

Simulate.MRI.and.PET.

Synthe/c.

MRI.and.PET.

vip:medical&image&

simula/on&object&model.
vip:quality.

vip:PET&simulated&image.

vip:MR&simulated&image.

Generate.Singles.

sorteo_singles.

Generate.Emissions.

sorteo_emission.

vip:PET&simula/on.

cowork:SplitAndMerge.

cowork:SplitAndMerge.

SimuBloch.

vip:MR&simula/on.

Figure 5.27: Mapping Use Case - After Weaving SimuBloch

Figure 5.27 shows the result of Weaving the top discovered match SimuBloch (shown on

Figure 5.21) into the base workflow shown on the previous Figure 5.26.

134

CHAPTER 5. VALIDATION 5.4. TRANSFORMATION PROCESS

Applying Discovery to the Simulate MRI and PET Conceptual Function obtained

after Weaving SimuBloch Fragment, finds the following matches (Legend: Fragment

name [score]):

1. Split and Merge [1.0]

2. Node-bound Split and Merge [1.0]

3. PET 2 Steps [0.25]

4. SIMRI (complete workflow) [0.17]

5. SimuBloch (complete workflow) [0.17]

6. SORTEO (complete workflow) [0.1]

The only Requirement left is SplitAndMerge, so the SimuBloch Fragment is no

longer a match, while the score of pure Split and Merge Fragments is perfect. The

only issue is which Fragment to pick between the link-bound and the node-bound one. In

this precise case, the link-bound Fragment will have no effect if woven, because Generate

Singles features no incoming Conceptual Links and Generate Emissions features no

outgoing ones: there is no match for the link-bound Pattern in this specific workflow (shown

on Figure 5.27).

Object.

Model.

Simula/on.

Parameters.

Simulate.MRI.and.PET.

Synthe/c.

MRI.and.PET.

vip:medical&image&

simula/on&object&model.
vip:quality.

vip:PET&simulated&image.

vip:MR&simulated&image.

Generate.Singles.

sorteo_singles.

Generate.Emissions.

sorteo_emission.

vip:PET&simula/on.

SimuBloch.

vip:MR&simula/on.

Split.

Split.

Merge.

Merge.

cowork:SplitAndMerge.

cowork:Split.

cowork:Merge.

cowork:Merge.

cowork:Split.

Figure 5.28: Mapping Use Case - After Weaving (node-bound) Split and Merge

135

5.4. TRANSFORMATION PROCESS CHAPTER 5. VALIDATION

Object.

Model.

Simula/on.

Parameters.

Simulate.

MRI.

and.

PET.

Synthe/c.

MRI.and.PET.

vip:medical&image&

simula/on&object&model.
vip:quality.

vip:PET&simulated&image.

vip:MR&simulated&image.

Generate.Singles.

sorteo_singles.

Generate.Emissions.

sorteo_emission.

vip:PET&simula/on.

SimuBloch.

vip:MR&simula/on.

Split.

Merge1.

Merge2.

cowork:SplitAndMerge.

cowork:Split.

cowork:Merge.

cowork:Merge.

Figure 5.29: Mapping Use Case - Fixed Split and Merge Steps

Simula/on.Parameters.

Simulate.

MRI.

and.

PET.

Synthe/c.MRI.and.PET.

Generate.Singles.

sorteo_singles.

Generate.Emissions.

sorteo_emission.

Merge2.

Object.Model.

fantome_v. text_protocol.

Split.

generateJobs.

Merge1.

sorteo_single_end.

sorteo_emission_end.

T1. T2. M0. TR.

SimuBloch.

sinogram. list.mode. simulated.image.

TE.

Figure 5.30: Mapped Use Case

136

CHAPTER 5. VALIDATION 5.4. TRANSFORMATION PROCESS

Figure 5.28 shows the result of Weaving the node-bound Split and Merge Fragment

(shown on Figure 5.24) into the base workflow shown on the previous Figure 5.27. That result is

imperfect because it created the Split and Merge steps alongisde rather than on the path from

Generate Singles to Generate Emissions. What we really want is one Split step

at the beginning of the chain and one Merge step after each generation phase. Fixing that is

easy enough to do manually and the result is shown on Figure 5.29.

Only Inputs and Outputs remain to map now. They can be either entered manually or

woven automatically if they have been wrapped into simple Fragments (as described in Sec-

tion 5.4.1.1). Either way, the end result, the mapped Conceptual Workflow, is shown on

Figure 5.30.

5.4.4 Composition

In this entire section, the the following constants were used (cf. Section 4.4.3.2): exact matches

constant KEM = 1.0; narrower matches constant KNM = 0.5; and broader matches constant

KBM = 0.25.

When run against the knowledge base used in the previous Section 5.4.3, the link function

detailed in Section 4.5.1 suggests the following links, as shown on Figure 5.31:

Legend: source.outputPort→ target.inputPort [comment on quality]

• generateJobs.out→ sorteo emission.jobs [excellent]

• generateJobs.out→ sorteo single end.protocol [broken]

• generateJobs.out→ sorteo singles.jobs [excellent]

• generateJobs.out→ sorteo singles.protocol [broken]

• M0.out→ simuBloch.m0 [excellent]

• sorteo single end.out→ sorteo emission.singles [excellent]

• sorteo single end.out→ sorteo emission end.singles [excellent]

• T1.out→ simuBloch.t1 [excellent]

• T2.out→ simuBloch.t2 [excellent]

• TE.out→ simuBloch.te [excellent]

• text protocol.out→ generateJobs.in [mismatched]

• text protocol.out→ simuBloch.te [broken]

• text protocol.out→ simuBloch.tr [broken]

• text protocol.out→ sorteo emission.jobs [broken]

• text protocol.out→ sorteo single end.protocol [mismatched]

• text protocol.out→ sorteo singles.jobs [broken]

• text protocol.out→ sorteo singles.protocol [mismatched]

• TR.out→ simuBloch.tr [excellent]

137

5.4. TRANSFORMATION PROCESS CHAPTER 5. VALIDATION

text_protocol. T1. T2.TE. TR. M0.

SimuBloch.

generateJobs.

sorteo_singles.

sorteo_single_end.

sorteo_emission.
sorteo_emission_end.

Legend:.

.Link.sugges/on.

.Excellent.

.Mismatched.

.Broken.

Figure 5.31: Use Case Link Suggestions

The comments on quality given here are not produced by the prototype, though mismatch

detection is a planned feature. They are judgments informed by the Conceptual Workflows

the Activities were fetched from. [excellent] means that the suggested Data Link exists as-is

in the original workflow the Activity came from; [mismatched] means that a converter must be

inserted between the source and the target for the suggested Data Link to work; and [broken]

means that the suggestion makes little sense and is a product of the semantic gap. For instance,

generateJobs.out and sorteo single end.protocol both bear the very generic

quality Annotation but are not compatible at all.

In this specific instance, the link function produced 9 excellent, 3 mismatched and 6 broken

suggestions, which amounts to a 66% relevancy rate, given that mismatched links can further

be used to look for converters.

The same detection gap plagues the other Composition functions. The more generic and

widely used a Specification is, the less relevant the suggestions based on it will be.

For instance, Ports sorteo singles.protocol and text protocol.out both

bear quality. The produce function, detailed in Section 4.5.2, when applied to the for-

mer, returns the four Activities copy file, CompileProtocol, generateJobs and

parse text protocol each with a perfect score. Of the four, only CompileProtocol

fits, but Annotations do not reflect that. Similarly, the consume function, detailed in Sec-

tion 4.5.3, when applied to text protocol.out, returns 13 Activities featuring an Input

Port annotated with quality, each with a perfect score, but only one is truly relevant.

Conversely, the more specific and rarely used a Specification is, the more relevant the

suggestions will be. For instance, applying produce to SimuBloch.dir which is anno-

tated with directory returns only the appropriate appendDate Activity. Even more in-

terestingly, applying consume to sorteo emission end.out, which is annotated with

PET-list-mode-data, returns the appropriate LMF2RAWSINO Activity with a perfect

score, but also sorteo emission and sorteo emission end, each with a score of 0.5,

because they feature an Input Port annotated with PET-simulated-data, the direct su-

pertype of PET-list-mode-data, and are thus broader matches.

138

CHAPTER 5. VALIDATION 5.4. TRANSFORMATION PROCESS

Annotations are even more critical for converter suggestion, since it involves looking for

chains of Activities. The more Activities there are for a given Annotation, the longer it takes

to score all the alternative chains. The chain size threshold has an even bigger impact on

performance.

For instance, the function convert, detailed in Section 4.5.4, applied on a mismatched Data

Link from sorteo emission end.out to sinogram.in, bearing PET-sinogram,

returns only the appropriate Activity LMF2RAWSINO with a perfect score.

However, on the Data Link from text protocol.out to generateJobs.in, bear-

ing the generic and well-spread quality, the convert function returns three Activities be-

sides the appropriate parse text protocol - copy file, CompileProtocol and

generateJobs - and all four have perfect scores.

The difference between the two cases becomes a lot starker when looking for conversion

chains with two Activities. Indeed, from text protocol.out to generateJobs.in,

convert returns only one chain with LMF2RAWSINO used twice, with a score of 0.5, whereas

from text protocol.out to generateJobs.in, convert returns 40 chains with scores

of either 0.5 or 0.25 depending on the number of extra Functions and Concerns of the Activi-

ties in the chain.

Table 5.1 indicates the average execution time observed over 10 runs on a laptop equipped

with a dual-core 2.8GHz processor and 8GB RAM.

Table 5.1: Converter Suggestion Performance

Source Target Specification Size Time

sorteo emission end.out sinogram.in PET-sinogram 1 17 ms

text protocol.out generateJobs.in quality 1 25 ms

sorteo emission end.out sinogram.in PET-sinogram 2 129 ms

text protocol.out generateJobs.in quality 2 2341 ms

As confirmed by the execution times showed on Table 5.1, there are three factors negatively

impacting the performance of converter suggestion:

• genericity: the more generic an Annotation is, the more narrower matches it has, thus

increasing the number of potential results;

• usage spread: each Activities bearing an Annotation increases the number of potential

results; and

• chain size: because all intermediary types are considered, doubling the chain size likely

more than doubles the number of potential results.

Of the three factors, the chain size is by far the most limiting factor.

5.4.5 Conversion

Once the workflow is fully composed through picking the appropriate producers, consumers

and converters, it becomes the Intermediate Representation shown on Figure 5.32. Conver-

sion is then a fully automated process. Figure 5.33 shows the result of that process targeting

GWENDIA. That result can be opened in MOTEUR, but has yet to be fully tested on the VIP

platform.

139

5
.4

.
T

R
A

N
S

F
O

R
M

A
T

IO
N

P
R

O
C

E
S

S
C

H
A

P
T

E
R

5
.

V
A

L
ID

A
T

IO
NSynthe'c)Medical)Image)

Simulate)

Medical)

Imaging)

Procedure)Merge2)

Generate)

Emissions)

Merge1)

Object)Model)Simula'on)Parameters)

text_protocol) TE) TR) T1) M0) T2) fantome_v)

parse_text_protocol)

result_directory)

appendDate)

CompileProtocol)

Split)

generateJobs)

SimuBloch)

Generate)

Singles)

sorteo_singles)

sorteo_single_end)sorteo_emission)

sorteo_emission_end)

list)mode) sinogram)simulated)image)

LMF2RAWSINO)

DN)

DN)

P
TP)

P

DN)DN)

DN)
S)

P

S)

DN)

DN)

DN) TP)

Legend:)

))))))))))))Data)Link)Replicator)

F
ig

u
re

5
.3

2
:

U
se

C
ase

In
term

ed
iate

R
ep

resen
tatio

n

1
4
0

CHAPTER 5. VALIDATION 5.4. TRANSFORMATION PROCESS

Figure 5.33: Use Case GWENDIA Conversion Result (MOTEUR screenshot)

141

5.4. TRANSFORMATION PROCESS CHAPTER 5. VALIDATION

5.4.6 Discussion

The use case, in combination with the prototype and VIP simulators, has allowed us to test the

basic assumptions, the structure and algorithms of our work. It has also showed how much the

quality of the computer-assistance provided by the system depends on the quality of the knowl-

edge base. It is quite obvious that the more detailed the available semantic descriptions are,

the more useful the system becomes, especially when making suggestions. Consequently, the

system will no doubt suffer from the “cold-start problem” that is common with semantic-based

systems as well as content-based approaches such as collaborative filtering, i.e. recommenda-

tions based on similarity between user profiles.

On the other end of the spectrum, it is also clear that the prototype as it is currently built

would suffer from performance issues if used against a huge knowledge base, especially if

some Annotations are used repeatedly in large numbers of Fragments. Caching of results

would most probably help, but some more work on query optimization might be needed as

well. Moreover, when combining the probability of quality loss with the huge performance

hit, it seems conversion chains should be reserved for cases where no results are returned at

all and, even then, remain optional. On the one hand, the arbitrary choices we made for the

values of scoring constants (cf. Section 4.4.3.2) worked fine for the use case, but further study

is needed to check how they might require adapatation in different contexts. On the other hand,

it is clear from the use case that further heuristics are sorely needed for Composition, to try

to discriminate between elements bearing the same Annotations. For instance, it should be

possible to take the existing uses of an Activity into account when scoring it for producer,

consumer or converter suggestions.

Among issues the use case highlighted is the tedium of extracting trivial Fragments. It

should be possible to alleviate this issue by automating the extraction partially, i.e. detect

sub-workflows fitting the template described in Section 5.4.1.1 and suggest the corresponding

Fragments to the user. Another, maybe complementary, option would be to extend Discovery

to Activities so that when a single Activity is adequate for the Mapping of a given Conceptual

Workflow, it would not be required that it is wrapped alone in a Fragment for it to be found

and suggested to the user.

142

CHAPTER 5. VALIDATION 5.4. TRANSFORMATION PROCESS

We built a prototype system to design Conceptual Workflows and imple-

mented the various algorithms and tools of the Transformation Process. The

prototype was integrated as a Workflow Designer into the Virtual Imaging

Platform (VIP) and the use cases of the VIP project allowed us to ensure

that the Conceptual Workflow Model is expressive enough to model real

life simulations and that the Transformation Process performs as well as

the Knowledge Base is populated.

CHAPTER SUMMARY

143

CHAPTER 6

CONCLUSION

The need to automate simulations and/or run them on Distributed Computing Infrastructures

(DCIs) is ever-increasing in most scientific domains. Unfortunately, most scientific workflow

models mix domain goals and methods with technical aspects and non-functional concerns in

such a way that scientific workflows become hard to use for scientists who are not distributed

computing experts or enthusiasts. Consequently, our objective in this work was as follows:

Create a new scientific workflow model to improve accessibility, ease

reuse and allow comparison.

GOAL

For us, the most obvious impediment to accessibility and reuse was the abstraction level of

most scientific workflow models. We identified three distinct levels, based on existing systems

and the litterature: the Concrete level of technical enactment, the Abstract level where most

scientific workflow models lie and the Conceptual level where scientists truly conceive their

simulations, before implementing them. Our first step was thus:

Create a new scientific workflow model at the Conceptual Level.

METHOD (PART 1 OF 4)

We designed the Conceptual Workflow Model for scientists to model their simulations at a

computation-independent level, free from technicalities. Applying it to real-life examples taken

from the Virtual Imaging Platform (VIP) project shows how it applies to real-life scenarios.

Though Conceptual Workflows could arguably be useful as documentation on their own,

the end goal of designing a simulation is of course to execute it, most often on DCIs. Hence

the need for a systematic way to transform Conceptual Workflows into abstract workflows

which can be delegated to already plentiful third-party scientific workflow frameworks. Our

open-world hypothesis precluded full automation, the best we could aim at was thus:

Develop a computer-assisted Transformation Process from the

Conceptual Level to the Abstract Level.

METHOD (PART 2 OF 4)

The Transformation Process we developed is split in two steps: the Mapping phase relies

on Semantic Web technologies and domain Semantic Annotations to lower the abstraction

level to the Abstract Level; then the Conversion processes convert to target languages. The

Mapping phase, like the Conceptual Workflow Model itself, is as independent from the cho-

sen target language as possible, so as to not to hinder comparison. Applying the Transforma-

tion Process on a use case inspired by the VIP project ensured that it is working as intended,

with a performance depending entirely on the content of the knowledge base.

144

CHAPTER 6. CONCLUSION

However, a purely conceptual model would not accomodate the information required to run

a simulation and would therefore not suit the needs of the Mapping phase, we thus had to:

Extend the scientific workflow model with elements of the Abstract Level

to model Intermediate Representations.

METHOD (PART 3 OF 4)

The Abstract Elements we extended the Conceptual Workflow Model with have proven

sufficient for the simulations modeled so far and, if the need arises, adding more will not be

difficult.

Emphasizing domain goals and methods over technicalities is not enough to improve the

legibility and ease-of-reuse of scientific workflows. Indeed, cross-cutting non-functional con-

cerns require more specific solutions, hence the need to:

Develop technologies to weave different types of concerns into scientific workflows.

METHOD (PART 4 OF 4)

We defined Fragments, with Blueprints describing how to weave them and Patterns de-

scribing where; and we developed a Weaving algorithm which transforms Fragments into

SPARQL Protocol and RDF Query Language (SPARQL) CONSTRUCT queries to leverage the

semantic nature of the Conceptual Workflow Model and the graph transformation capabilities

of SPARQL. The VIP simulators provided us with a variety of Fragments, more or less com-

plex, and we could check it is functioning as intended and lets designers express cross-cutting

concerns like data parallelism optimization directly in the Conceptual Workflow Model.

Limitations

The biggest limitation of a Conceptual Workflow framework is its dependency on the con-

tent of the knowledge base: if the latter contains neither Activities nor Fragments matching the

Annotations of the Conceptual Workflow being mapped, then the Transformation Process

will provide no assistance to the user. Conversely, as it is defined now, the Transformation

Process will scale very poorly to a knowledge base filled with similarly annotated Activities

and Fragments.

Weaving is a powerful tool, but its efficiency is contingent on the quality of Fragments and

their design is not trivial. As the process stands now, Fragments must be designed manually

by users having a deep understanding of the Weaving process. For the system to fit the needs

of non-expert users, it would therefore be vital to develop automated Fragment generation

features and document the Weaving process in a way that makes it easily understandable for

prospective users.

Discovery and Composition, as they are defined now, rely solely on Annotations. Since

the entire Conceptual Workflow Model can be browsed and queried semantically, it could be

more beneficial to also take the structure of Conceptual Workflows into account when making

suggestions.

145

CHAPTER 6. CONCLUSION

Positionning

Using the same legend as the overview table given in Section 2.1.4, Table 6.1 highlights the

positionning of our contributions against the scientific workflow frameworks we analyzed.

Table 6.1: Position of Conceptual Workflow Framework

Framework Interface Model
Abstraction Level

Annot. Compos. Flexib. Indir.

COWORK In development Hybrid DCG ❱ ❱ ❱ ❱

Perspectives

Aside further development of our prototype framework, there are many avenues for future

research on the topic of Conceptual Workflows.

For instance, given that Conceptual Workflows let users emphasize the fundamentals of

a simulation, as opposed to technical and non-functional concerns, they could potentially be

used, in conjunction with provenance systems, to highlight the parts of an execution which are

most relevant to the end user. Indeed, most provenance tracking systems treat all Activities

equally, which can be confusing for anyone perusing provenance traces, since a big number of

Activities pertain to technical or non-functional concerns and give very little information about

the experience as a whole. Systems like the NeuSemStore1 provenance tracker MOTEUR

plugin [Gaignard 13] help alleviate that issue by letting users create experiment summaries

focusing on the parts of the simulation that are most relevant to the users and retrieving only the

provenance traces associated with those Activities. However, as of this writing, the set of rules

used to define experiment summaries have to be created manually. Conceptual Workflows

could conceivably be used to generate those rules automatically, emphasizing the provenance

traces pertaining to Conceptual Functions.

Since they are not tied to a specific target language, Conceptual Workflows might serve as

a meta-model for interoperability purposes, though that would entail designing a Conversion

process which supports multiple languages at a time and adapting the Mapping process to

account for it. Such a high-level meta-model would be more accessible for non-expert users

than existing interoperability meta-models, which are targeted at expert scientific workflow

designers, e.g. IWIR [Plankensteiner 11] and WS-PGRADE [Kacsuk 12] used as such on the

SHIWA [Krefting 11] platform.

Also, given how tedious annotating can be, it would be interesting to investigate how Se-

mantic Annotations for Activities (e.g. web services, legacy programs) could be automatically

or semi-automatically deduced from their use in a Conceptual Workflow. Not only would that

ease the enrichment of the knowledge base, it might also be useful to export those Seman-

tic Annotations so they could be leveraged by other semantic systems such as the WINGS

[Gil 11b] scientific workflow framework.

1NeuSemStore: https://nyx.unice.fr/projects/neusemstore

146

https://nyx.unice.fr/projects/neusemstore

APPENDIX A

DETAILED FRAMEWORKS

Given the number and variety of scientific workflow frameworks, we could not possibly es-

tablish an exhaustive list or comparison. Our aim here is to give an overview of some of the

better known systems to date, summarized in Table 2.1, shown in Section 2.1.4. Systems are

presented in alphabetical order. Where two names are given, the first one is the name of the

framework and the second that of the associated scientific workflow language.

A.1 ASKALON/AGWL

The ASKALON [Fahringer 07] framework is developed by the Distributed and Parallel Sys-

tems Group at the University of Innsbruck, Austria. It serves as the main interface to the

Austrian Grid1 Distributed Computing Infrastructure (DCI). Its chief objective is to lower the

entry barrier to grid computing by having the enactor handle most of the technical operations

pertaining to grid usage (e.g. scheduling, resource allocation, service deployment), in order to

shield the end-user from that underlying complexity. Figure A.1 shows a screenshot of a simple

example.

Interface The Graphical User Interface (GUI) uses the Java Web Start2 technology and lets

users create workflows either by composing them graphically or by directly editing the equiv-

alent AGWL [Fahringer 05] document. Though compliant with eXtensible Markup Language

(XML) and thus quite verbose, AGWL looks very much like an Imperative Programming Lan-

guage (IPL), albeit at the higher-level of abstraction of control-driven scientific workflows.

Model The associated graphical representation is based on the diagrams defined by the Uni-

fied Modeling Language (UML) standard, especially the “Activity Diagram” which closely

matches the typical scientific workflow Directed Cyclic Graph (DCG) model. At first glance,

ASKALON might seem hybrid, since AGWL provides plenty of control constructs (e.g. “forE-

ach” loops, “switch” conditionals) but also explicit “data flows”. However, control constructs

are given such precedence over so-called “data flows” in the language that:

1Austrian Grid: http://www.austriangrid.at/
2Java Web Start: http://bit.ly/javawebstart

147

http://www.austriangrid.at/
http://bit.ly/javawebstart

A.1. ASKALON/AGWL APPENDIX A. DETAILED FRAMEWORKS

Figure A.1: Sample ASKALON Workflow

“ For each activity in AGWL it must be guaranteed that whenever the

control flow reaches the activity, all the data-in ports of the activity have

been assigned to well-defined values (valid data packages). When the con-

trol flow leaves, all its data-out ports must be well-defined as well.

[FAHRINGER 05]

In other words, the data flow itself must be handled explicitly through control constructs,

which is why we argue that while there is a way to explicitly route data from one activity to

another, the flow of execution is not determined by data and ASKALON is therefore control-

driven.

148

APPENDIX A. DETAILED FRAMEWORKS A.2. GALAXY

Abstraction Level Though ASKALON shields the end-user from many complex aspects of

grid usage, it sits firmly at the Abstract Level: technical aspects of the application itself, inde-

pendent from the DCI it runs on, are very much left for the user to handle. There are however

ongoing efforts to use domain knowledge in order to assist workflow design [Qin 08] as well as

the opposite, i.e. semi-automatically create domain ontologies based on workflows [Malik 12].

A.2 Galaxy

The Galaxy [Goecks 10] framework is developed mainly by the Nekrutenko lab, at the Uni-

versity of Penn State, USA and the Taylor lab, at Emory University, USA. It targets bioinfor-

maticians and puts a lot of emphasis on accessibility and reproducibility. Figure A.2 shows a

screenshot of a highly-rated workflow published publicly3.

Figure A.2: Sample Galaxy Workflow

Interface Galaxy is an open-source web-based platform that can be deployed publicly or

locally. The interface includes portal-like access to the “Tools” (i.e. activities) and a graphical

workflow editor, as can be seen on the free public server4.

Model The core model of Galaxy is quite obviously a DCG, as highlighted by Figure A.3.

It is also quite apparent from a user perspective that Galaxy has a purely data-driven model:

workflows are built by drag-and-dropping “Tools” from the list of available ones and creating

data links between outputs and inputs.

Abstraction Level Considerable effort has clearly been devoted to make Galaxy accessible

to the genomics community. Still, technicalities, e.g. file formats, and domain considerations,

e.g. alignment, are handled indiscriminately. Galaxy thus lies at the Abstract Level.

3Sample Galaxy Workflow: http://bit.ly/galaxyexample
4Galaxy free public server: https://main.g2.bx.psu.edu/

149

http://bit.ly/galaxyexample
https://main.g2.bx.psu.edu/

A.3. GWES/GWORKFLOWDL APPENDIX A. DETAILED FRAMEWORKS

Figure A.3: Galaxy Dummy Cycle Example

A.3 GWES/GWorkflowDL

The GWES [Neubauer 05] framework is developed by the Fraunhofer Institute for Open Com-

munication Systems, Germany. It was originally implemented for the Fraunhofer Resource

Grid5, but has since been redesigned and used in a great variety of grid computing projects. It

is distributed as open-source software under the Fraunhofer FIRST license, which allows sci-

entific and educational uses. Figure A.4 shows an example published by Andreas Hoheisel on

myExperiment6).

Interface In order to use GWES, both a server and client(s) must be deployed as web appli-

cations. GWorkflowDL [Alt 05] workflows can be edited manually or composed via the GWES

GUI. They can then be executed and monitored through either the GUI, the web services, the

com-mand-line tool or customized portals.

Model The core GWES model is based on petri nets. The graph vertices thus alternate be-

tween places (i.e. data tokens) and transitions (i.e. operations). Data tokens can be flagged as

“control”, which explicitly makes them dummy data tokens. As explained in Section 2.1.2.3,

the use of dummy data tokens is the most straightforward way to emulate control constructs in

a data-driven model.

Abstraction Level Though, at first glance, GWES seems to firmly sit at the Abstract Level,

a closer look at the specification of GWorkflowDL reveals a more complex picture. In order to

tackle the inherent instability and dynamicity of grids and other DCIs, GWorkflowDL allows

multiple levels of specification for workflow nodes: from the Conceptual Level with nothing

more than a Semantic Annotation to the Concrete Level with a specific hardware/software

instance, through the Abstract Level with a list of candidates.

5Fraunhofer Resource Grid: http://www.fhrg.fraunhofer.de/
6GWES workflow pattern by Andreas Hoheisel: http://www.myexperiment.org/workflows/

584.html

150

http://www.fhrg.fraunhofer.de/
http://www.myexperiment.org/workflows/584.html
http://www.myexperiment.org/workflows/584.html

APPENDIX A. DETAILED FRAMEWORKS A.4. JAVA COG KIT/KARAJAN

Figure A.4: Sample GWES Workflow

A.4 Java CoG Kit/Karajan

The Java CoG Kit [von Laszewski 01] is an integral part of the Globus Toolkit7, an open-source

grid building software toolkit, and is mainly developed at the Argonne National Laboratory,

USA. It is as much a scientific workflow framework as a middleware upon which to build

portals, such as the Open Grid Computing Environments (OGCE) portals [Alameda 07].

Interface The scientific workflow framework provides four interfaces to its XML-based sci-

entific workflow language, Karajan [von Laszewski 07]: a GUI, a command-line tool, a web

service and a scripting interface in the shape of a concise (no longer XML-compliant) version

of the language called “K”.

Model Java CoG Kit was originally meant as a client-side grid middleware: an interface be-

tween Java applications and Globus grids [von Laszewski 01]. It became a scientific workflow

framework with the introduction of GridAnt8, a workflow engine based on the Java build sys-

tem Apache Ant9, inheriting its structure of data-dependent targets and thus purely data-driven

with one caveat: parallelism is not inferred from dependencies and must be explicitly specified.

Deemed too limited, it was replaced by Karajan [von Laszewski 07]: a scalable grid workflow

enactor and a purely control-driven model that boasts a huge number of control constructs and

extensions.

Abstraction Level To the best of our knowledge, Karajan does not fulfill any of the criteria

we chose to focus on for the abstraction level. However there are works that use Karajan as an

enactor and use Semantic Web technologies to assist composition [Cannataro 07] or introduce

indirection via a “Resource Selector” [Silva 08].

7Globus Toolkit: http://www.globus.org/toolkit/
8GridAnt: http://www.globus.org/cog/projects/gridant/
9Apache Ant: http://ant.apache.org/

151

http://www.globus.org/toolkit/
http://www.globus.org/cog/projects/gridant/
http://ant.apache.org/

A.5. KEPLER/MOML APPENDIX A. DETAILED FRAMEWORKS

A.5 Kepler/MoML

The Kepler [Ludäscher 06] framework is mainly developed by the Kepler/CORE team at the

University of California (Davis, Santa Barbara and San Diego), USA. As a widely-known open-

source project, it gets contributions from various projects and individuals outside its home

institution. It is built upon Ptolemy II10, an actor-oriented software framework developed at the

University of California (Berkeley), USA. Figure A.5 shows an example taken from training

session I, section 2.3.2 of a tutorial by Michal Owsiak11.

Interface Unlike AGWL [Fahringer 05], GWENDIA [Montagnat 09] or SCUFL [Oinn 04],

users are not invited to use Kepler’s underlying language MoML [Lee 00] directly. To the best

of our knowledge, the latest specification made publicly available dates back to 2000. The GUI

is by far the preferred interface to edit, execute and monitor Kepler workflows. There is also a

command-line tool and an interest group12 dedicated to developing web interfaces for Kepler.

Figure A.5: Sample Kepler Workflow

Model The system aims to be a jack-of-all-trades among scientific workflow frameworks,

by bringing grid computing and web services to the desktop and catering to users ranging

from grid engineers to analytical scientists. Such versatility in goals is reflected in what is

“arguably the most unique feature of Kepler [which] comes from the underlying Ptolemy II

system”: actor-oriented modeling [Ludäscher 06]. The core Kepler model is a data-driven DCG

whose nodes represent “actors”. At first glance, it may seem like a straightforward data-driven

model, but a special actor called the “director” is attached to the workflow and specifies the

precise semantics of the edges regarding execution flow: the Model of Computation (MoC).

Among directors packaged with Kepler, the one closest to data-driven models as presented

in Section 2.1.2.3 - inherently asynchronous data-flow - is “Process Network”. If it were the

only director available, the model would easily be classified as data-driven. There are however

many other directors, such as “Discrete Events”, which fires actors up according to a timeline,

providing extremely fine-grained and specialized control over execution that would be hard to

implement with even the most expressive control-driven model. As a result, the Kepler model

is undoubtedly hybrid, but of its very own blend.

10Ptolemy II: http://ptolemy.eecs.berkeley.edu/ptolemyII/
11Kepler training by Michal Owsiak: http://bit.ly/keplertutorial
12Kepler Web User Interface Interest Group: http://bit.ly/keplerwebui

152

http://ptolemy.eecs.berkeley.edu/ptolemyII/
http://bit.ly/keplertutorial
http://bit.ly/keplerwebui

APPENDIX A. DETAILED FRAMEWORKS A.6. KNIME

Abstraction Level Though it is one of the most accessible scientific workflow frameworks,

as it stands now Kepler sits firmly at the Abstract Level. There are however many ongoing

works (e.g. [Altintas 05, Bowers 06, Chin 11]) to leverage domain ontologies to further shield

the user from technical details and thus elevate the abstraction level of Kepler workflows.

A.6 KNIME

The KoNstanz Information MiNer, KNIME [Berthold 07], is developed at the University of

Konstanz, Germany. It is an open-source scientific workflow framework dedicated to data-

mining. The eponymous company provides commercial licenses, support and extensions. Fig-

ure A.6 shows an example provided with the framework.

Figure A.6: Sample KNIME workflow

Interface The KNIME GUI is based on Eclipse13 and is quite obviously tailored toward

workflow monitoring, if only because of the traffic lights displayed under each activity. The

commercial product “KNIME Server”, built on top of the open-source “KNIME Desktop”, re-

portedly provides various interfaces, including web portals and Application Programming In-

terfaces (APIs).

Model The core model of KNIME is a Directed Acyclic Graph (DAG) whose edges represent

data flow. There is however an extensive number of control constructs provided as standard

nodes and order constraints can be created by binding “Flow Variable Ports”. The model is

thus a data-based hybrid model.

13Eclipse: http://www.eclipse.org/

153

http://www.eclipse.org/

A.7. MOTEUR/GWENDIA APPENDIX A. DETAILED FRAMEWORKS

Abstraction Level While ample efforts have obviously been spent on making the KNIME

interface as easy to use as possible, technical details and non-functional concerns are handled

in exactly the same way as domain concerns. The KNIME model lies quite clearly at the

Abstract Level. As of this writing, we do not know of any initiative to improve Separation of

Concerns (SoC) in KNIME or to use ontologies in order to assist workflow composition.

A.7 MOTEUR/GWENDIA

MOTEUR [Glatard 08] is developed by the MODALIS team at the I3S Laboratory, France. It

aims at the best trade-off between expressiveness/user-friendliness and execution performance

on grids. The first version of MOTEUR used SCUFL [Oinn 04], the language of Taverna

[Missier 10a], but enacted it in a fully asynchronous way on grids. However, the require-

ments of a remote grid workflow enactor differ sensibly from those of a desktop web services

workbench such as Taverna and they led to the specification of a dedicated language called

GWENDIA. Figure A.7 shows a simple example.

Figure A.7: Sample MOTEUR Workflow

Interface A scripting interface called “gscript” was recently developed [Maheshwari 10] to

complement the GUI based on Graphviz14. There is also a web service developed in collabora-

tion with the eBioScience group at the Academic Medical Center of Amsterdam, Netherlands

and the Creatis Laboratory, France.

14Graphviz: http://www.graphviz.org/

154

http://www.graphviz.org/

APPENDIX A. DETAILED FRAMEWORKS A.8. PEGASUS/DAX

Model GWENDIA “targets the coherent integration of (1) a data-driven approach; (2) ar-

rays manipulation; (3) control structures; and (4) maximum asynchronous execution capabili-

ties” [Montagnat 09]. With the specification of GWENDIA, the model thus evolved from pure

data-driven DAG to hybrid DCG.

Abstraction Level Like most scientific workflow frameworks, MOTEUR lies at the Abstract

Level. Though it is not restrained to MOTEUR as a target language, the present work can be

seen as ongoing work to elevate MOTEUR to the Conceptual Level.

A.8 Pegasus/DAX

The Pegasus [Deelman 05] framework is developed mainly at the University of Southern Cal-

ifornia, USA. It is focused on enactment over a variety of DCIs and many more user-friendly

systems are built upon it, notably WINGS [Gil 11b].

Interface There is no dedicated GUI for Pegasus, though projects like WINGS have been

built on top of it and could be seen as very sophisticated GUIs. Though it is possible to create

DAX workflows manually or generate them directly in XML, the manual clearly recommends

using the APIs instead.

Model The core Pegasus model is a DAG based on petri nets, the vertices alternating between

jobs (i.e. activities) and files (i.e. data). It is purely data-driven.

Abstraction Level Pegasus is not really meant for direct use by scientists of the workflow

domains: it is an underlying technology upon which many other projects and portals are built.

Even though the manual describes DAX workflows as “Abstract Workflows” and minimal flex-

ibility in job definitions, Pegasus is a typical example of the Concrete Level.

A.9 SHIWA/IWIR

The objective of the SHIWA [Krefting 11] platform is scientific workflow framework inter-

operability, including ASKALON [Fahringer 07], MOTEUR [Glatard 08], Triana [Taylor 07b]

and WS-PGRADE [Kacsuk 12]. At the execution level, “coarse-grained interoperability” is

achieved by creating an instance of a compatible enactor to execute a non-native sub-workflow.

At the workflow level, “fine-grained interoperability” requires transformation between scien-

tific workflow models so that an enactor can execute native translations of non-native sub-

workflows. In order to achieve that latter level of interoperability, the approach taken by the

SHIWA project is that of a pivot language all systems must be able to read from and translate

to: IWIR [Plankensteiner 11].

Interface The SHIWA platform is accessed through the dedicated SHIWA Portal15. Though

the portal provides a Java applet to edit meta-workflows (for coarse-grained interoperability),

there is no direct interface to create IWIR workflows as of yet. Users are invited to export their

native workflows to IWIR via tools developed in the associated framework.

15SHIWA Portal: http://bit.ly/shiwaplatform

155

http://bit.ly/shiwaplatform

A.10. SWIFT APPENDIX A. DETAILED FRAMEWORKS

Model At first glance, IWIR seems to be a control-based hybrid, because it features extensive

control constructs as well as so-called “data links”. But those data links merely mean that input

data taken by a given task comes from a given source (either an input of the block the task is

in, or an output of another preceding task). In data-driven models, data links also imply that a

task is fired when it receives input on all its input ports, but the data flow that can be specified

in IWIR does not impact workflow execution, therefore it is a control-driven model.

Abstraction Level As of yet, IWIR is not meant to be used directly. It could be thought

of as an assembly language that some scientific workflow frameworks can translate to and/or

execute. By design, IWIR sits more on the Concrete Level, though it can reproduce the level

of indirection in task definition that is commonly available in abstract scientific workflows

languages.

A.10 Swift

Swift [Zhao 07] is developed mainly at the Argonne National Laboratory, USA. It was origi-

nally inspired by the now seemingly defunct Chimera and GriPhyN projects, which are closely

related to Pegasus [Deelman 05]. It relies on Karajan [von Laszewski 07] to enact workflows,

but it puts a lot more emphasis on implicit parallelism. Swift focuses on scalability, targets grid

and cloud computing and is reportedly used in very varied application domains.

Interface Swift is a scripting language and, as such, is a lot more concise than textual repre-

sentations of other scientific workflow frameworks.

Model Because there is no graphical representation associated with Swift, the underlying

model is quite different from that of most other scientific workflow frameworks. The language

itself is strongly typed and functional, but also features many control constructs.

Abstraction Level Though it features no graphical representation and thus may seem a lot

more technical than most other scientific workflow models, the real reason why it lies at the

Concrete Level is because every “app” is specified completely.

A.11 Taverna/SCUFL

Taverna [Missier 10a] is developed by the myGrid16 team which is mainly based at the univer-

sities of Manchester, Southampton and Oxford, UK. It is tightly integrated with the myExper-

iment17 social website dedicated to sharing scientific workflows and associated documents. Its

user base is composed primarily of bio-informaticians, it targets essentially web services and it

focuses on ease-of-use. Figure A.8 shows a simple example.

Interface By far, the main Taverna interface is a GUI called “Taverna Workbench”. It allows

users to create/edit/run workflows as well as visualize current and previous result data. It is

quite seamlessly integrated with the myExperiment platform. There is also a command-line

tool and a server application to execute workflows remotely.

16myGrid: http://www.mygrid.org.uk
17myExperiment: http://www.myexperiment.org/

156

http://www.mygrid.org.uk
http://www.myexperiment.org/

APPENDIX A. DETAILED FRAMEWORKS A.12. TRIANA

Figure A.8: Sample Taverna Workflow

Model Both Taverna and its underlying workflow language SCUFL [Oinn 04] have under-

gone a complete redesign around 2008 [Sroka 09]. Another significant redesign is currently

ongoing, as of this writing, as shown on the Taverna Roadmap18. Taverna 1 uses a dedicated

language called SCUFL which is a purely data-driven DAG. Taverna 2 dropped SCUFL in

favor of a serialization format called t2flow and hybridized by adding control links. Ac-

cording to the website, Taverna 3 will use a new version of SCUFL called SCUFL2, which

might become even more hybrid.

Abstraction Level As it is, Taverna stands clearly at the Abstract Level, but there are on-

going works to elevate its abstraction level, notably to (i) use semantic annotations to im-

prove service discovery [Wolstencroft 07, Withers 10], (ii) use metadata to guide composition

[Bechhofer 10] and (iii) elevate the abstraction level of service definitions [Missier 10b].

A.12 Triana

Triana [Taylor 07b] is developed at Cardiff University, UK. It is an open-source (shared on

GitHub19) scientific workflow framework dedicated to data analysis pipelines and it is com-

pletely integrated with the GridLab20 grid application toolkit and testbed. Triana is compatible

with many types of DCIs: the usual web services and grids, but also peer-to-peer environ-

ments. It was originally built as a tool to analyze gravitational wave data and was extended

first to other types of data analyses, then to distributed primitives such as web services and grid

jobs. Figure A.9 shows a simple example.

18Taverna Roadmap: http://www.taverna.org.uk/introduction/roadmap/
19Triana GitHub: https://github.com/CSCSI/Triana
20GridLab: http://www.gridlab.org/

157

http://www.taverna.org.uk/introduction/roadmap/
https://github.com/CSCSI/Triana
http://www.gridlab.org/

A.13. VISTRAILS APPENDIX A. DETAILED FRAMEWORKS

Figure A.9: Sample Triana Workflow

Interface To the best of our knowledge, the only interface to Triana is its GUI. It is how-

ever possible to package Triana workflows as self-contained applications executable from a

command-line.

Model The underlying model is data-driven by construction and is even described by its cre-

ators as “a data-flow system” [Taylor 07b]. The core model is a data-driven DCG whose nodes

are “components” (atomic algorithms, processes, services, etc) and whose edges represent pure

data flow. Control constructs such as iterations and conditionals can only be handled through

dedicated components, but it is important to note that they are much less needed in data anal-

ysis pipelines (which are the primary target of the framework) than in other types of scientific

workflows.

Abstraction Level Like most scientific workflow frameworks, Triana clearly lies at the Ab-

stract Level. As of this writing, we do not know of any effort to improve SoC in Triana or to

use ontologies to assist the composition of Triana workflows.

A.13 VisTrails

The VisTrails [Callahan 05] framework was initially developed at the University of Utah, USA

and is now mainly developed at the University of New York, USA. It focuses on provenance

and takes the notion further than most: VisTrails is built to record provenance data about work-

flow design and not just workflow executions. Plugins are distributed by VisTrails Inc.21 to

apply their provenance technology to other things besides scientific workflows, e.g. 3D ani-

mation software Autodesk Maya22. Figure A.10 shows the plot example distributed with the

application.

Interface The VisTrails software is a stand-alone BSD-licensed open-source application pre-

built for Windows and Mac. The GUI integrates many interfaces, including one to design

workflows, one to examine a workflow’s design history and one to query provenance.

Model The model underlying VisTrails is quite clearly data-driven: the user builds workflows

by dropping “modules” onto the main window and creating “connections” between strongly

typed output and input ports. Though the graph-based model of VisTrails is sometimes de-

scribed as “acyclic” [Gaspar 10], it is actually a DCG, as highlighted by Figure A.11.

21VisTrails Inc.: http://www.vistrails.com/
22Autodesk Maya: http://www.autodesk.com/products/autodesk-maya

158

http://www.vistrails.com/
http://www.autodesk.com/products/autodesk-maya

APPENDIX A. DETAILED FRAMEWORKS A.14. WINGS

Figure A.10: Sample VisTrails Workflow

Figure A.11: VisTrails Dummy Cycle Example

Abstraction Level VisTrails itself clearly lies at the Abstract Level: “modules” are exe-

cutable artifacts and can bear any number of “key/value” annotations. [Gaspar 10] introduces

an ontology to model VisTrails workflows and ease their composition, but that effort seems

independent from the main project.

A.14 WINGS

WINGS [Gil 11b] is an open-source (shared on GitHub23) scientific workflow framework de-

veloped mainly at the University of Southern California, USA. It is a semantic framework built

on top of Pegasus [Deelman 05] to serve as a high-level accessible and domain-oriented inter-

face to scientific workflows. Figure A.12 shows the Words abs template workflow accessible

on the basic WINGS public server24.

23WINGS GitHub: https://github.com/varunratnakar/wings
24WINGS Sandbox: http://www.wings-workflows.org/sandbox/

159

https://github.com/varunratnakar/wings
http://www.wings-workflows.org/sandbox/

A.14. WINGS APPENDIX A. DETAILED FRAMEWORKS

Interface WINGS workflows are built and executed on a server. There are two public servers

(one with more advanced features) available for users to try WINGS and anyone can deploy

their own server. To the best of our knowledge, there is no other interface to WINGS workflows,

which makes sense given that it targets scientists rather than scientific workflow experts, who

would probably rather use Pegasus directly.

Model WINGS inherits its core model from Pegasus and is thus also a data-driven DAG.

Figure A.12: Sample WINGS Workflow

Abstraction Level WINGS was built from the start as a semantic framework meant to focus

on user domains. Most of the works around WINGS deal with leveraging semantic data and

ontologies to ease and assist the design and sharing of scientific workflows.

160

APPENDIX A. DETAILED FRAMEWORKS A.15. WS-PGRADE

Notably: [Gil 11a] describes a framework built on top of WINGS to automatically trans-

form user queries into scientific workflows; [Garijo 11] describes an approach to publish “ab-

stract workflows” (i.e. workflow templates with undetermined Activities) and “executable

workflows” (i.e. what we call abstract workflows) as Open Linked Data through an exten-

sion of the Open Provenance Model25 (OPM); [Hauder 11] focuses the framework on the state

of the art in data mining pipelines and obtains great results on automated composition and in-

creased accessibility; and [Garijo 13] mines provenance data to detect “abstract templates” and

thus elevate the abstraction level of WINGS workflows automatically. There is no doubt that

WINGS is the most well-known and furthest developed Conceptual Level scientific workflow

framework to date.

A.15 WS-PGRADE

WS-PGRADE [Kacsuk 12] is an open-source - under APACHE license - scientific workflow

framework and also the GUI/portal layer of the grid and cloud User Support Environment

(gUSE)26 DCI gateway. It is mainly developed at the Laboratory of Parallel and Distributed

Systems, MTA-SZTAKI, Hungary. Figure A.13 shows a screenshot of a simple example.

Figure A.13: Sample WS-PGRADE Workflow

25OPM: http://openprovenance.org/
26gUSE: http://www.guse.hu/

161

http://openprovenance.org/
http://www.guse.hu/

A.15. WS-PGRADE APPENDIX A. DETAILED FRAMEWORKS

Interface WS-PGRADE is itself a web portal and a GUI for the underlying gUSE framework.

Handy tools are provided for users to generate their own web portals dedicated to domain

scientists and every scientific workflow can rather easily be bundled into a web service.

Model The scientific workflow model used in WS-PGRADE is quite transparently data-

driven: workflows are composed graphically by creating “jobs” (i.e. activities), creating ports

on them and then connecting output ports to input ports. A simple test reveals that the model is

based on DAGs, since cycles prompt an error message.

Abstraction Level The level of abstraction of regular WS-PGRADE workflows is rather low,

but the framework also handles a more abstract type of workflow called “Template” where

constraints can be loosened at will and much indirection be inserted so that a given template

might serve to create many different workflow instances.

162

APPENDIX B

CONCEPTUAL WORKFLOW META-MODEL

Figure B.4 describes the Conceptual Workflow Model in Unified Modeling Language (UML).

In an attempt to improve legibility, we also provide three partial views:

• Figure B.1 focuses on the Conceptual part;

• Figure B.2 on the Abstract part; and

• Figure B.3 on the Semantic part.

Abstract(

Seman-c(

Conceptual(

Conceptual(

Element(

Conceptual(

Link(

Conceptual(

Workflow(

Conceptual(

Func-on(

Conceptual(

Input(

Conceptual(

Output(

Fragment(

Element(
Abstract(

Element(

Dataset(Func-on(Concern(

*(

*(

*(

*(

*(*(*(

*(

*(

1(1(

1(

1(

*(

source(

target(

1(

1(

co
n
ta
in
s(

1(1(

*(

Figure B.1: Conceptual Workflow Meta-model - Conceptual Part

163

APPENDIX B. CONCEPTUAL WORKFLOW META-MODEL

Conceptual(Abstract(

Abstract(

Element(

Order(

Link(

Ac-vity(

Input(

Output(

Filter(

Data(

Link(

Input(

Port(
Output(

Port(

Port(

1(

1(1(

*(
*(

*(

*(

2(

1..*(1(

Conceptual(

Workflow(

Seman-c(

Dataset(Func-on(Concern(

Element(

*(

1(1(

*(*(*(

Figure B.2: Conceptual Workflow Meta-model - Abstract Part

Abstract(Conceptual(Conceptual(

Seman-c(

Annota-on(

(

+isRequirement(

+type(

Func-on(Concern(Dataset(

Ac-vity(
Conceptual(

Func-on(

Conceptual(

Input(

Conceptual(

Output(
Port(

1(1(1(1(1(
1(

1(*(

*(
((*(

*(
*(

Figure B.3: Conceptual Workflow Meta-model - Semantic Part

164

A
P

P
E

N
D

IX
B

.
C

O
N

C
E

P
T

U
A

L
W

O
R

K
F

L
O

W
M

E
T

A
-M

O
D

E
L

Conceptual(

Element(

Conceptual(

Element(

Conceptual(

Link(

Conceptual(

Workflow(

Fragment(

Conceptual(

Func-on(

Conceptual(

Input(

Conceptual(

Output(

Abstract(

Abstract(

Element(

Order(

Link(

Ac-vity(

Input(

Output(

Filter(

Data(

Link(

Input(

Port(
Output(

Port(

Port(

Seman-c(

Annota-on(

(

+isRequirement(

+type(

Func-on(Concern(Dataset(

*(

2(

2(

*(

*(

*(

1(

1(

1(

1(1(

1(1(

*(
*(

*(

*(

2(

*(*(*(

*(

*(

1..*(1(

F
ig

u
re

B
.4

:
C

o
n
cep

tu
al

W
o
rk

fl
o
w

M
eta-m

o
d
el

1
6
5

APPENDIX C

FRAGMENT TO SPARQL CONVERSION EXAMPLE

The following two listings illustrate the conversion from Fragments to SPARQL Protocol and

RDF Query Language (SPARQL) CONSTRUCT queries, as explained in Section 4.2.2. The dif-

ferences between the contents of those listings and what would be produced by the prototype

(see Section 5.1) are (i) the prefixes in the SPARQL query, (ii) the manual ordering and spacing

of triples, (iii) the omission of geometrical triples (setting height, width and position of ele-

ments) and TO REMOVE comments (identifying deleted elements), all for the sake of legibility.

Listing C.1 is the example Fragment, introduced in Section 3.4.1 and shown on Figure 3.10,

in Turtle format.

Listing C.1: Fragment to SPARQL Conversion - Fragment Example

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

3 @prefix cowork: <http://www.i3s.unice.fr/˜cerezo/cowork/latest/cowork.rdfs#> .

@prefix ex: <http://example.org/fragmentexample#> .

5 @prefix remote: <http://example.org/remoteontologyexample#> .

7 ex:Fragment1 rdf:type cowork:Fragment .

ex:Fragment1 cowork:hasBlueprint ex:Blueprint1 .

9 ex:Fragment1 cowork:hasPattern ex:Pattern1 .

ex:Fragment1 rdfs:label "Example" .

11

ex:Blueprint1 rdf:type cowork:ConceptualFunction .

13 ex:Blueprint1 cowork:contains ex:ConceptualFunction2 .

ex:Blueprint1 cowork:contains ex:ConceptualFunction3 .

15 ex:Blueprint1 rdfs:label "Example" .

ex:ConceptualFunction2 rdf:type cowork:ConceptualFunction .

17 ex:ConceptualFunction2 rdfs:label "Log Status" .

ex:ConceptualFunction2 cowork:hasRequirement ex:Function1 .

19 ex:Function1 rdf:type cowork:Function .

ex:Function1 rdf:type remote:Log .

21 ex:ConceptualFunction3 rdf:type cowork:ConceptualFunction .

ex:ConceptualFunction3 rdfs:label "Step" .

23 ex:ConceptualLink2 cowork:hasTarget ex:ConceptualFunction2 .

ex:ConceptualLink2 rdf:type cowork:ConceptualLink .

25 ex:ConceptualLink2 rdfs:label "linkbefore" .

ex:ConceptualLink3 cowork:hasSource ex:ConceptualFunction2 .

27 ex:ConceptualLink3 cowork:hasTarget ex:ConceptualFunction3 .

ex:ConceptualLink3 rdf:type cowork:ConceptualLink .

29

ex:Pattern1 rdf:type cowork:ConceptualFunction .

31 ex:Pattern1 cowork:contains ex:ConceptualFunction1 .

ex:Pattern1 rdfs:label "Example" .

33 ex:ConceptualFunction1 rdf:type cowork:ConceptualFunction .

ex:ConceptualFunction1 rdfs:label "Step" .

35 ex:ConceptualFunction1 cowork:hasRequirement ex:Concern1 .

ex:Concern1 rdf:type cowork:Concern .

37 ex:Concern1 rdf:type remote:CriticalStep .

ex:ConceptualLink1 cowork:hasTarget ex:ConceptualFunction1 .

39 ex:ConceptualLink1 rdf:type cowork:ConceptualLink .

ex:ConceptualLink1 rdfs:label "linkbefore" .

166

APPENDIX C. FRAGMENT TO SPARQL CONVERSION EXAMPLE

Listing C.2 is the result of converting the Fragment of the previous listing into a SPARQL

CONSTRUCT query, which is the first step of the Weaving process.

Listing C.2: Fragment to SPARQL Conversion - Result Query

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX cowork: <http://www.i3s.unice.fr/˜cerezo/cowork/latest/cowork.rdfs#>

4 PREFIX ex: <http://example.org/fragmentexample#>

PREFIX remote: <http://example.org/remoteontologyexample#>

6

CONSTRUCT {

8 ?Example rdf:type cowork:ConceptualFunction .

?Example cowork:contains _:LogStatus .

10 ?Example cowork:contains ?Step .

_:LogStatus rdf:type cowork:ConceptualFunction .

12 _:LogStatus rdfs:label "Log Status" .

_:LogStatus cowork:hasRequirement _:Function1 .

14 _:Function1 rdf:type cowork:Function .

_:Function1 rdf:type remote:Log .

16 ?Step rdf:type cowork:ConceptualFunction .

?linkbefore cowork:hasTarget _:LogStatus .

18 ?linkbefore rdf:type cowork:ConceptualLink .

?linkbefore rdfs:label "linkbefore" .

20 _:ConceptualLink3 cowork:hasSource _:LogStatus .

_:ConceptualLink3 cowork:hasTarget ?Step .

22 _:ConceptualLink3 rdf:type cowork:ConceptualLink .

} WHERE {

24 ?Example rdf:type cowork:ConceptualFunction .

?Example cowork:contains ?Step .

26 ?Step rdf:type cowork:ConceptualFunction .

?Step cowork:hasRequirement ?Concern1 .

28 ?Concern1 rdf:type cowork:Concern .

?Concern1 rdf:type remote:CriticalStep .

30 ?linkbefore cowork:hasTarget ?Step .

?linkbefore rdf:type cowork:ConceptualLink .

32 }

To facilitate comparison, those same listings are shown side-by-side in an abbreviated form

(so as to fit the page width) in Section 4.2.2.

167

APPENDIX D

TWO CONVERTERS CHAIN QUERY

Listing D.1 is the SPARQL Protocol and RDF Query Language (SPARQL) query to look for a

chain of two converters to transform from a source type X to a target type Y, cf. Section 4.5.4.

The same query is represented graphically on Figure D.1.

Listing D.1: X→ ? → Y Two Converters Chain Query

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX cowork: <http://www.i3s.unice.fr/˜cerezo/cowork/latest/cowork.rdfs#>

4

SELECT ?activity1, ?activity2 WHERE {

6 ?activity1 rdf:type cowork:Activity .

?activity2 rdf:type cowork:Activity .

8

?activity1 cowork:hasInput ?inputport1 .

10 ?inputport1 cowork:hasSpecification ?inputdataset1 .

{

12 ?inputdataset1 rdf:type X .

}

14 UNION

{

16 ?inputdataset1 rdf:type ?inputtype1 .

X rdfs:subClassOf ?inputtype1 .

18 }

20 ?activity1 cowork:hasOutput ?outputport1 .

?outputport1 cowork:hasSpecification ?outputdataset1 .

22 ?outputdataset1 rdf:type ?outputtype1 .

24 ?activity2 cowork:hasInput ?inputport2 .

?inputport2 cowork:hasSpecification ?inputdataset2 .

26 {

?inputdataset2 rdf:type ?outputtype1 .

28 }

UNION

30 {

?inputdataset2 rdf:type ?inputtype2 .

32 ?outputtype1 rdfs:subClassOf ?inputtype2 .

}

34

?activity2 cowork:hasOutput ?outputport2 .

36 ?outputport2 cowork:hasSpecification ?outputdataset2 .

{

38 ?outputdataset2 rdf:type Y .

}

40 UNION

{

42 ?outputdataset2 rdf:type ?outputtype2 .

Y rdfs:subClassOf ?outputtype2 .

44 }

}

168

APPENDIX D. TWO CONVERTERS CHAIN QUERY

Ac-vity(

?ac-vity1(?ac-vity2(

?input(

port1(

?output(

port1(

?input(

port2(

?output(

port2(

?input(

dataset1(

?output(

dataset1(

?input(

dataset2(

?output(

dataset2(

X(
?input(

type1(

?output(

type1(

?input(

type2(

?output(

type2(
Y(

rdfs:subClassOf(rdfs:subClassOf(rdfs:subClassOf(

rdf:type(rdf:type(

hasSpecifica-on(hasSpecifica-on(hasSpecifica-on(hasSpecifica-on(

Legend:(

(OR(alterna-ve(

(Remote(ontology(

(COWORK(ontology(

(Fragment(instance(

(Property(

(Resource(

blue(

red(

green(

Figure D.1: X→ ? → Y Two Converters Chain Query

169

APPENDIX E

CONVERSION TO T2FLOW

The following listings are the results of the Conversion process applied to the example Inter-

mediate Representations given in Section 4.6, towards t2flow, the serialization format of

Taverna [Missier 10a].

Specifically, Listing E.1 is the Conversion of the example shown on Figure 4.37a, which

features only Inputs and Outputs; Listing E.2 of the one shown on Figure 4.38a, which fea-

tures only Activities; and Listing E.3 of the one shown on Figure 4.39a, which features Inputs,

Outputs, Activities, Data Links and one Order Link.

To improve legibility, Listing E.2 and Listing E.3 use the following abbreviations (reversing

them is necessary before opening the files with Taverna 2):

• cfg→ net.sf.taverna.t2.workflowmodel.processor. ←֓
activity.config

• bnsh→ net.sf.taverna.t2.activities.beanshell

Listing E.1: Conversion to t2flow - Inputs/Outputs Example

1 <workflow xmlns="http://taverna.sf.net/2008/xml/t2flow" producedBy="cowork" version="1">

<dataflow role="top">

3 <name>inputs/outputs example</name>

<inputPorts>

5 <port>

<name>A</name><depth>0</depth><granularDepth>0</granularDepth><annotations/>

7 </port>

<port>

9 <name>B</name><depth>0</depth><granularDepth>0</granularDepth><annotations/>

</port>

11 <port>

<name>C</name><depth>0</depth><granularDepth>0</granularDepth><annotations/>

13 </port>

</inputPorts>

15 <outputPorts>

<port>

17 <name>D_in0</name><depth>0</depth><granularDepth>0</granularDepth><annotations/>

</port>

19 <port>

<name>D_in1</name><depth>0</depth><granularDepth>0</granularDepth><annotations/>

21 </port>

</outputPorts>

23 <processors/>

<conditions/>

25 <datalinks/>

</dataflow>

27 </workflow>

170

APPENDIX E. CONVERSION TO T2FLOW

Listing E.2: Conversion to t2flow - Activities Example

1 <workflow xmlns="http://taverna.sf.net/2008/xml/t2flow" producedBy="cowork" version="1">

<dataflow role="top">

3 <name>activities example</name>

<inputPorts/><outputPorts/>

5 <processors>

<processor>

7 <name>P</name><inputPorts/><outputPorts/><annotations/>

<activities>

9 <activity>

<raven>

11 <group>net.sf.taverna.t2.activities</group>

<artifact>beanshell-activity</artifact>

13 <version>1.4</version>

</raven>

15 <class>bnsh.BeanshellActivity</class>

<inputMap/><outputMap/>

17 <configBean encoding="xstream">

<bnsh.BeanshellActivityConfigurationBean>

19 <inputs>

< c f g.ActivityInputPortDefinitionBean>

21 <name>in</name><depth>0</depth>

<translatedElementType>java.lang.String</translatedElementType>

23 </ c f g.ActivityInputPortDefinitionBean>

</inputs>

25 <outputs>

< c f g.ActivityOutputPortDefinitionBean>

27 <name>out</name><depth>0</depth><granularDepth>0</granularDepth>

</ c f g.ActivityOutputPortDefinitionBean>

29 </outputs>

</bnsh.BeanshellActivityConfigurationBean>

31 </configBean>

</activity>

33 </activities>

<dispatchStack/>

35 <iterationStrategyStack><iteration><strategy/></iteration></iterationStrategyStack>

</processor>

37 <processor>

<name>Q</name><inputPorts/><outputPorts/><annotations/>

39 <activities>

<activity>

41 <raven>

<group>net.sf.taverna.t2.activities</group>

43 <artifact>beanshell-activity</artifact>

<version>1.4</version>

45 </raven>

<class>bnsh.BeanshellActivity</class>

47 <inputMap/><outputMap/>

<configBean encoding="xstream">

49 <bnsh.BeanshellActivityConfigurationBean>

<inputs>

51 < c f g.ActivityInputPortDefinitionBean>

<name>in</name><depth>0</depth>

53 <translatedElementType>java.lang.String</translatedElementType>

</ c f g.ActivityInputPortDefinitionBean>

55 </inputs>

<outputs>

57 < c f g.ActivityOutputPortDefinitionBean>

<name>out</name><depth>0</depth><granularDepth>0</granularDepth>

59 </ c f g.ActivityOutputPortDefinitionBean>

</outputs>

61 </bnsh.BeanshellActivityConfigurationBean>

</configBean>

63 </activity>

</activities>

65 <dispatchStack/>

<iterationStrategyStack><iteration><strategy/></iteration></iterationStrategyStack>

67 </processor>

<processor>

69 <name>R</name><inputPorts/><outputPorts/><annotations/>

<activities>

71 <activity>

171

APPENDIX E. CONVERSION TO T2FLOW

<raven>

73 <group>net.sf.taverna.t2.activities</group>

<artifact>beanshell-activity</artifact>

75 <version>1.4</version>

</raven>

77 <class>bnsh.BeanshellActivity</class>

<inputMap/><outputMap/>

79 <configBean encoding="xstream">

<bnsh.BeanshellActivityConfigurationBean>

81 <inputs>

< c f g.ActivityInputPortDefinitionBean>

83 <name>in</name><depth>0</depth>

<translatedElementType>java.lang.String</translatedElementType>

85 </ c f g.ActivityInputPortDefinitionBean>

</inputs>

87 <outputs>

< c f g.ActivityOutputPortDefinitionBean>

89 <name>out</name><depth>0</depth><granularDepth>0</granularDepth>

</ c f g.ActivityOutputPortDefinitionBean>

91 </outputs>

</bnsh.BeanshellActivityConfigurationBean>

93 </configBean>

</activity>

95 </activities>

<dispatchStack/>

97 <iterationStrategyStack><iteration><strategy/></iteration></iterationStrategyStack>

</processor>

99 <processor>

<name>S</name><inputPorts/><outputPorts/>

101 <annotations/>

<activities>

103 <activity>

<raven>

105 <group>net.sf.taverna.t2.activities</group>

<artifact>beanshell-activity</artifact>

107 <version>1.4</version>

</raven>

109 <class>bnsh.BeanshellActivity</class>

<inputMap/><outputMap/>

111 <configBean encoding="xstream">

<bnsh.BeanshellActivityConfigurationBean>

113 <inputs>

< c f g.ActivityInputPortDefinitionBean>

115 <name>in0</name><depth>0</depth>

<translatedElementType>java.lang.String</translatedElementType>

117 </ c f g.ActivityInputPortDefinitionBean>

< c f g.ActivityInputPortDefinitionBean>

119 <name>in1</name><depth>0</depth>

<translatedElementType>java.lang.String</translatedElementType>

121 </ c f g.ActivityInputPortDefinitionBean>

</inputs>

123 <outputs>

< c f g.ActivityOutputPortDefinitionBean>

125 <name>out0</name><depth>0</depth><granularDepth>0</granularDepth>

</ c f g.ActivityOutputPortDefinitionBean>

127 < c f g.ActivityOutputPortDefinitionBean>

<name>out1</name><depth>0</depth><granularDepth>0</granularDepth>

129 </ c f g.ActivityOutputPortDefinitionBean>

</outputs>

131 </bnsh.BeanshellActivityConfigurationBean>

</configBean>

133 </activity>

</activities>

135 <dispatchStack/>

<iterationStrategyStack><iteration><strategy/></iteration></iterationStrategyStack>

137 </processor>

</processors>

139 <conditions/>

<datalinks/>

141 </dataflow>

</workflow>

172

APPENDIX E. CONVERSION TO T2FLOW

Listing E.3: Conversion to t2flow - Links Example

<workflow xmlns="http://taverna.sf.net/2008/xml/t2flow" producedBy="cowork" version="1">

2 <dataflow role="top">

<name>links example</name>

4 <inputPorts>

<port>

6 <name>A_out0</name><depth>0</depth><granularDepth>0</granularDepth><annotations/>

</port>

8 <port>

<name>A_out1</name><depth>0</depth><granularDepth>0</granularDepth><annotations/>

10 </port>

</inputPorts>

12 <outputPorts>

<port><name>B_in0</name><annotations/></port>

14 <port><name>B_in1</name><annotations/></port>

</outputPorts>

16 <processors>

<processor>

18 <name>P</name>

<inputPorts>

20 <port><name>in</name><depth>0</depth></port>

</inputPorts>

22 <outputPorts>

<port><name>out</name><depth>0</depth><granularDepth>0</granularDepth></port>

24 </outputPorts>

<annotations/>

26 <activities>

<activity>

28 <raven>

<group>net.sf.taverna.t2.activities</group>

30 <artifact>beanshell-activity</artifact>

<version>1.4</version>

32 </raven>

<class>bnsh.BeanshellActivity</class>

34 <inputMap><map from="in" to="in"/></inputMap>

<outputMap><map from="out" to="out"/></outputMap>

36 <configBean encoding="xstream">

<bnsh.BeanshellActivityConfigurationBean>

38 <inputs>

< c f g.ActivityInputPortDefinitionBean>

40 <name>in</name>

<depth>0</depth>

42 <translatedElementType>java.lang.String</translatedElementType>

</ c f g.ActivityInputPortDefinitionBean>

44 </inputs>

<outputs>

46 < c f g.ActivityOutputPortDefinitionBean>

<name>out</name>

48 <depth>0</depth>

<granularDepth>0</granularDepth>

50 </ c f g.ActivityOutputPortDefinitionBean>

</outputs>

52 </bnsh.BeanshellActivityConfigurationBean>

</configBean>

54 </activity>

</activities>

56 <dispatchStack/>

<iterationStrategyStack><iteration><strategy/></iteration></iterationStrategyStack>

58 </processor>

<processor>

60 <name>Q</name>

<inputPorts>

62 <port><name>in</name><depth>0</depth></port>

</inputPorts>

64 <outputPorts>

<port><name>out</name><depth>0</depth><granularDepth>0</granularDepth></port>

66 </outputPorts>

<annotations/>

68 <activities>

<activity>

70 <raven>

<group>net.sf.taverna.t2.activities</group>

173

APPENDIX E. CONVERSION TO T2FLOW

72 <artifact>beanshell-activity</artifact>

<version>1.4</version>

74 </raven>

<class>bnsh.BeanshellActivity</class>

76 <inputMap><map from="in" to="in"/></inputMap>

<outputMap><map from="out" to="out"/></outputMap>

78 <configBean encoding="xstream">

<bnsh.BeanshellActivityConfigurationBean>

80 <inputs>

< c f g.ActivityInputPortDefinitionBean>

82 <name>in</name>

<depth>0</depth>

84 <translatedElementType>java.lang.String</translatedElementType>

</ c f g.ActivityInputPortDefinitionBean>

86 </inputs>

<outputs>

88 < c f g.ActivityOutputPortDefinitionBean>

<name>out</name>

90 <depth>0</depth>

<granularDepth>0</granularDepth>

92 </ c f g.ActivityOutputPortDefinitionBean>

</outputs>

94 </bnsh.BeanshellActivityConfigurationBean>

</configBean>

96 </activity>

</activities>

98 <dispatchStack/>

<iterationStrategyStack><iteration><strategy/></iteration></iterationStrategyStack>

100 </processor>

<processor>

102 <name>R</name>

<inputPorts>

104 <port><name>in</name><depth>0</depth></port>

</inputPorts>

106 <outputPorts>

<port><name>out</name><depth>0</depth><granularDepth>0</granularDepth></port>

108 </outputPorts>

<annotations/>

110 <activities>

<activity>

112 <raven>

<group>net.sf.taverna.t2.activities</group>

114 <artifact>beanshell-activity</artifact>

<version>1.4</version>

116 </raven>

<class>bnsh.BeanshellActivity</class>

118 <inputMap><map from="in" to="in"/></inputMap>

<outputMap><map from="out" to="out"/></outputMap>

120 <configBean encoding="xstream">

<bnsh.BeanshellActivityConfigurationBean>

122 <inputs>

< c f g.ActivityInputPortDefinitionBean>

124 <name>in</name>

<depth>0</depth>

126 <translatedElementType>java.lang.String</translatedElementType>

</ c f g.ActivityInputPortDefinitionBean>

128 </inputs>

<outputs>

130 < c f g.ActivityOutputPortDefinitionBean>

<name>out</name>

132 <depth>0</depth>

<granularDepth>0</granularDepth>

134 </ c f g.ActivityOutputPortDefinitionBean>

</outputs>

136 </bnsh.BeanshellActivityConfigurationBean>

</configBean>

138 </activity>

</activities>

140 <dispatchStack/>

<iterationStrategyStack><iteration><strategy/></iteration></iterationStrategyStack>

142 </processor>

<processor>

144 <name>S</name>

174

APPENDIX E. CONVERSION TO T2FLOW

<inputPorts>

146 <port><name>in</name><depth>0</depth></port>

</inputPorts>

148 <outputPorts>

<port><name>out</name><depth>0</depth><granularDepth>0</granularDepth></port>

150 </outputPorts>

<annotations/>

152 <activities>

<activity>

154 <raven>

<group>net.sf.taverna.t2.activities</group>

156 <artifact>beanshell-activity</artifact>

<version>1.4</version>

158 </raven>

<class>bnsh.BeanshellActivity</class>

160 <inputMap><map from="in" to="in"/></inputMap>

<outputMap><map from="out" to="out"/></outputMap>

162 <configBean encoding="xstream">

<bnsh.BeanshellActivityConfigurationBean>

164 <inputs>

< c f g.ActivityInputPortDefinitionBean>

166 <name>in</name>

<depth>0</depth>

168 <translatedElementType>java.lang.String</translatedElementType>

</ c f g.ActivityInputPortDefinitionBean>

170 </inputs>

<outputs>

172 < c f g.ActivityOutputPortDefinitionBean>

<name>out</name>

174 <depth>0</depth>

<granularDepth>0</granularDepth>

176 </ c f g.ActivityOutputPortDefinitionBean>

</outputs>

178 </bnsh.BeanshellActivityConfigurationBean>

</configBean>

180 </activity>

</activities>

182 <dispatchStack/>

<iterationStrategyStack><iteration><strategy/></iteration></iterationStrategyStack>

184 </processor>

</processors>

186 <conditions>

<condition control="P" target="S"/>

188 </conditions>

<datalinks>

190 <datalink>

<sink type="processor"><processor>P</processor><port>in</port></sink>

192 <source type="dataflow"><port>A_out0</port></source>

</datalink>

194 <datalink>

<sink type="processor"><processor>Q</processor><port>in</port></sink>

196 <source type="dataflow"><port>A_out1</port></source>

</datalink>

198 <datalink>

<sink type="processor"><processor>R</processor><port>in</port></sink>

200 <source type="processor"><processor>P</processor><port>out</port></source>

</datalink>

202 <datalink>

<sink type="processor"><processor>S</processor><port>in</port></sink>

204 <source type="processor"><processor>Q</processor><port>out</port></source>

</datalink>

206 <datalink>

<sink type="dataflow"><port>B_in0</port></sink>

208 <source type="processor"><processor>R</processor><port>out</port></source>

</datalink>

210 <datalink>

<sink type="dataflow"><port>B_in1</port></sink>

212 <source type="processor"><processor>S</processor><port>out</port></source>

</datalink>

214 </datalinks>

</dataflow>

216 </workflow>

175

APPENDIX F

CONVERSION TO IWIR

The following listings are the results of the Conversion process applied to the example Inter-

mediate Representations given in Section 4.6.4.2, towards IWIR, the pivot language of the

interoperability platform SHIWA [Krefting 11].

All three listings show the result of Conversion of the example shown on Figure 4.41a:

• Listing F.1, illustrated on Figure 4.41b, corresponds to flat inputs, i.e. inputs with no

extra depth levels compared to the specification of the target Input Port;

• Listing F.2, illustrated on Figure 4.41c, corresponds to inputs with 1 extra depth level

each and a A⊙ B Iteration Strategy; and

• Listing F.2, illustrated on Figure 4.41d, corresponds to inputs with 1 extra depth level

each and a A⊗ B Iteration Strategy.

Listing F.1: Conversion to IWIR - Flat Inputs Example

<IWIR version="1.1" wfname="Flat Example" xmlns="http://shiwa-workflow.eu/IWIR">

2 <blockScope name="Flat_Example">

<inputPorts>

4 <inputPort name="A" type="string"/>

<inputPort name="B" type="string"/>

6 </inputPorts>

<body>

8 <task name="P" tasktype="P">

<inputPorts>

10 <inputPort name="in1" type="string"/>

<inputPort name="in2" type="string"/>

12 </inputPorts>

<outputPorts>

14 <outputPort name="out" type="string"/>

</outputPorts>

16 </task>

</body>

18 <outputPorts>

<outputPort name="C" type="string"/>

20 </outputPorts>

<links>

22 <link from="Flat_Example/A" to="P/in1"/>

<link from="Flat_Example/B" to="P/in2"/>

24 <link from="P/out" to="Flat_Example/C"/>

</links>

26 </blockScope>

</IWIR>

176

APPENDIX F. CONVERSION TO IWIR

Listing F.2: Conversion to IWIR - Dot Example

1 <IWIR version="1.1" wfname="Dot Example" xmlns="http://shiwa-workflow.eu/IWIR">

<blockScope name="Dot_Example">

3 <inputPorts>

<inputPort name="A" type="collection/string"/>

5 <inputPort name="B" type="collection/string"/>

</inputPorts>

7 <body>

<parallelForEach name="P_dot_0">

9 <inputPorts>

<loopElements>

11 <loopElement name="in1" type="collection/string"/>

<loopElement name="in2" type="collection/string"/>

13 </loopElements>

</inputPorts>

15 <body>

<task name="P" tasktype="P">

17 <inputPorts>

<inputPort name="in1" type="string"/>

19 <inputPort name="in2" type="string"/>

</inputPorts>

21 <outputPorts>

<outputPort name="out" type="string"/>

23 </outputPorts>

</task>

25 </body>

<outputPorts>

27 <outputPort name="out" type="collection/string"/>

</outputPorts>

29 <links>

<link from="P_dot_0/in1" to="P/in1"/>

31 <link from="P_dot_0/in2" to="P/in2"/>

<link from="P/out" to="P_dot_0/out"/>

33 </links>

</parallelForEach>

35 </body>

<outputPorts>

37 <outputPort name="C" type="collection/string"/>

</outputPorts>

39 <links>

<link from="Dot_Example/A" to="P_dot_0/in1"/>

41 <link from="Dot_Example/B" to="P_dot_0/in2"/>

<link from="P_dot_0/out" to="Dot_Example/C"/>

43 </links>

</blockScope>

45 </IWIR>

177

APPENDIX F. CONVERSION TO IWIR

Listing F.3: Conversion to IWIR - Cross Example

1 <IWIR version="1.1" wfname="Cross Example" xmlns="http://shiwa-workflow.eu/IWIR">

<blockScope name="Cross_Example">

3 <inputPorts>

<inputPort name="A" type="collection/string"/>

5 <inputPort name="B" type="collection/string"/>

</inputPorts>

7 <body>

<parallelForEach name="P_cross_0">

9 <inputPorts>

<inputPort name="in1" type="collection/string"/>

11 <loopElements>

<loopElement name="in2" type="collection/string"/>

13 </loopElements>

</inputPorts>

15 <body>

<parallelForEach name="P_cross_1">

17 <inputPorts>

<inputPort name="in2" type="string"/>

19 <loopElements>

<loopElement name="in1" type="collection/string"/>

21 </loopElements>

</inputPorts>

23 <body>

<task name="P" tasktype="P">

25 <inputPorts>

<inputPort name="in1" type="string"/>

27 <inputPort name="in2" type="string"/>

</inputPorts>

29 <outputPorts>

<outputPort name="out" type="string"/>

31 </outputPorts>

</task>

33 </body>

<outputPorts>

35 <outputPort name="out" type="collection/string"/>

</outputPorts>

37 <links>

<link from="P_cross_1/in1" to="P/in1"/>

39 <link from="P_cross_1/in2" to="P/in2"/>

<link from="P/out" to="P_cross_1/out"/>

41 </links>

</parallelForEach>

43 </body>

<outputPorts>

45 <outputPort name="out" type="collection/collection/string"/>

</outputPorts>

47 <links>

<link from="P_cross_0/in1" to="P_cross_1/in1"/>

49 <link from="P_cross_0/in2" to="P_cross_1/in2"/>

<link from="P_cross_1/out" to="P_cross_0/out"/>

51 </links>

</parallelForEach>

53 </body>

<outputPorts>

55 <outputPort name="C" type="collection/collection/string"/>

</outputPorts>

57 <links>

<link from="Cross_Example/A" to="P_cross_0/in1"/>

59 <link from="Cross_Example/B" to="P_cross_0/in2"/>

<link from="P_cross_0/out" to="Cross_Example/C"/>

61 </links>

</blockScope>

63 </IWIR>

178

APPENDIX G

ONTOVIP URIS

The ontology of the Virtual Imaging Platform (VIP) project, OntoVIP, relies on other ontologies

and imports multiple modules, which means it is not easy to guess the Uniform Resource Iden-

tifier (URI) of any OntoVIP resource based on its local name. For instance, MR-simulation

comes from VIP Simulation and MR-simulation-compatible-model from VIP

Model.

Note that the vast majority of resource URIs are not URLs: though they uniquely identify

a resource, they cannot always be dereferenced and accessed with a web browser. Some of the

URIs provided here will result in 404 File Not Found errors or redirect to a generic web

page, if used as URLs.

Here is the list, by alphebetical order, of ontology modules referred to in Chapter 5 and the

corresponding URIs:

• DOLCE Particular

→ http://neurolog.unice.fr/ontoneurolog/v3.0/←֓
dolce-particular.owl

• OntoNeuroLOG DOLCE Extension

→ http://neurolog.unice.fr/ontoneurolog/v3.0/←֓
ontoneurolog-extension-of-dolce.owl

• OntoNeuroLOG Programs Software

→ http://neurolog.unice.fr/ontoneurolog/v3.0/←֓
core-ontology-programs-software.owl

• OntoNeuroLOG Dataset

→ http://neurolog.unice.fr/ontoneurolog/v3.0/dataset.owl

• OntoNeuroLOG MR Dataset Acquisition

→ http://neurolog.unice.fr/ontoneurolog/v3.0/←֓
ontoneurolog-mr-dataset-acquisition.owl

• VIP Model

→ http://vip.creatis.insa-lyon.fr/ontovip/v1.0/←֓
vip-model.owl

• VIP Simulated Data

→ http://vip.creatis.insa-lyon.fr/ontovip/v1.0/←֓
vip-simulated-data.owl

• VIP Simulation

→ http://vip.creatis.insa-lyon.fr/ontovip/v1.0/←֓
vip-simulation.owl

179

http://neurolog.unice.fr/ontoneurolog/v3.0/dolce-particular.owl
http://neurolog.unice.fr/ontoneurolog/v3.0/dolce-particular.owl
http://neurolog.unice.fr/ontoneurolog/v3.0/ontoneurolog-extension-of-dolce.owl
http://neurolog.unice.fr/ontoneurolog/v3.0/ontoneurolog-extension-of-dolce.owl
http://neurolog.unice.fr/ontoneurolog/v3.0/core-ontology-programs-software.owl
http://neurolog.unice.fr/ontoneurolog/v3.0/core-ontology-programs-software.owl
http://neurolog.unice.fr/ontoneurolog/v3.0/dataset.owl
http://neurolog.unice.fr/ontoneurolog/v3.0/ontoneurolog-mr-dataset-acquisition.owl
http://neurolog.unice.fr/ontoneurolog/v3.0/ontoneurolog-mr-dataset-acquisition.owl
http://vip.creatis.insa-lyon.fr/ontovip/v1.0/vip-model.owl
http://vip.creatis.insa-lyon.fr/ontovip/v1.0/vip-model.owl
http://vip.creatis.insa-lyon.fr/ontovip/v1.0/vip-simulated-data.owl
http://vip.creatis.insa-lyon.fr/ontovip/v1.0/vip-simulated-data.owl
http://vip.creatis.insa-lyon.fr/ontovip/v1.0/vip-simulation.owl
http://vip.creatis.insa-lyon.fr/ontovip/v1.0/vip-simulation.owl

APPENDIX G. ONTOVIP URIS

Here is the list, by alphabetical order, of resources referred to in Chapter 5 and in which of

the aforementioned ontology modules they reside:

• CT-simulated-data→ VIP Simulated Data

• CT-simulation→ VIP Simulation

• CT-simulation-compatible-model→ VIP Model

• directory→ OntoNeuroLOG Programs Software

• echo-time→ OntoNeuroLOG MR Dataset Acquisition

• file→ OntoNeuroLOG Programs Software

• medical-image-simulation→ VIP Simulation

• medical-image-simulation-object-model→ VIP Model

• MR-simulated-image→ VIP Simulated Data

• MR-simulation→ VIP Simulation

• MR-simulation-compatible-model→ VIP Model

• number→ OntoNeuroLOG DOLCE Extension

• PET-list-mode-data→ VIP Simulated Data

• PET-simulated-data→ VIP Simulated Data

• PET-simulated-image→ VIP Simulated Data

• PET-simulation→ VIP Simulation

• PET-simulation-compatible-model→ VIP Model

• PET-sinogram→ VIP Simulated Data

• proton-density-weighted-MR-dataset→ OntoNeuroLOG Dataset

• quality→ DOLCE Particular

• repetition-time→ OntoNeuroLOG MR Dataset Acquisition

• simulated-data→ VIP Simulated Data

• T1-weighted-MR-dataset→ OntoNeuroLOG Dataset

• T2-weighted-MR-dataset→ OntoNeuroLOG Dataset

• US-simulated-image→ VIP Simulated Data

• US-simulation→ VIP Simulation

• US-simulation-compatible-model→ VIP Model

• version-number→ OntoNeuroLOG DOLCE Extension

To obtain the full URI of a resource, one simply has to concatenate the URI of the ontology

module where the resource resides with the local name of the resource, with a hash character in

between. For instance, quality resides in DOLCE Particular, therefore its full URI is:

http://neurolog.unice.fr/ontoneurology/v3.0/←֓
dolce-particular.owl#quality

180

http://neurolog.unice.fr/ontoneurology/v3.0/dolce-particular.owl#quality
http://neurolog.unice.fr/ontoneurology/v3.0/dolce-particular.owl#quality

APPENDIX H

LICENSE

This work is licensed under Creative Commons Attribution-NonCommercial-ShareAlike

4.0 International.

You are free to:

• Share copy and redistribute the material in any medium or format

• Adapt remix, transform, and build upon the material

• The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

• Attribution You must give appropriate credit, provide a link to the license, and indicate

if changes were made. You may do so in any reasonable manner, but not in any way that

suggests the licensor endorses you or your use.

• NonCommercial You may not use the material for commercial purposes.

• ShareAlike If you remix, transform, or build upon the material, you must distribute your

contributions under the same license as the original.

• No additional restrictions You may not apply legal terms or technological measures that

legally restrict others from doing anything the license permits.

Notices:

• You do not have to comply with the license for elements of the material in the public

domain or where your use is permitted by an applicable exception or limitation.

• No warranties are given. The license may not give you all of the permissions necessary

for your intended use. For example, other rights such as publicity, privacy, or moral rights

may limit how you use the material.

For the exact legal terms of the license, please refer to:

http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

181

http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

APPENDIX H. LICENSE

182

GLOSSARY

Abstract Element: Element of the abstract part of the Conceptual Workflow Model: either

an Activity, a Port, a Data Link or a Order Link.

→ Section 3.2

→ Pages 8, 43, 47, 48, 51–53, 57, 73, 75, 110, 121, 145, 183, 191

Abstract Level: Intermediary level of abstraction between the Conceptual Level and the

Concrete Level. Most scientific workflow frameworks handle scientific workflows at

that level. It aligns with the level of Platform-Independent Models (PIMs) in the Model

Driven Architecture (MDA).

→ Chapter 2

→ Pages 4–6, 15, 43, 47, 48, 57, 122, 144, 145, 149, 150, 153–155, 157–159

Abstract Workflow: Workflow described at an intermediate abstraction level between the

simulation it represents and actual enactment. Most scientific workflow frameworks han-

dle scientific workflows at that level.

→ Pages 43, 52, 57, 84, 94, 106, 114, 115, 117, 118, 120–122, 125, 128, 129, 144, 161,

186, 190, 197

Activity: Element of the Conceptual Workflow Model which models executable artifacts

such as web services, grid jobs and legacy programs.

→ Section 3.2.1

→ Pages 49–51, 53, 58, 84, 86–91, 95–97, 99–102, 104, 107, 111, 123–126, 128, 130,

131, 138, 139, 142, 145, 146, 170, 183, 186, 188–190, 193, 194

Acyclic Graph: A directed graph without cycles: no matter the starting vertex, it is impossible

to get back to it by following the edges. Since the number of vertices is finite, it follows

that the number of paths between two vertices in an acyclic graph is always finite.

→ Pages 186

AGWL: Scientific workflow language underlying ASKALON. It is compatible with eXtensi-

ble Markup Language (XML) and control-driven.

→ [Fahringer 05]

→ http://www.dps.uibk.ac.at/projects/agwl/

→ Pages 147, 152, 184

Annotation: Element of the Conceptual Workflow Model which models either a Conceptual

Element or Abstract Element and links it with a concept defined in an external domain,

technical or non-functional ontology. Defined by its Type, Role and Meaning.

→ Section 3.3

→ Pages 51–55, 58, 61, 62, 68, 73–78, 80–82, 86, 87, 91, 92, 109–111, 123, 132, 138,

139, 142, 145, 186–188, 191, 192, 194–197

183

http://www.dps.uibk.ac.at/projects/agwl/

GLOSSARY GLOSSARY

AOP (Aspect-Oriented Programming): Software development paradigm focusing on cross-

cutting concerns: the base process is defined separately from aspects which are woven

into it automatically.

→ Pages 20, 21, 23, 24, 59

API (Application Programming Interface): A protocol meant to allow automated commu-

nication between programs.

→ Pages 11, 16, 40, 114, 153, 155, 198

ASKALON: Free (for educational and research purposes) scientific workflow framework de-

veloped mainly at the University of Innsbruck, Austria. It uses Unified Modeling Lan-

guage (UML) and AGWL to model scientific workflows, and targets Cloud and Grid

environments.

→ [Fahringer 07]

→ http://www.dps.uibk.ac.at/projects/askalon/

→ Pages 14, 147–149, 155, 183

Bipartite Graph: A graph whose vertices can be classified in two groups with no internal

edges in either.

→ Pages 193

Blueprint: Conceptual Workflow which is part of a Fragment and represents how the Frag-

ment will be woven, i.e. what the Weaving mechanism will build in the base process to

weave the Fragment.

→ Pages 54, 55, 59, 60, 63–66, 68, 69, 72, 77, 78, 80, 82, 83, 130, 145, 188

BPEL (Business Process Execution Language): Executable language defined by the Orga-

nization for the Advancement of Structured Information Standards (OASIS) to specify

business processes that are based on web services. With time, it has emerged as the de

facto standard in the field of business workflows.

→ https://www.oasis-open.org/committees/wsbpel/

→ Pages 10, 23

Business Process: Structured set of tasks meant to achieve a business goal such as providing

a service or making a product.

→ Pages 10, 17, 23, 24, 184

Business Workflow Framework: A workflow framework dedicated to one or more business

workflow model(s).

→ Pages 10

Business Workflow: A workflow meant to formalize and/or enact a business process.

→ Pages 10, 11, 17, 23, 24, 184

CIM (Computation-Independent Model): Class of models defined by the MDA and based

on the abstraction level: computation-independent models are so high-level as to not

be tied to a specific implementation method or infrastructure. They are designed to be

easy for domain experts to understand, design and manipulate. However, they must be

transformed into lower-level models to be used in practice.

→ Pages 5, 25, 26, 28, 29, 185, 191

184

http://www.dps.uibk.ac.at/projects/askalon/
https://www.oasis-open.org/committees/wsbpel/

GLOSSARY GLOSSARY

Composition: Composition is the name of the part of the Mapping process dedicated to help-

ing users compose their Conceptual Workflow in order to transform it into an Interme-

diate Representation. It consists in suggesting links between unattached Input Ports

and compatible predecessing Output Ports and looking for converters when mismatches

are detected.

→ Section 4.5

→ Pages 58, 84, 110, 111, 130, 138, 142, 145

Conceptual Element: Element of the conceptual part of the Conceptual Workflow Model:

either a Conceptual Workflow, Conceptual Function, Conceptual Input, Conceptual

Output or Conceptual Link.

→ Section 3.1

→ Pages 43, 44, 46, 51–53, 57, 110, 183

Conceptual Function: Element of the Conceptual Workflow Model which models scientific

process steps at the conceptual level of abstraction.

→ Section 3.1.1

→ Pages 43, 44, 46, 53, 55, 62, 63, 66–70, 72–74, 81, 82, 84, 88, 123, 124, 126, 128,

131, 133–135, 146, 185, 188, 193, 196

Conceptual Input: Element of the Conceptual Workflow Model which models the input data

of a simulation at the conceptual level of abstraction.

→ Section 3.1.1

→ Pages 43, 44, 46, 48, 53, 58, 60, 72, 74, 75, 81–83, 88, 185

Conceptual Level: Level of abstraction at which simulations are conceived by scientists, in

their own domain(s). It aligns with the level of Computation-Independent Models (CIMs)

in the MDA.

→ Chapter 2

→ Pages 4–6, 8, 29, 43, 57, 122, 144, 150, 155, 161, 183, 199

Conceptual Link: Element of the Conceptual Workflow Model which models dependencies

between components of a simulation at the conceptual level of abstraction.

→ Section 3.1.4

→ Pages 43, 44, 47, 48, 55, 60, 62, 66, 73, 75, 87, 88, 135, 185

Conceptual Output: Element of the Conceptual Workflow Model which models the output

products of a simulation at the conceptual level of abstraction.

→ Section 3.1.1

→ Pages 43, 44, 46, 48, 53, 72, 74, 75, 81–83, 88, 185

Conceptual Workflow Model: The Workflow model we propose to formalize simulations at a

high level of abstraction that is computation-independent, as well as enable the computer-

assisted transformation to executable workflows.

→ Chapter 3

→ Pages 29, 41, 43, 48, 49, 51, 57, 62, 66, 76, 94, 102, 107, 109, 114, 129, 144, 145,

163, 183, 185, 186, 189, 193–195

Conceptual Workflow: Instance of the Conceptual Workflow Model.

→ Chapter 3

→ Pages 8, 30, 41, 43, 44, 46–49, 52, 54, 55, 57–59, 62–68, 72–77, 80–82, 84, 87, 88,

185

GLOSSARY GLOSSARY

94, 107, 109, 114, 122, 123, 129, 130, 132, 137, 138, 142, 144–146, 184, 185, 187, 188,

190–198

Concern: One of the three types of Meaning for an Annotation, which means it represents a

non-functional criterion.

→ Section 3.3.3

→ Pages 52, 53, 76–78, 82, 84, 92, 94, 111, 122, 123, 128, 131, 139

Concrete Level: Level of abstraction at which scientific workflows are enacted. It aligns with

the level of Platform-Specific Models (PSMs) in the MDA.

→ Chapter 2

→ Pages 4, 5, 150, 155, 156, 183

Control-driven Model: Graph-based scientific workflow model where edges represent con-

trol flow.

→ Section 2.1.2.3

→ Pages 12, 14, 102, 104, 107, 151, 152, 156

Conversion: Conversion is the name of the second step of the Transformation Process. It is

an automated transformation from the Intermediate Representation to a target external

abstract workflow language.

→ Section 4.6

→ Pages 6, 8, 29, 57, 94, 95, 100–104, 106, 107, 110, 111, 130, 139, 144, 146, 170, 176,

197

COWORK (COnceptual WORKflow): the Conceptual Workflow Model captured as an

RDFS-based ontology.

Available at http://www.i3s.unice.fr/˜cerezo/cowork/latest/cowork.rdfs

→ Pages 51, 52, 63

Cross Product: Binary operator combining Input Ports and used in Iteration Strategies to

specify that each piece of data received on an Input Port must be paired up with every

possible combination of the pieces of data received on the other Input Ports. (a1, a2)⊗
(b1, b2) = {(a1, b1), (a1, b2), (a2, b1), (a2, b2)}
→ Pages 50

Cross-cutting concern: Non-functional concern (i.e. which is not integral to the basic func-

tionalities of a process, e.g. Quality of Service (QoS) concerns) which impacts the struc-

ture of the process or is replicated in multiple locations in the process.

→ Pages 184

Cyclic Graph: Synonym of directed graph, used to emphasize the difference with acyclic

graphs that do not allow cycles.

→ Pages 187, 192

DAG (Directed Acyclic Graph): See directed graph, acyclic graph and graph.

→ Pages 12, 17, 153, 155, 157, 160, 162

Data Link: Element of the Conceptual Workflow Model which models data flow between

two Activities: data is transferred from the source to the target and data reception fires

the target.

186

http://www.i3s.unice.fr/~cerezo/cowork/latest/cowork.rdfs

GLOSSARY GLOSSARY

→ Section 3.2.3

→ Pages 49, 51, 86–88, 91, 92, 95, 97, 99, 101, 102, 123, 129, 138, 139, 170, 183

Data-driven Model: Graph-based scientific workflow model where edges represent data flow.

→ Section 2.1.2.3

→ Pages 12, 13, 15, 149, 150, 152, 156

Dataset: One of the three types of Meaning for an Annotation, which means it qualifies data

content or data format.

→ Section 3.3.3

→ Pages 52, 53, 82, 84, 94, 132

DAX: Scientific workflow language underlying Pegasus. It is compliant with XML and serves

as the primary interface with the enactor.

→ http://pegasus.isi.edu/wms/docs/latest/creating_workflows.php

→ Pages 155

DCG (Directed Cyclic Graph): See directed graph, cyclic graph and graph.

→ Pages 12, 17, 43, 147, 149, 152, 155, 158, 189

DCI (Distributed Computing Infrastructure): Set of distributed (and often heterogeneous)

computing resources used in concert to execute programs, e.g. service platforms, super-

computers, computing grids, clouds.

→ Pages 4, 5, 12, 14, 43, 50, 107, 144, 147, 149, 150, 155, 157, 161, 187, 188, 193, 199

Directed Graph: A graph whose links are called edges and have a direction: they go from a

source to a target and are most often represented by arrows.

→ Pages 2, 3, 12, 43, 44, 183, 186–188, 192

Discovery: Discovery is the name of the part of the Mapping process dedicated to helping

users find Fragments relevant to the Conceptual Workflow at hand. It consists in

matching the Annotations of that Conceptual Workflow against that of Fragments

in the knowledge base, ranking the Fragments that matched by order of relevance and

presenting them to the user for them to pick the one that will be woven into the workflow.

→ Section 4.4

→ Pages 58, 76, 89, 110, 111, 130, 133–135, 142, 145, 191, 194

Distributed Algorithm: Algorithm designed to be run in parallel on multiple inter-connected

processing units.

See also Distributed Computing Infrastructure (DCI).

→ Pages 2–4

DOLCE: Foundational ontology meant to serve as a basis to design and/or align specialized

ontologies.

→ [Gangemi 02]

→ Pages 32, 113

Dot Product: Binary operator combining Input Ports and used in Iteration Strategies to

specify that the pieces of data received on the Input Ports must be paired up according

to their order of arrival. (a1, a2)⊙ (b1, b2) = {(a1, b1), (a2, b2)}
→ Pages 50

187

http://pegasus.isi.edu/wms/docs/latest/creating_workflows.php

GLOSSARY GLOSSARY

Enactor: Program deploying scientific workflows on DCIs and managing their execution.

→ Pages 5, 11–13, 15, 50, 84, 102, 104, 147, 151, 154, 155, 187, 190, 197

Erasing: Erasing is a mechanism used in the Mapping step of the Transformation Process

to remove a Conceptual Function and redistribute its sub-workflows and annotations

automatically. It is especially useful after node-bound Weaving, as explained in 4.3.2.

→ Section 4.3.2

→ Pages 58, 59, 63, 70, 72, 73, 76, 110

Explicit Port: Port that is explicitly declared in the description of the executable artifact un-

derlying the Activity the Port is associated to.

→ Section 3.2.1

→ Pages 49, 51

FIELD-II: UltraSonography (US) simulator seminally included in the Virtual Imaging Plat-

form (VIP) platform.

→ [Jensen 04]

→ http://field-ii.dk/

→ Pages 114

Filter: Specialized Activity which models conditionals.

→ Section 3.2.2

→ Pages 49, 51

FOP (Feature-Oriented Programming): Software development paradigm defining programs

as a composition of features, i.e. sets of formally defined sets of functionalities.

→ Pages 21, 196

Fragment: Combination of a Pattern and Blueprint which can be merged into a Conceptual

Workflow using the Weaving mechanism.

→ Section 3.4

→ Pages 24, 54, 55, 58–70, 72, 76–78, 80–84, 89, 110, 111, 130–135, 137, 142, 145,

166, 167, 184, 187, 191, 193, 194, 198

Function: One of the three types of Meaning for an Annotation, which means it represents a

domain process step.

→ Section 3.3.3

→ Pages 49, 52, 53, 55, 76–78, 82, 84, 92, 94, 111, 112, 122, 123, 126, 130–133, 139,

189

Galaxy: Open-source web-based scientific workflow framework developed mainly at the uni-

versities of Penn State and Emory, USA.

→ [Goecks 10]

→ http://galaxyproject.org/

→ Pages 149

Graph: A set of objects represented by vertices (also known as nodes or points), pairs of which

are connected by links (also known as arcs and generally called edges when directed)

representing some relation between the objects.

See also directed graph.

→ Pages 3, 12, 44, 58, 63, 65–68, 71, 72, 78, 80, 103, 106, 184, 186, 187, 192

188

http://field-ii.dk/
http://galaxyproject.org/

GLOSSARY GLOSSARY

Guard: Logical condition associated to a Function. It is evaluated to determine along which

branch data should be transferred.

→ Section 3.2.2

→ Pages 49

GUI (Graphical User Interface): User interface using image-based input-output methods

(e.g. mouse, touch-screen) rather than text-based methods (i.e. command-line interface).

→ Pages 3, 11, 16, 109, 111, 147, 150–156, 158, 161, 162, 199

GWENDIA: Scientific workflow language underlying MOTEUR. It is compatible with XML

and has a data-driven Directed Cyclic Graph (DCG) core extended with select control

constructs and mechanisms inspired by array programming.

→ [Montagnat 09]

→ http://gwendia.i3s.unice.fr/

→ Pages 94, 95, 100, 114, 122, 130, 152, 154, 155

GWES: Scientific workflow framework whose language, called GWorkflowDL, is based on

petri nets. It is developed at the Fraunhofer Institute for Open Communication Systems,

Germany, and is free of charge for a Licensee’s own scientific or educational purposes.

→ [Neubauer 05]

→ http://gridworkflow.org/kwfgrid/gwes-web/

→ Pages 12, 150, 189

GWorkflowDL: Scientific workflow language underlying GWES. It is compliant with XML,

based on petri nets and is very flexible when it comes to how much information is spec-

ified about operations, from nothing to full instantiation, going through references to a

registry and lists of candidates.

→ [Alt 05]

→ http://gridworkflow.org/kwfgrid/gworkflowdl/docs/index.html

→ Pages 150, 189

Hybrid Model: Graph-based scientific workflow model where edges represent either data flow

or control flow.

→ Section 2.1.2.3

→ Pages 12, 13, 15, 102, 153

Immediate Parent Workflow: workflow whose relation with the considered sub-workflow is

defined directly, rather than by transitivity.

→ Section 3.1.1

→ Pages 46, 48

Immediate Sub-workflow: workflow whose relation with the considered parent workflow is

defined directly, rather than by transitivity.

→ Section 3.1.1

→ Pages 46

Implicit Port: Port that can be modeled in the Conceptual Workflow Model, but is not ex-

plicitly declared in the description of the executable artifact underlying the Activity the

Port is associated to.

→ Section 3.2.1

→ Pages 49, 51

189

http://gwendia.i3s.unice.fr/
http://gridworkflow.org/kwfgrid/gwes-web/
http://gridworkflow.org/kwfgrid/gworkflowdl/docs/index.html

GLOSSARY GLOSSARY

In-silico Experiment: Synonym of simulation that stems from and is especially used in the

domain of life sciences.

→ Pages 1

Input Port: Port representing an argument of the underlying executable artifact represented

by the Activity the Port is associated to.

→ Section 3.2.1

→ Pages 49, 50, 58, 84, 86–89, 91, 96, 97, 100, 101, 104, 123, 129, 138, 176, 185–187,

190

Input: Specialized Activity which models data sources.

→ Section 3.2.2

→ Pages 49, 51, 95–97, 99, 100, 102, 104, 124, 137, 170

Intermediate Representation: Fully mapped Conceptual Workflow, ready to be converted

to an abstract workflow. It is called intermediate, because it stands right between the two

steps of the Transformation Process.

→ Pages 6, 8, 29, 57, 59, 84, 94, 96, 97, 100–103, 106, 122, 124–126, 129, 130, 139,

145, 170, 176, 185, 186, 191

IPL (Imperative Programming Language): programming language defining precise com-

mands for the computer to perform, such as Fortran and C.

→ Pages 14, 147

Iteration Strategy: Composition of Input Ports and operators that defines how input data

must be combined to be fed to an Activity.

→ Section 3.2.4

→ Pages 50, 97, 101, 104, 107, 176, 186, 187

IWIR: Pivot scientific workflow language used on the SHIWA platform to enable fine-grained

interoperability.

→ [Plankensteiner 11]

→ http://www.shiwa-workflow.eu/wiki/-/wiki/Main/IWIR

→ Pages 94, 102–104, 107, 146, 155, 156

Java CoG Kit: Free scientific workflow framework integrated into the Globus Toolkit1. It is

developed in many institutions including but far from limited to the Argonne National

Library, USA and the Indiana University, USA. The underlying language is Karajan.

→ [von Laszewski 01]

→ http://wiki.cogkit.org/wiki/Main_Page

→ Pages 151, 190

Karajan: Control-driven scientific workflow language used as inner language by the Java CoG

Kit and as enactor by Swift.

→ [von Laszewski 07]

→ http://wiki.cogkit.org/wiki/Karajan

→ Pages 151, 156, 190, 197

1Globus Toolkit: → http://www.globus.org/toolkit/

190

http://www.shiwa-workflow.eu/wiki/-/wiki/Main/IWIR
http://wiki.cogkit.org/wiki/Main_Page
http://wiki.cogkit.org/wiki/Karajan
http://www.globus.org/toolkit/

GLOSSARY GLOSSARY

Kepler: Open-source scientific workflow framework based on actor-oriented design frame-

work Ptolemy II2. The project has contributors from plenty of institutions and originated

from the University of Davis, USA, the University of Santa Barbara, USA and the Uni-

versity of San Diego, USA. The underlying language is MoML (the same as Ptolemy II).

→ [Ludäscher 06]

→ https://kepler-project.org/

→ Pages 12, 22, 152, 153, 192

KNIME: Scientific workflow framework mainly developed at the University of Konstanz,

Germany, and open-source platform around which the eponymous company provides

support and services. Its name stands for KoNstanz Information MinEr.

→ [Berthold 07]

→ http://www.knime.org/

→ Pages 153, 154

Knowledge Base: Semantic database or in-memory semantic graph, generally composed of

interconnected triples.

See also triple store.

→ Pages 33, 54, 58, 63, 72, 76, 77, 80, 83, 84, 86, 88, 89, 91, 107, 110, 111, 130, 132,

137, 142, 144–146, 187, 191

Knowledge Engineering: Engineering discipline and research domain aiming at automated

use and/or production of knowledge.

→ Pages 30

Life Sciences: Research domain dedicated to the study of living organisms, including, for

instance, the sciences of biology, physiology and biochemistry.

→ Pages 1, 190

Mapping: Mapping is the name of the first step of the Transformation Process. It consists in

finding suitable Abstract Elements and/or sub-workflows to implement the simulation

modeled by the Conceptual Workflow. The result is called Intermediate Representa-

tion.

→ Section 4.1

→ Pages 6, 8, 29, 41, 52, 57–59, 71, 76, 77, 84, 86, 94, 106, 109, 130, 142, 144–146,

185, 187, 188, 192, 197, 198

Matching: Matching is the first part of the Discovery process. It consists in querying the

knowledge base to the Annotations of that Conceptual Workflow against that of Frag-

ments in the knowledge base, ranking the Fragments that matched by order of relevance

and presenting them to the user for them to pick the one that will be woven into the work-

flow.

→ Section 4.4.2

→ Pages 77, 78, 80, 194

MDA (Model Driven Architecture): Model Driven Engineering (MDE) approach launched

by the Object Management Group (OMG) which, among many things, classifies software

models into three abstraction levels: PSM, PIM and CIM. → http://www.omg.org/

2Ptolemy II:→ http://ptolemy.berkeley.edu/ptolemyII/

191

https://kepler-project.org/
http://www.knime.org/
http://www.omg.org/mda/
http://www.omg.org/mda/
http://ptolemy.berkeley.edu/ptolemyII/
http://www.omg.org/mda/

GLOSSARY GLOSSARY

mda/

→ Pages 5, 24, 25, 29, 183–186, 192, 194

MDE (Model Driven Engineering): Approach to software development that focuses on the

creation and management of high-level domain models on which development is based,

in order to leverage domain experts’ knowledge and ease communication between system

designers.

→ Pages 11, 22, 24, 26, 28, 29, 191

Meaning: Defining feature of an Annotation that categorizes the concept it links to, from the

viewpoint of the Conceptual Workflow.

→ Section 3.3.3

→ Pages 51, 52, 54, 74, 84, 183, 186–188

Merging: Merging is a mechanism used in the Mapping step of the Transformation Process

to combine two Conceptual Workflows into one. It is especially useful after link-bound

Weaving, as explained in 4.2.6.

→ Section 4.3.1

→ Pages 58, 59, 63, 70, 72, 73, 76, 110

MoC (Model of Computation): Describes how the components of a system interact to per-

form the high-level goals. Like the actor-oriented design framework it is based on, Kepler

defines scientific workflow graphs and models of computation separately, which gives it

flexible execution semantics.

→ Pages 152

MoML: The Modeling Markup Language is an XML dialect Kepler inherits from the actor-

oriented design framework it is based on.

→ [Lee 00]

→ http://ptolemy.eecs.berkeley.edu/projects/summaries/00/moml.html

→ Pages 152, 191

MOTEUR: Open-source scientific workflow manager developed mainly at the I3S Labora-

tory, France. It is dedicated to efficient enactment on computing grids and uses the

GWENDIA [Montagnat 09] language.

→ [Glatard 08]

→ http://modalis.i3s.unice.fr/softwares/moteur/

→ Pages 15, 50, 94, 139, 154, 155, 189

Nested Directed Cyclic Graph: See nested graph, directed graph, cyclic graph and graph.

→ Pages 17, 43

Nested Graph: A graph whose vertices can themselves be subgraphs.

→ Pages 44, 192

OMG (Object Management Group): International computer industry consortium created

to define standards in the field of object-oriented software development. UML and the

MDA are among their most well-known standards.

→ www.omg.org

→ Pages 25, 26, 191

192

http://www.omg.org/mda/
http://www.omg.org/mda/
http://ptolemy.eecs.berkeley.edu/projects/summaries/00/moml.html
http://modalis.i3s.unice.fr/softwares/moteur/
www.omg.org

GLOSSARY GLOSSARY

OPM (Open Provenance Model): as the name indicates, it is a system-agnostic standard to

describe and exchange scientific workflow provenance data. It resulted from the Prove-

nance Challenge series and many scientific workflow frameworks can export it now.

→ http://openprovenance.org/

→ http://twiki.ipaw.info/bin/view/Challenge/

→ Pages 3

Order Link: Element of the Conceptual Workflow Model which models control flow be-

tween two Activities: when the source terminates, control is passed over to the target.

There might be a delay between the end of the source and the beginning of the target,

depending on the enactment strategy and available ressources, but the target never fires

before the source ends.

→ Section 3.2.3

→ Pages 49, 51, 87, 95, 97, 99, 101, 102, 170, 183

Output Port: Port representing a product of the underlying executable artifact represented by

the Activity the Port is associated to.

→ Section 3.2.1

→ Pages 49, 84, 86–90, 96, 97, 100, 123–126, 129, 185

Output: Specialized Activity which models data sinks.

→ Section 3.2.2

→ Pages 49, 51, 95–97, 99–101, 103, 104, 137, 170

OWL (Web Ontology Language): Language specified and maintained by the World Wide

Web Consortium (W3C) to formally define ontologies.

→ http://www.w3.org/TR/owl-overview/

→ Pages 32, 38, 41, 194

Parent workflow: workflow or Conceptual Function which contains one or more workflows

or Conceptual Workflows, relatively called its sub-workflows.

→ Section 3.1.1

→ Pages 24, 46–48, 189, 196

Pattern: Conceptual Workflow which may feature variables. It is part of a Fragment and

represents where the Fragment will be woven, i.e. what the Weaving mechanism will

match in the base process to weave the Fragment.

→ Pages 54, 55, 59, 60, 63–66, 68–70, 72, 77, 78, 80, 110, 130, 135, 145, 188

Pegasus: Open-source scientific workflow framework developed mainly at the University of

Southern California, USA. It is focused on enactment over a variety of DCIs and many

higher-level systems are based upon it, including WINGS.

→ [Deelman 05]

→ http://pegasus.isi.edu

→ Pages 155, 156, 159, 160, 187, 199

Petri net: A bipartite graph modeling a distributed system, whose nodes represent transitions

and conditions in turns. Edges associate transitions with their pre-conditions and post-

conditions.

→ Pages 12, 17, 107, 150, 155, 189

193

http://openprovenance.org/
http://twiki.ipaw.info/bin/view/Challenge/
http://www.w3.org/TR/owl-overview/
http://pegasus.isi.edu

GLOSSARY GLOSSARY

PIM (Platform-Independent Model): Class of models defined by the MDA and based on the

abstraction level: platform-independent models are loosely-coupled with the infrastruc-

ture they run on, but algorithmically defined and thus somewhat inflexible.

→ Pages 5, 25, 26, 28, 29, 183, 191

Port: Element of the Conceptual Workflow Model which models either an argument or a

product of an executable artifact underlying the Activity the Port is associated to.

→ Section 3.2.1

→ Pages 49, 53, 86, 95, 96, 101, 138, 183, 188–190, 193, 194

PROV: Extensive standard published by the W3C comprising a model for provenance data

and a series of documents mapping the model to existing meta-models or specifying it in

standards such as XML and Web Ontology Language (OWL).

→ http://www.w3.org/TR/prov-overview/.

→ Pages 3

Provenance: Meta-data detailing how something was produced. In the field of scientific work-

flows, the term provenance generally refers to the collection of information during work-

flow execution in order to associate result data to the input and parameters that produced

them, to ease maintenance, to enhance reproducibility or many other uses.

→ Pages 3, 6, 146, 158, 193, 194

PSM (Platform-Specific Model): Class of models defined by the MDA and based on the

abstraction level: platform-specific models are tightly-coupled with the infrastructure

they run on and, as a result, are difficult to reuse.

→ Pages 5, 25, 29, 186, 191

QoS (Quality of Service): The set of considerations qualifying web services or other network

products, including, for instance, availability, reliability and response time.

→ Pages 10, 23, 186

Ranking: Ranking is the second part of the Discovery process. It consists comparing the

Annotations of candidate Fragments retrieved through Matching to that of the selected

Conceptual Workflow and rank them based on how well the two sets match.

→ Section 4.4.3

→ Pages 81, 82

RDF (Resource Description Framework): According to the W3C, “a standard model for

data interchange on the web”. It is most notably used as a basis for most Semantic Web

technologies.

→ http://www.w3.org/TR/rdf-primer/

→ Pages 34–36, 38–40, 63, 106, 194, 196, 197

RDFS (RDF Schema): According to the W3C, “a general-purpose language for representing

information in the Web. [It] describes how to use RDF to describe RDF vocabularies.”

It is by far the most basic Resource Description Framework (RDF)-based ontology lan-

guage and defines merely what is needed to define a taxonomy.

→ http://www.w3.org/TR/rdf-schema/

→ Pages 36, 41, 63

194

http://www.w3.org/TR/prov-overview/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-schema/

GLOSSARY GLOSSARY

Requirement: One of the two possible Roles for an Annotation. It means the Annotation

represents a goal to achieve or a criterion to satisfy for the element bearing it.

→ Section 3.3.2

→ Pages 52–55, 58, 63, 68, 74–78, 80–84, 86, 130, 133–135

Role: Defining feature of an Annotation that defines its role inside a Conceptual Workflow.

→ Section 3.3.2

→ Pages 51, 52, 54, 77, 183, 195, 196

ROP (Role-Oriented Programming): Software development paradigm capturing the vari-

ability of how objects interact based on context. It is an especially successful paradigm

in multi-agent systems, since it fits their collaboration-based design fairly well.

→ Pages 19, 20

Scientific Workflow Framework: A workflow framework designed to handle simulations and

dedicated to one or multiple scientific workflow model(s).

→ Pages 2, 3, 5, 6, 10–12, 15, 17, 22, 29, 43, 50, 57, 94, 102, 107, 144, 146, 147,

151–153, 155–159, 161, 183, 184, 188–191, 193, 197–199

Scientific Workflow Model: A workflow model meant to formalize simulations.

→ Pages 2–6, 8, 10–12, 15, 17, 18, 24, 43, 47, 102, 107, 122, 144, 145, 155, 156, 162,

186, 187, 189

Scientific Workflow: A workflow meant to formalize and/or enact a simulation.

→ Pages 2–6, 8, 10–15, 17, 18, 22–24, 26, 29, 43, 50, 57, 94, 102, 107, 111, 113, 114,

122, 129, 144–147, 151, 156, 158–162, 183, 184, 186–190, 192–195, 198

SCUFL: Data-driven scientific workflow language underlying Taverna.

→ [Oinn 04]

→ http://dev.mygrid.org.uk/wiki/display/developer/SCUFL2

→ Pages 99, 152, 154, 157

Semantic Annotation: In general, any annotation that defines a semantic concept or links part

of a document with a semantic concept defined elsewhere. In the Conceptual Workflow

Model, see Annotation.

→ Section 3.3

→ Pages 15, 43, 51, 84, 86, 111, 144, 146, 150, 195, 199

Semantic Web: Also known as Web 3.0 and “web of data”, it is a movement led by the W3C

to promote the use of Semantic Annotations on web pages.

→ Pages 34, 51, 67, 144, 151, 194

SHIWA: Research project aimed at creating a platform to interoperate different scientific

workflows languages.

→ [Krefting 11]

→ http://www.shiwa-workflow.eu

→ Pages 5, 94, 102, 146, 155, 176, 190

SIMRI: Magnetic Resonance (MR) imaging simulator seminally included in the VIP platform.

→ [Benoit-Cattin 05]

→ http://www.simri.org/

→ Pages 114, 117, 196

195

http://dev.mygrid.org.uk/wiki/display/developer/SCUFL2
http://www.shiwa-workflow.eu
http://www.simri.org/

GLOSSARY GLOSSARY

SimuBloch: Magnetic Resonance (MR) imaging simulator included soon after launch in the

VIP platform. It quickly became more popular among users of the platform than the

other MR simulator, SIMRI [Benoit-Cattin 05].

→ [Cao 12]

→ Pages 114, 118

Simulation: Scientific experiment carried out entirely or partially via computers.

→ Pages 1–6, 10, 12, 14, 17, 23, 24, 29, 30, 43, 47, 52, 57, 86, 112, 115, 117, 120, 121,

129, 144–146, 183, 185, 190, 191, 195

Sindbad: X-ray Computed Tomography (CT) simulator seminally included in the VIP plat-

form.

→ [Tabary 09]

→ Pages 114, 120

SoC (Separation of Concerns): Software design principle of ensuring that loosely-related

aspects of a system are developed separately and/or easily untangled. For instance, de-

coupling log handling from the program whose activity is logged respects the principle,

whereas indiscriminately mixing both aspects does not.

→ Pages 8, 11, 18, 19, 22–24, 154, 158

SOP (Subject-Oriented Programming): Software development paradigm discriminating be-

tween intrinsic and extrinsic fields and methods. An object is thus the composition of

“subjects”, i.e. sets of fields and methods relevant to specific applications.

→ Pages 19, 20

SORTEO: Positron Emission Tomography (PET) simulator seminally included in the VIP

platform.

→ [Gangemi 02]

→ http://sorteo.cermep.fr/

→ Pages 114, 120

SPARQL (SPARQL Protocol and RDF Query Language): Standard defined by the W3C

to query and manipulate knowledge graphs.

See also RDF.

→ http://www.w3.org/TR/rdf-sparql-query/

→ Pages 38, 40, 41, 62–68, 72, 80, 83, 88–91, 109, 145, 166–168

Specification: One of the two possible Roles for an Annotation. It means the Annotation

represents a goal achieved or a criterion satisfied by the element bearing it.

→ Section 3.3.2

→ Pages 52–54, 58, 68, 74, 75, 78, 80, 88, 89, 91, 92, 124–126, 129, 130, 138

SPL (Software Product Line): Branch of Feature-Oriented Programming (FOP) inspired by

industrial product lining and using feature models to specify the exact set of viable and

desirable feature compositions.

→ Pages 21–23

Sub-workflow: workflow or Conceptual Workflow contained in another workflow or Con-

ceptual Function, relatively called its parent workflow.

196

http://sorteo.cermep.fr/
http://www.w3.org/TR/rdf-sparql-query/

GLOSSARY GLOSSARY

→ Section 3.1.1

→ Pages 24, 46, 48, 52, 69, 73, 75, 88, 99, 102, 130, 142, 155, 188, 189, 191, 193

Swift: Open-source scientific workflow framework mainly developed at the Argonne National

Laboratory, US. It is a scripting language and uses Karajan as its enactor.

→ [Zhao 07]

→ http://www.ci.uchicago.edu/swift/main/index.php

→ Pages 156, 190

Taverna: Open-source scientific workflow framework mainly developed by the myGrid team3

at the University of Manchester, UK. Dedicated at first to bio-informaticians and the

plethora of resources available to them via web services, it has evolved into a multi-

domain, multi-platform and general-purpose scientific workflow framework.

→ [Missier 10a]

→ http://www.taverna.org.uk/

→ Pages 7, 12, 50, 94, 99, 154, 156, 157, 170, 195

Taxonomy: Hierarchical classification of concepts. For instance, the biological classification

of species (e.g. “homo sapiens sapiens” which is a sub-class of “homo sapiens”, itself a

sub-class of “homo” and so on).

→ Pages 32, 36, 37, 52, 78, 79, 111

Transformation Process: Semi-automated transformation from a computation-independent

Conceptual Workflow to an executable abstract workflow. It is done in two steps: Map-

ping, then Conversion.

→ Chapter 4

→ Pages 5, 6, 8, 29, 41, 43, 48, 51, 52, 57, 109, 130, 144, 145, 186, 188, 190–192, 198

Triana: Open-source scientific workflow framework developed mainly at Cardiff University,

UK. It is dedicated to data processing pipelines and features a pure data-driven model as

well as a wealth of data analysis tools.

→ [Taylor 07b]

→ http://www.trianacode.org/

→ Pages 13, 155, 157, 158

Triple Store: Database storing subject-predicate-object triples. Generally relying on more tra-

ditional (e.g. relational, object-oriented) databases, triple stores are often optimized for

triple handling and most often feature inference and query engines.

→ Pages 191

Turtle: Compact textual syntax for RDF meant for human production and consumption. Its

name derives from “Terse RDF Triple Language”.

→ http://www.w3.org/TeamSubmission/turtle/

→ Pages 34–36, 38, 39, 65, 166

Type: Defining feature of an Annotation that makes it the sub-class of a class defined in an

external ontology.

→ Section 3.3.1

→ Pages 51, 52, 54, 78, 83, 130, 183

3myGrid: → http://www.mygrid.org.uk/

197

http://www.ci.uchicago.edu/swift/main/index.php
http://www.taverna.org.uk/
http://www.trianacode.org/
http://www.w3.org/TeamSubmission/turtle/
http://www.mygrid.org.uk/

GLOSSARY GLOSSARY

UML (Unified Modeling Language): Standard modeling language commonly used to create

formal graphical representations of objected-oriented systems.

→ http://www.omg.org/spec/UML/Current

→ Pages 26, 28, 37, 41, 43, 46, 49, 147, 163, 184, 192

URI (Uniform Resource Identifier): Standardized name, location or combination thereof

identifying a resource, online or local, so that it can be interacted with via protocols.

→ Pages 34, 35, 38, 40, 63, 67, 68, 179, 180

VIP (Virtual Imaging Platform): French national research project whose goal was the inte-

gration of multiple modalities and organ models into a cohesive medical image simula-

tion platform [Marion 11].

→ http://www.creatis.insa-lyon.fr/vip/

→ Pages 18, 52, 78, 94, 109, 111, 113–115, 117, 118, 120–122, 129–132, 139, 142, 144,

145, 179, 188, 195, 196

VisTrails: Open-source scientific workflow framework initially developed at the University of

Utah, USA and now mainly developed at the University of New York, USA. It focuses

on provenance of not only data but also scientific workflows themselves.

→ [Callahan 05]

→ http://www.vistrails.org

→ Pages 158, 159

W3C (World Wide Web Consortium): is “an international community that develops open

standards to ensure the long-term growth of the Web”.

→ http://www.w3.org/

→ Pages 3, 32, 34, 38, 94, 95, 193–196, 198, 199

Weaving: Weaving is a mechanism used in the Mapping step of the Transformation Process

to merge Fragments into a Conceptual Workflow.

→ Section 4.2

→ Pages 8, 24, 41, 58, 59, 61–63, 66–73, 76, 77, 82, 91, 110, 130, 131, 133–135, 137,

145, 167, 184, 188, 192, 193

Web Service: According to the W3C: “a software system designed to support interoperable

machine-to-machine interaction over a network”. In other words, it is an Application

Programming Interface (API) that can be accessed through web protocols.

→ Pages 2, 10–12, 14–16, 29, 40, 43, 146, 151, 152, 154, 156, 157, 162, 184, 194

Web Technologies: The set of technologies underlying and enabling internet, e.g. transfer

protocols like TCP/IP, markup languages like XHTML, service protocols like SOAP.

→ Pages 2, 4

WfMC (Workflow Management Coalition): is “a global organization of adopters, develop-

ers, consultants, analysts, as well as university and research groups engaged in workflow

and [Business Process Management]”.

→ http://www.wfmc.org/

→ Pages 2, 199

198

http://www.omg.org/spec/UML/Current
http://www.creatis.insa-lyon.fr/vip/
http://www.vistrails.org
http://www.w3.org/
http://www.wfmc.org/

GLOSSARY GLOSSARY

WINGS: Open-source scientific workflow framework developed mainly at the University of

Southern California, USA. It is based on Pegasus, defined at the Conceptual Level and

leverages Semantic Annotations to assist design.

→ [Gil 11b]

→ http://www.wings-workflows.org

→ Pages 17, 146, 155, 159–161, 193

Workflow Framework: Set of tools to enable the use of workflows, most notably their cre-

ation, edition, enactment, deployment and monitoring.

→ Pages 23, 184, 195

Workflow: According to the Workflow Management Coalition (WfMC): “the computerized

facilitation or automation of a business process, in whole or part”.

→ Pages 2, 3, 7, 8, 10, 11, 13, 17, 18, 22–24, 49, 55, 59–70, 72, 73, 79, 84, 86, 87, 91,

99, 102, 107, 123, 124, 126, 129, 132–135, 137–139, 147, 149–162, 183–185, 187, 189,

191, 193, 195, 196, 199

WS-PGRADE: Open-source (APACHE licensed) scientific workflow framework mainly de-

veloped at the Laboratory of Parallel and Distributed Systems, MTA-SZTAKI, Hungary.

It is part of the Graphical User Interface (GUI)/portal layer of the grid and cloud User

Support Environment (gUSE) DCI gateway.

→ [Kacsuk 12]

→ http://www.p-grade.hu/

→ Pages 146, 155, 161, 162

XML (eXtensible Markup Language): Set of W3C recommendations that define rules and

best practices for creating standard markup file formats.

→ http://www.w3.org/standards/xml/

→ Pages 28, 34, 36, 94, 95, 99, 147, 151, 155, 183, 187, 189, 192, 194, 199

XSLT (eXtensible Stylesheet Language Transformations): transformation language speci-

fied by the W3C to convert from an XML-based language to another.

→ http://www.w3.org/TR/xslt

→ Pages 28

199

http://www.wings-workflows.org
http://www.p-grade.hu/
http://www.w3.org/standards/xml/
http://www.w3.org/TR/xslt

BIBLIOGRAPHY

[Acher 12a] M. Acher, P. Collet, A. Gaignard, P. Lahire, J. Montagnat & R. France.

Composing Multiple Variability Artifacts to Assemble Coherent Work-

flows. Software Quality Journal Special issue on Quality Engineering

for Software Product Lines, vol. 20, no. 3-4, pages 689–734, September

2012.

[Acher 12b] M. Acher, P. Collet, P. Lahire & R. France. FAMILIAR: A Domain-

Specific Language for Large Scale Management of Feature Models. Sci-

ence of Computer Programming (SCP) Special issue on programming

languages (to appear), vol. 78, no. 6, pages 657–681, 2012.

[Akram 06] A. Akram, D. Meredith & R. Allan. Evaluation of BPEL to Scientific

Workflows. In CCGRID ’06: Proceedings of the Sixth IEEE Interna-

tional Symposium on Cluster Computing and the Grid, pages 269–274,

Washington, DC, USA, 2006. IEEE Computer Society.

[Alameda 07] J. Alameda, M. Christie, G. Fox, J. Futrelle, D. Gannon, M. Hategan,

G. Kandaswamy, G. von Laszewski, M.A. Nacar, M. Pierce, E. Roberts,

C. Severance & M. Thomas. The Open Grid Computing Environments

collaboration: portlets and services for science gateways. Concurrency

and Computation: Practice & Experience (CCPE), vol. 19, no. 6, pages

921–942, 2007.

[Aldrich 00] J. Aldrich. Challenge Problems for Separation of Concerns. In Pro-

ceedings, OOPSLA 2000 Workshop on Advanced Separation of Con-

cerns(OOPSLA 2000), Minneapolis, USA, 2000.

[Alt 05] M. Alt & A. Hoheisel. A grid workflow language using high-level petri

nets. In 6th international conference on Parallel processing and ap-

plied mathematics(PPAM’05), page 715722, Poznan, Poland, Septem-

ber 2005.

[Altintas 05] I. Altintas, A. Birnbaum, K. Baldridge, W. Sudholt, M. Miller, C. Amor-

eira, Y. Potier & B. Ludäscher. A Framework for the Design and Reuse of

Grid Workflows. In Scientific Applications of Grid Computing(LNCS),

pages 295–299. Springer, 2005.

[Bachmann 10] A. Bachmann, M. Kunde, M. Litz & A. Schreiber. Advances in general-

ization and decoupling of software parts in a scientific simulation work-

flow system. In The Fourth International Conference on Advanced En-

gineering Computing and Applications in Sciences(ADVCOMP 2010),

pages 34–38, 2010.

200

BIBLIOGRAPHY BIBLIOGRAPHY

[Balligand 04] F. Balligand & V. Monfort. A concrete solution for web services adapt-

ability using policies and aspects. In Proceedings of the 2nd interna-

tional conference on Service oriented computing, ICSOC ’04, pages

134–142, New York, NY, USA, 2004.

[Barga 07] R. Barga & D. Gannon. Scientific versus Business Workflows. In Work-

flows for e-Science [Taylor 07a], chapitre 2, pages 9–16.

[Barker 08] A. Barker & J. Van Hemert. Scientific workflow: a survey and research

directions. In Proceedings of the 7th international conference on Paral-

lel processing and applied mathematics(PPAM), PPAM’O7, pages 746–

753, Berlin, Heidelberg, Germany, 2008. Springer-Verlag.

[Batory 92] D. Batory & S. O’Malley. The design and implementation of hierarchical

software systems with reusable components. ACM Trans. Softw. Eng.

Methodol., vol. 1, no. 4, pages 355–398, October 1992.

[Batory 03] D. Batory, J.N. Sarvela & A. Rauschmayer. Scaling step-wise refine-

ment. In 25th International Conference on Software Engineering (ICSE

’03), pages 187–197, Portland, Oregon, 2003. IEEE Computer Society.

[Batory 04] D. Batory. Feature-Oriented Programming and the AHEAD Tool Suite.

In Proceedings of the 26th International Conference on Software Engi-

neering(ICSE’04), pages 702–703, Washington, DC, USA, 2004. IEEE

Computer Society.

[Bechhofer 10] S. Bechhofer, D. de Roure, M. Gamble, C. Goble & I. Buchan. Research

Objects: Towards Exchange and Reuse of Digital Knowledge. The Fu-

ture of the Web for Collaborative Science (FWCS), April 2010.

[Becht 99] M. Becht, T. Gurzki, J. Klarmann & M. Muscholl. ROPE: role ori-

ented programming environment for multiagent systems. In Cooperative

Information Systems, 1999. CoopIS’99. Proceedings. 1999 IFCIS Inter-

national Conference on(CoopIS), pages 325–333. IEEE, 1999.

[Belakhdar 96] O. Belakhdar & J. Ayel. Modelling approach and tool for designing

protocols for automated cooperation in multi-agent systems. In Agents

Breaking Away(LNCS), pages 100–115. Springer Berlin Heidelberg,

1996.

[Belhajjame 12] K. Belhajjame, O. Corcho, D. Garijo, J. Zhao, P. Missier, D. New-

man, R. Palma, S. Bechhofer, E. Garcia-Cuesta, J.M. Gómez-Pérez,

G. Klyne, K. Page, M. Roos, J.E. Ruiz, S. Soiland-Reyes, L. Verdes-

Montenegro, D. de Roure & C. Goble. Workflow-Centric Research Ob-

jects: A First-Class Citizen in the Scholarly Discourse. In ESWC2012

Workshop on the Future of Scholarly Communication in the Semantic

Web(SePublica2012), pages 1–12, Heraklion, Greece, May 2012.

[Benoit-Cattin 03] H. Benoit-Cattin, F. Bellet, J. Montagnat & C. Odet. Magnetic Res-

onance Imaging (MRI) Simulation on a Grid Computing Architecture.

In Biogrid’03, proceedings of the IEEE CCGrid03(Biogrid’03), pages

582–587, Tokyo, Japan, May 2003.

201

BIBLIOGRAPHY BIBLIOGRAPHY

[Benoit-Cattin 05] H. Benoit-Cattin, G. Collewet, B. Belaroussi, H. Saint-Jalmes &

C. Odet. The SIMRI project : a versatile and interactive MRI simu-

lator. Journal of Magnetic Resonance Imaging (JMRI), vol. 173, no. 1,

pages 97–115, March 2005.

[Berthold 07] M.R. Berthold, N. Cebron, F. Dill, T.R. Gabriel, T. Kötter, T. Meinl,

P. Ohl, C. Sieb, K. Thiel & B. Wiswedel. KNIME: The Konstanz In-

formation Miner. In GfKl(GfKl), Studies in Classific, pages 319–326,

Freiburg, Germany, March 2007. Springer.

[Bowers 05] S. Bowers & B. Ludäscher. Actor-Oriented Design of Scientific Work-

flows. In 24th Intl. Conf. on Conceptual Modeling(ER’05), LNCS 3716,

pages 369–384. Springer, 2005.

[Bowers 06] S. Bowers, B. Ludäscher, A.H.H. Ngu & T. Critchlow. Enabling Sci-

entific Workflow Reuse through Structured Composition of Dataflow and

Control-Flow. In IEEE Workshop on Workflow and Data Flow for Sci-

entific Applications(SciFlow), Atlanta, USA, April 2006.

[Cabri 04] G. Cabri, L. Ferrari & L. Leonardi. Agent role-based collaboration and

coordination: a survey about existing approaches. In Systems, Man and

Cybernetics, 2004 IEEE International Conference on, volume 6, pages

5473–5478. IEEE, 2004.

[Callahan 05] S.P. Callahan, P.J. Crossno, J. Freire, C.E. Scheidegger, C.T. Silva &

H.T. Vo. VisTrails: enabling interactive multiple-view visualizations. In

Visualization, 2005. VIS 05. IEEE, pages 135–142. IEEE, 2005.

[Cannataro 07] M. Cannataro, P. H. Guzzi, T. Mazza, G. Tradigo & P. Veltri. Using

ontologies for preprocessing and mining spectra data on the Grid. Fu-

ture Generation Computer Systems (FGCS), vol. 23, no. 1, pages 55–60,

2007.

[Cao 12] F. Cao, O. Commowick, E. Bannier, J.-C. Ferré, G. Edan & C. Baril-

lot. MRI Estimation of T1 Relaxation Time Using a Constrained Opti-

mization Algorithm. In Multimodal Brain Image Analysis(LNCS), pages

203–214. Springer Berlin Heidelberg, 2012.

[Carroll 04] J.J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne &

K. Wilkinson. Jena: implementing the semantic web recommendations.

In Proceedings of the 13th international World Wide Web conference on,

WWW Alt. ’04, pages 74–83, New York, NY, US, 2004. ACM.

[Cerezo 11] N. Cerezo & J. Montagnat. Scientific Workflow Reuse through Concep-

tual Workflows. In Proceedings of the 6th Workshop on Workflows in

Support of Large-Scale Science, WORKS’11, pages 1–10, Seattle, WA,

USA, November 2011. ACM.

[Cerezo 13] N. Cerezo, J. Montagnat & M. Blay-Fornarino. Computer-Assisted Sci-

entific Workflow Design. Journal of Grid Computing (JOGC), vol. 11,

no. 3, pages 585–610, September 2013.

202

BIBLIOGRAPHY BIBLIOGRAPHY

[Charfi 04] A. Charfi & M. Mezini. Aspect-Oriented Web Service Composition with

AO4BPEL. In European Conference On Web Services(ECOW), volume

3250, page 168, Erfurt, Germany, September 2004. Springer Berlin /

Heidelberg.

[Chen 76] P.P.-S. Chen. The entity-relationship modeltoward a unified view of data.

ACM Transactions on Database Systems (TODS), vol. 1, no. 1, pages 9–

36, 1976.

[Chin 11] G. Chin, C. Sivaramakrishnan, T. Critchlow, K. Schuchardt & A.H.H.

Ngu. Scientist-Centered Workflow Abstractions via Generic Actors,

Workflow Templates, and Context-Awareness for Groundwater Model-

ing and Analysis. In IEEE World Congress on Services(SERVICES),

pages 176–183, July 2011.

[Clements 01] P. Clements & L. Northrop. Software Product Lines: Practices and Pat-

terns. Addison Wesley, Boston, USA, 2001.

[Coady 01] Y. Coady, G. Kiczales, M. Feeley & G. Smolyn. Using aspectC to im-

prove the modularity of path-specific customization in operating system

code. SIGSOFT Softw. Eng. Notes, vol. 26, no. 5, pages 88–98, Septem-

ber 2001.

[Corby 05] O. Corby, R. Dieng, C. Faron-Zucker & F. Gandon. Ontology-based

Approximate Query Processing for Searching the Semantic Web with

CORESE. Technical Report RR-5621, INRIA, Sophia Antipolis, France,

July 2005.

[Courbis 05] C. Courbis & A. Finkelstein. Towards aspect weaving applications.

In Software Engineering, 2005. ICSE 2005. Proceedings. 27th Interna-

tional Conference on(ICSE), pages 69–77, 2005.

[Curcin 08] V. Curcin & M. Ghanem. Scientific workflow systems-can one size fit

all? In Biomedical Engineering Conference, 2008. CIBEC 2008. Cairo

International, pages 1–9, Cairo, Egypt, December 2008. IEEE.

[Czarnecki 03] K. Czarnecki & S. Helsen. Classification of Model Transformation

Approaches. In 2nd OOPSLA03 Workshop on Generative Techniques

in the Context of MDA(OOPSLA’03), Anaheim (Califormie), October

2003. ACM.

[De Roo 08] A.J. De Roo, M.F.H. Hendricks, W.K. Havinga, P.E.A. Durr & L.M.J.

Bergmans. Compose*: a Language- and Platform-Independent As-

pect Compiler for Composition Filters. In First International Workshop

on Advanced Software Development Tools and Techniques(WASDeTT

2008), pages 1–14, Paphos, Cyprus, July 2008.

[Deelman 05] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,

K. Vahi, G.B. Berriman, J. Good, A. Laity, J.C. Jacob & D.S. Katz.

Pegasus: a Framework for Mapping Complex Scientific Workflows onto

Distributed Systems. Scientific Programming Journal, vol. 13, no. 3,

pages 219–237, 2005.

203

BIBLIOGRAPHY BIBLIOGRAPHY

[Deelman 09] E. Deelman, D. Gannon, M. Shields & I. Taylor. Workflows and e-

Science: An overview of workflow system features and capabilities. Fu-

ture Generation Computer Systems (FGCS), vol. 25, no. 5, pages 528–

540, May 2009.

[Demsky 02] B. Demsky & M. Rinard. Role-based exploration of object-oriented pro-

grams. In Software Engineering, 2002. ICSE 2002. Proceedings of the

24rd International Conference on(ICSE), pages 313–324. IEEE, 2002.

[Dijkstra 82] E.W. Dijkstra. On the Role of Scientific Thought. In Selected Writings on

Computing: A personal Perspective, pages 60–66. Springer New York,

1982.

[Emmerich 05] W. Emmerich, B. Butchart, L. Chen, B. Wassermann & S. Price. Grid

Service Orchestration Using the Business Process Execution Language

(BPEL). Journal of Grid Computing (JOGC), vol. 3, no. 3-4, pages 283

– 304, September 2005.

[Fahringer 05] T. Fahringer, J. Qin & S. Hainzer. Specification of Grid Workflow

Applications with AGWL: An Abstract Grid Workflow Language. In

fifth IEEE International Symposium on Cluster Computing and the

Grid(CCGrid’05), volume 2, pages 676–685, Cardiff, UK, May 2005.

IEEE Computer Society.

[Fahringer 07] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri,

S. Podlipnig, J. Qin, M. Siddiqui, H. Truong, A. Villazon & M. Wiec-

zorek. ASKALON: a development and grid computing environment

for scientific workflows. In Workflows for e-Science [Taylor 07a],

chapitre 27, pages 450–471.

[Feigenbaum 83] E.A. Feigenbaum & P. McCorduck. The fifth generation : artificial intel-

ligence and Japan’s computer challenge to the world. Addison-Wesley,

first edition, 1983.

[Fellbaum 10] C. Fellbaum. WordNet. In Theory and Applications of Ontology: Com-

puter Applications, pages 231–243. Springer Netherlands, 2010.

[Fensel 01] D. Fensel, F. van Harmelen, I. Horrocks, D.L. McGuinness & P.F. Patel-

Schneider. OIL: an ontology infrastructure for the Semantic Web. IEEE

Intelligent Systems, vol. 16, no. 2, pages 38–45, 2001.

[Forestier 11] G. Forestier, A. Marion, H. Benoit-Cattin, P. Clarysse, D. Friboulet,

T. Glatard, P. Hugonnard, C. Lartizien, H. Liebgott, J. Tabary &

B. Gibaud. Sharing object models for multi-modality medical image

simulation: A semantic approach. In 24th International Symposium

on Computer-Based Medical Systems(CBMS), pages 1–6. IEEE, June

2011.

[Gaignard 13] A. Gaignard. Distributed knowledge sharing and production through

collaborative e-Science platforms. PhD thesis, Université de Nice

Sophia Antipolis, France, March 2013.

204

BIBLIOGRAPHY BIBLIOGRAPHY

[Gamma 93] E. Gamma, R. Helm, R. Johnson & J. Vlissides. Design Patterns: Ab-

straction and Reuse of Object-Oriented Design. Medical Image Analysis

(MedIA), vol. 707, pages 406–431, 1993.

[Gangemi 02] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari & L. Schneider.

Sweetening Ontologies with DOLCE. In Knowledge Engineering and

Knowledge Management: Ontologies and the Semantic Web(LNCS),

pages 166–181. Springer Berlin Heidelberg, 2002.

[Garcı́a-Silva 12] A. Garcı́a-Silva, O. Corcho, H. Alani & A. Gómez-Pérez. Review of

the state of the art: Discovering and Associating Semantics to Tags in

Folksonomies. The Knowledge Engineering Review, vol. 27, no. 1, pages

57–85, March 2012.

[Garijo 11] D. Garijo & Y. Gil. A new approach for publishing workflows: abstrac-

tions, standards, and linked data. In Proceedings of the 6th workshop

on Workflows in support of large-scale science(WORKS), pages 47–56,

New York, NY, USA, 2011. ACM.

[Garijo 13] D. Garijo, O. Corcho & Y. Gil. Detecting common scientific workflow

fragments using templates and execution provenance. In Proceedings

of the seventh international conference on Knowledge capture(K-CAP

’13), pages 33–40, Banff, Canada, 2013. ACM.

[Gaspar 10] W. Gaspar, L. Machado da Silva, R.M.M. Braga & F. Campos. SW-

Ontology - A Proposal for Semantic Modeling of a Scientific Workflow

Management System. In Proceedings of the 12th International Confer-

ence on Enterprise Information Systems(ICEIS 2010), volume 1, pages

115–120, Madeira, Portugal, June 2010. SciTePress.

[Georgakopoulos 95] D. Georgakopoulos, M. Hornick & A. Sheth. An overview of workflow

management: From process modeling to workflow automation infras-

tructure. Distributed and Parallel Databases, vol. 3, no. 2, pages 119–

153, 1995.

[Gibaud 11] B. Gibaud, G. Kassel, M. Dojat, B. Batrancourt, F. Michel, A. Gaig-

nard & J. Montagnat. NeuroLOG: sharing neuroimaging data using an

ontology-based federated approach. In American Medical Informatics

Association(AMIA’2011), volume 2011, page 472480, Washington DC,

USA, October 2011. AMIA.

[Gil 07] Y. Gil, E. Deelman, M.H. Ellisman, T. Fahringer, G. Fox, D. Gannon,

C. Goble, M. Livny, L. Moreau & J. Myers. Examining the Challenges

of Scientific Workflows. Computer, vol. 40, pages 24–32, 2007.

[Gil 11a] Y. Gil, J. Kim, P.A. Gonzales-Calero, J. Kim, J. Moody & V. Ratnakar.

A semantic framework for automatic generation of computational work-

flows using distributed data and component catalogues. Journal of Ex-

perimental & Theoretical Artificial Intelligence, vol. 23, no. 4, pages

389–467, 2011.

205

BIBLIOGRAPHY BIBLIOGRAPHY

[Gil 11b] Y. Gil, V. Ratnakar, K. Jihie, J. Moody, E. Deelman, P.A. Gonzales-

Calero & P. Groth. Wings: Intelligent Workflow-Based Design of Com-

putational Experiments. IEEE Intelligent System, vol. 26, no. 1, pages

62–72, January 2011.

[Glatard 08] T. Glatard, J. Montagnat, D. Lingrand & X. Pennec. Flexible and effi-

cient workflow deployement of data-intensive applications on grids with

MOTEUR. International Journal of High Performance Computing Appli-

cations (IJHPCA) Special issue on Special Issue on Workflows Systems

in Grid Environments, vol. 22, no. 3, pages 347–360, August 2008.

[Glatard 13] T. Glatard, C. Lartizien, B. Gibaud, R. Ferreira Da Silva, G. Forestier,

F. Cervenansky, M. Alessandrini, H. Benoit-Cattin, O. Bernard,

S. Camarasu-Pop, N. Cerezo, P. Clarysse, A. Gaignard, P. Hugonnard,

H. Liebgott, S. Marache, A. Marion, J. Montagnat, J. Tabary & D. Fri-

boulet. A Virtual Imaging Platform for multi-modality medical image

simulation. IEEE Transactions on Medical Imaging (TMI), vol. 32,

no. 1, pages 110 – 118, January 2013.

[Goderis 05] A. Goderis, U. Sattler, P. Lord & C. Goble. Seven Bottlenecks to Work-

flow Reuse and Repurposing. In The Semantic Web ISWC 2005(LNCS),

pages 323–337. Springer, Heidelberg, Germany, 2005.

[Goecks 10] J. Goecks, A. Nekrutenko & J. Taylor. Galaxy: a comprehensive ap-

proach for supporting accessible, reproducible, and transparent compu-

tational research in the life sciences. Genome Biology, vol. 11, no. 8,

page R86, 2010.

[Görlach 11] K. Görlach, M. Sonntag, D. Karastoyanova, F. Leymann & M. Reiter.

Conventional Workflow Technology for Scientific Simulation. In Guide

to e-Science, Computer Communications and Networks, pages 323–352.

Springer London, 2011.

[Haase 10] P. Haase, T. Mathäss & M. Ziller. An evaluation of approaches to feder-

ated query processing over linked data. In Proceedings of the 6th Inter-

national Conference on Semantic Systems(I-SEMANTICS ’10), pages

5:1–5:9, Graz, Austria, 2010. ACM.

[Harrison 93] W. Harrison & H. Ossher. Subject-oriented programming: a critique of

pure objects. In Proceedings of the eighth annual conference on Object-

oriented programming systems, languages, and applications(OOPSLA

’93), pages 411–428, New York, NY, USA, 1993. ACM.

[Hartig 10] O. Hartig, J. Sequeda, J. Taylor & P. Sinclair. How to consume linked

data on the web: tutorial description. In Proceedings of the 19th inter-

national conference on World wide web(WWW ’10), pages 1347–1348,

Raleigh, North Carolina, USA, 2010. ACM.

[Hauder 11] M. Hauder, Y. Gil, Y. Liu, R. Sethi & H. Jo. Making data analysis

expertise broadly accessible through workflows. In Proceedings of the

6th workshop on Workflows in support of large-scale science(WORKS),

pages 77–86, New York, NY, USA, 2011. ACM.

206

BIBLIOGRAPHY BIBLIOGRAPHY

[Hirschfeld 03] R. Hirschfeld. AspectS - Aspect-Oriented Programming with Squeak.

In Objects, Components, Architectures, Services, and Applications for

a Networked Worl(LNCS), pages 216–232. Springer Berlin Heidelberg,

2003.

[Hürsch 95] W.L. Hürsch & C.V. Lopes. Separation of Concerns. Technical report,

Computer Science Dept., Northeastern University, Boston, USA, 1995.

[Jensen 04] J.A. Jensen. Simulation of advanced ultrasound systems using Field

II. In IEEE International Symposium on Biomedial Imaging: Nano to

Macro, pages 636–639, April 2004.

[Kacsuk 12] P. Kacsuk, Z. Farkas, M. Kozlovszky, G. Hermann, A. Balasko,

K. Karoczkai & I. Marton. WS-PGRADE/gUSE Generic DCI Gateway

Framework for a Large Variety of User Communities. Journal of Grid

Computing (JOGC), vol. 10, no. 4, pages 601–630, 2012.

[Kassel 10] G. Kassel. A formal ontology of artefacts. Applied Ontology, vol. 5,

no. 3, pages 223–246, 2010.

[Kendall 99] E.A. Kendall. Role modelling for agent system analysis, design, and

implementation. In Agent Systems and Applications, 1999 and Third

International Symposium on Mobile Agents. Proceedings. First Interna-

tional Symposium on, pages 204–218, 1999.

[Kent 02] S. Kent. Model Driven Engineering. In Integrated Formal

Method(LNCS), pages 286–298. Springer Berlin Heidelberg, 2002.

[Kiczales 97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Lo-

ingtier & J. Irwin. Aspect-Oriented Programming. In Proceedings of the

European Conference on Object-Oriented Programming, volume 1241,

pages 220–242, 1997.

[Kiczales 01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm & W.G. Gris-

wold. An overview of AspectJ. In European Conference on Object-

Oriented Programming(ECOOP’01), pages 327–353. Springer-Verlag,

2001.

[Kifer 95] M. Kifer, G. Lausen & J. Wu. Logical foundations of object-oriented

and frame-based languages. Journal of the ACM (JACM), vol. 42, no. 4,

pages 741–843, July 1995.

[Krefting 11] D. Krefting, T. Glatard, V. Korkhov, J. Montagnat & S. Olabarriaga.

Enabling Grid Interoperability at Workflow Level. In Grid Workflow

Workshop 2011(GWW’11), Köln, Germany, March 2011.

[Kristensen 96] B.B. Kristensen & K. sterbye. Roles: conceptual abstraction theory

and practical language issues. Theory and Practice of Object Systems,

vol. 2, no. 3, pages 143–160, 1996.

[Kusiak 97] A. Kusiak, T. Letsche & A. Zakarian. Data modelling with IDEF1x.

International Journal of Computer Integrated Manufacturing (IJCIM),

vol. 10, no. 6, pages 470–486, 1997.

207

BIBLIOGRAPHY BIBLIOGRAPHY

[Lando 07] P. Lando, A. Lapujade, G. Kassel & F. Fürst. Towards a general ontology

of computer programs. In International Conference on Software and

Data Technologies(ICSOFT’07), pages 25–27, Barcelona, Spain, July

2007.

[Lee 00] E.A. Lee & S. Neuendorffer. MoML - A Modeling Markup Language in

XML, Version 0.4. Technical Report UCB/ERL M00/12, University of

California, Berkeley, CA 94720, March 2000.

[Lenat 91] D.B. Lenat & R.V. Guha. The evolution of CycL, the Cyc representation

language. ACM SIGART Bulletin (SIGART), vol. 2, pages 84–87, June

1991.

[Ludäscher 06] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,

E.A. Lee, J. Tao & Y. Zhao. Scientific Workflow Management and the

Kepler System. Concurrency and Computation: Practice & Experience

(CCPE), vol. 18, no. 10, pages 1039 – 1065, August 2006.

[Maheshwari 10] K. Maheshwari & J. Montagnat. Scientific workflows development us-

ing both visual-programming and scripted representations. In Inter-

national Workshop on Scientific Workflows(SWF’10), Miami, Florida,

USA, July 2010. IEEE.

[Malik 12] M.J. Malik, T. Fahringer & R. Prodan. Semi-automatic Composition of

Ontologies for ASKALON Grid Workflows. In Euro-Par 2011: Parallel

Processing Workshops(LNCS), volume 7155 of Lecture Notes in Com,

pages 169–180. Springer Berlin Heidelberg, 2012.

[Marion 11] A. Marion, G. Forestier, H. Liebgott, C. Lartizien, H. Benoit-Cattin,

S. Camarasu-Pop, T. Glatard, R. Ferreira Da Silva, P. Clarysse,

S. Valette, B. Gibaud, P. Hugonnard, J. Tabary & D. Friboulet. Multi-

modality image simulation of biological models within VIP. In 24th In-

ternational Symposium on Computer-Based Medical Systems(CBMS),

pages 1–6, Bristol, UK, June 2011.

[Masolo 03] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, A. Oltramari &

L. Schneider. The WonderWeb Library of Foundational Ontologies and

the DOLCE ontology. WonderWeb Deliverable D18, Final Report. Tech-

nical report, ISTC-CNR, Padova, Italy, December 2003.

[Matheus 06] C.J. Matheus, K. Baclawski & M.M. Kokar. BaseVISor: A Triples-Based

Inference Engine Outfitted to Process RuleML and R-Entailment Rule.

In Rules and Rule Markup Languages for the Semantic Web, Second

International Conference on, pages 67–74. IEEE, 2006.

[McGuinness 02] D.L. McGuinness, R. Fikes, J. Hendler & L.A. Stein. DAML+OIL: an

ontology language for the Semantic Web. IEEE Intelligent Systems,

vol. 17, no. 5, pages 72–80, 2002.

[McPhillips 09] T.M McPhillips, S. Bowers, D. Zinn & B. Ludäscher. Scientific workflow

design for mere mortals. Future Generation Computer Systems (FGCS),

vol. 25, no. 5, pages 541–551, 2009.

208

BIBLIOGRAPHY BIBLIOGRAPHY

[Miller 03] J. Miller & J. Mukerji. MDA Guide Version 1.0.1. Technical report,

OMG, 2003.

[Missier 10a] P. Missier, S. Soiland-Reyes, S. Owen, W. Tan, A. Nenadic, I. Dunlop,

A. Williams, T. Oinn & C. Goble. Taverna, reloaded. In SSDBM 2010,

Heidelberg, Germany, June 2010.

[Missier 10b] P. Missier, K. Wolstencroft, F. Tanoh, S. Bechhofer, K. Belhajjame,

S. Pettifer & C. Goble. Functional Units: Abstractions for Web Service

Annotations. In 6th World Congress on Services(SERVICES), pages

306–313, July 2010.

[Montagnat 09] J. Montagnat, B. Isnard, T. Glatard, K. Maheshwari & M. Blay-

Fornarino. A data-driven workflow language for grids based on ar-

ray programming principles. In Workshop on Workflows in Support of

Large-Scale Science(WORKS’09), pages 1–10, Portland, USA, Novem-

ber 2009. ACM.

[Mosser 10] S. Mosser, M. Blay-Fornarino & R. France. Workflow Design us-

ing Fragment Composition (Crisis Management System Design through

ADORE). Transactions on Aspect-Oriented Software Development

(TAOSD) Special issue on Aspect Oriented Modeling, pages 1–34, 2010.

[Mosser 12] S. Mosser & M. Blay-Fornarino. ADORE, a Logical Meta-model Sup-

porting Business Process Evolution. Science of Computer Programming

(SCP) IF=1.282, pages 1–35, 2012.

[Motik 09] B. Motik, R. Shearer & I. Horrocks. Hypertableau Reasoning for De-

scription Logics. Journal of Artificial Intelligence Research (JAIR),

vol. 36, pages 165–228, 2009.

[Neubauer 05] F. Neubauer, A. Hoheisel & J. Geiler. Workflow-based Grid applications.

Future Generation Computer Systems (FGCS), vol. 22, no. 1-6, pages 6–

15, September 2005.

[Ogasawara 09] E. Ogasawara, C. Paulino, L. Murta, C. Werner & M. Mattoso. Experi-

ment Line: Software Reuse in Scientific Workflow. In Scientific and Sta-

tistical Database Management(LNCS), pages 264–272. Springer Berlin

Heidelberg, 2009.

[Oinn 04] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Greenwood, C. Goble,

A. Wipat, P. Li & T. Carver. Delivering web service coordination capa-

bility to users. In Proceedings of the 13th international World Wide Web

conference on Alternate track papers and posters(WWW Alt.), pages

438–439, New York, NY, USA, 2004. ACM.

[Ortiz 06] G. Ortiz & F. Leymann. Combining WS-Policy and Aspect-Oriented

Programming. In Telecommunications, 2006. International Conference

on Internet and Web Applications and Services/Advanced International

Conference on, AICT-ICIW ’06, pages 143–149. IEEE, 2006.

209

BIBLIOGRAPHY BIBLIOGRAPHY

[Pawlak 01] R. Pawlak, L. Duchien, G. Florin & L. Seinturier. JAC: A Flexible So-

lution for Aspect-Oriented Programming in Java. In Metalevel Archi-

tectures and Separation of Crosscutting Concerns(LNCS), pages 1–24.

Springer Berlin Heidelberg, 2001.

[Pessemier 08] N. Pessemier, L. Seinturier & L. Duchien. A component-based and

aspect-oriented model for software evolution. International Journal of

Computer Applications in Technology, vol. 1/2, no. 31, pages 94–105,

2008.

[Plankensteiner 11] K. Plankensteiner, J. Montagnat & R. Prodan. IWIR: A Language En-

abling Portability Across Grid Workflow Systems. In Workshop on Work-

flows in Support of Large-Scale Science(WORKS’11), Seattle, USA,

November 2011.

[Prehofer 93] C. Prehofer. Feature-oriented programming: A fresh look at objects.

In ECOOP’97 Object-Oriented Programming(LNCS), pages 419–443.

Springer Berlin / Heidelberg, 1993.

[Qin 08] J. Qin & T. Fahringer. A novel domain oriented approach for scien-

tific grid workflow composition. In Proceedings of the 2008 ACM/IEEE

conference on Supercomputing, SC ’08, Austin, TX, USA, 2008. IEEE

Press.

[Reenskaug 96] T. Reenskaug, P. Wold & O.A. Lehne. Working with objects: the OOram

software engineering method. Manning Greenwich, 1996.

[Reese 06] C. Reese, J. Ortmann, S. Offermann, D. Moldt, K. Markwardt &

T. Carl. Fragmented Workflows Supported by an Agent Based Archi-

tecture. In Agent-Oriented Information Systems III(LNCS), pages 200–

215. Springer Berlin Heidelberg, 2006.

[Reilhac 04] A. Reilhac, C. Lartizien, N. Costes, S. Sans, C. Comtat, Roger N. Gunn

& Alan C. Evans. PET-SORTEO: a Monte Carlo-based Simulator with

high count rate capabilities. IEEE Transactions on Nuclear Science

(TNS), vol. 51, no. 1, pages 46–52, February 2004.

[Sadiq 01] S. Sadiq, W. Sadiq & M. Orlowska. Pockets of Flexibility in Workflow

Specification. In Conceptual Modeling ER 2001(LNCS), pages 513–

526. Springer Berlin Heidelberg, 2001.

[Schumm 11] D. Schumm, D. Karastoyanova, O. Kopp, F. Leymann, M. Sonntag &

S. Strauch. Process fragment libraries for easier and faster development

of process-based applications. Journal of Systems Integration, vol. 2,

no. 1, pages 39–55, 2011.

[Schumm 12] D. Schumm, D. Dentsas, M. Hahn, D. Karastoyanova, F. Leymann &

M. Sonntag. Web Service Composition Reuse through Shared Pro-

cess Fragment Libraries. In Web Engineering(ICWE), volume 7387 of

LNCS, pages 498–501, Berlin, Germany, 2012. Springer Berlin Heidel-

berg.

210

BIBLIOGRAPHY BIBLIOGRAPHY

[Seinturier 09] L. Seinturier, P. Merle, D. Fournier, N. Dolet, V. Schiavoni & J.-B. Ste-

fani. Reconfigurable SCA Applications with the FraSCAti Platform. In

Services Computing, 2009. IEEE International Conference on, SCC ’09,

pages 268–275, 2009.

[Shepitsen 08] A. Shepitsen, J. Gemmell, B. Mobasher & R. Burke. Personalized rec-

ommendation in social tagging systems using hierarchical clustering.

In Proceedings of the 2008 ACM conference on Recommender sys-

tems(RecSys ’08), pages 259–266, Lausanne, Switzerland, 2008. ACM.

[Shields 07] M. Shields. Control Versus Data-Driven Workflows. In Workflows for

e-Science [Taylor 07a], chapitre 11, pages 167 – 173.

[Silva 08] A. P. C. Silva, V. C. M. Borges & M. A. R. Dantas. A framework for mo-

bile grid environments based on semantic integration of ontologies and

workflow-based applications. Infocomp Journal of Computer Science,

vol. 7, no. 1, pages 59–66, 2008.

[Singh 10] Y. Singh & M. Sood. The Impact of the Computational Independent

Model for Enterprise Information System Development. International

Journal of Computer Applications, vol. 11, no. 8, pages 24–28, 2010.

[Sirin 07] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur & Y. Katz. Pellet:

A practical OWL-DL reasoner. Web Semantics: Science, Services and

Agents on the World Wide Web (JOWS), vol. 5, no. 2, pages 51–53,

2007.

[Slominski 07] A. Slominski. Adapting BPEL to Scientific Workflows. In Workflows for

e-Science [Taylor 07a], chapitre 14, pages 208–226.

[Sonntag 10] M. Sonntag, D. Karastoyanova & F. Leymann. The Missing Features

of Workflow Systems for Scientific Computations. In Proceedings of the

3rd Grid Workflow Workshop(GWW), pages 209–216, Paderborn, Ger-

many, 2010. Gesellschaft für Informatik.

[Sonntag 13] M. Sonntag & D. Karastoyanova. Model-as-you-go: An Approach for

an Advanced Infrastructure for Scientific Workflows. Journal of Grid

Computing (JOGC), pages 1–31, 2013.

[Spinczyk 02] O. Spinczyk, A. Gal & W. Schröder-Preikschat. AspectC++: an aspect-

oriented extension to the C++ programming language. In Proceedings

of the Fortieth International Conference on Tools Pacific: Objects for

internet, mobile and embedded applications(CRPIT’02), pages 53–60,

Sydney, Australia, 2002. Australian Computer Society, Inc.

[Sroka 09] J. Sroka, J. Hidders, P. Missier & C. Goble. A formal semantics for the

Taverna 2 workflow model. Journal of Computer and System Sciences

(JCSS), vol. 76, no. 6, pages 490–508, November 2009.

[Tabary 09] J. Tabary, S. Marache, S. Valette, W.P. Segars & C. Lartizien. Realistic

X-Ray CT Simulation of the XCAT Phantom with SINDBAD. In IEEE

NSS and MIC Conference, Orlando, USA, October 2009.

211

BIBLIOGRAPHY BIBLIOGRAPHY

[Taylor 07a] I. Taylor, E. Deelman, D. Gannon & M. Shields. Workflows for e-

Science. Springer-Verlag, 2007.

[Taylor 07b] I. Taylor, M. Shields, I. Wang & A. Harrison. The Triana Workflow En-

vironment: Architecture and Applications. In Workflows for e-Science

[Taylor 07a], chapitre 20, pages 320–339.

[Temal 08] L. Temal, M. Dojat, G. Kassel & B. Gibaud. Towards an ontology for

sharing medical images and regions of interest in neuroimaging. Bioin-

formatics journal, vol. 41, no. 5, pages 766–778, 2008.

[Trujillo 07] S. Trujillo, D. Batory & O. Diaz. Feature Oriented Model Driven De-

velopment: A Case Study for Portlets. In Proceedings of the 29th inter-

national conference on Software Engineering(ICSE’07), pages 44–53,

Washington, DC, USA, 2007. IEEE Computer Society.

[Tsarkov 06] D. Tsarkov & I. Horrocks. FaCT++ Description Logic Reasoner: Sys-

tem Description. In Automated Reasoning (LNCS), pages 292–297.

Springer Berlin Heidelberg, 2006.

[Van Der Aalst 03] W.M.P. Van Der Aalst, A.H.M. Ter Hofstede, B. Kiepuszewski & A.P.

Barros. Workflow patterns. Distributed and Parallel Databases, vol. 14,

no. 3, pages 5–51, July 2003.

[von Laszewski 01] G. von Laszewski, I. Foster, J. Gawor & P. Lane. A Java commodity

grid kit. Concurrency and Computation: Practice & Experience (CCPE),

vol. 13, no. 8-9, pages 645–662, 2001.

[von Laszewski 07] G. von Laszewski, D. Kodeboyina & M. Hategan. Java CoG Kit work-

flow. In Workflows for e-Science [Taylor 07a], chapitre 21, pages 340–

356.

[Wassermann 07] B. Wassermann, W. Emmerich, B. Butchart, N. Cameron, L. Chen &

J. Patel. Sedna: A BPEL-Based Environment for Visual Scientific Work-

flow Modeling. In Workflows for e-Science [Taylor 07a], chapitre 26,

pages 428–449.

[Withers 10] D. Withers, E. Kawas, L. McCarthy, B. Vandervalk & M. Wilkinson.

Semantically-Guided Workflow Construction in Taverna: The SADI and

BioMoby Plug-Ins. In Leveraging Applications of Formal Methods, Ver-

ification, and Validation(LNCS), pages 301–312. Springer Berlin Hei-

delberg, 2010.

[Wolstencroft 07] K. Wolstencroft, P. Alper, D. Hull, C. Wroe, P. Lord, R. Stevens

& C. Goble. The myGrid Ontology: Bioinformatics Service Discov-

ery. International Journal of Bioinformatics Research and Applications

(IJBRA), 2007.

[Wroe 07] C. Wroe, C. Goble, A. Goderis, P. Lord, S. Miles, J. Papay, P. Alper

& L. Moreau. Recycling workflows and services through discovery and

reuse. Concurrency and Computation: Practice & Experience (CCPE),

vol. 19, no. 2, pages 181–194, 2007.

212

BIBLIOGRAPHY BIBLIOGRAPHY

[Yu 05] J. Yu & R. Buyya. A taxonomy of scientific workflow systems for grid

computing. ACM SIGMOD records (SIGMOD), vol. 34, no. 3, pages

44–49, September 2005.

[Zhao 07] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, I. Raicu,

T. Stef-Praun & M. Wilde. Swift: Fast, Reliable, Loosely Coupled Par-

allel Computation. In IEEE International Workshop on Scientific Work-

flows, Salt-Lake City, Utah, USA, July 2007.

[Zhao 08] Y. Zhao, I. Raicu & I. Foster. Scientific Workflow Systems for 21st Cen-

tury, New Bottle or New Wine? In Services - Part I, 2008. IEEE Congress

on, pages 467–471, Honolulu, HI, USA, July 2008. IEEE.

213

Abstract

Workflows are increasingly adopted to describe large-scale data- and compute-intensive

scientific simulations which leverage the wealth of distributed data sources and computing

infrastructures. Nonetheless, most scientific workflow formalisms remain difficult to exploit

for scientists who are neither experts nor enthusiasts of distributed computing, because they

mix the scientific processes they model with their implementations, blurring the lines between

what is done and how it is done, as well as between what is and what is not infrastructure-

dependent.

Our objective is to improve scientific workflow accessibility and ease scientific workflow

design and reuse, by elevating the abstraction level, emphasizing the scientific experiment over

technicalities, ensuring proper separation between functional and non-functional concerns and

leveraging domain knowledge and know-how.

The main contributions of this work are: (i) a multi-level structurally flexible semantic sci-

entific workflow model, called the Conceptual Workflow Model, which lets users design sim-

ulations at a computation-independent level and focus on domain goals and methods; and (ii)

a computer-assisted Transformation Process relying on knowledge engineering technologies

to help users transform their high-level simulation models into executable workflow artifacts

which can be delegated to third-party frameworks for enactment.

Résumé

Les workflows sont de plus en plus souvent adoptés pour la modélisation de simulations

scientifiques de grande échelle, aussi bien en matière de données que de calculs. Ils profitent

de l’abondance de sources de données et infrastructures de calcul distribuées. Néanmoins,

la plupart des formalismes de workflows scientifiques restent difficiles à exploiter pour des

utilisateurs n’ayant pas une grande expertise de l’algorithmique distribuée, car ces formalismes

mélangent les processus scientifiques qu’ils modélisent avec leurs implémentations. Ainsi, ils

ne permettent pas de distinguer entre les objectifs et les méthodes, ni de repérer les particularités

d’une implémentation ou de l’infrastructure sous-jacente.

Le but de ce travail est d’améliorer l’accessibilité aux workflows scientifiques et de faciliter

leur création et leur réutilisation. Pour ce faire, nous proposons d’élever le niveau d’abstraction,

de mettre en valeur l’expérience scientifique plutôt que les aspects techniques, de séparer les

considérations fonctionnelles et non-fonctionnelles et de tirer profit des connaissances et du

savoir-faire du domaine.

Les principales contributions de ce travail sont : (i) un modèle de workflows scientifiques

à structure flexible, sémantique et multi-niveaux appelé “Conceptual Workflow Model”, qui

permet aux utilisateurs de construire des simulations indépendamment de leur implémentation

afin de se concentrer sur les objectifs et les méthodes scientifiques; et (ii) un processus de

transformation assisté par ordinateur pour aider les utilisateurs à convertir leurs modèles de

simulation de haut niveau en workflows qui peuvent être délégués à des systèmes externes pour

l’exécution.

	List of Figures
	Listings
	Acknowledgements
	Notations
	Introduction
	Simulations
	Scientific Workflows
	Challenges
	Abstraction Levels
	Entanglement of Concerns
	Goals

	State of the Art
	Scientific Workflow Models
	Interface
	Model
	Graph Type
	Node Type
	Edge Type

	Abstraction Level
	Comparison Matrix
	Discussion
	System
	Model
	Abstraction Level

	Separation of Concerns
	Paradigm
	Main general approaches
	Subject-Oriented Programming
	Role-Oriented Programming
	Aspect-Oriented Programming
	Feature-Oriented Programming

	Separation of Concerns in Workflows
	Separation of Concerns in Scientific Workflows
	Aspect-Oriented Workflows

	Discussion

	Model-Driven Engineering
	Paradigm
	Unified Modeling Language
	Model Transformations
	Discussion

	Knowledge Engineering
	Semantic Data Models
	Entity-Relationship Model
	IDEF1X

	Ontologies
	Types
	Languages

	Semantic Web
	Resource Description Framework
	RDF Schema
	SPARQL Protocol and RDF Query Language

	Discussion

	Conceptual Workflow Model
	Conceptual Elements
	Conceptual Workflows
	Graphical Convention
	Encapsulation
	Conceptual Links

	Abstract Elements
	Activities
	Specialized Activities
	Links
	Iteration Strategies
	Graphical Convention

	Semantic Annotations
	Type
	Role
	Meaning
	Compatibility
	Graphical Convention

	Fragments
	Graphical Convention
	Variables

	Transformation Process
	Mapping
	Mechanisms
	Classification

	Weaving
	Steps
	Fragment to SPARQL Conversion
	SPARQL query
	Conflicts
	Clean-up
	Binding
	Node-bound Weaving
	Link-bound Weaving

	Classification

	Tools
	Merging
	Erasing
	Conceptual Links
	Annotations
	Sub-workflows
	Example

	Discovery
	Process
	Matching
	Match Quality
	Matching Query

	Ranking
	Ranking Principles
	Scoring
	Ranking for Conceptual Inputs
	Ranking for Conceptual Outputs
	Ranking for Conceptual Functions

	Composition
	Link Suggestion
	Producer Suggestion
	Consumer Suggestion
	Converter Suggestion

	Conversion
	XML in a nutshell
	To GWENDIA (MOTEUR)
	Converting Inputs/Outputs
	Converting Activities
	Converting Links

	To t2flow (Taverna 2)
	Converting Inputs/Outputs
	Converting Activities
	Converting Links

	To IWIR (SHIWA)
	Converting Simple Chains
	Iteration strategies

	Classification
	Discussion

	Validation
	Prototype
	Architecture
	Features

	Virtual Imaging Platform
	OntoVIP
	Workflow Designer

	Conceptual Workflow Model
	VIP Simulators
	FIELD-II
	SIMRI
	SimuBloch
	Sindbad
	SORTEO

	Simulator Template
	Conceptual Workflows
	FIELD-II
	SIMRI
	SimuBloch
	Sindbad
	SORTEO

	Discussion

	Transformation Process
	VIP Fragments
	Simple Sub-workflows
	Two Steps Function
	Split and Merge

	Use Case
	Discovery and Weaving
	Composition
	Conversion
	Discussion

	Conclusion
	Detailed Frameworks
	ASKALON/AGWL
	Galaxy
	GWES/GWorkflowDL
	Java CoG Kit/Karajan
	Kepler/MoML
	KNIME
	MOTEUR/GWENDIA
	Pegasus/DAX
	SHIWA/IWIR
	Swift
	Taverna/SCUFL
	Triana
	VisTrails
	WINGS
	WS-PGRADE

	Conceptual Workflow Meta-Model
	Fragment to SPARQL Conversion Example
	Two Converters Chain Query
	Conversion to t2flow
	Conversion to IWIR
	OntoVIP URIs
	License
	Glossary
	Bibliography

