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Chapter I

Introduction

The initial sequencing of the human genome, a decade ago, was expected to
reveal all functional elements encoded in the genomic sequence [1,2]. Instead,
the sequence complexity was much higher than expected making the complete
annotation of the human genome, still today, a long way down the road. On
the one hand, the human genome sequence put an end to the speculation
about the number of protein coding genes, revealing fewer than expected.
On the other hand, the number of functional elements was much larger than
expected. The quantity of functional elements on a genome was estimated by
the fraction of conserved sequences through evolution. Recent comparison with
29 eutherian mammal genomes established that ∼ 4% of the human genome is
under purifying selection which exceeds, by far, the content in protein coding
sequence (∼ 1.5%). Furthermore, 40% of the functional elements identified
have an unknown function [3]. The regulatory amount of DNA is greater than
the amount of protein-coding DNA demonstrating that the functional role of
the primary DNA sequence is not only to code for proteins but also to regulate
nuclear functions including transcription, replication and 3D organization [2,4].

Comparative genomics has the advantage to be independent from the cur-
rent state of knowledge on the nuclear molecular machinery. Therefore, com-
parative analyses reveal in an unbiased fashion evolutionarily constrained el-
ements on the genome. However, comparative genomics is unable to assign a
role to every discovered elements. By nature, genomics also let unexplored
regulatory phenomena that are not encoded in the sequence. Epigenetics
emerged as a necessary answer to genomics weaknesses [5, 6]. Epigenomics
precisely compensates genomics blind spots by measuring regulatory processes

11



that let DNA sequences unaltered and by proposing players that could ex-
plain the evolutionary constraints. For instance, a CHiP-seq assay can reveal
that some functional elements are the binding sites of a transcription factor.
Consortium like ENCODE [7] or roadmap epigenomic [8] provide very useful
epigenetic databases by describing experimentally the nucleus state in diverse
cell types and under a wide range of conditions. In the human genome, of in-
terest here, we have at disposal, gene expression data obtained with RNA-Seq
technique [9,10], and genome-wide profiling of Mean-Replication Timing (MRT
is the moment of the S-phase at which a locus is replicated, see the precise
definition in chapter II) in human [11–14] and in different cell lines. We can
also access to chromosomal profiles of many epigenetic modifications [9,15,16],
nucleosome positioning [17–19] and chromatin accessibility such as sensitivity
to DNase I cleavage [9, 20, 21], that all characterize the primary chromatin
structure. In addition, the recent development of the Chromosome Confor-
mation Capture (3C) technology [22], its high-throughput extensions [23–25]
including Hi-C [26], and derivatives [27, 28] have provided quantitative mea-
surement of intra- and inter-chromosomal interaction maps [25–30] from which
very instructive information can be extracted on the tertiary (3D) chromatin
structure and dynamics [26, 29–33]. The different nuclear functions (for in-
stance transcription, replication, 3D organization) are so intertwined that an
integrated study seems necessary to assess the interplay between them. All
data available, should be, as far as possible, taken into account simultane-
ously. For instance, differentiation induces important changes in MRT profiles
in chromosomal units of size ∼ 400-800 kb [34–36]. Early to late (EtoL) MRT
changes were associated with loss of pluripotency while late to early (LtoE)
changes associated with germ-layer specific transcriptional activation [36]. Im-
portantly, these dynamic changes in MRT come along with some nuclear repo-
sitioning [34–40]. EtoL (resp. LtoE) transitions occur simultaneously with a
movement from (resp. towards) interior of the nucleus towards (resp. from)
a more peripheral location or near nucleoli [40–44]. Transcription is also in-
fluenced by MRT changes. Even though most of genes remain at the same
expression level in EtoL (reps. LtoE) regions, the number of repressed (acti-
vated) genes in these regions is more than expected [34–36]. Additionally, EtoL
MRT changes are accompanied by the formation of compact heterochromatin
at the nuclear periphery. The four nuclear functions observed (transcription,
replication, 3D organization, and chromatin compaction) change successively
and impact each other. Therefore, an integrated study seems to be the only
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Figure I.1: The cost of DNA sequencing has dramatically fallen during the past twelves

years.

way to give the full picture of what is going on in the cell nucleus.

Integrated studies at genome-wide scale are now possible thanks to the
high-throughput sequencing technology. Indeed, the falling price of sequencing
(Fig. I.1) enables the collection of data on every nuclear process. This trend is
not particular to biology, in many fields of application (social network, internet
connections, customer transactions) and research (high-throughput sequencing
in biology, astronomical data, climate observations), data are intensively col-
lected [45], to the point that if we divided all available data collected between
all humans, each person would obtain a quantity of information equivalent to
320 times the library of Alexandria which gathered all human knowledge three
century before our era [46]. The promise, inspired by this huge quantity of
data, of a better understanding of our surrounding world is accompanied by
the daunting task of handling and making sense of these data. In biology, big
data require infrastructure and standards to be shared by researchers all over
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the world [47]. In this perspective, the ENCODE project is a good direction
since it provides standards for both experimental procedure and data format-
ting and treatment [7, 9, 48, 49]. The second problem with big data in biology
is their potential complexity. To illustrate the latent complexity of biological
dataset, let us take for example a real integrated study of Drosophila chro-
matin by DamID data analysis [50]. DamID is a technique similar to ChIP-seq
which identifies the binding sites of a DNA-associated protein. To characterize
the chromatin structure of a genome with all players involved (RNA-binding
proteins, chromatin remodelers, histone modifications, histone variants, his-
tone acetyltransferase, histone methyltransferase, etc), the authors generated
53 genome-wide DamID profiles. Let us assess the potential complexity of
their dataset. To make the argument simpler, we suppose that the DamID sig-
nal is binary (the DNA binding protein/histone variant/histone modification is
present at one given locus or absent). To study comprehensively the chromatin
structure, we have to look at all possible combinations. A simple calculation
leads to the conclusion that, for each locus, we would have to consider 253 com-
binations i.e. 9007199 billion of cases. In other words, looking at combinations
one by one is impossible. Fortunately, chromatin does not explore all possible
combinations. Indeed, fluorescence assays show that some proteins colocalize
in the nucleus whereas others segregate. Statistically speaking, it means that a
lot of information contained in these signals is redundant. Statistical analyses,
taking advantage of this redundancy, have shown that this huge combinato-
rial complexity can be reduced to a surprisingly small number of predominant
chromatin states with shared features namely four in Arabidopsis thaliana [51],
five in Caenorhabditis elegans [52] and four [53] or five in our example [50] in
Drosophila. Fig. I.2 shows how successful this analysis was, starting from 53
intertwined, unreadable DamID profiles, they ended with 5 distinct chromatin
states with an easy interpretation for each one of them.

In this thesis, our focus will be placed on DNA replication. DNA replica-
tion, the basis of genetic inheritance, is of fundamental importance to cellular
life: when a cell fails to regulate its replication program, it strongly affects the
genome integrity, which can lead to cell death or cancer. We would like to
shed a new light on human DNA replication by taking advantage of the huge
set of data available on human chromatin primary structure. How epigenetic
mechanisms and gene expression coordinate with DNA replication has been a
long-standing question [4,6,54–57]. Contrary to bacteria, yeast and viruses, the
genomes of multi-cellular eukaryotes have no clear consensus DNA sequence
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Figure I.2: Example of an efficient dimensionality reduction applied to 53 DamID profiles.

(A) Sample plot of all 53 DamID profiles (log2 enrichment over Dam-only control). Below

the profiles, genes on both strands are depicted as lines with blocks indicating exons. (B)

Two-dimensional projections of the data onto the first three principal components. Colored

dots indicate the chromatin type of probed loci as inferred by a five-state Hidden Markov

Model (HMM). (C) Values of the first three principal components along the region shown

in (A). Domains of the different chromatin types are highlighted by the same colors as in

(B). Reproduced from [50].

element associated with replication initiation [58, 59]. Metazoan genomes du-
plicate through the coordinated activation of hundreds to thousands of replica-
tion origins that can be extremely site-specific or poorly defined with a broad
site specification [60]. Indeed more origins are prepared in G1-phase than ac-
tively needed in S-phase [61]. Epigenetic mechanisms very likely take part
in the spatial and temporal control of origin usage and efficiency in relation
with gene expression [61–67]. For many years, elucidating the determinants
that specify replication origins has been hampered by the very limited number
of well established origins in human and more generally in mammals (a few
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tens versus a few ten thousands expected) [57, 61, 66, 68]. Only very recently,
nascent DNA strands synthetized at origins were purified by various meth-
ods to map replication origins genome-wide in different eukaryotic organisms
including Arabidopsis thaliana [69], Drosophila [70], mouse [70, 71] and hu-
man [16,72–77]. Despite some inconsistency or poor concordance between cer-
tain of these studies [57,78], some general trends have emerged confirming the
correlation of origin specification with transcriptional organization [56,57,61].
The set of replication origins identified so far are strongly associated with
annotated promoters and seem to be enriched in transcription factor binding
sites [73,74,79] and in CpG islands [70,71,73]. However a significant proportion
of origins do not seem to be controlled in the same way as gene transcription
since they are in regions void of DNase-I-hypersensitive sites (DHSs) and of
histone marks found at active promoters [56, 73]. Interestingly, it has been
recently reported that replication origins may contain specific nucleotide se-
quences. Actually G-rich consensus motifs were shown to be associated with
Drosophila, mouse and human origins [70,77,80]. These analyses have opened
new perspectives towards the identification of mechanisms governing origin
selection in mammals.

The recent blooming of genome-wide mean-replication timing (MRT) data
in yeast [81], plants [82], worm [83], fly [84, 85], mouse [34, 35, 86] and hu-
man [11–14] has provided the opportunity to establish links between the spatio-
temporal program of replication, transcription and chromatin structure [4,6,56,
57,87]. It is now well established that in higher eukaryotes, GC-rich, gene-rich
and early replicating regions colocalize with, as a counterpart, a colocaliza-
tion of AT-rich, gene poor and late replicating regions [11, 86, 87]. But recent
studies in mammals [12, 34] and Drosophila [88], have shown that during dif-
ferentiation, some genes change expression without changes in MRT and vice
versa, thereby indicating that transcription is not the only controlling factor
and that the chromatin structure is likely to be part of the game [6,56,57,87].
In good agreement with previous studies in Drosophila [50, 88], genome-wide
MRT profiles along mouse and human chromosomes in different cell lines re-
veal a correlation with epigenetic modifications [89]. Early replicating regions
tend to be enriched in open chromatin marks H3K4me1, H3K4me2, H3K4me3,
H3K36me3, H4K20me1 and H3K9 and H3K27 acetylation, whereas late repli-
cating zones are mostly associated with H3K9me2 and to a lesser extent with
H3K9me3 [34,36,62]. The dynamic changes in MRT observed during develop-
ment come along with some subnuclear repositioning [34–40], early replicating
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euchromatin domains being generally at the interior of the nucleus whereas
late replicating heterochromatic domains are more peripheral or near nucle-
oli [40–44]. Recent experimental studies of long-range chromatin interactions
using chromosome conformation capture techniques [26, 30, 36, 90] have con-
firmed that 3D chromatin tertiary structure plays an important role in reg-
ulating replication timing. In particular, replicon size, which is dictated by
the spacing between active origins, correlates with the length of chromatin
loops [67,91,92]. But as questioned in Refs [30,93,94], the dichotomic picture
proposed in early studies [26,36,90], where early and late replicating loci occur
in separated compartments of open and closed chromatin respectively, is some-
how too simple as previously pointed out in a detailed analysis of replication
fork velocity [93]. Identifying the chromatin regulators of the spatio-temporal
program of DNA replication will be a formidable step towards understand-
ing the so-called replicon and replication foci [43,95–98] in relation with their
transcription counterpart, the transcription factories [43,98–100].

In a recent work [94,101], the analysis of genome-wide MRT data in seven
human cell types including Embryonic Stem Cell (ESC), somatic and HeLa
cells, revealed that, in each cell type, about half of the genome can be paved by
the so-called replication U-domains where the MRT is U-shaped and its deriva-
tive N-shaped like the nucleotide compositional asymmetry in the germline
skew N-domains [102–106]. These N-shaped patterns are the consequence of
large-scale gradients of replication fork polarity [94, 107, 108] originating from
early initiation zones separated by several megabases. In that regard, N/U-
domains can be thought as an equivalent of bacterial replicon [109]. These
“master” replication origins [4, 110] at U/N-domain borders were found to be
hypersensitive to DNase I cleavage, to be transcriptionally active and to display
a significant enrichment in the insulator binding protein CTCF, the hallmarks
of localized (∼ 200-300 kb) open chromatin structures [94, 111, 112]. A cas-
cade model of origin firing was recently proposed to account for the observed
progressive inversion of replication fork polarity inside U/N-domains [93,109].
This model involves the superposition of specific and efficient initiations at do-
main borders with random and less efficient initiations elsewhere, in addition
to firing stimulated by propagating forks. The comparative analysis of chro-
matin interaction Hi-C [94] and 4C [30] data with MRT profiles further con-
firmed that these replication U/N-domains actually correspond to topological
domains of self-interacting chromatin. As recently demonstrated using a graph
theoretical approach [113], master replication origins at U/N-domain borders
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are long-range interconnected hubs of chromatin interactions both within and
between different chromosomes. The additional observation of a remarkable
gene organization inside U/N-domains with a significant enrichment of ex-
pressed genes nearby their borders [94, 104, 114] prompted the interpretation
of these replication domains as chromatin units of highly coordinated regula-
tion of transcription and replication [94, 109, 110]. Replication U/N-domains
are also likely to be central to genome regulation since the dynamical changes
in MRT profiles observed during differentiation [34–36, 115] mainly occur in
the 50% of the genome that are covered by U/N-domains [94]. Overall, these
results point out that U/N-domain borders offer a good framework to the un-
derstanding of the plasticity of the spatio-temporal replication program, gene
expression and chromatin organization across different cell lines during devel-
opment and lineage commitment.

In this thesis, we conduct an integrative analysis of the interplay between
the chromatin primary structure and the MRT. To do so, we simplify a dataset
of several genome-wide CHiP-seq profiles to four prevalent chromatin states
that have strongly different MRT distributions. We use U/N-domains as a
guide to study the spatial distribution of these chromatin states with respect
to the spatio-temporal replication program. The genome-wide CHiP-seq data
allow us to assess the distribution of these chromatin states in the 50% of the
human genome not covered by U/N-domains. U/N-domains are also our frame-
work to describe coordinated changes of chromatin composition and replication
program through development.

The manuscript is organized in six chapters. The first chapter is the cur-
rent introduction. Chapter II is devoted to definitions and methodological
discussions that explain biological (eukaryotic DNA replication, mean replica-
tion timing, U-domains, chromatin primary structure and its potential causal
link to replication) and statistical (Spearman correlation, Principal compo-
nent analysis, clustering) concepts used in the “results” chapters. The results
are reported in Chapters III, IV and V. Chapter III deals with an integrative
analysis of the genome-wide distributions of thirteen epigenetic marks, at 100
kb resolution, in the human cell line K562. This integrative analysis identifies
four major groups of chromatin marks with distinct features. These chromatin
states have different MRT, namely from early to late replicating, replication
proceeds through a transcriptionally active euchromatin state (C1), a repres-
sive type of chromatin (C2) associated with polycomb complexes, a silent state
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(C3) not enriched in any available marks, and a gene poor HP1-associated
heterochromatin state (C4). Chapter IV is a reproduction of our integrative
analysis of epigenetic data in the K562 human cell line at a smaller scale (6 kb)
characteristic of gene promoters. By investigating the coherence between the
chromatin states obtained at 100 kb and 6 kb, we will assess to what extent pro-
moter activity conditions its large-scale chromatin environment and vice-versa.
In Chapter V, we extend this study to different cell types including the ESC
H1hesc, three hematopoietic cell lines (K562, Gm1278, Monocyte CD14+), a
mammary epithelial cell line (Hmec) and an adult fibroblast cell line (Nhdfad).
By exploring the global reorganization of replication U/N-domains in these dif-
ferent cell types in relation to coordinated changes in chromatin state and gene
expression, we shed a new light on the chromatin-mediated epigenetic regula-
tion of transcription and replication during differentiation. Because they are
likely to be the cornerstone to a better understanding of pluripotency mainte-
nance and lineage commitment, we will pay special attention to the “master”
replication initiation zones that border U/N-domains and specially to those
that are specific to ESCs. Chapter VI is a general discussion that deals with
the interpretation of the reported results. Do the results, gathered in this the-
sis, give any information on the causality between primary chromatin structure
and replication? Some perspectives will be also given on how the methodology
described in Chapters III, IV and V could be applied to cancer.
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Chapter II

Definitions and methodology

The current chapter explains the biological concepts and statistical methodol-
ogy necessary to understand the chapters reporting results and the discussion.
The first section presents basic prerequisites on DNA replication, and gives
the definition of the Mean Replication Timing (MRT) and of the U-domains.
The second section discusses chromatin structure and plausible causal links
between the primary structure of chromatin and DNA replication. The third
section is a brief presentation of the experimental protocols used to produce
datasets analyzed in this thesis. The fourth part of the chapter is an ed-
ucational presentation, on simple artificial examples, of the tools (principal
component analysis and clustering) used in the “results” chapters.

II.1 Prerequisites on DNA replication

II.1.1 Eukaryotic cell cycle and DNA replication

Living cells, prokaryotes1 and eukaryotes2, use a universal mechanism to mul-
tiply. Cells duplicate their content, among which DNA, and divide. In eu-
karyotic cells, this phenomenon is decomposed into 4 phases which form the
cell cycle (Fig. II.1). Cell division occurs during the mitosis or M phase. The
rest of the cell cycle, called the interphase, is subdivided in the G1, S, and G2

1The prokaryotes are a group of organisms (bacteria for example) whose cells lack a

membrane-bound nucleus (karyon).
2An eukaryote is an organism (yeast or human for example) whose cells contain a nucleus

and other structures (organelles) enclosed within membranes.
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Figure II.1: The four phases of an eukaryotic cell cycle. The union of G1, S and G2 is called

the interphase, during which the cell grows continuously. The cell divides in two new cells

in M phase. The S phase, of particular interest here, is the phase where DNA is replicated.

phases. Cells grow continuously during the interphase, doubling in size and
preparing for the next division. Yet, DNA duplication occurs only during the
S phase.

DNA replication is an essential genomic function responsible for the accu-
rate transmission of genetic information through successive cell generations.
Replication follows a simple pattern in bacteria called the “replicon” model
[116]; the process starts by the binding of some “initiator” protein complex
to a consensus “replicator” DNA sequence called origin of replication. On a
bacterial genome, there is only one origin of replication. The recruitment of
additional factors initiates the bi-directional progression of two divergent repli-
cation forks along the chromosome. Since most bacterial genomes are circular,
the two forks join at the terminus of replication usually located at the opposite
of the origin on the circular chromosome. One strand is replicated continu-
ously (leading strand), while the other strand is replicated in discrete steps
towards the origin (lagging strand) (Fig. II.2B).

In eukaryotic cells, replication is initiated at a number of replication origins
(more than 30000 in the human genome) and propagates until two converging
forks collide at a terminus of replication [59,117]. During G1 phase, the Origin
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Figure II.2: (A) The six-subunit complex called the origin recognition complex (ORC) serves

as a platform for the assembly of pre-replication complexes. In metazoans, the binding of the

large subunit of ORC, ORC1, to chromatin is cell-cycle regulated. During the mitosis/G1-

phase transition, chromatin-bound ORC recruits CDC6 and CDT1, which facilitate the

loading of a helicase complex consisting of 2 to 7 MCM (minichromosome maintenance)

proteins. The resulting complex is termed the pre-replication complex (PreRC). Reproduced

from [66]. (B) Replication bubble structure and summary of the unique nucleic acid features

found near origins of replication. The leading strands of DNA synthesis quickly become

larger than Okazaki fragments and can be isolated as small single-stranded molecules that

can be verified to be nascent either by metabolic labeling or by virtue of the fact that

nascent strands have small stretches of RNA at their 5′ ends that render them resistant to

λ-exonuclease. The topological structure of replication origins shortly after initiation is a

bubble structure, which can be trapped in gelling agarose. Reproduced from [57].
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Recognition Complex (ORC) binds to DNA. The binding of ORC is followed
by the recruitment of several proteins including the helicase MCM (Minichro-
mosome maintenance). These proteins form the pre-replication complex (pre-
RC) pictured in Fig. II.2A. The pre-RC constitutes a potential replication
origin that may be activated during S-phase. In fact, there are more pre-RC
deposited on DNA than actively needed during the S-phase. The subsequent
activation of the pre-RC during S-phase leads to the recruitment of DNA poly-
merase and other proteins necessary to the DNA synthesis. The activation of
different replication origins occurs at diverse moments of the S phase and is
not deterministic [84, 109, 118–121]. The pre-RC activation can be triggered
by the activation of neighboring replication origins [93]. Also, the activation
depends on the neighboring transcriptional activity and on the local chromatin
structure [84,119–121].

Sequence requirements for a replication origin vary significantly between
different eukaryotic organisms. In the unicellular eukaryote S. cerevisiae, the
replication origins spread over 100-150 bp and present some highly conserved
motifs [59]. However, the prokaryote-like replication of S. cerevisiae is an ex-
ception among eukaryotes. In the fission yeast Schizosaccharomyces pombe,
there is no clear consensus sequence and the replication origins spread over
at least 800 to 1000 bp [59]. In multicellular organisms, the nature of initi-
ation sites of DNA replication is even more complex [117]. Metazoan3 repli-
cation origins are rather poorly defined and initiation may occur at multi-
ple sites, each site being distributed over a thousand of base pairs [60, 109].
The initiation of replication at random and closely spaced sites was repeat-
edly observed in Drosophila and Xenopus early embryo cells, presumably to
allow for extremely rapid S phase, suggesting that any DNA sequence can
function as a replicator [109, 118, 122, 123]. A developmental change occurs
around midblastula4 transition that coincides with some remodeling of the
chromatin structure, transcription ability and selection of preferential initia-
tion sites [118,123]. Thus, although it is clear that some sites consistently act
as replication origins in most eukaryotic cells, the mechanisms that select these
sites and the sequences that determine their location remain elusive in many
cell types [63, 117, 124]. As recently proposed by many authors [64, 65, 125],

3Metazoan are multicellular organisms belonging to the kingdom Animalia (according to

Linnaeus’ classification).
4The blastula is a hollow sphere of cells formed during an early stage of embryonic

development in animals.
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the need to fulfill specific requirements that result from cell diversification may
have led high eukaryotes to develop various epigenetic controls over the repli-
cation origin selection rather than to conserve specific replication sequence.

This might explain that for many years, very few replication origins have
been identified in multicellular eukaryotes, namely around 20 in metazoa and
only about 10 in human. Several techniques have been used to detect repli-
cation origins. A first technique takes advantage of the presence of the ORC
proteins at the origins to detect their position by CHiP-seq5 [126–128]. Alter-
natively, in recent studies, nascent DNA strands synthesized at origins were
purified by various methods to map replication origins genome-wide in differ-
ent eukaryotic organisms including Arabidopsis thaliana [69], Drosophila [70],
mouse [35,70,71] and human [11–14,16,72–77]. Another approach to discover
replication origins is to trap replication bubbles [75, 129]. The DNA particu-
larities around replication origins that have been used to position origins by
these different techniques are summarized in Fig. II.2B. Despite some incon-
sistencies or poor concordance between certain of these studies [57, 78], some
general trends have emerged confirming the correlation of origin specification
with transcriptional organization [56, 57, 61]. The set of replication origins
identified so far are strongly associated with annotated promoters and seem
to be enriched in transcription factor binding sites [73, 74, 79] and in CpG
islands [70,71,73].

An alternative to characterize replication is to estimate at what moment of
the S-phase a locus is replicated (replication timing). A wealth of genome-wide
replication timing data is available for several eukaryotic organisms ranging
from yeast [81], to plants [82], to worm [83], to drosophila [84], to mouse [34,35],
and to human [11–14, 130]. Recent genome-wide replication timing data has
been collected in several human cell types [11–14, 36, 90, 130], which enables
to study changes in the replication program across differentiation. In this
thesis, we focus our study on the current abundance of replication timing
data. The replication timing at a given locus depends on the local initiation
properties, but it also depends on the initiation properties of neighboring sites
as replication forks propagate [131, 132]. Therefore replication timing can be
difficult to interpret.

To clarify the definitions of replication timing and spatio-temporal replica-
tion program, we now describe an idealized example for one cell cycle.

5The CHiP-seq protocol is briefly presented in Sect. II.3.1.
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Figure II.3: Replication program in one cell cycle. (A) Replication timing tR(x), (B) replica-

tion fork orientation o(x) and (C) spatial location of replication origins (upward arrows) and

termination sites (downward arrows). Oi = (xi, ti) corresponds to the origin i positioned

at location xi and firing at time ti. Fork coming form Oi meets the fork coming from Oi+1

at termination site Ti with space-time coordinates (yi, ui) given in Eq. (II.1). Note that we

can deduce the fork orientation in (B) (resp. origin and termination site locations in (C))

by simply taking successive derivatives of the timing profile in (A) (Eqs. (II.3) and (II.4)).

II.1.2 Replication program in one cell cycle

If the replication fork velocity v is constant, the spatio-temporal program of
replication for one cell cycle is completely specified by the positions xi and the
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firing times ti of the n activated bidirectional replication origins Oi (Fig. II.3A).
From each bidirectional origin, two divergent forks propagate at velocity v, un-
til they meet a fork of the opposite orientation. Let Ti be the termination locus
where the fork coming from Oi meets the fork coming from Oi+1. Straightfor-
ward calculations lead to the space-time coordinates (yi, ui) for Ti:

yi =
1

2
(xi+1 + xi) +

v

2
(ti+1 − ti), ui =

1

2v
(xi+1 − xi) +

1

2
(ti+1 + ti). (II.1)

In Fig. II.3, the x-axis is conventionally oriented in the 5′ → 3′ direction of
the reference strand. Hence sense (+) and antisense (−) forks, correspond
respectively to rightward and leftward moving forks in Fig. II.3B.

Around origin Oi (for x ∈ [yi−1, yi]), the replication timing tR(x) and the
fork orientation o(x) = ±1 are given by:

tR(x) = ti + |x− xi|/v and o(x) = sign(x− xi). (II.2)

Finally, using the Dirac distribution δ to represent origin locations δ(x−xi) and
termination sites δ(y − yi) (Fig. II.3C), we obtain the following fundamental
relationships:

v
d

dx
tR(x) = o(x), (II.3)

v
d2

dx2
tR(x) =

∑

i

δ(x− xi)−
∑

i

δ(x− yi). (II.4)

In other words, we can extract, up to a multiplicative constant, the fork ori-
entation o(x) (Fig. II.3B) and the location of origin and termination sites
(Fig. II.3C) by simply taking successive derivatives (Eqs. (II.3) and (II.4)) of
the timing profile tR(x) (Fig. II.3A).

II.1.3 Mean Replication Timing

This paragraph describes how we have extracted Mean Replication Timing
(MRT) [94] from experimental data provided in [14].

Current technology is not able to measure the spatio-temporal replication
program in one cell. The characterization of replication timing is done on a
large population of cells (a few millions). Briefly, the method used to generate
experimental data in [14] is as follows:
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∗ A large population of cells, each at a different moment of the cell cy-
cle, is temporarily cultivated in presence of BrdU which is a modified
nucleotide. Cells in S-phase incorporate BrdU in place of thymidine in
newly synthesized DNA which is, hence, identifiable.

∗ Cells are classified according to their DNA content by Fluorescence-
Activated Cell Sorting (FACS) which is equivalent to classify them ac-
cording to their cell cycle phase. Indeed, cells start with one copy of their
genome in G1-phase, they gradually double their DNA content through
S-phase and have two genome copies in G2. Then they undergo mito-
sis that sets their DNA content back to one copy. The classification by
FACS has a limited time resolution. In the study of interest [14], they
dispose of 6 bin spanning the S-phase (Fig II.4A).

∗ Once the cell population is classified into 6 bins (G1b, S1, S2, S3, S4, G2),
the newly synthesized DNA (i.e. DNA that contains BrdU nucleotides)
is sequenced and mapped on the genome. For each temporal bin, the
density of tags is computed genome wide (Fig II.4B).

To efficiently summarize the information contained in the six temporal bin,
we applied the following post-treatment in [94] :

∗ A value is assigned to each temporal bin. By convention, the very be-
ginning of S-phase is zero and the very end is 1. Since the temporal
resolution is of 6 bins, each bin are one sixth long, the values attributed
are 1/12 for G1b, 3/12 for S1, 5/12 for S2, 7/12 for S3, 9/12 for S4 and
11/12 for G2.

∗ In 100 kb sliding windows incremented by 10kb steps, tags are retrieved
for each of the six temporal bins.

∗ The mean replication timing for one given window is the sum of the
proportions of tags found in each bin multiplied by the corresponding
bin timing.

For instance, if in a fairly early 100 kb window the read proportion in the
six bins is as follows: 20% , 50%, 20%, 7%, 2%, 1%, the MRT is:

MRT = 0.2×
1

12
+0.5×

3

12
+0.2×

5

12
+0.07×

7

12
+0.02×

9

12
+0.01×

11

12
= 0.29
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Figure II.4: (A) Classification of the cell population according to their DNA content. The

fractions retained for MRT computation are those marked with G1b, S1, S2, S3, S4, and

G2 labels. In each fraction, the DNA containing BrdU is retrieved by immunoprecipitation.

Then, the DNA is sequenced. (B) Brut sequence tag density on the LMRP locus in GM06690.

(A) and (B) are reproduced from [14]. (C) Post treatment applied in [94] to compute MRT.

Normalized tag densities on a 25 Mb long fragment of chromosome 10 for the GM06990 cell

line, and the corresponding computed MRT (white line).
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MRT interpretation
Even though the replication timing in each cell is a random variable, the

MRT is a good indication of the replication timing population distribution.
Indeed, BrdU reads are generally located in few temporal bins at one locus [94].
This suggests that the replication spatio-temporal program is fairly constant
in cells of the same cell line. Suppose we observe a MRT = 0.5. Theoretically,
it could mean that the replication timing distribution is bimodal with one half
of the cell population replicating early and the other half late. Alternatively, it
could mean that the replication timing distribution is uniform (i.e the chances
of being replicated in any of the six bin are equal). In practice, a MRT of
0.5 means that, in the vast majority of cells, the locus is replicated in mid-S
phase.

II.1.4 Replication U-domains

Replication is an asymmetrical process. Indeed, one strand is replicated contin-
uously (leading strand) while the other strand is replicated in a step like fashion
(Fig. II.2B). This phenomenon imprints the DNA sequence through evolution:
the mutation rates are different on the leading and on the lagging strands.
This discrepancy induces a compositional skew S = T−A

T+A
+ G−C

G+C
[4, 102–107]

that reflects the replication fork polarity [94,107].

Compositional asymmetry in bacteria
A clear relationship between replication and compositional asymmetry was

first established in prokaryotic genomes by Lobry [134]. In bacteria, the spatio-
temporal replication program is particularly simple (Fig. II.5A). The replica-
tion origin is defined by a consensus sequence, replication therefore always
initiates at the same genomic locus (ORI), two divergent forks then replicate
the DNA until they meet at the replication terminus (TER). As shown in
Fig. II.5B for Bacillus subtilis, many prokaryotic genomes are divided into
two halves: one presents an excess of guanine over cytosine, and the other
one, on the opposite, an excess of cytosine over guanine. The GC skew, de-
fined as SGC = G−C

G+C
, is thus positive on one half of the genome and nega-

tive on the other. Remarkably, the GC skew profile is tightly related to the
spatio-temporal replication program: the leading strand has positive GC skew
whereas the lagging strand has negative GC skew.
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Figure II.5: Comparing GC skew SGC = G−C
G+C

and replication timing in Bacillus subtilis

genome. (A) Schematic representation of the replicon model: divergent bidirectional pro-

gression of the two replication forks from the replication origin (ORI) to the replication

terminus (TER). The replication timing is indicated from early, 0 to late, 1. (B) SGC

calculated in 1 kbp windows along the genomic sequence of Bacillus subtilis. Black points

correspond to intergenic regions, red (resp. blue) points correspond to (+) (resp. (−)) genes,

which coding sequences are on the published (resp. complementary) strand. Reproduced

from [133].

Compositional asymmetry in the human genome
By contrast, the spatio-temporal replication program in eukaryotes is much

more complex. Several initiation sites are used in each cell cycle, and they
fire at different times during the S phase. Furthermore, the genomic positions
and firing times of the initiation sites change from one cell cycle to another.
Yet, the relationship observed between the compositional asymmetry and the
replication program in bacteria can be generalized to eukaryotic genomes.

In the human genome, the skew profile presents N-shaped domains of sev-
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Figure II.6: Comparing compositional skew S = T−A
T+A

+ G−C
G+C

and mean replication timing

(MRT) in the human genome. (A) MRT profiles along a 11.4 Mbp long fragment of human

chromosome 10, from early (0) to late (1) for BG02 embryonic stem cell (green), K562

erythroid (red) and GM06990 lymphoblastoid (blue) cell lines. Replication timing data

was retrieved from [14]. (B) S calculated in 1 kbp windows of repeat-masked sequence.

The colors correspond to intergenic (black), (+) sense genes (red) and (−) antisense genes

(blue). Six skew N-domains (horizontal black bars) were detected in this genomic region.

Reproduced from [133].

eral megabases. Previous works have led to the objective delineation of these
N-shaped skew domains [102–105,135]. Based on the analogy with the bacterial
case (the upward jump of the GC skew colocalizes with the ORI in Fig. II.5),
the N-domains borders (upward jumps of the skew) were proposed to be repli-
cation origins, evolutionary conserved and active in the germline [102–104].
However, we know today that the N-shape skew profile is not a trivial exten-
sion of the replicon model in bacteria. For instance, the typical inter-origin
distance (∼ 40 kb) measured using DNA combing [93], is much smaller that
the typical N-domain size (1−3 Mb), which implies that many other initiation
events occur inside the N-domains. A recent theoretical analysis [107] demon-
strates that the skew profile, in bacteria and in the human, actually results
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from the replication fork polarity profile. In fact, the fork polarity follows the
same trend as the skew in N-domains going from a positive value at the N-
domain left border and decreasing to negative opposite value at the N-domains
right border.

We observe in Fig. II.6 a clear relationship between the compositional asym-
metry and the replication timing in the human genome: a N-shaped composi-
tional skew S = G−C

G+C
+ T−A

T+A
profile remarkably corresponds to a U-shaped repli-

cation timing profile. A previous analysis [94] demonstrates that the derivative
of the replication timing is the replication fork polarity (Fig II.3). Importantly,
this relation remains true for a population of cells. Mathematically, by tak-
ing the derivative of a U-shaped function, a N-shaped pattern is obtained.
Therefore the mean polarity of the replication forks is a N-shaped function
in U-domains (Fig II.7), confirming the existence of a gradient of replication
fork polarity as in N-domains. However, in contrast to N-domains, U-domains
are specific to one given cell line: U-domains are the somatic counterpart of
N-domains. N-domains are thought to reflect the germline replication program
since they are imprinted in the genomic sequence. Indeed, only the mutations
occurring in the germline are transmitted and can accumulate to create the
skew N-domains [106]. A recent study aiming at automatically detecting U-
domains in seven human cell lines showed that U-domains cover roughly 50%
of the genome [94, 101]. U-domains were objectively delineated using wavelet
transform in the human genome for seven cell lines [101]. First, sharp peaks
of the MRT profile, corresponding to initiation zones, were detected by finding
regions of strong positive curvature (Eq. (II.4)). Subsequently, in between
timing peaks, we retained only the domains where the MRT profile had a
global negative curvature (i.e. was U-shaped). These genomic domains, U/N-
domains, were shown to exhibit a striking gene organization and chromatin
landscape [94, 104, 112, 114, 133, 136]. U/N-domains are units of the spatio-
temporal replication program that share the same overall organization and are
the eukaryotic equivalent of replicons. Therefore, they are preferential tools to
study replication genome-wide.
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Figure II.7: Replication timing U-domains in different human cell lines. (A) Average MRT

profiles (± SEM) inside detected replication U-domains. (B) Corresponding average dMRT

dx

profiles (± SEM). In (A) and (B), each cell line is identified by a color: BG02 (green), K562

(red), GM06990 (blue), BJ R2 (magenta), and HeLa R2 (cyan). (C) The 2534 BG02 U-

domains were centered and ordered vertically from the smallest (top) to the longest (bottom).

The MRT profile of each domain is figured along a horizontal line using the MRT (BG02)

color map. (D) Same as in (C) but for using the dMRT

dx
(BG02) color map. Reproduced

from [94].
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II.2 Chromatin structure and replication

II.2.1 Chromatin is formed by successive folding layers

The DNA of eukaryotic cells is enclosed in the cell nucleus. Generally, eu-
karyotes have their genome organized in several separated chromosomes. Yet,
even in separated chromosomes, the length of the longest DNA molecule in
eukaryotic genome far exceeds the diameter of the cell nucleus which is on
average 6 µm for mammalian cells. For instance the longest human chromo-
some6 of 2.8× 108 base pairs, which is almost 10 cm in length [137,138]. The
length of eukaryotic genomes implies two contradictory imperatives [4]. The
genome must be condensed in such a way that it fits inside the nucleus while
being highly organized so that every nuclear function (e.g. replication, mitosis,
transcription) can take place efficiently.

The organized compaction must also be highly dynamic. Indeed, the com-
paction fold is 10000 during mitosis (chromosome must be tightly condensed
to enable their proper distribution between the two daughter cells) and “only"
300 during the interphase7. Moreover, during the interphase, the compaction
of the genome is heterogeneous. Transcriptionally or regulatory active regions
are accessible and decondensed (euchromatin) while inactive regions and gene
deserts are condensed (heterochromatin). The level of compaction during the
interphase has to be adjustable to react to environmental cues.

This high degree of organization coupled to a tight compaction is obtained
by the association of DNA with proteins. The complex formed by the DNA
and the proteins attached to it is named chromatin. Actually, the weight
of the proteins associated to DNA equals the weight of the DNA alone [138].
Chromatin is organized in successive layers of folding of increasing scale that
are depicted in Fig. II.8. Each layer has its functional relevance and carries
regulatory information [5, 6].

The first layer is the simple DNA helix. This is not really a chromatin
layer since it does not contain proteins but it already holds epigenetic infor-
mation. CpG dinucleotides can bear a methylation on the C nucleotide. This
modification is present in inactive regions. On the second layer DNA wraps

6The longest human chromosome is chromosome 1. Human chromosomes are numbered

from the longest to the shortest.
7The "compaction fold" is the ratio of the actual length end to end of the chromosome

in the nucleus over the length of the chromosome DNA laid out as a perfect double helix.
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Figure II.8: Chromatin structure layers related to transcriptional activity. On the left part

of the drawing, features associated with inactive regions (heterochromatin) are depicted; on

the right, active regions (euchromatin) are described. See text for the detailed description

of each layer of the chromatin. Sketch reproduced from [6]

.
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around a bead-like structure formed by an octamer of proteins called histones.
DNA turns about twice around each octamer (as pictured on the second row in
Fig. II.8) [139–141]. The complex formed by the DNA and the eight histones is
called nucleosome. Each canonical nucleosome contains 147 bp of DNA. The
simple association formed between nucleosomes and DNA is a second layer
of compaction called “bead-on-a-string". Nucleosomes can organize further in
a third layer as a fiber of 30 nm whose exact structure is still debated. In
active regions, chromatin has the least compacted form i.e. bead-on-string
structure while inactive regions are condensed in a 30 nm fiber. Finally, the
three-dimensional organization of DNA and nucleosomes is referred to as the
fourth layer of chromatin. Chromatin has a specific spatial distribution in the
nucleus: active regions are at the center and gene deserts are attached to the
nucleus periphery with lamina fibers8 [6].

Histones are the most prevalent proteins in chromatin. There are four
types of histones: H3, H4, H2A, and H2B. H3 and H4 associate together to
form a dimer; two dimers of H3-H4 associate to form a tetramer which is, in
turn, surrounded by two dimers of H2A and H2B. Histones convey a lot of epi-
genetic information by two mechanisms. First, one of the canonical histones
can be replaced by a histone variant9. This replacement slightly modifies the
nucleosome structure and thus its function. For instance, transcriptionally ac-
tive regions are enriched in the H3.3 and H2AZ variants instead of H3 and
H2A, respectively. Second, histones are formed of a globular part that consti-
tutes the nucleosome core and of a flexible "tail" that reaches outside toward
the nuclear environment (rows 3 and 4 in Fig. II.8). These tails carry diverse
modifications that have a functional meaning. There is a specific annotation to
indicate modifications: H3K9ac means that a histone H3 carries a modification
on its ninth amino acid and that the modification is an acetylation. Histone
modifications can make the chromatin looser (acetylation modifications) or can
serve as an anchor to regulatory proteins. For instance, H3K27me3 is used as
a docking station by the Polycomb Repressive Complex PRC1 that silences
developmental genes10.

8The nuclear lamina is a dense fibrillar network inside the nucleus composed of interme-

diate filaments and membrane associated proteins.
9Proteins are formed by a chain of molecular units called amino-acids. Histone variants

have the same amino acid sequence as the canonical histone with a couple of substitutions.
10To have a complete summary of the diverse histone modifications and their functions

see the excellent review [55].
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Other diverse proteins are associated to DNA. Some are needed to tran-
scribe/ activate genes (transcription factors, enhancer proteins), some repair
and replicate DNA, some repress genes by compacting the chromatin (HP1,
polycomb) and others modify histones [5]. For instance the families of proteins
that add and remove acetyl groups to histone tails are named HAT (Histone
acetyl transferase) and HDAC (Histone deacetylase). There is also a class of
proteins that move nucleosomes along DNA or eject them called chromatin re-
modelers. Finally, there is a class of proteins that organize the fourth layer of
chromatin, namely its three dimensional folding (cohesin and CTCF). CTCF
proteins form DNA loops that have various regulatory effects [142].

The successive layers of folding and the diverse proteins interact together
to form the chromatin structure. In this thesis, we focus on the positioning
of histone modifications and DNA binding proteins along the human genome.
The influence of chromatin structure on the regulation of transcription has
been widely assessed. However, chromatin structure serves other functions.
We now describe how chromatin structure can influence DNA replication.

II.2.2 Chromatin structure and its influence on DNA

replication

In this paragraph, we state the principles by which chromatin structure could
be causally linked to replication. We will not make an exhaustive review on
the subject. The interested reader should consult the excellent review [62].

Even though the DNA sequence may play a role in the positioning of ori-
gins [77,124], there is no consensus sequence for replication origins in metazoan.
Origin positioning is cell line specific: even if there was a consensus sequence,
an additional regulation mechanism would be needed [124]. Therefore, mecha-
nisms that position and control the time of firing of origins must be epigenetic
and linked to chromatin structure [61, 63–67]. Chromatin primary structure
can influence replication by facilitating or preventing ORC deposition and ori-
gin firing. Indeed, ORC shows little or no sequence specificity in mammals,
which indicates that its deposition must be epigenetically regulated. Experi-
ments demonstrate that origin firing depends on chromatin environment [62].
Moreover, ORC positioning has been linked to nucleosome dynamics and can
be efficiently predicted by a model taking only the enrichment in chromatin
remodelers as a parameter [127]. A recent mapping of ORC in human revealed
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that early origins are close to CpG-rich promoters displaying the H3K4me3
modification [128]. Another possible causal link not explored until today is
the influence of chromatin compaction on the replication fork progression. The
replication fork is probably slower in compacted region than in euchromatin
regions.

Conversely, replication can influence chromatin structure by influencing its
transmission. How histone marks subsist after successive replications has been
a long standing question. Even though the mechanisms of inheritance of his-
tone marks through replication remain to be clearly established [143], there are
solid presumptions that histone modifications participate to epigenetic mem-
ory [144]. If histone marks were not transmitted through replication, then
they would not be properly called epigenetic11 marks [143]. Replication in-
fluences chromatin primary structure by reorganizing histones. To allow the
progression of the replication fork, chromatin is temporarily disrupted, then
the parental and newly synthesized histones are deposited on DNA [62, 65].
The latter action is controlled by histone chaperones that associate with the
replication fork (Chromatin assembly factor 1 CAF-1 for H3 H4 dimer and
nucleosome assembly protein 1 NAP-1 for H2A-H2B). A first mechanism of
transmission could be that parental histones are redistributed between the
two DNA strands.“Old" histones would keep their modifications intact and
serve as templates for newly synthesized histones [62]. An alternative mech-
anism to explain the epigenetic memory has been proposed in [144]. Histone
modifications would be erased during the passage of the replication fork but
histone modifying complexes could stay attached to the DNA thread. Behind
the replication fork, these complexes would reestablish the histone marks. On
a larger scale, it seems that replication may also act upon the three dimen-
sional chromatin structure. Schematically, replication starts at the center of
the nucleus and goes towards the periphery. During this progression, it can
reorganize the 3D distribution of histone marks [145].

MRT data measure precisely the moment of the S-phase were the chromatin
is disrupted and reassembled. These data seem more suited to study the causal
effects of the replication program on chromatin structure. By contrast, the in-
fluence of chromatin on replication is more difficult to estimate. To precisely
assess the effects of chromatin structure, we would need the intrinsic position-

11Epigenetics is the study of heritable changes that cannot be explained by changes in

DNA sequence.
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ing and firing times of origins which is impossible to measure directly because
of passive replication12. Therefore, theoretical efforts are needed to delineate
active and passive replication, which would enable to assess the genome wide
effects of chromatin on replication initiation [131,132,146,147]. Alternatively,
in vitro experimental procedures could be proposed to assess the intrinsic firing
time of replication origins.

Remark: Histone variants are deposited throughout the cell cycle and are

called replication independent which does not mean that they cannot im-

pact replication. In the causality mechanisms discussed above, it would mean

that replication does not impact them directly but, in reverse, they can impact

replication by favoring or preventing origin deposition and firing. In Chapter

V, we will see that H2AZ (replication independent) seems to be an important

protagonist in the early firing of ESC specific replication origins.

II.3 Data

This short section gives a few indications on how datasets used in the “results”
chapters were produced.

II.3.1 CHiP-seq assay

To study the impact of chromatin on diverse nuclear functions, the fluctuations
of its composition along the genome have to be known. To our knowledge, there
are currently two different procedures to locate proteins on the DNA sequence:
DamID [148] and CHiP-seq [149,150]. The data used in this thesis have been
produced by CHiP-seq, which stands for chromatin immunoprecipitation with
massively parallel DNA sequencing.

Here, we briefly describe how protein positions are obtained by CHiP-seq
(Fig. II.9):

∗ DNA and chromatin proteins are bond together by covalent links.

∗ Then DNA-protein complexes are sheared: naked DNA is digested thus
DNA-protein complexes are separated from one another.

12A replication origin is said to be passively replicated if it is replicated by a fork coming

from a neighboring origin.
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Figure II.9: Summary of the CHiP-seq protocol. Reproduced from [149].

∗ The complexes of interest (one particular protein, e.g. one histone bear-
ing a modification or a DNA binding protein) are selected by an anti-
body. The antibody attaches to its antigen (DNA-protein complex) and
precipitates.

∗ From the precipitate, the DNA is purified.

∗ DNA is sequenced by a high-throughput sequencer. Reads are then
mapped on the genome.

Once reads are mapped on the genome, statistical pipelines detect positions
of significant enrichment compared to the background noise. The final output
of the procedure is a set of genomic intervals where the protein of interest
binds.
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Figure II.10: RNA-seq protocol summary. Reproduced from [151].

II.3.2 Assessment of gene expression level by RNA-seq

RNA-seq is a transcriptomic 13 tool taking advantage of the high-throughput
sequencing technology [10,151]. It consists of selecting the RNA population of

13Transcriptomics is the study of the complete set of transcripts (i.e. RNA molecules) in

a cell.
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interest (e.g. small RNAs, messenger RNAs, non coding RNAs) and sequenc-
ing it. In our dataset, RNA from protein coding genes were selected. They
were detected using their poly AAA tails.

Briefly, RNAs were first converted into a library of cDNA. In Fig. II.10,
sequencing adaptors (blue) were subsequently added to each cDNA fragment
and a short sequence was obtained from each cDNA using high-throughput
sequencing technology. The resulting sequence reads were aligned with the
genome.

One of the main advantages of RNA-seq compared to microarray technol-
ogy14 is that it does not rely on a gene annotation [151]. It can be used to
complete annotation (discovering new genes, improving positioning of exon-
intron boundaries). The RPKM unit defined in the “results" chapters (see e.g.

Sect. III.4.8, page 88) is equivalent to counting the number of times the RNA
polymerase transcribes a gene. This measure is far more natural and does not
present the same limits (saturation, noise...) as fluorescence intensity used in
microarrays. It also presents the advantage of being readily comparable be-
tween experiments which was difficult to do for microarrays without complex
normalization methods [151].

II.4 Statistical methodology

This section is dedicated to the description of statistical techniques used in the
“results” chapters. The analyses presented in this thesis use successively three
statistical tools: the Spearman correlation, the Principal Component Anal-
ysis (PCA) and an optimized K-means clustering (Clara). The principles of
these techniques are presented here in a way understandable without statistical
knowledge. However we would also like to provide a theoretical explanation to
the interested reader. To solve this apparent paradox, each subsection deals
with one technique and is organized as follows:

∗ Presentation of the purpose of the technique.

∗ Definition/algorithm of the technique. The non-statistician may skip
this paragraph.

14A DNA microarray is a collection of microscopic DNA spots attached to a solid surface.

Microarrays are used to measure the expression levels of large numbers of genes simultane-

ously by specifying a probe for each gene of interest.
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∗ An example on a simple dataset to illustrate the power and interest of
the tool. For the clustering and PCA subsections, the example treated
is treated as the dataset of interest in the “results” chapters.

II.4.1 Pearson correlation and Spearman correlation

Purpose: Correlation coefficients are basic tools widely used. On a popu-
lation of observations/individuals/items (e.g. genes, 100 kb windows, ORC
binding sites), one can measure diverse variables that can be continuous (e.g.
RPKM expression level, length, CpGo/e) or categorical (CpG rich/CpG poor).
Correlation is computed between two variables and assesses to what extent
the variables vary simultaneously. If the variables increase at the same time
they are said to correlate. Inversely, if one variable increases while the other
decreases, they anticorrelate. However, the classical Pearson correlation co-
efficient measures if a variable linearly increases with another variable. To
our judgment, there is no particular interest to look for a linear relations be-
tween variables. The Spearman correlation coefficient measures how the rank
of a variable varies with the rank of another variable15. Consequently, the
Spearman correlation captures all kind of monotonical relation between two
variables.

Definition: We remind that the Pearson correlation coefficient, between two
random variables X and Y , is given by [152]:

Cor(X, Y ) =
Cov(X, Y )

√

V ar(X)× V ar(Y )
. (II.5)

For n observations (xi, yi) of the couple of random variables (X, Y ), the em-
pirical correlation is

rxy =

∑n
i=1

(xi − x̄)× (yi − ȳ)
√
∑n

i=1
(xi − x̄)2 ×

√
∑n

i=1
(yi − ȳ)2

, (II.6)

where x̄ and ȳ are the empirical means.

The Spearman correlation [152] is simply the Pearson correlation between
the ranks of the variables rather than the variable values themselves. Let ri

15The rank of an observation is its position, according to its value, in the ordered list of

all observations. Therefore the smallest value has rank 1 and the largest value has rank N.
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Figure II.11: Difference between the Spearman and the Pearson correlation coefficients. Each

panel presents a particular relation between two variables x and y. In the top-left corner of

each panel the Pearson correlation coefficient (r) (Eq. (II.6)) and the Spearman correlation

coefficient (ρ)(Eq. (II.7)) are given. (A) Linear deterministic relation y = 1.5 × x + 1. (B)

Same relation as A with noise. (C) Exponential relation between x and y : y = exp(15x)+1.

(D) Same as (C) with noise. The red line represent the deterministic relation between y

and x. Blue dots represent the actual data set on which the correlaton coefficients were

calculated.

be the rank of xi and si the rank of yi:

ρxy =

∑n
i=1

(ri − r̄)× (si − s̄)
√

∑n
i=1

(ri − r̄)2 ×
√

∑n
i=1

(si − s̄)2
, (II.7)
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where r̄ and s̄ are the empirical means.

Example: To illustrate the difference between the Spearman and Pearson
correlation coefficients, we consider as examples a perfect linear relation and
an exponential relation between two variables (Fig. II.11). In the first case,
these correlation coefficients are equal (Fig II.11A). The two coefficients cap-
ture efficiently linear relations between two covariates. Moreover, they are
robust to a reasonable amount of noise (Fig. II.11B). The second example is
constructed with the same x data points. The y data points are an exponential
function of x. In the deterministic case, the Spearman correlation value is still
1 whereas the Pearson correlation coefficient decreases to ∼ 0.6 (Fig. II.11C).
Since the relation is deterministic and monotonical, it seems desirable that the
correlation coefficient value be maximal (i.e. 1). The Spearman coefficient
clearly indicates that the value of x gives the value of y. When noise is added,
the Spearman correlation coefficient is still high ∼ 0.9 while the Pearson co-
efficient is only 0.5 (Fig. II.11D) which seems weak for such a clear relation
between variables.

Remark: the CHiP-seq read density spans several order of magnitude as

the y data points in the preceding exponential example. Actually, the Pearson

correlation is thus particularly ill-suited to the kind of dataset analyzed in the

“results" chapters. For these practical and theoretical reasons, we choose to

use the Spearman correlation coefficient over the Pearson coefficient.

II.4.2 Principal Component Analysis

Purpose: Principal Component Analysis (PCA) is a dimensionality reduc-
tion technique [152]. Its purpose is to estimate the “true" dimensionality of
a data set. Indeed, a dataset that appears to have a high number of dimen-
sions16 because a lot of correlated variables were taken into account (like in
the introductory example with DamID 46 profiles) can have a “real" dimen-
sion of only two or three. Imagine data points aligned in a 3D space. The line
where the data points are confined is one-dimensional and the position of the
line could be properly described by only one vector. The position of the data
points are described equally well by their coordinates along this line and by
their three coordinates in the original space. The projection has interesting

16The number of dimensions is the number of variables measured on the individuals.
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properties since it contains in only one coordinate the information contained in
three coordinates in the original dataset. PCA is a technique that finds proper

vectors to project data points on and to estimate how well the projection repre-

sents the original data. In practice, data points are never exactly confined to
a smaller dimensional space. Therefore the projection does not exactly reflect
the original data set. For the PCA to be meaningful, the information lost by
projection should be noise or irrelevant.

Because PCA makes dataset smaller, it can be used for data compaction.
Alternatively, PCA can be used to generate more manageable datasets than
the original one. For instance, PCA projections are useful to visualize datasets
of high dimensionality.

Definition: PCA defines the projection vectors by diagonalizing the covari-
ance matrix of a mutivariate dataset. If we measure D variables on N indi-
viduals, the dataset can be represented by a (N ×D) matrix. Let X be this
(N × D) matrix and Xiα the variable α for the individual i. Thus, a row of
the matrix X is noted Xi and encompasses all variables for the individual i.

The mean vector (vector of the mean value of the D variables) is computed
as :

X̄ =
1

n

n
∑

i=1

Xi. (II.8)

We define a centered row as XCi = Xi − X̄. and XC the matrix formed by
all centered rows.

The sample estimate of the covariance matrix is

Σ̂XX =
1

n
XC.XCt, (II.9)

where XCt is the transpose of XC. In other words, Σ̂αβ = 1

n

∑n
i=1

XCiαXCiβ.
It is clear that the covariance matrix is a positive symmetrical matrix. Linear
algebra theorems state that such positive symmetric matrices are diagonaliz-
able in an orthornomal basis and that all the eigenvalues are positive.

PCA consists in finding the eigenvectors of the covariance matrix. Projec-
tions on these eigenvectors are linear combinations of the original random vari-
ables. The new random variables defined by the eigenvectors are uncorrelated
to each other and their variances are given by the corresponding eigenvalues.
The decreasing eigenvalues of Σ̂XX are denoted by λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂D ≥ 0,
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and vk is the eigenvector associated to the kth largest eigenvalue. Only a
few vectors with the largest eigenvalues are retained and the original data are
projected on this basis.

Since projections on each eigenvectors are uncorrelated, the variance of
several projections is additive. Therefore, the variance of the projection on the
space formed by (v1, v2, v3) is λ1+λ2+λ3. Statisticians think about information
as variance. Suppose, for example, that in a multivariate dataset, one variable
has the same value for all individuals. This particular variable does not truly
contain information. Indeed, we can acknowledge that this feature is constant
and remove it from the original dataset. Consistently with its information
content, the variable variance is zero. By contrast, a random variable with a
high variance is said to contain a lot of information because it differentiates
the individuals from one another. PCA creates a set of uncorrelated variables,
classifies them according to their variances and keeps only variables with a
non-negligible variance (i.e those that contain a lot of information).

If the j first eigenvectors are retained then the proportion of variance ac-
counted for is

Information =

∑j
k=1

λ̂k
∑D

k=1
λ̂k

. (II.10)

In practice, the proportion of explained variance is used to estimate the number
of eigenvectors to retain. One can set a threshold and retrieve the number of
eigenvectors necessary to explain 90% of the total variance. Alternatively, one
can search for an interesting trade off between the number of eigenvectors and
the variance explained.

Example: We illustrate the usefulness of PCA on the artificial example
shown in Fig. II.12. The dataset is distributed in 5 different 3D multivariate
normal distributions. To illustrate how PCA efficiently detects informational
projection subspaces, we voluntarily constrain the mean of the multivariate
distributions to the same plane and one variable contains only noise (z axis).
In the original 3D space, the scatter plot of data points does not reveal at all
the existence of the five multivariate modes (Fig. II.12A). The eigenvalues ob-
tained by diagonalizing the correlation matrix are 18.25, 6.54, 0.32. Therefore,
the first principal component accounts for 72.7% of the total variance, the sec-
ond for 26.1% and the last for 1.3%. The information on the last component is
negligible. Hence, only the first and second principal components are retained.
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Figure II.12: Finding meaningful projections with PCA. (A) Scatterplot of the original

dataset in 3D. (B) Projection of data points onto the plane formed by the first principal

component (PC1) and the second principal component (PC2). (C) Same projection as in

(B) represented as a density. The densities were computed by a kernel density estimator.

The density values are indicated by a color (white: high density, yellow: moderate density,

green: low density) and a contour plot.

The structure of the dataset appears clearer on the projection on the
plane defined by the first (PC1) and second (PC2) principal components
(Fig. II.12B). Three clouds are distinctly separable. Two of the three clouds
may be divided in two smaller clouds. To decide on the number of “clouds",
a better representation is needed. Indeed, scatter plots can be misleading be-
cause dots overlap. Therefore, scatterplots saturate and high density regions
are not distinguished from moderate density regions. To visualize the law
underlying the data point spatial distribution, one can use a non parametric
density estimator like kernel estimators. The probability density function is
estimated from the data points and represented in Fig. II.12C. The five orig-
inal modes clearly appear even though the two in the top-right corner are a
little bit overlapping. The underlying structure of data points is much more
apparent after applying PCA and a good visualisation device (Fig. II.12C)
than in the original 3D space (Fig. II.12A).

Note that for such a simple example, a spinning 3D scatterplot is probably
enough to understand that the data contain 5 modes. However when the
original dataset has a high dimensionality (& 10) simple visual inspection is
obviously impossible. In the “results” chapters, the original datasets, that
contain more than ten variables, will be reduced, thanks to PCA, to a 3D
projection. This will enable visual inspection which, from our standpoint, is a
very good way to detect structures in a dataset.
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II.4.3 Clustering

Purpose: A clustering method refers to an algorithm that objectively find
homogeneous groups in a dataset. Each cluster (i.e. group of individuals)
should contain observations that are similar to each other. Another desirable
property is that observations in different clusters should be significantly dif-
ferent. There are a lot of methods to cluster objects and their outputs are
not identical and can even be very different. Indeed, the clustering algorithm
depends heavily on the definition of similarity between individuals. The clus-
tering method must be chosen according to the data of interest. An issue with
clustering is that it is difficult to assess the quality of a clustering because it is
an unsupervised method (see Chapter VI). There are a lot of ad hoc criteria to
estimate the quality of a clustering on a given dataset. Yet, different criteria
can lead to the choice of different “optimal" clustering methods.

Once the initial dataset is cleared of negligible dimensions, we can visualize
our data and see if there are detectable high density zones in it. In this thesis
we favor an approach based on visualisation (enabled by PCA) and the analysis
of the output over ad hoc criteria. We select the right clustering method by
verifying the concordance between clusters and visible high density regions in
the data set. Finally, the clustering quality is confirmed a posteriori by the
relevance of the obtained results from a biology standpoint.

Algorithm: We used the Clara algorithm [153] which is an optimization
of k-means for large datasets. According to k-means algorithm, let K be the
number of clusters in the dataset. The centroid of a cluster is the mean position
of individuals belonging to this cluster. If Xi is the vector of coordinates for
the ith individual, then the cluster centroid X̄k of the kth cluster is defined as:

X̄k =
1

nk

∑

j∈k

Xj , (II.11)

where nk is the number of individuals in the kth cluster.

1. The input is the dataset X = {Xi, i = 1, 2, . . . , n} and the number of
clusters K.

2. Initialize the procedure by doing one of the following:
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Figure II.13: Clare clustering method delineates high density regions. (A) Clustering of data

points in the plane formed by the first (PC1) and the second (PC2) principal components.

Each color corresponds to a cluster. (B) Contour plots of the densities of the five clusters

computed by a kernel density estimator.

∗ Assign each observation to a cluster randomly. For each cluster
compute its centroid.

∗ Specify K cluster centroids, X̄k, k = 1, 2, . . . , K

3. Compute the squared-euclidean distance of each item to the K cluster
centroids and assign items to the closest centroid.

4. Compute the new positions of centroids according to the new assignation
of items.

5. Repeat step 3 and 4 until the assignations do not change.

The complexity of k-means is O(N2) which can be an issue for large data
set. The trick used by Clara (Clustering for Large Application) [153] to opti-
mize k-means is the following:

∗ Draw several samples of a smaller size than the original dataset.

∗ Estimate the centroid positions by running k-means on the small samples.

∗ Assign individuals according to the estimated centroid positions.

Since the size of the sample is constant, the complexity does not increase as a
quadratic function.
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Example: Fig. II.13 shows how Clara efficiently segregates the five laws
underlying in the 3D distribution of data points in the example discussed in
Fig. II.12. Clara was applied on the projection of the dataset on the plane
formed by the first (PC1) and second (PC2) components (Fig. II.12B). The
output of the Clara clustering is displayed in Fig II.13A. The kernel estimation
(Fig. II.13B) of each cluster distribution demonstrates that to each cluster
corresponds a mode of the original data point distribution (Fig. II.12C).

In a nutshell, the workflow we repeatedly apply in the “results” chapters
can be summarized as follows. PCA enables a visual inspection of the data set.
This inspection assesses the number of particularities we would like to detect.
Then, the clustering algorithm automatically delineate groups that correspond
to these particularities. By visual inspection, we make sure that the algorithm
correctly detect the particularities.
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Chapter III

Human Genome Replication

Proceeds Through Four

Chromatin States

In this Chapter, we perform the integrative analysis of the genome-wide distri-
butions of thirteen epigenetic marks in the human cell line K562, at the 100kb
resolution of corresponding mean replication timing (MRT) data. We thereby
identify four major groups of chromatin marks. These states have different
MRT, namely from early to late replicating, replication proceeds through a
transcriptionally active euchromatin state (C1), a repressive type of chromatin
(C2) associated with polycomb complexes, a silent state (C3) not enriched in
any available marks, and a gene poor HP1-associated heterochromatin state
(C4). When mapping these chromatin states inside the megabase-sized U-
domains (U-shaped MRT profile) covering about 50% of the human genome
(Sect. II.1.4), we reveal that the associated replication fork polarity gradient
corresponds to a directional path across the four chromatin states, from C1
at U-domains borders followed by C2, C3 and C4 at centers. Analysis of the
other genome half is consistent with early and late replication loci occurring in
separate compartments, the former corresponds to gene-rich, high-GC domains
of intermingled chromatin states C1 and C2, whereas the latter corresponds to
gene-poor, low-GC domains of alternating chromatin states C3 and C4 or long
C4 domains. This segmentation sheds a new light on the epigenetic regulation
of the spatio-temporal replication program in human and provides a framework
for further studies in different cell types, in both health and disease. Results
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reported in this chapter are published in [154].

III.1 Introduction

Understanding the role of chromatin structure and dynamics in the regulation
of the nuclear functions including transcription and replication, is a major chal-
lenge of current research in genomics and epigenomics [4, 6, 54–57, 155]. Since
the initial sequencing of complete genomes and more than a decade ago of the
human genome [1], the development of new techniques, in particular chromatin
immunoprecipitation (ChIP) followed by massive parallel sequencing (ChIP-
seq) [150], has enabled genome-wide analysis of many epigenetic modifications
such as histone modifications, histone variant incorporation as well as of vari-
ous DNA-binding proteins [6]. These techniques have been extensively applied
to various eukaryotic genomes, from budding yeast [156], to plants [157, 158],
worm [83], fly [159, 160], mouse [6, 9, 15] and human [6, 9, 15, 16], and have
led to significant progress in our understanding of the chromatin landscape
and of its impact on gene regulation, replication origin specification and cell
differentiation. Statistical analyses of these multivariate data sets have shown
that this huge combinatorial complexity can be reduced to a surprisingly small
number of predominant chromatin states with shared features namely four in
Arabidopsis thaliana [51], five in Caenorhabditis elegans [52] and four [53] or
five [50] in Drosophila. To our knowledge, no such a drastic dimensional re-
duction has been reported in mammalian organisms so far. The application of
a multivariate Hidden Markov Model (HMM) [48] as well as the implementa-
tion of adapted pattern-finding algorithm [161], have confirmed that distinct
epigenetic modifications often exist in well-defined combinations correspond-
ing to different genomic elements like promoters, enhancers, exons, repeated
sequences and/or to distinct modes of regulation of gene expression such as
actualy transcribed, silenced and poised [48,161–163]. Some recent study [164]
of chromatin mark maps across nine different human cell types has ultimately
identified fifteen main chromatin types which is a reljatively limited number of
epigenetic states but probably not the optimal complexity reduction one may
achieve in human and more generally in mammalian genomes. The analysis
of a wide set of chromatin regulators that add, remove or bind histone modifi-
cations reported in [165], is a very encouraging step in this direction since six
major groups or modules of chromatin regulators were shown to encompass the
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combinatorial complexity and to be associated with distinct genomic features
and chromatin environments. Here, we perform principal component analysis
(PCA) [152] and classical clustering [153] on thirteen epigenetic mark maps in
the K562 immature myeloid human cell line at the resolution 100 kb of cor-
responding available MRT data, with the perspective of identifying the major
types of chromatin states in relation with replication timing during S-phase.

III.2 Results/Discussion

III.2.1 Combinatorial analysis of chromatin marks

We investigated relationships between the genome-wide distributions of eight
histone modifications, one histone variant and four DNA binding proteins in
the immature myeloid human cell line K562 (Sect. III.4.2) at the 100kb reso-
lution of corresponding MRT data [14, 94]. As a first step, we computed the
Spearman correlation coefficient (Sect. III.4.4) of each mark with each other.
We next represented the resulting matrix as a heat map after having reorga-
nized rows and columns with a hierarchical clustering based on the Spearman
correlation distance (Eq. (III.1), Fig. III.1). This preliminary analysis was very
promising as regards to the possibility of reducing combinatorial complexity.
All the epigenetic marks that are known to be involved in transcription posi-
tive regulation, namely H4K20me1, H3K9me1, H3K4me3, H3K27ac, RNAPII,
CBX3, H2AZ, H3K79me2, H3K36me3, together with the transcription factors
CTCF and Sin3A, form a block in the correlation matrix, meaning that they
are all correlated with each other. The maximum correlation is actually ob-
tained between the two active promoter marks H3K4me3 and H3K27ac. As
suggested in Refs [164,166], all these active marks are likely to occupy similar
regions in the genome. In fact, two lines are clearly apart on the hierarchical
clustering dendrogram (Fig. III.1). They correspond to the repressive chro-
matin marks H3K27me3 and H3K9me3 that are respectively associated with
the so-called facultative and constituve heterochromatins [145,166]. These two
marks are recognized by the chromodomains of polycomb (Pc) proteins and
heterochromatin protein 1 (HP1), respectively, components of distinct gene si-
lencing mechanisms which likely explains that they are strongly anticorrelated
with each other. While H3K9me3 behaves quite independently with respect
to most of the active chromatin marks, H3K27me3 correlates to some of them
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Figure III.1: Spearman correlation matrix between epigenetics marks and mean replication

timing (MRT). For each pair of variables we computed the Spearman correlation over all 100

kb non-overlapping windows with a valid score. Spearman correlation value is color coded

using the color map shown on the right. A white line separates the MRT from epigenetics

marks. Correlations with MRT (from late to early) are placed at the top and the right of the

matrix. Lines for the thirteen epigenetic marks were reorganized by a hierarchical clustering

using Spearman correlation distances (Eq. (III.1)) as illustrated by the dendrogram on the

left of the graph. This ordering implies that highly correlated epigenetic marks are close to

each other.

and especially to H4K20me1, H3K9me1 and CTCF. When further investigat-
ing the correlations between the thirteen considered chromatin marks and the
MRT (Fig. III.1), we found, consistently with previous works [12,14,34,36,89],
a strong correlation for the transcriptionally active marks with early replica-
tion. Some moderate correlation was obtained for the Pc associated repressive
marks H3K27me3 which contrasts with the significant anticorrelation observed
for the constitutive heterochromatin mark H3K9me3 with late replication.

In a second step, to objectively identify the prevalent combinatorial pat-
terns of the thirteen chromatin marks, we performed a PCA [167] to reduce
the dimensionality of the data (Sect. III.4.5). We then concentrated on the
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Figure III.2: PCA analysis. (A) Percentage of variance accounted by the first thirteen

principal components ordered according to their corresponding variance (eigenvalues). (B)

Cumulative variance.

first three principal components, which together account for 76% of the total
data set variance (Fig. III.2). By projecting the 100kb genomic loci on the
(PC1, PC2) plane (Fig. III.3A) and the (PC3, PC2) plane (Fig. III.3B), we
noticed that four areas contain most of the population. On the (PC1, PC2)
plane, a large area of medium density comes out from a plane of much higher
density. As viewed on the (PC3, PC2) plane, in this very dense plane, loci
mainly lie along two straight lines with a very high density of loci concentrated
at the intersection of these lines. This led us to use the Clara clustering algo-
rithm [153], which is very similar to k-means, with the number of clusters fixed
to four (Sect. III.4.6). When labeling each of the four main chromatin states
with a color, we obtained four domains in the 3D scatter plot (Fig. III.4A) that
have common boundaries as evidenced on the three orthogonal projections on
the planes (PC1, PC2), (PC1, PC3) and (PC3, PC2) (Fig. III.4A). To improve
the quality of our clustering procedure, we filtered out poorly clustered data
points that are closer to another cluster than to the one they belong to (black
dots in Fig. III.4), where the distance between a data point and a cluster is
defined as the mean of the distances of this point to all the points in the clus-
ter. Removing those points is exactly equivalent as removing points with a
negative silhouette [168] (Sect. III.4.6).

To determine the number of clusters, we used two statistical criteria (Sect.
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Figure III.3: Principal Component Analysis (PCA). Two-dimensional (2D) projections of

the data on (A) the plane defined by the first (PC1) and second (PC2) principal components,

and (B) the plane defined by the second (PC2) and the third (PC3 )principal components.

The densities were computed by a kernel density estimation. The density values are indicated

by a color (white: high density, yellow: moderate density, green: low density) and a contour

plot.
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Figure III.4: Defining the four prevalent chromatin states. (A) Scatterplot of the data points

onto the first three principal components. Color dots indicate the four chromatin states as

found by our clustering procedure (pink: transcriptionally active chromatin, orange: chro-

matin repressed by polycomb, green: silent unmarked chromatin, blue: HP1 heterochro-

matin). Points in dark grey are not classified in any chromatin state (Sect. III.4.6). (B)

Within-cluster sum of squares (Eq. (III.2)) with respect to the number of clusters. (C) Gap

statistics (Eq. (III.4)) with respect to the number of clusters.
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Figure III.5: Dichotomic analysis with two chromatin states. (A) Results of our clustering

procedure when using two clusters (the number of clusters is the only parameter of the

procedure). We found a segmentation between transcriptionally active chromatin (red) and

silent chromatin (blue). (B) Same representation for chromatin state blocks (1+2) (light

red) and (3+4) (light blue) as defined in Fig. III.19D.
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III.4.6). Four is the optimal choice according to the within-cluster sum of
squares that clearly displays an elbow (abrupt slowing down of the decay) at
the cluster number equal to four (Fig. III.4B). The gap statistic [169] indicates
that two or four clusters are good solutions (Fig. III.4C). Our choice of four
main chromatin states (Fig. III.4A) can thus be seen as an attempt to test the
limits of the classical dichotomic picture [26,36,90] of two chromatin states, one
open (euchromatin) and another one closed (heterochromatin) (Fig. III.5A).

III.2.2 Epigenetic content of the four prevalent chromatin

states

The four prevalent chromatin states so identified and further labeled C1, C2,
C3 and C4, were respectively found in 6572 (23.8%), 5312 (19.2%), 6603
(23.9%) and 6758 (24.4%) among the 27656 100kb loci with a defined MRT
(Sect. III.4.1). Indeed, we removed from the analysis the 2411 (8.7%) loci that
were not properly classified in any chromatin state. More than 90% of the
loci in C1 are associated (positive enrichment) with the histone modifications
H3K36me3, H3K4me3, H3K27ac and H3K79me2, the hallmarks of transcrip-
tionally active chromatin (Fig. III.6) [6,55,166], as well as of the loci associated
with RNA Polymerase II (Fig. III.7) and the RPD3-interacting protein SIN3A
(Fig. III.7) as previously found in active euchromatin in Drosophila [50]. The
majority of C1 loci are marked by H3k9me1loci consistently with the obser-
vation of higher H3K9me1 levels in active promoters [166], and also contains
the histone variant H2AZ whose binding level was shown to correlate with
gene activity in human [166] (Fig. III.6). C2 is notably associated with the
histone modification H3K27me3 (Fig. III.6), hence corresponds to a Polycomb
repressed facultative heterochromatin state [145, 166]. Out of the four main
chromatin states, C3 corresponds to 100 kb loci are not enriched for any avail-
able marks. C3 can be compared to the “null" or “black" silent heterochro-
matin regions previously found in Drosophila [50, 53] and Arabidopsis [51] as
covering a significant portion of the genome. C4 corresponds to the clas-
sic HP1-associated heterochromatin state with all of the 6603 C4 100-kb-loci
containing the H3K9me3 mark and almost only that repressive mark (Fig.
III.6) [145,166].

Methylation of H3K9 is well known to be implicated in heterochromatin
formation and gene silencing [55]. The fact that H3K9me1 is found almost

61



Figure III.6: Repartition of histone marks in the four chromatin states. Boxplots of the

decimal logarithm of histone mark ChiP-seq read density in 100 kb non-overlapping windows

per chromatin state. Same color coding as in Fig. III.4A.
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Figure III.7: Repartition of transcription factors in the four chromatin states. Boxplots of the

decimal logarithm of transcription factor ChiP-seq read density in 100 kb non-overlapping

windows per chromatin state. Same color coding as in Fig. III.4A.
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equally in C1 and C2 and not in C4 (Fig. III.6), confirms that this epige-
netic modification may also be associated with transcriptional activation [166].
H3K9me3 is found in all C4 100-kb-loci as the probable signature of its ability
to anchor the heterochromatin protein HP1 at the origin of the establishment
of heterochromatin. But H3K9me3 is not exclusively found in C4 loci; indeed
75% of C1 loci and 50% of C2 loci contain some H3K9me3 marks (Fig. III.6).
In the transcriptionally active state C1, H3K9me3 is present in combination
with all active marks which might conduct in the anchoring of the γ isoform of
the HP1 protein [170–173], also called CBX3 (Fig. III.7), which was recently
shown to help the splicing of multiexonic genes [174,175] .

The insulator-binding protein CTCF is known to establish chromatin bound-
aries to prevent the spreading of heterochromatin into transcriptionally active
regions [142, 176]. Consistent with the idea that CTCF-bound insulators pre-
vent heterochromatin to invade genic regions, we found in good agreement
with previous observation in Drosophila [50,53] that CTCF is contained in C1
loci and to a slightly less extent in C2 loci (Fig. III.7).

Despite the original association of H4K20 methylation with repressive chro-
matin [55], H4K20me1 was recently shown to strongly correlate with gene ac-
tivation [166]. In particular when combined with H3K36me3 and H2BK5me1,
this mark was found at highly expressed exons near human gene 5’-ends [177].
The high level of H4K20me1 found in C1 (Fig III.6) is quite consistent with
these observations. However, we observed the same level of H4K20me1 in C2
which is silent. This suggests that this mark is not uniquely linked to tran-
scription activation. Interestingly, recent works have confirmed that PR-Set7
involved in the deposition of H4K20me1 plays an important role in the control
of replication origin firing in mammalian cells [178–180].

To assess the generality of the four prevalent chromatin states, we ran the
same clustering procedure on the lymphoblastoid cell line GM12878 and on
a third blood cell line (Monocyte CD14+, Monocd14ro1746). The same four
main chromatin states emerged in the three cell lines (Figs III.8 and III.9).
Hence the chromatin organization in four chromatin states is shared by at
least several somatic human cell lines.
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Figure III.8: Repartition of epigenetic marks in the four chromatin states for the GM12878

cell line. Boxplots of the decimal logarithm of epigenetic mark ChIP-seq read density in 100

kb non-overlapping windows per chromatin state. Same color coding as in Fig. III.4A.
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Figure III.9: Repartition of epigenetic marks in the four chromatin states for the

Monocd14ro1746 cell line. Boxplots of the decimal logarithm of epigenetic mark ChIP-

seq read density in 100 kb non-overlapping windows per chromatin state. Same color coding

as in Fig. III.4A.
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III.2.3 Chromatin states are replicated at different times

during S phase

This classification into four main chromatin states of the human genome shows
strong similarities with those recently reported in Arabidopsis [51] and Drosophila

[50, 53] suggesting the possible existence of some simple principles of epige-
netic compartimentalization of eukaryotic genomes. However, what our study
reveals with respect to previous works, is a strong correlation between these
chromatin states and MRT (Fig. III.10). C1, C2, C3 and C4 actually have
significantly different MRT probability distribution functions (Fig. III.10A)
with a clear shift from early to late replicating as evidenced by the cumu-
lative distribution functions (Fig. III.10B). By applying a wilcoxon test to
each pairs of chromatin states, we did verify that the p-value was infinitesi-
mal. The transcriptionally active euchromatin state C1 replicates early in S
phase consistent with previous analysis of open chromatin marks in human
and mouse [12,14,34,36,87,89]. The Pc-repressed facultative heterochromatin
state C2 is replicated slightly later in mid-S phase which corroborates the re-
cent finding of an association of H3K27me3 with mid-replicating chromosomal
domains in human fibroblast [145]. This rather clear observation contrasts with
previous contradictory results concerning the existence of high correlation be-
tween late replication and this repressive chromatin mark [36,181]. The silent
unmarked chromatin state C3 replicates later than C2 but before the HP1-
associated heterochromatin state C4 that replicates very late almost at the
end of S phase (Fig. III.10). As previously reported in Drosophila [50, 88],
these results confirm the existence of a strong link between epigenetic chro-
matin states and MRT in human. They further suggest that the epigenetically
controlled chromatin structure has some impact on the normal progression
of S-phase. Note that similar results were found for the GM12878 cell line
(Fig. III.11) up to some slight exchange in late replication timing between C3
and C4.

III.2.4 Chromatin states are different functionally

To address the question of the gene content of these four prevalent chro-
matin states, we used a data set of 23818 genes that are spatially distinct
(Sect. III.4.8). Some of these genes (3001) were not taken into account in
our analysis because their promoter don’t belong to any chromatin state. The
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Figure III.10: MRT in the four chromatin states. (A) Boxplots of MRT computed in 100

kb non-overlapping windows per chromatin state. (B) Empirical cumulative distribution

function (c.d.f.) of MRT in the four chromatin states. Same color coding as in Fig. III.4A.

Figure III.11: MRT in the four chromatin states for the GM12878 cell line. (A) Boxplots

of MRT computed in 100 kb non-overlapping windows per chromatin state. (B) Empirical

cumulative distribution function (c.d.f.) of MRT in the four chromatin states. Same color

coding as in Fig. III.4A.
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Figure III.12: Gene expression in the four chromatin states. (A) c.d.f. of gene expression

(measured in log10(RPKM), (Eq. (III.7)) in the four chromatin states. (B) Density of

promoters in the 4 chromatin states as a function of gene expression (genes were grouped

into bins of width 0.05 in log10(RPKM) unit). Same color coding as in Fig. III.4A.

mean density of the 20817 genes that belong to one of the four chromatin states
is 8.24 promoters per Mb. The only chromatin state that is highly enriched
in gene promoters is the early replicating euchromatin state C1 that harbours
62.0 % of gene promoters even though it represents about 25% of the total
genome coverage by the four chromatin states (Tables III.1 and III.3). The
mid S facultative heterochromatin state C2 also contains a non negligible per-
centage (19.6%) of gene promoters that indeed corresponds to a modest density
7.7 promoters/Mb as compared to 19.1 promoter/Mb found in C1. The late
replicating unmarked and constitutive heterochromatin states C3 and C4 are
genuinely gene deserts with very low gene densities 4.1 promoters/Mb and 1.8
promoter/Mb respectively. The mean gene length increases gradually from
C1 to C4 going from 42.5 kb to 133.1 kb (Table III.1). This discrepancy in
gene length explains why the gene coverage decreases less abruptly than the
promoter density, with C1 mainly genic (62.9%), C2 modestly genic (49.8%)
and C3 (39.5%) and C4 (29.3%) mostly intergenic.

To investigate gene expression in chromatin states, we used a data set
of 17872 genes with a valid expression value in K562 (Sect. III.4.8). Of
those genes, 15869 belong to one of the chromatin states. We found that
a vast majority of expressed genes with a RPKM > 1 (Eq. (III.7)) are in
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Chromatin states C1 C2 C3 C4
gene fraction (percent) 62.0 19.6 12.6 5.8
gene density per Mb 19.1 7.7 4.1 1.8

median gene length (kb) 19.0 19.0 17.8 26.1
mean gene length (kb) 42.5 59.4 83.5 133.1
gene coverage (percent) 62.9 49.8 39.5 29.3

Table III.1: Gene content in the four chromatin states. For each chromatin state, the

following information is given: (i) the fraction of genes in this state in percent of the total

number of genes classified in the four chromatin states, (ii) the density of genes per Mb, (iii)

the median gene length in kb, (iv) the mean gene length in kb and (v) the fraction of the

chromatin state covered by genes in percent. The number of genes taken into account are

12904 genes in C1, 4089 in C2, 2625 in C3 and 1199 in C4.

the early replicating euchromatin state C1 (Fig. III.12B), which confirms the
link between MRT and expressed gene density previously reported in mam-
mals [11, 12, 14, 86]. As expected, most of the genes in the facultative Pc
repressed heterochromatin state C2 are non expressed. Interestingly, we found
that the density of non expressed genes in C1 is equivalent to the one in C2,
indicating that it is more the predominance of active genes that characterizes
early replicating regions than the absence of repressed genes. This explains
why the correlation between MRT and gene expression is stronger if one con-
siders the expressed gene density (R = 0.58, P < 2.10−16)) than the mean
expresssion (R = 0.24, P < 2.10−16) as previously observed in Drosophila [85].
Indeed in C1 the mean gene expression level is lowered by the presence of a non
negligible set of non-expressed genes. The few genes in the heterochromatin
states C3 and C4 are silent except a minority of them.

We assessed gene function on the basis of gene ontology [182]. We ana-
lyzed the genes in each chromatin states according to their biological process
(Fig. III.13), component (Fig. III.14) and function (Fig. III.15) using GO SLIM
annotation (Sect. III.4.11). We computed the enrichment p-value using the
Hypergeometric distribution and used the odd ratio value to determine if the
deviation from expected number of genes for the considered GO terms was an
enrichment (odd ratio > 1) or a depletion (odd ratio < 1). As previously ob-
served for gene expression, these GO terms provide some clear discrimination
between genes in the early replicating transcriptionally active euchromatin C1
and genes in the repressed heterochromatin states C2, C3 and C4. Genes en-
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Figure III.13: GO term enrichment of the Biological Process ontology in the four chromatin

states. Fisher’s exact test odd ratios were computed for each GO term of the Biological

Process ontology in the four chromatin states. If the test was unsignificant the corresponding

cell was left blank (Sect. III.4.11) otherwise the log10(odd ratio) value was coded using the

color map shown at the bottom.



Figure III.14: GO term enrichment of the Cellular Component ontology in the four chromatin

states. Same as Fig. III.13 for the Cellular Component GO term annotation.
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Figure III.15: GO term enrichment of the Molecular Function ontology in the four chromatin

states. Same as Fig. III.13 for the Molecular Function GO term annotation.
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riched in C1 are almost systematically depleted in C2, C3 and C4, whereas on
the opposite, genes that are depleted in C1 are enriched in at least one if not
all the heterochromatin states C2, C3 and C4. We found C1 to be enriched
mainly in housekeeping genes. The highest enrichments were obtained for the
following process categories: mRNA processing, translation, ribosome biogen-
esis, DNA metabolic process, chromosome organization and segregation, cell
cycle and cell division and for the corresponding component categories: ribo-
some, chromosome, nucleolus, nucleoplasm, nuclear envelope, mitochondrion
and microtubule organizing center. The highly depleted process categories in
C1 correspond to tissue specific genes that are not expressed in the immature
myeloid K562 cell line as for example neurological system process, extracellular
matrix organization, cell adhesion and cell motility, or that are defficient in
these cancer cells like circulating system process [183,184].

III.2.5 Compositional content of chromatin states

Along the line of the isochore model [185], GC-rich and GC-poor regions were
shown to match the cytogenic R and G bands and to correlate well with early
and late replicating domains in mammals [1, 186, 187]. GC-rich regions corre-
spond to regions of very high density of genes including the housekeeping genes
and associated CpG islands. This also correspond to regions enriched in short
inter-dispersed repetitive DNA elements (SINEs, Alu) [1]. In contrast, GC-
poor regions are definitely poor in genes, predominantly tissue-specific genes
containing rather large introns, but are relatively rich in long inter-disperse
repetitive DNA elements (LINES) [1] that are significantly more abundant in
these regions. Consistently, we found that the early replicating euchromatin
state C1 has a GC content distribution shifted to higher values as compared
to the unmarked and constitutive heterochromatin states C3 and C4 respec-
tively (Fig. III.16A). C1 is definitely GC-rich with an mean value GC = 44.0%

that is significantly higher than the genome average (GC = 41.0%). On the
opposite C3 and C4 are GC-poor with GC = 39.3% and 36.7%, respectively.
Surprisingly, the Pc repressed facultative heterochromatin state C2 has a GC
content distribution similar to the one obtained for C1 (Fig. III.16A) with
GC = 44.0%. This means that if a high density of early replicating and highly
expressed genes implies a high GC content, the reciprocal is not true. For ex-
ample, C2 loci corresponding to 18% of the genome are GC-rich (Fig. III.16A)
but gene poor (Table III.1) and most of these C2 genes are silenced by Pc
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Figure III.16: Sequence composition in the four chromatin states. (A) Boxplots of GC

content computed in 100 kb non-overlapping windows per chromatin state. (B) Boxplots of

CpG o/e computed in 100 kb non-overlapping windows per chromatin states. Same color

coding as in Fig. III.4A.
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Figure III.17: Sequence composition in the four chromatin states in the Monocd14ro1746

cell line. (A) Boxplots of GC percent computed in 100 kb non-overlapping windows per

chromatin state. (B) Boxplots of CpG o/e computed in 100 kb non-overlapping windows

per chromatin states. Same color coding as in Fig. III.4A
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Figure III.18: Sequence composition in the four chromatin states in the GM12878 cell line.

(A) Boxplots of GC percent computed in 100 kb non-overlapping windows per chromatin

state. (B) Boxplots of CpG o/e computed in 100 kb non-overlapping windows per chromatin

states. Same color coding as in Fig. III.4A.

proteins.

Cytosine DNA methylation is a mediator of gene silencing in repressed het-
erochromatin regions, while in potentially active open chromatin regions DNA
is essentially unmethylated [188, 189]. Methyl-cytosines being hypermutable,
prone to deamination to thymines, CpG o/e ratio (Sect. III.4.9) is commonly
used as an estimator of DNA methylation, the higher this ratio, the lower the
methylation [112, 190]. When computing CpG o/e after removing the CpG
islands (CGIs) that are short unmethylated regions rich in CpG, in the four
chromatin states, we found a significant shift of the CpG o/e pdf to smaller
values when going from C1 (CpG o/e = 0.202) to C2 (CpG o/e = 0.195), C3
(CpG o/e = 0.164) and C4 (CpG o/e = 0.156) (Fig. III.16B). Thus relative
to the genome average value CpG o/e = 0.177, the early replicating transcrip-
tionally active euchromatin state C1 is clearly hypomethylated. The mid-S re-
pressed facultative heterochromatin state C2 is also, but at a lesser extent, less
methylated than the entire genome. As expected the late replicating unmarked
and constitutive heterochromatin states C3 and C4 are definitely methylated,
the later being significantly more methylated than the entire genome. Thus the
differences in CpG o/e (Fig. III.16B) and MRT (Fig. III.10A) observed in the
four chromatin states C1, C2, C3 and C4, explain the significant correlation
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observed genome wide between methylation and replication timing (R = 0.402,
P < 2.10−16)) [112].

Note that chromatin state compositional content in Monocd14ro1746 is
quite the same as in K562 (Fig. III.17). In constrast, C3 and C4 in GM12878
have exchanged their GC and CpGo/e distributions (Fig. III.18). Interestingly,
this phenomenon is paired with C3 becoming more late in GM12878 than C4
(Fig. III.11). This observation suggests that the genomic regions that replicate
late in S phase are more likely specified by sequence features than by epigenetic
features. However, the GC content cannot be the primary determinant of MRT
for C1 and C2 states. Indeed the GC distributions in C1 and C2 are nearly
the same (Figs III.16A, III.18A and III.17A) whereas a great discrepancy is
observed in the MRT distributions (Figs. III.10, III.11 and MRT data non
available).

III.2.6 Repartition of chromatin states along human chro-

mosomes

Once mapped on the genome (Fig. III.19A,B), the four prevalent chromatin
states differ not so much in the genome coverage but mainly in their number
and length distribution of domains or blocks of adjacent 100-kb-loci in the same
chromatin state (Table III.2 and Fig. III.19C). C1 and C2 chromatin blocks
are more numerous but they are shorter with a mean length L = 275 kb and
228 kb respectively. Their length pdfs do not reveal many domains larger than
1 Mb. C3 chromatin blocks are slightly less numerous and also mostly short,
the larger mean length L = 325 kb resulting from the existence of a few large
C3 streches of several Mb length. The C4 block length pdf definitely differs
from the previous ones by the presence of a fat tail. Not only the mean length
L = 718 kb is about three times the ones of C1, C2 blocks, but most of the
C4 domains exceed 1 Mb up to 5 Mb and more, hence they are less numerous
(Fig. III.19C). This observation is quite consistent with the HP1-associated
classical heterochromatin spreading mechanism and its possible association
with the nuclear envelope [6, 56].

When looking at the distribution of chromatin states along human chro-
mosomes (Fig. III.19A,B), there is a clear evidence that C1, C2, C3 and C4
blocks are not distributed independently. In large regions with MRT . 0.4,
short C1 and C2 blocks intersperse with each other, the C1s being the earliest
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Figure III.19: Genome-wide spatial distribution of the four chromatin states. (A) MRT

profile along a 20 Mb long fragment of human chromosome 1. Below the MRT profile,

gene positions are indicated by a segment (blue: not expressed, orange: expressed). At the

bottom of the plot, the chromatin state of each 100 kb window is represented using the

same color coding as in Fig. III.4A. (B) Same as (A) for the following 20 Mb fragment of

the human chromosome 1. (C) Histogram of chromatin state block length in a logarithmic

representation (Sect. III.4.10). (D) Same as (C) for chromatin state blocks formed by states

1 and 2 (1+2, light red) or by states 3 and 4 (3+4, light blue). (E) MRT in chromatin state

blocks (1+2) with respect to their length. Each 100 kb window in a chromatin state block

is represented by a blue dot. The mean profile was obtained by (i) ordering data points

according to their block length, (ii) grouping them in classes of equal number of data points

and (iii) computing the average length and MRT over each class. Vertical bars represent

the standard deviation. Horizontal bars represent the range of length over each class. (F)

Same as (E) for chromatin state blocks (3+4).



ones (e.g from 158 to 161 Mb in Fig. III.19A). In a few 100kb wide regions of
MRT ⋍ 0.6, C3 blocks are observed with a repressive effect (e.g around 156
Mb in Fig. III.19A where chromosome 1 contains a lot of olfactory receptor
genes). C4 lies in very late regions MRT ⋍ 0.8 and form large uninterrupted
blocks of several Mb size (e.g from 185 to 190 Mb in Fig. III.19A). This MRT
dependent spatial organization of chromatin states prompted us to investigate
neighborhood dependency between 100 kb loci. The obtained transition matrix
(Table III.3) confirms that C4 loci have by far the highest probability (0.85)
to have a C4 neighbor consistent with C4 blocks being much longer than the
other chromatin state blocks (Table III.2 and Fig. III.19C). It also quantifies
the fact that C1 loci (and in turn blocks) have a much higher probability to
have a neighbor that is a C2 locus (block) than a C3 or C4 locus (block) and
vice-versa. This is consistent with the fact that C1 and C2 are likely to be
replicated one after each other in early and mid S phase whereas C3 and C4
are replicated much later (Fig. III.10). Consistently C4 loci (blocks) have a
highest probability to have a neighbor that is a C3 locus (block) whereas C3
loci (blocks) have apparently no special preference. The spatial organization
of chromatin blocks suggests that we can associate C1+C2 on one side and
C3+C4 on the other side (Fig. III.5B) resulting in large-scale blocks of sur-
prisingly very similar length distributions (Fig. III.19D) with fat tails and re-
spective means 779 kb and 808 kb. These mega-base long C1+C2 and C3+C4
chromatin blocks would on average be replicated rather early (Fig. III.19E)
and late (Fig. III.19F), respectively. Importantly, fixing the number of chro-
matin states to two in our PCA and cluster analysis does not result in the same
dichotomic picture (Fig. III.5A). Instead we discriminate the active chromatin
state C1 from a composite silent state C2+C3+C4.

Note that when using the so-computed transition matrix between chro-
matin states (Table III.3) to generate randomly synthetic chromosomes, we
obtained very good predictions for the four chromatin state block mean lengths
(Table III.2). However the corresponding sample standard deviations so pre-
dicted are significantly smaller than the ones computed for the genuine human
chromosomes which is an indication that the succession of chromatin states
along human chromosomes is probably governed by a more global and elabo-
rated underlying segmentation process.
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Chromatin states C1 C2 C3 C4 C1+C2 C3+C4
total length (Mb) 674.4 533.7 641.2 676.2 1367.9 1458.3

Number 2784 2612 2305 1021 1762 1804
mean(length) 242.2 204.3 278.2 662.3 776.3 808.4
σ(length) 225.7 170.4 470.2 889.6 1171.2 1211.304
M0 mean 129 121 128 129
M1 mean 244 204 285.7 667

M1 σ 187.3 145.7 230.3 614.6

Table III.2: Domain organization of chromatin states. The rows correspond to (i) the total

length in Mb of each chromatin state, (ii) the number of each chromatin state domains,

(iii) the mean length of each chromatin state domain in kb, (iv) the standard deviation

of the length distribution for each chromatin state domain, (v) the expected length if each

chromatin states were spatially independently distributed over 100-kb-loci, (vi) the expected

length if 100-kb-loci chromatin state distributions are assumed to depend on their nearest

neighbor and (vii) the length standard deviation given the same conditions as in (vi).

C1 C2 C3 C4 D
0.22 0.18 0.22 0.22 0.16

from C1 0.59 0.21 0.082 0.024 0.094
from C2 0.27 0.51 0.097 0.017 0.11
from C3 0.084 0.078 0.65 0.079 0.11
from C4 0.024 0.013 0.077 0.85 0.035
from D 0.13 0.12 0.15 0.05 0.55

Table III.3: Transition matrix between chromatin states. The first line is the probability

of each chromatin state. The matrix below the first line is the Markov transition matrix

between states (Sect. III.4.7). A value at the ith row and the jth column is the probability

to find the chromatin state j in a 100 kb window next to a 100 kb window of chromatin

state i. D corresponds to 100 kb windows that are not classified in any chromatin state.

III.2.7 Distribution of chromatin states inside replication

timing U-domains

When concentrating our study on the 876 replication timing U-domains pre-
viously identified in K562 cells [94], we revealed some remarkable organization
of the four prevalent chromatin states (Fig. III.20). The highly expressed
gene rich euchromatin state C1 is found to be confined in a closed (. 150kb)
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Figure III.20: Distribution of the four chromatin states inside replication timing U-domains.

(A) The 876 K562 U-domains were centered and ordered vertically from the smallest (top)

to the largest (bottom). All transcriptionally active chromatin state C1 100-kb-windows

were represented by an horizontal segment of the corresponding length. (B) Same as (A) for

the Pc repressed by chromatin state C2. (C) Same as (A) for the silent unmarked chromatin

state C3. (D) Same as (A) for the HP1 heterochromatin state C4. (E) Mean coverage of

chromatin state with respect to the distance to the closest U-domain border for U-domains

smaller than 0.8 Mb. Error bars represent the standard deviation of the mean. (F) Same

as (E) for U-domains of size between 0.8 Mb and 1.2 Mb. (G) Same as (E) for U-domains

of size between 1.2 Mb and 1.8 Mb. (H) Same as (E) for U-domains of size between 1.8 Mb

and 3.0 Mb. Same color coding as in Fig. III.4A.



neighborhood of the “master" replication origins that border each individual U-
domains (Fig. III.20A). As confirmed on the mean occupation profiles obtained
for four U-domains size categories (Fig. III.20 E, F, G, H), this confinement is
independent of the U-domains size and consistent with the previous observa-
tion [94, 112] that U/N-domain borders are significantly enriched in DNase I
hypersensitive sites and in insulator-binding proteins CTCF. C1 can thus be
seen as specifying the early initiation zones that border U-domains and that
were further shown [94, 113] to delimit topological domains on genome-wide
(Hi-C) chromatin state conformation data. The Pc repressed heterochromatin
state C2 is mostly found at finite distance (∼ 200-300 kb) from U-domain bor-
ders as clearly seen on the largest U-domains whose centers are drastically de-
voided of C2 loci (Fig. III.20B,H). In small U-domains (< 1.2Mb), C2 occupies
in majority their centers (Fig. III.20E,F) that are replicated in mid-S phase.
U-domain borders are also significantly depleted in unmarked and constitutive
heterochromatin states C3 (Fig. III.20C) and C4 (Fig. III.20D), respectively.
C3 is already present in the center of small U-domains (Fig. III.20E,F) and
homogeneously occupies large U-domain centers (Fig. III.20G,H). C4 is sig-
nificantly found in the center of U-domains that are larger than 1Mb; C4
spreads and becomes predominant when increasing the size of U-domains be-
yond 1.8Mb (Fig. III.20G,H). These results show that the replication “wave"
starting from the early initiation zones at U-domain borders and propagating
inside U-domains during S-phase with the progressive activation of secondary
replication origins [93], actually corresponds to a directional path through the
four prevalent chromatin states C1, C2, C3 and ultimately C4 in the largest
U-domains. This gradient of chromatin structure, from active openess at U-
domain borders to closeness at U-domain centers via intermediate Pc repressed
and unmarked heterochromatins is likely to be a key ingredient in the long-
range chromatin control of the spatio-temporal replication program that un-
derlies the megabase-sized replication fork polarity gradients observed in about
50% of the human genome [93,94].

III.3 Conclusion/Perspectives

In summary, this integrative analysis of epigenetic mark maps in the immature
myeloid human cell line K562 has shown that the combinatorial complexity
of these epigenetic data can be reduced to four prevalent chromatin states,
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one transcriptionally active open euchromatin state C1 and three distinct and
silent heterochromatin states, namely a Pc repressed state C2, a unmarked
silent state C3 and a HP1-associated constitutive state C4. By performing
this statistical study at the (low) resolution 100 kb of available genome-wide
MRT data, we have found that these chromatin states actually replicate at
distinct periods of the S-phase, C1 replicates early, C2 is a mid-S phase phase
state whereas C3 replicates later than C2 but before C4 that replicates very
late, almost at the end of S-phase. In Section III.2 are reported, for com-
parison, the results of a similar integrative analysis of epigenomic data in the
lymphoblastoid cell line GM12878 (Figs III.8, III.11 and III.18) and in the
blood cell line Monocd14ro1746 (Figs III.9, III.17), which confirm that the
classification of the human epigenome in four main chromatin states likely
summarizes the data in different cell types. Interestingly, these four main
chromatin states display remarkable similarities with that found in different
cell types in Drosophila [53] and Arabidopsis [51] at the resolution ∼ 1 kb of
gene expression data. Suggesting the existence of simple principles of organi-
zation in metazoans as well as in plants [50–53]. When mapping these four
chromatin states along the human chromosomes, our study reveals that the hu-
man genome can be segmented into megabase-sized domains of three different
types with distinct spatio-temporal replication programs. In 50% of the human
genome that are covered by the replication U-domains [94], the U-shape of the
replication timing profile indicates that the effective replication velocity (which
equals the inverse of the replication timing derivative [94,107]) increases from
U-domain borders to centers [93] as the signature of an increasing origin firing
frequency during S-phase [191]. Our results (Fig. III.20) show that this accel-
eration of the replication wave is actually observed along a directional path
through the four main chromatin states, the open euchromatin state C1 at
U-domain borders successively followed by the heterochromatin states C2, C3
and C4 at the U-domain centers. To which extent this chromatin gradient in-
fluences fork progression from the “master" early initiation zones at U-domain
borders and secondary origins activation inside U-domains is a key issue of
current modeling [93,131,132,147] of the spatio-temporal replication program
in human and more generally in mammals. The complete analysis of the other
half of the human genome that is complementary to U-domains is more in
agreement with the traditional dichotomic picture proposed in early studies
of the mouse [34, 35, 86] and human [12, 36, 90] genomes, where early and late
replicating regions occur in separated compartments of open and close chro-
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Chromatin states C1 C2 C3 C4 C1+C2 C3+C4
total length(Mb) 446.3 221.8 295.2 388.8 750.6 745.5

Number 1955 1350 1216 542 1336 1031
mean(length) 228.3 164.3 242.7 717.4 561.8 723.1
σ (length) 218.2 133.6 435.0 1035.4 602.0 1275.1
M0 mean 134 115 121 130

Table III.4: Distribution of chromatin states outside replication timing U-domains. Same as

the five first lines of Table III.2 after removing the replication U-domains from the analysis.

matin, respectively. About 25% of the human genome are covered by megabase
sized GC-rich (C1+C2) chromatin blocks that on average replicate early by
multiple almost synchronous origins with equal proportion of forks coming
from both directions (Table III.4). This absence of well-positioned origins ex-
plains that the skew has not accumulated in these gene-rich regions that were
shown to be devoided of skew N-domains [102–105]. The last 25% of the hu-
man genome corresponds to megabase sized GC-poor domains of interspersed
(C3+C4) heterochromatin states or of long C4 domains that on average repli-
cate late by again multiple almost coordinated origins (Table III.4). These
gene-poor regions are also devoided of skew N-domains and can be seen as the
late replicating counter-part of the gene-rich (C1+C2) regions.

Extending this study to different cell types including ES, somatic and can-
cer cells looks very promising. By performing our integrative analysis at low
(100 kb) and high (1 kb) resolutions in parallel, we should be in position
to investigate the global reorganization of replication domains during differ-
entiation (or disease) in relation to coordinated changes in chromatin state
and gene expression. For example, this multivariate approach should shed a
new light on the so-called replication domain “consolidation” phenomenon [34]
that corresponds to the disappearance (EtoL transition) or appearance (LtoE
transition) of a U-domain border during differentiation [94].The probable co-
ordinated change in chromatin state at 100 kb resolution and the possible
change at 1 kb resolution are likely to explain the possible change in gene
expression. This opens new perspectives in the study of chromatin-mediated
epigenetic regulation of transcription and replication in mammalian genomes
in both health and disease.
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III.4 Materials and Methods

III.4.1 Mean replication timing data and replication U-

domain coordinates

Timing profiles for the immature myeloid cell line K562 and the lymphoblastoid
cell line GM06990 were obtained from the authors [94]. The mean replication
timing (MRT) is given for 27656 100 kb non-overlapping windows in hg18
coordinates. We also retrieved the coordinates of the 876 U-domains in K562
and 882 U-domains in GM06990 from the authors [94].

III.4.2 Histone marks, H2AZ, CTCF, RNAP II, Sin3A

and CBX3 ChIP-seq data

For all ChIP-seq data, we downloaded data in the Encode standard format
“broadpeaks” (http://genome.ucsc.edu/FAQ/FAQformat.html). Broadpeaks
format is a table of significantly enriched genomic intervals. Most of the data
correspond to the release 3 (August 2012) of the Broad histone track. We
downloaded the tables from:

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeBroadHistone/

The CBX3 and Sin3A data corresponds to the release 3 (September 2012) of
the HAIB TFBS track. Tables were downloaded from the UCSC from:

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeHaibTfbs/

For the K562 cell line, we downloaded the broadpeak tables for the following
antibodies: CTCF, H3K27ac, H3K27me3, H3K36me3, H3K4me3, H3K9me3,
RNAP ll, H2AZ, H3K79me2, H3K9me1, H4K20me1, CBX3, Sin3A. For the
GM12878 cell line, we downloaded: CTCF, H3K27ac, H3K27me3, H3K36me3,
H3K4me3, H3K9me3. For the Monocd14ro1746 cell line we downloaded: CTCF,
H2AZ, H3K27ac, H3K27me3, H3K36me3, H3K4me3, H3K79me2, H3K9ac,
H3K9me3. Genomic intervals were then mapped back to hg18 using LiftOver.
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III.4.3 Epigenetic profile computation at 100 kb resolu-

tion

For each ChIP-seq data, we computed a profile at the 100 kb resolution for the
27656 non-overlapping windows for which MRT is defined. The read density
for one antibody in a window is the number of reads in this window that fall
in significantly enriched intervals normalized by the window length.

III.4.4 Rank transformation and Spearman correlation

matrix

All statistical computations were performed using the R software (http://
www.r-project.org/).

In order to compute the Spearman correlation matrix, the epigenetic pro-
files at 100 kb resolution were transformed with the R function rank with
option ties.method=max. Then we computed the Pearson correlation matrix
on the transformed dataset. To reorder the matrix in Fig. III.1, we computed
the Spearman correlation distance dSCor as:

dSCor(X, Y ) = 1− SCor(X, Y ), (III.1)

where SCor is the spearman correlation. Then, a dendrogram was computed
using the R function hclust with option method=average and with dSCor as
dissimilarity.

III.4.5 Principal component analysis

Principal component analysis was performed on the rank transformed dataset
using the function dudi.pca from the R package ade4 (see http://pbil.

univ-lyon1.fr/ADE-4 and Ref. [167]) with the option scale=TRUE (i.e. each
variable is centered and normalized before the PCA computation). The first
three components were retained which accounts for 76% of the dataset variance
(Fig. III.2), and clustering was performed in this 3D space.
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III.4.6 Clustering strategy

We used Clara algorithm [153] which is an optimization of k-means for large
data set. We used the clara function implemented in the R package cluster.
The options were set to: stand=FALSE, sampsize=500, samples=20, met-

ric=euclidean.

To assess the number of clusters, we used the pooled within-cluster sum of
squares around the cluster mean. Suppose that the data set of size n is divided
in k clusters C1, C2, . . . , Ck. Let d(x,y) be the euclidean distance between the
points x and y. Let xi be the mean of the ith cluster, then the within-cluster
sum of squares for this cluster is:

wi =
∑

xj∈Ci

d2(xi, xj). (III.2)

The pooled within-sum of squares for the k clusters is:

Wk =
k

∑

i=1

wi. (III.3)

The pooled within-cluster sum of squares necessarily decreases with the num-
ber of clusters. A good choice for the number of clusters is the critical point
where some clear crossover is observed from a fast decrease of Wk at small k
values to a weak decrease of Wk at large k values. This means that, after this
critical point, no much information is gained by adding a new cluster. In our
analysis this crossover occurs for k=4 clusters (Fig. III.4B).

We also used the Gap statistic [169] which is defined by :

Gapn(k) = En(ln(Wk))− ln(Wk). (III.4)

En(ln(Wk)) is the expected value of ln(Wk) for a sample of size n drawn from a
proper reference distribution. We choose, as a reference, a uniform distribution
over the range of the observed data. A good choice for the number of clusters
is a value of k so that Wk is much smaller than the expected Wk from a random
distribution (i.e. a high value of Gapn(k)). Four clusters is also a reasonable
choice according to the gap statistic index computed with R package clusterSim

(Fig. III.4C).

Poorly clustered data points were removed from the set of chromatin states.
The silhouette value [168] is a way to quantify how well a point is clustered.
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Definition 1 Given a particular clustering, C1, C2, . . . , Ck, of the data in k

clusters, let i be a data point and d(i, Cj) the average distance of the data point

i to the members of the cluster Cj. Let i be a member of cluster Cc and

ai = d(i, Cc), bi = minj 6=c(d(i, Cj)). (III.5)

The silhouette value of the data point i is defined as:

si =
bi − ai

max(ai, bi)
. (III.6)

A silhouette value below 0 means that the data point is actually closer in
average to the points from another cluster than to the one it has been assigned
to. Points with a negative silhouette value are border line allocations. We
decided to remove those points from the set of identified chromatin states.
Hence chromatin states are groups (clusters) with homogeneous epigenetic
features. 91% of all 100 kb non-overlapping windows of the human genome
were assigned to one of the four chromatin states C1, C2, C3 or C4.

III.4.7 Markov transition matrix estimation

The number of transitions from i to j, nij, is the number of 100 kb windows of
state i contiguous to a window of state j (the sense or antisense orientation is
not taken in account). Let ni be the number of windows in chromatin state i.
The conditional probability of a transition from i to j given i is nij

ni
.

III.4.8 Annotation and Expression data

As human gene coordinates, we used the UCSC Known Genes table. When
several genes presenting the same orientation overlapped, they were merged
into one gene whose coordinates corresponded to the union of all the overlap-
ping gene coordinates, resulting in 23818 distinct genes.

Expression data were retrieved from the Genome Browser of the University
of California Santa Cruz (UCSC). To construct our expression data set, we
used RefSeq Genes track as human gene coordinates. Genes with alternative
splicing were merged into one transcript by taking the union of exons. Hence
the TSS was placed at the beginning of the first exon. We obtained a table of
23329 genes. We downloaded expression valuess from the release 2 of Caltech
RNA-seq track (ENCODE project at UCSC):
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http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/

wgEncodeCaltechRnaSeq/

Expression for one transcript is given in reads per kilobase of exon model per
million mapped reads (RPKM) [10]. RPKM is defined as:

R =
109C

NL
, (III.7)

where C is the number of mappable reads that fall into gene exons (union of
exons for genes with alternative splicing), N is the total number of mappable
reads in the experiment, and L is the total length of the exons in base pairs.
We associated 17872 genes with a valid RPKM value in K562.

III.4.9 CpG o/e computation and GC content

CpG observed/expected ratio (CpG o/e) was computed as nCpG

L−l
× L2

nCnG
, where

nC , nG and nCpG are the numbers of C, G and dinucleotides CG, respectively,
counted along the sequence, L is the number of nonmasked nucleotides and l
is the number of masked nucleotide gaps plus one, i.e. L-l is the number of
dinucleotide sites. The CpG o/e was computed over the sequence after masking
annotated CGIs. The GC content was computed on the native sequence.

III.4.10 Chromatin state blocks

We detected contiguous windows of the same chromatin state (C1 to C4).
We then kept the coordinates of the blocks of contiguous windows. To form
chromatin state blocks of states (1+2), we merely detected contiguous windows
of state 1 or 2. The same procedure was applied to define chromatin blocks
of states (3+4). For chromatin blocks (1+2) and (3+4), we authorized the
inclusion of isolated windows which don’t belong to any chromatin state so to
not disrupt very long blocks.

III.4.11 GO term enrichment

Each gene name of our annotation dataset was associated to several GO terms
from GO SLIM (high level GO terms) using the online mapper: http://

go.princeton.edu/cgi-bin/GOTermMapper. Then for each chromatin state
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(C1 to C4), the number of occurrences of each GO term was determined by
the number of promoters belonging to that state and associated to this GO
term. The enrichment for each GO term in each cluster was tested using
Fisher’s exact test. We applied a procedure to control the false discovery rate
(FDR) as described in [192]. The upper limit of the FDR was fixed to 20%.
After detecting significant deviation from a random repartition of GO term
occurrences, we used the odd ratio value to determine if the deviation was an
enrichment (odd ratio > 1) or a depletion (odd ratio < 1).
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Chapter IV

Epigenetic regulation of the

human genome:

coherence between promoter

activity and large-scale chromatin

environment

In Chapter III, we have analyzed the genome-wide distributions of thirteen
epigenetic marks in the human cell line K562 at 100 kb resolution of Mean
Replication Timing (MRT) data. Using classical clustering techniques, we
have shown that the combinatorial complexity of these epigenetic data can
be reduced to four predominant chromatin states that replicate at different
periods of the S-phase. In this Chapter, we extend our integrative analysis of
epigenetic data in the K562 human cell line to a much finer scale by focusing
on gene promoters (± 3 kb around transcription start sites). We show that
these promoters can similarly be classified into four main chromatin states: P1
regroups all the marks of transcriptionally active chromatin and corresponds
to CpG rich promoters of highly expressed genes; P2 is notably associated with
the histone modification H3K27me3 that is the mark of a polycomb repressed
chromatin state; P3 corresponds to promoters that are not enriched for any
available marks as the signature of a “null” or “black” silent heterochromatin
state and P4 characterizes the few gene promoters that contain only the con-
stitutive heterochromatin histone modification H3K9me3. Results reported in
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this chapter are published in [193].

IV.1 Introduction

Multivariate statistical analyses of epigenetic data sets in human have revealed
that distinct epigenetic modifications often exist in a well-defined combinations
corresponding to different genomic elements like promoters, enhancers, exons,
repeat sequences and/or to distinct modes of regulation of gene expression such
as actively transcribed, silenced and poised [48, 162, 163, 177, 194]. In Chap-
ter III, with the aim at quantifying the influence of epigenetic modifications on
replication timing, we have used principal component analysis (PCA) and clas-
sical clustering method to analyze thirteen epigenetic mark maps in the K562
human cell line at the 100-kb-resolution of MRT data. This study reveals
that the huge combinatorial epigenetic complexity can in fact be reduced to a
rather small number of predominant chromatin states that interestingly share
strong similarities with the ones previously found in Arabidopsis thaliana [51],
Caenorhabditis elegans [52] and Drosophila [50,53]. These four main chromatin
states were further shown to correlate with MRT, namely from early to late
replicating, a transcriptionally active euchromatin state (C1) enriched in insu-
lator binding protein CTCF, a polycomb repressed facultative heterochromatin
state (C2), a silent heterochromatin state (C3) not enriched in any available
marks and a HP1-associated heterochromatin state (C4).

In this Chapter, our goal is to extend our integrative analysis of epigenetic
data in the K562 human cell line from the 100 kb scale of MRT data to a few kb
scale characteristic of gene promoters as previously performed in plants [51],
worm [52] and fly [50, 53]. First, we will perform a combinatorial analysis
of chromatin marks in K562 around gene promoters and describe the epige-
netic content of the four prevalent chromatin states. Then, we will study the
coherence between promoter activity, as characterized by their “small-scale”
chromatin state, and the “large-scale” chromatin environment (namely the C1,
C2, C3 and C4 chromatin states found in Chapter III). In this comparative
analysis we emphasize the expected as well as the unexpected importance of
gene density on the observed relationship between these two scales character-
izing transcription and replication data respectively. We will also investigate
the spatial distribution of these promoter chromatin states inside the three
types of replication domains defined in our previous work [154], namely the
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50% of the human genome paved by MRT U-domains, the 25% covered by
early replicating GC-rich (C1+C2) chromatin blocks and the 25% covered by
late replicating, GC-poor (C3+C4 or long C4) heterochromatin blocks. We
conclude, in the final section, by discussing some perspectives for further stud-
ies in different cell types, in other mammalian genomes in both health and
disease.

IV.2 Combinatorial analysis of chromatin marks

at human gene promoters

IV.2.1 Fine-scale analysis of chromatin marks combina-

torial complexity

Mammalian promoter regions are well known to vary significantly in their
positional relationships to genes [6, 55]. The DNA sequence proximal to the
transcriptional start site (TSS) of a gene is commonly regarded as a proxy re-
gion where the study of chromatin marks is likely to provide new insights into
the regulatory state of promoters and genes. Here we investigate relationships
between the genome-wide distributions of eight histone modifications, one hi-
stone variant and four DNA binding proteins in the myelogenous leukemia
human cell line K562 around (±3 kb) the 17872 gene TSS with a valid RPKM
(Eq. (IV.1)). In Fig. IV.1 is shown a heat map representing the Spearman cor-
relation matrix between epigenetic marks after having reorganized raws and
columns with a hierarchical clustering algorithm based on the Spearman cor-
relation distance [Eq. (IV.2)]. All the epigenetic marks that are known to be
involved in transcription positive regulation, namely H4K20me1, H3K9me1,
H3K4me3, H3K27ac, H3K79me2, RNAPII, H3K36me3, CBX3, H2AZ, to-
gether with the transcription factors CTCF and sin3A, form a block in the
correlation matrix, meaning that they are all significantly correlated with
each other [6, 194]. The maximum correlation is obtained between the two
active promoter marks H3K4me3 and H3K27ac. Note also the preferential
correlation between H4K20me1 and H3K9me1 consistent with previous ob-
servations of some enrichment of these marks in promoter or coding regions
of active genes [166, 195–197], with further evidence of significant colocaliza-
tion [198]. However there are mainly two lines that stand out from the block
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Figure IV.1: Spearman correlation matrix between epigenetic marks. For each pair of

variables, we computed the Spearman correlation over 6 kb windows centered on human

gene TSSs. Spearman correlation value is color coded using the color map shown on the

right. Lines for the thirteen epigenetic marks were reorganized by a hierarchical clustering

using Spearman correlation distances as illustrated by the dendrogram on the left of the

heat map. This ordering implies that highly correlated epigenetic marks are close to each

other.

of active marks in the hierarchical clustering dendrogram in Fig. IV.1. One
of these lines corresponds to the polycomb (Pc) associated repressive chro-
matin marks H3K27me3 characteristics of the so-called facultative heterochro-
matin [145, 166]. This is the only mark that anti-correlates with most of the
active marks except H4K20me1. The other line corresponds to H3K9me3,
commonly considered as a repressive chromatin mark associated with the het-
erochromatin protein 1 (HP1) known as a major actor in constitutive hete-
rochromatin formation [145, 166]. Surprisingly H3K9me3 is found to moder-
ately correlate with all active marks. This confirms previous observations that
this epigenetic modification may also be associated with transcriptional acti-
vation. When H3K9me3 is present in the promoter region in combination with
all active marks, this may conduct in the anchoring of the γ isoform of the
HP1 protein [170–173], also called CBX3, which was recently shown to help
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the splicing of multi-exonic genes [174,175].

IV.2.2 Principal promoter chromatin states

To objectively identify the prevalent combinatorial patterns of the thirteen
chromatin marks at human gene promoters, we have performed a PCA [167]
to reduce the dimensionality of the data (Sect. IV.6.5). As shown in Fig. IV.2,
the first three principal components sum up 74% of the total data variance
(Fig. IV.2B,C). By projecting the 6 kb promoter loci on the (PC1, PC2),
(PC3, PC2), (PC1, PC3) and (PC4, PC5) planes (Fig. IV.2A), it is clear
that most of the population is confined in the (PC1, PC2) plane. In this
very dense plane, loci mainly lie along two straight lines with a very high
density of loci at the intersection of these two lines. A rather wide diluted
mode is observed parallel to the PC1 axis, whereas a more populated mode is
concentrated along a line parallel to PC2. Furthermore, a simple inspection
of the projections on the planes (PC3, PC2) and (PC1, PC3) in Fig. IV.2A
confirms that loci out of the (PC1, PC2) plane are rather scarce (less than
5% of the human gene promoters). This has led us to phemomenologically
define four main promoter chromatin states in the 3D-space defined by Eqs
(IV.3) to (IV.6). When labeling each of these four promoter chromatin states
with a color, namely P1 (pink), P2 (orange), P3 (green) and P4 (blue), we
obtain the density contour plots shown in Fig. IV.3. Among the first three
chromatin states that are confined in the (PC1, PC2) plane, P1 is by far the
most populated state N = 9643 (54.4%) promoter loci as compared to P2
with N = 3149 (17.8%) and P3 with N = 4252 (24.0%). The fourth promoter
chromatin state P4 is the only one that lie outside the (PC1, PC2) plane along
a direction parallel to the PC3-axis (Eqs (IV.3) and Fig. IV.3B). This state
contains only N = 679 (3.8%) promoter loci, which is dramatically less than
the P1, P2 and P3 populations. Since, as we will see in the next sections, P4
will turn out to be a relevant and epigenetically meaningful chromatin state,
the fact that classical clustering algorithms similar to k-means would have
missed this very poorly populated state (see [199] for the limitations of these
clustering methods) justifies, a posteriori, our phemomenological clustering in
the four chromatin states defined by Eqs (IV.3) to (IV.6).

Remark : When using the Clara clustering algorithm [153] with the number of
clusters fixed to four, we miss the chromatin state P4 that is then included in
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Figure IV.2: (A) Two-dimensional (2D) projections of the 6 kb promoter data points on

the planes defined by (top left) the first (PC1) and second (PC2) principal components,

(top right) PC3 and PC2, (bottom left) PC1 and PC3 and (bottom right) PC4 and PC5.

The density values are indicated by a color code (white: high density, yellow: moderate

density, green: low density) and a contour plot. Densities are computed with a kernel

density estimator. The thick solid line are the boundaries that separate promoter chromatin

states P1, P2, P3 and P4 in the the 3D space (PC1, PC2, PC3) as defined in Eqs (IV.3)

to (IV.6). (B) Percentage of variance accounted by the first thirteen principal components

ordered according to their corresponding variance (eigenvalues). (C) Cumulative variance.
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Figure IV.3: Contour plots of the densities of the four prevalent promoter groups P1 (pink):

activated promoters, P2 (orange): Pc repressed promoters, P3 (green) unmarked promoters

and P4 (blue): HP1 repressed promoters. The clustering in the 3D space generated by the

first three principal component PC1, PC2 and PC3 is defined in Eqs (IV.3) to (IV.6) and

illustrated in Fig. IV.2A. (A) 2D-projection on the plane defined by PC1 and PC2; (B)

2D-projection on the plane defined by PC3 and PC2.

P3, whereas the most populated chromatin state P1 is splitted in two states.
Indeed, Eqs (IV.4), (IV.5) and (IV.6) that respectively define the chromatin
states P3, P2 and P1 as mainly confined in the (PC1, PC2) plane, are inspired
from the partitioning provided by the Clara algorithm. Let us point out that
the results reported hereafter are robust to slight changes in the parameters
in Eqs (IV.4) to (VI.6).
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IV.2.3 Epigenetic content of the four prevalent promoter

chromatin states

Visualization of the distributions of the thirteen epigenetic marks in each of
the four promoter chromatin states in Figs IV.4 and IV.5, shows that most
marks are not confined to a single promoter chromatin type. Rather, the four
main promoter chromatin types are defined by a unique linear combination of
these marks.

P1 (pink): active euchromatin state. More than 90% of the 6 kb promoter
loci in P1 are associated (positive enrichment) with histone modifications
H3K36me3, H3K4me3, H3K27ac and H3K79me2 (Fig. IV.4), the hallmarks
of transcriptionally active euchromatin [6, 55, 166], as well as with RNA poly-
merase II (Fig. IV.5) and to a slightly less extent with the RPD3-interacting
protein Sin3A (Fig. IV.5) as previously found in active euchromatin in
Drosophila [50]. P1 also regroups the majority of H3K9me1 marked promoter
loci consistent with previous observation of higher H3K9me1 levels in the TSS
surrounding of active promoters [166]. Most of the promoter regions contain-
ing the histone variant H2AZ also belong to P1. The highly conserved histone
variant H2AZ has been previously shown to affect nucleosome positioning in

vitro and in vivo [18, 150, 200, 201] and to be associated with chromatin acti-
vation in vivo [18,166] by contributing, via nucleosome sliding, to the phasing
of a nucleosome free region at TSS [4,150,202,203].

P2 (orange): facultative heterochromatin state. P2 is notably associated with
the histone modification H3K27me3 (Fig. IV.4). This mark is well known to
be recognized by the chromodomains of Pc proteins and to be implicated in
gene silencing [145,166].

P3 (green): silent “unmarked” heterochromatin. Out of the four promoter chro-
matin states, P3 corresponds to promoter loci lacking a clear chromatin mark
signature. As shown in Figs IV.4 and IV.5, most P3 promoters are not en-
riched for any available marks. P3 can indeed be compared to the “null” or
“black” silent heterochromatin states previously found in Drosophila [50, 53]
and Arabidopsis [51] as covering a significant portion of the genome.

P4 (blue): HP1 associated heterochromatin state. P4 corresponds to the few
(679) gene promoters containing the H3K9me3 mark and almost only that re-
pressive mark (Fig. IV.4) as the probable signature of its ability to anchor to
the heterochromatin protein HP1 at the origin of establishment of heterochro-
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matin [145,166].

Methylation of H3K9 is well known to be implicated in heterochromatin
formation and gene silencing [6,55]. The fact that H3K9me1 is found in P1 and
to a less extent in P2 and not in P4 (Fig. IV.4) confirms that this epigenetic
modification, together with H4K20me1, may also be associated with transcrip-
tional activation [166,195–198]. Note that H3K9me3 is not exclusively found in
P4 promoter regions; as seen in Fig. IV.4, 42% of P1 promoters and 25% of the
P2 promoters contain some H3K9me3 marks. As mentioned in Sect. III.2.2,
when present in combination with all active marks, this mark may drive the
anchoring of CBX3 (Fig. IV.5) involved in gene splicing [170–175].

The insulator binding protein CTCF is known to establish chromatin bound-
aries to prevent the spreading of heterochromatin into transcriptionally active
regions [145, 166]. As shown in Fig. IV.5, consistent with this picture, we
get, in good agreement with previous observations in Drosophila [50,53], that
CTCF is found in P1 promoters and to a slight extent in P2 promoters. This
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Figure IV.6: Expression level and CpG content in the four promoter chromatin states P1, P2,

P3 and P4. (A) Violin plots of the decimal logarithm of RPKM expression score (Eq. IV.1)

in the four promoter states. (B) Violin plots of CpG o/e computed in the 6 kb windows

around the TSS per promoter states. (C) Proportion of CpG rich genes per promoter state

(a promoter is CpGrich if the CpGo/e around its TSS is above 0.48). Same color coding as

in Fig. IV.3.

can be understood by that fact that P1 and P2 genes lie together in gene rich,
high GC megabase-sized domains of intermingled active euchromatin and fac-
ultative heterochromatin regions (see Sect. IV.4).

To summarize, this simple classification into one active promoter chromatin
state (P1) and three repressed promoter chromatin state (P2, P3 and P4) of
human genes is strikingly similar to those recently reported in Arabidopsis

[51] and Drosophila [50, 53] suggesting the possible existence of some simple
principles of epigenetic regulation of eukaryotic genomes.

IV.2.4 A synthetic view of epigenetic regulation of gene

activity

Gene expression

As shown in Fig. IV.6A, when investigating gene expression data (Sect.
IV.6.1), we find that a vast majority (8312, 88%) of expressed gene promoters
with a RPKM > 1 (Eq. (IV.1)) are in the euchromatin state P1. As expected,
most (2779, 89%) of the Pc repressed P2 promoters correspond to non ex-
pressed genes. Interestingly, we find that the number of non expressed genes
in P1 (1250) is non negligible and comparable to the one in P2 (2779). Most
of the promoters in the heterochromatin states P3 (3124, 81%) and P4 (609,
91%) correspond to silent genes except a minority of them.
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CpG-rich versus CpG-poor promoters

Mammalian promoters can be classified according to their sequence con-
tent. Most promoters coincide with regions of high GC content and CpG
ratio (or CpG islands) [189, 204–207]. As already noted by others [208–211],
the distribution of CpG enrichment is bimodal which is also the case in other
mammalian genomes, including the mouse genome. As proposed in a previous
work [114], we can use a threshold value r∗ (0.48 in Fig. IV.6B,C) so that pro-
moters with a CpG enrichment > 0.48 are considered CpG rich and with CpG
enrichment < 0.48 CpG poor (Sect. IV.6.7). These two classes of promoters
have different regulations and present different characteristics. Whereas CpG-
poor genes have a specific initiation site, usually a TATA-box, CpG-rich genes
have a broad initiation site [212]. Besides, CpG-rich promoters evolve more
rapidly than CpG-poor ones. A hypothesis on the origin of these two gene
categories was proposed in [211] but not investigated further: these two cate-
gories could have a different evolutionary history, with CpG-rich genes being
the oldest ones, present before the global methylation appeared on vertebrate
genomes [204, 207] and CpG-poor being more recent. As shown by the vio-
lin plot of CpGo/e in Fig. IV.6B, gene promoter loci in P1 are significantly
enriched in CpG as compared to P2, P3 and P4 promoter loci. We clearly
find a significant shift of the CpG pdf to smaller values when going from P1
(CpG o/e = 0.69)) to P2 (CpG o/e = 0.49), P3 (CpG o/e = 0.37)) and P4
(CpG o/e = 0.32)). Relative to the genome average 0.57, the P1 promoter
loci are clearly CpG-rich. In terms of promoter states previously defined, 87%
of P1 promoter loci belong to the CpG-rich class as compared to 51% of P2,
42% of P3 and 39% of P4 promoter loci. Thus, a non negligible proportion of
gene promoter loci in the repressed heterochromatin states P2, P3 and P4 are
CpG-rich but mostly non expressed in K562 human cell line.
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IV.3 Interplay between promoter activity and

large-scale chromatin environment

IV.3.1 Distribution of promoter states in the four preva-

lent large-scale chromatin states

In Chapter III [154], we identified four main large-scale chromatin states C1,
C2, C3 and C4 that were respectively found in 6572 (23.8%), 5312 (19.2%),
6603 (23.9%) and 6758 (24.4%) loci among the 27656 100 kb loci with a defined
MRT. Note that we removed from the analysis 2411 (8.7%) loci that were not
properly classified in any of these chromatin states: To address the question
of the gene content of these four chromatin states, we used a data set of 17724
genes whose promoters have a valid epigenetic value for the considered 13 epi-
genetic marks. Some of these genes (1832) were not taken into account in our
analysis because their promoters did not belong to any C1, C2, C3 or C4 100kb
loci. The mean density of the 15892 genes that belong to one of the four large-
scale chromatin states is 6.25 promoters per Mb. As reported in Tables IV.1
and IV.2, the early replicating active euchromatin state C1 is highly enriched
in gene promoters (14.82 promoters/Mb) and harbours 69.5% of gene promot-
ers even though it represents about 25% of the total genome coverage by the
four large-scale chromatin states. The mid S facultative heterochromatin state
C2 also contains a non negligible percentage (17.2%) of gene promoters that
indeed corresponds to a modest density 4.74 promoters/Mb. The late repli-
cating unmarked and HP1-associated heterochromatin states C3 and C4 are
genuinely gene poor with a very low gene densities 2.34 promoter/Mb and 1.11
promoter/Mb for a total of 8.6% and 4.7% of gene promoters respectively. Let
us point out that the mean gene length increases gradually from C1 (42.5kb),
to C2 (59.4kb), C3 (83.5kb) and C4 (133.1kb), which explains why the gene
coverage decreases less abruptly than the promoter density, with C1 mainly
genic (62.9%), C2 modestly genic (49.8%) and C3 (39.5%) and C4 (29.3%)
mostly intergenic.

As reported in Table IV.3, when comparing the data in Table IV.2 and
the expected promoter number if the probability of belonging to any promoter
state Pi were independent from the probability of being in the chromatin state
Cj, we find observed/expected ratio values significant greater than 1 for the
four (Pi/Ci) associations as the signature of an increasing dependency from
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C1 C2 C3 C4
P1 11.8 0.53 0.1 0.06
P2 1.29 2.98 0.19 0.01
P3 1.6 1.18 2.03 0.29
P4 0.13 0.05 0.02 0.75

Table IV.1: Density of promoters per Mbp in the four large scale chromatin states C1, C2,

C3 and C4, for the four epigenetic promoter states, P1, P2, P3 and P4.

C1 C2 C3 C4
P1 8797 304 57 41
P2 961 1721 113 7
P3 1193 682 1191 191
P4 99 26 14 495

Table IV.2: Number of promoters P1, P2, P3 and P4 in large scale chromatin states C1,

C2, C3 and C4.

C1 C2 C3 C4
P1 1.38 0.19 0.07 0.1
P2 0.49 3.57 0.47 0.05
P3 0.53 1.22 4.23 1.27
P4 0.22 0.24 0.26 16.91

Table IV.3: Observed/expected ratio of a promoter Pi to be in a large-scale chromatin state

Cj. The expected number is given by
nPi∗nCj

N
where nPi is the number of promoters in Pi,

nCj the number in Cj and N the total number of promoters.

(P1/C1) (1.38), to (P2/C2) (3.57), (P3/C3) (4.23) and (P4/C4) (16.91). In
contrast, the observed/expected ratio values obtained for the (Pi,Cj)i 6=j asso-
ciations are all smaller than 1 as an indication of some anti-correlation except
for (P3, C2) (1.22) and (P3, C4) (1.27) that shows that unmarked P3 pro-
moters are more abundant than expected in both the facultative C2 and C4
heterochromatin states.
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from C1 from C2 from C3 from C4
to P1 0.79 0.11 0.04 0.06
to P2 0.09 0.63 0.08 0.01
to P3 0.11 0.25 0.87 0.26
to P4 0.01 0.01 0.01 0.67

Table IV.4: Transition matrix from large-scale chromatin states to promoter states. Prob-

ability of being classified in the promoter state Pi knowing that the promoter is embedded

in the large scale chromatin state Cj.

to C1 to C2 to C3 to C4
from P1 0.96 0.03 0.01 0
from P2 0.35 0.61 0.04 0
from P3 0.37 0.21 0.37 0.05
from P4 0.16 0.04 0.02 0.78

Table IV.5: Transition matrix from promoter states to large scale chromatin states. Prob-

ability that a promoter in the class Pi to be embedded in the large scale chromatin state

Cj.

IV.3.2 Conditional analysis of promoter activity and large-

scale chromatin environment

In Table IV.4, we have expressed the results reported in Table IV.2 in terms of
the probability of a promoter to be classified in the promoter state Pi know-
ing that it is embedded in the large-scale chromatin state Cj. The large scale
unmarked C3 and HP1-associated C4 states likely corresponding to nuclear
lamina pericentric heterochromatin [145, 166, 213] only contain silent genes
with P3 and P4 promoters (∼90%). If large-scale transcriptional activity in
C1 euchromatin state is recovered in a large majority (∼80%) of genes with
P1 promoters, it does not exclude the presence of inactive genes with P2 (9%)
and P3 (11%) promoters. Large-scale facultative heterochromatin state C2 is
not very predictive of promoter states since besides a majority of Pc repressed
P2 gene promoters (63%) it also contains a significant and non negligible pro-
portion of silent unmarked P3 (25%) and of active P1 (11%) promoters.

Reciprocally, when revisiting the results in Table IV.2 in terms of the prob-
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Figure IV.7: Effect of local promoter density on large-scale chromatin state. Promoter count

for a gene is the number of promoters that fall in a 100 kb window centered around its TSS.

The more the promoter count is high, the more gene rich is the surrounding region. A

promoter count of 1* means that the gene is isolated and that its length is smaller than 50

kb (so that the surrounding of this gene is mostly intergenic). Promoter count (same state)

is the promoter count taking into account only genes with the same promoter state as the

considered gene. (A) Proportions of promoter states P1, P2, P3 and P4 with respect to

promoter count. (B) Proportion of promoters with a large chromatin state corresponding

to their promoter state (e.g. P1 in C1, etc.) with respect to promoter count (same state).

Same color coding as in Fig. IV.3.

ability of a promoter in a given promoter state Pi to be in large-scale chromatin
environment Cj, we find in Table IV.5 that with a very high probability (96%)
P1 promoters have an active euchromatin C1 environment. This contrasts
with the Pc repressed P2 promoters that in majority (61%) belong to the cor-
responding large-scale facultative heterochromatin C2, but with a significant
proportion of them (35%) that are contained in an active C1 environment.
The unmarked P3 promoters are rather evenly distributed in C1 (37%), C2
(21%) and C3 (37%). Let us point out that the poorly populated P4 promoter
state is consistently found in majority (78%) in the corresponding constitutive
heterochromatin state C4 but also in the gene rich euchromatin state C1 (16%)
where 1/3 (resp. 2/3) of them are expressed (resp. silent) genes.

Further understanding of these results can be obtained when taking into
account gene density. As shown in Fig. IV.7A, when classifying promoters ac-
cording to gene promoter number in their 100 kb neighbohood, we see that the
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Figure IV.8: Large-scale chromatin states with respect to promoter counts. Pi count of a

given gene is the number of Pi promoters that fall in a 100 kb window centered around its

TSS. Each panel corresponds to a different active P1 promoter count. For each possible

values of the three considered promoter counts (P1, P2, P3), we calculated the proportions

of large-scale chromatin states C1 (pink), C2 (orange), C3 (green) and C4 (blue); these

proportions are represented by a pie chart. Because P4 promoter state is poorly populated

(Table IV.2), we have fixed P4 count=0.
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proportion of active P1 promoter increases when increasing the local promoter
count to the expense of the proportions of inactive P2, P3 and P4 promot-
ers. Even more spectacular, similar tendancies are observed in Fig. IV.7B
when considering now the relative proportions of consistent pairing (Pi, Ci)
of a promoter Pi embedded in the corresponding large-scale chromatin envi-
ronment Ci, when increasing the local density of promoters of the same state
Pi. As expected the proportion of transcriptionally active pairing (P1, C1)
increases when the 100kb windows surrounding a P1 promoter contains more
and more P1 promoters. Naively we would have expected the same increase
in the probability of an inactive promoter P2, P3 or P4 to be embedded in
the corresponding heterochromatin environment C2, C3 or C4 respectively,
when enriching its 100kb neighborhood in promoters belonging to the same
promoter state. However, this is only true for HP1-associated promoters. This
observation is consistent with P4 promoters being mostly in a separated nuclear
compartment (Table IV.5). For promoter states P2 and P3, the pairing (Pi,Ci)
doesn’t increase with promoter density. Indeed, as shown in Fig. IV.8 (upper
left panel), this is only true if this neighborhood contains no P1 promoter. As
soon as one or more P1 promoters belong to the neighborhood of a P2 or P3
promoter, then the probability for this promoter to be embedded in the gene
rich euchromatin state C1 increases (Fig. IV.8, other panels), which explains
the observed behavior of the proportions of inactive pairing (P2, C2) and (P3,
C3) in Fig. IV.7B. On the contrary to P1 promoter, the presence of one P4
promoter doesn’t imply a C4 environment suggesting that a P4 promoter is not
sufficient to drive the association with the pericentric compartment (data not
shown). Altogether these results confirm that gene density is a key parameter
underlying the coherence between promoter activity and large-scale chromatin
environment.
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IV.4 Repartition of promoter chromatin states

along human chromosomes

IV.4.1 Distribution of promoter chromatin states inside

replication timing U-domains

When first concentrating on the gene distribution inside the 876 replication
timing U-domains previously identified in K562 cells [94], we reveal a remark-
able organization of the four prevalent promoter chromatin states. This is
particularly patent in Fig. IV.9A-D where the 876 U-domains were centered
and ordered vertically from the smallest (top) to the largest (bottom) and only
gene promoters were represented. By simple visual inspection, we recognize in
Fig. IV.9A the edges of the U-domains from the local enrichment of active P1
promoters that are mainly confined in a closed (∼150 kb) C1 neighborhood of
the “master” replication origins that border these replication domains. Note
that this result is quite consistent with the previous observation [114] that
CpG-rich gene promoters that are likely to be active in the germ line and do
present an important transcription-associated nucleotide compositional asym-
metry [105,214–216], also lie preferentially nearby the edges of replication skew
N-domains. In Fig. IV.9B, the Pc repressed P2 promoters are mostly found
at finite distance (∼200-300 kb) from U-domain borders whose centers are
significantly devoided of P2 promoters. In small U-domains (< 1.2 Mb), P2
promoters mainly occupy their centers that are replicated in mid-S phase. In
contrast unmarked P3 promoters do not seem to have any preferential position-
ing inside U-domains where they look like rather homogeneously distributed as
shown in Fig. IV.9C. Despite their small number, inactive HP1-associated P4
promoters are mostly found in the central region of large (> 1 Mb) U-domains
in Fig. IV.9D; they consistently lie in a late replicating heterochromatin C4
environment. As confirmed on the corresponding mean occupation profiles in
Fig. IV.9E, this remarkable organization of gene promoters inside U-domains
is consistent with the gradient of chromatin states observed across these repli-
cation domains, from C1 at U-domain borders followed by C2, C3 and C4
at centers. Note that as shown in Figs IV.9F and IV.9G, a similar organiza-
tion is found for CpG-rich and CpG-poor promoters respectively, except that
CpG-poor P1 promoters are about one order of magnitude less numerous than
CpG-rich P1 promoters.
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Figure IV.9: Distribution of promoter states inside replication U-domains. (A) The 876

K562 U-domains were centered and ordered vertically from the smallest (top) to the largest

(bottom). All active P1 promoters are represented by a dot (pink). (B) Same as (A) for Pc

repressed P2 promoters (orange). (C) Same as (A) for the unmarked promoters P3 (green).

(D) Same as (A) for HP1-repressed promoters P4. (E) Mean promoter density with respect

to the distance to the closest U-domain border. Error bars represent standard deviation.

Same color coding as in (A-D). (F) Same as (E) for CpG rich genes. (G) Same as (E) for

CpG poor genes.
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Figure IV.10: Distribution of promoter states along the MRT profile. (A) K562 MRT profile

along a 20 Mb long fragment of human chromosome 1. Below the MRT profile, gene positions

are indicated by a segment. The segment color indicates the promoter state. Same color

coding as in Fig. IV.9. At the bottom of the plot, the chromatin state of each 100 kb

window is represented with the following coding: active euchromatin state C1 (pink), Pc

repressed facultative heterochromatin C2 (orange), silent unmarked heterochromatin state

C3 (green) and HP1-associated heterochromatin state C4 (blue) [154]. (B) Same as (A) for

the following 20 Mb fragment of the human chromosome 1.

IV.4.2 Distribution of promoter chromatin states outside

replication U-domains

Replication timing U-domains actually cover about 50% of the human genome.
In Chapter III [154], we have shown that the other half of the human genome
is more in agreement with the dichotomic picture proposed in early studies
of the mouse [34, 35, 86] and human [12, 36, 90] genomes, where early and
late replicating regions occur in separated compartments of open and close
chromatin respectively.

∗ High GC, gene rich (C1+C2) blocks: About 25% of the human genome
(Table IV.6) are covered by megabase-sized GC-rich (C1+C2) chromatin
blocks that on average replicate early by multiple almost synchronous ori-
gins (e.g. the region from 151.5 Mb to 155.8 Mb of human chromosome
1 in Fig. IV.10A)). As reported in Table IV.6, these regions are gene rich
with a high density of P1 promoters (6.85 promoters/Mb) and a signifi-
cant density of P2 promoters (2.15 promoters/Mb) that replicate slightly
earlier than the mid-S phase P2 promoters found in replication timing
U-domains. Some unmarked P3 promoters (1.41 promoters/Mb) also
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U-domains C1+C2 C3+C4
total length (Mb) 1293.9 750.6 745.5
mean length (kb) 1431.3 561.8 723.1
promoter number

P1 3029 6224 197
P2 1550 1449 103
P3 1656 1218 826
P4 306 70 285

density of promoters
per Mb

P1 2.3 8.29 0.26
P2 1.20 1.93 0.14
P3 1.28 1.62 1.1
P4 0.24 0.09 0.38

Table IV.6: Distribution of promoter chromatin states P1, P2, P3 and P4 inside replication

U-domains, (C1+C2) blocks and (C3+C4) blocks [154].

belong to these (C1+C2) blocks and correspond to the sub-class of genes
with P3 promoters that are expressed in K562. Only few P4 promoters
(0.09 promoters/Mb) are found in these early replicating (C1+C2) block
regions.

∗ Low GC, gene poor (C3+C4) blocks: The last 25% of the human genome
correspond to megabase-sized GC-poor domains of interspersed (C3+C4)
heterochromatin states or of long C4 domains that on average replicate
late by again multiple almost coordinated origins (e.g. the region from
185 Mb to 190 Mb of human chromosome 1 in Fig. IV.10B). As re-
ported in Table IV.6, these regions are gene deserts with, relatively to
their genome mean densities, almost no P1 (0.17 promoters/Mb) and P2
(0.10 promoters/Mb) promoters, and in contrast contain most of the P4
promoters (0.43 promoters/Mb) as well as a significant proportion of P3
promoters.

As reported in Fig. IV.6, P1 and P2 promoters are in large majority CpG
rich, which further indicates that C1+C2 blocks are enriched in CpG-rich gene
promoters consistent with previous observations that CpG-rich genes tend to

112



be seated in high GC isochores [154]. In contrast, C3+C4 blocks, as the low
GC isochores counterpart, contain only a few genes mostly inactive and with
a CpG-poor promoter.

IV.5 Conclusion/Perspectives

In summary, the integrative analysis of epigenetic mark maps in the myeloge-
nous leukemia human cell line K562 has shown that, at the gene promoter scale
(±3kb around TSS), the combinatorial complexity of these epigenetic data can
be reduced to four prevalent promoter chromatin states that display remark-
able similarties with those found in different cell types in Drosophila [53] and
Arabidopsis [51]: P1 regroups all the marks of transcriptionally active chro-
matin and corresponds to CpG-rich promoters of highly expressed genes; P2 is
notably associated with the histone modification H3K27me3 that is the mark
of Pc repressed falcultative heterochromatin; P3 corresponds to promoters that
are not enriched in any marks as the signature of silent heterochromatin; and
P4 characterizes the few gene promoters that contain only the HP1-associated
histone modification H3K9me3. When analyzing the coherence between pro-
moter activity (P1, P2, P3 ad P4) and the corresponding large-scale (100kb)
chromatin states (C1, C2, C3 and C4) that were shown to replicate at differ-
ent periods of the S-phase (Sect. III) [154], we confirm gene density as a cen-
tral parameter underlying the interplay between transcription and replication.
Among the striking results obtained about the large-scale chromatin environ-
ment from the local knowledge of a gene-promoter activity is the fact that
a P1 promoter is almost surely surrounded by an early replicating, gene-rich,
transcriptionally active euchromatin state C1. Reciprocally, it is the spreading
of the late replicating, gene-poor, HP1-associated heterochromatin large-scale
state C4 that almost surely governs the local inactivity of the few unmarked P3
and constitutively silent P4 promoters. When further investigating the spatial
distribution of the P1, P2, P3 and P4 promoters along human chromosomes,
our study reveals a remarkable gene organization in relation with the MRT.
In 50 % of the human genome that are covered by megabase-sized replication
U-domains [94, 154], a significant enrichment of highly expressed P1 genes is
observed in a closed neighborhood of the early C1 initiation zones that border
these domains. P2 promoters are mainly found in the mid-S C2 environment
at finite distance (∼200-300kb) from U-domain borders. Inactive P3 and P4
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promoters are distributed more homogeneously inside U-domains with a ma-
jority of the poorly populated P4 promoter set in the C4 central region of large
U-domains likely associated with pericentric nuclear heterochromatin. Thus,
in these U-domains where the replication wave starting at bordering “mas-
ter” replication origins, keeps accelerating thanks to the firing of secondary
origins [93], some gradient of gene promoter activity is also observed as the
possible consequence of some epigenetic co-regulation of replication and tran-
scription. This intimate relationship between gene activity and MRT is also
observed in the other half of the human genome with mainly P1 and P2 pro-
moters in megabase-sized GC-rich and highly genic (C1+C2) chromatin blocks
that replicate early in the S-phase, and P3 and P4 promoters in late replicating,
gene-poor and GC-poor megabase-sized (C3+C4) blocks.

Extending this study to different cell types including ES, somatic and can-
cer cells looks very promising. Previous comparative analyses of replication
timing profiles during development have revealed important dynamical changes
leading to cell type specific patterns of replication [34, 35, 115]. Importantly,
these specific replication timing patterns are conserved between human and
mouse synthenic regions of related cell types despite the length of evolution-
ary divergence [36]. Thus MRT profiles likely capture the epigenetic differences
between cell types, even when they are closely related, and should be consid-
ered as a bona fide epigenetic mark [65, 217]. By performing our integrative
analysis at low (100 kb) and high (6 kb) resolutions in parallel, we should
be in position to investigate the global reorganization of replication domains
during differentiation in relation to coordinated changes in chromatin state
and gene expression. A number of studies have also demonstrated a clear
association between the replication program and cancer genome rearrange-
ment events [218–221]. In particular, MRT was shown to capture important
epigenetic modifications involved in genomic misregulation and chromosomal
instability during tumoral progression prior to rearrangement events [221].
Extending the present study to cancer cell lines with well defined temporally
ordered steps of tumoral progression will provide new knowledge that hopefully
will turn out very helpful for cancer diagnosis, prognosis and cancer treatment.
This work is under progress.
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IV.6 Materials and methods

IV.6.1 Annotation and expression data

Annotation and expression data were retrieved from the Genome Browser of
the University of California Santa Cruz (UCSC). To construct our data set, we
used RefSeq Genes track as human gene coordinates. Genes with alternative
splicing were merged into one transcript by taking the union of exons. Hence
the TSS was placed at the beginning of the first exon. We obtained a table of
23329 genes. We downloaded expression values from the release 2 of Caltech
RNA-Seq track (ENCODE project at UCSC):

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/

wgEncodeCaltechRnaSeq/

Expression for one transcript is given in reads per kilobase of exon model per
million mapped reads (RPKM) [10]. RPKM is defined as:

R =
109C

NL
, (IV.1)

where C is the number of mappable reads that fall into gene exons (union of
exons for genes with alternative splicing), N is the total number of mappable
reads in the experiment, and L is the total length of the exons in base pairs.
We associated 17872 genes with a valid RPKM value in K562.

IV.6.2 Histone marks, H2AZ, CTCF, RNAP II, Sin3A

and CBX3 ChIP-Seq data

For all ChIP-Seq data, we downloaded data in the ENCODE standard formats
“broadpeaks” and “bigWig” (http://genome.ucsc.edu/FAQ/FAQformat.html).
Broadpeaks format is a table of significantly enriched genomic intervals. Big-
Wig format is a read count profile at high resolution of 25 bp. Most of the
data correspond to the release 3 (August 2012) of the Broad histone track. We
downloaded the tables from:

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeBroadHistone/
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The CBX3 and Sin3A data correspond to the release 3 (September 2012) of
the HAIB TFBS track. Tables were downloaded from UCSC:

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeHaibTfbs/

For the K562 cell line, we downloaded the broadpeak tables for the following
antibodies: CTCF, H3K27ac, H3K27me3, H3K36me3, H3K4me3, H3K9me3,
RNAP ll, H2AZ, H3K79me2, H3K9me1, H4K20me1, CBX3, Sin3A.

IV.6.3 Read density computation around promoters

For each ChIP-Seq data, we filtered the high resolution profiles (BigWig for-
mat) by the significantly enriched intervals (Broadpeaks format). Then, for
each gene with a valid expression value, the read density was computed as the
number of reads that fall in 6 kb window around the TSS divided by the win-
dow length. By doing so, we obtained a valid epigenetic value for 13 epigenetic
marks around 17724 promoters.

IV.6.4 Rank transformation and Spearman correlation

matrix

All statistical computations were performed using the R software (http://
www.r-project.org/).

In order to compute the Spearman correlation matrix, the read density
around promoters was transformed with the R function rank with option
ties.method=max. Then we computed the Pearson correlation matrix on the
transformed dataset. To reorder the matrix in Figure IV.1, we computed the
Spearman correlation distance dSCor as:

dSCor(X, Y ) = 1− SCor(X, Y ), (IV.2)

where SCor is the Spearman correlation. Then, a dendrogram was computed
using the R function hclust with option method=average and with dSCor as
dissimilarity.
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IV.6.5 Principal component analysis

Principal component analysis was performed on the rank transformed dataset
using the function dudi.pca from the R package ade4 (see http://pbil.

univ-lyon1.fr/ADE-4 and [167]) with the option scale=TRUE (i.e. each
variable is centered and normalized before the PCA computation). The first
three components were retained which accounts for 74% of the dataset variance
(see Figure IV.2(B,C)), and promoter states were defined in this 3D space.

IV.6.6 Definition of promoter chromatin states

Promoter chromatin states were defined as subdivisions of the 3D principal
component space (Figure IV.3). Geometrical definitions of those subdivisions
are given below:

P4 =
{

(x, y, z) ∈ R
3 : x > 1.9, y > 0.5, z > 0.9

}

(IV.3)

P3 =
{

(x, y, z) ∈ R
3 : (x− 2.6)2 + (y − 1)2 < 1.4, (x, y, z) /∈ P4

}

(IV.4)

P2 =

{

(x, y, z) ∈ R
3 : y <

4

3
(x− 2), (x, y, z) /∈ P3 ∪ P4

}

(IV.5)

P1 =

{

(x, y, z) ∈ R
3 : y >

4

3
(x− 2), (x, y, z) /∈ P3 ∪ P4

}

(IV.6)

where x, y, z are the values along the first PC1, the second PC2 and the third
PC3 principal components, respectively.

IV.6.7 CpG o/e computation and GC content

CpG observed/expected ratio (CpG o/e) was computed as nCpG

L−l
× L2

nCnG
, where

nC , nG and nCpG are the numbers of C, G and dinucleotides CG, respectively,
counted along the sequence, L is the number of nonmasked nucleotides and
l is the number of masked nucleotide gaps plus one, i.e. L-l is the number
of dinucleotide sites. The CpG o/e was computed over the sequence after
masking annotated CGIs.

IV.6.8 100 kb resolution chromatin states

Chromatin states for the myeloid cell line K562 were retrieved from Chap-
ter III [154]. Large scale chromatin states define an epigenetic segmentation
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of the human genome in four prevalent chromatin states C1, C2, C3 and C4
respectively, for 27656 100 kb non-overlapping windows. The large scale chro-
matin state for a gene is the state of the 100 kb window its TSS is embedded
in.

IV.6.9 Promoter count definition

Promoter count for a gene is the number of promoters that fall in a 100 kb
window centered around its TSS. For each gene we compute five kinds of
promoter count for:

∗ all genes. This give an indication of the gene density around that gene;

∗ genes which belong to a promoter class giving 4 promoter counts.

IV.6.10 Mean replication timing data and replication U-

domain coordinates

Timing profiles for the immature myeloid cell line K562 were obtained from
the authors [94]. The mean replication timing (MRT) is given for 27656 100
kb non-overlapping windows in hg18 coordinates. We also retrieved the coor-
dinates of the 876 U-domains in K562 from the authors [94].
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Chapter V

Embryonic stem cell specific

master replication origins at the

heart of the loss of pluripotency

In this Chapter, we extend the integrative analysis made in Chapter III to
several human cell lines. In the somatic cell lines, we recover the four preva-
lent chromatin states found in the K562 cell line. Interestingly, the embryonic
stem cell (ESC) line has a singular epigenetic landscape that involves four spe-
cific chromatin states: an active gene rich early replicating euchromatin state
(EC1), a mid-S accessible chromatin state (EC2) enriched in bivalent genes, a
”null” chromatin state (EC3) devoid of epigenetic marks and a gene-poor highly
dynamic chromatin state (EC4) hindering heterochromatin compaction both
replicating late. Comparative analysis of U-shaped MRT domains in seven cell
lines reveals a widespread plasticity of the replication program during differ-
entiation. Besides some epigenetically regulation, master replication origins at
MRT U-domains borders that are shared by all cell types are specified by a local
enrichment in nucleosome free regions (NFRs) encoded in the DNA sequence
suggesting that they have been selected during evolution. The initiation zones
specific to the ESC line bear a particular epigenetic signature. Almost equally
distributed in the EC1, EC2 and EC4 chromatin states, these early initia-
tion zones (∼200kb) are significantly enriched in the insulator binding protein
CTCF and in pluripotency transcription factors (e.g. NANOG and OCT4).
Surprisingly, the ones in EC4 appear in GC-low, gene desert regions that are
locally enriched in the histone variant H2AZ and also in pluripotency factors
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NANOG and OCT4. This demonstrates the importance of these epigenetic
marks in the regulation of ESC replication independently from transcription.
We also emphasize the important role of H2AZ and H3K4me1 in ESCs for
maintaining the chromatin in a highly dynamic and accessible state that is
refractory to polycomb and HP1 binding. These results shed a new light on
the epigenetically regulated global chromatin reorganization that underlies the
loss of pluripotency and lineage commitment. Results reported in this chapter
were submitted to Nucleic Acids Research [222].

V.1 Introduction

One of the most remarkable phenomenon in biology is the generation of a whole
organism containing a large and phenotypically diverse collection of cells and
tissues from a single totipotent cell. This tremendous level of diversity in cellu-
lar functions originates from a unique genomic DNA sequence. Since the origi-
nal sequencing of the human genome a decade ago [1], it has become clear that
the functional role of the primary DNA sequence is not only to code for proteins
which represent less than 5% of the mammalian genomes, but also to contribute
to controlling the spatial structure of DNA in chromatin and in turn to regulate
nuclear functions including transcription and replication [2,4]. But as develop-
ment goes on, the use of the DNA sequence has to be altered to enable lineage
commitment. Epigenetic mechanisms including DNA methylation [189, 190,
223–227], histone modifications [6–8, 15, 150, 162, 164, 166, 228] and chromatin
structure and dynamics [41,54,55,98,155,229–235] have been proposed to play
a key role in regulation of embryonic development, the maintenance of pluripo-
tency and self-renewal of ESCs, lineage specification and the maintenance of
cellular identity during differentiation [236–240]. For years, transcriptional
and chromatin changes during mammalian development have been attracting
increasing interest. Among noteworthy advances, let us mention the identifi-
cation of pluripotency markers including NANOG/SOX2/OCT4 [7, 241] and
of trithorax proteins and polycomb complexes [242–247] as major actors in
developmental gene regulation, the identification of the neural restrictive si-
lencer factor NRSF that represses transcription of several neuronal genes in
neural development [248]. Also, as differentiation progresses, chromatin struc-
ture switches from a highly dynamic, accessible and permissive euchromatin
in ESCs to a less open chromatin riddled with accumulating highly condensed
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transcriptionally inactive heterochromatin regions [236–238,249–251].

In contrast to this overwhelming activity concerning the interplay between
chromatin structure and transcription regulation during development, only
little attention has been paid to replication and its potential role in lineage
commitment and fidelity. In pioneering studies, in mouse [34, 35] and hu-
man [11, 12], replication domains along chromosomes were delineated in con-
stant timing regions (CTRs) of coordinated origin firings and timing transition
regions (TTRs) as origin-less regions [252–254]. In good agreement with previ-
ous studies in Drosophila [50,88], these CTRs regions in different mammalian
cell types revealed a correlation with epigenetic modifications [89]. Early CTRs
tend to be enriched in open chromatin marks, whereas late CTRs are mostly
associated with repressive HP1-associated marks [34, 36]. Actually, each cell
type presents specific replication timing patterns with mouse ESCs showing
a clear MRT pluripotency fingerprint [115]. Differentiation induces important
changes in MRT profiles in chromosomal units of size ∼ 400-800 kb [34–36].
Early to late (EtoL) MRT changes were associated with loss of pluripotency
and largely preceded, in development, late to early (L to E) changes asso-
ciated with germ-layer specific transcriptional activation [36]. Importantly,
these dynamic changes in MRT come along with some sub-nuclear reposi-
tioning [34–40]. EtoL (resp. LtoE) transitions occur simultaneously with a
movement from (resp. towards) interior of the nuclei towards (resp. from) a
more peripheral location or near nucleoli [40–44]. Recent experimental studies
of long-range chromatin interactions using chromosome conformation capture
techniques [26,30,36,90] have confirmed that 3D chromatin tertiary structure
plays an important role in regulating replication timing.

However, in contrast with the above dichotomic picture with early and
late replicating loci occurring in separated compartments of open and closed
chromatin respectively [26, 36, 90], about half of the genome is paved by the
replication U-domains where the MRT is U-shaped [94, 101]. Replication U-
domains are likely central to genome regulation since the dynamical changes
in MRT profiles observed during differentiation [34–36, 115] mainly occur in
the 50% of the genome that are covered by U-domains [94]. Indeed the re-
sults reported in [94] show that the so-called replication domain “consolida-
tion” phenomenon [34] actually corresponds to the disappearance (EtoL tran-
sition) or appearance (LtoE transition) of a U-domain border during differ-
entiation. Overall, these results point out the “master” replication origins at
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U-domain borders as a possible clue to the understanding of the plasticity of
the spatio-temporal replication program, gene expression and chromatin or-
ganization across different cell lines during development, lineage commitment
and fidelity.

Here we extend the analysis presented in Chapter III to different cell types
including the ESC H1hesc, three hematopoietic cell lines (K562, Gm1278,
Monocyte CD14+), a mammary epithelial cell line (Hmec) and an adult fibrob-
last cell line (Nhdfad). By investigating the global reorganization of replication
U-domains in these different cell types in relation to coordinated changes in
chromatin state and gene expression, we shed a new light on the chromatin-
mediated epigenetic regulation of transcription and replication during human
differentiation. Because they are likely to be the cornerstone to better under-
standing of pluripotency maintenance, developmental specification and lineage
fidelity, we will pay special attention to the “master” replication initiation zones
that border U-domains and specially to those that are specific to ESCs.

V.2 Results

V.2.1 Combinatorial analysis of chromatin marks

We investigated relationships between the genome-wide distribution of eight
histone modifications, one histone variant and one binding protein in five som-
matic cell types including an immature myeloid cell line (K562), a monocyte
cell line (Monocd14ro1746), a lymphoblastoid cell line (Gm12878), a mammary
epithelial cell line (Hmec), an adult dermal fibroblast cell line (Nhdfad) and an
ESC line (H1hesc) for which we also considered the ATP-dependent helicase
CHD1, the subunit EZH2 of PRC2 (polycomb repressive complex 2) and the
two pluripotency transcription factors NANOG and OCT4. As a first step, we
computed the Spearman correlation coefficient of each mark with each other
(Sect. V.5.6). We next represented the resulting matrix as a heatmap after
having reorganized rows and columns with a hierarchical clustering based on
the Spearman distance (Eq. V.1) (Figs V.1 and V.2). This analysis was very
enlightening since, on the one hand it revealed that the correlation matrices
obtained for the five sommatic cell lines strongly ressemble to the one obtained
in K562 in our Chapter III [154] (Fig. V.1 and V.2), and on the other hand it
clearly discriminated the pluripotent H1hesc cell line for having a drastically
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Figure V.1: Spearman correlation matrix between epigenetic marks in H1hesc (top) and

Nhdfad (bottom). For each cell line, we computed the Spearman correlation over all 100

kb non-overlapping windows with a valid score. Spearman correlation value is color coded

using the color map shown on the left. Lines for the epigenetic marks were reorganized by a

hierarchical ordering using Spearman correlation distances (Eq. (V.1)) as illustrated by the

dendrograms on the right of the corresponding matrices. This ordering implies that highly

correlated epigenetic marks are close to each other.

different correlation structure between epigenetic marks (Fig. V.1).

In the epigenetic mark matrices obtained for the differentiated cell lines
Nhdfad (Fig. V.1), Hmec, Monocd14ro1746, K562 and Gm12878 (Fig. V.2), all
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Figure V.2: Spearman correlation matrix between epigenetic marks in Hmec,

Monocd14ro1746, K562 and Gm12878 cell lines. Same color map as in Fig. V.1.
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histone modifications that are known to be involved in transcription positive
regulation, namely H3K4me1, H3K4me2, H3K4me3, H3K27ac, H3K36me3,
H3k79me2 and H4K20me1, form a block that also includes the histone variant
H2AZ and the transcription factor CTCF, meaning that all these marks are
all correlated with each other and are likely to occupy similar regions in the
genome [164, 166]. In fact, two lines are clearly apart in all correlation matri-
ces as illustrated on the hierarchical clustering dendrogram (Fig. V.1). They
correspond to the repressive chromatin marks H3K27me3 and H3K9me3 that
are respectively associated with the so-called facultative and constitutive het-
erochromatins [154]. These two marks are recognized by the chromodomains
of polycomb (Pc) proteins and heterochromatin protein 1 (HP1) respectively,
components of distinct gene silencing mechanism which may explain that they
are anti-correlated with each other. While H3K9me3 behaves quite indepen-
dently if not anticorrelated with most of the active chromatin marks (except
for Gm12878 where some positive correlations were observed), H3K27me3 cor-
relates to some of them in a cell line dependent fashion but quite systematically
to CTCF (Figs V.1 and V.2). This consistency of epigenetic mark correlations
in the five differentiated cell lines prompted us to build a “shared” epigenetic
space (Sect. V.5.5). This consisted in pooling data points of all differentiated
cell lines together and then in applying the PCA and clustering algorithm to
reduce the dimensionality of the data. As previously experienced with K562
in Chapter III [154], we concentrated on the first four principal components
which together account for 86% of the total data set variance (Fig. V.3A’). By
projecting the 100kb genomic loci on the (PC1, PC2) plane (Fig. V.3C’) and
(PC3, PC2) plane (Fig. V.3B’), we noticed that four areas contain most of the
population. On the (PC1, PC2) plane a large area of medium density comes
out from a plane of much higher density where, as viewed on the (PC3, PC2)
plane, loci roughly lie along two differently populated straight lines with a very
high density of loci concentrated at the intersection of these lines. This led us
to fix the number of clusters to four in the Clara algorithm [153] (Sect. V.5.8),
as confirmed when using the within-cluster sum and gap statistical criteria
(Sect. III.4.6) [154]. When labeling each of the four main chromatin states
with a color, we obtained four domains in the (PC1, PC2, PC3, PC4) space
that have common boundaries as illustrated on the (PC1, PC2) projection
plane (Fig. V.3D’,E’). To improve the quality of our clustering procedure, we
filtered out poorly clustered data points that were closer to another cluster
than the one they belong to and had a negative silhouette [168] (Sect. III.4.6).
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Figure V.3: PCA analysis and clus-

tering procedure for ESC line (A-E)

and the five differentiated cell lines

(A’-E’). (A, A’) Percentage of vari-

ance accounted by the eleven princi-

pal components ordered according to

their corresponding variance (eigen-

values). (B, B’) Two-dimensional

(2D) density of the data on the plane

defined by the second (PC2) and

third (PC3) principal components.

The densities were computed by a

kernel density estimation. (C,C’)

Projection of the data on the (PC1,

PC2) plane. (D, D’) Scatterplot of

the data points when projected on

the (PC1, PC2) plane; color dots

indicate the four chromatin states

as found by our clustering proce-

dure. (E, E’) Density of data points

on the (PC1, PC2) plane using the

same color coding as in (D, D’). In

(D, E) the colors have the follow-

ing meaning: EC1 (light pink) tran-

scriptionally active chromatin, EC2

(light orange) bivalent chromatin,

EC3 (light green) silent unmarked

chromatin, EC4 (light blue) dynam-

ically accessible chromatin poised

to HP1-heterochromatin expansion.

In (D’, E’) the colors correspond

to: C1 (pink) transcriptionally ac-

tive chromatin, C2 (orange) chro-

matin repressed by polycomb, C3

(green) silent unmarked chromatin,

C4 (blue) HP1 heterochromatin. In

(D, D’, E, E’) the points in dark grey

are not classified in any chromatin

state (Sect. V.5.8).
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The epigenetic mark correlation matrix obtained for the pluripotent H1hesc
cell line (Fig. V.1) displays drastic differences from the ones previously ob-
tained for differentiated cell lines. Among others, let us mention the re-
pressive polycomb-associated mark H3K27me3 which now strongly correlates
with most of the active marks and specially H3K4me3 as the probable signa-
ture of bivalent ESC chromatin [166, 228, 236, 238, 242, 243]. Also the histone
variant H2AZ that now correlates as much with both the repressive marks
H3K27me3 and H3K9me3 as with some of the active marks, which likely is an
indication of specific highly dynamic and accessible chromatin of pluripotent
cells [6,166,228,236,238,251]. When reproducing our PCA and clustering anal-
ysis on the H1hesc epigenetic data, we again found that four PCs were enough
to account for 86% of the total variance (Fig. V.3A), and that one could still
reduce the ESC epigenetic complexity to four chromatin states (Fig. V.3B-E)
but, as described in the next sub-section, these chromatin states are distinct
from the ones delineated in sommatic cells confirming that ESCs and differen-
tiated cells have different epigenomes [6, 15,166,228,236, 251].

V.2.2 Epigenetic content of prevalent chromatin states

in ESCs versus differentiated cells

The four chromatin states so identified in the five differentiated cell lines are
quite similar to the ones previously found in K562 in chapter III [154] (see
also [238]). C1 is a transcriptionally active chromatin state enriched in the
histone modifications H3K27ac, H3K4me1, H3K4me3, H3K36me3 (Fig. V.4)
and H3K4me2, H3K27me2, H4K20me1 (Fig. V.5), as well as in the histone
variant H2AZ whose binding level was shown to correlate with gene activ-
ity in human [166] (Fig. V.4). C2 is notably associated with the histone
modification H3K27me3 (Fig. V.4) and hence corresponds to a polycomb re-
pressed chromatin state [145,166]. C3 can be compared to the “null” or “black”
silent heterochromatin regions devoid of chromatin marks previously found in
Drosophila [50,53] and Arabidopsis [51]. C4 corresponds to the HP1-associated
heterochromatin state with all C4 100 kb-loci containing H3K9me3 and al-
most only that repressive mark (Fig. V.4) [145, 166]. Note that CTCF which
is known to establish chromatin boundaries to prevent the spreading of het-
erochromatin into transcriptionally active regions [142, 176] was found in C1
and to a slightly less extend in C2 loci (Fig. V.4).
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Figure V.4: (First two rows) Repartition of epigenetic marks in the four prevalent chromatin

states of H1hesc cell line (EC1, EC2, EC3, EC4, same color coding as in Fig. 1D and E) and

differentiated cell lines (C1, C2, C3, C4, same color coding as in Fig. 1D’ and E’). Boxplots

of the decimal logarithm of histone mark ChiP-seq read density in 100 kb non-overlapping

windows per chromatin state. (Third row) Boxplots of the coverage of DNase1 hypersentive

peaks in 100 kb non-overlapping windows per chromatin state in H1hesc and K562 cell lines

and the decimal logarithm of EZH2, CHD1 and NANOG ChiP-seq read density in 100 kb

non-overlapping windows per chromatin state in h1Hesc cell lines. Same color coding than

above.
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Figure V.5: Repartition of the histone modifications H3K4me2, H3K79me2 and H4K20me1

in the four prevalent chromatin states of H1hesc cell line (EC1, EC2, EC3, EC4, same color

coding as in Fig. 1D and E) and differentiated cell lines (C1, C2, C3, C4, same color coding

as in Fig. 1D’ and E’). Boxplots of the decimal logarithm of epigenetic mark CHip-seq read

density in 100 kb non-overlapping windows per chromatin state.

Chromatin states in pluripotent H1hesc cell line (EC1, EC2, EC3, EC4) are
different even though they display some similarities with the above described
differentiated chromatin states (C1, C2, C3, C4). As for differentiated C1 state
but to a slightly less extent, more than 75% of 100kb-loci in EC1 state contain
all the active histone modification marks considered (Figs V.4 and V.5). More
than 75% of 100 kb loci in EC2 like in C2 are marked by H3K27me3 which is
deposited by polycomb complex PRC2 and then enhances PRC1 targeting [245,
247,255] (Fig. V.4). Consistently, EZH2, which is a subunit of PRC2 containing
a SET domain that acts upon H3K27 as a methyltransferase, was abundantly
found in EC2 confirming the polycomb activity of this state. CTCF is also
present in both EC1 and EC2 as previously seen in C1 and C2 but in slightly
reverse importance, EC2 being more enriched than C2 and vice versa for EC1
and C1 (Fig. V.4). C1, C2 and EC1, EC2 being the most genic chromatin states
in differentiated and ESCs, this result is coherent with the correlation observed
between CTCF positioning and gene density [256]. H4K20me1 which was
recently shown to strongly correlate with gene activation [166], was consistently
found in EC1 and C1 but more surprisingly also in EC2 and C2 which are silent
chromatin states (Fig. V.5). Interstingly, recent worls have confirmed that PR-
Set 7 involved in the deposition of H4K20me1 plays an important role in the
control of replication origin firing in mammalian cells [178–180].

However the epigenetic chromatin states in pluripotent ESCs and differen-
tiated cells bear more differences than similarities. Systematically the differen-
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tiated C1 state is more enriched in active histone marks than the pluripotent
EC1 state, and this for all histone modifications but H4K20me1 (Figs V.4
and V.5). Relatively to EC1, EC2 contains more H3K4me3 than C2 rela-
tively to C1 (Fig. V.4), which, with the enrichment of EC2 in H3K27me3, is
an indication of bivalent heterochromatin. But the most striking difference
concerns the pluripotent state EC4 whose epigenetic content is qualitatively
and quantitatively different from the one of C4. Noticeably, H2AZ is highly
present in more than 75% of EC4 100kb loci which contrasts with its scarity
in C4 (Fig. V.4). As compared to C4 which is enriched in the HP1-associated
heterochromatin mark H3K9me3, EC4 contains significantly less H3K9me3 as
a possible compensation of the enrichment in H2AZ (Fig. V.4). As recently ob-
served in human [238], the enrichment of the ESCs in the histone variant H2AZ
associated with nucleosome exchange and remodeling [166,202,235,257] is likely
to contribute to the highly dynamic properties of pluripotent chromatin and
its refractory character to both HP1- and polycomb heterochromatin restric-
tion [6,166,236,238,249]. This interpretation is stengthened by the observation
that in contrast to C4, EC4 is enriched in CTCF (Fig. V.4), which besides its
insulator properties [142, 176], is also known to mediate long-range intra- an
inter- chromosomal interactions [176, 256, 258–261]. Thus, the accessible and
more relax EC4 chromatin might be more central in the nucleus than the HP1-
associated heterochromatin C4 state that likely corresponds to the emergence
of compact chromatin at the nuclear periphery [41,54,55,155,229–236,251].

To get a better comprehension of ESC chromatin states, we looked at two
additional epigenetic marks known for their implication in pluripotency. Glob-
ally all chromatin remodelers are over expressed in ESC [262] but only some
knockdown are known to impair pluripotency. The ATP-dependent helicase
CHD1 is one of these [263]. As reported in mouse [263, 264], CHD1 helps at
maintening a globally more loose chromatin in ESCs. Interestingly, CHD1 is
present in EC1 and EC2 (Fig. V.4) which makes sense since both these chro-
matin states contain most of the human genes whose expression can possibly
be altered by CHD1 in pluripotent cells [263]. But CHD1 is also present in 75%
of EC4 100 kb loci confirming that this remodeler contributes to prevent HP1-
associated constitutive C4 heterochromatin spreading and compaction [263].
The pluripotent OCT4/SOX2/NANOG network enables self-renewal proper-
ties of ESCs, and ectopic expression of these factors together with additional
factors or mechanismes was shown to reprogram somatic cells into pluripo-
tent cells (iPS cells) [265–267]. NANOG was found to the same extend in
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Chromatin states EC1 EC2 EC3 EC4 ED
H1hesc 0.21 0.19 0.27 0.24 0.09

Chromatin states C1 C2 C3 C4 D
K562 0.21 0.14 0.28 0.26 0.11

Monocd14ro1746 0.23 0.18 0.13 0.30 0.16
Gm12878 0.21 0.15 0.36 0.12 0.16

Hmec 0.22 0.21 0.25 0.16 0.16
Nhdfad 0.21 0.22 0.19 0.25 0.13

Table V.1: Percentages of 28465 sequenced 100-kb windows that belong to the EC1, EC2,

EC3 and EC4 chromatin states in H1hesc and to the C1, C2, C3 and C4 chromatin states

in differentiated cell lines. ED and D correspond to 100-kb windows that were not classified

in any chromatin states (Sect. V.5.8).

EC1 and EC2 (Fig. V.4) which is consistent with the fact that NANOG regu-
lates roughly the same number of expressed genes and silent genes [241, 268].
NANOG is surprisingly present in the gene-poor EC4 state suggesting that it
may play a role in promoting the relative openess of this pluripotent chromatin
state.

V.2.3 Chromatin state coverages and chromatin state

changes between cell lines

When comparing the genome coverages, i.e the percentages of the 28465 100
kb non-overlapping windows corresponding to the sequenced part of the human
genome that belong to the previously identified prevalent chromatin states, we
found that whatever the considered cell line, less than 20% of these windows
were not properly classified in any chromatin state (Table V.1). In H1hesc
cells, EC1 and EC2 coverages are about the same (∼ 19-21%) and are quite
similar to the C1 and C2 coverages (∼ 15-23%) generally observed in the five
differentiated cells. If the EC3 (27%) and EC4 (24%) coverages are comparable
in the ESCs, the C3 and C4 coverages in the differentiated cells are much more
variable from 11% to 36%. The lower C4 coverage found in Hmec (16%) than
in Nhdfad (25%) may reflect some difference in the culture environment. As
reported in [238], the prevalence of H3K9me3 can be tuned up by growth
conditions especially in adherent cultures in the presence of serum or other
potent growth stimuli. In contrast to Hmec whose growth medium did not
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Figure V.6: (A) Mosaic plot representing the probabilities of transition from H1hesc chro-

matin states to Nhdfad chromatin states. The width of columns corresponds to the pro-

portion of chromatin states in H1hesc. The segmentation for the ith column follows the

proportion of windows in state ECi in H1hec that become Cj in Nhdfad. In other words, if

we take the first pink rectangle of the first column, its width is proportional to the probabil-

ity for a 100kb window to be in chromatin state EC1 in H1hesc and its height is proportional

to the the probability for a 100kb window to be in C1 in Nhdfad given that it is in EC1

in H1hesc. The area of this rectangle (product of the previously mentioned probability) is

proportional to the probability for a window to be in state EC1 in ESC and C1 in Nhdfad.

(B) Same as (A) for the chromatin state changes from the cell line Nhdfad towards K562.

contain serum, Nhdfad medium as well as the three hematopoetic cell media
did, which might explain the rather large C4 coverages obtained for K562 (26%)
and Monocd14ro1746 (30%). Note that despite the fact that they were grown
in similar conditions, Gm12878 cells have a significantly lower C4 coverage
(11%). However, this seems to be compensated by a very high C3 coverage
(36%) so that, as in the other differentiated cell lines, the total (C3+C4)
coverage is ∼ 45% (Table V.1). This genome over-coverage by the unmarked
silent C3 state in Gm12878 may be a particularity of lymphoid derived cells
that remains to be understood.

To study changes in chromatin states between different cell lines, we se-
lected two representative differentiated cell lines, namely Nhdfad and K562,
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and the pluripotent H1hesc cell line. As an illustration of the transition be-
tween ESCs and differentiated cells, the changes obtained from H1hesc chro-
matin states to Nhdfad chromatin states (Fig. V.6A) are very instructive. The
transcriptionally active state is highly conserved: 80% of EC1 100 kb-loci in
H1hesc are C1 loci in Nhdfad as compared to 13% that experience a repression
by polycomb to C2 and only 4% and 3% that transit towards the heterochro-
matin states C3 and C4 respectively. The bivalent state EC2 directs towards
either the active euchromatin state C1 (29%) or the polycomb repressed state
C2 (51%) which is coherent with initial bivalency adding flexibility in tran-
scription regulation during development [6,8,15,150,162,164,166,228,243,269].
The unmarked state EC3 mainly leads to the heterochromatin states C3 (30%)
and C4 (51%) and almost never to the active state C1 (5%). EC4 does not
change much to the active state C1 (7%) but distributes almost equally into C2
(34%), C3 (21%) and C4 (39%). Even though they are quite different in terms
of epigenetic marks (Figs V.4 and V.5), these three states are silent [154,193].
Therefore EC4 state in pluripotent cells is prepared to silencing during differ-
entiation. Now when looking at chromatin state changes from differentiated
cell lines Nhdfad to K562 (Fig. V.6B), we observed that a majority of 100-kb
loci in C1 (72%), C3 (58%), C4 (66%) and to a lesser extend C2 (33%) are
conserved. Indeed except the highest percentage of C2 loci leading to C3+C4
(26%), the drastic difference is that the constitutive heterochromatin state C4
rarely transits to the active euchromatin state C1 (4%) and to the polycomb
repressed state C2 (15%), which confirms that the pluripotent state EC4, if
prepared to silencing, is not as C4, a compactly repressed heterochromatin
state. Note that overall, chromatin states are highly dynamic since only 48%
(resp. 57%) of 100 kb-loci are conserved from H1hesc (resp. Nhdfad) to Nhdfad
(resp. K562). Merging the genic chromatin states EC1+EC2 (resp. C1+C2)
significatively increases the conservation rate to 83% (resp. 69%). The merg-
ing of EC3+EC4 (resp C3+C4) also displays high conservation rate 74% (resp.
89%).

V.2.4 Replication timing of chromatin states

Consistent with our preliminary analysis of the K562 cell line in Chapter III
[154], we confirmed that there exists a strong correlation between the four
prevalent chromatin states and the MRT, and this for both the pluripotent
(H1hesc) and the differentiated (K562, Gm12878, Nhdfad) cell lines (Fig. V.7).
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Figure V.7: MRT and GC distributions in the four chromatin states for h1Hesc and three

differentiated cell lines (K562, Gm12878, Nhdfad). (First row) Boxplot of MRT computed in

100 kb non-overlapping windows per chromatin state. (Second row) Boxplots of GC content

computed in 100 kb non-overlapping windows per chromatin state. Same color coding as in

Fig. V.4.

The transcripionally active euchromatin states C1 and EC1 replicate early in
S-phase in agreement with previous studies of open chromatin marks in hu-
man and mouse [12,14,34,36,87,89]. The pluripotent bivalent EC2 state and
the differentiated polycomb repressed C2 heterochromatin state both replicate
slightly later in mid-S phase which contrasts with previous report of the exis-
tence of high correlation between late replication and the repressive chromatin
mark H3K27me3 [36, 181]. The silenced unmarked EC3 and C3 states as well
as the pluripotent chromatin state EC4 prepared to heterochromatinization
and the HP1-associated heterochromatin state C4 all replicate much latter
up to the end of S-phase. Interestingly, whereas (EC1, C1) and (EC2, C2)
have clear different MRT, they have almost the same high mean GC content
as expected for gene-rich states [1]. In contrast, a clear correlation between
MRT and mean GC content was observed for the late replicating chromatin
states. When C3 replicates before C4 (K562, Nhdfad), C3 has a higher GC con-
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from H1hesc to Nhdfad from Nhdfad to K562
E to L L to E E to L L to E

1 to 1 0.35 0.49 0.81 0.37
1 to 2 1.26 0.46 2.11 0.22
1 to 3 3.52 0.36 4.12 0.04
1 to 4 4.33 0.10 4.90 0.18
2 to 1 0.21 1.61 0.34 1.71
2 to 2 0.80 1.18 1.36 0.98
2 to 3 2.16 1.26 3.17 0.26
2 to 4 1.86 0.10 3.26 0.19
3 to 1 0.17 3.63 0.30 4.14
3 to 2 0.45 3.14 0.84 3.26
3 to 3 0.89 1.28 1.68 0.90
3 to 4 0.65 0.23 1.35 0.25
4 to 1 0.41 3.49 0.09 4.58
4 to 2 0.65 3.04 0.13 3.95
4 to 3 1.45 1.49 0.35 1.13
4 to 4 1.34 0.43 0.22 0.14

Table V.2: EtoL and LtoE chromatin state transitions from H1hesc to Nhdfad and from

Nhdfad to K562. Chromatin state transition ratio is defined as the proportion of EtoL (resp.

LtoE) transitions from state i to j over the proportion of this chromatin transition genome

wide. Early (resp. late) means MRT < 0.5 (resp. > 0.5).

tent than C4 and vice-versa when C3 replicates after C4 (H1hesc, Gm12878)
(Fig. V.7). There is however a major difference between MRT of pluripotent
and differentiated cell lines. EC4 exhibits a much wider MRT distribution than
C4 with a non-negligible proportion of early replicating (MRT < 0.5) 100-kb
loci, namely 35.7% (H1hesc) as compared to 5.5% (K562), 19.2% (Gm12878)
and 4.2% (Nhdfad). This can be seen as an additional indication that EC4
is sufficiently accessible and open to enable origin firing and early replication.
This is confirmed by the almost uniform distribution of DNaseI hypersensitive
sites (DHS) in H1hesc EC1 (median at 5 DHS per kb), EC2 (5 DHS/kb) and
EC4 (1 DHS/kb) which contrasts with the abundance of DHS in differenti-
ated C1 (40 DHS/kb) and C2 (20 DHS/kb) states and their virtual absence
in the heterochromatin states C3 and C4 (Fig. V.4). The highly dynamic
and accessible character of pluripotent chromatin states likely facilitates the
access of the replication machinery to DNA and thus prevents having to repli-
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cate long (EC3+EC4) threads at the end of S-phase. Replication of several
Mb long silent fragments at the end of S-phase may be in contradiction with
the necessity of maintaining a high proliferation rate and a short cell cycle in
H1hesc [270].

To quantify the coupling between chromatin state transitions and MRT
changes, we investigated the types of chromatin state transitions in EtoL and
LtoE 100 kb windows that were over-represented as compared to their genome
wide proportions (Table V.2). For the EtoL transitions from H1hesc to Nhdfad,
besides the polycomb repressed EC1 to C2 transition, the heterochromatization
transitions from (EC1, EC2) to (C3, C4) are as expected significantly over-
represented and account for 33% of all EtoL transitions (10.8% of transitions
genome-wide). Interestingly, there are more surprising EtoL chromatin state
transitions from EC4 to C3 and C4. They correspond to the early replicating
EC4 100 kb loci that “consolidate” into silent and compact heterochromatin
loci replicating late in Nhdfad. These transitions account for 30% of all EtoL
transitions (17% genome wide) as compared to 60% from (EC1, EC2) to (C3,
C4) EtoL transitions. For the opposite LtoE transitions from H1hesc to Nhd-
fad, besides the expected transitions from the bivalent EC2 state to the active
C1 state and to the polycomb repressed C2 state, the activation transitions
from (EC3, EC4) to C1 are highly over-represented (8%) (2% genome-wide) as
well as transitions from (EC3, EC4) to the polycomb repressed C2 state (40%)
(12% genome wide). Between differentiated cells, same trends were obtained
for EtoL and LtoE chromatin state transitions from Nhdfad to K562 with the
remarkable difference that the over representations of EtoL transitions from C4
to C3 and to C4 are no more present as the consequence of the absence of early
initiation in compact HP1-associated heterochromatoin domains (Table V.2,
Fig. V.7)

V.2.5 Gene content of chromatin states

To address the issue of gene content of pluripotent and differentiated prevalent
chromatin states, we focused on H1hesc and K562 cell lines. We took advantage
of our previous detailed integrative analysis of epigenetic marks, MRT and gene
expression data in K562 in Chapters III and IV [154,193] that showed that the
euchromatin state C1 is highly genic and contains almost all expressed genes
and a non negligible proportion of inactive genes that almost equals the total
number of genes found in C2 as mostly repressed by polycomb complexes. As
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Figure V.8: Gene expression in the H1hesc and in the K562 chromatin state. (A) Density of

promoters in the 4 chromatin states of the H1hesc cell line as a function of gene expression

(genes were grouped into bins of width 0.05 in log10(RPKM) unit). Same color coding as

in Fig. V.3D. (B) Density of promoters in the 4 chromatin states of the K562 cell line as a

function of gene expression. Same color coding as in Fig. V.3D’. (C) 2D representation of

the joint density of gene expression in H1hesc (X-axis) and K562 (Y-axis) when focusing on

EtoL (blue) and LtoE (magenta) MRT transitions. For comparison is shown as a control

(black), the joint density obtained for comparable size sets of randomly chosen genes.

compared to these high-GC (Fig. V.7), gene rich C1 and C2 states, the low-GC
C3 and C4 states were found to be gene deserts with scarce long genes. In the
pluripotent H1hesc cell line, the gene rich chromatin states are still EC1 and
EC2. But there are some noticeable differences with respect to K562. There
are less promoters per Mb in EC1 (13.1 promoters/Mb) than in C1 (15.9
promoters/Mb), and in compensation more in EC2 (9.3 promoters/Mb) than
in C2 (7.8 promoters/Mb) (Table V.3). Moreover the relative distributions
of RPKM values (Eq. (V.4))(Fig. V.8A,B) revealed that relative to C1, EC1
contains more expressed genes with RPKM > 1 as well as EC2 relative to
C2. Indeed, both mean and median RPKM values are higher in EC1 and
EC2 than in C1 and C2 respectively (Table V.3). This is consistent with
the extensive presence of bivalent genes in EC2 that was previously shown to
be more accessible and less compact than the polycomb repressed C2 state in
differentiated cell lines [238,269]. This is also in agreement with previous report
on the higher global transcription activity in ESCs with only sporadic tissue-
specific gene expression as compared to differentiated cells [271]. Note that, in
that respect, EC4 is slightly permissive to expression whereas C4 is the most
repressive heterochromatin state (only 25% of genes with a non-null RPKM)
with by far the lowest gene density and largest mean length (Table V.3).
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Chromatin states EC1 EC2 EC3 EC4 C1 C2 C3 C4
promoter count 7653 5047 1138 1505 9588 3089 2334 827

promoter density per Mb 13.127 9.278 1.497 2.16 15.861 7.812 2.953 1.133
mean gene 30.537 7.76 0.798 1.299 18.529 2.307 0.696 0.244

expression (RPKM)
median gene 8.527 0.988 0.008 0.025 5.58 0.29 0.005 0

expression (RPKM)
mean gene length (kb) 50.999 72.705 56.335 67.538 43.557 58.535 86.301 173.962

Table V.3: Gene content in the four prevalent chromatin states of H1hesc and K562 cell

lines. For each chromatin state the following information is given: (i) the total number of

promoters per chromatin state, (ii) the density of promoters per Mb, (iii) the mean level of

expression per chromatin state in RPKM (Eq. (V.4)), (iv) the median level of expression

per chromatin state in RPKM, (v) the mean gene length per chromatin state in kb.

The coupling between MRT and gene expression has been extensively stud-
ied in Drosophila [84, 85, 88] and mammals [11, 12, 34, 86, 217]. We found that
in both H1hesc and K562, a vast majority of expressed genes are in the early
replicating EC1 and C1 chromatin states which confirms the link between
MRT and expressed gene density previously reported in mouse [34,35,86] and
human [11, 12, 14, 154]. Even more, in Chapter IV [193] we showed that the
activation of one gene in K562 was almost always sufficient for its 100 kb
environment to be in a early C1 chromatin state. But the presence of an im-
portant number of inactive genes in early C1 regions and to a less extend in
early EC1 regions (Table V.3, Fig. V.8A,B), suggests that there is no causal
link between an early replicating region and a high expression level yet many
recently identified early replication origins are strongly associated with CGI
and active CpG-rich gene promoters [56,61,70,71,73,74,79,80,272]. If almost
all genes in the late replicating heterochromatic C3 and C4 states are silent
with few exceptions, there is a slighlty larger number of expressed genes in the
pluripotent EC4 state (25% of the few genes in EC4 100kb windows have a non
null RPKM). Recent studies in mammals have further shown that the dynamic
of MRT through differentiation is only loosely coupled with gene expression
dynamic [12,34,35,88]. Whereas in dynamic timing regions most genes do not
change expression [12], some genes can undergo silencing while being replicated
early [12, 34, 35]. When examining the joint distribution of gene expression in
H1hesc and K562 (Fig. V.8C), for 100kb loci that experience a EtoL transi-
tion and reversely for those that change from LtoE, we confirmed that most
(∼ 55%) genes lying in dynamic MRT regions do not change expression. Only
a small fraction of genes that fall in the tails of the joint distribution change
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Chromatin state EC1 EC2 EC3 EC4 EC1+EC2 EC3+EC4
H1hesc 296.14 241.89 398.56 300.81 569.34 740.2

Chromatin state C1 C2 C3 C4 C1+C2 C3+C4
K562 327.43 191.14 437.69 881.56 567.19 869.6

Monocd14ro1746 357.48 215.22 210.33 582.15 642.93 628.52
Gm12878 336.87 198.34 576.08 276.3 551.83 702.88

Hmec 322.34 231.96 357.57 610.08 608.46 563.51
Nhdfad 312.11 261.89 281.14 894.38 675.45 637.58

Table V.4: Mean length of chromatin state blocks per chromatin state in kb (Sect. V.5.13)

in ES H1hesc and differentiated cells (see Table V.1).

expression coordinately with MRT change (Fig. V.8C), EtoL corresponding
to HP1-associated heterochromatin silencing (5.3%) and LtoE to open chro-
matin activation (13%). We considered that genes change expression if their
expression was at least three fold different between the considered cell lines.
As discussed in [12,34,35], genes that have the ability to overcome heterochro-
matin repression during a EtoL MRT change are mainly genes that have a
strong CpG rich promoter (e.g housekeeping genes). On the other hand, gene
activation seems to concern CpG rich as well as CpG poor promoters suggest-
ing that a switch LtoE generates a permissive environment to transcription.

V.2.6 Spatial organization of chromatin states along hu-

man chromosomes

Once mapped on the genome (Fig. V.9), the organization of the four preva-
lent chromatin states looks quite different in the pluripotent H1hesc cell line
as compared to the one in the five differentiated cell lines (Table V.4). In
H1hesc, the four chromatin states EC1, EC2, EC3 and EC4 do not differ so
much in the genome coverage (Table V.1) as well as in the number and length
distributions of domains or blocks of adjacent 100-kb-loci in the same chro-
matin state (Table V.4, Fig. V.10A). In Nhdfad, in agreement with previous
analysis in K562 in Chapter III [154], the HP1-associated heterochromatin
state C4 has a length distribution that displays a fat tail not observed in the
C1, C2 and C3 length distributions (Fig. V.11A) as well as in the correspond-
ing H1hesc length distributions (Fig. V.10A). This fat tail explains that the
mean C4 block length (L̄ = 894 kb) is significantly larger than the mean block
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Figure V.9: Genome-wide spatial distribution of chromatin states in ESCs and differentiated

cells. MRT profile along two Mb long fragments of human chromosome 5. U-domains are

marked by an horizontal orange line and their borders by vertical red lines. Below the MRT

profile, gene positions are indicated by a horizontal segment (blue: not expressed, orange:

expressed) as well as the chromatin state of each 100 kb window is represented using the same

color coding as in Fig. V.3D,E. At the bottom of the plot, intervals significantly enriched

in H3K27me3, H2AZ and CTCF are represented in black. At the bottom of the figure, the

last panel represents the skew S = SGC + STA with germline replication skew N-domains

are marked by an horizontal orange line and their borders by a vertical red line.
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Figure V.10: Spatial organization of chromatin states in H1hesc. (A) Histogram of chro-

matin state block length in a logarithmic representation (Sect. V.5.13). (B) same as (A)

for chromatin blocks formed by states EC1 and EC2 (EC1+EC2, light red) or by states

EC3 and EC4 (EC3+EC4, light blue). (C) MRT in chromatin state blocks EC1+EC2 with

respect to their length. Each 100 kb window in a chromatin state block is represented by

the color of its state defined in Fig. V.3D,E. The mean profile was obtained by (i) ordering

data points according to their block length, (ii) grouping them in classes of equal number of

data points and (iii) computing the average length and MRT over each class. Vertical bars

represent the standard deviation. Horizontal bars represent the range of length over each

class. (D) Same as (C) for chromatin state blocks EC3+EC4.
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Figure V.11: Spatial organization of chromatin states in Nhdfad. (A) Histogram of chro-

matin state block length in a logarithmic representation (Sect. V.5.13). (B) same as (A)

for chromatin states C1 and C2 (C1+C2, light red) or by states C3 and C4 (C3+C4, light

blue). (C) MRT in chromatin state blocks C1+C2 with respect to their length. Each 100

kb window in a chromatin state block is represented by the color of its state defined in

Fig. V.3D’,E’. The mean profile was obtained by (i) ordering data points according to their

block length, (ii) grouping them in classes of equal number of data points and (iii) com-

puting the average length and MRT over each class. Vertical bars represent the standard

deviation. Horizontal bars represent the range of length over each class. (D) Same as (C)

for chromatin state blocks C3+C4.
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length of C1 (L̄ = 312 kb), C2 (L̄ = 262 kb) and C3 (L̄ = 281 kb). This
peculiar length property of C4 blocks is shared by all differentiated cell lines
except Gm12878 where C3 blocks are larger (L̄ = 576 kb) as compared to C4
blocks (L̄ = 276 kb). Interestingly, as originally observed in K562 [154], for
all differentiated cell lines as well as for the ESC line H1hesc, the association
of C1+C2 (resp. EC1+EC2) on one side and C3+C4 (resp. EC3+EC4) on
the other side, results in large scale blocks of surprisingly similar length dis-
tributions (Table V.4, Fig. V.10B and V.11B). But the length distributions
obtained for differentiated cells have a fat tail up to blocks larger than 10 Mb
(Fig. V.11B and also Fig. III.19D) whereas EC1+EC2 and EC3+EC4 blocks
in H1hesc do not exceed 5 Mb (Fig. V.10B). These very long C1+C2 blocks
actually replicate very early (Fig. V.11C) suggesting that C2 loci are repli-
cated passively from fork coming from neighboring active loci earlier than C2
loci isolated in a C3, C4 environment. On the contrary, very long C3+C4
blocks definitively replicate very late (Fig. V.11D) as expected for gene desert
low-GC heterochromatin regions. These results are quite consistent with the
statistical model proposed in [12] where MRT is predicted from the distance to
the nearest active promoter. In H1hesc, the long EC1+EC2 (resp. EC3+EC4)
blocks also correspond to early (resp. late) replicating regions (Figs V.10C and
D) which explains that because of a shorter cell cycle in ESC, their maximal
length (∼ 5Mb) is significantly shorter than in differentiated cells (∼ 12 Mb).
Furthermore when looking at the most dynamical parts of the human genome
in terms of terms of MRT, we found that those that switch MRT from EtoL
or LtoE are small fragments of a few 100 kb long (Fig. V.12). From H1hesc
to Nhdfad, very small EC1+EC2 fragments switch to later MRT and mainly
correspond to the polycomb repressed EC1 to C2 transition and to the hete-
rochromatization transitions (EC1, EC2) to (C3, C4) (Table V.2, Fig. V.12A).
Also some small EC1+EC2 fragments switch to earlier MRT and in particular
the expected transition from the bivalent EC2 state to the active C1 state.
Similarly, only small EC3+EC4 fragments switch to earlier MRT and actually
correspond to the activation transitions from (EC3, EC4) to C1 and to the
transitions (EC3, EC4) to C2 (Table V.2, Fig. V.12B). Some small EC3+EC4
fragments switch to much later MRT as well as some individual 100 kb loci
belonging to larger EC3+EC4 fragments. They correspond to the few early
EC4 100 kb loci in H1hesc that consolidate into late replicating silent (C3) and
compact HP1-associated (C4) heterochromatin loci (Table V.2). From Nhdfad
to K562 similar trends were observed with only small C1+C2 and C3+C4 frag-
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Figure V.12: (A) MRT changes between H1hesc and Nhdfad (∆t = MRTNhdfad−MRTESC)

in chromatin blocks EC1+EC2 with respect to their length. Each 100 kb window in a

chromatin state block is represented by a dot of its corresponding chromatin state color in

Nhdaf. (B) same as (A) for chromatin blocks C3+C4. (C) same as (A) for the cell lines

Nhdfad and K562. (D) same as (B) for the cell lines Nhdfad and K562.
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ments changing MRT except that, as previously noticed, there was no more
shift towards later MRT in long C3+C4 fragments due to the absence of early
initiation in these heterochromatin domains (Table V.2, Fig. V.12C and D).
Altogether these results confirm that the genomic context is important to MRT
and chromatin state dynamic.

V.2.7 Distributions of chromatin states inside and out-

side replication U/N-domains

In all the cell lines examined in this work, about half of the human genome was
shown to be paved by replication timing U-domains (Fig. V.9) [94]. However
their number (N) and mean length (L̄) drastically differ in H1hesc (N= 1534,
L̄= 1.09 Mb) and in the differentiated cell lines K562 (N=876, L̄=1.42 Mb),
Gm12878 (N=882, L̄=1.52 Mb) and Nhdfad (N=1150, L̄=1.19 Mb). MRT
U-domains are more numerous and shorter in the ESC line than in the differ-
entiated cell lines as the probable consequence of the shorter S-phase duration
in pluripotent cells. Interestingly the number of U-domains shared by each cell
type pairs including the germline replication skew N-domains, was shown to
be significantly larger than the number expected by chance [94] which put for-
ward these replication U/N-domains as robust features of the spatio-temporal
replication program in human.

Chromatin state organization inside replication U-domains

When concentrating our study on the replication U-domains identified in H1hesc
(Fig. V.13A-D) and Nhdfad as a representative of differentiated cell lines
(Fig. V.13A’-D’), we revealed some remarkable organization of the four preva-
lent chromatin states with some notable differences that distinguish the global
dynamical and accessible character of pluripotent chromatin from the expand-
ing HP1-associated heterochromatin in differentiated cells. Consistent with
the organization found in K562 (Fig. III.20) [154], the highly expressed gene-
rich open euchromatin state C1 was found to be confined in a closed (. 150
kb) neighborhood of the master replication origins that border each individual
U-domains (Fig. V.13A’) and this independently of the domain size. Signifi-
cantly enriched in DHS and CTCF (Fig. V.4), C1 can thus be seen as specifying
the early initiation zones that border U-domains and that were further shown
to delimit topological domains on genome-wide (4C, Hi-C) chromatin state
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Figure V.13: Distribution of chromatin states inside replication timing U-domains of H1hesc

and Nhdfad. (A) Mean coverage of chromatin states with respect to the distance to the

closest U-domain border in the H1hesc cell line. (B) Same as (A) for U-domains specific

to the H1hesc cell line. (C) same as (A) for H1hesc U-domains conserved in all cell lines.

(D) Mean coverage of ESC chromatin state in the 100kb window containing a U-domain

border with respect to the conservation index n of the U-domain border (Sect. V.5.15). (A’-

D’) same as (A-D) for the Nhdfad cell line. Same color coding as in Fig. V.3D and V.3D’

respectively.

conformation data [30, 94, 113]. The polycomb repressed state C2 was mainly
found occupying the mid-S phase 200-300 kb region away from U-domain bor-
ders (Fig. III.20). Remarkably, U-domain borders are significantly depleted in
unmarked (C3) and constitutive (C4) heterochromatin states (Fig. V.13A’). C3
is present in the center of small U-domain and homogeneously occupies large
U-domain centers. C4 is abundantly found in the center of large U-domains
(& 1Mb). These results for Nhdfad and K562 (Fig. III.20) [154] confirm that
the replication “wave” starting from the early initiation zones at U-domain
borders and propagating inside these domains via the progressive activation of
secondary origins [93,109], actually progress in a gradient of chromatin struc-
tures from openess (C1) to compactness (C3, C4), via the polycomb repressed
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Chromatin state EC1 EC2 EC3 EC4 EC1+EC2 EC3+EC4
H1hesc 203.28 163.41 235.97 196.98 308.43 373.07

Chromatin state C1 C2 C3 C4 C1+C2 C3+C4
K562 209.38 130.94 270.62 718.53 292.41 516.22

Gm12878 223.54 142.19 339.2 211.25 299.62 382.95
Nhdfad 213.56 168.54 197.61 654.68 328.76 403.81

Table V.5: Distribution of chromatin states outside replication timing U-domains. Same as

Table V.4 after removing the replication U-domains from the analysis.

state C2.

In the smaller H1hesc U-domains, the concentration of EC1 around the bor-
dering master replication initiation zones and the distribution of EC2 nearby
in mid-S phase proximal regions (Fig. V.13A) ressembles to the organiza-
tion of high-GC, gene-rich chromatin states (C1, C2) in differentiated cells
(Fig. V.13A’). However the distributions of EC3 and EC4 (Fig. V.13A) are
drastically different from those of C3 and C4 in Nhdfad (Fig. V.13A’) and
K562 (Fig. III.20) [154]. EC3 is still depleted at U-domain borders and mainly
covers the center of the largest U-domains. Importantly, unlike C4, EC4 is
now abundantly found at U-domain borders as well as inside these domains.
As addressed in the Sect. V.3, this homogeneous distribution of the gene-poor
silent EC4 state inside replication U-domains actually reflects the almost uni-
form covering (inside U-domains as well as outside) of the human genome by
the histone variant H2AZ in pluripotent cells (Fig. V.14A) [238].

Chromatin state organization outside replication U-domains

The complete analysis of the other half of the genome that is complementary
to U-domains was more in agreement with the dichotomic view proposed in
early studies of the mouse [34, 35, 86] and human [12, 36, 90] genomes, where
early and late replicating regions occur in separated compartments of open and
close chromatin, respectively. About 25% of the human genome are covered
by megabase sized gene-rich, high-GC EC1+EC2 (resp. C1+C2) chromatin
blocks in H1hesc (resp. differentiated) cells (Table V.5), that on average repli-
cate early (Figs V.10C and V.11C) by multiple almost synchronous origins
with equal proportion of forks coming from both directions. Since the repli-
cation fork polarity is reflected in the MRT derivative [94, 107], these regions
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correspond to early MRT plateaus that are remarkably well conserved between
pluripotent and differentiated cell lines. The last 25% of the human genome
correspond to megabase sized gene-poor, low-GC EC3+EC4 (resp. C3+C4)
chromatin blocks in H1hesc (resp. differentiated) cells (Table V.5), that on av-
erage replicate late by again multiple almost coordinated origins. In regard to
the drastic difference in chromatin properties of the silent states EC4 (dynam-
ically accessible) and C4 (compact heterochromatin), these late MRT plateaus
must simply be seen as the late replicating counter part of the early (C1+C2)
plateaus.

V.3 Discussion

V.3.1 Specific genome-wide histone signature of pluripo-

tent plastic chromatin

Our integrative analysis of epigenetic marks confirmed the existence of funda-
mental differences between the pluripotent and differentiated chromatin states
(Fig. V.4). These differences account for the drastic changes observed in epi-
genetic landscapes in ESC and lineage committed cells (Fig. V.9) [6, 166, 228,
236, 238, 250, 251]. In general, histone modifications show two distinct types
of spatial distributions: small localized peaks and large spreading domains.
The histone variant H2AZ associated with nucleosome exchange and remod-
eling [6, 55, 166, 202, 235, 238, 257], was typically found confined to promoters
and distal elements in differentiated cells [166, 238] which explains its abun-
dance in the gene-rich chromatin states C1 and C2 (Fig. V.4). Its binding level
was further shown to correlate with gene expression in human [166] which is
consistent with its highest enrichment in the transcriptionally active state C1.
Remarkably, the global H2AZ distribution diverges markedly between pluripo-
tent and differentiation cells. In H1hesc, 92% of the overall 100-kb loci contain
the H2AZ mark as compared to smaller coverages in K562 (61%), Gm12878
(65%), Hmec (76%) and Nhdfad (79%) (Note the important covering found
for Monocd14ro (94%)) (Table V.6). Thus in ESCs, H2AZ marks promot-
ers and distal elements but it is also distributed thoughout intergenic regions
which explains its presence in the gene-rich chromatin states EC1 and EC2
and in addition, its specific abundance in the gene-poor chromatin state EC4
(Fig. V.4). This broad H2AZ distribution suggests that chromatin exchange
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Figure V.14: Epigenetic marks enrichment in specific MRT U-domains of H1hesc and Nhd-
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and remodeling are prevalent throughout human chromosomes in ESCs [238].
This highly dynamic and potentially accessible properties of pluripotent chro-
matin are further strengthened by the presence of the ATP-dependent remod-
eler CHD1 not only in EC1 and EC2 but also in EC4 as an inhibitory factor to
HP1-heterochromatin (Fig. V.4) [263]. In addition, we showed that the active
marks H3K4me1 has a broad dispersion in H1hesc (85% coverage) relative to
a more restrictive confinement at promoters and enhancers in differentiated
cells K562 (55%), Monocd14ro1746 (61%), Gm12878 (62%), Hmec (77%) and
Nhdfad (72%) (Table V.6) [238]. This is consistent with the abundance of
H3K4me1 in the gene-rich EC1 and EC2 chromatin states and also with its
presence in the gene-poor EC4 state contrasting its absence in the heterochro-
matin state C4 (Fig. V.4). There is another histone modification, namely
H3K27me3, that distributes quite differently in pluripotent and differentiated
cells. In ESCs, this surrogate of polycomb activity is mainly confined to “biva-
lent” promoters (37% coverage) that also carry H3K4me3. This contrasts with
the much broader distribution of H3K27me3 in K562 (54%), Monocd14ro1746
(65%), Gm12878 (55%), Hmec (54%) and Nhdfad (60%). As indicated by
the co-presence of H3K27me3 and H2AZ in the bivalent chromatin state EC2
(Fig. V.4) and the observed local surrounding of H3K27me3 marks by H2AZ
variants in the H1hesc epigenetic landscape (Fig. V.9), the highly dynamic and
potentially accessible pluripotent chromatin is likely refractory to polycomb
facultative heterochromatin formation and spreading [228, 238]. The smaller
mean size of EC4 blocks (L̄ = 301 kb) in H1hesc as compared to C4 blocks
in K562 (L̄ = 882 kb), Hmec (L̄ = 610 kb) and Nhdfad (L̄ = 894 kb) (Ta-
ble V.4), suggests that the gene-poor H2AZ marked accessible EC4 chromatin
is incompatible with the stable interactions involved in the H3K9me3 enriched
HP1 heterochromatin compaction and spreading (Fig. V.4). All the other his-
tone marks known to be involved in transcription positive regulation, including
H3K27ac and H3K36me3, have a similar distribution with a similar coverage
of the gene-rich genome regions in H1hesc (EC1+EC2) and differentiated cells
(C1+C2) (Table V.6).

V.3.2 Distinct epigenetic mechanisms of heterochromatin

expansion during differentiation

There are mainly two epigenetic mechanisms of heterochromatin expansion
during differentiation that correspond to the transitions towards the polycomb
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CTCF H3K27ac H3K27me3 H3K36me3 H3K4me1 H3K4me2 H3K4me3 H3K9me3 H2AZ H3K79me2 H4K20me1
H1hesc 88.15 63.65 36.48 39.76 84.67 75.14 48.53 81.61 91.58 36.55 50.41
K562 72.24 45.12 53.86 37.92 55.18 55.42 49.12 68.35 61.05 33.03 53.5

Monocd14ro 57.33 51.44 64.63 36.94 61.39 95.53 56.61 76.79 93.54 33.25 33.24
Gm12878 71.64 50.55 55.4 36.61 61.82 58.78 55.02 69.99 64.65 32.9 48.81

Hmec 72.27 59.57 54.11 39.41 76.85 74.32 49.18 57.25 76.11 36.22 56.94
Nhdfad 89.96 60.69 60.38 43.7 71.57 72.12 64.05 63.26 79.41 36.63 39.87

Table V.6: Genome coverage by epigenetic marks in ESCs and differentiated cells. Percentage of 100-kb windows that contain a given

epigenetic mark.
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repressed state C2 and towards the HP1-associated heterochromatin state C4
(Fig. V.6A). For the former mechanism, there are indeed two possible scenarios
according to whether the pluripotent chromatin state that switches to C2 is
EC2 or EC4. As previously described, EC2 is a bivalent chromatin state that
is enriched in gene promoters that carry both the active mark H3K4me3 and
the polycomb associated mark H3K27me3. This second mark has repressive
effect on gene expression and contributes to maintain repression of bivalent
genes including developmental genes [242–247, 255]. Some of these bivalent
genes get activated during differentiation and switch from EC2 to the open
euchromatin state C1 (Fig. V.6A). The other ones experience some repression
to the facultative chromatin state C2 via the expansion of H3K27me3 to often
cover the entire gene and frequently neighboring gene loci [228]. But there is
another category of pluripotent genes that face this facultative heterochrom-
atization which are the genes that are in the H2AZ rich accessible chromatin
state EC4. These EC4 genes are actually lying nearby EC2 genes and get
involved in the repressive expansion of H3K27me3 which dictates their switch
to the polycomb repressed state C2. Note that this H3K27me3 spreading over
several kb or tens of kb is locally at the expense of H2AZ which confirms that,
in pluripotent cells, this histone variant is refractory to the compaction asso-
ciated with polycomb repression [238]. Interestingly, the polycomb repressed
scenario from EC4 to C2 mainly corresponds to MRT changes from late to
early replicating loci (Fig. V.12B).

The second mechanism corresponds to transitions from the silent unmarked
(EC3) and H2AZ rich accessible (EC4) states to the HP1-associated hete-
rochromatin state C4 (Fig. V.6A). This mechanism corresponds to a dramatic
redistribution of the histone modification H3K9me3 which, although present in
the pluripotent EC4 state, expands into large (from several 100 kb to a few Mb)
late replicating highly compacted heterochromatin (Table V.4, Figs V.7 and
V.9). H3K9me3 is important for the formation of the constitutive heterochro-
matin via the anchoring of the α and β isoforms of the HP1 protein [273–275].
There is also evidence of some crosstalk between H3K9 methyltransferase
(HKMT) and DNA methyltransferase (DNMT) [276–280] that might explain
the correlation observed between H3K9me3 and DNA methylation and the
contribution of the later to the long-term maintenance of these large domains
of late replicating C4 heterochromatin devoid of H2AZ and of any other hi-
stone modification but H3K9me3 [224, 228]. Importantly the accumulation
of such highly condensed, transcriptionally inactive heterochromatin regions
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comes along with some subnuclear repositioning towards the nuclear periphery
accompanied by important 3D architectural rearrangements [34,155,236,251].
Knockout studies of H3K9 methyltransferases and H3K27 methyltransferases
have led to differentiation or development defects [281–286], confirming that
the epigenetic mechanisms underlying heterochromatin expansion play a crit-
ical role in cell fate determination.

V.3.3 Master replication origins at U/N-domain borders

are determinants of cell-fate commitment

We found that MRT changes induced by differentiation resulted in an impor-
tant change in the number and size of replication U/N-domains [94]. Small
neighboring U/N-domains merged to become one large coordinately replicated
domains (2 and 3 domains merged to 1 in Figs V.9 left and right column respec-
tively). This replication domain consolidation [34,35] is thus the consequence
of an active early replication initiation zone in ESCs that no longer fires early
and is likely replicated passively by a replication wave originating from nearby
master replication origins. To characterize this consolidation phenomenon from
pluripotent to differentiated cell lines as well as between differentiated cell lines,
we defined an index of conservation (Sect. V.5.15) that quantifies the number
of U-domain borders in a given cell line that were also shared by (n-1) other
cell lines. To the sets of U-domains of the cell types considered so far, namely
H1hesc, K562, Monocd14ro1746, Gm12878 and Nhdfad, we added those pre-
viously identified in HeLa cells [13, 94] and the germline replication skew N-
domains [94, 101–106] (Fig. V.9). For each cell type, about half U-domains
are shared by at least another cell line, namely H1hesc (38.4%), K562 (61%),
Gm12878 (59.2%), Nhdfad (51.6%) and Ndom (50.2%). Note that the smallest
matching percentage was obtained for H1hesc as a direct consequence of the
largest number of U-domains in this ESC lines. When looking at U-domain
borders individually (peaks in replication timing [13]), we got the following
percentages of matching with at least another U/N-domain borders in another
cell line: H1hesc (78.8%), K562 (88.1%), Gm12878 (88.9%), Nhdfad (85.6%)
and Ndom (87.9%). As originally revealed in skew N-domains [104, 114] and
further confirmed in MRT U-domains [94], there exists a remarkable gene or-
ganization inside these replication domains that turns out to be robust in each
cell type. Expressed genes are confined in the euchromatin C1 (resp. EC1)
environment of the bordering master replication origins whereas non expressed
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Figure V.15: Distribution of expressed (orange) and not expressed (blue) gene promoters

inside replication timing U-domains of H1hesc (solid line) and Nhdfad (dashed line). (A)

Mean density of gene promoters with respect to the distance to the closest U-domain border

specific to the cell line (n=1). (B) Mean density of gene promoters with respect to the

distance to the closest U-domain common to all cell lines (n=6). (C) Mean density of gene

promoters in the 100 kb windows containing a U-domain border versus its conservation index

n (Sect. V.5.15).

Nb GC CpGo/e H2AZ CTCF NANOG OCT4 DHS Promoters Expressed
/border promoters/border

1 to 1 38 0.445 0.233 0.331 0.663 1.321 0.335 0.016 3.947 3.237
1 to 2 3 0.458 0.235 0.346 0.472 0.733 0.145 0.018 3.333 3
2 to 1 4 0.444 0.198 1.214 1.066 1.254 0.133 0.025 3 1.75
2 to 2 6 0.427 0.206 0.606 0.872 0.556 0.458 0.021 2.667 2
2 to 3 1 0.436 0.179 0.468 0.248 0.277 0 0.014 2 2
3 to 2 1 0.418 0.16 0.765 0.419 0 0 0.008 3 3
4 to 2 1 0.391 0.143 0.526 0.261 0 0 0 2 2
4 to 3 1 0.445 0.192 1.227 0.049 0.234 0 0.004 1 1

Table V.7: Sequence, epigenetic and gene characteristics of conserved (n=6) replication

U-domain borders of H1hesc that switch from state ECi to Cj.

genes are distributed rather uniformly inside these domains (Fig. V.15) inde-
pendently of the gradient of chromatin states (Fig. V.13A’)(resp. Fig. V.13A).
When comparing the gene content nearby replication U/N-borders for increas-
ing index of conservation (Fig. V.15C), we found that the density as well as
the distribution of non-expressed genes were quite insensitive to the degree
of ubiquitiness of the nearby master replication origin. In other words, non-
expressed genes seem to have no knowledge of the replication wave initiating
at U/N-domain borders. We got the opposite for expressed genes with a sig-
nificant enhancement of gene density when increasing the conservation index
n (Fig. V.15C). Ubiquitous master replication origins are surrounded by a
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Figure V.16: Sequence characterictic of MRT U-domains of H1hesc and Nhdfad. (A) Density

of nucleosome free regions (NFRs) with respect to the distance to the closest U-domains

border specific (n=1) to the cell line. The different colors correspond to specific U-domains

of Nhdfad (black), specific U-domains of H1hesc whose border is in EC1 or EC2 (red) and

specific U-domains of H1hesc whose border is in EC4 (blue). (B) Density of (NFRs) with

respect to the distance to the closest conserved (n=6) U-domains border. (C) same as (A)

for the CpG o/e. (D) same as (B) for the CpG o/e. (E) same as (A) for the GC content.

(F) same as (B) for the GC content.
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C1 euchromatin environment which is hypomethylated (Fig. V.16D), GC-high
(Fig. V.16F, Table V.7), significantly enriched in DHS and CTCF (Table V.7)
and more importantly in nucleosome free regions (NFRs)(Fig. V.16B) coded in
the DNA sequence via high energy barriers that impair nucleosome formation
(Sect. V.5.12) [112, 203, 287–290]. Thus these ubiquitous master replication
origins are specified by an open chromatin structure which is to some extend
encoded in the DNA sequence [4, 112]. This also provides some understand-
ing of the local clustering of highly expressed genes with strong CpG rich
promoters including house-keeping genes (Fig. V.15B). As exemplified with
the Nhdfad cell line, master replication origins that are specific to a differ-
entiated cell line are still GC high (Fig. V.16E) but no longer enriched in
NFRs (Fig. V.16A) suggesting that these early firing regions are epigeneti-
cally regulated and no longer favored by the DNA sequence. Indeed, Nhdfad
specific master replication origins are hypomethylated (Fig. V.16C), and sig-
nificantly enriched in H2AZ (Fig. V.14A) and CTCF (Fig. V.14B) epigenetic
marks. They are mainly surrounded by tissue specific genes with weak CpG
poor promoters. Our results are consistent with previous reports that most
genes do not change expression during domain consolidation in the MRT pro-
file [12,34,35,88] (Fig. V.8C). Among the expressed genes located in the vicinity
of an early master replication origin in a given cell line that experiences a do-
main consolidation in another cell line, only a small number of genes mainly
with CpG poor promoter are repressed whereas CpG rich promoters have the
ability to overcome (C4) heterochromatin repression [12, 34, 35]. This coordi-
nated changes in MRT and chromatin state without being accompanied by a
global change of the expression program suggests that phenotypic differences
between cell types are better reflected by epigenetic properties including the
MRT than by transcriptional differences. In that respect, the master replica-
tion origins at U/N-domains are likely to be a milestone in the understanding
of cell-fate commitment.

V.3.4 ESC specific master replication origins as the cor-

nerstone of pluripotency maintenance

Master replication origins that are specific to the pluripotent H1hesc cell line
actually correspond to lineage-independent switches in MRT that are stably
maintained after the late epiblast stage. These pluripotent master replication
origins (N=483) are almost equally distributed in the chromatin states EC1
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Nb GC CpGo/e H2AZ CTCF NANOG OCT4 DHS Promoters Expressed
/border promoters/border

1 to 1 58 0.442 0.226 0.361 0.602 1.129 0.159 0.014 3.379 2.655
1 to 2 15 0.429 0.21 0.44 0.655 2.689 0.759 0.013 1.667 1.4
1 to 3 12 0.42 0.201 0.241 0.488 0.998 0.199 0.013 1.917 1.25
1 to 4 14 0.399 0.194 0.469 0.212 0.783 0.13 0.009 0.643 0.643
2 to 1 9 0.418 0.224 0.672 0.886 1.474 0.076 0.019 1.889 1
2 to 2 56 0.441 0.205 0.804 0.903 1.507 0.355 0.017 2.357 1.25
2 to 3 16 0.43 0.181 0.582 0.482 2.418 0.691 0.014 0.875 0.5
2 to 4 19 0.408 0.214 0.977 0.503 2.968 0.76 0.012 0.684 0.158
3 to 2 5 0.374 0.15 0.276 0.336 0.074 0 0.003 1.4 0.6
3 to 3 11 0.371 0.143 0.228 0.069 0.257 0 0.003 0.273 0.273
3 to 4 14 0.352 0.165 0.352 0.068 0.217 0.165 0.004 0.214 0.143
4 to 1 1 0.399 0.231 0.189 0.288 0 0.389 0.008 0 0
4 to 2 13 0.391 0.155 0.824 0.314 0.244 0.148 0.008 1 0.308
4 to 3 22 0.388 0.164 1.007 0.226 0.577 0.257 0.006 0.864 0.409
4 to 4 46 0.376 0.172 0.984 0.14 1.232 0.408 0.006 0.174 0.087
4 to 4 39 0.374 0.17 1.013 0.145 1.402 0.481 0.006 0 0

intergenic

Table V.8: Sequence, epigenetic and gene characteristics of specific (n=1) replication U-domain borders of H1hesc that switch from state

ECi to Cj.
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(N=113), EC2 (N=131) and EC4 (N=149) and only few are in the unmarked
state EC3 (N=51) and in the discarded set D (N=41) (Table V.8). Those that
are gene rich in EC1 and EC2 environments display very similar properties
than master replication origins specific to differentiated cell lines. They are
hypomethylated (Fig. V.16C), enriched in CTCF (Fig. V.14B) and DHS (Ta-
ble V.7), their GC content is high (Fig. V.16E) but they are not enriched in
constitutive NFRs (Fig. V.16A) as an indication of epigenetic regulation. Note
that these master replication origins are highly covered by the H2AZ mark
but they are nonetheless depleted compared to the very high level coverage
of the genome (Fig. V.14A). Somatic specific master replication origins have
the same coverage than specific ESC ones, but in contrast they are enriched
compared to the genome background (Fig. V.14A). These specific EC1, EC2
master replication origins indeed correspond to the borders of small replication
U-domains that overall are replicated in the first half of S-phase. Thus, the as-
sociated domain consolidation unlikely involves a switch to late replication as
well as important global change in 3D chromatin organization. Consistently
these H1hesc specific (EC1, EC2) master replication origins are enriched in
the key pluripotency transcription factors NANOG (Fig. V.14C) and OCT4
(Fig. V.14D) (Table V.8).

More surprising is the non negligible proportion (30.9%) of specific H1hesc
origins that belong to a EC4 environment and that mainly consolidate into a
C4 heterochromatin domain (Table V.8). These EC4 master replication ori-
gins indeed correspond to the early replicating EC4 regions that experience
a EtoL transition mostly towards the HP1-associated heterochromatin state
C4 (Tables V.2 and V.8). They have totally different epigenetic and sequence
properties. They are methylated (Fig. V.16C), no longer enriched in CTCF
(Fig. V.14B) and DHS (Table V.8), their GC content is low (Fig. V.16E) and
they are still not enriched in constitutive NFRs (Fig. V.16A). Actually they are
mainly epigenetically regulated by a local enrichment of H2AZ (Fig. V.14A)
that turns out to play an unexpected specific role in regulating the spatio-
temporal replication program in pluripotent cells. Notably, these pluripotent
specific EC4 master replication initiation zones are gene deserts: only 20/82
(∼ 24%) contain a gene promoter as compared to 82/99 (resp. 75/100) for
those in EC1 (resp. EC2). Nevertheless, they are enriched in NANOG and
OCT4 (Fig. V.14C, D, Table V.8), even in the intergenic ones, which suggests
that these transcription factors are also involved in the regulation of replica-
tion in pluripotent cells. Note that the unusual principle of chromatin folding
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during development reported in [39,40] likely results from the C4 domain con-
solidation of these early ESC specific EC4 master replication origins (see for
example one of them at position 47 Mb on the right panels of Fig. V.9). As
discussed in previous works [34–36,39,40], the EtoL transitions associated with
the consolidation of pluripotent specific EC1 (see for example one of them at
position 12.5 Mb on the left panel of Fig. V.9), EC2 and EC4 to HP1-associated
C4 heterochromatin likely coincide with the emergence of compact chromatin
near the nuclear periphery and with a dramatic large-scale 3D genome reorga-
nization that may constitute an epigenetic barrier to cellular reprogramming.
In that respect, the master-replication origins bordering ESC specific replica-
tion U/N-domains are likely to be major determinants in the maintenance of
pluripotency.

V.4 Conclusion/Perspectives

In summary, the integrative analysis of genome-wide epigenetic marks, ex-
pression and MRT data in an ESCs an differentiated human cell lines, shows
that the combinatorial complexity of these epigenetic data can be significantly
reduced consistently with previous studies in Drosophila [50, 53], Arabidop-

sis [51] and human [154, 193, 238]. The epigenetic landscapes of pluripotent
and differentiated cells are drastically different even though, in both cases,
four but distinct prevalent chromatin states are enough to characterize the
diversity in chromatin environment along human chromosomes. Among these
four states, only one is transcriptionally active and three are silent. The first
one is a gene rich euchromatin state that is shared by pluripotent (EC1) and
differentiated (C1) cells as well as the “unmarked” states EC3 and C3 that
correspond to a silent state not enriched in any available epigenetic marks.
The two other states are different as the signature of the global accessible
character of the pluripotent chromatin [236]: H2AZ and H3K4me1 marks are
broadly distributed [238] in the bivalent state EC2 containing bivalent genes
and in the gene-poor accessible EC4 state as compared to the polycomb re-
pressed state C2 and the HP1-associated heterochromatin state C4 that respec-
tively result from the spreading of H3K27me3 and H3K9me3 in differentiated
cells [228,238]. When looking at the way these chromatin states are distributed
along human chromosomes with a special focus on the regions where the MRT
changes significantly during differentiation, we show that the master replica-
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Figure V.17: Spearman correlation matrix between epigenetic marks in HeLa.

tion origins that border megabase-sized MRT U/N-domains [94, 101, 110] are
major determinants in cell-fate commitment and lineage fidelity. The minor-
ity (5.3%) that are conserved in all cell lines have a peculiar high GC hy-
pomethylated (EC1, C1) euchromatin environment highly enriched in open
marks including H2AZ, CTCF, DNase HS and also in NFRs encoded in the
DNA sequence suggesting that these ubiquitous master replication origins have
been selected during evolution. In these particularly highly decondensed re-
gions are also found numerous CpG rich promoters of highly expressed genes
including house-keeping genes. Most of the master replication origins that
are cell type specific or shared by a few cell types, still correspond to GC-
rich euchromatin mainly regulated epigenetically and no longer favored by a
local abundance of NFRs encoded in the DNA sequence. They are mainly
surrounded by highly expressed tissue-specific genes. A majority of master
replication origins specific to ESCs have rather similar epigenetic properties
with a high density of neighboring genes that are regulated by the pluripotency
factors NANOG/SOX2(data not available)/OCT4. But what our study has
revealed is the existence of a class of ESC specific master replication origins
that fire early in a GC-low, gene desert EC4 environment that experiences a
change to a compact HP1-associated C4 heterochromatin environment during
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differentiation. These master origins have a specific epigenetic regulation that
sheds a new light on the unexpected role of both H2AZ and the transcription
factors NANOG/SOX2/OCT4 in the maintenance of the replication spatio-
temporal program in pluripotent cells. An important proportion (67.4%) of
the ESC specific master replication origins indeed correspond to EtoL transi-
tions likely associated with some repositioning towards the nuclear periphery
and some large-scale 3D chromatin rearrangements that may hinder cell re-
programming [34–36, 39, 40]. As reported in previous studies of 4C [30] and
Hi-C [94, 113] data in differentiated cell lines, these master replication zones
at MRT U/N-domain borders act on the one hand as insulators that delimit
topological domains of self-interacting chromatin [29, 94], and on the other
hand as long-distance interconnected hubs in the intra- and inter- chromo-
some interaction network [113, 260]. As similar comparative analysis of Hi-C
data in ESCs is under progress. Besides confirming the key role played by ESC
specific master replication origins in the 3D chromatin regulation and control
of pluripotency, we hope to bring new elements of discussion concerning the
hypothetized influence of longer G1-phase enabling targeting of loci to the nu-
clear periphery, and providing more time for nuclei to reorganize their genome
before replication initiates in differentiated cells [34,35]. In that respect focus-
ing our study to cancer cells looks very promising (see the particular chromatin
structure of HeLa cells revealed on the epigenetic mark matrices presented in
Fig. V.17). Recent Meta-analysis [219,291] of replication timing profiles, Hi-C
data and somatic copy-number alterations (SCNA) observed in cancer samples
from diverse cancer types [292] showed that SCNAs tends to fuse genomic re-
gions that, prior to the rearrangement, spatially co-localized within the nucleus
and have similar replication timing. As fundamental structural and functional
units underlying the plasticity of replication domain organization in relation
to gene expression and chromatin states, the replication timing U/N-domains
together with the bordering master replication origins provide a framework for
further studies in different cell types and different organisms, in both health
and disease.
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V.5 Materials and methods

V.5.1 Mean replication timing data and replication U-

domain coordinates

Timing profiles for an ESC line (BG02), a lymphoblastoid cell line (GM06990),
a skin fibroblast cell line (BJ), an immature myeloid cell line K562 and a
HeLa cell line were obtained from the authors [94]. The mean replication
timing (MRT) is given for 100 kb non-overlapping windows in hg18 coordinates.
We also retrieved the coordinates of the 1534 (BG02), 882 (GM06990), 1150
(BJ), 876 (K562) and 1498 (HeLa) U-domains for the same cell lines from the
authors [94].

V.5.2 Histone marks, H2AZ, CTCF, CHD1, NANOG

and OCT4 ChIP-seq data

ChIP-seq data were retrieved for the following cell lines: an ESC line (H1hesc),
an immature myeloid cell line (K562), a monocytes-CD14+ (monocd14ro1746),
a lymphoblastoid cell line (Gm12878), a mammary epithelial cell line (Hmec),
an adult dermal fibroblast cell line (Nhdfad).

For all ChIP-seq data, we downloaded data in the Encode standard for-
mat “broadpeaks” (http://genome.ucsc.edu/FAQ/FAQformat.html). Broad-
peaks format is a table of significantly enriched genomic intervals. The score
(fold enrichment compared to a uniform distribution of reads) associated with
each enriched interval, is the mean signal value across the interval [48, 49].
Most of the data correspond to the release 3 (August 2012) of the Broad his-
tone track. We downloaded the tables from:

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeBroadHistone/

The NANOG and OCT4 data corresponds to the release 3 (September 2012)
of the HAIB TFBS track. Tables were downloaded from the UCSC from:

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeHaibTfbs/
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For all cell types, we downloaded the broadpeak tables for the following an-
tibodies: CTCF, H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2,
H3K4me3, H3K9me3, H2AZ, H3K79me2, H4K20me1. For the H1hesc cell
line, we downloaded these additional broadpeak genomic intervals: CHD1,
EZH2, NANOG and OCT4.

V.5.3 Epigenetic profile computation at 100 kb resolu-

tion

For each ChIP-seq data and each cell line, we computed a profile at the 100
kb resolution for the 28465 non-overlapping windows corresponding to the
sequenced part of the genome. For an antibody, the score in a 100kb window
was computed as the sum of the coverage of each significantly enriched interval
multiplied by its score.

V.5.4 Treatment of H1hesc data set

We took into account the specificity of H1hesc cell line epigenetic by applying
the clustering pipeline described in Chapter III [154] apart from other cell lines.
The number of clusters was set to four because it led to the most qualitatively
different chromatin states.

V.5.5 Construction of a shared epigenetic space for dif-

ferentiated cell lines

For the five differentiated cell lines (K562, Monocd14ro1746, Gm12878, Hmec
and Nhdfad), we constructed a shared epigenetic space. Once epigenetic pro-
files at 100kb were computed for each cell line, we concatenated profiles of
the same mark together to obtain one vector of 5× 28405 = 170970 windows
per mark. Each vector at the 100 kb resolution were transformed with the R
function rank with option ties.method=max.
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V.5.6 Rank transformation and Spearman correlation ma-

trix

All statistical computations were performed using the R software (http://
www.r-project.org/).

In order to compute the Spearman correlation matrix, the epigenetic pro-
files at 100 kb resolution were transformed with the R function rank with
option ties.method=max. Then we computed the Pearson correlation matrix
on the transformed data set. To reorder the matrix in (Figs V.1, and V.2), we
computed the Spearman correlation distance dSCor as:

dSCor(X, Y ) = 1− SCor(X, Y ), (V.1)

where SCor is the Spearman correlation. Then, a dendrogram was computed
using the R function hclust with option method=average and with dSCor as
dissimilarity.

V.5.7 Principal component analysis

Principal component analysis was performed on the rank transformed dataset
using the function dudi.pca from the R package ade4 (see http://pbil.

univ-lyon1.fr/ADE-4 and [167]) with the option scale=TRUE (i.e. each
variable was centered and normalized before the PCA computation). The first
four components were retained which accounts for 86% of the dataset variance.
We chose four components because the percentage of variance explained drops
sharply after the fourth eigenvalue (Fig. V.3A,A’). Clustering was performed
in this 4D space.

V.5.8 Clustering strategy

We used Clara algorithm [153] which is an optimization of k-means for large
data set. We used the clara function implemented in the R package cluster.
The options were set to: stand=FALSE, sampsize=500, samples=20, met-

ric=euclidean.

For the shared differentiated cells, the number of clusters was set to the
number of prevalent chromatin states detected in Chapter III [154]. Previously
to the merging of dataset into one shared epigenetic space, we checked that,
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when applied to each cell individually, the analysis pipeline led to qualitatively
the same epigenetic states.

Poorly clustered data points were removed from the set of chromatin states.
The silhouette value [168] is a way to quantify how well a point is clustered.

Definition 2 Given a particular clustering, C1, C2, . . . , Ck, of the data in k

clusters, let i be a data point and d(i, Cj) the average distance of the data point

i to the members of the cluster Cj. Let i be a member of cluster Cl and

ai = d(i, Cl), bi = minj 6=l(d(i, Cj)). (V.2)

The silhouette value of the data point i is defined as:

si =
bi − ai

max(ai, bi)
. (V.3)

A silhouette value below 0 means that the data point is actually closer in
average to the points from another cluster than to the ones it has been assigned
to. Points with a negative silhouette value are border line allocations. We
decided to remove those points from the set of identified chromatin states.
Hence chromatin states are groups (clusters) with homogeneous epigenetic
features. 91% (resp. 94%) of all 100 kb non-overlapping windows of the human
genome were assigned to one of the four chromatin states C1, C2, C3 or C4
(resp. EC1, EC2, EC3 and EC4) in the differentiated (resp. H1hesc) cell
lines.

V.5.9 DNase Hypersentive site data

DNaseI hypersensitive sites (DHSs) data were downloaded in the Encode stan-
dard format “narrowpeaks” (http://genome.ucsc.edu/FAQ/FAQformat.html).
DHS narrowpeaks are genomic intervals indentified as hypersentive zones to
DNaseI within a FDR of 0.5%. We downloaded the tables from:

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/

wgEncodeUwDnaseSeq/
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V.5.10 Annotation and Expression data

As human gene coordinates, we used the UCSC Known Genes table. When
several genes presenting the same orientation overlapped, they were merged
into one gene whose coordinates correspond to the union of all the overlapping
gene coordinates, resulting in 23818 distinct genes.

Expression data were retrieved from the Genome Browser of the University
of California Santa Cruz (UCSC). To construct our expression data set, we
used RefSeq Genes track as human gene coordinates. Genes with alternative
splicing were merged into one transcript by taking the union of exons. Hence
the transcription start site (TSS) was placed at the beginning of the first exon.
We obtained a table of 23329 genes. We downloaded expression values from
the release 2 of Caltech RNA-seq track (ENCODE project at UCSC):

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/

wgEncodeCaltechRnaSeq/

Expression for one transcript is given in reads per kilobase of exon model per
million mapped reads (RPKM) [10]. RPKM is defined as:

R =
109C

NL
, (V.4)

where C is the number of mappable reads that fall into gene exons (union of
exons for genes with alternative splicing), N is the total number of mappable
reads in the experiment, and L is the total length of the exons in base pairs.
We associated 17872 genes with a valid RPKM value in K562 and Gm12878
and 17463 in H1hesc.

V.5.11 CpG o/e computation and GC content

CpG observed/expected ratio (CpG o/e) was computed as nCpG

L−l
× L2

nCnG
, where

nC , nG and nCpG are the numbers of C, G and dinucleotides CG, respectively,
counted along the sequence, L is the number of nonmasked nucleotides and l
is the number of masked nucleotide gaps plus one, i.e. L-l is the number of
dinucleotide sites. The CpG o/e was computed over the sequence after masking
annotated CGIs. The GC content was computed on the native sequence.
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V.5.12 Nucleosome free regions (NFR)

The coordinates of the NFRs predicted by the physical model defined in [203,
287–289] were obtained from the authors [290]. This theoretical model amounts
to compute the energy required for nucleosome formation based on sequence-
dependent bending properties [4].

V.5.13 Chromatin state blocks

We detected contiguous windows of the same chromatin state (C1 to C4 and
EC1 to EC4). We then kept the coordinates of the blocks of contiguous win-
dows. To form chromatin state blocks of states (1+2), we merely detected
contiguous windows of state 1 or 2. The same procedure was applied to de-
fine chromatin blocks of states (3+4). For chromatin blocks (1+2) and (3+4),
we authorized the inclusion of isolated windows which did not belong to any
chromatin state so to not disrupt very long blocks.

V.5.14 Replication N-domains

The coordinates of the 678 human replication N-domains for assembly hg17
were obtained from the authors [104] and mapped using LiftOver to hg18
coordinates; we kept only the 663 N-domains that had the same size after
conversion [94].

V.5.15 Index of conservation for U-domain borders

To identify MRT U-domain borders which are common to several cell lines,
we constructed a counting signal and we attributed a conservation index as
follows:

1. We created a merged data set of the coordinates of all U-domain borders
detected in [94] and of skew N-domain borders detected in [104]. U-
domains where detected in the following cell line (BG02, K562, GM06990,
H0287, TL010, BJ, HeLa). GM06990, H0287, TL010 are three lym-
phoblastoid cell lines. To avoid lymphoblastoid cell specific U-domains
getting an artificially high conservation index, we took only GM06690
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into account. To avoid MRT to be a confounding factor, we excluded
late U-domain borders with MRT > 0.5.

2. Then, we slided a 200 kb window along the genome with 10 kb incre-
mental steps. At each position, we retrieved the number of cell lines
that have a domain border in the window. By doing so, we constructed
the counting signal called the conservation index. For instance, if a U-
domain border of K562 has a conservation index of 3, it means that 2
domain borders from other cell lines are at maximum distance of 200 kb.
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Chapter VI

General discussion

The theory of probabilities is at bottom nothing but common

sense reduced to calculus; it enables us to appreciate with

exactness that which accurate minds feel with a sort of instinct for

which ofttimes they are unable to account.

Laplace

This thesis provides a natural way to handle challenges generated by high-
throughput sequencing. As discussed in Chapter I, data availability has pro-
foundly changed the way biology is addressed; it is now possible to produce new
results by simple analysis of the existing raw data or by conducting a meta-
analysis of data produced by different teams. Hopefully, the meta-analyses of
existing CHiP-seq, gene expression and MRT data presented in this thesis will
help elucidating nuclear functions in human cells.

In this concluding chapter we would like to briefly summarize the results
obtained in this thesis articulating them into a speculative model of chromatin
structure and of how replication proceeds through it. For a detailed discus-
sion of results chapter by chapter, the reader should refer to the discussions
in Sects. III.3, IV.5 and V.4. We discuss what should guide the choice of sta-
tistical methods to conduct similar integrative analyses. We also discuss the
interpretation of statistical analyses and their use in nowadays biology. We
end with ongoing work and perspectives.
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VI.1 Summary of results

In this thesis, we applied a simple data workflow based on PCA+clustering
(Chapter II) to analyze a total of ∼ 100 CHiP-seq profiles in diverse cases.

In chapter III, we demonstrated that the human chromatin in the imma-
ture myeloid K562 cell line could be described by four chromatin states with
markedly different epigenetic contents. These chromatin states are namely:
C1, the state that contains all active transcription marks (e.g. H3K36me3,
H3K4me3, H3K79me3, etc), C2 characterized by the mark H3K27me3 as an
indication of polycomb complex repression, C3 an unmarked state and C4 en-
riched in the mark H3K9me3 as the signature of the presence of HP1 protein.
Our analysis aimed at characterizing the large-scale chromatin structure and
its relationship to replication. Therefore, the analyses were conducted at the
resolution of MRT, namely 100 kb. These chromatin states were shown to
have different MRT distributions and their ordering according to their MRT is
C1, C2, C3, C4. We confirmed the well known observation that euchromatin
(C1) is replicated early whereas heterochromatin (C3, C4) is replicated late.
We established that the polycomb repressed state (C2) is replicated in mid-S
phase and not at the end of S phase as its transcriptionally silent status would
have predicted. Schematically, C1 contains almost all active promoters but
also a lot of inactive genes, C2 contains inactive genes whereas C3 and C4 are
gene depleted. In terms of sequence, C1 and C2 are GC-rich and CpG rich
whereas C3 and C4 are GC-poor and CpG-poor. The spatial organization of
these chromatin states is striking in MRT U-domains. The early replication
zone bordering U-domains are mostly covered by the active transcription chro-
matin state C1. Further from the border, the majority of loci are covered by
the chromatin state C2. Then, replication ends in C3+C4 regions.

In chapter IV, we applied our integrative analysis to promoters. We lo-
cally (in 6 kb windows) analyzed the structure of chromatin around promot-
ers in the immature myeloid cell line K562. We also found that promoters
could be classified in 4 epigenetic classes corresponding to the chromatin states
found genome wide at 100 kb resolution namely P1 transcriptionally active,
P2 polycomb repressed, P3 unmarked and P4 HP1 repressed. This epigenetic
classification partially matches the classification in CpG-rich and CpG-poor
promoters reported in [114,136]. The vast majority of P1 promoters are CpG-
rich whereas there are as many CpG-rich promoters as CpG-poor promoters
in silent states P2, P3 and P4. Thus, we did not witness a major discrep-
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ancy in the epigenetic regulation of CpG-rich and CpG-poor promoters. For
instance, one silencing pathway could have been specifically for CpG-poor pro-
moters. Alternatively, we could have identified two active epigenetic classes,
one corresponding; to CpG-rich promoters and the other one to CpG-poor
promoters. Actually, differences have been identified between the chromatin
structures of CpG-rich and CpG-poor promoters. The differences do not reside
in the epigenetic marks contents but rather in the nucleosome structure and
the spatial distribution of marks on nucleosomes [293, 294]. To address these
questions properly, one needs to look at marks at the nucleosome resolution
and also to take into account new data on DNA methylation. Even though
the resolution of our analysis may be too coarse for the foregoing questions,
we successfully uncovered an unexpected interplay between the small-scale (6
kb) and the larger-scale (100 kb) classifications. In particular, we showed that
only one active promoter is enough to imply an active large-scale environment.
This “specification" is not affected by the number of inactive genes surrounding
the active gene. On the contrary, a large heterochromatin (C4) environment
implies that genes are inactive (belonging to P3 and P4). Therefore active
genes seem to determine large scale genome organization whereas the large
scale classification of inactive genes is subjected to their environment (pres-
ence of active genes or spreading of heterochromatin). We also revealed that
promoters exhibit a striking organization inside U-domains with highly ex-
pressed genes confined in the burst (∼ 200 kb) of open chromatin at U-domain
borders confirming previous results about the organization of transcription in
their germline counterpart [114,136].

In Chapter V, we extended our analysis to several cell lines including one
embryonic stem cell (ESC). As a first general result, we showed that the four
chromatin states described in Chapter III are general to all somatic cell lines.
However, the MRT ordering of chromatin states C3 and C4 seems to be cell
line dependent. As a major result, our analysis revealed in ESC, a chromatin
structure that departs from the general organization observed in somatic cells.
Indeed, ESCs have drastically different chromatin states: EC1 is transcrip-
tionally active, EC2 is a bivalent state (i.e. containing both active promoter
H3K4me3 and H3K27me3), EC3 is unmarked and EC4 is a silent dynamic
chromatin. We further showed that U-domain borders conserved in all cell
lines have a particular sequence and epigenetic signature. Indeed, conserved
U-domain borders have a particularly high active chromatin state coverage
and they are GC and CpG rich and significantly enriched in intrinsic (encoded
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in the DNA sequence) NFRs. At the other end of the spectrum, specific U-
domain borders differ in ESC and sommatic cell lines. In the later, they are
marked by a C1+C2 open chromatin enrichment and a noticeable absence of
heterochromatin C3+C4 environment, probably corresponding to tissue spe-
cific transcription zones. In ESC, specific borders can be divided in two sub-
classes. The first behaves like specific borders in somatic cell line. The second
class is a particularity of pluripotent cells with early initiation zones occur-
ring in gene deserts, GC poor EC4 regions. This peculiarity is enabled by the
dynamic features of chromatin state EC4 (as the presence of chromatin re-
modelers). These early replicating zones do not seem to have any signature in
their sequence and the vast majority of them are intergenic. By contrast they
have a clear epigenetic signature since they are enriched in the histone variant
H2AZ as well as in the pluripotent factors NANOG and OCT4, putting into
light the role of these epigenetic marks in the regulation of the spatio-temporal
replication program in ES cells.

VI.2 Putative model for the interplay between

chromatin and replication

By taking into account the results reported in this thesis and in previous
studies, we can elaborate on a model of replication proceeding through four
different chromatin states. Chapter V demonstrates the generality of the chro-
matin segmentation in four chromatin states. Results from chapter IV suggest
that large-scale transcriptionally active regions are specified by the presence
of active genes (which does not exclude inactive genes). Replication origins in
these large-scale active regions fire early [127,128]. However, in chapter V, the
example of ESC specific early replication initiation in gene desert demonstrates
clearly that transcription is not necessary for early initiation. Seemingly, chro-
matin has to be accessible for origins to fire early in the S-phase. In somatic
cell lines, the main nuclear function promoting accessibility seems to be tran-
scription. Yet, the example of ESC shows that chromatin accessibility can be
obtained by a specific regulation. Then, as suggested in [93], the progression
of chromatin forks could open neighboring chromatin and stimulate origins in
more compact chromatin. This is consistent with the presence of origins in
transition timing regions (TTR) [93,94] and the succession of chromatin states
(C1, C2, C3, C4) visited by the accelerating replicating wave inside MRT U-
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domains, from the more open at the border to the more compact at the center.
When reaching heterochromatin states (C3 or C4), origin positions of ori-
gin likely become random as suggested by the increased fork density detected
in [93,109] and the few well positioned ORC complexes observed in [77].

Previous analyses on the 3D structure of the genome allow us to elabo-
rate on the position of early firing regions in the nucleus. In [30], a 4C assay
revealed that U-domain borders preferentially interact together and FISH ex-
periments confirmed their spatial proximity in the nucleus. Late replicating
regions also preferentially interact with late replicating regions. Yet late U-
domain central regions preferentially interact with loci in the same U-domain,
U-domain borders acting as barriers. These analyses were further confirmed
by quantitative analysis of the graph of interactions generated from the Hi-C
matrix in which U-domains border appear as hubs of intra- and inter- chro-
mosome interactions [113]. In [94], U-domains where shown to be enriched
in CTCF which forms chromatin loops and act as a barrier that prevent the
heterochromatin from spreading. Altogether, these observations suggests that
replication starts at the center of the nucleus and propagates towards more pe-
ripheral zones segregated from each other. Also, the Hi-C interaction matrix
structure in U-domains shows sub-domains of interactions suggesting succes-
sive folding levels. The existence of three kinds of silent chromatin states (C2,
C3, C4) inside U-domains might imply preferential interaction with chromatin
state of the same class. Further analysis of the Hi-C results conditioned by
chromatin states and theoretical modeling of the chromatin fiber by taking
into account the four types of chromatin states could provide answer to these
questions.

Our simple statistical description together with recent work naturally raise
a lot of speculations. Proposing speculative models is important to construct
interesting hypotheses to work on. However one has to be aware of the dif-
ference between correlation and causality to avoid overstating and/or misin-
terpreting statistical results. Also, to interpret correctly a statistical model,
the biostatisticians should know how to proceed to choose models being aware
that there is no absolute optimum model.
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VI.3 Designing a statistical analysis: a question

of choice

All models are wrong but some

models are useful

George Box

An issue with statistical analyses is the choice of the method. It would be
very handy to have a method that is objectively superior to others for all types
of problems. The “no free lunch” theorem formally states the opposite [295].
To choose the proper machine learning device, the biostatistician has to know
what he would like to achieve in order to find a method that is specifically
efficient for this particular task. Is it to predict a variable precisely according
to other variables without necessarily willing to understand the causal links
between those variables? Is it to find homogeneous groups within a set of
individuals characterized by several variables?

An important distinction between statistical methods is the classification
as supervised or unsupervised methods (see the introduction in [45] on the
subject). In the first case, a model is constructed from a set of D explanatory
variables Xi to fit a variable of interest Y :

Y = f(X1, X2, . . . , XD) + ε, (VI.1)

where f is a statistical model and ε is the error of the model. The parameters
of the function f are optimized so that the error ε of the model is minimal.
The advantage is that the prediction error ε can be evaluated on an indepen-
dent dataset for the same parameters. Therefore, there exists a natural way
to assess the quality of a supervised model. The shortcoming of supervised
methods is that only features that predict Y are retained in the explanatory
variables. In the unsupervised case, the goal is to describe the behavior of
a set of variables without distinguishing between explanatory variables and
the variable to explain (usually of more interest). The quality of unsupervised
methods is more difficult to assess (because there is no formal prediction error).
Yet, all particularities of the dataset are explored.

In this thesis, we wanted to describe the chromatin structure independently
from replication, and afterwards see how the chromatin structure impacts
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replication. This justified the choice of unsupervised methods. An alterna-
tive would have been to apply a supervised method (e.g. linear regression,
knn-classification) to predict replication timing from epigenetic marks. We
would probably have reached the same overall conclusions. However, we can
wonder if we would have found the distinction between the unmarked chro-
matin state and HP1 associated heterochromatin. Indeed, the timing ordering
of these two chromatin states is cell line dependent. Since the differences be-
tween these states is not important in terms of replication timing, a supervised
method may have missed this distinction that turns out to be quite relevant
from the epigenetic standpoint.

VI.4 Causality and correlation: risk of overstate-

ments

Whatever the strength of the statistical link/correlation between two variables,
it does not imply the existence of a causal link between the variables. As clearly
exemplified in [296], pear crops are not mechanically linked to apple crops even
if the two variables are dependent. Indeed, in a year with favorable weather
conditions, both apple crops and pear crops would be good. By contrast, dur-
ing a harsh year, pear and apple crops would be equally bad. Therefore apple
and pear crops correlate. The mechanical link here is the shared weather con-
ditions. The funny fact is that, we could imagine that a model based on apple
crops to predict pear crops would be better than a model based on a mechan-
ical factor like precipitation. Indeed, apple crops summarize several weather
variables (e.g. precipitations, hours of sunshine) in one variable. More than
an “egg-and-chicken” problem, the statistical link between transcription and
replication may be more like the link between the apples and the pears. The
hidden causal variable “weather conditions” would be the chromatin accessibil-
ity (e.g. local openness, 3D position in the nucleus). However, in contrast to
apples and pears that do not affect the weather, replication and transcription
machineries are known to directly act (feedback) on chromatin accessibility.

Models based on statistical analyses can only be speculative. [297] elegantly
stressed this idea by qualifying genomic data analysis as hypothesis-generating
biology. All these hypotheses have to be verified by what is referred to as the
“hypothesis-based” biology in [297]. From our standpoint, a classical biol-
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ogy assay formulates an hypothesis on causal reasons of an observation and
then rigorously tests it, possibly by applying classical hypothesis tests (for a
clear exposition of the hypothesis test approach see [298]). Multivariate data
analysis provides biology with interesting leads in the space to explore. The
hypothesis-generating part is essential because the initial number of possibil-
ities is unmanageable. An even more accurate name for this type of research
could be “hypothesis-confining” biology.

We hope that our work will make the study of causal links between chro-
matin, transcription and replication easier. One direct extension of this work
would be to take advantage of the recently avaible genome-wide datasets of
origin positions in human to analyze the impact of chromatin structure on ori-
gin positioning. There are currently several genome-wide available datasets.
In some studies, ORIs were detected using nascent DNA strands [73, 77]. In
other studies, ORC were detected by CHiP-seq [128]. Two teams which belong
to our collaborators are currently positioning origins genome-wide by sequenc-
ing nascent DNA strands [299] and Okazaki fragments [300]. The availability
of origin positions in several cell lines will enable us to assess the impact of
chromatin context on origin positioning and firing time. Moreover, from the
comparison of datasets obtained by different techniques, we will likely ensure
the robustness of results. A second very promising extension would be to ap-
ply a similar analysis as the one presented in Chapter V to the development
of cancer. Our statistical workflow revealed particularities of ESC cell lines
and detected profound epigenetic rearrangements in cancer cells (as exempli-
fied on Hela cells in Fig. V.17). However, for specific application to cancer,
the copy number variations should be taken into account [301]. Apart from
this precaution, systematic comparison between healthy cell lines and their
cancerous counterparts using our statistical procedure looks very promising.
Our team and our collaborators are currently developping a project aiming
at integratively characterizing nuclear rearrengement during MCF-7 cell line
proliferation. About 75% of breast cancers rely on estrogen for proliferation.
MCF-7 is an estrogen receptor-α (ERα) positive breast cancer cell line that
has been successfully used for more than 40 years to study estrogen response in
breast cancer [302]. We propose to establish the replication profile for this cell
line before and at three time points after estrogen treatment. Given these 4
time points, we will have for the first time the opportunity to analyze changes
in the replication timing profile along a well defined temporal path of during
the progression of cancer. An important reason why we chose this system is
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that it has been extensively analyzed so that a very large amount of data is
available for this cell line. For example, the ENCODE project currently lists
116 experiments for MCF7. The application of our statistical procedure at the
four time points would enable to go beyond static correlative analysis of the re-
lationships between replication timing, chromatin states, gene expression and
chromosome topological structure and to address important issues like whether
the epigenetic and structural modifications happen concomitantly or in an or-
dered manner. It will likely lead to interesting hypotheses to understand the
epigenetic deregulation occurring in cancer.
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