
HAL Id: tel-00942606
https://theses.hal.science/tel-00942606

Submitted on 6 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a safe and secure synchronous language
Pejman Attar

To cite this version:
Pejman Attar. Towards a safe and secure synchronous language. Other [cs.OH]. Université Nice
Sophia Antipolis, 2013. English. �NNT : 2013NICE4148�. �tel-00942606�

https://theses.hal.science/tel-00942606
https://hal.archives-ouvertes.fr

Université de nice sophia antipolis

École Doctorale des Sciences et Technologies de l’Information et

de la Communication

Towards a Safe and Secure
Synchronous Language

Vers un langage synchrone sûr et sécurisé

Pejman Attar

Thèse de doctorat
Spécialité informatique

Soutenue le 12 Décembre 2013
devant le jury composé de :

President:

Reviewers:

Examiners:

Supervisors:

Jean-Paul Rigault
Roberto Amadio
Michele Bugliesi

Juliusz Chroboczek
Pascal Raymond

Frédéric Boussinot
Ilaria Castellani

2

Contents

Abstract 7

1 Introduction 11

1.1 The Synchronous Model . 12

1.1.1 Memory in Synchronous Models 13

1.1.2 Causality Cycles . 14

1.1.3 Non-terminating Instants 14

1.1.4 Real Parallelism . 14

1.1.5 The Reactive Approach 15

1.2 Security . 15

1.2.1 Access Control . 15

1.2.2 Secure Information Flow 16

1.3 State of the Art . 16

1.3.1 Concurrency . 17

1.3.2 Parallelism and Multi-core architectures 20

1.3.3 Safety . 21

1.3.4 Security . 21

1.4 Document Structure . 22

1.4.1 DSL . 23

1.4.2 CRL . 25

1.4.3 SSL . 25

1.4.4 DSLM . 26

1.4.5 Conclusion . 27

I DSL 29

2 The Dynamic Synchronous Language DSL 31

2.1 Language Description . 32

Contents

2.1.1 Scripts . 33

2.1.2 Sites . 34

2.1.3 Events . 35

2.1.4 Basic Properties . 35

2.1.5 Example . 35

2.2 Semantics . 37

2.2.1 Expressions . 37

2.2.2 Scripts . 37

2.2.3 Least Fix-Point . 42

2.2.4 Programs and Sites 43

2.3 Examples and Semantical Variants 44

2.3.1 Examples . 44

2.3.2 Variants of the Semantics 47

3 DSL Implementation 49

3.1 FunLoft Variant . 49

3.1.1 Dynamic Adding of Instructions 50

3.1.2 Reactive Engine . 51

3.1.3 Functions and Tasks 52

3.1.4 Instantaneous Loops 54

3.1.5 Static Checks . 54

3.1.6 Execution of Instructions 56

3.1.7 Translation in FunLoft 57

3.2 Bigloo/Scheme Variant . 58

3.2.1 Sites . 58

3.2.2 Functions and Tasks 59

3.2.3 Translation in Bigloo 60

3.3 Benchmarks . 60

3.3.1 FunLoft . 60

3.3.2 SugarCubes . 61

3.3.3 ReactiveML . 62

3.3.4 Scheme/Bigloo . 62

3.3.5 Interpretation . 63

II CRL 65

4 The Core Reactive Language CRL 67

4.1 Syntax . 67

4.1.1 Expressions . 68

4

Contents

4.1.2 Scripts . 68

4.2 Semantics . 69

4.3 Reactivity . 75

III SSL 85

5 Secure Synchronous Language SSL 87

5.1 Fine-grained and Coarse-grained Bisimilarity 88

5.2 Security property . 91

5.4 Type System . 93

5.5.1 Example . 104

IV DSLM 109

6 DSL with Memory: The language DSLM 111

6.1 Informal Language Description 112

6.1.1 Scripts and Expressions 113

6.1.2 Agents, Sites and Systems 115

6.1.3 Example . 116

6.2 Domains . 119

6.3 Semantics of Scripts . 123

6.3.1 Expressions . 123

6.3.2 Suspension Predicate 125

6.3.3 Transition Relation . 125

6.3.4 Semantic Properties 129

6.4 Semantics of Sites and Systems 130

6.4.1 Sites . 131

6.4.2 End of Instants . 132

6.4.3 Reconditioning Function for Next Instant 133

7 Typing System for DSLM 135

8 DSLM Implementation 141

8.1 Implementation Semantics 143

8.1.1 Domains . 143

8.1.2 Suspension Predicate 143

8.1.3 Sites and Systems . 144

8.2 Load Balancing . 147

5

Contents

V Conclusion 151

9 Conclusion and Future Work 153

6

Abstract

French

Cette thèse propose une nouvelle approche du parallélisme et de la con-
currence, posant les bases d’un langage de programmation à la fois sûr et
“secure” (garantissant la sécurité des données), fondé sur une sémantique
formelle claire et simple, tout en étant adapté aux architectures multi-cores.

Nous avons adopté le paradigme synchrone, dans sa variante réactive,
qui fournit une alternative simple à la programmation concurrente standard
en limitant l’impact des erreurs dépendant du temps (“data-races”). Dans
un premier temps, nous avons considéré un langage réactif d’orchestration,
DSL, dans lequel on fait abstraction de la mémoire (Partie 1).

Dans le but de pouvoir traiter la mémoire et la sécurité, nous avons
ensuite étudié (Partie 2) un noyau réactif, CRL, qui utilise un opérateur
de parallélisme déterministe. Nous avons prouvé la réactivité bornée des
programmes de CRL.

Nous avons ensuite équipé CRL de mécanismes pour contrôler le flux
d’information (Partie 3). Pour cela, nous avons d’abord étendu CRL avec
des niveaux de sécurité pour les variables et les évènement, puis nous avons
défini dans le langage étendu, SSL, un système de types permettant d’éviter
les fuites d’information.

Parallèlement (Partie 4), nous avons ajouté la mémoire à CRL, en pro-
posant le modèle DSLM. En utilisant une notion d’agent, nous avons struc-
turé la mémoire de telle sorte qu’il ne puisse y avoir de “data-races”. Nous
avons également étudié l’implémentation de DSLM sur les architectures
multi-cores, fondée sur la notion de site et de migration d’un agent entre les
sites.

L’unification de SSL et de DSLM est une piste pour un travail futur.

Contents

English

This thesis proposes a new approach to parallelism and concurrency, laying
the basis for the design of a programming language with a clear and simple
formal semantics, enjoying both safety and security properties, while lending
itself to an implementation on multi-core architectures.

We adopted the synchronous programming paradigm, in its reactive vari-
ant, which provides a simple alternative to standard concurrent program-
ming by limiting the impact of time-dependent errors (“data-races”). As a
first step (Part 1), we considered a reactive orchestration language, DSL,
which abstracts away from the memory.

To set the basis for a formal treatment of memory and security, we then
focused on a reactive kernel, CRL, equipped with a deterministic parallel
operator (Part 2). We proved bounded reactivity of CRL programs.

Next, we enriched CRL with mechanisms for information flow control
(Part 3). To this end, we first extended CRL with security levels for variables
and events. We then defined a type system on the extended language, SSL,
which ensures the absence of information leaks.

Finally, we added memory to CRL, as well as the notions of agent and
site, thus obtaining the model DSLM (Part 4). We structured the mem-
ory in such a way that data-races cannot occur, neither within nor among
agents. We also investigated the implementation of DSLM on multi-core
architectures, using the possibility of agent migration between sites.

The unification of SSL and DSLM is left for future work.

8

Contents

Remerciements:

Trois années de dur labeur passées en compagnie de personnes qui m’ont
aidé et soutenu dans la réalisation de ma thèse. Aujourd’hui que celle-ci se
termine, je tiens à remercier toutes ces personnes qui ont été présentes tout
au long de ces trois ans.

Tout d’abord, je remercie mes deux encadrants Frédéric Boussinot et
Ilaria Castellani avec qui j’ai eu une relation très amicale et qui ont dû me
supporter bien que cela n’eut pas dû être facile tous les jours. Ils m’ont
beaucoup aidé dans la rédaction de cette thèse et ont été très à l’écoute,
m’ont apporté de précieux conseils; sans eux ma thèse aurait beaucoup plus
ressemblé à un poème persan qu’à un texte anglais.

Je remercie également Jean-Paul Rigault qui a accepté de présider le
jury, Roberto Amadio et Michele Bugliesi pour avoir eu la gentillesse de
relire ma thèse en tant que rapporteurs, et le reste des membres du jury
Juliusz Chroboczek et Pascal Raymond pour avoir accepté de participer au
jury.

Je remercie Bernard Serpette et José Santos pour avoir accepté de partager
mes réflexions aussi bien sensées qu’insensées, apporté leurs différents avis
et contribué à me guider dans mes résultats. Merci également à Nathalie
Bellesso pour m’avoir aidé à m’y retrouver dans le labyrinthe administratif,
particulièrement hermétique pour un étranger. Je remercie aussi tous les
autres membres de l’équipe INDES, pour m’avoir offert un environnement
de travail amical et stimulant.

Et encore une fois un grand merci à Juliusz Chroboczek et Gabriel
Kerneis pour m’avoir ouvert le chemin de la recherche et permis d’aboutir
à ce résultat.

Enfin, je tiens à remercier ma famille, particulièrement mon oncle, ma
tante et mes deux cousines sans qui je ne serais pas en France. Merci
également à tous mes amis pour avoir été présents, tous ceux qui ont été à
mes côtés et particulièrement la Colectividad.

Et enfin, un grand merci à Annie pour son soutien, et pour m’avoir aidé
à rédiger cette note de remerciements :).

9

Contents

10

Chapter 1

Introduction

Concurrency and parallelism are among the main problems of systems and
programming languages. We define concurrency as the composition of inde-
pendently executing processes and parallelism as the simultaneous execution
of (possibly related) computations on different hardware components [57].1

Originally, issues concerning parallelism and concurrency were concen-
trated at the operating system level and left to experts of this domain.

Nowadays, multi-core machines are everywhere: in servers, PCs and even
in mobile phones. These machines are widely used by the public. Concur-
rency problems are no more expert problems but they now also concern
software programmers.

There exist several models of concurrent programming, like the Actor
model [6], Petri nets [47], process calculi [63], Transactional memory [39]
and the shared memory concurrency model [33] which is the most widely
used in programming languages and in operating systems. We are going to
describe more deeply the last approach, which is the one we adopted in our
work.

The first and most used variant of the shared memory model is called
preemptive multi-threading. In this context, concurrent programs are system
threads scheduled and preempted by the system in an arbitrary way. The
major problem of this variant is the freedom schedulers have in choosing the
threads to be executed; this leads to so-called time-dependent errors, which
are generally considered as extremely difficult to tame and to debug [38] .

Another variant of the shared memory model is cooperative multi-threading.
In this variant, the system loses the possibility to arbitrarily preempt threads.

1However, the terms concurrent and parallel will often be used interchangeably when

their use is clear from the context.

Introduction

In order to be given to a new thread, the control must be explicitly released
by the currently executing thread. Thanks to this, time-dependent errors
do not occur anymore. However, the cooperative approach suffers from an
obvious drawback as a single thread can freeze the whole system if it never
releases the control, thus preventing the system from giving it to the other
threads.

The intrinsic difficulty of problems raised by concurrency calls for formal
techniques, and more specifically for formal semantics. Formal semantics for
concurrent programs are usually operational semantics. Operational seman-
tics can be separated in two categories: small-step semantics (structural
operational), and big-step semantics (natural semantics). Small-step se-
mantics is close to program execution and describes each step of evaluation
by an abstract interpretor. On the other hand, big-step semantics describes
how the overall execution result is obtained, possibly using abstract means
such as least fix-points of functionals. Small-step semantics are closer to
implementation than big-step semantics, but more difficult to reason with.

1.1 The Synchronous Model

Synchronous programming is an approach to concurrent programming which
is at the basis of our work. Synchronous programming simplifies concur-
rency, compared to standard approaches based on the exclusive use of the
classic model of threads (pthreads or Java threads). The simplification basi-
cally results from a cleaner and simpler semantics than the classical concur-
rent model, which reduces the number of possible interleavings in parallel
computations. However, standard synchronous languages introduce specific
issues: non-termination of instants, dynamic creation, causality cycles, and
they have difficulties to deal with memory. Moreover, they are generally not
able to fully benefit from real parallelism, as that provided by multi-core
machines.

We are going to present the synchronous approach in more detail, and
show the advantages and disadvantages of this model by means of examples
written in the first synchronous language Esterel [18].

In the synchronous approach, the interaction of the system with its en-
vironment is discrete. A global clock is used to sample an environment
of present and absent objects. At each clock tick, the system reacts to the
modifications of its environment and produces a new environment. The time
of the global clock is not a physical time but a logical time. The interval
between two clock ticks is called instant.

12

The Synchronous Model

Let us consider a program made of two parallel statements, one awaiting
for an event ev1, then producing event ev2, and the other producing event
ev1. Such a program is written in Esterel as:

P1 = await immediate ev1; emit ev2 || emit ev1

Due to the synchronous parallelism used in Esterel, the program P1

immediately emits both ev1 and ev2, and this is its only possible outcome.
Actually, the standpoint of Esterel is that the I/O behavior of programs
within each instant should be deterministic. Hence, although its small-step
semantics may be non-deterministic, the parallel operator (||) is required
to be confluent within instants. The small-step semantics of P1 allows the
various possible interleavings of the two parallel components, and lets the
control progress until both emissions of ev1 and ev2 are performed. By
contrast, the big-step semantics guesses that ev1 and ev2 are present, and
then verifies that this is a coherent outcome.

1.1.1 Memory in Synchronous Models

As mentioned above, the synchronous model requests a confluent paral-
lelism, which is difficult to combine with the presence of memory [37], [18].
Indeed, uncontrolled concurrent accesses to the memory may produce a non-
deterministic behavior. Consider the following program:

P2 = x:=1 || x:=2

The outcome of P2 can be either x = 1 (if the second branch is executed
first) or x = 2 otherwise. Moreover, non-determinism can result from non-
atomic accesses to the memory. Thus deterministic concurrent programming
demands for means to get atomic memory accesses.

Esterel chooses a rather drastic solution to this problem: a variable
cannot be read by one branch of a parallel statement and written by the
other [18]. Thus, the previous program P2 is rejected by the compiler.
However, Esterel does not control concurrent accesses made at a lower level
by procedures and functions. Consider for example the following program
where two functions are called in parallel:

P3 = f1 () || f2 ()

13

Introduction

The Esterel compiler is unable to verify that no concurrent accesses
occur through the calls of f1 and f2 when executing P3. Therefore, if f1
and f2 are sharing memory there could be a non-deterministic execution of
the program P3.

Actually, one may think that the Esterel solution to avoid concurrent
accesses to the memory is over-restrictive, specially in the context of multi-
core programming in which memory accesses are the basic communication
and synchronization means.

1.1.2 Causality Cycles

In the synchronous model, events are a means for communication. At each
instant, an event is either absent, or present if it is produced by one of the
concurrent threads. However, in Esterel, causality cycles can appear when
no coherent solution can be found for the absence/presence status of an
event. For example, consider the program:

P4 = present ev else emit ev end

There is a causality cycle in P4, as the status of ev cannot be determined:
if ev is absent, then it is emitted, which is contradictory; on the other hand,
if ev is present, then it is not emitted, which is also a contradiction. Thus,
P4 has no coherent solution in determining the status of ev.

1.1.3 Non-terminating Instants

Moreover, the synchronous model has to face another problem, called instant
non-termination, which arises when one of the concurrent threads prevents
the system to reach the end of instant. This problem is closely related to the
freezing problem of the cooperative model. To solve this problem we can use
code analysis techniques, but the main difficulty remains, which is to deal
with function calls and be able to predict their termination. The reactive
approach which we describe later gives a partial solution to this problem.

1.1.4 Real Parallelism

In order to take benefit of real parallelism in a shared memory model, as
in multi-core architectures, a synchronous language should not only be able
to avoid causality cycles and non-terminating instants, but also to control

14

Security

memory accesses at the lowest level, in order to avoid problems like data-
races. Presently, there exists no synchronous language covering all these
aspects.

1.1.5 The Reactive Approach

In this thesis, we address the previously discussed problems, and propose to
focus on a particular brand of synchronous programming, called the reactive
approach, which was first embodied in the synchronous language SL [27, 10],
an offspring of Esterel, and later incorporated into various programming
environments, such as C, Java, Caml and Scheme. The model of SL departs
from that of Esterel in that it assumes the reaction to the absence of an
event to be postponed until the end of the instant. This assumption helps
disambiguate programs and simplifying the implementation of the language.
It is also essential to ensure the monotonicity of programs (as transformers
on sets of events) and their reactivity to the environment. As a consequence
of these properties, causality cycles do not appear any more.

Our other main concern is real parallelism. In order to take advantage of
multi-core architectures, we will use the notion of Synchronized schedulers
which was first presented in FunLoft [26] by F. Boussinot. This notion allows
us to use multi-cores by executing programs on separate schedulers in real
parallelism and synchronizing them at the end of each instant.

1.2 Security

Nowadays we are all concerned about security, not only when communicating
over the web but also for protecting our local data. The application area
of security is really wide. In this thesis, we are interested more particularly
in the issue of protecting data confidentiality. This problem has two facets,
which are access control and secure information flow. We now discuss each
of them in some more detail.

1.2.1 Access Control

Access control [40, 32] is a means to allow only authorized users to access
sensitive data. Firewalls [56] and anti-viruses [45] can be seen as software
which implements forms of access control. This approach is largely used in
computer science to manage the permission of users to access objects.

However, access control by itself is not sufficient to ensure data confiden-
tiality: once an authorized program receives confidential data, there exists

15

Introduction

no way to make sure that this information is handled correctly and the
program will not leak this information. Hence, access control needs to be
combined with an analysis of the flow of information through the program.
This is the object of secure information flow.

1.2.2 Secure Information Flow

In this thesis, we will be concerned with ensuring confidentiality in syn-
chronous reactive programs. Information can flow between programs, where
each program can manipulate these data (read, write, diffuse, etc.). An
information flow is considered secure if it respects a certain security policy,
which specifies which information should be accessible where, when and to
whom. This notion is often formalized by means of non-interference.

Non-interference was originally introduced by Goguen and Meseguer in
[35]. Then, Volpano et al. proposed in [69] the first security type sys-
tem ensuring non-interference for a sequential programming language. Con-
currency poses new challenges for information flow security by introducing
non-deterministic and non-terminating behaviors for programs. The first
extension for concurrency was proposed by Smith and Volpano who pre-
sented a notion of possibilistic non-interference [67]. Soon after, Sabelfeld
and Sands presented in [61] the first explicit formulation of non-interference
in terms of bisimulation, using a notion of probabilistic non-interference, as
opposed to possibilistic. Subsequently, various studies on non-interference
for concurrency have been carried out, both in probabilistic and possibilistic
settings, such as [60, 66, 8, 22].

Here, we will focus on a notion of non-interference for a reactive language.
Our work is strongly inspired by that of Almeida Matos et al. [8], where a
property of non-interference was studied for the synchronous reactive ker-
nel of the language ULM [21]. Our work is also related to that of Russo
and Sabelfeld in [59] where a notion of non-interference in a multi-threaded
cooperative model is investigated.

1.3 State of the Art

In this section we briefly review existing work around our main domains of
interest: parallelism, multi-core architectures and techniques to use them
efficiently, safety and security.

16

State of the Art

1.3.1 Concurrency

Standard Threads

Threads are the basic standard means to deal with parallelism at system
level and in programming languages. A thread is the smallest sequence of
instructions that can be managed independently by the operating system.
There exist two ways to schedule threads: preemptive multi-tasking and
cooperative multi-tasking.

Preemptive multi-tasking is used in Posix [53] and in Java [55], and in
almost all operating systems. In preemptive multi-tasking the operating
system is free to decide when context switches (shifting the control from one
thread to another) should happen. Several techniques are associated with
preemptive multi-tasking, such as locks and priorities. These techniques
raise a number of well-known problems such as deadlocks, livelocks, and
priority inversions.

Cooperative multi-tasking, on the other hand, relies on the threads
themselves to decide when to perform the context switches. The cooper-
ative approach suffers from a major problem which is called freezing: one
thread can freeze the whole system if it never releases the control. Due to
this problem, preemptive multi-tasking is usually preferred to cooperative
multi-tasking.

Synchronous Model

1) Classical Synchronous Languages

Esterel is the first synchronous programming language, proposed in the 80’s
by Berry and co-workers [18, 19]. Esterel is both a programming language
and a compiler which translates Esterel programs into finite-state machines
(version 3 of the language) or into sets of equations (versions 5 and 7). In
Esterel there is no means for dynamic creation, hence only static programs
are allowed.

Dataflow is based on the idea that changing the value of a variable should
automatically force recalculation of all variables which depend on it. There
exist several synchronous languages which use this model. We briefly review
some of them.

Signal [17] is a dataflow synchronous language whose formal model provides
the capability to describe systems with several clocks as relational specifica-
tions. Relations are useful as partial specifications and as specifications of
non-deterministic devices or external processes.

17

Introduction

Lustre [36] is a dataflow synchronous language designed for programming
reactive systems as well as for describing hardware. The dataflow aspect of
Lustre makes it very close to usual description tools in these domains (block-
diagrams, networks of operators, dynamical sample-systems, etc.), and its
synchronous interpretation makes it well-suited for handling time in pro-
grams. Moreover, this synchronous interpretation allows it to be compiled
into an efficient sequential program.
Lucid Synchrone [29] is a more recent, ML-based dataflow language. It
is an extension of Lustre with some ML characteristics like type inference
and higher order functions. In contrast to classical synchronous languages,
in Lucid Synchrone parallel components can be dynamically created and
threads executions are scheduled statically.

2) Reactive Approach

The reactive approach [27] is a variant of the synchronous programming
approach described above. This model removes causality cycles and allows
dynamic creation of parallel components by forbidding immediate reaction
to the absence of signals. However, due to dynamic creation, the expressive
power of the model increases and verifying programs and reasoning about
their execution becomes more difficult.

This approach gave birth to several synchronous reactive languages like
ReactiveC, SugarCubes, Loft, FairThreads, ReactiveML and FunLoft, which
are described next.

ReactiveC was presented in [23]. It adds synchronous constructions to
the C language. ReactiveC is the first reactive programming language.

SugarCubes [28] is a library made for reactive programming in Java.
This library incorporates the reactive approach in Java. The latest version
of SugarCubes [68] tries to take advantage of multi-cores and GPUs by
delaying the elementary operations to the end of instant. OpenCL is used
to deploy all the elementary operations over the CPU/GPU grid.

FairThreads [25] proposes a cooperative thread library based on the re-
active model, for the C language. This library allows cooperative and pre-
emptive scheduling to be mixed. In FairThreads, a thread can be executed
either by a scheduler in a cooperative (synchronous) way, or be detached and
executed asynchronously (unlinked thread). Schedulers are executed asyn-
chronously in parallel by a native thread. Several schedulers can be linked

18

State of the Art

together and become a set of synchronized schedulers: they are executed in
full parallelism but they share the same instants and events (Synchronized
schedulers).

Loft [24] is an extension of C based on FairThreads, which facilitates the
FairThreads programming by simplifying the syntax and semantics.

FunLoft is a functional synchronous reactive language with type inference,
implemented using FairThreads. The main objective is to get a safe language
in which the resources, CPU and memory, are controlled. Moreover, in
FunLoft, memory leaks cannot occur and programs always react in finite
time. The possibility of such a control results from the work of Dabrowski
[30].

ReactiveML [41] is a higher order programming language based on the
reactive model, and embedded in an ML language (actually OCaml). Reac-
tiveML is dedicated to the implementation of interactive systems as found
in graphical user interfaces, video games or simulation problems.

3) Other Approaches

ULM [21] is a functional programming model which focuses on the control
of resources in a global computing context. ULM is an instance of the GALS
(Globally Asynchronous Locally Synchronous) model, where each site is a
reactive machine running independently and the communications between
them are executed asynchronously. In ULM, programs attempting to access
the memory of a distant site remain blocked until they migrate on the site.
This can be seen as a means to insure safety (we propose here a different
technique for the same purpose, also based on memory protection in case of
migration).

Synchronous Process Calculi Process calculi are one of the most pop-
ular models for describing the interaction of concurrent process that com-
municate by exchanging messages. Most of these calculi allow processes to
proceed asynchronously. Early calculi that introduce a notion of synchrony
are SCCS [31] and CBS [58]. More recently, Amadio proposed the Syn-
chronous π-calculus [9], which is based on the SL language. This is the
process calculus that is the closest to our work.

19

Introduction

ORC [44] is a novel orchestration language for distributed and concurrent
programming which provides uniform access to computational services, in-
cluding distributed communication and data manipulation, through sites.
Using four simple concurrency primitives, the programmer orchestrates the
invocation of sites to achieve a goal, while managing timeouts, priorities,
and failures. ORC is based on process calculi and is close to our proposal
(DSL, Part 1).

1.3.2 Parallelism and Multi-core architectures

Another concern of our work is multi-core architectures. There are several
techniques, languages and systems to deal with this issue.

The first approach is to use all the available cores in the machine, includ-
ing the graphic card. To be able to take advantage of graphic card cores,
several languages have been created. Here, we shall discuss three of them.

CUDA [54] is a programming language which allows users to exploit the
power of the graphics processing units (GPU) by using GPU-accelerated
libraries. In this way, users are able to replace or augment CPU-only pro-
grams by recoursing to the power of graphic cards. This allows all the
computational units to be exploited. The disadvantage of CUDA is that it
is only supported by the graphic cards made by NVIDIA.

OpenCL (Open Computing Language) [46] is a framework for writing
programs that execute across heterogeneous platforms consisting of central
processing units (CPUs), graphics processing units (GPUs) and other pro-
cessors. OpenCL includes a language (based on C99) for writing kernels
(functions that execute on OpenCL devices), plus application programming
interfaces (APIs) that are used to define and then control the platforms.
OpenCL provides parallel computing using task-based and data-based par-
allelism.

SugarCubes latest version tries to take benefit of CPUs and GPUs by
using OpenCL [68].

Ptolemy [34] is a platform on which multi-core architectures can be mod-
eled. The Ptolemy project involves modeling, simulation, and design of
concurrent, real-time, embedded systems. The focus is on assembling con-
current components. The key underlying principle is the use of well-defined
models of computation that govern the interaction between components. A

20

State of the Art

major problem area being addressed is the use of heterogenous mixtures of
models of computation.

1.3.3 Safety

Preventing time-dependent errors and finding ways to debug them are among
the main problems of concurrency. Proposing solutions to these problems
is thus the basis for providing a safe language. There already exists several
solutions. We recall some of them in the next paragraphs.

Transactional Memory [39, 5, 4] is an attempt to simplify concurrent
programming languages by allowing the atomic execution of a group of load
and store instructions. The motivation of transactional memory is to trans-
parently support the definition of regions of code that are considered as
transactional and try to group the memory accesses of each region and ex-
ecute them atomically.

PACT (PArtially Cooperative Threads). In his PhD thesis [30] Dabrowski
propose a solution to monitor the resources (memory and CPU) in a for-
malisation close to Sπ-calculus. He proposed a formal method to ensure
reactivity and safety in FairThreads, which has strongly inspired the design
of the new language called FunLoft [26].

1.3.4 Security

Security is one of our main concerns. By security, we mean here securing
the confidentiality of manipulated data. The way to ensure end-to-end pro-
tection of data confidentiality is secure information flow. More precisely, in
this thesis, we focus on the notion of non-interference for reactive concurrent
languages.

JFlow [49], is the first extension of a real programming language (Java)
with secure information flow. Programs written in JFlow can be statically
checked by the JFlow compiler, which prevents information leaks through
storage channels.

JFlow supports the decentralized label model [50], which allows multi-
ple principals to protect their privacy even in case of mutual distrust. It
also supports safe, statically-checked declassification, allowing a principal to
relax its own privacy policies.

21

Introduction

JIF [51] is a security-typed programming language that extends Java with
support for information flow control and access control, enforced at both
compile time and run time. Jif is written in Java and is built using the
Polyglot extensible Java compiler framework. Jif extends Java by adding
labels that express restrictions on how information may be used.

Flow Caml [65] is a prototype implementation of an information flow
analyzer for the Caml language. It consists in an extension of OCaml with
a type system ensuring secure information flow. Its purpose is basically
to allow the programmer to write “real” programs and to automatically
check that they obey some confidentiality or integrity policy. In Flow Caml,
standard ML types are annotated with security levels chosen in a user-
definable lattice. Each annotation gives an approximation of the information
that the described expression may convey. Because it has full type inference,
the system verifies, without requiring source code annotations, that every
information flow caused by the analyzed program is legal with respect to
the security policy specified by the programmer.

Flow Caml is also one of the first real-size implementations of a pro-
gramming language equipped with a security type system which features
simultaneously subtyping, polymorphism and full type inference.

SPARK [2] is a formally-defined language based on the Ada language [70],
which provides means for information flow policies (integrity and confiden-
tiality).

1.4 Document Structure

In this thesis, we attempt to define a synchronous reactive model which
enjoys both safety and security properties while being able to benefit fully
from the multi-cores architectures. By safety, we mean the absence of time-
dependent errors during execution. By security, we mean the absence of
information leaks.

In order to reach this goal, we shall examine four different languages: 1)
DSL (Dynamic Synchronous Language); 2) CRL (Core Reactive Language);
3) DSLM (Dynamic Synchronous Language with Memory); 4) SSL (Secure
Synchronous Language). Each of these languages is studied in detail in a
part of this thesis, which concludes with a discussion of future work. We
give now the synopsis of each part.

22

Document Structure

FutureWork

SSL DSLM

CRL

DSL

Figure 1.1: Document Structure

1.4.1 DSL

At the start of our work is the design and implementation of the DSL
language. DSL is a member of the family of synchronous languages: ba-
sically, parallel components are sharing the same notion of instant, and
during instants, they communicate and synchronize using broadcast events.
As in most synchronous formalisms, the parallel operator of DSL is non-
deterministic. DSL is based on the reactive variant of the synchronous
approach: the reaction to the absence of an event is postponed to the next
instant (recall that immediate reaction to absence is a source of causality
cycles). Actually, DSL extends the standard reactive-synchronous model by
introducing the notion of site and the possibility for parallel components
(called scripts) to migrate between sites. The various sites forming a pro-
gram are executed asynchronously (they do not share instants). From this
point of view, DSL is thus an instance of the GALS model, mixing syn-
chronous and asynchronous parallelism. Concerning memory, DSL makes a
drastic simplification: the memory is viewed in an abstract way, and, from
the programming level, it is only accessed through functions. More precisely,
a change in the memory can only result from a function call, and a function
call is mandatory to read the memory. In this respect, DSL can be seen
as an orchestration language: the only things that matter are the moments
(the instants) and the places (the sites) where functions are called. There
are thus two almost completely separated levels in DSL: the orchestration
level, in which the execution of scripts and functions is orchestrated, using
events and migration orders; and the “host” level, in which the memory is

23

Introduction

accessed and transformed by functions.

To summarize the main characteristics of DSL, we can say that it is a dis-
tributed (sites), reactive (instants), orchestration (host level) programming
language. Moreover, it exhibits two forms of parallelism: the synchronous
parallelism expressed by the standard synchronous operator (for scripts),
and the asynchronous parallelism implicit in the presence of sites.

The work on DSL is described in Part 1. The programming model and
the language are informally described in Chapter 2. Then, a formal se-
mantics is given for the reactive part of the language, which describes the
execution of scripts. This semantics is a “big-step” one: a rewriting of a
script represents its execution during a whole instant. The possibility to
give such an abstract formulation of the semantics basically results from
two facts: the reactive character of the language, and the abstraction from
the memory. The semantics of site execution and of migration between sites
is given in Section 2.2.4. Finally, the implementation of DSL is considered in
Chapter 3. Actually, we have implemented DSL in two functional languages
(FunLoft and Scheme); in both cases, the orchestration and the host levels
are implemented in the same language. Chapter 3 ends with a comparison
of the various implementations of DSL (the previously mentioned ones, plus
two others in ReactiveML and SugarCubes).

Shortcomings of DSL

The language DSL raises several issues. The first concerns memory abstrac-
tion. Indeed, this abstraction makes programming difficult in many contexts
where one has to focus on memory related aspects. In these contexts, the
orchestration character of DSL is more a negative than a positive aspect.
In other words, DSL cannot definitely be considered as a general-purpose
programming language.

The second issue is that in DSL there is no way to ensure that the
memory is accessed in a correct way (for example, without data-races). This
of course results from the memory abstraction. But it is also related to the
distributed nature of DSL: how to prevent the memory to be accessed in an
incorrect way by scripts executed asynchronously on distinct sites?

The third issue concerns security. The importance of security concerns is
continuously increasing, as more and more data need to be protected from
undesired accesses. DSL, as almost all programming languages, does not
provide any means for data protection.

The fourth issue concerns the possibility to run DSL programs in an
efficient way on multi-core machines. The usage of cores (and more generally

24

Document Structure

of CPUs) cannot be controlled by syntactic means in DSL. Moreover, to
avoid incorrect accesses to the memory, the implementation has to choose a
conservative approach, which more or less means that the memory cannot
actually be shared. This certainly constitutes a major drawback for an
optimized usage of multi-core machines.

The subsequent parts of the document are devoted to the analysis of
these issues and to proposals to solve them.

1.4.2 CRL

The issues of security, on one hand, and of safety and optimized use of
multi-cores on the other hand, are rather orthogonal. With the objective to
reconcile them, we choose to focus in the first place on a kernel language,
which will be later extended in several ways. This kernel, described in
Part 2, is called CRL (Core Reactive Language) and can be viewed as DSL
without migration (thus, with a unique site), and without host level. In
CRL, data are manipulated directly, using a fixed set of operators (thus,
there is no way to define functions). The use of operators simplifies the
detection of non-terminating instants, compared to the more general use of
functions. Moreover, we choose to use a deterministic asymmetric parallel
operator (actually, a left-right operator), instead of the standard symmetric
synchronous parallel operator of DSL. This change of parallel operator is
basically motivated by the aim to incorporate a deterministic scheduling in
the language itself, thus ensuring deterministic behavior without having to
introduce an explicit scheduler (such an approach was first proposed in [22]
and resumed in [8], but our variant has some novelties with respect to both).
To allow fine tracking of security violations, one can no more use a big-step
semantics; the formal semantics of CRL is thus expressed in a small-step
framework. Using this semantics, we prove that the reactivity of scripts
is still guaranteed, and we give a static bound for the number of steps it
requires. The language CRL is described in Part 2.

1.4.3 SSL

The language SSL is an extension of CRL with security levels for data. It
is a kind of minimal language for studying the problem of secure informa-
tion flow in synchronous reactive programs. In the perspective of studying
secure information flow, we also address the question of defining a seman-
tic equivalence on programs. We define two bisimulation equivalences on
SSL programs, corresponding to two different notions of observation (fine-

25

Introduction

grained and coarse-grained). We prove that the first equivalence is strictly
included in the second. We then define two non-interference properties based
on these bisimulations which we call fine-grained reactive non-interference
and coarse-grained reactive non-interference. We finally introduce a secu-
rity type system, which we prove to ensure both non-interference properties.
Thanks to the design choices of the language, this type system allows for
a precise treatment of termination leaks, improving on previous work. The
language SSL is describeddsl in Part 3.

1.4.4 DSLM

The language DSLM, considered in Part 4, extends CRL by introducing
memory on one hand, and sites and migration on the other hand. DSLM
provides two means for ensuring correct accesses to the memory: first, one
defines the notion of agent, which has its own memory, only accessible by
itself; second, events (with possible associated values) are the only means
for agents to synchronize and communicate, and this can happen only when
they are located on the same site. We show that data-races are not possible
in this framework.

To increase expressivity, functions are also considered in DSLM. We
make two basic assumptions on functions: first, they should always termi-
nate; second, they should only access the memory of the calling agent. These
assumptions have to be checked by the implementation of DSLM.

Concerning multi-core architectures, we have used the notion of syn-
chronised scheduler to implement the sites. Each site actually contains a
set of schedulers which run the agents present on the site. These schedulers
share the same instants and the same events (they are synchronised). The
isolation of the memory of each agent and the sharing of events among the
schedulers allows the implementation to run each scheduler on a specific core
and to transparently migrate an agent from a scheduler to another provided
it belongs to the same site. In this way, we can let the implementation load-
balance the agents onto the schedulers. The implementation is also free to
adapt the number of schedulers used by the various sites, which constitutes
another way to optimise the use of the cores.

The definition of DSLM and its formal semantics (in a small-step style)
are described in Chapter 6. The implementation of DSLM, based on the
notion of scheduler, is described at a semantical level in Chapter 8. We
have implemented DSLM using FunLoft and C. In this implementation,
functions are coded in FunLoft, and are thus proved to always terminate by
the FunLoft compiler.

26

Document Structure

1.4.5 Conclusion

In Part 5, we conclude the document and propose some tracks for future
work. One of them would be to design a unified formalism mixing together
DSLM and SSL. The perspective would be to produce as outcome a general-
purpose concurrent language, safe and secure, and able to fully benefit from
multi-core architectures.

27

Introduction

28

Part I

DSL

Chapter 2

The Dynamic Synchronous
Language DSL

DSL (Dynamic Synchronous Language) is a core distributed synchronous
reactive scripting language based on the GALS [48] model. In DSL, systems
are composed of several sites executed asynchronously (possibly on differ-
ent processing resources), and each site is running scripts in a synchronous
parallel way (same notion of instant). Basically, DSL introduces sequence
and non-deterministic parallel operators, event-based primitives, and a way
to execute a script on a remote site. Scripts may call functions that are
considered in an abstract way: their effect on the memory is not considered,
but only their “orchestration” i.e. the organization of their calls in time (the
instant at which they occur) and in place (the site where they are called).

The computing model we consider is the following: there are N sites,
each of them being composed of two levels, the orchestration level and the
host level. The sites are completely autonomous and are run asynchronously
(possibly on different processing resources).

At the orchestration level, each site runs a script which is fundamentally
parallel. At that level, inputs are:

• new scripts dropped by the other sites, by the external world, or by
the host level of the site; these new scripts are put in parallel with the
one currently executed by the site; events are input as simple scripts
generating them.

• boolean values coming from the host level and used by if instructions;

• integer values coming from the host level and used by repeat state-
ments.

The Dynamic Synchronous Language DSL

The outputs of the orchestration level are new scripts sent to other sites.

Scripts run by the same site synchronize by means of local events which
are broadcast in the whole site. Two properties are assumed in DSL: reac-
tivity of sites, and absence of interferences between sites (i.e. sites do not
share instants, nor memory, nor events). To assure these two properties we
have two solutions : either we implement DSL in FunLoft and let the lan-
guage take care of the verification, which would prevent us to fully benefit
from multi-core architectures; or we can add memory and functions to the
language level: then we will have to ensure these properties within the lan-
guage but we will be able to benefit from multi-core architectures. In this
thesis we rather choose the first solution.

Sites bear an analogy with a musical orchestra: the orchestration level
corresponds to the orchestra conductor who leads the host level correspond-
ing to the music players. The conductor follows a music partition (script)
and communicates with the musicians by sending them orders and signals
(modelled by events) and by listening to the music they play (also modelled
by events; imagine events corresponding to sound waves produced by the
instruments or by the voices). The conductor must be able to do several
things in parallel: she must direct and listen to all instruments at the same
time. Of course, as needed by any orchestra, a common clock is defined by
the conductor; in our model, this clock which should be shared by the whole
orchestra is given by instants. One can see the presence of several orches-
tras (sites) playing asynchronously as what happens sometimes in music
festivals, when several stages are used independently, possibly simultane-
ously (of course in this case, the absence of interferences between distinct
stages is mandatory: nothing should be shared by distinct sites).

DSL is designed with a simple formal semantics, describing without am-
biguity how the system evolves. Our approach is an alternative to the use
of locks for memory protection in a classic threading context.

The language DSL has been presented in the article [13], and it is also
fully described in a technical report [14].

The language is first described informally in Section 2.1, and its formal
semantics is given in Section 2.2. Some examples and several semantics
variants are considered in 2.3.

2.1 Language Description

A program is composed of several independent sites, each of them executing
a script made of parallel components. To add a new script into a site, one

32

Language Description

puts the script in parallel with the already existing parallel components.
In the current version, DSL does not provide any means to define func-

tions. However, scripts may call functions defined in a “host” language
(different variants of DSL correspond to different host languages). These
functions have parameters of basic types only (integer, boolean, string).

Modules are special functions whose execution is not immediate; actually,
execution of a module does not start immediately, but at the next instant;
moreover, the execution of a module can last several instants or even never
terminate. Modules are called using a specific keyword (launch). Scripts
“orchestrate” the execution of functions and modules on the various sites
that compose a program.

We first present scripts in 2.1.1, then introduce sites in 2.1.2 and events
in 2.1.3. The basic properties of DSL are presented in 2.1.4. Finally, an
example which will be used to benchmark implementations is described in
2.1.5.

2.1.1 Scripts

Scripts are made of basic instructions, where syntax is the following:
s ∈ Script ::= nothing

| cooperate
| f (v1, . . . , vn)
| launch m(ev, exp1, ..., expn)
| s; s
| s ‖ s
| if exp then s else s end
| loop s end
| repeat exp do s end
| generate ev
| await ev
| do s watching ev
| drop s in site

The informal semantics of scripts can be described as follows:

• nothing does nothing

• cooperate terminates the execution for the current instant. Execution
resumes at the next instant.

• f (v1, . . . , vn) calls the function f with the parameters v1, ..., vn. Exe-
cution starts immediately and is instantaneous. To call a non-existing
function is considered as an empty statement.

33

The Dynamic Synchronous Language DSL

• launch m (ev, v1, . . . , vn) launches the module m with the parameters
v1, ..., vn and a fresh event ev which is generated when the module
execution is over. Execution takes several (at least, one) instants to
terminate, or may even never terminate. To call a non-existing module
is considered as an empty statement.

• s1; s2 runs the two scripts s1 and s2 in sequence.

• s1 ‖ s2 runs the two scripts s1 and s2 in parallel. The parallel script
terminates as soon as both s1 and s2 are terminated. The parallel in
DSL, as the one in Esterel, is non-deterministic but confluent.

• if exp then s1 else s2 end runs the script si corresponding to the re-
sult of the evaluation of the boolean expression exp.

• loop s end cyclically runs the script s. Execution of s is restarted as
soon as it terminates, except if it terminates instantly (i.e. in the
same instant where it is started); in this last case, the loop waits for
the next instant to restart s. There is thus no possibility to get an
instantaneous loop which would cycle forever during the same instant.

• repeat exp do s end runs n times the script s, where n is the result of
the evaluation of the integer expression exp. Note that we are using
two different constructs for loops and iteration, in replacement of the
standard while operator. This allows for a clear separation between
non-terminating and iterative while loops.

• generate ev generates the event ev.

• await ev blocks execution while the event ev is not generated. Execu-
tion resumes as soon as ev is generated.

• do s watching ev executes the script s while the event ev is not gen-
erated. The execution of s is aborted when ev is generated. The
watching instruction terminates normally when s terminates.

• drop s in site adds the script s in the remote site site. Execution
continues immediately without waiting for the completion of s.

2.1.2 Sites

Sites are asynchronous (i.e., each site is possibly run by a distinct native
thread). On the contrary, scripts are executed synchronously on a site: they
share the same instants and thus proceed at the same pace.

34

Language Description

The drop instruction is the means by which a script can influence remote
sites. Note that, if nothing remains to be done after a drop instruction, one
can see it as a migration to the remote site.

The creation of sites is not specified in the language; we suppose that for
each script of the form drop s in site, site always exists and is accessible.

2.1.3 Events

Events are boolean values that are present or absent during instants. Events
are not transmitted among sites. Once an event is generated during an in-
stant, it remains present up to the end of the instant. Events are automat-
ically reset to absent at the beginning of each instant. Events used by the
three instructions generate, await, and watching are created if they are
not already existing on the site of execution.

2.1.4 Basic Properties

DSL requires that the two following fundamental properties are valid:

• No site can be prevented from passing to the next instant (reactivity
property). This means that functions and modules run by a site should
not use all of the computing power of the site.

• No data-race can occur between scripts, functions and modules (inter-
ference freeness property).

In the FunLoft variant, the fundamental properties are checked by the
compiler which verifies that:

• Functions always terminate instantaneously.

• modules always cooperate.

• Memory can only be shared by functions or modules to the same site.

In the other variants, the validity of the two fundamental properties is
left to the programmer.

2.1.5 Example

We consider a system composed of three sites site1, site2, and site3, and
a script supposed to be run by site1; the script is made of two sub-parts

35

The Dynamic Synchronous Language DSL

executed on site2 and site3. Each sub-part calls the consume function
(which heavily uses the CPU, according to the value of its parameter) and
then drops back a script on site1 to signal its termination. The two events
generated upon termination are awaited in parallel. The code is:

repeat 1000 do
(
drop

print(“0”);
consume(1E7);
drop generate done0 in site1

in site2
‖
drop

print(“1”);
consume(1E7);
drop generate done1 in site1

in site3
‖
await done0
‖
await done1

);
cooperate

end

Note that there are similar parts in the code (for example, the two calls to
consume). Actually, the DSL language does not give any means to share
or parameterize scripts. In this respect, scripts are not very friendly and
should thus be produced from some higher-level language; the definition of
such a language is not in the scope of this thesis.

The two calls of consume can be executed in real parallelism (for example,
on a dual-core machine). It is assumed that no interferences appear between
them (for example, resulting from the sharing of a global counter). This
assumption is statically verified in the FunLoft variant of DSL, while it is
the responsibility of the programmer in the other variants. We shall return
on this example later, when implementation is considered.

Remark: the body of a repeat statement is not demanded to be non-
instantaneous, unlike the body of a loop statement. Indeed, a repeat script
always terminates (provided its body terminates), and thus cannot prevent
the other scripts to get the control. In the previous code, the justification
for the cooperate is to prevent an instantaneous termination of the repeat

36

Semantics

if both done0 and done1 are received in the same instant; this is actually
possible because of the asynchronous execution of sites.

2.2 Semantics

We give DSL a semantics expressed with rewriting rules. The semantics is
“big-step”: one rewriting of a term represents the global execution of the
term during one instant (by contrast “small-step” semantics would describe
the various execution steps occurring during the instant).

Evaluation of expressions is considered in 2.2.1. The (big-step) rewriting
of scripts is first described in 2.2.2; then, fix-points are considered in 2.2.3;
site execution is described in 2.2.4; three examples are considered in 2.3;
finally, three variants of the semantics are analyzed in 2.3.2.

2.2.1 Expressions

Expressions are either basic values (of type integer, boolean, or string), or
calls of functions of the form f (v1, . . . , vn) where the vi are basic values. We
adopt the following notation: we write f (v1, . . . , vn)⇃ if there is no function
named f which is defined, or if the call is not well typed; in this case we say
that we have a wrong call; we write f (v1, . . . , vn)↿ otherwise.

The evaluation of a basic value returns itself. There are two cases for
the evaluation of f (v1, . . . , vn):

• if f (v1, . . . , vn)↿, the evaluation of the call returns the value of f applied
to the list of values vi, where f is the function associated to f ;

• if f (v1, . . . , vn)⇃, then the value returned is the default value of the
expected (basic) type (0 for integers, false for booleans, and the
empty string "" for strings).

The evaluation of the expression exp returning a value v is noted exp v.
As with functions, we write m (v1, . . . , vn)⇃ if the module m does not

exist or if the call is not well typed, and we write m (v1, . . . , vn)↿ otherwise.

2.2.2 Scripts

The general format of the script semantics is:

P ⊢ s
b
−→s′, G,D

• P is the set of present events; events not belonging to P are absent;

37

The Dynamic Synchronous Language DSL

• s is the script which is rewritten;

• s′ is the residual script (“what remains to do at the next instant”);

• G is the set of events generated by the rewriting of s;

• D is the multi-set of dropped scripts of the form site↓u, where site is
a site name and u is a script; the union of multi-sets is noted ⊎;

• b is a boolean which is true (tt) if s′ is terminated and false (ff)
otherwise; the boolean conjunction is noted ∧.

The semantics of scripts is given by the following rules:

Nothing

P ⊢ nothing
tt
−→nothing, ∅, ∅ (2.1)

Cooperate

P ⊢ cooperate
ff
−→nothing, ∅, ∅ (2.2)

The execution of a cooperate terminates instantaneously for the current
instant.

Drop

P ⊢ drop s in site
tt
−→nothing, ∅, {site↓s} (2.3)

Sequence

P ⊢ s1
ff
−→s′1, G,D

P ⊢ s1; s2
ff
−→s′1; s2, G,D

(2.4)

38

Semantics

P ⊢ s1
tt
−→s′1, G1, D1 P ⊢ s2

b
−→s′2, G2, D2

P ⊢ s1; s2
b
−→s′2, G1 ∪G2, D1 ⊎D2

(2.5)

The semantics of a sequence considers the case where the first branch
is not terminated (ff), and the case where it is (tt). In the first case, the
execution of the sequence is over for the current instant. In the second case,
the second script is executed.

Parallel

P ⊢ s1
b1−→s′1, G1, D1 P ⊢ s2

b2−→s′2, G2, D2

P ⊢ s1 ‖ s2
b1∧b2−−−→s′1 ‖ s

′
2, G1 ∪G2, D1 ⊎D2

(2.6)

Parallel branches are executed at the same time.

Loop

P ⊢ s ‖ cooperate
ff
−→s′, G,D

P ⊢ loop s end
ff
−→s′; loop s end, G,D

(2.7)

A loop statement executes its body cyclically: a cooperate instruction
is systematically added in parallel to its body to avoid instantaneous loops.

Generate

P ⊢ generate ev
tt
−→nothing, {ev}, ∅ (2.8)

The generate instruction produces an event in the environment.

Await

ev ∈ P

P ⊢ await ev
tt
−→nothing, ∅, ∅

(2.9)

39

The Dynamic Synchronous Language DSL

An await instruction terminates if the awaited event is present in the
environment. If the event is not present, the execution is over for the current
instant:

ev 6∈ P

P ⊢ await ev
ff
−→await ev, ∅, ∅

(2.10)

Watching

P ⊢ s
tt
−→s′, G,D

P ⊢ do s watching ev
tt
−→nothing, G,D

(2.11)

A watching statement executes its body. If the body is terminated (i.e. it
is nothing), then the watching statement rewrites in a nothing instruction.
If the body is not terminated and the watching event is present, it rewrites
to nothing:

ev ∈ P P ⊢ s
ff
−→s′, G,D

P ⊢ do s watching ev
ff
−→nothing, G,D

(2.12)

As long as the body is not terminated and the watching event is not
present, the watching statement rewrites its body:

ev 6∈ P P ⊢ s
ff
−→s′, G,D

P ⊢ do s watching ev
ff
−→do s′ watching ev,G,D

(2.13)

Evaluation of expressions (function calls are expressions) appears in the
following rules which are thus less formal than the previous ones; indeed,
evaluation of expressions is not totally captured by the semantics of DSL.

Function

f (v1, . . . , vn) v

P ⊢ f (v1, . . . , vn)
tt
−→nothing, ∅, ∅

(2.14)

40

Semantics

Execution of a function call is equivalent to its evaluation; the returned
value is of no use, and the call is actually only evaluated for its side-effects
(a wrong call does nothing and has no side-effect).

Modules

m (ev, v1, . . . , vn)⇃

P ⊢ launch m (ev, v1, . . . , vn)
tt
−→nothing, ∅, ∅

(2.15)

m (ev, v1, . . . , vn)↿

P ⊢ launch m (ev, v1, . . . , vn)
ff
−→await ev, ∅, ∅

(2.16)

Three points should be noted:

• Rule 2.15 states that a wrong call of a module is equivalent to a
nothing statement.

• In rule 2.16, ev is a new event1 which signals the termination of the
launched module; it is automatically generated by the system when
the call of m turns to be completely terminated.

• In case of real preemption, i.e. when rule 2.12 applies, the waiting for
termination is abandoned and the module is not actually started.

Repeat

exp n P ⊢

n times
︷ ︸︸ ︷
s; . . . ; s

b
−→s′, G,D

P ⊢ repeat exp do s end
b
−→s′, G,D

(2.17)

Two points should be noted:

• Evaluation of exp is performed when the rule is applied, that is at
execution time (not at compile time).

• In case exp is a wrong function call, n is equal to 0, and the sequence
is equal to nothing2. The repeat statement is thus in this case equiv-
alent to nothing.

1a mechanism to produce new fresh events is assumed.
2a sequence of n ≤ 0 elements is by definition equal to nothing.

41

The Dynamic Synchronous Language DSL

If

exp tt P ⊢ s1
b
−→s′1, G,D

P ⊢ if exp then s1 else s2 end
b
−→s′1, G,D

(2.18)

exp ff P ⊢ s2
b
−→s′2, G,D

P ⊢ if exp then s1 else s2 end
b
−→s′2, G,D

(2.19)

Note that if exp is a wrong function call, its evaluation returns ff , and thus
s2 is chosen.

2.2.3 Least Fix-Point

It is easy to see (by inspecting the rules) that the execution of scripts is
deterministic:

if P ⊢ s
b1−→s1, G1, D1 and P ⊢ s

b2−→s2, G2, D2, then s1 = s2, G1 = G2,
D1 = D2, and b1 = b2.

Let s be a script; the determinism property allows one to define the
function fs which, given a set P of present events, returns the set G of
events generated by s:

fs(P) = G where P ⊢ s
b
−→s′, G,D

It may also be easily shown that the function fs has two main charac-
teristics: it is total and it is increasing. It is total because, for each script
and each set of present events, there exists a (unique) rewriting:

∀s, P, ∃s′, G,D, b P ⊢ s
b
−→s′, G,D

The function fs is increasing (for the set inclusion order):

if P1 ⊆ P2 then fs(P1) ⊆ fs(P2)

The function fs thus has a least fix-point µfs (Kleene theorem) verifying:

fs(µfs) = µfs

that is:

µfs ⊢ s
b
−→s′, µfs, D

42

Semantics

and:

fs(Q) = Q implies µfs ⊆ Q

We know that the least fix-point µfs is the limit of the sequence of approx-
imations X0, X1, . . . defined by:

X0 = ∅ and Xn+1 = fs(Xn)

which is noted:

µfs =
⋃
fn
s (∅)

Finally, when the value of the least fix-point is not required, we write:

s⇒ s′, D

instead of:

µfs ⊢ s
b
−→s′, µfs, D

2.2.4 Programs and Sites

A site is a couple (site, s) made of a site name site and a script s; it is noted
site :s.

A program is a (finite) multi-set of sites and of dropped scripts waiting
to be incorporated into sites. A program is thus a multi-set S where each
element is either a site sitei :si or a dropped script sitei ↓si. One supposes
that there is at least one site and that all sites have distinct names:

∀sitei :si, sitej :sj ∈ S, i 6= j ⇒ sitei 6= sitej

Note that the same dropped element can appear several times in a pro-
gram (it is a multi-set), as for example in:

{site : nothing, site↓f(), site↓f()}

The execution of a program S0 is a sequence of rewritings of the form:

S0 7→ S1 7→ S2 7→ ...

where the arrow 7→ is defined by rules 2.20, 2.21, and 2.22 given below.

43

The Dynamic Synchronous Language DSL

Site execution

s⇒ s′, D

{..., site :s, ...} 7→ {..., site :s′, ...} ⊎D
(2.20)

The dropped scripts resulting from a site execution are added in the program
by rule 2.20; they are waiting to be absorbed by rule 2.21 below. In the
definition of ⇒, note that the least fix-point is not explicitly built: the
semantics is not effective in this respect as it does not indicates how to
compute it.

Absorption of dropped scripts

{..., site :s, site↓u, ...} 7→ {..., site :s ‖ u, ...} (2.21)

Rule 2.21 represents the absorption of a dropped script u by the appropriate
site site: the dropped script is simply put in parallel with the script s already
present in site.

Inputs The dynamic adding of a script s in the site site of a program S
is modeled by:

S 7→ S ⊎ {site↓s} (2.22)

Program inputs are dropped events: the input of the event e in the site
site is simply modeled by the rewriting:

S 7→ S ⊎ {site↓generate e}

2.3 Examples and Semantical Variants

2.3.1 Examples

We give several examples: the first shows the computation of the semantics
by successive approximations; the second illustrates the links between the
fix-point semantics and the notion of causality; the third example concerns
the drop primitive; the fourth illustrates the relation between the watching
and launch instructions; finally, the last example shows the global execution
of a program.

44

Examples and Semantical Variants

Approximations

Let us consider the following script s:

generate ev1; await ev2 ‖ await ev1; generate ev2

Actually, one can prove that:

{ev1, ev2} ⊢ s
tt
−→nothing ‖ nothing, {ev1, ev2}, ∅

Let us show that this corresponds to the least fix-point µfs of fs (using the
previous notations). Let X0 = ∅. One has:

X0 ⊢ s
ff
−→await ev2 ‖ await ev1; generate ev2, {ev1}, ∅

Let X1 = {ev1}. We have:

X1 ⊢ s
ff
−→await ev2 ‖ nothing, {ev1, ev2}, ∅

Let X2 = {ev1, ev2}. Since:

X2 ⊢ s
tt
−→nothing ‖ nothing, X2, ∅

we get the result:

µfs =
⋃

fn
s (∅) = X2 = {ev1, ev2}

.

Minimality

Minimality of fix-points is mandatory to reject “violations of causality”.
Indeed, consider the following script s = await ev; generate ev. Two fix-
points, {ev} and ∅, exist:

1. {ev} ⊢ s
tt
−→nothing, {ev}, ∅

2. ∅ ⊢ s
ff
−→s, ∅, ∅.

The least fix-point is thus ∅. Note that in the first rewriting, the gen-
eration of ev “results” from the test of presence of ev, and thus does not
correspond to any “causal” execution. In a sense, the minimality of fix-
points is a way to rule out non-causal executions.

45

The Dynamic Synchronous Language DSL

Asynchrony

Let us consider the script:

drop generate ev ‖ await ev; print(“ok”) in site1

The message will always be printed, because the dropped script is incorpo-
rated in site1 as a whole. This would not be the case with:

drop generate ev in site1;
drop await ev; print(“ok”) in site1

Indeed, site1 may incorporate the first script and may react before the in-
corporation of the second script; in this case, the message is not printed
because the generation of ev is lost.

Module Abortion

Let us consider the immediate preemption of a module launched by the
body of a watching statement:

generate ev;
do launch m(ev′) watching ev

If module m does not exist or is incorrectly called, then the global instruction
terminates immediately (rules 2.15 and 2.11). Otherwise (m exists and is
correctly called), the module is not launched by the executive system (last
remark, rule 2.16), and the instruction will terminate at the next instant
(rule 2.12).

Program Input

Let us consider the following program made of a unique site:

S = {site :await ev; print(msg)}

The only rewriting that can be made is:

S 7→ S

Suppose a new input is given to the program, which becomes S′:

S 7→ S′ = S ⊎ {site↓generate ev}

There are two possible rewritings for S′:

S′ 7→ S′

46

Examples and Semantical Variants

and (rule 2.21):

S′ 7→ S′′ = {site :await ev; print(msg) ‖ generate ev}

Now, one can prove that the only possible rewriting of S′′ is:

S′′ 7→ {site :nothing}

During this rewriting, the function print is called and a message is printed
as a side-effect of the call.

2.3.2 Variants of the Semantics

In this section, we discuss three aspects of the semantics: instantaneous
loops are first considered; then, a variant of the drop instruction is analyzed;
finally, the watching instruction is discussed.

Instantaneous Loops The fact that the function fs is total basically
results from the rule 2.7 that “fixes” instantaneous loops. Note that without
the fix, some loops could have no rewriting at all; this would be for instance
the case with the rule:

P ⊢ s; loop s end
b
−→s′, G,D

P ⊢ loop s end
b
−→s′, G,D

(2.7′)

in which the execution of a loop basically means to unfold it. The reactivity
property of DSL would thus be lost by using this rule instead of rule 2.7.

Packed Drop Let us consider a possible variant of the semantics in
which the dropped scripts are grouped by destination. The idea is that,
instead of dropping one after the other several scripts intended for the same
site, one drops the parallel composition of these scripts, in one unique drop
action. This reduces the asynchrony of site execution and thus makes the
reasoning about programs easier. To model this variant, we first define the
pack function which takes a multi-set of dropped scripts and returns the set
which is the compact version of it:

• pack (D) = D if ∀d1 = (site1 ↓s1) ∈ D, ∀d2 = (site2 ↓s2) ∈ D, d1 6= d2
implies site1 6= site2

• pack (D ⊎ {(site↓s1), (site↓s2)}) =
pack (D ⊎ {(site, s1 ‖ s2)})

47

The Dynamic Synchronous Language DSL

The site execution rule 2.20 becomes:

s⇒ s′, D

{..., site :s, ...} 7→ {..., site :s′, ...} ⊎ pack (D)
(2.20′)

Note that the two drop scripts of 2.3.1 become equivalent in this variant
of the semantics. To implement the variant, dropped scripts have to be
stored, up to the end of the current instant, before being compacted and
actually sent to remote sites.

Preemption Operator The basic assumption of the model resides in
the couple of rules 2.12 and 2.13 which state that the body of a watching

instruction is executed in both cases of presence and of absence of ev. The
alternative proposed by Esterel, called “strong preemption”, corresponds to
the following two rules:

ev ∈ P

P ⊢ do s watching ev
tt
−→nothing, ∅, ∅

(2.12′)

ev 6∈ P P ⊢ s
b
−→s′, G,D

P ⊢ do s watching ev
b
−→do s′ watching ev,G,D

(2.13′)

With these rules, the body is immediately executed in absence of ev
(rule 2.13′), and it is not executed at all when ev is present (rule 2.12′).
One thus has an immediate reaction to the absence of ev, which introduces
“causality cycles” (e.g. do generate ev watching ev). Causality cycles are
a major obstacle to the introduction of dynamic thread creation in Esterel.
It is thus clear that strong preemption cannot be, in a way or another,
introduced coherently in DSL.

We could have replaced rule 2.11 by the following:

P ⊢ s
tt
−→s′, G,D

P ⊢ do s watching ev
ff
−→nothing, G,D

(2.11′)

This alternative rule gives a more uniform treatment of the preemption
operator that actually would never terminate instantaneously. However, we
prefer to keep rule 2.11 because it entails the following intuitive invariant:
do s watching ev is strictly equivalent to s if ev is never present. This in-
variant would be violated with the alternative rule 2.11′.

48

Chapter 3

DSL Implementation

DSL has been implemented in four different languages: SugarCubes, Reac-
tiveML, FunLoft and Bigloo/Scheme. In this chapter we present the two im-
plementations that we have realized in FunLoft and Bigloo/Scheme. The two
other implementations have been done by Louis Mandel and Jean-Ferdinand
Susini and are presented in [14]. Finally, we compare the four implementa-
tions on the same benchmark of Section 2.1.5.

3.1 FunLoft Variant

In the FunLoft variant of DSL, a script is first translated into an instruc-
tion of the type instruction t defined in FunLoft, before being compiled
by the FunLoft compiler. The definition of FunLoft insures the reactivity
and memory protection properties of the compiled code (actually, the static
checks for bounded resource consumption are switched-off in the FunLoft
compiler, but the remaining checks are sufficient to insure reactivity and
memory protection).

The translation has the following characteristics:

• The notion of an instant is re-built: an instant of a script is made
of several micro-steps of the target FunLoft program, each micro-step
corresponding actually to one instant of the translated FunLoft pro-
gram.

• Events are represented by strings. A hashtable (of the type aa t)
associating strings with events is available on each site.

• The generation of a DSL event is sustained during the following micro-
steps, up to the end of instant.

DSL Implementation

• A valued event is used to deal with the dynamic adding of new scripts
in a site (it has type (instruction t) event t).

3.1.1 Dynamic Adding of Instructions

A special event is associated with each site, used to add the scripts dropped
in the site. The module dynamic awaits this event and collects its associ-
ated values using the get all values instruction of FunLoft; the collected
instructions are processed by calling the function incorporate, defined be-
low. The code of dynamic is:

let module dynamic (eng) =

let inst_list = ref Nil_list in

loop

let add = Engine.add (eng) in

begin

await add;

get_all_values add in inst_list;

incorporate (eng,!inst_list);

generate Engine.wakeup (eng);

continue_instant (eng);

end

The continue instant function just sets the flag move of the engine:

let continue_instant (eng) =

Engine.move (eng) := true

The function incorporate is recursively defined and the FunLoft com-
piler checks that it always terminates:

let incorporate (eng,inst_list) =

match inst_list with

Nil_list do ()

| Cons_list (head,tail) do

begin

thread evaluate (eng,head,event);

incorporate (eng,tail);

end

end

50

FunLoft Variant

To drop an instruction in a site, basically means to generate the special
event of the site engine with the instruction as value:

let module send_to (site,inst) =

link Site.sched (site) do

let engine = !Site.rengine (site) in

generate Engine.add (engine) with inst

3.1.2 Reactive Engine

The reactive engine of a site basically sustains the generated events and
decides when instants are terminated. Each time an event is generated, it
is stored in the list sustain of the engine, in order to be re-generated at
each micro-step, up to the end of instant. Moreover, the move flag of the
engine is set (by calling continue instant) to resume execution of scripts
awaiting the event, if there are such scripts:

let dsl_generate (eng,evt) =

let e = event_lookup (eng,evt) in

begin

generate e;

let s = Engine.sustain (eng) in

s := Cons_list (e,!s);

continue_instant (eng);

generate Engine.wakeup (eng);

end

The algorithm of the engine is the following: micro-steps are executed
cyclically while the move flag is set; when the move flag has not been set
by the last micro-step, the pre eoi flag is set to let watching statements
proceed, in case of preemption. Indeed, in this case, a watching has to let
its body react, in order to choose safely between rules 2.11 and 2.12. Cyclic
execution is then resumed as previously, while there are new moves. The end
of the current DSL instant is decided when the setting of pre eoi does not
produce any new move; in this case the eoi flag is set, to indicate the end
of the current instant. This algorithm corresponds to the following code:

let module react (eng) =

let move = Engine.move (eng) in

loop

begin

51

DSL Implementation

move := false;

sustain_all (eng);

cooperate;

if not !move then

begin

generate Engine.pre_eoi (eng);

cooperate;

if not !move then

begin

close_instant (eng);

return;

end

end

end

end

end

The sustain all function maintains the generated events during the next
micro-steps, up to the end of instant. The close instant function generates
eoi, stops the sustainment of generated events, and increments the instant
counter:

let close_instant (eng,trace) =

let instant = Engine.instant (eng) in

begin

generate Engine.eoi (eng);

Engine.sustain (eng) := Nil_list;

instant++;

end

Note that the flag pre eoi becomes useless if we replace the rule 2.11
by the alternative rule 2.11′. The alternative rule would thus simplify the
implementation in FunLoft (however, this would not be the case for the
other variants of DSL).

3.1.3 Functions and Tasks

Functions are called using the Call instruction. Functions and parameters
are represented as character strings. The function call dispatch analyses
the first string passed to Call and calls the corresponding function. Func-
tions that are used in a program must always be called through the call
dispatcher. Here is an example of call dispatcher:

52

FunLoft Variant

let call_dispatch (eng,fun,params) =

if fun = "print_string" then

let p1 = get_param (params,0) in

print_string (p1)

else if fun = "print_int" then

let p1 = string2int(get_param(params,0)) in

print_int (p1)

else if fun = "quit" then

quit (0)

else

warning ("unknown call")

Tasks are launched in sites with the Launch instruction. Like functions,
tasks and parameters are represented as character strings. The module
task dispatch analyses the first string and launches the appropriate thread.
An event given as parameter is generated at the end of the task execution.
Here is an example of a task dispatcher:

let module task_dispatch (eng,task,params,evt) =

begin

if task = "print_getchar" then

run print_getchar ()

else if task = "getchar" then

run getchar ()

...

generate evt;

end

Note that the compiler checks that non-cooperative FunLoft functions
are always called while unlinked. Here is an example of use of the non-
cooperative FunLoft function fl getchar (which basically corresponds to
the getchar function of C):

let getchar_result = ref ’ ’

let module getchar () =

let loc = local ref ’ ’ in

begin

unlink loc := fl_getchar ();

link main_scheduler do

53

DSL Implementation

getchar_result := !loc;

end

The compiler complains if the unlink statement is omitted. Note the use
of a local reference to store the read character; an intermediate local refer-
ence is mandatory because it is not possible to access the global reference
getchar result while unlinked (otherwise, data-races could occur while
accessing it).

Note that the executing engine is given as parameter to call dispatch

and task dispatch; this allows the function dsl generate to be called by
functions and tasks. Communication through events can occur by this means
from the host level to the orchestration level.

3.1.4 Instantaneous Loops

The FunLoft compiler statically checks for the absence of instantaneous
loops; more precisely, it rejects a program in which a loop body has the
possibility to terminate instantly. In the present context, this means that
there is no possibility for an instruction to cycle during the same micro-step.
According to the semantics of DSL, loops that would cycle during the same
(DSL) instant are dynamically detected and “corrected”; this is for example
the case with:

Loop (Nothing)

The implementation proceeds as follows: the DSL instant is stored when the
body of a loop starts to execute and the system checks that the instant is
different from the stored instant when the body terminates. When the two
instants are the same (the body thus terminates instantly), the system forces
the body to wait for the next DSL instant (it is as if a cooperate state-
ment were dynamically inserted at the end of the body when it terminates
instantly).

3.1.5 Static Checks

The static checks performed by the compiler are the ones of FunLoft, ex-
cepted those insuring that the consumption of resources is bounded (actu-
ally, the execution engine defined does not run in bounded memory, basically
because new scripts can always be dropped dynamically in sites).

54

FunLoft Variant

Reactivity

Basically, the reactivity property comes from the fact that there is no way
for a script to prevent the execution of the other scripts by exhausting the
CPU. More precisely:

• It is not possible to define recursive scripts in DSL. A script can only
launch an already defined task.

• Recursive tasks (recursive FunLoft modules) are allowed because they
are needed by the implementation in FunLoft; however, execution of
a launched task does not begin immediately, but at the next DSL
instant; thus, there is no possibility for a recursively defined task to
cycle forever during the same micro-step. Hence, no task could cycle
forever during the same DSL instant.

• Functions are proved to always terminate. An example of correct
function is:

let length(l) =

match l with Nil_list -> 0

| Cons_list (h,t) -> 1 + length(t)

end

On the contrary, the following function is rejected:

let f(l) =

match l with Nil_list -> 0

| default -> f (l)

Memory Protection

Each site (scheduler) has its own memory, which is protected from accesses
by instructions run by the other sites. As a consequence, no data-race can
occur from the parallel execution of two scripts run on two distinct sites
(thus, run by two distinct native threads).

Moreover, tasks may have a local private memory and the system verifies
that this memory cannot be accessed by the other tasks. Basically, a task
is not allowed to store one of its private references into a public reference
accessible by the other tasks.

To illustrate the memory protection technique, let us consider the fol-
lowing task dispatcher:

55

DSL Implementation

let r = ref 0

let module task_dispatch (eng,task,params,evt) =

if task = "tst1" then

thread tst1 (r)

else if task = "tst2" then

thread tst2 (r)

...

An error is detected if both tasks tst1 and tst2 access the reference r

while on different sites; indeed, in this case, there could be a data-race while
accessing r. A way to fix the bug is to force the two tasks to be in the same
site:

let module task_dispatch (eng,task,params,evt) =

if task = "tst1" then

link site1_sched do thread tst1 (r)

else if task = "tst2" then

link site1_sched do thread tst2 (r)

else

...

3.1.6 Execution of Instructions

Let us return to the script of Section 2.1.5. An equivalent FunLoft program
is:

#include "dsl3.fl"

let turns = 1000

let consume_value =

Cons_list ("10000000",Nil_list)

let remote (from,target,msg,done) =

Drop (target,

Seq (Print (msg),

Seq (Call ("consume",consume_value),

Drop (from,Generate (done)))))

let parallel =

Repeat (IntConst (turns),

56

FunLoft Variant

Seq (

Par (remote (site1,site2,"0","done0"),

Par (remote (site1,site3,"1","done1"),

Par (Await ("done0"),Await ("done1")))),

Cooperate))

let module dsl_main () =

drop_in_site1 (parallel)

The include directive of the file dsl3.fl defines the types and the con-
structors used for instructions, and three sites site1, site2, and site3.
The function remote is called twice by the instruction parallel. Finally,
the module dsl main is defined; it is actually the program entry point. The
body of dsl main simply drops the instruction parallel in site1.

3.1.7 Translation in FunLoft

A translator of DSL in FunLoft is implemented; it translates the script of
Section 2.1.5 into the following instruction:

Repeat

(IntConst (1000),

Seq (Par (Par (Par

(Drop (site2, Seq (Seq (Print ("0"),

Call ("consume",

Cons_list ("10000000", Nil_list))),

Drop (site1,Generate ("done0")))),

Drop (site3,

Seq

(Seq (Print ("1"),

Call ("consume",

Cons_list ("10000000", Nil_list))),

Drop (site1,Generate ("done1"))))),

Await ("done0")),

Await ("done1")),

Cooperate))

To execute it, one just replaces the definition of parallel by this instruction,
in the FunLoft program of Section 3.1.6.

57

DSL Implementation

3.2 Bigloo/Scheme Variant

The main points of the implementation of DSL in Scheme/Bigloo are:

• Sites are coded in Scheme/Bigloo and executed by a native thread.

• Script execution basically follows the semantic rules described in pre-
vious section.

• As there is no notion of instant in Scheme/Bigloo, we introduce the
notion of reactive machine to implement it.

• In Scheme/Bigloo there is no difference between functions and tasks.

3.2.1 Sites

In our implementation a reactive machine (site) is made of four lists:

• The first one contains the executing scripts.

• The second one contains the waiting scripts.

• The third one contains scripts whose execution is finished for the cur-
rent instant.

• The last list is the event environment.

We also need a boolean to indicate if the fixed point is reached (eoi). A
site is thus coded as:

(define site

(list

(list) (list) (list) (list)

eoi))

The behaviour of the reactive machine is extremely simple: it executes
the function one step which defines one instant of DSL, up to the least
fixed point. This function returns the new state of the reactive machine.
The code of one step is:

(define (one_step site)

(when (event_generated site)

(set! site (wakeup_waiting_script site)))

58

Bigloo/Scheme Variant

(if (eoi site)

site

(let ((res (sem_action

(first_script site)

(get_env site)

(get_eoi site))))

(if (execution_finished res)

(one_step

(list (next_script site)

(get_waiting_script site)

(cons (get_script_res res)

(get_finished_script site))

(get_env_res res)

(get_eoi res)))

(one_step

(list (next_script site)

(cons (get_script_res res)

(get_waiting_script site))

(get_finished_script site)

(get_env_res res)

(get_eoi_res res))))))))

First, we check if there are generated events (event generated). If it
is the case, we wake-up all the waiting scripts (wakeup waiting script).
Then, we should verify if the fixed point (eoi) is already reached. In that
case, there is no need to continue; otherwise, we try to execute a new script
(sem action). If execution finished returns true, the current script is
terminated for the current instant. Otherwise, the script is waiting for an
event. In both cases, we pass to the next script after storing the script in
the appropriate list.

3.2.2 Functions and Tasks

In DSL, we require that functions are instantaneous, but tasks can take
several instants. In the current implementation, the only way for the user
to implement a task is to define a Scheme/Bigloo function executed as a
native thread.

59

DSL Implementation

3.2.3 Translation in Bigloo

There are two possibilities in Scheme/Bigloo to execute a script: either it
is translated in Scheme/Bigloo, then compiled, and executed as a standard
Scheme/Bigloo program; or it is given as input to a top-level interpretor
that analyses the script, translates it in an abstract tree, and runs it using
a native Scheme/Bigloo thread. From the script of Section 2.1.5, the DSL
to Bigloo translator produces a code which is exactly the same as the one
produced by the FunLoft variant in 3.1.7. To execute the script, we drop it
into the appropriate reactive machine.

3.3 Benchmarks

In this section, we execute the script defined in Section 2.1.5 with the four
variants of DSL and compare the results.

3.3.1 FunLoft

In FunLoft, the function consume called by the script to consume the com-
puting resource can be defined by:

let consume_intern (n) =

let x = local ref 0 in

repeat n do x++

Alternatively, one could define consume as an extern C function, intro-
duced in FunLoft by:

extern "C" consume : int -> unit

The definition of consume in C is then:

#include "val.h"

value consume (value vn)

{

long n = val2int (vn);

long k, x = 0;

for (k = 0; k < n; k++) x++;

return val_unit;

}

60

Benchmarks

The extern function is much more efficient than the function defined in
FunLoft (see below). However, with the extern function, the compiler loses
the possibility to detect an error in the C implementation (this is recalled
to the user by a message issued at compile time).

The execution machine we use is a dual-core machine1. The execution
time is obtained with the Unix command time.

Results with the FunLoft variant are shown in Figure 3.1; on the left,
the (intern) FunLoft definition of consume is used, while on the right it is
defined in C (extern).

FL intern extern

real 2m58.616s 0m32.922s
user 5m47.278s 1m4.652s
sys 0m2.516s 0m0.208s

Figure 3.1: FunLoft variant

3.3.2 SugarCubes

Figure 3.2 shows the results with the SugarCubes variant (the consume

method is directly implemented in Java). The counter used by consume is
both implemented as an integer of type int and as a long integer of type
long. The implementation with int is:

class FUN_consume implements Fun

{

public void exec(final String arg){

int len = Integer.valueOf(arg);

int x = 0;

for(int i = 0 ; i < len ;i++) x++;

}

}

Figure 3.3 shows the execution time when the JIT of Java is switched
off (option -Xint).

1machine characteristics: Dell Latitude, Linux 2.6.35 processor Intel Core i5, 2.4 GHz,

4GB of memory

61

DSL Implementation

SC + JIT long int

real 0m30.658 0m1.899s
user 1m7.288s 0m3.692s
sys 0m0.160s 0m0.028

Figure 3.2: SugarCubes variant with JIT

SC - JIT long int

real 6m32.884s 3m34.355s
user 19m5.076s 10m25.387s
sys 0m13.617s 0m5.044s

Figure 3.3: SugarCubes variant without JIT

3.3.3 ReactiveML

Figure 3.4 shows the results with the ReactiveML variant (the consume

method is directly implemented in ReactiveML).
The code of consume is:

let consume n =

let x = ref 0 in

for i = 1 to n do

x := !x + 1

done

RML

real 1m27.292s
user 0m39.946s
sys 0m0.584s

Figure 3.4: ReactiveML variant

3.3.4 Scheme/Bigloo

The results for the Scheme/Bigloo variant are shown in Figure 3.5. We have
considered the two cases, where the counter is implemented as an integer
and as a long.

62

Benchmarks

Scheme long int

real 47m34.820s 4m40.714s
user 76m53.744s 8m0.614s
sys 4m9.536s 0m4.572s

Figure 3.5: Scheme/Bigloo variant

3.3.5 Interpretation

With the FunLoft, SugarCubes and Scheme/Bigloo variants, we see that the
user time is (more or less) twice the real time, which shows that the two cores
are running simultaneously at full speed. The two instances of consume are
indeed executed in real parallelism by the two cores. The ReactiveML vari-
ant does not use the two cores in an optimal way; it seems to be slowed down
by the presence of JoCaml which introduces a communication overhead.

The efficiency of the SugarCubes variant heavily depends on the JIT of
Java. We see also that it depends on the use of integers instead of longs.
Note that in the FunLoft variant, integers are coded as long long integers
of C.

The dependence on the choice between integers and longs is also clear
in the Scheme/Bigloo variant. Note that in this variant, no optimization is
performed in the reactive engine; optimization was not the focus and the
efficiency of this variant could be clearly improved in this respect.

63

DSL Implementation

64

Part II

CRL

Chapter 4

The Core Reactive Language
CRL

In this chapter we focus on a core reactive language (CRL) without memory.
We choose a deterministic parallel operator with a small-step semantics. In
CRL which is a variation of the left-right merge which is already present in
SugarCubes or, in a different form, in [7].

As in DSL, all CRL programs are reactive, thanks to a clear sepa-
ration between the loop construct loop s end and the iteration construct
repeat exp do s end, and to our semantics for loops, which requires them to
yield the control at each iteration of their body. This chapter and the next
one will be more formal than the previous ones. We will study the small-step
semantics of CRL in depth and give the formal proof of reactivity, given that
the operator ∤ has not been studied previously. In the proofs, we shall only
consider the most interesting cases, referring to [15] for complete proofs.

The rest of this chapter is organized as follows. Sections 4.1 and 4.2
present the syntax and the semantics of the language CRL. Section 4.3 is
devoted to proving reactivity of CRL scripts.

4.1 Syntax

In this section we introduce the syntax of CRL. Let V al be a set of values,
ranged over by v, v′, V ar a set of variables, ranged over by x, y, z, and
Events a set of events, ranged over by ev, ev′. A fixed valuation function
V : V ar → V al for open terms is used to evaluate open expressions and
execute open terms. There are two syntatic categories: expressions and
scripts. Expression execution finishes immediately, but script execution can

The Core Reactive Language CRL

take more than one instant or never terminate (a looping script).

4.1.1 Expressions

An expression exp ∈ Exp is either a basic value, or a variable, or the
value returned by an operator. Letting −→exp denote a tuple of expressions
exp1, . . . , expn, the syntax of expressions is:

exp ∈ Exp ::= v | x | op(−→exp)

We note that the evaluation of an operator op(−→exp) is instantaneous,
and therefore so is the evaluation of an expression exp, denoted by exp v,
which is formally defined by the three rules:

v v

V (x) = v

x v

∀i ∈ {1, . . . , n} . expi vi op(v1, . . . , vn) = v

op(−→exp) v

In the rest of this thesis we will not make any difference between opera-
tors and functions.

4.1.2 Scripts

We now present the syntax of CRL scripts. Alongside with typical se-
quential operators, CRL like DSL includes four operators that are com-
monly found in reactive languages, cooperate, generate ev, await ev and
do s watching ev, as well as a binary asymmetric parallel operator, denoted
by ∤ , which performs a deterministic scheduling on its components. This
operator is very close to that used in [8] and, earlier on, in the implementa-
tion of SugarCubes [28]. However, while in [8] and [28] each parallel compo-
nent was executing as long as possible, our operator ∤ implements a form
of prioritized scheduling, where the first component yields the control only
when terminating or suspending (late cooperation), while the second yields
it as soon as it generates an event that unblocks the first component (early
cooperation).

The syntax of scripts is defined by:

68

Semantics

s ∈ Scripts ::= nothing

| s; s
| s ∤ s
| cooperate
| generate ev
| await ev
| do s watching ev
| loop s end
| repeat exp do s end
| if exp then s else s end

4.2 Semantics

This section presents the operational semantics of CRL. Programs proceed
through a succession of instants, transforming sets of events. There are two
transition relations, both defined on configurations of the form 〈s, E〉, where
s is a script and E ⊆ Events is an event environment, i.e. a set of events
that are currently present.

Let us first give the general idea of these two transition relations:

1. The small-step transition relation describes the step-by-step execution
of a configuration within an instant. The general format of a transition
is:

〈s, E〉→ 〈s′, E′〉

where:

• s is the script to execute;

• E is the starting event environment;

• s′ is the rewritten script (residual script);

• E′ is the resulting event environment: E′ coincides with E if
the transition does not generate any new event. Otherwise E′ =
E ∪ {ev}, where ev is the new generated event.

2. The tick transition relation describes the passage from one instant to
the next, and applies only to suspended configurations. A transition
of this kind has always the form:

69

The Core Reactive Language CRL

〈s, E〉 →֒ 〈[s]E , ∅〉

where the resulting event environment is empty and [s]E is a “recondi-
tioning” of script s for the next instant, possibly allowing it to resume
execution at the next instant even without the help of new events from
the environment (e.g. cooperate).

Before formally defining 〈s, E〉→ 〈s′, E′〉 and 〈s, E〉 →֒ 〈[s]E , ∅〉, we in-
troduce the suspension predicate 〈s, E〉‡, which holds when s is suspended
in the event environment E, namely when s waits for some event not con-
tained in E, or when s deliberately yields the control for the current instant
by means of a cooperate instruction. The rules defining the predicate ‡ are
given below:

〈cooperate, E〉‡ (coop)
ev /∈ E

〈await ev, E〉‡
(waits)

〈s, E〉‡

〈do s watching ev, E〉‡
(watchs)

〈s1, E〉‡

〈s1; s2, E〉‡
(seqs)

〈s1, E〉 ‡ 〈s2, E〉‡

〈s1 ∤ s2, E〉‡
(pars)

The reconditioning function [s]E prepares s for the next instant: it erases
all guarding cooperate instructions, as well as all guarding do s′ watching ev
instructions whose time-out event ev is in E (i.e. has been generated). The
rules of the reconditioning function are given below:

[cooperate]E = nothing [await ev]E = await ev

[do s watching ev]E =

{

nothing if ev ∈ E

do [s]E watching ev otherwise

[s1; s2]E = [s1]E ; s2 [s1 ∤ s2]E = [s1]E ∤ [s2]E

70

Semantics

The tick transition relation is then defined by the unique rule:

〈s, E〉‡

〈s, E〉 →֒ 〈[s]E , ∅〉
(tick)

The small-step transition relation is defined by the following rules. We
note that to deal with the possibility for a script to get suspended, we chose
the smallest possible grain of parallelism; for example, a full step is devoted
to the evaluation of the boolean expression of a test, while the execution of
the chosen branch is left for a future step. In this way, the execution of the
test can progress even if the chosen branch is suspended. In other words, we
chose to make each step as elementary as possible.

We assume scripts are well-typed with respect to a standard type system
that ensures that in if exp then s1 else s2 end and repeat exp do s end the
expression exp evaluates respectively to a boolean and to an integer bigger
or equal to one.

We give next the semantics of CRL scripts. We comment on the most
interesting transition rules.

Sequence

〈s1, E〉→ 〈s
′
1, E

′〉

〈s1; s2, E〉→ 〈s
′
1; s2, E

′〉
(4.1)

〈nothing ; s, E〉→ 〈s, E〉 (4.2)

Parallel

〈s1, E〉→ 〈s
′
1, E

′〉

〈s1 ∤ s2, E〉→ 〈s′1 ∤ s2, E
′〉

(4.3)

The execution of a parallel script always starts with its left branch.

〈nothing ∤ s, E〉→ 〈s, E〉 (4.4)

71

The Core Reactive Language CRL

Once the left branch is over, the script reduces to its right branch.

〈s1, E〉 ‡ 〈s2, E〉→ 〈s
′
2, E

′〉

〈s1 ∤ s2, E〉→ 〈s1 ∤ s′2, E
′〉

(4.5)

If the left branch is suspended, then the right branch executes until
unblocking the left branch.

〈s, E〉‡

〈s ∤ nothing, E〉→ 〈s, E〉
(4.6)

Thus early cooperation is required in the right branch. To avoid non-
determinism, a terminated right branch can only be eliminated if the left
branch is suspended.

Generate

〈generate ev, E〉→ 〈nothing, E ∪ {ev}〉 (4.7)

Await

ev ∈ E

〈await ev, E〉→ 〈nothing, E〉
(wait) (4.8)

Watching

〈s, E〉→ 〈s′, E′〉

〈do s watching ev, E〉→ 〈do s′ watching ev, E′〉
(4.9)

A do s watching ev executes its body until termination or suspension,
reducing to nothing when its body terminates, and getting processed by
the reconditioning function when its body suspends.

〈do nothing watching ev, E〉→ 〈nothing, E〉 (4.10)

We note that the semantics of watching statement is not the same as in
DSL, where the watching body is killed as soon as the event is generated.

72

Semantics

Loop

〈loop s end, E〉→ 〈(s ∤ cooperate); loop s end, E〉 (4.11)

A loop s end executes its body cyclically: a cooperate instruction is
systematically added in parallel to its body to avoid instantaneous loops,
i.e. divergence within an instant1.

Repeat

exp n n ≥ 1

〈repeat exp do s end, E〉→ 〈 s; . . . ; s
︸ ︷︷ ︸

n times

, E〉
(4.12)

exp n n < 1

〈repeat exp do s end, E〉→ 〈nothing, E〉
(4.13)

If

exp tt

〈if exp then s1 else s2 end, E〉→ 〈s1, E〉
(4.14)

exp ff

〈if exp then s1 else s2 end, E〉→ 〈s2, E〉
(4.15)

The small-step transition relation satisfies two simple properties: deter-
minism and incremental production of events throughout an instant.

Corollary 4.2.1 (Determinism)

Let s ∈ Scripts and E ⊆ Events. Then:

s 6= nothing ⇒ either 〈s, E〉 ‡ or ∃ ! s′, E′ . 〈s, E〉→ 〈s′, E′〉

1In general, we shall call “instantaneous” any property that holds within an instant.

73

The Core Reactive Language CRL

Proof By inspecting the suspension and transition rules, it is immediate
to see that at most one transition rule applies to each configuration 〈s, E〉. �

Lemma 4.2.1 (Event persistence)

Let s ∈ Scripts and E ⊆ Events. Then: 〈s, E〉→ 〈s′, E′〉 ⇒ E ⊆ E′

Proof Straightforward, since the only transition rule that changes the event
environment E is the rule for generate ev, which adds the event ev to E.
�

We define now the notion of instantaneous convergence, which is at the
basis of the reactivity property of CRL programs. Let us first introduce
some notation.

The timed multi-step transition relation 〈s, E〉 ⇒n 〈s
′, E′〉 is defined by:

〈s, E〉 ⇒0 〈s, E〉

〈s, E〉→ 〈s′, E′〉 ∧ 〈s′, E′〉 ⇒n 〈s
′′, E′′〉 ⇒ 〈s, E〉 ⇒n+1 〈s

′′, E′′〉

Then the multi-step transition relation 〈s, E〉 ⇒ 〈s′, E′〉 is given by:

〈s, E〉⇒ 〈s′, E′〉 ⇔ ∃n . 〈s, E〉 ⇒n 〈s
′, E′〉

The immediate convergence predicate is defined by:

〈s, E〉 ‡g ⇔ 〈s, E〉 ‡ ∨ s = nothing

We define now the relation and the predicate of instantaneous conver-
gence:

Definition 4.2.1 (Instantaneous convergence)

〈s, E〉 ⇓ 〈s′, E′〉 if 〈s, E〉 ⇒ 〈s′, E′〉 ∧ 〈s′, E′〉 ‡g
〈s, E〉 ⇓ if ∃s′, E′ . 〈s, E〉 ⇓ 〈s′, E′〉

The relation and predicate of instantaneous termination are defined simi-
larly:

Definition 4.2.2 (Instantaneous termination)

〈s, E〉 −⇓ E′ if 〈s, E〉 ⇓ 〈nothing, E′〉

〈s, E〉 −⇓ if ∃E′ . 〈s, E〉 −⇓ E′

74

Reactivity

The relation 〈s, E〉 ⇓ 〈s′, E′〉 defines the overall effect of the program s
within an instant, starting with the set of events E.

As an immediate corollary of Proposition 4.2.1, the relation ⇓ is a func-
tion.

The timed versions of 〈s, E〉 ⇓ 〈s′, E′〉, 〈s, E〉 ⇓, 〈s, E〉 −⇓ 〈s′, E′〉 and

〈s, E〉 −⇓ are defined in the expected way.
In the next section we prove an important property of CRL, namely

that every configuration 〈s, E〉 instantaneously converges. This is true in
particular for initial configurations, where E = ∅. As for DSL, this property
is called reactivity. Since CRL has a new parallel operator (∤) which has not
been studied previously, we give a formal proof of reactivity.

4.3 Reactivity

In this section we prove the reactivity of CRL programs. In fact, we shall
prove a stronger property than reactivity, namely that every configuration
〈s, E〉 instantaneously converges in a number of steps which is bounded by
the instantaneous size of s, denoted by size(s). The intuition for size(s)
is that the portion of s that sequentially follows a cooperate instruction
should not be taken into account, as it will not be executed in the current
instant. Moreover, if s is a loop, size(s) should cover a single iteration of its
body.

To formally define the function size(s), we first introduce an auxiliary
function dsize(s) (where “d” stands for “decorated”) that assigns to each
program an element of (Nat×Bool). Then size(s) will be the first projec-
tion of dsize(s). Intuitively, if dsize(s) = (n, b), then n is an upper bound
for the number of steps that s can execute within an instant; and b is tt or
ff depending on whether or not a cooperate instruction is reached within
the instant. For conciseness, we let n∧ stand for (n, tt), n stand for (n,ff),
and n◦ range over {n∧, n}.

The difference between n∧ and n will essentially show when computing
the size of a sequential composition: if the decorated size of the first com-
ponent has the form n∧, then a cooperate has been met and the counting
will stop; if it has the form n, then n will be added to the decorated size of
the second component.

75

The Core Reactive Language CRL

Definition 4.3.1 (Instantaneous size)

The function size : Scripts→ Nat is defined by:

size(s) = n if (dsize(s) = n ∨ dsize(s) = n∧).

where the function dsize : Scripts→ (Nat×Bool) is given inductively by:

dsize(nothing) = 0 dsize(cooperate) = 0∧

dsize(generate ev) = dsize(await ev) = 1

dsize(s1; s2) =

{

n1
∧ if dsize(s1) = n1

∧

(1 + n1 + n2)
◦ if dsize(s1) = n1 ∧ dsize(s2) = n2

◦

dsize(s1 ∤ s2) =







(1 + n1 + n2)
∧ if dsize(s1) = n1

∧ ∧ dsize(s2) = n2

(1 + n1 + n2)
∧ if dsize(s1) = n1 ∧ dsize(s2) = n2

∧

(1 + n1 + n2)
◦ if dsize(s1) = n1

◦ ∧ dsize(s2) = n2
◦

dsize(repeat exp do s end) = (m+ (m× n))◦ if dsize(s) = n◦ ∧ exp m

dsize(loop s end) = (2 + n)∧ if dsize(s) = n◦

dsize(do s watching ev) = (1 + n)◦ if dsize(s) = n◦

dsize(if exp then s1 else s2 end) =







1)(1 +max{n1, n2})
∧,

if dsize(si) = ni
∧, i = 1, 2

2)(1 +max{n1, n2}),

if for i 6= j dsize(si) = ni ∧

dsize(sj) = nj
◦

76

Reactivity

The following lemma establishes that size(s) decreases at each step of a
small-step execution:

Lemma 4.3.1 (Size reduction within an instant)

∀s ∀E (〈s, E〉→ 〈s′, E′〉 ⇒ size(s′) < size(s))

Proof The use of dsize in the definition of size(s) makes the proof not
entirely straightforward. We prove by induction on the structure of s the
following stronger statement, where dsize(s) ↾2 indicates the second projec-
tion of dsize(s):

〈s, E〉→ 〈s′, E′〉 ⇒

{

i) size(s′) < size(s)

ii) dsize(s)↾2 = tt ⇒ dsize(s′)↾2 = tt

Here we are only going to consider the most interesting cases:

• Basic cases:

– s = generate ev. In this case, the transition is inferred by
Rule (4.7) and we have:

〈generate ev, E〉→ 〈nothing, E ∪ {ev}〉

Since size(nothing) = 0 < 1 = size(generate ev), we may con-
clude.

• Inductive cases:

– s = loop s0 end. In this case the transition is inferred by Rule (4.11):

〈loop s end0, E〉→ 〈s0 ∤ cooperate; loop s end0, E〉

Since dsize(s0 ∤ cooperate) = (1 + size(s0))
∧, we also have:

dsize(s0 ∤ cooperate; loop s end0) = (1 + size(s0))
∧

and thus size(s′) = 1 + size(s0) < 2 + size(s0) = size(s).

Moreover, it is immediate to see that Clause ii) holds too, since
we have both dsize(s)↾2 = tt and dsize(s′)↾2 = tt .

77

The Core Reactive Language CRL

– s = repeat exp do s0 end. In this case the expression exp evalu-
ates to some natural number m ≥ 1 and the transition is inferred
by Rule (4.12):

exp m

〈repeat exp do s end0, E〉→ 〈

m times
︷ ︸︸ ︷
s0; . . . ; s0, E〉

Then, if dsize(s0) = n∧
0 , we have size(s′) = n0. If instead

dsize(s0) = n0, then size(s′) = (m−1)+(m×n0) < m+(m×n0) =
size(s).

Moreover, since by definition dsize(repeat exp do s0 end) ↾2 = tt
if and only if dsize(s0)↾2 = tt , Clause ii) holds too.

– s = s1 ∤ s2. Then the transition is inferred by one of the four
Rules (4.3-4.6). We examine the four cases in turn.

1. Rule (4.3). In this case the component s1 moves:

〈s1, E〉→ 〈s
′
1, E

′〉

〈s1 ∤ s2, E〉→ 〈s′1 ∤ s2, E
′〉

Here s′ = s′1 ∤ s2, and by induction size(s′1) < size(s1), hence
size(s′) = 1+ size(s′1) + size(s2) < 1 + size(s1) + size(s2) =
size(s). As for Clause ii), note that dsize(s1 ∤ s2) ↾ 2 =
tt implies dsize(si) ↾ 2 = tt for at least one i ∈ {1, 2}. If
dsize(s2) ↾2 = tt , then we obtain dsize(s′1 ∤ s2) ↾2 = tt by
definition. If dsize(s1) ↾2 = tt , then dsize(s′1) ↾2 = tt follows
by induction, whence we deduce again dsize(s′1 ∤ s2)↾2 = tt .

2. Rule (4.4). In this case s1 = nothing and we have:

〈s1 ∤ s2, E〉→ 〈s2, E〉

Here s′ = s2 and size(s′) = size(s2) < 1+ size(s2) = size(s).
Moreover, it is immediate to see that Clause ii) holds too,
since dsize(s)↾2 = tt ⇔ dsize(s′)↾2 = tt .

3. Rule (4.5). Here 〈s1, E〉‡ and the component s2 moves:

〈s1, E〉 ‡ 〈s2, E〉→ 〈s
′
2, E

′〉

〈s1 ∤ s2, E〉→ 〈s1 ∤ s′2, E
′〉

78

Reactivity

In this case we apply induction on s2 and the reasoning is
completely symmetric to that for Rule (4.3) above.

4. Rule (4.6). In this case s2 = nothing and we have:

〈s1, E〉‡

〈s1 ∤ nothing, E〉→ 〈s1, E〉

In this case, the reasoning is symmetric to that for Rule (4.4)
above.

�

As a consequence of Lemma (4.3.1), when a script executes n steps, its
size will decrease by at least n, as expressed by the following:

Corollary 4.3.1 Let s ∈ Scripts. For any E ⊆ Events:

〈s, E〉 ⇒n 〈s
′, E′〉 ⇒ n ≤ size(s)− size(s′)

Proof Immediate, by induction on the length n of the computation. �

We are now ready to prove our main result, namely that every program
s instantaneously converges in a number of steps that is bounded by size(s).

Theorem 4.3.2 (Script reactivity) ∀s, ∀E (∃n ≤ size(s) 〈s, E〉 ⇓n)

Proof By simultaneous induction on the structure and on the size of s.
The basic cases are the same for both inductions. In the inductive cases,
the induction will always be on the structure except for the case s = s1 ∤ s2,
where it will be on the size.

We consider only the main cases:

• Basic cases (s has no proper subterms and size(s) ∈ {0, 1})

1. s = cooperate. In this case 〈s, E〉‡, and thus we get again the
result for n = 0, since by definition 〈s, E〉‡ ⇒ (〈s, E〉 ⇓ 0 〈s, E〉).

Here we have n = 0 ≤ size(cooperate) = 0.

79

The Core Reactive Language CRL

2. s = generate ev. In this case, by Rule (4.7) there is a transition:

〈generate ev, E〉→ 〈nothing, E ∪ {ev}〉

Since 〈nothing, E ∪ {ev}〉 ⇓ 0 〈nothing, E ∪ {ev}〉, by definition
of ⇓n it follows that 〈generate ev, E〉 ⇓ 1 〈nothing, E ∪{ev}〉.

Here we have n = 1 ≤ size(generate ev) = 1.

• Inductive cases (s has proper subterms and size(s) ≥ 1)

1. s = s1 ∤ s2. By induction ∃n1 ≤ size(s1) . 〈s1, E〉 ⇓n1
〈s′1, E1〉.

We distinguish two cases:

– If s′1 = nothing, then by applying Rule (4.4) we obtain:

〈s′1 ∤ s2, E1〉→ 〈s2, E1〉

By induction ∃n2 ≤ size(s2) . 〈s2, E1〉 ⇓n2
〈s′2, E2〉. Hence

there is a transition sequence:

〈s1 ∤ s2, E〉 ⇒n1
〈s′1 ∤ s2, E1〉→ 〈s2, E1〉 ⇓n2

〈s′2, E2〉

We conclude that 〈s1 ∤ s2, E〉 ⇓n 〈s
′
2, E2〉, with n = n1 +1+

n2 .

Since ni ≤ size(si) for i = 1, 2, we have that n = n1+1+n2 ≤
size(s1) + 1 + size(s2) = size(s1 ∤ s2).

Note that this case is entirely similar to sequential composi-
tion s = s1 ; s2 when s′1 = nothing.

– If 〈s′1, E1〉‡, there are two subcases:

(a) 〈s2, E1〉‡, in which case we have 〈s′1 ∤ s2, E1〉‡ by Rule (pars)
of the suspension predicate, and thus 〈s1 ∤ s2, E〉 ⇓n1

〈s′1 ∤ s2, E1〉. Here n = n1 ≤ size(s1) ≤ size(s1 ∤ s2).
(b) ¬〈s2, E1〉‡. There are two possibilities:

- If s2 = nothing, then by Rule (4.6) we have:

〈s′1 ∤ s2, E1〉→ 〈s
′
1, E1〉

Hence there is a transition sequence:

〈s1 ∤ s2, E〉 ⇒n1
〈s′1 ∤ s2, E1〉→ 〈s

′
1, E1〉 ‡

and thus we have 〈s1 ∤ s2, E〉 ⇓n 〈s
′
1, E1〉, with n =

n1 + 1.

Since n1 ≤ size(s1), we have n = n1 + 1 ≤ size(s1) + 1+
size(s2) = size(s1 ∤ s2).

80

Reactivity

- If s2 6= nothing, then we may apply induction to get
∃n2 ≤ size(s2) . 〈s2, E1〉 ⇓n2

〈s′2, E2〉. Since ¬〈s2, E1〉‡,
we know that s′2 6= s2 and therefore size(s′2) < size(s2).
This implies that size(s′1 ∤ s′2) < size(s1 ∤ s2), thus we
may now apply induction on the size of s′1 ∤ s

′
2 to obtain:

∃n′ ≤ size(s′1 ∤ s
′
2) . 〈s

′
1 ∤ s

′
2, E2〉 ⇓n′ 〈s′, E′〉.

In conclusion we have:

〈s1 ∤ s2, E〉 ⇒n1
〈s′1 ∤ s2, E1〉 ⇒n2

〈s′1 ∤ s
′
2, E2〉 ⇓n′ 〈s′, E′〉

and thus 〈s1 ∤ s2, E〉 ⇓n 〈s
′, E′〉, with n = n1 + n2 + n′.

By Corollary 4.3.1 (n1+n2) ≤ size(s1 ∤ s2)−size(s′1 ∤ s
′
2).

By induction n′ ≤ size(s′1 ∤ s
′
2). Then n = (n1+n2)+n′ ≤

(size(s1 ∤ s2)−size(s′1 ∤ s
′
2))+size(s′1 ∤ s

′
2) = size(s1 ∤ s2).

2. s = repeat exp do s1 end. If exp m for somem ≥ 1, Rule (4.12)
gives:

〈repeat exp do s1 end, E〉→ 〈

m times
︷ ︸︸ ︷
s1; . . . ; s1, E〉

By induction ∃n1 ≤ size(s1) . 〈s1, E〉 ⇓n1
〈s′1, E1〉. We distin-

guish two cases.

(a) If m = 1, we can immediately conclude that 〈s, E〉 ⇓ 1+n1

〈s′1, E1〉.

(b) If m > 1, let s2 =

m−1 times
︷ ︸︸ ︷
s1; . . . ; s1. From 〈s1, E〉 ⇓n1

〈s′1, E1〉, by
Rule (4.1) we deduce 〈s1; s2, E〉 ⇒n1

〈s′1; s2, E1〉. There are
two possibilities:

– 〈s′1, E1〉‡. Then also 〈s′1; s2, E1〉‡ by Rule (4.2) of the
suspension predicate. Thus 〈s1; s2, E〉 ⇓n1

〈s′1; s2, E1〉‡.
Whence we deduce that 〈s, E〉 ⇓ 1+n1

〈s′1; s2, E1〉.

– s′1 = nothing. In this case there exist n2, . . . , nm and
E2, . . . , Em such that:

〈s1; s2, E〉 ⇒n1
〈nothing; s2, E1〉 → 〈s2, E1〉

⇒n2
〈nothing;

m−2 times
︷ ︸︸ ︷
s1; . . . ; s1, E1〉 → 〈

m−2 times
︷ ︸︸ ︷
s1; . . . ; s1, E2〉

·
·
·
⇒nm

〈nothing, Em〉

81

The Core Reactive Language CRL

By induction nk ≤ size(s1) for each k = 1, . . . ,m, thus

we may conclude that 〈s1; s2, E〉
−⇓n′ with n′ = (m− 1) +

n1 + · · ·+ nm ≤ (m− 1) + (m× size(s1)). Therefore we

may conclude that 〈s, E〉−⇓nwith n = m+n1+· · ·+nm ≤
m+ (m× size(s1)).

3. s = loop s1 end. By Rule (4.11) we have

(∗) 〈loop s1 end, E〉→ 〈s1 ∤ cooperate; loop s1 end, E〉

By induction ∃n1 ≤ size(s1) . 〈s1, E〉 ⇓n1
〈s′1, E1〉. This means

that 〈s1, E〉 ⇒n1
〈s′1, E1〉. Then, by repeated applications of the

Rules (4.3) and (4.1), we get:

(∗∗) 〈s1 ∤ cooperate; loop s1 end, E〉 ⇒n1
〈s′1 ∤ cooperate; loop s1 end, E1〉

There are now two possibilities:

(a) If 〈s′1, E1〉‡, then by the Rules (pars) and (seqs) of the suspen-
sion predicate also 〈s′1 ∤ cooperate; loop s1 end, E1〉‡, and
thus we may conclude that 〈loop s1 end, E〉 ⇓ 1+n1

〈s′1 ∤
cooperate; loop s1 end, E1〉.

Since n1 ≤ size(s1), we get n = 1 + n1 ≤ 1 + size(s1) =
size(s).

(b) If s′1 = nothing, then by Rule (4.4) we have:

〈s′1 ∤ cooperate, E1〉→ 〈cooperate, E1〉

whence by Rule (4.1):

(∗ ∗ ∗) 〈s′1 ∤ cooperate; loop s1 end, E1〉→ 〈cooperate; loop s1 end, E1〉

Since 〈cooperate; loop s1 end, E1〉‡ by the Rules (coops) and (seqs)
of the suspension predicate, we may now recompose (∗), (∗∗)
and (∗ ∗ ∗) to get:

〈loop s1 end, E〉 ⇓ 1+n1+1 〈cooperate; loop s1 end, E1〉

In this case we have n = 2 + n1 ≤ 2 + size(s1) = size(s).

82

Reactivity

�

The idea of “slowing down” loops by forcing them to yield the control
at each iteration, which is crucial for our reactivity result, was already used
in [28] for a similar purpose. A similar instrumentation of loops was proposed
in [59]. However, while in our work and in [28] a cooperate instruction is
added in parallel with each iteration of the body of the loop, in [59] it is
added after each iteration of the body. We believe that in a language that
allows a parallel program to be followed in sequence by another program
(which is not the case in [59]), our solution is more efficient in that it avoids
introducing an additional suspension in case the body of the loop already
contains one.

In [11], Amadio and Dabrowski studied the notion of reactivity for a
standard parallel operator. In addition to this property, they give an up-
per bound to the usage of computation resources and memory, based on a
sophisticated control of functions. Given the absence of memory and func-
tions, CRL allows for a much simpler bound, formalized by the notion of
size.

83

The Core Reactive Language CRL

84

Part III

SSL

Chapter 5

Secure Synchronous
Language SSL

We are now going to introduce secure information flow into CRL, obtaining
a Secure Synchronous Language called SSL.

Secure information flow is often formalized via the notion of non-interference
(NI), expressing the absence of dependency between secret inputs and public
outputs (or more generally, between inputs of some confidentiality level and
outputs of lower or incomparable level). The non-interference property is
usually grounded on a notion of semantic equivalence (e.g. bisimulation).

SSL is a kind of minimal language for studying the problem of secure
information flow in synchronous reactive programs. We define two non-
interference properties for SSL, a fine-grained one and a coarse-grained
one, based on corresponding bisimulation equivalences. We also introduce a
security type system, which we prove to ensure both non-interference prop-
erties. Thanks to the design choices of the language, this type system allows
for a precise treatment of termination leaks, improving on previous work.

The work presented in this chapter is based on the paper [16], which
in turn builds on the work of Almeida Matos et al. in [8], which laid the
basis for the study of non-interference in a synchronous reactive language.
As regards the notion of bisimulation, our work is also related to that of
Amadio [10].

The main contributions of SSL are : 1) the definition of two bisimulation
equivalences for synchronous reactive programs, of different granularity; 2)
the proposal of two properties of reactive non-interference, based on the
above bisimulations, and 3) the presentation of a type system ensuring both
non-interference properties.

Secure Synchronous Language SSL

We note that the domains, syntax and semantics of SSL are the same
as the ones of CRL. The only difference between SSL and CRL is the
introduction of security levels for events and variables..

The rest of this chapter is organised as follows. Section 5.1 introduces
the two bisimulation equivalences and gives some properties of them. In
Section 5.2 we define our two NI properties. Finally, Section 5.4 presents
our security type system and the proof of its soundness.

5.1 Fine-grained and Coarse-grained Bisimilarity

We introduce two bisimulation equivalences (aka bisimilarities) on scripts,
which differ for the granularity of the underlying notion of observation. The
first bisimulation formalizes a fine-grained observation of scripts: the ob-
server is viewed as a script, which is able to interact with the observed
script at any point of its execution. The second reflects a coarse-grained ob-
servation of scripts: here the observer is viewed as part of the environment,
which interacts with the observed script only at the start and the end of
instants.

Let us start with an informal description of the two bisimilarities:

1. Fine-grained bisimilarity ≈ fg . In the bisimulation game, each small
step must be simulated by a (possibly empty) sequence of small steps,
and each instant change must be simulated either by an instant change,
in case the continuation is observable, or by an unobservable behaviour
otherwise.

2. Coarse-grained bisimilarity ≈ cg . Here, each converging sequence of
steps must be simulated by a converging sequence of steps, at each
instant. For instant changes, the requirement is the same as for fine-
grained bisimulation.

As may be expected, the latter equivalence is more abstract than the
former, as it only compares the I/O behaviours of scripts (as functions on
sets of events) at each instant, while the former also compares their interme-
diate results. Let us move now to the formal definitions of the equivalences
≈ fg and ≈ cg . For technical convenience, we first extend the reconditioning
function to non-suspended programs as follows:

Notation. xsyE
def
=

{

[s]E if 〈s, E〉‡

s otherwise

88

Fine-grained and Coarse-grained Bisimilarity

Definition 5.1.1 (Fine-grained bisimulation)

A symmetric relation R on scripts is a fg-bisimulation if s1R s2 implies,
for any E ⊆ Events:

1) 〈s1, E〉→ 〈s
′
1, E

′〉 ⇒ ∃ s′2 . (〈s2, E〉⇒ 〈s
′
2, E

′〉 ∧ s′1R s′2)

2) 〈s1, E〉 ‡ ⇒ ∃ s′2 . (〈s2, E〉 ⇓ 〈s
′
2, E〉 ∧ xs1yE R xs

′
2yE)

Then s1, s2 are fg-bisimilar, s1 ≈
fg s2, if s1 R s2 for some fg-bisimulation

R.

The equivalence ≈ fg is time-insensitive, and thus insensitive to internal
moves. It is also termination-insensitive, as it cannot distinguish proper
termination from suspension (recall that no divergence is possible within an
instant and thus the execution of a diverging script always spans over an
infinity of instants). On the other hand, ≈ fg is sensitive to the order of gen-
eration of events and to repeated emissions of the same event (“stuttering”).
Typical examples are:

(nothing ; generate ev) ≈ fg generate ev 6≈ fg (generate ev ; generate ev)

(generate ev1 ∤ generate ev2) 6≈ fg (generate ev2 ∤ generate ev1)

nothing ≈ fg cooperate ≈ fg loop cooperate end

Definition 5.1.2 (Coarse-grained bisimulation)

A symmetric relation R on scripts is a cg-bisimulation if s1R s2 implies,
for any E ⊆ Events:

〈s1, E〉 ⇓ 〈s
′
1, E

′〉 ⇒ ∃ s′2 . (〈s2, E〉 ⇓ 〈s
′
2, E

′〉 ∧ xs′1yE′ R xs′2yE′)

Then s1, s2 are cg-bisimilar, s1 ≈
cg s2, if s1 R s2 for some cg-bisimulation

R.

Like ≈ fg , the equivalence ≈ cg is both time-insensitive and termination-
insensitive. Furthermore, it is also stuttering-insensitive and generation-
order-insensitive (that is, it ignores the generation order of events within an
instant). Typically:

generate ev ≈ cg (generate ev ; generate ev)

(generate ev1 ∤ generate ev2) ≈ cg (generate ev2 ∤ generate ev1)

More generally, the equivalence ≈ cg views ∤ as a commutative operator:

89

Secure Synchronous Language SSL

Theorem 5.1.1 (Commutativity of ∤ up to ≈ cg)
∀s1, s2 (s1 ∤ s2 ≈ cg s2 ∤ s1)

Finally, we prove that ≈ fg is strictly included in ≈ cg (the strictness of the
inclusion being witnessed by the last two examples above):

Theorem 5.1.2 (Relation between the bisimilarities)

≈ fg ⊂ ≈ cg

Proof To prove≈ fg ⊆≈ cg It is enough to show that≈ fg is a cg-bisimulation.
Let s1 ≈

fg s2. Suppose that 〈s1, E〉 ⇓ 〈s
′
1, E

′〉. This means that there exists
n ≥ 0 such that:

〈s1, E1〉 = 〈s
0
1, E

0〉→ 〈s11, E
1〉 → · · · → 〈sn1 , E

n〉 = 〈s′1, E
′〉 ‡g

Since s1 ≈
fg s2, by Clauses 1 and 2 of Definition 5.1.1 we have correspond-

ingly:

〈s2, E〉 = 〈s
0
2, E

0〉 ⇒ 〈s12, E
1〉 ⇒ · · · ⇒ 〈sn2 , E

n〉 = 〈s′2, E
′〉 ⇓ (∗)

where si1 ≈
fg si2 for every i < n and xs′1yE′ ≈ fg xs′2yE′ . Then we may

conclude since (∗) can be rewritten as 〈s2, E〉 ⇓ 〈s
′
2, E

′〉. �

Our coarse-grained bisimilarity is very close to the semantic equiva-
lence proposed by Amadio in [10] for a slightly different reactive language,
equipped with a classical non-deterministic parallel operator. By contrast,
the non-interference notion of [8] was based on a fine-grained bisimilarity
(although bisimilarity was not explicitly introduced in [8], it was de facto
used to define non-interference). Note that reactivity was not a concern in ei-
ther [8] or [10] (nevertheless, it had been thoroughly studied in previous work
by Amadio et al. [9]). We believe that coarse-grained bisimilarity makes full
sense when coupled with reactivity, since it ignores instantaneously diverg-
ing computations and thus, if applied to non-reactive programs, it would
equate any two instantaneously diverging programs.

Finally, it should be noted that, since our left-parallel operator ∤ is
deterministic, we could as well use trace-based equivalences rather than
bisimulation-based ones. However, bisimulation provides a convenient means
for defining non-interference in a concurrent setting. Moreover, as our study
for CRL is meant to provide the basis for the treatment of a fully-fledged
distributed reactive language, including a notion of site and asynchronous

90

Security property

parallelism between sites, we chose to adopt bisimulation-based equivalences
from the start.

This concludes our discussion about semantic equivalences. We turn now
to the definition of non-interference, which is grounded on that of bisimula-
tion.

5.2 Security property

In this section we define two non-interference properties for scripts. As usual
when dealing with secure information flow, we assume a finite lattice (S,≤)
of security levels, ranged over by τ, σ, ϑ. We denote by ⊔ and ⊓ the join and
meet operations on the lattice, and by ⊥ and ⊤ its minimal and maximal
elements.

In SSL, the objects that are assigned a security level are events and
variables. An observer is identified with a downward-closed set of security
levels (for short, a dc-set), i.e. a set L ⊆ S satisfying the property: (τ ∈
L ∧ τ ′ ≤ τ) ⇒ τ ′ ∈ L.

A type environment Γ is a mapping from variables and events to their
types, which are just security levels τ, σ. Given a dc-set L, a type envi-
ronment Γ and an event environment E, the subset of E to which Γ as-
signs security levels in L is called the L-part of E under Γ. Similarly, if
V : V ar → V al is a valuation, the subset of V whose domain is given levels
in L by Γ is the L-part of V under Γ.

Two event environments E1, E2 or two valuations V1, V2 are =Γ
L-equal,

or indistinguishable by a L-observer, if their L-parts under Γ coincide:

Definition 5.2.1 (ΓL-equality of event environments and valuations)

Let L ⊆ S be a dc-set, Γ a type environment and V a valuation. Define:

E1 =Γ
L E2 if ∀ ev ∈ Events (Γ(ev) ∈ L ⇒ (ev ∈ E1 ⇔ ev ∈ E2))

V1 =Γ
L V2 if ∀x ∈ V ar (Γ(x) ∈ L ⇒ V1(x) = V2(x))

Let →V ,⇒V ,⇓V denote our various semantic arrows under the valua-
tion V . Then we may define the indistinguishability of two scripts by a
fine-grained or coarse-grained L-observer, for a given Γ, by means of the
following two notions of ΓL-bisimilarity:

91

Secure Synchronous Language SSL

Definition 5.2.2 (Fine-grained ΓL-bisimilarity)

A symmetric relation R on scripts is a fg-ΓL-V1V2-bisimulation if s1R s2
implies, for any E1, E2 such that E1 =Γ

L E2:

1) 〈s1, E1〉 →V1
〈s′1, E

′
1〉

⇒ ∃ s′2, E
′
2 . (〈s2, E2〉 ⇒V2

〈s′2, E
′
2〉 ∧ E′

1=
Γ
LE′

2 ∧ s′1R s′2)

2) 〈s1, E1〉‡ ⇒ ∃ s
′
2, E

′
2 . (〈s2, E2〉 ⇓V2

〈s′2, E
′
2〉 ∧ E1=

Γ
LE′

2 ∧ xs1yE1
R xs′2yE′

2
)

3) and 4) : Symmetric to 1) and 2) for 〈s2, E2〉 under valuation V2.

Then scripts s1, s2 are fg-ΓL-bisimilar, s1 ≈
fg
ΓL s2, if for any V1, V2 such that

V1 =Γ
L V2, s1R s2 for some fg-ΓL-V1V2-bisimulation R.

Definition 5.2.3 (Coarse-grained ΓL-bisimilarity)

A symmetric relation R on scripts is a cg-ΓL-V1V2-bisimulation if s1R s2
implies, for any E1, E2 such that E1 =Γ

L E2:

〈s1, E1〉 ⇓V1
〈s′1, E

′
1〉 ⇒ ∃ s′2, E

′
2 . (〈s2, E2〉 ⇓V2

〈s′2, E
′
2〉 ∧ E′

1=
Γ
LE′

2 ∧

xs′1yE′

1
R xs′2yE′

2
)

Two scripts s1, s2 are cg-ΓL-bisimilar, s1 ≈
cg
ΓL s2, if for any V1, V2 such that

V1 =Γ
L V2, s1 R s2 for some cg-ΓL-V1V2-bisimulation R.

Our reactive non-interference (RNI) properties are now defined as fol-
lows:

Definition 5.2.4 (Fine-grained and Coarse-grained RNI)

A script s is fg-secure in Γ if s ≈ fg
ΓL s for every dc-set L.

A script s is cg-secure in Γ if s ≈ cg
ΓL s for every dc-set L.

In examples, we use superscripts to indicate the level of variables and events.

Example 5.3 The following script is cg-secure but not fg-secure:

s = if x⊤ = 0 then generate ev⊥
1 ∤ generate ev⊥

2

else generate ev⊥
2 ∤ generate ev⊥

1

If we replace the second branch of s by generate ev⊥
1 ; generate ev⊥

2 , then
we obtain a script s′ that is both fg-secure and cg-secure.

In general, from all the equivalences/inequivalences of Definitions 5.1.1
and 5.1.2, we may obtain secure/insecure scripts for the corresponding RNI
property by plugging the two equivalent/inequivalent scripts in the branches
of a high conditional.

92

Type System

Theorem 5.3.1 (Relation between the RNI properties)

Let s ∈ Programs. If s is fg-secure then s is cg-secure.

We conclude this section by comparing our work on SSL with that of
Almeida Matos and al. in [8].

The language examined in [8] is similar to SSL but strictly more ex-
pressive, including imperative constructs, local declarations and a memory.
Here, however, we adopt a slightly different semantics for s ∤ s′ , prescribing
an early cooperation on the right (as described in Section 4.2). This simple
change forces the scheduler to serve the same thread at the start of each
instant, thus avoiding the so-called scheduling leaks of [8], and allowing for a
more relaxed typing rule for ∤ , which is just the standard rule for symmetric
parallel composition.

Moreover, reactivity was not a concern in [8]: as soon as they contained
while loops, scripts were not guaranteed to terminate or suspend within an
instant. Hence, it only made sense to consider a fine-grained notion of non-
interference. By contrast, in SSL all scripts are reactive, thanks to a clear
separation between the loop construct loop s end and the iteration construct
repeat exp do s end, and to our semantics for loops, which requires them to
yield the control at each iteration of their body. This makes it possible
to define a notion of coarse-grained reactive non-interference (RNI), which
accounts only for the I/O behaviour of scripts within each instant. The
coarse-grained RNI property has an advantage over the fine-grained one: it
exploits in a more direct way the structure of reactive computations, and it
recovers the flavor of big-step semantics within each instant, offering a more
abstract NI notion for reactive scripts.

5.4 Type System

We present now our security type system for SSL, which is based on that of
[8], which in turn was inspired by those proposed by Boudol and Castellani
in [22] and by smith in [67] for a standard while concurrent language. The
originality of these type systems is that they associate pairs (τ, σ) of security
levels with scripts, where τ is a lower bound on the level of “writes” and
σ is an upper bound on the level of “reads”. This allows the level of reads
to be recorded, and then to be used to constrain the level of writes in the
remainder of the script. In this way, it is possible to obtain a more precise
treatment of termination leaks1 than in standard type systems.

1Leaks due to different termination behaviors, typically in the branches of a conditional.

In classical parallel while languages, termination leaks may also arise in while loops. This

93

Secure Synchronous Language SSL

Recall that a type environment Γ is a mapping from variables and events
to security levels τ, σ. Moreover, Γ associates a type of the form −→τ → τ
to functions, where −→τ is a tuple of types τ1, . . . , τn. Type judgments for
expressions and scripts have the form Γ ⊢ exp : τ and Γ ⊢ s : (τ, σ)
respectively.

The intuition for Γ ⊢ exp : τ is that τ is an upper bound on the levels
of variables occurring in exp. According to this intuition, subtyping for
expressions is covariant. The intuition for Γ ⊢ s : (τ, σ) is that τ is a lower
bound on the levels of events generated in s (the “writes”of s), and σ is an
upper bound on the levels of events awaited or watched in s and of variables
tested in s (the “reads” or guards of s, formally defined in Definition 5.4.2).
Accordingly, subtyping for scripts is contravariant in its first component,
and covariant in the second.

The typing rules for expressions and scripts are presented respectively
in Figure 5.1 and Figure 5.2. The three rules that increase the guard type
are (Watching), (Repeat) and (Cond1), and those that check it against
the write type of the continuation are (Seq), (Repeat) and (Loop). Note
that there are two more rules for the conditional, factoring out the cases
where either both branches terminate in one instant or both branches are
infinite: indeed, in these cases no termination leaks can arise and thus it is
not necessary to increase the guard level. In Rule (Cond2), FIN denotes
the set of scripts that terminate in one instant, namely those built without
using the constructs await ev, loop and cooperate. In Rule (Cond3), INF
denotes the set of infinite or non-terminating scripts, defined inductively as
follows:

• loop s end ∈ INF ;

• s ∈ INF ⇒ repeat exp do s end ∈ INF ;

• s1 ∈ INF ⇒ s1; s2 ∈ INF ;

• s1 ∈ FIN ∧ s2 ∈ INF ⇒ s1; s2 ∈ INF ;

• s1 ∈ INF ∨ s2 ∈ INF ⇒ s1 ∤ s2 ∈ INF

• s1 ∈ INF ∧ s2 ∈ INF ⇒ if exp then s1 else s2 end ∈ INF

Note that FIN∪INF ⊂ Programs. Examples of scripts that are neither in
FIN nor in INF are: await ev, if exp then nothing else (loop s end) end,
and do (loop s end) watching ev.

is not possible in SSL, given the simple form of the loop construct. On the other hand, is

SSL termination leaks can also occur in repeat statements, and in await statement.

94

Type System

(Val) Γ ⊢ v : ⊥ (Var)
Γ(x) = τ

Γ ⊢ x : τ

(SubExp)
Γ ⊢ exp : σ, σ ≤ σ′

Γ ⊢ exp : σ′

(Fun)
Γ ⊢ −→exp : −→τ ,Γ(f) = −→τ → τ, ∀i .τi ≤ τ

Γ ⊢ f(−→exp) : τ

Figure 5.1: Typing rules for expressions

Definition 5.4.1 (Safe conditionals)
A conditional if exp then s1 else s2 end is safe if s1, s2 ∈ FIN or s1, s2 ∈
INF .

The reason for calling such conditionals “safe” is that they cannot intro-
duce termination leaks, since their two branches have the same termination
behaviour.

We now prove that typability implies security via the classical steps:

Lemma 5.4.1 (Subject Reduction)
Let Γ ⊢ s : (τ, σ). Then:

i) 〈s, E〉→ 〈s′, E′〉 implies Γ ⊢ s′ : (τ, σ);

ii) 〈s, E〉‡ implies Γ ⊢ [s]E : (τ, σ).

Proof By induction on the proof of Γ ⊢ s : (τ, σ). We will prove either
Clause i) or Clause ii) depending on whether 〈s, E〉 is able to move or is
suspended. We are going only to present the important cases.

• Rule (Await). In this case s = await ev. If ev 6∈ E, then it is
immediate to see that Clause ii) holds, since [await ev]E = await ev.
Assume now ev ∈ E. Then Rule (4.8) gives the transition:

ev ∈ E

〈await ev, E〉→ 〈nothing, E〉

95

Secure Synchronous Language SSL

(Nothing) Γ ⊢ nothing : (⊤,⊥)

(Cooperate) Γ ⊢ cooperate : (⊤,⊥)

(Seq)
Γ ⊢ s1 : (τ1, σ1),Γ ⊢ s2 : (τ2, σ2), σ1 ≤ τ2

Γ ⊢ s1 ; s2 : (τ1 ⊓ τ2, σ1 ⊔ σ2)

(Par)
Γ ⊢ s1 : (τ1, σ1),Γ ⊢ s2 : (τ2, σ2)

Γ ⊢ s1 ∤ s2 : (τ1 ⊓ τ2, σ1 ⊔ σ2)

(Generate)
Γ(ev) = τ

Γ ⊢ generate ev : (τ,⊥)

(Await)
Γ(ev) = σ

Γ ⊢ await ev : (⊤, σ)

(Watching)
Γ(ev) = ϑ,Γ ⊢ s : (τ, σ), ϑ ≤ τ

Γ ⊢ do s watching ev : (τ, ϑ ⊔ σ)

(Loop)
Γ ⊢ s : (τ, σ), σ ≤ τ

Γ ⊢ loop s end : (τ, σ)

(Repeat)
Γ ⊢ exp : ϑΓ ⊢ s : (τ, σ), ϑ ⊔ σ ≤ τ

Γ ⊢ repeat exp do s end : (τ, ϑ ⊔ σ)

(Cond1)
Γ ⊢ exp : ϑ,Γ ⊢ si : (τ, σ), i = 1, 2, ϑ ≤ τ

Γ ⊢ if exp then s1 else s2 end : (τ, ϑ ⊔ σ)

(Cond2)
Γ ⊢ exp : ϑ, (Γ ⊢ si : (τ, σ) ∧ si ∈ FIN, i = 1, 2), ϑ ≤ τ

Γ ⊢ if exp then s1 else s2 end : (τ, σ)

(Cond3)
Γ ⊢ exp : ϑ, (Γ ⊢ si : (τ, σ) ∧ si ∈ INF, i = 1, 2), ϑ ≤ τ

Γ ⊢ if exp then s1 else s2 end : (τ, σ)

(SubProg)
Γ ⊢ s : (τ, σ), τ ′ ≤ τ, σ ≤ σ′

Γ ⊢ s : (τ ′, σ′)

Figure 5.2: Typing rules for scripts

96

Type System

Again, we conclude that Clause i) holds using the typing Rules (Noth-
ing) and (SubProg).

• Rule (Seq). In this case s = s1; s2, and Γ ⊢ s : (τ, σ) is deduced from
Γ ⊢ s1 : (τ1, σ1) and Γ ⊢ s2 : (τ2, σ2), where τ = τ1⊓τ2, σ = σ1⊔σ2,
and σ1 ≤ τ2. Assume first that 〈s, E〉 can move, so we need to prove
Clause i). There are two cases:

– s1 6= nothing. Then the transition is obtained by Rule (4.1):

〈s1, E〉→ 〈s
′
1, E

′〉

〈s1; s2, E〉→ 〈s
′
1; s2, E

′〉

Here s′ = s′1; s2. By induction Γ ⊢ s′1 : (τ1, σ1). Then by the
typing Rule (Seq) we obtain Γ ⊢ s′1; s2 : (τ1 ⊓ τ2, σ1 ⊔ σ2) and
we may conclude.

– s1 = nothing. Then the transition is inferred by Rule (4.2):

〈nothing; s2, E〉→ 〈s2, E〉

Here s′ = s2. Since τ1 ⊓ τ2 ≤ τ2 and σ1 ⊔ σ2 ≥ σ2, by the typing
Rule (SubProg) we get:

Γ ⊢ s2 : (τ1 ⊓ τ2, σ1 ⊔ σ2)

and we may conclude.

Suppose now 〈s, E〉‡. In this case we need to prove Clause ii). The
statement 〈s1; s2, E〉‡ is deduced from 〈s1, E〉‡. By induction Γ ⊢
[s1]E : (τ1, σ1). Since [s1; s2]E = [s1]E ; s2, we may then use the typing
Rule (Seq) to obtain Γ ⊢ [s1]E ; s2 : (τ1 ⊓ τ2, σ1 ⊔ σ2) and we may
conclude.

• Rules (Cond1), (Cond2) and (Cond3). Then s = if exp then s1 else s2 end
and ¬〈s, E〉‡. We distinguish two cases:

1. si /∈ FIN for both i ∈ {1, 2} and si /∈ INF for both i ∈ {1, 2}.
Then Γ ⊢ s : (τ, σ) is deduced by the typing Rule (Cond1) from
the hypotheses Γ ⊢ exp : ϑ and Γ ⊢ si : (τ, σ

′) for i ∈ {1, 2},

97

Secure Synchronous Language SSL

where σ = ϑ⊔σ′. Consider the case where exp evaluates to true.
Then the transition is inferred by Rule (4.14):

exp tt

〈if exp then s1 else s2 end, E〉→ 〈s1, E〉

Here s′ = s1. Since Γ ⊢ s1 : (τ, σ′) and σ′ ≤ σ, by the typing
Rule (SubProg) we have Γ ⊢ s1 : (τ, σ) and we may conclude.

2. si ∈ FIN for both i ∈ {1, 2} or si ∈ INF for both i ∈ {1, 2}.
Then, Γ ⊢ s : (τ, σ) is deduced by one of the two typing Rules
(Cond2) or (Cond3), from the hypotheses Γ ⊢ exp : ϑ and
Γ ⊢ si : (τ, σ) for i ∈ {1, 2}. Again, assuming exp evaluates to
true, we get a transition 〈s, E〉→ 〈s1, E〉. Since Γ ⊢ s1 : (τ, σ),
we may immediately conclude.

�

Definition 5.4.2 (Guards and Generated Events)

1) For any s, Guards(s) is the union of the set of events ev such that s con-
tains an await ev or a do s′ watching ev instruction (for some s′), together
with the set of variables x that occur in s as argument of a function or in
the control expression exp of an instruction repeat exp do s′ end or of an
unsafe conditional if exp then s1 else s2 end in s.

2) For any s, Gen(s) is the set of events ev such that generate ev occurs
in s.

Lemma 5.4.2 (Guard Safety for expressions)

If Γ ⊢ exp : ϑ, then Γ(g) ≤ ϑ for every g ∈ Guards(exp).

Proof Immediate, by inspecting the typing rules for expressions. �

The following Lemma establishes that if Γ ⊢ s : (τ, σ), then τ is a lower
bound on the levels of events in Gen(s) and σ is an upper bound on the levels
of events and variables in Guards(s).

Theorem 5.4.1 (Guard Safety and Confinement)

98

Type System

i) If Γ ⊢ s : (τ, σ) then Γ(g) ≤ σ for every g ∈ Guards(s);

ii) If Γ ⊢ s : (τ, σ) then τ ≤ Γ(ev) for every ev ∈ Gen(s).

Proof By induction of the inference of Γ ⊢ s : (τ, σ). We proceed by
case analysis on the last typing rule used in the inference. We prove Clauses
i) and ii) at the same time for each case. We are focussing on the most
interesting cases.

• Basic cases:

1. Rule (Await). Here s = await ev, Guards(s) = {ev} andGen(s) =
∅. Then Clause ii) holds trivially, and Clause i) holds because
the statement Γ ⊢ s : (τ, σ) is deduced from the hypothesis
Γ(ev) = σ.

• Inductive cases:

1. Rule (Seq). Here s = s1; s2 and Γ ⊢ s : (τ, σ) is deduced from
the hypotheses Γ ⊢ s1 : (τ1, σ1) , Γ ⊢ s2 : (τ2, σ2) , τ = τ1 ⊓ τ2,
σ = σ1 ⊔ σ2 and σ1 ≤ τ2. We consider the two Clauses in turn.

– Clause i). We have Guards(s) = Guards(s1) ∪ Guards(s2).
By induction, Γ(gi) ≤ σi for every gi ∈ Guards(si). Since
σi ≤ σ1 ⊔ σ2 = σ, we can conclude.

– Clause ii). We have Gen(s) = Gen(s1)∪Gen(s2). By induc-
tion τi ≤ Γ(evi) for every evi ∈ Gen(si). Since τ = τ1 ⊓ τ2 ≤
τi, we can conclude.

2. Rules (Cond1), (Cond2) and (Cond3).

Here s = if exp then s1 else s2 end and in all cases we have
Gen(s) = Gen(s1) ∪ Gen(s2). In the case of Rule (Cond1), we
have Guards(s) = Guards(s1) ∪ Guards(s2) ∪ Guards(exp) and
the statement Γ ⊢ s : (τ, σ) is deduced from the hypotheses
Γ ⊢ exp : ϑ, Γ ⊢ s1 : (τ, σ′) and Γ ⊢ s2 : (τ, σ′) , for some
σ′ such that ϑ ⊔ σ′ = σ. In the other two cases, Γ ⊢ s : (τ, σ)
is deduced from the hypotheses Γ ⊢ exp : ϑ, Γ ⊢ s1 : (τ, σ)
and Γ ⊢ s2 : (τ, σ), and Guards(s) = Guards(s1) ∪ Guards(s2).
Thus in all cases there exists σ′ ≤ σ such that Γ ⊢ si : (τ, σ′) for
i ∈ {1, 2}. This is all we need to treat the three cases uniformly.
We prove Clauses i) and ii) in turn.

99

Secure Synchronous Language SSL

– Clause i). By induction, for each i we have Γ(gi) ≤ σ′ for ev-
ery gi ∈ Guards(si). Since σ

′ ≤ σ, this is enough to conclude
in the case of Rules (Cond2) and (Cond3). In the case of
Rule (Cond1), we additionally need to prove Γ(g) ≤ σ for
each g ∈ Guards(exp). Recall that in this case σ = σ′ ⊔ ϑ.
Then we may conclude since Γ(g) ≤ ϑ by Lemma 5.4.2.

– Clause ii). We have Gen(s) = Gen(s1) ∪ Gen(s2). By in-
duction τ ≤ Γ(evi) for every evi ∈ Gen(si). Then we can
immediately conclude.

3. Rule (Loop). Straightforward inductive case.

4. Rule (SubProg). In this case Γ ⊢ s : (τ, σ) is deduced from
the hypothesis Γ ⊢ s′ : (τ ′, σ′) for some τ ′, σ′ such that τ ≤ τ ′

and σ′ ≤ σ. By induction Γ(g) ≤ σ′ for every g ∈ Guards(s)
and τ ′ ≤ Γ(ev) for every ev ∈ Gen(s). A fortiori Γ(g) ≤ σ and
τ ≤ Γ(ev).

�

Definition 5.4.3 (ΓL-Highness) Let Γ be a type environment and L be a
downward-closed set of security levels.

1. The set of HΓ,L
syn of syntactically ΓL-high programs is defined by:

HΓ,L
syn = {s ∈ Programs | ∀ ev ∈ Gen(s) Γ(ev) /∈ L}

2. The set of HΓ,L
sem of semantically ΓL-high programs is defined coinduc-

tively by:

s ∈ HΓ,L
sem ⇒ ∀E ⊆ Events







〈s, E〉→ 〈s′, E′〉 ⇒
(E =Γ

L E′

∧ s′ ∈ HΓ,L
sem)

〈s, E〉‡ ⇒ [s]E ∈ H
Γ,L
sem

Since a syntactically ΓL-high program does not contain generated events
of level in L, its behaviour is unobservable for an L-observer. Indeed, it is
easy to show that every syntactically ΓL-high program is also semantically
ΓL-high:

100

Type System

Lemma 5.4.3 (Syntactic ΓL-highness implies semantic ΓL-highness)
For any type environment Γ and dc-set of security levels L: HΓ,L

syn ⊆ H
Γ,L
sem.

Clearly, this inclusion is strict. For instance, the program:

s = if tt then nothing else generate ev⊥ end

is semantically Γ⊥-high but not syntactically Γ⊥-high.
When Γ and L are clear from the context, we will omit them and talk

simply of “syntactically high” and “semantically high” programs.
We introduce now the notions of ΓL-guardedness (borrowed from [8])

and of ΓL-unaffectingness, which will be used to prove our soundness result.
Both these notions are syntactic. Let us briefly explain the intuition

behind them. A program s is ΓL-guarded if it can be typed in Γ with a
type (τ, σ) such that σ belongs to L; since σ is an upper bound for the level
of guards in s (by the Guard Safety Lemma), this means that s contains
only guards of level in L (although the level of expressions controlling safe
conditionals may not be in L); hence its behaviour will be deterministic for
an L-observer. On the other hand, a program s is ΓL-unaffecting if it can
be typed in Γ with a type (τ, σ) such that τ does not belong to L; since τ is
a lower bound for the level of generated in s (by the Confinement Lemma),
this means that s does not contain generated events of level in L; hence the
behaviour of s will be unobservable for an L-observer.

Definition 5.4.4 (ΓL-Guardedness) Let Γ be a type environment and L
be a downward-closed set of security levels. A program s is ΓL-guarded if
there exist τ, σ such that Γ ⊢ s : (τ, σ) and σ ∈ L.

Definition 5.4.5 (ΓL-Unaffectingness) Let Γ be a type environment and
L be a downward-closed set of security levels. A program s is L-unaffecting
if there exist τ, σ such that Γ ⊢ s : (τ, σ) and τ /∈ L. Conversely, s is
L-affecting if it is typable and such that Γ ⊢ s : (τ, σ) implies τ ∈ L.

Note that if s is ΓL-guarded or ΓL-(un)affecting, then by definition s is
typable. Moreover, as a simple consequence of Theorem 5.4.1 (Subject Re-
duction), both ΓL-guardedness and ΓL-unaffectingness are preserved by ex-
ecution.

Lemma 5.4.4 (ΓL-Unaffectingness implies Syntactic ΓL-highness)
Let Γ be a type environment and L be a downward-closed set of security lev-
els. If s is ΓL-unaffecting, then s ∈ HΓ,L

syn.

101

Secure Synchronous Language SSL

Note that the reverse implication does not hold in general: indeed, by def-
inition ΓL-Unaffectingness implies typability, while a syntactically ΓL-high
program is not necessarily typable. Consider for example the following pro-
gram, assuming a three-level security lattice {⊥, ℓ,⊤}:

if x⊤ then generate evℓ else nothing end

This program is ΓL-high for L = {⊥}. However, it is not typable (since it
has a level drop from its control expression of level ⊤ to its first branch of
level ℓ), hence it cannot be ΓL-unaffecting.

In fact, the reverse implication only holds in one particular case, namely
when L = S − {⊤}. In this case, by definition of syntactic ΓL-highness we
have Γ(ev) = ⊤ for every ev in Gens and therefore the program s is typable.
Indeed, it can be easily shown that every program whose generated events
are all of level ⊤ is typable, and dually, that every program whose guards
and control expressions of conditionals (including the safe ones) are all of
level ⊥ is typable.

We are now ready to prove the two preliminary results that underpin
the soundness theorem.

Theorem 5.4.2 (Behaviour of L-guarded programs) Let s be typable
and L-guarded in Γ. Then for any V1, V2 such that V1 =Γ

L V2 and for any
E1, E2 such that E1 =

Γ
L E2:

1. (〈s, E1〉→V1
〈s′, E′

1〉) ⇒ ∃s′′, E′
2 . (〈s, E2〉⇒V2

〈s′′, E′
2〉 ∧ E′

1 =
Γ
L E′

2)

2. 〈s, E1〉‡ ⇒ 〈s, E2〉
‡
g

Theorem 5.4.3 (Behaviour of non L-guarded programs) Let s be ty-
pable and non L-guarded in Γ. Then either s is L-unaffecting, or for any
V1, V2 such that V1 =

Γ
L V2 and for any E1, E2 such that E1 =

Γ
L E2::

1. (〈s, E1〉→V1
〈s′, E′

1〉) ⇒ ∃s′′, E′
2 . (〈s, E2〉⇒V2

〈s′′, E′
2〉 ∧ E′

1 =
Γ
L E′

2)

2. 〈s, E1〉‡ ⇒ ∃ s′, E′
2 . (〈s, E2〉 ⇓V2

〈s′, E′
2〉 ∧ E1=

Γ
LE′

2)

Lemma 5.4.5 (Semantically ΓL-high programs are all ΓL-bisimilar)
For any type environment Γ and dc-set of security levels L:

If s1, s2 ∈ H
Γ,L
sem, then s1 ≈

fg
ΓL s2.

102

Type System

Proof We show that for any pair of valuations V1, V2 such that V1 =Γ
L V2,

the relation RΓ,L = (HΓ,L
sem ×H

Γ,L
sem) is an fg-ΓL-V1V2-bisimulation.

Suppose (s1, s2) ∈ RΓ,L. We prove Clauses 1) and 2) of Definition 5.2.2
(this is enough since Clauses 3) and 4) are symmetric):

1. Let 〈s1, E1〉 →V1
〈s′1, E

′
1〉. In this case, since s1 is semantically high,

we know that E1 =
Γ
L E′

1 and s′1 ∈ H
Γ,L
sem. Then s2 may reply by staying

idle, namely by the empty sequence of moves 〈s2, E2〉 ⇒V2
〈s2, E2〉,

given that E′
1 =

Γ
L E1 =

Γ
L E2 and both s′1 and s2 are in HΓ,L

sem.

2. Let 〈s1, E1〉‡. Then, since s1 is semantically high, we have [s1]E1
∈

HΓ,L
sem. Now, by Theorem 4.3.2 (Reactivity) we know that there exist

s′2, E
′
2 such that 〈s2, E2〉 ⇓ 〈s

′
2, E

′
2〉. Since s2 is semantically high,

we know that E2 =Γ
L E′

2 and s′2 ∈ H
Γ,L
sem (whether s′2 is nothing or

a program suspended in E′
2). Then we may conclude, since E1 =Γ

L

E2 =
Γ
L E′

2 and xs1yE1
and xs′2yElo2 are in HΓ,L

sem.

�

We may now prove the main result of this section, namely the soundness
of the type system for fine-grained reactive noninterference.

Theorem 5.4.4 (Typability ⇒ Fine-grained RNI) Let s ∈ Programs.
If s is typable in Γ then s is fg-secure in Γ.

Proof We want to show that s ≈ fg
ΓL s for any downward-closed set L. For

any such L, consider the relation RΓ,L = R1
Γ,L ∪ R

2
Γ,L on programs, where:

R1
Γ,L = {(s1, s2) | si is ΓL−unaffecting, i = 1, 2}

R2
Γ,L = {(s, s) | s is ΓL−affecting}

Note that for every s which is typable in Γ we have either (s, s) ∈ R1
Γ,L or

(s, s) ∈ R2
Γ,L. We show now that for any pair of valuations V1, V2 such that

V1 =Γ
L V2, the relation RΓ,L is an fg-ΓL-V1V2-bisimulation.

1. Suppose (s1, s2) ∈ R
1
Γ,L. Then by Lemma 5.4.4 we have s1, s2 ∈

HΓ,L
syn, whence by Lemma 5.4.3 we obtain s1, s2 ∈ H

Γ,L
sem. At this point

we proceed as in the proof of Lemma 5.4.5 to show that the pair
(s1, s2) satisfies the two clauses of fg-ΓL-V1V2-bisimulation, leading
to a pair of residuals (s′1, s

′
2) which belongs again to R1

Γ,L (because
ΓL-unaffectingness is preserved by execution).

103

Secure Synchronous Language SSL

2. Suppose now (s, s) ∈ R2
Γ,L. Then we show that the pair (s, s) satisfies

the two clauses of fg-ΓL-V1V2-bisimulation, using Theorem (5.4.2) or
Theorem (5.4.3) depending on whether s is L-guarded or not. Since L-
guardedness is preserved by execution, an L-guarded program always
remains L-guarded and its behaviour is exactly the same for an L-
observer in both valuations V1 and V2. In this case, we get a pair of
residuals (s′, s′) which falls back into the relation R2

Γ,L. On the other
hand, if s is not L-guarded and is L-affecting (recall that we already
treated in 1. the case where s is L-unaffecting), then it initially behaves
as an L-guarded program, giving rise to a pair of residuals (s′, s′) which
either falls back into the relation R2

Γ,L, or into the relation R1
Γ,L if

s′ is L-unaffecting. Intuitively, this second case occurs when s first
generates some events of level in L, and then traverses some guard not
in L, from which point onwards it becomes L-unaffecting.

�

Note that scripts s, s′ of Example 5.3 are not typable (although cg-secure).
We conclude with some examples illustrating the use of the rules for the
conditional.

Example 5.5 The following scripts si and s are all typable:

s1 = if (x⊤ = 0) then await ev⊤1 else cooperate end type (⊤,⊤)

s2 = if (x⊤ = 0) then nothing else cooperate end type (⊤,⊤)

s3 = if (x⊤ = 0) then nothing else (loop nothing end) end type (⊤,⊤)

s4 = if (x⊤ = 0) then (loop nothing end) else (loop cooperate end) end type (⊤,⊥)

s = generate ev⊥
2 type (⊥,⊥)

Then s4; s is typable but not s1; s, s2; s nor s3; s.

We have extended the core reactive language CRL by adding security
at the language level, obtaining SSL. In SSL, we proposed two reactive
non-interference properties with a security type system ensuring them. This
type system is more permissive than that of [8], thanks to the relaxed typing
rule for parallel composition and to refined typing rules for the conditional.
Both improvements are made possible by design choices of SSL.

5.5.1 Example

In this section, we give an example to illustrate the power of SSL and how
we can control information flow over an everyday program. To this end,

104

Type System

we add function calls at the language level with the same requirement as in
DSL (functions should terminate instantaneously).

Twitter News Application

Twitter [3] is an online social networking and micro-blogging service that
enables its users to send and read text-based messages of up to 140 charac-
ters, known as “tweets”. Users may subscribe to other users tweets (follow
them) and get their tweets in real time.

Here, we are going to present an example of a twitter application con-
taining three main frames:

1. The news frame which shows all followed users’ tweets; information
can be displayed in this area by using the function print news.

2. The advertising frame which receives advertisements. With the help
of the function print ads, the ads will appear in this frame.

3. The last frame displays the local weather by taking into account the
user location. Once the information is received, it can be showed into
this frame with the print weather function. The new location for the
weather is set by means of the function set location.

The example is shown in Figure 5.3. In this example, each time a new
tweet arrives the event “new tweets” is generated. Then, we print the
new tweet in the associated frame. In the weather frame, if the weather
has changed and we have new information about the weather, an event
called “update weather” is generated; the frame will be updated as soon
as this event is received. If the location is changed, which is signaled by
“new location”, we change our current location. Finally, the ad frame up-
dates its contents each time we receive “new ads”. The code is given in
Figure 5.4.

The security problem raised by this application is the following: we do
not want that anybody knows how frequently we receive news. Indeed, it is
getting a real issue to protect personal data from advertising companies like
Google. It is not a major security issue, but if an external observer can see
how frequently the user receives new tweets, it can suggest different types of
advertisements. Therefore, the security level of the event “new tweets” is set
to high. For the location changes, we only want to allow weather functions
to see these changes, thus the security level of “new location” is not as high
as “new tweets” but it is not low either (it will be an intermediate level l).

105

Secure Synchronous Language SSL

News Feed

Weather

Ads

Figure 5.3: Twitter Application

We do not care about how often we receive new advertisements or weather
updates. So, the security level of “new ads” and “update weather” is set to
public (low).

Besides events, also functions need to be given a security level. The
functions print ads and print weather have no argument and what they
publish is something public, hence the security level of these functions is
from public to public (we note ⊥ → ⊥). The function set location has no
argument but it uses the location which has the security level l, between
public and private (⊥ < l < ⊤). Therefore the security level of set location
is ⊥ → l. The last function used in this example is print news which has
no argument and prints the new tweets, which is something totally private.
Thus, the security level of this function is from public to private (we note
⊥ → ⊤). This example is well typed in our type system which entails that
no information leaks can appear.

Let us now consider the following piece of code and suppose that we add
it in parallel with the application code:

await new tweets⊤; generate new ads⊥;

Now, an external observer can infer how frequently the news event is

106

Type System

(loop
(await “new tweets”⊤;
print news ()⊥→⊤)

end)

∤

(loop
((await “new location”l;
set position(get location())⊥→l)
∤
(await “update weather”⊥;
print weather ()⊥→⊥))

end)

∤

(loop
(await “new ads”⊥;
print ads ()⊥→⊥)

end)

Figure 5.4: Code of Twitter Application

generated, thus there is an information leak. This script is rejected by our
type system by the Rule (Seq), since the security level of await new tweets
is (⊤,⊤) and the security level of generate new ads is (⊥,⊥), and ⊤
 ⊥.
Even if generating the event new ads is secure by itself and waiting for new
tweets is also secure, the combination of these two is not secure.

We have given an everyday example in SSL, where the absence of infor-
mation leaks is guaranteed by our type system.

107

Secure Synchronous Language SSL

108

Part IV

DSLM

Chapter 6

DSL with Memory: The
language DSLM

The language DSLM (Dynamic Synchronous Language with Memory) pre-
sented in this chapter is obtained by adding memory and distribution to
CRL. The main purpose of DSLM is to create a general-purpose language
with the ability of taking advantage of multi-core architectures.

Adding memory to CRL introduces the possibility of time-dependent
errors (e.g. data-races). To prevent this kind of errors we introduce a new
level of parallelism called Agents. Agents encapsulate the memory and
prevent time-dependent errors like data-races. This property is assured by
a type system which is presented in the next chapter.

Furthermore memory encapsulation by agents and the definition of sites
as synchronized schedulers will allow us to benefit of multi-cores which is
fully detailed in the Chapter 8. This part resumes the technical report [12].

DSLM contains four levels of parallelism: scripts, agents, sites and sys-
tems. Let us explain each of them:

• Scripts : scripts are the basic parallel components. They are com-
posed by an asymmetric deterministic parallel operator. The syntax
of scripts and their semantics is given in Section 6.1.

• Agents: an agent encapsulates a memory and a script. This script
can be a parallel script made of several components (the components
belonging to the agent) sharing the agent memory. The only parallel
components that can access the memory of an agent are the ones
belonging to it. An agent can be created during the execution by the

DSL with Memory: The language DSLM

construct create agent. When an agent is created its execution is
delayed up to the next instant.

• Sites: a site is a location where execution of agents takes place. Each
site runs one or more agents and manages a set of events shared by
the site agents. There is no dynamic creation of sites. The model
requires the uniqueness of site names. All the agents belonging to the
same site are executed in synchronous parallelism, which means they
are sharing the same instants and events.

• System: a system is composed of a set of sites which are run in real
parallelism (asynchronously). Agents can migrate in a system from a
site to another; the syntax is migrate to site for moving the executing
agent to site site. This construct is the main means of communication
and synchronization.

Execution of an agent consists in the execution of the agent’s script
in the context of the agent’s memory. Execution of a site consists in the
synchronous execution of all the agents belonging to the site, up to a state
where they are all suspended or terminated. Then, the end of the current
instant is decided and all the events which have not been generated during
the instant are considered as absent. During site execution, the agents of
the site can communicate and synchronize using the events they dynamically
create. The model of DSLM is presented in Figure 6.1.

We note that in DSLM (as in DSL), no means is provided to define
functions. However, scripts may call functions defined in a “host” language
(the language in which we define our model is called the host language).
Functions are required to terminate instantaneously (i.e. in the same in-
stant they are started). On the contrary, the execution of modules can last
several instants or even never terminate, but each module should reach a
cooperation point during each instant. To assure these properties we are
using FunLoft, which provides a means to check them.

The informal language description is given in 6.1. Then, the domains
of language are exposed in 6.2. The formal semantics of scripts is given in
6.3 and the semantics properties are given in 6.3.4. At the end, in 6.4, the
semantics of sites and systems is described.

6.1 Informal Language Description

This section contains the informal description of the language. First, we
describe scripts and expressions. Then, a description of the model execution

112

Informal Language Description

Events

Site1

Agent1 Agent2

Agent3

Memory Memory

Memory

Site2

Agent4

Memory

Site3

Events

Events

Site Agent Memory Forbidden

access
Events

Migration

Figure 6.1: DSLM model

semantics is given.

6.1.1 Scripts and Expressions

Scripts are considered in a synchronous context and execution of a script at
one instant has two possible outcomes:

• the script is terminated (nothing remains to be executed);

• the script is suspended: either it is waiting for an event to be generated,
or it is waiting for the end of instant. In the first case, execution
will either resume during the current instant, if the awaited event is
generated (thus becoming present), or it will be blocked until the end
of the current instant (and then the awaited event is considered as
absent).

We describe now the informal semantics of DSLM :

• s1; s2 runs scripts s1 and s2 in sequence; execution of s2 immediately
starts when s1 is terminated;

• x := exp puts the value of exp in the memory location of x, and ter-
minates;

113

DSL with Memory: The language DSLM

• s1 ∤ s2 runs the scripts s1 and s2 in parallel. The execution is exactly
the same as in CRL. First, s1 is executed and yields the control only
when its execution is terminated or suspended (late cooperation). Once
s1 is suspended or terminated, s2 is executed and gets suspended as
soon as it generates an event which unblocks s1 (early cooperation).

• let x = exp in s end defines a new variable x whose scope is s. A
new location is associated to x, and the value of exp is stored in this
location. Then, the script behaves like s;

• cooperate suspends the execution for the current instant, waiting for
the next instant. At the next instant the cooperate instruction is
replaced by nothing;

• generate ev with exp generates event ev with the value of the expres-
sion exp and terminates;

• await ev has no effect and terminates if event ev is present. Otherwise,
it suspends execution waiting for the event ev;

• get all ev in l stores all the values associated to the generations of
event ev during the current instant into the location l; execution is
suspended up to the end of instant;

• do s watching ev executes the script s while event ev is not present.
Execution of s is aborted as soon as ev is generated; in case of abortion,
execution of the watching statement is suspended up to the end of
instant;

• repeat exp do s end runs the script s, n times in sequence, where n is
the result of the evaluation of exp;

• loop s end cyclically runs the script s: execution of s is restarted
as soon as it terminates. However, if s terminates instantaneously
(i.e. in the same instant it is started), the loop waits for the next in-
stant to restart s. There is thus no possibility to get an instantaneous
loop which would cycle forever during the current instant, freezing the
whole system;

• launch m(ev, exp1, ..., expn) launches the module m with the param-
eter exp1, ..., expn. Execution cannot terminate instantaneously. Exe-
cution may never terminate;

114

Informal Language Description

• if exp then s1 else s2 end runs the script corresponding to the result
of evaluation of the expression exp (s1 corresponds to true, and s2 to
false);

• migrate to site makes a request for moving the executing agent from
the current site to the site site. Execution of the instruction is sus-
pended for the current instant and resumes after the migration is ef-
fective on site. Due to parallelism, there can be several migration
requests during the same instant (we call this schizophrenia). In this
case, only the first request is considered and the other ones are ignored;

• createAgent s in site creates a new agent which encapsulates s with
an empty memory. The agent is added to the list of agents requesting
to be incorporated to site and its execution starts when it is effectively
incorporated.

Expressions are the following:

• a basic value v;

• a vector of expressions ~exp;

• a variable x whose value is the location associated to x;

• !x whose value is the content of the location associated to x;

• ref exp which returns a new location where the value of exp is stored;

• f(exp) which calls the function f with the value of exp (it can be a
vector) as parameter. Execution of the call starts immediately and is
required to be instantaneous, i.e. to terminate instantly.

6.1.2 Agents, Sites and Systems

Execution of an agent consists in the execution of the agent’s script in the
context of the agent’s memory. Execution of an agent terminates when the
agent’s script is terminated.

Execution of a site consists in the synchronous execution of all the agents
belonging to the site, up to a state where they are all suspended or termi-
nated. During each instant, the agents of the site can communicate and
synchronize using events.

The end of the current instant is decided at the site level when all the
agents belonging to the site are suspended or terminated. Then, the follow-
ing actions are performed:

115

DSL with Memory: The language DSLM

• the requests of migration to other sites are processed;

• the agents requesting to be incorporated in the site are actually added
to the site;

• the events which have not been generated during the instant are con-
sidered as absent and the suspended scripts are reconstructed for the
next instant (i.e. cooperate is changed in nothing);

• finally, the site event set is reset to the empty set.

When these actions are performed, the execution of the site for the next
instant can start.

A system is a statically defined set of sites, each of them with a distinct
name. Execution of sites is completely asynchronous: sites are chosen and
executed in a totally arbitrary way (even in real parallelism). Nothing is
shared between different sites and the only means of communication is agent
migration.

The semantics of the language (given in the next section) is divided into
several levels describing systems, sites, agents, and scripts. The semantics
at a given level uses lower levels; for example, the semantics of an agent is
based on script semantics.

Here are the main characteristics of the semantics:

1. The semantics of agents and scripts is completely deterministic, even at
the level of memory manipulations. In DSLM , we are using the same
parallel operator as in CRL which is a totally deterministic parallel
operator.

2. The semantics of sites is confluent, at the event level. This results from
two facts: first, the synchronous execution of agents, and second, the
memory encapsulation in agents. With these two elements, it becomes
possible to get a confluent semantics for sites: during one instant of a
site, not two different event sets can be produced.

3. The semantics of systems is completely non-deterministic, which makes
possible to model distribution as well as multi-core aspects.

6.1.3 Example

This section describes the coding of a 2D simulation of colliding particles.
The simulation is divided in two containers in which particles are moving

116

Informal Language Description

and are bouncing against the borders. Collisions are elastic ones. There is a
“Migration point” in each container: when a particle falls into a migration
point, it migrates into the other container (in the same state).

Ball SiteMigration point

Site1 Site2

Figure 6.2: Example: Particle collision

The simulation is shown on Figure 6.2. It is made of two sites site1 and
site2, one for each container. Initially, each site contains N particles. Each
particle is implemented as one agent. As they belong to the same site, all the
particles present in a container share the same instants, and communicate
their position by generating the shared event position. At each instant, a
particle with coordinates (x, y) generates event position with the couple
(x, y) as value. Then, the particle gets all the values of position and
calculates if there is a potential collision with another particle (using the
function collision, not described here). Finally, the particle computes its
next position (function next position) according to its state.

The script of a particle is a loop whose body is a parallel instruction with
three branches. The first branch implements the signaling of position and
the passing to the next position previously described. The second branch
draws the particle on screen (function draw). Finally, the third branch
decides if a migration must occur (function should migrate). The code for
the first site is described in Figure 6.3.

The code for the second site is similar except that site 1 and site 2

are exchanged.

Note that the functions used by the system are defined in the host lan-
guage (Section 6).

117

DSL with Memory: The language DSLM

createAgent =
repeatN do

createAgent =
let l = ref () in
let (x, y) = ref random position() in
let d= ref random direction() in
loop

generate “position” with (!x, !y);
get all “position” in l;
d := collision(!l, !x, !y, !d);
(x, y) := next position(!x, !y, !d)

∤
draw(!x, !y)

∤
if (should migrate site2(!x, !y)) then
migrate to site2

else

if (should migrate site1(!x, !y)) then
migrate to site1

else

()
end

in site1
end

in site1

Figure 6.3: DSLM Example: Bouncing Balls

118

Domains

The example illustrates several aspects of the model and of the language:

1. Parallel components of agents are naturally expressed using the syn-
chronous parallel operator. Each particle is described as an autonomous
object which moves accordingly to its defining script and interacts with
the other particles through broadcast events.

2. Agents can be executed in real parallelism: two agents belonging to
distinct schedulers can be run in real parallelism, by different com-
puting resources. However, if two agents belong to the same site, the
efficiency of the real parallelism is moderated by the necessity for the
schedulers to synchronize at each end of instant. On the other hand,
two agents belonging to different sites can be executed in real paral-
lelism without restriction, which can lead to efficient executions.

3. Each particle has its own memory containing its state (its coordinates),
which is shared by all the components of its execution script. The
language requires the absence of data-races in memory accesses, which
is verified by the type system of Section 7. Thus, there is no risk of a
data-races between any two agents, whether on the same site or not.

4. There is no possibility of an instantaneous loop which would prevent
execution from passing to the next instant, due to the semantics of the
loop operator (rule 6.16).

6.2 Domains

The following disjoint countable sets are defined: LocName (locations),
VarName (variable names), FunName (function names), ModuleName
(module names), SiteName (site names) and EventName (event names).
Each set has an associated function which returns an unused element of the
set (for example, each call of the function new loc returns a new unused
location in LocName).

We use the following notation to define domains:

• A×B denotes the cartesian product of the domains A and B;

• A⊕B denotes the disjoint union of the domains A and B;

• NZ denotes the multi-set containing the elements of Z;

• ⊎ is the union of multi-sets;

119

DSL with Memory: The language DSLM

• None is the domain that contains the unique distinguished element
None. In the sequel, we do not distinguish between None and None;

•
−→
A denotes the domain of heterogeneous vectors of domain A.

• A→ B is the domain of (partial) functions from A to B.

The set Basic is the set of basic values which, for simplicity, is defined
as follows:

b ∈ Basic = Bool⊕ Integer ⊕ Double ⊕ String

The set Value which contains basic values, locations, and vectors of
values is defined as:

v ∈ Value = Basic⊕ LocName⊕
−−−−→
Value

Memory

A memory M belonging to Mem is a partial function that associates a value
with its location or variable.

M ∈Mem : VarName⊕ LocName→ Value

One notes M [l ← v] the memory M ′ defined by: M ′(l) = v and for
x 6= l, M ′(x) = M(x). If M(x) is a location, M [x ← v] is an abbreviation
for M [M(x)← v].

Events

Elements of EventEnv are multi-sets of pairs composed of an event name
and an associated basic value:

E ∈ EventEnv : N(EventName×Basic)

To simplify notation, one notes ev ∈ E if there exists v such that (ev, v) ∈ E.
The function get values is used to collect all the basic values associated

with an event ev in a set of events E:

get values : EventName×EventEnv→
−−−→
Basic

120

Domains

Expressions

The set Expr denotes the expressions and is defined by the following gram-
mar:

exp ∈ Expr ::= v |x | !x
| ~exp | ref exp | f(~exp)

Scripts

The set Script denotes the scripts. This set extends all the constructions
from CRL, explained in Section 4.1 and adds memory manipulation con-
structs to create (let) and manipulate the memory (assignment). It also
adds the possibility to generate events with values and to collect all the
generated values of a particular event (get all).

The Script set is defined by:
s ∈ Script ::= nothing

| s; s
|x := exp
| s ∤ s
| let x= exp in s end
| cooperate
| generate ev with e
| await ev
| get all ev in l
| do s watching ev
| repeat exp do s end
| loop s end
| launch m(ev, exp1, ..., expn)
| if exp then s else s end
| migrate to site
| createAgent s in site

Agents

The set Agent denotes the agents which are triples of the form (s,M, η),
where s ∈ Script, M ∈Mem, and η is a migration request:

Ag ∈ Agent = Script×Mem×Migr

η ∈Migr = None⊕ SiteName

121

DSL with Memory: The language DSLM

Drop orders code agent migration requests. A drop order can be either
the None value to indicate the absence of migration request, or a demand
for migration of the current agent, or a demand for migration of a newly
created agent. The set D of drop orders is defined as:

d ∈ D = None⊕ SiteName⊕ (Agent× SiteName)

A drop order site ∈ SiteName is a demand for the migration of the
current agent to site. A drop order (Ag , site) ∈ Agent × SiteName is a
demand for the migration to site of the newly created agent Ag .

We define the combination of two migration requests:

◮: SiteName×Migr→ SiteName

site ◮ η =

{

site if η = None

siteη if η = siteη

site ◮ η is equal to site if it is the first migration request of agent during
the current instant. Otherwise, the migration requests are ignored.

Sites

The set Site denotes the sites which are quadruples of the form:

S ∈ Site = SiteName× NAgent × NAgent ×EventEnv

The site (site,A, I, E) is interpreted as follows:

• site is the name of the site;

• A is the multi-set of the agents running in the site;

• I is the multi-set of agents which will be incorporated in the site at
the next instant.

• E is the multi-set of the events generated in the site.

Let S = (site,A, I, E) be a site; one notes sn(S) ⊆ SiteName the set
of site names occurring in A.

122

Semantics of Scripts

Systems

The set Σ ∈ Sys denotes the systems which are sets of sites:

Σ = {S1, ..., Sn}

One says that a system Σ = {S1, ..., Sn} where Si = (sitei,Ai, Ii, Ei) is
well-formed if the following two requirements are fulfilled:

1. No two sites have the same name:

∀i, j ∈ {1, . . . , n} : i 6= j ⇒ sitei 6= sitej ;

2. The target of a migration is always defined:

∀i ∈ {1, . . . , n} : site ∈ sn(Si) ⇒ ∃j . site = sitej .

Reconditioning Function

A reconditioning function Ω (Section 6.4.3) is used to prepare an agent for
the next instant. This function is similar to what we previously presented
in Section 4.2 in CRL over scripts. Its domain is:

Ω : Agent×EventEnv→ Agent

6.3 Semantics of Scripts

This section presents the semantics of scripts. First, in Section 6.3.1 the se-
mantics of expressions is defined. Then, the suspension predicate for scripts
is presented in Section 6.3.2. Finally, the transition relation which defines
the small-step semantics of scripts is defined in Section 6.3.3.

6.3.1 Expressions

The evaluation of an expression is noted:

exp,M v,M ′ (6.1)

where:

123

DSL with Memory: The language DSLM

• exp is the initial expression;

• M is the memory in which the expression exp is evaluated;

• v is the result of the evaluation of exp;

• M ′ is the new memory after the evaluation of exp;

Evaluation of expressions is defined by the following rules:

• A value evaluates to itself:

v,M v,M (6.2)

• To access a variable, the variable must denote a location; the evalua-
tion returns the value stored in it:

!x,M M(x),M (6.3)

• The elements of a vector of expressions are evaluated in increasing
order:

expi,Mi vi,Mi+1

(exp1, ..., expn),M1 (v1, ..., vn),Mn+1

(6.4)

• Evaluation of refexp returns a new location in which the value of exp
is stored:

exp,M v,M ′ l = new loc()

ref exp,M l,M ′[l← v]
(6.5)

• Evaluation of a function call should be instantaneous. The only changes
in the memory are the ones resulting from the evaluation of the argu-
ments:

−→exp,M −→v ,M ′ f(−→v) = v′

f(−→exp),M v′,M ′
(6.6)

124

Semantics of Scripts

6.3.2 Suspension Predicate

Reactive programs suspend execution either waiting for events which are not
already produced, or waiting for the end of current instant. We are going to
extend the suspension predicate of scripts presented in CRL in Section 4.2
(noted ‡). Here, we only present the clause for the newly added construct
get all which is suspended in all environments:

〈get all ev in x,E〉‡ (6.7)

The suspension predicate of scripts is naturally extended to agents:

〈s, E〉‡

〈(s,M, η), E〉‡
(6.8)

A site S = (site,A, I, E) is suspended if all its agents are suspended or
terminated (an agent is terminated if its script is):

∀Ag ∈ A 〈Ag , E〉 ‡ ∨ Ag = (nothing,M, η)

(site,A, I, E) ‡

The predicate ♮ indicates the absence of migration request in a site:

∀(s,M, η) ∈ A η = None

(site,A, I, E)♮

The transition of a site to the next instant will be described by the Rule
6.31. The end of current instant of a site is only possible when the two
previous predicates are valid.

6.3.3 Transition Relation

The small-step semantics of scripts is presented as a set of rewriting rules.
The general format of a script transition is:

〈s, E, M〉
d
−→ 〈s′, E′, M ′〉

where:

125

DSL with Memory: The language DSLM

• s is the script which is rewritten;

• E is a multi-set of pairs (ev, v) where ev is a generated event and v is
its associated value.

• s′ is the residual script (what remains to be done at the next step);

• E′ is the multi-set of events generated during the rewriting of script
s, coupled with their values;

• M is the memory in which s is rewritten;

• M ′ is the new memory obtained after the rewriting of s;

• d is a drop order indicating if a migration request has been issued from
the rewriting of s, and if it is the case, the nature of the request.

The semantics of instructions is given by the following rules and we describe
the newly added rules compare to CRL:

Sequence

〈s1, E, M〉
d
−→ 〈s′1, E

′, M ′〉

〈s1; s2, E, M〉
d
−→ 〈s′1; s2, E

′, M ′〉
(6.9)

〈nothing; s2, E, M〉
None
−−−→ 〈s2, E, M〉 (6.10)

Parallel

〈s1, E, M〉
d
−→ 〈s′1, E

′, M ′〉

〈s1 ∤ s2, E, M〉
d
−→ 〈s′1 ∤ s2, E

′, M ′〉

(6.11)

〈s1, E〉 ‡ 〈s2, E, M〉
d
−→ 〈s′2, E

′, M ′〉

〈s1 ∤ s2, E, M〉
d
−→ 〈s1 ∤ s′2, E

′, M ′〉

(6.12)

〈nothing ∤ s, E, M〉
None
−−−→ 〈s, E, M〉 (6.13)

126

Semantics of Scripts

Let

e,M v,M ′

〈let x= exp in s end, E, M〉
None
−−−→ 〈s, E, M ′[x← v]〉

(6.14)

A let instruction declares a variable x in the scope of a script s; the
initial value of x is obtained by evaluating an expression exp

Assignment

exp,M v,M ′

〈x := exp, E, M〉
None
−−−→ 〈nothing, E, M ′[x← v]〉

(6.15)

An assignment puts a new value in the memory location associated to a
variable. The type system of Chapter 7 insures that the value of the variable
is always a location.

Loop

〈loop s end, E, M〉
d
−→ 〈(s ∤ cooperate); loop s end, E′, M ′〉 (6.16)

Generate

exp,M v,M ′ E′ = E ⊎ {(ev, v)}

〈generate ev with exp, E, M〉
None
−−−→ 〈nothing, E′, M ′〉

(6.17)

A generate instruction produces an event in the environment and as-
sociates a value obtained from the evaluation of an expression to this pro-
duction. The pair made of the event and its value is added in the event
environment which is a multi-set. Thus, several productions of the same
event with the same value are possible during the same instant.

Await

ev ∈ E

〈await ev, E, M〉
None
−−−→ 〈nothing, E, M〉

(6.18)

There is no rule corresponding to an event which is not present. In this
case the instruction is suspended: 〈await ev, E〉‡.

127

DSL with Memory: The language DSLM

Watching

〈s, E, M〉
d
−→ 〈s′, E′, M ′〉

〈do s watching ev, E, M〉
d
−→〈do s′ watching ev, E′, M ′〉

(6.19)

〈do nothing watching ev, E, M〉
None
−−−→〈nothing, E, M〉 (6.20)

Module Call

−→exp,M −→v ,M ′ m(ev,−→v) ⇑

〈launch m (ev, exp1, . . . , expn), E, M〉
None
−−−→ 〈await ev, E, M ′〉

(6.21)

Repeat

exp,M n,M ′

〈repeat exp do s end, E, M〉
None
−−−→ 〈

n times
︷ ︸︸ ︷
s; . . . ; s, E, M ′〉

(6.22)

If

exp,M tt ,M ′

〈if exp then s1 else s2 end, E, M〉
None
−−−→ 〈s1, E, M ′〉

(6.23)

exp,M ff ,M ′

〈if exp then s1 else s2 end, E, M〉
None
−−−→ 〈s2, E, M ′〉

(6.24)

The fact that the rewriting of the chosen branch is delayed to a future
execution step is an essential feature of the small-step semantics of scripts,
as previously discussed in Section 6.1.2.

128

Semantics of Scripts

Agent Creation

〈createAgent s in site, E, M〉
(s,∅,None)↓site
−−−−−−−−−−→〈nothing, E, M〉 (6.25)

An agent creation produces a drop order Ag ↓ site to demand the migra-
tion in site of a new agent Ag containing a script s and a new empty memory
∅. The absorption of the newly created agent by the system is described in
Rule (6.28).

Agent Migration

〈migrate to site, E, M〉
site
−−→ 〈cooperate, E, M〉 (6.26)

A migration instruction produces a drop order site to demand the migration
in site of the executing agent, and suspends up to the end of the current
instant. The processing of the migration request is described in Rule (6.30)
.

6.3.4 Semantic Properties

In this section we consider determinism and reactivity of scripts.

Theorem 6.3.1 (Determinism) For any script s, event environment E
and memory M, there is only one possible transition.

Proof By inspecting the suspension and transition rules, it is immediate
to see that at most one rule applies to each configuration 〈s, E,M〉. �

Definition 6.3.1 The multi-step transition relation 〈s, E,M〉
D
⇒ 〈s′, E′,M ′〉

is defined as follows:

〈s, E,M〉
None
⇒ 〈s, E,M〉

〈s, E, M〉
δ
−→ 〈s′, E′, M ′〉
∧

〈s′, E′,M ′〉
D
⇒ 〈s′′, E′′,M ′′〉

⇒ 〈s, E,M〉
d·D
⇒ 〈s′′, E′′,M ′′〉

Definition 6.3.2 (Instantaneous convergence) The instantaneous con-
vergence of a script, noted ⇓D, is defined by:

129

DSL with Memory: The language DSLM

〈s, E,M〉 ⇓D 〈s
′, E′,M ′〉 if 〈s, E,M〉

D
⇒ 〈s′, E′,M ′〉 ∧

(s′ = nothing ∨ 〈s′, E′〉‡)

〈s, E,M〉 ⇓D if ∃s′, E′,M ′ . 〈s, E,M〉 ⇓D 〈s
′, E′,M〉

The relation 〈s, E,M〉
D
⇒ 〈s′, E′,M ′〉 defines the overall effect of the

program s within an instant, starting with the set of events E and the
memory M . At the end of instant the script s becomes s′ and the new set
of events and memory are E′ and M ′.

We note 〈s, E,M〉 ⇓D in the same case where we are not interested in
the residual script.

We can now state the central theorem of this section.

Theorem 6.3.2 (Script reactivity) Let s ∈ Script. Then :

∀E ⊆ EventEnv. (∃n ≤ size(s), ∃D.〈s, E,M〉n ⇓D)

Proof The proof of reactivity for DSLM is similar to the one of CRL
given in Section 4.3. We need to extend the definition of size to the new
constructs which are added in DSLM. The newly added construct cases are
trivial, therefore omitted. �

6.4 Semantics of Sites and Systems

The small-step semantics of sites and systems is given in this section. The
small-step execution of a site during one instant is described by the first three
rules (6.27)-(6.29). The next two rules deal with end of instants. Migration
requests are processed in Rule (6.30). The passing to the next instant is
described by Rule (6.31). Finally, the transformation of the suspended terms
for the next instant is described in Section 6.4.3.

The format for system rewriting is:

Σ→ Σ′

where Σ and Σ′ are systems.

130

Semantics of Sites and Systems

6.4.1 Sites

There are three rules for defining system rewriting. These rules describe the
choice of a site S, the choice of an agent Ag in S, and the execution of Ag
in the event environment of S.

• The first rule considers the case where no drop order is issued from
the agent execution:

S = (site,A ⊎ (s,M, η), I, E) 〈s, E, M〉
None
−−−→ 〈s′, E′, M ′〉

Σ[S] → Σ[(site,A ⊎ (s′,M ′, η), I, E′)]
(6.27)

After execution, the agent is reintegrated in the site and the site event
environment is replaced by the produced event set.

• The second rule corresponds to the production of the drop order of a
new agent Ag in the target site. Agent Ag is put in the set of agents
requesting to be incorporated into site2:

〈s, E1, M〉
Ag↓site2
−−−−−−→ 〈s′, E′

1, M
′〉

S1 = (site1,Ag1 ⊎ (s,M, η), I1, E1) S2 = (site2,Ag2, I2, E2)
S′
1 = (site1,Ag1 ⊎ (s′,M ′, η), I1, E

′
1) S′

2 = (site2,Ag2, I2 ⊎Ag,E2)

Σ[S1][S2]→ Σ[S′
1][S

′
2]

(6.28)

• The third rule corresponds to the production of a migration request site0 for
the current agent. There are two cases: either a migration request is already
present in the agent, and then site0 is simply ignored (a way to prevent
schizophrenia situation, where a script wants to migrate to several distinct
sites at the same time); or, there is no previous migration request in the
agent, and then site0 becomes the agent migration request:

S = (site,A ∪ (s,M, η), I, E) 〈s, E, M〉
site0−−−→ 〈s′, E′, M ′〉

Σ[S] → Σ[(site,A ∪ (s′,M ′, site0 ◮ η), I, E′)]
(6.29)

131

DSL with Memory: The language DSLM

6.4.2 End of Instants

The end of the current instant of a site is decided when the site is suspended,
that is when all its agents are suspended. In this case, the site decides the
end of the current instant, and can start the next instant.

Two rules are needed to process suspended sites. The first one considers
migration requests and the second prepares the site for the next instant. In
both cases, suspended agents are transformed to take into account absent
events and the passing to the next instant. These two transformations are
defined using the function Ω described in Section 6.4.3.

• The first rule considers the case where an agent Ag1 of site site1 re-
quests to migrate to site site2. First, suspended instructions of Ag1
are processed in order to take into account the end of current instant
(function Ω); then, the transformed agent is added to the set of agents
requesting to be incorporated in site2:

S1‡
S1 = (site1,A1 ⊎ (s,M, site2), I1, E1) S2 = (site2,A2, I2, E2)

S′
1 = (site1,A1, I1, E1) S′

2 = (site2,A2, I2 ⊎ Ω ((s,M,None), E1), E2)

Σ[S1][S2] → Σ[S′
1][S

′
2]

(6.30)

• The second rule considers the case where there is no migration request. In
this case, suspended instructions are processed in order to take into account
the end of current instant, and the agents requesting to be incorporated in
the site are added to the agent set. Moreover, the site event environment is
reset (E = ∅):

S ‡ , S♮ S = (site,A, I, E)

Σ[S] →֒ Σ[(site,Ω (A, E) ∪ I, ∅, ∅)]
(6.31)

In the rule, Ω (A, E) means:

Ω (A, E) = {Ω (Ag , E) | Ag ∈ A}

132

Semantics of Sites and Systems

6.4.3 Reconditioning Function for Next Instant

The reconditioning function Ω is used at each end of instant in order to
reconstruct suspended agents, with regard to an event environment E, and
to prepare them for execution at the next instant. To recondition an agent
means to transform its script and this reconditioning can possibly modify
the agent’s memory.

There are four basic cases and two inductive cases for script recondition-
ing:

• cooperate is reconditioned in nothing:

Ω ((cooperate,M, η), E) = (nothing,M, η)

• do s watching ev is reconditioned in nothing if ev is present in E; oth-
erwise, (ev 6∈ E), the instruction is reconditioned in do s′ watching ev
where s′ is the reconditioned of s in E:

ev ∈ E

Ω ((do s watching ev,M, η), E) = (nothing,M, η)

ev /∈ E Ω ((s,M, η), E) = (s′,M ′, η)

Ω ((do s watching ev,M, η), E) = (do s′ watching ev,M ′, η)

• await ev is reconditioned in itself:

Ω ((await ev,M, η), E) = (await ev,M, η)

• get all ev in l is reconditioned in nothing; moreover, the values as-
sociated with ev in E are collected in a list which is assigned to l.
Note that this is the only reconditioning step that possibly modifies
the agent memory.

Ω ((get all ev in x,M, η), E) =(nothing,M [x← get values(ev, E)], η)

133

DSL with Memory: The language DSLM

• s1; s2 and s1 ∤ s2 are the inductive cases:

Ω ((s1,M, η), E) = (s′1,M
′, η)

Ω ((s1; s2,M, η), E) = (s′1; s2,M
′, η)

Ω ((s1,M, η), E) = (s′1,M1, η) Ω ((s2,M1, η), E) = (s′2,M2, η)

Ω ((s1 ∤ s2,M, η), E) = (s′1 ∤ s
′
2,M2, η)

The semantics of sites and systems is now completed and we are going
to describe in the next chapter the type system to prevent the occurrence
of data-races.

134

Chapter 7

Typing System for DSLM

In this chapter, we propose a type system whose purpose is twofold: first,
to insure that values are correctly used; this is traditional type checking,
to verify for instance that in if exp then s1 else s2 end, exp is a boolean
expression; second, that no data-race occurs. For example, consider the
following fragment:

let x= ref exp1 in
createAgent !x in remote;
x:=exp2;

end

There is a data-race as x is read by an agent belonging to site remote,
while it is written in the current site. To prevent this kind of errors, the type
system checks that a reference not belonging to an agent’s memory cannot
be accessed by the agent.

A type is either a basic type (int, bool, etc), or a reference on a type:

Basic ::= bool | unit | int | string

τ ::=Basic | ref τ | −→τ

A typing environment Γ is a possibly empty set1 of elements of the form
x : τ , where x is a variable and τ is a type:

1In the sequel, the brackets of the standard set notation are omitted.

Typing System for DSLM

Γ ::= x1 : τ1, · · · , xn : τn

The general form of a typing judgment is:

Γ ⊢ s : τ (7.1)

where :

• Γ is the typing environment;

• s is the script to be typed;

• τ is the type of s.

Typing Rules

A value has a unique type τ :

Γ ⊢ v : τ (7.2)

To type a vector of expressions we should type each of the expressions
belonging to the vector:

−→exp = (exp1, ..., expn) ∀i ∈ {1, ..., n} Γ ⊢ expi : τi

Γ ⊢ −→exp : (τ1, ..., τn)
(7.3)

To type an assignment we should check the expression is well typed and
the variable x is already defined in the typing environment:

Γ ⊢ exp : τ Γ ⊢ x : ref τ

Γ ⊢ x := exp : unit
(7.4)

To type a let statement defining a variable x as exp in s, we should first
type the expression exp by τ1; then, the script s should be typed in the new
environment in which x has type τ1:

136

Γ ⊢ exp : τ1 Γ ∪ x : τ1 ⊢ s : τ2

Γ ⊢ let x= exp in s end : τ2
(7.5)

We suppose that the type of any function is known by the type system.
The type of a function consists of the type of the function’s arguments and
the type of the result. To type a function call, the arguments are type
checked and the call receives the type of the function result:

Γ ⊢ −→exp : ~τ f : ~τ → τ ′ ~τ ∈
−−−→
Basic ∧ τ ′ ∈ Basic

Γ ⊢ f(−→exp) : τ ′
(7.6)

The type of an accessed variable must be a reference type present in the
typing environment:

Γ ⊢ x : ref τ

Γ ⊢!x : τ
(7.7)

A reference is typed by typing the expression it points to:

Γ ⊢ exp : τ

Γ ⊢ ref exp : ref τ
(7.8)

To type a sequence, both branches must be typed:

Γ ⊢ s1 : τ1 Γ ⊢ s2 : τ2

Γ ⊢ s1 ; s2 : unit
(7.9)

To type a conditional, the condition should be typed to a boolean, then
the two branches s1 and s2 should be typed:

Γ ⊢ exp : bool Γ ⊢ s1 : τ1 Γ ⊢ s2 : τ1

Γ ⊢ if exp then s1 else s2 end : unit
(7.10)

137

Typing System for DSLM

To type a repeat exp do s end statement, the expression exp should be
typed as an integer, before typing s:

Γ ⊢ exp : int Γ ⊢ s : τ

Γ ⊢ repeat exp do s : unit
(7.11)

To type a loop, one types its body:

Γ ⊢ s : τ

Γ ⊢ loop s end : unit
(7.12)

To type a parallel statement, one types both branches in the same envi-
ronment:

Γ ⊢ s1 : τ1 Γ ⊢ s2 : τ2

Γ ⊢ s1 ∤ s2 : unit
(7.13)

We suppose that the type of any module is known by the type system.
The type of a module contains the type of the module’s arguments and the
type of the result is always unit. To type a module call, the arguments are
type checked and the call is typed as unit:

Γ ⊢ −→exp : −→τ m : ~τ → unit −→τ ∈
−−−→
Basic

Γ ⊢ launch m (ev, exp1, . . . , expn) : unit
(7.14)

The cooperate statement is simply typed in unit:

Γ ⊢ cooperate : unit (7.15)

To type a generate statement, the associated value should be of a basic
type, and the type of the statement is unit:

Γ ⊢ exp : Basic

Γ ⊢ generate ev with exp : unit
(7.16)

138

An await statement is simply typed in unit:

Γ ⊢ await ev : unit (7.17)

To type a watching statement means to type its body:

Γ ⊢ s : τ

Γ ⊢ do s watching ev : unit
(7.18)

A get all statement is simply typed in unit:

Γ ⊢ x : τ τ ∈ Basic

Γ ⊢ get all ev in x : unit
(7.19)

To type an agent creation one should type its body in an empty typing
environment:

∅ ⊢ s : τ

Γ ⊢ createAgent s in site : unit
(7.20)

This is the central rule to prevent the possibility of data-races in the lan-
guage.

The migration of the current agent to a site is typed in unit:

Γ ⊢ migrate to site : unit (7.21)

We now consider the issue of data-races (as presented in [52]). Informally,
a data-race is the possibility of accessing (read/write) to same memory cell,
at the same time, by two different sources.

In our case, to avoid data-races we should prevent an agent to access
another agent memory and also to prevent transmit its memory location to
other agents. Let us discuss how our semantics and type system ensure this.

At the semantics level, there is a clear separation between agents memo-
ries. First, each time a new agent is created, Rule (6.25), the newly created
agent is started with an empty memory. Thus, any agent has a separated
memory at its creation. The only way to extend its memory, is to use the

139

Typing System for DSLM

Rule 6.5, where the function new loc creates a new fresh location from the
set LocName and adds it to the agent memory. Therefore, each time a new
location is created it cannot be shared by another agent. And at the end,
by the help of our type system we assures that an agent can only access a
variable (!x and x := e) that it has previously created.

Now, we are going to discuss about the possibility of transmission of
memory between agents, functions and modules. Since the type system
assure that only basic values can be generated (Basic), an agent cannot
generate any memory location and cannot transmit it to another agent.
On the other hand, our type system also requires that the construct which
collects the event values (get all) will only get basic values since we can only
generate basic values, thus agents cannot receive a memory location either.
Finally, since functions and modules are not defined at the language level,
we are not allowing agents to transmit memory locations as arguments to
functions and modules (arguments should have a basic type). Thus, there
is no possible transmission of a memory location from an agent to another.

As an agent can only access the locations that it creates, and cannot
transmit a location to another agent, we may conclude that if an agent is
typed, it is data-race free.

To give a formal proof of the absence of data-races, we should first in-
troduce agent names, then mark each location with the name of the agent
that created it. Next, we should add new rules to generate an error when an
agent accesses a location which does not belong to it. At the end, we should
show that if a script is well typed, there is no possible execution which leads
to the error state. In his thesis [30], Dabrowski gives a formal proof of the
absence of data-races, for a framework close to the one considered here.

140

Chapter 8

DSLM Implementation

In this chapter, we consider the implementation of DSLM and put the fo-
cus on multi-processor/multi-core architectures. The main goal is to allow
DSLM to maximize the usage of computing resources (processors or cores).

We define an implementation model based on the notion of scheduler: a
scheduler executes the agents which are linked to it in a way which is totally
transparent to the users.

A site is implemented as a set of schedulers which share the same in-
stants. These schedulers are said to be synchronized (they form a Synchro-
nized Scheduler. This notion basically comes from [25]). Since they share the
same instants, the agents of the site can use the same events to communicate
and synchronize even if they are run by distinct schedulers.

The number of schedulers which implement a site can dynamically change
during the execution, according to the load of agents that are present on
the site and to the availability of computing resources. Due to the mem-
ory isolation of agents, agents can be transparently redistributed among the
schedulers of the same site, to adapt load balance over it.

Schedulers within a site are supposed to run in real parallelism and to
synchronize at the end of each instant (via a synchronization barrier). Each
scheduler is executed by a distinct thread (for example, in a Linux-SMP
architecture), or by a distinct processor (for example, in a cluster).

If n1 is the number of sites defined in the system (which is statically
fixed) and n2 is the number of available computing resources (fixed by the
machine), we choose to set the number of schedulers to the maximum of n1

and n2.

The implementation model is graphically represented in Figure 8.1.

The mapping of the schedulers to the computing resources is not stat-

DSLM Implementation

ht

Events

Site1

Agent1
Agent2

Agent3

Memory
Memory

Memory

Scheduler Site Core
Synchronized

schedulers

Events

Site2

Agent1

Memory

Migration

Forbidden

Access

Figure 8.1: DSLM Implementation Model

ically fixed. This characteristic allows the system to use resources in an
efficient way. For example, in a multi-core context, the system is free to
optimize the mapping of the schedulers to the cores (and consequently the
mapping of the agents) in a way that maximizes the use of the cores.

Initially, one scheduler is associated with each site. The remaining sched-
ulers, if any, are the unused schedulers. At run time, two actions are possible
for a site: first, the activation of an unused scheduler (which thus becomes
used); second, the releasing of a scheduler (which becomes unused). The
first action is called site expansion and the second site contraction. The
conditions and the moments for performing expansions and contractions are
not specified and are left to the implementation, in order to maximize the
possibilities of optimization.

The way sites are implemented by sets of synchronized schedulers is
formalized through a new implementation semantics described in the next
section. This implementation semantics contains rules for site expansion,
site contraction, and transparent agent migration within the same site. The
rules for sites and systems are similar to those of the semantics of Section
6.4, and therefore omitted.

The rest of the Chapter is structured as follows: first, the implementation
semantics is given in 8.1; then the load balancing algorithm is explained in

142

Implementation Semantics

8.2.

8.1 Implementation Semantics

In this section, we give the implementation domains and explain the main
changes between the implementation semantics and the DSLM semantics of
6.3. Then, we define the suspension predicate for the schedulers and for
the sites. At the end, we give the implementation semantics of sites and
systems.

8.1.1 Domains

The new definition of Site is:

site ∈ Site = SiteName× SyncSched× NAgent ×EventEnv

A scheduler is a multi-set of agents and a synchronized scheduler is a
multi-set of schedulers:

sched ∈ Sched = NAgent

scheds ∈ SyncSched = NSched

8.1.2 Suspension Predicate

The suspension predicate defined in Section 6.3.2 is extended to schedulers
and redefined for sites.

A scheduler is suspended if all the agents belonging to it are suspended
or terminated:

∀i. 〈Ag i, E〉 ‡ ∨ Ag i = (nothing,Mi, ηi)

〈{Ag1, . . . ,Agm}, E〉‡
(8.1)

A set of synchronized schedulers is suspended if all the schedulers be-
longing to it are suspended:

143

DSLM Implementation

∀i. 〈schedi, E〉‡

〈{sched1, ..., schedn}, E〉‡
(8.2)

A site is suspended if the synchronized schedulers in it are suspended:

〈scheds, E〉‡

(site, scheds, I, E) ‡
(8.3)

8.1.3 Sites and Systems

Using the new domains and the previously defined suspension predicate, we
present site execution at implementation level. Then, the rules to calculate
the end of instants are given. At the end, we give solutions to benefit from
the multi-core architecture by expansion/contraction of sites, and transpar-
ent migration of agents.

Sites

The three rules 6.27-6.29 are adapted to describe the execution of the script
of an agent chosen in a synchronized scheduler of a site.

The first rule corresponds to the absence of migration order (similar to
rule 6.27):

sched = sched0 ⊎ (s,M, η) 〈s, E, M〉
None
−−−−→ 〈s′, E′, M ′〉

Σ[(site, scheds[sched], I, E)]→ Σ[(site, scheds[sched0 ⊎ (s′,M ′, η)], I, E′)]
(8.4)

The creation of a new agent is described by the rule (similar to rule
6.28):

sched = sched0 ⊎ (s,M, η) 〈s, E, M〉
Ag↓site2
−−−−−→ 〈s′, E′, M ′〉

sched′ = sched0 ∪ (s′,M ′, η) S′ = (site2, scheds2, I2 ∪Ag , E2)

Σ[(site1, scheds1[sched], I1, E1)][(site2, scheds2, I2, E2)]
→ Σ[(site1, scheds

′
1[sched

′], I1, E
′
1)][S

′]

(8.5)

144

Implementation Semantics

Finally, the migration to another site is described by the rule (similar to
rule 6.29):

sched = sched0 ⊎ (s,M, η) 〈s, E, M〉
site′
−−−→ 〈s′, E′, M ′〉

sched′ = sched0 ⊎ (s′,M ′, site′ ◮ η)

Σ[(site, scheds[sched], I, E)]→ Σ[(site, scheds[sched′], I, E′)]
(8.6)

End of Instant

When there exist migration orders, they are executed when the site is sus-
pended (as in Rule 6.30):

sched = sched0 ⊎ (s,M, site2) S ‡ S1 = (site!, scheds[sched0], I1, E1)
S2 = (site2, scheds2, I2 ∪ Ω(s,M), E2)

Σ[(site1, scheds1[sched], I1, E1)][(site2, scheds2, I2, E2)]→ Σ[S1][S2]
(8.7)

The end of the current instant is reached when the site is suspended and
there is no migration order to be processed (as in Rule 6.31):

S = (site, Sched, I, E) S ‡ S♮ S′ = (site,Ω′(scheds) ⊎ I, E)

Σ[S]→ Σ[S′]
(8.8)

In this rule, Ω′ extends the reconstruction function Ω of Section 6.4.3
and is defined by:

Ω′(sched1 ⊎ ... ⊎ schedn) = Ω′(sched1) ⊎ ... ⊎ Ω′(schedn)

and:

Ω′(Ag1 ⊎ ... ⊎ Agm) = Ω(Ag1) ⊎ ... ⊎ Ω(Agm)

145

DSLM Implementation

Expansion and Contraction

The two site expansion and site contraction actions depend on the number
of unused schedulers, which is an integer global to the system. This inte-
ger is named unused schedulers. The free scheduler() function returns
an arbitrary scheduler chosen among the unused schedulers, turns its state
to used, and decrements the counter unused schedulers. Conversely, the
kill sched function takes a used scheduler in parameter, turns its state to
unused, and increments the counter unused schedulers.

The two rules for site expansion and site contraction use freely the
counter unused schedulers and the previous functions.

Expansion of a site adds a new scheduler to the synchronized scheduler
to a site:

S = (site, scheds, I, E) unused schedulers > 0 sched = free scheduler()

Σ[S]→ Σ[(site, scheds ⊎ sched, I, E)]
(8.9)

The removal of a scheduler sched in a site cannot occur unless the number
of agents of the scheduler, noted #sched, is equal to zero. In this case,
contraction means that the scheduler is removed from the site:

scheds = scheds0 ⊎ schedi #schedi = 0 kill scheduler(schedi)

Σ[(site, scheds, I, E)]→ Σ[(site, scheds0, I, E)]
(8.10)

Transparent Migration

During execution of a site, the implementation can choose to arbitrarily
transfer agents between the schedulers, in particular for optimization pur-
poses. These transfers are called transparent migrations as they do not
introduce any change in the execution of agents and are not observable at
user level.

Transparent migration simply means to transfer an agent from a sched-
uler of a site to another scheduler of the same site:

Σ[(site, scheds[sched1 ⊎Ag][sched2], I, E)]→
Σ[(site, scheds[sched1][sched2 ⊎ Ag], I, E)]

(8.11)

146

Load Balancing

8.2 Load Balancing

Load balancing is a method for distributing workload over multiple CPUs.
These CPUs could be over a network, on a computer cluster, or even on a
multi-core machine.

In our work, load balancing means to balance the charge between differ-
ent schedulers of the same site. There are several approaches to load bal-
ancing like work sharing or work stealing [20]. We choose to use a simpler
algorithm, which is presented in [64]. This algorithm deploys the threads
equally between the computing resources. We adapt this algorithm by re-
placing threads with agents, to spread them between schedulers.

To prevent oscillating migrations of a few agents between two schedulers,
we introduce a threshold used to trigger the load balancing process. The
load balancing is not executed at each instant, but only when the number
of created agents exceeds the threshold.

Let us explain how the example of Section 6.1.3 works under the imple-
mentation semantics.

Let us presume that the execution machine is a quad-core machine.
Therefore, the number of schedulers is four, which is the maximum between
the number of sites and the number of cores.

At the beginning of the execution we have two sites. Each site contains
one scheduler which executes all the agents belonging to the site. Since
the charge over each site is high, site1 executes the load balancing algo-
rithm, and as free schedulers are available, the site expands itself and adds
a new scheduler to its scheduler set. Now, the site contains two schedulers
(which are synchronized). Then, the transparent migration between these
two schedulers can happen. As a result, the charge of the first scheduler is
divided by two, and half of the agents are now linked to the newly added
scheduler (same process for site2).

Let us suppose that a considerable amount of agents of site2 migrates
to the other site. In this way, the charge over site2 is reduced. Then, first
site2 migrates transparently all the agents of one scheduler (sched) to the
other and frees the scheduler. Afterwards, site2 is contracted by removing
sched. Now site1 which has a huge load on each scheduler can expand by
adding sched to its set of schedulers. Each scheduler of site1 gives a third
of its load to sched. In the resulting state of execution, site1 contains thus
three schedulers, and site2 only one. This process continues up to the end
of execution.

Now, we are going to compare two executions of this example, one in
FunLoft and the other one in DSLM with load balancing. We consider 3000

147

DSLM Implementation

bouncing balls in each site. The graphics in Figure 8.2 shows an execution
of this example over a quad-core machine.

FunLoft Execution

DSLM Execution

Figure 8.2: Two Different Executions of Bouncing Balls

The first image shows the execution of the program in FunLoft where
we have two sites and each of them is executed over a native thread which
is attached to a core. The load balancing is left to the SMP system. In
this execution the core usage is not regular and we are only partially taking
benefit of the multi-core architecture. By observing the Figure 8.3, we can
see that during the execution, the system only activates one core at each
time and that the other three cores are not really used.

On the other hand, the second image shows the DSLM execution where
we are using all available cores. The oscillation is the result of load balancing
between schedulers. We can see the usage of all cores in the Figure 8.3 where
DSLM takes benefit of all the cores at the same time (two times more than
FunLoft).

The implementation semantics is in an experimental system available
at [1]. The implementation is based on FairThreads and uses the FunLoft
verification system.

148

Load Balancing

FunLoft Execution

DSLM Execution

Figure 8.3: Two Different Executions of Bouncing Balls

149

DSLM Implementation

150

Part V

Conclusion

Chapter 9

Conclusion and Future Work

We have presented several approaches of parallel programming, based on the
synchronous - reactive model in the goal to design a general-purpose lan-
guage which can take advantage of multi-core architectures and be secure.
Synchronous programming is simpler than the traditional asynchronous ap-
proaches, based on the exclusive use of preemptive threads. However, four
major issues are raised by synchronous programming: how to be sure that
the program is indeed reactive? how to execute it efficiently on a multi-core
architecture? how to be sure that there is no harmful interference between
parallel computations (e.g. data-races)? how to have a secure reactive syn-
chronous language? Our proposal gives answers to these questions.

First, we presented DSL, a core reactive language which is adapted to an
orchestration model. In DSL, the memory management is left to the host
language. Moreover, there is no means to define functions and modules at
the language level; they are left to the host language. In DSL, each site is
run by a separated thread linked to a core. For this reason, DSL can only
partially take benefit of multi-core architectures.

Despite the fact that DSL is well-suited for orchestration, there are
several issues which can be pointed out. First, the memory abstraction
makes programming difficult and sometimes unusable. Particularly, DSL
cannot be considered as a general-purpose programming language. The
second one is at the function call level. There is no proper way to ensure
the memory protection. The next issue concerns security. In DSL, as in
almost all programming languages, there is no means for data protection.
The last issue is about taking advantage of the multi-core machines. The
DSL approach is to map each site to one core which is rather a conservative
approach and remains a considerable weakness to optimize the usage of

Conclusion and Future Work

multi-core machines.
We investigated these issues to propose solutions for them. Since security

and optimization of multi-cores are quite orthogonal, we chose to consider
as a first step a kernel language CRL which was then extended to deal
with each issue. In CRL there is no notion of site nor of host language and
data are manipulated directly using a fixed set of basic operators. Moreover,
CRL makes use of a new parallel operator which is similar, but not identical
to those of [28] and [8]. A big-step semantics cannot allow fine tracking of
security violations; due to this we choose to express CRL in a small-step
framework. Using this semantics, we prove that the reactivity of scripts is
still guaranteed in the presence of the new parallel operator, and we give a
static bound for the number of steps it requires.

Then, security levels are added to CRL to obtain SSL (Secure Syn-
chronous Language). SSL is a minimal language proposed to study the
problem of information flow security in the synchronous reactive model. To
this goal, we first defined two bisimulation properties: a fine-grained bisim-
ulation and a coarse-grained one. Based on these bisimulation, we proposed
two non-interference properties. Then, we defined a security type system
which we proved to ensure both non-interference properties.

At the end, we added memory and distribution to CRL to obtain a
Dynamic Script Language with Memory (DSLM). The main goal ofDSLM
is to provide a general-purpose language which can benefit from multi-core
architectures with a sound semantics.

In DSLM , by adding memory at the language level, we have to face a
new problem called memory safety. To resolve this problem, we propose to
encapsulate memory and create a new level of parallelism called agents. We
propose a type system which verifies the memory isolation of each agent.

We also proposed an implementation semantics for DSLM . The main
goal of this semantics is to give a way to benefit from multi-core architec-
tures. To this end, we add a new level of parallelism on top of agents, called
schedulers. A scheduler is a native thread which executes agents. In this
way, a site becomes a set of schedulers which are sharing the same notion
of instant (referred to in the literature as synchronized schedulers). We give
the possibility of creating and removing schedulers in each site (contraction
and expansion). A site expands (or contracts) itself by taking into account
the charge over the site and the available cores. Once the site is expanded
we need to take benefit of the newly added scheduler. To this end, we in-
troduce agent migration between schedulers of each site, called transparent
migration (due to the transparency at user level). This is possible as a result
of the clear memory separation between agents.

154

Note that the actual implementation of DSLM is based on FunLoft,
which ensures the termination of functions calls and the reactivity of mod-
ules. In this perspective, DSLM is a safe reactive parallel programming
language, adapted to multi-core/multi-processor architectures, which is, to
our knowledge, something new.

We envision the following tracks for future work:

• In previously presented models, functions and modules are defined in
the host language, thus there is no insurance that the required prop-
erties (instantaneous termination of functions, and non-instantaneous
execution of modules) are satisfied. We plan to add function and mod-
ule definitions directly at the language level. Thus, we could envision
to statically check their required properties with a type system.

• We plan to merge SSL and DSLM . This will help us to reach our
main goal to have a general-purpose language equipped with memory
and able to deal with security and to take benefit of multi-core archi-
tectures. Security would then mean controlling information flows at
all levels: memory, events, agent migrations, functions and modules.

• Declassification [62] has been systematically pointed out as a central
issue to be dealt with by any approach to secure information flow.
We aim at extending our current framework to handle declassification
along the lines of [42, 43].

155

Conclusion and Future Work

156

Bibliography

[1] DSLM : Dynamic Script Language with Memory. https://gforge.

inria.fr/projects/partout/.

[2] Spark Language. http://www.spark-2014.org/.

[3] Twitter. http://www.twitter.com/.

[4] Mart́ın Abadi, Andrew Birrell, Tim Harris, Johnson Hsieh, and Michael
Isard. Dynamic Separation for Transactional Memory. Tr-2008-43,
Microsoft Research, 2008.

[5] Mart́ın Abadi, Andrew Birrell, Tim Harris, and Michael Isard. Seman-
tics of Transactional Memory and Automatic Mutual Exclusion. ACM
SIGPLAN Notices, 43(1):63–74, 2008.

[6] Gul Agha. Actors: a Model of Concurrent Computation in Distributed
Systems, Series in Artificial Intelligence. MIT Press, 11(12):12, 1986.

[7] Ana Almeida Matos. Non-disclosure for Distributed Mobile Code. In
Proceedings FST-TCS’05, volume 3821 of Lecture Notes in Computer
Science, pages 177–188, 2005.

[8] Ana Almeida Matos, Gérard Boudol, and Ilaria Castellani. Typing
Noninterference for Reactive Programs. Journal of Logic and Algebraic
Programming, 72(2):124–156, 2007.

[9] Roberto M. Amadio. A Synchronous pi-Calculus. Journal of Informa-
tion and Computation, 205(9):1470–1490, 2007.

[10] Roberto M. Amadio. The SL Synchronous Language, Revisited. The
Journal of Logic and Algebraic Programming, 70(2):121–150, 2007.

https://gforge.inria.fr/projects/partout/
https://gforge.inria.fr/projects/partout/
http://www.spark-2014.org/
http://www.twitter.com/

Bibliography

[11] Roberto M. Amadio and Frédéric Dabrowski. Feasible Reactivity for
Synchronous Cooperative Threads. In Workshop on Expressiveness in
Concurrency, pages 33–43, San Francisco, 2006. ENTCS 154(3).

[12] Pejman Attar. DSLM : Dynamic Synchronous Language with Memory.
Technical report, 2012. http://hal.archives-ouvertes.fr/hal-00779192.

[13] Pejman Attar and Frédéric Boussinot. Orchestration Synchrone et Au-
delà. Journal européen des systèmes automatisés, 45(1-3):77–92, 2011.

[14] Pejman Attar, Frédéric Boussinot, Louis Mandel, and Jean-
Ferdy Susini. Proposal for a Dynamic Synchronous Language.
http://hal.archives-ouvertes.fr/hal-00590420, 2011.

[15] Pejman Attar and Ilaria Castellani. Fine-grained and coarse-grained re-
active noninterference. Technical report, July 2013. http://hal.archives-
ouvertes.fr/hal-00854136.

[16] Pejman Attar and Ilaria Castellani. Fine-grained and Coarse-grained
Reactive Noninterference. 2013. In Proceedings of Trustworthy Global
Computing (TGC’13).

[17] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Syn-
chronous Programming with Events and Relations: the SIGNAL Lan-
guage and Its Semantics. Science of computer programming, 16(2):103–
149, 1991.

[18] Gérard Berry and Laurent Cosserat. The ESTEREL Synchronous
Programming Language and Its Mathematical Semantics. In Stephen
Brookes, Andrew Roscoe, and GlynnWinskel, editors, Seminar on Con-
currency, volume 197 of Lecture Notes in Computer Science, pages 389–
448. Springer Berlin / Heidelberg, 1985.

[19] Gérard Berry and Georges Gonthier. The ESTEREL Synchronous Pro-
gramming Language: Design, Semantics, Implementation. Sci. of Com-
put. Programming, 19, 1992.

[20] Robert D. Blumofe and Charles E. Leiserson. Scheduling Multithreaded
Computations by Work stealing. J. ACM, 46(5):720–748, 1999.

[21] Gérard Boudol. ULM: A Core Programming Model for Global Comput-
ing. In David Schmidt, editor, Programming Languages and Systems,
volume 2986 of Lecture Notes in Computer Science, pages 234–248.
Springer Berlin Heidelberg, 2004.

158

Bibliography

[22] Gérard Boudol and Ilaria Castellani. Noninterference for Concur-
rent Programs and Thread Systems. Theoretical Computer Science,
281(1):109–130, 2002.

[23] Frédéric Boussinot. Reactive C: An Extension of C to Program Reactive
Systems. Software: Practice and Experience, 21(4):401–428, 1991.

[24] Frédéric Boussinot. Concurrent Programming with
FairThreads: The Loft Language. 2003. http://www-
sop.inria.fr/meije/rp/LOFT/doc/book/book.html.

[25] Frédéric Boussinot. FairThreads: Mixing Cooperative and Preemptive
Threads in C. Concurrency and Computation: Practice and Experience,
18(5):445–469, 2006.

[26] Frédéric Boussinot. Safe Reactive Programming: The FunLoft Proposal.
Lambert Academic Publishing, 2010.

[27] Frédéric Boussinot and Robert De Simone. The SL Synchronous Lan-
guage. Software Engineering, IEEE Transactions on, 22(4):256–266,
1996.

[28] Frédéric Boussinot and Jean-Ferdy Susini. The SugarCubes Tool Box:
A Reactive Java Framework. Software: Practice and Experience,
28(14):1531–1550, 1998.

[29] Paul Caspi and Marc Pouzet. A functional extension to lustre. In 8th
International Symposium on Languages for Intensional Programming,
1995.

[30] Frédéric Dabrowski. Programmation Réactive Synchrone: langages et
contrôle des ressources. 2007. PhD thesis.

[31] Robert De Simone. Higher-level Synchronising Devices in Meije-SCCS.
Theoretical Computer Science, 37:245–267, 1985.

[32] Jack B Dennis and Earl C Van Horn. Programming Semantics for Mul-
tiprogrammed Computations. Communications of the ACM, 9(3):143–
155, 1966.

[33] Michel Dubois and Christoph Scheurich. Memory Access Dependen-
cies in Shared-memory Multiprocessors. Software Engineering, IEEE
Transactions on, 16(6):660 –673, 1990.

159

Bibliography

[34] J. Eker, J.W. Janneck, E.A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig,
S. Neuendorffer, S. Sachs, and Yuhong Xiong. Taming Heterogene-
ity - the Ptolemy Approach. Proceedings of the IEEE, 91(1):127 – 144,
2003.

[35] Joseph A Goguen and José Meseguer. Security Policies and Security
models. In IEEE Symposium on Security and privacy, volume 12, 1982.

[36] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud.
The synchronous Data Flow Programming Language LUSTRE. Pro-
ceedings of the IEEE, 79(9):1305–1320, 1991.

[37] Nicolas Halbwachs. Synchronous Programming of Reactive Systems.
Kluwer Academic Pub., 1993.

[38] Per Brinch Hansen. Concurrent Programming Concepts. ACM Comput.
Surv., 5(4):223–245, 1973.

[39] Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Archi-
tectural Support for Lock-free Data Structures. SIGARCH Comput.
Archit. News, 21(2):289–300, 1993.

[40] Butler W Lampson. Protection. ACM SIGOPS Operating Systems
Review, 8(1):18–24, 1974.

[41] Louis Mandel and Marc Pouzet. ReactiveML: A Reactive Extension to
ML. In Proceedings of the 7th ACM SIGPLAN international conference
on Principles and practice of declarative programming, PPDP ’05, pages
82–93, New York, NY, USA, 2005. ACM.

[42] A Almeida Matos. Typing secure information flow: declassification and
mobility. These de doctorat, École Nationale Supérieure des Mines de
Paris, 2006.

[43] Ana Almeida Matos and Gérard Boudol. On declassification and the
non-disclosure policy. In Proceedings of the 18th IEEE Workshop on
Computer Security Foundations. IEEE, 2005.

[44] Jayadev Misra and William R. Cook. Computation Orchestration. Soft-
ware & Systems Modeling, 6(1):83–110, 2007.

[45] Jay Munro. Antivirus research and detection techniques. Antivirus
Research and Detection Techniques, ExtremeTech, 2002.

160

Bibliography

[46] Aaftab Munshi et al. The OpenCL Specification. Khronos OpenCL
Working Group, 1:l1–15, 2009.

[47] T. Murata. Petri Nets: Properties, Analysis and Applications. Pro-
ceedings of the IEEE, 77(4):541 –580, 1989.

[48] Jens Muttersbach, Thomas Villiger, and Wolfgang Fichtner. Practical
Design of Globally-Asynchronous Locally-Synchronous Systems. In Ad-
vanced Research in Asynchronous Circuits and Systems, 2000. (ASYNC
2000), pages 52 –59, 2000.

[49] Andrew C Myers. JFlow: Practical Mostly-static Information Flow
Control. In Proceedings of the 26th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pages 228–241. ACM,
1999.

[50] Andrew C Myers and Barbara Liskov. A decentralized model for in-
formation flow control. In ACM SIGOPS Operating Systems Review,
volume 31, pages 129–142. ACM, 1997.

[51] Andrew C Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong,
and Nathaniel Nystrom. Jif: Java Information Flow. Software release.
Located at http://www. cs. cornell. edu/jif, 2005, 2001.

[52] Robert H. B. Netzer and Barton P. Miller. What Are Race Condi-
tions?: Some Issues and Formalizations. ACM Lett. Program. Lang.
Syst., 1(1):74–88, 1992.

[53] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads
Programming. O‘Reilly, 1996.

[54] CUDA Nvidia. Compute Unified Device Architecture Programming
Guide. 2007.

[55] Scott Oaks and Henry Wong. Java Threads. O’Reilly Media, Inc., 2004.

[56] Rolf Oppliger. Internet security: Firewalls and beyond. Communica-
tions of the ACM, 40(5):92–102, 1997.

[57] Rob Pike. Concurrency is not Parallelism (It’s Better). http://

concur.rspace.googlecode.com/hg/talk/concur.html.

[58] Kuchi VS Prasad. A Calculus of Broadcasting Systems. Science of
Computer Programming, 25(2):285–327, 1995.

161

http://concur.rspace.googlecode.com/hg/talk/concur.html
http://concur.rspace.googlecode.com/hg/talk/concur.html

Bibliography

[59] Alejandro Russo and Andrei Sabelfeld. Security for multithreaded pro-
grams under cooperative scheduling. In Perspectives of Systems Infor-
matics, pages 474–480. Springer, 2007.

[60] Andrei Sabelfeld. The Impact of Synchronization on Secure Information
Flow in Concurrent Programs. In Proceedings of Andrei Ershov 4th
International Conference on Perspectives of System Informatics, 2001.

[61] Andrei Sabelfeld and David Sands. Probabilistic Noninterference for
Multi-threaded Programs. In IEEE, editor, 13th Computer Security
Foundations Workshop, 2000.

[62] Andrei Sabelfeld and David Sands. Declassification: Dimensions and
Principles. Journal of Computer Security, 17(5):517–548, 2009.

[63] Davide Sangiorgi and David Walker. The pi-calculus: a Theory of Mo-
bile Processes. Cambridge University Press, 2003.

[64] Behrooz A. Shirazi, Krishna M. Kavi, and Ali R. Hurson. Scheduling
and Load-balancing in Parallel and Distributed Systems. IEEE Com-
puter Society Press, 1995.

[65] Vincent Simonet. Flow Caml in a Nutshell. In Proceedings of the first
APPSEM-II workshop, pages 152–165. Nottingham, United Kingdom,
2003.

[66] Geoffrey Smith. A New Type System for Secure Information Flow. In
Proceedings of the 14th IEEE Computer Security Foundations Work-
shop. IEEE, 2001.

[67] Geoffrey Smith and Dennis Volpano. Secure Information Flow in a
Multi-threaded Imperative Language. In ACM, editor, Proceedings
POPL ’98, pages 355–364. ACM Press, 1998.

[68] Jean-Ferdinand Susini. A Very Experimental Release of the Sugar-
Cubes: SugarCubes v5. http://jeanferdysusini.free.fr/index.

php?action=SC.

[69] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A Sound Type
System for Secure Flow Analysis. Journal of Computer Security,
4(3):167–187, 1996.

[70] David AWatt, Brian AWichmann, andWilliam Findlay. Ada Language
and Methodology. Prentice Hall International (UK) Ltd., 1987.

162

http://jeanferdysusini.free.fr/index.php?action=SC
http://jeanferdysusini.free.fr/index.php?action=SC

	Abstract
	Introduction
	The Synchronous Model
	Memory in Synchronous Models
	Causality Cycles
	Non-terminating Instants
	Real Parallelism
	The Reactive Approach

	Security
	Access Control
	Secure Information Flow

	State of the Art
	Concurrency
	Parallelism and Multi-core architectures
	Safety
	Security

	Document Structure
	DSL
	CRL
	SSL
	DSLM
	Conclusion

	I DSL
	The Dynamic Synchronous Language DSL
	Language Description
	Scripts
	Sites
	Events
	Basic Properties
	Example

	Semantics
	Expressions
	Scripts
	Least Fix-Point
	Programs and Sites

	Examples and Semantical Variants
	Examples
	Variants of the Semantics

	DSL Implementation
	FunLoft Variant
	Dynamic Adding of Instructions
	Reactive Engine
	Functions and Tasks
	Instantaneous Loops
	Static Checks
	Execution of Instructions
	Translation in FunLoft

	Bigloo/Scheme Variant
	Sites
	Functions and Tasks
	Translation in Bigloo

	Benchmarks
	FunLoft
	SugarCubes
	ReactiveML
	Scheme/Bigloo
	Interpretation

	II CRL
	The Core Reactive Language CRL
	Syntax
	Expressions
	Scripts

	Semantics
	Reactivity

	III SSL
	Secure Synchronous Language SSL
	Fine-grained and Coarse-grained Bisimilarity
	Security property
	Type System
	Example

	IV DSLM
	DSL with Memory: The language DSLM
	Informal Language Description
	Scripts and Expressions
	Agents, Sites and Systems
	Example

	Domains
	Semantics of Scripts
	Expressions
	Suspension Predicate
	Transition Relation
	Semantic Properties

	Semantics of Sites and Systems
	Sites
	End of Instants
	Reconditioning Function for Next Instant

	Typing System for DSLM
	DSLM Implementation
	Implementation Semantics
	Domains
	Suspension Predicate
	Sites and Systems

	Load Balancing

	V Conclusion
	Conclusion and Future Work

