]. W. Bibliographie1, ]. Lee, A. Abbas, and . Sheikh, Mobile communications engineering On understanding the nature of slow fading in LOS microcellular channels, Proc. of the 47th IEEE Vehicular Technology Conference (VTC), pp.662-666, 1982.

P. Bello, Characterization of Randomly Time-Variant Linear Channels, Rayleigh fading channels in mobile digital communication systems. I, pp.360-393, 1963.
DOI : 10.1109/TCOM.1963.1088793

Z. Li, R. Wang, A. Molisch, and H. Suzuki, Shadowing in urban environments with microcellular or peer-to-peer links A statistical model for urban radio propagation, Proc. of the 6th European Conference on Antennas and Propagation (EUCAP), pp.90-100, 1977.

M. Milojevic, A. Hong, and J. Ylitalo, Winner II channel models, IST-WINNER Deliverable, vol.18, issue.2, 2007.

T. Sorensen, Correlation model for slow fading in a small urban macro cell, Ninth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (Cat. No.98TH8361), 1998.
DOI : 10.1109/PIMRC.1998.731361

J. Salo, A Sum-Product Model as a Physical Basis for Shadow Fading, 2007.

J. Andersen, Statistical distributions in mobile communications using multiple scattering, Proc. of the 27th URSI General Assembly, 2002.

M. Gudmundson, Correlation model for shadow fading in mobile radio systems, Electronics Letters, vol.27, issue.23, pp.2145-2146, 1991.
DOI : 10.1049/el:19911328

D. Baum, J. Salo, G. D. Galdo, M. Milojevic, P. Kyoesti et al., An interim channel model for beyond-3G systems, Proc. of the 61st IEEE Vehicular Technology Conference (VTC-Spring 2005), 2005.

L. Max, G. Stibor, D. Hiertz, and . Denteneer, IEEE 802.11 s mesh network deployment concepts (Invited Paper), Proc. of the 13th European Wireless Conference, p.7, 2007.

S. Szyszkowicz, H. Yanikomeroglu, and J. Thompson, On the Feasibility of Wireless Shadowing Correlation Models, IEEE Transactions on Vehicular Technology, vol.59, issue.9, pp.4222-4236, 2010.
DOI : 10.1109/TVT.2010.2082006

D. Young and N. Beaulieu, The generation of correlated Rayleigh random variates by inverse discrete Fourier transform, IEEE Transactions on Communications, vol.48, issue.7, pp.1114-1127, 2000.
DOI : 10.1109/26.855519

Y. Li and X. Huang, The simulation of independent Rayleigh faders, IEEE Transactions on Communications, vol.50, issue.9, pp.1503-1514, 2002.

C. Iskander, A MATLAB-based Object-Oriented Approach to Multipath Fading Channel Simulation, tech. rep, 2008.

S. Szyszkowicz, F. Alaca, H. Yanikomeroglu, and J. Thompson, Efficient Simulation using Shadowing Fields of Many Wireless Interferers with Correlated Shadowing, 2010 IEEE 71st Vehicular Technology Conference, pp.1-5, 2010.
DOI : 10.1109/VETECS.2010.5493734

A. Molisch, H. Asplund, R. Heddergott, M. Steinbauer, and T. Zwick, The COST259 Directional Channel Model-Part I: Overview and Methodology, IEEE Transactions on Wireless Communications, vol.5, issue.12, p.3421, 2006.
DOI : 10.1109/TWC.2006.256966

L. Liu, C. Oestges, J. Poutanen, K. Haneda, P. Vainikainen et al., The COST 2100 MIMO channel model, IEEE Wireless Communications, vol.19, issue.6, pp.92-99, 2012.
DOI : 10.1109/MWC.2012.6393523

M. Simon and M. Alouini, Digital communication over fading channels, 2005.
DOI : 10.1002/0471715220

S. Mccanne, S. Floyd, K. Fall, and K. Varadhan, Network simulator ns-2, 1997.

T. Henderson, M. Lacage, G. Riley, C. Dowell, and J. Kopena, Network simulations with the ns-3 simulator, 2008.

X. Chang, Network simulations with OPNET, Proceedings of the 31st conference on Winter simulation Simulation---a bridge to the future, WSC '99, pp.307-314, 1999.
DOI : 10.1145/324138.324232

A. Varga, The OMNeT++ discrete event simulation system, Proc. of the European Simulation Multiconference (ESM'2001), pp.319-324, 2001.

D. Bültmann, M. Mühleisen, K. Klagges, and M. Schinnenburg, OpenWNS - open Wireless Network Simulator, 2009 European Wireless Conference, 2009.
DOI : 10.1109/EW.2009.5357966

K. Wehrle and J. Gross, Modeling and tools for network simulation, 2010.
DOI : 10.1007/978-3-642-12331-3

M. Takai, J. Martin, and R. Bagrodia, Effects of wireless physical layer modeling in mobile ad hoc networks, Proceedings of the 2nd ACM international symposium on Mobile ad hoc networking & computing , MobiHoc '01, p.94, 2001.
DOI : 10.1145/501416.501429

D. Kotz, C. Newport, R. Gray, J. Liu, Y. Yuan et al., Experimental evaluation of wireless simulation assumptions, Proceedings of the 7th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems , MSWiM '04, pp.78-82, 2004.
DOI : 10.1145/1023663.1023679

B. Sklar, Rayleigh fading channels in mobile digital communication systems, II

B. Hamida, G. Chelius, and J. Gorce, Impact of the Physical Layer Modeling on the Accuracy and Scalability of Wireless Network Simulation, SIMULATION, vol.85, issue.9, pp.574-588, 2009.
DOI : 10.1177/0037549709106633

URL : https://hal.archives-ouvertes.fr/inria-00412150

R. Aggarwal, P. Schniter, and C. Koksal, Rate adaptation via link-layer feedback for goodput maximization over a time-varying channel, IEEE Transactions on Wireless Communications, vol.8, issue.8, pp.4276-4285, 2009.
DOI : 10.1109/TWC.2009.081132

M. Vutukuru, H. Balakrishnan, and K. Jamieson, Cross-layer wireless bit rate adaptation, ACM SIGCOMM Computer Communication Review, vol.39, issue.4, pp.3-14, 2009.
DOI : 10.1145/1594977.1592571

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.162.1207

C. Wang, X. Hong, X. Ge, X. Cheng, G. Zhang et al., Cooperative MIMO channel models: A survey, IEEE Communications Magazine, vol.48, issue.2, pp.80-87, 2010.
DOI : 10.1109/MCOM.2010.5402668

S. Landström, A. Furuskãr, K. Johansson, L. Falconetti, F. Kronestedt et al., Modulation rate adaptation in urban and vehicular environments: cross-layer implementation and experimental evaluation Mobile antenna systems handbook People and Furniture Effects on the Transmitter Coverage Area Prediction of Wide-Band Parameters of Mobile Propagation Channel Caractérisation et modélisation de la propagation des ondes électromagnétiques à 60 GHz à l'intérieur des bâtiments Indoor angular profile measurements and channel characterization at the millimeter-wave band Prediction of outdoor and outdoor-to-indoor coverage in urban areas at 1.8 GHz Lamppost and panel scattering compared to building reflection and diffraction Identification of scattering objects in microcell urban mobile propagation channel Radio wave scattering from lampposts in microcell urban mobile propagation channel Measurement, characterization and modeling of indoor 800/900 MHz radio channels for digital communications Effect of people moving near short-range indoor propagation links at 2. 45 GHz Propagation modelling and measurements in a populated indoor environment at 5.2 GHz Experimental assessment of the UWB channel variability in a dynamic indoor environment Ultrawideband propagation channels-theory, measurement, and modeling The effect of human body on indoor radio wave propagation at 57?64 GHz A time-variant MIMO channel model directly parametrised from measurements, Proc. of the 14th ACM international conference on Mobile computing and networking Proc. of the 9th International Symposium on Spread Spectrum Techniques and Applications Proc. of the 27th URSI General Assembly. [43] S. Collonge44] N. Moraitis, D. Vouyioukas, and P. Constantinou Proc. of the 5th European Conference on Antennas and Propagation COST 259 Proc. of the 15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) Non-stationary indoor MIMO radio channels55] S. Collonge, G. Zaharia, and G. Zein, " Influence of the human activity on wide-band characteristics of the 60 GHz indoor radio channel IEEE Antennas and Propagation Society International Symposium (APSURSI'09) EURASIP Journal on Wireless Communications and Networking, pp.203-210, 1987.

J. Roberts, J. Abeysinghe, A. Kaya, L. Greenstein, W. Trappe et al., Modeling temporal channel variations in indoor wireless environments Ray tracing technique based 60 ghz band propagation modelling and influence of people shadowing Performance implication of environmental mobility in wireless networks A body-shadowing model for indoor radio communication environments Time-varying path shadowing model for indoor populated environments A ray tracing based stochastic human blockage model for the IEEE 802 Effect of pedestrian movement on MIMO- OFDM channel capacity in an indoor environment Fading characteristics of RF signals due to foliage in frequency bands from 2 to 60 GHz Measurement and analysis of temporal fading due to moving vegetation Time variability of the foliated fixed wireless access channel at 3.5 GHz Time variation characteristics of wireless broadband channel in urban area Temporal variations characterization for fixed wireless at 29, Proc. of IEEE International Conference on Communications Proc. of the 26th IEEE International Conference on Computer Communications (INFOCOM) Proc. of the 5th European Conference on Antennas and Propagation (EUCAP) IEEE Antennas and Wireless Propagation Letters Wireless Personal Multimedia Communications Proc. of the 20th International Conference on Antennas and Propagation Proc. of the 61st IEEE Vehicular Technology Conference (VTC 2005-Spring)70] L. Greenstein, S. Ghassemzadeh, V. Erceg, and D. Michelson, " Ricean K-factors in narrow-band fixed wireless channels: Theory, experiments, and statistical models Proc. of the 1st European Conference on Antennas and Propagation (EuCAP), 2006. [72] L. Ahumada, R. Feick, R. Valenzuela, and C. Morales Measurement and characterization of the temporal behavior of fixed wireless links IEEE Transactions on Vehicular Technology, pp.95-96, 1995.

G. Ohta, T. Fujii, P. Karadimas, E. Vagenas, S. Kotsopoulos76-]-v et al., Fading channel measurement for static mobile terminals in outdoor nlos environments On the scatterers' mobility and second order statistics of narrowband fixed outdoor wireless channels Observations and models of time-varying channel gain in crowded areas Attenuation and diffraction effects from truck blockage of an 11-GHz line-of-sight microcellular mobile radio path Directional measurement and analysis of propagation path variations in a street micro-cell scenario Advanced LOS path-loss model in microcellular mobile communications Path loss, delay spread, and outage models as functions of antenna height for microcellular system design Microwave path-loss modeling in urban lineof-sight environments, Proc. of the 51st IEEE Vehicular Technology Conference Proceedings Proc Proc. of the 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks Proc. of the 57th IEEE Vehicular Technology Conference (VTC 2003-Spring)81] H. Masui, T. Kobayashi, and M. Akaike, pp.1-5, 1991.

M. Fiore, J. Harri, F. Filali, C. Bonnet, M. Treiber et al., Vehicular mobility simulation for VANETs Congested traffic states in empirical observations and microscopic simulations Discrete choice models of pedestrian walking behavior A microscopic pedestriansimulation model and its application to intersecting flows Social force model for pedestrian dynamics A note on two problems in connexion with graphs, 40th Annual Simulation Symposium Physica A: Statistical Mechanics and its Applications Numerische mathematik, pp.301-309, 1959.

]. S. Abbas, A. Sheikh, J. Andersen, J. Salo, L. Vuokko et al., A statistical model for urban radio propagation On understanding the nature of slow fading in LOS microcellular channels Statistical distributions in mobile communications using multiple scattering The Netherlands) An additive model as a physical basis for shadow fading Correlation model for shadow fading in mobile radio systems Identification of scattering objects in microcell urban mobile propagation channel Shadowing in urban environments with microcellular or peer-to-peer links, Proc. of the 47th IEEE Vehicular Technology Conference (VTC) Proc. of the 27th URSI General Assembly Mobile communications engineering Proc. of the 6th European Conference on Antennas and Propagation (EUCAP), pp.673-680, 1977.

Y. Yuan, A review of trust region algorithms for optimization, Proc. of the 4th International Congress on Industrial and Applied Mathematics (ICM'99, pp.271-282, 2000.

Y. Oda, K. Tsunekawa, and M. Hata, Advanced LOS path-loss model in microcellular mobile communications, IEEE Transactions on Vehicular Technology, vol.49, issue.6, pp.2121-2125, 2000.
DOI : 10.1109/25.901884

A. Saleh, O. Bulakci, J. Hämäläinen, S. Redana, and B. Raaf, Analysis of the impact of site planning on the performance of relay deployments, IEEE Transactions on Vehicular Technology, vol.61, issue.7, 2012.

C. Oestges, Multi-link propagation modeling for beyond next generation wireless, 2011 Loughborough Antennas & Propagation Conference, pp.1-8, 2011.
DOI : 10.1109/LAPC.2011.6114008

J. Harri, M. Fiore, F. Filali, C. Bonnet, and P. Weber, Vehicular Mobility Simulation with VanetMobiSim Transactions of The Society for Modeling and Simulation OpenStreetMap: user-generated street maps, these.pdf © [L. Maviel], [2013], INSA de Lyon, pp.12-18, 2008.

M. Fiore, J. Harri, F. Filali, and C. Bonnet, Vehicular mobility simulation for VANETs Three-dimensional urban EM wave propagation model for radio network planning and optimization over large areas, 40th Annual Simulation Symposium (ANSS'07), pp.301-309, 2007.

M. Milojevic, A. Hong, and J. Ylitalo, Winner II channel models Femtocell wireless time-variant stochastic channel modelling related to indoor human activity Comparison of measurements and simulations in indoor environments for wireless local networks at 60 GHz, IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC) Proc. of the 55th IEEE Vehicular Technology Conference, pp.1088-1092, 2002.

]. S. Bibliographie1, I. Sesia, M. Toufik, . Baker, E. Lte-the-astély et al., Overview of mobile WiMAX technology and evolution LTE: the evolution of mobile broadband LTE-Advanced: next-generation wireless broadband technology Prediction of variation in MIMO channel capacity for the populated indoor environment using a radar cross-section-based pedestrian model Performance implication of environmental mobility in wireless networks On the simulation of fixed wireless users in ns-2 System level simulation of LTE networks Convergence of proportional-fair sharing algorithms under general conditions, Proc. of the 26th IEEE International Conference on Computer Communications (INFOCOM) Proc. of the 15th IEEE International Workshop on Computer Aided Modeling, Analysis and Design of Communication Links and Networks (CAMAD) Proc. of the 71st IEEE Vehicular Technology Conference (VTC 2010-Spring), pp.31-40, 2004.

K. Brueninghaus, D. Astely, T. Salzer, S. Visuri, A. Alexiou et al., Link performance models for system level simulations of broadband radio access systems Simulating the long term evolution physical layer, Proc. of IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications Proc. of the 17th European Signal Processing Conference (EUSIPCO '09) Network simulations with the ns-3 simulator, " SIGCOMM demonstration, pp.2306-2311, 2005.

A. Varga, The OMNeT++ discrete event simulation system, Proc. of the European Simulation Multiconference (ESM'2001), pp.319-324, 2001.

X. Chang, Network simulations with OPNET, Proceedings of the 31st conference on Winter simulation Simulation---a bridge to the future, WSC '99, pp.307-314, 1999.
DOI : 10.1145/324138.324232

N. Baldo, M. Miozzo, M. Requena-esteso, and J. Nin-guerrero, An open source product-oriented LTE network simulator based on ns-3, Proceedings of the 14th ACM international conference on Modeling, analysis and simulation of wireless and mobile systems, MSWiM '11, pp.293-298, 2011.
DOI : 10.1145/2068897.2068948

Y. Corre and Y. Lostanlen, Three-Dimensional Urban EM Wave Propagation Model for Radio Network Planning and Optimization Over Large Areas, IEEE Transactions on Vehicular Technology, vol.58, issue.7, pp.3112-3123, 2009.
DOI : 10.1109/TVT.2009.2016973

K. Okino, T. Nakayama, C. Yamazaki, H. Sato, and Y. Kusano, Pico Cell Range Expansion with Interference Mitigation toward LTE-Advanced Heterogeneous Networks, 2011 IEEE International Conference on Communications Workshops (ICC), pp.1-5, 2011.
DOI : 10.1109/iccw.2011.5963603

C. Orange, K. Mobile, . Docomo, . Sprint, . T-mobile et al., LTE physical layer framework for performance verification, pp.3-4, 2007.

M. Liou, Overview of the p??64 kbit/s video coding standard, Communications of the ACM, vol.34, issue.4, pp.59-63, 1991.
DOI : 10.1145/103085.103091

S. Shakkottai and R. Srikant, Scheduling real-time traffic with deadlines over a wireless channel, Proceedings of the 2nd ACM international workshop on Wireless mobile multimedia , WOWMOM '99, pp.13-26, 2002.
DOI : 10.1145/313256.313273

L. Maviel, A. Cordonnier, Y. Lostanlen, and J. Gorce, Measurements of largescale variations caused by vehicular traffic in small-cells, Liste des contributions Conférences internationales avec Proc. of the 19th International Conference on Telecommunications (ICT), 2012.
URL : https://hal.archives-ouvertes.fr/hal-00758586

L. Maviel, J. Gorce, and Y. Lostanlen, A hybrid propagation model for large-scale variations caused by vehicular traffic in small cells, 2012 IEEE Global Communications Conference (GLOBECOM), 2012.
DOI : 10.1109/GLOCOM.2012.6503916

URL : https://hal.archives-ouvertes.fr/hal-00758574

L. Maviel, J. Gorce, and Y. Lostanlen, The Impact of Neglecting Vehicular Scattering in LTE Heterogeneous Networks, 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), 2013.
DOI : 10.1109/VTCFall.2013.6692438

C. , G. Gougeon, Y. Lostanlen, and L. Maviel, Coupling a deterministic propagation model with diffuse scattering and urban furniture for small cells, Proc. of the 5th European Conference on Antennas and Propagation (EuCAP), pp.3448-3452, 2011.

L. Maviel, Y. Lostanlen, and J. Gorce, Fast generation of correlated large-scale variations caused by vehicular scattering in small cells, Proc. of the 7th European Conference on Antennas and Propagation (EuCAP), 2013.

L. Séminaire, J. Maviel, Y. Gorce, and . Lostanlen, On the use of statistic in deterministic channel models, International Workshop on Propagation and Channel Modeling for Next-Generation Wireless Networks (IWPCM), 2011.

G. Jean-marie, Professeur à l'INSA de Lyon ? CITI

J. Gorce, Directeur Technique Wireless à SIRADEL, Co-encadrant Ghaïs El Zein, Professeur à l'INSA de Rennes ? IETR Rodolphe Vauzelle, Professeur à l