
HAL Id: tel-00942608
https://theses.hal.science/tel-00942608

Submitted on 6 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to DNA cryptography : applications to
text and image secure transmission

Olga Tornea

To cite this version:
Olga Tornea. Contributions to DNA cryptography : applications to text and image secure transmis-
sion. Other. Université Nice Sophia Antipolis; Universitatea tehnică (Cluj-Napoca, Roumanie), 2013.
English. �NNT : 2013NICE4092�. �tel-00942608�

https://theses.hal.science/tel-00942608
https://hal.archives-ouvertes.fr

UNIVERSITE DE NICE-SOPHIA ANTIPOLIS

ECOLE DOCTORALE STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION ET DE LA COMMUNICATION

T H E S E

pour l’obtention du grade de

Docteur en Sciences

de l’Université de Nice-Sophia Antipolis

Mention : Automatique, Traitement du Signal et des Images

présentée et soutenue par

Olga TORNEA

CONTRIBUTIONS TO DNA CRYPTOGRAPHY
APPLICATIONS TO TEXT AND IMAGE SECURE TRANSMISSION

Thèse dirigée par Monica BORDA et Marc ANTONINI

soutenue le 13 Novembre 2013

Jury :

Mircea Giurgiu Université Technique de Cluj-Napoca Président
William Puech Université Montpellier 2, LIRMM Rapporteur
Pedro Gomez-Vilda Université Polytechnique de Madrid Rapporteur
Monica Borda Université Technique de Cluj-Napoca Directeur de thèse
Marc Antonini Université de Nice-Sophia Antipolis Directeur de thèse
Lionel Fillatre Université de Nice-Sophia Antipolis Examinateur
María Rodellar Biarge Université Polytechnique de Madrid Examinateur
Romulus Terebes Université Technique de Cluj-Napoca Examinateur

Joint PhD Thesis

Contributions to DNA Cryptography

Applications to Text and Image Secure Transmission

at

Technical University of Cluj - Napoca

&

University of Nice Sophia Antipolis

Eng. Olga Tornea

PhD Advisors:

Prof. Dr. Eng. Monica Borda

Prof. Dr. Eng. Marc Antonini

2013

 iii

 Acknowledgements

I would like to express my gratitude to my professor and PhD advisor, Monica Elena Borda, for her

constant support and guidance during my thesis work. I am grateful for her time, ideas and

enthusiasm that helped me a lot since I started my research activity and contributed to the

achievements of the thesis.

I would like to thank my professor and PhD advisor, Marc Antonini, for the valuable guidance,

advice and support. Discussions we had brought clarity on certain aspects of the thesis and also

gave new directions in its development.

I gratefully acknowledge the funding received for my PhD from the project “Improvement of the

doctoral studies quality in engineering science for development of the knowledge based society-

QDOC" contract no. POSDRU/107/1.5/S/78534, project co-funded by the European Social Fund

through the Sectorial Operational Program Human Resources 2007-2013. I am also grateful to the

funding received through the I3S Laboratory which was helpful to complete a part of the thesis

work.

Thanks to the Data Processing and Security Research Centre for a warm, welcoming and

professional environment. Special thanks to Romulus Terebes, Emil Raul Malutan, and Bogdan

Belean for their friendly and professional advices.

I would like to express my appreciation to the I3S Laboratory for providing me with a good

environment. I am also grateful for the support I received from the scientific collaboration with the

team MediaCoding. Special thanks to Jean-Luc Peyrot for his friendly support.

I am grateful to my family and all my friends for their encouragement and support in my work.

 iv

 v

Abstract

DNA cryptography is a new and promising field in information security. It combines

classical solutions in cryptography with the strength of the genetic material. By

introducing DNA into the common symmetric key cryptography, it is possible to

benefit from the advantages of the classical cryptosystems and solve some of its

limitations. There are different ways how DNA can be used to secure information

content. It is about using the biological medium of DNA for storing and hiding data.

Secret information can be placed in microscopic size of DNA and hidden among a

great amount of other DNA structures. Biomolecular computation is possible with

specially designed DNA structures. Valuable parts of this type of computation are self-

assembling property of DNA molecules and parallel computations. DNA is considered

self-assembling because there are complementary bases in its structure that bind to

each other through a standalone hybridization process. Parallel computations occur

when hybridization happens at the same time between many different DNA structures.

Random numbers can be generated from DNA sequences which can be found in

genetic databases in digital form. Genetic databases represent a feasible solution to the

One-Time-Pad (OTP) symmetric key generation and transmission problem. The one-

time use is ensured due to the great variety of the publicly available, very long

(thousands of bases) sequences. Transmission of a very long key is not required

because each sequence has a unique identification number in the database and this

number, or a combination of this numbers can be sent instead.

Compression along with information security have always been topics of interest

because, as technology advances, the amount of data that is desired to be transmitted,

stored, or used in real time applications is becoming greater. Some of the encryption

schemes can increase the size of the data, or bring unwanted additional computations.

These drawbacks can be solved by several techniques to combine compression with

encryption in one process or by performing a selective encryption of the data.

 vi

 vii

Résumé

La cryptographie ADN est un domaine nouveau et prometteur pour la sécurité de

l'information. C'est une combinaison des solutions classiques de cryptographie avec les

avantages du matériel génétique. En effet, il est possible de bénéficier des avantages

des systèmes cryptographiques classiques et de les rendre plus efficaces sur certaines

méthodes grâce à l’utilisation de l'ADN. Il y a différentes façons d'utiliser l'ADN pour

sécuriser le contenu de l'information. Cette thèse propose deux solutions différentes

pour utiliser l'ADN dans la cryptographie : sous sa forme biologique ou alors sous

forme numérique.

D ‘une part, l'ADN biologique peut être utilisé pour le stockage et pour cacher des

données à l'intérieur de celui-ci. L'information secrète est placée dans une molécule de

l'ADN et caché parmi d'autres molécules d'ADN. Le calcul biomoléculaire est possible

grâce à des structures synthétiques d'ADN. Les éléments importants pour ce type de

calcul sont la propriété d'auto-assemblage des molécules d'ADN et le parallélisme du

processus grâce à l'hybridation.

D’autre part, les nombres aléatoires peuvent être générés à partir de séquences

numériques d'ADN. En effet, les bases informatiques de données génétiques

contiennent des séquences d'ADN sous forme numérique. Ils représentent une solution

pour la génération et la transmission des clés OTP (One-Time-Pad) symétriques. La

transmission d'une très longue clé de cryptage n'est pas nécessaire, car chaque

séquence possède un numéro d'identification unique dans la base de données. Ce

numéro, ou une combinaison de ces numéros, peut alors être transmis.

Enfin, la sécurité et la compression sont très importantes lors de la transmission et du

stockage des données informatiques. Cependant, la plupart des systèmes de cryptage

peuvent augmenter la taille des données, ou encore augmenter la complexité calcul.

Ces inconvénients peuvent être résolus en combinant la compression de données avec

le cryptage dans un seul processus ou en effectuant le cryptage sélectif des données.

 viii

 ix

Table of Contents

List of Figures ... x

List of Tables ... xiii

List of Abbreviations.. xiv

Chapter 1 Introduction .. 1

1.1 Motivation and Objectives of the Thesis .. 1

1.2 Thesis Structure ... 3

Chapter 2 State of the Art ... 5

2.1 Elements of Cryptography ... 5

2.1.1Conventional Cryptography (Symmetric) ... 6

2.1.1.1 Stream and Block Ciphers .. 8

2.1.2 Public Key Cryptography (PCK) .. 9

2.1.3 One-Time-Pad .. 10

2.1.4 Cryptanalysis ... 12

2.1.5 Key Management .. 13

2.1.6 Cryptosystems for Duplex Transmission and Storage 13

2.2 Data Compression ... 15

2.2.1 Data Compression Chain ... 16

2.2.2 Rate Distortion Theory ... 19

2.2.3 Types of Data Compression .. 20

2.2.4 Classification of the Multimedia Compression – Encryption methods 21

2.3 DNA Cryptography .. 24

2.3.1 Molecular Biology Principles .. 25

2.3.1.1 DNA Structure ... 26

2.3.2 Cryptography at the Molecular Level .. 27

2.3.2.1 Techniques for DNA Analysis ... 27

 x

2.3.2.2 Molecular Storage and Computations .. 29

2.3.3 Digital DNA in Cryptography .. 30

2.4 Performance Evaluation Aspects .. 31

2.4.1 Computational Complexity ... 31

2.4.2 Security Level .. 32

2.4.3 Compression Ratio .. 35

Chapter 3 DNA Indexing Cipher .. 37

3.1 Principle of the Algorithm ... 38

3.2 Design and Implementation Details ... 40

3.3 Performance Evaluation ... 44

3.3.1 Computational Complexity of the Algorithm .. 44

3.3.2 Security Level of the Algorithm .. 48

3.3.3 Comparison with another cipher of similar principle 51

3.4 Modifications of DNA Indexing Cipher for Better Compression Ratio and

Security .. 52

3.4.1 Improvements of Direct Encryption .. 52

3.4.1.1 Change of Indexes in Key Dictionary ... 54

3.4.1.2 Homophonic Substitution .. 55

3.4.1.3 Encryption and Compression through Longest Common

Subsequences in DNA Sequence ... 56

3.4.2 Joint Compression – Encryption ... 58

3.4.2.1 Analysis Block - Bit Allocation .. 60

3.4.2.2 Entropy Coding of the Key Dictionary .. 603

3.4.2.3 Experimental Results of R(D) Functions .. 65

3.4.2.4 Comparison of Compression Efficiency between different Versions of

the Algorithm ... 68

3.5 Contributions ... 70

 xi

Chapter 4 Generation of Random Sequences using Genetic Databases and

proposal of OTP Cryptosystems ... 73

4.1 DNA Based Random Sequence Generation Method ... 74

4.1.1 Distribution of the DNA Sequence ... 74

4.1.2 Transformation from DNA to Binary .. 75

4.1.3 Access to the DNA Sequence .. 75

4.1.4 Length of the DNA Sequence .. 78

4.1.5 Format of the Secret Key .. 81

4.1.6 Overview of the Method and its Advantages... 82

4.2 OTP Encryption Systems for Transmission and Storage 83

4.2.1 OTP Cryptosystem for Duplex Transmission Based on DNA-RS 83

4.2.2 OTP Cryptosystem for Storage, based on DNA-RS key 86

4.3 Performance Evaluation ... 87

4.3.1 Computational Complexity of the Algorithm .. 87

4.3.1.1 Time Evaluation Functions .. 87

4.3.1.2 Experimental Measurements of the Computational Time 89

4.3.2 Security Level of the Algorithm .. 96

4.4 Contributions ... 99

Chapter 5 Design of the DNA Vernam Cipher at the Molecular Level 101

5.1 Principle of the Algorithm ... 102

5.2 Design and Implementation Details ... 105

5.2.1 Design of DNA Molecule Structure ... 105

5.2.2 DNA Molecule Structure Implementation .. 108

5.2.3 Laboratory Utility ... 110

5.3 Performance Evaluation ... 111

5.4 Contributions ... 111

 xii

Chapter 6 Conclusions .. 113

6.1 Overview of the Contributions .. 114

6.2 Future Works .. 116

Scientific Activity .. 117

Bibliography ... 119

Appendix ... a

 xiii

List of Figures

2.1 Symmetric Encryption Model ... 7

2.2 a) Block Cipher b) Stream Cipher .. 8

2.3 Vernam Cipher ... 10

2.4 Cryptosystem for Duplex Transmission ... 14

2.5 Cryptosystem for Storage .. 15

2.6 General scheme of compression process ... 16

2.7 Chain of compression encoding – decoding processes ... 17

2.8 Rate – Distortion Function .. 19

2.9 Schemes of Complete and Partial-Selective Encryption ... 22

2.10 Encryption of the DC and AC coefficients of a DCT block .. 23

2.11 Cell and its Genetic Material ... 25

2.12 Nucleotide Structure .. 26

2.13 DNA Strands formed by nucleotide and hydrogen bonds .. 26

2.14 DNA Structure .. 26

2.15 Hybridization between 2 Complementary Strands of DNA a) beginning of the

process b) final product of hybridization ... 28

2.16 Few Wang tiles .. 28

2.17 DNA Triple-Helix Tile [Bor11] ... 28

2.18 Hybridization between DNA Tiles that can be used for Arithmetic Operations 30

2.19 Histograms of the Plaintexts and Ciphertexts ... 33

3.1 Chromosomal Sequences from a Genetic Database .. 38

3.2 Encryption Process of the DNA Indexing Algorithm ... 39

3.3 Use Case Diagram .. 41

3.4 Class Diagram ... 42

3.5 Object Diagram ... 43

3.6 Sequence Diagram .. 43

3.7 Growing Rate of the Key Table Computation Runtime ... 47

3.8 Growing Rate of the Encryption Runtime .. 47

 xiv

3.9 Growing Rate of the Decryption Runtime .. 47

3.10 Examples of Plaintext, Ciphertext and Their Statistical Measurements 49

3.11 Key Dictionary: for each byte there is a range of integer substitution values;

their positions may be used as new substitution values .. 54

3.12 Distribution of the Encoded Data Bitstream a) tiff, b) jpeg .. 55

3.13 Number of Substitution Values for each Byte of the Plaintext 56

3.14 Distributions of the a) Plaintext and b) Ciphertext Values .. 56

3.15 Example of Encryption with LCS in DNA Sequences .. 57

3.16 Joint Compression – Encryption Scheme .. 58

3.17 Scheme of the Joint Compression – Encryption Method .. 59

3.18 Rate – Distortion Curve According to the Quantization Step 60

3.19 Lagrange Multiplier and Quantization Steps Values ... 62

3.20 D(R) Curves according to the Number of Substitutions in Key Dictionary 62

3.21 Huffman Coding of the Key Dictionary .. 63

3.22 Change in the Bitrate due to the number of substitutions in the KD 64

3.23 Histogram and Approximation of the Generalized Gaussian Distribution 65

3.24 Transform of the Test Image; Numeration represents Subband Images 65

3.25 R(D) Curves of the Subband Image 0 .. 66

3.26 R(D) Curves of the Subband Image 2 .. 67

3.27 R(D) Curves of the Subband Image 4 .. 67

3.28 Number of Substitutions per Value allocated empirically for each Image Subband69

3.29 PSNR –R Curves of the 3 Compression – Encryption Algorithm’s Versions 70

4.1 Requesting Genome Information for Zea Mays (corn) Species 76

4.2 Genome Information about Zea Mays Species .. 76

4.3 Chromosomes of the Zea Mays .. 77

4.4 DNA Sequence in FASTA Format and the Download Options 77

4.5 Format of the Secret Key a) 2 bits specifing the method a – 00, b – 01, c – 10, d – 11,

b) 3 bits specifing the number of transmitted IDs, c) the actual secret key formed of

1 – 8 IDs, each of 8 bytes .. 81

4.6 Examples of DNA Sequences in GenBank Format and their IDs.................................. 82

 xv

4.7 Example of Secret Key Format ... 82

4.8 Scheme of OTP Cryptosystem for Duplex Transmission based on DNA-RS Key...... 83

4.9 OTP Cryptosystem for Storage, based on DNA-RS Key a) Encryption Side of

Writing Unit b) Decryption Side of Reading Unit ... 86

4.10 Growing Rate of the File Reading Runtime.. 90

4.11 Growing Rate of Shifting Procedure Runtime ... 91

4.12 Growing Rate of Multiplexing Procedure Runtime .. 92

4.13 Growing Rate of the Time Spent to Transform from DNA Alphabet to Binary 93

4.14 Growing Rate of the Time Spent to Perform Binary XOR ... 94

4.15 Comparison between Symmetric Ciphers Computational Time 95

4.16 Histograms of the Plaintext Bitmap Image and Corresponding Ciphertext 96

4.17 Histograms of the Plaintext Tiff Image and Corresponding Ciphertext 96

5.1 Amounts of DNA Tiles for Plaintext Bitstream Assembling 102

5.2 Plaintext Bitstream of DNA Molecules obtained by Hybridization 103

5.3 DNA Structures designed for Key Bitstream .. 103

5.4 XOR Operation between the Plaintext and the Key obtained by Hybridization 104

5.5 Hybridization between Plaintext and Key DNA Molecules .. 104

5.6 Ciphertext composed of the DNA Molecules .. 105

5.7 Holliday Junction ... 106

5.8 DNA Double Crossover Molecules ... 106

5.9 DNA Origami .. 107

5.10 a) DAE Molecule b) modified DAE Molecule c) Schematic View 108

5.11 Schematic DNA Structure for Binary “1” ... 108

5.12 Atomic Force Microscope .. 110

 xvi

List of Tables

2.1 Conversion Table from Binary to DNA .. 29

3.1 Pseudo code for basic operations of the DNA Indexing cipher 45

3.2 Measurements of the key-table computation runtime .. 45

3.3 Measurements of the encryption runtime .. 46

3.4 Measurements of the decryption runtime .. 46

3.5 Plaintext and ciphertext entropy measurements ... 48

3.6 Plaintext and ciphertext correlation coefficients .. 49

3.7 Rate – Distortion Values of Subband Image 0 .. 66

3.8 Rate – Distortion Values of Subband Image 2 .. 67

3.9 Rate – Distortion Values of Subband Image 4 .. 67

3.10 PSNR – R Values of the 3 Compression – Encryption Algorithm’s Versions 69

4.1 Conversion table from DNA to binary .. 75

4.2 DNA sequences lengths corresponding to Zea mays (corn) chromosomes 78

4.3 DNA sequences lengths corresponding to cat chromosomes .. 78

4.4 DNA sequences lengths corresponding to human chromosomes 78

4.5 Examples of different input data (obtained by measuring real files) 79

4.6 Example of different cleartext messages, the corresponding DNA key length (bp),

and respectively the secret key information ... 80

4.7 Time measurements of the DNA sequence reading from the file 89

4.8 Time measurements of the DNA sequence shifting .. 90

4.9 Time measurements of the DNA sequences multiplexing ... 91

4.10 Time measurements of the DNA to binary transformation ... 93

4.11. Time measurements of the binary XOR operation ... 94

4.12 Time measurements of the symmetric encryption algorithms 95

4.13 Plaintext and ciphertext entropy measurements ... 97

4.14 Plaintext and ciphertext correlation coefficients .. 97

 xvii

List of Abbreviations

AES - Advanced Encryption Standard

AFM - Atomic Force Microscope

CBC - Cipher Block Chaining

CC - Correlation Coefficient

CCR - Changes in Compression Ratio

CFB - Cipher Feedback Mode

CR - Compression Ratio

DCT - Discrete Cosine Transform

DES - Data Encryption Standard

DFT - Discrete Fourier Transform

DNA - Deoxyribose Nucleic Acid

DPCM - Differential Pulse Code Modulation

DWT - Discrete Wavelet Transform

EZW - Embedded Zerotree Wavelet

FIPS - Federal Information Processing Standard

GIF - Graphics Interchange Format

HGP - Human Genome Project

IDEA - International Data Encryption Algorithm

JPEG - Joint Photographic Experts Group

LCS - Longest Common Subsequence

 xviii

MHT - Multiple Huffman Tables

MPEG - Moving Picture Experts Group

MSE - Mean Squared Error

NIST - National Institute of Standards and Technology

OFB - Output Feedback Mode

OTP – One Time Pad

PCK - Public Key Cryptography

PGP - Pretty Good Privacy

PNG - Portable Network Graphics

RSA - Ron Rivest, Adi Shamir, and Leonard Adleman

PSNR - Peak Signal to Noise Ratio

SFM - Scanning Force Microscope

UML - Unified Modeling Language

1

Chapter 1

Introduction

1.1 Motivation and Objectives of the Thesis

Interest in information security existed since ancient times and it is present in our modern

life. Techniques to protect information are evolving together with the progress in

information technology. Secret information was hidden in books or paintings; it appeared

in form of the unintelligible text. Some of the first ciphers based on substitution of letters

in written text were Polybius and Cesar ciphers. There are two directions in information

protection: cryptography and steganography. These two sciences manipulate information

in order to change its meaning or hide its existence. Computer age brought a different

interpretation of information and new directions in development of ciphers and

cryptographic protocols. Computational power offered the possibility to build new and

strong algorithms in cryptography, but it was also a strong tool used by cryptanalysts to

break the cryptosystems. This means that the subject of finding new and powerful ciphers

is always of interest and new directions in cryptography are explored.

Cryptography provides a range of features for information security. The main aspects

treated by cryptography are: confidentiality, data integrity, authentication, and non-

repudiation. The objectives of this thesis were to concentrate on the confidentiality part

and to find new methods (ciphers) to ensure privacy through the use of DNA.

DNA cryptography consists in the use of genetics and biomolecular computation and it is

one of the newest directions in cryptography. Genetic material such as DNA can be used

as a vast storage space. This idea is inspired from the fact that DNA is a natural carrier of

information which is encoded by a 4-letter alphabet: A, C, G, and T. This alphabet can be

easily transposed into the binary alphabet (A – 00, C – 01, G – 10, T - 11). Therefore DNA

can be used as a storage media for any kind of information. The property of hybridization

between complementary DNA nucleotides bases (A-T, C-G) is exploited in the

biomolecular computing field as a central process of computations. It is a natural process

that appears between complementary DNA strands of nucleotides and that’s why it is

2

named a self-assembling process. DNA computing started with Adleman’s research
[Adl94], while some basic directions of DNA cryptography are described in [GLR04].

Considering the fact that DNA cryptography is a novel domain, one of the objectives of

the thesis was to find and define different ways in which it can be applied in information

security. Three main directions of using DNA in cryptography were found: storage space,

computational power, generation of cryptographic keys from its long sequences. There can

be two working environments with DNA: at molecular level, in a laboratory, with

biological DNA and with digital DNA using available genetic databases. Different

techniques to manipulate DNA at molecular level were analyzed. A conversion of its

alphabet to binary was established. Three novel encryption methods based on DNA were

designed, developed, tested and improved in this work.

Genomes sequencing and their appearance in the form of electronic databases was a big

step for the growth in the genomic research domain [Lan11]. The benefits of the digital

genomic databases can be extended also to the information security domain. For example,

these databases can be used for the practical application of the one-time pad (OTP)

encryption scheme. The OTP properties correspond to the characteristics of the

unbreakable encryption system defined by Claude Shannon [Sha49].

A variety of possible genes and chromosomes from different organisms are good materials

for creation of random, non-repeating and for only one use pads. Nowadays there are

electronic databases of whole sequenced genomes from different organisms including

human, dog, mouse, frog, fruit fly, social amoeba and many others. These sequences can

be accessed from public genetic databases [wncbi] in different formats.

A research of how compression is combined with encryption was performed.

Compression and protection of the multimedia data have always been topics of interest

because, as technology advances, the amount of data that is desired to be transmitted,

stored, or used in real time applications is becoming greater. Multimedia files: text, audio,

image, or video can be very large and there are always concerns about their secure and fast

transmission. One of the designed DNA ciphers was modified into a joint compression –

encryption scheme. This modification was performed because the usual direct encryption

was doubling the size of the data.

This thesis approaches the problem of OTP encryption scheme. It offers a strong security,

but is not used in practical applications because of the difficulty to generate and distribute

a pure random and very long key bitstream. DNA properties were explored to solve these

drawbacks. In one of the designed ciphers it was proposed to use the hybridization

3

process to generate a random binary sequence for the secret key. In the other two ciphers

genetic databases were used to create a secret key and also to easily distribute it.

1.2 Thesis Structure

This thesis is organized in 6 chapters. First chapter is an introduction to the thesis subject

and objectives. Second chapter offers a brief theoretical background and state of the art for

the scientific fields involved in this work. The next three chapters describe contributions:

design, development, and analysis of the proposed DNA ciphers. The final chapter,

conclusions, makes an overview of the thesis contributions and presents possible future

works.

Chapter 2 presents state of the art of the involved fields: cryptography, compression,

molecular biology, and bioinformatics. Due to the diversity of the involved fields, a brief

theoretical background is provided for them along with the important references of books

and papers relevant to the described domains.

Chapter 3 presents one of the thesis contributions: DNA Indexing cipher. It is a symmetric

encryption algorithm that uses DNA sequences from genetic databases for the secret key.

In the first part of the chapter the principle of the algorithm is described. Details of its

design and implementation are presented next. Performances of the algorithm were tested

and analyzed using different metrics. Results of computational time, security level,

comparison with another algorithm, and compression efficiency are presented in this

chapter. It was observed that the bitrate increases twice after encryption. In order to solve

this drawback of the algorithm certain improvements were proposed and tested. Direct

encryption was compared to the joint compression – encryption scheme. A smaller bitrate

was obtained in the case of joint compression – encryption for the same distortion of the

data.

Chapter 4 describes another contribution of OTP cryptosystems based on genetic databases.

The method to generate random binary sequences from DNA described in this chapter

solves the problem of generation and distribution of the random long secret keys of OTP

ciphers. Schematic views and protocols for OTP encryption systems for transmission and

storage are presented next. The encryption method of the cryptosystem is Vernam cipher

and the secret key is a bitstream generated from the DNA sequences.

Advantage of the DNA based random sequence generation is that a binary random

sequence of any length can easily be generated from the public or private genetic

databases. An unlimited number of distinct random sequences can be obtained by

4

multiplexing, shifting, or concatenating sequences from different species. The major

drawback of the OTP cryptosystem is the key transmission. This problem doesn’t occur in

the DNA-RS generation because the secret key can be communicated through the short

identification numbers of the DNA sequences used at its construction. The advantage of

the OTP cryptosystem is its high security level [Sha49], [Ver26]. Storage of the encryption

keys implies keeping the DNA identification numbers and method of key construction.

The benefit is that only a smaller number of bits need to be stored instead of the entire

encryption key.

Chapter 5 presents contributions to DNA Cryptography at molecular level. Design of

Vernam cipher with DNA structures is proposed. A research of different DNA structures

and proposal of a structure for this cipher is presented. Details of algorithm steps and

structure implementations are given. The second part of this algorithm is intended for

laboratories with special equipment for biomolecular experiments.

Chapter 6 concludes the thesis work. An overview of contributions is presented here. Parts

of the work that can be continued are presented in future works. After the conclusion

chapter a bibliography is given and a list of publications of this work. In appendix some of

the most relevant papers are presented.

5

Chapter 2

State of the Art

Contents in Brief

2.1 Elements of Cryptography ...5

2.2 Data Compression ...15

2.3 DNA Cryptography ..24

2.4 Performance Evaluation Aspects ..31

In this chapter the basic notions of cryptography, compression, and use of genetic material

in information technology are presented. Basic contributions to each field are introduced

along with the significant and relevant bibliographical references.

Subchapter 2.1 presents the central elements of cryptography with emphasis to the most

relevant aspects for this thesis. Subchapter 2.2 is about data compression key concepts and

basic knowledge of joint compression – encryption. Elements of biology and two main

types of DNA cryptography are introduced in subchapter 2.3. In subchapter 2.4 three main

metrics used to evaluate the performance of the proposed encryption and compression

methods are presented.

2.1 Elements of Cryptography

Cryptography is the science of techniques and protocols intended to ensure information

security. Cryptanalysis is the art of analyzing and breaking secure communication; it

consists in attacking cryptographic methods. Cryptography is practiced by cryptographers

and cryptanalysis is practiced by cryptanalysts (attackers). Cryptology encompasses the

branches of cryptography and cryptanalysis [Sch96].

The purpose of cryptography is to provide a range of features for information security.

The most important of them are [Den07]:

6

 Confidentiality (privacy) provides the secrecy of information content. It transforms

the meaningful data into senseless message. Ciphers are the cryptographic

algorithms used to guarantee this characteristic.

 Data integrity means its protection from unauthorized access and alteration. Possible

changes in the original data are insertion and deletion. Integrity is achieved through

cryptographic hash functions.

 Authentication is the identification of the transmitted information and of the parts

engaged into a communication.

 Non-repudiation means to respect the obligations of a contract. This property can be

obtained by using signatures.

Data that has perceptual meaning for us is called clear text or plain text. Transformation of

the plaintext into an unreadable file is called encryption. Encrypted plaintext becomes

ciphertext. In order to obtain the original cleartext, the process of decryption is applied on

the ciphertext data. These two processes of encryption and decryption are compositional

parts of a cryptographic algorithm named cipher. A cipher is applied on the data together

with a secret key. Cryptosystem includes encryption, decryption, key generation algorithm

and all the necessary protocols to ensure secure communication [PGP04]. The key space is

the number of elements in the alphabet raised to the power of the key length. Key space is

important for cryptanalysis; it gives the number of all the possible keys that can be as well

the secret key.

History of cryptography and steganography is presented in [Kah96], [Wat01] and [PF07].

Introduction notions and fundamental knowledge of information security is well covered

in [Sch96] and [Bor11]. A comprehensive survey about security of data communications

and networks is W. Stallings book [Sta11]. Another reference which presents techniques

and algorithms of greatest interest is [MOV96]. A broad overview of computer security is

presented in [NIST95].

2.1.1Conventional Cryptography (Symmetric)

Symmetric cryptography is also named conventional or classical because it was the first

and only type of encryption until the 1970s, when the public key cryptography was

introduced. Symmetric ciphers use the same key for encryption and decryption. This key

must be secret and communicated through a secure channel to all parties involved in a

communication (Fig. 2.1).

The most common operations used in this type of cryptography are substitution and

transposition. Substitution consists in giving a different value to each plaintext word (one to

7

many bits). The transformed plaintext words become ciphertext values. Transposition, also

named permutation, means interchanging the positions of the plaintext words.

First ciphers appeared in the years BC in ancient Egypt, Greece, and Rome. They were

designed to secure written text and based on substitutions and transpositions of the

alphabet letters. Well known examples for the earliest cryptography are Caesar and

Polybius ciphers. In the XV century the polyalphabetic ciphers, like Vigenère, appeared.

They were resistant to the frequency analysis techniques to which the ancient ciphers

where vulnerable [Kah96].

Figure 2.1 Symmetric Encryption Model

 (2.1) ሺ ሻ (2.2) ሺ ሻ (ሺ ሻ) (2.3)

 where

 C - ciphertext, P – plaintext, E – encryption, D – decryption, K - key

Evolution in computer science brought a different level of cryptography. Security started

to be applied on the binary stream, rather than on alphabet letters and consequently on

any type of data: text, image, video, etc. Cryptanalysis and breaking of earliest ciphers

became faster and easier with a new computational force. In 1972 NIST launched a

8

computer security program to introduce a tested, certified cryptographic algorithm and

use it as standard in information security [NIST01]. In 1976 the Data Encryption Standard

(DES), an algorithm developed by IBM in 1970, was adopted as a federal standard by

NIST. Due to the increase in computing power in the 1990s, the vulnerability of the DES

algorithm became its short encryption key. It was substituted by 3DES, which is the DES

algorithm applied 3 times. Security of the 3DES was strong, but it was considered slow in

implementation. In 2002 the AES encryption algorithm was adopted as federal standard

by NIST and it is still in use.

2.1.1.1 Stream and Block Ciphers

Symmetric algorithms can be of 2 types: stream ciphers and block ciphers. In stream ciphers

encryption is performed on small units of plaintext, like one bit or one byte at a time. Block

ciphers operate on larger message units, like 64-bit blocks in DES.

The basic distinction between these two types of ciphers is time dependency or “memory”.

Let’s consider the plaintext message ሺ … ሻ as a sequence of blocks and

corresponding to it ciphertext ሺ … ሻ a sequence of blocks after encryption.

Block cipher is memoryless; it transforms independently each message unit into the

ciphertext unit using an encryption function and a secret key (Fig. 2.2, a). Stream cipher

transforms a plaintext unit into the ciphertext unit using a time dependent key and

an encryption function (Fig. 2.2, b). Vernam cipher based on the one time pad principle is

one of the most known stream ciphers and it will be presented in subsection 2.1.3.

Figure 2.2 a) Block Cipher b) Stream Cipher

In general, two identical plaintext units encrypted with stream cipher don’t have the same
ciphertext output because the key sequence is not the same at different moments of

encryption. In case of block cipher two identical plaintext blocks may result after

encryption in same ciphertext which brings vulnerability to the known plaintext attack

and vulnerability to insertion or deletion of some ciphertext (subchapter 2.1.4). In order to

9

solve this problem a certain chaining or feedback can be introduced between the block

encryptions. Some of the possible modes to do this are: Cipher Block Chaining (CBC), Cipher

Feedback Mode (CFB), Output Feedback (OFB), etc. [Bor11].

2.1.2 Public Key Cryptography (PCK)

The basic principle of public key (asymmetric) cryptography is to use a pair of public and

secret keys. In such systems encryption is performed with a public key and decryption

with its private key pair. Encryption (public) key is different from the decryption (private)

key, but they are related. (2.4)

This pair of keys is generated using mathematical functions and in some algorithms, like

RSA, one of these two keys can be made public and used for encryption, which means that

the other one must be kept secret and used for decryption. It is computationally unfeasible

to derive the secret key knowing its public pair and encryption algorithm.

Appearance of PCK solved the key management problem which is transmission of secure

information. Symmetric ciphers are fast, they are used to encrypt large amounts of data,

but before using them, transmission of the secret key through a secure channel needs to be

done. This part can be solved by asymmetric algorithms which are not so fast, but they can

encrypt a secret key of a symmetric algorithm without previous key exchange.

The concept of public key cryptography was first introduced by Diffie and Hellman

[DH76]. One of the most known public key algorithms is RSA invented by R. Rivest, A.

Shamir, and L. Adleman [RSA78]. The strength of this cipher is given by the

computational complexity of factoring large numbers. Another strong asymmetric cipher

is ElGamal created by T. ElGamal [ElG85]. This algorithm, like Diffie-Hellman, is based on

the difficulty to solve the problem of discrete logarithms. Digital Signature Algorithm

(DSA) was declared a standard (DSS) by NIST, specified in FIPS and attributed as

invention to David Kravitz [FIPS94].

Public-key cryptography is based on mathematical functions and much of its theory on

number theory [Sta11]. The security of asymmetric ciphers relay on finding large prime

numbers, at least 100 decimal digits. Multiplication of large prime numbers is

computationally simple, but finding the original numbers given the final product is a time

and resource consuming task.

The following mathematical formulas describe the principle of the RSA cipher. Let’s
consider two large prime numbers p and q and their product to be n.

10

 (2.5)

Next is computation of the Euler’s totient, finding a coprime integer e to it and integer d

such that: ሺ ሻ ሺ ሻሺ ሻ (2.6) ሺ ሻ (2.7) (2.8) (2.9)

This algorithm offers the public key (n, e) for encryption and the private key (n, d) for

decryption (d is secret). Integer number n is the product of two primes (2.5), while e and d

mathematically derive from n (2.7). C is the ciphertext and P is the plaintext. Encryption

(2.8) and decryption (2.9) are computationally simple processes, knowing the keys (n, e

and n, d) [BB01].

2.1.3 One-Time-Pad

One-Time-Pad (OTP) is a principle of key generation applied on the stream ciphering

method which offers a perfect secrecy [Sch96], [Sta11], [Sha49], if all the requirements are

fulfilled. It is also considered that this scheme is unbreakable in theory, but difficult to

realize in practical applications [Sch02], [Sta11].

A part of the OTP encryption method appeared in 1917, in Vernam teletype cipher [Ver26].

Vernam defined a stream cipher where a key, stored on a punched tape, was combined,

applying XOR operation, character by character with the plaintext message producing a

ciphertext. J. Mauborgne added that the key string of bits should be truly random and

used only at one single encryption-decryption process and then Vernam cipher became

OTP co-invented by G. Vernam and J. Mauborgne. The principle of this cipher is shown in

Fig. 2.3 and it can be expressed by the formula (2.10):

Figure 2.3 Vernam Cipher

11

 ⨁ (2.10)

where

 =is the ith bit of the plaintext bitstream

 = is the ith bit of the key bitstream

 = is the ith bit of the ciphertext bitstream

 ⨁ = is the exclusive-or (XOR) operation

Claude Shannon described in his work the principles for perfect secrecy [Sha49]. These

characteristics for the unbreakable encryption system are the same with the OTP

properties. They can be summarized as the following constrains on the encryption key:

- it must be truly random

- at least as large as the plain-text

- never reused in whole or part

- kept secret

In fact there are contradictory debates about OTP encryption scheme. For example, Bruce

Schneier, a famous cryptographer and writer, said about OTP in 1996 the following:

“Believe it or not, there is a perfect encryption scheme.”

“Assuming an eavesdropper can’t get access to the one-time pad used to encrypt the message, this

scheme is perfectly secure.”

“A random key sequence added to a nonrandom plaintext message produces a completely random
ciphertext message and no amount of computing power can change that.” [Sch96]

In 2002 he wrote about OTP from a quite different perspective:

“One-time pads are useless for all but very specialized applications, primarily historical and non-

computer.”

“They replace a cryptographic problem that we know a lot about solving -- how to design secure

algorithms -- with an implementation problem we have very little hope of solving. They're not the

future. And you should look at anyone who says otherwise with deep and profound suspicion.”

[Sch02]

What is sure is that this encryption scheme received a lot of attention and in this work

(Chapter 4) a method will be presented that solves the key generation and distribution

problems, the biggest drawbacks of the OTP method.

12

2.1.4 Cryptanalysis

The goal of the cryptanalysis is to break the cryptosystem by exploiting its weaknesses.

Revealing the secret key is equivalent to a total break of the cipher. Finding a way to

recover the plaintext from the ciphertext without knowing the secret key is considered a

partial break [Knu94].

The straightforward way to find the secret key is through a brute-force attack which consists

in trying all the possible keys. By Kerckhoff’s principle and Shannon’s maxim the
encryption algorithm is supposed to be known and the strength of the cryptosystem is in

the key. Thus the key space should be large enough making the brute force attack

infeasible. Cryptanalysis techniques are used to find the key in a less number of tries by

finding some flaws in cryptosystem. Cryptanalytic attacks can be classified by the amount

of information known by the attacker [Koh08], [Sta11]:

 Ciphertext-only attack: the encryption algorithm and ciphertext are available for

cryptanalysis.

 Known plaintext attack: the encryption algorithm, ciphertext, and a portion of

plaintext corresponding to the ciphertext are known to cryptanalyst.

 Chosen-plaintext (chosen-ciphertext) attack: the attacker is able to encrypt or decrypt

any information of his choice and obtain significant plaintext - ciphertext pairs. It

happens when the encryption system with the embedded secret key is available to

the cryptanalyst.

 Adaptive chosen plaintext or ciphertext attack: is the adaptive version of the attack

presented above. The attacker can adapt the plaintext based on the results obtained

from previous encryptions.

 Related key attack: is based on the relation between different keys known to the

attacker.

When the cryptanalyst has only the ciphertext, in order to reduce the number of attempts

through the brute-force attack, the ciphertext data is analyzed and usually some statistical

tests are applied on it. Knowledge about data types, such as English or other language

text, image, source code, etc. gives the possibility to perform known plaintext attack.

Certain patterns in the text, headers that appear at the beginning of the file, etc. offers

portions of plaintext – ciphertext pairs corresponding to the secret key.

13

2.1.5 Key Management

Key management comprises a set of methods to support aspects related to keys in

cryptographic purposes. Important features related to key management are: generation,

distribution, backup, and storage of the keys involved in secure communication. Key

management is an essential part of cryptography due to the fact that message secrecy and

all the secure communication are compromised if some information about the key is

revealed [MOV96].

Key management in public – key cryptography is easier than in symmetric – key systems.

In order to encrypt data, only public key is required. Authentication of the public key user

is necessary, but not the key secrecy. Key exchange for symmetric – key systems can be

performed in different ways as described below.

1. A and B meet to exchange the key(s)

2. Having first secret key exchanged, A and B can securely transmit other keys using

the first one

3. Third party C can send secret keys through a secure channel to A and B

4. Symmetric key exchange through a symmetric encryption [Gor11]

The first case with manual delivery is useful in communications requiring high security

level, but it is slow and difficult for other applications. The second case is risky because if

the adversary discovers the first secret key, it gives him access to all the other keys

encrypted with it. Case 3 presume that A and B initially exchange and share a secret key

with C. Exchange of symmetric secret keys through asymmetric encryption requires

authentication of the public key users [MOV96].

2.1.6 Cryptosystems for Duplex Transmission and Storage

The Design of a cryptosystem imposes choosing appropriate techniques and methods to

ensure message confidentiality, integrity, and authenticity. It also includes authentication

of parties involved in secure communication, non-repudiation, authorization, etc. [Bor11].

Duplex communication is an exchange of information between two parties in both

directions. It can be half-duplex or full-duplex transmission. Half-duplex transmission is not

simultaneous; meaning that while one entity in a communication is transmitting the

recipient must wait and can’t transmit information at the same time. In full-duplex

information transmission is continuous; it can be performed in both directions at the same

time [BTT+13].

14

Fig. 2.4 presents a scheme of cryptosystem for secure transmission of the cryptograms and

secret keys. In this system each new secure communication of the messages is performed

with a new key, as part of the OTP principle. This scheme is presented in more details on

the application in chapter 4. It shows a duplex communication between two parties: A and

B. Continuous lines show transmission from part A to B and dashed lines in the opposite

direction. When part A wants to transmit encrypted information to part B, it first generates

the key (KA), then encrypt the key using a symmetric or public algorithm (block KAE),

transmit the key to part B, and then encrypt the message using this key (EKA(MA) = CA).

Side B decrypts the secret key and then uses it for message decryption. Part B will follow

the same steps in order to transmit a message.

Figure 2.4 Cryptosystem for Duplex Transmission

Legend of Figure 2.4:

MA – cleartext message of user A

MB – cleartext message of user B

KeyGen – block of secret key generation(KA, KB) – block of secret key encryption, using a symmetric or public algorithm for user A – block of secret key encryption, using a symmetric or public algorithm for user B – block of secret key decryption (at side B), using the same algorithm as at – block of secret key decryption (at side A), using the same algorithm as at

Cipher (E / D) – is a symmetric cipher used for encryption and decryption of the messages

MA and MB

15

Fig 2.5 demonstrates a cryptosystem for storage of the cryptograms and secret keys.

Encryption side is the writing unit. After the secret key (K) generation and its encryption

(block E*) it is placed on the storage media. After the data encryption: EK(M) = C, the

cryptogram (C) is also placed on the storage media. Decryption side is the reading unit. It

decrypts the secret key (block D*) and then uses it to decrypt the cryptogram: M = DK(C).

Figure 2.5 Cryptosystem for Storage

2.2 Data Compression

Data compression techniques are based on the elimination of certain redundancy

(patterns) present in the data and removal of the fine details in multimedia data that are

not important for human perception. Redundancy can be of different types according to

the nature of the data. Neighboring pixels in the image usually have close values; in any

language certain letters appear more often than others; there can be a certain periodicity in

the audio signal. High frequency details in the multimedia data that are not important for

human perception can be eliminated. Compression algorithms exploit these aspects of

data in order to obtain a compact size [Say03].

The process of compression is named encoding and the reconstruction stage is named

decoding. The input signal to the encoder may be any type of data like: audio, video, image

signals (Fig. 2.6). Through encoding the format and size of the original input data X is

transformed and its compressed representation XC is obtained. Considering that data is not

changed by channel transmission, the input to the decoder is XC. The source decoder takes

the compressed representation and reconstructs the original signal. The reconstructed

16

signal XR is identical in lossless compression and in lossy compression it is an

approximation of X.

Figure 2.6 General scheme of compression process

The goal of data compression is to reduce the size, number of bits used to represent a

certain information. Bit rate is the measure used to estimate the number of bits per value in

the compressed data. In case of an image file bit rate is measured in bits per pixel.

Next section describes the steps of the compression process. In subchapter 2.2.2 elements

of rate distortion theory are presented as it is relevant for compression effectiveness. In the

next subchapters 2.2.3 – 2.2.4 different types of compression are explained, followed by

methods to combine compression with encryption.

2.2.1 Data Compression Chain

In Fig. 2.6 a general scheme of compression was shown. This section presents the steps and

schematic view of the encoding and decoding processes. As shown in figure 2.7 the

encoding process is composed of 3 major operations. The first is to transform the original

data in order to obtain a representation that is more convenient for the encoder. This is

done by applying transformations like DCT or DWT on the data. The probability

distribution of the obtained coefficients can be approximated by the generalized Gaussian

function (GGF) or Laplacian probability density function (PDF) [Par03]. This new

representation of the data is well suited for a good coding performance.

17

Next operation is the quantization of the data. It can be included or not in the compression

scheme according to the compression type (subchapter 2.2.3). Quantization introduces loss

of information. It can be used to eliminate very fine details, like high frequency

information in an image, or audio file, without perceptual loss for our visual and audio

system. It is a block of compression that introduces tradeoff between distortion and bit rate

(subchapter 2.2.2). The final encoding operation is entropy coding. It attributes codes of

different lengths to the signal values according to their probability (Fig. 2.7) [Ant11].

Figure 2.7 Chain of compression encoding – decoding processes

Transformations:

Prediction methods like DPCM (Differential Pulse Code Modulation) use correlations

between successive samples. For example in case of images a combination of neighboring,

previously encoded pixels is used as a prediction for the current pixel. In lossless JPEG the

difference between the value of certain pixel and its prediction is encoded with Huffman

coding. In lossy compression the quantized difference is encoded.

Frequency transformations like DFT (Discrete Fourier Transform) and DCT (Discrete

Cosine Transform) are used to represent data in a more efficient form for compression. The

high frequency coefficients represent some details of the multimedia data that are less

perceptual for human visual and auditory systems. This characteristic is exploited in lossy

compression for images, audio and video files. Representation of the files in the frequency

transformed domain facilitates the extraction and elimination of the coefficients

corresponding to high frequencies. By this transformation the spatial highly correlated

18

data is transformed into uncorrelated coefficients. In DCT transform the most important

coefficients for perceptibility are in the high left corner of the transformed image (the low-

level coefficients).

Decomposition like DWT (Discrete Wavelet Transform) is widely used in image

compression. Wavelet decomposition is a successive application of high and low pass

filters which results in sub-bands of high frequency details in diagonal, horizontal and

vertical directions respectively and the image approximation of remaining low

frequencies. Coefficients corresponding to the high frequencies are almost all of them close

to zero and just few of them have higher values. Using a threshold all the coefficients close

to zero can be set to zero and the rest of high frequency coefficients above the threshold

can be encoded [Ble10], [Say03].

Quantization:

Quantization is the approximation method used in lossy compression. The goal of

quantization is to obtain a smaller bitrate through representation of each group of close

values by one single value. This mapping is irreversible and at decoding a group of

originally different close values have the same value. The scale of approximation is

measured by the quantization step.

Quantization process can be realized by a scalar or vector quantizer according to the data

representation that can be a set of scalars or a set of vectors. A scalar quantizer realizes a

mapping between the data values and a range of possible encoding values. For example,

considering a uniformly distributed source in the interval and M possible code

words for encoding, the quantization step () is . The original source interval:
is divided in uniform intervals of width . The middle value of each interval is used to

represent all the range of source values from this interval. A vector quantizer groups

source output into vectors of close values and then encode them by finding the closest

code-vector. Decoder of vector quantizer has a look-up table for reconstruction of the

vectors [GG91].

Entropy Coding:

Entropy coding is composed from a model of the data and a coder. A model of the data is

a map of probabilities for each of its elements; their probability distribution [Ble10]. The

coder uses this probability distribution and creates codes. A longer code is corresponding

to the less probable symbol and a shorter code corresponds to the most probable symbol.

Entropy encoding is prefix-free, meaning that none of the codewords is a prefix to the

other codewords. This prefix-free property is necessary for the correct decoding of the

19

bitstream composed of variable-length codewords. Huffman and arithmetic entropy

encoding techniques are the most commonly used algorithms.

2.2.2 Rate-Distortion Theory

Rate distortion theory makes part of information theory and it is a measure of compression

performance. Given a certain level of data quality, hereby its distortion, it is desired to

obtain the smallest number of bits per value, meaning the best possible bit rate [Boc09].

Distortion (D) of the data is measured as a difference from its original values {xi} and those

approximated after compression, at reconstruction { ̂ }. It is usually measured by mean

square error: ሺ ̂ሻ ∑ ሺ ̂ ሻ (2.11)

Bit rate (R) is the average number of bits per symbol in the data. Considering that there are

n symbols (S) in the data, bit rate can be expressed as follows: ∑ ሺ ሻ (2.12)

Given a source and a distortion measure, according to rate distortion theory there is a rate

(R) – distortion (D) function: R(D) which has usually a shape like in Fig. 2.8[GG91].

Figure 2.8 Rate – Distortion Function

The quantization block is part of compression that introduces distortion, but it is also the

one that reduces the bit rate. Different quantization methods can be compared through

20

R(D) function. The R(D) function specifies the best tradeoff that can be obtained at the

lowest possible bit rate and the minimal signal distortion. Rate distortion theory addressed

the optimization problem that can be expressed in two forms:

1. Given a maximum bit rate R, to minimize the distortion D. It is a constrained R

problem, hard to solve. { } (2.13)

2. Given a maximum distortion D, to minimize the bit rate R. It is a constrained D

problem, also hard to solve[CT91]: { } (2.14)

Lagrange approach reformulates this optimization problem into the unconstrained form: { } (2.15)

Using Lagrange formulation the optimization problems from (2.13) and (2.14) can be

expressed correspondingly as follows: ሺ ሻ (2.16) ሺ ሻ (2.17)

Minimum D at a given R, or minimum R at a given D can be found by setting the

derivative of the expressions from (2.16) and (2.17) to zero. ሺ ሻ (2.16)

 ሺ ሻ (2.17)

The Lagrange multiplier is a constant. It provides proportion of bit rate and distortion.

In subchapter 3.4.2 the minimization of the Lagrangian function is used in the joint

compression scheme.

2.2.3 Types of Data Compression

There are two types of compression: lossy and lossless. The objective of the lossless

compression is to ensure data fidelity. In this case the decompressed data correspond

21

exactly to the original one. Only the statistical redundancy is used for compression [RJ91].

Lossless compression is applied to the data where the approximation is not acceptable,

like: text documents, executable programs, source code. The amount of compression is

limited to the entropy of the source. The well-known method used in lossless data

compression is Lempel-Ziv, invented in 1977 and named by their authors [ZL78]. It is used

in image formats like GIF and PNG.

The goal of lossy compression is to ensure the best tradeoff between data quality and its

efficiency in storage. The decompressed data is an approximation of the original

information. Common techniques that introduce loss of information are quantization and

rounding of numbers [Rum09]. Once a certain value was rounded or represented by the

index of quantization level it can’t be recovered. The well-known and widely used lossy

image and video compression standards are JPEG, MPEG, H264, and HEVC. A more

recent standard for image compression is JPEG2000. It has a better compression

performance then JPEG, but it is not yet commonly used on the internet.

2.2.4 Classification of the Multimedia Compression – Encryption methods

During encryption data passes through a series of transpositions and substitutions. If the

security of the algorithm is strong, the redundancy of the plaintext will not be transferred

on the ciphertext. If the redundancy of the data is high, such as in image, audio, or video

files then there will be a high probability that the encrypted files will keep a part of the

pattern from the plaintext. This is one of the reasons why the compression of the

multimedia data is applied first and then the encryption. This model was proposed in a

strong, hybrid cryptosystem named Pretty Good Privacy (PGP) [PGP04].

Encryption process is never applied before compression because of the practical issues.

The encryption process randomizes the original data trying to achieve an equal probability

of data appearance; therefore, there will not be remaining information that can be

compressed.

The classical way is to perform compression of the data and then to perform encryption of

the whole bitstream. This process is named complete or direct encryption (Fig. 2.9); it is time

and space consuming and therefore may sometimes not be suitable for the real time

applications. Full encryption is used when a high level of security is required and mostly

for storage. Multimedia data is usually involved in the real-time interactions where the

transmission must be fast, and it has already large volume without encryption, which can

increase the size of the data. In order to solve this security issue the partial or selective

encryption was proposed [CL00], [PC08]. The idea of selective encryption (SE) is to encrypt

22

only a part of the compressed data (Fig. 2.9). In this way the volume of the data will be

reduced and the speed of transmission increased.

Another method to avoid the computation and storage cost of encryption is to integrate it

inside the entropy coding [SK05]. This method is a compression-combined encryption also

named joint compression - encryption. In this case security is integrated inside the process of

compression.

Complete multimedia data encryption means that the whole encoded bitstream is

encrypted without considering the format of the data. What can change is the cipher

chosen for data protection. The most known and used symmetric ciphers are Data

Encryption Standard (DES) [FIPS93], Advanced Encryption Standard (AES) [FIPS01],

International Data Encryption Algorithm (IDEA) [LM91], etc.

Figure 2.9 Schemes of Complete and Partial-Selective Encryption

Selective encryption can be performed in different ways; it depends on the part of the data

selected for encryption. One of the SE techniques is based on the selection of few DCT

23

coefficients that are the most important for human perception of the data. DCT (Discrete

Cosine Transform) represent data in frequency transformed domain and is used in

compression in order to eliminate the high frequency coefficients which are not

perceptible by human auditory and visual systems. This transform makes part of the JPEG

and MPEG compression standards. There are 3 basic SE methods that relies on DCT

coefficients: sign bit encryption of each DCT block [SB98], encryption of the first and single

DC coefficient (the average value of the block data values) of each DCT block [LKCV06],

and the last one is encryption of the DC coefficient with few AC coefficients of each DCT

block [PR05], [RRM+99] (Fig. 2.10). The number of selected AC coefficient gives the

tradeoff between compression and security.

Figure 2.10 Encryption of the DC and AC coefficients of a DCT block

Another method of SE is to encrypt some of the wavelet transform coefficients [BU98].

Reference [SK05] presents a SE technique based on Embedded Zerotree Wavelet (EZW)

algorithm of compression [Sha93]. EZW is an entropy coding algorithm based on the

wavelet transform of the image (or other signal) and representation in a quad-tree of the

coefficients. The EZW algorithm performs a progressive encoding finding the most

important coefficients. The output of the EZW algorithm is a bit stream with increasing

accuracy. [SK05] exploits the fact that this ordered representation of the bit-stream is

suitable for the partial encryption. Depending on the desired accuracy a certain number of

first bits from the encoded bit-stream are encrypted.

Format-compliant encryption can also be categorized as a SE method. The principle is to

encrypt the compressed code-stream with respect to the format of the compressed file

which means keeping the headers and markers unchanged [ESU07]. In [WSZ+01] it was

proposed to concatenate bits chosen for encryption, to encrypt them with a standard

symmetric cipher (like DES or AES) and place the encrypted bits back to the code-stream.

If the result is not compliant then a fixed length index is assigned to each code-word and

then the indexes are encrypted and placed back to the code-stream. This method decreases

24

significantly the compression ratio, because all the code-words will have the same length

after indexation. In [WD04] a compliant encryption of the JPEG2000 code-stream was

proposed. The basic idea is to consider the code-stream of interest as a plaintext (P), to

generate a secret key stream (K) of the same length as the P, to compute the ciphertext (C)

from P and K, if the C is non-compliant, then C becomes P (P = C) and then a new C is

computed. This method can bring some additional computations, but on the other hand it

offers a simple method of compliant encryption without increasing the size of the

compressed file.

Compression-combined encryption can be successfully realized by integrating encryption

inside the entropy coding technique. The basic idea of the entropy coding encryption is to

convert classical entropy coders into encryption ciphers. An example of such

transformation is Multiple Huffman Tables (MHT) designed by [WK01]. Their work was

enhanced in [XK04] and then in [VF11]. The principle from the initial work [WK01] is to

replace a single statistical model by multiple statistical models randomly chosen from the

pre-stored models. In [VF11] the output of the MHT is XORed with another key in order to

increase the security level. Thus two keys are used: the one with the order of the chosen

Huffman tables and another with a binary sequence to XOR the chosen table. The length of

the code-words remains unchanged because the pre-stored Huffman trees have the same

topology. Therefore there is no loss of the compression efficiency and the complexity of

integrating compression along with encryption is much reduced.

Another entropy coder modified to include the encryption is presented in [GMO06]. A

randomized arithmetic coding is used to ensure encryption integrated inside the

compression. The secret key that introduces security is a random swap of the probability

intervals of the symbol. The magnitude of the interval corresponding to a certain symbol

remains unchanged. The only thing that changes is the position of that interval. The

interval is swapped as position, but the probability interval length remains the same.

2.3 DNA Cryptography

DNA cryptography is a new broad scientific branch, which includes a variety of core

scientific areas: information security (cryptography, steganography, key management),

molecular biology, bioinformatics, biomolecular computation. It is a new and promising

field in information security. It combines the classical solutions in cryptography with the

strength of the genetic material. Biological DNA can be used in steganography and

cryptography as the storage material. Molecular computations can be performed with

25

biological DNA structures and then applied on the classical ciphers. Several projects in

genome sequensing offer the possibility to exploit digital DNA databases for the

criptographic purposes.

Some notions of molecular biology and DNA are given in subchapter 2.3.1. Aspects of

using the biological DNA for cryptography are described in section 2.3.2. Importance of

genetic databases and digital DNA sequence for criptography is presented in subchapter

2.3.3.

2.3.1 Molecular Biology Principles

A cell is the fundamental functional unit in biological organisms. Most of the cells contain

a nucleus and chromosomes inside of it. Genetic information (DNA) that controls cell

functionality is divided into chromosomes [CDLT04]. Each chromosome is composed of a

single DNA molecule which carries genes (Fig. 2.11). The genome is the amount of all the

genetic, hereditary information of an organism. It contains information from all the

chromosomes. Complex organisms contain billions of cells. Each cell holds in its nucleus

the same copy of chromosomes, but depending on the cell type it activates only a specific

part of the whole genetic material (gene expression). The cell has the ability to store,

retrieve and translate genetic instructions providing life to the organism [AJLR+08].

Figure 2.11 Cell and its Genetic Material

26

2.3.1.1 DNA Structure

Deoxyribose Nucleic Acid (DNA) has a helical shape, comprised of two long strands of

nucleotides. A nucleotide has one of 4 bases: A – adenine, G – guanine, C – cytosine, or T –

thymine, a deoxyribose sugar and a phosphate group (Fig. 2.12) [Sch03].

Figure 2.12 Nucleotide Structure

The sugars and phosphates make nucleotides to bind in a single DNA strand. The

hydrogen bonds hold 2 strands together and create a double-stranded DNA (Fig. 2.13).

Hydrogen bonds last only between complementary pairs: A-T and C-G [AJLR+08].

Figure 2.13 DNA Strands formed by nucleotide and hydrogen bonds

The three-dimensional structure of DNA was discovered in 1953 by Watson and Crick

[WC53]. DNA strands twist around each other forming a helix (Fig. 2.14).

Figure 2.14 DNA Structure

Central dogma of molecular biology explains how genetic information is expressed in a

protein. Genetic code is a correlation between the codons (3 nucleotide bases of DNA) and

27

amino acids. Amino acids are structural units of proteins, the same way as nucleotides are

in DNA [CDLT04]. DNA genes "tell" the cell in what order to assemble the sequence of

amino acids in protein.

2.3.2 Cryptography at the Molecular Level

This part describes operations that can be performed with DNA sequences in a laboratory.

Considering the available techniques to manipulate molecules of DNA, the possibilities of

storage and computations at molecular level are presented next.

2.3.2.1 Techniques for DNA Analysis

Over the last 60 years important discoveries was made in molecular biology: chemical

structure of DNA [WC53], separation of DNA polymerase (A. Kornberg, 1956), mechanism

of the biological synthesis (Kornberg and Ochoa, 1959), DNA sequencing since the 1970s.

DNA analysis and manipulations was possible due to the important techniques that were

designed and developed for this purpose.

DNA sequencing encompasses several techniques to determine the order of nucleotide’s
bases in a DNA sequence. One of the methods is to use fluorescent tags for the nucleotide

bases and obtaining a fluorescent complementary DNA strand to the one of interest.

Analysis of genes and a better understanding of their role in organisms’ lives are possible

due to this process [Sch03].

DNA recombination is a technique to manipulate genes. It is also named “gene splicing” or

“genetic engineering”. In this method certain proteins - enzymes are used to cut and paste

parts of the DNA spiral. When a double strand of DNA is cut by this technique it will have

certain terminations that can be used to glue to other pieces of DNA [HJ04].

Hybridization is a natural process in DNA molecules. It happens when two complementary

strands of DNA come together to form a double-strand. Process of hybridization is slow at

the beginning, until a region of two complementary strands binding appears; the rest of

the matching process is fast if the strands are all complementary (Fig. 2.15) [AJLR+08].

28

Figure 2.15 Hybridization between 2 Complementary Strands of DNA a) beginning of the

process b) final product of hybridization

DNA synthesis is creation of synthetic DNA molecules named oligonucleotides. Synthetic

oligonucleotides represent DNA strands usually10-100 nucleotides long. This technique

can be used to replace a damaged portion of DNA or in technology for storage and

transmission of the information.

DNA synthesis together with hybridization can be used to create different molecular

shapes. One of such structures being used extensively in molecular computation is DNA

tile designed by Wang tiles [Wan61]. H. Wang designed equal-sized squares with a color

on each side. These squares can be combined together respecting the same color for

neighbouring sides (Fig. 2.16).

Figure 2.16 Few Wang tiles

The principle of Wang tiles was used in DNA computing field to create DNA structures

with similar functionality. Oligonucleotide strands are designed to cross-over and

hybridize in different helixes (Fig. 2.17).

Figure 2.17 DNA Triple-Helix Tile [Bor11]

The final structure contains few helixes bound to each other. Helixes are formed from

different DNA strands [GLR04]. Terminations of a tile are named “sticky ends” because
they are formed of DNA nucleotides that can hybridize with other complementary

terminations and in this way 2 tiles stick to each other.

29

2.3.2.2 Molecular Storage and Computations

The biological medium of DNA molecules can be viewed from the perspective of storage

material or computational force. The human genome is around 0.72 GB of data in just

around 3.5 picograms [DBV+03]. This means that a large amount of information can be

stored in a compact, invisible for us, space.

Different concealing techniques have been proposed to explore a hardly noticeable

molecular medium. A successful experiment of DNA steganography is presented in

[TRB99]. It consists in hiding a DNA-encoded message in a background of other DNA

sequences. Laboratory techniques and the starting point of the message is required in

order to read it.

There is a variety of techniques proposing to introduce watermarks in DNA of a living

organism. A significant work in this domain is presented in [BDH+04]. Some other

methods in this area are described in: [SFP02], [KL10], [SNF+10], [HB07]. A watermark can

be introduced in coding regions of DNA using codons redundancy and in this way no

functional changes will appear [BDH+04]. Watermark information can be also introduced

in non-coding regions of DNA [SFP03].

In order to store data in DNA molecules it must be encoded in DNA alphabet. In [TRB99]

a mapping method is presented where each letter from the English alphabet (A - Y),

numbers (0 - 9), and some punctuation marks where encoded in 3 DNA letters, like: Q –

AAC, or 9 – GCG. Considering that all of the digital information is encoded in binary, a

straightforward method is to make a mapping table between DNA and binary alphabets

(Table 2.1) [TB09]. Using this mapping method any digital information can be transformed

easily in DNA sequence.

Binary DNA

00 A

01 C

10 G

11 T

Table 2.1 Conversion Table from Binary to DNA

The other usage of DNA molecules is their computational capability. Biomolecular

computation is based on the existing techniques in DNA analysis and manipulation

(subchapter 2.3.2.1). The DNA computing field has emerged due to the experiment "in

vitro" performed on DNA molecules by Leonard Adleman in 1994 [Adl94]. He showed

30

that biomolecular computing can be used to solve a problem like finding a Hamiltonian

path in a graph. His achievements brought scientific interest to this domain, followed by

many other experiments and discoveries.

In 1980 Nadrian Seeman introduced design of the DNA controllable structures [See81].

The role of these structures is to be building blocks of more complex molecular structures.

The hybridization process is applied on these basic units to obtain a variety of DNA

nanostructures.

In order to perform a DNA bio-chemical arithmetic operation the following ingredients are

required: laboratory utilities, structures from DNA material with sticky terminations (Fig.

2.17), solution in which a natural hybridization can occur between these terminations (Fig.

2.18). DNA tiles must be properly encoded in binary symbols in order to obtain the

desired binary arithmetic operation.

Figure 2.18 Hybridization between DNA Tiles that can be used for Arithmetic Operations

DNA computing can be used to implement existing cryptographic algorithms at molecular

level. Vernam cipher, based on binary XOR between plaintext and ciphertext bitstreams

can be performed using DNA tiles by encoding them in binary ones and zeros. In

[MLRS00] a method is described how to obtain a binary XOR operation using self-

assembling DNA tiles. In [LWR99] different binary operations were performed using DNA

tiles. The [GLR04] presents Vernam cipher [Ver26] implemented with DNA tiles.

2.3.3 Digital DNA in Cryptography

The interest to find out the exact sequence of DNA inside different living organisms

brought an enormous amount of financial, technological and human resources to this

subject. In 1985 the Human Genome Project (HGP) started. It was carried out in 2003

through the effort of a variety of international organisations. The basic procedure is DNA

sequencing (subchapter 2.3.2.1). Data sharing was the core principle of this project: “The

31

adoption of free release and data sharing has been among the major achievements of the

Human Genome Project” [Sanger].

Therefore there is at this moment a great variety of online, with free access, genetic

databases and tools for analysis. A link to a comprehensive list of genetic databases,

organizations and tools is given in [IHGM]. There is a great amount of available genomic

and protein sequences belonging to different organisms.

Two of the ciphers proposed in this thesis use genetic databases in cryptography. The first

method uses DNA sequence for substitution of plaintext values. The ciphertext will

contain the positions in the genetic sequence from where to read the plaintext values. In

the other method a DNA sequence is transformed into a binary stream. Then a bitwise

XOR operation is performed with it and a plaintext binary stream. Both methods use DNA

sequences as the secret key in symmetric encryption. Randomness of the key, how it can

be obtained and transmitted are discussed in the following chapters.

2.4 Performance Evaluation Aspects

In this thesis three cryptographic algorithms were designed and developed. Certain

metrics were used to evaluate their efficiency. Performance was evaluated from different

perspectives: computational time, security level, and compression ratio. These

measurements are discussed in more details in what follows.

2.4.1 Computational Complexity

Computational complexity estimates the amount of resources required for solving a

certain problem. Efficiency of an algorithm can be evaluated by a theoretical analysis,

where complexity theory is involved. Another way to test method’s efficiency is to
implement it and take measurements of the elapsed time during its performance.

In complexity theory the amount of resources used by an algorithm is estimated and

computed based on the input parameter which is the number of operations. According to

complexity theory, computational time is a sum of all the performed operations. The

number of operations can be represented by a fixed or variable number:

- fixed (parameter independent)

 Example: k = 5; a = 9; (No of operations is 2, O(2))

- variable (parameter dependent)

32

 Example: for i = 1 → n {k = k + i; } (No of operations is n, O(n))

Also computational time in complexity theory can be expressed by:O(n), Ω(n), or θ(n).
They represent the upper, lower and exact bounds of the necessary resources, and n is the

variable number of operations. In most analysis the O(n) notation is used.

The execution time of an algorithm grows with the input size and its function can be:

logarithmic – O(logxn), linear – O(n), quadratic – O(n2), cubic – O(n3), or exponential –

O(2n). Logarithmically growing rate of the runtime is the most optimal and the exponential

time is preferably to avoid.

The other method to evaluate execution time is to measure it during the algorithm

performance. Depending on the development environment and programming language

the time measurement functions can vary, but the general principle is the following:

 Time Function StartVar;

 <Algorithm code>

 Time Function StopVar;

 Spent Time length = stop – start;

In order to compare algorithms with this method, they must be tested on the same

computer, developed in the same programming language and environment. The growing

rate of the computational time can be visualized on a graph by computing runtime at

progressively growing number of operations for the tested procedure.

2.4.2 Security Level

Security strength of a cipher can be evaluated by different techniques like: statistical

measurements, cryptanalytic attacks, analysis of the key space and its randomness. In

subchapter 2.1.4 basic cryptanalytic attacks were presented. Here more details are

discussed on statistical measurements of the ciphertext in comparison with the plaintext,

the key space, and random numbers.

Statistical measurements like histogram, correlation coefficient, and entropy gives the

knowledge about patterns in the analysed information. The presence of patterns in the

ciphertext gives the opportunity for the attackers to define a rule by which they can

retrieve useful information without using the key. Statistical techniques are important in

case of a ciphertext-only attack, where an attacker has the access to the ciphertext, but not

to the key or related plaintext.

Histogram is a graphical representation of the signal statistical probability distribution.

Given a discrete range of values in a signal, its histogram shows the occurrence of each

33

value in it. Each value has a bar in the histogram and it is as high as the frequency of

appearance of that value in the signal. Statistical distribution of the ciphertext can be

analysed in comparison with the plaintext distribution or by itself. Plaintext distribution

usually has certain forms, patterns, describing information inside it. Ciphertext histogram,

if the encryption is security strong, has a uniform random distribution, which means that

ciphertext values were generated at random from a uniform distribution (Fig. 2.19)

[MOV96].

Figure 2.19 Histograms of the Plaintexts and Ciphertexts

Entropy measures the uncertainty or the randomness of the signal. Considering a certain

variable defined by a set of values { … } with its probability ሺ ሻ (2.16)

 where { } (2.17)

∑

Considering variable X a binary expressed signal, its self-information is ሺ ሻ ሺ ሻ (2.18)

Entropy of X is the average amount of this information. It is defined and measured as: ሺ ሻ ∑ ሺ ሻ (2.19)

The range of entropy values for variable X is ሺ ሻ

34

 ሺ ሻ (2.20)

 ሺ ሻ { }
When entropy is equal to zero it means there is no uncertainty about the signal prediction.

When entropy has its maximum value it means that all of the symbols in the signal are

equally likely to occur [Sha48]. For this reason the entropy of the ciphertext is desired to be

as high as possible.

In the plaintext a correlation between different groups of bits may appear, depending on

the type of the data. For example in an image there is often a strong correlation between

the neighbouring pixels. When an image is encrypted it is desirable to avoid the presence

of such correlation in the ciphertext. Correlation between the ciphertext values can be

measured through the correlation coefficient [RN88].

Pearson’s Product Moment Correlation Coefficient (rxy) is the most used formula to

determine linear correlation between two variables: X and Y. Considering normally

distributed and linear to each other X and Y variables defined by sets of values { … } and respectively { … } their Pearson’s correlation coefficient can be expressed
as [You06]:

 ሺ ሻ√ ሺ ሻ ሺ ሻ ∑ ሺ ̅ሻሺ ̅ሻ ∑ ሺ ̅ሻ ∑ ሺ ̅ሻ ሺ ሻ

where ̅ ∑ is the mean value of the X and ̅ is the mean value of the Y.

Correlation coefficient values close to zero mean there is a weak linear relation between

compared values and when they are close to one this relation is strong. In the analysis of

the ciphertext it is desired to obtain small values of the correlation coefficient.

The key space of a cipher is defined as a set of all the possible keys that can be formed for

that cipher. The amount of all the possible keys is given by the alphabet in which the key is

represented raised to the power of its length. A larger key space means better resistance to

the brute-force attack, hence better security.

 Example:

 Key: 101

 Alphabet: 2 letters (0 and 1)

 Length of the key: 3

 Key Space (23): 000, 001, 010, 011, 100, 101, 110, 111

35

Random ciphertext can be obtained from a non-random plaintext if it is combined with a

random key sequence [Sch96]. Generation of true random numbers requires a naturally

occurring source of randomness [MOV96]. Truly randomness cannot be achieved by

mathematical functions. Only certain physical processes can guarantee really random

numbers [Sch09]. The use of mathematical formulas will lead to pseudo-random numbers:

numbers that appear random, but are predetermined in reality. True random numbers,

instead, come from measurements of random physical phenomena like atmospheric noise

or radioactive sources. DNA material offers the possibility to generate random numbers in

two ways: through its hybridization process and its sequence. These aspects are presented

in more detail in the following chapters.

2.4.3 Compression Ratio

Compression algorithms reduce the size of the data whereas some of the ciphers may

increase it. Estimations of size changes in the data can be performed through the bitrate

(R) (subchapter 2.2.2) or compression ratio. The bitrate gives an average number of bits per

symbol used to represent information while compression ratio estimates changes in size of

the entire file. Compression ratio (CR) is defined as amount of original data divided by

amount of compressed data. ሺ ሻ

It is desirable that after encryption the compression ratio of the data will not change, or the

changes will vary in a small range. Compression efficiency after applying a certain cipher

can be measured by changes in compression ratio (CCR), a metric defined as:

 ሺ ሻ

where is the size of the plaintext and is the size of the ciphertext.

Ideally the compression ratio is unchanged and CCR = 0, if for example CCR > 10% then

the compression ratio is changed greatly, more than 10% [Lia28].

36

37

Chapter 3

DNA Indexing Cipher

Contents in Brief

3.1 Principle of the Algorithm ...38

3.2 Design and Implementation Details ...40

3.3 Performance evaluation ..44

3.4 Modifications of DNA Indexing Cipher for Better Compression Ratio and Security ...52

3.5 Contributions ...70

DNA Indexing is a symmetric stream cipher. It uses genetic databases in order to access

long DNA sequences. These sequences are used as a place with pointers (indexes) to the

real message. The principle of indexing used in this algorithm is presented in [ASE06]. The

sequence used at encryption is communicated to the receiver through unique

identification number of the sequence in the database.

A variety of possible genes and chromosomes from different organisms are good sources

for creation of random, non-repeating and for only one use pads. Nowadays there are

electronic databases of entirely sequenced genomes from different organisms including

human, dog, mouse, frog, fruit fly, social amoeba and many others. These sequences can

be accessed from public genetic databases [wncbi] in different formats.

38

3.1 Principle of the Algorithm

DNA Indexing is a stream cipher where information is processed one byte at a time. The

principle is to transform one plaintext byte into a sequence of 4 DNA letters. The next step

is to search this short sequence through the chromosomal sequence, which was chosen as

the key for the encryption (Fig. 3.1). Each time a plaintext byte sequence is retrieved in the

chromosomal sequence, the position of this place is memorized in a vector as one of the

possible values for encryption by substitution for this byte. Vectors of substitutions for all

the bytes are memorized in a key dictionary. Therefore for each byte from the plaintext

there is a range of possible values from which one is chosen randomly for encryption by

substitution. In order to obtain a substantial number of substitutions for each byte, the

key-sequence needs to be sufficiently long, for example 30 000 bases. The steps of

encryption are presented below. An example of encryption is given in Fig. 3.2.

Figure 3.1 Chromosomal Sequences from a Genetic Database

1) Key dictionary computation:

a) Each byte of 256 possible values is transformed in a sequence of 4 letters by the

following principle: 10 00 11 01 (141) → GATC.
b) A search is performed for all the bytes through the key, a long chromosomal

sequence composed from letters: A, C, G, and T.

c) Each time the byte sequence is retrieved in the key sequence, the index of that

position is memorized in a vector dedicated for that byte.

39

d) The result of these operations is a key table of size 256xN, where N is a variable

length because each byte can have a different number of corresponding values

in this table.

2) Encryption is performed one byte at a time. It consists in substitution of the byte

with a value randomly retrieved from its vector in the key table.

3) The final ciphertext is an array composed of the integer values.

Figure 3.2 Encryption Process of the DNA Indexing Algorithm

Since this is a symmetric key algorithm, the same chromosomal sequence is used during

the decryption process:

- Each integer from the ciphertext is used as pointer into the key sequence.

- The Receiver reads 4 letters from the indicated position and transforms them to

binary representation using the same reversible principle presented at the key table

computation.

40

- The plaintext is reconstructed when all the bytes are retrieved from the indicated

positions

If we look back in history, we’ll find that the principle of this algorithm is similar to that of
a book cipher. The idea of using books in cryptographic purposes dates from 1526 [RS10].

In those times Jacobus Silvestri proposed in his work a code book cipher for the secret

communications. Any encryption algorithm that has a book or a long piece of text as the

key can be named a book cipher. An example of such algorithm is a substitution of each

word from the plaintext with its position in a certain book, where the position is given by

counting each word from the book. A genome sequence can be considered as such book

and the genomic databases as a digital library available for this cipher.

DNA Indexing encryption algorithm can be considered partially a homophonic substitution

cipher. The principle of homophonic substitution is to create a table where each letter of the

alphabet has a certain number of substitution values. The number of substitution values

corresponds to the frequency with which a letter appears in the language.

The substitution operation of DNA Indexing cipher is simple to achieve, but the reverse

process is complex without knowing the key, because the distribution pattern of the

ciphertext is completely different from that of the plaintext. For each byte of the plaintext

there will be a certain number of substitution values. The number of substitution values

for a byte will depend on its appearance in the chromosome. If someone wants to reuse the

same key for many encryptions then it will be useful to transform this cipher into a

homophonic one.

3.2 Design and Implementation Details

DNA Indexing cipher was designed and developed as a software program. Its design

captures two kinds of views: the user point of view and the implementation point of view.

It was accomplish through diagrams created in Violet UML Editor. UML (Unified

Modeling Language) provides graphic notations for creation of the visual models for the

software application. It offers architectural structure and behavior description for the

project. Diagrams created with this tool helps to avoid ambiguities in system definition.

41

The first diagram describes the capabilities expected from the system. For this purpose

use-cases were used, which show typical interactions between the user and the system

under development. The purpose was to capture each possible task that a user can

perform with the system in a use-case. All the use-cases together should describe the full

system functionality [BS04]. Fig. 3.3 presents the use-case diagram for the DNA Indexing

cipher program.

Figure 3.3 Use Case Diagram

Now, having accomplished the user perspective, the next step is to consider how each use-

case can be achieved. For this purpose a class diagram, object diagram, and interaction

diagram were used. Each of them provides more details for the development.

From the class diagram the initial program code of classes can be generated and then

populated with variables and methods [BS04]. This initial program reveals architectural

relations that must exist between classes (Fig. 3.4).

42

Figure 3.4 Class Diagram

Class diagram of Fig. 3.4 shows a structure view of all the classes involved in the DNA

Indexing cipher development. The DNAIndexing class inherits encryption and decryption

functions from the DNACiphers class and contains its own function: KeyTable(). In the

KeyTable() function objects of types FastaData and Genetics are created. These objects are

used to call functions that operate on the DNA sequences in FASTA format files. The

UserInterface class contains functions that allow choosing a file, its encryption and

decryption with DNA Indexing cipher. In the encryption – decryption functions objects of

DNAIndexing class are created.

The object diagram gives the architecture of objects in the system (Fig. 3.5). It shows the

state of the classes when the program is running and is a complementary view to the class

diagram. The sequence diagram describes the behavior expected from the objects (Fig. 3.6).

It shows a complete chain of actions during program execution. This diagram is linked to

the use case diagram. It starts with one of the actions described in Fig 3.3. It is a detailed

description of how the application works.

43

Figure 3.5 Object Diagram

Figure 3.6 Sequence Diagram

44

The development of the DNA Indexing cipher was performed using Microsoft Visual C#

2010 Express. It was designed to operate on text and image files. In order to browse the

system for an image file a dialog box was displayed using the ShowDialog() method of the

OpenFileDialog class in the System.Windows.Forms namespace. The Filter property of this

class was used to specify which image formats can be browsed. The FileName property

was used to memorize in a string variable the path of the chosen image file. The

File.ReadAllBytes method from System.IO namespace was used to get the bytes of the

encoded bitstream of the image. All the functional code for realizing encryption and

decryption was written in classes and methods described in the diagrams (Fig. 3.3- 3.6).

3.3 Performance Evaluation

3.3.1 Computational Complexity of the Algorithm

Complexity analysis of an algorithm is important because it reveals its efficiency for the

real time applications. In this work the computational time of the algorithm was analyzed

using complexity theory methods. The obtained conclusions were tested to be true

through the implementation results.

 The execution time of an algorithm is considered to be the sum of all the operations. The

number of operations can be either constant or variable and depend on input parameters.

According to the approximations from complexity theory, the smallest possible class of

functions is used to express the growing rate of the algorithm’s runtime [Has88].

Therefore, if the number of operations is for example 1 + 2n, then the complexity would be

O(n); if the number of operations is 4 + n + n3, then the complexity would be O(n3).

In this work complexity was analyzed for 3 important operations of the DNA Indexing

algorithm: key dictionary computation, encryption, and decryption. The key dictionary is

computed in 2*256*n operations, where 256 is the number of possible values for a byte,

and n is the length of the key sequence. Encryption and decryption are performed in 2*m

operations, where m is the number of plaintext and ciphertext words. Ciphertext has the

same number of words as the plaintext. Taking the smallest class of functions, complexity

for the key dictionary computation is O(n) and for the encryption-decryption process is

O(m). This means that the growing rate of the computational time is linear according to the

input size. In Table 3.1 is presented the pseudo code of these operations.

45

Table 3.1 Pseudo code for basic operations of the DNA Indexing cipher

The experimental results have proved the correctness of the estimated complexity. In order

to see the progression of the runtime, the program was executed at different, progressively

increasing values of n and m. Fig. 3.7–3.9 presents graphics of the runtime growing rate for

the key table computation, encryption and decryption processes. Some of the execution

time measurements are presented in Tables 3.2– 3.4.

Key Length

(nucleotides)
Runtime (ms)

1000 62

5000 359

10000 702

15000 1029

25000 1763

37000 2543

Table 3.2 Measurements of the key-table computation runtime

Key Dictionary

Computation:
Encryption: Decryption:

m = length(SeqDNA)

next = 0

FOR X = 1 to 256

 FOR Y = 1 to m

 IF X = SeqDNA(y:y+3)

 KeyDic[x][next] = y

 next++;

 END IF

 END FOR

END FOR

n = length(Plaintext)

FOR X = 1 to n

 Index = RandomNo(1,

 length(KeyDic[x]))

 Ciphertext[x] =

KeyDic[x][Index]

END FOR

n = length(Ciphertext)

FOR X = 1 to n

 Index = Ciphertext[x]

 ByteOfPlaintext =

 SeqDNA(Index:Index+3)

END FOR

46

Plaintext Size

(KB)
Runtime (ms)

74.6 5

214 16

419.9 31

720.4 49

957.4 63

1169.5 76

Table 3.3 Measurements of the encryption runtime

Ciphertext Size

(KB)
Runtime (ms)

24.4 14

54.3 31

74.6 43

214 123

419.9 248

720.4 421

Table 3.4 Measurements of the decryption runtime

47

Figure 3.7 Growing Rate of the Key Table Computation Runtime

Figure 3.8 Growing Rate of the Encryption Runtime

Figure 3.9 Growing Rate of the Decryption Runtime

48

3.3.2 Security Level of the Algorithm

Security of the algorithm was analyzed using different approaches, like: statistical

measurements, cryptanalytic attacks, key space analysis and secure transmission of the ID

number.

A. Statistical Measurements

Histogram was used to analyze the statistical probability distribution of the ciphertext. It

was compared to the histogram of the plaintext. In cryptography it is important that the

distribution of the ciphertext will not contain patterns of the plaintext distribution and a

more uniform distribution of the ciphertext offers a better security. Implementation results

(Fig. 3.10) shows that the distribution of the ciphertext is random and it doesn’t contain
patterns of the plaintext distribution.

Other statistical measurements used in this work to measure security strength of the

ciphertext are entropy and correlation coefficient (CC). Entropy measures the uncertainty

and randomness of the signal. Thus, entropy of the ciphertext is desired to be high. CC

indicates the degree of correlation between neighboring values like pixels or letters; its

value is intended to be small for the ciphertext. From our measurements (Tables 3.5–3.6)

the ciphertext entropy is almost twice as high as the plaintext entropy and CC of the data

is in average three times smaller after encryption.

Plaintext Entropy of the

Plaintext

Entropy of the

Ciphertext Images

Mandrill.png 5.81 11.8

Lena.jpeg 6.72 12.7

Lena.tiff 7.42 13.8

Geometry.png 3.7 8.3

Text files

Text 1 4.61 8.39

Text 2 4.42 8.21

Table 3.5 Plaintext and ciphertext entropy measurements

49

Images Correlation Coefficient

of the Plaintext

Correlation Coefficient

of the Ciphertext Images

Cameramen.tiff 0.99 0.36

Lena.jpeg 0.99 0.29

Lena.tiff 0.97 0.32

Geometry.png 0.35 0.13

Table 3.6 Plaintext and ciphertext correlation coefficients

Figure 3.10 Examples of Plaintext, Ciphertext and Their Statistical Measurements

B. Cryptanalytic Attacks

DNA Indexing algorithm is based on the OTP principle which protects it from

vulnerability to most of the classic attacks. Resistance to the known-plaintext attack is

given by the fact that each plaintext byte has not just one, but a range of corresponding

ciphertext values. Sample of known plaintext-ciphertext pairs needs to be very large to

make this attack more successful. Ciphertext-only attack exploits patterns in the current

ciphertext, disposing a set of previous ciphertexts. Due to the OTP principle, plaintext

bytes will always have a different range of substitution values from one encryption to

another, thus a set of ciphertexts or plaintext-ciphertext pairs from previous encryptions

are not useful for breaking the current ciphertext.

50

An interesting study, as future work, would be a related-key attack on the DNA Indexing

algorithm. The keys for this encryption method are DNA sequences from different

databases. Similarities between different sequences can be analyzed using algorithms

based on string kernels [MMP09]. According to the amount and length of the repeating

intervals between two random key sequences, a certain level of vulnerability can be

established to this kind of attack.

C. Key Space Analysis

The key space of an encryption algorithm is desired to be as large as possible in order to

resist brute-force attacks. If the key is a sequence of bits then, its space will be 2length(Key).

Trying all the possible keys will give 2length(Key) number of attempts to obtain a successful

break. On average the correct answer can be found in half this number of tries.

In case of DNA Indexing the key is composed of two parts: genetic sequence and its ID

number. The key for encryption-decryption is a genetic sequence. In this case, to try of all

the possible keys means trying all the genetic sequences from a database. One of the

databases can be the NIH genetic sequence database named GenBank. It is a collection of

all publicly available DNA sequences [wncbi]. It contains approximately 135 440 924 DNA

sequence records. Trying all these sequences will be equivalent to 227, which means a key

of 27 bits. On the other hand, genetic sequence is long, as mentioned in section 2, it should

be at least 30 000 bases. The alphabet of the key-sequence is composed of 4 letters: A, C, G,

and T. Thus, in case of using a private database, trying all the possible keys becomes a

number of 430,000. There is also a possibility to create a large publicly available database; in

this case the key space is equivalent to the number of sequences in the database.

D. Secure Transmission of the ID Number

Secure transmission of the sequence ID number is important when a public database is

used. If the database is public, access to the ID number means a direct access to the key-

sequence. The length of the ID number in GenBank is 6 – 8 characters, which means up to

64 bits. A block of 64 bits can be encrypted with a traditional symmetric algorithm, like

DES, and then sent through an existing encryption channel, using a previously exchanged

key. The accession number can also be sent using public-key cryptography. Anyone who

has a copy of a public key can easily encrypt information that only can be read with the

private key. Communication involves only public keys, and no private key is ever

transmitted or shared. This type of key distribution is used in PGP [PGP04] and in many

other systems, due to the facility of public key distribution.

51

3.3.3 Comparison with another cipher of similar principle

The DNA Indexing encryption algorithm [TBH+10] analyzed in this work was developed

based on the principle presented in [ASE06]. This principle consists in using the

chromosomal sequence as the key and performing a substitution procedure of the

plaintext character with the index position retrieved from the key. The innovations

brought forward in [TBH+10] were to consider the benefits of genomic databases for the

OTP method and computation of the key table. In what follows the time performance of

the key table computation is compared to the method used in [ASE06], where in order to

find a ciphertext value to replace a byte of the plaintext a search was used each time

through the chromosomal sequence starting at a random position.

The number of operations required for key table computation of the DNA Indexing

algorithm was computed earlier to be: 256*2*n. The number of operations used in previous

algorithm in order to perform one search, which means to encrypt one byte, is equivalent

to the average appearance of that byte in the key. Based on the experimental results the

following assumptions were made: for a genetic sequence of length 38000 bases the

number of appearances of a byte varies between 15 and 220 and in average it would be

100. Thus one search can be roughly equivalent to about (38000/100)*2 = 380*2 operations;

where the number 2 represents the same operations as for DNA Indexing algorithm.

Depending on the size of the message this method can be faster or slower than the key

table computation proposed in the DNA Indexing algorithm. An example is presented

below, where DNA Indexing is named “Alg. X” and the previously designed: “Alg. Y”.

Key length: 38000 bases

Plaintext size: 1 KB

Alg. X: No of operations = 256*2*38000 = 19 456 000

Alg. Y: No of operations = 380*2*1024 = 778 240

Plaintext size 30 KB

Alg. X: No of operations = 256*2*38000 = 19 456 000

Alg. Y: No of operations = 380*2*30*1024 = 23 347 200

Therefore DNA Indexing algorithm is preferred in case of large messages to encrypt and

the previously designed algorithm for shorter messages. In case of real time encryption

and transmission DNA Indexing has an advantage because the table of all the possible

substitution values is computed before the actual encryption. In this way the number of

operations during encryption is equal to the number of bytes in the plaintext.

52

3.4 Modifications of DNA Indexing Cipher for Better

Compression Ratio and Security

DNA Indexing cipher was analyzed from the compression point of view. Encryption was

applied on the compressed bitstream of the plaintext in the form of direct encryption

(subchapter 2.2.4), (Fig. 2.9). Then, compression ratio of the ciphertext was compared to

that of the plaintext. Because the change in compression ratio was significant, one of the

major concerns was to optimize the algorithm in order to obtain a better compression of

the data. Some improvements were introduced as modifications to the original algorithm

of encryption. Also a scheme of joint compression - encryption processes was designed

and developed. The rate – distortion function was computed and compared for different

number of substitutions per value. The original, joint and distributed joint compression –

encryption schemes where visually compared through PSNR – R function.

3.4.1 Improvements of Direct Encryption

Complete encryption of the image data was performed on the encoded bitstream, using

the scheme described in subchapter 2.2.4 and shown in Fig. 2.9. When compression and

encryption need to be applied on the multimedia data, usually encryption is performed as

a second process because it changes the probability distribution of the data samples,

making their appearance as equal and uniform as possible. If all of the data samples are

equally probable then there is no information that can be compressed by entropy

encoding. Thus, before encryption, the first step was to obtain the compressed bitstream of

the image.

Encryption was applied on the bit array of the compressed plaintext and performed by

transforming each byte of the plaintext into an integer value. The output of the encryption

process, the ciphertext, is an array of integer values, as was exemplified in Fig. 3.2 – 3.10.

The bitstream of the ciphertext can be represented in two forms: using a fixed number of

bits for each integer value, or using the exact number of bits for each codeword and then

memorizing their flags which specify the number of bits of each word. For the first

method, where a fixed number of bits is used for each codeword, the number of bits

assigned to a codeword is given by the maximal value of a codeword. Thus, if the length

of the secret key (DNA sequence) is, for example, 37839; then the maximal possible value

of a codeword is that value, so the number of bits needed to represent a value from the

ciphertext is 16. Considering the fact that each plaintext byte is transformed in an integer

number of 16 bits, the ciphertext bitstream will be twice as long as the plaintext bitstream.

53

What follows is an example where the original bitmap image is compressed to jpeg files

using different compression ratios (CR). The aim of this example is to show the reduction

in size of an image due to compression. The change in compression ratio (CCR) metric

(subchapter 2.4.3) is used to estimate the increase in size because of the encryption with

DNA Indexing cipher.

From the point of view of compression efficiency the increase in data size after encryption

is of major interest. The value of a codeword from the ciphertext can vary between one

and the length of the key and its number of bits accordingly. In this work a DNA sequence

of length 37839 was used, so the number of bits of a codeword can be in the range: 1 – 16.

By running the encryption algorithm a few times for different image files and computing

the average number of bits for a ciphertext codeword showed that it is around 14 bits. The

most probable number of bits for a codeword is 15. Here are some probabilities of

54

codeword lengths: P(15) ≈ 0.45, P(14) ≈ 0.2, P(16) ≈ 0.1. Considering all the lengths of the
codewords the average number was found to be 14 bits. This means that 8 bits of the

plaintext are transformed, approximately, in 14 bits of the ciphertext. The increase in size

in this case is 1.75 times. Considering the probabilities of codeword lengths, a fixed

number, of 16 bits, is more suitable for representation of the integer values.

3.4.1.1 Change of Indexes in Key Dictionary

The number of bits for a ciphertext codeword can be optimized. The dictionary of

substitution values is computed before actual encryption. In this key-table all the bytes

(256) have a vector of corresponding integer values. These integer values are given by the

positions where the byte value sequence (like “ACTT”) is equal to the same sequence in
the key. This integer values are used as ciphertext words for the substitution of the byte

from the plaintext.

As transmitter and receiver must compute the same dictionary for the key, then the

position of each integer value inside the key table is known. Thus, there is no need to

transmit large integer values of 16 bits. Their position number can be sent instead. This

will result in sending fewer bits for each ciphertext word (Fig. 3.11).

Figure 3.11 Key Dictionary: for each byte there is a range of integer substitution values;

their positions may be used as new substitution values

55

In this case the length of a codeword will depend on the total number of substitutions in

the dictionary. Limiting the number of substitutions will lead to a better compression ratio.

In the previous section, where direct encryption was described, it was concluded that one

codeword has the size of 16 bits. Considering that 32 different substitution values for 1

byte are enough, the total number of substitution values in the dictionary will be 8192

(256*32). This means that new substitution values (Fig. 3.11) can be represented on 13 bits

each (8192 = 213). Making a tradeoff between security and compression, each codeword

can be represented in less number of bits by reducing the total number of substitutions in

the dictionary. For example, with a 2048 (211) number of substitutions in the dictionary,

which is 8 different substitutions per 1 byte, the codeword length in bits is 11.

3.4.1.2 Homophonic Substitution

Another improvement for this cipher is to attribute a different number of substitution

values for each byte according to the frequency with which they appear in the plaintext.

Distribution of the encoded (compressed) data bitstream is quite random and with less

patterns then in the decoded or original signal bitstream, but there may still be some bytes

appearing more often than others (Fig. 3.12).

Figure 3.12 Distribution of the Encoded Data Bitstream a) tiff, b) jpeg

This means that for a more uniform ciphertext, number of substitutions attributed to a

byte must vary according to its appearance in the plaintext. Originally in DNA Indexing

cipher the number of indexes for substitution of each byte was random. It depended on

how often a certain byte sequence was retrieved in the key sequence (Fig. 3.13). Now for

each byte there is a certain number of corresponding indexes for substitution; this number

corresponds to the appearance probability of that byte in the data. A highly probable value

in the compressed data bitstream has more corresponding substitution values than a less

probable value (Fig. 3.13). The number of substitutions for each byte in the dictionary is

equal to the product between the total number of substitution in the dictionary and the

56

probability of each byte. This is the principle of homophonic substitution and the result of

its application on the dictionary is a more uniform distribution of the ciphertext (Fig. 3.14).

Figure 3.13 Number of Substitution Values for each Byte of the Plaintext

Figure 3.14 Distributions of the a) Plaintext and b) Ciphertext Values

3.4.1.3 Encryption and Compression through Longest Common Subsequences in DNA

Sequence

A modification was considered on the DNA Indexing direct encryption. Instead of

substituting each byte of the plaintext with an index in the key DNA sequence, the Longest

Common Subsequence (LCS) principle was used. The steps of this method are the

following:

- The compressed bitstream of the plaintext data is transformed in DNA sequence

using conversion from Table 2.1.

- The longest common sequences between the plaintext and key DNA sequences are

searched.

- The starting points of these plaintext sequences and their length were used to

substitute them in the ciphertext.

57

In Fig. 3.15 an example of the method is given. It shows matches between 2 sequences. The

numbers in the table show how long the common sequence is. The encryption starts from

the last column of the table: 16. In this column the maximum number is searched which is

3 and it shows the longest sequence in this place between the key and the plaintext. The

number 3 is used to compute the starting point of this match (14 – 3 + 1) and to indicate the

length. The process of finding the max number in the column repeats in the 13th (16 – 3)

column for the next longest common sequence.

Figure 3.15 Example of Encryption with LCS in DNA Sequences

Following the example in Fig. 3.15, encrypted data is represented in pairs of:

- (Position in the key, number of elements to read from that place)

 (4, 2); (1, 3); (7, 2); (5, 5); (12, 3)

For the experiment a key of 16 000 letters was used; meaning that the position in the key

was represented with 14 bits and the average length of common subsequences was around

7-8 letters which is 3 bits. This means that 6 - 8 letters of data (12 - 16 bits) after encryption

became 17 bits. This is an improvement from point of view of compression for the DNA

Indexing algorithm, but the computational time is very high.

58

3.4.2 Joint Compression – Encryption

Joint Compression – Encryption is a concept that unifies two independent processes:

compression and encryption in one single process. The general purpose of this approach is

to reduce the amount of resources and computational time needed for the secure

transmission of the multimedia data. The state of the art techniques for the joint

compression – encryption are presented in subchapter 2.2.4. These methods are based on

the integration of the ciphering process inside the entropy coder. In this work the DNA

Indexing cipher was modified to be included in the compression process (Fig. 3.16).

Figure 3.16 Joint Compression – Encryption Scheme

An analysis block was introduced to determine the desired level of quality and security

(A(λ,p), Fig. 3.17). This block performs bit allocation (subchapter 3.4.2.1) by choosing

Lagrange multiplier (λ) values and it sets a security level by choosing number of

substitutions per value (p). Uniform scalar quantization is then performed according to the

chosen parameter of quality. Huffman entropy coding technique is applied on the key

dictionary of substitutions for the DNA Indexing cipher. Finally encryption is performed

using the encoded key dictionary (Fig. 3.17).

At the reconstruction side, decoding of the key dictionary is the first step. Probability

distribution is modeled using the shape parameter (α) and standard deviation (σ)
calculated during encoding on the quantized data values (Formula 3.1). The same number

of substitution values is used for the key dictionary reconstruction. Next, using the

obtained key, the decryption of the data is performed. Obtained decrypted data goes

through the rest of the decoding reconstruction stages of the quantization and wavelet

transform (Fig. 3.17).

59

Figure 3.17 Scheme of the Joint Compression – Encryption Method

Legend of Figure 3.17: - original image ̂ – reconstructed image

DWT – discrete wavelet transform

Q – (mid-tread) uniform quantization

iQ – inverse quantization

q – quantization step

p – number of substitutions

(α, σ) - shape parameter and standard deviation describes the probability distribution

R(q) – bitrate depending on the quantization step

R(q, p) – bitrate depending on quantization step and number of substitutions in the key

dictionary Aሺ pሻ – analysis block used to determine quality and security level

HE(KD) – Huffman encoding of the key dictionary

HD(KD) – Huffman decoding of the key dictionary

E - block of encryption

D - block of decryption

60

3.4.2.1 Analysis Block - Bit Allocation

The mathematical model and processes inside the analysis block Aሺ pሻ from the Fig. 3.17

are described in this subchapter. This block is used in the context of this joint compression

– encryption method to determine the optimal bitrate according to the desired quality of

the image and the level of security. Secure encoding – decoding process described in Fig.

3.17 was performed many times in order to obtain necessary values used as input to this

block.

For the quality tradeoff the goal is to determine the quantization level that should be used

for the quantization of the wavelet transformed subband images. For each quantization

value there is a corresponding pair of Distortion – Bitrate (D - R) values.

Figure 3.18 Rate – Distortion Curve According to the Quantization Step

The distortion (D) introduced by quantization was measured here as the mean squared

error (MSE) between the original wavelet coefficients and those reconstructed at decoding

after the inverse quantization. The distortion for a certain subband image k can be

described in discrete domain as follows:

 ሺ ሻ ∑ሺ ሺ ሻ ሻ
 ሺ ሻ

where are the values of the original wavelet transformed image coefficients, the ሺ ሻ
are the reconstructed values, and n is the number of the values in the image.

In case of the orthogonal and biorthogonal wavelet transform, the total distortion is

measured by the MSE between the original and reconstructed signal:

 ∑
 ሺ ሻ ሺ ሻ

where N is the number of subbands, ሺ ሻ is the distortion of one subband, { } are the

weight coefficients introduced by the filters [Use96]. For the orthogonal, non-redundant

61

wavelet transform, where the filters are normalized to the value of 2, there is for all

the subbands. The weight coefficients { } are optional. They can be used to impose

preferred frequency [ABR+93], or for certain performance optimizations in quality

measurements [PTA+01], [PTAB+01].

The bitrate (R) value is affected by two parameters: the quantization step (q) used at

encoding and the number of substitutions per value (p) used at encryption. Small values of

the quantization step offer a better quality of the image, but increase also the R. When each

byte from the plaintext can be mapped to many different values in the ciphertext, in order

to represent binary all of that ciphertext values, a bigger number of bits per value is

normally required. A higher security level is obtained when there are more substitution

values, but it also increases the R. Considering the fact that at the end of the compression –

encryption process the bitrate is affected by these two parameters, for a certain subband

image k the bitrate is the following:

 ሺ ሻ ∑ ሺ ሻ
 ሺ ሻ

where ሺ ሻ is the number of bits in a ciphertext codeword.

The average bitrate can be obtained by the weighted sum of the bitrates from each image:

 ∑
 ሺ ሻ ሺ ሻ

where ሺ ሻ represents the average bitrate for the subband image i and is the

weight of this image according to the proportion of its size to the size of the whole image.

The optimization problem of rate distortion theory was described in subchapter 2.2.2. In

this work the constrained R problem ({ }) was substituted by the unconstrained

Lagrangian cost function: { }
 ∑ ሺ ሻ ∑

 ሺ ሻ ሺ ሻ

In order to determine the optimal quantization level the Lagrange multiplier (λ) selection
is used. Its value is determined from the minimization of the Lagrangian cost function (J).

62

Supposing that R and D of an image are differentiable everywhere, the minimum of the J is

given by setting its partial derivative with respect to to zero: ሺ ሻ ሺ ሻ ሺ ሻ ሺ ሻ

 ሺ ሻ ሺ ሻ
Setting Lagrange multiplier (λ) to different values will give different bitrate – distortion

values corresponding to certain quantization levels (Fig. 3.19).

Figure 3.19 Lagrange Multiplier and Quantization Steps Values

According to the encryption algorithm used in this work, a higher number of substitution

values in the dictionary increase the security level, but also the bitrate. Thus, the D – R

curve will depend on the additional parameter: number of substitution (P) (Fig. 3.20).

Figure 3.20 D(R) Curves according to the Number of Substitutions in the Key Dictionary

The range of values for the λ was obtained by performing the compression – encryption

process for different values of the quantization step and number of substitutions.

63

Considering a fixed number of substitutions (pi) the D and R values where calculated for a

range of the quantization steps (qs = {1, 2, 4, 8, 16, 32}). Next, a different number of

substitutions was considered (pi+1) and the D, R values were computed again for the same

range of the quantization steps. Experimental results of these operations are presented in

subchapter 3.4.2.3.

3.4.2.2 Entropy Coding of the Key Dictionary

The key dictionary (KD) of this cipher is a two dimensional array. Each row of it

represents a vector of substitution values for a one single value in the plaintext. Values of

the plaintext are quantized wavelet coefficients. The principle of finding substitution

values and constructing the key dictionary was presented in subchapter 3.1. Change in

representation of the substitution values was presented in Fig. 3.11. In this subchapter is

presented how the entropy coding is applied on the key dictionary and the point where

enciphering is included in the compression process.

The substitution values from the two dimensional array of the KD are assigned to the

values of the plaintext. Quantized wavelet coefficients are the values of the plaintext.

Entropy coding is applied considering the probability distribution model of the source. As

there is a connection between the plaintext values and the key dictionary, the substitution

values can be encoded using the encoder of its source.

Huffman coding technique was used for entropy coding. The general principle of

encoding is that the substitution values for the most probable coefficients of the source are

attributed shorter codes and accordingly the less probable coefficients are encoded with

more bits (Fig. 3.21). During encoding

Figure 3.21 Huffman Coding of the Key Dictionary

64

The precise number of substitutions for each coefficient is computed according to its

probability distribution and total number of substitutions in the dictionary.
where is the number of substitution for the coefficient i; is the total number

of substitution in the KD; is the probability distribution of the coefficient i

Change in bitrate from R(q) to R(q, p) (Fig. 3.22) appears due to the fact that there are more

substitution values in the KD then the number of coefficients in the plaintext. The greater

is the number of substitutions in the KD the more is the increase in the bitrate.

Figure 3.22 Change in the Bitrate due to the number of substitutions in the KD

The key dictionary was computed considering the model of the source. It was shown that

the probability distribution of the wavelet coefficients can be approximated by the

generalized Gaussian distribution [ABM+92], [Par03]:

 ሺ ሻ | ሺ ሻ | ሺ ሻ

where ሺ ሻ √ ሺ ⁄ ሻ ሺ ⁄ ሻ , ሺ ሻ ሺ ሻ ሺ ⁄ ሻ , ሺ ሻ ሺ ሻ is Gamma function

The important parameters in probability distribution of the coefficients are: the shape

parameter (α) and standard deviation (σ): , √ ሺ ሻ (3.2)

where ሺ ሻ ሺ ሻ is the Kurtosis and ሺ ሻ is the expected value:

 ሺ ሻ ∑ ሺ ሻ
 ሺ ሻ

The shape parameter and standard deviation are sufficient information to compute the

probability distribution of the source without knowing its actual values.

Because the key dictionary is computed with consideration to this distribution, the

receiver needs the α and σ parameters in order to compute the same key. The receiver of

65

the ciphertext can compute the same dictionary knowing the model (in this case

generalized Gaussian distribution) (Fig. 3.23).

Figure 3.23 Histogram and Approximation of the Generalized Gaussian Distribution

3.4.2.3 Experimental Results of R(D) Functions

The experimental results were taken for the 512x512 grayscale lena.bmp image, taken from

the [UCLA]. The bitrate and distortion were calculated for some of the wavelet

transformed image subbands according to a range of quantization step and number of

substitutions per symbol. A fix number of substitutions per value was considered for these

experimental results. The following input values were used:

- Quantization steps: 1, 2, 4, 8, 16, 32

- Number of substitutions per symbol: 1, 2, 3, 5, 10

- Number of wavelet decompositions: 2

- Subband images: 0, 2, 4 (Fig. 3.24)

Figure 3.24 Wavelet Transform of the Test Image; Numeration represents Subband Images

66

Experimental results:

Subband Image 0: Qs is the quantization step; D is the distortion; ሺ ሻ, ሺ ሻ, ሺ ሻ, ሺ ሻ, and ሺ ሻ correspond to the bitrate values depending on a range of Qs

and number of substitutions which are: 1, 3, 5, 7, or 9.

Qs D ሺ ሻ ሺ ሻ ሺ ሻ ሺ ሻ ሺ ሻ

1 0 4.4 5.77 6.23 6.99 7.12

2 0.42 3.07 4.92 5.61 5.97 6.32

4 1.12 2.07 3.7 4.57 5.04 5.37

8 2.96 1.43 2.72 3.69 3.97 4.55

16 6.97 1.15 2.28 3.1 3.36 3.82

32 14.5 1.04 2.07 2.84 3.1 3.5

Table 3.7 Rate – Distortion Values of Subband Image 0

Figure 3.25 R(D) Curves of the Subband Image 0

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16

R
 b

p
s

D

NrSubst = 1

NrSubst = 3

NrSubst = 5

NrSubst = 7

NrSubst = 9

67

Subband Image 2:

Qs D ሺ ሻ ሺ ሻ ሺ ሻ ሺ ሻ ሺ ሻ

1 0 3.89 5.54 6.41 6.6 7.19

2 0.42 2.75 4.58 5.26 5.75 5.92

4 1.09 1.76 3.29 4.42 4.73 5.04

8 2.56 1.25 2.48 3.35 3.62 4.14

16 5.3 1.08 2.15 2.93 3.19 3.62

32 9.44 1.02 2.03 2.78 3.04 3.42

Table 3.8 Rate – Distortion Values of Subband Image 2

Subband Image 4:

Qs D ሺ ሻ ሺ ሻ ሺ ሻ ሺ ሻ ሺ ሻ

1 0 3.57 5.51 6.35 6.49 6.79

2 0.31 2.24 3.98 4.57 5.16 5.5

4 0.7 1.52 2.85 3.83 4.13 4.73

8 1.73 1.19 2.36 3.2 3.46 3.95

16 3.84 1.06 2.11 2.89 3.15 3.57

32 7.19 1.01 2.02 2.77 3.02 3.4

Table 3.9 Rate – Distortion Values of Subband Image 4

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

R
 b

p
s

D

Figure 3.26 R(D) Curves of the Subband Image 2

NrSubst = 1

NrSubst = 3

NrSubst = 5

NrSubst = 7

NrSubst = 9

68

3.4.2.4 Comparison of Compression Efficiency between different Versions of the

Algorithm

According to the bit allocation described in subchapter 3.4.2.1 and bitrate (R) – distortion

(D) values computed and presented in subchapter 3.4.2.2, Lagrange multiplier (λ) values
were computed for the analyzed image. A range of possible λ values was established by

computing the and values valid for each image subband. According to the

selected value of an appropriate quantization step was chosen for each image

subband. A vector of obtained quantization steps was further used to perform

compression – encryption process on the image and compute its R, D and PSNR. Value of

PSNR for the grayscale image was computed according to the following formula:

 ቆ ቇ ሺ ሻ

Curves of PSNR – R were computed for 3 different cases:

1. The original version of the algorithm with direct encryption. Number of

substitutions in this case is variable according to the number of matches between

the DNA sequence used as the key and the bytes values. In average each byte may

have a 100 of substitutions (subchapter 3.3.3).

0

1

2

3

4

5

6

7

8

0 2 4 6 8

R
 b

p
s

D

Figure 3.27 R(D) Curves of the Subband Image 4

NrSubst = 1

NrSubst = 3

NrSubst = 5

NrSubst = 7

NrSubst = 9

69

2. its modification in joint compression – encryption with 2 substitutions per value in

each image subband

3. joint compression – encryption with a distributed number of substitutions per value

in each image subband (Fig. 3.28)

In the case 3, number of substitutions per value in each image subband was chosen

empirically according to importance of each image subband for the perception. Diagonal

image subbands contain less important details about the image and thus were protected

less then for example the subband image of low frequencies (Fig. 3.28). In order to

determine the optimal number of bits per value in each image subband a separate study

with more tests and analyses may be performed as future works.

Figure 3.28 Number of Substitutions per Value allocated empirically for each Image
Subband

Joint C-E

with Fix Nr. of Substitutions
Separate C-E

Joint C-E

with Distributed Nr. of Subst.

R PSNR R PSNR R PSNR

3.5 41.18 3.71 38.79 3.31 41.92
3.4 40.45 3.4 37.95 3.17 40.93

2.99 38.5 3.28 37.55 2.72 38.62
2.92 38.2 3.13 36.4 2.59 37.95
2.8 37.55 2.91 34.91 2.53 37.55

2.65 35.65 2.69 33.69 2.42 36.4

Table 3.10 PSNR – R Values of the 3 Compression – Encryption Algorithm’s Versions

70

Figure 3.29 PSNR –R Curves of the 3 Compression – Encryption Algorithm’s Versions

In Fig. 3.29 it can be observed that joint compression encryption scheme has a better

compression at the same level of distortion than the separate, direct compression

encryption version of the algorithm. Experimental result shown in Fig. 3.29 was obtained

for one image, based on this result more tests and analyses may be performed on different

images as future works.

Different number of substitutions per value was allocated empirically for each image

subband, according to the importance of the information in the subband (Fig 3.28). It has

been shown that this distribution of substitutions offers even better compression at the

same level of distortion (Fig 3.29).

3.5 Contributions

Symmetric encryption method based on DNA sequences was presented here. It uses

digital biological DNA from public genetic databases in order to retrieve sequences and

use them for encryption. The DNA Indexing algorithm represents a practical application

of DNA cryptography and brings a great advantage of using genomic databases; a feature

that was not previously exploited in cryptography.

32

33

34

35

36

37

38

39

40

41

42

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

P
S

N
R

 d
B

Rate bpp

Joint C-E/Fix Nr. Subst.

Separate C-E

Joint C-E/Distributed Nr. Subst.

71

Computational time, security level and compression efficiency were analyzed for this

algorithm. Computational time was found to be linear and statistical measurements

showed a good security of the ciphertext and OTP principle protect it from most of the

cryptanalytic attacks. Direct encryption of compressed image data bitstream showed that

the size of the data increases twice after encryption. Certain optimizations were proposed

and implemented to reduce the size by changing the algorithm. A tradeoff between

security and compression can be established by the users due to this optimization. More

substitution values in the dictionary lead to a higher security and less number of

substitutions to a higher compression ratio.

This algorithm was developed using .NET(C#, WinForms). There is a graphical interface

allowing the user to select text or image data, perform the encryption/decryption

processes, and visualize the result. The developed program also offers visualization of

statistical measurements for plaintext and ciphertext data intended for measurement of the

security level. The software application was designed in Violet UML Editor. User, class,

and sequence diagrams show its architecture from different points of view.

Contributions related to this cipher are described in the following publications: [TBH+10],

[BT10], [VTT10], [TB13], and [TAB13]. Paper [TBH+10] presents a detailed description of

the algorithm principle and exemplification of its application. In paper [BT10] it is

integrated as part of the existing methods in DNA cryptography. In [TB13] results of its

evaluation for the computational time and security level are presented. Paper [TAB13]

shows results of compression efficiency evaluation and a part of optimizations.

72

73

Chapter 4

Generation of Random Sequences using Genetic

Databases and proposal of OTP Cryptosystems

Contents in Brief

4.1 DNA Based Random Sequence Generation Method ...74

4.2 OTP Encryption Systems for Transmission and Storage ...83

4.3 Performance Evaluation ..87

4.4 Contributions ...99

Pure random sequences are widely used in cryptographic applications for cryptographic

keys [Sch96], [Sta11]. The difficulty is to generate such pure random sequences as well as

the management of these keys (to transmit and store them securely). Instead of pure

random sequences, in cryptography, pseudo-random numbers are used (PRN), generated

from a seed. The adversary must not know the seed used for PRN generation. A more

secure seed is the one that was generated only once. Thus, the use of OTP (one time pad) is

of great interest in cryptography, where a key is only used once in a confidential

communication and the length of the key is at least as long as the message in clear. Such a

system was proved to be unbreakable [Sch96], [Sha49]. The main problems which occur in

OTP implementation are: the great number of very long keys required and their

management (transmission on trusty channels).

The randomness of DNA sequences, proved by the fact that they practically cannot be

compressed [NW99], [CL+09], [FL+11], [DR+10], [RA11], can be used to generate long

random binary sequences. The method of generating random binary sequences out of

DNA sequences is presented in subchapter 4.2. Four different ways of obtaining the

74

desired length are proposed and also the format of the secret key which need to be shared

between the users.

Subchapter 4.3 presents the block-schemes of OTP encryption systems for transmission

and storage based on DNA random sequences. In subchapter 4.4 results of the

performance evaluation are presented. Computational time was measured and computed

for all of the componential processes of the encryption and respectively decryption, which

is composed of the same processes. Statistical measurements were taken and

cryptographic attacks were analyzed in order to determine security of the system. The last

and 5th section of the chapter is dedicated to illustrate the advantages of the proposed

DNA based method for random sequence generation, respectively OTP cryptosystems for

transmission and storage.

4.1 DNA Based Random Sequence Generation Method

Random binary sequences based on DNA sequences (chromosomes, genes, etc.) can be

provided by biological databases, the greatest being [ddbj], [webi], [wncbi’]. Appearance
of letters (A, C, G, ant T) in the DNA sequence belonging to a living organism (human,

animal, plant) is random. The randomness of DNA sequence can be proved by the fact that

it can hardly be compressed [NW99], [CL+09], [FL+11], [DR+10], [RA11].

4.1.1 Distribution of the DNA Sequence

Distribution of the DNA sequence can be observed by analyzing the existing compression

techniques for these sequences. A highly compressible file will contain significant patterns;

contrary, the smaller the compression ratio, the more uniform is the signal distribution. A

signal with elements that have equal probability appearance cannot be compressed.

In [NW99] it is claimed that the protein sequences, which are constructed out of DNA

sequences, are not compressible due to their highly compact representation and mutations.

The general purpose compression algorithms have been proved to be unsuitable for

protein and DNA [CL+09]. Compression of protein and DNA need to relay on their

biological properties and even based on them, the results in [NW99] shows that the

protein sequences are not compressible.

Organisms with short evolutionary distance may have significant similarities between

them. In [CL+09] the idea of only storing differences to a reference sequence is presented.

In [FL+11] and [DR+10] this idea with some improvements gave 0.35 bits per base storage

75

rate. In [RA11] it is sustained that they obtained the best DNA sequence compression of

1.58 bits/base. The DNA alphabet has 4 letters, so naturally one base can be stored in 2

bits.

Results from a variety of research papers indicate that DNA sequence is poorly

compressible. A better compression ratio is obtained by comparing certain sequences of

similar organisms. This means that a stand-alone sequence of DNA can be considered

quite random.

4.1.2 Transformation from DNA to Binary

The genetic code has four bases: A – adenine, C – cytosine, G – guanine, T – thymine

[CD+04] which can be converted into binary, using a uniform encoding:

Binary DNA

00 A

01 C

10 G

11 T

Table 4.1 Conversion table from DNA to binary

These substitutions can be easily realized using switch-case selection of a programming

language. This is how the obtained DNA sequence is transformed into a binary one. Before

this step the actual DNA sequence need to be provided. One of the possible ways to access

a DNA sequence is exemplified in the following subchapter.

4.1.3 Access to the DNA Sequence

DNA sequences can be obtained from the publically available genetic databases like

[ddbj], [webi], or [wncbi’]. What follows is one of the possible ways to access them. NCBI

website gives the possibility to inspect genome information for a variety of species. Fig. 4.1

is presenting the request for the Zea mays (corn) genome. Fig. 4.2 shows the result to this

request.

76

Figure 4.1 Requesting Genome Information for Zea Mays (corn) Species

Figure 4.2 Genome Information about Zea Mays Species

Zea mays has 10 chromosomes, they can be seen by accessing links from BioProject,

Assembly, or Chrs columns (Fig. 4.2). The result is shown in Fig. 4.3.

77

Figure 4.3 Chromosomes of the Zea Mays

Information about a certain chromosome sequence can be viewed in GenBank, FASTA, or

Graphics format. In the send option the desired file format can be chosen (Fig. 4.4) and

then the sequence can be saved for further processing.

Figure 4.4 DNA Sequence in FASTA Format and the Download Options

78

4.1.4 Length of the DNA Sequence

The lengths of DNA sequences in genetic databases are variable: from tens (a gene) to

hundreds of millions (a chromosome) bases. Tables 4.2, 4.3, and 4.4 are giving lengths of

DNA sequences (in base pairs - bp) for some living organisms.

Chromosome Length in bp

1 301,354,135

2 237,068,873

3 232,140,174

4 241,473,504

5 217,872,852

6 169,174,353

7 176,764,762

8 175,793,759

9 156,750,706

10 150,189,435

Table 4.2 DNA sequences

lengths corresponding to

Zea mays (corn)

chromosomes

Chromosome Length in bp

A1 239,302,903

A2 169,043,629

A3 142,459,683

B1 205,241,052

B2 154,261,789

B3 148,491,654

B4 144,259,557

C1 221,441,202

C2 157,659,299

D1 116,869,131

D2 89,822,065

D3 95,741,729

D4 96,020,406

E1 63,002,102

E2 64,039,838

E3 43,024,555

F1 68,669,167

F2 82,763,536

X 126,427,096

Table 4.3 DNA sequences

lengths corresponding to

cat chromosomes

Chromosome Length in bp

1 249,250,621

2 243,199,373

3 198,022,430

4 191,154,276

5 180,915,260

6 171,115,067

7 159,138,663

8 146,364,022

9 141,213,431

10 135,534,747

11 135,006,516

12 133,851,895

13 115,169,878

14 107,349,540

15 102,531,392

16 90,354,753

17 81,195,210

18 78,077,248

19 59,128,983

20 63,025,520

21 48,129,895

22 51,304,566

X 155,270,560

Y 59,373,566

Table 4.4 DNA sequences

lengths corresponding to

human chromosomes

79

In order to obtain random sequences (RS) for cryptographic OTP applications, the

sequence need to have a length of at least the same as of that of the cleartext message and

to be used only once. For this reason, the length of the generated sequence needs to match

the message length, which is defined by:

 Message type: - Text

 - Image

 - Sound (bitrate)

 - Video (bitrate)

 Transmission time for sound and video

These input data will determine the required length of the random sequence used as the

key. Table 4.5 illustrates some examples of possible input data.

Text Image Sound Video

15KB 402KB
5.34MB/278s

(160kbps)
113 MB/1140s

(audio 111 kbps, video 704 kbps)

639KB 573KB
4.74MB/248s

(160kbps)
329MB/3359s

(audio 112 kbps, video 695 kbps)

1.14MB 1.31MB 8.48MB/222s (320kbps)
349MB/2640s

(audio 153 kbps, video 934 kbps)

207MB 3.44MB 3.16MB/195s (128kbps)
 699MB/5708s

(audio 99 kbps, video 909 kbps)

Table 4.5 Examples of different input data (obtained by measuring real files)

In genetic databases there are DNA sequences of very great length (chromosomes),

acceptable for many applications. Table 4.6 exemplifies different cleartext messages, the

length of the corresponding required DNA key (in bp), and the dimension of the

corresponding secret key information [BTT+13]. The secret key will contain the

identification numbers (IDs) of the DNA sequences used to create the final DNA sequence

for the key.

80

Cleartext message
DNA sequence

(key) length
Secret key information

Text - 15KB 61,440 bp
1 ID of DNA sequence

(8 bytes)

Image - 402KB 1,646,592 bp
1 ID of DNA sequence

(8 bytes)

Sound (160kbps) 5.34MB/278s 22,397,583 bp
1 ID of DNA sequence

(8 bytes)

Video - 329MB/3359s
(audio 112 kbps, video 695 kbps)

1,384,120,320 bp
~ 6 IDs of DNA

sequences (48 bytes)

Table 4.6 Example of different cleartext messages, the corresponding DNA key length (bp),

and respectively the secret key information

In order to obtain a high number of DNA sequences of great lengths, there are more

possibilities:

a) one chromosome taken from a given database (see Tables 4.2 –4.4)

b) multiplexing, cycling (shifting) and concatenation of more sequences obtained from

the same chromosome (Fig. 4.1)

Example:

 Original sequence: AATAGCACAATAATCACATTCTTGGCTTCTACTCATCT

 Modified sequence: GCTTCTACTCATCTAATAGCACAATAATCACATTCTTG

c) multiplexing sequences from different chromosomes belonging to the same species

Example:

 Zea mays Cr. 4: AAGCTTCTACTCATCTCCCGGCAAACAGATAT...

 Zea mays Cr. 7: GGAATAGCACAATAAGTGCGCAAAATCGAAG...

 Zea mays Cr. 9: GATCACATTCTTGGATTTTTGGTGGAGACCAT...

MUX(Zea mays{Cr. 4, Cr. 7, Cr.9}) = AGGAGAGATCACTTATAC...

d) multiplexing sequences from different species

Example:

Homo Sapiens Cr. 5 → l1 = 180,915,260 bp = 361,830,520 bits

Zea mays Cr. 8 → l2 = 175,793,759 bp = 351,587,518 bits

Felis catus Cr. C1 → l3 = 221,441,202 bp = 442,882,404 bits

 → lmux = 3*lmin(l1, l2, l3) = 1,054,762,554 bits

81

a) b) c)

4.1.5 Format of the Secret Key

In order to obtain a symmetric key for decryption, the receiver need to know what method

was used at encryption to generate the key, how many DNA sequences were used, and the

IDs of these sequences. All this information must be included in a secret key and

transmitted confidentially. The format of the secret key is given in Fig. 4.5.

2 bits 3 bits
8 bytes -

ID1

8 bytes -

ID2

8 bytes –

ID3
… …

8 bytes –

ID8

Figure 4.5 Format of the Secret Key a) 2 bits specifing the method a – 00, b – 01, c – 10, d –

11, b) 3 bits specifing the number of transmitted IDs, c) the actual secret key formed of 1 –

8 IDs, each of 8 bytes

Methods (a, b, c, and d) to generate the key were described above.

Example:

For a cleartext message corresponding to a video file of 329 MB (Table 4.6), a 1,384,120,320

bp DNA sequence is required. Such a sequence can be obtained by multiplexing (method

d) 5 – 6 different chromosomal DNA sequences (Tables 4.2 –4.4). Consequently, the secret

key will transmit the corresponding IDs. Fig. 4.6 is illustrating a possible combination of

sequences in GenBank format and their IDs. Fig. 4.7 is illustrating the secret key format.

a) ID1 – CM000663

b) ID2 – CM000664

82

c) ID3 – CM001378

Figure 4.6 Examples of DNA Sequences in GenBank Format and their IDs

10 101
ID1

CM000663
ID2CM000664 ID3CM001378 … …

Figure 4.7 Example of Secret Key Format

4.1.6 Overview of the Method and its Advantages

DNA based random sequences can be obtained following the steps:

1. Determining the length of the desired sequence according to the length of the cleartext.

2. Selecting the desired method for sequence construction

3. Accessing suitable sequences from the database

4. Generation of the secret key

5. Generation of the final DNA sequence

The final DNA sequence is next transformed in binary in order to be used for encryption

or decryption.

This method for DNA-RS generation has the following advantages:

 generation of binary random sequences of any length using DNA structures from

public or private databases

 the number of distinct random sequences is practically unlimited, taken into

consideration the versatility of the possible ways (a ÷ d)

 the key does not have to be transmitted entirely, only the secret key (Fig. 4.5) of 9 -

65 bytes length requiring confidentiality in transmission and storage

83

4.2 OTP Encryption Systems for Transmission and Storage

4.2.1 OTP Cryptosystem for Duplex Transmission Based on DNA-RS

Figure 4.8 Scheme of OTP Cryptosystem for Duplex Transmission based on DNA-RS Key

Legend of Figure 4.8:

DNA DB – a database of DNA sequences (identical for both parts: A and B), which can be

public or private

ID – block of input data containing: required length for the final DNA sequence according

to the size of the input data; IDs of the sequences to be used at the key generation; method

of key computation (information used to generate secret key)

MA – cleartext message of user A

MB – cleartext message of user B

Gen KDNA – block of DNA sequence generation, used as the key (KDNA)

84

Conv DNA-B – transformation from DNA alphabet to binary (KA, KB) – block of input data (ID) encryption, using a symmetric or public algorithm for users

A and B – block of input data (ID) decryption, using the algorithm chosen at

SA – modulo-2 adder used by A for OTP encryption and decryption

SB – modulo-2 adder used by B for OTP encryption and decryption

Protocol of using duplex OTP Cryptosystem:

I. Transmission A → B

a. A side encryption

(1) Providing the input data: length of the cleartext message, identification numbers

(IDs) of chosen DNA sequences and key generation method.

(2) DNA key generation using input data and genetic database: KDNA of user A.

(3) Generation of OTP key (KA) using conversion DNA → binary

(4) Encryption of input data using a symmetric or public algorithm (block) and its

transmission to part B

(5) OTP encryption of cleartext message MA: CA = KA⨁ MA and transmission of the

obtained cryptogram (CA) to part B

b. B side decryption

(6) Decryption of input data (ID) realized in block

(7) Generation of KA key using input data obtained at (6), DNA database identical with

part A, and the same key generator (Gen KDNA and Conv DNA-B)

(8) OTP decryption of CA cryptogram using KA key obtained at (7): CA⨁ KA = MA

II. Transmission B → A

a. B side encryption

(1) Providing the input data: length of the cleartext message, identification numbers

(IDs) of chosen DNA sequences and key generation method.

(2) DNA key generation using input data and genetic database: KDNA of user B.

(3) Generation of OTP key (KB) using conversion DNA → binary

85

(4) Encryption of input data using a symmetric or public algorithm (block) and its

transmission to part A

(5) OTP encryption of cleartext message MB: CB = KB⨁ MB and transmission of the

obtained cryptogram (CB) to part A

b. A side decryption

(6) Decryption of ID realized in block

(7) Generation of KB key using input data obtained at (6), DNA database identical with

part B, and the same key generator (Gen KDNA and Conv DNA-B)

(8) OTP decryption of CB cryptogram using KB key obtained at (7): CB⨁ KB = MB

The OTP cryptosystem for duplex transmission based on DNA-RS key has the following

advantages:

 The OTP system (a secret key used only once and having the length at least equal to

that of the cleartext message) was shown to be unbreakable [Sha49], [Ver26]

 The OTP key doesn’t have to be transmitted entirely, the recipient can easily
generate the key using confidential transmission (,) of ID and by using the

same DNA database, which provides an easy key management, thus removing the

main drawback of symmetric cryptography: difficult key management, especially

when the number of users grows.

 Security of the cryptosystem is given by the security of the algorithm used at input

data encryption (E*, D*) [BTT+13]

86

4.2.2 OTP Cryptosystem for Storage, based on DNA-RS key

Figure 4.9 OTP Cryptosystem for Storage, based on DNA-RS Key a) Encryption Side of

Writing Unit b) Decryption Side of Reading Unit

Obs.: block notations used in Fig. 4.9 are identical to the notations used in Fig. 4.8.

Protocol of writing – reading using OTP cryptosystem based on DNA-RS key:

a. Encryption (writing unit)

(1) Providing the input data: length of the cleartext message, identification numbers

(IDs) of chosen DNA sequencesand key generation method.

(2) DNA key generation using input data and genetic database: KDNA.

(3) Generation of OTP key (K) using conversion DNA → binary

(4) Encryption of input data using a symmetric or public algorithm (block E*) and

depositing on the storage media

(5) OTP encryption of data M: C = K ⨁ M and depositing of the cryptogram (C) on the

storage media (CD, DVD, etc.)

87

b. Decryption (reading unit)

(6) Decryption of input data (ID) realized in block D*

(7) Generation of key (K) using input data obtained at (6), DNA database identical with

the one used at writing unit, and the same key generator (Gen KDNA and Conv

DNA-B)

(8) OTP decryption of cryptogram (C) using key (K) obtained at (7): C ⨁ K = M

OTP cryptosystem for storage, based on DNA-RS key has the following advantage:

 Storage of encryption keys is easier than in the classical system because it consists

only of input data (ID), so it has a much shorter length than the encryption key

(K)[BTT+13]

4.3 Performance Evaluation

4.3.1 Computational Complexity of the Algorithm

The complexity analysis of an algorithm is important because it reveals its efficiency for

the real time applications. In this work the computational time of the algorithm was

analyzed through the experimental tests using software functions to measure the time.

This new method was compared to the existing symmetric encryption algorithms: DES,

AES, 3DES.

In order to obtain fair and stable results different software functions, that measure elapsed

time, was tested and the most suitable was chosen for further testing. This part is

described in subchapter 4.3.1.1. In subchapter 4.3.1.2 the experimental measurements are

shown. Computational time was measured separately for all the parts of the encryption –

decryption process and then the total encryption time was calculated. Decryption is

composed of the same operations and thus is performed in the same time as encryption. At

the end the results of the comparison between different symmetric cryptographic

algorithms are presented.

4.3.1.1 Time Evaluation Functions

Implementations were performed in Visual Studio 2010, C# on the computer with the

following properties: Genuine Intel(R) CPU Dual Core 1.79 GHz, 1 GB RAM. In VS10 there

are different functions available to measure execution time. What follows is an overview of

these functions as well as the one chosen for time measurements in this work.

88

1) DataTime

 DateTime begin = DateTime.Now;
 //Some code

 DateTime end = DateTime.Now;

 Double time = (stop - start).TotalMilliseconds;

 It is a fast function with resolution of 10 milliseconds. The speed of time

 measurememnt functions is not important for this work because these functions are

 not used during the actual encryption. This function can be unreliable if the system-

 time changes. This happens in very rare situations, like through synchronization

 with a time server [Kri08]. In this work, measuring the same operation with the

 same parameters, using this functions gave high variations in the results.

2) Stopwatch

 Stopwatch RunTime = Stopwatch.StartNew();

 //Some code

 RunTime.Stop();
 long w = RunTime.ElapsedMilliseconds;

 In this work, using the stopwatch gave unstable results. According to the [Kri08]

 this function can be unreliable on PC with multiple processors and also on on

 processors that do not have a constant clock speed.

3) Process.TotalProcessorTime

 TimeSpan start = Process.GetCurrentProcess().TotalProcessorTime;
 …..
 TimeSpan stop = Process.GetCurrentProcess().TotalProcessorTime;

 Double time = (stop - start).TotalMilliseconds;

 This procedure measures how long the process placed between the start and stop

 kept the CPU busy. It offers more stable results because it doesn’t measure how
 much time has passed, the time while the code is waiting (sleeping) is not counted

 and the timings are not distorted by other processes that consume CPU [Kri08].

 The results of this work were the most stable using this procedure and therefore the

 measurements presented in the following subchapter (and in any other) were taken

 in this way. The resolution in time measurement is of 15.6 ms.

89

4.3.1.2 Experimental Measurements of the Computational Time

The encryption and decryption processes of this cryptographic method are composed of

the same parts. The operations performed in one process are the following: reading the

file(s) containing DNA sequence; performing one of the operations: multiplexing,

concatenation, or shifting on the obtained sequence(s); transformation of the obtained

sequence from DNA alphabet to binary; and finally bitwise XOR operation between the

data bitstream and the obtained OTP binary sequence. Computational time was measured

separately for each process using the third procedure described in subchapter 4.3.1.1 and

then the total time was calculated. In order to observe the growing rate of the execution

time, the measurements were taken considering different sizes of the data.

1) DNA sequence file reading

Plaintext Length

(KB)

File Reading

(ms)

43.9 4.5

105 5.85

199 7.2

475 16.6

768 31.25

1510 47.5

3110 106.1

6210 223.9

9660 307.3

Table 4.7 Time measurements of the DNA sequence reading from the file

The DNA sequence needed for encryption or decryption is half of the data (plaintext or

ciphertext) bitstream size (one DNA letter represents 2 bits). Thus, the file reading stops

when the sequence reaches half of the data size. The growing rate is linear (Fig. 4.10) and it

can be described approximately by the function:

 (4.1)

where y is file reading time in ms and x is the size of the plaintext in KB (Fig. 4.10).

90

Figure 4.10 Growing Rate of the File Reading Runtime

2) Concatenation of the DNA sequences

 Concatenation is the time it takes to append all the DNA sequences read during the

 previous step. Considering the sizes of the plaintext from Table 4.7, and even twice

 larger, the concatenation time is 0 ms. This is explained by the fact that DNA

 sequences are very large and their concatenation is required only for very large data

 to encrypt.

3) Shifting of the DNA sequences

 Execution time for shifting procedure depends on the amount of shifted letters. The

 measurement results are presented in Table 4.8.

Shift Value

(Number of characters*103)

Shifting

(ms)

180 0

1000 5.85

2500 17.56

5000 31.2

8000 55.5

10000 72.7

Table 4.8 Time measurements of the DNA sequence shifting

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F
ile

 R
ea

di
ng

 (
m

s)

Plaintext Length (KB)

91

The growing rate is linear (Fig. 4.11) and it can be described approximately by the

function:
 (4.2)

where y is the time of shifting in ms and x is the number of shifted characters (Fig. 4.11).

Figure 4.11 Growing Rate of Shifting Procedure Runtime

4) Multiplexing of the DNA sequences

 Multiplexing of the DNA sequences is performed until the final sequence reaches

half of the plaintext bitstream size. Thus, the time to perform this operation was

 computed according to the size of the plaintext data (Table 4.9).

Plaintext Length

(KB)

Multiplexing

(ms)

43.9 0

105 3.1

199 3.9

475 13

768 15.6

1510 39.2

3110 88.5

6210 140.6

9660 240.4

Table 4.9 Time measurements of the DNA sequences multiplexing

0

10

20

30

40

50

60

70

80

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Sh
if

ti
ng

 (m
s)

Shift Value (Number of characters*103)

92

The growing rate of the multiplexing time is linear (Fig. 4.12) and it can be described

approximately by the function:
 (4.3)

where y is the multiplexing time in ms and x is the size of the plaintext in KB (Fig. 4.12).

Figure 4.12 Growing Rate of Multiplexing Procedure Runtime

5) Transformation from DNA alphabet to binary

 After that one of the methods: multiplexing, concatenation, or shifting was

 performed on the DNA sequence(s) the obtained sequence was transformed in

 binary by switch – case mapping procedure: A – 00, C – 01, G – 10, and T – 11. The

 time spent for this operation is proportional to the length of the final DNA sequence

 (Table 4.10).

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ul

ti
pl

ex
in

g
(m

s)

Plaintext Length (KB)

93

Plaintext Length

(KB)

DNA to Binary

Transformation (ms)

43.9 10

105 23.4

199 38.6

475 91

768 152

1510 320

3110 637

6210 1253

9660 1978

Table 4.10 Time measurements of the DNA to binary transformation

The growing rate is linear (Fig. 4.13) and it can be described by the function:
 ሺ ሻ

where y is the DNA to binary mapping time and x is the size of the plaintext (Fig. 4.13).

Figure 4.13 Growing Rate of the Time Spent to Transform from DNA Alphabet to Binary

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

D
N

A
 t

o
B

in
ar

y
(m

s)

Plaintext Length (KB)

94

6) Bitwise XOR operation

 The final procedure in encryption – decryption processes is the binary XOR

 between the data bitstream and the key bitstream obtained from DNA sequence.

 The time taken to perform this operation is proportional to the number of bits in the

 plaintext (Table 4.11).

Plaintext Length (KB) XOR (ms)

43.9 0

105 0

199 0

475 0

768 0

1510 5.6

3110 5.85

6210 20

9660 31.24

Table 4.11. Time measurements of the binary XOR operation

The growing rate is linear (Fig. 4.14) and it can be described approximately by the

function: (4.5)

where y is the XOR operation time in ms and x is the size of the plaintext in KB (Fig. 4.14).

Figure 4.14 Growing Rate of the Time Spent to Perform Binary XOR

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B
in

ar
y

X
O

R
 (

m
s)

Plaintext Length (KB)

95

The new DNA XOR method was compared to other existing symmetric encryption

algorithms. The overall encryption time for this method was obtained by summating the

milliseconds of all the composing operations. The AES algorithm was tested with a 128 bit

encryption key. The computational time comparison results are presented in Table 4.12.

Plaintext Length (KB) DES (ms) AES (ms) 3DES (ms) DNA XOR (ms)

105 15.6 15.6 15.6 29.25

199 17.8 17.8 31.2 45.8

475 31.2 46.8 62.5 107.6

768 62.5 62.5 85.5 183

1510 105 140.6 171.8 373

3110 203 328 359 748.8

6210 390 617 718.7 1497

9660 609 953 1093 2316

Table 4.12 Time measurements of the symmetric encryption algorithms

In Fig. 4.15 a comparison between the growing rates of the symmetric encryption

algorithms is presented. The fastest algorithm is DES and the DNA XOR is slower than the

others. AES and 3DES appeared as improvements to DES, as the higher security was

required. As can be seen in the Fig. 4.15 the higher security also comes with a higher

computational complexity. The DNA XOR algorithm is offering an OTP key and thus the

highest security. The rise in computational time is acceptable considering the ensured level

of security.

Figure 4.15 Comparison between Symmetric Ciphers Computational Time

0

500

1000

1500

2000

2500

0 2000 4000 6000 8000 10000 12000

E
nc

ry
pt

io
n

-
de

cr
yp

ti
on

 t
im

e
(m

s)

Data (plaintext, ciphertext) size (KB)

DES

AES

3DES

DNA XOR

96

4.3.2 Security Level of the Algorithm

The security of the algorithm was analyzed using different approaches, like: statistical

measurements, cryptanalytic attacks, key space analysis and secure transmission of the ID

numbers.

A. Statistical Measurements

Statistical measurements were used in this work in order to measure security strength of

the ciphertext, to observe its randomness and dissimilation from the plaintext. The

following statistical evaluations were made: histogram, entropy and correlation coefficient

(CC). Histogram offers the possibility to visualize the distribution of the data. Entropy

measures numerically the uncertainty and randomness of the signal. A large value for

entropy means a less predictable signal. CC indicates the degree of correlation between

neighboring values like pixels or letters; its value is intended to be small for the ciphertext.

Figure4.16 Histograms of the Plaintext Bitmap Image and Corresponding Ciphertext

Figure 4.17 Histograms of the Plaintext Tiff Image and Corresponding Ciphertext

97

Data in the plaintext is highly correlated (Fig. 4.16) and appearance of its values has a wide

range, like between 100 – 1200 in Fig. 4.17. Distribution of the ciphertext, however, is more

uniform and the neighborhood values are not correlated (Fig. 4.16 –4.17).

Entropy of the

Plaintext

Entropy of the

Ciphertext 7.24 7.91

7.42 7.86

7.16 7.84

7.82 7.92

7.47 7.93

Table 4.13 Plaintext and ciphertext entropy measurements

Correlation

Coefficient of the

Plaintext

Correlation

Coefficient of the

Ciphertext 0,11 0.002

0.031 0.007

0.62 0.013

0.016 0.002

0.175 0.009

Table 4.14 Plaintext and ciphertext correlation coefficients

As expected the ciphertext entropy values are higher than the plaintext entropy (Table

4.13) and the correlation coefficients of the ciphertexts are smaller than in case of the

plaintext (Table 4.14).

B. Cryptanalytic Attacks

Resistance to the classic cryptanalytic attacks is given by the OTP principle [Sha49],

[Ver26]. Given a random key obtained from DNA sequence which is used only once, a

ciphertext may correspond to any plaintext of the same length, thus all the results are

equally likely.

Given the perfect secrecy [Sha49], OTP is resistant to all the attacks including brute-force

attacks. Trying all keys will result in plaintexts, which are all equally likely to represent

the original plaintext. In case of the known plaintext (part of the plaintext data being

known) brute-force attacks is still unusable because the attacker will not be able to use this

information to find out the rest of the key and as the key changes for each encryption the

previous information is also useless.

98

All the practical problems related to the use of the OTP are solved with the genetic

databases and the method presented in chapters 2 and 3 to use them.

C. Key Space Analysis

The key space of an encryption algorithm is desired to be as large as possible in order to

resist to the brute-force attack. The encryption – decryption key is a sequence of bits and

thus its space is 2length(Key). Trying all the possible keys will give 2length(Key) number of

attempts to obtain a successful break. On the average the correct answer can be found in

half of this number of tries.

Considering the fact that the provenience of the random binary sequence is from the

genetic databases, trying all the sequences from the database is also studied here. One of

the databases can be the NIH genetic sequence database named GenBank. It is a collection

of all publicly available DNA sequences [wncbi]. It contains approximately 135 440 924

DNA sequence records. Trying each of these sequences in the key construction will be

equivalent to a start number 227. Considering all the combinations that can be made when

the sequences are concatenated, multiplexed, or shifted in order to obtain the final

sequence, this number of tries tends to infinity.

D. Secure Transmission of the ID Number

Secure transmission of the sequence ID numbers and the method by which they were

combined is important when a public database is used. If the database is public, access to

the ID numbers and combination method means a direct access to the key-sequence. The

length of the ID number in GenBank is 6 – 8 characters, which means up to 8 bytes. The

secret key is of 9 - 65 bytes long composed of a header and IDs (subchapter 4.1.5). This

secret information can be encrypted in block of 64 bits using a traditional symmetric

algorithm, like DES, and then sent through an existing encryption channel, using a

previously exchanged key. Accession number can be sent also using public-key

cryptography. Anyone who has a copy of a public key can easily encrypt information that

can be read only with private key. Communication involves only public keys, and no

private key is ever transmitted or shared. This type of key distribution is used in PGP

[PGP04], due to the facility of public key distribution.

99

4.4 Contributions

A new method for random sequences generation based on DNA structures and two OTP

systems for transmission, respectively for storage, along with their protocols were

presented [BTT+13]. The main advantage of the method for random sequence generation is

the possibility to generate practically an infinite number of such sequences starting from

DNA structures and as long desired. If these sequences are used in cryptographic

applications as keys, they require confidential transmission of only 9 – 65 bytes of

information and not of the entire key as normally in OTP, meaning that the key

management becomes very easy.

The two OTP systems for transmission and storage have the advantage of the OTP:

greatest security based on using a key once and the lengths of the key being at least equal

with that of the cleartext message. The major drawback of OTP systems is the key

management, but this is overcome by the advantage of the key generation previously

described.

Performance evaluation was made for computational time and security level. The new

method was shown to be fast, it takes 2 ms to encrypt or decrypt 9.66 MB of data. In

comparison to other symmetric encryption algorithms it is slower, but the security is much

higher. Its OTP principle makes it strong against existing cryptanalytic attacks. Statistical

measurements showed that the distribution of the ciphertext is random and uniform.

100

101

Chapter 5

Design of the DNA Vernam Cipher at the Molecular

Level

Contents in Brief

5.1 Principle of the Algorithm ...102

5.2 Design and Implementation Details ...105

5.3 Performance Evaluation ...111

5.4 Contributions ...111

DNA Vernam cipher represents a way to introduce cryptography at the molecular level. It

shows different techniques to represent binary information in genetic structures and

proposes hybridization as a central process for computations.

This encryption method is based on a truly random key used only once in logical XOR

operation with the plaintext. Binary XOR was designed to be performed using

biomolecular computation and artificially designed DNA motifs. A study of most suitable

DNA structures was performed and the isomer of double crossover molecule (DX) named

DAE molecule was chosen as a building block of mathematical XOR operation. These

structures also named DNA tiles can perform self-assembling operations. Another

important property of these structures is the natural hybridization process between them

which gives a truly random symmetric key.

102

5.1 Principle of the Algorithm

The principle of generating random numbers from natural events (subchapter 2.4.2) is

used in this cipher and the physical phenomenon is DNA hybridization. It is the basic

procedure for the encryption-decryption process and of the key generation. One of the

important steps was to find a DNA structure to represent an information unit. For this

purpose specialized literature was consulted [Rot09], [CP09] and a suitable structure was

chosen.

This encryption method combines the power of biomolecular computation and classical

XOR OTP cipher. This principle was inspired by [GLR04] where DNA triple-helix

molecules were used to perform XOR OTP cipher. The experimental feasibility of

biomolecular computing was demonstrated in 1994 by Leonard Adleman [Adl94]. In his

experiment single stranded DNA molecules were used and a series of procedures adapted

from molecular biology. This experiment was a starting point for carrying out

computations at the molecular level followed by the series of works in DNA computing

field.

Binary data can be encoded using a single DNA molecule for each bit. The structure of the

molecule will be described in detail in the next section. The difference between “0” and “1”
is given by the group of nucleotides at the molecule terminations, like “ACTG” and
“TGCA”(Fig. 5.1). Bit-wise XOR operation is performed using the DNA hybridization

process and by assembling the plaintext binary message, the key and the resulted

encrypted message in strings. The string with the result is the only one that remains at the

end; other strings (plaintext and OTP) are removed [TB09].

The first step of the algorithm is encoding the information we want to encrypt in a string

of DNA molecules. For this purpose two stacks with DNA molecules can be used,

designed to represent the binary “1” and “0” (Fig. 5.1).

Figure 5.1 Amounts of DNA Tiles for Plaintext Bitstream Assembling

103

These stacks can be operated by a microcontroller which acknowledges the beginning of

encoding, makes a decision concerning the next bit, and verifies when the encoding stops.

Sequences “TGAC” and “ACTG” are complementary, they are designed to bind to each
other and form a bitstream of DNA structures (Fig. 5.2).

Figure 5.2 Plaintext Bitstream of DNA Molecules obtained by Hybridization

The next step of the algorithm is an XOR operation between the DNA molecules of the

encoded information and the key. The key is also selected from a great set of labeled DNA

molecules encoded as binary “1” and “0” (Fig. 5.3).

Figure 5.3 DNA Structures designed for Key Bitstream

There are 4 types of DNA structures for the key. Two of them bind to the plaintext bit “0”
and the other two bind to the plaintext bit “1”. A part of these molecules will randomly

bind through the process of hybridization to the molecules representing the plaintext bits

104

(Fig. 5.4). Those molecules from the key set which hybridize with the plaintext information

become the encryption key.

Figure 5.4 XOR Operation between the Plaintext and the Key obtained by Hybridization

The randomness of the key is ensured by the process of hybridization. There is an equal

probability for a binary “1” or “0” of the key tile binding to the same bit of the plaintext

(Fig. 5.5).

Figure 5.5 Hybridization between Plaintext and Key DNA Molecules

The ciphertext is composed of the DNA molecules which bind to the key molecules at

terminations “ACTA” and “CCAT” as the result of XOR operation (Fig. 5.6). The

ciphertext DNA molecules can be separated from the rest of the DNA material by using

restriction enzymes. Next, ciphertext chain of molecules is sent to the destination with the

string of labels for the key.

105

Figure 5.6 Ciphertext composed of the DNA Molecules

Decryption is made using the same key and operations. The receiver has an identical pad

and will use the received string of labels in order to select from this pad the encryption

key. Performing XOR operation between the ciphertext and the key will result in the

original plaintext.

5.2 Design and Implementation Details

5.2.1 Design of DNA Molecule Structure

Design of controllable DNA structures was first introduced by Nadrian Seeman in 1980s

[See81]. He invented DNA nanotechnology - the science and technology of building

devices using DNA molecules. In nature DNA plays the role of genetic information carrier,

but in this branch of technology it is used just as a structural material. Attraction of

complementary DNA strands is used for building different nanoscale structures. DNA

structure for this encryption method was chosen according to the aspects of different

shapes described below.

Holliday junction is one of the simplest forms of DNA building blocks. It is a junction

between 4 complementary to each other DNA strands (Fig. 5.7). It is not recommended to

be used in the nanoengineering because of its instability induced by strong electrostatic

repulsion [CP09], [FS93].

106

Figure 5.7 Holliday Junction

Double crossover molecule (DX) is a more stable structure which consists of two DNA

helixes connected by two Holliday junctions. There are five different structures of DX

molecules [FS93] (Fig. 5.8). Three of them have parallel helical domains: DPE, DPOW,

DPON and the other two antiparallel helical domains: DAE, DAO.

Figure 5.8 DNA Double Crossover Molecules

DX molecules with antiparallel domains are more stable than those with parallel domains

[SWY+98]. Therefore the DAE and DAO structures present more interest. The difference

between them is that DAE molecule has an even number of double helical half-turns

between crossovers and DAO molecule has odd number of half-turns. For this encryption

method a DAE structure was selected because it is stable and allows the use of one long

DNA strand and several short strands in its construction.

107

DNA Origami was developed by Paul Rothemund [Rot06]. This method consists of using

one long single DNA strand, in order to create a basic structure, and many short DNA

sequences that come as complementary parts to the basic structure forming in this way

double stranded DNA in desired shape (Fig. 5.9). The same principle was used in [SQJ04].

Figure 5.9 DNA Origami

Crossovers that appear between DNA helixes are incorporated for stability of the

structure. In [Rot06] crossovers appear at every 1.5 helical turns which is equivalent to 16

bases space between crossovers.

An important aspect is finding a long single-stranded DNA. Certain synthesizers allow the

synthesis of long oligonucleotides up to 250 bases [wgen]. Longer single-stranded DNA

can be founded in viruses like M13mp18 used in [Rot06].

Considering all the aspects presented above, for this cipher a stable DAE structure was

selected with one long DNA strand and several short strands (Fig. 5.10). Long DNA

strands can be synthesized as oligonucleotides of 210 bases in length and short strands as

oligonucleotides of 42, 46, 50, or 54 bases in length. The length of short oligonucleotides

depends on the number of single-stranded (sticky) terminations of the structure. These

terminations are used for binding other structures with complementary ends. Crossovers

were selected at every helical period (2 turns). One helical turn has 10.67 ≈ 10.5 bases
[Lev98] which mean that distance between crossovers will be 21 base pairs (bp).

108

Figure 5.10 a) DAE Molecule b) modified DAE Molecule c) Schematic View

5.2.2 DNA Molecule Structure Implementation

Desired shape for DNA molecule was established in Fig. 5.10. It was chosen to be used as

an information unit in Vernam cipher. Here the implementation of the selected structure is

presented.

From the initial long DNA strand of 210 bases offsets were calculated for the

complementary strands in order to create the desired shape (Fig. 5.11). Arrows from the

figure represents opposite polarities between strands (5’ to 3’ directions). The longest DNA
strand (210 bases) was sequenced in intervals of 21 bases which is equivalent to a DNA

period assuming that per turn there are 10.5 base pairs (bp). In this case a DNA period is

the distance between crossovers.

Figure 5.11 Schematic DNA Structure for Binary “1”

109

Steps of the implementation for this structure are the following:

1) Generation of random sequence from DNA alphabet (A, C, T, G) of length 210 bases.

2) Generation of complementary sequences to the first one. For example for the first

middle circular sequence (Fig. 5.11) complementary sequences were generated in intervals:

22-42 and 169-189.

3) At the edges complementary sequences can have different lengths depending on the

number of “sticky end” of the structure. For such sequences concatenation is performed of
the terminations like: “ACTG”, “TACC”, or “TGAC” (Fig. 5.11).

In ordered to encrypt the message “secret” which is composed of 42 bits we need 42
structures described above. For each structure the necessary sequences were calculated.

Terminations of marginal short sequences are different in case of binary “1” or “0” and if it
is a start bit. For the first bit “1” of the message the following sequences were calculated:

1. TAGTCAGTGTATCCATGGTATCTGTACGTTTGGTATCAGAAGCCCCCGAAACTAGGTTCCGCTTGCGACCGTTT

ATGTTTCAGAACAGGGCTGTTCGCGTATGATACGTCGTAAACCTAGATAGTCAACCATGTCTAGATTTGTCACGT

CCTGTATGACCGTATTCCGGGTCCTGTCGGTAGGATTCTAGCCTACCCTTAAGCTTGTCG

2. ACTGATCAGTCACATAGGTACCATATCGGATGGGAATTCGAACAGCTACC

3. GACATGCAAACCATAGTCTTCCCCAGGACAGCCATCCTAAGA

4. GGGGCTTTGATCCAAGGCGAGCAGGACATACTGGCATAAGG

5. ACGCTGGCAAATCTACAAAGTTTGGTACAGATCATAAACAGT

6. TGACTGCAGCATTTGGATCTATCAGCTTGTCCCGACAAGCGCACTA

For the next bit also “1” the last sequence is different. Sequence 6 starts with additional

“TGAC” in order to bind to the first bit with termination “ACTG”. The first bit does not

have termination “TGAC” in order to restrict binding in one single direction. In case of
binary “0” in sequence 2 instead of “TACC”, “GTCA” appear. These terminations make a

difference between binary “1” and “0”.

From these computations files were obtained with sequences for all the DNA structures

involved in the encryption process. These files can be used for synthesizing of structures in

solution, in a laboratory. The next subchapter describes a laboratory utility that can be

used for implementation of the cipher.

110

5.2.3 Laboratory Utility

The experiment of data encryption using biomolecular computation can be realized using

the atomic force microscope (AFM) also named scanning force microscope (SFM). This tool

is used for imaging, measuring and manipulating nanoscale matters (Fig. 5.12).

AFM provides highly accurate images of DNA at nanometer scale resolution. DNA

samples are placed on a flat, smooth substrate, immobilized and then scanned by AFM.

The scanning process results in the topography of the surface.

Figure 5.12 Atomic Force Microscope

AFM have been further developed into a operative tool. Therefore manipulation of distinct

atoms and molecules becomes possible. Isolation of biological material was performed by

AFM tip [LLA+04]. Single DNA molecule can be cut, pushed and folded in desired shape

using this microscope [JHH+05]. Therefore AFM is an appropriate technique for this

method.

The AFM structure consists of a cantilever and a thin tip at the end. The tip is brought

close to the surface with the analyzed samples. As the surface is not perfectly smooth the

tip cannot be at the same height all the time during scanning process. For this reason a

feedback mechanism is used in AFM. This mechanism adjusts the distance between the tip

and the analyzed surface. According to the elastic Hooke’s law, the force that appears

between tip and surface creates a deflection of the cantilever. The deflection is measured

by a laser spot reflected from the top of the cantilever. The scanning process results in a

topography of the surface sample [TBP11].

111

5.3 Performance Evaluation

In the absence of a standard for the implementation of the encryption algorithms in

biomolecular environment, the process is slow and involves complex resources.

Hybridization time depends on many factors like the amount of sequences, their length

and techniques used for the implementation. It can vary from several minutes to a few

hours. At this moment the execution time is not the strong point of the algorithm, but with

the standardization of the whole process it might not be an issue in the future.

Important resource for the implementation of this algorithm is a specialized laboratory

were the biomolecular data is processed and stored. AFM is a useful tool which facilitates

imaging, measuring and manipulating nanoscale matters.

The strength of this algorithm is the level of security that it offers. The first aspect is the

biomolecular environment which is more difficult to access. Due to the dimension of the

biomolecular data, it can be easily hidden using steganographic techniques. Also an

attacker would need an expensive laboratory in order to read the message. Another strong

point of this algorithm is the key which is as long as the plaintext and is a truly random

number generated through a natural process of hybridization. Therefore the algorithm

satisfies the conditions of an OTP which offers a strong security. The self-assembly is a

strong aspect of DNA nanotechnology which brings the parallel computation and

automation of the implementation process [TBP+11].

5.4 Contributions

The symmetric encryption method based on DNA was presented in this chapter. It was

designed to be implemented and used at molecular level. The DNA Vernam cipher is

based on biomolecular computation, OTP principle, and special designed structures of

DNA molecules.

OTP ensures a secure encryption, but at the same time requires a truly random number for

the key which can be achieved by physical phenomena like DNA hybridization, in this

case. In order to use this encryption method 2 parts must be provided: a software program

and a laboratory experiment.

The main contributions for DNA Vernam cipher are: design and development of DNA

molecule structure; a software program in Matlab that gives files with DNA sequences

112

necessary for creation of the DNA structures; and description of the useful tool (AFM) for

the laboratory experiment.

Contributions to this part of cryptography at the molecular level are described and

presented in the following papers: [TB09], [BT10], [TBP+11], and [TBP11]. [TB09] gives

introduction notions about DNA structures and their origin from Wang tiles. Next, a

thorough description of the DNA Vernam Cipher is presented. Each step of the algorithm

is described in detail.

In paper [BT10] principles of biomolecular computation are shown. It describes DNA

structure and techniques for DNA analysis. An overview of several algorithms for DNA

steganography and cryptography is presented. The steganography technique is based on

the PCR procedure for hiding and recovery of the messages and DNA hybridization

between strands of DNA for encoding in binary.

Papers [TBP+11] and [TBP11] presents the research on the existing DNA structures used in

nanotechnology. This is followed by the design of a new DNA structure for the Vernam

cipher. After that a description of how DNA sequences for this structure can be generated

is given. Finally laboratory utilities are presented with which the last phase of the

encryption should be performed.

113

Chapter 6

Conclusions

This work is a scientific research on the DNA cryptography domain. It is an emerging and

promising direction in cryptography. There are a few potential directions for using DNA

in cryptography. One of them is biomolecular computing. The first experiment to solve a

mathematical problem through the DNA molecules interactions was [Adl94]. It was

followed by an experiment of a microprocessor based on these computations [RWB+96]. A

variety of DNA shapes were designed for this purpose [See81], [FS93], [Rot06]. In this

work biomolecular shapes and computations for the Vernam cipher were explored. A

great interest for the biomolecular computations is the self-assembling structures and

parallel computations. Structures of DNA molecules are self-assembling due to the process

of hybridization that appear naturally between the complementary nucleotide bases.

Parallel computations appear when hybridization of DNA structures happens at the same

time in a solution where they are placed.

Another usage of DNA is its storage capabilities. There is an alphabet of 4 letters and any

type of information can be rewritten in DNA using this alphabet. A mapping scheme

between the DNA 4-letter alphabet and binary 2-letter alphabet was established as the

most practical conversion table in this work and it was used extensively in the proposed

ciphers. Data stored in DNA can easily be hidden due to its microscopic size. A sequence

of DNA with encoded message can be placed in a great amount of meaningless sequences

and then retrieved using laboratory specific techniques [TRB99].

Another usage of DNA for cryptography was discovered during the scientific research

work of this thesis [BTT+13]. One of the most significant aspects in cryptography is

generation of random numbers for the key and the secret communication between parties.

Mathematical functions can generate pseudo-random numbers starting from a seed.

Generation of pure random numbers is a difficult task for computers; some natural events

are used as sources for that. This seed must be securely communicated for the

reconstruction of the secret key. The longer a non-repeating random sequence of bits used

for the secret key is, the longer the seed from which this sequence was generated. Studies

114

on DNA sequences showed that they hardly can be compressed. This means that they can

be interpreted as random binary sequences using the transformation between these two

alphabets. Availability of DNA sequences is given by the genetic databases with public

access. To generate a secret key either the original sequence can be used, or some simple

operations can be performed for the alteration of the DNA sequence, such as shifting,

multiplexing, etc. Transmission of the secret key is ensured by a short identification

number that each sequence has in a genetic database.

6.1 Overview of the Contributions

A study of existing techniques in DNA cryptography was performed and based on the

ideas presented in literature new usages of DNA was established in this work. What

follows is an overview of the thesis contributions along with the related publications of the

work.

In chapter 3 the DNA Indexing symmetric cipher is presented. It was designed to use

genetic databases in order to retrieve DNA sequences and use them for the substitution

operations and as a secret key. The principle of the algorithm is described in [TBH+10]. A

few diagrams were drawn in UML Violet editor in order to have a schematic view and

functional framework of the software application for the algorithm. A windows form

application was developed using VS10 C# in which it is possible to choose a text or image

file for encryption – decryption. The results are visualized in a graphical interface.

Computational time was estimated through a theoretical analysis and practical time

measurements on the basic operations of the cipher. Based on the obtained measurements

a graphical view of the computational time growing rate was established for each

operation. Security of the algorithm was estimated through statistical measurements.

Experimental results of the histogram, correlation coefficient, and entropy were obtained

for the plaintext and corresponding ciphertext. A theoretical analysis of the cryptanalytic

attacks and key space was performed. A comparison to another algorithm of a similar

principle was done using complexity theory. Results of this performance analysis were

published in paper [TB13].

It was observed that the bitrate increases twice after the encryption with the DNA

Indexing cipher. Different ways of how compression can be combined with encryption

was analyzed. Certain improvements of direct encryption was proposed and presented in

115

[TAB13]. Next these changes were extended to a scheme where compression was

combined with the DNA Indexing algorithm in the same process. New joint compression –

encryption method was implemented in VS10 C# as a windows form application. A

mathematical model of the bit allocation was provided and integrated in the practical

application. Experimental results for the rate distortion function were obtained and then

different versions of the algorithm were tested and compared for their compression

efficiency.

In chapter 4 a method for obtaining random binary sequences from genetic and OTP

cryptosystems for transmission and storage is presented [BTT+13]. Distribution and

compression capacity of the DNA sequence were discussed in order to determine its

randomness. Conversion table between the DNA and binary alphabet was established. A

detailed description with visual examples of how a certain DNA sequence can be accessed

was presented next. A study of the DNA sequences length was performed due to its

importance for the cryptographic purposes.

Schematic views and protocols were given for the OTP cryptosystems based on the bitwise

XOR operation for the encryption – decryption and generation of random binary

sequences from DNA databases. Generation of random sequences starting from DNA

sequences and XOR operation for the ciphering method were implemented using VS10

C#. After selection of text or image file for encryption, DNA sequences and method for the

secret key generation, the results are visualized. Experimental measurements were taken

for the computational time of each process of the algorithm and then an overall

computational time was estimated. Obtained results were used to compare novel cipher to

the well-known existing algorithms, like DES, AES, etc. Statistical measurements were

taken to estimate security level of the algorithm.

Chapter 5 describes the DNA Vernam cipher that was designed to be implemented at

molecular level. Principles of the algorithm and introduction notions about DNA

structures are described in paper [TB09]. Biomolecular computation, techniques to operate

on DNA sequences, and an overview of the algorithm is given in [BT10]. A research on the

existing DNA structures used in biomolecular computations was performed and proposal

of a new structure for the bitwise XOR operation of the Vernam cipher was given. This

part of the work was described in papers [TBP+11] and [TBP11].

116

6.2 Future Works

One of the future works is to perform a laboratory experiment for the method described in

chapter 5. Special equipment is required for the experiment of the biomolecular

computation. During the measurements of the computational time for the procedures used

in the proposed DNA ciphers it was observed that the switch case operation for the

conversion between the DNA and binary alphabets can be performed faster. The switch

case can be substituted by a faster procedure: access of a vector element. A vector can be

filled with zeros except for the positions of the DNA letters ASCII codes. At these four

places the values will be of the corresponding binary conversion representation. Analysis

of the security level for the novel scheme of the joint compression – encryption can be

performed using statistical measurements or other techniques. Other future works would

be practical experiments of the cryptanalytic attacks that can be performed on the

proposed ciphers. Based on the promising results from the first experimental tests on the

joint compression-encryption scheme, a dedicated study may be performed to test its

performances.

117

Scientific Activity

List of Publications

[1] Monica E. Borda, Olga Tornea, Tatiana Hodorogea, “Secret writing by DNA
hybridization”, Acta Technica Napocensis, Electronics and Communications, Vol. 50, No. 2,

pp. 21 – 24, 2009.

[2] O. Tornea, M. Borda, “DNA Cryptographic Algorithms”, International Conference on

Advancements of Medicine and Health Care Trough Technology Proceedings, Vol. 26, pp. 223-

226, Cluj-Napoca, 2009.

[3] Olga Tornea, Monica Borda, Tatiana Hodorogea, Mircea-Florin Vaida, “Encryption
System with Indexing DNA Chromosomes Cryptographic Algorithm”, IASTED

International Conference on Biomedical Engineering (BioMed 2010), Innsbruck, Austria, paper

680-099, pp. 12-15, ISBN: 978-0-88986-825-0, 975-0-88986-826-7, Acta Press, 15-18 February

2010.

[4] M. Borda, O. Tornea, “DNA Secret Writing Techniques”, Proceedings of 8th
International Conference on Communications, invited paper, Vol. 2, IEEE Explore, pp. 451-

460, Bucharest, 2010.

[5] M.F. Vaida, R. Terec, O. Tornea, L. Chiorean, A. Vanea, “DNA Alternative Security”,
Advances in Intelligent Systems and Technologies Proceedings ECIT2010 – 6th European

Conference on Intelligent Systems and Technologies, pp. 1-4, Iasi, Romania, October 2010.

[6] O. Tornea, M.E. Borda, V. Pileczki, R. Malutan, “DNA Vernam cipher”, E-Health and

Bioengineering Conference (EHB), pp. 1-4, 2011.

[7] O. Tornea, M. E. Borda, V. Pileczki, “Cryptographic Algorithm based on DNA
Nanotechnology”, The 6th International Conference on Interdisciplinarity in Education ICIE’11,

pp. 237 – 241, Karabuk/Safranbolu, Turkey, April 2011.

[8] Olga Tornea, Monica E. Borda, “Security and Complexity of a DNA-Based Cipher",

11th RoEduNet International Conference “Networking in Education and Research”,
Sinaia, Romania, ARNIEC/RoEduNet Agency, IEEE Romanian Section, ISSN-L 2068-1038,

pp. 182-186, January 17-19 2013.

118

[9] Olga Tornea, Marc Antonini, Monica Borda, “Multimedia Data Compression and
Encryption using DNA Cipher”, SSET 2013 winner of the Doctor ETTI (2nd Prize), Cluj-

Napoca, Romania, May 24 2013.

[10] Monica E. Borda, Olga Tornea, Romulus Terebes, Raul Malutan, “New DNA Based
Random Sequence Generation and OTP Encryption Systems for Transmission and

Storage”, The 6th International Conference on Security for Information Technology and

Communications, June 25, 2013.

Honors & Awards

- Excellence Prize and Gold Medal at 11th PROINVENTICA 2013

 Professor Monica Borda, Ph.D. Student Olga Tornea, Associate Professor Romulus

 Terebes, Assistant Professor Raul Malutan for "OTP Encryption Method and System

 based on Random Sequences Determined from DNA Structures".

- SSET 2013 winner of the Doctor ETTI, 2nd Prize, with the paper: “Multimedia Data

Compression and Encryption using DNA Cipher”.

Citations

[I] M. Danziger, M.A. Henriques, “Computational Intelligence Applied on Cryptology: a Brief Review”, IEEE Latin
America Transactions, Vol. 10, No. 3, April 2012 (cites publication [2])

[II] C. Popovici, “Aspects of DNA Cryptography”, Annals of the University of Craiova, Mathematics and

Computer Science Series, Vol. 37(3), pp. 147-151, 2010 (cites publication [2])

[III] R. Soni, V. Soni, K. Mathariya, “Innovative field of cryptography: DNA cryptography”, International
Conference on Information Technology Convergence and Services, January 2012 (cites publications [1], [2], [3], [5])

[IV] M. Sabry, M. Hashem, T. Nazmy, “Three Reversible Data Encoding Algorithms based on DNA and Amino
Acids’ Structure”, International Journal of Computer Applications, Vol. 54 No.8, September 2012 (cites publication

[2])

[V] T. Mandge, V. Choudhary, “A Review on Emerging Cryptography Technique: DNA Cryptography”, IJCA
Proceedings on International Conference on Recent Trends in Information Technology and Computer Science 2012

ICRTITCS(13):9-13, February 2013 (cites publications [1], [4])

[VI] Y. Zhang, D. Zhou, L. He, Y.H. Karanfil, B. Fu, “A New DNA Cryptogram Scheme Based on PCR
Technology”, Journal of Theoretical and Applied Information Technology, Vol. 45, No.1, November 2012 (cites

publication [4])

[VII] G. Jacob, A. Murugan, “DNA based Cryptography: An Overview and Analysis”, International Journal of
Emerging Sciences, 3(1), 36-42, March 2013 (cites publication [4])

[VIII] A. Agrawal, A. Bhopale, J. Sharma, M.A. Shizan, D. Gautam, “Implementation of DNA algorithm for secure
voice communication”, International Journal of Scientific & Engineering Research, Vol. 3, June 2012 (cites

publication [2])

119

Bibliography

[ABR+93] M. Antonini, M. Barlaud, B. Rougé, and C. Lambert-Nebout, “Weighted

Optimum Bit Allocation for Multiresolution Satellite Image Coding”, in CCECE,

Vancouver, Canada, pp. 14-17, September 1993.

[ABM+92] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using
wavelet transform”, IEEE Transactions on Image Processing, Vol. 1, No. 2, pp. 205 – 220, 1992.

[Adl94] L.M. Adleman, “Molecular computation of solution to combinatorial problems”,
Science, Vol. 266, pp. 1021-1024, 1994.

[Ant11] M. Antonini, “Techniques de compression pour le codage des images et des

vidéos”, lecture notes, 2011.

[ASE06] S. T. Amin, M. Saeb, S. El-Gindi, “A DNA-based Implementation of YAEA

Encryption Algorithm”, IASTED International Conference, pp. 120-125, 2006.

[BDH+04] S. Block, D. Donoho, T. Hwa, et al., “DNA Barcodes and Watermarks”, MITRE

Corporation, 2004.

[Ble10] G. E. Blelloch, “Introduction to Data Compression”, Carnegie Mellon University,
2010.

[Boc09] I. Bocharova, “Compression for Multimedia”, Cambridge University Press, 2009.

[Bor11] M. Borda, “Fundamentals in Information Theory and Coding”, Springer, May 2011.

[BS04] K. Barclay, J. Savage, “Object-Oriented Design with UML and Java”, Elsevier, 2004.

[BT10] M. Borda, O. Tornea, “DNA Secrete Writing Techniques”, Proceedings of 8th

International Conference on Communications,IEEE Explore,Vol. 2, pp. 451-460, Bucharest, 2010.

[BTT+13] M. Borda, O. Tornea, R. Terebes, R. Malutan, “Method and cryptographic OTP
system based on DNA random sequences”, Gold Medal for Patent request at ProInvent

2013, No. of patent application: A10003/14.02.2013.

[BU98] A. Bruckmann, A. Uhl, "Selective Medical Image Compression using Wavelet

Techniques", Journal of Computing and Information Technology (Special Issue on Biomedical

Image Processing and Analysis) 2:6, pp. 203-213, 1998.

[CD+04]C.R. Calladine, H.R. Drew, B.F. Luisi, A.A. Travers, Understanding DNA The

Molecule & How It Works, Academic Press, 2004.

120

[CL00] H. Cheng, X. Li, “Partial encryption of compressed images and videos”, IEEE

Transactions on Signal Processing, Vol. 48(8), pp. 2439–2451, 2000.

[CL+09] S. Christley, Y. Lu, C. Li, X. Xie, “Human genomes as email attachments”,
Bioinformatics, Vol. 25, pp. 274–275, 2009.

[CP09] D.P. Clark, N.J. Pazdernik, “Biotechnology: Applying the Genetic Revolution”,
Elsevier, 2009.

[CT91] T.M. Cover, J.A. Thomas, “Elements of Information Theory”, John Wiley & Sons,

Inc., 1991.

[Den07] Tom St Denis, “Cryptography for Developers”, Syngress Publishing, Inc., 2007.

[DBV+03] J. Dolezel, J. Bartos, H. Voglmayr, J. Greilhuber, “Nuclear DNA content and

genome size of trout and human”, Cytometry, Wiley-Liss, Inc., Vol. 51, No. 2,pp. 127–128,

2003.

[ddbj] http://www.ddbj.nig.ac.jp/Welcome-e.html

[DH76] W. Diffie, and M. Hellman, “New Directions in Cryptography.” Proceedings of the

AFIPS National Computer Conference, June 1976.

[DR+10] K. Daily, P. Rigor, S. Christley, X. Xie, P. Baldi, “Data structures and compression
algorithms for high-throughput sequencing technologies”, BMC Bioinformatics, Vol. 11, No.

514, 2010.

[ElG85] T. ElGamal, “A Public-Key Cryptosystem and a Signature Scheme Based on

Discrete Logarithms”, IEEE Transactions on Information Theory, Vol. 31 (4), pp. 469–472.

1985.

[ESU07] D. Engel, T. Stütz, A. Uhl, "Format-compliant JPEG2000 Encryption in JPSEC:

Security, Applicability and the Impact of Compression Parameters", EURASIP Journal on

Information Security, Volume 2007, Article ID 94565, pp. 20 pages, 2007.

[FIPS94] “Digital Signature Standard (DSS)”, Federal Information Processing Standards

Publication 186, May 1994. (http://www.itl.nist.gov/fipspubs/fip186.htm)

[FIPS93] FIPS 46-2, Data Encryption Standard, 1993.

[FIPS01] FIPS 197, Advanced Encryption Standard (AES), 2001.

[FL+11] M.H.Y. Fritz, R. Leinonen, G. Cochrane, E. Birney, “Efficient storage of high
throughput DNA sequencing data using reference-based compression”, Genome Res, Vol.

21, pp. 734-740, 2011.

[FS93] T.J. Fu, N.C. Seeman, “DNA double crossover molecules”, Biochemistry, Vol. 32, pp.

3211–3220, 1993.

http://www.itl.nist.gov/fipspubs/fip186.htm

121

[GG91] A. Gersho, R.M. Gray, “Vector Quantization and Signal Compression”, Kluwer

Academic Publishers, 1991.

[GLR04] A. Gehani, T. LaBean, J. Reif, “DNA-Based Cryptography”, Springer, Vol. 2950,

pp. 167-188, 2004.

[GMO06] M. Grangetto, E. Magli, G. Olmo, “Multimedia selective encryption by means of
randomized arithmetic coding”, IEEE Transactions on Multimedia, Vol. 8, pp. 905-917, 2006.

[Gor11] Steven Gordon, “Key Management and Distribution”, courses on Security and
Cryptography, Sirindhorn International Institute of Technology, January 2011.

[HB07] D. Heider, A. Barnekow, “DNA-based watermarks using the DNA-Crypt

algorithm”, BMCBioinformatics, 8:176, 2007.

[Has88]J. Hastad, “Lower bounds in computational complexity theory”, Notices of the AMS,

Vol. 35, No 5, pp. 677–683, 1988.

[IHGM] Institute of Human Genetics, Munich - http://ihg.gsf.de/ihg/databases.html

[JHH+05] L. Jun-Hong, L. Hai-Kuo, A. Hong-Jie, W. Guo-Hua, et al., “Nano-manipulation

of single DNA molecules based on atomic force microscopy”, Conf. Proc. IEEE Eng. Med.

Biol. Soc., Vol. 7, pp. 7478-81, 2005.

[KL10] L. Kencla, M. Loeblb, “DNA-inspired information concealing: A survey”, Elsevier

Inc., pp. 251-262,2010.

[Knu94] L.R. Knudsen, “Block Ciphers - Analysis, Design, Applications,” Ph.D.
dissertation, Aarhus University, Nov 1994.

[Koh08] David R. Kohel, “Cryptography” 11th July, 2008.

[Kri08]http://kristofverbiest.blogspot.ro/2008/10/beware-of-stopwatch.html

[Lan11] E.S. Lander, “Initial impact of the sequencing of the human genome”, Nature, Vol.

470, pp. 187-197, 2011.

[Lev98] M. Levitt, “How many base-pairs per turn does DNA have in solution and in

chromatin.Some theoretical calculations”, Biochemistry, Vol. 75, No. 2, pp. 640-644, 1998.

[Lia08]S. Lian, “Multimedia Content Encryption: techniques and applications ”, CRC Press,

2008.

[LKCV06] A. N. Lemma, S. Katzenbeisser, M. U. Celik, and M. V. Veen, “Secure
watermark embedding through partial encryption”, Proceedings of International Workshop on

Digital Watermarking (IWDW), Lecture Notes in Computer Science, Vol. 4283, pp. 433–445,

2006.

http://ihg.gsf.de/ihg/databases.html
http://kristofverbiest.blogspot.ro/2008/10/beware-of-stopwatch.html

122

[LLA+04] J. Lu, H. Li, H. An, G. Wang, et al., “Positioning Isolation and Biochemical
Analysis of Single DNA Molecules Based on Nanomanipulation and Single-Molecule

PCR”, American Chemical Society, Vol. 126, No. 36, pp. 11136-11137, 2004.

[LM91] X. Lai, and J. L. Massey, “A Proposal for a New Block Encryption Standard”,
Springer-Verlag, Lecture Notes on Computer Science (LNCS), Vol. 473, pp. 389–404, 1991.

[MMP09] A. Mohapatra, P.M. Mishra, S. Padhy, “Discriminative DNA classification and
motif prediction using weighted degree string kernels with shift and mismatch”, Advances

in Computing, Communication and Control, pp. 56-61, ACM, 2009.

[MOV96] A. Menezes, P. Van Oorschot, S. Vanstone, “Handbook of applied
cryptography”, CRC Press, 1996.

[NIST01] D.P. Leech, M.W. Chinworth, “The Economic Impacts of NIST’s Data Encryption
Standard (DES) Program”, TASC, Inc., October 2001.

[NIST95] National Institute of Standards and Technology, “An Introduction to Computer

Security: The NIST Handbook”, NIST Special Publication 800–12, October 1995.

[NW99] C.G. Nevill-Manning, I.H. Witten, “Protein is incompressible”, In Proceedings of the

Conference on Data Compression (DCC '99), pp. 257, 1999.

[Par03] C. Parisot, “Model-Based allocations and scan-based discrete wavelet transform for

image and video coding”, PhD Thesis, University of Nice-Sophia Antipolis, 2003.

[PC08] W. Puech, G. Coatrieux, “Compression of Biomedical Images and Signals, Chapter

10: Hybrid Coding: Encryption-watermarking-compression for Medical Information

Security”, ISTE-John Wiley & Sons, serie: Digital Signal Processing, pp. 247-275, 2008.

[PGP04] PGP Corporation, Phil Zimmermann, “An introduction to cryptography”,
2004.

[PR05] W. Puech, J.M. Rodrigues, “Crypto-Compression of Medical Images by Selective

Encryption of DCT”, 13th European Signal Processing Conference, EUSIPCO'05, Antalya,

Turkey, 2005.

[PTA+01] C. Parisot, S. Tramini, M. Antonini, M. Barlaud, C. Latry, C. Lambert – Nebout,

“Optimisationd'uneChaîne Image de Télédétection : de la Compression Embarquée aux
Post-Traitements Sol”, colloque GRETSI, Toulouse, 2001.

[PTAB+01] C. Parisot, S. Tramini, M. Antonini, M. Barlaud, et al., "Optimization of the joint

coding/decoding structure", International Conference on Image Processing, Grèce, 2001.

[RA11] P. Rajarajeswari, A. Apparao, “DNABIT Compress – Genome compression

algorithm”, Bioinformation, Vol. 5, No. 8, pp. 350–360, 2011.

123

[RJ91] M. Rabbani, P. W. Jones, “Digital Image Compression Techniques”, Tutorial texts in
optical engineering, Vol TT7, SPIE Press, 1991.

[RN88] J.L. Rodgers, W.A. Nicewander,“Thirteen ways to look at the correlation

coefficient”,The American Statistician, Vol. 42, No. 1, pp. 59 – 66, 1988.

[Rot06] P.W. Rothemund, “Folding DNA to create nanoscale shapes and patterns”, Nature,

Vol. 440, pp. 297-302, 2006.

[RRM+99] A. Romeo, G. Romdotti, M. Mattavelli, and D. Mlynek, “Cryptosystem
architectures for very high throughput multimedia encryption: The RPK solution”, In
Proceedings 6th IEEE International Conference on Electronics, Circuits and Systems (ICECS ‘99),
Vol. 1, 5–8, pp. 261–264, 1999.

[RS10] O.S. Rao, S.P. Setty, “Efficient mapping methods for Elliptic Curve Cryptosystems”,
International Journal of engineering Science and Technology.Vol. 2, No. 8, pp. 3651-3656, 2010.

[RSA78] R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems”, Communications of the ACM, Vol. 21 Nr. 2

February 1978.

[Rum09] A. H. Rumpf, “A Brief Introduction to Data Compression and Information
Theory”, Ripon College Summation, pp. 15-18, 2009.

[RWB+96] S. Roweis, E. Winfree, R. Burgoyne, N. V. Chelyapov, et al., “A sticker based

architecture for DNA computation”, In Proceedings of the Second Annual Meeting on DNA

Based Computers, Vol. 44 of DIMACS, pp. 1-30, 1996.

[Sanger] www.sanger.ac.uk

[Say03] K. Sayood, “Data Compression”, Encyclopedia of Information Systems, Vol. 1, pp.
423 – 444, Elsevier Science, 2003.

[SB98] C. Shi, B. Bhargava, “A fast MPEG video encryption algorithm”, In Proceedings 6th

ACM International Multimedia Conference, pp. 81–88, 1998.

[Sch96] B. Schneier, “Applied Cryptography: Protocols, Algorithms, and Source Code in
C”, John Wiley & Sons Inc., 1996.

[Sch02] B. Schneier, “Crypto-Gram Newsletter”, Counterpane Internet Security, Inc., October

2002.

[Sch09] B. Schneier, “The History of One-Time Pads and the Origins of Sigaba”, Blog post,
2009.

[See81]N.C. Seeman, “Nucleic Acid Junctions: Building Blocks for Genetic Engineering in
Three Dimensions”,R.H. Sarma, Adenine Press, pp. 269-277, 1981.

http://www.sanger.ac.uk/

124

[SFP02] B. Shimanovsky, J. Feng, M. Potkonjak, “Hiding Data in DNA”, Proceeding IH '02

International Workshop onInformation Hiding, pp. 373-386, 2002.

[Sha49] C.E. Shannon, “Communication Theory of Secrecy Systems”, Bell System Technical

Journal, Vol. 28, No. 4, pp. 656-715, 1949.

[Sha48] C.E. Shannon, “A Mathematical Theory of Communication”,Bell System Technical

Journal, Vol. 27, No. 3,pp. 379–423, 1948.

[Sha93] M. Shapiro, “Embedded Image Coding using Zerotrees of Wavelet Coefficients”,
IEEE Trans. Signal Processing, Vol. 41, pp. 3445-3462, 1993.

[SK05] P. Salama, B. King, “Efficient secure image transmission: compression integrated
with encryption”, Proc. SPIE, Vol. 5681, pp. 47-58, 2005.

[SNF10] H. Shiu, K. Ng, J.F. Fang, et al., “Data hiding methods based upon DNA
sequences”, Elsevier Inc., pp. 2196–2208,2010.

[Sta11] W. Stallings, “Cryptography and Network Security: Principles and Practice”, (5th
Ed.), Prentice Hall, 2011.

[SQJ04]W.M. Shih, J.D. Quispe, G.F. Joyce, “1.7-kilobase single-stranded DNA that folds

into a nanoscale octahedron”, Nature, Vol. 427, pp. 618-621, 2004.

[SWY+98] N.C. Seeman, H. Wang, X. Yang, and J. Chen, “New Motifs in DNA
Nanotechnology”, Nanotechnology, Vol. 9, No 3, pp. 269-277, 1998.

[TAB13] O. Tornea, M. Antonini, M. Borda, “Multimedia Data Compression and
Encryption using DNA Cipher”, Communications Department, Technical University of Cluj-

Napoca, winner of 2nd Prize, album SSET 2013.

[TB09] O. Tornea and M. E. Borda, “DNA Cryptographic Algorithms”, IFMBE Proc., Vol.

26, pp. 223-226, 2009.

[TB13] O.Tornea, M.E. Borda, “Security and Complexity of a DNA-Based Cipher", 11th

RoEduNet International Conference “Networking in Education and Research”, pp. 182-186, 2013.

[TBH+10] O. Tornea, M.E. Borda, T. Hodorogea, M. Vaida, “Encryption system with
Indexing DNA Chromosomes Cryptographic Algorithm”, IASTED International Conference,

680-099, pp. 12-15, 2010.

[TBP11]O. Tornea, M.E. Borda, V. Pileczki, “Cryptographic Algorithm based on DNA
Nanotechnology”, The 6th International Conference on Interdisciplinary in Education ICIE’11,

April 2011.

[TBP+11] O. Tornea, M.E. Borda, V. Pileczki, R. Malutan, “DNA Vernam cipher”, E-Health

and Bioengineering Conference (EHB), 2011.

125

[TRB99] C. T. Taylor, V. Risca, and C. Bancroft, “Hiding messages in DNA microdots”,

Nature, Vol. 399, pp. 533-534, 1999.

[UCLA] Image Communications Lab at UCLA - http://johnvillasenor.com/

[Use96] B. Usevitch, “Optimal Bit Allocation for biorthogonal wavelet coding”, Proceedings

of Data Comperssion Conference, Snowbird, USA, March 1996.

[Ver26] G. S. Vernam, “Cipher Printing Telegraph Systems”, Journal of the American

Institute of Electrical Engineers, Vol. XI.V, pp. 109-115, 1926.

[VF11] L. M. Varalakshmi, S. G. Florence, “An enhanced encryption algorithm for video
based on multiple Huffman tables”, Springer, 2011.

[VTT10] M.F Vaida, R. Terec, O. Tornea, L. Chiorean, A. Vanea, “DNA Alternative
Security”, Advances in Intelligent Systems and Technologies Proceedings ECIT2010 – 6th

European Conference on Intelligent Systems and Technologies, pp. 1-4, October 2010.

[wacnr] http://www.dsimb.inserm.fr/~fuchs/M2BI/AnalSeq/Annexes/Sequences/

Accession_Numbers.htm

[WC53] J. Watson, F. Crick, “Molecular structure of nucleic acids; a structure for

deoxyribose nucleic acid”, Nature, Vol. 171, No. 4356, pp. 737–738, 1953.

[WD04] Y. Wu, R. H. Deng, “Compliant encryption of JPEG2000 code-streams”, Image

Processing ICIP, Vol. 5, pp. 3439 – 3442, 2004.

[webi] http://www.ebi.ac.uk/ena/

[wgen]www.genelink.com

[wncbi] http://www.ncbi.nlm.nih.gov/genbank

[wncbi’] http://www.ncbi.nlm.nih.gov/pubmed/21071399

[WK01] C. Wu and C.-C. J. Kuo, “Efficient multimedia encryption via entropy codec
design”, SPIE international symposium on electronic imaging, Vol. 4314, pp. 128-138, 2001.

[WSZ+01] J. Wen, M. Severa, W. Zeng, M. Luttrell, W. Jin, “A Format-Compliant

Configurable Encryption Framework for Access Control of Multimedia”, IEEE Workshop on

Multimedia Signal Proc., pp. 435-440, 2001.

[XK04] D. Xie, C.-C. J. Kuo, “Enhanced multiple Huffman table (MHT) encryption scheme
using key hopping”, In Proceedings IEEE International Symposium on Circuits and Systems

(ISCAS), Vol. 23-26, pp. 568–571, 2004.

[You06] W.R. Yount, “Research Design and Statistical Analysisin Christian Ministry”
(chapter 22: Correlation Coefficients), 4th ed.Napce Organisation, 2006.

[ZL78] J. Ziv and A. Lempel, “Compression of Individual Sequences via Variable-Rate

Coding”, IEEE Transactions on Information Theory, Vol. 24, No. 5, pp. 530–536, 1978.

http://johnvillasenor.com/
http://www.dsimb.inserm.fr/~fuchs/M2BI/AnalSeq/Annexes/Sequences/
file:///C:/Documents%20and%20Settings/Olga/Application%20Data/Microsoft/Word/Accession_Numbers.htm
http://www.genelink.com/
http://www.ncbi.nlm.nih.gov/genbank/
http://www.ncbi.nlm.nih.gov/pubmed/21071399

a

Appendix

The most relevant papers for the thesis research activity:

[1] Olga Tornea, Monica Borda, Tatiana Hodorogea, Mircea-Florin Vaida, “Encryption
System with Indexing DNA Chromosomes Cryptographic Algorithm”, IASTED

International Conference on Biomedical Engineering (BioMed 2010), Innsbruck, Austria, paper

680-099, pp. 12-15, ISBN: 978-0-88986-825-0, 975-0-88986-826-7, Acta Press, 15-18 February

2010.

[2] O. Tornea, M.E. Borda, V. Pileczki, R. Malutan, “DNA Vernam cipher”, E-Health and

Bioengineering Conference (EHB), 2011.

[3] Olga Tornea, Marc Antonini, Monica Borda, “Multimedia Data Compression and
Encryption using DNA Cipher”, SSET 2013 Doctor ETTI, Cluj-Napoca, Romania, May 24

2013.

[4] Monica E. Borda, Olga Tornea, Romulus Terebes, Raul Malutan, “New DNA Based
Random Sequence Generation and OTP Encryption Systems for Transmission and

Storage”, The 6th International Conference on Security for Information Technology and

Communications, June 25, 2013.

ENCRYPTION SYSTEM WITH INDEXING DNA CHROMOSOMES

CRYPTOGRAPHIC ALGORITHM

Olga Tornea, Monica Borda, Tatiana Hodorogea, Mircea-Florin Vaida

The Faculty of Electronics, Telecommunications and Information Technologies,

Technical University of Cluj-Napoca, 26-28 George Baritiu Street

Cluj-Napoca, 400027, Romania

tornea.olga@yahoo.com, Monica.Borda@com.utcluj.ro, Tatiana.Hodorogea@com.utcluj.ro, Mircea.Vaida@com.utcluj.ro

ABSTRACT

DNA has a great cryptographic strength, its binding

properties between nucleotides bases (A—T, C—G) offer

the possibility to create self-assembly structures which are

an efficient means of executing parallel molecular

computations. Our work is based on the development of

the new encryption system with indexing DNA

chromosomes cryptographic algorithm using MATLAB

Bioinformatics Toolbox. This toolbox offers support for

developing DNA cryptographic operations and providing

more secure cryptographic algorithms. The algorithm is

based on the idea to use DNA chromosomes as one-time-

pad structures and index them in order to encrypt the

plaintext message.

Our work is based on the complexity of the development

of the new encryption system with indexing DNA

chromosomes cryptographic algorithm.

KEY WORDS

DNA Encryption (DNAE) System, Central Dogma of

Molecular Biology (CDMB), One-Time-Pad, Bio-

nanotechnology, Indexing Chromosomes

1. Introduction

Why we need data security is already well-known. Do we

need to find alternative, more secure encryption

techniques for protecting sensitive data? With current

network, Internet, and distributed systems, cryptography

has become a key technology to ensure the security of

today’s information infrastructure. A cryptographic

system that an attacker is unable to penetrate even with

access to infinite computing power is called

unconditionally secure. The mathematics of such a system

is based on information theory and probability theory.

When an attacker is theoretically able to intrude, but it is

computationally infeasible with available resources, the

cryptographic system is said to be conditionally secure.

The mathematics in such systems is based on

computational complexity theory. To design a secure

cryptographic system is a very challenging. A

cryptographic system has one or more algorithms which

implement a computational procedure by taking a variable

input and generating a corresponding output. DNA

cryptography is based on Adleman’s research of DNA

computing [1]. Basic procedures of DNA OTP encryption

schemes are given by [2]. DNA consists of two

complementary strands. Each strand is made of a series of

units called “nucleotides”. In this algorithm a DNA strand

is meant as a series of such bases. DNA chromosomes

consist of many different genes, hundreds of bases long.

Chromosomes are used in this cryptosystem as OTP

where information is not properly stored, but they are

used as a place with indexes to the real message. The

principle of indexing used in this algorithm is presented in

[3]. If an algorithm's behaviour is completely determined

by the input, it is called deterministic, and if its behaviour

is not determined completely by input and generates

different output each time executed with the same input, it

is probabilistic. A distributed algorithm in which two or

more entities take part is defined as a protocol including a

set of communicational and computational steps. Each

communicational step requires data to be transferred from

one side to the other and each computational step may

occur only on one side of the protocol. The goal of every

cryptographer is to reduce the probability of a successful

attack against the security of an encryption system – to

zero. Probability theory provides the answer for this goal.

Our work is based on the complexity of the development

of the new encryption system with indexing DNA

chromosomes cryptographic algorithm, an

unconditionally secure and probabilistic DNAE System.

DNAE is designed to have applications in textual and

image information security.

2. The Encryption Protocol

Adleman began the new field of bio-molecular computing

research. His idea was to use DNA biochemistry for

solving problems that are impossible to solve by

680-099 12

Proceedings of the 7th IASTED International Conference

February 17 - 19, 2010 Innsbruck, Austria

Biomedical Engineering (BioMED 2010)

conventional computers, or that require an enormous

number of computation steps. The DNAE technique

simulates the CDMB steps: transcription, splicing, and

translation process. The time complexity of an attack on a

message of length n, is O(2n). DNA computing takes

advantages of combinatorial properties of DNA for

massively-parallel computation.

In our work we used a cryptosystem with symmetric key

named One-Time-Pad (OTP). It is an algorithm where

each key is used just once where from the name of One-

Time-Pad. OTP encryption uses a large non-repeating set

of truly random key letters. Each pad is used exactly once,

for only one message. The sender encrypts the message

and then destroys the used pad. As it is a symmetric key

cryptosystem, the receiver has an identical pad and uses it

for decryption. The receiver destroys the same pad after

decrypting the message. New message means new key

letters. A ciphertext message is equally likely to

correspond to any possible plaintext message.

Cryptosystems which use a secret random OTP are known

to be perfectly secure [4].

Introducing DNA into the common symmetric key

cryptography, it is possible to follow the pattern of

symmetric key cryptosystem, while also exploiting the

inherent massively-parallel computing properties and

storage capacity of DNA in order to perform the

encryption and decryption using OTP keys [5]. The

resulting encryption algorithm which uses DNA medium

is much more complex than the one used by conventional

encryption methods.

We developed an encryption algorithm which uses OTP

as symmetric key and real chromosomal sequence as

OTP. We extracted chromosomal sequence from public

available data bases [6] and used it for implementation of

this algorithm (Figure 1 and 2).

Figure 1 Chromosome extracted for implementation from

public available data base

Figure 2 Fragment from sequence file in FASTA format

3. Message Encryption

Plaintext message was transformed in bits and after that in

DNA format. We used a text message for encryption so

an encryption unit was a character and in ASCII cod it

was represented on 7 bits, or in case it was an image a

pixel was an encryption unit and it could be represented

on 8 bits at least. Transformation from a 2-letter (0, 1)

alphabet to a 4-letter (A, C, G and T) alphabet was done

using 2 bits to represent a letter:

A – 00

C – 01

G – 10

T – 11

Using this substitution a character was represented on 4

letters which is equivalent to a byte.

Using Matlab functions we obtained decimal ASCII cods

of the plaintext message, and transformed them in binary

form, each character on 8 bits. After that, using functions

from Bioinformatics Toolbox we transformed our

message from binary to DNA alphabet.

Each character was transformed in a 4-letter DNA

sequence and searched in the chromosomal sequence,

used as OTP. OTP sequence was scanned from bases 1 to

37839. At each step was analyzed a segment of 4 bases

from the OTP sequence and compared to the characters

DNA sequence. If 4-letter sequence representing a

character from the message was retrieved in the

chromosomal sequence then the starting point (index in

chromosome) of identical 4-letters was memorized in an

array. At the next step was analyzed another 4 bases from

OTP where first 3 of them are the last bases from

previous step (Figure 3).

13

Figure 3 Exemplification of the OTP scanning process for

message encryption

For each character was obtained an array of indexes in

chromosomal sequence. Number of indexes for a

character depends on how often the character’s DNA

sequence retrieved in the chromosomal sequence. For

each character was chosen a random index from its array

of indexes. We obtained the final encrypted message: an

array of random indexes, one for each character. Below is

presented example of the message encryption with

implementation results.

Example of implementation results:

Message: “secret”

ASCII cods: 115 101 99 114 101 116

s 115 01110011 CTAT indexes:

166 258 789 927 1295 2954

3045 3098 3181 3207 3361 3763

4436 4559 5242 5443 5794 5938

5966 7392 7698 7762 7789 7832

8128 8627 9918 11871 12240 12332

12383 12581 13107 13128 13324 14919

15169 15177 15494 15602 15844 16073

16369 16829 16891 16939 17227 17342

17718 17818 18564 19530 20022 20437

20619 21145 21411 21419 21725 22030

22051 23157 23180 23231 23311 23367

23430 23434 23556 23811 24005 24038

24182 24568 25871 27176 27208 27896

29321 29642 29848 30087 30097 30110

30438 30472 31090 31487 33204 33226

33321 33378 33612 35520 35530 35646

35768

e 101 01100101 CGCC indexes:

3381 3760 3951 4386 6892 7171

7283 7306 7440 8016 8176 8221

8493 8877 10047 10747 10751 11132

13405 13676 13681 13758 13769 13893

13941 13981 14057 14083 14097 14134

14137 14162 14173 14176 14253 14282

14322 14333 14381 14418 14496 14531

14623 14658 15985 16148 21816 22334

23049 23113 26603 26712 27049 29764

30184 31147 32741 33015 33027 33117

34420 34638 34906 35066 36156 36215

36227 36315 37436

For each character was chosen a random index from its

array of indexes using Matlab function. Below are

established positions of random indexes inside character’s

arrays:

115 70th index 23811

101 26th index 13981

 99 7th index 8011

114 57th index 21195

101 57th index 32741

116 158th index 25264

Final encrypted message is:

23811 13981 8011 21195 32741

25264

4. Message Decryption

At message decryption is used the same OTP as at

encryption, because it is a symmetric key algorithm. The

key is Homo sapiens FOSMID clone ABC14-

50190700J6, from chromosome x complete sequence.

First we read this sequence using functions from

Bioinformatics Toolbox:

FASTAData =

fastaread('homo_sapiensFosmid_clone.fasta')

Each index from received encrypted message was used to

point in chromosomal sequence:

SeqNT=FASTAData.Sequence(i:i+3)

Using these pointers we extracted for each character a 4-

bases DNA sequence. This variable was transformed in

numerical value, using transformation offered by Matlab

Bioinformatics Toolbox (A-1, C-2, G-3, T-4). As

transformation starts with 1, at encryption to each digit

was added a unit and after that it was transformed in base

(example, “00” binary 0 digit 0+1 A). At

decryption from each obtained digit was subtracted a unit

and after that transformed in 2 bits:

Example:

CCCA (bases) 2221(digits) 2-1, 2-1, 2-1, 1-1

1110 (digits) 01 01 01 00 (bits)

 Obtained binary numbers are the ASCII cods of the

recovered message characters.

14

5. Complexity of Secure DNA Encryption

System

With an OTP, an adversary has no information about how

to cryptanalyze the ciphertext, since every key is equally

likely to correspond. Cryptosystems which use a secret

random OTP are known to be perfectly secure and are

applicable primarily for transmission of ultra-secure

information. The problem of this cryptosystem is that the

key letters have to be truly random and the key sequence

can not be reused ever again.

Here is where the advantages of using DNA in

cryptography came. We used at implementation as the

key a human chromosome, but any genetic sequences, of

any living matter can be used as a secret key for

encryption. We can exploit great storing capabilities and

variety of DNA sequences for the usual OTP

cryptosystem.

This encryption algorithm treats also the problem of the

vulnerability to frequency attack. For the same character

from the plaintext message we obtained a number of

different indexes which are used as values in the

ciphertext by a random choice. This solve the problem of

frequency distribution of letters in a ciphered message [7]

.The same character, for instance “e” will appear in

ciphertext as 13981, or 32741, or any other index which

was found for this character in the chromosome. Another

advantage of this algorithm is that at encryption of

another message, indexes for each character will be

different from the previous encryptions values. The same

character will appear in ciphertext under different values

at encryption of two different messages. Chromosome or

any DNA sequence which was chosen to be the

encryption key dictates what kind and how many indexes

for ciphertext will have a character.

[2] A. Gehani, T. LaBean, and J. Reif, DNA-Based

Cryptography, Lecture Notes in Computer Science,

Springer, 2004.

6. Conclusion

Based on the ideas presented in [1], [2], and [3] an

original DNA cryptographic algorithm was performed.

We use one-time-pad principle and DNA chromosomes

storing capabilities for message encryption.

Implementation was performed in Matlab using

Bioinformatics Toolbox and genetic database maintained

by NCBI. One single chromosome from any species is

composed from thousand of bases and it is perfect to be

used in this algorithm to address the characters from the

plaintext. Each character from the plaintext message was

transformed into a unique sequence of 4 bases and

searched in the chromosome, used as OTP. A random

index of a character in chromosome becomes part of the

ciphertext. The strength of this algorithm is based on the

secrecy of the OTP and protection from frequency attack.

The aim of this paper is to find useful and practical DNA

cryptographic algorithm and to study its applicability in

DNA technology. Laboratory implementations are

possible (microarray technology [8]), but are still

expensive and time consuming. Despite of this, simple

and effective algorithms are necessary in order to bring

DNA computing on digital level and use it on a large

scale.

Acknowledgements

This paper was funded by the Romanian Agency

UEFISCU within the PN II, IDEI no. 909/2007 research

grant.

Research Project PN2, “Alternative Security

Technologies for Network Applications”- supported by

the National Authority of Romania.

References

[1] L. M. Adleman, Molecular computation of solution to

combinatorial problems, Science, 266, 1994, 1021-1024.

[3] S. T. Amin, M. Saeb, S. El-Gindi, A DNA-based

Implementation of YAEA Encryption Algorithm, IASTED

International Conference on Computational Intelligence,

San Francisco, 2006, 120-125

[4] B. Schneier, Applied cryptography: protocols,

algorithms, and source code in C (John Wiley & Sons

Inc, 1996.)

[5] Tatiana Hodorogea, Mircea-Florin Vaida, Alternate

Cryptography Techniques, ICCC05, Miskolc-Lillafured,

Hungary, 24-27, 2005, Vol. 1, 513-518

[6] R. K. Wilson, The sequence of Homo sapiens

FOSMID clone ABC14-50190700J6, submitted to

http://www.ncbi.nlm.nih.gov, 2009.

[7] Kahn D., The codebrakers (McMillan, New York,

1967)

[8] M. Schena, Microarray analysis (Wiley-Liss, July

2003.)

15

DNA Vernam Cipher

O. Tornea
1
, M. E. Borda

1
, V. Pileczki

2
and B. Belean

1

1
Communications Department, Technical University of Cluj-Napoca, Romania

2
 Biology Department, Babes-Bolyai University, Cluj-Napoca, Romania

tornea.olga@yahoo.com, Monica.Borda@com.utcluj.ro, valentinapilecki@yahoo.com, Bogdan.BELEAN@com.utcluj.ro

��������� 	� ����� ���	
���
�� ����
�� ��� ������
�� �� �	��
�

	���
����
� �����
��
�
���� ��� �
����������
��	���
������� ����
����������� ����	
� ���� ���� ��	�
	���� ������ ��
�
������	�

�
�������
�� ���� �	���������
� ��������� �� � �
������ � ����
�
��
�
�������������� ���	����	���������	�
	��������������
��	�
��
�
����� �	
��
!�	� �
������� "��#� ������ � $� �
������� ����

��
���� ��� �� ��������� ��
���
�� ������������� ����
��	���
���
������ ��	����	��� ������ ���
� �� � ������ ���� ��	�
	�� ����%
�����������
��	���
���� �
���	� ���
	����� �	
��	�
�
�� ������

��	����	��� ��� ���� ����	��� �
�	���&���
�� �	
����� �������� �����
��������!������	��
�	���
���
����	�����
���

��
������ ���� ���������������� ���� ����	���������� ���	

����	���

I.� INTRODUCTION

Vernam cipher was invented by Gilbert Vernam in 1917 as

a teletype cipher [1]. He defined a stream cipher where a key,

stored on a punched tape, was combined, applying XOR

operation, character by character with the plaintext message

producing a ciphertext. If the key string of bits is truly

random and used only at one single encryption-decryption

process, then Vernam cipher become one-time-pad which was

co-invented by G. Vernam and J. Mauborgne.

One-time-pad (OTP) encryption method has been proved to

be unbreakable by Claude Shannon at Bell Labs. He defined

characteristics for the unbreakable encryption system which

are the same with the OTP properties: the key must be truly

random, at least as large as the plain-text, never reused in

whole or part, and kept secret [2]. Bruce Schneier [3] called

OTP a “perfect encryption scheme” in case the key meet the

requirements to be truly random and to never be reused. He

also said that truly randomness can not be achieved by

mathematical functions. Only certain physical processes can

guarantee really random numbers. The use of mathematical

formula will lead as to the pseudo-random numbers: numbers

that appear random, but are predetermined in reality. True

random numbers, instead, come from measurements of

random physical phenomena like atmospheric noise or

radioactive source. This principle is used in this study and the

physical phenomenon is DNA hybridization.

DNA hybridization was used here for the encryption-

decryption process and for the key generation. One of the

important steps was to find a DNA structure to represent an

information unit. For this purpose specialized literature was

consulted [4, 5] and a suitable structure was chosen.

This encryption method combines the power of

biomolecular computation and classical XOR one-time-pad

cipher. This principle was inspired from [6] where DNA

triple-helix molecules were used to perform XOR OTP

cipher. The experimental feasibility of biomolecular

computing was demonstrated in 1994 by Leonard Adleman

[7]. His experiment, computed in vitro was to solve

Hamiltonian Path Problem using single stranded DNA

molecules and a series of procedures adapted from molecular

biology. This experiment was a starting point for carrying out

computations at the molecular level followed by the series of

works in DNA computing field.

Details about implementation steps of DNA Vernam cipher

are presented as follows: section 2 describes design of

different DNA structures and their stability; section 3 is about

implementation of DNA structure and section 4 describes the

algorithm which needs to be performed in laboratory.

II.� DESIGN OF DNA STRUCTURE

Design of controllable DNA structures was first introduced

by Nadrian Seeman in 1980s [8]. He invented DNA

nanotechnology - the science and technology of building

devices using DNA molecules. In nature DNA plays the role

of genetic information carrier, but in this branch of

technology it is used just as a structural material. Attraction

of complementary DNA strands is used for building different

nanoscale structures which are described below. At the end of

this section is presented a DNA structure chosen for this

project.

��������� 	
��
��� is one of the simplest forms of DNA

building blocks. It is a junction between 4 complementary to

each other DNA strands (Fig. 1). It is not recommended to be

used in the nanoengineering because of its instability induced

by strong electrostatic repulsion [5, 9].

Multipliers can be especially confusing. Write

Fig. 1. Holliday junction

��
�������������������
������� is a more stable structure

which consists of two DNA helixes connected by two

Holliday junctions. There are five different structures of DX

molecules [9] (Fig. 2). Three of them have parallel helical

domains: DPE, DPOW, DPON and the other two antiparallel

helical domains: DAE, DAO.

DX molecules with antiparallel domains are more stable

than those with parallel domains [10]. Therefore the DAE and

DAO structures present more interest. The difference between

them is that DAE molecule has even number of double helical

half-turns between crossovers and DAO molecule has odd

number of half-turns. Here a DAE structure was selected

because it is stable and allows the use of one long DNA

strand and several short strands in its construction.

DNA Origami was developed by Paul Rothemund [4]. This

method consists of using one long single DNA strand, in

order to create a basic structure, and many short DNA

sequences that come as complementary parts to the basic

structure forming in this way double stranded DNA in desired

shape (Fig. 3). The same principle was used in [11].

Crossovers that appear between DNA helixes are

incorporated for stability of the structure. In [4] crossovers

appear at every 1.5 helical turns which is equivalent to 16

bases space between crossovers.

An important aspect is finding a long single-stranded DNA.

Certain synthesizers allow the synthesis of long

oligonucleotides up to 250 bases [12]. Longer single-stranded

DNA can be founded in viruses like M13mp18 used in [4].

Considering all the aspects presented above, for this study a

stable DAE structure was selected with one long DNA strand

and several short strands (Fig. 4). Long DNA strands can be

synthesized as oligonucleotides of 210 bases in length and

short strands as oligonucleotides of 42, 46, 50, or 54 bases in

length. The length of short oligonucleotides depends on the

number of single-stranded (sticky) terminations of the

structure. These terminations are used for binding other

structures with complementary ends. Crossovers were

selected at every helical period (2 turns). One helical turn has

10.67 ≈ 10.5 bases [13] which mean that distance between

crossovers will be 21 base pairs (bp).

III.� IMPLEMENTATION OF DNA STRUCTURE

In the previous section the desired DNA shape was

established in order to be used as an information unit in

Vernam cipher. Here is presented the implementation of the

selected structure.

From the initial long DNA strand of 210 bases were

calculated offsets for the complementary strands in order to

create the desired shape (Fig. 5). Arrows in the figure 5

represents opposite polarities between strands (5’ to 3’

directions). The longest DNA strand (210 bases) was

sequenced in intervals of 21 bases which is equivalent to a

DNA period assuming that per turn there are 10.5 base pairs

(bp). In this case a DNA period is the distance between

crossovers.

Steps of the implementation for this structure are the

following:

1) Generation of random sequence from DNA alphabet (A,

C, T, G) of length 210 bases.

2) Generation of complementary sequences to the first one.

For example for the first middle circular sequence (Fig. 5)

complementary sequences were generated in intervals: 22-42

and 169-189.

3) At the edges complementary sequences can have

different lengths depending on the number of “sticky end” of

the structure. For such sequences is performed concatenation

of the terminations like: “ACTG”, “TACC”, or “TGAC” (Fig.

6).

Fig. 2. DNA Double Crossover Molecules

Fig. 3. DNA Orgami

Fig. 4. DAE molecule b) modified DAE molecule c) schematic view

Fig. 5. Schematic DNA structure with offsets

In ordered to encrypt message “secret” which is composed

of 42 bits we need 42 structures described above. For each

structure were calculated necessary sequences. Terminations

of marginal short sequences are different in case of binary “1”

or “0” and if it is a start bit. For the first bit “1” of the

message was calculated following sequences:

1. TAGTCAGTGTATCCATGGTATCTGTACGTTTGGTATCAGAAG

CCCCCGAAACTAGGTTCCGCTTGCGACCGTTTAGATGTTTCAGA

ACAGGGCTGTTCGCGTGATACGTCGTAAACCTAGATAGTCAAC

CATGTCTAGTATTTGTCACGTCCTGTATGACCGTATTCCGGGTC

CTGTCGGTAGGATTCTAGCCTACCCTTAAGCTTGTCG

2. ACTGATCAGTCACATAGGTACCATATCGGATGGGAATTCGAA

CAGCTACC

3. GACATGCAAACCATAGTCTTCCCCAGGACAGCCATCCTAAGA

4. GGGGCTTTGATCCAAGGCGAGCAGGACATACTGGCATAAGG

5. ACGCTGGCAAATCTACAAAGTTTGGTACAGATCATAAACAGT

6. TGCAGCATTTGGATCTATCAGCTTGTCCCGACAAGCGCACTA

For the next bit also “1” the last sequence is different.

Sequence 6 starts with additional “TGAC” in order to bind to

the first bit with termination “ACTG”. First bit does not have

such termination “TGAC” in order to restrict binding in one

single direction. In case of binary “0” in sequence 2 instead of

“TACC” appear “GTCA”. These terminations make a

difference between binary “1” and “0”.

IV.� ENCRYPTION ALGORITHM

From previous computations were obtained files with

sequences for all the DNA structures involved in encryption

process. These files can be used for synthesizing of structures

in solution, in a laboratory. First step is synthesizing all

necessary units and the second step is performing encryption

algorithm. In the next two subsections are described

laboratory utilities for implementation and steps of the

encryption algorithm.

��� ������
����

���
����

The experiment of data encryption using biomolecular

computation can be realized using the atomic force

microscope (AFM) named also scanning force microscope

(SFM). This tool is used for imaging, measuring and

manipulating nanoscale matters (Fig. 7).

AFM provides highly accurate images of DNA at

nanometer scale resolution. DNA samples are placed on a

flat, smooth substrate, immobilized and then scanned by

AFM. Scanning process results in topography of the surface.

AFM have been further developed into operative tool.

Therefore manipulation of distinct atoms and molecules

becomes possible. Isolation of biological material was

performed by AFM tip [14]. Single DNA molecule can be

cut, pushed and folded in desired shape using AFM [15].

Therefore AFM is an appropriate technique for this study.

��� ������
����������
���

Binary data can be encoded using a single DNA molecule

for each bit as described before. Difference between “0” and

“1” is given by the group of nucleotides at the sticky ends

(Fig. 6). Bit-wise XOR operation is performed using DNA

hybridization process and by assembling the plaintext binary

message, the one-time-pad and the resulted encrypted

message in strings (Fig. 8). The string with the result is the

only one that remains at the end; other strings (plaintext and

OTP) are removed [16].

The first step of the algorithm is encoding the information

we want to encrypt in a string of DNA molecules. For this

purpose can be used two stacks with DNA molecules

designed to represent the binary “1” and “0”. These stacks

can be operated by a microcontroller which acknowledges the

beginning of encoding, makes a decision concerning the next

bit, and verifies when the encoding stops.

The next step of the algorithm is an XOR operation

between the DNA molecules of the encoded information and

the OTP key. The OTP in this case is a great set of labeled

DNA molecules encoded as binary “1” and “0”. A part of

these molecules will randomly bind to the encoded

information. The randomness is ensured by the process of

hybridization. Those molecules from OTP which hybridize

with the plaintext information become the encryption key.

Fig. 6. DNA structure for a message binary “1”

Fig. 7. Schematic view of AFM

Fig. 8. Binding process of DNA Molecules

The ciphertext is composed of the DNA molecules which

bind to the other side of the OTP as the result of XOR

operation (Fig. 8). The ciphertext DNA molecules can be

separated from the rest of the DNA material by using

restriction enzymes and sent to the destination with the string

of labels for the key.

Decryption is made using the same key and operations. The

receiver has an identical pad and will use the received string

of labels in order to select from this pad the encryption key.

Performing the XOR operation between the ciphertext and the

key will result in plaintext.

V.� COMPLEXITY OF THE ALGORITHM

In this section is analyzed the complexity of the algorithm

in terms of execution time and resources. In the absence of a

standard for the implementation of the encryption algorithms

in biomolecular environment, the process is slow and

involves complex resources.

Hybridization time depends on many factors like the

amount of sequences, their length and techniques used for the

implementation. It can vary from several minutes to a few

hours. At this moment the execution time is not the strong

point of the algorithm, but with the standardization of the

whole process it might not be an issue in the future.

Necessary resources for the implementation of this

algorithm are a specialized laboratory were the biomolecular

data is processed and stored. A useful tool is AFM which

facilitates imaging, measuring and manipulating nanoscale

matters.

The strength of this algorithm is the level of security that it

offers. The first aspect is biomolecular environment which is

more difficult to access. Due to the dimension of the

biomolecular data, it can be easily hidden using

steganographic techniques. Also an attacker would need an

expensive laboratory in order to read the message. Another

strength point of this algorithm is the key which is as long as

the plaintext and is a truly random number generated through

a natural process of hybridization. Therefore the algorithm

satisfies the conditions of an OTP which offers a strong

security. The self-assembly is a strong aspect of DNA

nanotechnology which brings the parallel computation and

automation of the implementation process.

VI.� CONCLUSIONS

In this paper a symmetric encryption method was

presented, based on biomolecular computation, one- time-pad

principle, and special designed structure of DNA molecule.

OTP ensures a perfect encryption, but at the same time

requires a truly random number for the key which can be

achieved by physical phenomena like DNA hybridization, in

this case. Implementation of this encryption method contains

2 parts: a software program and a laboratory experiment. The

main contributions of this work are: development of DNA

molecule structure; a software program that gives files with

DNA sequences necessary for creation of the DNA structures;

and description of the useful tool (AFM) for the laboratory

experiment. Laboratory experiment is intended to be a future

work of this study.

ACKNOWLEDGMENT

This paper was supported by the project "Improvement of

the doctoral studies quality in engineering science for

development of the knowledge based society-QDOC”

contract no. POSDRU/107/1.5/S/78534, project co-funded by

the European Social Fund through the Sectorial Operational

Program Human Resources 2007-2013.

REFERENCES

[1] G. S. Vernam, “Cipher Printing Telegraph Systems”, Journal of the
American Institute of Electrical Engineers, Vol. XI.V, pp. 109-115,
1926.

[2] C. E. Shannon, “Communication Theory of Secrecy Systems”, Bell
System Technical Journal, Vol. 28, No. 4, pp. 656-715, 1949.

[3] B. Schneier, “Applied Cryptography: Protocols, Algorithms, and
Source Code in C”, John Wiley & Sons Inc., 1996.

[4] P. W. K. Rothemund, “Folding DNA to create nanoscale shapes and
patterns”, Nature, Vol. 440, pp. 297-302, 2006.

[5] D. P. Clark, N. J. Pazdernik, “Biotechnology: Applying the Genetic
Revolution”, Elsevier, 2009.

[6] A. Gehani, T. LaBean, J. Reif, “DNA-Based Cryptography”, Springer,
Vol. 2950, pp 167-188, 2004.

[7] L. M. Adleman, “Molecular computation of solution to combinatorial
problems”, Science, Vol. 266, pp. 1021-1024, 1994.

[8] N.C. Seeman, “Nucleic Acid Junctions: Building Blocks for Genetic
Engineering in Three Dimensions”, Adenine Press, pp. 269-277, 1981.

[9] T.J. Fu, N.C. Seeman, “DNA double crossover molecules”,
Biochemistry, Vol. 32, pp. 3211–3220, 1993.

[10] N.C. Seeman, H. Wang, X. Yang, and J. Chen, “New Motifs in DNA
Nanotechnology”, Nanotechnology, Vol. 9, No 3, pp. 269-277, 1998.

[11] W.M. Shih, J. D. Quispe, G.F.A Joyce, “1.7-kilobase single-stranded
DNA that folds into a nanoscale octahedron”, Nature, Vol. 427, pp.
618-621, 2004.

[12] www.genelink.com
[13] M. Levitt, “How many base-pairs per turn does DNA have in solution

and in chromatin? Some theoretical calculations”, Biochemistry, Vol.
75, No. 2, pp. 640-644, 1998.

[14] J. Lu, H. Li, H. An, G. Wang, Y. Wang, M. Li, Y. Zhang, and J. Hu,
“Positioning Isolation and Biochemical Analysis of Single DNA
Molecules Based on Nanomanipulation and Single-Molecule PCR”,
American Chemical Society, Vol. 126, No. 36, pp. 11136-11137, 2004.

[15] L. Jun-Hong, L. Hai-Kuo, A. Hong-Jie, W. Guo-Hua, W. Ying, L. Min-
Qian, Z. Yi, L. Bin, H. Jun, “Nano-manipulation of single DNA
molecules based on atomic force microscopy”, Conf. Proc. IEEE Eng.
Med. Biol. Soc., Vol. 7, pp. 7478-81, 2005.

[16] O. Tornea and M. E. Borda, “DNA Cryptographic Algorithms”,
IFMBE Proc., Vol. 26, pp. 223-226, 2009.

Novice Insights

Multimedia Data Compression and Encryption
using DNA Cipher

Olga TORNEA, Marc ANTONINI, Monica BORDA

Abstract

In this paper are presented different methods of combining compression with encryption.
Their efficiency and purpose are also discussed. A DNA cipher was chosen to perform
complete encryption. Experimental results were analyzed and 2 optimizations were
proposed to obtain higher compression ratio and stronger security of the data.

1 Introduction

Compression and protection of the multimedia data have been always topics of interest
because, as technology advances, the amount of private data that is desired to be transmitted,
stored, or used in real time applications increases.

The requirements for information transmission have always been to fit a limited bandwidth,
to achieve a high bitrate, and to fit a small storage space. Compression is the technique that
achieves these requirements; it reduces the data volume as much as possible while maintaining
an adequate level of its quality.

The security issues are to ensure confidentiality, data integrity and authentication. The high
level of security is ensured by full data encryption, with significant amount of computations,
and the size of the encrypted data can be larger than the size of the original data. Additional
computations reduce significantly the speed of real-time applications. Growth in the data
volume creates problems with the storage space.

Application of the security techniques can significantly reduce the benefits of compression
results. Therefore those two processes need to be combined carefully. In this paper will be
presented the order in which to apply them, how they can be combined in one single process
and the experimental results of direct encryption with DNA cipher.

In section 2 are discussed different ways of applying compression and encryption. The order
in which these two processes are used is crucial for both compression and security efficiency.
The algorithm that was chosen for the image encryption is described in section 3.1. In section
3.2 are described results of applying this algorithm in a direct encryption. In section 3.3 are
proposed 2 optimizations of the algorithm: one for compression ratio and another one for
security.

Novice Insights

2 Classification of the Multimedia Compression –
Encryption methods

In most cases the information transmitted through the network need to be both encrypted
and compressed. The goals of these two processes are different. The compression objectives are
to obtain high compression ratio at desired quality of the data and at low computational
complexity. The goal of cryptography is to ensure a high security level which usually means
additional computations and sometimes the increase in data volume. Both processes reduce the
redundancy of the data. Thus these tow processes need to be applied in such order that one of
them will not cancel the advantages obtained from another.

During the encryption data passes through a series of transpositions and substitutions. If the
security of the algorithm is strong, the redundancy of the plaintext will not be transferred on the
ciphertext. If the redundancy of the data is high, such as in image, audio, or video files then
there will be a high probability that the encrypted files will keep a part of the pattern from the
plaintext. This is one of the reasons why the compression of the multimedia data is applied first
and then the encryption. This model was proposed in a strong, hybrid cryptosystem named
Pretty Good Privacy (PGP) [1].

Encryption process is never applied before compression because of the practical issues. The
encryption process randomizes the original data trying to achieve an equal probability of data
appearance; therefore, there will not remain information that can be compressed.

The classical way is to perform compression of the data and then to perform encryption of
the whole bitstream. This process is named complete or direct encryption (Fig. 1 a); it is time
and space consuming and therefore sometimes it may not be suitable for the real time
applications. Full encryption is used when a high level of security is required and mostly for
storage. Multimedia data is usually involved in the real-time interactions where the transmission
must be fast, and it has already large volume without encryption, which can increase the size of
the data. In order to solve this security issue the partial or selective encryption (Fig. 1 b) was
proposed in [2, 3]. The idea of selective encryption (SE) is to encrypt only a part of the
compressed data. In this way the volume of the data will be reduced and the speed of
transmission increased.

Figure 1: a) Complete Encryption b) Selective Encryption

Novice Insights

Another method to avoid the computation and storage cost of encryption is to integrate it
inside the entropy coding [4]. This method is a compression-combined encryption. In this case
security is integrated inside the process of compression. The basic idea of the entropy coding
encryption is to convert classical entropy coders into encryption ciphers [5], [6]. The principle
is to replace a single statistical model by multiple statistical models randomly chosen from the
pre-stored models.

In this paper a DNA cipher was used to encrypt the compressed data using direct encryption.
Considering the experimental results of this operation, an improvement of direct encryption was
proposed and implemented.

3 Experimental Results

3.1 DNA Cipher

DNA cipher used in this paper is a symmetric key encryption algorithm [7]. It uses genomic
databases to retrieve the secret key in the form of a chromosomal sequence. This sequence is
represented in a 4-letter alphabet (A, C, G, T) and it can be downloaded from any genomic
database like: GenBank, DDBJ, etc. Each DNA sequence from the database has its unique
identification number composed of 6 – 8 characters [8]. In a symmetric cryptosystem
encryption and decryption are performed with the same key. Receiver needs to know the
identification number of the sequence used as the key in order to find it in the established
database.

A. Encryption process
DNA Indexing is a stream cipher where information is processed one byte at a time. The

principle is to transform one plaintext byte into a sequence of 4 DNA letters. The next step is to
search this short sequence through the chromosomal sequence, which was chosen as the key for
the encryption. Each time a plaintext byte sequence is retrieved in the chromosomal sequence,
the position of this place is memorized in a vector as one of the possible values for encryption
by substitution for this byte. Vectors of substitutions for all the bytes are memorized in a key
dictionary. Therefore for each byte from the plaintext there is a range of possible values from
which one is chosen randomly for encryption by substitution. In order to obtain a substantial
number of substitutions for each byte, the key-sequence needs to be sufficiently long, for
example 30 000 bases. Below are presented steps of encryption and an example of encryption in
Fig. 2.

1. Key dictionary computation:
a) Each byte of 256 possible values is transformed in a sequence of 4 letters by the

following principle: 10 00 11 01 (141) → GATC.
b) For all the bytes is performed a search through the key, a long chromosomal sequence

composed from letters: A, C, G, and T.
c) Each time the byte sequence is retrieved in the key sequence, the index of that position

is memorized in a vector dedicated for that byte.
d) The result of these operations is a key table of size 256xN, where N is a variable length

because each byte can have a different number of corresponding values in this table.
2. Encryption is performed one byte at a time. It consists in substitution of the byte with a

value randomly retrieved from its vector in the key table.
3. The final ciphertext is an array composed of the integer values.

Novice Insights

B. Decryption process

Decryption is performed with the same key – sequence. Each number from the ciphertext is
used as a pointer to the DNA sequence, indicating where to read the plaintext byte sequence.

Figure 2: Encryption process of the DNA Cipher

3.2 Direct Encryption

Complete encryption of the image data was performed on the encoded bitstream, using the
scheme described in section 2 and shown in Fig. 1, a. When compression and encryption need
to be applied on the multimedia data, encryption is performed as a second process because it
changes the probability distribution of the data samples, making their appearance as equal and
uniform as possible. If all of the data samples are equally probable then there is no information
that can be compressed by entropy encoding. Thus, before encryption, the first step was to
obtain the compressed bitstream of the image.

Encryption was applied on the bit array of the compressed plaintext and performed by
transforming each byte of the plaintext into an integer value. The output of the encryption
process, the ciphertext, is an array of integer values, as was exemplified in Fig. 2.

The bitstream of the ciphertext can be represented in two forms: using a fixed number of
bits for each integer value, or using the exact number of bits for each codeword and then
memorizing their flags which specify the number of bits of each word. For the first method,
where is used a fixed number of bits for each codeword, the number of bits assigned to a
codeword is given by the maximal value of a codeword. Thus, if the length of the secret key
(DNA sequence) is, for example, 37839; then the maximal possible value of a codeword is that
value, so the number of bits needed to represent a value from the ciphertext is 16. Considering
the fact that each plaintext byte is transformed in an integer number of 16 bits, the ciphertext
bitstream will be twice longer than the plaintext bitstream.

From the point of view of compression efficiency the increase in data size after encryption is
of major interest. The value of a codeword from the ciphertext can vary between one and the

Novice Insights

length of the key and its number of bits accordingly. In this work was used a DNA sequence of
length 37839, so the number of bits of a codeword can be in the range: 1 – 16. Running the
encryption algorithm few times for different image files and computing the average number of
bits for a ciphertext codeword gave that it is around 14 bits. The most probable number of bits
for a codeword is 15. Here are some probabilities of codeword lengths: P(15) ≈ 0.45, P(14) ≈
0.2, P(16) ≈ 0.1. Considering all the lengths of the codewords the average number was found to
be 14 bits. This means that 8 bits of the plaintext are transformed, approximately, in 14 bits of
the ciphertext. The increase in size in this case is of 1.75 times. Considering the probabilities of
codeword lengths, a fixed number, of 16 bits, is more suitable for representation of the integer
values.

3.2 Improvement of Direct Encryption

Number of bits for a ciphertext codeword can be optimized. The dictionary of substitution
values is computed before actual encryption. In this key-table all the bytes (256) have a vector
of corresponding integer values. This integer values are given by the positions where the byte
value sequence (like “ACTT”) is equal to the same sequence in the key. This integer values are
used as ciphertext words for the substitution of the byte from the plaintext.

As transmitter and receiver must compute the same dictionary for the key, then the position
of each integer value inside the key table is known. Thus, there is no need to transmit large
integer values of 16 bits. Their position number can be sent instead. This will result in sending
fewer bits for each ciphertext word (Fig. 3).

Figure 3: Substitution of the plaintext bytes by positions of the codewords in the key

dictionary

In this case the length of a codeword will depend on the total number of substitutions in the
dictionary. Limiting the number of substitutions will lead to a better compression ratio. From
previous section, where direct encryption was described, resulted that one codeword has the
size of 16 bits. Considering that 32 different substitution values for 1 byte are enough, the total
number of substitution values in the dictionary will be 8192 (256*32). This means that new
substitution values (Fig. 3) can be represented on 13 bits each (8192 = 213). Making a tradeoff
between security and compression, each codeword can be represented in less number of bits by
reducing the total number of substitutions in the dictionary. For example, with a 2048 (211)
number of substitutions in the dictionary, which is 8 different substitutions per 1 byte, the
codeword length in bits is 11.

Novice Insights

Another improvement proposed in this paper is to attribute a different number of
substitution values for each byte. Distribution of the compressed data bitstream is usually
uniform, but there still can be some of the bytes appearing more often than the others (Fig. 4).
This means that for a more uniform ciphertext, number of substitutions attributed to a byte must
vary according to its appearance in the plaintext.

Figure 4: Distribution of the compressed data bitstream a) tiff, b) jpeg

Attribution of varying number of substitution values can be very useful, like for a tiff image

in Fig. 4 a. At the beginning the number of indexes for substitution of each byte was random; it
depended on how often a certain byte sequence was retrieved in the key sequence (Fig. 5 a).
Now for each byte there is a certain number of corresponding indexes for substitution; this
number corresponds to the appearance probability of that byte in the data. A vary probable
value in the compressed data bitstream has more corresponding substitution values than a less
probable value (Fig. 5 b). Number of substitutions for each byte in the dictionary is equal to the
product of total number of substitution in the dictionary and the probability of each byte. This is
the principle of homophonic substitution and the result of its application on the dictionary is a
more uniform distribution of the ciphertext (Fig. 6).

Figure 5: Number of substitution values for each byte of the plaintext

Fig. 6: Distribution of the a) plaintext and b) ciphertext values

Novice Insights

4 Conclusions

This paper presents existing methods for application of compression along with security on
multimedia data. The most optimal options were highlighted in section 2. It was pointed out that
there can be complete or selective encryption and those two processes can be combined in one
by different techniques.

For a practical application was chosen a DNA cipher and a compete encryption of
compressed image data bitstream was performed with it. It has been found that the size of the
data increases significantly (twice) after encryption. An optimization was proposed to reduce
the size of each codeword and thus of the whole ciphertext. A tradeoff between security and
compression can be established by the users due to this optimization. More substitution values
in the dictionary lead to a higher security and less number of substitutions to a higher
compression ratio.

In order to improve security, the homophonic substitution principle was introduced in
computation of substitution values. Number of substitution values in the dictionary was
computed to be equivalent to the appearance probability of the value to be substituted in order
to obtain a more uniform distribution of the ciphertext.

References

[1] PGP Corporation, Zimmermann P., “An Introduction to Cryptography”, 2004.
[2] Cheng H., Li X., “Partial encryption of compressed images and videos”, IEEE Transactions on Signal

Processing, Vol. 48(8), 2000, pp. 2439–2451.
[3] Lian S., Liu Z., Ren Z., and Wang Z., “Selective video encryption based on advanced video coding”,

In Proceedings of 2005 Pacific-Rim Conference on Multimedia (PCM2005), Part II, Lecture Notes in
Computer Science, Vol. 3768, 2005, pp. 281–290.

[4] Salama P., King B., “Efficient secure image transmission: compression integrated with encryption”,
Proc. SPIE, Vol. 5681, 2005, pp. 47-58.

[5] Wu C., Kuo C.J., “Efficient multimedia encryption via entropy codec design”, SPIE international
symposium on electronic imaging, Vol. 4314, 2001, pp. 128-138.

[6] Grangetto M., Magli E., Olmo G., “Multimedia selective encryption by means of randomized
arithmetic coding”, IEEE Transactions on Multimedia, Vol. 8, pp. 905-917, 2006.

[7] Tornea O., Borda M.E., Hodorogea T., Vaida M., “Encryption system with Indexing DNA
chromosomes cryptographic algorithm”, IASTED International Conference, Vol. 680-099, 2010, pp.
12-15.

[8] http://www.dsimb.inserm.fr/~fuchs/M2BI/AnalSeq/Annexes/Sequences/Accession_Numbers.htm

Acknowledgment

This paper was supported by the project “Improvement of the doctoral studies quality in
engineering science for development of the knowledge based society-QDOC" contract no.
POSDRU/107/1.5/S/78534, project co-funded by the European Social Fund through the
Sectorial Operational Program Human Resources 2007-2013.

http://www.dsimb.inserm.fr/~fuchs/M2BI/AnalSeq/Annexes/Sequences/Accession_Numbers.htm

Novice Insights

Biography

Olga Tornea graduated Technical University of Cluj-Napoca (TUCN) in 2009 and obtained
Bachelor’s degree in Telecommunications. In 2012 she obtained Master’s degree in Image and
Signal Processing from (TUCN) and University of Nice Sophia-Antipolis France (UNS).
Currently she is a PhD student jointly at TUCN and UNS. Her interests are in cryptography,
genetic databases and compression.

Olga TORNEA, PhD Student
Technical University of Cluj-Napoca

Communications Department
Str. Dorobantilor Nr. 71-73, 400609, Cluj-Napoca, ROMANIA

E-mail: Olga.Tornea@com.utcluj.ro

New DNA Based Random Sequence Generation
and OTP Encryption Systems for Transmission and

Storage

Monica E. Borda, Olga Tornea, Romulus Terebes, Raul Malutan

Communications Department

Technical University of Cluj-Napoca

26 – 28 Gh. Baritiu St., 400027, Cluj-Napoca, Romania

Monica.Borda@com.utcluj.ro, Olga.Tornea@com.utcluj.ro,

Romulus.Terebes@com.utcluj.ro, Raul.Malutan@com.utcluj.ro

http://ares.utcluj.ro

Abstract: The first part of the paper is dedicated to a new method for random sequence generation,
based on DNA structures. The length of the sequence is as long wanted, intended to be used for one
time pad (OTP) cryptosystems. Four different ways are presented to ensure the desired lengths. The
second and third parts are dealing with OTP cryptosystems for duplex transmissions, respectively
storage, along with the corresponding protocols. The advantages of the proposed method and OTP
systems are ending the paper.

Key-Words: random sequence generation; genomic databases; one-time-pad cryptosystems.

1 Introduction

Pure random sequences are widely used in
cryptographic applications for cryptographic
keys [1], [2]. The difficulty is to generate
such pure random sequences and also a
great problem is the management of these
keys (to be transmitted and stored
securely). Of great interest in cryptography
is to use OTP, meaning to use only once a
key in a confidential communication and the
length of the key to be at least as long as
the message in clear. Such a system was
proved to be unbreakable [1], [3]. The main
problems which occur in OTP
implementation are: the great number of
required very long keys and their
management (transmission on trusty
channels).
The randomness of DNA sequences,
proved by the fact that they practically
cannot be compressed [4], [5], [6], [7], [8],
can be used to generate as long desired
random binary sequences. Such a random

sequence generator is presented in Section
2; four different ways of obtaining the
desired length are also proposed and also
the format of the secret key which need to
be shared between the users.
Section 3 is presenting the block-scheme
and the communication protocol of an OTP
duplex cryptosystem based on DNA random
sequences.
In section 4 is presented the block-scheme
and the corresponding protocol of an OTP
cryptosystem used for storage purposes.
The last, 5

th
 section, is dedicated to

illustrate the advantages of the proposed
DNA based method for random sequence
generation, respectively OTP cryptosystems
for transmission and storage.

2 Method for DNA Based Random
Sequence Generation

Random sequences based on DNA
sequences (chromosomes, genes, etc.) can
be provided by biological databases, the

mailto:Monica.Borda@com.utcluj.ro
mailto:Olga.Tornea@com.utcluj.ro
mailto:Romulus.Terebes@com.utcluj.ro
mailto:Raul.Malutan@com.utcluj.ro
http://ares.utcluj.ro/

greatest being [9], [10], [11]. The structure
of a DNA sequence belonging to a living
organism (human, animal, plant) is random
(cannot be compressed, or the compression
ratio is extremely small) [4], [5], [6], [7], [8].
The genetic code has four bases: A –
adenine, C – cytosine, G – guanine, T –
thymine [12] which can be converted into
binary, using a uniform encoding:

A 00

C 01

G 10

T 11

Table 1. Conversion table from DNA to
binary

These substitutions can be easily realized
using switch-case selection of a
programming language. The lengths of DNA
sequences in genetic databases are
variable: from tens (a gene) to hundreds of
millions (a chromosome) bases. Tables 2,
3, and 4 are giving lengths of DNA
sequences (in base pairs - bp) for some
living organisms.

Chromosome Length in bp

1 301,354,135

2 237,068,873

3 232,140,174

4 241,473,504

5 217,872,852

6 169,174,353

7 176,764,762

8 175,793,759

9 156,750,706

10 150,189,435

Table 2. DNA sequences lengths
corresponding to Zea mays (corn)

chromosomes

Chromosome Length in bp

A1 239,302,903

A2 169,043,629

A3 142,459,683

B1 205,241,052

B2 154,261,789

B3 148,491,654

B4 144,259,557

C1 221,441,202

C2 157,659,299

D1 116,869,131

D2 89,822,065

D3 95,741,729

D4 96,020,406

E1 63,002,102

E2 64,039,838

E3 43,024,555

F1 68,669,167

F2 82,763,536

X 126,427,096

Table 3. DNA sequences lengths
corresponding to cat chromosomes

Chromosome Length in bp

1 249,250,621

2 243,199,373

3 198,022,430

4 191,154,276

5 180,915,260

6 171,115,067

7 159,138,663

8 146,364,022

9 141,213,431

10 135,534,747

11 135,006,516

12 133,851,895

13 115,169,878

14 107,349,540

15 102,531,392

16 90,354,753

17 81,195,210

18 78,077,248

19 59,128,983

20 63,025,520

21 48,129,895

22 51,304,566

X 155,270,560

Y 59,373,566

Table 4. DNA sequences lengths
corresponding to human chromosomes

In order to obtain random sequences (RS)
for cryptographic OTP applications, the
sequence need to have the length at least
equal with that of the cleartext message and

to be used only once. For this reason, the
length of the generated sequence needs to
match the message length, which is defined
by:

 Message type: - text
- image
- sound (bitrate)
- video (bitrate)

 Transmission time for sound and
video

These input data will determine the required
length of the random sequence used as the
key. Table 5 is illustrating some examples
of these input data.
In genetic databases there are DNA
sequences of very great length
(chromosomes), acceptable for many
applications. Table 6 exemplifies different
cleartext messages, the length of the
corresponding required DNA key (in bp),
and the dimension of the corresponding
secret key information.

Text Image Sound Video

15KB 402KB
5.34MB/278s

(160kbps)
113 MB/1140s

(audio 111 kbps, video 704 kbps)

639KB 573KB
4.74MB/248s

(160kbps)
329MB/3359s

(audio 112 kbps, video 695 kbps)

1.14MB 1.31MB 8.48MB/222s (320kbps)
349MB/2640s

(audio 153 kbps, video 934 kbps)

207MB 3.44MB 3.16MB/195s (128kbps)
 699MB/5708s

(audio 99 kbps, video 909 kbps)

Table 5. Examples of different input data (obtained by measuring real files)

Cleartext message
DNA sequence

(key) length
Secret key information

Text - 15KB 61,440 bp 1 ID of DNA sequence (8 bytes)

Image - 402KB 1,646,592 bp 1 ID of DNA sequence (8 bytes)

Sound (160kbps) 5.34MB/278s 22,397,583 bp 1 ID of DNA sequence (8 bytes)

Video - 329MB/3359s
(audio 112 kbps, video 695 kbps)

1,384,120,320 bp
~ 6 IDs of DNA sequences

(48 bytes)

Table 6. Example of different cleartext messages, the corresponding DNA key length (bp),
and respectively the secret key information

a) b) c)

In order to obtain a high number of DNA
sequences of great lengths, there are more
possibilities:

a) one chromosome taken from a
given database (see Tables 2 - 4)

b) multiplexing, cycling (shifting) and
concatenation of more sequences
obtained from the same
chromosome (Fig. 1)

c) multiplexing sequences from
different chromosomes belonging to
the same species (Fig. 2)

d) multiplexing sequences from
different species (Fig. 3)

The header (secret key) used for
transmitting the data necessary to generate

the key (need to be transmitted
confidentially) is given in Fig. 4.
Example:
For a cleartext message corresponding to a
video file of 329 MB (Table 6), a
1,384,120,320 bp DNA sequence is
required; it can be obtained multiplexing 5 –
6 different DNA sequences. Consequently,
the secret key will transmit the
corresponding IDs. Fig. 5 is illustrating the
sequences in GenBank format and their
IDs. Fig. 6 is illustrating the secret key
format.
The last step in the generation of the binary
RS is to convert the DNA-RS in binary
coding (Table 1).

Original sequence: AATAGCACAATAA TCACATTCTTG GCTTCTACTCATCT

Modified sequence: GCTTCTACTCATCT AATAGCACAATAA TCACATTCTTG

Figure 1. Modification of the original DNA sequence

 Zea mays Cr. 4: AAGCTTCTACTCATCTCCCGGCAAACAGATAT...

 Zea mays Cr. 7: GGAATAGCACAATAAGTGCGCAAAATCGAAG...

 Zea mays Cr. 9: GATCACATTCTTGGATTTTTGGTGGAGACCAT...

MUX(Zea mays{Cr. 4, Cr. 7, Cr.9}) = AGGAGAGATCACTTATAC...

Figure 2. Multiplexing DNA sequences from different chromosomes of the same species

Homo Sapiens Cr. 5 → l1 = 180,915,260 bp = 361,830,520 bits

Zea mays Cr. 8 → l2 = 175,793,759 bp = 351,587,518 bits

Felis catus Cr. C1 → l3 = 221,441,202 bp = 442,882,404 bits

→ lmux = 3*lmin(l1, l2, l3) = 1,054,762,554 bits

Figure 3. Multiplexing DNA sequences of different species, obtained key can be used to

encrypt 125.7 MB of the data

2 bits 3 bits 8 bytes - ID1 8 bytes - ID2 8 bytes – ID3 … … 8 bytes – ID8

Figure 4. Format of the secret key (header which contains the initial data for DNA - RS) a) 2

bits specifing the method a – 00, b – 01, c – 10, d – 11, b) 3 bits specifing the number of

transmitted IDs, c) the actual secret key formed of 1 – 8 IDs, each of 8 bytes

a) ID1 – CM000663

b) ID2 – CM000664

c) ID3 – CM001378

Figure 5. DNA sequences in GenBank format and their IDs

10 101
ID1

CM000663
ID2

CM000664
ID3

CM001378 … …

Figure 6. Example of secret key format

The presented method used for DNA-RS
generation has the following advantages:  generation of binary random

sequences of any length using DNA
structures from public or private
databases  the number of distinct random
sequences is practically unlimited,
taken into consideration the
versatility of the possible ways (a ÷
d)

 the key is not necessary to be
transmitted entirely, only the secret
key (Fig. 4) of 9 - 65 bytes length
requiring confidentiality in
transmission and storage

3 OTP Cryptosystem for Duplex
Transmission Based on DNA-RS

Figure 7. Scheme of OTP cryptosystem for duplex transmission based on DNA-RS key

Legend of Figure 7:
DNA DB – a database of DNA sequences
(identical for 2 parts: A and B), which can
be public or private
ID – block of input data containing: required
DNA sequence length according to the size
of the input data; IDs of the sequences to
be used at the key generation; method of
key computation
MA – cleartext message of user A
MB – cleartext message of user B
Gen KDNA – block of DNA sequence
generation, used as the key (KDNA)
Conv DNA-B – transformation of DNA
sequence in binary (KA, KB)
E

*
A,B – block of input data (ID) encryption,

using a symmetric or public algorithm for
users A and B
D

*
A,B – block of input data (ID) decryption,

using the algorithm chosen at E
*
A,B

SA – modulo-2 adder used by A for OTP
encryption and decryption
SB – modulo-2 adder used by B for OTP
encryption and decryption

Protocol of using duplex OTP
Cryptosystem:

I. Transmission A → B
a. A side encryption
(1) Providing the input data: length of the
cleartext message, choosing DNA
sequences and key generation method.
(2) DNA key generation using input data
and genetic database: KDNA of user A.
(3) Generation of OTP key (KA) using
conversion DNA → binary
(4) Encryption of input data using a
symmetric or public algorithm (block E

*
A)

and its transmission to part B
(5) OTP encryption of cleartext message

MA: CA = KA ⨁ MA and transmission of the
obtained cryptogram (CA) to part B

b. B side decryption
(6) Decryption of input data (ID) realized in
block D

*
B

(7) Generation of KA key using input data
obtained at (6), DNA database identical with

part A, and the same key generator (Gen
KDNA and Conv DNA-B)
(8) OTP decryption of CA cryptogram using
KA key obtained at (7): CA ⨁ KA = MA

II. Transmission B → A
a. B side encryption
(1) Providing the input data: length of the
cleartext message, choosing DNA
sequences and key generation method.
(2) DNA key generation using input data
and genetic database: KDNA of user B.
(3) Generation of OTP key (KB) using
conversion DNA → binary
(4) Encryption of input data using a
symmetric or public algorithm (block E

*
B)

and its transmission to part A
(5) OTP encryption of cleartext message

MB: CB = KB ⨁ MB and transmission of the
obtained cryptogram (CB) to part A

b. A side decryption
(6) Decryption of ID realized in block D

*
A

(7) Generation of KB key using input data
obtained at (6), DNA database identical with
part B, and the same key generator (Gen
KDNA and Conv DNA-B)
(8) OTP decryption of CB cryptogram using

KB key obtained at (7): CB ⨁ KB = MB

The OTP cryptosystem for duplex
transmission based on DNA-RS key has the
following advantages:  The OTP system (a secret key used

only once and having the length at
least equal to that of the cleartext
message) was shown to be
unbreakable [3], [13]  The OTP key doesn’t have to be
transmitted entirely, the recipient
can easily generate the key using
confidential transmission (E

*
A, D

*
B)

of ID and by using the same DNA
database, which provides an easy
key management, thus removing
the main drawback of symmetric
cryptography: difficult key
management, especially when the

number of users grows.  Security of the cryptosystem is
given by the security of the
algorithm used at input data
encryption (E*, D*)

4 OTP Cryptosystem for storage, based
on DNA-RS key

a)

b)

Figure 8. OTP cryptosystem for storage,
based on DNA-RS key a) encryption side of
writing unit b) decryption side of reading unit

Obs.: block notations used in Fig. 8 are
identical to the notations used in Fig. 7.

Protocol of writing – reading using OTP
cryptosystem based on DNA-RS key:
a. Encryption (writing unit)
(1) Providing the input data: length of the
cleartext message, choosing DNA
sequences and key generation method.
(2) DNA key generation using input data
and genetic database: KDNA.
(3) Generation of OTP key (K) using
conversion DNA → binary
(4) Encryption of input data using a
symmetric or public algorithm (block E

*
) and

depositing on the storage media

(5) OTP encryption of data M: C = K ⨁ M
and depositing of the cryptogram (C) on the
storage media (CD, DVD, etc.)

b. Decryption (reading unit)
(6) Decryption of input data (ID) realized in
block D

*

(7) Generation of key (K) using input data
obtained at (6), DNA database identical with
the one used at writing unit, and the same
key generator (Gen KDNA and Conv DNA-B)
(8) OTP decryption of cryptogram (C) using

key (K) obtained at (7): C ⨁ K = M

OTP cryptosystem for storage, based on
DNA-RS key has the following advantages:  Storage of encryption keys is easier

than in the classical system
because it consists only of input
data (ID), so it has a much shorter
length than the encryption key (K)

5 Conclusion
A new method for random sequences
generation based on DNA structures and
two OTP systems for transmission,
respectively for storage, along with their
protocols were presented [14]. The main
advantage of the method for random
sequence generation is the possibility to
generate practically an infinite number of
such sequences starting from DNA

structures and as long desired. If these
sequences are used in cryptographic
applications as keys, they require only a
header of 9 – 65 bytes long which need to
be confidentially transmitted and not the
entire key, meaning that the key
management becomes very easy.
The two OTP systems for transmission and
storage have the advantage of the OTP:
greatest security based on using a key once
and the lengths of the key being at least
equal with that of the cleartext message.
The major drawback of OTP systems is the
key management, but this is overcome by
the advantage of the key generation
described previously.

References:
[1] B. Schneier, Applied Cryptography: Protocols,
Algorithms, and Source Code in C, John Wiley & Sons,
Inc, 1996.
[2] W. Stallings, Cryptography and Network Security:
Principles and Practice, (5th Ed.), Prentice Hall, 2011.
[3] C.E. Shannon, Communication Theory of Secrecy
Systems, Bell System Technical Journal, Vol. 28, No.
4, 1949, pp. 656-715.
[4] C.G. Nevill-Manning, I.H. Witten, Protein is
incompressible, In Proceedings of the Conference on
Data Compression (DCC '99), 1999, pp. 257.
[5] S. Christley, Y. Lu, C. Li, X. Xie, Human genomes
as email attachments, Bioinformatics, Vol. 25, 2009,
pp. 274–275.
[6] M.H.Y. Fritz, R. Leinonen, G. Cochrane and E.
Birney, Efficient storage of high throughput DNA
sequencing data using reference-based compression,
Genome Res, Vol. 21, 2011, pp. 734-740.
[7] K. Daily, P. Rigor, S. Christley, X. Xie, P. Baldi,
Data structures and compression algorithms for high-
throughput sequencing technologies, BMC
Bioinformatics, Vol. 11, No. 514, 2010.
[8] P. Rajarajeswari, A. Apparao, DNABIT Compress –
Genome compression algorithm, Bioinformation, Vol.
5, No. 8, 2011, pp. 350–360.
[9]http://www.ddbj.nig.ac.jp/Welcome-e.html
[10] http://www.ebi.ac.uk/ena/
[11]http://www.ncbi.nlm.nih.gov/pubmed/21071399
[12] C.R. Calladine, H.R. Drew, B.F. Luisi, A.A.
Travers, Understanding DNA The Molecule & How It
Works, Academic Press, 2004.
[13] G.S. Vernam, Cipher Printing Telegraph Systems,
Journal of the American Institute of Electrical
Engineers, Vol. 11, No. 5, 1926, pp. 109-115.
[14] M. Borda, O. Tornea, R. Terebes, R. Malutan,
“Method and cryptographic OTP system based on DNA
random sequences”, best Patent request at ProInvent
2013, No. of patent application: A10003/14.02.2013.

